
Cris L. Luengo Hendriks
Gunilla Borgefors
Robin Strand (Eds.)

 123

LN
CS

 7
88

3

11th International Symposium, ISMM 2013
Uppsala, Sweden, May 2013
Proceedings

Mathematical Morphology
and Its Applications to
Signal and Image Processing



Lecture Notes in Computer Science 7883
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany



Cris L. Luengo Hendriks
Gunilla Borgefors Robin Strand (Eds.)

Mathematical Morphology
and Its Applications to
Signal and Image Processing

11th International Symposium, ISMM 2013
Uppsala, Sweden, May 27-29, 2013
Proceedings

13



Volume Editors

Cris L. Luengo Hendriks
Gunilla Borgefors
Robin Strand

Swedish University of Agricultural Sciences and Uppsala University
Centre for Image Analysis
Box 337
751 05 Uppsala, Sweden

E-mails:
cris@cb.uu.se
gunilla@cb.uu.se
robin@cb.uu.se

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-38293-2 e-ISBN 978-3-642-38294-9
DOI 10.1007/978-3-642-38294-9
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2013937542

CR Subject Classification (1998): I.4.10, I.5.4, C.3, G.2, J.3, I.2.8

LNCS Sublibrary: SL 6 – Image Processing, Computer Vision, Pattern Recognition,
and Graphics

© Springer-Verlag Berlin Heidelberg 2013

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Preface

The volume you hold in your hand collects the papers accepted for presenta-
tion at the 11th International Symposium on Mathematical Morphology (ISMM
2013), held in Uppsala, Sweden, during May 27–29, 2013. ISMM has been held
approximately every two years since 1993, when the series was initiated in
Barcelona. The ten preceding editions of this conference were very successful,
and the series has established itself as the main scientific event in the field.

We received 52 high-quality papers, each of which was sent to at least three
Program Committee members for review. Based on 153 detailed reviews, we
accepted 33 papers and conditionally accepted another eight. These eight pa-
pers were accepted after substantial revision by the authors in response to re-
viewer concerns. We decided to conditionally accept papers that needed impor-
tant changes because each of us has listened to the presentation of a paper we
reviewed, only to realize that the authors did nothing with our comments. In this
case, however, and to our delight, even papers we accepted without conditions
were in most cases extensively rewritten in response to reviewer comments.

In addition to the 41 reviewed papers, this volume contains three papers
authored by our invited speakers:

– “Adaptive Morphologic Regularizations for Inverse Problems,” by Bhabatosh
Chanda (Indian Statistical Institute) with P. Purkait

– “The Laplace-Beltrami Operator: A Ubiquitous Tool for Image and Shape
Processing,” by Ron Kimmel (Technion–Israel Institute of Technology) with
A. Wetzler, Y. Aflalo, and A. Dubrovina

– “Geography, Mathematics and Mathematical Morphology,” by Christine
Voiron-Canicio (University of Nice–Sophia Antipolis).

We would like to thank everyone involved in putting together this volume and
the conference: the authors for providing the scientific content; the Program
Committee and the additional reviewers for thorough reviews and detailed com-
ments; the Steering Committee for giving us the opportunity to organize this
conference and supporting us throughout the process; Springer for doing most
of the work involved in putting this volume together; our two universities for
financial support; The Swedish Research Council for sponsoring two of our in-
vited speakers; the International Association for Pattern Recognition and Centre
for Interdisciplinary Mathematics (Uppsala University) for sponsoring the third
invited speaker; and the City of Uppsala for sponsoring the conference dinner
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at Östgöta nation. Finally, we would like to acknowledge EasyChair, the on-
line conference management system we used free of charge to handle the paper
submission and review process.

March 2013 C. Luengo
G. Borgefors

R. Strand
C. Kiselman

V. Ćurić
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Lidija Čomić, Leila De Floriani, and Federico Iuricich

Random Tessellations and Boolean Random Functions . . . . . . . . . . . . . . . . 25
Dominique Jeulin

Discrete Set-Valued Continuity and Interpolation . . . . . . . . . . . . . . . . . . . . 37
Laurent Najman and Thierry Géraud
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Jesús Angulo and Santiago Velasco-Forero

A Weight Sequence Distance Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
Benedek Nagy, Robin Strand, and Nicolas Normand

The Laplace-Beltrami Operator: A Ubiquitous Tool for Image and
Shape Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302

Aaron Wetzler, Yonathan Aflalo, Anastasia Dubrovina, and
Ron Kimmel

Filtering

Towards Morphological Image Regularization Using the
Counter-Harmonic Mean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317

Jorge Larrey-Ruiz, Rafael Verdú-Monedero,
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Similarity between Hypergraphs

Based on Mathematical Morphology

Isabelle Bloch1, Alain Bretto2, and Aurélie Leborgne3,�
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2
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Abstract. In the framework of structural representations for applica-
tions in image understanding, we establish links between similarities,
hypergraph theory and mathematical morphology. We propose new sim-
ilarity measures and pseudo-metrics on lattices of hypergraphs based on
morphological operators. New forms of these operators on hypergraphs
are introduced as well. Some examples based on various dilations and
openings on hypergraphs illustrate the relevance of our approach.

Keywords: Hypergraphs, similarity, pseudo-metric, valuation,
mathematical morphology on hypergraphs.

1 Introduction

The notion of similarity plays a very important role in various fields of applied
sciences. Classification is an example [6], and other examples such as indexing,
retrieval or matching demonstrate the usefulness of the concept of similarity [7],
with typical applications in image processing and image understanding. A recent
trend in these domains is to rely on structural representations of the informa-
tion (images for instance). Beyond the classical graph representations, and the
associated notion of graph similarity, hypergraphs (in which edges can have
any cardinality and are then called hyperedges), introduced in the 1960s [23],
have recently proved useful. This concept has developed rapidly and has become
both a powerful and well-structured mathematical theory for modeling complex
situations. This theory is now widely used in sciences as diverse as chemistry,
physics, genetics, computer science, psychology... [23], most of them requiring
the notions of comparison and similarity measure. In image applications, most
similarity measures rely on features computed locally, or among the vertices
of an hyperedge, and therefore do not completely exploit the structure of the
hypergraph at this level [10,11,14,15].

� This work was partially funded by a grant from Institut Mines-Telecom / Telecom
ParisTech, and was done during the sabbatical stay of A. Bretto at Telecom Paris-
Tech and during the Master thesis of A. Leborgne at Greyc.

C.L. Luengo Hendriks, G. Borgefors, R. Strand (Eds.): ISMM 2013, LNCS 7883, pp. 1–12, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



2 I. Bloch, A. Bretto, and A. Leborgne

In this paper, we propose new tools for defining similarity measures and met-
rics based on mathematical morphology. In order to deal with structured infor-
mation, mathematical morphology has been developed on graphs [8,17,21,22],
triangulated meshes [16], and more recently on simplicial complexes [9] and hy-
pergraphs [2,3], where preliminary notions of dilation-based similarity were intro-
duced. In this paper, we propose to study similarities on lattices and more specif-
ically on lattices of hypergraphs. We define some of them based on valuations on
hypergraphs and mathematical morphology operators. They are illustrated on
various types of lattices of hypergraphs, by also introducing new morphological
operators, showing the interest of the proposed definitions for achieving robust-
ness with respect to small variations of the compared hypergraphs. This paper
is organized as follows. In Section 2 we recall some definitions on hypergraphs
and lattices of hypergraphs on which morphological operators are defined. In
Section 3, we show some general results on similarities, valuations and pseudo-
metrics. Similarity and pseudo-metrics based on mathematical morphology are
then defined in Section 4, with a number of illustrative examples.1

2 Background and Notations

Basic Concepts on Hypergraphs [5]. A hypergraph H denoted by H = (V,E =
(ei)i∈I) on a finite set V is a family (which can be a multi-set) (ei)i∈I , (where I
is a finite set of indices) of subsets of V called hyperedges. Let (ej)j∈{1,2,...l} be a
sub-family of hyperedges of E. The set of vertices belonging to these hyperedges
is denoted by v(∪j∈{1,2,...l}ej), and v(e) denotes the set of vertices forming the
hyperedge e. If ∪i∈Iv(ei) = V , the hypergraph is without isolated vertex (a
vertex x is isolated if x ∈ V \∪i∈Iv(ei)). The set of isolated vertices is denoted by
V\E . By definition the empty hypergraph is the hypergraph H∅ such that V = ∅
and E = ∅. A hypergraph is called simple if ∀(i, j) ∈ I2, v(ei) ⊆ v(ej) ⇒ i = j.
The incidence graph of a hypergraph H = (V,E) is a bipartite graph IG(H)
with a vertex set S = V � E (where � stands for the disjoint union), and
where x ∈ V and e ∈ E are adjacent if and only if x ∈ v(e). Conversely, to
each bipartite graph Γ = (V1 � V2, A), we can associate two hypergraphs: a
hypergraph H = (V,E), where V1 = V and V2 = E and its dual H∗ = (V ∗, E∗),
where V1 = E∗ and V2 = V ∗. This notion is useful to prove some results in
Section 3.

Mathematical Morphology on Hypergraphs. In [3], we introduced mathematical
morphology on hypergraphs. The first step was to define complete lattices on
hypergraphs. Then the whole algebraic apparatus of mathematical morphology
applies [4,12,13,18,19] and is not recalled here.

We denote the universe of hypergraphs by H = (V , E) with V the set of ver-
tices (that we assume to be finite) and E the set of hyperedges. The powersets of V

1 Proofs are omitted because of lack of space.
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and E are denoted by P(V) and P(E), respectively. We denote a hypergraph
by H = (V,E) with V ⊆ V and E ⊆ E . As developed in [3], several complete
lattices can be built on (V , E). Let us denote by (T ,	) any of these lattices.
We denote by ∧ and ∨ the infimum and the supremum, respectively. The least
element is denoted by 0T and the largest element by 1T . Here we will use three
examples of complete lattices: T1 = (P(V),⊆), T2 = (P(E),⊆) (which are simply
lattices over the power set of vertices and the power set of edges, respectively),
and T3 = ({H},	) where {H = (V,E)} denotes a set of hypergraphs defined
on (V , E) such that ∀e ∈ E, v(e) ⊆ V , and the partial ordering is defined as
∀(H1 = (V1, E1), H2 = (V2, E2)) ∈ T 2

3 , H1 	 H2 ⇔ V1 ⊆ V2 and E1 ⊆ E2 [3]. As
shown in [3], we haveH1∧H2 = (V1∩V2, E1∩E2) andH1∨H2 = (V1∪V2, E1∪E2).
Examples of dilations on these lattices can be found in [3]. In Section 4, we
provide further examples, along with the adjoint erosions, as well as examples
of openings.

3 Similarity, Valuation and Pseudo-Metric

3.1 Similarity and Pseudo-metric

A similarity on a set T is defined as a function from T × T into [0, 1] such that
∀(x, y) ∈ T 2, s(x, y) = s(y, x) and s(x, x) = 1. We will consider in particular the
case where T is a lattice defined on hypergraphs. From a similarity s, a semi-
pseudo-metric can be defined as ∀(x, y) ∈ T 2, d(x, y) = 1− s(x, y). If moreover s
satisfies ∀(x, y, z) ∈ T 3, s(x, z)+s(z, y)−1 ≤ s(x, y), then d is a pseudo-metric2.

Proposition 1. Let w be a positive, monotonous (increasing) real-valued func-
tion defined on a lattice T .

(a) If ∀(x, y, z) ∈ T 3, w(x∧ y) ≤ w(x∧ z)+w(z ∧ y) and w(x∨ y) ≥ max(w(x∨
z), w(z ∨ y)), then the function d1 defined as ∀(x, y) ∈ T 2, d1(x, y) =

w(x∧y)
w(x∨y)

if w(x ∨ y) �= 0, and 0 otherwise, is a pseudo-metric.
(b) If ∀(x, y, z) ∈ T 3, w(x∧ y) ≥ w(x ∧ z) +w(z ∧ y) and w(x ∨ y) ≤ min(w(x ∨

z), w(z ∨ y)), then the function d2 defined as ∀(x, y) ∈ T 2, d2(x, y) = 1 −
w(x∧y)
w(x∨y) if w(x ∨ y) �= 0, and 0 otherwise, is a pseudo-metric.

Note that the conditions involved in this proposition are quite strong. In partic-
ular, they do not hold for simple valuations such as the cardinality on a graded
lattice (see Section 3.2).

Proposition 2. Under condition (b) above d(x, y) = w(x∨y)−w(x∧y) defines
a pseudo-metric.

2 For a pseudo-metric, we have d(x, x) = 0 but we may have d(x, y) = 0 for x �= y,
and for a semi-metric the triangular inequality does not necessarily hold. So a semi-
pseudo-metric satisfies ∀(x, y) ∈ T 2, d(x, y) = d(y, x), d(x, x) = 0.
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3.2 Valuation on a Lattice (T ,�) and Pseudo-metric

Definition 1. [1] A valuation w on a lattice (T ,	) is defined as a real-valued
function such that: ∀(x, y) ∈ T 2, w(x)+w(y) = w(x∧y)+w(x∨y). A valuation
is increasing if ∀(x, y) ∈ T 2, x 	 y ⇔ w(x) ≤ w(y).

In the following we consider only increasing valuations. We have then ∀x ∈
T , w(0T ) ≤ w(x) ≤ w(1T ), and ∀(x, y) ∈ T 2, w(x ∧ y) ≤ w(x ∨ y). A pseudo-
metric can be derived as follows [1].

Theorem 1. [1] Let w be an increasing valuation on (T ,	). Then d, defined
by ∀(x, y) ∈ T 2, d(x, y) = w(x ∨ y)−w(x ∧ y) is a pseudo-metric. The following
inequality also holds: ∀(a, x, y) ∈ T 3, d(a ∨ x, a ∨ y) + d(a ∧ x, a ∧ y) ≤ d(x, y).

Note that this result requires weaker assumptions than the condition (b) used in
Proposition 2.

Let us consider the lattice T1 = (P(V),⊆) [3]. The cardinality defines an
increasing valuation: ∀V ⊆ V , w(V ) = |V |. We have w(V ) = 0 ⇔ V = ∅ = 0T
and w(1T ) = |V|. In this case, d is a metric (in particular we have d(V, V ′) =
0⇔ V = V ′), and can be expressed as: ∀(V, V ′) ∈ P(V)2, d(V, V ′) = |V ∪ V ′| −
|V ∩ V ′| = |V |+ |V ′| − 2|V ∩ V ′| = |V ΔV ′|.

Proposition 3. The lattice T3 = ({H},	) is modular.

Note that if the hypergraphs are supposed to be without isolated vertices, the
double partial ordering reduces to inclusion between hyperedge sets and T3 is
isomorphic to T2 = (P(E),⊆) and hence modular (this is derived from the fact
that this lattice is distributive). Here we consider the more general case where
V can contain isolated vertices.

As shown in [1], on any modular lattice, the height function (i.e. assigning
to every x ∈ T the least upper bound of the lengths of the chains from 0T to
x) defines a valuation w, leading to a graded lattice. This valuation is strictly
monotonous. An interesting property is that ∀(x, y) ∈ T 2, if y covers x (i.e.
x ≺ y and �z ∈ T , x ≺ z ≺ y) then w(y) = w(x) + 1.

Proposition 4. On T3 = ({H},	), the valuation defined by the height function
is equal to: ∀H = (V,E) ∈ T3, w(H) = |V |+ |E|.

4 Mathematical Morphology and Similarity between
Hypergraphs

4.1 Similarity and Dilation

If A and B are m ×m matrices, we denote by A ◦ B their entry-wise product,
i.e. the matrix whose mi,j entry is ai,jbi,j . It is called the Schur or Hadamard
product of A and B. It is known that if A and B are positive definite, then so is
A ◦B.
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Theorem 2. Let S be a set and s a similarity on S such that s(x) ∈ [0; 1]∩Q+,
for all x ∈ S (where Q+ denotes the set of positive rational numbers). Let us
assume that s can be written as:

∀(ui, uj) ∈ S2, i, j ∈ {1, . . . ,m}, s(ui, uj) =

(
xi,j

xi + xj − xi,j

)
with xi,j = xj,i, xi,i = xi and xj ≥ xi,j Then the matrix M(s) =
(s(ui, uj))i,j∈{1,...,m} can be written as the Hadamard product of two matrices
A and B verifying the following properties:

1. the matrix A is a semi-positive definite symmetric Cauchy matrix (i.e. having

the following form: A = (aij)i,j =
(

1
xi+xj

)
i,j

; xi + yj �= 0);

2. the matrix B is a matrix defined by the following process: there is a simple
hypergraph H = (V,E) with |E| = m and a dilation from (P(E),⊆) into
(P(V ),⊆) such that B = (|δ(ei) ∩ δ(ej)|)i,j∈{1,...,m}.

From this result it is easy to show the following result.

Corollary 1. Let S be a set and s a similarity on S defined as above. Let us
assume that s can be written as:

∀(ui, uj) ∈ S2, i, j ∈ {1, . . . ,m}, s(ui, uj) =

(
2xi,j

xi + xj

)
with xi,i = xi. Then the matrix M(s) = (s(ui, uj))i,j∈{1,...,m} can be written as

the Hadamard product of two matrices A and B verifying the following properties:

1. the matrix A is a Cauchy matrix;
2. the matrix B is a matrix defined by the following process: there is a simple

hypergraph H = (V,E) with |E| = m and a dilation on E such that B =
(|δ(ei) ∩ δ(ej)|)i,j∈{1,...,m}.

4.2 Similarity from a Valuation and a Morphological Operator

Let us consider any lattice of hypergraphs (T ,	), an increasing valuation w and
a morphological operator ψ defined on this lattice. In this section, we generalize
ideas suggested in [3] in the particular case where the lattice was the power set
of vertices, w was the cardinality and ψ was a dilation.

Definition 2. Let (T ,	) be a lattice of hypergraphs, w an increasing valuation
on this lattice such that w(x) = 0 iff x = 0T , and ψ a morphological operator
from (T ,	) into (T ,	) such that ψ(x) = 0T ⇒ x = 0T . We define a real-valued

function s as: ∀(x, y) ∈ T 2 \ (0T , 0T ), s(x, y) =
w(ψ(x)∧ψ(y))
w(ψ(x)∨ψ(y)) and s(0T , 0T ) = 1.

Proposition 5. The function s introduced in Definition 2 is a similarity.

In a similar way as in Theorem 1, we introduce a pseudo-metric defined from w
and ψ.
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Proposition 6. Let w and ψ defined on (T ,	) as in Definition 2. The real-
valued function dψ defined as: ∀(x, y) ∈ T 2, dψ(x, y) = w(ψ(x)∨ψ(y))−w(ψ(x)∧
ψ(y)) is a pseudo-metric. In the particular case where T is the power set of the
set of vertices or of hyperedges (with 	 equal to ⊆), and the valuation is the
cardinality, then dψ is a metric.

Note that again this result requires weaker assumptions than the condition (b)
used in Proposition 2.

The similarity s and the pseudo-metric dψ are linked by the following rela-

tion: ∀(x, y) ∈ T 2 \ (0T , 0T ), 1 − s(x, y) =
dψ(x,y)

w(ψ(x)∨ψ(y)) and 1 − s(0T , 0T ) =

dψ(0T , 0T ) = 0. The similarity is then a normalized version of dψ. If moreover
w ◦ψ satisfies the condition (b) of Proposition 1, then this normalized version is
a pseudo-metric.

We also have the following additional properties.

Proposition 7. Let w and ψ defined on (T ,	) as in Definition 2, and d and
dψ as in Theorem 1 and Proposition 6.

– Two elements of the lattice that are equivalent up to ψ have a zero distance:
∀(x, y) ∈ T 2, ψ(x) = ψ(y)⇒ dψ(x, y) = 0.

– If ψ is a morphological filter (i.e. increasing and idempotent), then ∀(x, y) ∈
T 2, x 	 y ⇒ dψ(x, y) = w(ψ(y)) − w(ψ(x)), and dψψ = dψ.

– If ψ is moreover anti-extensive (i.e. ψ is an opening), then ∀x ∈ T , d(x, ψ(x))
= w(x) − w(ψ(x)). If ψ is extensive (i.e. ψ is a closing), then ∀x ∈ T ,
d(x, ψ(x)) = w(ψ(x)) − w(x).

– Let us denote by Inv(ψ) the set of invariants by ψ (i.e. x ∈ Inv(ψ) ⇔
ψ(x) = x). We have: ∀(x, y) ∈ Inv(ψ)2, dψ(x, y) = d(x, y).

The interest of the definitions and results of this section is that similarity and
metrics are defined up to a transformation, which makes the results robust to
variations of hypergraphs encoded by this transformation. The case where ψ is
a filter is then of particular interest.

4.3 Example for a Dilation on (P(E),⊆)

Let us first consider the simple example introduced in [3]. For any hypergraph
(V,E), we define a dilation δ on (P(E),⊆) as: ∀A ⊆ E, δ(A) = {e ∈ E |
v(A) ∩ v(e) �= ∅} where v(A) = ∪e′∈Av(e′). Let H1 = (V,E1) and H2 = (V,E2)
be two hypergraphs without empty hyperedge and δE1 and δE2 dilations defined
on the set of hyperedges of H1 and H2, as above. We define a similarity function

s by: ∀A1 ⊆ E1, ∀A2 ⊆ E2, s(A1, A2) =
|δE1(A1)∩δE2(A2)|
|δE1(A1)∪δE2(A2)| , which corresponds to

the similarity introduced in Definition 2 for w = |.| and ψ = δ.
Let us consider an example where hypergraphs are defined to represent im-

age information. Vertices are pixels of the image, and hyperedges are subsets of
pixels. Let us assume that the two images have the same support, and hence the
corresponding hypergraphs have the same set of vertices. Let us denote them
by H1 = (V,E1) and H2 = (V,E2). In this example, the hyperedge were built
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from color and connectivity relations as follows: we define a neighborhood of
each pixel x as Γα,β(x) = {x′ | dC(I(x), I(x′)) < α and dN (x, x′) ≤ β}, were dC
denotes a distance in the color space (or gray scale), I denotes the color of the
intensity function, dN denotes the distance in the spatial domain and α and β are
two parameters to tune the extent of the neighborhood. The set of hyperedges
is then defined as the set of Γα,β(x) for all x ∈ V . A weighted average simi-
larity can be defined as: s(H1, H2) = 1

2 (
1∑

e∈E1
|δE1(e)|

∑
e∈E1

s(e, E2)|δE1(e)| +
1∑

e′∈E2
|δE2(e

′)|
∑
e′∈E2

s(e′, E1)|δE2(e
′)|) where s(e, E2)=maxe′∈E2

|δE1 (e)∩δE2(e
′)|

|δE1 (e)∪δE2(e
′)|

and a similar expression for s(e′, E1). In the example in Figure 1(a), the similar-
ity between the left image and its modification with an additional line is equal to
0.96. The figure on the right illustrates the dissimilarity between the two images.
The dilation leads to more robustness to small and non relevant variations in
the images (without the dilation, the similarity would be 0.94). Similarly, the
similarity is computed between registered x-ray images of normal (b) and patho-
logical (c) lungs, highlighting the pathological region (d). Its value is 0.75 (and
0.61 without dilation).

(a) (b) (c) (d)

Fig. 1. (a) An image and a modified version where a line has been introduced. The im-
age on the right illustrates the dissimilarity (darkest grey levels). The global similarity
is 0.96. Similarity (d) between normal (b) and pathological (c) lungs.

Another example is illustrated in Figure 2, where two images exhibiting some
differences are compared. The comparison is illustrated in four sub-images. The
similarity is equal to 1 in the top left part, to 0.75 in the top right part, to 0.98
in the bottom left part and to 0.97 in the bottom right part. Again this fits what
could be intuitively expected. The global similarity, computed over the whole
images, is equal to 0.93. The subdivision (even very simple here) allows us to
better localize the differences.

Fig. 2. Two images with some differences, and dissimilarity image
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4.4 Example for an Opening on T1 = (P(V),⊆)

Let us now consider T1 = (P(V),⊆) and T2 = (P(E),⊆). As in [3], we define
a dilation from T2 into T1 as: ∀e ∈ E,Be = δ({e}) = {x ∈ V | ∃e′ ∈ E , x ∈
v(e′) and v(e) ∩ v(e′) �= ∅} = ∪{v(e′) | v(e′) ∩ v(e) �= ∅}, and the dilation of any
subset of E is defined using the sup-generating property. The adjoint erosion ε,
from T1 into T2 is given by: ∀V ∈ P(V), ε(V ) = ∪{E ∈ P(E) | ∀e ∈ E, δ({e}) ⊆
V } = {e ∈ E | ∀e′ ∈ E , v(e′) ∩ v(e) �= ∅ ⇒ v(e′) ⊆ V }.

Proposition 8. The opening γ = δε is defined from T1 into T1 and is expressed
as: ∀V ∈ P(V), γ(V ) = ∪{v(e′) | ∃e ∈ ε(V ), v(e′) ∩ v(e) �= ∅} = ∪{Be | v(e) ⊆
V,Be ⊆ V }.

It is the set of vertices of the hyperedges whose neighbors (as defined by Be)
are in V and vertices of these neighbors. The example in Figure 3 illustrates
that vertices that belong to “incomplete” hyperedges (i.e. for which the set of
vertices is not completely included in V ) are removed. This can be used for
filtering hypergraphs by keeping only vertices of complete hyperedges (e4 and
e5 here), which can be interesting for indexing and retrieval purposes (vertices
from incomplete hyperedges being then considered as noise).

e1e1 e2e2

e3e3

e4e4 e5e5

Fig. 3. Example of an opening from T1 = (P(V),⊆) into T1 = (P(V),⊆) [3]. The red
circled vertices on the left represent V . Its opening is shown in blue on the right.

When computing the similarity s(V, V ′) = |γ(V )∩γ(V ′)|
|γ(V )∪γ(V ′)| , it is clear that if V ′

differs from V only by vertices from incomplete hyperedges, then s(V, V ′) = 1.
The similarity is then robust to noise vertices. In particular s(V, γ(V )) = 1
since γ(γ(V )) = V . Other examples are shown in Figure 4, which have the
same opening as in Figure 3 (right). Hence all these subsets of vertices have a
similarity equal to 1 (i.e. they are equivalent up to γ and only differ by their
isolated vertices).

e1e1 e2e2

e3e3

e4e4 e5e5

Fig. 4. Two other subsets of V having the same opening (shown in blue on the right
in Figure 3), i.e. vertices of e4 and e5
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Let us now consider another example of opening.

Proposition 9. The operator γ′ from T1 into T1 defined as ∀V ∈ P(V), γ′(V ) =
∪{v(e) | v(e) ⊆ V } is an opening.

This opening keeps all vertices of complete hyperedges, i.e. the ones that are “well
connected” in the hypergraph. Invariants of γ′ are the subsets V that contain
only vertices of complete hyperedges. An example is illustrated in Figure 5. The
subset V is shown in red on the left and its opening γ′(V ) = v(e5) in blue on
the right. Note that for this example we have γ(V ) = ∅, thus illustrating the
difference between γ and γ′.

e1e1 e2e2

e3e3

e4e4 e5e5

Fig. 5. Subset V (in red) and its opening γ′(V ) (in blue)

Again this makes the similarity robust to vertices which belong to incomplete
hyperedges. We have s(V, V ′) = 0 iff V ∩ V ′ is the set of noise vertices.

If we consider a binary version of the similarity, i.e. V and V ′ are equivalent iff
γ′(V ) = γ′(V ′), then equivalence classes are built of subsets of V which contain
the vertices of the same complete hyperedges. In particular V and γ′(V ) belong
to the same equivalence class. Using this equivalence relation can be useful for
robust indexing and retrieval, for robust entropy definition, etc.

4.5 Example on T3 = ({H},�)

Let us now consider the most interesting case where T is the lattice of hyper-
graphs T3 = ({H},	). We again consider opening.

Proposition 10. The operator γ1 defined for each hypergraph H = (V,E) in
T3 by γ1(H) = (∪e∈Ev(e), E) = (V \ V\E , E) is an opening.

Let us now consider the dilation introduced in [3] on this lattice. The canon-
ical decomposition of H , from its sup generating property, is expressed as:
H = (∨e∈E(v(e), {e}))∨(∨x∈V\E ({x}, ∅)). From this decomposition, a dilation is
defined as: ∀x ∈ V\E , δ({x}, ∅) = ({x}, ∅), for isolated vertices, and for elemen-
tary hypergraphs associated with hyperedges: ∀e ∈ E, δ(v(e), {e}) = (∪{v(e′) |
v(e′) ∩ v(e) �= ∅}, {e′ ∈ E | v(e′) ∩ v(e) �= ∅}). The dilation of any H is then
derived from its decomposition and from the commutativity of dilation with the
supremum.

In the particular case where H has no isolated vertices, then it is sufficient
to consider the hyperedges (since the set of vertices is automatically equal to
∪e∈Ev(e)), and δ can be written in a simpler form as δ({e}) = Be = {e′ ∈ E |
v(e) ∩ v(e′) �= ∅}, and δ(E) = ∪e∈Eδ({e}) = {e′ ∈ E | ∃e ∈ E, v(e′) ∩ v(e) �= ∅}.
An example is illustrated in Figure 6.
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e1e1 e2e2

e3e3

e4e4 e5e5

Fig. 6. The figure on the left represents V (vertices represented as points) and E (hy-
peredges represented as closed lines). The red lines indicate the hyperedges of H . The
vertices of H are the points enclosed in these lines. The blue lines on the right represent
the hyperedges of δ(H) and its vertices are the points enclosed in these lines. For this
example, ε(H) and γ2(H) are empty.

Proposition 11. Let us consider hypergraphs without isolated vertices. The ad-
joint erosion of δ is given by: ∀E ∈ P(E), ε(E) = ∪{E′ ∈ P(E) | δ(E′) ⊆ E} =
{e′ ∈ E | Be ⊆ E} and ε(H) = (∪e∈ε(E)v(e), ε(E)). The opening γ2 = δε is then
γ2(E) = ∪Be⊆EBe, and γ2(H) = (∪e∈γ2(E)v(e), γ2(E)).

This result is similar to Proposition 8 on the lattices built on vertices.
In Figure 6, the erosion of H shown in red is empty, and the opening is empty

as well. In Figure 7, the erosion of H is equal to (v(e1), {e1}) and the opening
is γ2(H) = H . Another example shows the filtering effect of this opening.

e1e1 e2e2

e3e3

e4e4 e5e5

Fig. 7. Top: H is represented on the left using the same conventions as in Figure 6. Its
erosion is shown on the right and γ2(H) = H . Bottom: H and its opening γ2(H).

If we now consider the more general case where the hypergraphs have isolated
vertices, since these are preserved by dilation, they are also preserved in the
adjoint erosion and in the derived opening. These isolated vertices do not induce
any change when using γ2 or not for computing the similarity or the distance. For
instance if H ′ is equal to H plus k additional isolated vertices, then d(H,H ′) =
dγ2(H,H ′) = k. Let us now consider as a valuation on T3 the height. As shown
in Proposition 4, we have ∀H = (V,E) ∈ T3, w(H) = |V | + |E|. We have:
d(H, γ1(H)) = |V\E |, which is the number of isolated vertices in H (the distance
evaluates the amount of “noise” in H if isolated vertices are interpreted as noise
vertices). If H and H ′ differ only by isolated vertices, then dγ1(H,H ′) = 0. If we
consider now γ2, then the general results expressed in Proposition 7 hold, along
with the associated interpretation. Let us give a few simple examples: For the
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first example of H depicted in Figure 7, d(H, γ2(H)) = d(H,H) = 0. For the
second example of H , d(H, γ2(H)) = 4 + 1 = 5. Two hypergraphs H1 and H2

having the same opening by γ2 are displayed in Figure 8. Hence dγ2(H1, H2) = 0.
Now if k isolated vertices are added to one of the two hypergraphs, their opening
will stay the same up to these isolated vertices, and dγ2(H1, H2) = k.

Fig. 8. Two hypergraphs H1 (left) and H2 (right). Their openings are γ2(H1) =
γ2(H2) = H2 and dγ2(H1,H2) = 0.

5 Conclusion

The proposed framework offers new tools for defining similarity measures and
pseudo-metrics, which are robust to variations (encoded by morphological
operators) of hypergraphs. They can be incorporated in existing systems for
hypergraph-based feature selection, indexing, retrieval, matching. As an exam-
ple, let us consider the equivalence relation on any lattice of hypergraphs T
defined by ∀(x, y) ∈ T 2, xRy ⇔ ψ(x) = ψ(y) where ψ is a morphological op-
erator on T . This equivalence relation induces a partition of T , denoted by

T = ∪iTi. A discrete probability distribution can then be defined as pi =
|Ti|
|T |

from which an entropy of T (up to ψ) can be derived. This defines a new entropic
criterion that can be used in feature selection methods such as [24]. Future work
aims at exploring other examples of morphological operators in the proposed
framework (for instance as the ones defined in [9] on simplicial complexes), and
weaker forms of valuations, by considering the sub- or supra-modular cases [20].
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Abstract. Ascending and descending Morse complexes are defined by
the critical points and integral lines of a scalar field f defined on a mani-
fold M . They induce a subdivision of M into regions of uniform gradient
flow, thus providing a compact description of the topology of M and
of the behavior of f over M . We represent the ascending and descend-
ing Morse complexes of f as a graph, that we call the Morse incidence
graph (MIG). We have defined a simplification operator on the graph-
based representation, which is atomic and dimension-independent, and
we compare this operator with a previous approach to the simplifica-
tion of 3D Morse complexes based on the cancellation operator. We have
developed a simplification algorithm based on a simplification operator,
which operates on the MIG, and we show results from this implementa-
tion as well as comparisons with the cancellation operator in 3D.

Keywords: geometric modeling, Morse theory, Morse complexes,
simplification.

1 Introduction

Representing topological information extracted from discrete scalar fields is a
relevant issue in several applications, such as terrain modeling, or analysis and
visualization of static and time-varying 3D scalar fields arising from physical
simulation or describing medical data. Morse theory offers a natural and intu-
itive way of analyzing the structure of a scalar field f as well as of compactly
representing it through decompositions of its domain M into meaningful regions
associated with the critical points of f , giving rise to theMorse andMorse–Smale
complexes. Descending and ascending Morse complexes decompose M into cells
defined by the integral lines of f converging to and originating at critical points
of f , respectively. The Morse–Smale complex decomposes M into cells defined
by integral lines with the same origin and destination. We represent here the
topology of the descending and ascending Morse complexes in arbitrary dimen-
sions as a graph, that we call the Morse Incidence Graph (MIG), in which the
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nodes encode the cells of the Morse complexes, and the arcs encode their mutual
incidence relations. The MIG provides also a combinatorial description of the
Morse–Smale complex.

The main issue in the usage of Morse and Morse–Smale complexes in real-
world applications scenarios lies in their storage requirements and computation
costs when extracted from very large data sets describing 2D and 3D scalar
fields, which are common in current applications. Thus, simplification of such
complexes by reducing the number of cells and their mutual relations becomes a
must. A separate, but still related, issue is the presence of noise in the data, which
leads to over-segmentation. In this case as well, we need operators for simplifying
Morse and Morse–Smale complexes and their combinatorial representation.

There have been two approaches in the literature to the simplification of Morse
and Morse–Smale complexes. The approach in [13] is specific for 3DMorse–Smale
complexes and is based on the cancellation operator defined in Morse theory [15].
The major problem with using cancellation is that it may increase the size of the
Morse–Smale complexes when the cancellation does not involve a minimum or
a maximum, thus causing memory problems when dealing with large-size data
sets [11]. The approach in [4,5] is based on an atomic simplification operator,
called remove, which is entirely dimension-independent, never increases the size
of the complexes, and defines a minimally complete basis for expressing any
simplification operator on such complexes.

Here, we report the effect of remove operator on the MIG. We show that its
effect on the MIG is always local, and this is true in any dimension. Moreover,
it is simple to implement in a completely dimension-independent way. We have
also implemented the cancellation operator on the MIG in the 3D case and
compared it with the 3D instances of the remove operator. We show that the
size of the simplified MIG produced by remove is always smaller than that of
the graph produced by cancellation.

The remainder of this paper is organized as follows. In Section 2, we review
some basic notions on Morse theory and Morse complexes, some algorithms for
their computation, and the relation between Morse complexes and the watershed
decomposition. In Section 3, we describe a dual incidence-based graph represen-
tation of the Morse complexes, the Morse Incidence Graph (MIG). In Section
4, we recall the definition of the remove operator on the scalar field and we
describe its effect on the MIG. In Section 5, we describe the effect of the can-
cellation operator in [13] on the MIG. In Section 6, we present experimental
results on the behavior of the simplification algorithm based on remove and on
the cancellation operators, and comparisons between our simplification operator
and cancellation in 3D. Finally, in Section 7, we make some concluding remarks.

2 Background Notions and Related Work

Morse theory [15] captures the relation between the topology of a manifold M
and the critical points of a scalar (real-valued) function f defined on M .

Let f be a C2 real-valued function defined over a closed compact n-manifold
M . A point p is a critical point of f if and only if the gradient∇f = ( ∂f∂x1

, ..., ∂f
∂xn

)
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(in some local coordinate system around p) of f vanishes at p. A function f is
a Morse function if and only if all its critical points are non-degenerate (i.e.,
the Hessian matrix Hesspf of the second derivatives of f at a point p is non-
singular). The number i of negative eigenvalues of Hesspf at p is called the index
of p, and p is called an i-saddle. A 0-saddle is also called a (local) minimum, and
an n-saddle a (local) maximum. An integral line of f is a maximal path which is
everywhere tangent to ∇f . Each integral line starts and ends at critical points
of f , called its origin and its destination.

Integral lines that converge to a critical point p of index i form an i-cell called
a descending cell, or manifold, of p. Dually, integral lines that originate at p form
its ascending (n− i)-cell. The descending and ascending cells decompose M into
descending and ascending Morse complexes, denoted as Γd and Γa, respectively
(see Figure 1 (a) and (b)). A Morse function f is called a Morse–Smale function
if and only if each non-empty intersection of a descending and an ascending
manifold is transversal. The connected components of the intersection define a
Morse–Smale complex (see Figure 1 (c)).

The decomposition into ascending Morse complexes in 2D is related to the
watershed decomposition, developed for image analysis. If f is a function which
has a gradient ∇f everywhere except possibly at some isolated points, then the
topographic distance TD(p, q) between two points p, q belonging to the domain
D of f is defined as TD(p, q) = inf

P

∫
P

|∇f(P (s))|ds [16,18]. If there is an integral

line which reaches both p and q, then the topographic distance between these
two points is equal to the difference in elevation between them. Otherwise, it is
strictly greater than the difference in elevation. The catchment basin CB(mi) of
a minimum mi is the set of points which are closer (in the sense of topographic
distance) to mi than to any other minimum. The watershed WS(f) of f is the
set of points which do not belong to any catchment basin. When f is a Morse
function, then the catchment basins of the minima of f correspond to the 2-cells
in the ascending Morse complex of f .

Topological watershed [1] is obtained by lowering (until idempotence) some
points of the original image while preserving the connectivity of each lower cross-
section. This operator does not preserve the connected components or holes in a
3D object. The catchment basins and the watershed separating them are com-
posed of pixels (2-cells) in the image, while in the ascending Morse complexes
ascending 2-cells (corresponding to minima) are separated by 1-cells (correspond-
ing to saddles).

Algorithms for decomposing the domain M of f into an approximation of
a Morse, or of a Morse–Smale complex in 2D can be classified as boundary-
based or region-based. In [7,6,14], algorithms for extracting the Morse–Smale
complex from a tetrahedral mesh have been proposed. Discrete methods rooted
in the discrete Morse theory proposed by Forman [9] are computationally more
efficient [10,17]. For a survey, see [2,3]. Alternative region-based techniques for
computing the ascending and descending Morse complexes are based on the
discrete watershed transform (see [18] for a survey).
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(a) (b) (c)

Fig. 1. A portion of an ascending Morse complex in 2D (a); the dual descending Morse
complex (b); the corresponding Morse–Smale complex (c).

3 The Morse Incidence Graph (MIG)

The topology of complexes Γa and Γd is represented in the form of a graph,
called the Morse Incidence Graph (MIG) G = (N,A, ψ), where N is the set of
nodes, A is the set of arcs, and ψ : A→ N is a labeling function, such that:

1. the set N of nodes is partitioned into n+1 subsets N0, N1,...,Nn, such that
there is a one-to-one correspondence between the nodes in Ni (which we call
i-nodes) and the i-cells of Γd, (and thus the (n− i)-cells of Γa);

2. there is an arc (p, q) joining an i-node p with an (i + 1)-node q if and only
if i-cell p is on the boundary of (i + 1)-cell q in Γd, (and thus q is on the
boundary of p in Γa);

3. each arc (p, q) is labeled with the number ψ(p, q) of times i-cell p (corre-
sponding to i-node p) in Γd is incident into (i + 1)-cell q (corresponding to
(i+1)-node q) in Γd, and thus ψ(p, q) is equal to the number of integral lines
of f connecting i-saddle p to (i + 1)-saddle q.

Each node is labeled with the critical point (or equivalently, the descending
cell) it represents. If f is a Morse–Smale function, then the MIG provides also
a combinatorial representation of the 1-skeleton of its Morse–Smale complex.
Figure 2 illustrates the descending and ascending complexes, and the corre-
sponding MIG for function f(x, y) = cosx cos y.

4 The Remove Simplification Operator

In [4,5], we have introduced a dimension-independent simplification operator
called remove on the Morse complexes and on the MIG representing them.
This operator (together with its inverse one) forms a basis for defining any
operator that updates Morse and Morse–Smale complexes on a manifold M in
a topologically consistent manner. Operator remove has two instances, namely
removei,i+1 and removei,i−1, for 1 ≤ i ≤ n − 1. We describe the effect of the
remove operator on the Morse function f and on the corresponding MIG.
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(a) (b) (c)

Fig. 2. The descending (a) and ascending (b) 2D Morse complex for function
f(x, y) = cosx cos y and the corresponding MIG (c).

4.1 Remove on the Scalar Field

A removei,i+1 operator collapses an i-saddle q and an (i+ 1)-saddle p, that are
connected through a unique integral line. It is defined if i-saddle q is connected to
at most one other (i+1)-saddle p′ different from (i+1)-saddle p. There are two
types of removei,i+1, denoted as removei,i+1(q, p, p

′) and removei,i+1(q, p, ∅),
respectively. Removei,i+1(q, p, p

′) applies when the i-saddle q is connected to
the (i + 1)-saddle p and exactly one other (i + 1)-saddle p′ different from p.
It collapses the i-saddle q and the (i + 1)-saddle p into the (i + 1)-saddle p′.
Removei,i+1(q, p, ∅) deals with the situation in which the i-saddle q is connected
to only one (i+1)-saddle p. It eliminates the i-saddle q and the (i+1)-saddle p
from the set of critical points of the scalar field f .

Removei,i−1(q, p, p
′) operator is dual to the previous one. It collapses an i-

saddle q and an (i − 1)-saddle p that are connected through a unique integral
line. As for removei,i+1, there are two types of removei,i−1 operator, denoted as
removei,i−1(q, p, p

′) and removei,i−1(q, p, ∅), respectively. Removei,i−1(q, p, p
′)

applies when the i-saddle q is connected to the (i− 1)-saddle p and exactly one
other (i − 1)-saddle p′ different from p. It collapses the i-saddle q and (i − 1)-
saddle p into the (i− 1)-saddle p′. Removei,i−1(q, p, ∅) eliminates the i-saddle q
and the unique (i− 1)-saddle p connected to q.

In 2D, we have two remove operators, both deleting a saddle and an ex-
tremum. Remove1,2(q, p, p

′) consists of collapsing a maximum (2-saddle) p and a
saddle (1-saddle) q into a maximum (2-saddle) p′, and remove1,0(q, p, p

′) consists
of collapsing a minimum (0-saddle) p and a saddle (1-saddle) q into a minimum
(0-saddle) p′. Remove1,2(q, p, ∅) consists of deleting a maximum (2-saddle) p and
a saddle (1-saddle) q. Dually, remove1,0(q, p, ∅), consists of deleting a minimum
(0-saddle) p and a saddle (1-saddle) q.

In 3D there are four remove operators, two removei,i+1 and two removei,i−1

operators. Remove2,3(q, p, p
′) collapses a maximum (3-saddle) p and a 2-saddle q

into a maximum (3-saddle) p′, while remove1,2(q, p, p
′), collapses a 2-saddle p and

a 1-saddle q into a 2-saddle p′. Dually, remove1,0(q, p, p
′) collapses a minimum (0-

saddle) p and a 1-saddle q into a minimum (0-saddle) p′, while remove2,1(q, p, p
′)

collapses a 1-saddle p and a 2-saddle q into a 1-saddle p′. The operators of the
second type delete the two critical points q and p.
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4.2 Remove on the MIG

On a MIG G = (N,A, ψ), the effect of the remove operator is to transform G
into a simplified MIG G′ = (N ′, A′, ψ′) by eliminating two nodes p and q from
N , and reconnecting the remaining nodes in the simplified graph G′ so that
|N ′| = |N | − 2 and |A′| < |A|. Let us consider the effect of removei,i+1(q, p, p

′).
We consider the following sets of nodes in the MIG G = (N,A, ψ):

– Z = {zh, h = 1, .., hmax} is the set of the (i − 1)-nodes connected to the
i-node q;

– S = {sk, k = 1, .., kmax} is the set of the (i + 2)-nodes connected to the
(i+ 1)-node p;

– R = {rj , j = 1, .., jmax} is the set of the i-nodes connected to the (i+1)-node
p (the set R may be empty).

The set S is empty for i = n − 1. For removei,i+1(q, p, ∅) operator, the sets Z,
R and S are exactly the same as for removei,i+1(q, p, p

′).

(a) (b) (c) (d)

Fig. 3. An example of a remove1,2(q, p, p
′) on a MIG in the 2D case (a) and (b). MIG

overlayed on the descending Morse complex before (c) and after (d) remove1,2(q, p, p
′)

in 2D. The label of the arc connecting nodes r1 and p′ is increased to 2, and 1-cell r1
appears two times on the boundary of 2-cell p′ after remove1,2(q, p, p

′).

Figure 3 (a) illustrates remove1,2(q, p, p
′) in 2D, which is a maximum-saddle

operator. The set Z consists of nodes z1 and z2, which correspond to minima.
The set S is empty since the operator involves an extremum. The set R consists
of saddles r1, r2 and r3 connected to the maximum p.

Removei,i+1(q, p, p
′) operator is feasible on a MIG G = (N,A, ψ) if

– i-node q is connected to exactly two different (i+ 1)-nodes p and p′, and
– the label of arc (p, q) is 1 (ψ(p, q) = 1).

The effect of removei,i+1(q, p, p
′) on G is to

– delete nodes p and q,
– delete all the arcs incident in either i-node q or (i+ 1)-node p,
– introduce an arc (p, rj) for each rj ∈ R (if such arc does not already exist),
– set ψ′(p′, rj) = ψ(p′, q) · ψ(p, rj) + ψ(p′, rj).
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(a) (b) (c) (d)

Fig. 4. The MIG, overlayed on the descending Morse complex, before (a) and after
(b) remove2,3(q, p, p

′), and before (a) and after (b) remove1,2(q, p, p
′) in 3D.

The labels of other arcs in the simplified MIG G′ = (N ′, A′, ψ′) remain un-
changed.

In the example illustrated in Figure 3 (a) and (b), remove1,2(q, p, p
′), deletes

nodes p and q, as well as the arcs incident in 1-node q (arcs (q, p), (q, p′), (q, z1)
and (q, z2)). Arcs (p, r1), (p, r2) and (p, r3) are replaced with arcs (p′, r1), (p

′, r2)
and (p′, r3).

Figure 3 (c) and (d) illustrates the effect of remove1,2(q, p, p
′) in 2D, which

is a saddle-maximum removal. Before remove1,2(q, p, p
′), 1-node r1 is connected

to 2-nodes p and p′, and the labels of arcs (p, r1) and (p′, r1) are equal to 1
(ψ(p, r1) = ψ(p′, r1) = 1). After remove1,2(q, p, p

′), the label of arc (p′, r1) is
equal to 2 (ψ′(p′, r1) = ψ(p′, q) · ψ(p, r1) + ψ(p′, r1) = 1 · 1 + 1 = 2). The labels
of other arcs in the graph are equal to 1.

Figure 4 (a) and (b) illustrates the effect of remove2,3(q, p, p
′) in 3D, which

performs the removal of a 2-saddle and a maximum. Nodes p and q are deleted
as well as all the arcs incident in 2-node q. Arcs (p, r1), (p, r2), (p, r3), (p, r4)
and (p, r5) are replaced with arcs (p′, r1), (p

′, r2), (p
′, r3), (p

′, r4) and (p′, r5).
Figure 4 (c) and (d) shows the effect of remove1,2(q, p, p

′) in 3D, which is
a 1-saddle-2-saddle removal. Nodes p and q are deleted, as well as all the arcs
incident in 1-node q, and arcs connecting 2-node p to 3-nodes s1 and s2. Arcs
(p, r1), (p, r2) and (p, r3) are replaced with arcs (p′, r1), (p

′, r2) and (p′, r3). The
dual removei,i−1(q, p, p

′) operator can be expressed as a modification of the
graph G = (N,A, ψ) in a completely dual fashion.

5 Operator i-Cancellation

The cancellation operator [13], that we call i-cancellation, is a simplification
operator defined in Morse theory [15]. It eliminates i-saddle q and (i+1)-saddle
p connected through a unique integral line, but it does not impose any constraints
on the number of (i + 1)-saddles connected to q, or on the number of i-saddles
connected to p. We define here the i-cancellation(q, p) operator on the MIG.
We denote as T = {tl, l = 1, ..., lmax} the set of (i + 1)-nodes different from
(i + 1)-node p and connected to i-node q. R = {rj , j = 1, .., jmax} is the set of
i-nodes (i-saddles) connected to p and different from q.
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An i-cancellation(q, p), 0 ≤ i ≤ n− 1, is feasible on a MIG G = (N,A, ψ) if

– i-node q is connected to (i+ 1)-node p, and
– the label of arc (p, q) is 1 (ψ(p, q) = 1).

The effect of i-cancellation(q, p) is to

– delete i-node q and (i+ 1)-node p,
– delete all the arcs incident in either i-node q or (i+ 1)-node p,
– introduce an arc (tl, rj) for each tl ∈ T and each rj ∈ R (if such arc does

not already exist),
– set ψ′(tl, rj) = ψ(tl, q) · ψ(p, rj) + ψ(tl, rj).

The labels of the other arcs in the simplified MIG G′ = (N ′, A′, ψ′) are the
same as the labels of those arcs in G.

In the 2D case, remove1,2(q, p, p
′) is the same as the maximum-saddle 1-

cancellation(q, p), and remove1,0(q, p, p
′) is the same as the minimum-saddle

0-cancellation(p, q). In 3D, remove2,3(q, p, p
′) operator involving an extremum

(maximum-2-saddle) is exactly the same as the 2-cancellation(q, p). Dually,
remove1,0(q, p, p

′) operator involving an extremum (minimum-1-saddle) is ex-
actly the same as the 0-cancellation(p, q). In general, removen−1,n(q, p, p

′) and
remove1,0(q, p, p

′) operators involving an extremum p are the same as the (n−1)-
cancellation(q, p) and 0-cancellation(p, q), respectively.

The i-cancellation involving only saddles (which are not extrema) is more
complex. As an example, let us consider the 1-cancellation of a 1-saddle and a
2-saddle in 3D. This operator has been implemented in [12,11] on the 1-skeleton
of the Morse–Smale complex (which is combinatorially equivalent to the MIG
of the corresponding Morse complexes). The 1-cancellation(q, p) of 1-node q and
2-node p is feasible on the MIG G = (N,A, ψ) if nodes q and p are connected,
and the label of arc (p, q) is 1 (ψ(p, q) = 1). Let G′ = (N ′, A′, ψ′) be the graph
after 1-cancellation(q, p). The effect of 1-cancellation(q, p) consists of deleting
nodes p and q, as well as all the arcs incident in nodes p and q, and adding one
arc for each pair (rj , tl) where rj belongs to R and tl belongs to T . Thus, the
1-cancellation operator deletes two nodes from N , but it increases the number of
arcs connecting 1-nodes to 2-nodes in the graph by deleting |R|+ |T |+1 of such
arcs, but adding |R| ∗ |T | of them. Thus, it is not a simplification operator, since
it does not reduce the size of the graph. In [11], this issue has been discussed at
length, since it can cause computational problems and, more importantly, make
the application of i-cancellation operator unfeasible on large-scale data sets.
Several strategies are proposed in [11], which aim at postponing an i-cancellation
that would introduce a number of arcs greater than a predefined threshold, or
vertices with valence greater than a predefined threshold. On the contrary, the
remove operator always reduces the size of the graph.

6 Experimental Results

We have performed experiments on the simplification of Morse complexes by
using six data sets describing 2D scalar fields, and eight data sets describing 3D
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Table 1. Comparison of cancellation and remove operators

Name N Simpl Nodes Arcs Cost (MB) Time (sec.)

Neghip 3K 11512 0.17 -
i-cancellation 1200 700 2621 0.04 0.68

remove 1200 700 2395 0.03 0.62

Hydrogen - 23K 65961 1.0 -
i-cancellation 7000 9K 35123 0.53 25.1

remove 7000 9K 23091 0.35 17.86

Bucky - 46K 157984 2.4 -
i-cancellation 7000 32K 128231 1.95 73.5

remove 7000 32K 84487 1.23 33.4

Aneurism - 125K 1015724 15.49 -
i-cancellation 10000 105K 748192 11.41 233.28

remove 10000 105K 435910 6.65 70.54

VisMale - 900K 3588570 54.75 -
i-cancellation 10000 880K 3513889 53.61 37.12

remove 10000 880K 3107124 47.41 9.43

Foot - 1550K 7178384 109.5 -
i-cancellation 45000 1460K 6137199 93.64 2882.1

remove 45000 1460K 5413683 82.6 1187.3

scalar fields on a 3.2GHz processor with 2.0Gb memory. The MIG representing
the Morse complexes is extracted using the algorithm described in [17].

We have developed a simplification algorithm for Morse complexes in arbitrary
dimensions based on the removei,i+1 and removei,i−1. A persistence value is as-
sociated with any remove operator by considering the function values of the two
critical points p and q deleted by the operator. Intuitively, the persistence of a
pair of critical points measures the importance of the pair and is equal to the ab-
solute difference in function values between the two points [8]. The objective of the
simplification algorithm is to reduce the size of the Morse complex by removing
critical points which are due to the presence of noise or which are not relevant for
the need of a specific application. Simplification is also applied when the size of
the original Morse complex is too large for the computation resources available.

The simplification algorithm starts by computing all feasible simplifications,
evaluates their persistence and inserts them in an ordered queue in increasing
order of persistence. At each step, a simplification is removed from the queue
and applied to the current MIG. The process terminates when either a cer-
tain number of simplifications has been performed or when a specified value of
persistence is reached.

We have also implemented a 3D version of the simplification algorithm based
on cancellation. In this case, the number of critical nodes is reduced at each step,
but not necessarily the number of arcs.

In the experiments, we have used different thresholds on persistence value:
1% of the max persistence value for light noise removal, 10% for stronger noise
removal, and 20% or greater for consistently reducing the complexity of the
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MIG. The storage cost of the simplified MIG using these three different thresh-
olds is equal to 95%, 65% and 35% of the cost of the MIG at full resolution.

We have also analyzed the statistics on the operators involved in the sim-
plification process for some 3D data sets. We have noticed that saddle-saddle
simplification operators are likely to be performed early in the simplification
process. If the simplification algorithm is based on persistence, this means that
a large number of arcs will be introduced in the MIG early in the simplification
process, influencing both the efficiency (speed) of the algorithm and its versatil-
ity (the number of feasible simplifications). This result underlines the importance
of having an efficient operator for simplifying saddles.

In Table 1, we show the results obtained by comparing the remove operator
with the cancellation operator. For each 3D data set, we show in the first row
the number of nodes and arcs in the full resolution MIG. In the second and
third rows, we show the statistics related to cancellation and remove operators,
respectively: the number of simplifications applied, the number of nodes and
arcs in the simplified MIG, the cost of the data structure encoding the MIG
(in MB), and the time (in sec) needed to perform the simplifications.

The number of arcs in the graph simplified with cancellation always exceeds
the number of arcs in the graph simplified with the same number of remove.
Such behavior influences the efficiency of the whole algorithm, doubling the time
needed to manage and enqueue a larger number of arcs (and thus, a greater
number of possible simplifications) for large data sets.

When the data set is small and the number of simplifications is high com-
pared to the total number of nodes the two methods are quite similar (Neghip).
With the growth of the dimension of the data set the two methods start to
differ (Hydrogen): by using remove we can get a 20% more compressed MIG
in about half the time than by using cancellation. In particular, the remove
operator is particularly useful in the first simplifications performed on a data set
(simplifications that can be interpreted as noise removal). On many data sets
we have noticed that by using cancellation the number of arcs remains approx-
imately the same while by using remove their number immediately decreases
(V isMale). In general, the cost of the MIG is reduced by 10% to 20% by using
remove instead of cancellation and the same number of simplifications can be
performed in half the time.

In Figure 5, we illustrate the result of our simplification algorithm on a 3D
Buckyball data set (Figure 5 (a)), which represents the electron density inside a
C-60 Buckminsterfullerene. The full-resolution MIG is shown in Figure 5 (b).
The MIGs after 11K and 12K simplifications are shown in Figure 5 (c) and (d),
respectively.

7 Concluding Remarks

We have described two simplification operators on the MIG representing the
topology of the Morse complexes of a scalar field f . The remove operator always
reduces the size of the MIG, both in terms of the number of nodes and of the
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(a) (b) (c) (d)

Fig. 5. The field behavior for the Buckyball data set (a). The MIG at full resolution
(b), the MIG after 11K (c) and after 12K simplifications (d).

number of arcs in the MIG. The i-cancellation operator is guaranteed to reduce
only the number of nodes in the MIG, but in the general case it increases the
number of its arcs, thus increasing the total size of the MIG.

We have designed and implemented a simplification algorithm based on the
two simplification operators on the MIG, and we have performed experiments
to compare the two operators. We have shown that the number of arcs in the
simplified MIG obtained through the i-cancellation operator always exceeds the
number of arcs in the simplified MIG obtained through the remove operator.
The large number of arcs in the MIG influences not only the storage cost of
the data structure for encoding it and the time required for performing the
simplifications, but it also reduces the number of feasible simplification and thus
the flexibility of the simplification algorithm.

Based on the remove operator, we have designed and implemented a multi-
resolution model for the Morse complexes represented as a MIG that we call
the Multi-Resolution Morse Incidence Graph (MMIG) [5]. It encodes a large
number of topological representations of the Morse complexes at both uniform
and variable level of detail.
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Random Tessellations and Boolean

Random Functions

Dominique Jeulin

Centre de Morphologie Mathématique,
Mathématiques et Systémes, 35 rue Saint-Honoré, 77300 Fontainebleau, France

Abstract. Generalizations of various random tessellation models gener-
ated by Poisson point processes are proposed and their functional prob-
ability P (K) is given. They are interpreted as characteristics of Boolean
random functions models, which provide a generic way of simulation of
general random tessellations.

Keywords: Voronoi tessellation, random tessellation, Boolean random
function.

1 Introduction

Some models of random tessellations in the Euclidean space Rn are defined
from distances to the points xk of a point process, usually the Poisson point
process P : the Voronoi tessellation is defined from the zones of influence of points
xk. Its generalizations like the Johnson-Mehl and the Laguerre tessellations use
a time sequence of points, and a sequence of ponderations allocated to each
point. It turns out that these models can be re-interpreted in the framework of
Boolean random functions, with appropriate primary functions. In what follows,
we propose new models of random tessellations based on local metrics attached to
each point of the process. They correspond to specific Boolean random function
models, which can be used for their simulation. The new models show a wide
flexibility, generating tessellations with non planar boundaries, that can be used
to simulate metallic grains [1] or foams [10].

2 Reminder on Random Tessellations

Random tessellations were formalized by G. Matheron in [11].

Definition 1. Consider a locally compact denumberable space E and subsets Ci
of E, belonging to ℘(E). A tessellation Θ is a collection of classes Ci ∈ ℘(E)
with

∪iCi = E and Ci ∩ Cj = ∅ for i �= j

We note Π(E) (namely Πg(E)) the set of tessellations of E (namely of tessella-
tions with open (or point) classes). RA is the subset of Πg(E), such that A ⊂ E
is contained in one class C.

C.L. Luengo Hendriks, G. Borgefors, R. Strand (Eds.): ISMM 2013, LNCS 7883, pp. 25–36, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Subsets RG, where G are open parts of E, generate a σ algebra on Πg(E),
σ(RG), on which a probability can be constructed. A random tessellation Θ is
characterized by P (RG) = P{G ⊂ Ci}. In the present paper, we study some
models of random tessellations in the Euclidean space Rn. In addition, we will
consider locally finite random tessellations, for which the random number of
classes in every bounded domain D is a finite random number N(D).

With this σ algebra, we can define events (and their probability) like “x
belongs to a single class”, “x1 and x2” belong to a single class, “x1, x2, ... xm
belong to k classes, or more generally ”the compact set K is included in a single
class”. Note that the classes of a random tessellation in Rn can be split in several
connected components, as is the case for the dead leaves tessellation [6], or for
some tessellations introduced in this paper.

3 Lp Voronoi tessellations

3.1 Standard Voronöı Tessellation

Definition 2. The Poisson Voronöı tessellation in the Euclidean space Rn is
defined from zones of influence of Poisson points [4,16,17]. The class Ck of the
tessellation containing point xk of the Poisson point process P is defined by

Ck = {x ∈ Rn, d(x, xk) < d(x, xl), xk ∈ P , xl ∈ P , l �= k} (1)

It is easy to show that every cell of the tessellation is an open set. Its closure
is delimited by planar faces (planes in R3 and segments in R2) orthogonal to
segments connecting neighbour points of P . Indeed, using the Euclidean distance
with

d2(x, xk) =

i=n∑
i=1

(xi − xki)
2

xi being the coordinates of point x in Rn, the boundary separating cells Ck and
Cl is obtained by means of

d2(x, xk) = d2(x, xl), (2)

generating a linear equation with respects to coordinates xi, which provides the
equation of an hyperplane.

The physical interpretation of this model is the isotropic growth from random
point germs. Two-phase models of materials were generated from 3D Voronoi
tessellations in [7].

3.2 Anisotropic Voronöı Tessellation

A first change of the model is obtained by a non isotropic growth of germs.
This can be made by using a Euclidean metric with positive eigenvalues λi and
with orthogonal eigenvectors obtained by a rotation of the basis of vectors ei.
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In that case, the Euclidean metric is represented by a symmetric positive def-
inite matrix M(n, n). Noting X and Xk the vectors with coordinates xi and
xki, we get d2(x, xk) = (Xt−Xt

k)M(X−Xk), noting Xt the transpose of vector
X . Changing the Euclidean metric is equivalent to performing affine transforma-
tions in the directions of the eigenvectors, with ratios λi. Therefore, the resulting
Voronöı tessellation is obtained by performing the corresponding affine transfor-
mations to the standard Voronöı tessellation, resulting in an anisotropic model,
as considered in [15].

3.3 Use of the Lp Metric

Replacing the Euclidean metric by the Lp metric produces new models of tes-
sellations. We have for the Lp metric with the integer p

dp(x, xk) =

i=n∑
i=1

|xi − xki|p (3)

The separation between cells becomes

dp(x, xk) = dp(x, xl).

When p > 1, this expression gives polynomials with degree p − 1 with respect
to coordinates. For p = {1, 2} the separations are planar. For p = 3, we get
portions of quadrics. Increasing the value of p gives higher order polynomial
surfaces. However the obtained tessellations are not isotropic in the Euclidean
space, since the balls defined by

∑i=n
i=1 |xi|

p
= rp are not isotropic, except for

p = 2, giving spheres. For p = 1, the balls are hypercubes with edges orthogonal
to directions given by (±1,±1, ...,±1). When p→∞ we get the L∞ metric, for
which balls are hypercubes with edges parallel to the coordinates system. For
p = 1 and p =∞, the separations are parallel to the faces of the corresponding
hypercubes.

3.4 Tesselations Defined from Local Metrics

To simulate locally anisotropic growth and local growth rates, it is interesting
to start with a field of metrics depending on the location x. Depending on vari-
ations of the metric in space, tessellations with oriented cells following a field of
orientations will be produced. This approach is followed by [8] in the context of
meshing, using local Euclidean metrics, but no probabilistic properties is given.

Tesselations Defined with a Local Euclidean Metric. We will now attach
to every Poisson point xk the Euclidean metric defined by the matrix Mk. In
general the matrices corresponding to different germs will be correlated.

The definition of the tessellation (2) becomes:
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Definition 3. The local Poisson Voronöı tessellation in the Euclidean space Rn

is defined from zones of influence of Poisson points, using the Euclidean distance
dk for point xk. The class Ck of the tessellation containing point xk is defined
by

Ck = {x ∈ Rn, dk(x, xk) < dl(x, xl), xk ∈ P , xl ∈ P , l �= k} (4)

The separation between cells Ck and Cl is given by the equation

(Xt −Xt
k)Mk(X −Xk) = (Xt −Xt

l )Ml(X −Xl) (5)

Rearranging the terms in equation (5), we get

Xt(Mk −Ml)X − 2Xt(MkXk −MlXl) +Xt
kMkXk −Xt

lMlXl = 0 (6)

The separations of cells are made of portions of quadrics, and the edges are there-
fore portions of conics. Note that the cells Ck can be made of several connected
components.

Tesselations Defined with a Local Lp Metric. We will now consider at-
tached to each germ xk a local Lp metric defined on a basis obtained from the
orthonormal basis ofRn by a rotation matrix Rk and a system of positive weights
aki. In this basis, the coordinates of point x become X ′ = RX and expression
(3) becomes

dpk(x, xk) =

i=n∑
i=1

aki |x′
i − x′

ki|
p

(7)

The definition of the tessellation (2) becomes:

Definition 4. The local Poisson Voronöı tessellation in the Euclidean space Rn

is defined from zones of influence of Poisson points, using the Lp metric dk for
point xk. The class Ck of the tessellation containing point xk is defined by

Ck = {x ∈ Rn, dpk(x, xk) < dpl (x, xl), xk ∈ P , xl ∈ P , l �= k} (8)

As before, cells Ck are not necessarily connected. Their separations are made
of portions of hypersurfaces of degree p, and the edges are portions of curves of
degree p.

3.5 Calculation of the Probability P (K)

Voronöı Tessellation with a Constant Metric Lp. Consider a compact set
K. General expressions of the probability P (K) = P (K ⊂ Ck) can be derived for
the Voronoi models defined from a Poisson point process with intensity θ(x), by
generalization of the results of Gilbert [4]. We note B(x, r) the ball with center
x and radius r, defined from the metric Lp. We have B(x, r) = {y, dp(x, y) ≤ rp}
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Theorem 1. Consider a Voronoi tessellation of space defined from the Poisson
point process with intensity θ(x), and the metric Lp. The probability P (K) =
P (K ⊂ Ck) is given by

P (K) =

∫
Rn

θ(dy) exp−θ(F (K, y)) (9)

where θ(F (K, y)) =
∫
Rn θ(dx)1F (K,y)(x) is the measure of the Voronoi flower

F (K, y) = ∪x∈KB(x, d(x, y)). In the stationary case, for a constant intensity θ,
equation (9) becomes

P (K) = θ

∫
Rn

exp−θμn(F (K, y))dy, (10)

μn being the Lebesgue measure in Rn.

Proof. We have K ⊂ Ck ⇐⇒ ∀x ∈ K, ∀l �= k, d(x, xk) ≤ d(x, xl) ⇔ the ball
with center x ∈ K and radius d(x, xk) contains no point of the Poisson point
process. Calling F (K, y) = ∪x∈KB(x, d(x, y)) the Voronoi flower [2] of K with
center y, we have K ⊂ Ck ⇔ F (K,xk) contains no point of the process, with
probability exp−θ(F (K,xk)). Equation (9) is obtained by randomization of the
point xk, θ(dy) being the probability that the element of volume dy contains a
point of the process.

When K is a connected compact set, P (K) gives the probability for K to be
included in a single connected component of the cell.

Tesselations Defined with a Local Lp Metric. We consider now random
tessellations with local Lp metrics dpk and dpl , attached to germs xk and xl.
These random metrics, defined by a set of random coefficients and a rotation,
are independent for separate germs. They are characterized by some multivariate
distribution function noted ϕ(k). We note Bl(x, r) the ball with center x and
radius r, defined from the metric dpl . We have Bl(x, r) = {y, dpl (x, y) ≤ rp}. We
call Flk(K, y) = ∪x∈KBl(x, dk(x, y)) the flower of K with center y, and metrics
dpl and dpk.

Theorem 2. Consider a random tessellation of space with local Lp metrics, de-
fined from the Poisson point process with intensity θ(x). The probability P (K) =
P (K ⊂ Ck) is given by

P (K) =

∫
Rn

ϕ(l)dlϕ(k)dkθ(dy) exp−θ(Flk(K, y)) (11)

In the stationary case, for a constant intensity θ, equation (11) becomes

P (K) = θ

∫
Rn

ϕ(l)dlϕ(k)dk exp−(θμn(Flk(K, y)))dy (12)
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Proof. Conditionally to the metrics dpk and dpl , and to the location of a Poisson
point xk, we have K ⊂ Ck ⇐⇒ ∀x ∈ K, ∀l �= k, dk(x, xk) ≤ dl(x, xl). There-
fore, for every point x of K, the ball Bl(x, dk(x, xk)) contains no point of the
process, and finally Flk(K,xk) contains no point of the process, with probability
exp−θ(Flk(K,xk)). Equation (11) is obtained by randomization of the point
xk, followed by a randomization of the choice of metrics dpk and dpl .

It is possible to replace the deterministic intensity θ(x) by a realization of a
positive random function, replacing the Poisson point process by a Cox process
[3]. In that case, we obtain Cox based random tessellations. Their corresponding
moments P (K) are deduced from equations (9, 11) by taking their expectation
with respect to the random intensity.

4 Extension to Johnson-Mehl and to Laguerre Random
Tessellation

The Johnson-Mehl tessellation [14] is obtained by combining germination
(through a sequential intensity θ(t)) and growth (with growth rate α(t)). The
usual model is based on constant (with respect to time) germination (with in-
tensity θ) and growth rate (with intensity α). During the time sequence, germs
falling inside growing crystals are deleted. Considering the sequence of Poisson
germs {xk, tk}, we have:

Ck = {x ∈ Rn, d(x, (xk , tk)) + α(tk)tk < d(x, (xl, tl)) + α(tl)tl, (13)

xk ∈ P , xl ∈ P , l �= k} (14)

Extensions of this model are obtained by means of a Lp metric, instead of the
Euclidean distance. We can also use a local metric in the process, to generate
anisotropic growth:

Ck = {x ∈ Rn, dk(x, (xk , tk)) + α(tk)tk < dl(x, (xl, tl)) + α(tl)tl, (15)

xk ∈ P , xl ∈ P , l �= k} (16)

The Laguerre tessellation [9,10] is a generalization of the Voronoi tessellation,
where to each Poisson point xk is attached a random radius Rk. The cell is now
defined from the power P (x, xk) = d2(x, xk)−R2

k. We have:

Ck = {x ∈ Rn, P (x, xk) < P (x, xl), xk ∈ P , xl ∈ P , l �= k} (17)

Some germs xl generate empty cells, depending on the values of R2
k and on the

distance to other germs. Cells are bounded by portions of hyperplanes. New ran-
dom tessellations can be defined, based on the Lp metric, replacing in equation
(17) P (x, xk) by dp(x, xk)−Rp

k. In general, non planar cell separations will be
generated.

An extension of the construction (8) to the local metric case is obtained if
P (x, xk) and P (x, xl) are replaced by dpk(x, xk) − Rp

k and dpl (x, xk) − Rp
l in

equation (17).
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5 Random Tessellations and Boolean Random Functions

The previous constructions can be obtained as characteristics of some Boolean
random functions, re-interpreting the definition of Ck in terms of distance
function.

We will attach to every Poisson point xk a primary random function Z ′
k(x)

defined according to the distance used in various definitions (4, 8, 14, 16, 17). For
instance, for the standard Voronoi model, the primary function is an increasing
paraboloid of revolution, while for the extension to the local Euclidean metric,
it is an increasing paraboloid with general ellipsoidal sections in Rn. For the
Johnson-Mehl model, primary functions are cones (with ellipsoidal section in
the local case for the Euclidean metric); for germ {xk, tk}, the primary function
is translated upward by addition of the constant α(tk)tk. Models based on the

Lp metric make use of functions defined in Rn by Z ′
k(x) =

∑i=n
i=1 aki |x′

i|
p
. The

distance function associated to a model built from Poisson germs is given by

Z(x) = ∧kZ ′
k(x − xk) (18)

By definition the random function Z(x) is an Infimum Boolean random function
[6]. For the Johnson-Mehl model, the primary function becomes Z ′

k(x − xk) +
α(tk)tk. For the Laguerre tessellation model, it becomes Z ′

k(x− xk)−Rp
k.

Sections of primary functions at level z are balls defined by the corresponding
metric. Define

B′
k(z) = {x, Z ′

k(x) < z}

From equation (18) we have

B(z) = {x, Z(x) < z} = ∪xkB′
k(z)xk (19)

By construction equation (19) B(z) is a Boolean random set with convex primary
grains B′

k(z). Consider a compact set K and the infimum Z∧(K) = ∧y∈K{Z(y)}.
We have

P{Z∧(K) ≥ z} = exp−{E(θ(B′
k(z)⊕ Ǩ))} (20)

and for the stationary case

P{Z∧(K) ≥ z} = exp−{θE(μn(B
′
k(z)⊕ Ǩ))} (21)

For the simulation of random tessellations, we just need to simulate realizations
of the Boolean random function with primary functions Z ′

k corresponding to the
model. The boundaries of the tessellation are provided by the crest lines of the ran-
dom functions, obtained by the watershed of the random function using asmarkers
the Poisson points. By construction of the Boolean random functions, the location
of crest lines, and therefore the boundaries of the classes of the resulting tessel-
lation are invariant by a non decreasing transformation Φ (anamorphosis) of the
values of Z ′

k(x) (for instance using Z ′p
k (x) instead of Z ′

k(x)), that is compatible
with the order relationship, namely such that z1 < z2 implies Φ(z1) < Φ(z2).
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An alternative extraction of classes is given by their labels Ck. Starting from the
simulation, and from the germs xk, we generate in each point x a set of labelsL(x):

L(x) = {k, Z(x) = Z ′
k(x − xk)} (22)

Points x with the single label k generate the interior of cell Ck. Points with two
labels k and l are on the boundaries between cells Ck and Cl. In R3, points with
three labels are on the edges of the tessellation, and points with four labels are
its vertices.

This is illustrated in Figure 1 by a simulation in R, where a non connected
class Ck is generated by the point xk. This is just obtained by application of
equation (22), the distance to xk of points located in the left part of Ck of the
figure being shorter than the distance to other germs.

Fig. 1. Example of simulation of a random tessellation in R by means of a Boolean
random function with different primary functions. The class Ck, generated by germ xk,
is not connected.

In Figure 2 is shown a realization of a Boolean random function BRF where
the primary functions are doublets of elliptical cones with two orthogonal direc-
tions (the two vertical cones being obtained by a horizontal translation, and the
two horizontal cones by a vertical translation) and the same minima. Figure 3
shows the corresponding local L2 Voronöı random tessellation obtained from the
watershed of the BRF. A simulation of a Boolean random function with vertial
and horizontal elliptical cones having different minima is given in Figure 4. Its
watershed in Figure 5 generates a realization of a local L2 Johnson-Mehl random
tessellation.
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Fig. 2. Example of simulation of a Boolean random function with elliptical cones
doublets in two orthogonal directions (image 800 x 800)

More general random tessellations can be generated by the same process,
starting from Boolean random functions with any primary random function
Z ′(x). We consider that the realization k of Z ′(x) is characterized by some

Fig. 3. Local L2 Voronöı random tessellation generated by the realization of the
Boolean random function of Figure 2 (image 800 x 800). The classes of the tessel-
lation are obtained as the attraction zones of the minima of the BRF.
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Fig. 4. Example of simulation of a
Boolean random function with ellipti-
cal cones in two orthogonal directions.
The primary functions start from differ-
ent values (image 256 x 256).

Fig. 5. Local L2 Johnson-Mehl random
tessellation generated by the realization
of the Boolean random function of Fig-
ure 4 (image 256 x 256). The classes of
the tessellation are obtained from the wa-
tershed of the BRF.

multivariate distribution ϕ(k), and owns simply connected compact sections
B′
k(z), such that B′

k(z1) ⊂ B′
k(z2) for z2 > z1. We consider primary random

functions reaching their minimum Z ′(0) for x = 0. We associate to Z ′
k(x) the

floor set A′
k defined by

A′
k = {x, Z ′

k(x) = Z ′
k(0)} (23)

In all previous situations we had A′ = {O}. If for any pair of Poisson points
(xk, xl) we have A′

kxk
∩ A′

lxl
= ∅, we can define the class Ck of the random

tessellation, generated by the germ xk and the primary random function Z ′(x)
by:

Ck = {x ∈ Rn, Z ′
k(x − xk) < Z ′

l(x− xl), xk ∈ P , xl ∈ P , l �= k} (24)

This construction of classes associated to germs works when A′ = {O}. In R2

it can also be applied when the floor set is made of parallel segments, while
segments with two different orientations may overlap. In R3, local anisotropy
can be obtained by the Euclidean distance function to segments with different
orientations, or even by Poisson lines [12,5] with an infinite length. In that case,
point Poisson germs are replaced by segment germs or by lines. The generation of
classes in simulations can be made by means of the previous procedure involving
labels L(x).

Generalizing the previous case of local metrics, we call Flk(K, y) the flower
of K with center y, and primary functions Z ′

k(x) and Z ′
l(x). We have

Flk(K, y) = ∪x∈KB′
l(Z

′
k(x− y))x (25)

The previous results are extended as follows.
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Theorem 3. Consider a random tessellation of space defined from the Poisson
point process with intensity θ(x) and the primary random function Z ′(x) gener-
ating the flower defined by equation (25). The probability P (K) = P (K ⊂ Ck)
is given by

P (K) =

∫
Rn

ϕ(l)dlϕ(k)dkθ(dy) exp−θ(Flk(K, y)) (26)

In the stationary case, for a constant intensity θ, equation (11) becomes

P (K) = θ

∫
Rn

ϕ(l)dlϕ(k)dk exp−θμn(Flk(K, y))dy (27)

Proof. Conditionally to the primary functions Z ′
k(x) and Z ′

l(x), and to the
location of a Poisson point xk, we have K ⊂ Ck ⇐⇒ ∀x ∈ K, ∀l �= k,
Z ′
k(x−xk) < Z ′

l(x−xl). Therefore, for every point x of K, the set B′
l(Z

′
k(x, xk))x

contains no point of the process, and finally Flk(K,xk) contains no point of the
process, with probability exp−θ(Flk(K,xk)). Equation (11) is obtained by ran-
domization of the point xk, followed by a randomization of the choice of the
primary functions Z ′

k(x) and Z ′
l(x).

As before, replacing the deterministic intensity θ(x) by a realization of a positive
random function Θ, we obtain Cox based random tessellations with correspond-
ing moments P (K) deduced from equation (26) by taking its expectation with
respect to the random intensity Θ.

6 Some Indications on Model Identification

For practical applications, the choice of a proper model has to be done from
available information, usually 2D or 3D images of the microstructures. Several
criteria can be used to select a representative model: the boundaries of cells can
be fit to polynomials of degree p, given the order of the Lp metric. In a work on
metallic grains fom EBSD images [1], pertinent information on local metrics is
extracted from the inertia matrix of the grains. Finally, use should be made of the
functional P (K) computed from the equations or estimated from measurements
on real or simulated microstructure. As a consequence of the presence of non
connected classes generated by the models, the measurements on images should
be restricted to connected compact sets K, directly obtained by erosion of the
complementary set of the boundaries of classes by K.

7 Conclusion

Random tessellations models involving Poisson germs were revised and general-
ized by the use of local metrics attached to the germs. These models are related
to particular Boolean random functions with particular primary functions gener-
ated by the metrics. Using other primary functions extends the type of random
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tessellations that can be simulated, and gives more flexibility to model complex
real microstructures. Further generalizations of random tessellations can be ob-
tained on Riemannian manifolds, equipped with a Riemannian metric, zones of
influence of random points being generated by means of a geodesic distance, as
already studied on the sphere [13]. Most results on the present study can be ex-
tended to this situation. In Rn, the Lp metrics can also be replaced by a geodesic
distance, giving access to more general models.
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Abstract. The main question of this paper is to retrieve some conti-
nuity properties on (discrete) T0-Alexandroff spaces. One possible ap-
plication, which will guide us, is the construction of the so-called “tree
of shapes” (intuitively, the tree of level lines). This tree, which should
allow to process maxima and minima in the same way, faces quite a num-
ber of theoretical difficulties that we propose to solve using set-valued
analysis in a purely discrete setting. We also propose a way to interpret
any function defined on a grid as a “continuous” function thanks to an
interpolation scheme. The continuity properties are essential to obtain a
quasi-linear algorithm for computing the tree of shapes in any dimension,
which is exposed in a companion paper [10].

1 Introduction

This paper is the first in a series dedicated to the notion of the tree of shapes,
which has been introduced [16, 7] as a way to filter an image u : X ⊂ Rn → R
(n ≥ 2) in a self-dual way, meaning intuitively that processing either u or −u
would give the same result. In its continuous definition, this tree is made by the
connected components of upper level sets {x;u(x) ≥ λ}λ∈R and lower level sets
{x;u(x) < λ}λ∈R. This definition, by itself, is not really self-dual, as the tree of
shapes of u is not the same as the tree of shapes of −u.

The goal of this paper is to propose a purely discrete framework in which a
true self-dual definition of the tree of shapes can be given, together with a proof
of the existence and uniqueness of such a tree for a given class of functions.
We then provide several ways to interpret any image as belonging to this class
of functions, one of them being self-dual. In the next paper of this series [10],
we provide a quasi-linear algorithm relying on this theoretical framework, that
allows the computation of the tree of shapes of an image, whatever its dimension.

In order to achieve our goal, we extend the notion of set-valued upper-
semicontinuity [4] to the discrete case (T0-Alexandroff topology), and from which
we build the notions of simple map and plain map that share the main properties
of a classical continuous function. To obtain the tree of shapes, we also need to
adapt the notion of well-composed map to our framework.

First approaches to discrete continuity date back to Rosenfeld [19], followed by
Boxer [6]. Many authors have recognized that the set-valued setting is important
to the discrete case [12, 22, 8]. None has proposed what we develop in this paper,
although it may appear very natural for a researcher familiar with set-valued
analysis.
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2 Set-Valued Continuity on Discrete Spaces

2.1 Topology Reminder

A topological space is a set X composed of elements, or points, of arbitrary nature
in which certain subsets A ⊆ X , called closed sets of the topological space X ,
have been defined so as to satisfy the following conditions, called the axioms of
a topological space:

1. The intersection of any number and the union of any finite number of closed
sets is a closed set.

2. The whole set X and the empty set ∅ are closed.

The sets complementary to the closed sets of X are called the open sets of the
topological space X .

The intersection of all closed sets containing a set M ⊂ X is called the closure
of M in the topological space X and is denoted by clX(M). Every open set
containing a set M is called a neighborhood of the set M . A set M ⊂ X is said
to be degenerate if it contains just one point.

Definition 1. A topological space X is said to be a T0-space if every two dis-
tinct degenerate subsets of X have distinct closures in X. A T0-space is called a
discrete space if the union of an arbitrary number of closed sets of the space is
closed.

Finite T0-spaces are the most important cases of the so called discrete spaces [1–
3]. Another important example is the Khalimsky grid of dimension n, which is
define as follows:

H1
0 = {{x};x ∈ Z} (1)

H1
1 = {{x, x+ 1};x ∈ Z} (2)

H1 = H1
0 ∪H1

1 (3)

Hn = {h1 × . . .× hn, ∀i ∈ [1, n], hi ∈ H1} (4)

In the Khalimsky grid, the elements of H1
0 are closed sets, and the elements of

H1
1 are open sets. Although our definitions and results are valid in any discrete

space, we will illustrate them on (a subset of) the Khalimsky grid.
If X is a discrete space, the intersection of all open sets containing a set

M ⊂ X is an open set, called the star of M in the topological space X . The
star of M in X is denoted by stX(M). If M = {x} is degenerate, by abuse of
notation, we write stX(x) = stX({x}).

Definition 2. A set is said to be connected if it is not the union of two disjoint
nonempty closed sets.

For discrete spaces, this definition is equivalent to the one provided by the con-
nectivity by paths. Two points x and y of X of a discrete space X are neighbors
if either y ∈ stX(x) or x ∈ stX(y). A path in X from x to y is a sequence
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x0 = x, x1, . . . , xn = y such that xi+1 is a neighbor of xi. One can prove that
a set is connected if for any two points of this set, there exists a path between
them. A connected component of X is a connected subset of X that is maximal
for the connectivy property. We can also mention that any discrete space is lo-
cally connected, in the sense that any point x ∈ X has a smallest open connected
neighborhood in X , namely stX(x). The following lemma is useful in the sequel.

Definition 3. Let M and N be two subspaces of X. M and N are separated if
each is disjoint from the closure of the other, that is, if (M ∩ clX(N)) ∪ (N ∩
clX(M)) = ∅.

Lemma 4. If two open sets of a discrete space are disjoint, then they are sepa-
rated.

2.2 Set-valued Maps

In the sequel, X and Y denotes two discrete spaces. The main references for set
valued analysis is [4]. An application F is called a set-valued map from X to Y
if for any x ∈ X , F associates to x the set F (x) ⊂ Y , called the image of F at
x. In this case, the domain of F is the set Dom(F ) = {x : F (x) �= ∅}.

A set-valued map F : X � Y is called upper semicontinuous at x ∈ Dom(F )
(usc at x) if and only if for all y ∈ stX(x), F (y) ⊆ stY (F (x)). F is said to be
upper semicontinuous if and only if it is upper semicontinuous at every point
x ∈ Dom(F ).

�

�

�
(a)

�

�

�
(b)

Fig. 1. (a) A discrete set-valued map F that is usc at x, drawn on a subset of the
Khalimsky gridH2 Note that F is also an interval-valued map, and x is both a minimum
and a maximum of F . (b) A discrete set-valued map that is lsc at x.

One can remark that upper semicontinuity is the natural adaptation to set-
valued map of the definition of a continuous function. An example of a usc

set-value map is given in Fig. 1(a).
A useful property of a continuous function is that the inverse image of a

closed (open) set is a closed (open) set. To adapt this property to set valued
maps, we need to define the inverse. Let M be a subset of Y , F : X � Y
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be a set-valued map. We denote F⊕(M) = {x ∈ X ;F (x) ∩ M �= ∅} , and
F�(M) = {x ∈ X ;F (x) ⊆ M}. The subset F⊕(M) is called the inverse image
of M by F and F�(M) is called the core of M by F .

Proposition 5. A set-valued map F : X � Y is usc if and only if the core of
any open set is open: F is usc if and only if F�stY = stXF�

If furthermore F is with nonempty values (or if Dom(F ) is closed) F is usc

if and only if the inverse image of any closed subset is closed: F is usc if and
only if F⊕clY = clXF⊕.

Intuitively, a function is continuous if, roughly speaking, it can be drawn as a
single unbroken curve with no ”holes” nor ”jumps”. In other words, a continuous
function transforms a connected set into a connected set. For a set M ⊆ X , we
write F (M) = ∪x∈MF (x).

Proposition 6. Let F be a usc set-valued map such that, for all x ∈ X, F (x)
is a closed (resp. open) connected set. Then, for any connected set M , F (M) is
a closed (resp. open) connected set.

�

�

Fig. 2. A quasi-simple map

We say that a usc set-valued map F is a closed (resp. open) quasi-simple map
if for all x ∈ X , F (x) is a closed (resp. open) connected set, and if furthermore,
for any {x} = stX(x) ∈ X , F (x) is degenerate. A quasi-simple map F is simple
if it is the smallest of all quasi-simple maps with the same data on open points,
i.e, a quasi-simple map F1 is simple if for any quasi-simple map F2 such that
for any {x} = stX(x) ∈ X , F1(x) = F2(x), then, for all x ∈ X , F1(x) ⊆ F2(x).
Fig. 2 is an example of a quasi-simple map, while Fig. 3 is a simple map. The
class of simple maps is interesting because it corresponds to our intuition (i.e.
a single ubroken curve with no “holes” nor “jump”) of continuous functions (at
least when a simple map is interval-valued, see section 3).

In particular if f is a function defined for all {x} = stX(x) ∈ X with f(x) ∈ Y
and f(x) closed (resp. open), there exists a (unique) closed (resp. open) simple
map such that for all {x} = stX(x) ∈ X , F (x) = {f(x)}.
Remark 1. V. Kovalevsky [12] defines the “continuous” functions as the ones
that are called lower semicontuinous in our framework. More precisely, V. Ko-
valevsky uses prop. 8 below as the definition of a continuous function.
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Definition 7. A set-valued map F : X � Y is called lower semicontinuous
(lsc) at x ∈ Dom(F ) if for any open subset M ⊂ Y such that M ∩ F (x) �= ∅,
then for all y ∈ stX(x), F (y) ∩M �= ∅.

Fig. 1(b) gives an example of an lsc set-valued map. This definition is the
adaptation to the (discrete) set-valued setting of the celebrated characterization
of continuous function (a function f is continuous at x if and only if it maps
any sequence converging to x to sequences converging to f(x).) However, as no
convergence can be defined in a discrete space, we have to use a topological
definition. We have the following characterization of lsc maps.

Proposition 8. A set-valued map F : X � Y is lsc if and only if the inverse
image of any open set is open: F is lsc if and only if F⊕stY = stXF⊕

If furthermore F is with nonempty values (or if Dom(F ) is closed) F is lsc

if and only if the core of any closed subset is closed: F is lsc if and only if
F�clY = clXF�.

However, it is not possible to obtain simple lsc set-valued maps with interesting
properties for our goal, and V. Kovalevsky then studies connectivity-preserving
set-valued maps, that would be called Darboux maps in a more classical set-
ting. In our framework (as in the classical one), some connectivity-preserving
maps exist that are not usc, although prop. 6 shows that there exists usc maps
preserving connectivity.

3 Interval-Valued Maps

Recall that a set X is said to be unicoherent if X is connected and for any
two closed connected sets M and N of X such that X = M ∪N , then M ∩N
is connected. In the sequel, X0 denotes a finite discrete topological space, and
X ⊂ X0 denotes an unicoherent subset of X0.

An interval is a connected subset of H1. Remark that H1 is a totally ordered
set, in the sense where H1 is in bijection with 1

2Z: we identify the open sets of

H1 with the elements of 1
2Z \ Z and the closed sets of H1 with the elements of

Z. We thus have . . . < {0} < {0, 1} < {1} < . . ., and operations such as λ + 1
2

(where λ ∈ H1), max or min on any subset of H1 are well-defined. We say that
a set-valued map F is an interval-valued map if the images of F are intervals.
We say that an interval-valued map is bounded if there exists λ and μ in H1 such
that λ ≤ min{ν ∈ F (X)} and μ ≥ max{ν ∈ F (X)}. It is easy to check that
interval-valued maps verify important classical theorems, such as for example,
the intermediate value theorem (which is a simple consequence of Pr. 6 and of
the connectedness of an interval).

As illustrated on Fig. 3, a simple closed-valued interval-valued map fromH1 to
H1 is what one would intuitively draw when dealing with a classical continuous
function. Thus we will use the following definition.

Definition 9. A closed-valued, interval-valued simple map F from X to H1,
with dom(F ) = X is called a plain map on X.
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Fig. 3. A plain map F from H1 to H1

Remark that, as X is finite, a plain map is bounded. We have the following
property.

Proposition 10. If F is a plain map on X, then F� is an open-valued usc

map and F⊕ is a closed-valued usc map.

3.1 Level Sets and Extrema

We need to adapt to the set-valued case the notions of upper and lower level
sets. In the sequel, F denotes an interval-valued map from X to H1. Let λ ∈ Z,
we write [F � λ] = F�(] − ∞, λ[) = { x ∈ X | ∀μ ∈ F (x), μ < λ }. The
set [F � λ] is called the (strict) lower level set (of F , at level λ). Similarly,
the (strict) upper level set (of F , at level λ) is the set [F � λ] = F�(]λ,+∞[).
Thanks to prop. 10, the upper and lower level sets of a plain map are open.

The connected components of a set M ⊆ X will be denoted by CC(M). If
x ∈ M , the connected component of M that contains x will be denoted by
CC(M,x), and by extension, we write CC(M,x) = ∅ if x �∈ M . If ∅ �= C ⊆ M
and C is connected, the connected component of M containing C, denoted by
CC(M,C) is CC(M,x) with x ∈ C.

Definition 11 (Extrema). A connected component of [F � λ] is a minimum
of F if it does not contain any other connected component of [F � μ] for any
μ < λ. A connected component of [F � λ] is a maximum of F if it does not
contain any other connected component of [F � μ] for any μ > λ. An extremum
of F is either a maximum or a minimum of F .

We say that a set M is flat for F if for all x ∈ M , F (x) = F (M). Remark
that F (M) is not always a degenerate set and that an extremum of a set-valued
map is not always flat: for example, the point x in Fig. 1(a) is both a minimum
and a maximum, and although this extremum is flat, it is not degenerate. It is
easy to draw an example where a minimum of a set valued map contains several
maxima, and hence is not flat.

Lemma 12. The extrema of a plain map F are flat open sets. Furthermore, for
any extrema M of F , F (M) is degenerate.
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Proposition 13. Let F be a plain map on X that is not constant. Then the
extrema of F are separated.

In the same way as the strict level sets, we can define the (large) lower and upper
level sets [F � λ] = X\[F � λ] = F⊕(]−∞, λ]) = { x ∈ X | ∃μ ∈ F (x);μ ≤ λ }
and [F � λ] = X \ [F � λ]. Thanks to prop. 10, [F � λ] and [F � λ] of a plain
map F are closed.

Combining lower and upper level sets relations, we write [F ≡ λ] = [F �
λ] ∩ [F � λ] = { x ∈ X | λ ∈ F (x) } and [F �≡ λ] = X \ [F ≡ λ] = { x ∈
X | λ �∈ F (x) } = [F � λ] ∪ [F � λ].

The following relations are natural. We indeed have [F � λ] = [F � λ] ∪ [F ≡
λ], [F � λ] = [F � λ] ∪ [F ≡ λ] and [F �≡ λ] = [F � λ] ∪ [F � λ]. Similarly,
we have for any λ1 and λ2 in H1, λ1 < λ2 ⇒ [F � λ1] ⊆ [F � λ2] and λ1 <
λ2 ⇒ [F � λ2] ⊆ [F � λ1]. But if we have λ1 < λ2 ⇒ [F � λ1] ∩ [F � λ2] = ∅,
the following relation is uncommon.

λ1 < λ2 �⇒ [F � λ1] ∩ [F � λ2] = ∅ (5)

Indeed, for instance, for x such as F (x) = [1, 2], we have both x ∈ [F � 1] and
x ∈ [F � 2]. Note that we may also have:

[F � λ+
1

2
] � [F � λ] (6)

Indeed, with the same example, if F (x) = [1, 2], x ∈ [F � 1], but x �∈ [F � 3
2 ].

But, by the very definition of a plain map, if F is plain, for any λ ∈ H1, we
always have the following property.

Proposition 14. A set-valued map F is a plain map if and only if, for any
λ ∈ H1,

[F � λ] = clX([F � λ+
1

2
]) and [F � λ] = clX([F � λ− 1

2
]) (7)

We can reconstruct F from its lower and upper level sets, with the following
process: set fmin(x) = min{λ ∈ Z;x ∈ [F � λ]} and fmax(x) = max{λ ∈ Z;x ∈
[F � λ]}. Then F (x) = [fmin(x), fmax(x)]. The process is simpler if F is plain:
then for any degenerate open set x ∈ X , we have F (x) = {min{λ ∈ Z;x ∈
[F � (λ + 1)]}} = {max{λ ∈ Z;x ∈ [F � (λ − 1)]}}. The other images of a
simple/plain map F can be deduced from these ones.

Definition 15. Let T ⊆ 2X . We say that T is a tree (of subsets of X) if (i)
X ∈ T , and (ii), if M,N ∈ T , then either M ∩N �= ∅, M ⊆ N , N ⊆M . In the
last two cases, we say that M and N are nested.

For a plain map F , let us denote U�(F ) = {M ;M ∈ CC([F � λ]), λ ∈ H1},
U⊕(F ) = {M ;M ∈ CC([F � λ]), λ ∈ H1}, L�(F ) = {M ;M ∈ CC([F � λ]), λ ∈
H1} and L⊕(F ) = {M ;M ∈ CC([F � λ]), λ ∈ H1}. We remark that any two
elements of one of these four sets are either disjoint or nested, hence they are
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trees. The set U�(F ) (resp. L�(F )) is the tree of open connected components
of the lower (resp. upper) level sets of F , while U⊕(F ) (resp. L⊕(F )) is the tree
of closed connected components of the lower (resp. upper) level sets of F . In the
literature, similar trees have been called min- or max-trees, or component trees.

4 Shapes of Interval-Valued Maps

Topology is not so important when we consider independently the min or the
max tree. It becomes fundamental when considering both trees at the same time,
which is at the basis of the so-called tree of shapes.

Definition 16. Let M ⊆ X. We call cavities of M in X the components of
X \M . Let p∞ ∈ X a reference point. We call saturation of M with respect to
p∞ the set sat(M,p∞) = X \ CC(X \M,p∞).

For any λ ∈ H1, we call quasi-shape of x the set:

Sλ(F, x) = sat(CC([F �≡ λ], x), p∞) (8)

We thus have two different types possible for a given shape:

either Sλ(F, x) = sat(CC([F � λ], x), p∞) (9)

or Sλ(F, x) = sat(CC([F � λ], x), p∞). (10)

But all the shapes being open, the type of a shape can not be known from the
shape itself (contrary to the case of the continuous framework [7]).

Consider the family of sets:

S(F, x) = {Sλ(F, x) }λ \ ∅. (11)

and denote by S(F ) the set formed by all the S(F, x) for all x ∈ X .
The notion of surface used in this paper is the one of n-surface.

Definition 17 (n-surface,[5, 9]). A discrete space Y is a 0-surface if Y is
made of exactly two points x and y such that x �∈ stY (y) and y �∈ stY (x). A
discrete space Y is a n-surface (n > 0) if Y is connected and if, for any x ∈ Y ,
clY (x) ∪ stY (x) \ {x} is a (n− 1)-surface.

The notion of well-composed connected set has been introduced in [13, 14].
Several extensions have been proposed in the literature [15, 11, 23]. In this
paper, we extend it to maps by considering at the same time upper and lower
level sets.

Definition 18 (Well-composed set and map). A connected set M is well-
composed if ∂M = clX(M) ∩ clX(X \ M) is a n-surface. A set N is well-
composed if any connected component of ∂N is a n-surface. A plain map F is
well-composed if for any λ ∈ H1, both [F � λ] and [F � λ] are well-composed.

Remark 2. Note that a well-composed set is a regular open set [18].
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Lemma 19. If a plain map F is well-composed, then for any λ ∈ H1, and for
any connected component C ∈ CC([F � λ]) (resp. C ∈ CC([F � λ])), there exists
a connected component CC ∈ CC([F � λ + 1

2 ]) (resp. CC ∈ CC([F � λ − 1
2 ]))

such that C = clX(CC).

Lemma 20. If a plain map F is well-composed, then for any λ ∈ H1, and for
any connected component M ∈ CC([F � λ]) (resp. M ∈ CC([F � λ])), we have
sat(clX(M)) = clX(sat(M)).

Theorem 21 If F is a well-composed plain map, then any two quasi-shapes are
either disjoint or nested. Hence S(F ) is a tree.

The proof of Th. 21 is essentially the same as the one of Th. 2.6 in [7], adapted
for the set-valued case of a plain map, and with a different ending that uses
Lemma 20 and Lemma. 19. Due to space constraint, this proof will be provided
in an extended version of this paper.

Definition 22. We call shape of x the smallest non-empty quasi-shape of x
defined by:

S(F, x) =
⋂

S∈S(F,x)

S (12)

We denote by S(F ) the set formed by all the shapes of x for all x ∈ X

The intersection in (12) is open as an intersection of open sets in a discrete
space; moreover it is non-empty, as S(F, x) is one of the quasi-shapes of x by
proposition 21.

Corollary 23 The set S(F ) is a tree (called the tree of shapes).

5 Interpolation

In order to apply the framework, we need a way to interpret any function defined
on a grid as a well-composed plain map. Unfortunately, directly interpreting a
set of data as a plain map (as in Fig. 4.a) does not lead to a well-composed
plain map. We do not want to modify the original data, as it is done in [20].
Closer to what we propose in this paper are the magnification process of [17], and
even closer is [21], where new points are introduced thanks to subdivision of the
space, the value on the points being derived from a majority rule. However, none
of the previous approaches is equivalent to the simple interpolation we propose
hereafter. More precisely, we map a function defined on Zn to a function defined
on the Khalimsky grid Hn using an adequate space subdivision.

Let us denote by Hn
1 the set of the elements of Hn that are open sets:

Hn
1 = {h1 × . . .× hn; ∀i ∈ [1, n], hi ∈ H1

1}.

With 2H1
1 = {{2x, 2x+ 1};x ∈ Z}, we can define several subsets of Hn

1 :

2Hn
1 = {h1 × . . .× hn; ∀i ∈ [1, n], hi ∈ 2H1

1} and In1 = Hn
1 \ 2Hn

1

and the subset of In1 : C
n
1 = {h1 × . . .× hn; ∀i ∈ [1, n], hi ∈ H1

1 \ 2H1
1}.
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(a) Original data seen as a plain map. (b) Minimum interpolation.
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Fig. 4. Original data (a) and (b,c,d) three different interpolations F of the same 2D
image that are plain maps. The original image values are depicted in bold in (b,c,d);
contours of connected components of [F � 7] are in red, whereas contours of connected
components of [F � 5] are in green and blue. One can remark that (a) and (d) are
not well-composed and that the saturation of the components of (a) and of (d) do not
satisfy Lemma 19 and 20, contrary to the components of (b) and (c). In particular, the
saturation of the red component in (a) or (d) does not include the blue component.

Let us denote by M(Z) the set of multisets having Z as the underlying set
of elements; for instance we have {1, 1, 2} ∈ M(Z). Let op : M(Z) → 1

2Z be
an operator over a multiset of integers that is increasing with respect to any
element of the multiset, that is, ∀z = {z1, . . . , zk} ∈ M(Z), ∀i ∈ [1, k], we have:

z′i ≤ zi ⇒ op({z1, . . . , zi−1, z
′
i, zi+1, . . . , zk}) ≤ op(z).

Some well-known eligible operators are the minimum, the maximum, and the
median (with med({a, b}) = (a+ b)/2). From any operator op we can derive an
“interpolation” of a function f : Zn → Z into a plain map F : Hn � H1:

Iop :

{
(Zn → Z) −→ (Hn � H1)

f �−→ Iop(f)
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where Iop(f) is recursively defined by:

∀h ∈ Hn, Iop(f)(h) =

⎧⎨⎩2f(h1

2 , . . . , hn2 ) if h ∈ 2Hn
1

op({I(f)(h′); h′ ∈ stX(clX(h)) ∩ 2Hn
1 }) if h ∈ In1

span({I(f)(h′); h′ ∈ stX(h) ∩Hn
1 }) otherwise.

Furthermore, the elements of Cn
1 shall not lead to extrema in Iop(f).

Proposition 24. Any plain map obtained thanks to the max- or the min-interpo-
lation is well-composed.

The max- and min- interpolation reproduces the Rosenfeld 4- and 8- topology.
The tree of shapes obtained with this interpolation is the one computed by all
previous existing algorithms [7]. However, the max- or the min-interpolation do
not lead to a self-dual filtering. This is illustrated in Fig 4.b.

Proposition 25. The median interpolation of a function defined on Z2 leads to
a self-dual plain map.

This proposition is illustrated on Fig. 4.c.

Conjecture 26 With the suitable space subdivision, the median interpolation
leads to a self-dual map whatever the dimension of the space.

Remark 27 Fig. 4.d shows that the mean operator is not suited for our type of
interpolation.

6 Conclusion

In this paper, we have shown how to obtain a well-composed plain map from any
set of data defined on a grid, and we provide a median-interpolation operator
inducing a true self-dual tree. In another paper [10], we provide a quasi-linear
algorithm for computing the tree of shapes from a n-dimensional well-composed
plain map. A dedicated algorithm (less memory consuming) will also be provided
for the 2D case.
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de la Recherche, contract ANR-2010-BLAN-0205-03 and through “Programme
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Abstract. The U-curve problem is an optimization problem that con-
sists in, given a finite set S, a Boolean lattice (P(S),⊆) and a chain
L, minimize a function c : P(S) → L that satisfies an extension of
Matheron’s increasing-decreasing decomposition (i.e., a function that is
decomposable in U-shaped curves). This problem may be used to model
problems in the domain of Mathematical Morphology, for instance, mor-
phological operator design and some types of combinatorial optimization
problems. Recently, we introduced the U-Curve-Search (UCS) algorithm,
which is a solver to the U-curve problem. In this paper, we recall the
principles of the UCS algorithm, present a constrained version of Serra’s
formulation of the Tailor problem, prove that this problem is a U-curve
problem, apply the UCS algorithm to solve it and compare the perfor-
mance of UCS with another optimization algorithm. Besides, we present
applications of UCS in the context of W-operator design.

Keywords: combinatorial optimization, morphological operator,
W-operator, U-curve problem, Tailor problem.

1 Introduction

The U-curve problem is a type of combinatorial optimization problem that
is characterized by a search space organized as a Boolean lattice and a cost
function c (i.e., a function that takes values from elements of the Boolean lat-
tice to a chain) that is decomposable in U-shaped curves (i.e., for any three
elements A,B,C of the Boolean lattice, A ⊆ B ⊆ C implies that c(B) ≤
max{c(A), c(C)} ). A decomposable in U-shaped curves cost function is an ex-
tension of Matheron’s characterization of the class of set operators decomposable
as the intersection of an increasing and a decreasing operator [1]. The U-curve
problem was proposed in 2010 by Ris et al. [2]. Recently, we demonstrated that
the U-curve problem is NP-hard [3].

Although the hardness of the U-curve problem, this problem has importance in
the context of the W-operator estimation problem, since it may be used to model
the window design step of morphological operator design (refer to Sec. 3.2). Be-
sides, several lattice-based optimization problems (e.g., the subset sum problem)
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can be solved through a reduction to the U-curve problem (i.e., through an injec-
tion from the instances of a given lattice-based optimization problem to instances
of the U-curve problem) [3].

In 2010, Ris et al. introduced an algorithm designed to tackle the U-curve
problem [2]. Recently, we proposed the U-Curve-Search (UCS) algorithm, which
is an improvement on the algorithm of Ris et al., to solve this problem [3].
UCS showed a better performance, in optimal and suboptimal experiments, with
simulated and real data, when compared to a branch and bound, an exhaustive
search, and the Sequential Forward Floating Search (SFFS) heuristic [3].

After this Introduction, in Sec. 2, we will present a formalization of the U-
curve problem and the basic principles of the UCS algorithm. In Sec. 3, we will
show two examples of application: solving an optimization problem related to
the Tailor problem and the window design step of morphological operator design.
Finally, in Conclusion section, we will summarize the results presented in this
paper and point out possible future works.

2 The U-Curve Problem and the UCS Algorithm

In this section, we will present a formal definition of the U-curve problem and the
basic principles of the U-Curve-Search (UCS) algorithm. The UCS algorithm,
designed to tackle the U-curve problem, is an improvement on the algorithm
proposed in 2010 by Ris et al. [3].

2.1 The U-curve Problem

Let S be a finite non-empty set. The power set P(S) is the collection of all
subsets of S, including the empty set and S itself. A chain is a collection
{X1, X2, . . . , Xk} ⊆ P(S) such that X1 ⊆ X2 ⊆ . . . ⊆ Xk. Let X ⊆ P(S)
be a chain and f be a function that takes values from X to a chain L. f de-
scribes a U-shaped curve if, for any X1, X2, X3 ∈ X , then X1 ⊆ X2 ⊆ X3 implies
that f(X2) ≤ max{f(X1), f(X3)}.

A cost function c is a function defined from P(S) to L. c is decomposable in
U-shaped curves if, for each chain X ⊆ P(S), the restriction of c to X describes
a U-shaped curve. Let X be an element of P(S). If there does not exist another
element Y of P(S) such that c(Y ) < c(X), then X is of minimum cost.

Now, let us define the central problem of this paper.

Problem 1. Given a non-empty set S and a cost function c that is decomposable
in U-shaped curves, find an element of P(S) of minimum cost.

Problem 1 is known as the U-curve problem, and was proposed in 2010 by Ris et
al. [2]. In the following, we will present the UCS algorithm, which is an optimal
algorithm to solve the U-curve problem (i.e., it always returns an element of
P(X) of minimum cost).
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2.2 The UCS Algorithm

U-Curve-Search (UCS) is an optimal algorithm to tackle the U-curve problem.
This algorithm has two important characteristics:

1. it manages the search space P(S) as a Boolean lattice (P(S),⊆) of degree
|S| such that: the smallest and largest elements are, respectively, ∅ and S,
and the sum and product are, respectively, the usual union and intersection
on sets;

2. and uses the evaluation of a cost function that is decomposable in U-shaped
curves for search and pruning procedures.

The way UCS explores the search space is defined by these two characteristics. In
the sequence, we will present how UCS manages the search space, visits elements
and performs pruning.

Management of the Search Space. An interval [A,B] of P(S) is defined as
[A,B] := {X ∈ P(S) : A ⊆ X ⊆ B}. Let [∅, L] be an interval with the leftmost
term being the empty set. L is a lower restriction. In the same way, let [U, S]
be an interval with the rightmost term being the complete set. U is an upper
restriction.

The UCS algorithm manages the search space P(S) through two collections of
restrictions. The collection of lower (in the dual case, upper) restrictions defines a
set of intervals that does not belong to the current search space (i.e., it defines the
elements that were pruned from the search space). Hence, including an element
X of P(S) in the collection of lower (upper) restrictions implies that every
element Y in P(S) such that Y ⊆ X (X ⊆ Y ) does not belong to the current
search space. In Fig. 1, we show the current search space of a Boolean lattice of
degree 5 such that the collections of lower and upper restrictions are, respectively,
{11100, 00001} and {10010, 00001}; the elements of P(S) are represented by the
characteristic vector in {0, 1}|S|.

Search and Pruning. UCS starts a search selecting an element that belongs
to the current search space; for instance, in Fig. 1, the element 01010 is in the
current search space. Then, UCS computes the cost of the selected element X
and verifies the cost of every element Y that belongs to the current search space
and is adjacent to X in the graph of the Hasse diagram of the Boolean lattice
(P(S),⊆); for instance, in Fig. 1, if X = 01010, then the element 00010 should
have its cost verified, since it is adjacent to 01010 and belongs to the current
search space. If an element Y has cost less or equal to c(X), then Y becomes
the X element of the next iteration; otherwise, the interval [∅, Y ] (in the dual
case, [Y, S]) is pruned from the search space. In Fig. 2, we show an example of
a search iteration; UCS explores the elements that are adjacent to X = 11100:
11000 and 11110 do not belong to the search space; 10100 and 01100 belong to
the search space, but both have cost greater than c(11100), hence the intervals
[00000, 10100] and [00000, 01100] are pruned from the search space; finally, 11101
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1700000

1410000 1501000 1400100 100010 000001

1311000 1310100 1301100 510001 400011 500101601001 201010 810010 300110

1211100 810011911001710101801101 701011 811010 810110 800111 701110

1411110 1111101 911011 810111 801111

1511111

00001

10010

RU

00001

11100

RL

Fig. 1. A search space with 25 = 32 elements. The current search space is composed
by the elements assigned in white. The elements assigned in dark do not belong to the
current search space because they are contained in one of the elements of the collection
of lower restrictions (RL) and/or contain one of the elements of the collection of upper
restrictions (RU ); for instance, 10100 does not belong to the current search space
because it is contained in 11100.

belongs to the search space and has cost smaller than c(11100), hence it becomes
X in the next iteration.

The pruning procedure takes into account a sufficient condition to remove el-
ements from the search space without the risk of losing an element of minimum
cost.

Proposition 1. Let 〈S, c〉 be an instance of the U-curve problem, P(S) be the
search space, X ⊆ P(S) be a current search space, and X be an element of X .
If there exists an element Y ∈ X such that Y ⊆ X and c(Y ) > c(X), then all
elements in [∅, Y ] have cost greater than c(X).
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c(11101) = 11
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RU
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RL

Fig. 2. Search and pruning procedures during an iteration of the UCS algorithm, on a
search space with the same distribution of costs of the instance showed in Fig.1. The
costs of the elements are assigned by the numbers beside the nodes. In this iteration,
X = 11100 and the algorithm checks every element adjacent to 11100: 10100 and 01100
have cost greater than c(11100), hence, by Proposition 1, the intervals [00000, 10100]
and [00000, 01100] may be pruned from the search space. The element 11101 has cost
smaller than c(11100), thus it becomes X in the next iteration.

Proof. Let us consider X,Y ∈ P(S) and Z ∈ [∅, Y ] such that Y ⊆ X and c(Y ) >
c(X). By the definition of a cost function decomposable in U-shaped curves, it
holds that c(Y ) ≤ max{c(Z), c(X)}. Thus, c(Y ) ≤ c(Z) or c(Y ) ≤ c(X), and
c(Y ) > c(X). Therefore, we have c(Z) ≥ c(Y ) > c(X), which implies that all
elements in [∅, Y ] have cost greater than c(X).

The result of Proposition 1 also holds for the Boolean lattice (P(S),⊇).
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Proposition 2. Let 〈S, c〉 be an instance of the U-curve problem, P(S) be the
search space, X ⊆ P(S) be a current search space, and X be an element of X .
If there exists an element Y ∈ X such that X ⊇ Y and c(X) > c(Y ), then all
elements in [Y, S] have cost greater than c(X).

Proof. Applying the principle of duality, the result of Proposition 1 also holds
for the Boolean lattice (P(S),⊇).

For a complete simulation of the UCS algorithm, as well as the employed data
structures, pseudocodes of the main algorithm and its subroutines, proof of cor-
rectness and time complexity analysis, refer to Reis [3].

3 Application on Problems in Mathematical Morphology

We will present in this section two examples of application of the UCS algorithm
on problems in Mathematical Morphology. The first one is a constrained version
of the Tailor problem presented by Serra and the second one is an application
to design window operators in the context of morphological operator design.
These problems are U-curve problems, since their cost functions are defined on
a Boolean lattice and are decomposable in U-shaped curves.

This section is organized in three parts: first, the presentation of the formu-
lation of the Tailor optimization problem as a U-curve problem; second, the
description of W-operator window design problem and its cost function decom-
posable in U-shaped curves; third, the experiments with instances of these two
problems.

3.1 The Tailor Optimization Problem

In 1988, Serra proposed the Tailor problem (le problème du Tailleur) [4,5], which
is defined as the following:

Problem 2. Given a set C and a collection of sets P 1, . . . , Pn, decide if there is
a collection of translations P 1

z1 , . . . , P
n
zn such that:

– (P 1
z1∪, . . . ,∪Pn

zn) ∩Cc = ∅,
– and P i

zi ∩ P j
zj = ∅, for all i, j ∈ {1, . . . , n}, i �= j.

We will refer to the set C as “the cloth” and to the collection of sets P 1, . . . , Pn

as “the pieces”; all those sets are subsets of Zn. If the problem has a solution,
then we say that the pieces P 1, . . . , Pn fit in the cloth C.

Serra presented a solution for the Tailor problem in terms of Minkowski op-
erations [5]. Although the Tailor problem is a decision problem, it is possible
to use it to formulate related optimization problems: for instance, one might
want to put as many pieces as possible into the cloth, and the arrangement of
the pieces within the cloth must be one such that, for the maximum number of
pieces that fit in C, it maximizes the greatest maximal convex set of remaining
cloth (i.e., the elements of C that do not intersect with any piece). Therefore,
we may define the following optimization problem.
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Problem 3. Given a cloth C and a collection of pieces P 1, . . . , Pn, maximize
the size k of a collection of translations P i1

zi1
, . . . , P ik

zik
, ij ∈ {1, . . . , n} for all

1 ≤ j ≤ k, such that:

– P i1 , . . . , P ik fit in C,
– and the maximal convex set in C ∩ (P i1

zi1
∪, . . . ,∪P ik

zik
)c must be maximum

for all the collections of translations of size k that fit in C.

Problem 3 is known as the Tailor optimization problem. In Fig. 3, we present
an instance of this problem, consisting in a cloth and four pieces, all of them
subsets of Z2.

(a)

(b) (c) (d)

Fig. 3. An instance of the Tailor optimization problem. Fig. 3(a): the four pieces of the
instance are assigned in dark, while the cloth C is the white-filled rectangle. Fig. 3(b):
a set of two pieces that fit in C; the remaining cloth has three equivalent maximal
convex sets. Fig 3(c): a set of three pieces that fit in C; this solution is better than
the one of Fig. 3(b), since it has one more piece. Fig. 3(d): a set of three pieces that
fit in C, translated in a way that the greatest maximal convex set of the remaining
cloth is maximum; once it is not possible to fit in C a set of four pieces, this solution
is optimal.

We will present now a formulation of the Tailor optimization problem as a
U-curve optimization problem. Let S be the collection of all pieces P1, . . . , Pn.
The cost function c measures the subsets of S, and it is defined as:

c(X ) =

⎧⎨⎩−(|X |+
1

|C| |HX |), if the pieces in X fit in C,

+∞, otherwise,
(1)

for all X ⊆ S, in which HX is the greatest maximal convex set that is possible
to obtain if the pieces in X fit in C. In the following result, we will demonstrate
a property of the cost function c.
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Theorem 1. If S is a set of pieces, C is a cloth and c is a cost function defined
as Eq. 1, then c is decomposable in U-shaped curves.

Proof. Let X1, X2 and X3 be elements of P(S) such that X1 ⊆ X2 ⊆ X3, and let
c be a cost function defined as Eq. 1. Let us consider two cases.

In the first case, the pieces in X2 do not fit in C. Thus, we have that c(X2) =
+∞. Once X2 ⊆ X3, the pieces in X3 also do not fit in C, which implies that
c(X3) = +∞. Therefore, it holds that c(X2) ≤ max{c(X1), c(X3)}.

In the second case, the pieces in X2 fit in C. If X1 = X2, then c(X1) =
c(X2), which implies that c(X2) ≤ max{c(X1), c(X3)}; otherwise, X1 is properly
contained in X2, and it holds that:

c(X2) = −(|X2|+
1

|C| |HX2 |) (2)

≤ −(|X1|+ 1 +
1

|C| |HX2 |) (since |X1| < |X2|) (3)

≤ −(|X1|+ 1) (since |HX2 | ≤ |C|) (4)

≤ −(|X1|+
1

|C| |HX1 |) (since |HX1 | ≤ |C|) (5)

= c(X1) (by definition of c). (6)

Hence, we have that c(X2) ≤ max{c(X1), c(X3)}. Therefore, we conclude that c
is decomposable in U-shaped curves.

Once the cost function c is decomposable in U-shaped curves (Theorem 1), we
can employ the UCS algorithm to find an element X of P(S) of minimum cost.

3.2 Design of Morphological Operators

We will show now an example of the application of the UCS algorithm on the
window design step of the design of a morphological operator. More precisely,
this example is a step of a W-operator design.

A W-operator is an image transformation that is locally defined inside a win-
dow and translation invariant [6]. A classifier characterizes an image transfor-
mation, and its design requires a window design procedure. The minimization
of mean conditional entropy is a quality criterion that was showed effective in
W-operator window design [7].

Let X be a subset of a window W and X be a random variable in P(X). The
conditional entropy of a binary random variable Y given X = x is given by

H(Y |X = x) = −
∑
y∈Y

P (Y = y|X = x) logP (Y = y|X = x), (7)

in which P (.) is the probability distribution function. By definition, log0 = 0.
The mean conditional entropy of Y given X is expressed by

E[H(Y |X)] =
∑
x∈X

H(Y |X = x)P (X = x). (8)
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In practice, the values of the conditional probability distributions are estimated,
thus a high error estimation may be caused by the lack of sufficient sample data
(i.e., rarely observed pairs 〈y,x〉 may be underrepresented). In order to try to
circumvent the insufficient number of samples, it is adopted the penalty for pairs
of values that have a unique observation: it is considered a uniform distribution,
thus leading to the highest entropy. Therefore, adopting the penalization, the
estimation of the mean conditional entropy is given by

Ê[H(Y |X)] =
N

t
+

∑
x∈X:P̂ (x)> 1

t

Ĥ(Y |X = x)P̂ (X = x), (9)

in which N is the number of values of X with a single occurrence in the samples
and t is the total number of samples.

Eq. 9 is a measure on estimated joint probability of feature subsets, which
implies that it is susceptible to the U-curve phenomenon: for a fixed number
of samples, the increase in the number of considered features may have two
consequences: if the available sample is enough to a good estimation, then it
should occur a reduction of the estimation error, otherwise, the lack of data
induces an increase of the estimation error. Therefore, the U-curve problem may
be employed to model the window design step, using X as the set of features
and Eq. 9 as the cost function.

3.3 Experiments

In this section, we will present experimental results of the UCS algorithm in
solving the Tailor optimization problem and performing the window design step
of W-operator design. In these experiments, we compared the UCS algorithm
with UBB, a branch and bound that was introduced by Ris et al. [3,2]. To exe-
cute these experiments, we used featsel, an object-oriented framework coded
in C++ that allows implementation of solvers and cost functions over a Boolean
lattice search space [8]. For the experiments showed in this paper, we imple-
mented the UCS and the UBB algorithms. The experiments were done using a
32-bit PC with clock of 2.8 GHz and memory of 8 GB.

The Tailor Optimization Problem. In this experiment, Eq. 1 was employed
as the cost function c; each time that c was computed, another branch-and-bound
procedure was used to find an arrangement of the pieces within the cloth such
that the greatest maximal convex set was maximum. This branch and bound
enumerates the search space as a tree. For a collection of pieces P 1, . . . , P k, each
level i of the tree, 1 ≤ i ≤ k, represents trying to fit P i in C ∩ (∪i−1

j=1P
j
zj )

c (i.e.,
a sequence of translations of the previous pieces that fit in C). If there is a fit of
P i, then the branch and bound goes to the next level, otherwise it backtracks.
If there is a fit of the piece P k, then the maximal convex set is computed.

Every test was done with a cloth of size 10 and the size of the pieces ranging
from 1 to 3. For a test with a set of pieces S of size n, the instances were
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Table 1. Comparison between the UCS algorithm and a branch and bound (UBB),
using as the cost function Eq. 1, during the an execution of the Tailor optimization
problem with a cloth of size 10 and the cardinality of the sets of pieces ranging from 5
to 14. The best performance, either in terms of required computational time or number
of times that the cost function is computed, is underlined.

Size of instance Time (seconds) # Computed nodes

|S| 2|S| UCS UBB UCS UBB

5 32 0.0 0.0 6 32
6 64 0.1 0.2 19 64
7 128 0.3 0.5 20 128
8 256 0.8 1.6 41 255
9 512 2.8 4.8 155 506
10 1 024 11.4 17.5 308 1 006
11 2 048 30.1 41.5 837 1 917
12 4 096 183.6 282.6 1 642 3 797
13 8 192 440.9 563.0 3 592 7 108
14 16 384 1 071.5 1 319.4 7 571 13 643

obtained through the generation of n random pieces, with the number of pieces
ranging from five to fourteen. For each size of instance, we produced ten different
instances and carried out the two algorithms on each of them. Finally, for each
size of instance, we took the average required time of the execution and the
average number of computed nodes (i.e., the number of times the cost function
was computed).

In Table 1, we summarize the results of this experiment. For instances from
size 5 to 14, UCS always gave an optimal solution with a better ratio between size
of instance / number of computed nodes than UBB; for example, for instances
of size 14, the ratios of UCS and UBB were, respectively, 2.16 and 1.20. Besides,
UCS always gave an optimal solution with a better ratio between size of instance
/ computational time than UBB; for example, for instances of size 14, the ratios
of UCS and UBB were, respectively, 15.29 and 12.42.

Design of Morphological Operators. In this experiment, we employed the
penalized mean conditional entropy (Eq. 9) as the cost function. The training
samples were obtained from fourteen pairs of binary images presented in Martins-
Jr et al. [7], running a 4× 4 window of size 16 over each of observed image and
obtaining the corresponding value of the transformed image. The result was
fourteen sets of samples, each set with size 1152. For each set of samples, we
executed the UCS algorithm and also the branch and bound described in Ris et
al. [2]. We took the required time of the execution and the number of computed
nodes (i.e., the number of times the cost function was computed).

In Table 2, we show the results of this experiment, in which each pair of im-
ages was used once for the window design procedure of the W-operator design.
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Table 2. Comparison between the UCS algorithm and a branch and bound (UBB),
using as the cost function a penalized mean conditional entropy, during a W-operator
design with a window of size 16. The best performance, either in terms of required
computational time or number of times that the cost function is computed, is under-
lined.

Test number Time (seconds) # Computed nodes
UCS UBB UCS UBB

1 296.2 404.4 19 023 63 779
2 146.9 425.8 9 114 64 406
3 217.3 395.1 12 401 62 718
4 421.5 312.6 25 622 60 265
5 378.0 346.5 24 690 62 484
6 139.5 442.7 7 682 65 197
7 232.7 522.0 13 464 64 755
8 382.8 252.5 24 553 58 652
9 345.6 457.0 18 461 63 461
10 382.0 485.3 19 152 63 966
11 398.7 354.3 22 752 61 183
12 235.8 414.4 14 017 64 395
13 220.6 478.8 12 118 64 700
14 179.7 483.6 9 291 65 469

Average 284.1 412.5 16 595 63 245

UCS and UBB always gave an optimal solution. However, UCS gave an optimal
solution in less computational time more frequently than UBB: on average, the
required time (in seconds) of UCS and UBB were, respectively, 284.1 and 412.5.
Additionally, UCS computed much less times the cost function than UBB: on
average, the number of calls of the cost function of UCS and UBB were, respec-
tively, 16595 and 63245.

4 Conclusion

In this paper, we presented a formalization of the U-curve problem and the ba-
sic principles of the U-Curve-Search (UCS) algorithm. UCS is an optimal algo-
rithm to solve the U-curve problem. We showed that problems in Mathematical
Morphology can be solved using the UCS algorithm. We gave two examples of
application: solving the Tailor optimization problem and the window design step
of morphological operator (namely a W-operator) design. In both examples, the
UCS algorithm had a better performance than a branch and bound algorithm,
either in terms of the required computational time or the number of times that
the cost function was computed.

Other types of problems that the U-curve problem may also be employed
include the minimization of the numbers of elementary morphological operators
(i.e., erosion, dilation, anti-erosion, anti-dilation) required to represent a given
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morphological operator and, in the context of Pattern Recognition, the feature
selection procedure of classifier design.

Future works in this line of research might include solve other problems in
Mathematical Morphology using the UCS algorithm, further improvements on
the UCS algorithm (especially in the way that the algorithm searches for an
element of the current search space) and generalization of the UCS algorithm
for non-Boolean lattices.
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Abstract. This paper presents the formulation of a discrete equation
whose solutions have a strong combinatory nature. More formally, given
two subsets Y and C, we are interested in finding all subsets X that
satisfy the equation (called Minkowski Addition Equation) X ⊕ C = Y .
One direct application of the solutions of this equation is that they can
be used to find best representations for fast computation of erosions
and dilations. The main (and original) result presented in this paper
(which is a theoretical result) is an analytical solution formula for this
equation. One important characteristic of this analytical formula is that
all solutions (which can be in worst case exponential) are expressed in a
compact representation.

Keywords: Minkowski Addition, Minkowski Subtraction, Estructuring
Element Decomposition, Dilation, Erosion.

1 Introduction

Mathematical Morphology can be seen as a general framework for studying map-
pings between complete lattices. In particular, mappings between binary images
are of special interest and they are called set operators. It is worth mentioning
that set operators are widely used for binary image processing and analysis.

Two simple families of set operators are the so-called dilations and ero-
sions. These set operators can be writen in terms of Minkowski addition and
subtraction. More formally, if A and B are two subsets, the dilation (respec-
tively, erosion) of A by B, denoted by δB(A) (respectively, εB(A)), is given by
δB(A) = A ⊕ B (respectively, εB(A) = A  B). One important property of
these set operators is that they are dual operators meaning that an erosion (or
a Minkowski subtraction) can be written in terms of dilation (or Minkowski ad-
dition) and vice-versa. In this way, one can just consider to use one operator to
obtain the other one.

In this paper, we present the formulation of a discrete equation whose solutions
have a strong combinatory nature. More formally, given two nonempty subsets
Y and C, we are interested in finding all subsets X that satisfy the equation
(called Minkowski Addition Equation) X⊕C = Y . One direct application of the
solutions of this equation is that they can be used to find best representations
for fast computation of erosions and dilations.
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The main result presented in this paper (which is a theoretical result) is an
analytical solution formula for this equation. One important characteristic of
this formula is that all solutions (which can be in worst case exponential) are
expressed in a compact form. Although there are some works that present some
mathematical results on related problems in continuous domain (for example,
for convex sets) [1,2], we did not find in the literature any work that finds all
solutions for this equation and thereby the results given in this paper are original.

Following this introduction, Section 2 recalls some definitions and properties
of binary Mathematical Morphology used in this paper. Section 3 introduces
the Minkowski addition equation and, in Section 4, we present the analytical
solution formula for this equation. Finally, Section 5 concludes the paper and
give some future steps of this research.

2 Mathematical Foundations

This section provides the mathematical foundations necessary for presenting our
main result.

Let E be a non-empty set and let P(E) denote the powerset of E.
The operations of intersection and union of subsets X and Y in P(E), are

denoted, respectively, by X ∩ Y and X ∪ Y .
Now, consider that the set E is also an Abelian group with respect to a binary

operation denoted by +. Let o ∈ E denote the origin (or zero element) of E. In
this context, given a subset X ∈ P(E) and an element h ∈ E, the translation of
X by h, denoted by X+h, is the set X+h = {x+h ∈ E : x ∈ X}. Furthermore,
the transpose of X is the subset Xt given by Xt = {x ∈ E : −x ∈ X}.

Let us define two important binary operations in subsets. The Minkowski
addition and subtraction of X ∈ P(E) and Y ∈ P(E) are, respectively, the
subsets X ⊕ Y and X  Y given by X ⊕ Y =

⋃
{X + h : h ∈ Y } and X  Y =⋂

{X − h : h ∈ Y }.
Using these two binary operations, we can define two basic operators on sub-

sets. Let C be a non-empty finite subset of E. The dilation and the erosion by
C are the operators δC and εC given by, for any X ∈ P(E), δC(X) = X ⊕ C
and εC(X) = X  C. The subset C is called a structuring element.

A property of dilations and erosions (or, equivalently, Minkowski additions
and subtractions) is their sequential decomposability [3, p. 47].

Proposition 1. Let Y,C1, C2, · · · , Ck be structuring elements. Then, we have
that δY = δC1δC2 · · · δCk and εY = εC1εC2 · · · εCk if and only if Y = C1 ⊕
C2 ⊕ · · · ⊕ Ck.

An immediate consequence of the last proposition is that, if Y can be decomposed
into Y = C1 ⊕ · · · ⊕ Ck, then X ⊕ Y = X ⊕ C1 ⊕ · · · ⊕ Ck and X  Y =
X  C1  · · ·  Ck.

Such a decomposition of a structuring element (called sequential decompo-
sition) has some nice properties. One of them is that the time complexity for
dilation and erosion computation is extremely reduced. In fact, in sequential
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machines, the speed up was quantitatively studied by Maragos [4, p. 77], who
showed examples where the time complexity went from quadratic to linear using
sequential decomposition. Thus, several researchers [5,6,7,8,9,10,11] have studied
the problem of decomposing structuring elements. In general, the time complex-
ity is reduced since the total number of points in a sequential decomposition
is less than the total number of the original structuring element. With this in
mind, we can state another application: an error free compression when a subset
is decomposable [12]. That is, this decomposition can be applied as an image
compression or shape representation. Furthermore, this image representation,
for example, can be used for image retrieval.

Now, let us state some other properties about Minkowski addition or sub-
traction that we will use in this paper. In the next proposition (proofs can be
seen in [13]), we recall three important properties of Minkowski addition or
subtraction.

Proposition 2. Let X,Y, Z ∈ P(E) and h ∈ E, then

1. X ⊕ Y = {x+ y ∈ E : x ∈ X, y ∈ Y }.
2. X ⊆ Y ⇒ X ⊕ Z ⊆ Y ⊕ Z.
3. X ⊆ Y ⇒ X  Z ⊆ Y  Z.

Minkowski addition and subtraction are dual in the sense that they satisfy the
adjunction relation as stated in the following proposition (a proof can be found
in [13]).

Proposition 3. Let X,Y,C ∈ P(E), X ⊆ Y  C if and only if Y ⊇ X ⊕ C.

An important operation, called morphological opening, is a Minkowski subtrac-
tion followed by a Minkowski addition, that is, given Y,C ∈ P(E), the mor-
phological opening of Y by C, denoted by Y ◦ C, is Y ◦ C = Y  C ⊕ C. A
very important property of this operation (stated in Proposition 4) is that it is
anti-extensive, in the sense that the morphological opening is always a subset of
the original subset Y (for a proof, see, for example, reference [13]).

Proposition 4. Let Y,C ∈ P(E), then Y ◦ C = (Y  C)⊕ C ⊆ Y .

Of course, we may have cases where the morphological opening is a proper subset
of the original subset. Now, when the morphological opening (that is, Y ◦C) and
the original subset (that is, Y ) happens to be equal (that is, Y = (Y  C)⊕C),
we say that C is an invariant of Y .

An important property of invariant subsets, given in the next proposition,
was stated by Zhuang and Haralick [11, Proposition 5].

Proposition 5. Let C,X, Y ∈ P(E). If Y = X ⊕ C, then X and C are both
invariants of Y .
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3 Minkowski Addition Equation

In this paper, we introduce a formulation of a discrete equation whose solutions
have a strong combinatory nature.

Problem 1. Given Y,C ∈ P(E), such that C and Y are nonempty sets, find all
subsets X ∈ P(E) such that X ⊕ C = Y .

At first, we should remark that, in some situations, this equation may have
many solutions (in this sense, this problem is an ill-posed problem). In this way,
Proposition 5 provides a search space reduction (that is, X must be an invariant
of Y ). In other situations, this equation may have no solution (when, for example,
C is not an invariant of Y ). Secondly, applying recursively the solutions of this
equation, it is possible to find a sequential decomposition of Y (if one exists).

4 Analytical Solution for the Minkowski Addition
Equation

In this section, we show an analytical formula that contains all solutions for the
Minkowski equation. For that, Section 4.1 introduces an upper bound for all
solutions of the equation; while Section 4.2 presents a collection of subsets that
contains all the lower bounds for the solutions of the equation.

4.1 Upper Bound for Solutions

The following proposition (which is a direct consequence of Proposition 3) states
an upper bound U ∈ P(E) for all solutions of the Minkowski equation, that is,
if X ∈ P(E) is a solution of X ⊕ C = Y , then X ⊆ U .

Proposition 6. Let Y ∈ P(E) and C ∈ P(E). For all X ∈ P(E), if X⊕C = Y ,
then X ⊆ U , where U = Y  C.

An important result (stated in the next proposition) is that if the Minkowski
equation X ⊕C = Y has solutions, then the upper bound U = Y  C must also
be a solution.

Proposition 7. Let Y ∈ P(E) and C ∈ P(E). If there exists X ∈ P(E) such
that X ⊕ C = Y , then (Y  C)⊕ C = Y .

Proof.

X ⊕ C = Y ⇒ X ⊆ Y  C (by Proposition 6)

⇒ X ⊕ C ⊆ (Y  C)⊕ C (by Proposition 2)

⇒ X ⊕ C ⊆ (Y  C)⊕ C ⊆ Y (by Proposition 4)

⇒ Y ⊆ (Y  C)⊕ C ⊆ Y (since X ⊕ C = Y )

⇒ (Y  C)⊕ C = Y. !�
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4.2 Lower Bounds for Solutions

In this section, we build a set ΦY,C ⊆ P(E) where, for each solution X of the
Minkowski equation X ⊕ C = Y , there exists an element Z ∈ ΦY,C such that
Z ⊆ X . For that, we need the following result.

Proposition 8. Let C ∈ P(E) and Y ∈ P(E). For all X ∈ P(E), if X⊕C = Y ,
then for all y ∈ Y , there exist x ∈ X and c ∈ C such that x+ c = y.

Proof.

y ∈ Y ⇔ y ∈ X ⊕ C (since X ⊕ C = Y )

⇔ y ∈ {x+ c ∈ E : x ∈ X, c ∈ C} (by Proposition 2)

⇔ ∃x ∈ X, ∃c ∈ C : y = x+ c. !�

Now, in order to build the set of lower bounds ΦY,C , we need the following
definition. Let Y ∈ P(E), C ∈ P(E) and y ∈ E. We define LY,C(y) as:

LY,C(y) = {x ∈ Y  C : x = y − c, c ∈ C}. (1)

Let us give a simple example for the construction of the sets LY,C(y). But,
let us first introduce a notation for representing subsets in P(E). We repre-
sent a subset of E by an array of 0’s and 1’s, where ‘0’ means that the point
does not belong to the subset, and ‘1’ means that the point belongs to the
subset. Moreover, the origin o ∈ E is represented by an underline character
(such as ‘0’ or ‘1’) and this representation must be present in the array in order
to be the reference for the other points. For example, if E = Z2, the subset
{(−2, 0), (−1, 0), (1, 0), (1, 1), (1,−1)} is represented by

0 0 0 1

1 1 0 1

0 0 0 1 .

Now, let us proceed with an example of LY,C(y) sets construction.

Example 1. Let Y = 111111 and C = 11. Then U = Y  C = 011111. Consider
the following subsets (with just one element) {y0} = 100000, {y1} = 010000,
{y2} = 001000, {y3} = 000100, {y4} = 000010, {y5} = 000001. Note that, Y =
{y0, y1, y2, y3, y4, y5}. Then, after some little calculations, LY,C(y0) = 10000 =
{y1}, LY,C(y1) = 11000 = {y1, y2}, LY,C(y2) = 01100 = {y2, y3}, LY,C(y3) =
00110 = {y3, y4}, LY,C(y4) = 00011 = {y4, y5}, LY,C(y5) = 00001 = {y5}. !�

We can see that, by construction (see Eq. 1), LY,C(y) ⊆ Y  C. Let us state one
more property for LY,C(y).
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Proposition 9. Let C ∈ P(E) and Y ∈ P(E). If there exists X ∈ P(E) such
that X ⊕ C = Y , then for all y ∈ Y , LY,C(y) �= ∅.

Proof.

X ⊕ C = Y ⇒ (Y  C)⊕ C = Y (by Proposition 7)

⇒ ∀y ∈ Y, ∃x ∈ Y  C, ∃c ∈ C, x+ c = y (by Proposition 8)

⇒ ∀y ∈ Y, ∃x ∈ Y  C, ∃c ∈ C, x = y − c (by addition in E)

⇒ ∀y ∈ Y, ∃x ∈ LY,C(y) (by the definition of LY,C(y))

⇒ ∀y ∈ Y, LY,C(y) �= ∅. !�

Using LY,C(y), we can define a set that contains all the lower bounds for the
solutions of the Minkowski equation. But, let us first define the cartesian product
of two or more sets. Let A1, A2, . . . , An be subsets of P(E). The cartesian product
of A1, . . . , An, denoted by

∏n
i=1 Ai, is a set of all n-tuples (a1, a2, . . . , an) such

that ai ∈ Ai, for all i = 1, 2, . . . , n. More formally,

n∏
i=1

Ai = A1 ×A2 × · · · ×An = {(a1, a2, . . . , an) : ai ∈ Ai, i = 1, 2, . . . , n}. (2)

Now, we define the set ΦY,C ⊆ P(E) (that contains all the lower bounds for the
solutions of the Minkowski equation X ⊕ C = Y – see Theorem 2) as:

ΦY,C = {Z ∈ P(E) : Z =

|Y |⋃
i=1

{xi}, (x1, x2, . . . , x|Y |) ∈
∏
y∈Y

LY,C(y)}. (3)

Let us give an example for the construction of ΦY,C .

Example 2. For this example, consider the subsets described in Example 1. Let
us first construct the set

∏
y∈Y LY,C(y) = LY,C(y0) × LY,C(y1) × LY,C(y2) ×

LY,C(y3) × LY,C(y4) × LY,C(y5). After some calculations, we have that∏
y∈Y LY,C(y) is composed by 16 ordered 6-tuples.

∏
y∈Y

LY,C(y) = { (y1, y1, y2, y3, y4, y5), (y1, y1, y2, y3, y5, y5),
(y1, y1, y2, y4, y4, y5), (y1, y1, y2, y4, y5, y5),

(y1, y1, y3, y3, y4, y5), (y1, y1, y3, y3, y5, y5),

(y1, y1, y3, y4, y4, y5), (y1, y1, y3, y4, y5, y5),

(y1, y2, y2, y3, y4, y5), (y1, y2, y2, y3, y5, y5),

(y1, y2, y2, y4, y4, y5), (y1, y2, y2, y4, y5, y5),

(y1, y2, y3, y3, y4, y5), (y1, y2, y3, y3, y5, y5),

(y1, y2, y3, y4, y4, y5), (y1, y2, y3, y4, y5, y5) }.
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Thus, since ΦY,C is a collection of subsets which are obtained by the union of all
elements in each ordered tuple, we have, after removing duplicate subsets,

ΦY,C = { {y1, y2, y4, y5}, {y1, y3, y4, y5}, {y1, y3, y5},
{y1, y2, y3, y5}, {y1, y2, y3, y4, y5} }.

In array representation, we have

ΦY,C = { 11011, 10111, 11101, 10101, 11111 }. !�

We observe that |ΦY,C | ≤
∏
y∈Y |LY,C(y)| ≤ |C||Y |. This indicates that the worst

case time complexity to compute ΦY,C is an exponential function of |Y |.
Another observation (and also an important property) is that if ΦY,C �= ∅,

then all elements in ΦY,C are solutions for the Minkowski equation.

Theorem 1. Let C ∈ P(E) and Y ∈ P(E). If exists X ∈ P(E) such that
X ⊕ C = Y , then for all Z ∈ ΦY,C , Z ⊕ C = Y .

Proof. On one hand, we prove that for all Z ∈ ΦY,C , Z ⊕ C ⊇ Y .

Z ∈ ΦY,C ⇒ ∃(x1, x2, . . . , x|Y |) ∈
∏
y∈Y

LY,C(y) : Z =

|Y |⋃
i=1

{xi}

(by the definition of ΦY,C)

⇒ ∀y ∈ Y, ∃x ∈ LY,C(y) : x ∈ Z (by the union of sets in Z and . . .)

(. . . ∀y ∈ Y, LY,C(y) �= ∅ – see Proposition 9)

⇒ ∀y ∈ Y, ∃x ∈ Z, ∃c ∈ C : x = y − c
(by the definition of LY,C(y))

⇒ ∀y ∈ Y, ∃x ∈ Z, ∃c ∈ C : y = x+ c (by the addition in E)

⇒ ∀y ∈ Y, ∃x ∈ Z : y ∈ {x} ⊕ C (since c ∈ C)

⇒ ∀y ∈ Y, y ∈ Z ⊕ C (since x ∈ Z)

⇒ Y ⊆ Z ⊕ C. (by the definition of subset)

On the other hand, we prove that, for all Z ∈ ΦY,C , Z ⊕ C ⊆ Y .
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Z ∈ ΦY,C ⇒ ∃(x1, x2, . . . , x|Y |) ∈
∏
y∈Y

LY,C(y) : Z =

|Y |⋃
i=1

{xi}

(by the definition of ΦY,C)

⇒ ∀x ∈ Z, ∃y ∈ Y : x ∈ LY,C(y) (by the definition of Z)

⇒ ∀x ∈ Z, ∃y ∈ Y : x ∈ LY,C(y) ⊆ Y  C
(by the definition of LY,C(y))

⇒ Z ⊆ Y  C (since ∀x ∈ Z, x ∈ Y  C)

⇒ Z ⊕ C ⊆ (Y  C)⊕ C (by Proposition 2)

⇒ Z ⊕ C ⊆ (Y  C)⊕ C = Y (by Proposition 7)

⇒ Z ⊕ C ⊆ Y.

Hence, we conclude that if Eq. (1) has any solution, then, for all Z ∈ ΦY,C ,
Z ⊕ C = Y . !�

The next result shows that all lower bounds for the solutions are in ΦY,C .

Theorem 2. Let C ∈ P(E) and Y ∈ P(E). For all X ∈ P(E) such that X ⊕
C = Y , there exists Z ∈ ΦY,C, such that Z ⊆ X.

Proof.

X ⊕ C = Y ⇒ ∀y ∈ Y, ∃x ∈ X, ∃c ∈ C, x+ c = y (by Proposition 8)

⇒ ∀y ∈ Y, ∃x ∈ X, ∃c ∈ C, x = y − c ∈ Y  C
(X ⊆ Y  C, by Proposition 6)

⇒ ∀y ∈ Y, ∃x ∈ X, x ∈ LY,C(y). (by the definition of LY,C(y))

Therefore, ∀X ∈ P(E) such that X ⊕C = Y , we have ∀y ∈ Y, ∃x ∈ X such that
x ∈ LY,C(y). Hence, we denote xy ∈ X an element such that xy ∈ LY,C(y). Let
us build Z ∈ P(E), as follows:

Z ∈ P(E) : Z =
⋃
y∈Y

{xy}.

By construction, we see that Z ∈ ΦY,C . Furthermore, Z ⊆ X , since Z is built
by elements in X . Then, for all X ∈ P(E) such that X ⊕ C = Y , there exists
Z ∈ ΦY,C , such that Z ⊆ X . !�

4.3 Set for All Solutions

Note that Proposition 7 states an upper bound for all solutions of the Minkowski
equation, while Theorem 2 presents a set containing all the lower bounds. With
this in mind, let us define a interval of sets. Let A,B ∈ P(E) such that A ⊆ B.
We define an interval [A,B] ⊆ P(E) as a set given by [A,B] = {X ∈ P(E) :
A ⊆ X ⊆ B}. Thus, it is easy to see that if there exists X ∈ P(E) such that
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X ⊕ C = Y , then, there exists Z ∈ ΦY,C such that X ∈ [Z, Y  C]. So, with
this, we can build a collection of intervals that contains all solutions for the
Minkowski equation, that is,

SY,C = {[Z, Y  C] : Z ∈ ΦY,C}. (4)

More surprisingly, all elements in the interval [Z, Y  C] ∈ SY,C are solutions
for the Minkowski equation.

Theorem 3. Let C ∈ P(E) and Y ∈ P(E). If there exists X ∈ P(E) such that
X ⊕ C = Y , then, for all Z ∈ ΦY,C and for all X ∈ [Z, Y  C], X ⊕ C = Y .

Proof.

X ∈ [Z, Y  C]⇒ Z ⊆ X ⊆ Y  C (by the definition of interval)

⇒ Z ⊕ C ⊆ X ⊕ C ⊆ (Y  C)⊕ C (by Proposition 2)

⇒ Y ⊆ X ⊕ C ⊆ (Y  C)⊕ C (Z ⊕ C = Y , by Theorem 2)

⇒ Y ⊆ X ⊕ C ⊆ Y ((Y  C)⊕ C = Y , by Proposition 7)

⇒ X ⊕ C = Y. !�

It is still possible to eliminate some intervals from the set SY,C without losing
any solution. In fact, if there are two distinct sets Zi and Zj in ΦY,C such that
Zi ⊆ Zj, then, obviously, [Zi, Y  C] ⊇ [Zj , Y  C], and therefore, we can take
[Zj , Y  C] out from SY,C . In fact, an interval [A,B] is called maximal in a given
collection of intervals I if and only if there does not exist an interval [A′, B′] in
I, distinct of [A,B], such that [A′, B′] ⊇ [A,B]. We call a collection of intervals
I as a collection of maximal intervals if and only if all its intervals are maximal
in I. So, the collection of intervals that contains all solutions for the Minkowski
equation is a collection of maximal interval XY,C obtained directly from ΦY,C :

XY,C = {[Z, Y  C] : Z ∈ ΦY,Cand � ∃Z ′ ∈ ΦY,C , Z ′ �= Z,Z ′ ⊆ Z}. (5)

Let us give an example for the construction of XY,C .

Example 3. For this example, consider the sets described in Example 2. Observe
that the subset 10101 ∈ ΦY,C is contained in subsets 11111, 10111, 11101 ∈
ΦY,C (and therefore, these subsets are not considered in the final solution set),
and there is no subset in ΦY,C that is contained in 11011. Then, the final solution
is XY,C = {[10101, 11111], [11011, 11111]}. !�

An important feature of the analytical solution formula is that all solutions of
the Minkowski equation are given in a compact representation (a collection of
maximal intervals), that is, the number of intervals in XY,C is smaller than, or
in the worst case equal to, the number of all possible solutions.

Let us present an algorithm (see Algorithm 1) based on the results of this
section that, given a subset Y ∈ P(E) and a subset C ∈ P(E), computes XY,C .
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Algorithm 1: FindSolMinkEq (Y,C)

Input: A subset Y ∈ P(E) and a subset C ∈ P(E).
Output: A collection of maximal intervals XY,C that contains all solutions of

the equation X ⊕ C = Y .

1 /* Verify the existence of solutions (based on Proposition 7) */
2 if Y � C ⊕ C �= Y then
3 return “no solution exists”;
4 end

5 /* Compute the sets LY,C(y) (see Eq. 1)*/
6 forall the y ∈ Y do

7 LY,C(y) = {x ∈ Y �C : x = y − c, c ∈ C};
8 end

9 /* Compute the set ΦY,C (see Eq. 3) */

10 ΦY,C = {Z ∈ P(E) : Z =
⋃|Y |

i=1{xi}, (x1, x2, . . . , x|Y |) ∈
∏

y∈Y LY,C(y)};
11 /* Compute XY,C , a collection of maximal intervals (see Eq. 5) */

12 XY,C = {[Z, Y � C] : Z ∈ ΦY,Cand � ∃Z′ ∈ ΦY,C , Z′ �= Z,Z′ ⊆ Z};
13 return XY,C ;

The most time-consuming step of Algorithm 1 is the construction of ΦY,C

which is O(|C||Y |). As we can see, this step makes Algorithm 1 an exponential
time complexity algorithm (the other steps can be executed in polynomial time).
But, it is not that surprising, since the algorithm outputs all solutions of the
Minkowski equation, which in turn can be, in worst case, exponential.

4.4 Structuring Element Decomposition

A direct application of Algorithm 1 is to find a decomposition of a structuring
element in terms of Minkowski addition of smaller subsets. More formally, let Y
be a finite subset of E and let Q = {B1, B2, . . . , Bk} a collection of structuring
elements (for example, the powerset of Y or the set of all subsets of the elemen-
tary square – the 3× 3 square centered at the origin). The problem is to find a
sequence [Z1, Z2, . . . , Zk] of elements of Q which is a sequential decomposition of
Y , that is, Y = Z1 ⊕ · · · ⊕Zk, where each Zi ∈ Q. We call this decomposition a
sequential decomposition of Y in terms of Q. It is possible to apply recursively
the algorithm that find all solutions of the Minkowski equation (Algorithm 1) in
an appropriate way to obtain such a decomposition (see Algorithm 2).

We have two observations for Algorithm2. The first one is that its time complex-
ity is clearly exponential and thereby Algorithm 2 is not plausible for using in real
situations. For achieving an efficient algorithm, more research must be done. The
second observation is that, if we place the structuring elements of Q in increasing
order and they are visited in this order at Line 4, then the decomposition found by
Algorithm 2 (if one exists) has the smallest total number of points.
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Algorithm 2: FindSeqDecomp (Y,Q)
Input: A subset Y ∈ P(E) and a collection of structuring elements

Q = {B1, B2, . . . , Bk}.
Output: A sequence [Z1, Z2, . . . , Zk] which is sequential decomposition of Y in

terms of elements of Q (if one exists), or an empty sequence [ ] if Y is
not decomposable.

1 if Y ∈ Q then
2 return [Y ];
3 end
4 foreach B ∈ Q do

/* Let XY,B be the output of the Algorithm 1 */

5 XY,B ← FindSolMinkEq (Y,B);

6 foreach [Z, Y �B] ∈ XY,B do
7 foreach X ∈ [Z, Y �B] do
8 [Z1, Z2, . . . , Zk] ← FindSeqDecomp (X,Q);
9 if [Z1, Z2, . . . , Zk] �= [ ] then

10 return [Z1, Z2, . . . , Zk, B];
11 end

12 end

13 end

14 end
/* Empty Sequence */

15 return [ ];

5 Conclusion

In this paper, we presented the formulation of a discrete equation (called
Minkowski Addition Equation) whose solution space has a strong combinatory
nature. The main (original) result presented in this paper (which is a theoretical
result) is an analytical solution formula for this equation.

This analytical formula is obtained by using a set of lower bounds and an
upper bound for the solutions of the equation. The final result is a (compact
representation) formula which is expressed as a collection of maximal intervals.
A natural continuation of this work is to study the extension of this result for
functions (gray-level images).

One direct application of the solutions of this equation is that they can be
used to find best representations for fast computation of erosions and dilations
in terms of a sequential decomposition its structuring elements. However, an
algorithm for finding such decomposition using the analytical formula has expo-
nential time complexity. In this way, for future research, more study must be done
in order to obtain faster algorithms (for example, using heuristic techniques) for
structuring element decomposition.

Acknowledgments. The authors are grateful to FAPESP and CNPq for the
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A Comparison of Many Max-tree Computation
Algorithms
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Abstract. With the development of connected filters in the last decade,
many algorithms have been proposed to compute the max-tree. Max-tree
allows computation of the most advanced connected operators in a sim-
ple way. However, no exhaustive comparison of these algorithms has been
proposed so far and the choice of an algorithm over another depends on
many parameters. Since the need for fast algorithms is obvious for pro-
duction code, we present an in depth comparison of five algorithms and
some variations of them in a unique framework. Finally, a decision tree
will be proposed to help the user choose the most appropriate algorithm
according to their requirements.

1 Introduction

In mathematical morphology, connected filters are those that modify an original
signal by only removing connected components, hence those that preserve image
contours. Originally, they were mostly used for image filtering [19, 16]. Major
advances came from max and min-tree as hierarchical representations of con-
nected components and from an efficient algorithm able to compute them [15].
Since then, usage of these trees has soared for more advanced forms of filtering:
based on attributes [4], using new filtering strategies [15, 18], allowing new types
of connectivity [12]. They are also a base for other image representations. In [9] a
tree of shapes is computed from a merge of min and max trees. In [24] a compo-
nent tree is computed over the attributes values of the max-tree. Max-trees have
been used in many applications: computer vision through motion extraction [15],
features extraction with MSER [6], segmentation, 3D visualization [20]. With the
increase of applications comes an increase of data type to process: 12-bit images
in medical imagery [20], 16-bit or float images in astronomical imagery [1], and
even multivariate data with special ordering relation [13]. With the improvement
of optical sensors, images are getting bigger (so do image data sets) which argues
for the need for fast algorithms. Many algorithms have been proposed to com-
pute the max-tree efficiently but only partial comparisons have been proposed.
Moreover, some of them are dedicated to a particular task (e.g., filtering) and
are unusable for other purposes. In this paper, we provide a full and exhaustive
comparison of state-of-the-art max-tree algorithms in a unique framework, i.e.,
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same architecture, same language (C++) and same outputs. The paper is orga-
nized as follows: Section 2 recalls basic notions and manipulations of max-tree,
describes algorithms and implementations used in this study. Section 3 is ded-
icated to the comparison of those algorithms both in terms of complexity and
running times through experimentations.

2 A Tour of Max-tree: Definition, Representation
and Algorithms

2.1 Basic Notions for Max-tree

Let ima : Ω → V an image on regular domain Ω, having values on a totally
preordered set (V,<) and let N a neighborhood on Ω. Let λ ∈ V , we note
[ima ≤ λ] the set {p ∈ Ω, ima(p) ≤ λ}. Let X ⊂ Ω, we note CC(X) ⊂ P(Ω)
the set of connected components of X w.r.t the neighborhood N ; P(Ω) being
the power set of all the possible subsets of Ω. {CC([ima = λ]), λ ∈ V } are
level components and {CC([ima ≥ λ]), λ ∈ V } (resp. ≤) is the set of upper
components (resp. lower components). The latter endowed with the inclusion
relation form a tree called the max-tree (resp. min-tree). Since min and max-
trees are dual, this study obviously holds for min-tree as well. Finally, the peak
component of p at level λ noted Pλ

p is the upper component X ∈ CC([ima ≥ λ])
such that p ∈ X .

2.2 Max-tree Representation

Berger et al. [1], Najman andCouprie [10] rely on a simple and effective encoding of
component-trees using an image that stores the parent relationship that exists be-
tween components. A connected component is represented by a single point called
the canonical element [1, 10] or level root. Let two points p, q ∈ Ω, and pr the root
of the tree. We say that p is canonical if p = pr or ima(parent(p)) < ima(p). A
parent image shall verify the following three properties: 1) parent(p) = p⇒ p =
pr - the root points to itself and it is the only point verifying this property - 2)
ima(parent(p)) ≤ ima(p) and 3) parent(p) is canonical.

Furthermore, having just the parent image is an incomplete representation
since it is not sufficient to easily perform classical tree traversals. For that, we
need an extra array of points, S : N → Ω, where points are stored so that
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∀i, j ∈ N i < j ⇒ S[j] �= parent(S[i]). Thus browsing S elements allows to
traverse the tree downwards, whereas a reverse browsing of S is an upward tree
traversal. Note that having both S and parent thus makes it useless to store the
children of each node. Figure 1 shows an example of such a representation of a
max-tree. This representation only requires 2nI bytes memory space where n is
the number of pixels and I the size in bytes of an integer, since points stored in
S and parent are actually positive offsets in a pixel buffer. The algorithms we
compare have all been modified to output the same tree encoding, that is, the
couple (parent, S).

2.3 Attribute Filtering and Reconstruction

A classical approach for object detection and filtering is to compute some features
called attributes on max-tree nodes. A usual attribute is the number of pixels
in components. Followed by a filtering, it leads to the well-known area open-
ing. More advanced attributes have been used like elongation, moment of inertia
[22] or even mumford-shah like energy [24]. Some max-tree algorithms [21, 6]
construct the parent image only; they do not compute S. As a consequence,
they do not provide a “versatile” tree, i.e., a tree that can be easily traversed
upwards and downwards, that allows attribute computation and non-trivial fil-
tering. Here we require every algorithms to output a “complete” tree represen-
tation (parent and S) so that it can be multi-purposedly usable. The rationale
behind this requirement is that, for some applications, filtering parameters are
not known yet at the time the tree is built (e.g., for interactive visualization
[20]). In the algorithms we compare in this paper, no attribute computation nor
filtering are performed during tree construction for clarity reasons; yet they can
be augmented to compute attribute and filtering at the same time. Algorithm 1
provides an implementation of attribute computation and direct-filtering with

the representation. f̂ : Ω × V → A is an application that projects a pixel p and
its value ima(p) in the attribute space A. +̂ : A ×A → A is an associative op-
erator used to merge attributes of different nodes. compute-attribute starts
with computing attributes of each singleton node and merges them from leaves
toward root. Note that this simple code relies on the fact that a node receives all
information from its children before passing its attribute to the parent. Without
any ordering on S, it would not have been possible. direct-filter is an imple-
mentation of direct filtering as explained in [15] that keeps all nodes passing a
criterion λ and lowers nodes that fails to the last ancestor “alive”. This imple-
mentation has to be compared with the one in [21] that only uses parent. This
one is shorter, faster and clearer above all.

2.4 Three Kinds of Max-tree Algorithms

Max-tree algorithms can be classified in three classes.

Immersion Algorithms. They start with building n disjoints singleton for each
pixel and sort them according to their gray value. When immersion starts, high-
est levels are processed first such that local maxima create some bassins. While
processing pixels in decreasing order of their gray value, bassins that form disjoint
sets of pixels are extended and merges when the current pixel creates a connection
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Algorithm 1. Computation of attributes and filtering

function
compute-attribute(S, parent, ima)

proot ← S[0]
for all p ∈ S do

attr(p) ← f̂(p, ima(p))
for all p ∈ S backward, p �= proot do

q ← parent(p)

attr(q) ← attr(q)+̂attr(p)
return attr

function
direct-filter(S, parent, ima, attr)

proot ← S[0]
if attr(proot) < λ then out(proot) ← 0
else out(proot) ← ima(proot)

for all p ∈ S forward do
q ← parent(p)
if ima(q) = ima(p) then

out(p) ← out(q) � p not canonical
else if attr(p) < λ then

out(p) ← out(q) � Criterion failed
else

out(p) ← ima(p) � Criterion pass
return out

between two of them. Finally, the pixels at lowest level are processed, all bassins
have been merged and the whole image has been immersed. The way bassins grow
and merge form a tree. Disjoint connected sets of pixels are handled with Tar-
jan’s union-find algorithm where connected sets are encoded with trees. A sin-
gle pixel, the root of the tree, represents the whole connected component. Tarjan
[17] provides three basic manipulation routines: make-set(p) to create the sin-
gleton set {p}, find-root(p) to get the root of the component that contains p,
and merge-set(p, q) that merge two disjoints sets of roots p and q. Tarjan dis-
cussed two important optimizations in [17] for union-find: root path compression
and union-by-rank. Root path compression takes part in find-root(p), points on
the path from p to the root collapse to the actual root the component. Union-by-
rank takes place in merge-set(p, q), when merging two components rooted in p
and q, we have to select one to represent the newly created component. If the com-
ponent of p has a rank greater than the one of q then p is selected as the new root,
q otherwise. When rank matches the depth of trees, it enables tree balancing and
guaranties a better complexity for union-find. Path compression has been applied
in [1] and [10], while union-by-rank only in [10].

Flooding Algorithms. Those start from a flooding point and perform a prop-
agation. Points in the propagation front are stored in a priority queue so that
points at highest level are flooded first, i.e., a depth first propagation. A first
implementation has been proposed by [15] which relies on a recursive function
flood(p) in charge of flooding p at level λ = ima(p) and all points in Pλ

p .
When flood(p) returns, the corresponding node has been constructed and is
attached to its parent. Hence, when flood(pmin) terminates, where pmin is a
point a lowest gray level in ima, the whole image has been flooded and the
tree is constructed. To speedup the algorithm, the propagation priority queue is
encoded with a hierarchical queue that offers constant time push and pop oper-
ations and direct access to points at any level. Salembier et al. [15]’s algorithm
was rewritten in a non-recursive implementation by Hesselink [3] and later by
Nistér and Stewénius [11] and Wilkinson [23]. These algorithms differ in only
two points. First, [23] uses a pass to retrieve the root before flooding to mimic



A Comparison of Many Max-tree Computation Algorithms 77

the original recursive version while Nistér and Stewénius [11] does not. Second,
priority queues in [11] use an unacknowledged implementation of heap based on
hierarchical queues while in [23] they are implemented using a standard heap
(based on comparisons).

Merge-Based Algorithms.Merge-based algorithms consist in computing max-
tree on sub-parts of images and merging back trees to get the max-tree of the
whole image. Those algorithms are typically well-suited for parallelism since
they adopt a map-reduce idiom [21]. Computation of sub max-trees (map step),
done by any sequential method, and merge (reduce-step) are executed in par-
allel by several threads. In order to improve cache coherence, images should be
split in contiguous memory blocks that is, splitting along the first dimension if
images are row-major. When blocks are image lines, a dedicated 1D max-tree
algorithm can be used [7, 8]. Figure 2 shows an example of parallel processing us-
ing map-reduce idiom. Choosing the right number of splits and jobs distribution
between threads is a difficult topic that depends on the architecture (number
of threads available, power frequency of each core). If the domain is not split
enough (number of chunks no greater than number of threads) the parallelism
is not maximal, some threads become idle once they have done their jobs, or
wait for other thread to merge. On the other hand, if the number of split gets
too large, merging and thread synchronization cause significant overheads. Since
work balancing and thread management are outside the current topic, they are
delegated to high level parallelism library such as Intel’s TBB [14].
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D2

D1

(a)

D1 D2 D3

D4 D5

Thread 1

Thread 2

Thread 3

(b)

Thread 1 Thread 2 Thread 3
T1 ← f(ima|D1

) T3 ← f(ima|D3
) T5 ← f(ima|D5

)
T2 ← f(ima|D2

) T4 ← f(ima|D4
)

T12 ← T1 ⊕ T2 T34 ← T3 ⊕ T4

Wait thread 2 Wait thread 3
TΩ ← T12 ⊕ T345 T345 ← T34 ⊕ T5

(c)

Fig. 2. Map-reduce idiom for max-tree computation. (a) Sub-domains of ima.
(b) A possible distribution of jobs by threads. (c) Map-reduce operations where f
is the map operator, ⊕ the merge operator, and ima|Dn denotes the image restricted
to sub-domain Dn.

2.5 Algorithms Implementation

Immersion Algorithms. An implementation of max-tree based on union-find
without union-by-rank can be found in [1] and an implementation using union-
by-rank in [10]. We adapted the latter to build parent and S without extra cost.
Here, we only provide the principles of our new implementation of union-by-rank
and a lighter that uses less memory called level compression.

Union-by-Rank. Our implementation is similar to that of [1] but augmented with
union-by-rank. The basis of the algorithm resides in two images parent and zpar
representing two trees. Parent encodes the max-tree while zpar the underlying
tree for tracking disjoint sets with union-find. Without rank balancing, root
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of any component in zpar matches the root of the corresponding max-tree in
parent. When using union-by-rank to merge components from zpar, we loose this
property. Therefore, we introduce an new image repr that keeps a connection
between the root of the set in zpar and the root of the max-tree in parent
updated. This method is slightly different from the one of Najman and Couprie
[10]. They use two union-find structures, one of them dedicated to handle flat
zones, while our implementation only uses a single one for zpar.

Level Compression. Union-by-rank provides time complexity guaranties at the
price of extra memory requirement. When dealing with huge images this results
in a significant drawback (e.g. RAM overflow. . . ) Without rank technique, the
last point processed always becomes the root of the component, i.e. in most
cases, we merge a deep tree to a single node that tends to create a degenerated
tree in flat zones. Level compression avoids this behavior by a special handling
of flat zones. Let p be the point in process at level λ, n a neighbor of p already
processed, zp the root of Pλ

p (at first zp = p), zn the root of Pλ
n . If zp and zn

have a same gray level, they belong to the same node and we can choose any of
them as a canonical element. Normally zp should become the root with child zn
but level compression inverts the relation: zn is kept as the root and zp becomes
a child. The remaining part of the algorithm stays unchanged w.r.t. [1].

Flooding Algorithms. The first recursive flooding algorithm was proposed
in [15]. A non-recursive version implemented with hierarchical queues can be
found in [11], and the one relying on a standard heap in [23]. Those algorithms
have been slightly modified to use parent and S representation with no other
modification.

Merge-Based Algorithms. Algorithms used to merge two trees can be found
in [21, 7]. As, implementation of the special 1D max-tree algorithm used when
sub-domains are image lines has been proposed in [8]. Our implementations
match the ones proposed in those papers. The major difference resides in a
post-processing to ensure tree canonicalization and S construction. Indeed, once
sub-trees have been computed and merged into a single tree, it does not hold
any canonical property (because non-canonical elements are not updated during
merge). In addition, the reduction step does not merge the S array corresponding
to sub-trees (it would imply reordering S which is more costly than just recom-
puting it at the end). Algorithm 2 performs canonicalization and reconstructs
the S array from parent image. It uses an auxiliary image dejavu to track nodes
that have already been inserted in S. As opposed to other max-tree algorithms,
construction of S and processing of nodes are top-down. For any point p, we
traverse in a recursive way its path to the root to process its ancestors. When
the recursive call returns, parent(p) is already inserted into S and holds the
canonical property, thus we can safely insert p back in S and canonicalize p.

Implementation Details. Algorithms have been implemented in pure C++
using an STL implementation of some basic data structures (heaps, priority
queues),Milena[5] image processing library to provide fundamental image types
and I/O functionality, and Intel TBB for parallelism. Specific implementation
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Algorithm 2. Canonicalization and S computation algorithm

procedure CanonizeRec(p)
dejavu(p) ← true
q ← parent(p)
if not dejavu(q) then � Process parent before p

CanonizeRec(q)
if ima(q) = ima(parent(q) then � Canonize

parent(p) ← parent(q)
InsertBack(S, p)

for all p do dejavu(p) ← False

for all p ∈ Ω such that not dejavu(p) do
CanonizeRec(p)

optimizations are the following. Sorting is optimized by switching to counting
sort when quantization is lower than 18 bits. For large integers of q bits, it
switches to 216-based radix sort requiring q/16 counting sort. For immersion al-
gorithms, queues and stacks are pre-allocated to avoid dynamic memory reallo-
cation. Hierarchical queues are also pre-allocated by computing image histogram
as a pre-processing. In our non-recursive implementation of Salembier (called
non-recursive Salembier below) priority-queues are implemented with hierarchi-
cal queues (i.e., Nistér and Stewénius [11]’s implementation) and switches to the
STL standard heap implementation1, with a pre-allocation for data as well, when
the number of bits exceeds 18 (i.e., Wilkinson [23]’s one). A y-fast trie can be
used for large integers ensuring a better complexity (see Section 3.1) but no per-
formance gain has been obtained. Finally, in parallel versions of the algorithms,
all instructions that deal about S construction and parent canonicalization have
been removed since S is reconstructed and parent canonicalized by Algorithm 2.

3 Algorithms Comparison

3.1 Complexity Analysis

Let n = H ∗W with H the image height, W the image width and n the total
number of pixels. Let k be the number of values in V .

Immersion Algorithms require sorting pixels, a process of Θ(n+ k) complex-
ity (k " n) for small integers (counting sort), O(n log logn) for large integers
(hybrid radix sort), and O(n log n) for generic data types with a more compli-
cated ordering relation (comparison sort). Union-find is O(n log n) and O(nα(n))
when used with union-by-rank. 2. Canonicalization is linear and does not use ex-
tra memory. Memory-wise, sorting may require an auxiliary buffer depending on
the algorithm and histograms for integer sorts thus Θ(n+ k) extra-space. Union
without rank requires a zpar image for path compression (Θ(n)) and the system

1 Please note that the authors have verified that choosing a particular implementation
of STL (namely STLport 4.6 vs. gcc 4.7) does not impact the results presented here.

2 α(n), the inverse of Ackermann function, is very low growing, α(1080) � 4.
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stack for recursive calls in findroot which is O(n) (findroot could be non-
recursive, but memory space is saved at cost of a higher computational time).
Union-by-rank requires two extra images (rank and repr) of n pixels each.

Flooding Algorithms require a priority queue to retrieve the highest point
in the propagation front. Each point is inserted and removed once, thus the
complexity is Θ(np) where p is the cost of pushing or popping from the heap.
If the priority queue is encoded with a hierarchical queue as in [15] or [11], it
uses n + 2k memory space, provides constant insertion and constant access to
the maximum but popping is O(k). In practice, in images with small integers,
gray level difference between neighboring pixels is far to be as large as k. With
high dynamic image, a heap can be implemented with a y-fast trie, which has
insertion and deletion in O(log log k) and access to maximum element in O(1).
For any other data type, a “standard” heap based on comparisons requires n
extra space, allows insertion and deletion in O(log n) and has a constant access
to its maximal element. Those algorithms need an array or a stack of respective
size k and n. Salembier’s algorithm uses the system stack for a recursion of
maximum depth k, hence O(k) extra-space.

Merge-Based Algorithms complexity depends on A(k, n), the complexity of
the underlying method used to compute max-tree on sub-domains. Let s = 2h

the number of sub-domains. The map-reduce algorithms requires smapping oper-
ations and s− 1 merges. A good map-reduce algorithm would split the domain to
form a full and complete tree so we assume all leaves to be at level h. Merging sub-
trees of sizen/2 has been analyzed in [21] and isO(k logn) (wemerge nodes of every
k levels using union-find without union-by-rank). Thus, the complexity of a single
reduction isO(Wk logn). Assuming s constant andH = W =

√
n the complexity

as a function ofn and k of the map-reduce algorithm isO(A(k, n))+O(k
√
n logn).

When there is as many splits as rows, s in now dependent on n. This leads to the
Matas et al. [7] algorithmwhose complexity isO(n)+O(k

√
n(logn)2). Contrary to

what they claim, when values are small integers the complexity stays linear and is
not dominated by merging operations. Finally, canonicalization and S reconstruc-
tion have a linear time complexity (CanonizeRec is called only once for each point)
and only use an image of n elements to track already processed points.

3.2 Experiments

Benchmarks were performed on an Intel Core i7 (4 physical cores, 8 logical cores).
The programs were compiled with gcc 4.7, optimization flags on
(-O3 -march=native). Tests were conducted on a 6.8 MB 8-bit image which
was re-sized by cropping or tiling the original image. Over-quantization was per-
formed by shifting the eight bits left and generating missing lower bits at random.
Figure 3 depicts performance of sequential algorithms w.r.t to image size and
quantization. As a first remark, we notice that all algorithms are linear in prac-
tice. On natural images, the upper bound n logn complexity of the Wilkinson
[23] and Berger et al. [1] algorithms is not reached. Let start with union-find

3 Note always available because hierarchical queues requires V to be expressible as an
index.
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Table 1. Time complexity of many max-tree algorithms compared. n is the number
of pixels and k the number of gray levels.

Time Complexity
Algorithm Small int Large int Generic V
Berger [1] O(n log n) O(n log n) O(n log n)
Berger + rank O(nα(n)) O(n log log n) O(n log n)
Najman and Couprie [10] O(nα(n)) O(n log log n) O(n log n)
Salembier et al. [15] O(nk) O(nk) � O(n2) N/A 3

Nistér and Stewénius [11] O(nk) O(nk) � O(n2) N/A3

Wilkinson [23] O(n log n) O(n log n) O(n log n)
Salembier non-recursive O(nk) O(n log log n) O(n log n)
Menotti et al. [8] (1D) O(n) O(n) O(n)
Map-reduce O(A(k, n)) O(A(k, n))+ O(A(k, n))+

O(k
√
n log n) O(k

√
n log n)

Matas et al. [7] O(n) O(n) +O(k
√
n(logn)2) -

Table 2. Space requirements of many max-tree algorithms compared. n is the number
of pixels and k the number of gray levels.

Auxiliary space requirements
Algorithm Small int Large int Generic V
Berger et al. [1] n+ k + stack 2n+ stack n+ stack
Berger + rank 3n+ k + stack 4n+ stack 3n+ stack
Najman and Couprie [10] 5n+ k + stack 6n+ stack 5n+ stack
Salembier et al. [15] 3k + n+ stack 2k + n+ stack N/A3

Nistér and Stewénius [11] 2k + 2n 2k + 2n N/A3

Wilkinson [23] 3n 3n 3n
Salembier non-recursive 2k + 2n 3n 3n
Menotti et al. [8] (1D) k n n
Matas et al. [7] k + n 2n 2n
Map-reduce . . .+ n . . .+ n . . .+ n
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Fig. 3. (a) Algorithms comparison on a 8-bit image as a function of size; (b) Algorithms
comparison on a 6.8 Mega-pixels image as a function of quantization.
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Fig. 4. (a,b) Parallel algorithms comparison on a 6.8 Mega-pixels 8-bits image as a
function of number of threads. (a) Wall clock time; (b) speedup w.r.t the sequential
version; (c) Parallel algorithms comparison using 8 threads on a 6.8 Mega-pixels image
as a function of quantization.

based algorithms. Berger et al. [1] and Najman and Couprie [10] have quite the
same running time (±6% on average), however the performance of Najman and
Couprie [10] algorithm drops significantly at 256 Mega-pixels. Indeed, at that
size each auxiliary array/image requires 1 GB memory space, thus Najman and
Couprie [10] who use a lot of memory exceed the 6 GB RAM limit and need to
swap. Our implementation of union-by-rank uses less memory and is on aver-
age 42% faster than Najman and Couprie [10]. Level compression is an efficient
optimization that provides 35% speedup on average on Berger et al. [1]. How-
ever, this optimization is only reliable on low quantized data. Figure 3b shows
that it is relevant up to 18 bits. It operates on flat-zones but when quantization
gets higher, flat-zones are less probable and the tests add worthless overheads.
Union-find is not affected by the quantization but sorting does, counting sort and
radix sort complexities are respectively linear and logarithmic with the number
of bits. The break in union-find curves between 18 and 20 bits stands for the
switch from counting to radix sort. Flooding-based algorithms using hierarchical
queues outperform our union-find by rank on low quantized image by 41% on
average. As expected, Salembier et al. [15] and Nistér and Stewénius [11] (which
is the exact non-recursive version of the former) closely match. However, the
exponential cost of hierarchical queues w.r.t the number of bits is evident on
Figure 3b. By using a standard heap instead of hierarchical queues, Wilkinson
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Fig. 5. Decision tree to choose the appropriate max-tree algorithm

[23] does scale well with the number of bits and outperforms every algorithms
except our implementation of union-by-rank. In [23], the algorithm is supposed
to match Salembier et al. [15]’s method for low quantized images, but in our
experiments it remains 4 times slower. Since Najman and Couprie [10]’s algo-
rithm is always outperformed by our implementation of union-find by rank, it
will not be tested any further. Furthermore, because of the strong similarities of
[11] and [23], they are merged in our single implementation (called Non-recursive
Salembier below) that will use hierarchical queues when quantization is below
18 bits and switches to a standard heap implementation otherwise. Finally, the
algorithm Berger + level compression will enable level compression only when
the number of bits is below 18.

Figure 4 shows the results of the map-reduce idiom applied on many algo-
rithms and their parallel versions. As a first result, we can see that better per-
formance is generally achieved with 8 threads that is when the number of threads
matches the number of (logical) cores. However, since there are actually only 4
physical cores, we can expect a ×4 maximum speedup. Some algorithms benefit
more from map-reduce than others. Union-find based algorithms are particularly
well-suited for parallelism. Union-find with level compression achieves the best
speedup (×4.2) at 12 threads and union-find by rank a ×3.1 speedup with 8
threads. More surprising, the map-reduce pattern achieves significant speedup
even when a single thread is used (×1.7 and ×1.4 for union-find with level
compression and union-find by rank respectively). This result is explained by a
better cache coherence when working on sub-domains that balance tree merges
overheads. On the other hand, flooding algorithms do not scale as well because
they are limited by canonicalization and S reconstruction post-process (that is
going to happen as well for union-find algorithms on architectures with more
cores). In [21] and [7], they obtain a speedup almost linear with the number of
threads because only a parent image is built. If we remove the canonicalization
and the S construction steps, we also get those speedups. Figure 4c shows the
exponential complexity of merging trees as number of bits increases that makes
parallel algorithms unsuitable for high quantized data. In light of the previous
analysis, Figure 5 provides some guidelines on how to choose the appropriate
max-tree algorithm w.r.t. to image types and architectures.
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4 Conclusion

In this paper, we tried to lead a fair comparison of max-tree algorithms in a
unique framework. We highlighted the fact that there is no such thing as the
“best” algorithm that outranks all the others in every case and we provided a
decision tree to choose the appropriate algorithm w.r.t. to data and hardware.
We proposed a max-tree algorithm using union-by-rank that outperforms the
existing one from [10]. Furthermore, we proposed a second one that uses level
compression for systems with strict memory constraints. As further work, we
shall include image contents as a new parameter of comparison, for instance
images with large flat zones (e.g. cartoons) or images having strongly non-
uniform distribution of gray levels. Extra-materials including algorithm pseudo-
codes and descriptions can be found in the appendix of this paper [2] and a
“reproducible research” code, intensively tested, is available on the Internet at
http://www.lrde.epita.fr/Olena/maxtree.
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variate image processing and applications in astronomy. In: Proc. of International
Conference on Pattern Recognition, pp. 4089–4092 (2010)

[14] Reinders, J.: Intel threading building blocks: outfitting C++ for multi-core pro-
cessor parallelism. O’Reilly Media, Incorporated (2007)

[15] Salembier, P., Oliveras, A., Garrido, L.: Antiextensive connected operators for
image and sequence processing. IEEE Transactions on Image Processing 7(4),
555–570 (1998)

[16] Salembier, P., Serra, J.: Flat zones filtering, connected operators, and filters by
reconstruction. IEEE Trans. on Ima. Proc. 4(8), 1153–1160 (1995)

[17] Tarjan, R.E.: Efficiency of a good but not linear set union algorithm. Journal of
the ACM 22(2), 215–225 (1975)

[18] Urbach, E.R., Wilkinson, M.H.F.: Shape-only granulometries and grey-scale shape
filters. In: Proc. of ISMM, pp. 305–314 (2002)

[19] Vincent, L.: Grayscale area openings and closings, their efficient implementation
and applications. In: Proc. of EURASIP Workshop on Mathematical Morphology
and its Applications to Signal Processing, pp. 22–27 (1993)

[20] Westenberg, M.A., Roerdink, J.B.T.M., Wilkinson, M.H.F.: Volumetric attribute
filtering and interactive visualization using the max-tree representation. IEEE
Trans. on Image Processing 16(12), 2943–2952 (2007)

[21] Wilkinson, M.H.F., Gao, H., Hesselink, W.H., Jonker, J.E., Meijster, A.: Concur-
rent computation of attribute filters on shared memory parallel machines. IEEE
Trans. on PAMI 30(10), 1800–1813 (2008)

[22] Wilkinson, M.H.F., Westenberg, M.A.: Shape preserving filament enhancement
filtering. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208,
pp. 770–777. Springer, Heidelberg (2001)

[23] Wilkinson, M.H.F.: A fast component-tree algorithm for high dynamic-range im-
ages and second generation connectivity. In: ICIP, pp. 1021–1024 (2011)
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Abstract. In edge-weighted graphs, we provide a unified presentation
of a family of popular morphological hierarchies such as component trees,
quasi flat zones, binary partition trees, and hierarchical watersheds. For
any hierarchy of this family, we show if (and how) it can be obtained from
any other element of the family. In this sense, the main contribution of
this paper is the study of all constructive links between these hierarchies.

Introduction

In recent years, (supervised) image segmentations in edge weighted graphs re-
ceived a lot of attention. In this framework, several methods [1–5] were designed
to segment images into partitions made of connected regions that are optimal
in the sense of some well-known problems of combinatorial optimization such as
min-cuts, random walks, or minimum spanning trees.

Some of these methods (see [1, 6]) also satisfy a “scale consistency property”
that assesses the robustness of the detected contours and regions over scales.
Given three image seed points x, y, and z that mark three objects of interest,
a segmentation S into three regions obtained from the three seeds x, y and z
(i.e., each region contains one seed) “is consistent” with a segmentation S′ into
two regions obtained from the two seeds x and y if when a pixel belongs to the
region of a seed in S, then it necessarily belongs to the region of S′ that con-
tains this seed. More generally, a segmentation is called hierarchical if it defines
segmentations at different detail levels such that the segmentations at coarser
levels can be obtained from those at finer levels by simple merge operations.

In fact, hierarchical segmentation methods are not limited to edge-weighted
graphs (see e.g., [7–10]). In particular, in mathematical morphology, component
trees [11], quasi-flat zones [12, 13], binary partition trees [14] and watersheds
[15–17] are hierarchies at the basis of efficient segmentation and filtering
methods.

In this paper, we study these morphological hierarchies defined from edge-
weighted graphs, and we provide a unified presentation of this family. For any
hierarchy of this family, we show if (and how) it can be obtained from any
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Table 1. Summary of the main results. In the table, T stands for any minimum
spanning tree of G, S stands for any sequence of minima of F , PH(G) is the partition-
hierarchy of G, MH(G) is the min-hierarchy of G, PH(T ) is the partition-hierarchy
of T , MH(T ) is the min-hierarchy of T , Q is the quasi-flat zones hierarchy, B≺ is the
binary partition hierarchy by the ordering ≺, and HS is an MSF hierarchy for S . In
a cell, the symbol ⇐= (resp. =⇒) indicates that the hierarchy corresponding to the
column (resp. line) of the cell can be obtained from the one corresponding to the line
(resp. column) of the cell, and the symbol ⇐⇒ (resp. ×) indicates that two hierarchies
can be (resp. cannot be) obtained one from each other.

PH(G) MH(G) PH(T ) MH(T ) Q B≺ HS

PH(G) ⇐⇒ ⇐⇒ =⇒ =⇒ =⇒ × ×
MH(G) ⇐⇒ ⇐⇒ =⇒ =⇒ =⇒ × ×
PH(T ) ⇐= ⇐= ⇐⇒ ⇐⇒ =⇒ ⇐= ×
MH(T ) ⇐= ⇐= ⇐⇒ ⇐⇒ =⇒ ⇐= ×

Q ⇐= ⇐= ⇐= ⇐= ⇐⇒ =⇒ ×
B≺ × × =⇒ =⇒ =⇒ ⇐⇒ =⇒
HS × × × × × ⇐= ⇐⇒

other element of the family. In this sense, the main contribution of this paper is
the study of all constructive links between these morphological hierarchies. For
establishing these links, the minimum spanning trees play a central role. Table 1
indicates all links that are shown in this paper. An important consequence of our
results is the design of efficient algorithms based on Kruskal minimum spanning
tree algorithm to compute these morphological hierarchies in quasi linear-time.
These algorithms are presented in [18].

1 Graphs

We define a graph as a pair X = (V (X), E(X)) where V (X) is a finite set
andE(X) is composed of unordered pairs of distinct elements in V (X), i.e., E(X)
is a subset of {{x, y} ⊆ V (X) | x �= y}. Each element of V (X) is called a vertex
or a point (of G), and each element of E(X) is called an edge (of X).

Let X and Y be two graphs. If V (X) ⊆ V (Y ) and E(X) ⊆ E(Y ), then X
and Y are ordered and we write X $ Y . If X $ Y , we say that X is a subgraph
of Y , or that X is smaller than Y and that Y is greater than X . The intersection
of X and Y is the graph X ! Y = {V (X)∩ V (Y ), E(X)∩E(Y )} and the union
of X and Y is the graph X � Y = {V (X)∪ V (Y ), E(X)∪E(Y )}. The set of all
subgraphs of a graph G is denoted by 2G. The set 2G equipped with the order
relation $ is a lattice whose infimum and supremum are the binary operations !
and � respectively (see [19] for a morphological study of this lattice).

Let X be a graph. A path (in X) is a sequence (x1, . . . , xn) of points of V (X)
such that {xi, xi+1} ∈ E for any i in [1, n− 1]. A path with no repeated vertex
is said to be simple. The graph X is connected if there exists a path between
any two vertices of X . A (connected) component of X is a subgraph Y of X
that is connected and such that, for any connected graph Z, we have Y = Z



88 J. Cousty, L. Najman, and B. Perret

whenever the relation Y $ Z $ X holds true. We denote by CC(X) the set of
all components of X and, if x is a vertex in V (X), we denote by CCx(X) the
unique element of CC(X) whose vertex set contains x.

Important Notations. In the sequel of this paper, the symbol G denotes a
connected graph. Furthermore, to shorten the notations, its vertex and edge sets
are denoted by V and E respectively instead of V (G) and E(G).

We finish this section with the presentation of an adjunction that is known
for playing the role of a building block for morphology on graphs [19]. It will be
useful for expressing several properties in the sequel of this article. We denote by ε
the operator that maps to any subset X of V the subset of E made of the edges
of G composed of two points in X , i.e., ε(X) = {{x, y} ∈ E | x ∈ X, y ∈ X}.
We denote by δ the operator that maps to any subset X of E the subset of V
that contains every vertex in V which belongs to an edge in X , i.e., δ(X) =
∪{{x, y} ∈ X}. The pair (ε, δ) is an adjunction [19]. Let V ′ ⊆ V and E′ ⊆ E.
Using usual graph terminology, the graphs (V ′, ε(V ′)) and (δ(E′), E) are called
the graph induced by V ′ and the graph induced by E′ respectively.

2 Partitions and Hierarchies

For segmentation purposes, one is often interested in finding partitions of V . We
denote by 2V the set of all subsets of V . Recall that a subset V of 2V whose
elements are disjoint and nonempty is a partial partition (of V ). The union of
a partial partition is called its support. A partition (of V ) is a partial partition
whose support is V .

In the following, subgraphs of G will be used to obtain partitions of V . Let X
be a subgraph of G. We denote by VCC(X) the set that contains the vertex set
of every component of X , i.e., VCC(X) = {V (Y ) | Y ∈ CC(X)}. Remark that
the set VCC(X) is a partial partition of V whose support is V (X). This partial
partition is called the (partial) partition induced by X .

A set H ⊆ 2V (resp. H ⊆ 2G) is a hierarchy on V (resp. G) if any two
elements of H are either disjoint or nested, i.e., for any H1, H2 ∈ H, we have
H1 ∩H2 ∈ {∅, H1, H2} (resp. H1 !H2 ∈ {(∅, ∅), H1, H2}). A hierarchy H on V
(resp. G) is complete if V (resp. G) is in H and if for any v ∈ V , we have
{v} ∈ H, (resp. {({v}, ∅)} ∈ H). It is well-known that the Hasse diagram of
a hierarchy (resp. complete hierarchy) is a directed forest (resp. tree), often
called the dendrogram of the hierarchy. In practice, this dendrogram is used as
a representation of the hierarchy. Let X and Y be two distinct elements of a
hierarchy H (on V or G), following the terminology of the dendrogram, we say
that Y is a child of X if Y is the largest proper subset of X among the elements
of H, i.e., if Y ⊆ X , and, for any Z ∈ H such that Y ⊆ Z ⊆ X , we have Z = X
or Z = Y . If Y is a child of X , we say that X is the parent of Y .

LetH be a hierarchy on V (resp.G) and let X be an element ofH. Aminimum
of H is an element of H that has no child. Let C ⊆ H. We say that C is a cut of H
if i) the elements of C are pairwise disjoint, and ii) for any minimum M of H,
the set C contains an element that is greater than M . If H is a hierarchy on V ,
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we say that H is a hierarchy of partitions (on V ) whenever any cut of H is a
partition of V . The following property characterizes the hierarchies of partitions
from their minima.

Property 1. Let H be a hierarchy on V . The hierarchy H is a hierarchy of
partitions if and only if the set of its minima is a partition.

A direct corollary is that any complete hierarchy on V is a hierarchy of partitions.
The hierarchies on G may be used to obtain hierarchies (of partitions) on V .

Let H be a hierarchy on G. We denote by V(H) the hierarchy on V defined
by V(H) = {V (X) | X ∈ H} and we say that V(H) is the hierarchy (on V ) in-
duced by H. Observe that the hierarchy H on G induces a hierarchy of partitions
on V if and only if any vertex of G is a vertex of a minimum of H.

Let H be a hierarchy on V (resp. on G), and let x be in V . The greatest
element of H that contains x (resp. whose vertex set contains x) is denoted
by CCx(H). Observe that if H is complete, then CCx(H) is exactly V (resp. G).

3 Component Trees

Intuitively, component trees [11] may be seen as hierarchies obtained from the
connected components of an image. In particular, the min-tree is a well known
hierarchical representation that is useful for anti-extensive connected operators.
In this expression, the term min is used in reference to the leaves of these trees
that are the regional minima of the images. In this section, we provide definitions
of regional minima and of min-trees for edge-weighted graphs. Furthermore, on
the same basis, we provide a definition of a hierarchy of partitions that allows
links to be drawn between min-trees and quasi-flat zones.

Important Notation. In the sequel, we denote by F a function from E to R+

that weights the edges of E. Therefore, the pair (G,F ) is called an edge-weighted
graph, and, for any u ∈ E, the value F (u) is called the weight of u.

Let k ∈ R. A subgraph X of G is a minimum of F (at weight k) if i) X is
connected; and ii) k is the weight of any edge of X ; and iii) the weight of any
edge adjacent to X (i.e., any edge that contains exactly one vertex of X) is
strictly greater than k.

In order to define the components of a weight map, the simple thresholding
operation is used to produce level sets from which connected components can
be considered. For given λ ∈ R and X ⊆ E, the λ-level set of X (for F ) is the
set χλ(X) of all edges in X whose value is not greater than λ, i.e., χλ(X) =
{e ∈ X |F (e) ≤ λ}. From the level set χλ(E) of E, two interesting graphs can
be derived: the first one, called the λ-level graph of G, and denoted by χEλ (G),
is defined by χEλ (G) = (δ(χλ(E)), χλ(E)), and the second one, called the λ-level
spanning graph of G and denoted by χVλ (G), is defined by χVλ (G) = (V, χλ(E)).
More generally, if X $ G, the λ-level graph of X and the λ-level spanning
graph of X are defined by χEλ (X) = (δ(χλ(E(X))), χλ(E(X))), and χVλ (X) =
(V, χλ(E(X))) respectively.
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Fig. 1. Illustration of the min-hierarchy of a graph (a) and of its unique minimum
spanning tree (b), which is represented by wide edges

Note that χEλ (G) can be derived from χVλ (G) by removing all isolated points
of χVλ (G), and that, conversely, χVλ (G) can be derived from χEλ (G) by adding all
elements of V to the vertex set of χEλ (G). Hence, we always have χEλ (G) $ χVλ (G).
Note also that the partial partition induced by χVλ (G) is always a partition of V
whereas the one induced by χEλ (G) is in general not a partition (i.e., its support
is in general a proper subset of V ).

Definition 2. Let X $ G. The partition-hierarchy of X (for F ), denoted by
PH(X), is the set PH(X) = ∪{CC(χVλ (X)) | λ ∈ R} and the min-hierarchy
of X (for F ), denoted by MH(X), is the setMH(X) = ∪{CC(χEλ (X)) | λ ∈ R}.

The Hasse diagram of the min-hierarchy of G is known as the min-tree of (G,F ).
Fig. 1a shows in red the min-tree of the edge-weighted graph represented in
gray. The elements C1, C2, C3 and C4 of this min-hierarchy (i.e., the nodes of
the min-tree) are represented by red horizontal lines. Observe that C1 and C2,
which are the two components of the 0-level graphs of G, are the graphs induced
by {{b, c}} and {{d, e}} respectively. The component C3 (resp. C4) is the unique
connected component of the 1-level graph (resp. 2-level graph) of G; C3 is the
graph induced by {{a, b}, {b, c}, {b, e}, {d, e}} and C4 is the graph G itself. The
partition-hierarchy of G is a superset of this min-hierarchy, which furthermore
contains any subgraph of G made of a single vertex. More generally, as assessed
by the following property, the min-hierarchy and the partition-hierarchy of G
can always be obtained one from each other. Therefore, the min-hierarchy and
the partition-hierarchy of G are equivalent as well as the min-tree of (G,F ) and
the Hasse diagram of the partition-hierarchy of G.

Property 3. The min-hierarchy of any subgraph X of G can be obtained by
removing from the partition-hierarchy of X the graphs made of a single vertex,
i.e., MH(X) = PH(X) \ {({x}, ∅) | x ∈ V }. Conversely, the partition-hierarchy
of any subgraph X of G can be obtained by adding to the min-hierarchy of X all
graphs made of a single vertex, i.e., PH(X) =MH(X) ∪ {({x}, ∅) | x ∈ V }.

Observe that the partition-hierarchy ofG indeed induces a hierarchy of partitions
on V , whereas, in general, the min-hierarchy of G does not. In the next section,
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we will study the minimum spanning trees of G, and we will see that these
particular subgraphs of G are sufficient to recover the hierarchies of partitions
induced by the min-hierarchy and the partition-hierarchy of G.

4 Minimum Spanning Trees

The minimum spanning tree is a typical and well-known problem of combinato-
rial optimization. It has been applied for many years to image analysis problems.
The main result of this section states that the hierarchy of partitions induced by
the partition-hierarchy of any minimum spanning tree of G is exactly the same
as the hierarchy of partitions induced by the partition-hierarchy of the graph G
itself. Furthermore, the minimum spanning trees are minimal (with respect to
the relation $) for this property.

A graph X is spanning (for G) if V (X) = V . Let X $ G. The weight of X
(for F ), denoted by F (X), is the sum of the weights of the edges inE(X): F (X) =∑

u∈E(X) F (u). A connected spanning graph T is a minimum spanning tree (of

(G,F ) if the weight of T is less than or equal to the weight of any other connected
graph that is spanning.

Property 4. Let T be any minimum spanning tree of G. Then, the partitions
induced by χVλ (T ) and by χVλ (G) are the same.

Let X $ G. We denote by φ(X) the graph induced by the vertex set ofX :φ(X) =
(V (X), ε(V (X))). Note that φ is both a dilation and a closing in the lattice 2G

of all subgraphs of G (for more details, see [19] where φ is denoted by α2). For a
given hierarchy H of graphs, we write ϕ(H) = {φ(X) | X ∈ H}. It can be seen
that V (φ(X)) = V (X). Thus the hierarchies on V induced by H and ϕ(H) are
the same, i.e., we always have V(ϕ(H)) = V(H).

Given two hierarchies H1 and H2 whose elements are ordered by the rela-
tions ≤1 and ≤2 respectively, an (order) isomorphism from H1 to H2 is a bi-
jection f from H1 to H2 such that for any X,Y ∈ H1, X ≤1 Y if and only if
f(X) ≤2 f(Y ). If there exists an isomorphism from H1 to H2, then H1 and H2

are said isomorphic and we write H1
∼= H2. Note that two hierarchies that are

isomorphic can be represented by the same Hasse diagram.

Property 5. Let T be any minimum spanning tree of G. Then the two following
statements hold true:

1. PH(T ) ∼= ϕ(PH(G)); and
2. V(PH(T )) = V(ϕ(PH(G))) = V(PH(G)).

In other words, the hierarchies induced by the partition-hierarchy of a minimum
spanning tree and by the graph itself are the same. Furthermore, due to the
mapping ϕ, the partition-hierarchy of any minimum spanning tree of G can be
recovered from the partition hierarchy of G. On the contrary, the converse is in
general not true. Hence, in general, there is more information in the partition-
hierarchy of G than in partition-hierarchy of any of its minimum spanning trees.
When available, such information may be used for further processing.
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Property 5 is illustrated on the edge-weighted graph (G,F ) of Fig. 1, where the
red trees in (a) and (b) represent respectively PH(G) and PH(T ) ∼= ϕ(PH(G)),
T being the minimum spanning tree depicted with “wide” edges.

5 Quasi-flat Zones

The quasi-flat zones (see e.g. [8, 12, 13]) have been studied since the 70’s, and
they have been used recently as a basis for constrained connectivity segmenta-
tions. In this section, we investigate the links between the quasi-flat zones, the
min-trees, the partition-hierarchies of a graph G and of its minimum spanning
trees.

Let λ ∈ R. A path π = (x0, . . . , xn) is λ-connected if for any i in �0, n− 1� =
{0, . . . n − 1}, we have {xi, xi+1} ∈ E and F ({xi, xi+1}) ≤ λ. For any two
vertices x and y in V , we set λ−Π(x, y) as the set of all λ-connected paths from
x to y. The λ-flat zone (or quasi-flat zone at level λ) of a vertex x is the set
λ − CC(x) = ∪{y ∈ V | λ −Π(x, y) �= ∅}. The set Qλ = {λ − CC(x) | x ∈ V }
of λ-flat zones over all vertices in E is a partition.

Definition 6. The set Q = ∪{Qλ | λ ∈ R} is the quasi-flat zones hierarchy
of F .

The quasi-flat zones hierarchy is a complete hierarchy, and thus also a hierarchy
of partitions. In the literature, the term α-tree was coined by G. Ouzounis and
P. Soille for the Hasse diagram of the quasi-flat zones hierarchy [20].

For any λ ∈ R, it can be seen that Qλ is the partition induced by the λ-level
graph χVλ (G) of G. Hence, by Property 4, the partition Qλ is also the partition
induced by the λ-level graph of any minimum spanning tree of G. Therefore,
the following property linking the quasi-flat zones hierarchy to the partition-
hierarchies of any minimum spanning tree of G can be established.

Property 7. Let T be a minimum spanning tree of G. Then, the two following
statements hold true:

1. Q ∼= PH(T ); and
2. Q = V(PH(T )).

The first relation states that the quasi-flat zones hierarchy and the partition-
hierarchy of T are isomorphic. Due to Property 5.1, we deduce that these
two hierarchies are also isomorphic to ϕ(PH(G)) obtained by simplifying the
partition-hierarchy of G. Furthermore, by Property 3, we deduce that these
two hierarchies may also be obtained form the min-hierarchy of G. Hence,
Property 7.1 states that the α-tree and the partition-tree of any minimum
spanning tree of G are the same and that they both can be obtained from
the partition- and min-trees of the graph G itself. The second relation states
that the quasi-flat zones hierarchy is exactly the hierarchy of partitions induced
by the partition-hierarchy of any minimum spanning tree of G. It thus states
how to obtain the quasi flat zones hierarchy from any other hierarchy previously
presented in this paper.



Constructive Links between Some Morphological Hierarchies 93

6 Binary Partition Trees

In this section, we present the binary partition hierarchies by (altitude) order-
ings. These hierarchies fall into the wide category of binary partition trees as
introduced by P. Salembier [21]. Then, we state that the quasi-flat zones hier-
archy can be recovered from this hierarchy, and we show a mapping from the
elements of these hierarchies to the edge-set of the minimum spanning trees
of (G,F ). Note that Meyer studied similar links between catchment basins and
minimum spanning trees in [17].

Let ≺ be a total ordering on E, i.e., ≺ is a binary relation that is transitive
and trichotomous (for any u and v in E only one of the relations u ≺ v, v ≺ u,
and u = v holds true). Let k be any element in �1, |E|�, we denote by u≺

k the
k-th element of E with respect to ≺.

Definition 8. Let k be an element in �1, |E|�. We set B0 =
{
{x} | x ∈ V

}
.

The partial binary partition hierarchy Bk at rank k (by the ordering ≺) is
the hierarchy on V defined by Bk = Bk−1 ∪

{
CCx(Bk−1) ∪ CCy(Bk−1)

}
where

u≺
k = {x, y}.
The partial binary partition hierarchy at rank |E| is called the binary partition

hierarchy by (the ordering) ≺ and it is denoted by B≺.

The Hasse diagram of the binary partition hierarchy is known in the literature as
the binary partition tree (see, e.g., Fig. 2a). Note that, for every possible value
of k, the partial binary partition hierarchy at rank k is a hierarchy of partitions
and furthermore the binary partition hierarchy is a complete hierarchy.

Let≺ be an ordering on E, and let k ∈ �1, |E|�. Observe that the partial binary
partition hierarchy at rank k is equal to the partial binary partition hierarchy at
rank k − 1 if and only if the k-th edge for ≺ links two vertices that are already
in a same set of Bk−1 (see e.g. the hierarchies B6 and B7 in Fig. 2a). Hence, we
may associate to any element X in B�≺ = B≺ \ B0 the lowest rank at which a
partial binary partition tree contains X . This rank is called the rank of X , it is
denoted by r(X) and we have r(X) = min{k ∈ �1, n� | X ∈ Bk}. This rank also
allows us to directly map the elements of B�≺ to a subset of E. Let X ∈ B�≺, the
building edge of X is the r(X)-th edge of E for ≺. The set of building edges of
all elements in B�≺ is called the building set of B≺.

We say that an ordering ≺ on E is an altitude ordering (for F ) if F (u) ≤ F (v)
for any two u and v in E such that u ≺ v. If there is only one altitude ordering
for F , then we say that F is totally ordering.

Property 9. Let ≺ be an altitude ordering, and let B≺ be the binary partition
hierarchy by ≺. If F is totally ordering, then the two following statements hold
true:

1. the graph induced by the building set of B≺ is the unique minimum spanning
tree of F ; and

2. B≺ = Q.
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Fig. 2. a: A binary partition hierarchy/tree B≺ for the altitude ordering {c, d} ≺
{a, e} ≺ {g, h} ≺ {e, f} ≺ {d, h} ≺ {a, b} ≺ {b, f} ≺ {b, c} ≺ {f, g} ≺ {c, g}. b: Ψ(B≺).
c: The same binary partition hierarchy with a sequence S = 〈M1,M2,M3〉 of minima
of F and, for each non-leaf element, a pair of values (ext, pers) made of the extinction
of the component and the persistence of its building edge (note that the extinction of
a leaf/singleton is always 0). d: The edge-weighted graph whose partition-hierarchy is
the hierarchy induced by ≺ and S , which is thus also the MSF hierarchy for S .

Hence, under the conditions of the previous property, we deduce from Prop-
erties 7 and 5 that B≺ is also isomorphic to PH(T ) and to ϕ(PH(G)). Thus, it
can be obtained as a simplification of the partition-hierarchy PH(G) and also,
by Property 3, as a simplification of the min-hierarchyMH(G).

Let ≺ be an altitude ordering. Let X ∈ B�≺, we call altitude of X , the weight
of its building edge. We say that X is principal for B≺ if it has no parent or if
its altitude is less than the one of its parent. The set of all principal elements
of B≺ is denoted Ψ(B≺) (see Figs. 2a and b for illustrations).

Property 10. Let ≺ be an altitude ordering, and let B≺ be the binary partition
hierarchy by ≺. Then, the two following statements hold true:

1. the graph induced by the building set of B≺ is a minimum spanning tree of
F ; and

2. Q = Ψ(B≺).
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The previous property states that the quasi-flat zones hierarchy Q can be
obtained by simplifying the binary partition hierarchy B≺. In fact, contrarily to
the case of maps which are totally ordering, the converse is, in general, not true:
the binary partition hierarchy cannot be obtained from the quasi-flat zones hier-
archy or from the partition-hierarchy of a minimum spanning tree. Furthermore,
it can be shown that, in general, one cannot recover a binary partition hierarchy
from a min-/partition-hierarchy of G either.

7 Hierarchies of Minimum Spanning Forests

This section first presents the minimum spanning forests rooted in subgraphs
of G. This notion of a forest, which is useful for (seeded) image segmentation, is
known to be equivalent to the one of minimum spanning tree. Then, hierarchies
of minimum spanning forests are introduced. Each such hierarchy induces a
hierarchy of partitions on V . Finally, we state the main result of this section
that shows how hierarchies of minimum spanning forests can be obtained from
binary partition hierarchies.

Let X and Y be two nonempty subgraphs of G. We say that Y is rooted in X
if V (X) ⊆ V (Y ) and if the vertex set of any component of Y contains the vertex
set of exactly one component of X . We say that Y is a minimum spanning
forest (MSF) rooted in X (with respect to F ) if i) Y is spanning; ii) Y is rooted
in X ; and iii) the weight of Y is less than or equal to the weight of any graph Z
satisfying (1) and (2) (i.e., Z is both spanning and rooted in X). Furthermore,
any minimum spanning tree of G is called an MSF rooted in the empty graph.

For instance, the graphs induced by the null edges of Fig. 2d is an MSF rooted
in the graph made of the minima M1, M2 and M3 shown in Fig. 2c.

A possible definition for watershed, called watershed-cuts, follows the drop
of water principle. In [4], we have proved the equivalence between MSF rooted
in the set of minima and watershed cuts. In practice, watersheds from markers
are often computed, and subsets of minima of the original edge-weighted graph
constitute robust markers. The next definition presents a notion of hierarchy of
MSFs rooted in such subsets.

We denote by MF the set of all minima of F .

Definition 11 (MSF hierarchy, [6]). Let S = 〈M1, . . . ,M�〉 be a sequence of
pairwise distinct minima of F and let 〈X0, . . . , X�〉 be a sequence of subgraphs
of G such that:

1. for any i ∈ �0, ��, Xi is an MSF rooted in �[MF \ {Mj | j ∈ �1, i�}]; and
2. for any i ∈ �1, ��, we have Xi−1 $ Xi.

The set T = ∪{CC(Xi) | i ∈ �0, ��} is called an MSF hierarchy for S.

Let ≺ be an altitude ordering on E, let S = 〈M1, . . . ,M�〉 be a sequence of
pairwise distinct minima of F , and let X ∈ B≺. The extinction value of X for S
is 0 if there is no element of S whose vertex set is included in X , or, otherwise,
it is set to the highest index k such that the vertex set of Mk is included in X .
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Intuitively, if we see the sequence S as a sequence of “markers” ranked by
increasing “importance”, the extinction value of a set X in H can be seen as
the rank of the most important marker of X (i.e., that is contained in X). For
instance, in Fig. 2, the extinction value of every component of the binary parti-
tion tree is given for the sequence 〈M1,M2,M3〉, where M1 (resp. M2 and M3) is
the minimum induced by {{c, d}} (resp. {{g, h}} and {{e, f}}). Dually, one can
intuitively consider the persistence of an edge u as the highest rank k such that
the vertices linked by u belong to distinct regions of the partitions obtained by
considering only the k most important markers (see e.g. Figs. 2c, and d). Based
on this notion of persistence, Property 12 states that MSF hierarchies can be
obtained using only the binary partition trees by altitude orderings.

Let ≺ be an altitude ordering on E. Let S = 〈M1, . . . ,M�〉 be a sequence of
pairwise distinct minima of F . Let u be an edge in the building set of B≺, and
let X be the unique element in B≺ whose building edge is u. The persistence value
of u is the minimum of the extinction values of the children of X . Let i ∈ �1, ��.
We denote by Bi the set of building edges whose persistence value is lower than
or equal to i and the set of graphs ∪{CC((V,Bi)) | i ∈ �1, � − 1�} is called the
hierarchy induced by ≺ and S.

Property 12. Let S = 〈M1, . . . ,M�〉 be a sequence of pairwise distinct minima
of F and let T be a hierarchy on G. The hierarchy T is an MSF hierarchy for S
if and only if there exists an altitude ordering ≺ such that T is the hierarchy
induced by ≺ and S.

Conclusion

This paper investigates the links between some popular morphological hierar-
chies. Table 1 sums up the links shown in this paper. These links open the way
towards a family of efficient algorithms, based on Kruskal minimum spanning
tree algorithms, for computing morphological hierarchies. These algorithms are
presented in the companion paper [18]. Furthermore, the links established in this
paper invites us to bridge hierarchical processing coming from different family
of hierarchies. Evaluating the impact of mixing these techniques is left for future
work. It also allows for designing new hierarchical methods derived from im-
age predicate which are not necessarily hierarchical (see a first example in [22]).
Finally, the links between the hierarchical methods presented in this paper and
those based on self-dual tree of level lines [23] still need to be investigated.
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Abstract. To compute the morphological self-dual representation of
images, namely the tree of shapes, the state-of-the-art algorithms do
not have a satisfactory time complexity. Furthermore the proposed al-
gorithms are only effective for 2D images and they are far from being
simple to implement. That is really penalizing since a self-dual represen-
tation of images is a structure that gives rise to many powerful operators
and applications, and that could be very useful for 3D images. In this
paper we propose a simple-to-write algorithm to compute the tree of
shapes; it works for nD images and has a quasi-linear complexity when
data quantization is low, typically 12 bits or less. To get that result, this
paper introduces a novel representation of images that has some amazing
properties of continuity, while remaining discrete.

1 Introduction

The tree of shapes [16] is an important morphological structure that represents
images in a self-dual way. Shortly put it can be seen as the result of merging the
pair of dual component trees, min-tree and max-tree, into a single tree. Using the
tree of shapes has many advantages. Since it is self-dual, it makes no assumption
about the contrast of objects (either light object over dark background or the
contrary). We only have one structure that represents the image contents so we
do not have to juggle with the couple of dual trees. It intrinsically eliminates the
redundancy of information contained in those trees. Last, it encodes the spatial
inclusion of connected components in gray-level images so it is complementary
to some other representations that focus on component (or region) adjacency. As
a consequence the tree of shapes is not only an easy access to self-dual operators
such as grain filters but it has many applications, as listed in [14] (pp. 15–17),
and some very recent works illustrate several powerful perspectives offered by
that tree (see [20,21,22], and their bibliography).

In the following we consider a nD digital image u as a function defined on
a regular cubical grid (precisely, u : Zn → Z), and to properly deal with some
subsets of Zn and with their complementary, we consider the dual connectivities
c2n and c3n−1. For any λ ∈ Z, the lower (strict) cuts1 and upper (large) cuts

1 We can indifferently use the term “cut” or “threshold”.

C.L. Luengo Hendriks, G. Borgefors, R. Strand (Eds.): ISMM 2013, LNCS 7883, pp. 98–110, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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of u are defined as [u < λ ] = { x ∈ X | u(x) < λ } and [u ≥ λ ] = { x ∈
X | u(x) ≥ λ }. From them we deduce two sets, T<(u) and T≥(u), composed of
the connected components of respectively lower and upper cuts of u: T<(u) =
{Γ ∈ CCc2n([u < λ ]) }λ and T≥(u) = {Γ ∈ CCc3n−1

([u ≥ λ ]) }λ, where
CC denotes the operator that gives the set of connected components of a set.
The elements of T<(u) and T≥(u) respectively give rise to two dual trees: the
min-tree and the max-tree of u. We then define two other sets, S<(u) (set of
lower shapes) and S≥(u) (set of upper shape), as the sets of components of resp.
T<(u) and T≥(u) after having filled the cavities 2 of those components. With
the cavity-filling (or saturation) operator denoted by Sat, we have: S<(u) =
{ Satc3n−1

(Γ ); Γ ∈ T<(u) } and S≥(u) = { Satc2n(Γ ); Γ ∈ T≥(u) }.

min-treemax-tree tree of shapes

3
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Fig. 1. Three morphological trees of the same image

The set of all shapes S(u) = S<(u) ∪ S≥(u) forms a tree, the so-called
tree of shapes of u [16]. Indeed, for any pair of shapes Γ and Γ ′ in S, we have
Γ ⊂ Γ ′ or Γ ′ ⊂ Γ or Γ ∩ Γ ′ = ∅. Actually, the shapes are the cavities of
the elements of T< and T≥. For instance, if we consider a lower component
Γ ∈ [u < λ ] and a cavity H of Γ , this cavity is an upper shape, i.e., H ∈ S≥.
Furthermore, in a discrete setting, H is obtained after having filled the cavities
of a component of [u ≥ λ ]. Figure 1 depicts on a sample image the three
components trees (T<, T≥, and S). Just note that the Equations so far rely on
the pair of dual connectivities, c2n and c3n−1, so discrete topological problems
are avoided, and, in addition, we are forced to consider two kind of cuts: strict
ones for c2n and large ones for c3n−1.

The state-of-the-art of tree of shapes computation (detailed in Section 5)
suffers from two major flaws: existing algorithms have a time complexity of

2 In 2D, a cavity of a set S ∈ Ω is called a “hole”; in nD, it is a connected component
of Ω\S which is not the “exterior” of S. Browsing the elements of S in nD, with
n ≥ 3, does not allow to know whether S has a cavity or not[8].



100 T. Géraud et al.

O(n2) and they cannot easily be extended to nD images. Briefly put, this is
due to the fact that either they follow shape contours or they have to know if
a component has a cavity2. This paper presents an algorithm that can compute
the tree of shapes with quasi-linear time complexity when image data are low
quantized; furthermore this algorithm straightforwardly applies to nD images.

This paper is organized as follows. First we explain that a well-known algorith-
mic scheme can be reused to compute the tree of shapes (Section 2). Then this
paper introduces a new discrete representation of images (Section 3) that has
some properties borrowed from the continuous world. At that point we are ready
to glue together the algorithmic scheme and the novel image representation to
present a quasi-linear algorithm that compute the tree of shapes (Section 4).
Related works about that tree computation is presented so that the reader
can compare our approach to existing ones (Section 5). Last, we give a short
conclusion (Section 6) 3.

2 Algorithmic Scheme and the Need for Continuity

This section shows that the max-tree algorithm presented in [2] is actually an
algorithmic “canvas” [7], that is, a kind of meta-algorithm that can be “filled
in” so that it can serve different aims. In the present paper it gives an algorithm
to compute the tree of shapes.

2.1 About Union-Find and Component Trees

An extremely simple union-find structure (attributed by Aho to McIlroy and
Morris) was shown by Tarjan [19] to be very efficient. This structure, also called
disjoint-set data structure or merge-find set, has many advantages that are de-
tailed in [3]; amongst them, memory compactedness, simplicity of use, and ver-
satility. This structure and its related algorithms are of prime importance to
handle connected operators [13,6].

Let us denote by R the ancestor relationship in trees: we have aR p iff a is
an ancestor of p. R can be encoded as an array of elements (nodes) so that
aR p ⇔ indexR(a) < indexR(p); browsing that array thus corresponds to a
downwards browsing of the tree, i.e., from root to leaves. To construct the max-
tree of a given image, we rely on a rooted tree defined by a parenthood function,

3 Due to limited place, this paper does not contain the following topics (they will
be included into an extended version of this paper). A comparison of execution
times of existing algorithms. Actually it is possible to reduce the space complexity
(i.e., memory usage) of the algorithm proposed in this paper so the shorter version
presented here is not our “competitive” version. The union-by-rank procedure that
guaranties quasi-linear complexity. So that the Union-Find routine (given in [2] and
recalled in Algorithm 1) remains short, its code does not feature tree balancing; yet
it is explained in [3]. A formal proof of our algorithm. This paper focuses on how
the proposed algorithm works and gives an insight into the reasons why it works; to
give a formal proof requires a large amount of materials, the first part of which can
be found in [17]. About high bit-depths data. That case is not detailled in this paper.
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Algorithm 1. “Union-Find”-based computation of a morphological tree.

union find(R) : T ;
begin

for all p do
zpar (p)← undef

for i← N − 1 to 0 do
p←R[i];
parent (p)← p;
zpar (p)← p;
for all
n ∈ N (p) such as zpar(n) �= undef
do

r ← find root(zpar , n);
if r �= p then

parent(r)← p;
zpar(r)← p;

return parent

find root(zpar , x) : P ;
begin

if zpar (x) = x then
return x

else
zpar(x)←
find root(zpar , zpar (x));
return zpar(x)

compute tree (u) : Pair(Array[P], T) ;
begin
R ← sort(u);
parent ← union find(R);
canonicalize tree(u, R, parent);
return (R, parent);

named parent , and encoded as an nD image (so parent(p) is an nD point).
When a node of the max-tree contains several points, we choose its first point
(with respect to R) as the representative for this node; that point is called
a component “canonical point” or a “level root”. Let Γ denote a component
corresponding to a node of the max-tree, pΓ its canonical element, and pr the root
canonical element. The parent function that we want to construct should verify
the following four properties: 1. parent(pr) = pr ; 2. ∀ p �= pr, parent(p)R p ;
3. p is a canonical element iff p = pr ∨ u(parent(p)) �= u(p) ; 4. ∀ p, p ∈ Γ ⇔
u(p) = u(pΓ ) ∧ ∃ i, parent i(p) = pΓ (therefore ∀ p ∈ Γ, p = pΓ ∨ pΓ R p).

The routine union find, given in Algorithm 1, is the classical “union-find”
algorithm [19] but modified so that it computes the expected morphological
tree [2] while browsing pixels following R−1, i.e., from leaves to root (let us
recall that we do not feature here the union-by-rank version). Its result is a
parent function that fulfills those first four properties. Obtaining the following
extra property, “5. ∀p, parent(p) is a canonical element,” is extremely interest-
ing since it ensures that the parent function, when restricted to canonical ele-
ments only, gives a “compact” morphological tree such as the ones depicted in
Figure 1. Precisely it allows to browse components while discarding their con-
tents: a traversal is thus limited to one element (one pixel) per component,
instead of passing through every image elements (pixels). Transforming the
parent function so that property 5 is verified can be performed by a simple
post-processing of the union-find computation. The resulting tree has now the
simplest form that we can expect; furthermore we have an isomorphism between
images and their canonical representations.
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2.2 Computing the Max-tree and the Tree of Shapes

The algorithm presented in [2] to compute the max-tree is surprisingly also able
to compute the tree of shapes. The skeleton, or canvas, of this algorithm is the
routine compute tree given in the right part of Algorithm 1; it is composed
of three steps: sort the image elements (pixels); then run the modified union-
find algorithm to compute a tree encoded by a parent function; last modify the
parent function to give that tree its canonical form.

In the case of the max-tree, the sorting step providesR encoded as an array of
points sorted by increasing gray-levels in u, i.e., such that the array indices satisfy
i < i′ ⇒ u(R[i]) ≤ u(R[i′]). When image data are low quantized, typically
12 bit data or less, then sorting points can be performed by a distribution sort
algorithm. Last, the canonicalization post-processing is a trivial 5-line routine
that the reader can find in [2]. In the case of the tree of shapes, it is also a tree
that represents an inclusion relationship between connected components of the
input image. As a consequence a first important idea to catch is that the tree of
shapes can be computed with the exact same routine, union find, as the one
used by max-tree.

2.3 What If...

The major and crucial difference between the max-tree and the tree of shapes
computations is obviously the sorting step. For the union find routine to be
able to compute the tree of shapes using R−1, the sort routine has to sort the
image elements so that R corresponds to a downward browsing of the tree of
shapes. Schematically we expect that R contains the image pixels going from
the “external” shapes to the “internal” ones (included in the former ones).

The similarity between the computations of both trees is illustrated in
Figure 2. We can see that the modified union-find algorithm correctly computes

Fig. 2. Tree computation of the max-tree (left) and of the tree of shapes (right). For
both cases, the result R of the sorting step is given over the green arrow and the tree
computation, browsing R−1, is progressively depicted.



A Quasi-linear Algorithm to Compute the Tree of Shapes 103

1 1 1 1 1 1

1 1 1 1 1 1

1
1

1
1
1

1
1 1

0
0
0 0

0 3 3
3
33

Fig. 3. A sample image and its tree of shapes (left); a step towards an ad-hoc image
representation (right)

both trees once R is properly defined. Therefore we “just” need to know how
to compute R in the case of the tree of shapes to turn the canvas given in the
previous Section 2.2 as the expected algorithm.

Let us consider the image depicted on the left of Figure 3 with its tree of
shapes. We can see that we need to reach the regions A and A’ before the
regions B and C in order to properly sort pixels, i.e., to compute R. It is only
possible if we can pass “between” pixels. The representation depicted on the
right of Figure 3 is well-suited for that since it contains some elements that
materialize inter-pixel spaces. Furthermore, given a two adjacent pixels with
respective values 0 and 3, the element in-between them has to bear all the
“intermediate” values: not only 1 but also 2. Indeed, if we change the value of
regions A and A’ from 1 to 2, the tree structure is unchanged but inter-pixel
elements between regions B and C have now to make A and A’ connect with
value 2. Eventually we need an image representation that is “continuous” in
some way with respect to both the domain space and the value space.

3 Image Representation

To be able to sort the image pixels so that R corresponds to a top-down brows-
ing of tree of shapes elements, this paper introduces a novel representation of
images4. It relies on a couple of theoretical tools briefly described hereafter5.

3.1 Cellular Complex and Khalimsky Grid

From the sets H1
0 = {{a}; a ∈ Z} and H1

1 = {{a, a + 1}; a ∈ Z}, we can
define H1 = H1

0 ∪ H1
1 and the set Hn as the n-ary Cartesian power of H1.

If an element h ⊂ Zn is the Cartesian product of d elements of H1
1 and n − d

elements of H1
0 , we say that h is a d-face of Hn and that d is the dimension of

h. The set of all faces, Hn, is called the nD space of cubical complexes. Figure 4
depicts a set of faces {f, g, h} ⊂ H2 where f = {0}×{1}, g = {0, 1}×{0, 1}, and
h = {1}×{0, 1}; the dimension of those faces are respectively 0, 2, and 1. Let us
write h↑ = {h′ ∈ Hn |h ⊆ h′} and h↓ = {h′ ∈ Hn |h′ ⊆ h}. The pair (Hn,⊆)
forms a poset and the set U = {U ⊆ Hn | ∀h ∈ U, h↑ ⊆ U} is a T0-Alexandroff
topology on Hn. With E ⊆ Hn, we have a star operator st(E) = ∪h∈E h↑ and a

4 In [17], a formal characterization of the discrete topology underlying this novel
representation is presented.

5 The authors recommend [12] and [1] for extra readings about those tools.
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Fig. 4. Three faces depicted as subsets of Z2 (left) and as geometrical objects (middle);
Khalimsky grid (right) with 0- to 2-faces respectively painted in red, blue, and green

closure operator cl(E) = ∪h∈E h↓, that respectively gives the smallest open set
and the smallest closed set of P(Hn) containing E.

The set of faces of Hn is arranged onto a grid, the so-called Khalimsky’s grid,
depicted in gray in Figure 4 (right); and inclusion between faces lead to a neigh-
borhood relationship, depicted in gray and yellow. The set of 2-faces, the minimal
open sets of Hn, is the n-Cartesian product of H1 and is denoted by Hn

1 .

3.2 Set-Valued Maps

A set-valued map u : X � Y is characterized by its graph, Gra(u) =
{ (x, y) ∈ X×Y | y ∈ u(x) }. There are two different ways to define the “inverse”
of a subset by a set-valued map: u

⊕(M) = { x ∈ X |u(x) ∩M �= ∅ } is the
inverse image of M by u, whereas u

�(M) = { x ∈ X |u(x) ⊂ M } is the core
of M by u. Two distinct continuities are defined on set-valued maps. The one we
are interested in is the “natural” extension of the continuity of a single-valued
function. When X and Y are metric spaces and when u(x) is compact, u is
said to be upper semi-continuous (u.s.c.) at x if ∀ε > 0, ∃ η > 0 such that
∀x′ ∈ BX(x, η), u(x′) ⊂ BY (u(x), ε), where BX(x, η) denotes the ball of X of
radius η centered at x. One characterization of u.s.c. maps is the following: u

is u.s.c. if and only if the core of any open subset is open.

3.3 Interpolation

Following the conclusions of Section 2.3, we are going to immerse a discrete nD
function defined on a cubical grid u : Zn → Z into some larger spaces in order
to get some continuity properties. For the domain space, we use the subdivision
X = 1

2H
n of Hn. Every element z ∈ Zn is mapped to an element m(z) ∈ 1

2H
n
1

with z = (z1, . . . , zn) �−→ m(z) = {z1, z1+ 1
2}×. . .×{zn, zn+ 1

2}. The definition
domain of u, D ⊆ Zn, has thus a counterpart in X , that will also be denoted
D, and that is depicted in bold in Figure 5. For the value space, we immerse
Z (the set of pixel values) into the larger space Y = 1

2H
1, where every integer

becomes a closed singleton of H1
0 . Thanks to an “interpolation” function, we

can now define from u a set-valued map u = I(u). We have u : X � Y and
we set:

∀h ∈ X, u(h) =

⎧⎨⎩{ u(m
−1(h)) } if h ∈ D

max(u(h′) : h′ ∈ st(cl (h)) ∩ D ) if h ∈ 1
2H

n
1 \D

span(u(h′) : h′ ∈ st(h) ∩ D ) if h ∈ X\ 12Hn
1 .

(1)
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Fig. 5. The function u : Z2 → Z (left) is transformed into the set-valued map u :
1
2
H2 � 1

2
H1 (middle); d-faces with d ∈ {0, 1} are interval-valued in u with the span

of their respective (d+ 1)-face neighbors (right)

An example of interpolation is given in Figure 5. Actually, whatever u, such a
discrete interpolation I(u) can also be interpreted as a non-discrete set-valued
map IR(u) : Rn � R (schematically IR(u)(x) = I(u)(h) with h such as x ∈ Rn

falls in h ∈ 1
2H

n), and we can show that IR(u) is an u.s.c. map.
To the authors knowledge the notion of cuts (or thresholds) have not been

defined for set-valued maps. Since they are of prime importance for mathematical
morphology, and for the tree of shapes in particular, we propose in this paper
the following definitions. Given λ ∈ Y , let us state that [u � λ ] = { x ∈
X | ∀μ ∈ u(x), μ < λ } and [u � λ ] = { x ∈ X | ∀μ ∈ u(x), μ > λ }. We can
show [17] that, with those definitions, ∀u, ∀λ, [ I(u) � λ ] and [ I(u) � λ ] are
well-composed [9]. That is, strict cut components and their complementary sets
can be handled both with the same unique connectivity, c2n. As a consequence,
the operators star and Sat commute on those sets, and we can prove [17] that:

SI(u) = {Satc2n(Γ ); Γ ∈ {CCc2n([ I(u) � λ ])}λ ∪ {CCc2n([ I(u) � λ ])}λ }

is a set of components that forms a tree. Moreover, we can also prove that
T<(u) = {Γ ∩ D; Γ ∈ { CCc2n([ I(u) � λ+ 1/2 ]) }λ∈H0 } and T≥(u) = {Γ ∩
D; Γ ∈ { CCc2n([ I(u) � λ+1/2 ]) }λ∈H0 }. So eventually we have: S(u) = {Γ ∩
D; Γ ∈ SI(u)}. That final property means that strict cuts of the interpolation
of u, considering only c2n for the different operators, allows for retrieving the
shapes of u, as defined with the pair of dual connectivities c2n and c3n−1.

4 Putting Things Altogether

4.1 About Saturation and Initialization

Classically the root node of the tree of shapes represents the whole image and,
formally, the saturation operator is defined w.r.t. a point at infinity, p∞, located
outside the image domain D. A rather natural idea is that the root level, �∞,
should only depend on the internal border of D (which is unfortunately not
the case for the algorithms proposed in the literature). To that aim, before
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interpolating u, we add to this image an external border with a unique value,
�∞, set to the median value of the internal border. p∞ is then one point from
the added border.

4.2 Handling the Hierarchical Queue

To sort the faces of the domain X of U , we use a classical front propagation
based on a hierarchical queue [15], denoted by q, the current level being denoted
by �. The sorting algorithm is given in Algorithm 2. There are two notable
differences with the well-known hierarchical-queue-based propagation. First the
d-faces, with d < n, are interval-valued so we have to decide at which (single-
valued) level to enqueue those elements. The solution is straightforward: a face
h is enqueued at the value of the interval U(h) that is the closest to � (see
the procedure priority push). Just also note that we memorize the enqueuing
level of faces thanks to the image u (see the procedure sort). Second, when
the queue at current level, q[�], is empty (and when the hierarchical queue q is
not yet empty), we shall decide what the next level to be processed is. We have
the choice of taking the next level, either less or greater than �, such that the
queue at that level is not empty (see the procedure priority pop). Practically
choosing going up or down the levels does not change the resulting tree since it
just means exploring some sub-tree before some other disjoint sub-tree.

Algorithm 2. Sorting for tree of shapes computation.

priority push(q, h, U, �);
/* modify q */;
begin

[lower , upper ] ← U(h);
if lower > � then

�′ ← lower ;

else if upper < � then
�′ ← upper ;

else
�′ ← �;

push(q[�′], h);

priority pop(q, �) : H ;
/* modify q, and sometimes � */;
begin

if q[�] is empty then
�′ ← level next to � such as q[�′]
is not empty;
� ← �′;

return pop(q[�]);

sort(U) : Pair(Array[H], Image) ;
begin

for all h do
deja vu(h) ← false;

i ← 0;
push(q[�∞], p∞);
deja vu(p∞) ← true;
� ← �∞ /* start from root level */ ;
while q is not empty do

h ← priority pop(q, �);

u�(h) ← �;
R[i] ← h;
for all n ∈
N (h) such as deja vu(n)= false
do

priority push(q, n, U, �);
deja vu(n) ← true;

i ← i+ 1;

return (R, u�)
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The result R of the sorting step is the one expected since the image U , in
addition with the browsing of level in the hierarchical queue, allows for a prop-
agation that is “continuous” both in domain space and in level space. An in-
teresting property due to the interpolation and the well-composedness of cuts is
that the neighborhood N , used for faces in the propagation, corresponds to the
c2n connectivity on the Khalimsky’s grid.

4.3 Max-tree versus Tree of Shapes Computation

The main body of the tree of shapes computation algorithm is given in Algo-
rithm 3. The major differences between this algorithm and the one dedicated
to the max-tree (see the procedure compute tree in Algorithm 1) are the
following ones.

Algorithm 3. Tree of shapes computation in five steps.

compute tree of shapes (u) : Pair(Array[P], T) ;
begin

U ← interpolate(u);

(R, u�) ← sort(U);
parent ← union find(R);

canonicalize tree(u�, R, parent);
return un-interpolate(R, parent);

First the three basic steps (sort, union-find, and canonicalization) are now
surrounded by an interpolation and un-interpolation process. Note that the un-
interpolation just cleans up both R and parent to keep only elements of D.
Second, as emphasized in Section 2.2, the sorting step is of course dedicated to
the tree of shapes computation. Last, a temporary image, u, is introduced. It
is defined on the same domain as u, namely X , and contains only single-valued
elements. This image is the equivalent of the original image u when dealing with
the max-tree: it is used to know when an element h is canonical, that is, when
u(parent(h)) �= u(h) (so that image is thus required by the canonicalization
step that runs on X).

Complexity analysis of the algorithm presented here is trivial. The interpola-
tion, canonicalization, and un-interpolation are linear. The modified union-find
(once augmented with tree balancing, i.e., union-by-rank) is quasi-linear when
values of the input image u have a low quantization (typically 12 bits or less).
Last, the time complexity of the sorting step is governed by the use hierarchical
queue: it is linear with low quantized data6. Eventually we obtain a quasi-linear
algorithm. The representation of the tree with the pair (R, parent) allows for
any manipulation and processing that one expects from a morphological tree [3].

6 Formally the sorting step has the pseudo-polynomial O(k n) complexity, k being the
number of different gray values. Though, since we consider low bit-depths data, k
shall only be considered as a complexity multiplicative factor.
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5 Related Works

The first known algorithm, the “Fast Level Line Transform (fllt)” [16], com-
putes the max-tree and the min-tree of an image and obtains the tree of shapes
by merging both trees. The main drawback of the fllt is the need to know
that a component has an hole (in order to match it with a component of the
other tree). To that aim the Euler characteristic is computed, which can be done
locally (while following the border of components) but in 2D only. In [4,14] the
authors show that this fusion approach is sound in nD with n > 2; yet it cannot
be effective in practice due to unacceptable complexity.

In [5] the “Fast Level Set Transform” (flst) relies on a region-growing ap-
proach to decompose the image into shapes. It extracts each branch of the tree
starting from the leaves and growing them up to the root until at least one saddle
point is encountered. Each time a saddle point is encountered, the branch ex-
traction procedure has to stop until every parallel branch meeting at this point is
extracted. So each saddle point invalidates the shape currently being extracted,
forcing the algorithm to visit its pixels again once a parallel branch is extracted.
Since an image like a checkerboard contains O(n) saddle points meeting on O(n)
pixels, the flst has a O(n2) worst case time complexity.

Song [18] takes a top-down approach to build the tree of level lines in O(n+ t)
time, where t is the total length of all level lines (note that filling the interior
of each level line allows for retrieving the tree of shapes). The algorithm is re-
stricted to 2D images with hexagonal pixels. Its key idea is to perform a recursion
(starting from the image boundary): for a given component, follow every con-
tours of its holes, and repeat this procedure for each hole component. Since the
total length of level lines of an image can be of order O(n2), the worst case has
a quadratic-time complexity.

6 Conclusion

In this paper, we have presented a new algorithm to compute the tree of shapes
of an image which features a quasi-linear time complexity, runs on nD images,
and benefits from a much simpler implementation than existing algorithms. We
have also proposed a novel representation of images as set-valued maps which
has some continuity properties while remaining discrete.

Actually we believe that this representation is a good start to get a “pure”
self-duality for images and operators, that is, a way to get rid of the pair of dual
connectivities c2n and c3n−1, and of the dissymmetry of cuts (strict and large
cuts for respectively lower and upper cuts). In particular, replacing the maximum
operator by the median operator in Equation 1 leads to a pure self-dual definition
of the tree of shapes of 2D images [17]. Furthermore the perspectives offered by
that new representation might be far from being limited to the tree of shapes
computation.

For our experiments we use our free software library [10]; in particular, the fact
that our tool makes it easy to write generic software in the case of mathematical
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morphology and discrete topology is discussed in [11]. The work presented here
will be available in the next release of our software for we advocate reproducible
research.
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Birkhäuser (2008)
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3. Carlinet, E., Géraud, T.: A comparison of many max-tree computation algorithms.
In: Luengo Hendriks, C.L., Borgefors, G., Strand, R. (eds.) ISMM 2013. LNCS,
vol. 7883, pp. 73–95. Springer, Heidelberg (2013)

4. Caselles, V., Meinhardt, E., Monasse, P.: Constructing the tree of shapes of an
image by fusion of the trees of connected components of upper and lower level sets.
Positivity 12(1), 55–73 (2008)

5. Caselles, V., Monasse, P.: Geometric Description of Images as Topographic Maps.
Lecture Notes in Mathematics Series, vol. 1984. Springer (2009)
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Abstract. Hierarchical image representations have been addressed by various
models by the past, the max-tree being probably its best representative within the
scope of Mathematical Morphology. However, the max-tree model requires to
impose an ordering relation between pixels, from the lowest values (root) to the
highest (leaves). Recently, the α-tree model has been introduced to avoid such
an ordering. Indeed, it relies on image quasi-flat zones, and as such focuses on
local dissimilarities. It has led to successful attempts in remote sensing and video
segmentation. In this paper, we deal with the problem of α-tree computation, and
propose several efficient schemes which help to ensure real-time (or near-real
time) morphological image processing.

Keywords: α-tree, Quasi-Flat Zones, Image Partition, Hierarchies, Efficient
Algorithms.

1 Introduction

Mathematical morphology has long been a provider of interesting hierarchical image
representations, mainly by trees, e.g. component tree [4], min and max-tree [9], binary
partition tree [8], etc. The max-tree (and its respective counterpart, min-tree) has been
widely used due to its nice properties as well as the availability of efficient algorithms
to first compute the tree from an image, and second process the tree (e.g. with a filtering
to remove irrelevant nodes), thus leading to the processing of the underlying image.

Recently, a new image model, namely the α-tree [6], has been introduced to avoid
relying on an ordering relation among image pixels. This model is a hierarchical repre-
sentation of the quasi-flat zones of an image, and as such, relies on local dissimilarities
α. While this model already led to successful attempts in exploration of remote sensing
data [5] and image/video segmentation [3], it still requires some efficient computing
schemes in order to be widely disseminated and to address a large scope of problems.
In this paper, we focus on computational issues of the α-tree model, and propose new
efficient algorithms to build this α-tree.

The rest of this paper is organized as follows. Section 2 provides necessary back-
ground on quasi-flat zones and α-tree. Various schemes for computing efficiently the
α-tree are discussed in Section 3. Section 4 is devoted to the presentation of experimen-
tal results, while concluding remarks are given in Section 5.
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2 Background

The α-tree image model is a multiscale representation of an image through its α-zones.
We recall here the notions of flat zones, quasi-flat zones (including α-zones) and finally
the recent α-tree model.

In the following, we will use the notations used in [6]. We will denote by I a digital
image and E its definition domain. Let us recall that an image segmentation is a partition
P of E, i.e. a mapping x → P(x) from E into P(E) such that ∀x ∈ E ⇒ x ∈ P(x)
and ∀x, y ∈ E ⇒ P(x) = P(y) or P(x) ∩ P(y) = ∅, with P(x) indicating a cell
of P containing a point x ∈ E. We thus have

⋃
x∈E P(x) = E. Moreover, we will

write π(x � y) a path of length N between any two elements x, y ∈ E, i.e. a chain
of pairwise adjacent elements 〈x = x0, x1, . . . , xN−1 = y〉. Finally, let Π �= ∅ be the
set of all possible paths between x and y. The minimum dissimilarity metric between x
and y is defined as

d̂(x, y) =
∧
π∈Π

⎧⎨⎩ ∨
i∈[0,...,N−1]

{
d(xi, xi+1) | xi, xi+1 ∈ Π

}⎫⎬⎭ (1)

with d(x, y) a predefined dissimilarity measure between attributes of x and y (i.e. pixel
intensities).

In a digital image, flat zones are defined as connected sets of pixels sharing the same
value. Formally, the flat zone of x is defined as

Z(x) = {x} ∪ {y | ∃π(x � y) :

∀xi ∈ π(x � y) ∧ xi �= y ⇒ d(xi, xi+1) = 0}. (2)

In the field of Mathematical Morphology, flat zones have been shown to be elements
with nice properties [10]. Indeed, the partition of an image into its flat zones most
often includes any relevant image segmentation, since objects edges are located between
neighboring pixels with different values, i.e. belonging to different flat zones. However,
the practical usage of flat zones is limited since it leads to an extreme oversegmentation,
flat zones being made of only a few pixels. To counter this problem, softer definitions
have been introduced under the name quasi-flat zones. A recent survey related to quasi-
flat zones is provided by Soille in [11].

The simplest and most widely used definition of quasi-flat zones is called α-zone. For
a given pixel x, its α-zone noted α-Z(x) is made of all pixels reachable from x through
a path with intermediary steps not higher than α. Using the previous definitions, we
have

α-Z(x) = {x} ∪ {y | ∃π(x � y) :

∀xi ∈ π(x � y) ∧ xi �= y ⇒ d(xi, xi+1) ≤ α}, (3)

the specific case of α = 0 leading to standard flat zones. Let us observe that α-
zones define a partition or segmentation, i.e.

⋃
x∈E α-Z(x) = E and ∀x, y ∈ E :

α-Z(x) ∩ α-Z(y) �= ∅ =⇒ α-Z(x) = α-Z(y). The main drawback of α-zones is
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their purely local behavior, which can lead to an artifact called chaining effect. This
is observed when the successive steps in a path π(x � y) are low (w.r.t α) while the
dissimilarity measure between x and y is high, for instance in the case of a gradual
transition from black to white. This limitation was addressed by Soille [11], and later
Soille and Grazzini [12], who added another constraint that prevented the uncontrolled
α-zone from growing.

Another way to use the α-zones has been recently reported by Ouzounis and Soille
in [6]. In this seminal work, they introduce the concept of α-tree based on a partition
pyramid. Since the α zones can be ordered by inclusion relation, it is possible to con-
struct a tree of α-zones. The root of the tree is a zone covering the whole image. Every
parent node contains a zone, that is a superset of zones contained in its children.

Every level of the α-tree contains all zones for a specific value of α. The α-tree
contains all possible image segmentations based on α-zones. Every cut through the α-
tree selects an image segmentation. To benefit from this powerful image representation,
efficient computation schemes are required.

3 Computing the α-tree

3.1 Basic Principles

In the previous section, we have introduce the α-tree reusing its standard notations [6].
Let us observe that the α-tree can also be defined through graphs. We will use this latter
representation to introduce efficient computation scheme. Thus, let us also denote an
image by a graph (V , E , I), where V are the image pixels, E are the edges between
them and I ⊆ V × E is the incidence relation between vertices and edges, i.e. for edge
e, that connects v1 and v2, v1Ie and v2Ie. The α is a weight of the edges of the graph.

The α-tree can be constructed as a min-tree built over an edge graph, as outlined by
Soille and Najman in [13]. An edge graph for a graph (V , E , I) is a graph (V ′, E ′, I ′),
with edges and vertices exchanged (V ′ = E , E ′ = V), while the incidence is preserved
(eI ′v = vIe). Using this definition, the edge graph is actually a multigraph, i.e., for
a 4-connected image the edges connect up to four vertices. The min-tree of the edge
graph can be then transformed in an α-tree. As Soille and Najman mention in [13], this
indirect construction is unnecessary, but their paper does not provide a direct algorithm.

It is possible to build the α-tree directly by a modification of Tarjan’s union-find
algorithm [14]. Tarjan’s algorithm was initially defined to identify connected compo-
nents, it has been later used for construction of different component trees, e.g. in [4].
The union-find method processes a list of graph edges sorted by increasing alpha. For
each edge it finds two largest connected components, the edge connects, and merges
them. Since the algorithm works with sorted edges, the α-tree is built bottom-up from
fine to coarse subdivision of the image.

An edge of the image graph connects two neighboring pixels. Algorithm 1 shows
the basic α-tree construction. The parameters of an edge are its two endpoints and the
corresponding α. The tree is built bottom-up by subsequent merges of partial trees. For
every edge, the two partial trees that contain the edge endpoints are found and then
merged. When a pixel is not yet linked to a leaf node, the node is created and linked
from the leaf array. Due to the ordered edges, the nodes will be merged only in the
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active layer. It is the layer of the tree with α being equal to the α of the processed edge.
The levels of the tree below the active level are never changed again.

To ensure, that each path from a root to a leaf contains at most one node per α-level,
there are four possibilities of merging the subtrees. If both tree roots have α less than
the processed edge, a new node with both trees as children is created. If only one tree
root has α less than the processed edge, then this tree is attached as a child to the other
tree root. Finally if both roots have α equal to the processed edges, then the two root
nodes are merged (i.e. their children attached to one of them and the other marked for
removal)

Algorithm 1. Algorithm for α-tree construction
Require: Image I
Ensure: Array leaves[height(I), width(I)] of Node pointers

leaves[i, j] := null,∀i, j
E = edges(I)
sort E by ascending α
for e = e1 → e|E| do

p1, p2 = points(e)
n{1,2} = findRoot(p{1,2})
if ni = null then

leaves[pi] = ni = makeNode(pi, α(e))
end if
if n1 �= n2 then

if α(n1) = α(n2) = α(e) then
merge(n1, n2)

else if α(n1) < α(e) and α(n2) < α(e) then
makeNode(n1, n2, α(e))

else if α(n1) = α(e) and α(n2) < α(e) then
attach n2 to n1

else if α(n1) < α(e) and α(n2) = α(e) then
attach n1 to n2

end if
end if
Update path compression cache

end for

When the α is a small integer, the edges can be ordered in O(E) time using the
bucketsort algorithm. This algorithm first calculates a histogram of edge alphas. Calcu-
lating the prefix sum converts the histogram to a list of offsets to an output array. The
reordering is then done in the following pass.

Finding the root of a subtree for a given pixel contains potentially lengthy bottom-up
tree traversal. The traversal can be optimized by path compression. During the tree con-
struction, a cache exists, that links tree nodes to the subtree roots. After each processed
edge, this cache is updated. Because the number of affected pixels is large and a full
update would be costly, only portion of the affected nodes is updated. Thus, the cache
does not remove the bottom-up tree traversal, but can significantly shorten it. On the
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other hand, nodes can’t be deleted during the merge process, because the cache can still
link to them. It is necessary to retain a list of such nodes and delete them after the cache
is no longer needed.

As this algorithm is based on union-find, the time complexity is pseudolinear if buck-
etsort can be used or O(N logN) (N is the edge count, in case of the images also the
pixel count) otherwise. However there is one important limitation. The node merge
must be done in constant (or potentially logarithmic) time, with a (pseudo)linear (or
linearithmic) postprocessing step.

Compared to other connected component tree algorithms based on union-find, this
original algorithm guarantees that each path from a tree leaf to the root contains at most
one node for each possible value of α. This is important for distance functions such as
the one used by [3] where the α is discrete with known upper bound. This reduces the
traversal cost to an amortized constant time, independent of the tree size. This speeds
up the tree construction at the expense of more complicated tree structure with larger
memory footprint.

3.2 C++ Implementation

The common implementation of a component tree is an array of parent indices. This
representation is very memory efficient, as the tree requires only 4wh bytes of memory.
However this representation allows easily only bottom-up tree traversal. Here we used
more complex representation for tree nodes.

Every node of the tree consists of a link to a parent node, a set of links to children
and a set of leaf pixels. Additionally, the node contains the α value of the edge that
created it. The parent pointer of a root node is NULL. The sets of children and pixels
allow for very simple iteration over the pixels of a connected component. The set of all
pixels of a subtree is a recursive union of pixels of a node and all of its children. The
sets are represented by linked lists:

s t r u c t Node
{

u i n t 8 _ t a l p h a ;
Node ∗ p a r e n t ;
Node ∗ f i r s t _ c h i l d , ∗ l a s t _ c h i l d ,
Node ∗ n e x t _ s i b l i n g , ∗ p r e v _ s i b l i n g ;
Leaf ∗ f i r s t _ l e a f , ∗ l a s t _ l e a f ;

} ;

Children and leaves are represented by doubly linked lists (node removal and list
merge have O(1) complexity).

The leaf structure does not contain any data yet. All leaves are stored in an array and
the position in the array encodes the pixel position.

s t r u c t Leaf
{

Node ∗ p a r e n t ;
Leaf ∗ n e x t _ s i b l i n g , ∗ p r e v _ s i b l i n g ;

} ;



116 J. Havel, F. Merciol, and S. Lefèvre

Compared to an array of parent indices, this representation requires more compli-
cated merging of tree nodes, but the resulting tree is as flat as possible so the tree traver-
sal is shorter. Also, tree balancing is not necessary. Figure 1 shows a sample α-tree and
the related linked structure.

0

1
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Parent

Siblings

Parent

Children

Leaves

Siblings

Parent

Children

Leaves

Siblings

Parent

Children

Leaves

Siblings

Parent

Siblings

Parent

Siblings

Parent

Siblings

Parent

Siblings

Fig. 1. Sample tree shape and corresponding simplified set of Nodes, Leaves and connecting
pointers (for the sake of clarity, only a subset of pointers has been shown)

The maximal height of the tree depends on the datatype of α. In the case of discrete
α it is at most the number of α levels that appear in the input image (i.e., at most 256 in
case of uint8_t). If α is continuous, it is at most wh when the tree degrades to a simple
list. The tree depth of this tree will be always less or equal to the depth of a binary tree
implemented by an array of parent links. The cost is lower cache coherence because of
dynamic allocation and larger node size.

Two practical strategies for path compression cache are possible:

– Root is cached per node. Cache of nodes visited during tree traversal get updated.
This strategy is closer to original Tarjan’s paper [14]. However every node needs
another pointer that is unused after tree construction. When the node size is not a
limiting factor, then this approach has the best results.

– Root is cached per leaf. Only the edge endpoints are updated. Each vertex is usually
visited by four edges, so it is a viable strategy, when the node size should be kept
as low as possible.

Because merging of two nodes includes transfer (and reconnection) of child nodes and
leaf pixels, it has O(N) complexity. Therefore the actual merge must be deferred to the
postprocessing step at the end of the algorithm. Since the removal of the nodes must
be done in the postprocessing step anyway, it does not introduce new data structure or
steps. The node members for the linked list of children are used for a linked list of nodes
marked for removal.
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3.3 Extension to Multi-threading

Although the previous algorithm is effective, it is inherently single threaded. The only
easily parallelizable part is the extraction of edges and their ordering. The tree levels
must be processed sequentially. Even in one level, the parallelization would require
synchronization of a large portion of the algorithm.

It is however possible to subdivide the input image into multiple parts, build partial
trees for them and then merge the resulting trees by a more complicated algorithm that
does not need the edges ordered. When the input image is subdivided into regions as
square as possible, the number of edges between the subtrees is very low compared
to the amount of edges for each subtree. This is the parallelization strategy for other
component trees too [2].

The connecting edges are processed sequentially. For both pixels of the connecting
edge, the path from the leaf to the tree root is traversed and nodes are found. Contrary
to the previous algorithm (where only a subtree root was searched), two tree nodes are
required. First node has α less or equal to the connecting edge and the other has α
greater than the connecting edge. First nodes are detached and merged in the same way
as described by Algorithm 1. Second nodes start two paths to the tree root that need to
be merged in a zipper way.

First has α less or equal to the alpha of the connecting edge. These two nodes will be
merged in the same way as in the Algorithm 2. The other nodes are the direct parents of
the previous nodes, so they have α greater than the connecting edge. These nodes start
two paths to tree roots, that will be merged in a way similar to a zipper. This is shown
by Algorithm 2.

Algorithm 2 starts by creation of a common root node. This greatly simplifies the
zipping process, since the first zip merges the tree roots and subsequent zips merge
only inner paths of the tree. The common root is created by merging of roots of T1

and T2 when their α is equal or by attaching one to the other. In an unlike case, when
all connecting edges have α greater than the roots, a new root node is created and no
zipping is done.

4 Experiments

We present here a set of experiments aiming to assert the performance of the proposed
computation schemes for building the α-tree. We first present the dataset we are relying
on and how we deal with color images, before addressing the respective cases of single
and multi-threading. After comparing with [3], this section ends with a discussion about
the possibility of processing only partially the tree to lower the computational cost.

4.1 Dataset

We have measured the performance of the proposed algorithms on a few different image
datasets. The first is made of the test images of Berkeley segmentation dataset [1] (300
images of size 481 × 321 pixels). The second dataset has been manually built from 8
wallpaper images of size 1920 × 1080 pixels (see Figure 2 for a visual composition).
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Algorithm 2. Algorithm for merging of two partial α-trees
Require: Trees T1, T2; Connecting edges E
Ensure: Merged tree T

Create common root node.
for all e ∈ E do

p1, p2 = points(e)
n{1, 2} = findNode(p{1, 2},≤ α(e))
a = findNode(p1, > α(e))
b = findNode(p2, > α(e))
Detach n1, n2 from a, b
n = merge(n1, n2)
if α(a) > α(b) then

swap(a, b)
end if
Attach n to a
while a �= b do

if α(a) = α(b) then
n = merge(a, b)
a = parent(a)
b = parent(b)

else
a = parent(a)

end if
if α(a) > α(b) then

Detach n from a
swap(a, b)
Attach n to a

end if
end while

end for

Since the segmentation dataset images were too small for a reliable time measurement,
we only present here the results obtained with the second dataset. For extra large im-
ages, we also used a selection of aerial and satellite photos from mapart.com, namely
the 10m SPOT image, Pictometry and DigitalGlobe photos.

Let us mention that images considered here are RGB images, while the definition of
the α-tree has been provided only for grayscale images. We have used here the method
proposed in [3] to apply the α-tree on RGB images, and we measure the local dissim-
ilarity between neighboring pixels with the Chebyshev distance. Let us consider two
colors c = (r, g, b) and c’ = (r′, g′, b′), the Chebyshev distance between c and c′ is
given by max(|r− r′|, |g− g′|, |b− b′|). Since the Chebyshev distance is the L∞ norm
of the absolute difference vector |c − c′|, the range of possible distance values is kept
low and similar to the input range of each color component (i.e. 256 for an 8-bit image).
On the opposite, Manhattan or (worst) Euclidean distance lead to a range respectively
equal to 3× 256 and 2563 possible distance values. Since this range is to be compared
with the various α values, we prefer to set the depth of the α-tree using A = 256 rather
than A = 16, 777, 216 for practical reasons related to computation time. Let us note,
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Fig. 2. A visual composition of the wallpaper dataset showing the 8 wallpaper images used in our
experiments

however, that further options might be explored and that extension of α-tree to color
and multivariate images will most probably be a direction of future work.

4.2 Single-Threading

We first evaluate the performance of α-tree computation using a single-thread strategy.
When the α-tree is built, the average build time is 32ms (15-47ms) for the segmentation
dataset and 0.63s (0.44-0.8s) for the wallpapers. According to the program profiling,
almost 50% of the build time is spent on bottom-up tree traversal and on updates of the
links for path compression. These are the inner loops of the algorithm. All other parts
of the algorithm are significantly less time-consuming. The extraction and sorting of
edges takes only 10% of the time.

The detailed graphs in Figure 3 shows the detailed timings, number of nodes and
rough memory requirements. The construction time increases approximately linearly
with the increasing number of the nodes of the tree. The linear dependency is even
more significant for larger images as shown on the right graph of this figure. The timing
for smaller images is more noisy and contain an outlier probably because of differences
in tree structure that turn unimportant with larger input sizes.

4.3 Multi-threading

Performance of parallel tree construction process was measured on a Core i7 2670 CPU
with 8 GB of RAM. This processor contains four hyperthreading cores, so it has eight
virtual cores. The Figure 4 shows the performance of the parallel construction using
multiple threads. The tree construction is mostly memory intensive, so the performance
is limited by the memory throughput and not by the raw computation power.

Since the L3 cache and the memory interface is shared between all four cores on Core
i7, the memory intensive tree traversal could cause the scaling to stop at a different value
than the number of physical or virtual cores. We suspect, that the performance drop for
five and more threads is caused by saturation of the L2 cache throughput.
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Fig. 3. Dependency of tree construction time [s] (left) and the memory consumption [MiB] (mid-
dle) on the number of nodes of the resulting tree, and of tree construction time [s] for large sized
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4.4 Comparison with Related Work

In order to assert the efficiency of our algorithm, we compare it with the only available
implementation, i.e. [3] which does not rely on the union-find strategy. While our ap-
proach requires to collect edges and compress paths, the solution proposed in [3] relies
on an insertion process with late merging.

For the sake of comparison, both algorithms have been implemented in Java with the
same data structure and compared using two different hardware environments, respec-
tively based on a standard laptop and on a high-performance cluster. This processing
environment raises some artifacts (and in particular the influence of the Java garbage
collector process) which have been lowered when relevant by computing average times
from 10 executions per image (using a trimmed mean to avoid outliers). The processing
times given in Table 1 measure the time required to compute the α-tree on the Berkeley
Segmentation Dataset (the average time over 300 images is provided), a HD wallpaper
image (1920×1080 pixels), and a larger satellite image (> 20 Mpixels). In this context,
the focus has to be put rather on the relative times of one algorithm w.r.t. the others than
on the absolute time measurement.

From the results given in Table 1, we can see that, while [3] (line 2) improves compu-
tation time over the standard union-find strategy (line 1) especially with large images.
In order to achieve a fairer comparison, we have developed several extensions of the
method proposed [3]. First, we have combined its advantages with the ones offered by
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the union-find strategy, leading to better results (line 3) on very large images. Second,
we have designed a multithreaded version of [3] to be compared with the multithreaded
version of our algorithm presented in this paper. We can see that this multithreaded ex-
tension of [3] (line 4) naturally better exploits the availability of a parallel machine w.r.t
its singlethreaded counterpart. Finally, our method achieves the best results on small
images for its singlethreaded version (line 5) which is penalized by the garbage collec-
tor process on large images (not observed in the C++ version), and performs best on all
images and environments for its multithreaded version (line 6).

Let us observe however that sometimes the algorithm from [3] and its extensions
may lead to relatively close results to ours. This comes from the fact that these two
approaches are complementary since their optimizations occur at different steps. This
will probably motivate for designing a joint algorithm to achieve further optimization.

Table 1. CPU time comparison with [3] for the different steps of α-tree computation (in mil-
liseconds): (1) average on 300 Berkeley Images (154 401 pixels) with Intel Core Duo T9600
@ 2.80GHz; (2) average on 300 Berkeley Images (154 401 pixels) with 12 Intel Xeon L5640
@ 2.27GHz; (3) Wallpaper HD (2 073 600 pixels) with 12 Intel Xeon L5640 @ 2.27GHz; (4)
satellite image (23 403 033 pixels) with 12 Intel Xeon L5640 @ 2.27GHz

Algorithm (1) (2) (3) (4)
Standard implementation with union-find strategy 560 459 158 004 —

Standard implementation of [3] 371 546 7 801 154 595
[3] using union-find strategy 398 556 8 173 77 256

Multithreaded extension of [3] 301 305 4 555 130 286
Proposed singlethreaded version 351 369 11 297 1 098 163
Proposed multithreaded version 229 183 3 327 76 866

5 Conclusion

Among hierarchical image representations proposed in the scope of mathematical mor-
phology, the recent α-tree model [6] has already shown great interest in image analysis,
e.g. in remote sensing or in video processing. In order for this model to be used in
real-time or near real-time context, some efficient computing schemes are required.

In this paper, we address this problem and propose several strategies to achieve an
efficient computation of the α-tree model. We compare between single-threaded and
multi-threaded architectures and show how the α-tree can be built in a reasonable time.
Some preliminary experimental results are provided to illustrate the benefits from our
algorithms over existing implementations [3].

The main difference of the method presented here from the other connected compo-
nent algorithms is a more complex tree structure that allows to construct the tree with
minimal depth. For certain distance functions, this significantly lowers the traversal
time during the construction. The cost is larger memory consumption of the tree.

Future work will deal with the introduction of more global constraints over the tree,
namely the ω dissimilarity or other elements of constrained connectivity [11]. More-
over, we would like to build upon these first results in order to offer a wide range of
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efficient algorithms for computing tree representations, from the max (or min) tree to
more recent hyperconnected trees [7]. We believe this is necessary to disseminate these
models within the image processing and computer vision communities.
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Abstract. In evaluating a hierarchy of segmentations H of an image
by ground truth G, which can be partitions of the space or sets, we
look for the optimal partition in H that ”fits” G best. Two energies on
partial partitions express the proximity from H to G, and G to H. They
derive from a local version of the Hausdorff distance. Then the problem
amounts to finding the cut of the hierarchy which minimizes the said
energy. This cuts provide global similarity measures of precision and
recall. This allows to contrast two input hierarchies with respect to the
G, and also to describe how to compose energies from different ground
truths. Results are demonstrated over the Berkeley database.

1 Introduction

Classically, the evaluation of a segmentation w.r.t. a ground truth is viewed
as a problem of comparing two partitions of the space E. There are various
metrics proposed which are described well surveyed in [4]. The thesis [1] provides
refinement tolerant based errors, Local and Global consistency errors(LCE,
GCE), due to differences in rendering the ground truth by different human
experts. [4] proposes a local region based measure, the segmentation covering,
which is the ratio of intersection of 2 classes over the union of their supports,
weighted by the relative size of the class w.r.t the input image.

This method is also used to evaluate classes, regions and full partitions of
the hierarchy which correspond to the threshold of the Ultrametric contour
Map(UCM). As pointed out in [5] the merging order is not the only ”cut” in a
hierarchy of partitions. The total number of cuts possible consists of the set of
partitions formed by the power set of the classes of leaves in the finest partition
in a hierarchy.

On the subject of evaluating hierarchies of segmentations there is the work
of J. Pont-Tuset and F. Marques [5] closest to this subject of the paper. They
determine the upper bound on the correspondences between a ground truth
partition and all partitions in a input hierarchy. The comparison performs a
global match correspondence between all contours in the hierarchy with respect
to the Ground truth partition contours. This thus involves a combinatorial
optimization problem, since one must choose a set of contours at various levels
and having minimal distance from the ground truth. Indeed, the upper bound
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introduced in [5] is nothing but the optimal cut in the sense of [8], i.e. the cut
which minimizes a given energy, and whose computation is extremely easy as
soon as the energy is h-increasing [6]. [9] also propose a local optimization which
depends on the number of classes in the cut in a hierarchy with respect to the
ground truth segmentation.

The last remark orients us towards the convenient classes of energies acting
on hierarchies, as studied in [8]. These energies will be addressed to evaluate
hierarchies, a question which covers three aspects:

1. Given a hierarchy H of segmentations of an image I, and a ground truth
partition G, how to find a local and a global measures of proximity of the
quality of H relatively to G and vice versa, G relative to H ? By local here,
we mean a space map of the quality. In fact, we will see that this involves
two reciprocal notions. Note that G may be, or not, a contour, but models
a drawing by lines and points (G = ∂G).

2. When several humans provide several ground truths, how to compose
information from multiple ground truth sets Gi? What to do in particular
when each drawing concerns a limited zone of the space, which varies with
the human/expert?

3. Finally how to evaluate globally the proximities any two given different
hierarchies H1, H2, with respect to a given common ground truth G.

To summarise symbolically: 1. H → G and G→ H , 2. H → Gi and vice versa,
where Gi refers to a set of ground truths indexed by i, 3. Hj → G, where Hi

refers to different input hierarchies, indexed by j.
After a brief recall of optimal cuts and the optimization framework, the above

three problems will be successively tackled: the first two by optimal cuts, and the
third one by means of global similarity measure defined on the saliency function
representing the hierarchy. For the sake of pedagogy, we demonstrate on one
image, namely the n◦ 25098 of Berkeley data base, and on the two ground truths
depicted in Fig.1, though results are available over available over all images in
the database shortly.

2 Reminders

2.1 Hierarchy and Saliency

We start from the definitions used in [8] where,a hierarchy H is a finite chain of
partitions πi, i.e.

H = {πi, 0 ≤ i ≤ n | i ≤ k ≤ n⇒ πi ≤ πk}, (1)

The lowest level π1 is called ”the leaves”, and the highest one is E itself. An
energy ω is associated with each partial partition of E. If D(E) designates the set
of the partial partitions E, then ω : D(E)→ R+. Let π1 and π2 be two partial
partitions of same support, and π be a partial partition disjoint from π1 and π2.
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Fig. 1. left: 25098 image from BSD database and 2 of its ground truths GT2 and GT7,
right: A hierarchy H with undulating cuts shown π(S1) and π(S2)

An energy ω on D(E) is said to be hierarchically increasing, or h-increasing
when we have

ω(π1) ≤ ω(π2) ⇒ ω(π1 � π) ≤ ω(π2 � π). (2)

This condition is necessary and sufficient for obtaining the cut(s) which minimize
ω, by running only once through the classes of H in an ascending order. This
provides for a dynamic program that only performs a local comparison between
a parent class and a composition of its children classes in the hierarchy. The most
popular representation of a hierarchy is the dendrogram, shown in (figure). The
advantage of this representation is it makes explicit the parent-child relation.
Another useful representation, more compact, is the saliency map. It consists
in a weighted version of all the edges separating the leaves. Each threshold of
the saliency map results in an horizontal cut in the hierarchy. Intuitively, the
saliency map is a function that helps visualize the different prominent partitions
in the hierarchy.

2.2 Hausdorff Distance

Most of the supervised evaluations of hierarchies, including the present one, and
also [2], [4], and [5], derive from the intuition of the Hausdorff distance, in various
critical manners. Let us briefly recall this background.

In a metric space E of distance d we aim to match the support S(π) of a
bounded partial partition π with a set G of points and lines, considered as
a ground truth drawing. The smallest isotropic dilation of G that covers the
contour S(π) has a radius

ρG = inf{ρ | G⊕ ρB ⊇ S(π)}, (3)

where ρB is the disc of radius ρ centred at the origin. One can interpret ρG as
the ”energy” required for reaching ∂S from the ground truth G. In the same
way, the dual covering is given by the radius ρA

ρA = inf{ρ | S(π)⊕ ρB ⊇ G}. (4)
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By introducing the so called distance function d(x, Z) from point x to the fixed
set Z, i.e.

d(x, Z) = inf{d(x, z), z ∈ Z} x ∈ E (5)

we see that

ρG = sup{d(x,G), x ∈ S(π)} and ρA = sup{d(x, S(π)), x ∈ G}, (6)

an interpretation which connects the distance function with the partial order on
sets by inclusion. In Rel.(6) the value ρG (resp. ρA) is the maximal distance from
a point of ∂S to G (resp. of G to ∂S). The first one, ρG, indicates how precise is
S w.r.t. the ground truth, the second one, ρA, how representative is this ground
truth. In indexation, these two numbers are respectively named precision and
recall. The symmetric expression ρ = max{ρG, ρA} is the well known Hausdorff
distance

Hausdorff distance is lacking of finesse because it is a global notion, and
of robustness because it uses suprema. If we could define a local equivalent,
associated with each class T of π, and no longer with the whole S(π) itself, then
the regions with a good fit would be treated separately from the others. And in
addition, if this equivalent was h-increasing, then it would provide an energy for
calculating easily the associated optimal cut [8], i.e. the smallest upper bound
of all cuts of the hierarchy, in the wording of [5]).

3 Ground Truth Energy by Local Hausdorff Dissimilarity

In what follows, ”best cut”, or ”optimal cut” must be understood in the sense
of ”best fitting cut”, i.e. the cut which minimizes a given energy of proximity
with the ground truth G. It is usually not a criterion of best visual quality.

Precision energy. We now focus on the classes {Ti} whose concatenation
Ti�T2...�Tk generates π. The {Ti} are said to be the sons of father S. Consider
the class Ti of the partition π. The smallest dilate G⊕ ρB that covers Ti has a
radius

ωG(Ti) = inf{ρ | G⊕ ρB ⊇ Ti}. (7)

By taking the supremum of all ωG(S) we find the above value ρG of Rel.(3):

ρG =
∨
{ωG(S), S $ πA}. (8)

This shows the soundness of ωG. But a problem arises when we want to extend it
from sets to the partial partitions D(E) of E by some law of composition between
theTi. When the chosen energy is h-increasing, which will always be the case here,
finding optimal cuts in hierarchies amounts to compare the partition energies
of fathers and sons [8]. If we compose the energies of the sons by supremum,
then we trivially always find ωG(π) = ωG(S). If we compose by infimum, we
have ωG(π) = ωG(S) when the ωG(Ti) all identical, and ωG(π) < ωG(S) when
not. And if we compose the energies of the sons by averaging, we obtain again
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Fig. 2. a) Distribution of the energy ωG of the leaves classes; b) c) and d) optimal cuts
for λ = 0; 10; and 20

ωG(π) < ωG(S). Therefore, in all cases, we arrive to an optimal cut which can
only be at the lowest level of hierarchy H , i.e. the leaves, or at the highest one,
i.e. the space E itself.

For being more informative, we can introduce a trade off based on mutual
comparisons of the energies of the sons. An easy way consists in adding a
quantizer λ in the composition by infimum, so that

ωG(π) = ωG(Ti � T2... � Tk) = inf{ωG(Ti)}+ λ. (9)

As this new energy is h-increasing, the optimal cut is reached in one pass
by comparing the respective energies of sons and fathers [8]. As ωG(S) =
sup{ωG(Ti)}, we have ωG(π) < ωG(S) iff λ < sup{ωG(Ti)} − inf{ωG(Ti)}. The
father replaces the sons when the latter are sufficiently ”identical” , i.e. with
energy variation ≤ λ. For each value of λ we thus obtain the cut which minimizes
the distances to the ground truth G, i.e. the smallest upper bound of all cuts,
in the sense [5]. For λ = 0 we find the leaves partition, and as λ increases, the
similar sons w.r.t. their distance to G are progressively clustered, as shown in
Fig. ?? of the leaves classes for the ground truth GT 2; b) c) and d) optimal cuts
for λ = 0; 10; and 20.

Recall energy. The number ωG(S) informs us about those points of ∂S close
enough to G, but not on those of G close to ∂S. We cannot take, here, the
dual form of the ωG(S) of Rel.(7), as we did before with the global Hausdorff
distance. Such a dual energy would be

ω′
G(S) = inf{ρ | S ⊕ ρB ⊇ G}, (10)

a quantity which risks to be extremely large, for the drawing G may spread
over the whole space, whereas class S is locally implanted. Fortunately, when
dealing with h-increasing energies, one is less interested in the actual values of
the energies than by their increments between fathers and sons. Now, when a
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point of G is outside class S, then its distance to S is the same as the max of
the distances to the sons Ti of S:

x ∈ G ∩ Sc ⇒ d(x, S) = d(x, ∂S) =
∨

d(x, Ti) =
∨

d(x, ∂Ti), (11)

so that the part of G exterior to S is not significant. For the sake of comparison,
it thus suffices to focus only on the distances involved in the covering of G ∩ S
by dilations of ∂S on the one hand, and on those of ∂Ti on the other hand. Then
the energy ω′

G of Rel.(10) has to be replaced by the more appropriate one

θG(S) = inf{ρ | S ⊕ ρB ⊇ G ∩ S}. (12)

When S spans all classes of a partition πA, then the supremum of all θG(S) gives
the value ρA of Rel.(4)

ρA =
∨
{θG(S), S $ π}, (13)

and the (global) Hausdorff distance ρ between π and G turns out to be the
double supremum,

ρ =
∨
{{ωG(S)

∨
{θG(S)}, S $ π}. (14)

It remains to verify that θG is h-increasing.

Proposition 1. Given a ground truth set G, the extension of the energy θG of
Rel.(12) to partial partitions by ∨ composition is h-increasing.

Proof. Let π(S1) and π′(S1) be two partial partitions of set S1, with

θG(π(S1)) =
∨
{θG(Ti), Ti $ S} ≤ θG(π

′(S1)) =
∨
{θG(T ′

i ), T
′
i $ S′

1} (15)

Consider a partial partition π(S2), where S2 ⊆ Sc1. By taking the supremum of
each member of inequality (15) with

∨
{θG(Xj), Xj $ S2} one does not change

the sense of the inequality, which becomes

θG(π(S1) � π(S2)) ≤ θG(π
′(S1) � π(S2)), (16)

which achieves the proof.

Note that when G ∩ S = ∅, then θG(S) = 0.

Composition of ωG(S) and θG(S). The composition of the energies happens with
respect to a single ground truth, or to several ones. In the first case, one can
wonder if preferable not to combine ωG and θG so that they can provide two
separated maps for the precision and for the recall. The two associated overall
values may be presented in a 2-D graphic as proposed in [3]. We can also take for
final energy either max(ωG, θG), or sum ωG+ θG, they are both h-increasing. On
the example of the ”peppers”, and for two different ground truths, one obtains
the results depicted in Fig.3
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Fig. 3. a) and c), ground truth GT2 and GT7; b) and d) energies ωG+ θG, for G = GT2
and G = GT7

In case of multiple ground truths, the usual techniques proposed in literature
are additive. Formally speaking, why not? Putting ωG =

∑
ωGi yields an h-

increasing energy, hence a best cut (which is, of course different from the sum of
the best cuts of the various Gi). The implicit assumption here is that all ground
truths are more or less similar.

But one can also encounter drawings Gi that focus on different regions of the
scene. Then if we take the sum, each part of the space risks to be penalized
because if is far from one drawing, at least.

For the situation depicted in Fig.4, the energies first two best cuts are given by
sup{ωG, θG} and the third one by taking inf{sup{{ωG1, θG1}, sup{{ωG2, θG2}}.
When point x ∈ E is farther from G1 than from G2 then the G1energy is not
taken into account.

4 Other Energies

Conditional energy. The two energies ωG(S) and θG(S) of Rel. (12) and (9)
have been chosen because of their geometrical meanings, but they are far for
being the only possible ones. It is iindeed easy to build an energy which fits the
features one wants to emphazise. Suppose for example that we decide that the
number of classes n of the ground truth is a cruxial feature. Then when applying
energy ωG we can condition the ascending pass which generates the best cut to
stop as soon as the number n of classes is reached. Fig. 5 depicts the best cuts
w.r.t. ωG. when the parameter λ of Eq.(9) equals 0, 10, and 80, and when the
ground truth is GT7, which has 87 classes. For λ = 0, we do not obtain the
leaves partition, because the classes with an equal energy have been clustered,
as pointed out previously. In Fig. 5c) and d), but not in Fig. 5b), one arrives to
87 classes before the end of the climbing algorithm. This explains why the two
partitions are not comparable.
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Fig. 4. a),b), and c) two ground truths and their union; d),e), and f) the coresponding
optimal cuts

Fig. 5. a) Leaves of hierarchy b), c) and d) Conditional best cuts for λ = 0, 10 and 80
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Local linear dissimilarity. Another variant consists in replacing the supremum
that appears in Rel.(6) by a Lp sum, which gives less importance to the farthest
zones. A similar approach has been successfully used by L. Gorelick et Al. [12]
in regional line-search cuts. Among the Lp integrals, the one which weakens the
most the weights of the farthest zones is obtained for p = 1. Therefore we take
for precision energy ω̃G(S) the integral of distance function g(x) of G along the

contour ∂S and for recall energy θ̃G(S) the integral of the distance function
g(x, ∂S) of S on G ∩ S:

ω̃G(S) =
1

∂S

∫
∂S

g(x)dx θ̃G(S) =
1

G ∩ S

∫
G∩S

g(x, ∂S)dx (17)

The two functionals ω̃G and θ̃G are extended from classes to partial partitions
by addition, since they both involve integrals, and one easily checks that the two
energies are h-increasing. The higher ω̃G(S), (resp.θ̃G(S)), the farther S is from
G (resp. G is from S). In case of a ground truth given by k drawings, one just

sums up the k energies ω̃G and θ̃G.

5 Global Measures of Precision and Recall for Hierarchies

Following from the local measures in (17) which are integrals of the distance
function associated with each class, we propose here a global similarity measures
for a hierarchy. Two global measures of precision and recall for a given hierarchy
H of segmentations with respect to an input ground truth partition G. The
measure now is not between 2 partitions any more and deals with the global
similarity between hierarchies of partitions H and a single partition G. The
representative functions we are going to use for the global measures are: s the
saliency and g the distance function, the set Si saliency map threshold at an
index i.

P =
1∑
i=0

i

N

∫
x∈ε(Si)(1− g(x)).Si(x)dx

|Si|
R =

1∑
i=0

i

N

∫
x∈G(1− gSi(x))dx

|G| (18)

The integral calculates the similarity between partition Si produced by
thresholding the saliency s at i and the ground truth partition G by integrating
the inverse distance function 1− g under the binary function Si. Also the sense
of the hierarchy is such that si+1 ⊂ si which represents that partition at a
higher level in the hierarchy has fewer contours than the one below to respect
the inclusion order. Each integral is weighted by the relative rank of the partition
within the hierarchy H . This is done by weight it by ratio of threshold index i
and the total number of levels in the hierarchy N as shown in equation(18).

Similarly a global precision value for the contours of the partitions in the
hierarchy can be calculated by integrating the distance functions gSi of partition
Si under the ground truth partition G. These integrals are normalized with
respect to each image support by dividing by the size of the image.
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5.1 Proximity between Hierarchies

The integrals in equation (18) is between a partition G (ground truth) and a
hierarchy H . The same can be extended to measure the proximities between two
hierarchies of partitions. Given two hierarchies of partitions, H1, H2, with N and
M number of levels, and partitions indexed by i and j respectively,

φ12 =
∑

j∈[1,M ]

∑
i∈[1,N ]

∫
x∈ε(πi)(1− gπj (x)).πi(x)dx

|πi|
(19a)

φ21 =
∑

i∈[1,N ]

∑
j∈[1,M ]

∫
x∈ε(πj)(1− gπi(x)).πj(x)dx

|πj |
(19b)

where gπi is the distance function of the partition πi.
The measure lacks the similarity measures across partitions which are not

horizontal cuts, but generally cuts from the two hierarchies. This becomes again
a combinatorial problem. The refinement of cuts πi from an input hierarchy H1

would have a value of the distance function gπj which decreases on average till
the point where the two partitions nearly fit and the integral starts increasing
again.

6 Results

To demonstrate the inputs of the optimization, we show the 2 ground truths
used (GT2 and GT4 from the list for image 239096), we show the distribution
of ground truth energies(radii) at different thresholds of the saliency. The gray
level corresponds to the radius of dilations ωG and θG in Figure 7. for image
239096. Their optimal cuts based on the haussdorf energy corresponding to the
supremum of the two radii ωG and θG are shown in Figure 8. We observe that
the optimization introduces small parasite classes which are chosen since the
children or always more optimal than the parent in certain symmetries.

We evaluate the global measure on 3 hierarchies Arbelaez, Cousty and random
hierarchies (generated by merging classes of the leaves partition randomly) for
the 2 hierarchies produced from random permutation matrices used as distance
functions as explained in the previous section. We evaluate all 7 ground truths
w.r.t to the 3 input hierarchies, producing a table (9) of global measures. The P
and R measures are averaged over the 7 ground truths available for 25098 image.

Fig. 6. Input Image 2390986, Ground truths GT2 and GT4, and their distance
functions
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Fig. 7. The distribution of ωG (top) for threshold of the (UCM) at 0 (leaves), 0.1, for
ground truth GT 2(two images on the left) and GT 4(right), the image is contrasted
to see the low level values clearer. Same for θG on the bottom line.

Fig. 8. The Energy distribution for the optimal cut by ∨(ωG, θG, ) The partition and
the image

Fig. 9. Integrals from equation(18) Expressed per 1000 pixels in the image

7 Conclusion

A method for comparing a hierarchy of partitions H with one, or more, ground
truth set G was proposed. Two points of view were developed. The first one
is based on the idea of associating two energies that express the proximity
between G and H . It was shown that several different criteria, and several laws
of composition of the partition’s classes lead to emphasize different aspects of the
hierarchy. The same approach permits also to combine different ground truths
associated with different zones of the space. Finally a global similarity measure
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is used to evaluate the proximity of hierarchies of partitions and a ground truth
partition. Future work would consist in using other image feature based energies
and studying the law of compositions.
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Playing with Kruskal: Algorithms for
Morphological Trees in Edge-Weighted Graphs

Laurent Najman, Jean Cousty, and Benjamin Perret

Université Paris-Est, Laboratoire d’Informatique Gaspard-Monge, A3SI, ESIEE

Abstract. The goal of this paper is to provide linear or quasi-linear
algorithms for producing some of the various trees used in mathemetical
morphology, in particular the trees corresponding to hierarchies of water-
shed cuts and hierarchies of constrained connectivity. A specific binary
tree, corresponding to an ordered version of the edges of the minimum
spanning tree, is the key structure in this study, and is computed thanks
to variations around Kruskal algorithm for minimum spanning tree.

1 Introduction

In the theoretical companion paper [1] of the present paper, we show how some
morphological hierarchies [2–7] defined on an edge-weighted graph G = (V,E, F )
are related, and when it is possible, how they can be computed one from each
other. In this paper, we provide efficient quasi-linear or linear algorithms to
compute those hierarchies. In particular, this paper contains:

– provided that the edges are either already sorted or can be sorted in lin-
ear time, a quasi-linear O(|E| × α(|V |)) (where α() is the extremely slowly
growing inverse of the single-valued Ackermann function) algorithm that
computes a binary partition tree by altitude ordering, a fundamental struc-
ture that we post-process in the sequel;

– a linear O(|V |) post-processing algorithm that computes the hierarchy of
quasi-flat zones [1, 3] (also know as the α-tree [8]);

– a linear O(|V |) post-processing algorithm that computes (hierarchies of)
watershed cuts [9];

– a linear O(|V |) post-processing algorithm that computes hierarchies by in-
creasing attributes; as detailed here and in [1], such an algorithm can be used
to obtain either constrained connectivity hierarchies [10] or watershed-based
hierarchies [11].

To the best of our knowledge, the only published constrained connectivity al-
gorithm, available in [10], has an unknown complexity and only computes one
level of the hierarchy. An algorithm computing the whole hierarchy, relying on
the component tree of the edge-weighted graph G, is roughly sketched in [12],
but has a complexity higher than the one proposed in this paper and is less
memory efficient. Concerning attribute-based hierarchies, the most efficient al-
gorithm [13] has a complexity higher than the one proposed in this paper, and
is less efficient.

C.L. Luengo Hendriks, G. Borgefors, R. Strand (Eds.): ISMM 2013, LNCS 7883, pp. 135–146, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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At the heart of our approach is the minimum spanning tree (MST): this tree
T is a connected spanning graph of the graph G such that the weight of T :
F (T ) :=

∑
e∈E(T ) F (e) is the least possible weight for a spanning graph of G.

As detailed in section 2.1, we rely on Kruskal algorithm [14] for computing this
MST. However, while producing the MST, we make use of another tree (detailed
in section 2.2) that we call the binary partition tree by altitude ordering. Using
Tarjan union-find (section 2.3), we propose in section 2.4 an efficient algorithm
to compute this binary tree. Post-processing will be studied in section 3.

2 Binary Partition Tree and Minimum Spanning Tree

2.1 Kruskal Algorithm

Kruskal’s algorithm [14] is a greedy algorithm that finds a minimum spanning
tree for a connected weighted graph. It can be described as follows:

– create a forest F (a set of trees), where each vertex in the graph is a separate
tree

– create a set S containing all the edges in the graph
– while S is nonempty and F is not yet a single tree

• remove an edge with minimum weight from S
• if that edge connects two different trees, then add it to the forest, com-
bining two trees into a single tree

• otherwise discard that edge.

At the termination of the algorithm, the forest has only one component and
forms a minimum spanning tree of the graph.

The efficiency of Kruskal’s algorithm relies on a disjoint-set data structure
that keeps track of a set of elements partitioned into a number of disjoint
(non-overlapping) subsets. The disjoint set problem consists in maintaining a
collection Q of disjoint sets under the operation of union. Each set Q in Q is
represented by a unique element of Q, called the canonical element. In the follow-
ing, q1 and q2 denote two distinct elements. Three operations allow to manage
the collection:

– MakeSet(q1): add a new element q1 to the collection Q, provided that the
element q1 does not already belongs to a set in Q.

– FindCanonical(q1): return the canonical element of the set in Q which con-
tains q1.

– Union(q1, q2): let Q1 and Q2 be the two sets in Q whose canonical elements
are q1 and q2 respectively (q1 and q2 must be different). Both sets are removed
from Q, their union Q3 = Q1 ∪ Q2 is added to Q and a canonical element
for Q3 is selected and returned.

An implementation of Kruskal algorithm is presented in Algorithm 1. In this
implementation, we identify any element of V with an integer corresponding to
its index in the finite set |V |. We save the edge of the MST in an array MST, hence
obtaining a strict order on the edges; this order is necessary for post-processing.
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Algorithm 1. Kruskal

Data: An edge-weighted graph (V,E, F ).
Result: A minimum spanning tree MST
Result: A collection Q
// Collection Q is initialized to ∅

1 e := 0;
2 for all xi ∈ V do MakeSet(i);
3 for all edges {x, y} by (strict) increasing weight F ({x, y}) do
4 cx := Q.FindCanonical(x); cy := Q.FindCanonical(y);
5 if cx �= cy then
6 Q.Union(cx, cy);
7 MST[e] := {x, y};
8 e := e+ 1;

9 else DoSomething({x, y});

When computing an MST, the DoSomething procedure does nothing, i.e.,
it discards the considered edge. In section 3.3, we show an example when the
procedure DoSomething is useful.

Procedure DoSomethingMST({x, y})
// Ignore {x, y}

The main question in implementing Kruskal’s algorithm is thus how to repre-
sent and implement the collection Q. A good representation is to maintain the
collection as a set of trees, i.e each element of Q is a tree. In the sequel of this
paper, each set of the collection Q is represented by a rooted tree, where the
canonical element of the set is the root of the tree. We are going to play with
various tree representations of connected components. Kruskal’s algorithm will
not change, but different implementations for Union and FindCanonical will
lead to two different trees, one of them being useful for connected filtering.

2.2 A Simple Algorithm That Yields a Binary Partition Tree
by Altitude Ordering

The first tree we present is the useful one, although the proposed algorithm in
this section is not an efficient one (we make a better proposal in section 2.4). As
shown in [1] and in the sequel of this paper, post-processing this tree provides
the min-tree of MST, the tree of quasi-flat zones and trees of watersheds. The
main idea is the following: each time an edge {x, y} is put into the MST, i.e.
each time a union is made, we create a new node whose children are the two
disjoint sets containing x and y. Intuitively, it is as if we break the edge in two,
and add a node between the two points of the edge. The added node becomes
the canonical element of the union of these two points (see Fig. 1.a, b, c and d).
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(a) Edge-weighted graph
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(d) Final QBT

Fig. 1. A simple process for obtaining QBT , a binary tree providing a strict total order
relation on the edges of the MST (see text)

Each node will thus either correspond to an edge of the MST or to a vertex of
V . In the implementation, nodes of the tree are represented by integer: nodes
corresponding to vertices are from 0 to |V |−1 and nodes corresponding to edges
of the MST are from |V | to 2|V | − 2. Such a numbering allows the tree itself
to be provided thanks to an array parent that stores the parent of a given
node. If node i does not have a parent, then parent[i] := −1. This algorithm is
implemented in QBT .MakeSet, QBT .FindCanonical and QBT .Union.

Procedure QBT .MakeSet(q)

1 QBT .parent[q] := −1; QBT .size += 1;

Function QBT .FindCanonical(q)

1 while QBT .parent[q]≥ 0 do q :=QBT .parent[q];
2 return q;
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Function QBT .Union(cx, cy)

1 QBT .parent[cx]:=QBT .size; QBT .parent[cy]:=QBT .size;
2 QBT .MakeSet(QBT .size);
3 return QBT .size-1 ;

At the end, we obtain a collection QBT which is a binary tree. The QBT tree
provides the order in which the edges have been put into the MST, the latest edge
added to the tree being the root of the tree, i.e., the highest one. In other words,
the edges of the MST are strictly ordered by QBT , according to their altitude in
the tree. We say that QBT is a binary partition tree by altitude ordering [1]. The
complexity of Kruskal implemented with this specific union-find is in O(|V |2),
and thus, this process is not very efficient.

2.3 Efficient MST Implementation with Tarjan Union-Find

Tarjan [15] proposed a very simple and very efficient algorithm called union-find
to achieve any intermixed sequence of union and find. The implementation of
this algorithm is given in procedure QT.MakeSet and functions QT.Union and
QT.FindCanonical. To each element of the collection is associated a parent (as
precedently) and a rank ’Rnk’. Both the mapping ’parent’ and the mapping ’Rnk’
are represented as arrays in memory. One of the two key heuristics to reduce the
complexity is a technique called path compression, that was used by Tarjan to
reduce the cost of FindCanonical. It consists, while searching for the root r of
the tree which contains q, in considering each element p of the path from q to r
(including q), and setting the parent of p to be r. The other key technique, called
union by rank, consists in always choosing the root with the greatest rank to be
the representative of the union while performing the Union operation. The rank
Rnk(cx) of a canonical element cx is a measure of the depth of the tree rooted in
cx, and is exactly the depth of this tree if the path compression technique is not
used jointly with the union by rank technique. If the two canonical elements cx
and cy have the same rank, then one of the elements, say cy, is chosen arbitrarily
to be the canonical element of the union: cy becomes the parent of cx; and the
rank of cy is incremented by one. Union by rank avoids creating degenerate trees,
and helps keeping the depth of the trees as small as possible. For a more detailed
explanation and complexity analysis, see Tarjan’s paper [15].

Procedure QT .MakeSet(q)

1 QT .parent[QT .size] := −1; QT .Rnk[QT .size] := 0; QT .size += 1;

Function QT .FindCanonical(q)

1 r := q;
2 while QT .parent[r] ≥ 0 do r :=QT .parent[r];

3 while QT .parent[q] ≥ 0 do tmp := q; q :=QT .parent[q]; QT .parent[tmp] := r;

4 return r;
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Function QT .Union(cx, cy)

1 if (QT .Rnk[cx] >QT .Rnk[cy]) then swap(cx, cy);
2 if (QT .Rnk[cx] == QT .Rnk[cy]) then QT .Rnk[cy] += 1;
3 QT .parent[cx] := cy;
4 return cy;

As stated at the beginning of this section, implementing Kruskal’s algorithm
with Tarjan Union-Find leads to a quasi-linear complexity: provided that the
edges are either already sorted or can be sorted in linear time (for example with
counting sort or radix sort), the complexity is O(|E| × α(|V |)), where α() is
the extremely slowly growing inverse of the single-valued Ackermann function.
Unfortunately, the tree built by Tarjan Union-Find is of no use for connected
filtering: the path compression technique flattens the tree, and does not preserve
the order by which the edges or the vertices are processed in the algorithm. In
the next section, we are going to combine the two proposals into an efficient one.

2.4 An Efficient Algorithm That Yields a Binary Partition Tree
by Altitude Ordering

The function QBT.FindCanonical is slow because it takes some time to find
the canonical element for a connected component: we have to climb the tree
until the root is found. We can use Tarjan Union-Find on QBT itself, i.e. we
can use QT as a second collection that maintains a compressed representation
of QBT , so that finding the canonical element is now in quasi-constant time. We
also have to store the root of any tree in QBT in an array Root so that such a
root can be found in constant time from any tree in QT . The implementation
uses QEBT.MakeSet, QT.FindCanonical and QEBT.Union.

Procedure QEBT .MakeSet(q)

1 QEBT .Root[q]:=q; QBT .MakeSet(q); QT .MakeSet(q);

Function QEBT .Union(cx, cy)

1 tu:=QEBT .Root[cx]; tv := QEBT .Root[cy];
// Union in QBT(without compression)

2 QBT .parent[tu] := QBT .parent[tv] := QBT .size;
// If children are needed, add them to the root

3 QBT .children[QBT .size].add({tu}); QBT .children[QBT .size].add({tv});
4 c:=QT .Union(cx,cy); // Union in QT(with compression)

5 QEBT .Root[c] := QBT .size; // Update the root of QEBT

6 QBT .MakeSet(QBT .size);
7 return QBT .size-1 ;

Function QEBT .FindCanonical(q)

1 return QT .FindCanonical(q);
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When Kruskal is finished, the tree QBT is exactly the same as the one in
section 2.2. The only difference is thus the speed of the algorithm: thanks to the
use of Tarjan Union-Find, the complexity of this Kruskal algorithm using QEBT

is quasi-linear O(|E| × α(|V |)).

3 Post-Processing the Binary Tree

In this section, we are going to detail some linear O(|V |) algorithms that produce,
from QBT , (1) a watershed cut, (2) a hierarchy of quasi-flat zones, and (3) any
attribute-based hierarchy (if the attribute is increasing).

As we have seen, each node of QBT corresponds either to a vertex of the graph
or to an edge of the MST. Recall that edges of MST are sorted by a strict order
relationship that follows increasing weight-edges: the |V | first nodes of QBT are
the vertices of |V |, and the root of QBT corresponds to the edge of the MST
with the greatest weight. To ease the reading of the algorithms of this section,
we provide below two helper functions that clarify how we can pass from the
nodes of QBT to the edges of the MST and how to obtain the weight of the edge
of the MST corresponding to a given node of QBT .

Function getEdge(n)

Data: a (non-leaf) node n of QBT

Result: the edge e of the MST corresponding to the nth node
1 return n− |V |;

Function weightNode(n)

Data: a (non-leaf) node of the tree
Result: the weight of the MST edge associated with the nth node of QBT

1 return F(MST[getEdge(n)]);

3.1 Watershed Cuts

A watershed cut [9] can be easily obtained in our framework. Indeed, those
cuts are the “highest separations” of minima of the minimum spanning tree.
We propose below a linear algorithm watershed that labels the edges of the
MST with a flag stating whether or not an edge is a watershed edge. The main
idea is to obtain the latest edge of the MST included in a given minimum in
QBT . This can be done by counting the number of minima of the edge-weighted
graph (G,F ) thanks to a simple process than run through the nodes of QBT

by increasing order, and checks whether or not a given node has an altitude
lower than its parent and does not contain a minimum. We increment a counter
for the ancestors of several minima. An edge is a watershed edge if it merges
several catchment basins corresponding to different minima. The complexity of
the function watershed is linear in the number of vertices, and thus the whole
process that computes a watershed cut is quasi-linear.
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Fig. 2. Two trees derived from QBT by post-processing. (a) A hierarchical tree QBT

on which watershed edges have a blue point. Edges M1 (green), M2 (red) and M3

(blue) are the minima of the edge-weighted graph. (b) The tree of the quasi-flat zones
hierarchy, a canonized version of QBT (i.e., the min-tree of the MST.)

Function watershed
Data: QBT

Result: A binary array ws indicating which MST edges are watershed
1 for all leaf-nodes n of QBT do minima[n]:=0;
2 for each non-leaf node n of QBT by increasing order do
3 flag := TRUE; nb := 0;
4 for all c ∈ QBT .children[n] do
5 m := minima[c]; nb := nb+m;
6 if (m == 0) then flag := FALSE;

7 ws[getEdge(n)] := flag;
8 if (nb �= 0) then minima[n] := nb;
9 else

10 if (n is the root of QBT ) then minima[n] := 1;
11 else
12 p := QBT .parent[n];
13 if (weightNode[n]<weightNode[p]) then minima[n] := 1;
14 else minima[n]:=0;

The set of watershed edges provides a MST of the neighborhood graph of the
catchment basins [16]. In Fig. 2.a, the nodes of QBT corresponding to watershed
edges have a blue point.

By removing from QBT all nodes that are not watershed ones, we obtain a
filtered tree that corresponds to a hierarchy of watershed cuts, more precisely the
one corresponding to an ultrametric watershed [12]. In the sequel of this paper,
one can use indifferently either the original QBT or this modified one. In the
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first case, one is working within the framework of the constrained connectivity,
and in the second case, one is working within the framework of watershed cuts.

One of the interests of working with watershed cuts rather than with flat zones
is that the hierarchy is smaller, as the super-pixels (catchment basins) provided
by watershed cuts are larger than the super-pixels provided by the flat-zones.
From a practical point of view, greater speed can thus be achieved thanks to
watershed cuts.

3.2 Quasi-flat Zones Hierarchy

In this section, we post-process QBT to obtain the tree of the quasi-flat zones
hierarchy [3], which is proved [1] to be QCT , the min-tree of the minimum span-
ning tree. The differences between QBT and QCT are illustrated in Fig. 1.d and
2.b. QCT can be computed directly thanks to a dedicated Union-Find procedure
that we will describe in an extended version of this paper. Here, due to space con-
straints, we only propose a short post-processing that transforms QBT into the
desired min-tree QCT . The implementation uses CanonizeQBT to post-process
QBT , and needs the children of a node.

Procedure CanonizeQBT

Data: QBT

Result: QCT , a canonized version of QBT

1 for all nodes n of QBT do QCT .parent[n]:=QBT .parent[n]; QCT .size+=1;
2 for each non-leaf and non-root node n of QBT by decreasing order do
3 p := QCT .parent[n];
4 if (weightNode(p) == weightNode(n)) then
5 for all c ∈ QBT .children[n] do QCT .parent[c]:=p;
6 QCT .parent[n]:=n; // Delete node n of QCT

// If needed, build the list of children

7 for all nodes n of QCT do
8 p:=QCT .parent[n]; if p ≥ 0 and p�= n then QCT .children[p].add(n);

The procedure CanonizeQBT is in O(|V |), and thus the whole process that
computes a quasi-flat zones hierarchy is quasi-linear. To the best of our knowl-
edge, this is the most efficient algorithm published for computing this hierarchy.
However, for most image-processing tasks, the binary partition tree QBT can be
used instead, and this is what we are going to do in the sequel of this paper.

3.3 Attribute-Based Hierarchies

Attributes It is easy to compute some attributes on each node of QBT : surface
(number of vertices in a node), depth, volume or ordered markers are the most
classical attributes [11]. Another attribute from the constrained connectivity
framework [10] is the range. Any of those previous attributes are increasing:
recall that an attribute A is increasing if when there is a parenthood relationship
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between two nodes n1 and n2, i.e. when the vertices of n1 are contained in the
vertices of n2, then A(n1) ≤ A(n2). In the sequel of this section, we denote by
attributeComp[n] the attribute of the node n of QBT .

It is when computing an attribute that the procedure DoSomethingMST can
be useful: for example, one can, using DoSomethingMST, register each edge of the
graph at the correct place in QBT , by adding new nodes corresponding to these
edges. Then, for example, we can imagine using an attribute such as the surface
computed not from the vertices but from the edges.

Hierarchies. Attribute-based hierarchies are obtained by filtering the min-tree
QCT of the MST, and computing the full hierarchy amounts to reweighting
the MST. Intuitively, it is as if colored water fills up the branches of QCT , a
merging of two components taking place when two different colors meet. The
speed of the filling is controled by the attribute, i.e., the branch is completely
filled (i.e., the branch is cut) when the amount of water is exactly equal to the
attribute of the corresponding node of QCT . Some nodes exist in QBT but not
in QCT . Those nodes correspond to an information not present in QCT : the
order of processing, useful when a choice has to be made. A complete illustrative
example explaining the process is detailed in Fig. 3. Computing the correct
attribute is done thanks to the function getAttribute, that computes from
attributeComp the attribute at the time of the merging. It consists in taking
the highest attribute of all the children with the same original weight. The final
weight of the MST can then be obtained by taking the lowest attribute of the two
children of the node corresponding to the edge of the MST in QBT ; this is done
by ComputeMergeAttributeMST, the complexity of the whole post-processing
being in O(|V |). Once the re-weighted MST is computed, the hierarchical tree
can be obtained by re-applying the algorithms of this paper. As seen in [1], the
resulting hierarchy can be either a hierarchy of watershed cuts or a constrained-
connectivity hierarchy.

Function getAttribute(n)

Data: A node n of QBT

Result: The attribute at the time of the merging
1 if (n is the root) or (weightNode(parent[n]) �= weightNode(n)) then
2 for all c children of n do getAttribute(c);
3 attribute[n] := attributeComp[n];

4 else
5 max:=0;
6 for all children c of n do
7 v:=getAttribute(c);
8 if v > max then max := v;

9 attribute[n] := max;

10 return attribute[n];
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Fig. 3. Hierarchical trees QBT and QCT . At the bottom of (a) and (b) is the (edge-
weighted) graph of a map with the respective weight of each edge. Attributes (in
this example, the surface of a node) can easily be computed on either QBT or QCT .
In (a), the numbers (k, l) in parenthesis represents respectively k=attributeComp[n]
and l=getAttribute(n). In (a) and (b), the numbers k in ni : k represents
k=attributeComp[n]. When a flooding-by-attribute is performed on QCT , node n1

disappears first at value 2, followed by node n2 at value 3. When these the two cor-
responding branches are filled by water (cut from the tree), n1 and n2 are no longer
minima. This is not the case for n3, whose attribute is 6. When the corresponding
branch is filled, n3 stills marks a minimum, and stays so until the value 11, corre-
sponding to node n7. Thanks to the processing order embodied in QBT , getAttribute
can compute the value at which a node disappears.

Procedure ComputeMergeAttributeMST

Data: QBT

Result: a reweighted MST G corresponding to the attribute-based hierarchy
1 for any non-leaf node n of QBT do
2 a1 := attribute[children[n].left];
3 a2 := attribute[children[n].right];
4 G[getEdge(n)] := min(a1, a2);

4 Conclusion

This paper has presented several elegant yet efficient algorithms for comput-
ing several morphological trees. At the heart of the processing is the minimum
spanning tree, and in this paper we have proposed some variations on Kruskal
algorithm. However, other approaches can be taken, and any other MST algo-
rithm can be used first to produce a tree on which the algorithms of this paper
can be applied. This would be needed in some situations, for example if the
edges of the original graph do not fit in memory or if some parallel algorithm for
minimum spanning tree is first needed. The unification theory provided in [1],
together with the algorithms of this paper shed a new light on what has been
done in mathematical morphology for a number of years, linking together some
previously unrelated parts of the field.
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Source code corresponding to this paper is available at
http://www.esiee.fr/∼info/sm/.
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Abstract. A new approach is proposed for finding optimal cuts in
hierarchies of partitions by energy minimization. It rests on the notion
of h-increasingness, allows to find best(optimal) cuts in one pass, and
to obtain nice ”climbing” scale space operators. The ways to construct
h-increasing energies, and to combine them are studied, and illustrated
by two examples on color and on textures.

1 Introduction

A hierarchy, or pyramid, of image segmentations is as a series of progressive
simplified versions of an initial image, which result in increasing partitions
of the space. We propose to reduce such pyramids to some best or optimal
segmentation 1. We shall not focus on the methods for obtaining the pyramids,
and consider rather the whole hierarchies as starting points. Now, a multi-scale
image description can rarely be considered as an end in itself. It often requires
to be completed by some energy function ω that allows us to formalize optima.
More precisely, three pieces of information interact, namely a pyramid H of
partitions of the space E (possibly segmentations of an input image), some
energetic function f on E which may be the initial image, or another one, and
an energy ω over the partial partitions D(E), and which depends of f . Three
questions arise then, namely:

1. Given a hierarchy H of partitions and a energy ω, how to obtain a
new partition that minimizes ω, without getting bogged down in the
combinatorial complexity?

2. How a family {ωj, j ∈ J} can be a scale space operator, and generate a
sequence of optimal partitions that increase with j?

3. Most of the segmentations involve several features (colour, shape, size,
etc.), that one can handle with different energies ω. How to combine them,
according to which grammar?

These questions, which are treated below in this order, have been taken up by
several authors, for many years, and by various methods. Some of them [10], [6]
simplify the combinatorial complexity by assuming that the energy of a partition

1 This work received funding from the Agence Nationale de la Recherche through
contract ANR-2010-BLAN-0205-03 KIDIKO.

C.L. Luengo Hendriks, G. Borgefors, R. Strand (Eds.): ISMM 2013, LNCS 7883, pp. 147–158, 2013.
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Fig. 1. Example of a dendrogram, with the corresponding partitions

equals the sum of the energies of its classes, which permits the treat the above
questions 1) and 3). However, one can wonder whether additivity is the very
underlying cause, since alternative approaches [12] replace the sums by suprema
and obtain similar properties. In fact, the corner stone for a method which
aims to solve questions 1) to 3) is the notion of h−increasingness introduced in
[11], which encompasses all above particular assumptions. This following sections
demonstrate this.

2 Hierarchies and Cuts (Reminder)

2.1 Hierarchies of Partial Partitions

We denote by E a 2-D topological space, such as a subset of R2 or Z2. A partition
π(S) associated with a set S ∈ P(E) is called partial partition of E of support
S [9]. The partial partition of S in the single class S is denoted by {S}. The
family of all partial partitions of set E is denoted by D(E), or simply by D. A
hierarchy H is a chain of partitions πi, i.e.

H = {πi, 0 ≤ i ≤ n | i ≤ k ≤ n⇒ πi ≤ πk}, (1)

where πn is the partition {E} of E in a single class, called the root. The classes
of the finest partition π0 are called the leaves. The intermediary classes are also
called nodes. The number of leaves is supposed to be finite, so that n, the number
of levels is also finite.

Let Si(x) be the class of partition πi of H at point x ∈ E. Expression (1)
means that at each point x ∈ E the family {Si(x), x ∈ E, 0 ≤ i ≤ n} of those
classes Si(x) that contain x forms a finite chain of nested elements from the leaf
S0(x) to E.

According to a classical result, a family {Si(x), x ∈ E, 0 ≤ i ≤ n} of indexed
sets generates the classes of a hierarchy iff i ≤ j and x, y ∈ E implies

Si(x) ⊆ Sj(y) or Si(x) ⊇ Sj(y) or Si(x) ∩ Sj(y) = ∅. (2)
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Fig. 2. Hierachical increasingness

The partitions of a hierarchy may be represented by their classes, or by
the saliency map of the edges, or again by a dendrogram where each node of
bifurcation is a class S, as depicted in Figure 1. The classes of πi−1 at level i− 1
which are included in class Si(x) are said to be the sons of Si(x). Denote by S(H)
the set of all classes S of all partitions involved in H . Clearly, the descendants
of each S form in turn a hierarchy H(S) of root S, which is included in the
complete hierarchy H = H(E).

2.2 Cuts in a Hierarchy

Any partition π of E whose classes are taken in S defines a cut π in a hierarchy
H . The set of all cuts of E is denoted by Π(E) = Π . Every ”horizontal” section
πi(H) at level i is obviously a cut, but several levels can cooperate in a same cut,
such as π(S1) and π(S2), drawn with thick dotted lines in Figure 1. Similarly,
the partition π(S1)� π(S2) generates a cut of H(E). The symbol � is used here
for expressing that groups of classes are concatenated, i.e.

S = S1 � S2 ⇔ S = S1 ∪ S2 and S1 ∩ S2 = ∅

One can also define cuts inside any sub-hierarchy H(S) of summit S, and
similarly, Π(S) stands for the family of all cuts of H(S).

3 Optimization and Hierarchical Increasingness

3.1 Energies and Optimization

The family of all p.p. of the leaves is denoted by D. An energy on D is a non
negative function ω : D →[0,∞]. In the following,D will be provided with several
energies ω, which may satisfy the two following axioms (for the existence of nice
optimal cuts, and for their unicity):

i) ω is h-increasing, i.e.

ω(π1) ≤ ω(π2) ⇒ ω(π1 � π0) ≤ ω(π2 � π0). (3)
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where π1 and π2 are two p.p. of same support S, and π0 a p.p. of support S0

disjoint of S [11]. The geometrical meaning of Rel.(3) is depicted in Figure 2.
ii) ω is singular, when the energy ω({S}) of class S is differs from that of any

p.p. of S, i.e.
π(S) p.p. of {S} ⇒ ω({S}) �= ω(π(S)). (4)

The optimization problem involves three entities:

1. A pyramid H of partitions of E which segment an input image,
2. An energy ω on the family D(E) of all partial partitions of E,
3. An ”energetic” function f on E which may be the initial image, or another

one, which parametrizes energy ω.

These three pieces of information are independent, and aim to determine the
cuts that minimizes ω, i.e. such that ω(π∗) = inf{ω(π) | π ∈ Π(E)}. They are
called below the optimal cuts.

3.2 Optimal Cut Characterization

Though the hierarchies are discrete, the number of their possible cuts explodes
combinatorially: a small hierarchy of 200 leaves and 10 levels generates billions
of cuts! How to find out the best one? By means of which vital lead? The h-
increasingness (3) turns out to be too demanding and too general, since it does
not take into account that we are dealing with hierarchies. We are thus lead to
replace it by the following weaker but more adapted version of h-increasingness.
We have to introduce the set H of all finite hierarchies of partitions of E.

Definition 1. An energy ω on D(E) is weakly h-increasing when for any
hierarchy H ∈ H, any disjoint nodes S and S0 of H, and any partition π0

of S0, we have

ω(π∗) = inf{ω(π), π ∈ Π(S)} ⇒ ω(π∗ � π0) ≤ inf{ω(π � π0), π ∈ Π(S)} (5)

where Π(S) stands for the finite set of all partitions of node S involved in
hierarchy H.

Clearly, h-increasingness implies weak h-increasingness, i.e. Rel.(3) ⇒ Rel.(5).
More precisely, Rel.(3) has been weakened just enough to obtain the theorem of
optimal cut working in both senses. Indeed, we now have

Theorem 1. Let H ∈ H be a finite hierarchy, and ω an energy on D(E), and S
be a node of H of sons T1..Tp . If π∗

1 , ..π
∗
p are cuts of optimal energies of T1..Tp

respectively, then
π∗
1 � π∗

2 .. � π∗
p, (6)

is an optimal cut of Π(S) \ {S}, for any H ∈ H and any T1..Tp in H, if and
only if ω is weakly h-increasing.

Proof for theorem 1 is given in [7].
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When the h-increasing energy ω is also singular, then theorem 1 leads to the
following key consequence

Corollary 1. Let ω be h-increasing and singular energy. Then for any H ∈ H
and any node S of H with p sons T1..Tp of optimal cuts π∗

1 , ..π
∗
p , there exists a

unique optimal cut of the sub-hierarchy of root S. It is either the cut π∗
1�π∗

2 ..�π∗
p ,

or the one class partition {S} itself:

ω(π∗(S)) = min{ω({S}), ω(π∗
1 � π∗

2 .. � π∗
p)} (7)

Corollary 1 is essential. It governs the choices of models for energies, and their
implementations:

Firstly, the obtained optimal cut π∗(E) is indeed globally less energetic than
any other cut in H , but, moreover, each class S ∈ π∗(E) is less energetic than
any p.p. of S into classes of H , and also less energetic than any p.p. composed
of classes of H and containing S. This is a strong property of regional minimum.

Secondly, the condition (3) of h-increasingness for an energy being a notion
independent of any hierarchy, one can use a different ω for each of the n levels
of hierarchy H .

Thirdly, dealing with h-increasingness is sufficient. Fortunately so, because
it is incomparably easier to check the h-increasingness of an energy than its
possible weak h-increasingness.

Fourthly, the optimal cut coincides with the min-cut in the sense of the max-
flow methods on graphs when one takes for source the set of leaves, and for sink
the whole space E.

Finally one can always impose unicity, for example by taking systematically
{S} and not π∗(S) in case of equal energies at node S. This technique of choice
makes h-increasingness and sigularity compatible [7].

3.3 Generation of h-Increasing Energies

An easy way to obtain a h-increasing energy consists in defining it, firstly, over
all sets S ∈ P(E), considered as one class partial partitions {S}, and then
in extending it to partial partitions by some law of composition. Then, the h-
increasingness is introduced by the law of composition, and not by ω[P(E)]. The
first two modes of composition which come to mind are, of course, addition and
supremum, and indeed we can state

Proposition 1. Let E be a set and ω : P(E)→ R+ an arbitrary energy defined
on P(E), and let π ∈ D(E) be a partial partition of classes {Si, 1 ≤ i ≤ n}.
Then the two extensions of ω to the partial partitions D(E) by addition and by
supremum

ω(π) =
∑
{ω(Si), 1 ≤ i ≤ n} and ω(π) = ∨{ω(Si), 1 ≤ i ≤ n}

are h-increasing energies. Moreover, if {αj , j ∈ J} stands for a family of non
negative weights, then the weighed sum

∑
αjωj and supremum

∨
αjωj of h-

increasing energies turn out to be h−increasing.
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(Easy proof). A number of other laws are compatible with h-increasingness.
One can also make ω depend on more than one class, on the proximity of the
edges, on another hierarchy, etc..

4 Scale Increasingness and Climbing Energies

The usual energies are often given by finite sequences {ωλ, λ ∈ Λ} that depend
on a real positive index, or parameter, λ which takes p different values, p <∞.
Therefore, the processing of hierarchy H results in a sequence of p optimal cuts
πλ∗, of labels λ ∈ Λ. A priori, the πλ∗ are not ordered, but if they were, then we
should obtain a nice progressive simplification of the optimal cuts. For getting
it, we need to combine h-increasingness with the supplementary axiom (8) of
scale increasingness, which results in the following climbing energies.

Definition 2. We call climbing energy any family {ωλ, λ ∈ Λ} of energies
over D which satisfies the three following axioms, valid for each ωλ and for
all π ∈ Π(S), S ∈ S.
i) each ωλ, λ ∈ Λ, is h-increasing,
ii) each ωλ, λ ∈ Λ, is singular,
iii) the {ωλ, λ ∈ Λ} are scale increasing, i.e. for λ ≤ μ , each support S ∈ S and
each partition π ∈ Π(S), we have

λ ≤ μ and ωλ(S) ≤ ωλ(π(S))⇒ ωμ(S) ≤ ωμ(π(S)), π ∈ Π(S), S ∈ S. (8)

Axiom i) compares the same energy at two different levels, whereas axiom iii)
compares two different energies at the same level. The relation (8) means that, as
λ increases, the ωλ preserve the sense of energetic differences between the nodes
of hierarchy H and their partial partitions. In particular when ω0 is h-increasing
and singular, and when family {ωλ, λ ∈ Λ} is climbing, then the two families
{λω}, and {ωλ + ω0, λ ∈ Λ} are climbing.

4.1 Ordering and Computation of the Optimal Cuts

The climbing energies satisfy the very nice property to order the optimal cuts
with respect to the parameter λ [7]:

Theorem 2. Let {ωλ, λ ∈ Λ} be a family of climbing energies, and let πλ∗ (resp.
πμ∗) denote the optimal cut of hierarchy H according to the energy ωλ (resp. ωμ).
Then the family {πλ∗,λ ∈ Λ} of the optimal cuts generates a hierarchy H∗ of
partitions, i.e.

λ ≤ μ ⇒ πλ∗ ≤ πμ∗, λ, μ ∈ Λ. (9)

Computationally, the h-increasing condition (3) allows us to reach the optimal
cut in one ascending pass, by the following Guigues’algorithm [6]:

– Scan in one pass all nodes of H in ascending lexicographic order.



Optima on Hierarchies of Partitions 153

– Determine at each node S a temporary optimal cut of H by comparing the
energy of S to that of the concatenation of the temporary optimal cuts of
the (already scanned) sons Tk of S.

In addition, the scale increasingness allows us to obtain the whole family of the
optimal cuts in one ascending pass followed by a descending one [7] [6].

We will now review two families of climbing energies. The first one focuses on
the additivity of the classes and the second on their supremum.

5 Additive Energies

The additive h-increasing mode was introduced and studied by L. Guigues et Al.
under the name of separable energies [6], for partitions with connected classes.
For the aim of scale increasingness, the energy ωλ(S) is written as a linear
function of λ:

ωλ(S) = ωϕ(S) + λω∂(S) S ∈ S. (10)

The additive family {ωϕ + λω∂} is climbing iff the term ω∂ is sub-additive for
union, i.e.

ω∂(
⋃

1≤u≤q
Tu) ≤

∑
1≤u≤q

ω∂(Tu) (11)

The climbing family {ωλ} of Rel. (10) admits a nice lagragian interpretation if we
view the term ω∂ as a constraint on the functional ωϕ to minimize. According
to Lagrange formalism, given one constraint ω∂ , the optimum is reached by
means of a system of partial derivatives. Now remarkably the current approach
replaces that by a unique climbing. As the term ω∂(π) decreases as λj increases,
we can climb the pyramid of the optimal cuts and stop (thus optimal λ) when
the constraint is satisfied.

The most popular climbing additive energy was proposed by Mumford and
Shah [8] and evolved under various forms. Let π(S) be the partition of a summit
S into its q sons {Tu, 1 ≤ u ≤ q} i.e. π(S) = T1 � ..Tu.. � Tq. The energy ωϕ,
called fidelity term, sums up the quadratic differences between f and its average
m(Tu) in the various Tu, and the energy ω∂, called regularity term weights by
λj the lengths ∂T i of the frontiers of all Tu, i.e.

ωj(π(S)) =
∑

1≤u≤q

∫
x∈Tu

‖ f(x)−m(Tu) ‖2 +λj
∑

1≤u≤q
(∂Tu) = ωϕ(π) + λjω∂(π)

(12)
where the weight λj is a numerical increasing function of the level number j.

The two terms of Rel.(12) are far from being the only possible ones. The second
example of Section 8 below brings textures into play via inter-class variances.
In [7], the convexity of S is introduced by comparing the positive and negative
curvatures of ∂S. In [13], the quadratic differences of ωϕ, in Rel.(12), are replaced
by two intergrals of f in the outer and inner parts of the dilate ∂S ⊕ B of ∂S
by a disc B, etc..
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6 Sup-generated Energies

Just as the sum-generated ones, the ∨-generated energies on the partial
partitions are defined from an energy ω on P(E), followed by a law of
composition, which is now the supremum

ω(π) = ω(T1 � ... � Tn) = ∨{ω(Ti)}. (13)

6.1 Binary ∨-Generated Energies

These energies are proposed by P.Soille [12], with several variants. For example,
a numerical function f is associated with the hierarchyH . The range of variation
δ(S) = max{f(x), x ∈ S} − min{f(x), x ∈ S} of f inside set S defines the h-
increasing binary energy ωk(〈S〉) = 0 when δ(S) ≤ k, and ωk(〈S〉) = 1 when
not. The energy ωk is extended to partial partitions by supremum, so that the
class of the optimal cut at point x ∈ E is the larger class of H whose range of
variation is ≤ j. When the energy ωk of a father equals that of its sons, one
keeps the father when ωk = 0, and the sons when not.

6.2 Ordered Energies

When they are not binary, some ∨-generated energies are presented via an
ordering condition. As previously, an energy is still associated with each subset S
of E. The axiom (3) of h−increasingness does not require we know the energy of
all partial partitions. In particular, when the comparison of the partial partitions
π1 and π2 reduces to that of their classes, then a law of composition becomes
useless.

Definition 3. An energy ω on D is said to be ordered when for all pairs π1,
π2 ∈ D we have ω(π1) ≤ ω(π2) iff

-Both π1 and π2 admit the same support Supp,
-For all points x ∈ Supp, for classes S1(x) and S2(x) in π1 and π2 respectively,
the inequality ω[{S1(x)}] ≤ ω[{S2(x)}] holds.

An ordered energy ω is always h-increasing. When S is the support of the
partition π = �Ti, then ω(S) ≤ ω(π) iff ω(S) ≤ ∨ω(Ti), and we find again
the ∨-composition.

Here is an example of ordered energy due to H.G.Akcay and S. Aksoy [1]
who study airborne multi-band images and introduce (up to a small change)
μ(S) =Area (S)× (mean of all standard deviations of all bands in S).They work
with energy maximization. Allocate a non negative measure μ(S) to each node
of a hierarchy H , where μ takes its values in a partially ordered set M , such as
a color space. The energy ω is ordered by the two conditions

ω(S) ≤ ω(S′) ⇔ S ⊇ S′ and μ(S) ≥ μ(S′) S , S′ ∈ P(E), μ ∈M . (14)
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Fig. 3. Comparison of three laws of composition, a) by addition, b) by supremum, c)
by ordering. The energies ω are indicated in the discs.

The node S∗ of the optimal cut at point x is the highest more energetic
than all its descendants. The best cut π∗ is obtained in one pass, by Guigues’
algorithm [6].

Figure 6.2 summarizes the three major laws of composition. In a) the additive
mode chooses the father S, when ω(S) ≤

∑
ω(Tj). In b) the mode by supremum

chooses the S, when ω(S) ≤ ∨ ω(Tj). Finally, in c) one takes the largest node
which is more energetic than all its descendants(maximization of ω).

6.3 Composition of ∨-Generated Energies

Though the weighted supremeum of ∨-generated energies is h-increasing
(eqn.13), the infimum is not. In practice, this half-result is nevertheless useful,
since the ∨, paradoxically, expresses the intersection of criteria. For example,
when the function f to optimize is colour, one can take for energies:

- ω1(S) = 0 when δLum(S) < k1, and ω1(S) = 1 when not,
- ω2(S) = 0 when δSat(S) < k2, and ω2(S) = 1 when not.

Then the h-increasing energy ω1(S) ∨ ω2(S) = 0 when S is constant enough for
both luminance and saturation.

7 Partial Optimizations

Covering the whole space with some optimal partition is not always an aim.
Some studies require doing it, but in others ones the regions of interest are
limited, and clearly marked out by the context. Moreover, the leave partition
often includes a good many classes due to noise. And thirdly, the hierarchies
generated by connected filters may comprise a large number of singleton classes.
For example, Figure 4 b) and c) depict the flat zones obtained by an alternating
filter by reconstruction acting on the 25098 image a). All black pixels indicate
the singleton flat zones. When climbing the hierarchy, most of these point classes
are covered by extended classes, which are more significant. Therefore we can
just ignore the singletons when the classes of H are given an energy.

In other situations, some classes may be considered as non relevant because
they are too small, or too large, or too far from the zone of interest, or of a
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Fig. 4. a) image 25098 from Berkeley database b) and c) alternating filters of a), of
sizes 1 and 5

non wanted hue, etc...In all cases, they are clearly identified, so that some label
can indicate that they have not to intervene when computing the optimal cut.
Denote by W(E) ⊆ P(E) the set of all these undesirable classes. The energies
ω must satisfy the condition that, for all families {Si} ⊆ P(E) and all families
{Wj} ∈ W(E) such that (∪iSi) ∩ (∪jWj) = ∅, we have

ω((�iSi) � (�jWj)) = ω(�iSi).

The energy of the partial partition of classes {Si} must not change when outside
{Wj} classes are added. It means that ω(W ) = 0 when the law of composition
invoved in ω is the sum or the supremum, and that ω(W ) = ∞ when it is
the infimum. When ω is h-increasing, the computation of the optimal cut is
unchanged, but now results in a partition which may contain W classes.

8 Two Examples

We now develop two examples of additive energies which aim to show how the
choice of the energies governs the extraction of specific features (color, textures).
We start from the energy proposed in [10], and change it by adding new terms.
A hierarchy H of Uppsala ducks has been obtained by previous segmentations
of the luminance l = (r + g + b)/3 based on [5]. We want to find the best cut
for a compression rate of 20. In each class S of H , the simplification consists
in replacing the function f by its colour mean (mean over all 3 channels)

l(S) = Σx∈SI(x)
card(S) . In a first experiment the energy ωlum(S) has for fidelity term

ωϕ(S) the quadratic error, while the regularity term ω∂(S) is the coding cost
of class S, by taking 2 bits for each frontier element, and 24 bits assigned to
code m(S):

ωlum(S) =
∑
x∈S

‖ l(x)− l(S) ‖2 +λ(24+ | ∂S |) (15)



Optima on Hierarchies of Partitions 157

Fig. 5. a) Inititial Uppsala ducks; Optimal cuts b) by Luminance c) by Chrominance

The cost ω∂(π
∗) of the best cut decreases as λj increases, therefore we can

climb the pyramid of the best cuts and stop when ω∂(π) ' pixels number/20.
It results in Fig. 5b, where we see that the female duck is not nicely simplified.
In the second experiment, we just replace the luminance l, in Rel.(15) by the
chrominance c, i.e. by the projection of (r, g, b) on the plane orthogonal to the
main axis (1, 1, 1). This simplifies the image while keeping partitions which
minimize the variance of the chrominance vector c. The new optimal cut is
depicted in Fig 5c. Both ducks are better separated from the foreground of the
herbs, and from the background of the river.

ωtextures(S) = ωchrom(S) +
∑

S′∈sons(S)

K

σ2(Area(S′))
(16)

The second example addresses to the recognition of textures in the trees, in the
walls and in the water of the Uppsala river of Fig. 6a. The new energy ωtextures
of Rel.(16) keeps the first two terms of the previous experiment.

The third term of (16) introduces the textures via the variances of the sons. It
decreases more drastically when the areas of the sons of S have similar sizes. Fig.
6b and c depict the best cuts for two values of the parameters. Intuitively, texture
features are formulated into this multi-scale framework where the optimal scale
parameter combines the effect of chrominance and structure of texture into one
global energy function, thus showing the flexibility of the framework.

Fig. 6. a) Uppsala river; b) and c) best cut of a) according to energy (16), for λ = 100,
and for K = 1012 (in b)), and K = 1014 (in c))
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9 Conclusion

The primary contributions of this theoretical paper were:

- Hierarchical optimizations based on h-increasingness, while also giving the
conditions for general classes to be h-increasing.
- Defining non negative global climbing energies that allow to perform sequences
of increasing optimizations over a hierarchy of segmentations.
- Demonstrating how to formulate multiple constraint functions over the image
space in order to lead to different optimal segmentations. Two examples, one
with colour image segmentation and one with texture enhancement were shown.

Acknowledgements. We are thankful to Professor Fernand Meyer for his
helpful comments on the converse of theorem 1.
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Abstract. Connectivity is the basis of several methodological concepts in math-
ematical morphology. In graph-based approaches, the notion of connectivity can
be derived from the notion of adjacency. In this preliminary work, we investi-
gate the effects of relaxing the symmetry property of adjacency. In particular,
we observe the consequences on the induced connected components, that are no
longer organised as partitions but as covers, and on the hierarchies that are ob-
tained from such components. These hierarchies can extend data structures such
as component-trees and partition-trees, and the associated filtering and segmen-
tation paradigms, leading to improved image processing tools.

Keywords: connectivity, cover hierarchy, connected operators, filtering.

1 Introduction

Connectivity plays a crucial role in the definition of mathematical morphology. Intu-
itively, the notion of connectivity serves to decide whether a set is either in one piece,
or split into several. This notion has been widely studied [2], from axiomatic definitions
[21] to variants such as constrained connectivity [24], second-generation connectivity
[15,22,7,11], and hyperconnections [14].

Practically, connectivity in discrete image processing is often handled in graph-based
frameworks, via the notion of adjacency [16]. In this context, connectivity has led to
the development of data structures based on the partition of discrete spaces, and fur-
ther on partition hierarchies. Examples of such hierarchies are component-trees [19,8],
partition-trees [18,24], or hierarchical watershed [4,9,10]. They can also derive from
connectivity hierarchies, leading to partition-trees based, e.g., on fuzzy connectedness
[17,1] or second-generation connectivity.

From an applicative point of view, all these concepts have been involved in the de-
velopment of connected operators [20,23], devoted in particular to image processing
tasks such as filtering or segmentation. In this article, we present a preliminary study on
the effects of relaxing the symmetry hypothesis, actually required to define adjacency
relations (Secs. 2–3). We observe that partitions then become covers, which leads us
to define cover hierarchies instead of partition hierarchies. We prove however that such
hierarchies can still be handled as (enriched) tree structures (Sec. 4). This framework
generalises standard notions such as component-trees or partition-trees (Sec. 5), and
provides solutions for performing more accurate antiextensive filtering tasks (Sec. 6).
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2 Background Notions: From Adjacency to Partition Hierarchies

We first recall basic definitions and properties related to the concept of adjacency and
some induced notions, namely connectedness, partitions and partition hierarchies.

2.1 Adjacency and Connectedness

Let Ω be a nonempty finite set. Let� be an adjacency (i.e., irreflexive, symmetric, and
binary) relation on Ω. (We recall that� is a subset of Ω�Ω.) If x, y � Ω satisfy x � y
(and thus y � x), we say that x and y are adjacent.

Let X � Ω be a nonempty subset of Ω. Let �X be the equivalence relation on X
induced by the reflexive-transitive closure of the restriction �X of � to X. If x, y � X
satisfy x �X y, we say that x and y are connected (in X). In particular, the equivalence
classes of X associated to the relation�X are called the connected components of X,
and the set of these connected components is noted C��X�.
Remark 1. These definitions are directly linked to classical notions on graphs, con-
sidered for the topological modelling of digital images, as introduced, e.g., in [16]. In
particular, �Ω,�	 and �X,�X	 are irreflexive (non-directed) graphs.

2.2 Partition Hierarchies

The notion of connected component, associated to (any subsets of) �X,�X	 is important
in image analysis. Indeed, the partition C��X� associated to images defined on X, can
be used for filtering and segmentation purpose, by considering approaches that rely on
partition hierarchies in the framework of connected operators [20,23].

In this context, there exist two ways to refine �X,�X	, to build partition hierarchies.
The first way is to work on X, and to define subsets Y � X, i.e., to progressively
constrain the spatial part of �X,�X	. Practically, defining �Y,�Y	 such that Y � X,
implies that �Y 
 ��X � �Y � Y		. The second way is to work on �X , and to define

(symmetric) subrelations
�
�X ��X , inducing connectedness relations

�
�X ��X , i.e.,

to progressively constrain the structural part of �X,�X	.

Remark 2. In the framework of graphs, �Y,�Y	 is a subgraph of �X,�X	, and �X,
�
�X	

is a partial graph of �X,�X	.

In both cases, we have the following property.

Property 3. Let x � Y (resp. x � X). Let C 
 Cx
��Y	 � C��Y� (resp. C 
 Cx

�

�
�X	 �

C �

�
�X�), and Cx

��X	 � C��X� be the unique connected components containing x. We
have

C � Cx
��X	 (1)

Moreover, for any K � C��X�, we have
�
K �C � 

�
�
�
K 
 Cx

��X	
�

(2)
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By progressively refining either X into successive subsets, or�X into successive (sym-
metric) subrelations, we can then build partition hierarchies defined as trees1.

Property 4. Let �Xi	
k
i�0 (resp. ��i	

k
i�0) (k � 0) be such that X0 
 X (resp.�0 
�X)

and Xi�1 � Xi (resp. �i�1 � �i) for all i � ��0, k � 1��. Let �
�k

i�0 C��Xi�,�	 (resp.
�
�k

i�0 C�i�X�,�	) be the partially ordered multiset2 where for all Kα � C��Xα� (resp.
C�α�X�) and Kβ � C��Xβ� (resp. C�β �X�) (α, β � ��0, k��), the order relation� extends
� as �

Kβ � Kα
�
�
��

Kβ � Kα
�
�
�
α � β	

��
(3)

For any K,K� �
�k

i�0 C��Xi� (resp.
�k

i�0 C�i�X�), we then have
�
K � K� � 

�
�
�
�K � K�	 � �K� � K	

�
(4)

2.3 Partial and Total Partition Hierarchies

Both ways to refine �X,�X	 lead to partition hierarchies, but they differ with respect to
the nature of these partitions. Indeed, the structural refinement leads to total partitions,
while the spatial refinement leads to partial partitions (as defined in [15]).

Property 5. We have, for all i � ��0, k� 1��
�
C��Xi�1� �

�
C��Xi��

C�i�1�X� 

�
C�i�X� (5)

Remark 6. Typical examples of partial partition hierarchies are component-trees [19],
where the successive C��Xi� are defined by considering the binary images obtained by
thresholding a grey-level image I : X � ��0, k��. Typical examples of total partition
hierarchies are (binary) partition-trees [18], where the successive C�i�X� are defined
by progressively merging elementary parts of X, in a (multivalued) image I : X � V.

3 Non-symmetry in Adjacency: Semi-adjacency

In Sec. 2, a crucial hypothesis was the symmetry of the adjacency relation �X defined
on X. We now investigate the effects induced by the relaxation of this hypothesis.

3.1 Semi-adjacency

Adjacency is defined as a relation being both irreflexive and symmetric. By relaxing
the symmetry hypothesis, the obtained relation may (most of the time) no longer be an
adjacency. We then introduce a more general notion to handle that case.

Definition 7 (Semi-adjacency). Let � be an irreflexive binary relation on Ω. Such a
relation is called a semi-adjacency on Ω. If x � y, we say that x is semi-adjacent to y.

We recall that, similarly to �, the relation � is still a subset of Ω � Ω. However, by
opposition to �, we have �x � y	 � �y � x	.

1 Such trees are indeed forests, due to the non-necessary existence of a maximum (i.e., a unique
maximal element). For the sake of readability, the term tree is used by abuse of notation.

2 It may happen that successive partitions contain some similar connected components.
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3.2 Semi-connectedness

In the case of adjacency, the reflexive-transitive closure led to an equivalence relation
that characterised the notion of connectedness. We follow here the same approach.

Definition 8 (Semi-connectedness). Let X � Ω be a nonempty subset of Ω. We define
the semi-connectedness relation�X on X as the binary relation defined by the reflexive-
transitive closure of the restriction �X of � on X. If x, y � X satisfy x �X y, we say
that x is semi-connected to y (in X).

By opposition to�X , the relation �X is not an equivalence relation, in general. (Note
that a “semi-adjacency-based” notion of stream had also been considered in [3].)

Property 9. The relation�X is reflexive and transitive, but not necessarily symmetric.

It is however possible to derive an equivalence relation from�X by defining the strong
connectedness relation�X on X by

�
x�X y

�
�
�
�x �X y	 � �y �X x	

�
(6)

If x, y � X satisfy x� y, we say that x and y are strongly connected (in X). This notion
of strong connectedness is classical the framework of (directed) graphs.

3.3 Semi-connected Components

The notion of strong connectedness leads to equivalence classes of X, namely strongly
connected components. The set of these strongly connected components is notedC��X�.
Similarly, we can define the components that gather elements that are semi-connected.

Definition 10 (Semi-connected components). Let x � X. The semi-connected compo-
nent of X of basepoint x is the subset of X defined by

Cx
��X	 
 �y � X � x �X y� (7)

The set of all the semi-connected components of X is noted C��X�.
By opposition to connected and strongly connected components, the semi-connected
components of X do not necessarily form a partition of X.

Property 11. C��X� is a cover of X, i.e., we have  � C��X� and X 

�C��X�.

Indeed, it may happen that distinct semi-connected components have a nonempty inter-
section.

3.4 Links between Semi-connected and Strongly Connected Components

As stated by Def. 10, a semi-connected component is generated by a specific element,
namely its basepoint. This basepoint is not necessarily unique: it may happen that
Cx
��X	 
 Cy

��X	 for x � y. However, it is plain that such basepoints x and y are then
strongly connected. From this fact, we straightforwardly derive the following property.
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Property 12. There exists a bijection between C��X� and C��X�, expressed, for all
x, y � X, by �

Cx
�
�X	 
 Cy

�
�X	

�
�
�
Cx
��X	 
 Cy

��X	
�

(8)

Moreover, the partition C��X� refines the cover C��X�.
Property 13. Let C � C��X� be a semi-connected component. There exists a nonempty
subset P � C��X� of strongly connected components such that P is a partition of C.
In particular, P is defined as

P 
 �Cx
��X� � x � C� (9)

From the very definitions of �X and�X , we finally derive the following property, that
describes the structure of C��X� induced by �, with respect to C��X�.
Property 14. Let C � C��X� and P � C��X� be defined as above. Let Q � C��X�
be the subset of semi-connected components defined by

Q 
 �Cx
��X� � Cx

��X� � P� 
 �Cx
��X� � x � C� (10)

The Hasse diagram of the partially ordered set �Q,�	 is a directed acyclic graph
(DAG), but not a tree in general. The maximum of �Q,�	 is C, while its minimal el-
ements belong to P, and thus to C��X�.

4 Semi-connected Components Hierarchies

In this section, we still suppose that X is equipped with a semi-adjacency �X , which
induces the semi-connectedness relation�X and the strong connectedness relation�X .

4.1 Properties of Semi-connected Components Hierarchies

Similarly to Sec. 2.2, we discuss here the effects of refining �X,�X	. Once again, this
refinement can be done in two ways: �i	 by defining �Y,�Y	 such that Y � X and
�Y 
�X ��Y � Y	 (Figs. 1, 3), or �ii	, be defining �X, ��X	 such that ��X ��X .

Remark 15. As in Rem. 2, �Y,�Y	 is a (directed) subgraph of �X,�X	, while �X,
�
�X	

is a (directed) partial graph of �X,�X	.

However, under the current hypotheses, the results of Prop. 3 are no longer totally valid.
First, we have the following property that “extends” Eq. (1).

Property 16. Let x � Y (resp. x � X). Let C 
 Cx
�
�Y	 � C��Y� (resp. C 
 Cx

�

�
�X	 �

C �

�
�X�), and Cx

��X	 � C��X� be the semi-connected components of basepoint x. We
have

Cx
�
�X	 
 min

�
�K � C��X� � C � K� (11)
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Remark 17. As in Prop. 3, this property guarantees that there exists an inclusion re-
lation between the semi-connected components of same basepoint x between C��Y�
(resp. C �

�
�X�) and C��X�. However, contrarily to Prop. 3, it does not guarantee that

for any given x, Cx
�
�X	 is the only semi-connected component that satisfies this inclu-

sion relation. Nevertheless, it states that any other semi-connected component that has
the same property also includes Cx

��X	.

Still by comparison to Prop. 3, the analogue of Eq. (2) is now no longer satisfied.

Property 18. With the same hypotheses as above, for any K � C��X�, we have
�
K �C � 

�
�
�
K � Cx

�
�X	

�
(12)

As a corollary, Prop. 4, cannot be generalised to the case of semi-connected compo-
nents. Indeed, as stated by the following property, semi-connected components hierar-
chies are not organised as trees, but as DAGs (Fig. 4(d)).

Property 19. Let �Xi	
k
i�0 (resp. ��i	

k
i�0) (k � 0) be such that X0 
 X (resp. �0 


�X) and Xi�1 � Xi (resp. �i�1 � �i) for all i � ��0, k � 1��. Let us consider the
partially ordered multiset �

�k
i�0 C��Xi�,�	 (resp. �

�k
i�0 C�i�X�,�	) (with � defined

as in Eq. (3)). For any K,K� �
�k

i�0 C��Xi� (resp.
�k

i�0 C�i�X�), we have
�
K � K� � 

�
�
�
�K � K�	 � �K� � K	

�
(13)

Nevertheless, the intersection implies (under certain hypotheses) the inclusion.

Property 20. Let x � Y (resp. x � X), and y � X. Let C 
 Cx
��Y	 � C��Y� (resp.

C 
 Cx
�

�
�X	 � C �

�
�X�). Let Cy

��X	 � C��X�. We have
�

x � C �Cy
��X	

�
�
�
C � Cy

��X	
�

(14)

4.2 Properties of Strongly Connected Components Hierarchies

Unlike semi-connected components, strongly connected components are defined as
equivalence classes. Thus, they present common intrinsic properties with connected
components (Fig. 2). In particular, Props. 3 and 4 can be extended to their case. (Note
that C �

�
�X�, C��Y� are defined the same way as C �

�
�X�, C��Y� and C �

�
�X�, C��Y�.)

Property 21. Let x � Y (resp. x � X). Let C 
 Cx
��Y	 � C��Y� (resp. C 
 Cx

�

�
�X	 �

C �

�
�X�) be the unique strongly connected component containing x. Then, there exists a

unique Cx
��X	 � C��X� that intersects (and actually includes) C.

Property 22. Let �Xi	
k
i�0 (resp. ��i	

k
i�0) (k � 0) be such that X0 
 X (resp. �0 


�X) and Xi�1 � Xi (resp. �i�1 � �i) for all i � ��0, k � 1��. Let us consider the
partially ordered multiset �

�k
i�0 C��Xi�,�	 (resp. �

�k
i�0 C�i�X�,�	) (with � defined

as in Eq. (3)). For any two strongly connected components K,K� of this set, we have
�
K � K� � 

�
�
�
�K � K�	 � �K� � K	

�
(15)

Then, by progressively refining X into successive subsets, or�X into successive subre-
lations, we can build strongly connected components hierarchies as trees (Fig. 4(a)).
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4.3 Semi-connected Components Hierarchies as Enriched Strongly Connected
Components Hierarchies

On one hand, it has been observed in Sec. 4.1, that the semi-connected components
hierarchies induced by progressively refining �X,�X	, have a structure which cannot
be trivially handled. Indeed, these (cover) hierarchies are DAGs, due to inclusions or
intersections (without inclusion) between different components at same levels.

On the other hand, it has been observed in Sec. 4.2, that the strongly connected com-
ponents hierarchies, induced by the very same process, have a much simpler structure.
Indeed, these (partition) hierarchies are trees.

Based on the bijection (Prop. 12) that exists between semi-connected and strongly
connected components, it is however possible to model the (DAG) hierarchy of semi-
connected components as a (tree) hierarchy of the associated strongly connected com-
ponents, enriched at each level by a “local” DAG that represents the inclusion relation
between the semi-connected components of this level. This model is formally expressed
by the following proposition.

Proposition 23. Let α, β � ��0, k��, with α � β. Let x, y � X. Let Cx
�
�Xα	,C

y
��Xβ	 ��k

i�0 C��Xi� (resp. Cx
�α
�X	,Cy

�β�X	 �
�k

i�0 C�i�X�). Then, we have

�
Cy
��Xβ	 � Cx

��Xα	
�
�
�
Cy
��Xβ	 � Cx

��Xα	
�

(resp.
�
Cy
�β
�X	 � Cx

�α
�X	

�
�
�
Cy
�β
�X	 � Cx

�α
�X	

�
) (16)

and
�
Cy
�
�Xβ	 � Cx

�
�Xα	

�
�
��

Cy
��Xβ	 � Cy

��Xα	
�
�
�
Cy
�
�Xα	 � Cx

�
�Xα	

��

(resp.
�
Cy
�β
�X	 � Cx

�α
�X	

�
�
��

Cy
�β
�X	 � Cy

�α
�X	

�
�
�
Cy
�α
�X	 � Cx

�α
�X	

��
)

(17)

Proof. Let us suppose that Cy
��Xβ	 � Cx

��Xα	 (resp. Cy
�β
�X	 � Cx

�α
�X	). Then, we

have y � Cx
��Xα	 (resp. y � Cx

�α
�X	), and thus Cy

��Xα	 
 Cx
��Xα	 (resp. Cy

�α
�X	 


Cx
�α
�X	). From Eq. (8) (Prop. 12), we then have Cy

��Xα	 
 Cx
�
�Xα	 (resp. Cy

�α�X	 

Cx
�α
�X	). From the definition of Xα and Xβ (resp. �α and �β) (Prop. 4), and the fact

that α � β, we straightforwardly have Cy
��Xβ	 � Cy

��Xα	 (resp. Cy
�β�X	 � Cy

�α�X	),
and then Cy

��Xβ	 � Cx
�
�Xα	 (resp. Cy

�β�X	 � Cx
�α
�X	). Eq. (16) then follows from

the definition of �, provided in Eq. (3) (Prop. 4).
Let us now suppose that Cy

��Xβ	 � Cx
�
�Xα	 (resp. Cy

�β�X	 � Cx
�α
�X	). From the

definition of �, we then have Cy
��Xβ	 � Cx

��Xα	 (resp. Cy
�β�X	 � Cx

�α
�X	). Let us

consider Cy
��Xα	 (resp. Cy

�α�X	); this set exists since y � Cy
��Xβ	 � Cx

��Xα	 � Xα
(resp. y � Cy

�β�X	 � Cx
�α
�X	 � X). From the very definition of semi-connectedness

(Def. 10), y � Cx
��Xα	 (resp. y � Cx

�α
�X	) implies that Cy

��Xα	 � Cx
��Xα	 (resp.

Cy
�α�X	 � Cx

�α
�X	), while Xβ � Xα (resp.�β ��α) implies that Cy

��Xβ	 � Cy
��Xα	

(resp. Cy
�β�X	 � Cy

�α�X	). Finally, we derive from Eq. (8) (Prop. 12) that Cy
��Xβ	 �

Cy
��Xα	 (resp. Cy

�β
�X	 � Cy

�α
�X	), and Eq. (17) then follows. �
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Remark 24. Practically, this proposition proves that the standard relation�, that mod-
els the inclusion relation between the semi-connected components at distinct levels of a
hierarchy (Fig. 4(d)), can be conveniently handled by simultaneously using the inclusion
relation between the strongly connected components associated to the semi-connected
ones, and the inclusion relation between the semi-connected components of same level
in the hierarchy (Fig. 4(c)). This representation, which is formalised in Diagram (18),
has the two following virtues: �i	 it is information lossless, with respect to �; and �ii	
it replaces the Hasse diagram of�, which is a complex DAG, by a tree structure that is
enriched by “local” simple DAGs at each level of the tree. Moreover, its complexity is
not excessive by comparison to the Hasse diagram of �.

Cx
��Xα	 Cy

��Xα	 Cy
��Xα	

Cy
��Xβ	 Cy

��Xβ	

Cx
�α
�X	 Cy

�α�X	 Cy
�α
�X	

Cy
�β�X	 Cy

�β
�X	

................................................................................
�

.................................................................... .......
..... ................................................................................

�

.......
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.......

.......
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�
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�
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�
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�

.......................................................................................................................................................................................................................... .......
..... ......................................................................................................................................................................................................................................

�
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.......
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.......
.......
.......
.......
..............
............

�

(18)

5 Extending Standard Tree Structures

The “enriched trees” defined above are compliant with standard partition hierarchies
when the considered semi-adjacency is indeed an adjacency.

Property 25. If�X is symmetric, we haveC��X� 
 C��X� (
 C��X� by considering
�X as an adjacency relation). In such conditions, the Hasse diagram induced by�, and
the associated enriched tree are equal and both have a tree structure.

In a reverse way, we show how some standard (total and partial) partition hierarchies
can be generalised to handle semi-connected components hierarchies.

5.1 Partial Partition Hierarchies and Component-Trees

We consider the spatial way to refine �X,�X	. With this modus operandi, the semi-
connected components, present in successive subsets, have the same lower elements.

Property 26. Let K � C��X� � C��Y�. Then we have �K� � C��X� � K� � K� 

�K� � C��Y� � K� � K�.

Two examples of such semi-connected components are provided in Fig. 4(c). These
(sets of) components, namely B, B’ and B” (resp. GB’ and G’B”), can be unified into
a single semi-connected component B” (resp. G’B”), as it is already trivially done in
Fig. 4(d) (where B, B’, B” and GB’ and G’B” would form two chains, respectively,
otherwise).

Remark 27. Prop. 26 implies that the partially ordered multiset �
�k

i�0 C��Xi�,�	 can
be handled as a partially ordered set. However, it is not sufficient to claim that there
exists an equivalence between the set

�k
i�0 C��Xi� of all the semi-connected compo-

nents, and the set
�k

i�0 C��Xi� of all the strongly connected components. In particular,
the semi-connected components CDB, C’FGB’, C”B” and C’”J of Fig. 4 straightfor-
wardly provide a counter-example to that claim.
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(a) �X0,�X0� (b) �X1,�X1 � (c) �X2,�X2� (d) �X3,�X3 � (e) �X4,�X4�

Fig. 1. Subsets Xi of a set X, equipped with subrelations �Xi of a semi-adjacency relation �,
for i � 0 to 4, with Xi�1 � Xi for all i � ��0, 3��, and �Xi �� 	 �Xi 
 Xi� for all i � ��0, 4��

A

(a) C��X0�

B C

D

E

(b) C��X1�

B’ C’

G

F

H

(c) C��X2�

B’’ C’’

G’

(d) C��X3�

C’’’

L M

K

JI

(e) C��X4�

Fig. 2. The strongly connected components of Xi. Each one is labeled by a capital letter: A, B, C,
etc. When a component Z appears in several C��Xi�, it is successively labeled as Z, Z’, Z”, etc.

A

(a) C��X0�

B CDB

DB EDB

(b) C��X1�

B’

GB’

FGB’

C’FGB’

HGB’

(c) C��X2�

B’’

G’B’’

C’’B’’

(d) C��X3�

JIJ C’’’J

MK

LMK

K

(e) C��X4�

Fig. 3. The semi-connected components of Xi. Each one is labeled by the capital letters corre-
sponding to the strongly connected components that form its partition: A, CDB, C’FGB’, etc.
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(b) �C��Xi�,��
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i�0

C D E

C’ F H

C’’

B

B’
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C’’’ J K
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L M

G
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I

(c) “(a) � (b)”

C D E

C’ F H

C’’ B’’

C’’’ J K

A

L M

G’

I

(d) �
�4

i�0 C��Xi�,��

Fig. 4. (a) Hasse diagram for � of all the C��Xi�. (b) Hasse diagrams for � of each C��Xi�. (c)
Proposed structure (enriched tree), i.e., the fusion of (a) and (b). (d) Hasse diagram for � (DAG)
of all the C��Xi�, modeled by (c). The dashed arrows in (c) are “extra” links with respect to (d).
The blue and magenta nodes are elements that may be collapsed in (c) without loss of information.
(b–d) For the sake of readability, the nodes are labeled by their first letter, with respect to Fig. 3.



168 O. Tankyevych, H. Talbot, and N. Passat

From this remark, we can derive that it is possible to extend the notion of component-
tree [19,8], but only up to an equivalence between equal strongly connected components
that provide basepoints for semi-connected components.

5.2 Total Partition Hierarchies and Hierarchical Connectivities

We now consider the structural way to refine �X,�X	.

Remark 28. By following this modus operandi, the semi-connected components that
are present in successive subsets do not necessarily have the same lower elements. This
difference with Rem. 27 derives from the fact that the semi-connected components of
C�i�X� are composed of elements of X, but are actually defined with respect to �i.

Practically it is possible to extend (still up to an equivalence) some notions of partition-
tree, e.g., those modelling hierarchical connectivities in fuzzy paradigms [17,1].

6 Application Example

Basically, the enriched tree, that models a semi-connected components hierarchy, can
be built in two steps. The first step consists of computing the hierarchy of the strongly
connected components. This can be done by considering an approach based on Tar-
jan’s algorithm. The second step consists of computing, at each level of the tree, the
links derived from the inclusion between the semi-connected components. They sim-
ply correspond to the remaining semi-adjacency links between the strongly connected
components that model the semi-connected ones. A complete algorithmic discussion is
beyond the scope of this article, and will be developed in details in further works.

We finally propose a (simple) example whose purpose is to illustrate the relevance of
the notion of semi-connectedness, and its methodological usefulness. Let us consider
a digital grey-level image I : X � V (Fig. 5(a)), that visualises neurites. A Hessian
filter can be applied on I, to classify the pixels as linear (L, in green), blobs (B, in red),
and others (O, in blue) (Fig. 5(b)). From this classification, the standard 4-adjacency
relation defined on X � Z2 can be restricted to a semi-adjacency relation �X defined
by x �X y iff x and y belong to the same class, or x � O or B while y � L.

From the semi-connected components hierarchy of I, with respect to �X (which
is an extension of a component-tree), we can filter the semi-connected components
presenting a linear shape. For instance, in Fig. 5(c), two of the three linear patterns have
been preserved, while a third one has been removed due to its orientation.

Of course, this example is of limited purpose, since the crisp classification of X
into three classes strongly constrains the space of the possible results. A more satis-
factory solution may be to perform a fuzzy classification, that would lead to define
semi-adjacencies not only with respect to the level sets of I, but also to the level sets
of the fuzzy classification scores. Such perspective works may be relevantly developed
in the framework of hypertrees [12]. Beyond these considerations, one may notice that
with a standard component-tree, the three linear patterns would have been merged in
the same connected component, forbidding �i	 linearity characterisation, and �ii	 split-
ting of the two linear patterns of highest intensity. The proposed example, despite its
simplicity, then clearly illustrates the potential usefulness of semi-connected filtering.
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(a) Image I : X � V (b) Classification L, B,O� (c) Filtered image

Fig. 5. Neurite filtering from semi-connected components hierarchy (see text)

7 Conclusion

This work provides first results which demonstrate that cover hierarchies derived from
semi-adjacency �i	 can be handled via (enriched) tree structures; �ii	 provide a way
to generalise classical structures such as component-trees and partition-trees; and �iii	
may be involved in image processing tasks, in the framework of connected operators.

From a theoretical point of view, the links that may exist between such hierarchies
and those induced by hyperconnections [14] could be explored. The relationships with
other non-tree hierarchies [13] are also worthy of investigation. More generally, the no-
tion of semi-connection should be axiomatically formalised, beyond the sole framework
of graphs, similarly to the proposal of Serra [21] for connections.

From a methodological point of view, the extension of segmentation paradigms based
on optimal tree-cuts [6,23] could be considered, with challenges related to algorithmic
complexities. New operators could also be designed to provide “disconnection” filters,
that may be seen as dual operators with respect to reconnection filters [5].
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Abstract. This paper introduces a probabilistic framework for adap-
tive morphological dilation and erosion. More precisely our probabilistic
formalization is based on using random walk simulations for a stochas-
tic estimation of adaptive and robust morphological operators. Hence,
we propose a theoretically sound morphological counterpart of Monte
Carlo stochastic filtering. The approach by simulations is inefficient but
particularly tailorable for introducing different kinds of adaptability.
From a theoretical viewpoint, stochastic morphological operators fit into
the framework of Bellman-Maslov chains, the (max,+)-counterpart of
Markov chains, which the basis behind the efficient implementations us-
ing sparse matrix products.

1 Introduction

Mathematical morphology is a deterministic non-linear methodology for
image processing based on a pair of adjoint and dual operators: a dilation (sup-
convolution) (f ⊕ b)(x) and an erosion (inf-convolution) (f  b)(x) of an image
f : Ω → T , x �→ f(x) = t, Ω ⊂ Z2 and T = R = R ∪ {−∞,+∞}, i.e.,
δb(f)(x) = (f ⊕ b)(x) = supy∈Ω (f(y) + b(y − x)) and εb(f)(x) = (f  b)(x) =
infy∈Ω (f(y)− b(y + x)), where b(x) ∈ F(Ω, T ) is the structuring function
which determines the effect of the operator. In the most general setting, the
structuring function bz(x) is variable in space Ω and naturally adapted to each
pixel z w.r.t. the structure and regularity of f(x) in a local neighborhood cen-
tered at z. Adaptive mathematical morphology approaches just address the de-
terministic computation of local structuring function at each pixel.

Aim. In this context, the goal of this work is to introduce a probabilistic frame-
work for adaptive dilation and erosion. More precisely our probabilistic formal-
ization is based on using random walk simulations for a stochastic estimation of
adaptive and robust morphological operators. Hence, we propose a theoretically
sound morphological counterpart of Monte Carlo stochastic filtering. We briefly
discuss also the elements needed for an efficient implementation using (max,+)
linear matrix formulation of Bellman-Maslov chain (counterpart of Markov chain
in the (max,+) algebra. Up to the best of our knowledge, this is the first work

C.L. Luengo Hendriks, G. Borgefors, R. Strand (Eds.): ISMM 2013, LNCS 7883, pp. 171–182, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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which proposes a formulation of stochastic morphological image filtering using
random walks. All the results in Section 3 are novel in the state-of-the-art of
mathematical morphology.

Related Work. From the theoretical viewpoint of mathematical morphology,
our approach fits in the framework of spatially adaptive morphological opera-
tors and is connected to other significant previous approaches: i) morphological
amoebas [17] and adaptive geodesic neighborhoods [13]; ii) bilateral structuring
functions [1]; iii) path openings/closings [7,16]. Our work is related also to alge-
braic path algorithms in (min,+) algebra introduced by [12] as a (generalized)
Bellman algorithm of shortest paths solved using (min,+) linear algebra; which
have been used for graph-based watershed segmentation [20] and for optimal
path image filtering [21].

2 On Stochastic Image Denoising

Random Walks in Images f ∈ F(Ω, T ). Random walks are simulated on
bounded squared patches ΩPatch

x ⊂ Ω centered at each pixel x of the image
and of size (2P + 1)× (2P + 1) pixels. Each random walk k, starting from the
central pixel, i.e., x0 = x, is a discrete time ordered sequence of N steps, i.e.,
W k

0,N = {x0,x1, · · ·xN}, visited along the path from x0 to xN where at each
step i the walk jumps to another point i + 1 according to some distribution
probability Pr(xi+1|xi). The number of random walks, or realizations of the
random sampling procedure, is M , i.e., the processus is given by

{
W k

0,N

}
1≤k≤M .

Using a Markovian interpretation, Pr(xi+1|xi) is viewed as a transition prob-
ability of moving from state i to state i + 1. The transition probabilities in
the neighborhood of xi depend on distances between the image values f(xi).
More specifically, let us consider a random walk on the 8−connected discrete
grid associated to Z2: if xi = x0

i the next point will be one of its neigh-
bors: xi+1 ∈ {xji}1≤j≤8. Transition probabilities are traditionally defined using
Boltzmann-Gibbs distribution depending on a temperature parameter T , which
in physics describes the statistical properties of a system in thermodynamic equi-
librium. Let us consider the following general model of transition probability

Pr(xi+1|xi) =
1

ZT (xi)
exp

(
−E(xi+1)

T

)
(1)

where the transition “energy” at pixel xi+1 is given by

E(xi+1) = λψ(f)(xi+1) + (1− λ)
[
αdf (xi,xi+1)

2 + (1 − α)df (x0,xi+1)
2
]

(2)

The temperature T is the scaling parameter; and ZT (xi) is a normalization
constant called the partition function, ensuring that the probabilities sum up to
one, i.e.,

ZT (xi) =
∑

1≤j≤8

exp

(
−E(xji )

T

)
(3)
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The partition function encodes how the probabilities are partitioned among the
different pixels of the neighborhood, based on their individual energies. It counts
the (weighted) number of states a system can occupy: hence if all states are
equally probable (equal energies) the partition function is the total number of
possible states. We notice that the probability depends inversely on the transition
energies, and these energies depend on the distance between two gray-level image
pixels (or dissimilarity measure in f) given by df (xa,xb) = |f(xa)− f(xb)|.

Linear (convex) combination parameters α ∈ [0, 1] and λ ∈ [0, 1] allows a
fine-tuning of the transition energy, which can be separated into three terms:

– E1(xi+1) = ψ(f)(xi+1) = −f(xi+1)
2: This term only depends on the corre-

sponding image value and it is higher for low intensity values;
– E2(xi+1) = df (xi,xi+1)

2: This is a gradient term which imposes a preference
for smooth transitions and avoiding crossing over image edges;

– E3(xi+1) = df (x0,xi+1)
2: This term measures the similarity between the

origin x0 and prevents strong changes due to gradual cumulated transitions.

The chain W0,i+1 is generated from W0,i by sampling the neighborhood of xi
and choosing a neighbor with probability Pr(xi+1|xi). Under the first-order
Markov assumption, given the initial probability distribution of source point
Pr(x0), the probability of the Markov chain W1,l is given by Pr (W1,l|x0) =

Pr(x0)
∏l
t=1 Pr(xt|xt−1). In our case, all the random walks are initiated at the

origin x0 and consequently Pr(x0) = 1. Hence, the probability of the walk on
the image at a given step l ( 1 ≤ l ≤ N) is given by

Pr (W1,l|x0) =
l∏
i=1

Pr(xi|xi−1) =
l∏
i=1

1

ZT (xi−1)
exp

(
−E(xi)

T

)
(4)

According to that, probabilities in the walk always decrease along the space path,
and consequently a term of spatial distance, i.e., ‖xi − xi+1‖, is not needed to
account this effect.

Hence, for a given random walk k, the estimated probability at pixel xi is given
by pk(xi) = Pr

(
W k

1,i|x0

)
. By integrating the M walks, we obtain a Monte Carlo

estimation in the x0-centered patch ΩPatch
x0

of the probability density function
pdfΩPatch

x0
(x) associated to a source point x0:

pdfΩPatch
x0

(xi) =
1

M

M∑
k=1

pk(xi) (5)

The pdf can be interpreted as a stochastic kernel used for locally and adaptively
filtering the pixel x0.

Stochastic Image Filtering Using Random Walks. The rationale behind
the approach is based on the fact that random walks over small image neighbour-
hoods using image-adapted transition probabilities provide a good estimation of
the appearance of the noise-free pixels. It has been proven [4,11] that it is a sta-
ble estimation with a relatively small number of samples M (walks). The idea
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is denoising pixel x0 as a probabilistic estimation based on repeating sampling
walks W k

0,i starting from the specific pixel x0, and combining the visited pixels
along each walk with weights given by its probabilities pk(x0). More precisely,
given the vector of parameters Θ = {P, T, α, λ,M,N}, the stochastic filter SF is
defined as

SFΘ(f)(x0) =
1

M

M∑
k=1

(∑N
i=1 pk(xi)f(xi)∑N

i=1 pk(xi)

)
=

1

M

M∑
k=1

N∑
i=1

p̃k(xi)f(xi) (6)

where p̃k(xi) = pk(xi)/
∑N

i=1 pk(xi). In addition, using the (normalized) prob-
ability density function of the patch centered at x0 as a stochastic convolution
kernel, we have the following equivalent expression:

SFΘ(f)(x0) =
∑

y∈ΩPatch
x0

p̃dfΩPatch
x0

(y)f(x0 − y) (7)

where p̃dfΩPatch
x0

(xi) = 1/M
∑M
k=1 p̃k(xi). The parameters of the stochastic fil-

tering are as follows: P is the half-size of the patch, determining the scale of
the filter; N is the length of the walks (we can naturally fix N = P since the
longest possible shortest path has a length equal to the patch half size); M
number of realizations (as long as the walk is long enough, few realizations pro-
vide a reliable sampling), we typically fix M = 50; T is the temperature, being
the critical parameter which determines the local adaptivity scale of the filter,
a good trade-off has been obtained for T = 0.001. With respect to the energy
parameters, we typically fix for general purpose applications α = 0.5; the case
λ �= 0 is considered below. It is well known that to have a robust estimation at
pixel x0 of a noisy image, the distance between pixels should be computed in a
regularized version of the image, i.e., df (xa,xb) = |φ(f)(xa)−φ(f)(xb)|2, where
φ(f) is a (fast) spatially-invariant filter (e.g., a Gaussian or median filter in a
small window, reducing the dependence on the noise estimation).

3 Stochastic Dilation and Erosion

3.1 Morphologization Trick

Let us start by introducing a straightforward method to define the counterpart
of the convolution in the (+,×) algebra to the convolution of the (max,+) and
(min,+) algebras. Based on previous results of the state-of-the-art [19,15,8,1],
which justifies a logarithmic connection between linear convolution and sup/inf-
convolution, the morphologization trick can be stated as follows:

(f ∗ k)(x) =
∫
Ω

f(y)k(y − x)dy −→

⎡
⎣ b(x) = log (k(x)){

(f ⊕ b)(x) = supy∈Ω [f(y) + b(y− x)]
(f � b)(x) = infy∈Ω [f(y)− b(y + x)]

Hence, given a linear convolution with a non-negative kernel k(x), the associated
sup-convolution and inf-convolution involves the computation of the logarithm of
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the kernel in order to obtain the appropriate structuring function b(x). Further-
more, we have the following kernel vs. structuring function related properties:
0 ≤ k(x) ≤ 1, ∀x ∈ Ω; k(0) = 1;

∑
x∈Ω k(x) = 1 ⇐⇒ −∞ ≤ b(x) ≤ 0, ∀x ∈ Ω;

b(0) = 0; supx∈Ω b(x) = 0.

3.2 Stochastic Sup/Inf-Convolution Operators

Using the morphologization trick, stochastic dilation and stochastic erosion of
image f ∈ F(Ω,R), with parameters Θ = {P, T, α, λ,M,N}, are respectively
given by

SδΘ(f)(x0) = sup
1≤k≤M

[
sup

1≤i≤N
[f(xi) + pk(xi)]

]
(8)

and

SεΘ(f)(x0) = inf
1≤k≤M

[
inf

1≤i≤N
[f(xi)− pk(xi)]

]
(9)

where, using (4), the stochastic morphological penalization from walk k is

pk(xi) = log (pk(xi)) = log
(
Pr
(
W k

1,i|x0

))
=

i∑
m=1

log (Pr(xm|xm−1)k) (10)

Thus, the value of the penalization is the sum of the previous values of the loga-
rithm of the transition probabilities. Let us introduce the notion of penalization
density function of the patch ΩPatch

x0
centered at x0 as the following function

pdfΩPatch
x0

(x) =

{
sup1≤k≤M [pk(x)] if x ∈ {at least one of the M walks}
−∞ otherwise (11)

In fact, the penalization density function pdfΩPatch
x0

(x) can be considered as the
stochastic structuring function locally associated to pixel x0, which allow us to
rewrite the stochastic dilation and erosion as spatially variant operators:

SδΘ(f)(x0) = sup
y∈ΩPatch

x0

[
f(x0 − y) + pdfΩPatch

x0
(y)
]

(12)

SεΘ(f)(x0) = inf
y∈ΩPatch

x0

[
f(x0 − y) − pdfΩPatch

x0
(y)
]

(13)

We just name the logarithm of the transition probabilities as the transition pe-
nalization Pe(xm|xm−1)k and we can now write pk(xi) =

∑i
m=1 Pe(xm|xm−1)k.

More precisely, the transition penalization (a Maslov measure) between pixels
xi and xi+1 is defined as

Pe(xi+1|xi) = log (Pr(xi+1|xi)) = −E(xi+1)

T
+
−T log

(∑
1≤j≤8 exp

(
−E(xji )

T

))
T

(14)
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Interpretation of the Transition Penalization. Let us give a deeper insight
of the transition penalization. Considering the classical Maslov quantization re-
sults [18], i.e., inf(a, b) = limh→0+ −h log (exp (−a/h) + exp (−b/h)), we have,
from (14), that for a low temperature, i.e., T → 0+, the transition penalization
is approximately equivalent to

Pe(xi+1|xi) ≈ −
(

E(xi+1)

T
− inf

1≤j≤8

[
E(xji )

T

])
= −

(
E(xi+1)

T
− ZT (xi)

)
where we have introduced the infimal partition function

ZT (xi) = inf
1≤j≤8

[
E(xji )

T

]
(15)

As xi+1 ∈ {xji}, 1 ≤ j ≤ 8, we can interpret the infimal partition function
ZT (xi) (i.e., infimum of energies/temperature) as the morphological counterpart
of partition function ZT (xi) (i.e., sum of Boltzman factors) in the Gibbs distri-
bution; in order words, the normalization by subtraction of the minimum value
is the morphological counterpart of the normalization by division of the sum. If
we remember the expression of the transition “energy”, Eq. (2), and taking into
account that for images valued in T = [0, 1], we have −1 ≤ E(xi+1) ≤ 1. Hence,
this morphological normalization procedure guarantees that(
E(xi+1)− inf1≤j≤8

[
E(xji )

])
≥ 0 and therefore −∞ ≤ Pe(xi+1|xi) ≤ 0. This

is needed for a Maslov idempotent measure [9].
Coming back to the expression of the stochastic morphological weight for a

walk k, it can be rewritten for a low temperature as

pk(xi) |T→0+≈ −
i∑

m=1

(
E(xm)

T
− ZT (xm−1)

)
k

(16)

which should be compared with the probability

pk(xi) =

i∏
m=1

1

ZT (xm−1)
exp

(
−E(xm)

T

)
k

. (17)

Examples of Stochastic Dilation and Erosion. Fig. 1 reveals the effect
of geodesic distance vs. distance-to-origin terms in the transition penalization,
which is regulated by the parameter α. In particular, the pure geodesic distance
case (α = 1) involves dilation and erosion by geodesic balls which produces
a strong morphological transformation of the image into a piecewise constant
function. When the distance-to-origin is considered exclusively (α = 0), the
contours and level sets of the image are better preserved and the corresponding
stochastic dilation and erosion are more regular.
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(a)

(b-1) (b-2) (b-3)

(c-1) (c-2) (c-3)

Fig. 1. Stochastic dilation SδΘ(f) and erosion SεΘ(f), with Θ = {P, T, α, λ,M,N}, of
original image f given in (a), with P = N = 21; T = 0.001; λ = 0 and M = 50. First
column, α = 0; second column, α = 0.5; third column, α = 1. Row (b-), stochastic
dilation; row (c-), stochastic erosion.

Maslovian Random Walk. Stochastic dilation/erosion can be considered as an
optimized morphological process based on Monte Carlo simulation of Maslovian
random walks. More precisely, we define a Maslovian random walk of length N
as a discrete time indexed ordered sequence of points zt, starting from the point
z0: W0,N = {z0, z1, · · · zN} visited along the path from z0 to zN where at each
step t the walk jumps to another point t + 1 to some distribution Pe(zt+1|zt)
viewed as a transition penalization of moving from state t to state t+ 1.

Then, given the initial penalization distribution of initial point Pe(z0), the
probability of the Maslovian chain W1,l is given by

Pe (W1,l|z0) = Pe(z0) +
l∑

t=1

Pe(zt|zt−1)

From a more theoretical viewpoint, our Maslovian random walks are a special
type of Bellman-Maslov chains. Bellman-Maslov chains are the counterpart of
Markov chains in the (max,+) algebra, and they are mainly used in optimization
theory [10,2]. Its theoretical roots are founded on the Maslov idempotent measure
theory [18] and decision process theory [6]. It was fully developed in [9] and [3] by
the construction of a decision theory at the same level of generality as probability
and stochastic processes theory.

The key idea consist in replacing, in the structural axioms of probability the-
ory, the role of the classical semiring S(+,×) = (R+,+,×, 0, 1,≤) of positive real
numbers by the idempotent semiring S(max,+) = (R− ∪ −∞,max,+,−∞, 0,≤).
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The dynamics of a Markov chain is linear in the semiring S(+,×) and the Bellman-
Maslov chain is linear in the idempotent semiring S(max,+). This point will be
discussed in the Section on efficient implementation.

3.3 Stochastic Adjoint Opening and Closing

The corresponding adjoint stochastic opening to the pair (Sδ, Sε) may be for-
mulated geometrically as a spatially-variant opening using the notion of pulse
function [14] of level t at point p given by

i(p,t)(x) =

{
t x = p
−∞ x �= p

, ∀x ∈ Ω, (18)

such that any image g ∈ F(Ω, T ) can be decomposed into the supremum of its
pulses, i.e., g = ∨{i(x,g(x)),x ∈ Ω}. Let us introduce also the translate of the
function g(x) by the pair (p, t) as the function g(p,t) whose graph is obtained
by translating {x, g(x)} by p in the first coordinate and by t in the second,
i.e., g(p,t)(y) = g(y − p) + t. Using the impulse function, the stochastic opening
SγΘ(f) by adjunction is formulated as

SγΘ(f) =
∨{

pdf(p,t);ΩPatch
p

: (p, t) ∈ Ω × T ; pdf(p,t);ΩPatch
p

≤ f
}

(19)

which is consequently formulated exclusively by translation of the local penal-
ization density functions pdfΩPatch

p
(x) at each pair (p, t) and which leads to a

straightforward algorithmic implementation. Considering f as a surface embed-
ded in a 3D space, we have the following the geometric interpretation: the sub-
graph of the opening SγΘ(f) is generated by the zone swept by all “hatted
cylinders” (pdfΩPatch

p
(y−p)+ t) smaller than f . The stochastic closing SϕΘ(f) is

defined by duality of the opening. Obviously, by construction, stochastic open-
ing and closing are idempotent operators for a given set of local penalization
density functions {pdfΩPatch

x0
(y); ∀x0 ∈ Ω}. Examples of stochastic openings and

closings are given in Fig. 2, which illustrates the effect of temperature as well as
the effect of parameter α on these morphological filters.

3.4 Stochastic Operators as Adaptive Spatially-Variant Ones

Stochastic dilation/erosion are a particular case of adaptive spatially-variant di-
lation/erosion and consequently, they have the corresponding theoretical prop-
erties. Moreover, we can point out the asymptotic connections with other well-
known spatially adaptive morphological operators.

Let us start by the morphological amoebas [17]. We remember that the flat
amoeba of size r at point x is defined by Ar(x) =

{
y ∈ Ω : min{x1=x,x2,··· ,xN=y}

dAmoeba(x,y) < r}, where dAmoeba(x,y) = N +λAmoeba
∑N

i=1 |f(xi)− f(xi+1)|.
Thus, it corresponds to the case of transition energy E2 (i.e., α = 1, λ =
0): for M → +∞, with T = 1/λAmoeba. The adapted structuring element
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(a)

(b-1) (b-2) (b-3)

(c-1) (c-2) (c-3)

Fig. 2. Stochastic opening SγΘ(f) and closing SϕΘ(f), with Θ = {P, T, α, λ,M,N},
of original image f given in (a), with P = N = 21; λ = 0; and M = 50. First column,
T = 0.01, α = 0.5; second column, T = 0.001, α = 0.5; third column, T = 0.001, α = 0.
Row (b-), stochastic opening; row (c-), stochastic closing.

(a) (b) (c)

(d) (e) (f)

Fig. 3. Top, stochastic dilation SδΘ(f) in (b) and closing SϕΘ(f) in (c) of original
image f given in (a), with P = N = 21; α = 0, λ = 0; and M = 50. Bottom, stochastic
closing SϕΘ(f) of original image f given in (d), with P = N = 21; T = 0.001; and
M = 50; (e) α = 0.5, λ = 0.5; (f) α = 0, λ = 0.5.
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Ar(x) can be obtained by thresholding the penalization distribution function
pdfΩPatch

x
(z) at a given value related to r. As we have discussed above in the paper,

the corresponding dilation/erosion produces piecewise constant images. In the
case of bilateral morphology [1], the local structuring function, i.e., bσs,σi(x) =
−‖x−y‖2/2σ2

s − |f(x)− f(y)|2/2σ2
i , is related to the transition energy E3 (i.e.,

α = 0, λ = 0) with a temperature T = σ2
i /σ

2
s , but of course including a vertical

normalization. The interest in the underlaying stochastic operators for achiev-
ing adaptive filtering is clear. The example given in Fig. 3-Top shows how the
stochastic dilation and closing are used to morphologically regularize the image,
without introducing any blur or distortion of main structures. By morphology
regularization, we mean that the structures are asymmetrically simplified, in this
case the dark areas are filled in, without modifying the bright ones.

Finally, let consider the example of Fig. 3-Bottom: By including a significant
contribution of the energy E1 (i.e., λ > 0.5), the corresponding stochastic open-
ings/closing are associated to randomwalks which correspond roughly to the paths
used for the path openings/closings [7,16], which are morphological connected fil-
ters that use families of structuring elements consisting of flexible constrained
paths which are adapted to local image structures, for which there exists algo-
rithms as efficient as those using the usual families of straight line segments.

4 Towards Efficient Implementation Using Matrix
Products

From Markov Chains to Bellman-MaslovChains. Using results from [9,10],
we can state the basics on Bellman-Maslov chains as a parallel of classical Markov
chains. Let us construct an N×N matrix Ξ(t), the transition cost matrix, whose
(i, j)-th entry is ci,j(t), with i, j ∈ I, where ci,j(t) is the cost of going from
state i to j at the t-th time step: ci,j(t) = Kt|t−1(Xt = j|Xt−1 = i), where
Kt|t−1(Xt|Xt−1) is the conditional cost. We denote the cost that the Bellman-
Maslov chain reaches the state i at time step t by ci(t) = K(Xt = i). We can now
use a vector P(t) = [c1(t), · · · , cN (t)] to represent the cost distribution of the
Bellman-Maslov chain over all states at time t. Note that supi∈I ci(t) = 0. The
transition cost matrices together with the initial cost distribution completely
determine the Bellman-Maslov chain.

Let the initial distribution vector be denoted by P(0). Then the distribu-
tion of the Bellman-Maslov chain is P(1) = P(0) � Ξ(1), after one step, and
is P(t) = P(t − 1) � Ξ(t) = P(0) � Ξt, where Ξt = Ξ(1) � Ξ(2) � · · · �
Ξ(t) is called the t-step transition cost matrix, obtained by (+,×) product of
Bellman-Maslov matrices. More precisely, the product of two matrices A and B
in the semimodule S(max,+) is a matrix in Mn,l(S(max,+)) defined by A � B =

[max1≤k≤p(Ci,k +Dk,j)]i=1,···n;j=1,···l. We write also A�A� . . .�A︸ ︷︷ ︸
n times

= A�n.

We notice that if the Bellman-Maslov chain is stationary, i.e., Ξ(1) = Ξ(2) =
· · · = Ξ(t), t-step transition cost matrix is the (max,+)-power to t of the initial
matrix Ξt = (Ξ(1))�t.
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Implementation Using Sparse Algebra. A Maslovian random walk can
be viewed as a special type of stationary Bellman-Maslov chain, with P(0) =
[0, · · · , 0]. Now, we only need to compute the matrix Ξ = Ξ(1) = Pe(xj |xi) and
its (max,+) power t to obtain the cost distribution of pixel i as the i-th row of Ξt.
There exist very efficient numerical algorithms for representing sparse stochas-
tic matrices and to compute their products. Unfortunately, Ξt is not a sparse
matrix even for small t. Therefore, to use all the power of numerical methods
for sparse matrices, we propose to work on the Markov matrix framework.

The algorithm is based on computing the transition probability matrix, and
then, to obtain the stochastic structuring functions by the “morphologization
trick” of the corresponding column of the t-step matrix. Additionally, we limited
ourselves to symmetric stochastic structuring function to fit the framework of
“structuring element system” introduced in [22].

5 Conclusions and Perspectives

Stochastic dilation and erosion are naturally formalized by Monte Carlo sim-
ulation of Maslovian random walks. The approach by simulation is inefficient
but can be particularly tailored to introduce different kinds of adaptability. Ef-
ficient implementations, using an optimized product of matrices and parallel
computing, lead to relatively fast algorithms. Processing results obtained from
stochastic openings/closings are very promising in comparison with other de-
terministic locally adaptive approach. From a theoretical viewpoint, stochastic
morphological operators fit into the framework of Bellman-Maslov chains, the
(max,+)-counterpart of Markov chain.

This work can be continued in various ways. We can consider for instance
stochastic morphological operators using other “energies”, such as distances be-
tween structure tensors, distance between covariance matrices, non-local dis-
tances, etc. We can also explore the effect of gradual temperature decreasing in
iterative operators (morphological counterpart of simulated annealing).
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Abstract. It has been shown that the use of the salience map based
on the salience distance transform can be useful for the construction
of spatially adaptive structuring elements. In this paper, we propose
salience-based parabolic structuring functions that are defined for a fixed,
predefined spatial support, and have low computational complexity. In
addition, we discuss how to properly define adjunct morphological op-
erators using the new spatially adaptive structuring functions. It is also
possible to obtain flat adaptive structuring elements by thresholding the
salience-based parabolic structuring functions.

1 Introduction

Currently, one very active research area in mathematical morphology is on the
construction of adaptive morphological operators, which are based on adaptive
structuring elements that adjust their shape and/or size according to the local at-
tributes of the image. A number of different methods for the construction of adap-
tive structuring elements have been proposed, where different image attributes
were taken into account. To name a few: morphological amoebas [1], bilateral struc-
turing functions [2], general adaptive neighbourhood image processing [3], gradi-
ent orientation fields [4], salience adaptive structuring elements [5].

We have recently proposed two different methods for adaptive structuring
elements that are based on salience features in the image, in particular based
on the salience map obtained by the salience distance transform of the edge
strength of the input image. First, we have proposed salience adaptive structur-
ing elements, where the structuring elements are based on path distances defined
on the salience map [5]. This approach is similar to morphological amoebas [1]
and geodesic adaptive neighbourhoods [6]. Both the shape and size of salience
adaptive structuring elements change over the image, whereas the two aforemen-
tioned methods only change the shape of the structuring element. The second
method [7] is based on predefined shapes of structuring elements where the size
(the radius) of structuring elements is determined using a similar salience map.
The first method provides structuring elements that are more flexible, and con-
sequently the morphological operators have better properties than ones defined
by the latter method. Nevertheless, with the later approach the structuring ele-
ments can be computed in linear time with respect to the number of pixels, N , in
the image. This is not the case with the salience adaptive structuring elements,
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which are computable in O(Nr2 log r2), where r is the radius of the structuring
elements.

Taking into account that the use of salience features in the image is beneficial
for the construction of adaptive structuring elements, in this paper we intro-
duce a family of salience-based parabolic structuring functions. These functions
are defined on a fixed spatial support. We also introduce flat adaptive structur-
ing elements derived from salience-based parabolic structuring functions by a
threshold. In addition, we discuss how to properly define adjunct morphological
operators for spatially adaptive structuring functions.

2 Previous Work on Adaptive Mathematical Morphology

Let D ⊂ Zn be the domain space of the image f , and T = R ∪ {−∞,∞}
be the range space representing the image values. Then, any image f can be
represented by a function f : D → T . Let (L,≤) be a lattice defined for all grey
valued functions with the domain D and the range T , where the partial ordering
≤ is defined as f ≤ g if and only if f(x) ≤ g(x), x ∈ D.

Two basic morphological operators, an erosion ε : L → L and a dilation
δ : L → L for a function f can be defined, respectively, as

ε(f)(x) =
∧
y∈D

(f(x+ y)− b(y)), x ∈ D (1)

and
δ(f)(x) =

∨
y∈D

(f(x− y) + b(y)), x ∈ D (2)

where b : D → T is a structuring function,
∧

and
∨

denotes the infimum and
supremum, respectively.

Structuring elements are actually flat structuring functions that have values
0 and −∞, and they can be obtained by thresholding the corresponding struc-
turing functions at some threshold value τ .

In traditional mathematical morphology (defined for non-adaptive structur-
ing elements), the same structuring function b(x) (structuring element Bx) is
considered for all x ∈ D, i.e. for all pixels in the image. In adaptive mathemat-
ical morphology, the construction of structuring functions is dependent on the
position in space D, i.e. morphological operators are adaptive with respect to
the position in the considered space.

2.1 Adaptive Mathematical Morphology

One of the initial studies on adaptive structuring elements from a theoretical
point of view was done by Serra [8]. Theoretical advances were also presented in
two recent papers by Bouaynaya et al. [9,10], while Roerdink [11] discussed how
to properly construct adjunct morphological operators (for instance, an erosion
and its adjunct dilation) using adaptive structuring elements, and consequently
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(a) NMS(f) (b) −NMS(f) (c) SDT (d) SM

Fig. 1. Computation of the salience map SM for a one dimensional function f

adaptive morphological openings and closings. Maragos and Vachier [12] recently
presented a good overview on adaptive mathematical morphology.

A number of different methods for the construction of adaptive structuring
elements, and consequently adaptive morphological operators, have been recently
proposed. Methods for spatially adaptive structuring elements based on path
distances are morphological amoebas [1], adaptive geodesic neighbourhoods [6],
and salience adaptive structuring elements [5]. Adaptive structuring elements
can also be based on gradient orientation fields [4], or may be determined by
intensity information as a connected component that contains the origin of the
structuring element [3]. The shape of structuring elements is adaptive for all the
aforementioned methods, while the size is usually predefined, but can also be
adaptive to the local image attributes, as is the case with the salience adaptive
structuring elements.

Non-flat adaptive structuring elements, i.e. adaptive structuring functions,
can be obtained in a predefined fixed support (shape), while the weights are
defined using different image attributes. Then, adaptive structuring elements
can be computed by thresholding the corresponding structuring functions. For
instance, the two approaches that follow this idea are spatially variant bilateral
functions [2] and nonlocal structuring functions [13].

2.2 Salience-Based Approaches for Adaptive Mathematical
Morphology

Two methods for the construction of adaptive structuring elements based on
salience features in the image have been recently proposed [5, 7]. These two
methods are based on the salience map that was constructed using the salience
distance transform (SDT) [14] by taking into account salience of the edges in
the image. In particular, we have considered the salience map where important
or salience features of the image are highly weighed. This salience map was
constructed using SDT, which is a modified version of the distance transform,
where instead of having binary image as input, any image attribute can be
used, such as the edge strength, edge length, or curvature. Consequently, such
a salience map contains the information about the spatial distance between the
pixels, and also takes into account the salience of the edges in the image. Several
different algorithms for the computation of the salience distance transform were
proposed [14, 15]. We used a linear algorithm and took the gradient magnitude
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as the edge salience. The edge pixels were initialized with the negative values of
their salience and the non-edge pixels were set to infinity [14]. Then, SDT was
computed with the classical two-pass chamfering algorithm [16] using any type of
distance propagation. In this paper, we used the Euclidean distance transform,
but any other type of distance transform could be used.

The edges in the image are determined by using Canny’s edge detector [17],
where we use only the estimation of the gradient and non-maximal suppres-
sion (denoted as NMS(f), see Fig. 1a), and exclude hysteresis thresholding. The
gradient of the input image is computed using Gaussian derivatives, with the
standard deviation of the Gaussian filter set to σ = 1. Formally speaking, the
salience map SM (Fig. 1d) can be written as

SM(y) = Offset +
∨
x∈D

(
NMS(f)(x)− ‖x− y‖

)
, y ∈ D,

where Offset =
∧
y∈D

∨
x∈D

(
NMS(f)(x)−‖x−y‖

)
and ‖x−y‖ is the Euclidean dis-

tance. The considered Offset is used in order to have positiveness of the salience
map SM.

The main idea with the two proposed methods for adaptive structuring ele-
ments based on the salience map SM is that the structuring elements are smaller
in size at points with larger values of SM, i.e., at the points where the edges are
in the input image. Additionally, the structuring elements grow more away from
the edge rather than in the direction close to the edge. In the first method [5],
the salience adaptive structuring elements were proposed using path-based dis-
tances on the salience map SM, such that the cost c of the path between two
adjacent pixels (p, f(p)) and (q, f(q)) is defined as c(p, q) = SM(p) + SM(q). In
addition, the size of the structuring elements is also determined by the SM. The
second method [7] introduces structuring elements that have fixed and prede-
fined shape, but their size is determined by the local minima and maxima in the
salience map SM. Morphological operators defined with the first method have
better properties than morphological operators defined with the second method,
but, as mentioned in Section 1, their computational complexity is higher.

3 Salience-Based Parabolic Structuring Functions

Parabolic structuring functions are the only structuring functions that are sep-
arable and isotropic [18]. In addition, parabolic structuring functions are eigen-
functions of the slope transform [19]. In the context of adaptive mathematical
morphology, spatially variant structuring functions based on bilateral filtering
were recently introduced by Angulo [2] as

bσs,σi(x) = −
(
‖x− y‖2

2σ2
s

+
|fρ(x)− fρ(y)|2

2σ2
i

)
,

for all x ∈ D. The function fρ is a smoothed version of the input image f ,
and σs, σi are spatial and intensity parameters, respectively. These bilateral
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structuring functions are defined on the windowed (fixed) spatial support DS(x)
around every point x ∈ D. In the aforementioned method and in one based
on non-local means [13], the structuring functions were computed on the fixed
spatial support, where the values of the structuring functions depend on image
attributes. Note that the fixed spatial support of structuring functions can be a
disk, an octagon, a rectangle, or any other shape.

We have been inspired by the aforementioned methods, and we propose spa-
tially variant parabolic structuring functions based on the salience map SM that
are defined on a fixed spatial support. In the two previous methods for adaptive
structuring elements based on the salience map SM [5,7], the size of structuring
elements decreases as the salience map SM increases and vice versa. To preserve
the same property of structuring elements (structuring functions), we define a
family of salience-based parabolic structuring functions centered at point x ∈ D
as

bxs (y) = −
(
α(SM(x), SM(y)) + β SM(x)‖x − y‖2

)
, y ∈ DS(x), (3)

where α(SM(x), SM(y)) ≥ 0 is a monotonically non-decreasing function, β ≥ 0
is a constant, and DS(x) = {x + z : ‖z‖ ≤ R, x ∈ D} (‖ · ‖ is the Euclidean
distance). This family satisfies the following property

If SM(x1) ≤ SM(x2) then bx1
s (x1 + y) ≥ bx2

s (x2 + y), for all x1, x2 ∈ D. (4)

In plain English, property (4) says that the salience-based parabolic structuring
functions are larger where the salience map SM is smaller (see Fig. 2a), and that
the salience-based parabolic structuring functions are smaller if close to the edge
(see Fig 2b). In other words, the parabola centered at point x3 (Fig. 2b) is not
symmetric and it decreases faster at the side closer to the higher salience, i.e.
the parabola bx3

s (y) is skewed away from the edges in the input image.
Note that the salience adaptive structuring elements can be described us-

ing the newly proposed salience-based parabolic structuring functions (3). If
α(SM(x), SM(y)) = SM(x) + SM(y) and β = 0 for all y ∈ DS(x), then bxs (y) =
−(SM(x) + SM(y)), which means that the salience-based parabolic structuring
functions become the salience adaptive structuring elements if DS(x) is the 8-
connected neighbourhood of a point x ∈ D.

Once spatially adaptive structuring functions are constructed for each point
in the image, basic morphological operators can be defined using these struc-
turing functions. It is straightforward to compute morphological erosion and
dilation using formulas (1) and (2). Nevertheless, morphological operators de-
fined in this way might not be adjunct morphological operators, and operators
defined by their superpositions do not satisfy properties of morphological open-
ings and closing. This fact seems to be overlooked in the literature. For instance,
Salembier [13] discussed this issue, but only mentioned that the combinations
of erosions and dilations will not provide opening and closing since they are not
idempotent in the general case, which is correct. However, two important prop-
erties that often fail when computing erosion (1) and dilation (2) for spatially
adaptive structuring functions are extensiveness for morphological closing and
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(a) (b)

Fig. 2. Salience-based parabolic structuring functions in 1D. (a) Two structuring func-
tions centered at edge points. (b) Two structuring functions where one is centered at
the edge and one is close to the edge.

anti-extensiveness for morphological opening. Angulo [2] clearly mentioned the
issue with adjunct morphological operators based on spatially-adaptive structur-
ing functions, but does not explicitly deal with it and continues the discussion
using counter-harmonic mean. Here, we present a way how to compute adjunct
erosion and dilation using spatially adaptive structuring functions.

Two operators ε : L → L and δ : L → L are adjunct operators if

δ(f) ≤ g ⇔ f ≤ ε(g), (5)

where f, g : D → T . To properly construct adjunct morphological operators for
spatially adaptive structuring functions, we define an erosion as

ε(f)(x) =
∧

y∈DS(x)
(f(y)− bxs (y)), x ∈ D (6)

and its adjunct dilation as

δ(f)(x) =
∨

y∈DS(x)
(f(y) + bys(x)), x ∈ D. (7)

Note that structuring functions in (6) and (7) are only defined for points in the
spatial support DS(x).

When morphological erosion and dilation are defined with (6) and (7), then
morphological operators as superpositions of these operators can be defined as
γ(f) = δ(ε(f)) and φ(f) = ε(δ(f)). Note that these two operators γ and φ
can only be considered as morphological opening and closing, respectively, if the
same structuring functions are used for erosion and its adjunct dilation, i.e. the
salience map SM is computed only once.
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(a) Input image f (b) ε(f) (c) δ(f)

(d) γ(f) (e) φ(f) (f) (γ(f) + φ(f))/2

Fig. 3. Morphological operators for salience-based parabolic structuring functions with
α = 0, β = 0.1, R = 10

The following properties are satisfied for operators γ : L → L and φ : L → L,
if and only if the same salience map SM is used for all computations:

1. (φ(fC))C = γ(f), where C denotes the complement of the image with respect
to space D (duality)

2. φ(f) < φ(g) and γ(f) < γ(g), if f < g (increasingness)
3. f < φ(f) (extensiveness of φ)
4. γ(f) < f (anti-extensiveness of γ)
5. γ(γ(f)) = γ(f) and φ(φ(f)) = φ(f) (idempotency)

which implies that the two operators γ and φ are a morphological opening and
closing, respectively.

The experimental results for the salience-based parabolic structuring functions
are shown in Fig. 3. In this test we use bxs (y) = −0.1 SM(x)

∥∥x− y‖2, y ∈ DS(x),
x ∈ D. It can be seen that presented morphological operators do mostly change
the object in the image rather than the background of the object.

4 Flat Adaptive Structuring Elements Derived from
Salience-Based Parabolic Structuring Functions

In this section, we focus on flat adaptive structuring elements. These structuring
elements take only two values 0 and −∞, and are obtained by thresholding the
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(a) (b)

Fig. 4. Flat adaptive structuring elements derived from salience-based parabolic struc-
turing functions at some threshold level τ for a 1D function

corresponding salience-based structuring functions at some threshold value τ
(see Fig. 4),

Bx
s (y) =

{
0, bxs (y) ≥ τ

−∞, bxs (y) < τ

where x ∈ D and y ∈ DS(x). As explained in Section 3, if SM(x1) ≤ SM(x2)
then bx1

s (x1 + y) ≥ bx2
s (x2 + y), which implies that Bx2

s , translated to the origin,
is a subset of Bx1

s , translated to the origin.
Following the properties of the salience-based structuring functions, the struc-

turing elements defined in this way are smaller close to stronger edges (Fig. 4a),
and grow away from the edges rather than towards them (Fig. 4b).

Morphological erosion ε : L → L and dilation δ : L → L for salience-based
parabolic structuring elements that satisfy the adjunction property (5) can be
defined [11], respectively, as

(ε(f))(x) =
∧
y∈Bxs

f(y), x ∈ D (8)

(δ(f))(x) =
∨

y∈B̌sx
f(y), x ∈ D (9)

where B̌s
x
is the reflected neighbourhood defined as

y ∈ Bx
s ⇔ x ∈ B̌s

y
.

Accordingly, the corresponding morphological opening and closing can be de-
fined by γ(f) = δ(ε(f)) and φ(f) = ε(δ(f)), respectively. We use the following
algorithm to compute adjunct morphological operators without computing the
reflected neighbourhood of the flat adaptive structuring elements derived from
salience-based parabolic structuring functions. The erosion can be computed by
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(a) Input image f (b) ε(f) (c) δ(f)

(d) γ(f) (e) φ(f) (f) φ(γ(f))

Fig. 5. Morphological operators with flat adaptive structuring elements derived from
salience-based parabolic structuring functions for α = 0, β = 1, R = 10 and threshold
τ = −350

taking the infimum of the values over the structuring element, and its adjunct
dilation is computed by [1]:

for each point x ∈ D do
compute Bx

s

for each y ∈ Bx
s do

δ(y) = max(f(x), δ(y))
end for

end for

The important advantage of the proposed method with the fixed spatial support
is that it uses distances that can be propagated in linear time (for instance, the
Euclidean distance), while morphological amoebas or salience adaptive struc-
turing elements are based on a geodesic distance, and have a relatively high
computational complexity. The salience map SM can be efficiently computed in
linear time with respect to the number of pixels in the image. Then, the salience-
based parabolic structuring functions can be computed in O(ωN), where ω is
the size of the spatial support of the structuring functions. For the experiments
in this paper, we used a disk with radius R as a spatial support DS, which gives
a time complexity ofO(R2N). This computational complexity is less that the one
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(a) Input image f (b) ε(f), τ = −250 (c) δ(f), τ = −250 (d) γ(f), τ = −250

(e) ε(f), τ = −100 (f) ε(f), τ = −150 (g) ε(f), τ = −200 (h) ε(f), τ = −350

Fig. 6. Morphological operators with flat adaptive structuring elements derived from
salience-based parabolic structuring functions for α = 0, β = 1, R = 8 and different
thresholds τ

required for the salience adaptive structuring elements, O(Nr2 log r2), where r
is the radius of these adaptive structuring elements.

Two examples of the proposed adaptive structuring elements are depicted in
Fig. 5 and Fig. 6. Note that morphological operators defined with the new adap-
tive structuring elements have different behaviour for the circles with different
contrast, which is not the case with the traditional morphological operators with
fixed structuring elements.

5 Summary and Conclusions

In this paper, we have introduced salience-based parabolic structuring functions
that are defined on a fixed spatial support and depend on the salience map ob-
tained from the salience distance transform of the input image. We have also
shown that these adaptive structuring functions can be considered as a general-
ization of the salience adaptive structuring elements [5]. In addition, we proposed
adaptive morphological operators with adaptive flat structuring elements that
are obtained by thresholding the salience-based parabolic structuring functions.

Furthermore, we have used a proper way of computing morphological oper-
ators, in particular adjunct morphological dilation and erosion, using spatially-
adaptive structuring functions. This issue seems to be overlooked in the lit-
erature, and we empirically show how to construct those operators using any
spatially-adaptive structuring function.

The proposed adaptive morphological operators defined with the salience-
based parabolic structuring functions (or their thresholded counterparts) have
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interesting properties, compared with both adaptive and non-adaptive morpho-
logical operators. One of the main advantages of the proposed method over
previously introduced adaptive structuring elements is its low computational
complexity.

The current work experimentally shows how to define proper adjunct mor-
phological operators for spatially adaptive structuring functions, and this work
should be pursued further from a theoretical point of view.

Acknowledgement. This work is financed by the Graduate School in Mathe-
matics and Computing at Uppsala University, Sweden. Scientific support from
Prof. Gunilla Borgefors is highly appreciated.
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Adaptive Morphologic Regularizations
for Inverse Problems
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Abstract. Regularization is an well-known technique for obtaining stable
solution of ill-posed inverse problems. In this paper we establish a key rela-
tionship among the regularization methods with edge-preserving noise filtering
method which leads to an efficient adaptive regularization methods. We show ex-
perimentally the efficiency and superiority of the proposed regularization meth-
ods for some inverse problems, e.g. deblurring and super-resolution (SR) image
reconstruction.

1 Introduction

Observed images of a scene are usually degraded by blurring due to atmospheric turbu-
lence and inappropriate camera settings. The images are farther degraded by the various
noises present in the environment and the system. Moreover, sometimes we end up with
low-resolution (LR) image of the scene due to hardware limitations (e.g., sensor size)
of a digital camera. Therefore, it is essential to get a sharp clean image from the noisy
blurred image or to get a high-resolution (HR) image from multiple low-resolution im-
age frames. These are called deblurring and super-resolution (SR) respectively and are
classical inverse problems in image processing. In these inverse problems, the relation
between the observed image Y and the desired sharp image X can be represented as
[1–4]

Y = HX +η (1.1)

where Y , X and η represent lexicographically ordered column vectors of the observed
image, desired sharp image and the additive noise respectively. H is blurring matrix for
deblurring problem. For SR problem, H embeds in itself geometric transformation (i.e.
subpixel-shifts), downsampling and blurring [4].

The classical inverse problems (i.e., (1.1)) has been studied in both frequency and
spatial domains extensively in last few decades. In frequency domain Wiener filter [5]
is the most popular one that minimizes the mean square error. In spatial domain, the
solution is obtained by solving an unconstrained optimization problem, such as

X̂ = argmin
X
{1

2
‖HX−Y‖2

2 + μϒ(X)} (1.2)

where μ is the regularization parameter (also known as Lagrange multiplier) that con-
trols the emphasis between the data error (first term) and the regularization (second
term). ϒ (X) mostly represent the smoothness criterion by means of energy in first or

C.L. Luengo Hendriks, G. Borgefors, R. Strand (Eds.): ISMM 2013, LNCS 7883, pp. 195–206, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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second order image derivative. However, in this work we concentrate only on reg-
ularization based spatial domain iterative algorithms which solve the minimization
problem (1.2).

One of the most common regularization methods for inverse problem is Tikhonov
regularization [6] using bounded variation (L2 norm). It enforces smoothness in the
reconstructed image, but at the same time loses some details (e.g., edges). An edge
preserving regularization method is total variance (TV) using L1 norm of the gradients
or high-frequency wavelet components [2, 3, 7]. Farsiu et al. [8] employed bilateral
total variation (BTV) and L1 norm for both regularization and data fusion.

However, even though all these regularizations lead to stable solution, it is always
interesting to explore different kind of regularization methods for betterment. So, de-
veloping an edge-preserving regularization method that can suppress noise in degraded
images and the ringing artifacts evolved during reconstruction of image without sacri-
ficing edges is yet to achieve. still an important task.

In this work, our contribution is multi-fold. First, we analyze the different regular-
ization methods and show that they all emerge from the same concept involving low-
pass filtering which is basically smoothness prior. We also analyze different types of
smoothness kernels and found their commonalty. Based on these studies, we develop
two adaptive kernels for low-pass morphologic filter using geodesic distance between
the candidate pixel and its neighboring ones. Finally, combining all these, we devise
two new regularization method as a prior for inverse image restoration problems.

2 Regularizer and Filtering for Inverse Problems

The objective of regularization is to ensure that the reconstructed image satisfies some
quality criterion. From Bayesian point of view, regularization method corresponds to
imposing certain prior in estimating image. For example, regularization may ensure
smoothness in the reconstructed image or may improve the rate of convergence of iter-
ative reconstruction algorithm. Here our intention is to develop a regularization method
for estimating the output image with sharp edges and textures while suppressing the
noise as well as undesired artifacts.

2.1 Regularization Techniques

To obtain a stable solution, suppose a specific regularization operator ϒ is imposed on
the estimated sharp image X . The regularization term ϒ (X) (1.2) incorporates prior
knowledge of the desired solution, e.g., degree of smoothness. A commonly used reg-
ularization term, viz, the Tikhonov cost function [6, 9–13] (sometimes called bounded
variation (BV)), is given by

ϒ (X) = ‖Γ X‖2 (2.1)

where Γ is usually a high-pass operator such as derivative or Laplacian. Since high-
pass operators capture edges and noise with equal emphasis, minimization of ‖Γ X‖2
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leads to suppression of noise along with blurring of edges. An early edge preserving
regularization for inverse problems is total variation (TV) method [2, 3, 7] that penalizes
the total amount of change in the image as measured by the L1 norm of the magnitude
of the gradient, i.e.,

ϒ (X) = |∇X |1 (2.2)

Bilateral total variation (BTV) [8] combines the total variation and the bilateral fil-
ter [14, 15]. This is extension of TV regularization and is given by

ϒ (X) =
w

∑
l=−w

w

∑
m=−w

β |m|+|l||X− Sl
xSm

y X |1 (2.3)

where Sl
x and Sm

y are shift operator matrices to represent l and m pixel shift in horizontal
and vertical directions, respectively, such that l +m ≥ 0. The term w is referred to as
the window size and β (0 < β < 1) is the weighting coefficient.

Purkait et al. [4] proposed the regularization function based on multi-scale morphol-
ogy as:

ϒ (X) =
S

∑
s=1

αs1t [Cs(X)−Os(X)] (2.4)

where 1 is a column vector consisting of all 1’s and α is the weighting coefficient.
Cs(X) = (X⊕sB) sB and Os(X) = (X sB)⊕sB are morphological closing and open-
ing operators with disk structuring element sB of size s. Clearly, regularization operators
(2.2)-(2.4) are based on some high-pass operators. Ideal regularizer is expected to cap-
ture only noise present in the image so that minimizing ϒ (X) leads to suppression of
noise while keeping sharp edges unaltered. Among above regularizers, the morphologic
regularizer (2.4) is the closest to the ideal, as the open and close filters remove noise
smaller than SE and preserve edges upto the curvature of SE.

2.2 Regularizer and Smoothing Kernel

Smoothing a data-set mainly creates an approximating function that captures the un-
derlying pattern in the data, while leaving out noise or other fine-scale structures. Tra-
ditionally, people use symmetric linear filter (e.g. Gaussian filtering) or nonlinear filter
(e.g. median filter). The regularization techniques described in previous section may be
viewed as a prior which suggests that the image is composed mostly of smooth regions.
That means the reconstructed image would be mostly unaffected by low pass filtering
with a constraint that it satisfies the forward image generating process (data error term
of (1.2)). This constraint takes care of generating high frequency components due to
edges.

Let K =(αlm|l,m =−w : w) be the kernel of linear low pass spatial filter. For average

filter αlm = 1/S, and for Gaussian filter αlm = 1
S exp−

l2+m2

2σ2 , where S is the normalizing
constant so that ∑l,m αlm = 1. Suppose W denotes an index set incorporates an window
around a pixel. As discussed in the last section, an ideal image prior would be invariant
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to low pass filtering that can remove noise and keep all the image details. Then the
regularization term may be defined as

ϒ (X) = ‖X−KX‖p (2.5)

= ‖X− ∑
l,m∈W

αlmSl
xSm

y X‖p (2.6)

= ‖ ∑
l,m∈W

αlm(X− Sl
xSm

y X)‖p (since ∑
l,m∈W

αlm = 1) (2.7)

≤ ∑
l,m∈W

αlm‖X− Sl
xSm

y X‖p (Jensen’s Inequality), for p > 1 (2.8)

under minimization of ϒ (X) [note that (1.2)], (2.8) is similar to (2.3). For average fil-
tering (αlm = 1/S) with W as 4-neighborhood,ϒ (X) becomes

ϒ (X) = ∑
l,m∈W

αlm‖X− Sl
xSm

y X‖p = 2‖(∇x +∇y)X‖p = ‖∇X‖p (2.9)

which is similar to (2.2) for p = 1. An advantage of considering ‖∇X‖1 or ∑l,m∈W αlm

‖X−Sl
xSm

y X‖1 as regularization term is that it essentially minimizes ‖X−KX‖p which
is our smoothness prior. i.e. minimization of eqs. (2.2)-(2.4) try to generate an image
which is invariant to some smoothing operators and the data term of (1.2) is responsible
to generate high frequency components of the image. If the data-term doesn’t present
then ideally it would produce a smooth flat image. Now, if ϒ (X) = ‖(∇x +∇y)X‖p, we
end up with well-known BV (Bounded variation) and TV (Total variation) regulariza-
tion for p = 2 and 1 respectively. Moreover, if we consider a larger window, ϒ (X) =

∑l,m∈W αlm‖X − Sl
xSm

y X‖p, becomes BTV regularization for p = 1 and αlm = β |m|+|l|
with β ∈ (0,1). Note that ϒ (X) basically measures energy in high-frequency compo-
nents. Hence, an attractive alternate regularizer could be develop using spatial filter.

Spatial Image Filtering Techniques. Most of the traditional filters use a symmetric
non-adaptive kernel. Those filters are able to remove noise and artifacts present in the
image, but also blur the edges and wipe out textures. Tomasi et al. [15] used adaptive
kernel for edge preserving image smoothing, known as bilateral filtering, given by

αi j, lm == exp
−{ l2+m2+λ(X(i+l, j+m)−X(i, j))2

2σ2
e

}
= exp

−{
D2

i j, lm
2σ2

e
}

(2.10)

where σe is the scale parameter and X(i, j) is the intensity value at (i, j)th pixels. λ
controls the emphasis between spatial and spectral difference. This kernel may also
be viewed as the Gaussian of Euclidean distance Di j, lm between value of the pix-
els [Fig. 1]. It is still one of the state-of-the-art linear methods for edge preserving
smoothing. Various nonlinear edge preserving morphological smoothing algorithms are
also available in the literature [16–19]. Lerallut et al. [16] define adaptive morphologi-
cal operators, called amoeba filter, where shape of the structuring element varies from
pixel to pixel, determined by thresholding the geodesic distance Di j, lm of the pixel
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Fig. 1. Illustrates the bilateral and geodesic distances between points

(i+ l, j+m) from the center pixel (i, j) [Fig. 1]. Therefore it is clear that regularization
methods used in the inverse problems (2.8) evolve from low-pass filtering. Hence, a bet-
ter regularizer can be developed from more efficient adaptive nonlinear low-pass filters.
Based on these observations we develop two geodesic distance based regularization
methods for the inverse problem.

3 Proposed Morphologic Regularization

We define more general adaptive regularization as

ϒ (X) = ∑
l,m∈W

αlm|∇lm| (3.1)

where αlm is an adaptive kernel that varies from pixel to pixel. |∇lm|= ‖X − Sl
xSm

y X‖p

is pth norm of the difference between the original image X and shifted one Sl
xSm

y X or
|∇lm| = [Cs(X)−Os(X)] is the norm of difference between morphologic closing and
opening. In essence, a regularization term has two components: a derivative operator
∇lm and a smoothing kernel αlm. The elements of smoothing kernel αlm decreases with
distance from the candidate pixel (i, j). Morphologically viewed, an image may be con-
sidered as a topographic surface with (i, j) as spatial location and X(i, j) as altitude.
The geodesic distance in an image between pixels (i, j) and (i+ l, j +m) is defined as
the length of the shortest path between them along the topographic surface. Note that
BTV considers city-block distance (2.3) between pixel locations while bilateral filtering
(2.10) considers Euclidean distance between two points on the topographic surface as
discussed in the last section.

Topographic Morphology Based Regularization

Based on the above study on the kernels, we can choose an efficient adaptive kernel in
the following form:

αi j, lm =
1

Si j
exp{−

Dp
i j, lm

2ω p } (3.2)
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where Dp
i j, lm is the geodesic distance of the pixels (i, j) and (i+ l, j+m) within W . Si j

is the normalizing factor of the kernel at location (i, j). Based on the above geodesic
kernel αi j, lm, We propose a geodesic regularizer as follows:

ϒ (X) = ∑
l,m∈W

αlm|X− Sl
xSm

y X | (3.3)

Morphologic Filter Based Regularization

Moreover, we use adaptive morphological operators (2.4) by choosing adaptive struc-
turing element A adaptive instead of a flat one and is defined as

ai j, lm = κ(αi j, lm− 1), (3.4)

where κ is a constant and is fixed over all the pixels. Accordingly the adaptive morpho-
logical dilation is defined as:

(X ⊕A)(i, j) = sup
lm∈W

{X(i− l, j−m)+ ai j, lm}. (3.5)

And adaptive morphological erosion is defined as:

(X A)(i, j) = inf
lm∈W

{X(i+ l, j+m)− ai j, lm} (3.6)

Based on the above adaptive morphological operators, we propose adaptive morpho-
logic regularizer as:

ϒ (X) = ∑
l,m∈W

αlm[Ca(X)−Oa(X)] (3.7)

where Ca(X) and Oa(X) are adaptive closing and opening operators.
The pixel-wise value due to different regularization terms (proposed as well as state-

of-the-arts) for a noisy image are displayed in Fig. 2. Final regularization term is nothing
but the aggregate of their magnitude, in short, energy. Image restoration algorithms try
to minimize this energy along with the data error term (1.2). In TV and BTV regular-
ization, edge information is quite significant. Thus minimization of these two regular-
izer leads to weakening or blurring the edges. It is clear from the image that proposed
geodesic and adaptive morphologic regularization term extract more of noise than edges
of the image. So in these two regularization terms noise energy is far more dominant
than edge energy. In these cases, minimization of regularizers leads to suppression of
noise leaving edge information more or less intact. This characteristics are also reflected
in the quality of the restored image as will be seen in the experimental results. Finally,
implementation of such regularizers require efficient computation of geodesic distance.

Geodesic Distance Computation

There are two main kinds of algorithms that exist in the literature for computing
Geodesic distance: raster-scan and wave-front propagation. Raster-scan algorithms are
based on kernel operations applied sequentially over the image in multiple passes [20].
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Fig. 2. Illustrates different regularization methods. Top row: noisy input image with salt and paper
noise (2%), TV regularization term (2.2) and BTV regularization (2.3). Bottom row: deblurred
image using geodesic regularization (3.3), Morphologic regularization (2.4), and Adaptive mor-
phologic regularization (3.7) method. (Quantitative comparisons are in text).

Those methods are the extensions of Dijkstra algorithm for two dimensional grids.
Wave-front algorithms such as Fast Marching Method (FMM) [21], on the other hand,
are based on the iterative propagation of a pixel front with certain velocity. Geodesic
versions of both kinds of algorithms may be found in [22] and [23].

Most of the existing geodesic distance computation techniques are developed for
generating a distance transformation map for a gray-level image over a binary image.
Whereas, in the present work, we need to compute the geodesic distance of every pixel
within W from the central pixel. So here, we develop an efficient two-pass iterative
raster-scan algorithm which is an extension of Dijkstra algorithm. Let Π(i j, lm) =
{(i, j) = x1,x2, . . . ,(i+ l, j +m) = xn} be a path in a connected domain between the
pixels xk and xk+1. Then the geodesic distance between them is defined as:

Di j, lm = min
Π

[
n−1

∑
k=1

{1+ γ|X(xi)−X(xi+1)|}
]

(3.8)

The factor γ weights the contribution of the intensity difference against the spatial dis-
tances. Equation (3.8) generalizes the conventional spatial distance which may be ob-
tained by setting γ = 0.

We define derivative operator

∇lm
i j = |X(i, j)−X(i+ l, j+m)|1, where l,m ∈ {−1,0,1} (3.9)

Then γ∇lm
i j + s is the geodesic distance of the (i, j)th pixel from (l,m)th neighboring

pixel, where s represents the cost of unit step in spatial direction. We take s = 1 for
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Fig. 3. Flow chart of computation of geodesic distance of a pixel to its neighboring pixels

horizontal and vertical neighboring pixels and s =
√

2 for diagonal ones. The parameter
γ controls the emphasis between spatial and spectral distances. Let Geolm represents
geodesic distance from current (i, j)th pixel to (i+ l, j +m)th pixel. We describe the
computation of geodesic distance in concise algorithmic format as follows. Propagation
of geodesic distance information is also illustrated in Fig. 3.

Algorithm

For central pixel (i, j), initialize r = 0, Geoi j = 0
While r < w iterate Pass I and Pass II.

– Pass I : Compute interim geodesic distances of the pixel (l,m) on the (r+1)th layer
from the central pixel along the possible shortest paths through the inner rth layer.

• Let N(r)
lm be the neighborhood of (l,m) consisting of adjacent pixels on the rth

layer as shown in figure 3 and consider it as a flat adaptive structuring element
at (l,m).

• Interim geodesic distance of pixel (l,m) from the center of the window by

eroding with N(r)
lm as

Geotmp
lm = min

(u,v)∈Nr
lm

{Geouv + γ∇uv
lm + s}

– Pass II : Compute actual geodesic distance of the pixel (l,m) on the (r+1)th layer
using interim geodesic distances from Pass I.

• Let N(r+1)
lm be the neighborhood consisting of adjacent pixels in the (r + 1)th

layer as shown in figure 3 and consider it as a flat adaptive SE at (l,m).
• Actual geodesic distance of pixel (l,m) from the center of the window by erod-

ing with Nr+1
lm as

Geolm = min

[
Geotmp

lm , min
(u,v)∈N

(r+1)
lm

{Geotmp
uv + γ∇uv

lm + s}
]
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Now, we can compute kernel matrix K = [αi j, lm] as in (3.2) with Di j, lm = Geolm.
We solve (1.2) with the proposed adaptive regularization (3.1) by gradient descent

technique. The non-differentiability and nonlinearity are handled by appropriate shrink-
age operators [4]. The detail of optimization method is not included in this paper.

4 Experimental Results and Discussion

In this section we study the performance of the proposed regularization along with
some state-of-the-arts regularization methods for two classical inverse problems: (i)
Deblurring and (ii) Super Resolution.

Experimental Setting. For quantitative evaluation purpose, we have applied each al-
gorithm on different sets of images with different parameters and the best result of each
algorithm is chosen as the output of the algorithm. To compute geodesic kernel as de-
scribed in (3.2), we have chosen ω = 5 and γ = 0.5. For adaptive structuring element
computation, we have chosen κ = 60 for gray-level range [0-255]. Except κ , other pa-
rameters do not have much critical effect on the performance of the regularizer and can
be chosen from a wide range. We choose 512×512 gray-scale Lena image as test image
with Gaussian blurring kernel (σb = 2.5) plus the Gaussian noise (σa = 5).

Experiment I: Deblurring. We synthesize a noisy blur image and then reconstruct
the sharp image from it using the proposed regularization method as well as the ex-
isting regularization methods. Experimental results are shown in figure 4. It is seen
that the morphological regularization yields better quality reconstructed images com-
pared to other regularization methods. Experimental results on figure 4 provides the
quantitative measure of quality as follows. The proposed geodesic regularization (3.3)
(PSNR = 29.97dB, SSIM = 0.9228), proposed Adaptive morphologic regularization
(3.7) method (PSNR = 30.10dB, SSIM = 0.9251), Rudin et al. [3] (PSNR = 29.93dB,
SSIM = 0.9224), Farsiu et al. [8] (PSNR = 29.95dB, SSIM = 0.9224), and Purkait et
al. [4] (PSNR = 30.05dB, SSIM = 0.9248) almost equally. However, though marginally
the proposed regularizers perform best among the rest.

We did an experiment for adaptive morphological operators (3.4), with varying hight
parameter κ of the structuring element. Then we plot the quantitative measures in Fig.
5. κ = 0 gives flat non-adaptive structuring element and in this case propose regulariza-
tion method is identical with non-adaptive morphological regularization. As value of κ
increases, quantitative measures also increases and after a certain value fo κ those start
decreasing. It is clear from the plots that κ = [50− 70] gives good result in terms of
quantitative measures.

Experiment II: Super Resolution Reconstruction. We synthesize 10 noise-free LR
images down-sampled by resolution factor 5, and having different sub-pixel shifts.
Then reconstruct HR image from these 10 LR images using the proposed regulariza-
tion method as well as some existing regularization methods. Experimental results are
shown in figure 6. It is seen that the proposed morphological regularization yields better
quality SR reconstructed images, though not significantly very high, compared to other
regularization methods. Experimental result on figure 6 also provides the quantitative
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Fig. 4. Illustrates results of deblurring technique with various regularization methods. Top row:
noisy and blurred input image, TV regularization [3] and BTV regularization [8]. Bottom row:
deblurred image using geodesic regularization, Morphologic regularization [4], and Adaptive
morphologic method. (Quantitative comparisons are in text).

Fig. 5. Illustrates results of deblurring technique by proposed adaptive regularization method with
different values of κ

measure of quality of proposed geodesic regularization (3.3) (PSNR = 29.48dB, SSIM
= 0.9082), adaptive morphologic regularization (3.7) method (PSNR = 29.59dB, SSIM
= 0.9107), Rudin et al. [3] (PSNR = 29.43dB, SSIM = 0.9077), Farsiu et al. [8] (PSNR =
29.47dB, SSIM = 0.9080), and of Purkait et al. [4] (PSNR = 29.55dB, SSIM = 0.9106).
They perform equally well. However, though marginally, the proposed regularization
methods perform better than others.
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Fig. 6. Illustrates results of various SR image reconstruction techniques on Lena image. Top row :
SR image using Bicubic interpolation, TV regularization [3] and BTV regularization [8]. Bottom
row : SR reconstructed image using geodesic regularization, Morphologic regularization [4], and
Adaptive morphologic method. (Quantitative comparisons are in text).

5 Conclusion

In this paper, we have proposed two geodesic kernel based regularization for a general
inverse problem of image reconstruction. We analyze different regularization methods
used in this domain and found that they come from the same concept of edge preserv-
ing smoother. We propose a new robust adaptive geodesic regularization and adaptive
morphologic regularization methods that can suppress the noise more efficiently while
preserving the edges. Our experimental section shows that it works quite well, in fact
better than existing techniques.

The adaptive regularization method proposed here are tested for two classic inverse
problems, viz, deblurring and SR reconstruction problem, but one can easily extend this
work to other applications as well.

References

1. Chang, S.G., Yu, B., Vetterli, M.: Adaptive wavelet thresholding for image denoising and
compression. IEEE Trans. Image Process. 9, 1532–1546 (2000)

2. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse
problems. SIAM J. of Imaging Sciences 2, 183–202 (2006)

3. Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms.
Physica D 60, 259–268 (1992)



206 P. Purkait and B. Chanda

4. Purkait, P., Chanda, B.: Super resolution image reconstruction through bregman iteration
using morphologic regularization. IEEE Transactions on Image Processing 21, 4029–4039
(2012)

5. Widrow, B., Stearns, S.: Adaptive signal processing, vol. 491, p. 1. Prentice-Hall, Inc.,
Englewood Cliffs (1985)

6. Zhang, X., Lam, E.Y., Wu, E.X., Wong, K.K.: Application of tikhonov regularization to
super-resolution reconstruction of brain mri image. Medical Imaging and Informatics 49,
51–56 (2008)

7. Hansen, P.C., Nagy, J.G., OLeary, D.P.: Deblurring images. Fundamentals of Algorithms,
vol. 3, pp. 291–294. Society for Industrial and Applied Mathematics (SIAM) (2006)

8. Farsiu, S., Robinson, M.D., Elad, M., Milanfar, P.: Fast and robust multiframe super-
resolution. IEEE Transactions on Image Processing 13, 1327–1344 (2004)

9. Chan, T.F., Wong, C.K.T.: Multichannel image deconvolution by total variation regulariza-
tion. In: Proceedings of SPIE, San Diego, CA, USA, pp. 358–366 (1997)

10. Li, X., Hu, Y., Gao, X., Tao, D., Ning, B.: A multi-frame image super-resolution method.
Signal Processing 90, 405–414 (2010)

11. Nguyen, N., Milanfar, P., Golub, G.: Efficient generalized cross-validation with applications
to parametric image restoration and resolution enhancement. IEEE Transactions on Image
Processing 10, 1299–1308 (2001)

12. Nguyen, N., Milanfar, P., Golub, G.H.: A computationally efficient image super resolution
algorithm. IEEE Transaction on Image Processing 10, 573–583 (2001)

13. Elad, M., Feuer, A.: Restoration of a single super-resolution image from several blurred,
noisy, and under-sampled measured images. IEEE Transactions on Image Processing 6,
1646–1658 (1997)

14. Elad, M.: On the bilateral filter and ways to improve it. IEEE Transaction on Image Process-
ing 11, 1141–1151 (2002)

15. Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: IEEE Interna-
tional Conference on Computer Vision, New Delhi, India, pp. 836–846 (1998)

16. Lerallut, R., Decencière, E., Meyer, F.: Image filtering using morphological amoebas. Image
and Vision Computing 25, 395–404 (2007)

17. Cheng, F., Venetsanopoulos, A.: Adaptive morphological operators, fast algorithms and their
applications. Pattern Recognition 33, 917–933 (2000)

18. Soille, P.: Generalized geodesy via geodesic time. Pattern Recognition Letters 15, 1235–1240
(1994)

19. Debayle, J., Pinoli, J.C.: General adaptive neighborhood image processing. J. Math. Imaging
Vis. 25, 267–284 (2006)

20. Borgefors, G.: Distance transformations in digital images. Comput. Vision Graph. Image
Process. 34, 344–371 (1986)

21. Sethian, J.A.: Fast marching methods. SIAM Review 41, 199–235 (1999)
22. Toivanen, J.P.: New geodosic distance transforms for gray-scale images. Pattern Recognition

Letters 17, 437–450 (1996)
23. Yatziv, L., Bartesaghi, A., Sapiro, G.: O(n) implementation of the fast marching algorithm.

Journal of Computational Physics 212, 393–399 (2006)



Attribute Controlled Reconstruction

and Adaptive Mathematical Morphology

Andrés Serna and Beatriz Marcotegui

Mines ParisTech
CMM - Centre de Morphologie Mathématique
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Abstract. In this paper we present a reconstruction method controlled
by the evolution of attributes. The process begins from a marker, propa-
gated over increasing quasi–flat zones. The evolution of several increasing
and non–increasing attributes is studied in order to select the appropri-
ate region. Additionally, the combination of attributes can be used in a
straightforward way.

To demonstrate the performance of our method, three applications are
presented. Firstly, our method successfully segments connected objects
in range images. Secondly, input–adaptive structuring elements (SE) are
defined computing the controlled propagation for each pixel on a pilot
image. Finally, input–adaptive SE are used to assess shape features on
the image.

Our approach is multi–scale and auto–dual. Compared with other
methods, it is based on a given attribute but does not require a size pa-
rameter in order to determine appropriate regions. It is useful to extract
objects of a given shape. Additionally, our reconstruction is a connected
operator since quasi–flat zones do not create new contours on the image.

Keywords: mathematical morphology, controlled reconstruction, con-
nected operators, adaptive SE, quasi–flat zones, attribute evolution.

1 Introduction

Local operators constitute powerful techniques in digital image processing. They
are based on the neighborhood of each pixel, defined by a kernel. In general, a
kernel is a ball of radius r centered at the point to be processed. In the digital
case, the kernel is reduced to the definition of a local neighborhood describing
the connections between adjacent pixels. In Mathematical Morphology (MM),
these kernels are called structuring elements (SE) and they are the base of so-
phisticated nonlinear techniques for filtering, feature extraction, detection and
segmentation [1,2].

In practice, square SE are preferred. However, several works remark the use-
fulness and necessity of adapting algorithms according to intrinsic variability and

C.L. Luengo Hendriks, G. Borgefors, R. Strand (Eds.): ISMM 2013, LNCS 7883, pp. 207–218, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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a priori knowledge of the image [3]. Adaptive SE are elegant processing tech-
niques using non-fixed kernels. Such operators, firstly introduced by Gordon and
Rangayyan [4], vary their shape over the whole image taking into account local
image features. Serra [2] called them structuring functions and defined erosion
and dilation with spatially-varying SE.

In the literature, several works have been carried out with the aim of using
image information in order to locally adapt SE shape and size. An overview
on adaptive MM can be found in [3]. Most works focus on filters that privilege
smoothing in homogeneous regions while preserving edges as well as possible.
With this idea, Perona and Malik [5] proposed anisotropic filters that inhibit
diffusion through strong gradients.

One of the first works using adaptive SE is due to Beucher [6]. He developed
a traffic control application where the SE size depended on the perspective and
varied linearly with the vertical position of the vehicle on a video sequence. Later,
Verly and Delanoy [7] applied adaptive MM to range imagery to correct perspec-
tive distortions. Their approach consists in defining square SE such that their
size depends on the distance between objects and sensor. Shih and Cheng [8]
used simple and fast adaptive dilations with elliptic SE that varies its size and
orientation according to local properties. A more sophisticated solution, pro-
posed by Talbot and Appleton [9], defines pixel connectivities by complete and
incomplete paths. Pinoli and Debayle [10] proposed a general adaptive neigh-
borhood for MM: given a criterion mapping h and a tolerance m > 0, at each
point x an adaptive neighborhood is defined containing all points y such that
|h(y) − h(x)| < m. Lerallut et al. [11] proposed adaptive SE called amoebas.
These amoebas take image gradient into account in order to adapt their shape.
Morard et al. [12] proposed adaptive SE based on a region growing process.
These SE have a fixed size but they adapt their shape by choosing recursively
homogeneous pixels with respect to the seed pixel. Angulo [13] used the notion
of counter–harmonic mean in order to propose bilateral filters which asymptoti-
cally correspond to spatially-variant morphological operators. Note that all these
works are applied to MM, however they are useful to any other local operator
such as convolution or non-linear filters.

In this work, a reconstruction method controlled by the evolution of a given
attribute is presented (e.g. gray–level statistics, area, geodesic distances, among
others). The process begins from markers, propagated over increasing quasi–flat
zones, avoiding the creation of new contours on the image. Then, the propaga-
tion stops according to the attribute changes. We show that our method does not
require any additional size parameter in order to determine the appropriate re-
gion, it is multi–scale and auto–dual. To demonstrate its usefulness, applications
in image segmentation, adaptive SE and feature extraction are presented.

This paper is organized as follows. Section 2 presents the background on con-
nectivity relations and quasi–flat zones. Section 3 defines propagation controlled
by the evolution of attributes. Section 4 illustrates three applications. Finally,
Section 5 concludes the paper.
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2 Background

Connectivity relations naturally lead to partitions [14]. For example, the con-
nectivity relation induced by the equality of gray–level divides the image into
maximal connected components of constant gray–level, called flat–zones [15]. In
most cases, partition in flat zones results in too many segments. A less restrictive
connectivity relation can be defined adding a threshold λ. It allows to connect
adjacent pixels if their gray–level difference does not exceed λ. This procedure,
first introduced in image processing by Nagao et al. [16], is called quasi–flat (or
λ–flat) zones labeling and it is defined as [17]:

Definition 1. Let f be a digital gray–scale image f : D → V , with D ⊂ Z2 the
image domain and V = [0, ..., R] the set of gray levels. Two neighboring pixels
p, q belong to the same λ–flat zone of f , if their difference |fp − fq| is smaller
than or equal to a given λ value.

The definition of λ–flat zones is very useful in image partition, simplification
and segmentation. However, it suffers from the well–known chaining effect of the
single linkage clustering [18]. That is, if two distinct image objects are separated
by one or more transitions going in steps having a gray–level difference lower
than λ, they will be merged in the same λ–flat zone.

Several works try to restrict quasi–flat zones growth in order to prevent merg-
ing different regions. For example, Hambrusch et al. [19] proposed a technique
to limit the chaining effect by introducing an additional threshold that limits
gray–level variation over the whole connected component rather than just along
connected paths. This relation is reflexive and symmetric, but not necessarily
transitive, so it does not always lead to an image partition in the definition
domain. In [20], Soille reviewed several approaches and proposed a constrained
connectivity called (λ, ω, β)–connectivity. In this approach, a succession of λ–
flat zones is built with increasing slope parameter λ (up to a maximum λmax),
none of which may have gray–level difference greater than ω and connectivity
index greater than β. This method has the advantage of providing a unique par-
tition of the image domain, which is very difficult to achieve in any other way.
This method was successfully applied to hierarchical image partition and sim-
plification. Other solutions include viscous propagations by means of geodesic
reconstruction, as proposed in [21,22].

The main disadvantage of these approaches is how to tune the parameters.
With the aim of simplifying this selection, we propose an attribute controlled
propagation based on increasing quasi–flat zones. It consists in evaluating at-
tribute changes during region growing in order to select the appropriate parti-
tion. For a given attribute no additional size parameter is required. In that sense,
our algorithm takes advantage of a priori knowledge and intrinsic information
of the image in order to define the best propagation. Let us explain it in the
following section.
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3 Attribute Controlled Reconstruction

The idea comes from the reconstruction of an object from a marker. Let us
describe the problem with the toy example of Figure 1. Consider a marker x
on the upper left corner of Figure 1(a) and its propagation by increasing λ–flat
zones using 4–connected neighborhood. The propagation begins with λ = 0 and
it ends when propagation reaches the whole image at λ = 5.

(a) λ=0 (b) λ=1 (c) λ=2

(d) λ=3 (e) λ=4 (f) λ=5 (g)

Fig. 1. Propagation over increasing λ–flat zones from a marker on the upper left corner

In the domain of image segmentation, the question is: when should propa-
gation be stopped? Obviously, the answer depends on the specific application.
Intuitively, the evolution of an attribute could be useful to make the decision.

For example, Figure 1(g) presents the evolution of four attributes: area S(X),
geodesic elongation1 E(X), mean gray–level μf (X) and standard deviation of
gray–level σf (X). We propose two criteria in order to stop the propagation:
i) attribute rupture, to select the propagation such that the attribute change
between two consecutive λ is maximum. ii) maximum attribute, to select the
propagation such that the attribute is maximum.

On one hand, one can see between λ=3 and λ=4 that area increases up to
200% of its value (from 14 to 27 pixels). This great change is called an attribute
rupture, and it can be a reason to stop the growing process. Another example
occurs between λ=4 and λ=5, where ruptures are identified on E(X), μf (X)
and σf (X). On the other hand, the maximum elongation occurs in λ=4. Note
that for increasing attributes (e.g. area) the maximum attribute value always
corresponds to the propagation on the whole image. Therefore, selecting the
maximum attribute is only reasonable in the case of non-increasing attributes
(e.g. geodesic elongation). For further information about increasing and non-
increasing criteria, the reader is addressed to [23].

1 For details on geodesic elongation definition, see Appendix A.
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Based on Definition 1, let us introduce formal definitions for the set of in-
creasing λ–flat zones:

Definition 2. For all x ∈ D, let Λx be the set of increasing regions containing
pixel x. For all λ ∈ V and j = [1, ..., n− 1], we define Ax(λ) ∈ Λx as the λ–flat
zone of image f containing x:

Ax(λ) = {x} ∪ {q|∃℘ = (p1 = x, ..., pn = q) such that |fpj − fpj+1 | ≤ λ}

In this work λ–flat zones are arbitrarily used. However, this is not a restrictive
choice since any other hierarchical partition can be used as well. Let us introduce
formal definitions for attribute rupture and maximum attribute:

Definition 3. Let Γ (Ax(λ)) be an attribute on the λ–flat zone of image f con-
taining pixel x. We define λM and λR as the values for which the maximum
attribute and the attribute rupture appear, respectively:

λM = argmaxλi∈V |Γ (Ax(λi))|
λR = argmaxλi∈V |Γ (Ax(λi))− Γ (Ax(λi+1))|

In this work, we arbitrarily analyze only one attribute at the same time. How-
ever, other statistics or combination of several attributes can be used as well.
Compared with other methods, our main advantage is that no size parameter
is required in order to determine the adaptive region, it is a connected operator
since the λ–flat zones do not create new contours on the image [15,24], it is
multi–scale, and it is auto–dual since bright, dark and intermediate gray level
regions are processed at the same time.

4 Applications

To illustrate the performance of our method, three applications are presented:
i) image segmentation: reconstruction by controlled propagation from markers
in order to segment connected objects in range images. ii) adaptive MM: the
controlled propagation is computed on a pilot image and the result is used as
input–adaptive SE of each pixel on the original image, similar to [11,25]. And,
iii) feature extraction: features are computed on the input–adaptive SE and they
are used to characterize each point on the image with respect to its neighborhood,
similar to [12].

4.1 Image Segmentation

Thanks to new 3D data availability, an increasing number of geographic appli-
cations such as Google Earth, Microsoft Virtual Earth, OpenStreetMaps and
Geoportail is flourishing nowadays. Some of these applications do not only re-
quire to look realistic, but have also to be faithful to reality. Automatic ur-
ban structures segmentation is required in order to build accurate large scale
3D city models. In this section, we present an automatic facade segmenta-
tion method on 3D point clouds developed as part of TerraMobilita project
(http://www.terramobilita.fr). It consists in four steps:

http://www.terramobilita.fr
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1. To project 3D data to a range image on a horizontal XY–plane (Figure 2(d)).
2. To find facade markers based on height constraints. Note that facades are

the highest structures in the image.
3. To reconstruct facades from markers without including connected objects,

for example motorcycles parked next to them (Figure 2(c)).
4. To reproject the result to the 3D point cloud (Figure 2(g)).

For further details about steps 1, 2 and 4, the reader is referred to [26]. Let
us concentrate on the third step since the other ones are straight–forward and
are out of the scope of this paper. The attribute controlled reconstruction in-
troduced in Section 3 is used for this purpose. Facades are elongated structures
in the range image. Thus reconstruction from markers stops when the geodesic
elongation is maximum. Figure 2, where three motorcycles are parked next to
the facade, illustrates the process. Figures 2(a) and 2(b) show pictures helpful to
understand the scene. Figure 2(d) present the range image and the facade mark-
ers. Figure 2(f) shows the geodesic elongation evolution with increasing λ values.
Reconstruction at λ=13 is selected, which corresponds to the maximum elonga-
tion. Note that the maximum elongation (at λ=13) and the elongation rupture
(at λ=14) are almost the same connected component, thus this selection is not
critical for this example. The reconstruction result is shown in Figure 2(e) on
the range image and in Figure 2(g) on the 3D point cloud. One can see that the
entire facade is reconstructed correctly without including connected motorcycles.

With respect to other approaches in which a parameter should be selected, our
method only requires selecting an attribute, then the appropriate propagation is
automatically selected. This is useful when segmenting objects with similar at-
tributes on large databases. For example, facades are always the most elongated
structures. Then, if different λ parameters are required to segment facades on
different images (or even different facades on the same image), our method will
adapt the parameter to the best possible value.

4.2 Adaptive Morphology

Among the different approaches in input–adaptive MM, amoebas [11] appear as
a promising solution. They consist in defining a distance that depends on both
the length and the gray–level differences on a neighborhood. This distance is used
to define structuring elements N(x) = {y : dσ(x, y) ≤ r} for each pixel on the
input image. Because the amoeba distance is an increasing attribute, increasing
r leads to an inclusion property useful to define pyramid of operators [27]. In
fact, if the process consists in successive operators (e.g. an opening is an erosion
followed by the reciprocal dilation), the SE should be the same for all of them
in order to preserve mathematical properties of morphological filters, as proved
by Roerdink [28]. Thus, adaptive SE are computed on a pilot image, the same
for the whole process. This pilot image can be the original image or a filtered
version of it since the noise can modify the SE shape.
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(a) Illustrative photo (b) Illustrative photo (c) 3D point cloud

(d) Range image: facade markers (black) (e) Range image: reconstruction (black)

(f) Attribute evolution (g) Segmented 3D point cloud

Fig. 2. Segmentation of connected objects by controlled propagation from markers

In a similar way to amoebas, we apply our controlled propagation to define
adaptive SE for each pixel on the pilot image. These adaptive SE are useful to
filter structures according to a given attribute. For example, Figure 3 presents
an opening with adaptive SE using the maximum elongation. Figure 3(c) illus-
trates the SE for two pixels in elongated and non-elongated regions. Figure 3(d)
compares the result of an adaptive opening with respect to the classical one
(Figure 3(b)). Note that elongated structures are preserved while non–elongated
structures are merged with their neighborhood.

Figure 4(b) presents another example using gray–level rupture. This is useful
to define SE containing pixels with similar gray–level. Figure 4(b) shows the
SE for two different pixels in the image. Figure 4(c) presents the application
of this adaptive SE as kernel of a non–linear filter, the median filter. Note that
homogeneous regions are smoothed and high contrasted structures are preserved.
Compared with amoebas and other similar works, our method does not require
any additional size parameter since the SE only depends on attribute selection
and the input image.
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(a) Input image (b) Classical opening of size 1

(c) Adaptive SE (d) Adaptive opening

Fig. 3. Input–adaptive SE using the maximum elongation. In this case, the input and
the pilot image are the same.

(a) Input image (b) Adaptive SE (c) Adaptive median (d) Classic median

Fig. 4. Input–adaptive SE using the gray–level rupture. White cross indicates the seed
pixel. In this case, the input and the pilot image are the same.

4.3 Feature Extraction

We present an application to extract features from an image based on the shape
of the input–adaptive SE. To the authors knowledge, this idea was first presented
by Morard et al. [12], who proposed an approach using region growing structur-
ing elements (REGSE). For each pixel on the image, they defined a neighborhood
of N pixels minimizing a homogeneity function ρ(x) (e.g. gray–level difference)
between adjacent pixels. REGSE can follow any homogeneous structure but can-
not be multi–scale because its size has to be exactly N pixels. Finally, they used
the REGSE shape to compute shape features in the image.

We propose a similar approach with our propagation method. The main com-
parative advantage is that parameter N is not required, because it is adaptively
defined for each pixel during the propagation from it. In that sense, we use
non–constant size SE that depends on the image intrinsic information. This is
specially useful when the image contains objects at different scales. Addition-
ally, remember that our propagation is a connected operator since λ–flat zones
do not create new contours during propagation. This is not true for REGSE,
where region growing is forced to stop at N pixels.
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(a) Original image (b) Feature image (c) Original image (d) Feature image

Fig. 5. Feature images using input–adaptive SE controlled by the maximal elongation

(a) Original image (b) Thinning at E(x)=11 (c) Thinning at E(x)=20

(d) Elongation image (e) Threshold at E(x)=11 (f) Threshold at E(x)=20

Fig. 6. Extraction of elongated structures at different thresholds using geodesic thin-
nings [29] and thresholding on the feature image computed by our method

Consider the two examples of Figure 5. From each pixel, we compute the
adaptive SE using a propagation controlled by the maximal geodesic elongation.
Each pixel on the output image contains the maximal geodesic elongation of its
respective adaptive SE. Note that brighter and darker structures are processed
at the same time. In order to favor one of them, feature image could be weighted
using gray–level input image.

Feature images are useful to assess features and segment structures by simple
thresholding. Compared to geodesic thinnings [29] that uses geodesic elongation
as our method does, our approach has the following advantages: i) Our feature
image contains information about all objects in the scene, while geodesic thin-
ning must be computed every time in order to extract structures at different
elongations. ii) Our method, based on quasi-flat zones, deals with bright, dark
or intermediate gray level regions at the same time whereas geodesic thinning,
based on threshold decomposition of the image focuses only on bright objects.



216 A. Serna and B. Marcotegui

Figure 6 illustrates this comparison. Figures 6(b) and 6(c) present a geodesic
thinning at E(x)=11 and E(x)=20, respectively. While Figures 6(e) and 6(f)
present a simple thresholding on the feature image at these same values.

5 Conclusions

We present a reconstruction controlled by the evolution of a given attribute
during propagation from markers. This method is a connected operator since the
propagation is done on increasing quasi–flat zones, therefore new contours are
not created. Our method is auto–dual since bright, dark and intermediate gray
level regions are processed at the same time. When this controlled propagation is
computed from each pixel on a pilot image, input-adaptive SE can be defined for
mathematical morphology operators. Additionally, features on each SE can be
assessed in order to characterize the image. The main advantage of our approach
is that no size parameter is required in order to determine the appropriate region.

In order to illustrate the performance of our method, three applications are
presented. In the first case, controlled propagation from markers is used to sep-
arate connected objects in range images. In the second case, the propagation
is computed from each pixel on a pilot image, then it is used to define input–
adaptive SE that satisfies the properties of morphological filters. Moreover, if an
increasing attribute is used, it satisfies the inclusion property necessary to define
pyramid of operators. Finally, we take advantage of SE shape in order to assess
features. In this paper we have just studied the evolution of some attributes, but
the idea can be extended to other attributes and even a combination of them in a
straightforward way. In our experiments, attribute selection was done according
to the specific application.

By the moment, our study focus on the results rather than on the implemen-
tation performance. In our current prototype, input–adaptive SE computation
is the most expensive step. However, they have to be computed only once for
each image. Then, morphological operations can be computed faster.

The main drawback is the chaining effect due to transition regions. They
are paths with gradual transitions connect different regions of the image in the
same λ–flat zone. As consequence, the propagation can reach different objects
through these paths, even for low λ values. To prevent that, it is recommended
to use a filtered version of the input image as pilot image. As future work, other
connected hierarchical partitions and viscous propagations will be studied.

Our propagation method is presented for gray–scales images. Future work
will include its extension to color or multi-spectral images, where other metrics
should be used to define propagation rules.

Acknowledgements. This work has been performed as part of TerraMobilita
project.

A Appendix: Geodesic Elongation

The geodesic elongation E(X) of an object X , introduced by Lantuéjoul and
Maisonneuve [30], is a shape descriptor useful to characterize long and thin
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structures. It is defined in Equation 1, where S(X) is the area and L(X) =
supx∈X{lx(X)} is the geodesic diameter [31], that means the longest geodesic arc
of X. The longer and narrower the object, the higher the elongation. The lower
bound is reached with the disk, where E(X) = 1. An efficient implementation
can be found in [29].

E(X) =
πL2(X)

(4S(X))
(1)
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Abstract. In this paper, nonlocal mathematical morphology operators
are introduced as a natural extension of nonlocal-means in the max-plus
algebra. Firstly, we show that nonlocal morphology is a particular case
of adaptive morphology. Secondly, we present the necessary properties
to have algebraic properties on the associated pair of transformations.
Finally, we recommend a sparse version to introduce an efficient algo-
rithm that computes these operators in reasonable computational time.

1 Introduction

Mathematical morphology is an approach to image analysis that characterises
an image by transformations with simple geometrical interpretation [23]. The
original image, denoted by I, is studied by its interaction with small subsets,
named structuring elements (SEs), obtained by convolution in the max-plus al-
gebra [9]. It has been applied successfully to a large number of fields including
biomedical microscopy, material science, remote sensing, and medical imaging.
The classical approach is characterised by two main properties [21]: (1) SE is
fixed, i.e., does not depend on the spatial position at which it is centred; (2)
the basic morphological operations are invariant under translation. This idea
has been extended to grey scale images, using a complete lattice formulation
[23]. This paper deals with a case of adaptive mathematical morphology. Adap-
tive mathematical morphology refers to morphological filtering techniques that
adjust the SE to the local context of the image. The approach in this paper is
based on the adaptive morphology framework, but where the local structuring
element is “estimated” taking into consideration the whole image. We thus re-
fer it as a “nonlocal” approach, following the terminology initiated in [1]. The
term of “nonlocal morphology” has been already considered in previous works.
On the one hand, Salembier in [22] proposed a straightforward generalisation of
nonlocal means filter to morphological filters. As we will discuss, our starting
point is similar, however the proposed non local structuring function as well as
the proposed algebraic framework is totally coherent with classical morphologi-
cal adjunction theory. On the other hand, Ta et al. [25] introduced a formalism
of graph-based nonlocal morphology by generalising the PDE of dilation and
erosion. The nonlocal PDE is solved using numerical methods which includes
nonlocal distances as weights. It is obvious that such PDE-based approach does
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not induces a couple of adjoint dilation and erosion, and consequently their prod-
ucts do not involve openings and closings in the algebraic sense. We begin with
a review of the extensive literature on adaptive mathematical morphology in
Section 2. Section 3 covers the development of the nonlocal mathematical mor-
phology. We introduce a simple concept of neighbour system for an image, which
allow us to have algebraic morphological transformations. Section 4 introduces
the idea of sparse nonlocal morphology and efficient implementations. Finally,
Section 5 concludes the paper with some examples and relevant conclusions.

2 Adaptive Mathematical Morphology

Basic Definitions. Mathematical morphology considers an image I as a nu-
merical function from the “spatial” space E to a “spectral” space F. In the case
of grey-level images, E is a subset of the Euclidean Rn or the discrete space Zn

(n=2 for 2D images, n=3 for 3D images), considered as the support space of the
image, and F is a set of grey-levels, corresponding to the space of values of the
image. It is assumed that F = R = R ∪ {−∞,+∞} or Z = Z ∪ {−∞,+∞}, or
more specifically F is a closed subset of R, for instance F = [a, b] for a, b ∈ R.
Thus, a grey-level image is represented by a function,

I :

{
E → F
x �→ I(x)

(1)

i.e., I ∈ Fun(E,F), where Fun(E,F) denotes the functions from the discrete
support E onto the space of values of the image F. Accordingly, I maps each
pixel x ∈ E into a grey-level value t ∈ F, I(x) = t. Note that F with the natural
order relation ≤ is a complete lattice. It is important to remark that if the F is
a complete lattice, then Fun(E,F) is a complete lattice too [24]. Morphological
operators aim at extracting relevant structures of the image. This is achieved
by carrying out an inquest into the image through a set of known shape called
structuring element (SE). The two basic words in the mathematical morphology
language are erosion and dilation. They are based on the notion of infimum and
supremum. For the case of flat structuring element (SE), the flat erosion and
dilation operators are defined as follow,

εSE (I) (x) =
∧

y∈SE(x)
I(y) and δSE (I) (x) =

∨
y∈ŜE(x)

I(y), x ∈ E (2)

where SE(x) ⊆ E denote the spatial neighbourhood in duced by the structuring
element SE centred at x, and ŜE is the transposed structuring element (i.e.,
reflection w.r.t. the origin).

2.1 Types of Adaptivity in Mathematical Morphology

The formulation contained in previous subsection is translation invariant in the
space and in the intensity, i.e., the same processing in considered for each pixel
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x in the image I. Several ways have been analysed to define local characteristics
of the image in order to locally design the SE at each point of the product space
(x× t) ∈ E×F. There are different ways to define a hierarchy of approaches pro-
posed on adaptive morphology. We use the scheme introduced by [21]. According
to the adaptivity considered by the construction of the structuring element, we
have two main types:

1. Location-adaptive structuring elements (variability on E [2]): The structuring
element SE(x), depends on the location x in the image. It does not depend
on the input image I(x). One of the earliest application that required the use
of variable size SEs is the traffic control camera system [5]. This application
inspired [5] to consider the perspective effect in the morphological analysis.
Vehicles at the bottom of the image are closer and they appear larger than
those higher in the camera. Thus, the SE should follow a law of perspective,
for instance, vary linearly with its vertical position in the image. Other ex-
ample is the term “locally adaptable” used in [10], for SEs as disk where the
radius depend on the position of the image.

2. Input-adaptive structuring elements (variability on F [2]): The shape of the
SE(x) at x depends on the local features of an image I. We denote this
kind of structuring element by SEI(x). Examples of this type of adaptive
are morphological amoebas [16], intrinsic structuring elements [11], region
growing structuring element [20] and morphological bilateral filtering [3]. An
example of this type of adaptivity is shown in Fig.1.

(a) Classical Structuring Elements (b) Adaptive Structuring Ele-
ments

Fig. 1. SE vs SEI for some pixels

2.2 Flat Input-Adaptive Morphology

In this subsection, we limit ourselves to the case of flat input-adaptive structuring
elements. Let L = Fun(E,F) denote the complete lattice of grey-scale functions
with domain E, whose range is a complete lattice F of grey values. Consider the
mappings δ : L → L and ε : L → L defined by:

δSEI(I)(x) :=
∨

y∈SEI(x)
I(y), and εSEI(I)(x) :=

∧
y∈ŜEI(x)

I(y), x ∈ E (3)
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As noted by Roerdink [21], since the neighbourhoods depend on the input I
the mappings in (3) are in general not a dilation and erosion, i.e., they do not
form an adjunction [14], hence products δε and εδ are not guaranteed to satisfy
the algebraic properties of opening and closing. Additionally, in [21] is given an
essential conclusion: “one has to fix the adaptive neighbourhood SEI(x) once
they have been derived from an initial input image I. The one can apply the
operations in (3) to any input image J, and also use combinations of them to
construct adaptive opening, closing, alternating sequentiality filters, etc.” Thus,
in order to have algebraic morphological operators, we need to define a set of
adaptive neighbourhoods from a given image I. That is the motivation for the
first definition

Definition 1. A structuring elements system on I : E → L is a family SEI =
{SEI(x)}x∈E such that for all x, y ∈ E,

1. x ∈ SEI(x),
2. y ∈ SEI(x)⇒ x ∈ SEI(y).

The subset SEI(x) is called the structuring element system of x on the image I.

Note that the structuring element system includes the flat symmetric structuring
elements [23], intrinsic structuring elements [11], location-adaptive structuring
element [21], and spatially-variant morphology [6]. A fundamental concept in
mathematical morphology which plays a role of pseudo-inverse in mathemat-
ical morphology, is the adjunction [23]. The adjunction concept associated to
adaptive morphology is a misleading concept. See for instance [21] for a pleasant
description of this problem. The main advantage of Definition 1 is that allows
to formulate the Theorem 1.

Theorem 1. If SEI is a structuring element system on I then δSEI(J1) ≤ J2 ⇐⇒
J1 ≤ εSEI(J2), for all I,J1,J2 ∈ L

Proof. Note that the structuring element system depends only on I. Thus, the
proof is straightforward from [21].

Corollary 1. γSEI(J) := δSEI(εSEI(J)) is an opening in the algebraic sense, i.e.
γSEI(J) ≤ J and γSEI(J) = γSEI(γSEI(J)), for all I and J in L. Additionally, the
dual operator ϕSEI(J) := εSEI(δSEI(J)) is a closing in the algebraic sense.

Particular cases of this algebraic opening/closing definition can be found in the
literature, for instance, Lerallut et al. in [16] proposed the computation of the
adaptive structuring element called amoeba from a pilot image, which includes
always the central pixel (origin). Adaptive geodesic neighbourhoods in [13] and
bilateral flat structuring element [3] uses respectively a threshold over geodesic
distances or convex combination of spatial distance and a pixel value distance
to induce a spatial adaptive structuring element.

Remark 1. Note that SEI is fixed. That important issue, illustrated in [21],
involves that if J = δSEI(I), the operator εSEJ(J) is not an opening in the algebraic
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sense. In our notation, that means that in general εSEJ(J) �= γSEI(I). In practice,
you cannot apply adaptive dilation followed by adaptive erosion to obtain an
adaptive opening in the algebraic sense.

3 Non-flat Nonlocal Morphology

In order to fully understand how and why nonlocal morphology works, we will
begin with a detailed description of nonlocal means and the theory which support
the approach. Nonlocal processing refers to the general methodology of designing
energies using nonlocal comparison of patches extracted in the image. Starting
from the initial paper by Baudes et al. [1], nonlocal energies have proved to
be efficient for many imaging problems, including denoising [1], semi-supervised
classification [12] and segmentation [7]. Recently, nonlocal schemes for image
processing have received a lot of attention [8]. Rather than considering only the
vector associated to one pixel to compute pixel similarities, patches around these
pixels are considered. These patches capture the dependencies of neighbouring
pixels and thus can distinguish textural patterns. Nonlocal means filters have
been proposed in [8] mainly for denoising applications. The filtering idea consists
in computing a weighted average of the input image in a neighbourhood of
size k:

NLM(I, k)(x) =
∑
y∈I

I(y)
W̃I(x, y)∑
z∈I W̃I(x, z)

, x ∈ E

=
∑
y∈I

I(y)WI(x, y), x ∈ E (4)

where the weight WI(x, y) is defined by computing the similarity between a
patch P centred around the pixel x and a patch around y ∈ SEI,k(x)

W̃I(x, y) := W̃I(P(x),P(y))) = exp

(
−||P(x) −P(y)||2

σ2

)
, x ∈ E (5)

Here, ||P|| is the Euclidean norm of the patch P of size l× l as a vector in Rl×l
and σ is a smoothing parameter. Thus, pixels with similar neighbourhoods are
given larger weights compared to pixels whose neighbourhoods look different.
The algorithm makes explicit use of the fact that repetitive patterns appear in
most of the natural images. The idea is illustrated in Fig. 2. For a review of the
evolution of nonlocal modelling in imaging we recommend [15]. The “natural”
morphological extension of the nonlocal means defining (4) is the version on the
max-plus algebra1, which involves replacing the convolution (i.e.

∑
y∈I) by the

supremum or infimum (i.e.,
∨
y∈I or

∧
y∈I) and the kernel weights WI by their

component-wise logarithm WI = log(WI), i.e., :

1 A max-plus algebra is a semiring over the union of real numbers and −∞, equipped
with maximum and addition as the two binary operations instead of + and ×
operators as in standard algebra.
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(a) Original image (b) Equation (5) for a pixel centred at the
left-eye of the koala.

Fig. 2. Example of nonlocal-functional based on the grey-patch information. The centre
pixel is marked by a red-cross. Original image has 384 × 512 pixels.

δSEI,WI(I)(x) =
∨

y∈SEI(x)

(I(y)+WI(x, y)), and εSEI,WI(I)(x) =
∧

y∈SEI(x)

(I(y)−WI(x, y)),

(6)

for x ∈ E. A similar expression to (6) was presented by Salembier in [22] with-
out including the logarithmic transformation on WI. To justify this logarithmic
connection between the standard algebra (+,×) and (max,+) algebra underly-
ing morphological operators, the reader is referred to [18,9,4]. At this point, a
question arise, is the pair (εSEI,WI(I), δSEI,WI(I)) an adjunction in the algebraic
sense?

Definition 2. A morphological weight system WI : E×E �→ R+ on I is a weight
function such for all x, y ∈ E,

1. WI(x, x) = 0 ∀x ∈ E,

2. WI(x, y) =WI(y, x) ∀x, y ∈ E,

3. −∞ ≤WI(x, y) ≤ 0 ∀x, y ∈ E.

In fact, we note that all conditions in Definition 2 are valid for the nonlocal
weights in (4) due to the facts that 0 ≤ WI ≤ 1 and WI is a 1-diagonal and
symmetric matrix.

Theorem 2. If SEI is a structuring element system and WI a weight system on
I then δSEI,WI(J1) ≤ J2 ⇐⇒ J1 ≤ εSEI,WI(J2), for all I,J1,J2 ∈ L

Proof. Firstly, note that the structuring elements system depends only on I. The
proof is straightforward from [21], however it is included to make this article
globally self-contained, and then more comprehensible for the reader.
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δSEI,WI
(J1) ≤ J2 ⇐⇒ δSEI,WI

(J1)(x) ≤ J2(x), ∀x ∈ E by (6)

⇐⇒
∨

y∈SEI(x)

J1(y) + log(WI(x, y)) ≤ J2(x), ∀x ∈ E by max and log −∞ and 0.

⇐⇒ J1(y) + log(WI(x, y)) ≤ J2(x), ∀x ∈ E, ∀y ∈ SEI,k(x) by 2 in Definition 2

⇐⇒ J1(y) ≤ J2(x)− log(WI(x, y)), ∀y ∈ E,∀x ∈ SEI,k(y) by min and log

⇐⇒ J1(y) ≤
∧

x∈SEI(y)

J2(x)− log(WI(x, y)), ∀y ∈ E by 3 in Definition 2

⇐⇒ J1(y) ≤
∧

x∈SEI(y)

J2(x)− log(WI(y, x)), ∀y ∈ E by (6)

⇐⇒ J1(y) ≤ εSEI,WI
(I)(y), ∀y ∈ E

⇐⇒ J1 ≤ εSEI,WI
(I), ∀y ∈ E

Corollary 2. γSEI,WI(J) := δSEI,WI(εSEI,WI(J)) is an opening in the algebraic
sense, i.e., γSEI(J) ≤ J and γSEI,WI(J) = γSEI,WI(γSEI,WI(J)), for all I and J in
L. Additionally, the dual operator, ϕSEI,WI(J) := εSEI,WI(δSEI,WI(J)) is a closing
in the algebraic sense.

Definition 3. The matrix representation W of a morphological weight system
WI given an image I with n pixels x1, x2, . . . , xn ∈ E is the square matrix of size
n× n defined by W = [WI(xi, xj)] = [logWI(xi, xj)], ∀i, j = 1, . . . , n.

Remark 2. From Definition 2, it is easy to see thatW in Definition 3 should be
symmetric and with diagonal equal to zero. Additionally, W is not forced to be
positive semi-definitive as in most of the linear kernel based filtering [19]. How-
ever, any positive definitive kernel induce a weight system in E. In this section it
was shown how nonlocal morphology is a particle case of adaptive morphology
and a relevant conclusion was presented about this misleading term. However,
the implementation of this approach requires the computation of a max-plus
convolution with a full matrixW which in computationally intractable. We pro-
pose a solution to this bottleneck by modifying the neighbourhood connectiv-
ity mapping to connect only a small number of neighbours. Thus, it is possi-
ble to implement with almost linear complexity, as it is presented in the next
section.

4 Sparse Nonlocal Morphology

In the original formulation of nonlocal morphology in [22], dilation and erosion
are analysed by incorporating only the information from the k-nearest neigh-
bours (kNNs) according to the patch distance in (5). We denote this as SEI,k.
By simply plug-in SEI,k in (6), we obtain:

δSEI,k,WI(I)(x) =
∨

y∈SEI,k(x)
(I(y) + (WI(x, y))), x ∈ E (7)

It is important to note that the proposal in [22] fails to identify the importance
issue of Properties 2 and 3 in Definition 2, i.e., the symmetry of WI and loga-
rithmic relationship between WI and WI. Note that the kNN is not a reflexive
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(a) Local structuring element. (b) Sparse nonlocal structuring element.

Fig. 3. Local (SE(x)) vs nonlocal structuring element (SEk,I(x)) for the some pixels

relation, i.e., given a set of vectors X = {x1,x2, . . . ,xn}, if x1 is a kNN of x2 on
X does not imply that x2 is a k-nearest neighbours of x1 on X . So, the structur-
ing element system SEI,k does not follow the Property 2 in the Definition 1. To
have the symmetric property, a simple approach is to define the xi as a k-NN
of xj based on the metric d if d(xi,xj) is among the k smallest elements of the
set {d(xi,xj)|j = 1, . . . , i − 1, i + 1, . . . , n} or viceversa. A illustrative example
of sparse structuring element is show in Fig 3. Implementation. A large part
of the success of mathematical morphology in the imaging engineering commu-
nity is due to the algorithmic developments. Very efficient algorithms have been
proposed for translation invariant morphological operators for both binary and
grey scale images. However, algorithms addressing the case of adaptive SEI are
still very limited. Here, we proposed an efficient implementation for the case of
sparse nonlocal morphology (SEI) based on sparse matrices. Basically, we solve
the matrix product directly in the algebra (max,+) taking advantage of the
sparsity of the structuring element system. So, we define a square matrix of size
n × n denoted by ẆSEI,k or by abuse of notation Ẇ = [W(i, j)] if j ∈ SEI,k(i)
and 0 otherwise. Thus, an adaptive dilation (erosion) may be solved efficiently
as it is presented in Algorithm 1. In sparse matrices only the non-zero entries
are stored. We denote as findnonzero(W) the function to obtain the non-zero
entries of a sparse matrix W. Each entry in the output represents an element
wi,j of the matrix and can be accessed by the two indices i and j. Accordingly,
max.row(X) denotes the vector of the maximum of each row of X, and vec(X)
the vectorization of X, i.e., the linear transformation to convert the matrix into
a column vector.

Algorithm 1. Sparse Max-Plus Dilation

Require: I ∈ Rn1×n2 , and a sparse square matrix Ẇ ∈ Rn1n2×n1n2 .
I = vec(I) Vectorization of the original image.

[i, j,v]=findnonzero(Ẇ) Find nonzero elements in Ẇ.
for k = 1 to |v| do

O(i(k), j(k)) = I(i(k)) + log(v(k)) Parenthesis operation in (7).
end for
O = max.row(O) Maximum operation in (7).
return O
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Theorem 3. Every adaptive dilation(erosion) based on a sparse matrix Ẇ can
be computed in time O(nk log(k)) and space O(nk), where n is the number of
pixels of the image and k > 0.

Proof. To compute a dilation, we multiply n times the original image I as a
vector to each of the rows of the sparse matrix Ẇ of size n× n with k values
different of zeros (O(kn)). A maximum operation should computed in rows, i.e.,
O(k log(k)n). Thus, the complexity of Algorithm 1 is O(k log(k)n). However,
note that usually k " n then the computation time tends to be linear O(n).

Connections to Graph Theory. To warm up, let us start by recalling some
graph-theoretic definitions.

– A graph G is pair of sets G = (V , E), where the elements of E , called edges,
are unordered pairs of elements from V , called vertices.

– A sequence x1, x2, . . . , xk of distinct vertices of a graph G = (V , E) is called
a path between x1 and xk if {xi, xi+1} ∈ E whenever 0 ≤ i < k. The length
of the path is k, which is the number of edges in the path.

– A graph G = (V , E) is said to be connected if there is a path between every
pair of vertices in V .

– The adjacency matrix AG of a graph G with n vertices is a n × n matrix
AG = (aij) in which the entry aij = 1 if there is an edge from the vertex i
to vertex j and is 0 if there is no edge from vertex i to vertex j.

The follows definitions are valid for connected graphs.

– The distance d(x, y) between a pair of vertices x, y ∈ V is the length of the
shortest path between these vertices.

– The eccentricity e(x) of a vertex x is the maximum distance from x to any
other vertex, i.e. e(x) = maxy∈V d(x, y).

– The maximum eccentricity among all vertices of a graph G = (V , E) is called
the diameter, i.e. diam(G) = maxx∈V e(x)

– Given a set of data points X = {x1,x2, . . . ,xn} with xi ∈ Rd. Gk(X) =
(V , E) is a directed graph, where V = X, and the vertex 〈xi,xj〉 ∈ E if and
only if d(xi,xj) is among the k smallest elements of the set {d(xi,xj)|j =
1, . . . , i− 1, i+ 1, . . . , n} or viceversa, where d is a metric.

For a disconnected graph G, the diam(G) is defined to be the diameter of the
largest connected component in G. From a digital image I, we define G = (V , E)
as an undirected graph with vertex set V matching the image pixels and edge
set E consisting of unordered pairs of vertices indicating the adjacency between
the image pixels according to the adaptive structuring element SEI (or SEI,k for
sparse nonlocal morphology). As the graph only depend on I and SEI, we use
the notation G(SEI) (or G(SEI,k)). Some links between the nonlocal formulation
and classical graph theory are easily perceived.

– G(SEI,k) is a Gk(PI), by the metric (5), where PI denotes the patch infor-
mation of the image I.
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– The element-wise product between AG(SEI,k) and WI is exactly the sparse

matrix ẆSEI,k used in Algorithm 1.

Finally, we enunciate a less intuitive link between morphological operators and
graph properties (proof is not included because of space constrains).

Theorem 4. δi+1
SEI

(I) = δiSEI(I) for i ≥ diam(G(SEI)).

5 Experiments and Conclusions

To illustrate the effect of nonlocal morphological operators, we firstly analyse
the simple geometrical case of Fig. 4. Nonlocal morphological operators perform
quite well due to the connected components of G(SEI,k), displayed in Fig.4(h),
are coherent with the geometric structures of the original image. In the sec-
ond example, given in Fig. 5, parameters are set to have an unique connected
component. We can see that the simplification by nonlocal morphology affects
only flat zones of the image, in comparison with classical morphology. However,
it is important to remark that the important geometrical interpretation of the
classical morphological operators is missing in the nonlocal case. Finally, visual
comparison between local and nonlocal dilations and erosions can be performed
in a complex image depicted in Fig. 6. To summarise, we studied a class of
morphological filters which operate based on patch distance information. We
also analysed in detail the requirements to have genuine adaptive morphological
transformations and, as conclusion, the symmetry and logarithmic connection
turns out to be the most relevant properties. Finally, we provided a fast imple-
mentation in the case of sparse nonlocal morphology which can be used in any

(a) I (b) δ1SEI,k(I) (c) δ2SEI,k(I) (d) δ5SEI,k (I)

(e) ε1SEI,k(I) (f) ε2SEI,k(I) (g) ε5SEI,k(I) (h) CC of G(SEI,k)

Fig. 4. Half-chessboard pattern example is a 48×96 binary image where each square has
144 pixels. The original image (a) is corrupted by impulse noise (σ = .3). Flat nonlocal
morphology operators, where patches are square 3 × 3, and k = 5 are illustrated in
(b)-(g). CC in (h) denotes connected components.
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(a) I (b) δ3SEI,k(I) (c) γ2
SEI,k

(I) (d) γ2
SE(I)

(e) ε3SEI,k (I) (f) ϕ2
SEI,k

(I) (g) ϕ2
SE(I)

Fig. 5. House pattern example is a 110 × 130 image. Patches are squares of 5 × 5,
σ = 200 and k = 5. The k-graph contains only one connected component.

(a) ε2SE(I) (b) ε5SE(I) (c) δ2SE(I) (d) δ5SE(I)

(e) ε2SEI,k (I) (f) ε5SEI,k(I) (g) δ2SEI,k(I) (h) δ5SEI,k(I)

Fig. 6. Examples of classical (top) and sparse nonlocal (bottom) erosion and dilations,
where patches are squares 5× 5, σ = 200 and k = 5. Original image in Fig. 2.

adaptive morphology. Future work includes the comparison of our approach with
nonlocal total ordering by manifold learning introduced by [17].
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Abstract. Quasi-flat zones enable the computation of homogeneous image re-
gions with respect to one or more arbitrary criteria, such as pixel intensity. They
are most often employed in simplification and segmentation, while multiple
strategies exist for their application to color data as well. In this paper we explore
a vector ordering based alternative method for computing color quasi-flat zones,
which enables the use of vectorial α and ω parameters. The interest of this vec-
torial strategy w.r.t marginal quasi-flat zones is illustrated both qualitatively and
quantitatively by means of color simplification and segmentation experiments.

Keywords: Quasi-flat zones, Image partition, Image simplification, Color
morphology, Vector orderings.

1 Introduction

For some time now quasi-flat zones [8], i.e. homogeneous image regions with respect
to one or more arbitrary criteria, such as pixel intensity, have been enjoying the in-
terest of the morphological image analysis community. Given their strong applica-
tion potential, in terms of image simplification and segmentation, several definitions
have been elaborated in the past with varying degrees of flexibility and efficiency, e.g.
[1,4,11,14,15]; out of which the (α, ω)-zones [11] stand particularly out, due to their
practical properties.

Although most of them focus on grayscale data, color extensions have been also
elaborated, relying either on the marginal processing of each color channel [11], or on
customized inter-pixel metrics, that take into account color specific information [15].
Inspired by the work on vectorial color mathematical morphology and the application
specific advantages of vector strategies [2], we have decided to take a different direction
in this context. More precisely, we focus on the (α, ω)-zones and investigate a vector-
ordering based approach for them, of which the main interest w.r.t marginal quasi-flat
zones, lies in a) being able to specify channel-specific local and global variation criteria
and b) being able to access a much finer range of local variation criteria, while search-
ing for the one satisfying the global criterion. The practical interest of the proposed

C.L. Luengo Hendriks, G. Borgefors, R. Strand (Eds.): ISMM 2013, LNCS 7883, pp. 231–242, 2013.
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approach is illustrated both qualitatively and quantitatively through simplification and
segmentation tests respectively.

The rest of the paper is organized as follows. Section 2 provides the necessary theo-
retical background. We then proceed to Section 3, where we elaborate on the proposed
vectorial extension to quasi-flat zones. The experiments focusing on the simplifica-
tion and segmentation of color images are presented in Section 4, while Section 5 is
dedicated to concluding remarks.

2 Background

2.1 Definitions

The notations presented in this section have been introduced in [9] and [10]. Let f :
E → T be a digital image, where E is its definition domain, the discrete coordinate
grid (usually N2 for a 2-D image), P(E) the set of all subsets of E and T the set of
possible image values. In the case of a grayscale image, T can be defined on R, but it is
often defined rather on a subset of Z, most commonly [0, 255]. In case of multivariate
images such as color or multispectral, T is defined on Rn or Zn, where n > 1 denotes
the number of image channels. We denote f(p) the intensity of pixel p in grayscale
images and f b(p) the intensity in the band b of pixel p in multivariate images.

Definition 1. A partition P of E is a mapping p→ P (p) from E into P(E) such that:

1. ∀p ∈ E, p ∈ P (p);
2. ∀p, q ∈ E, P (p) = P (q) or P (p) ∩ P (q) = ∅.

The above term P (p) indicates the part of P which contains the pixel p. We note that:⋃
p∈E

P (p) = E (2.1)

The partition of an image can be obtained through different methods. Here we consider
Quasi-Flat Zones which rely on the concept of connectivity. We define a connection as
the family of all the sets of a space that are connected according to some connectivity
criterion.

Definition 2. A connection C is any family in P(E) such that:

1. ∅ ∈ C;
2. ∀p ∈ E, {p} ∈ C;
3. for each family {Ci, i ∈ L} ⊆ C,

⋂
i∈L Ci �= ∅,

⋃
i∈L Ci ∈ C, where L is an index

set.

Partitioning an image using a connection C is achieved through a search of the con-
nected components which are of maximal extent according to the connection C. A con-
nected component C ⊆ E is of maximal extent if there is no other set C′ ⊃ C such
that C′ ⊆ E and C′ ∈ C.

In practice, identifying connected components of maximal extent requires to define
a dissimilarity measure between two pixels. Let us assume that each pixel q ∈ E can be
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described by some attribute written A(q) (e.g. its intensity) and consider a given r-norm
‖ · ‖r. A dissimilarity can then be measured between a couple of pixels following:

q, q′ ∈ E, d(q, q′) = ‖A(q)−A(q′)‖r (2.2)

Two adjacent pixels p and q will then belong to the same connected component C if
d(p, q) < S, S being a dissimilarity threshold. If they are not adjacent, the dissimilarity
is measured along a path linking them. A path π(p� q) of length Nπ between any two
elements p, q ∈ E is a chain (noted as 〈. . .〉) of pairwise adjacent pixels:

π(p� q) ≡ 〈p = p1, p2, . . . , pNπ−1, pNπ = q〉, (2.3)

Definition 3. Let Π �= ∅ be the set of all possible paths between a pair of pixels p and
q. The minimum dissimilarity metric with respect to some pre-specified pixel attribute,
is the ultrametric functional given by:

d̂(p, q) =
∧
π∈Π

⎧⎨⎩ ∨
i∈[1,...,Nπ−1]

{
d(pi, pi+1)

∣∣ 〈pi, pi+1〉 subchain ofπ(p� q)
}⎫⎬⎭

(2.4)

In other words, the dissimilarity measured between two pixels p to q is the lowest cost
of a path from p to q, with the cost of a path being defined as the maximal dissimilarity
between pairwise adjacent pixels along the path.

2.2 Quasi-flat Zones

Since several quasi-flat zone definitions have been proposed in the literature, we con-
sider here only the two main definitions, namely the α-zones Cα and the (α, ω)-zones
Cα,ω. The interested reader is referred to Ref. [11] for more details. Quasi-flat zones
are defined by extension of flat zones (generally called connected components), which
are defined as:

C(p) = {p} ∪ {q|d̂(p, q) = 0} (2.5)

The flat zones cluster connected sets of adjacent pixels with same attribute values (gen-
erally the intensity). This very restrictive definition leads to very small sets of pixels
when dealing with natural images. So, a local range parameter (α) has been introduced
to tolerate a dissimilarity between adjacent pixels in order to obtain wider connected
components, thus leading to the definition of α-zones:

Cα(p) = {p} ∪ {q|d̂(p, q) ≤ α} (2.6)

The Cα of a pixel p is then the set of pixels to which p is linked through at least one
path where the dissimilarity between adjacent pixels is less or equal to α. Note that
flat zones are a particular case of Cα where α = 0. Let us observe that segmenting an
image into Cα with α > 0 may result in an undersegmentation phenomenon. Even with
small α values, it may lead to the so-called “chaining effect” (see [11]).
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In order to counter this problem, several new quasi-flat zone definitions based on Cα

have been elaborated. We focus here on Cα,ω [11] which relies on a global range ω and
the following hierarchical property of Cα:

∀α′ ≤ α,Cα′
(p) ⊆ Cα(p) (2.7)

It leads to the following definition of Cα,ω:

Cα,ω(p) = max{Cα′
(p) | α′ ≤ α and R(Cα′

(p)) ≤ ω} (2.8)

where R(Cα) is the maximal difference between the attributes of two pixels of Cα. So,
the Cα,ω of a pixel p is the widest Cα′

(i.e. built with the highest α′ ≤ α thanks to
property 2.7) where the maximal inter-pixel difference is less than or equal to ω.

3 Color Quasi-flat Zones

The extension of quasi-flat zones to multivariate and more specifically to color images
although not straightforward is not as difficult as color mathematical morphology [2].
Multiple approaches have been elaborated in the past, with various advantages and dis-
advantages, that we are going to recall shortly in this section, before presenting our
method.

3.1 Related Work

Having limited our scope to α- and (α, ω)-zones, the approaches that have been con-
ceived so far for their extension to color images, fall into two major categories de-
noted as marginal and vectorial [2]. Given a color image, its marginal quasi-flat zone
processing, leads to channel-wise computations where each dimension of color pixels
is handled independently. In practice this is equivalent to computing the partition of
each of the three dimensions separately, which most often will lead to three incoherent
partitions that will need to be subsequently merged w.r.t. some arbitrary criterion.

For instance the color extension of Cα proposed by Angulo and Serra [1] is based
on a polar color space, where colors are represented in terms of hue, saturation and
luminance, thus providing an effective distinction of chromatic (i.e. hue and saturation)
from achromatic information (i.e. luminance). The challenge in this context consists
in combining these two types of information, by employing hue only for “sufficiently”
saturated colors, since it is undefined for zero saturation. Thus, the merging step of
marginal quasi-flat zones lends itself perfectly well for this task, since by computing
the zones on luminance and hue channels only, all that remains is to realize the merg-
ing of the resulting two partitions, by employing the original image’s saturation levels.
Specifically they have thresholded the saturation, hence obtaining a binary saturation
map, denoting the areas of high saturation where hue based quasi-flat zones are to be
used, and areas of low saturation where luminance based quasi-flat zones are preferred.

Another partition merging method has been presented by Weber [12], who employs
a voting mechanism, adaptable to both Cα and Cα,ω. Specifically, given n marginally
computed partitions, two pixels are then considered in the same quasi-flat zone, if and
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only if they belong to the same quasi-flat zone in at least ι channels out of n. The ι
parameter in this case constitutes a way of controlling the level of oversegmentation.

Soille [11] on the other hand, has chosen to conduct the merging procedure implicitly
during the quasi-flat zone computation stage. More precisely, the color pixel attribute
difference is once again calculated channel-wise, using marginal vector differences.
This way, the difference of two color pixels (or attributes thereof) is considered as less
or greater than α ∈ Rn, if and only if the same is valid across all image channels:

∀i ∈ [1, n], ∀p, q ∈ E, |f i(p)− f i(q)| ≤ αi ⇔ d(p, q) ≤ α (3.1)

The same principle can be employed when dealing with Cα,ω in order to carry out the
additional comparison R(Cα(p)) ≤ ω. In other words, a color pixel attribute difference
is considered less or equal than a vectorial ω ∈ Rn, if and only if its marginal com-
ponents are each and every one less or equal than the respective marginal components
of ω. However, establishing the multivariate version of Cα,ω, requires additionally a
vector comparison scheme for conducting the comparison α′ ≤ α of Eq. (2.8). And at
this point, the lack of totality renders marginal ordering insufficient for this task, since
there can be vectors that are incomparable.

To overcome this, Soille [11] has suggested the use of only α = α1 vectors, thus
artificially inducing a total ordering among the α values: [0, 0, 0]T ≤ [1, 1, 1]T ≤ . . ..
Consequently, this way one effectively filters out all α vectors that are marginally in-
comparable, thus obtaining a valid multivariate Cα,ω definition, denoted as Cα,ω

Soille,
albeit with a limited value domain for α.

Leaving marginal approaches aside, the vectorial strategy manipulates each color
pixel as a whole, thus taking into account inter-channel relations and fully avoiding
the merging step. This approach has been adopted notably by Zanoguera [15], who
computes color pixel attribute differences by means of various norms in different color
spaces such as RGB, CIELAB, YUV and HSV, thus employing the scalar order when-
ever a comparison is required between the scalar α and ω and the also scalar color pixel
attribute differences. This approach provides a means of controlling the contribution
of each channel into the overall quasi-flat zone computation, by means of the distance
measure under consideration.

However, her definition becomes quite impractical when dealing with Cα,ω. To ex-
plain, in order to implement the global variation criterion ω, according to the definition
of Eq. (2.8) one needs to be able to compare it against the maximal vector pixel at-
tribute difference R(Cα). Although these attribute vector differences can be of course
computed through the chosen color distance measure, determining their maximal value
on the other hand, constitutes a serious efficiency issue, since the attribute distances of
all possible vector pixel couples are required for every pixel added to a quasi-flat zone;
hence leading to an eventually prohibitive computational cost.

3.2 A Purely Vectorial Approach

To address the problem brought by the definition of quasi-flat zones on color images,
existing approaches either proceed with a marginal approach ignoring inter-channel
correlation and demanding a merging of partitions, or consist of a vectorial approach
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using color distances that still however employ scalar α and ω values. Consequently,
if one decides to use channel specific arguments, then an alternative strategy becomes
necessary, where both arguments α and ω are vectorial. Before we proceed into the
details of this approach, let us elaborate on our motivation.

Although using a different α and/or ω value per channel provides clearly a higher
level of customization, which is at this point unclear how to determine optimally, in
our opinion the main advantage of using vectorial arguments, is that it provides a finer
search space for Cα,ω when trying to determine the greatest α vector satisfying the
global variation criterion ω, thus potentially leading to zones of higher quality. This
claim will be put to test in the following section.

In order to be able to use arbitrary and vectorial α along with Cα there is one funda-
mental issue to resolve, and that is the modification of the pixel attribute difference d of
Eq. (2.2) into d�, so as to render it capable of producing a result comparable w.r.t. an
arbitrary ordering	 against α. To explain, d has to now accommodate vectorial pixels.
And their resulting dissimilarity needs to be computed in such a way that it will become
possible to compare it against an also vectorial α using the ordering	.

This can be resolved in at least two ways, depending whether the pixel attribute
difference output is scalar or vectorial. If scalar, we can use the same tactic as Soille
[11]; to explain, after mapping a given couple of pixels p and q into an arbitrary scalar
attribute difference d(p, q) ∈ R, we can conduct the local variation criterion control
against α as: d(p, q) · 1 	 α.

Alternatively, if we desire the pixel attribute difference to remain vectorial, we can
resort to comparing the ranks of the vectors under consideration w.r.t. the ordering under
consideration. Given an arbitrary vector ordering 	 imposed on a multi-dimensional
space T , we denote by rank� : T → N the function associating each vector with its
position in that space w.r.t. 	. The smallest vector in T w.r.t. 	 will have a rank 0, the
next a rank of one, etc. In particular, all the vectors present in the multivariate set of
pixel values are projected onto a space-filling curve, a curve passing from all the points
of the multi-dimensional discrete space, where each vector has its own unique rank. Of
course this requires a total ordering. Hence the attribute difference of vector pixels to
be compared against α using a custom	 ordering becomes:

∀p, q ∈ E, d�(p, q) = |rank�(f (p))− rank�(f(q))| (3.2)

Consequently the new definition of Cα becomes:

Cα
�(p) = {p} ∪ {q | d̂�(p, q) ≤ rank�(α)} (3.3)

where

d̂(p, q) =
∧
π∈

∏

⎧⎨⎩ ∨
i∈[0,...,Nπ−1]

{d�(pi, pi+1)|〈pi, pi+1〉 subchain ofπ(p� q)}

⎫⎬⎭
(3.4)

The adaptation of Cα,ω to vectorial α and ω is identical. Expression R�(C
α(p)) now

computes the greatest rank difference w.r.t. 	 among all the vectorial pixels present
within Cα(p), and the resulting rank is compared against that of ω in order to determine
if the quasi-flat zone violates or not the global variation criterion.
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Moreover, each time a pixel p of a quasi-flat zone Cα is tested against the global
criterion ω and the test fails, one needs to fall back to the immediately next smaller
α′ 	 α. Yet, this cannot happen unless the set of α vectors is totally ordered. In
conclusion, the multivariate version of Cα,ω based on vectorial arguments, requires a
total ordering to be imposed on the set of α vectors:

Cα,ω
� (p) = max{Cα′

� (p) | α′ 	 α and R�(C
α′
(p)) ≤ rank�(ω)} (3.5)

which can be considered as the cost of the flexibility for employing channel specific
global and local variation criteria.

In conclusion, total vector orderings effectively enable the computation of color
quasi-flat zones using vector parameters. Although this equips the tool under consid-
eration with great potential in terms of customization (e.g. inter-channel relation mod-
eling, channel-specific parameters, etc.), without sacrificing theoretical validity, it also
increases the burden of configuration, as setting these arguments optimally constitutes
undoubtedly a challenge.

4 Experiments

In this section, we present the results of simplification and segmentation experiments
that have been conducted in order to compare the performance of the proposed vectorial
color quasi-flat zone extension against the marginal strategy. For the sake of simplicity,
we consider the RGB color space. The main challenge of providing a total order for
the set of α vectors may be resolved by means of the Euclidean norm. However, a
pitfall with norm based orderings, is their lack of anti-symmetry, which leads to pre-
orderings. A way around this problem can be to supplement the Euclidean norm with a
lexicographical comparison (≤L) [3], as follows:

∀ v, v′ ∈ R3, v 	rgb v′ ⇔ [‖v‖, v1, v2, v3]T ≤L [‖v′‖, v′1, v′2, v′3]T (4.1)

thus rendering	rgb a total ordering, and enabling the computation of the widest quasi-
flat zone required for defining Cα,ω

�rgb , while using d�rgb . This ordering can be of course
used equally well during the calculation of the minimal dissimilarity metric, as well as
for the comparison against the global variation criterion ω, thus effectively leading to a
multivariate solution specifically adapted for the RGB color space.

4.1 Simplification

In terms of qualitative comparison we have conducted a series of image simplification
tests employing images from the Berkeley Segmentation Dataset (BSD) [7]. In partic-
ular, we compare the proposed vectorial approach against Cα,ω

Soille, using five images of
the said dataset. Image simplification is realized by producing quasi-flat zones on the
images, while each quasi-flat zone is represented by the mean value of its pixels. As to
the α and ω parameters of both tools, they are distinct and have been arranged so as to
obtain similar numbers of quasi-flat zones. The initial results are shown in Fig. 1.
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(a) (b) 24461 quasi-flat zones (c) 25846 quasi-flat zones

(d) (e) 22592 quasi-flat zones (f) 21576 quasi-flat zones

(g) (h) 33182 quasi-flat zones (i) 31155 quasi-flat zones

(j) (k) 20931 quasi-flat zones (l) 20496 quasi-flat zones

(m) (n) 29766 quasi-flat zones (o) 28562 quasi-flat zones

Fig. 1. Comparison of approaches in terms of image simplification: (left column) original images,
(middle column) results of Cα,ω

Soille in RGB, (right column) results of Cα,ω
�rgb in RGB

Since one can hardly distinguish the differences among the results of Fig. 1, with
the exception perhaps of the relatively large artifact in Fig. 1b, we additionally provide
zoomed versions of the images in Fig. 2. Judging from the obtained results, one can
confirm that in these cases the proposed approach seems to achieve superior quality
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(a) Original (b) Cα,ω
Soille (c) Cα,ω

�RGB

(d) Original (e) Cα,ω
Soille (f) Cα,ω

�RGB

(g) Original (h) Cα,ω
Soille (i) Cα,ω

�RGB

(j) Original (k) Cα,ω
Soille (l) Cα,ω

�RGB

(m) Original (n) Cα,ω
Soille (o) Cα,ω

�RGB

Fig. 2. Details of image simplification
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Fig. 3. OSR and MP based segmentation comparison for marginal (Cα,ω
Soille) and vectorial (Cα,ω

�rgb )
quasi-flat zones using four images of the Berkeley Segmentation Dataset
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level, as it leads to less simplification artifacts (Figs. 2b and 2c), good preservation
of details (Figs. 2e and 2f where the blobs of the starfish arms are better preserved)
and smoother variations (Figs. 2h and 2i where color variation on the cheek of the girl
is smoother) w.r.t. Cα,ω

Soille; moreover, all are achieved with similar flat zone numbers.
However, we can also observe that dark-green transition in the background region of
Figs. 2e and 2f and the transition between the background and the neck of the girl
in Figs. 2h and 2i are smoother with Soille’s approach while still presenting visible
variation levels.

4.2 Segmentation

We also test our approach in the segmentation context, where the resulting partitions are
evaluated by means of two criteria: the oversegmentation ratio (OSR) [5] and maximal
precision (MP ) [6]. OSR measures directly the degree of over-segmentation. For MP
on the other hand, each quasi-flat zone is associated with the reference region with
which it shares the highest number of pixels. We then measure a pixel-based precision
by computing the ratio of well-segmented pixels. Hence, by using both MP and OSR,
an effective evaluation and comparison can be achieved, with the ultimate goal being
both the minimization of OSR and maximization of MP . These metrics are particulary
adapted to the evaluation of quasi-flat zones as a preliminary segmentation step [13].

To this end, we have selected four images of the BSD, using which we computed
the plots of OSR against MP , shown in Fig. 3. These preliminary results indicate that
our approach is superior to the marginal strategy as it leads to lower over-segmentation
and higher precision levels. However, its performance does not appear to be consistent
across all images, but rather image dependent; a fact which urges us to conduct further
investigation on this matter. As a matter of fact, this comes as no surprise, as it confirms
the results at [2], where the performance of vectorial operators had been also established
to be image-dependent in the content-description context.

5 Conclusion

The strong application potential of quasi-flat zones for image simplification and super-
pixel creation, has been the main motivation behind the high volume of work concen-
trating on them lately. In this paper we focus on a vectorial strategy for their application
to color images, in an effort to enable the use of channel-specific local and global vari-
ation criteria. The proposed approach, which relies on a vector ordering scheme, has
been tested both qualitatively and quantitatively in the contexts of image simplification
and segmentation, against the marginal strategy.

Although both simplification and segmentation tests indicate our approach to be su-
perior, its performance is not consistent across all tested images. On one hand, its su-
periority confirms our original motivation for using vectorial arguments, as it enables
exploiting a finer search space for finding the optimal α vector satisfying the global
variation criterion. On the other hand, the image-specific behavior of color orderings,
as observed in different contexts [2], renders this approach relatively impractical for
general use, since the optimal choice of vector orderings as well as the setting of vector
parameters can be challenging.
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Consequently, future work will focus principally on how to optimally determine the
color ordering as well as the vector parameters under consideration. Moreover, we also
plan to conduct a more rigorous experimentation in order to detect the limits of our
approach.
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Abstract. Mathematical morphology is a very successful branch of
image processing with a history of more than four decades. Its fundamen-
tal operations are dilation and erosion, which are based on the notion of
a maximum and a minimum with respect to an order. Many operators
constructed from dilation and erosion are available for grey value images,
and recently useful analogs of these processes for matrix-valued images
have been introduced by taking advantage of the so-called Loewner order.
There has been a number of approaches to morphology for vector-valued
images, that is, colour images based on various orders, however, each
with its merits and shortcomings. In this article we propose an approach
to (elementary) morphology for colour images that relies on the existing
order based morphology for matrix fields of symmetric 2 × 2-matrices.
An RGB-image is embedded into a field of those 2 × 2-matrices by
exploiting the geometrical properties of the order cone associated with
the Loewner order. To this end a modification of the HSL-colour model
and a relativistic addition of matrices is introduced.

The experiments performed with various morphological elementary
operators on synthetic and real images demonstrate the capabilities and
restrictions of the novel approach.

Keywords: matrix field, tensor field, symmetric matrix, colour images,
dilation, erosion, colour space, Einstein addition.

1 Introduction

Beginning with the path-breaking work of Matheron and Serra [15,16] in the
late sixties mathematical morphology has provided us with an abundance of
tools and techniques to process real valued-images for applications ranging from
medical imaging to geological sciences [14,17,18,20]. Erosion and dilation are
the fundamental operations of grey scale morphology relying on the notion of
a minimum and a maximum of real numbers. Since minimum and maximum in
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turn depend on the presence of an order, it is no surprise that morphology for
vector valued i.e. colour images does not always provide satisfactory results.

There have been numerous approaches how to extend the mathematical mor-
phology framework to colour or vector-valued images. The main ingredients for
such a framework are ranking schemes and the proper notion of extremal oper-
ators such as maximum and minimum. Due to the lack of reasonable complete
lattice for vectorial data numerous suggestions for ranking schemes (based on
various notions of distances, projections, and real-valued transforms) have been
made, for a well structured, comprehensive, in-depth, and still up-to-date sur-
vey the reader is referred to [2] and the extensive list of literature cited therein.
In [10] and [13] a more historic account is presented, while for a study of the
background in order theory see [3] and [11]. Depending on the choices made
one obtains morphological transforms with specific properties. However, none of
these attempts seems to have been accepted unanimously in the image processing
community. Somewhat surprisingly, the situation for (symmetric) matrix valued
images is not as hopeless as it might seem at first glance. Here we consider a
(symmetric) matrix field F as a mapping

F : Ω ⊂ IRd −→ Sym(n)

from domain Ω ⊂ IRd into the space Sym(n) of real symmetric n × n-matrices
with inner product 〈A,B〉 = trace(AB) and (Frobenius-)norm ‖A‖ =

√
〈A,A〉.

There have been successful attempts to extend the operations of mathematical
morphology to images with values in the set of positive definite real symmetric
2×2- or 3×3-matrices [5,6,8] since these types of data make a natural appearance
in medical imaging as the output of diffusion tensor weighted magnetic resonance
imaging (DT-MRI).

The goal of this article is to present an approach to morphological operators
for colour images by embedding a colour image suitably into a matrix field. Hence
the morphology already developed for matrix fields will give rise to morphology
for colour images. For the coding of a colour image as a matrix field we will
make use of a variant of the HSL-colour space and the Loewner order cone for
real symmetric 2 × 2-matrices. This novel concept can be applied to grey value
images as well hence it includes scalar (flat) morphology.

However, we will not be able to decide the philosophical question what, for
instance, the “right” maximum of the colors green and blue actually is. There
is probably no unanimously acceptable answer, but an approach that recognizes
that fact by producing the color white as that maximum for example is slightly
more trustworthy than one producing different, so called “false” colors.

The structure of the article is as follows: In Section 2 we present the max-
imum and minimum operations for matrix-valued data and especially a three-
dimensional representation of the Loewner order cone for 2×2- matrices. Section
3 deals with the aforementioned embedding and an operation for symmetric ma-
trices gleaned from the relativistic addition of velocities. We report on results of
our experiments with various morphological operators applied to synthetic and
real colour images in Section 4. In Section 5 we offer concluding remarks and a
glance at future research.
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2 Loewner Ordering: Maximal and Minimal Matrices

The so-called Loewner order is a natural partial order on Sym(n), defined by
means of the cone of positive semidefinite matrices Sym+(n) by

A,B ∈ Sym(n) : A ≥ B :⇔ A−B ∈ Sym+(n),

i.e. if and only if A−B is positive semidefinite.
This partial order is not a lattice order, that is, there is no notion of a unique

maximum and minimum with respect to this order [4]. Nevertheless, given any
finite set of symmetric matrices A = {A1, . . . , An}, we will be able to identify
suitable maximal, resp., minimal matrices A := maxA resp., A := minA .

Since we will consider images with three colour components we may restrict
ourselves from now on to the case of 2×2-matrices in Sym(2) which offer already
three degrees of freedom. The procedure to find these extremal matrices for a set
A is as follows: The cone Sym+(2) can be represented in 3D using the bijection

(
α β
β γ

)
←→ 1√

2

⎛⎝ 2β
γ − α
γ + α

⎞⎠ , resp., 1√
2

(
z − y x
x z + y

)
←→

⎛⎝xy
z

⎞⎠ . (1)

This linear mapping creates an isometrically isomorphic image of the cone
Sym+(2) in the Euclidean space IR3 given by {(x, y, z)� ∈ IR3|

√
x2 + y2 ≤ z}

and is depicted in Fig. 1(a). For A ∈ Sym(2) the set P (A) = {Z ∈ Sym(2)|A ≥
Z} denotes the penumbral cone or penumbra for short of the matrix A. It cor-
responds to a cone with vertex in A and a circular base in the x− y-plane:
P (A) ∩ {z = 0} = circle with center (

√
2β, γ−α√

2
) and radius trace(A)√

2
.

Considering the associated penumbras of the matrices in A the search for the
maximal matrix A amounts to determine the smallest penumbral cone covering
all the penumbras of A tightly, see Fig. 1(b). One realises that the height of
a penumbra measured from the x − y-plane is equal to the radius of its base,
namely trace(A)/

√
2. Hence a penumbra is already uniquely determined by the

circle constituting its base. This implies that the search for a maximal matrix
comes down to find the smallest circle enclosing the base-circles of the matrices
in A. This is a non-trivial problem in computer graphics. An numerical solution
for finding the smallest circle enclosing the sampled basis circles has been im-
plemented in C++ by Gärtner [12] and was used in [6] and [8]. However, in our
case we employ the implementation of an efficient subgradient method detailed
in [22] for the calculation of the smallest circle enclosing them. This gives us
the smallest covering cone and hence the maximal matrix A. To ensure that
the base of the penumbra is located in the x − y-plane, we will not apply the
above reasoning directly to the matrices A1, . . . , An, but to their shifted ver-
sions A+ κI := A1 + κI, . . . , An+ κI with the unit matrix I and the parameter
κ := 1/

√
2 taking advantage of the relation

A = max(A1, . . . , An) = max(A1 + κI, . . . , An + κI)− κI = A+ κI − κI .
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(a) Loewner order cone (b) Covering cone

Fig. 1. Left: Image of the Loewner cone Sym+(2). Right: Cone covering four penum-
bras of other matrices. The tip of each cone represents a symmetric 2 × 2 - matrix in
IR3. For each cone the radius and the height are equal.

A suitable minimal matrix A is obtained by means of the formula

A = κI −max(κI −A1, . . . , κI −An)

with unit matrix I and the parameter κ = 1/
√
2, inspired by the well-known

scalar counterpart. For i = 1, . . . , n we have A ≤ Ai ≤ A with respect to the
Loewner order. We emphasise that A and A depend continuously on A1, . . . , An
by their construction. Also the rotational invariance is preserved, since the
Loewner order is already rotational invariant: A ≥ B ⇐⇒ UAU� ≥ UBU�

holds for any orthogonal matrix U . Nevertheless, the definitions of the matrices
A and A are still meaningful for matrices that are not positive definite as long
as they have a non-negative trace (since it corresponds to a radius in the con-
struction above). It also becomes evident from their construction that in general
neither A nor A coincide with any of the Ai: A,A �∈ A .

With these essential notions of suitable maximal and minimal matrices A and
A at our disposal the definitions of the higher morphological operators carry
over essentially verbatim.

3 Color Images as Matrix Fields

Closer to the human perception process than the well-known RGB color space is
the HSL (or HSI) colour model describing a colour object by its hue, saturation
and brightness resp. luminance (see [1, Algorithm 8.6.3] for the conversion).

Replacing in this model the coordinate saturation by the so-called chroma
leads to a modified version of the HSL-model which we call HCL̃ colour model.
Note that we use this colour model due to its symmetry and its close relation
to Ostwald’s colour solid (a bicone) from 1916. The use of other colour models
is close at hand as well. Its representation is given by a bicone C2, depicted
in Fig. 2(a). To be more specific: L̃ = 2L − 1, for the chroma we have C =
max{R,G,B}−min{R,G,B} . Hence, any point (x, y, z) of the bicone is coded
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(a) Color bicone (b) The set of maximal and minimal matrices

Fig. 2. Left: HCL̃-bicone, bicone for the HCL̃ colour model. Right: The unit ball as
the set of extremal matrices stemming from two bicone-matrices.

by x = C· cos(2π·H), y = C· sin(2π·H), z = L̃ providing us with an one-to-one
transformation from the HCL̃ colour space to the RGB colour space. The HCL̃-
bicone corresponds via (1) directly to the order interval 1√

2
[−I, I]L := {A ∈

Sym(2) | − 1√
2
I ≤ A ≤ 1√

2
I} , where the L abbreviates Loewner. In total this

establishes the desired continuous one-to-one correspondence of the matrices in
1√
2
[−I, I]L with the colours in the HCL̃ (and from there to the standard RGB

space, if so desired),

Ψ : HCL̃ ⊂ IR3 −→ 1√
2
[−I, I]L ⊂ Sym(2) .

Exploiting this correspondence one obtains, for example, the maximum of two
colours c1, c2 ∈HCL̃ by transforming them into the matrices Ψ(c1), Ψ(c2) ∈
1√
2
[−I, I]L, then taking the maximum max(Ψ(c1), Ψ(c2)) of these two matrices

which is then transformed back to the new “maximal colour”

max(c1, c2) := Ψ−1 (max(Ψ(c1), Ψ(c2))) .

Ψ−1 combines the mapping (1), with the transform into polar coordinates via

H = 1
2πarg(y, x) , C =

√
x2 + y2 , L̃ = z , with a principal value of an appropriate

argument function. The luminance L is obtained via L = (L̃ + 1)/2 while the
saturation is given by S = 0 if C = 0, otherwise S = C/(1 − |2L − 1|). Having
obtained those HSL-values, we convert them to the normalized RGB-values (see
[1, Algorithm 8.6.4] for the conversion). The minimum of two colours is treated
analogously. Hence by applying this rationale basic morphological operations
can be transferred from matrix fields to color images.

However, we are facing two rather severe problems:

1. We have {max(A,B) ∪min(A,B) : A,B ∈ 1√
2
[−I, I]L} = IB1, that is, the

set of vertices of cones supported by points from the bicone with respect to
the Loewner order form the unit ball in Sym(n) visualised as the unit ball
in IR3. Hence corresponding HCL- and RGB-values do not exist. This can
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be deduced with the help of Fig. 2, where the depicted green cone is ex-
tremal since it is supported and determined by the extreme points (=colors)
(1, 0, 0) and (0, 1, 0). The claim follows by elementary geometric reasoning
from varying these points on the unit circle combined with arguments of
symmetry and rotational invariance.

2. Neither 1√
2
[−I, I]L nor IB1 are closed under matrix addition, as it is neces-

sary for the design of morphological top-hats or gradients. Again this would
entail non-existence of corresponding HCL- and RGB-values.

We overcome the first difficulty by establishing a one-to-one mapping from the
bicone C2 to the unit ball IB1. We begin by defining for a given point (x, y, z) ∈
C2, a warp factor w by

w(x, y, z) =

{
1, if x, y = 0,
1+Γ√
1+Γ 2

with Γ = |z|√
x2+y2

, otherwise. (2)

Multiplication of point coordinates with its warp factor establishes a one-to-one
mapping from C2 onto IB1 in principle usable for the pull-back of matrices to
the color cone C2. However, experiments reveal that the use of this simple way
mapping might lead to a fading of colors and the appearance of a grey tinge as
reported in [7]. Instead we define a deforming warping factor

wdeform(x, y, z) = 1 +
(√

x2 + y2 + |z|
)n

(w(x, y, z)− 1) ,

where n ≥ 1 is some parameter. Large values of n cause points in the double-cone
to remain almost unchanged, while the outer layer is not stretched proportionally.
We choose n = 10 as it seems to be a large enough value to fit our needs.
The mapping wdeform has to be inverted numerically by applying a root finding
algorithm to

tn − tn−1 + 1− wdeform(x, y, z) = 0

for a point (x, y, z) ∈ IB1. We always apply this inverse mapping (pull-back from
IB1 to C2) after our procedures to find the extremal matrices, and prior the
decoding of the matrices into colors. In total our “dilation” adopts the stan-
dard definition of the dilation but with respect to maximal color/matrix in the
Loewner order and a subsequent pull-back in the sense described above. The
same is true for our erosion.

To resolve the second problem we extend Einstein‘s general rule for the addi-
tion of velocities (see [19,21]) in the theory of Special Relativity (with speed of
light c = 1) to symmetric matrices. Einstein’s addition in IB1 ensures that we
stay inside IB1 (this is our universe). More precisely, let αA =

√
1− ‖A‖2 then

define the Einstein addition +e by

A+e B :=
1

1 + trace(A · B)

(
A+ αA · B +

1

1 + αA
trace(A ·B) · A

)
.
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A commutative version +ec : IB1 × IB1 −→ IB1 , the Einstein coaddition (see
[21]), reads in this context as

A+ec B :=
αAB + αBA

αA + αB
+e

αAB + αBA

αA + αB
. (3)

The corresponding subtraction is given by A−ecB := A+ec (−B) = −B+ecA .
Hence we can (Einstein-)add and subtract without restrictions in IB1, as it is
necessary for many morphological operators.

4 Experimental Results

In this section some elementary morphological operators will be applied to both
synthetic and natural colour images of various sizes. In the experiments we use
different structuring elements (SE): a cross-shaped structuring element consist-
ing of five pixels (SEcross), a 3×3-square (SE3×3), and a 11×11-square (SE11×11),
all centered at the middle pixel. Each of the images is extended by an appropriate
layer of mirrored boundary values.

In the first experiments we confirm that our colour-morphological operators
applied to image 3(a) in Fig. 3 in principle act as regular morphological operators
on black-and-white images. As expected dilation and erosion result in an accu-
rate shift of the inner object front, see Figs. 3(b), 3(c). Note that we surrounded
the image by a black box to distinguish between the background of the image
and the white background of the article. Again an image of size 8× 8, but with
a blue-coloured (RGB= [0, 0, 255]) left and a green-coloured (RGB= [0, 255, 0])
right is subjected to both a dilation and an erosion. Both colours are located
in the x − y-plane relatively far apart on the boundary of the HCL̃ bicone,
hence the maximal and minimal matrices are representing white and black re-
spectively. This accounts for the white resp. dark center section in the dilated
resp. eroded images in Fig. 4(b) and Fig. 4(d). The component-wise approach
produces “false” colors, as expected, at least for dilation. Now we consider an
RGB-image of resolution 36 × 24 containing six cross-like structures with the
RGB colours [128, 255, 0], [0, 128, 255], [0, 0, 0], [255, 255, 255], [235, 249, 18] and

(a) Original 8× 8-image (b) Dilation, SEcross (c) Erosion, SEcross

Fig. 3. Dilation and erosion wih SEcross applied to bipartite black-and-white image
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(a) Orig. 8× 8-image (b) Dilation (c) Dil., comp.-wise

(d) Erosion (e) Ero., comp.-wise

Fig. 4. Dilation and erosion with SEcross applied to bipartite blue-and-green image

[249, 155, 18] on a red background ([255, 0, 0]). Fig. 5(a) shows the constructed
image on which a dilation with SEcross is applied. In Fig. 5(b) we see the re-
sult of the novel matrix-approach, whereas and Fig. 5(c) we see the results of a
component-wise approach, namely the dilation of each of the RGB-channels sepa-
rately. In both approaches the black and white crosses are processed equally well,
however, for blue and green cross the channel-wise approach produces clearly
false colors, while these crosses get a white halo in the matrix-approach. The

(a) Original (b) Erosion (c) Erosion, comp.-wise

Fig. 5. Erosion with SEcross applied to 36× 24-synthetic image, in the matrix setting
and component-wise
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next set of experiments employs well-known morphological operators that in-
volve taking the difference of two color images in the matrix setting. We restrict
our attention to the self-dual top hat, the Beucher gradient, and the morpholog-
ical Laplacian. Each operation uses the structuring element SEcross. Taking the
difference here means taking the difference in the sense of the aforementioned
Einstein coaddition (3). As expected, in each of the cases the edges of the image
objects become prominent, for the morphological derivatives more so than for
the top hat. It is also no surprise that all the processed images have a strong
grey tinge, the HSL-color close to the equatorial section of the bicone C2.

It is important to remark that the artefacts in the processed house images
are caused by an erroneous top pixel layer that are contained by default in the
original image. In grey scale (flat) morphology there is the rule that iterated

(a) Original (b) Self-dual top hat

(c) Beucher grad. (d) Morph. Laplacian

Fig. 6. Morphological operations with SEcross involving differences of images applied
to the house-image (with a erroneous color at the top layer of pixels in the original).
a) Original, b) self-dual top hat, c) Beucher gradient, d) morphological Laplacian.
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dilation with a structuring element amounts to the same as applying dilation
once with the correspondingly dilated structuring element. For example, 5-fold
dilation with a 3× 3-square should produce the same result as a single dilation
with a 11×11-square. In our matrix-approach this cannot be expected to be the
case. We apply to the house image first a dilation with a 11× 11-square, then a
5-fold dilation with a 3× 3-square. The (Einstein-)difference image is displayed
as well in Fig. 7. We again compare the matrix-approach to the RGB-channel-
wise approach, this time for a natural image in the case of the Beucher gradient
for a greater effect. In both cases the edge-detecting capabilities of the Beucher
gradient are prominent. A difference between the results is noticeable as one can
see in Figure 8, but it is now difficult to judge which is better than the other.

Finally note that we did all computation with Matlab on a regular PC. We
need 1.1, 4.0, 15.7, 62.2, and 276.2 seconds for a dilation or erosion of an image
of resolution 32× 32, 64× 64, 128× 128, 256× 256, and 512× 512, respectively.

(a) Dilation, 11× 11-SE (b) Dilation, 3×3-SE, 5-fold (c) Difference

Fig. 7. Dilation applied to house-image: a) with 11 × 11-SE, b) with a 3 × 3-SE
performed 5 times, c) non-zero difference image (Einstein subtraction)

(a) Beucher, 11× 11-SE (b) Beucher, 11× 11-SE, comp.-wise

Fig. 8. Beucher Gradient applied to house-image with 11 × 11-SE, a) matrix setting,
b) component-wise
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Using the profile tool of Matlab reveals that the most time consuming part is
needed by the subgradient method to find the smallest enclosing circle of a set
of circles. A further speedup will only be possible using C++.

5 Conclusion

Real symmetric 2 × 2-matrices offer three degrees of freedom. Hence the three
components of many popular colour models, such as the RGB- or the HSI-model
can be coded as such a matrix. The matrix-setting has indeed several advan-
tages over the vector-setting of colour images: First the algebraic structure is
richer, second, there exists a canonical order, the Loewner order, for symmet-
ric matrices. This coding was inspired by the close, almost obvious geometric
relation between the HCL̃ bicone, a variant of the HSI-bicone, and the order
interval 1√

2
[−I, I]L induced by the Loewner order cone. As soon as the colour

image has been rewritten in this way, the morphological techniques developed
for matrix fields in [8] and [9] were in principle applicable. However the bicone is
not ideal for computations. We used a one-to-one nonlinear mapping to go from
the bicone C2 to the unit ball IB1 in the set of symmetric 2 × 2 matrices and
back, and combined our matrix-valued maximum/minimum operation with it.
Standard addition leading to values outside an order interval have been replaced
by Einstein coaddition under which IB1 is stable. With these novel techniques
various morphological operations ranging from the elementary dilation and ero-
sion to second order derivatives could be studied. The experimental results are
promising and may serve as a proof-of-concept for this novel approach to colour
image morphology. It is clear that the choice of the color cone has a great influ-
ence on the results, and in the future will explore other color models as the basis
for this approach to morphology for color or even multispectral images. A more
in-depth comparison with other existing color morphology models is a subject
of future research.
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Abstract. Mathematical morphology (MM) is a very popular image process-
ing framework, which offers widely-used non-linear tools. It was introduced for
binary and greylevel images, but recently, numerous approaches have been pro-
posed for color or multivariate images. Many of these approaches are based on the
lexicographical ordering, which respects the total ordering properties, thus ma-
king this approach a very robust solution. However, it also has disadvantages like
the subjective prioritization of the components and the perceptual nonlinearities
introduced due to color component prioritization. Within this paper, we introduce
a new multivariate MM approach, derived from a probabilistic approach, through
the optimization of the distance between the estimated pseudo-extrema and vec-
tors within the initial data set. We compare the results generated using the two
approaches and a generic lexicographic approach based on Principal Component
Analysis as the axis prioritization criteria.

Keywords: Multivariate Mathematical Morphology, Principal Component
Analysis, Color Image Segmentation.

1 Introduction

The mathematical morphology (MM) was introduced by Matheron in the seventh de-
cade of the last century, as a non-linear processing technique for binary images [1] and
it subsequently became more popular in the following decade, through Serra’s reference
writings [2] [3]. The extension to greylevel images, through the umbra or cross-sections
concepts [4] [5] allowed a generalization which led to the appearance of many image
processing and analysis algorithms based on this framework e.g. filters [6], image seg-
mentation [7], texture description [8], etc. The greylevel MM (GLMM) is based on
the lattice theory, which implies a partial ordering of the image data. Therefore, the
existence of an infimum and a supremum for any subset of the pixel data set is suffi-
cient in order to define a MM upon the given set [9]. For the extension to multivariate
images, there have been proposed several approaches. In [10], four types of vectorial
orderings have been proposed (marginal, reduced, conditional and partial), but only
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the conditional and the marginal orderings generate unique extrema, accomplishing the
anti-symmetry property1. However, within the marginal approach there exist vectors
which are not comparable and thus, when the marginal ordering is used for computing
the two extrema of a given set, its main disadvantage arise: it introduces false colors i.e.
data which does not belong to the initial image distribution [11]. In addition, the con-
ditional ordering generates a non-linear ordering from the human visual system point
of view e.g. in the RGB colorspace, for a (red, green, blue) fixed priority, with 8 bits
per channel, (0, 0, 255) < (0, 255, 0) < (1, 0, 255) although, from a human
perception point of view, the two blue shades are practically identical. Therefore, de-
pending on application, the questions of non-ambiguity and pertinence of the ordering
arise. There have been proposed a plethora of methods for color and multivariate MM,
especially based on the marginal, reduced and conditional orderings, but none of them
has been imposed as a generally-valid solution [12]. Recently, an approach based on
the partial ordering has also been introduced, although, in order to accomplish the anti-
symmetry property, the conditional ordering is also implied [13] [14]. There are also
approaches which avoid defining an underlying ordering relation among the image data
and only find infimum and supremum for the given vectorial data [15] [16]. An example
of such an approach uses the distribution of the data, combined with the Chebychev’s
inequality in order to estimate the two extrema for the multivariate data [17]. Even if
it is not a marginal approach, this method generates false colors due to the manner in
which these extrema are chosen i.e. as vectorial data located on the first principal com-
ponent, generated through principal component analysis (PCA) technique. The extrema
are chosen according to the Tchebychev’s inequality which generates two bounds, on
one side and on the other of the multivariate data mean, along the first principal com-
ponent. In this paper, we introduce a new multivariate MM approach derived from this
method, in order to generate data which belongs to the initial image distribution. First,
we describe a simple lexicographic ordering defined within the Principal Component
Analysis (PCA) space. Next, we briefly describe the probabilistic mathematical mor-
phology introduced in [17], and finally we derive the proposed approach through the
optimization of the distance between the estimated extrema and the vectors within the
initial data set. Our first aim is to correct the false color issue by choosing the image
data from the initial set, which are the closest from the estimated extrema in terms of
perceptual distance. Secondly, we compare the presented approaches from a qualitative
point of view, emphasizing the advantages of using the local distributions in front of the
global lexicographic approach.

2 Finding the Optimum Space Representation for the Image Data

In [18] a maximum noise fraction (MNF) decorrelating transform is used in order to
find an optimum space representation before marginal ordering. Also, in [17], a PCA
transform is applied on the entire image data, in order to define the global references
which are subsequently used for the local extrema ordering. However, in that case, the
local vectors are not ordered according to the global PCA axis, but two local extrema are
generated from each local distribution. These local extrema may not belong to the initial

1 The conditional ordering generates unique extrema only when all the data components are used.
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set, thus generating false colors. PCA finds the orthogonal directions on which the vari-
ance of the data is maximized, so it can be used as an optimum space for representing the
vectorial image data. Our first objective is to apply a lexicographical ordering for every
local data set [19], based on the global axis generated through a PCA for the entire im-
age. Consequently, we propose a way in which the priorities may be chosen i.e. the first
principal component, which has the largest variance and thus embeds the most informa-
tion, is chosen to be the most important while the last principal component receives the
last priority. Therefore, given a set S of local image vectors vk =

(
vk1 , vk2 , . . . , vkn

)
represented in global PCA coordinates as ṽk =

(
ṽk1 , ṽk2 , . . . , ṽkn

)
, then the strict

lexicographic order within the PCA space is defined as:

vi < vj ⇔

⎧⎪⎪⎨⎪⎪⎩
ṽi1 < ṽj1 or
ṽi1 = ṽj1 and ṽi2 < ṽj2 or

· · ·
ṽi1 = ṽj1 and ṽi2 = ṽj2 and · · · and ṽin < ṽjn

(1)

In addition, if an ordering relation is defined as (vi ≤ vj)⇔ ((vi < vj) or (vi = vj))
then, within a finite multivariate data set S, we may define two extrema, the minimum
(min) and maximum (max), of the given set as:{

min
(
S
)
= {vi ∈ S | vi ≤ vk, ∀vk ∈ S}

max
(
S
)
= {vi ∈ S | vk ≤ vi, ∀vk ∈ S}

(2)

Using the defined ordering, then for every nonempty vectorial set S there exist unique
minimum and maximum values. Therefore, a MM framework based on flat structur-
ing elements (SE) may be introduced for multivariate images. Thus, given an image
f : Df → SDf , with the support Df ⊂ Z2 and codomain SDf ⊂ Rn and a flat
SE g with the support Dg ⊂ Z2, the erosion and the dilation, the two fundamental
morphological operations are defined as [20]:

[εg(f)](x) = min
z∈Dg

f(x+ z), ∀x ∈ Df (3)

[δg(f)](x) = max
z∈Dg

f(x+ z), ∀x ∈ Df (4)

The results generated using this approach are presented in section 5. Given the lexico-
graphical approaches disadvantages, e.g. generating perceptual nonlinearities and the
subjective choice of the components priorities, we proposed a probabilistic multivariate
MM, in which the local data are not ordered, but two pseudo-extrema are generated in
a probabilistic way for each local color set within a multivariate image [17]. Next, we
briefly describe this approach.

3 Probabilistic Mathematical Morphology

In this section, we briefly describe the probabilistic mathematical morphology (PMM),
which was introduced in [17]. This approach is based on the Tchebychev inequality [21]
which allows us to predict, for any distribution, the upper limit of the probability to have
data in a given symmetric interval around the mean:
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P{|ξ − μξ| ≥ kσξ} ≤
1

k2
. (5)

where ξ is a random variable with finite mean μξ and standard deviation σξ and k is a
constant value. With the help of the k parameter, symmetrical intervals around the mean
value can be generated. The bounds of this interval are considered to be the probabilistic
extrema Eα and Eβ , in the sense of the Tchebychev inequality and are defined as:{

Eα = μξ + kσξ
Eβ = μξ − kσξ

(6)

with Eα as the pseudo-supremum and Eβ as the pseudo-infimum of the given distribu-
tion. According to the k parameter these pseudo-extrema are closer or farther from the
real maximum or minimum. For symmetrical distributions there exist a unique k value
for which the pseudo-extrema coincide with real extrema. Otherwise, for a given k, one
pseudo-extremum will be identical to the corresponding real extremum, while for the
other there will be an estimation error.

Using these notions, a MM framework based on flat SEs may be introduced for
greyscale images. Thus, for an image f : Df → SDf , with the codomain SDf ⊂ R and
a flat SE g with the supportDg, the erosion and the dilation, are defined as:

[εg(f)](x)
Def
=

∧
z∈Dg

f(x+ z) = μξ − kσξ, ∀x ∈ Df (7)

[δg(f)](x)
Def
=

∨
z∈Dg

f(x+ z) = μξ + kσξ, ∀x ∈ Df (8)

where∧ and∨ are the pseudo-infimum and pseudo-supremum operators and ξ represents
the particular outcome of a random variable, modeling the intensity of the greyscale
image data given by Df ∩ Dg . Within this construction, the k parameter may be used
to adjust the estimation error: a small k value would generate pseudo-extrema close to
the mean value of the given set, while the larger the k, the farther the pseudo-extrema
would be from the mean. In other words, a small value of k leads to operations with
an almost linear behavior, while as the k is increased, the operations behavior becomes
more non-linear, specific to the morphological operations. In Fig. 1 the classical GLMM
using flat SE is compared with the greyscale PMM, for various k values.

original GLMM k = 0.2 k = 2 k = 4

Fig. 1. Erosions (top row) and dilations (bottom row), 5× 5 SE size, GLMM and PMM
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A quantification of the total error in extrema estimation, with respect to the real extrema
as a function of k and a more detailed description and validation of the PMM approach
is presented in [22].

The approach was extended to multivariate images by applying the Tchebychev in-
equality on the first principal component of the local data, generated by PCA. Thus,
given a set S ⊂ Rn of multivariate data vx =

(
vx1 , vx2 , . . . , vxn

)
, which after the PCA

transform has the coordinate ṽxi on the ith principal component, the two probabilistic
pseudo-extrema of the set are defined within the PCA axis system as:{

Ẽα =
(
μṽx1 + kσṽx1 , 0, 0, · · ·

)
Ẽβ =

(
μṽx1 − kσṽx1 , 0, 0, · · ·

) (9)

in which μṽx1 and σṽx1 represents the mean and the standard deviation of the first
principal component of the multivariate data {vx} ⊂ S. The vectorial probabilistic ex-
trema are obtained by representing Ẽα and Ẽβ in the initial coordinates system, thus
resulting Eα and Eβ . However, the sign associated with the extrema in the PCA basis
cannot reflect their order, because the PCA is performed through data rotations, which
can be performed either clockwise or counter-clockwise. In order to establish which of
the two extrema is associated with the morphological erosion or with the dilation, they
are ordered lexicographically, according to n pairs of reference points. The references
are positioned on perpendicular lines, thus forming an orthogonal axis system and they
could be either manually or automatically chosen. In this paper, in the particular case of
color images, we chose to compute the three pairs of references as the pseudo-extrema
of the entire image data distribution. Furthermore, they are ordered, pair by pair, by pro-
jection on the black-white axis, thus generating an orthogonal axis system. Therefore,
generalizing to the n-dimensional case, with

(
R −
0 ,R

+
0

)
,
(

R −
1 ,R

+
1

)
,
(

R −
2 ,R

+
2

)
, · · · as

ordered reference points, the two morphological operations are defined as:

[εg(f)](x) =
∧
z∈Dg
x∈Df

f(x+z)
Def
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

argmin
i
[
−−−−→
R −
0 R +

0 ·
−−→
R −
0 i] , with i ∈ {Eα,Eβ}

argmin
i
[
−−−−→
R −
1 R +

1 ·
−−→
R −
1 i] , with i ∈ {Eα,Eβ}

if
−−−−→
R −
0 R +

0 · −−−→EαEβ = 0

argmin
i
[
−−−−→
R −
2 R +

2 ·
−−→
R −
2 i] , with i ∈ {Eα,Eβ}

if
−−−−→
R −
0 R +

0 · −−−→EαEβ = 0 and
−−−−→
R −
1 R +

1 · −−−→EαEβ = 0
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

(10)

[δg(f)](x) =
∨
z∈Dg
x∈Df

f(x+z)
Def
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

argmax
i

[
−−−−→
R −
0 R +

0 ·
−−→
R −
0 i] , with i ∈ {Eα,Eβ}

argmax
i

[
−−−−→
R −
1 R +

1 ·
−−→
R −
1 i] , with i ∈ {Eα,Eβ}

if
−−−−→
R −
0 R +

0 · −−−→EαEβ = 0

argmax
i

[
−−−−→
R −
2 R +

2 ·
−−→
R −
2 i] , with i ∈ {Eα,Eβ}

if
−−−−→
R −
0 R +

0 · −−−→EαEβ = 0 and
−−−−→
R −
1 R +

1 · −−−→EαEβ = 0
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

(11)
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in which Eα and Eβ are the extrema of the local data given by Df ∩ Dg . Eq (10)
and (11) represent the lexicographical ordering of the local extrema, using the PCA
space computed for the entire image data. However, these extrema do not belong to
the initial set, thus generating false colors (see the results in section 5). In order to
solve this problem, we propose an adaptation of this method, through the optimiza-
tion of the distance between the estimated extrema and the vectorial data within the
initial set.

4 False Color Problem Solving

Our aim is to find the vectors within the initial data set, for which the distance between
the respective vectors and the estimated extrema is minimum, while the k parameter,
which reflects the distance between the two local extrema, is maximum. Therefore, we
consider a set S ⊂ Rn of multivariate data vx, which after PCA has the coordinates
ṽx =

(
ṽx1 , ṽx2 , . . . , ṽxn

)
, with ṽxi as the vx coordinate on the ith principal compo-

nent. The quantities which have to be minimized are dist
(
vi,Eα

)
and dist

(
vj,Eβ

)
for

vi,vj ∈ S, while dist
(

Eα,Eβ
)

has to be maximum (see Fig. 2). As the dist(·, ·) dis-
tance, we used the Euclidean (L2) norm. Therefore, considering that μṽxi = 0 for all
the PCA generated components,⎧⎪⎪⎨⎪⎪⎩

dist
(
vi,Eα

)
=
√
(kσṽx1 − ṽi1)2 + ṽi2

2
+ · · ·+ ṽin

2

dist
(
vj,Eβ

)
=
√
(−kσṽx1 − ṽj1)2 + ṽj2

2
+ · · ·+ ṽjn

2

dist
(

Eα,Eβ
)
= kσṽx1 − (−kσṽx1 ) = 2kσṽx1

(12)

We face the delicate issue of maximizing a linear function, with two given constraints,
which are not well-defined. Consequently, the feasibility of this optimization problem
will be the subject of a future paper. However, here we propose an algorithmic solution
to this problem. Hence, we aim in finding the k values for which the two distances
are minimum, so we impose d

dk

(
dist

(
vi,Eα

))
= 0 and d

dk

(
dist

(
vj,Eβ

))
= 0 which

means solving the following system:

Fig. 2. PCA coordinates for a 2-dimensional case
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σṽx1

(
kσṽx1

−ṽi1
)

√(
kσṽx1

−ṽi1
)2

+ṽi2
2+···+ṽin 2

= 0

−σṽx1
(
−kσṽx1 −ṽj1

)
√(

−kσṽx1 −ṽj1
)2

+ṽj2
2+···+ṽjn 2

= 0

(13)

There is a unique k value that satisfies the both equations if and only if ṽi1 = −ṽj1 .
Otherwise, a unique solution k will definitely lead to the appearance of at least one false
color within the morphological process. In our particular case, there are two values:
k = k1 which satisfies the first equation and k = k2 for the second one, where

k1 =
ṽi1
σṽx1

, k2 =
−ṽj1
σṽx1

(14)

The interpretation of these solutions is that k1 and k2 are the corresponding k values
for the first principal components of the vi and vj vectors. However, we also aim in
maximizing dist

(
Eα,Eβ

)
. Therefore, the resulting extrema vectors are vi, vj ∈ S

with the property that ṽi1 = max
(
ṽx1

)
and ṽj1 = min

(
ṽx1

)
for vx representing the

vectorial data within S. In conclusion, the multivariate MM we propose choses as the
extrema of a multivariate set the two vectors with the minimum and maximum principal
components, for the definition of the erosion and dilation operations. The ordering of the
two extrema is accomplished similarly to the PMM pseudo-extrema ordering, relative
to three pairs (for the particular case of color images) of global references. The results
generated through this approach are presented in the next section.

5 Results, Comparison and Discussion

In this section we describe, from a qualitative point of view, the results obtained with the
presented approaches, for several widely-used color images (Fig. 3, 4 and 5). The PMM
was applied using k = 1.5. One may notice the false colors introduced by the PMM,
while the other two approaches generate colors from the initial image color distribution.
In general, one may see that the erosions favor the growth of the dark objects (e.g. in
Fig. 3 the background dissapears, the lips and eyes are emphasized), while the dilations
shrink them (e.g. in Fig. 3 the lips and eyes disappear, while the background grid texture
becomes uniform). The same effects may also be noticed in Fig. 4 and 5. However, in
the PMM case, these effects are somehow attenuated by the filtering generated due to
the inclusion of the data distribution within each local processing step. In addition, for
PMM an edge enhancement may be observed, which is not present within the results
generated with the other methods. In fact, the approach which uses the lexicographical
order within the PCA space and our optimized distance approach generate very similar
results, the maximum mean error between the generated results being equal to 4.12,
computed between the images (e) and (m) from Fig. 4.

In Fig. 6 we present a detail from the results. It may be observed that the global PCA
ordering approach may distort the original shapes, depending on the orientation of the
local distribution relative to the global distribution used for PCA. The PMM approach
preserves the shapes and also the textured regions, but it introduces false colors and it
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(a) f (b) (δ − ε)(f), global

PCA, 3 × 3 SE

(c) (δ − ε)(f), PMM,

3 × 3 SE

(d) (δ− ε)(f), new ap-

proach, 3 × 3 SE

(e) ε(f), 11 × 11 SE (f) ε(f), 5 × 5 SE (g) δ(f), 5 × 5 SE (h) δ(f), 11 × 11 SE

(i) ε(f), 11 × 11 SE (j) ε(f), 5 × 5 SE (k) δ(f), 5 × 5 SE (l) δ(f), 11 × 11 SE

(m) ε(f), 11 × 11 SE (n) ε(f), 5 × 5 SE (o) δ(f), 5 × 5 SE (p) δ(f), 11 × 11 SE

Fig. 3. Erosions, dilations and morphological gradients for global PCA lexicographical or-
dering (second row), PMM (third row) and the new approach – using optimal distance to
probabilistically-estimated extrema (forth row).
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(a) f (b) (δ − ε)(f), global

PCA, 3 × 3 SE

(c) (δ − ε)(f), PMM,

3 × 3 SE

(d) (δ− ε)(f), new ap-

proach, 3 × 3 SE

(e) ε(f), 11 × 11 SE (f) ε(f), 5 × 5 SE (g) δ(f), 5 × 5 SE (h) δ(f), 11 × 11 SE

(i) ε(f), 11 × 11 SE (j) ε(f), 5 × 5 SE (k) δ(f), 5 × 5 SE (l) δ(f), 11 × 11 SE

(m) ε(f), 11 × 11 SE (n) ε(f), 5 × 5 SE (o) δ(f), 5 × 5 SE (p) δ(f), 11 × 11 SE

Fig. 4. Erosions, dilations and morphological gradients for global PCA lexicographical or-
dering (second row), PMM (third row) and the new approach – using optimal distance to
probabilistically-estimated extrema (forth row).
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(a) f (b) (δ − ε)(f), global

PCA, 3 × 3 SE

(c) (δ − ε)(f), PMM,

3 × 3 SE

(d) (δ − ε)(f), new ap-

proach, 3 × 3 SE

(e) ε(f), 11 × 11 SE (f) ε(f), 5 × 5 SE (g) δ(f), 5 × 5 SE (h) δ(f), 11 × 11 SE

(i) ε(f), 11 × 11 SE (j) ε(f), 5 × 5 SE (k) δ(f), 5 × 5 SE (l) δ(f), 11 × 11 SE

(m) ε(f), 11 × 11 SE (n) ε(f), 5 × 5 SE (o) δ(f), 5 × 5 SE (p) δ(f), 11 × 11 SE

Fig. 5. Erosions, dilations and morphological gradients for global PCA lexicographical or-
dering (second row), PMM (third row) and the new approach – using optimal distance to
probabilistically-estimated extrema (forth row).

(a) δ(f), 3 × 3 SE (b) δ(f), 3 × 3 SE (c) δ(f), 3 × 3 SE

Fig. 6. Detail from the results generated through the three described approaches: global PCA lexi-
cographical ordering (left column), PMM (middle column) and our optimized distance approach
(right column).
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enhances the areas in the proximity of borders. The last MM approach solves the false
color problem and also preserves the shapes better than the lexicographical method.

6 Conclusions

We started this paper by introducing a multivariate morphology based on a lexicogra-
phical order in the space obtained after using an orthogonal transformation. The ortho-
gonal transformation is used in order to determine the most appropriate representation
of correlated multivariate data and the axis with the maximum variance, based on the
hypothesis that the extrema of a set are appropriately chosen in this axis system. We
use this total order and the consequent morphology as a reference for comparison and
discussion and we present the results obtained on color images, after applying a prin-
cipal component analysis on the original image acquisition color space, i.e. RGB. The
next step is to use the Tchebychev inequality in order to estimate in a probabilistic way
the extrema of the multivariate data, along the first principal component of the local
data. The pseudo-infimum and the pseudo-supremum constructed symmetrically around
the mean allow to define morphological dilation and erosion. However, the estimated
extrema may not belong to the original set, therefore false colors may appear in a color
image application. In order to overcome this situation, we propose a new morpholo-
gical approach, by choosing the points in the original set which are the closest to the
probabilistic pseudo-extrema. The criteria we use for this choice is the maximization of
the distance between the two extrema and the minimization of the distance between the
probabilistic extrema estimated through the Tchebychev inequality and the data points
of the original set. We proposed an algorithmic solution for the optimization problem.
We compared all these three approaches for the case of color images represented in the
RGB color set. We commented on the behavior of the erosions and dilations obtained.
However, looking into detail we emphasized the differences in performance from a hu-
man perception point of view – the PMM is able to better preserve the texture of the
object in the image, along the scales of the morphological operations. The lexicogra-
phical order and the new approach exhibit more non-linear behaviors and the results are
very similar from a human perception point of view, thus showing that our morpholo-
gical operators may be used in practical applications. In addition, through the approach
presented in this framework, the infimum and the supremum can be conveniently cho-
sen based on the pseudo-extrema given by the Tchebychev inequality and perceptual
distance optimization.
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Abstract. In theory, there is no problem generalizing morphological op-
erators to colour images. In practice, it has proved quite tricky to define
a generalization that “makes sense”. This could be because many gener-
alizations violate our implicit assumptions about what kind of transfor-
mations should not matter. Or in other words, to what transformations
operators should be invariant. As a possible solution, we propose us-
ing frames to explicitly construct operators invariant to a given group
of transformations. We show how to create saturation- and rotation-
invariant frames, and demonstrate how group-invariant frames can im-
prove results.

Keywords: colour morphology, group invariance, frames.

1 Introduction

Mathematical morphology is based on being able to order images, and specifically
on being able to compute their supremum and infimum. For binary images the
order is straightforward, just use set inclusion. For greyscale images it is similarly
straightforward. For colour images the problem is considerably more difficult
though. Not in a theoretical sense, as various schemes can be (and have been)
used to define orders on colour values (and by extension on colour images). The
problem is in making the theory line up with our (implicit) expectations.

Talbot et al. [10] produced one of the earlier publications in mathematical mor-
phology that identified this problem. Since then, many authors have tried various
approaches around this problem, which has been called the “false colour prob-
lem” (see, for example, Serra’s paper [9] by this name). The name derives from
the appearance of new (“false”) colours that were not present in the original im-
age, as illustrated in Fig. 1. This is because the most basic (and sensible) ordering
compares colours per-channel, resulting in a per-channel supremum/infimum.

One obvious way out is to somehow impose a total order on the colour space.
However, in general it really does not make sense to enforce that red and green
must come in some order. The most interesting work in this direction is probably
statistics based, like the approach described by Velasco-Forero and Angulo [11]
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Fig. 1. The infimum of blue and red is black (in the RGB colour space). In contrast,
the infimum of cyan and magenta is blue, and if we desaturate red and blue, then their
infimum suddenly becomes grey. To an observer (who does not know about RGB colour
spaces), it is not immediately obvious why this should be so. Why is the infimum of
blue and red not also some in-between (purplish) colour for example?

that orders colours according to their statistical depth in a particular image.
In any case, enforcing a total order on a multi-dimensional space necessarily
introduces discontinuities in the supremum/infimum (in the sense that we could
have a < b < a′ and ‖a − b‖ + ‖a − a′‖). There is thus still a need for a
general-purpose framework for multivariate morphology.

In designing such a general-purpose framework for morphology on colour
(and other multivariate) images, is it really necessary to avoid introducing any
new colours? Linear filters do it all the time, and even a traditional structural
greyscale dilation with a non-flat structuring element can introduce new values.
Also, in tests, the per-channel approach often works quite well, as demonstrated
by Aptoula and Lefèvre [2]. Hence, we believe the problem with “false colours”
is not that they are new, but rather that they are unexpected or unintuitive.

Goutsias et al. [5] have argued that the problem with handling channels inde-
pendently is that it ignores the correlation between channels. Similarly, Astola
et al. [3] show how a yellow pixel near a boundary between a green and a red
region is not removed by a median filter, but just moved. In principle, this is a
well-known problem with any kind of median filter. But now that it happens with
a colour image, it is worse. We perceive the colour yellow to be something dif-
ferent from either red or green, while a computer (using an RGB colour space)
considers it to be a combination of red and green. So although humans treat
yellow on equal footing with red and green1, the computer does not.

We believe the false colour problem might stem from violating certain implicit
assumptions. In particular, as humans, we typically do not think of vectors in
terms of their components in a specific basis. As Serra [8] put it: “. . . , there
exists an infinite number of other equivalent systems of coordinates for the same
vector space; they derive from the first one by rotations, similarities, passages
to spherical, cylindric or polar coordinates, etc.” In this spirit, our solution is to
formalize our assumptions as a group of transformations that lead to equivalent
systems of coordinates, and to develop a method for making arbitrary operators
invariant to those transformations. This builds upon our earlier work [6], provid-
ing a much more compact statement of the main result and enlarging its scope
to include certain non-orthogonal transforms (saturation scaling). Also, we now

1 See [7] for several interesting expositions on colour perception, especially chapter
four is highly relevant in the current context.
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provide a qualitative evaluation of the effects of our method, illustrating why
and when invariance leads to better results.

2 Definitions

A Hilbert space H is a vector space with an inner product (which is also complete
w.r.t. the metric induced by the inner product, but this is of little interest here).
The inner product is denoted by ‘·’ and should be positive definite. The norm of
a vector a ∈ H is defined as ‖a‖ = a · a. If {ek}k∈K (with K a finite index set)
is a basis for H , then there also exists a dual basis {ek}k∈K, such that for any
a ∈ H : a =

∑
k∈K(e

k · a) ek. Since we will only be working with Hilbert spaces
on the reals, a Hilbert space with a basis {ek}k∈K will be denoted by RK. Note
the use of bold face letters for vectors.

Instead of using a basis to span a Hilbert space RK, we can also use a frame
[4]. A frame is a set of vectors {fi}i∈I (not necessarily finite or even countable)
such that there are finite positive constants A and B for which (for all a ∈ RK)

A ‖a‖2 ≤ ‖Fa‖2 ≤ B ‖a‖2. (1)

Here F is the analysis operator of the frame, defined by (Fa)i = fi · a. For
simplicity, assume that the range of the analysis operator is again a Hilbert
space RI . This is generally true for the cases we are interested in.

Like a basis, a frame has a dual frame. One of the interesting properties of
a frame, however, is that there need not be just one dual frame; typically there
are infinitely many dual frames. All dual frames of a frame have an associated
synthesis operator which acts as a (left-)inverse of the analysis operator for the
frame. Here we will mainly concern ourselves with the canonical dual frame.
This particular choice gives the least-squares solution a of Fa = u. For this
reason we will denote the synthesis operator associated with the canonical dual
frame by F+ (to evoke associations with the Moore-Penrose pseudoinverse).

It is important to note that if A equals B in Eq. (1), a frame is called tight, and
that its canonical dual is the frame itself, multiplied by 1

A . The corresponding
synthesis operator is then the adjoint F ∗ of the analysis operator F , multiplied
by 1

A . The adjoint is defined by u · (Fa) = (F ∗u) · a for all a ∈ RK and u ∈ RI .
For (real) matrices, the adjoint is simply the transpose. In summary, if a frame
is tight, then F+ = 1

AF
∗.

A transformation group T on a Hilbert space RK is a set of invertible mappings
of RK onto itself, with an associative binary operation ‘◦’ (function composition).
As a group it must be closed for composition, it must contain the identity map-
ping, and it must contain the inverse of every transformation in the group. An
operator φ : RK→RK is invariant to T if it commutes with all transformations
in T, so ∀τ ∈ T(φ ◦ τ = τ ◦ φ).

3 Construction

Let us assume that T is a group of linear transformations on the Hilbert space
RK, and that φ0 is an operator on RK that is not invariant to T. If {ek}k∈K is
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the original basis used for RK, then we consider the set {fi}i∈I , with I = T×K
and fτ,k = τ∗ ek (where τ∗ is the adjoint of τ). Under suitable conditions this
set forms a frame that can be used to construct a T-invariant version of φ0.

Note that the above choice of frame has the interesting property that the anal-
ysis operator essentially corresponds to taking the components of all transformed
versions of a vector:

(Fa)τ,k = (τ∗ ek) · a = ek · (τ a) = (τ a)k.

As a consequence, (Fa)τ is considered equal to τ a. Similarly, if u ∈ RI , then uτ
(with τ ∈ T) denotes the vector in RK described by the coefficients {uτ,k}k∈K.

To construct an operator φ : RK→RK that is invariant to T, based on an
operator φ0, we first define an operator ψ : RI→RI such that ψ(u)τ = φ0(uτ )
for all τ ∈ T and u ∈ RI . So ψ(Fa) computes φ0(τ a) for all transformations
τ ∈ T. We then simply define φ as F+ ◦ ψ ◦ F , which Theorem 1 shows to be
invariant to T under a mild condition on the norm on RI .

Theorem 1. Assume φ0 is an operator on RK, and that ψ : RI→RI is defined
by ψ(u)τ = φ0(uτ ) (for all τ ∈ T and u ∈ RI). The operator φ : RK→RK,
defined as φ = F+ ◦ ψ ◦ F , is then invariant to the transformation group T on
the Hilbert space RK, provided the norm on RI is invariant to a permutation of
T (in the sense that if P is a permutation operator mapping each index (τ, k) ∈ I
to some index (p(τ), k) ∈ I, then ‖u‖ = ‖Pu‖ for any choice of u ∈ RI)2.

Proof. It should be clear that (Fτ a)σ = σ τ a = (Fa)στ for all τ, σ ∈ T and
a ∈ RK. Thus, ψ(Fτ a)σ = ψ(Fa)στ . In other words, ψ(Fτ a) is a permuted
version of ψ(Fa). Denote the effect of this permutation by the operator P , so
that F ◦ τ = P ◦F and ψ(Fτ a) = P ψ(Fa). Similarly, P−1 is used to denote the
inverse permutation, and we naturally have F ◦ τ−1 = P−1 ◦ F . What remains,
is to show that F+ ◦ P = τ ◦ F+.

By definition, F+u (with u ∈ RI) is the least-squares solution a to Fa = u,
while F+Pu is the least-squares solution b to Fb = Pu. As these linear systems
are over-determined, these least-squares solutions are unique. It is thus sufficient
to show that b must equal τ a. This follows directly from the invariance of
the norm to any permutation. Due to this, the least-squares solution to Fb =
Pu must equal the least-squares solution to (P−1 ◦ F )b = u, or equivalently,
Fτ−1 b = u. We can now see that b must indeed equal τ a, and thus F+◦P must
equal τ◦F+. We thus have φ(τ a) = F+ ψ(Fτ a) = F+P ψ(Fa) = τ F+ ψ(Fa) =
τ φ(a). This concludes the proof.

3.1 Rotation Invariance

Now we will show how to construct operators on RGB colour images that are
invariant to all rotations of the colour space. For simplicity, the RGB colour
space is considered to be R3 (RK with K = {1, 2, 3}), with an orthonormal basis

2 This condition is connected to the concept of a “Haar measure”.
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corresponding to the red, green and blue components. The group T of all 3D
rotations is SO(3). The image/range of the frame analysis operator can thus be
considered to be RSO(3)×3. Elements of RSO(3)×3 should be interpreted as vectors
whose components can be indexed by elements from I = SO(3)× {1, 2, 3}.

The next task is to define a suitable inner product on RSO(3)×3. We will
build our inner product on top of the one for R3. As we saw in Theorem 1,
the inner product should be invariant with respect to permutations of SO(3).
Take

∫
SO(3) f(r) dr to be the integral of f(r) over the entire group of rotations

(the rotations represented by r), weighing all rotations “equally”3. We assume
that

∫
SO(3)

1 dr is some finite non-zero constant A. The inner product can then

simply be defined as follows for u and v in RSO(3)×3:

u · v =

∫
SO(3)

ur · vr dr.

It can be verified that this inner product is invariant to the permutations alluded
to in Theorem 1 (which makes sense, given that we weigh all rotations equally).

Now we need to find F+. This proves particularly easy, since the frame is
tight (A equals B in Eq. (1), see the second to last paragraph in Eq. (1)):

‖Fa‖2 = (Fa) · (Fa) =
∫
SO(3)

‖(Fa)r‖2 dr =
∫
SO(3)

‖r a‖2 dr = A ‖a‖2.

The last step is valid because rotations are orthogonal. In conclusion: F+ = 1
AF

∗.
In practice, we can use a finite set of vectors to approximate the frame of all

rotations of the original basis vectors. One method is to sample the group of
all rotations, and construct a frame (and canonical dual) based on this. Alter-
natively, we can also take a sample of uniformly distributed unit vectors, and
construct a discrete frame based on these, with analysis operator F̂ . We can then
take the Moore-Penrose pseudoinverse of F̂ to find the canonical dual frame.

Note that the above is geared towards single colour values, rather than colour
images. For treating colour images we simply apply the same technique per-pixel.
So to filter a colour image using the rotation-invariant frame discussed here, we
would first compute a “greyscale” image for every vector in the frame, then apply
some greyscale morphological operator on each of these images, and then finally
combine all the greyscale images (according to the canonical dual frame).

3.2 Saturation Invariance

As shown in our earlier work [6], the construction used above breaks down when
the transformations have eigenvalues with non-unit magnitude. However, in some
cases, we can still construct frames invariant to such transformations. We will
illustrate this by constructing a frame invariant to scaling the saturation of a
colour in the RGB colour space. The saturation, or colourfulness, is taken to be
the distance to the grey axis, the line through both white and black.

3 Formally, we take the Haar integral.
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Fig. 2. Illustration of the process for constructing a saturation-invariant frame. If the
original basis vector is scaled perpendicularly to the grey axis, it traces the horizontal
line. If the operator φ0 is invariant to scalar multiplication, then we can avoid vectors
of arbitrarily large magnitude by normalizing them. This maps the horizontal line (of
infinite extent) onto the quarter circle. For the frame we only take the limit vectors on
either end; these are eigenvectors of all scalings.

As group T we take the set of linear transformations {Ss | s ∈ R and 0 < s},
with Ss defined by Ss a = s a+ (1− s) a·g

g·gg for a ∈ R3 and g representing grey

(it is not particularly important which shade of grey). These transformations
only scale the component of a that is perpendicular to the grey axis, and can
thus be interpreted as scaling the saturation.

The next step is to assume that the operator φ0 is already invariant to a
uniform scaling of the colour space (so scaling all components equally). This is
typically the case for morphological operators, and allows us to normalize all
vectors. Now, instead of creating a frame indexed by T × {1, 2, 3}, we create a
frame indexed by I = {0,∞} × {1, 2, 3} (as illustrated in Fig. 2). Noting that
S∗
s = Ss for all s ∈ R, the six frame vectors {fi}i∈I are then defined as

f0,k = lim
s↓0

Ss e
k

‖Ss ek‖
and f∞,k = lim

s↑∞

Ss e
k

‖Ss ek‖
.

In practice, this means we get a frame consisting of a grey vector and three
vectors that are perpendicular to that grey vector. These vectors are all eigen-
vectors of all Ss ∈ T. In particular, for some Ss ∈ T, the grey vector (f0,1 =
f0,2 = f0,3) has eigenvalue 1, while the other three vectors (f∞,1, f∞,2 and f∞,3)
have eigenvalue s. Recalling that Ss = S∗

s , this means that (FSsa)0 = (Fa)0
and (FSsa)∞ = s (Fa)∞ for any Ss ∈ T. Since we assumed that φ0 is invariant
to multiplication by a scalar, we can easily show that F+ ◦ ψ ◦ F is invariant to
T, with ψ as in Theorem 1.

It should be noted that the above approach is not terribly useful for much
more general scalings. For example, illumination changes are often modelled
by multiplying the red, green and blue channels with independent weights. The
eigenvectors of such a transformation are in general obviously only the red, green
and blue vectors, thus the only possible “frame” would be the original basis. So
a different method would be needed to combine illumination changes and other
(non-linear) transformations, discussed by Angulo [1, §3.4], with rotations.
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Fig. 3. The original (a) is filtered using a median filter applied independently to the
channels using the original basis (b), a vector median filter (c), and a median filtered
applied independently to the “channels” in a rotation-invariant frame (d). In each case,
both a plot of the red (R) and green (G) channels, as well as the actual (colour) image
are shown. The spike in the red channel in (a) is assumed to be noise. It gives rise to
a yellow band between the red and green regions in (b). In contrast, using the vector
median filter or the rotation-invariant frame, it is much clearer that there is a transition
between red and green (note, though, that the frame approach is much more general).

4 Results

We briefly show some of the results that can be attained using group-invariant
morphology. To show how it compares to more traditional solutions, we start by
examining two examples given by Astola et al. [3]. In the first example (Fig. 3),
the per-channel median filter does not pick up on the fact that yellow is a different
colour from both red and green, and thus finds that just before the switch to red,
there are three out of five pixels that have a non-zero red component, instead of
“seeing” one yellow pixel, two green pixels and two red pixels. In contrast, the
other two filters indeed give much less importance to the yellow pixel, resulting
in a more natural transition from red to green.

The second example by Astola et al. (see Fig. 4) shows how processing chan-
nels independently can result in an unnatural bias towards filtering only along
the axes. If we have a vector with completely unrelated components, like average
temperature and population density, then this might be fine. But here it is just
as meaningful to choose a different basis, so we would not expect a filter to show
a bias towards filtering in specific directions.

Astola et al. [3] suggested solving both these issues by creating what they
called a “vector median filter”. This was based on minimizing the sum of the
distances to all vectors. As can be seen in Figs. 3 and 4, our method gives very
similar results4. However, in contrast to the vector median filter, our approach
generalizes easily to any operator (not just the median filter), and simply follows
logically from enforcing certain constraints.

Another example of why it can be useful to have rotation invariance, is given in
Fig. 5. Looking at the channels independently, both signals have an oscillation

4 It should be noted that the original vector median filter always picked the result from
one of the input values. We have chosen not to do this, as this forces an arbitrary
decision to be made in ambiguous cases (like the one shown in Fig. 3).
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(a) Original (b) Median on basis (c) Vector median (d) Rot.-inv. frame

Fig. 4. The original (a) is filtered using a median filter applied independently to the
channels in the original basis (b), a vector median filter (c), and a median filter applied
to the “channels” in a rotation-invariant frame (d). The 1D signals are plotted as
strings of points in the 2D value(/colour) space. In (b) there is a clear flattening of
the result in the direction of the axes, and a simple 45◦ rotation of the input results
in a completely different output. In contrast, neither the vector median filter, nor the
median filter using the rotation-invariant frame, shows such a directional bias.

(a) (b)

(c) (d) (e) (f)

Fig. 5. The two signals in (a) and (b) are plotted using the original basis in (c) and
(d), respectively. In (c) to (f), the signals are plotted against “time” (top) and in
the 2D value space (bottom), like in Fig. 4. The basis vectors used for the middle
row are shown as arrows in the bottom row. In the original basis the two signals are
indistinguishable if one just looks at the frequency and amplitude of the oscillations in
the channels independently. Using a different basis, like in (e) and (f), the signals are
clearly different though. In a rotation-invariant frame we simply use all possible bases,
so we always pick up on such differences.

in both channels, all at the same frequency. However, there is a really clear
difference, if one considers oscillations in other directions as well. Previously, a
rotation-invariant frame was indeed shown [6] to lead to better performance in
a texture classification task based on an autocorrelation-like operator.

Figures 6 and 7 show some results on more natural images. Figure 6 shows
the result of applying a dilation using the original basis, as well as using a
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Fig. 6. Dilations (by a 21×21 square) of the originals (top row, both 768×512 pixels)
using different frames, from left to right: the RGB basis, a hue-invariant frame and a
rotation-invariant frame. Rows three and five are zoomed versions of rows two and four.
A pink haze appears between orange and blue patches on the colour chart when using
the RGB basis. The same kind of effect is quite visible all over the parrot. Using a hue-
invariant frame solves these problems (middle column). Using the rotation-invariant
frame (right column) is similar to averaging a dilation and an erosion, but otherwise
shows no significant colour artefacts. (The parrot image is based on a photograph by
Luc Viatour / www.Lucnix.be, used under the CC BY 2.0 license.)

www.Lucnix.be
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Fig. 7. Similar to Fig. 6, except that now the self-dual OCCO operator is used, with a
15×15 square structuring element. Again colour artefacts are visible in the left column,
especially between the orange and blue patches on the colour chart (the transition
region becomes green). Using a hue-invariant frame (middle column), and especially
using a rotation-invariant frame (right column), eliminates these artefacts. Similarly, in
the left column the back of the neck of the parrot is suddenly bright green, even though
it is originally blueish, and there is only yellow and dark green in the neighbourhood.
Again this artefact is largely gone in the middle and right columns.
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Fig. 8. Three different pairs of colours and their infima using different frames. From
left to right: the original basis (same as in Fig. 1), a saturation-invariant frame and a
saturation and hue-invariant frame. Gamma correction (sRGB) was used; this avoids
big differences in lightness between the saturated and desaturated colours.

hue-invariant frame and a rotation-invariant frame. Here a hue-invariant frame
is taken to be a frame that is generated using rotations around the grey axis (the
axis running through all grey-ish colours, including black and white), rather than
all rotations. This is explained in more detail in van de Gronde and Roerdink
[6]. Figure 7 does the same for the OCCO operator. The OCCO operator is
a self-dual operator5 consisting of the average of an opening of a closing and a
closing of an opening. Operators like this are excellent candidates for use with a
rotation-invariant frame. In fact, the OCCO operator can be derived from taking
the opening of a closing as φ0 in Theorem 1, with T the group consisting of the
identity mapping and the inversion mapping.

The effect of saturation invariance is illustrated in Fig. 8. Without saturation
invariance, the infimum of pure red and blue is black, while the infimum of de-
saturated red and blue is grey. With a saturation-invariant frame, the infimum
of pure red and blue is grey as well. Conceptually, this makes a lot more sense;
both colours are pretty light. Using a hue and saturation-invariant frame pro-
vides an interesting alternative to filtering in the HSL colour space. Instead of
representing saturation and hue using a magnitude and an angle (which is hard
to order sensibly) we effectively represent them as a function of angle.

5 Conclusion

The false colour problem is the appearance of new colours that bear no obvious
resemblance to the original colours, as a result of processing the colour chan-
nels independently. We suggest that the actual problem lies in violating certain
invariances that we implicitly assume should hold. As a potential solution, we
provide a method for modifying any given operator so that it becomes invariant
to a given group of transformations. This essentially constitutes a much more
compact statement of our previous result [6]. Furthermore, it is shown that this
result can be extended to certain non-orthogonal transformations.

Using several basic examples we illustrate how our approach can lead to more
intuitive and better quality results. A practical implementation is fairly straight-
forward: the original operator simply has to be called multiple times, on differ-
ent, transformed, versions of the original. The main problem lies in the increased
processing required. In the (2D) examples shown here the frames were already

5 A self-dual operator is taken to be invariant to inverting the image.
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about ten times as large as the original basis (which directly translates to ten
times the processing time6). It would thus be worthwhile to look into methods
for decreasing the amount of processing needed.

In future work, it would be interesting to examine alternatives for using the
canonical dual frame to get back to the original colour space. The canonical dual
frame leads to a least-squares solution and simple, linear, methods. However,
other methods, based on different dual frames or Lp-minimization with p �= 2
for example, might also have interesting characteristics.

Finally, we only looked at colour images, but there is absolutely no reason
the same theory could not be applied to other kinds of vector-valued images. In
particular, we will attempt to apply the same idea to diffusion tensor images.
Other examples that could be interesting to look at of course include hyperspec-
tral images, but also light fields for example. Essentially our approach might be
interesting for any multivariate data where it makes sense to mix components.

References

[1] Angulo, J.: Geometric algebra colour image representations and derived total or-
derings for morphological operators Part I: Colour quaternions. J. Vis. Commun.
Image R. 21(1), 33–48 (2010)
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Abstract. This paper introduces mathematical morphology for real-
valued images whose support space is a Riemannian manifold. The start-
ing point consists in replacing the Euclidean distance in the canonic
quadratic structuring function by the Riemannian distance. Besides the
definition of Riemannian dilation/erosion and Riemannian opening/clo-
sing, their properties are explored. We generalize also some theoretical
results on Lasry–Lions regularization for Cartan–Hadamard manifolds.
Theoretical connections with previous works on adaptive morphology
and on manifold shape are considered. Various useful image manifolds
are formalized, with an example using real-valued 3D surfaces.

1 Introduction

Let E be the Euclidean Rd or discrete space Zd (support space) and let T be a
set of grey-levels (space of values). It is assumed that T = R = R∪ {−∞,+∞}.
A grey-level image is represented by a function f : E → T , f ∈ F(E, T ),
i.e., f maps each pixel x ∈ E into a grey-level value in T . Given a grey-level
image, the two basic morphological mappings F(E, T )→ F(E, T ) are the dila-
tion and the erosion given respectively by δb(f)(x) = supy∈E (f(y) + b(x− y)),
and εb(f)(x) = infy∈E (f(y)− b(y − x)); where b ∈ F(E, T ) is the structuring
function which determines the effect of the operator. The other morphological
operators, such as the opening and the closing, are obtained as products of dila-
tion/erosion [24,11,25]. Usually, the structuring function is a parametric family
bλ(x), where λ > 0 is the scale parameter [12]. It is well known in the state-of-
the-art of Euclidean morphology that the canonic family of structuring functions
is the quadratic (or parabolic) one [19,7]; i.e., bλ(x) = − ‖x‖2

2λ .

Aim of the Paper. Let us consider now that the support space is not Euclidean,
this is case for instance if we deal with a smooth 3D surface, or more generally
if the support space is a Riemannian manifold. The present work was inspired
by the idea of Riemannian inf-convolution introduced in [4], which replaced the
Euclidean distance in the canonic quadratic structuring function by the Rieman-
nian distance. We adopt exactly the same starting point for the formulation of
dilation/erosion in Riemannian manifolds (Section 2). Besides the definition of
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Riemannian dilation/erosion and Riemannian opening/closing, we explore their
properties. We generalize also some theoretical results on Lasry–Lions regular-
ization, with an original result for Cartan–Hadamard manifolds (more general
than Moreau–Yosida regularization studied in [4]). We consider theoretically var-
ious useful case studies of image manifolds in Section 5, but due to the limited
paper length, we only illustrate the case of real-valued 3D surfaces.

Related Work. Generalizations of Euclidean translation-invariant morphology
have followed three main directions. On the one hand, adaptive morphology
[18,26,1,8], where the structuring function becomes dependent on the position
or the input image itself. Section 4 explores the connections of our framework
with such approaches. On the second hand, the group morphology [22], where
the translation invariance is replaces by other group invariance (similarity, affine,
spherical, projective, etc.). Related to that, we have also the morphology for bi-
nary manifolds [21], whose relationship with our formulation is deeply studied in
Section 3. Finally, we should cite also the classical notion of geodesic dilation [16]
as the basic operator for (connective) geodesic reconstruction [25], where the
marker image is dilated according to the metric yielded by the reference image
(see also Section 4).

2 Riemannian Dilation and Erosion

Let us start by a formal definition of the two basic morphological operators for
images supported on a Riemannian manifold.

Definition 1. Let M a complete Riemannian manifold and dM : M×M →
R+, (x, y) �→ dM(x, y), is the geodesic distance onM, for any image f :M→ R,
R = R∪ {−∞,+∞}, so f ∈ F(M,R) and for λ > 0 we define for every x ∈M
the Riemannian dilation of f of scale parameter λ as

δλ(f)(x) = sup
y∈M

{
f(y)− 1

2λ
dM(x, y)2

}
(1)

and the Riemannian erosion of f of parameter λ as

ελ(f)(x) = inf
y∈M

{
f(y) +

1

2λ
dM(x, y)2

}
(2)

An obvious property of the Riemannian dilation and erosion is the duality by
the involution f(x) �→ �f(x) = −f(x), i.e., δλ(f) = �ελ(�f). As in classical
Euclidean morphology, the adjunction relationship is fundamental for the con-
struction of the rest of morphological operators.

Proposition 1. For any two real-valued images defined on the same Rieman-
nian manifold M, i.e., f, g : M → R, the pair (ελ, δλ) is called a Riemannian
adjunction

δλ(f)(x) ≤ g(x)⇔ f(x) ≤ ελ(g)(x) (3)
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Proof. We have that the inequality δλ(f)(x) ≤ g(x) means that

sup
y∈M

{
f(y)− 1

2λ
dM(x, y)2

}
≤ g(x), ∀x ∈ M,

It involves that f(y) − 1
2λ

dM(x, y)2 ≤ g(x) for every x, y ∈ M. This is equivalent to
rewrite f(y) ≤ g(x) + 1

2λ
dM(x, y)2. Therefore, after substitution of z = x, we finally

have

f(y) ≤ inf
z∈M

{
g(y) +

1

2λ
dM(z, y)2

}
= ελ(g)(y).

Hence, we have an adjunction if both images f and g are defined on the same
Riemannian manifoldM, or in other terms, when the same “geodesic structuring
function” bx,λ(y) = − 1

2λdM(x, y)2 is considered for each pixel. This result implies
in particular that the Riemannian dilation commutes with the supremum and
the Riemannian erosion with the infimum, i.e., for a given collection of images
fi ∈ F(M,R), i ∈ I, we have

δλ

(∨
i∈I

fi

)
=
∨
i∈I

δλ(fi); ελ

(∧
i∈I

fi

)
=
∧
i∈I

ελ(fi).

In addition, using the classical results on adjunctions in complete lattices [11],
we state that the products of the pair (ελ, δλ) lead to the adjoint opening and
adjoint closing if and only the field of geodesic structuring functions is computed
on a common manifold M.

Definition 2. Given an image f ∈ F(M,R), the Riemannian opening and Rie-
mannian closing of scale parameter λ are respectively given by

γλ(f)(x) = sup
z∈M

inf
y∈M

{
f(y) +

1

2λ
dM(z, y)2 − 1

2λ
dM(z, x)2

}
, (4)

and

ϕλ(f)(x) = inf
z∈M

sup
y∈M

{
f(y)− 1

2λ
dM(z, y)2 +

1

2λ
dM(z, x)2

}
. (5)

This technical point is very important since in some image manifold embedding
the Riemannian manifold support M of image f depends itself on f . If M does
not depends on f , the Riemannian opening and closing are respectively given
by γλ(f) = δλ (ελ(f)), and ϕλ(f) = ελ (δλ(f)). We notice that this issue was
already considered by Roerdink in [23] for the case of adaptive neighbourhood
morphology.

Having the Riemannian opening and closing, all the other morphological filters
defined by product of them are naturally defined, but keeping in mind that the
geodesic structuring function should be fixed.
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2.1 Properties of δλ(f) and ελ(f)

Other classical properties of Euclidean dilation and erosion have also the equiv-
alent for Riemannian manifold M, and they do not dependent on the geometry
of M.

Proposition 2. Let M be a Riemannian manifold, and let f, g ∈ F(M,R) two
real valued images M. We have the following properties.

1. (Increaseness) If f(x) ≤ g(x), ∀x ∈ M then δλ(f)(x) ≤ δλ(g)(x) and
ελ(f)(x) ≤ ελ(g)(x), ∀x ∈ M and ∀λ > 0.

2. (Extensivity and anti-extensivity) δλ(f)(x) ≥ f(x) and ελ(f)(x) ≤ f(x),
∀x ∈M and ∀λ > 0.

3. (Ordering property) If 0 < λ1 < λ2 then δλ2(f)(x) ≥ δλ1(f)(x) and ελ2(f)(x)
≤ ελ1(f)(x).

4. (Invariance under isometry) If T :M→M is an isometry of M and if f is
invariant under T , i.e., f(Tz) = f(z) for all z ∈ M, then the Riemannian
dilation and erosion are also invariant under T , i.e., δλ(f)(Tz) = δλ(f)(z)
and ελ(f)(Tz) = ελ(f)(z), ∀z ∈M and ∀λ > 0.

5. (Extrema preservation) We have sup δλ(f) = sup f and inf ελ(f) = inf f ,
moreover if f is lower (resp. upper) semicontinuous then every minimizer
(resp. maximizer) of ελ(f) (resp. δλ(f)) is a minimizer (resp. maximizer)
of f , and conversely.

Proof. By the properties of the Riemannian distance, 1., 2. and 3. are obvious. Property
4. is a generalization of the translation invariance, we have for the Riemannian dilation
that

δλ(f)(Tx) = sup
y∈M

{
f(y)− 1

2λ
dM(Tx, y)2

}
= sup

y∈M

{
f(Ty)− 1

2λ
dM(Tx, Ty)2

}

= sup
y∈M

{
f(Ty)− 1

2λ
dM(x, y)2

}
= sup

y∈M

{
f(y)− 1

2λ
dM(x, y)2

}
= δλ(f)(x);

and similarly for the Riemannian erosion.
For 5., first, we have for the erosion that

inf
x∈M

ελ(f)(x) = inf
x∈M

inf
y∈M

{
f(y) +

1

2λ
dM(x, y)2

}

= inf
y∈M

inf
x∈M

{
f(y) +

1

2λ
dM(x, y)2

}
= inf

y∈M
f(y).

The rest of the proof of 5. is inspired from [4] as follows. Since ελ(f) ≤ f it is then
obvious that every minimizer of f is a minimizer of ελ(f) as well. Conversely, as-
sume that f is lower semicontinuous, let x0 be a minimizer of ελ(f), i.e., ελ(f)(x0) =
infz∈M ελ(f)(z) = infz∈M(f)(z). We need to prove that f(x0) = infz∈M(f)(z). Choose
xnn∈N ⊂ M so that f(xn) +

1
2λ

d(x0, xn)
2 ≤ ελ(f)(x0) +

1
n
; the we have
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0 ≤ 1

2λ
d(x0, xn)

2 ≤ ελ(f)(x0) +
1

n
− f(xn) ≤ ελ(f)(x0) +

1

n
− inf

z∈M
(f)(z) =

1

n
→ 0,

hence xn converges to x0, and since f is lower semicontinuous we get

f(x0) ≤ lim
n→0

f(xn) ≤ lim
n→0

(
ελ(f)(x0) +

1

n

)
= ελ(f)(x0) = inf

z∈M
ελ(f)(z) = inf

z∈M
f(z)

and x0 is a minimizer of f . The proof for the dilation is similar.

Finally, as proved also in [4] we have the following property of localization which
is useful for the practical computation on Riemannian dilation and erosion in
local neighborhoods.

Proposition 3. Let M be a Riemannian manifold, and let f ∈ F(M,R) an
image satisfying that f(x) ≥ − c

2 (1 + d(x, x0)
2) (quadratically minorized) for

some c > 0, x0 ∈M. Then, for all λ ∈ (0, 1
2c ) and for all ρ > ρ, we have that

ελ(f)(x) = inf
y∈B(x,ρ)

{
f(y) +

1

2λ
dM(x, y)2

}
, (6)

where

ρ = ρ(x, λ, c) =

√
λ
2f(x) + c(2d(x, x0)2 + 1)

1− 2λc
,

and where the geodesic ball of center x and radius ρ is defined by B(x, ρ) = {y :
dM(x, y) ≤ ρ}. A similar result is obtained for the geodesic dilation δλ(f)(x),
for f(x) ≤ c

2 (1 + d(x, x0)
2) (quadratically majorized), c > 0, where in this case

ρ =
√
λ c(2d(x,x0)2+1)−2f(x)

1−2λc .

This local character of geodesic operators, according to a quadratic growth as-
sumption (weakly convexity/concavity), is similar to the case of Euclidean dila-
tion/erosion using quadratic structuring functions [2].

For the Riemannian opening and closing, we have also the classical proper-
ties which are naturally proved as a consequence of the adjunction [11], namely:
(i) increaseness of both operators; (ii) ordering relationships, i.e., γλ2(f)(x) ≤
γλ1(f)(x) ≤ f(x) ≤ ϕλ1 (f)(x) ≤ ϕλ2(f)(x) for 0 < λ1 < λ2; (iii) idempotency of
both operators, γλ (γλ(f)) = γλ(f) and ϕλ (ϕλ(f)) = ϕλ(f). The latter is funda-
mental for the theory of morphological scale-space filtering and the construction
of granulometries [24,11] with respect to λ; the development of this point is out
of the scope of this paper.

2.2 Weakly Convex Functions in a Cartan–Hadamard Manifold

As a generalization of the use of Moreau–Yosida regularization [20] (i.e., erosion
by a quadratic structuring function), the Lasry–Lions regularization [17] is a
theory of nonsmooth approximation for functions in Hilbert spaces using combi-
nations of Euclidean dilation and erosion with quadratic structuring functions,
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which leads to the approximation of lower or upper semicontinuous functions by
lipschitz continuous functions. As discussed in [4], the results of Moreau–Yosida
regularization are extended to functions on a Cartan–Hadamard manifold [15]:
simply connected complete Riemannian manifold of nonpositive sectional curva-
ture, since its corresponding geodesic distance d is convex on all M×M. That
involves that [15] for every bounded subset B of M, there exists r > 0 such
that x �→ d(x,B) = inf d(x, y) : y ∈ B is convex in B(x, r) and the set B(x, r) is
convex in M, ∀x ∈ B; in addition x �→ d(x,B)2 is C1 smooth and convex.

Let us give a summary of our main result, which generalizes the case of convex
functions in Cartan–Hadamard manifolds studied by [4] using the results for
Hilbert spaces by [2] for the Lasry–Lions regularization.

Theorem 1. Let M be a Riemannian manifold simply connected and with sec-
tional curvature K ≤ 0. Given two images f, g ∈ F(M,R), for all 0 < μ < λ let
us define the Lasry–Lions regularizers:

(fλ)
μ(x) = sup

z∈M
inf
y∈M

{
f(y) +

1

2λ
dM(z, y)2 − 1

2μ
dM(z, x)2

}
(pseudo-opening)

(gλ)μ(x) = inf
z∈M

sup
y∈M

{
g(y)− 1

2λ
dM(z, y)2 +

1

2μ
dM(z, x)2

}
(pseudo-closing)

We have (fλ)
μ ≤ f and (gλ)μ ≥ g. Assume that there exists c, d > 0, such that

we have the following growing conditions:

f(x) ≥ − c
2
(1 + d(x, x0)

2), g(x) ≤ d

2
(1 + d(x, x0)

2), x0 ∈ M.

Then, for all 0 < μ < λ < 1
c the pseudo-opened image (fλ)

μ is a C1 function,
for all 0 < μ < λ < 1

d the pseudo-closed image (gλ)μ is a C1 function, whose
gradient is Lipschitz continuous with constant max(1/μ, 1/(λ− μ)).

In addition, if f is a lower (resp. g is a upper) semicontinuous function, the
pseudo-opening of f (resp. pseudo-closing of g) converges uniformly to f (resp.
g); i.e., limλ,μ→0(fλ)

μ(x) = f(x) and limλ,μ→0(g
λ)μ(x) = g(x).

The proof is skipped by limited length of paper. We notice that this is valid only
for manifolds of nonpositive sectional curvature; the canonic example of negative
curvature manifold is the hyperboloid; conversely, the canonic case of positively
curved Riemannian manifold is the sphere, i.e., there are closed convex sets C of
arbitrarily small diameter in S2 such that x �→ d(x,C) is not convex on any neigh-
borhood of C. Practical interest for quadratic “morphological lipschitzation” of
surfaces or images valued on surfaces will be explored in ongoing work.

3 Connections with Roerdink’s Manifold Morphology

In [21], Roerdink studied the formulation of dilation/erosion for binary images on
smooth surfaces. But, before highlighting the connections with our framework,
let us remind some basics on differential geometry for Riemannian manifolds [6].
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The tangent space of the manifold M at a point p ∈ M, denoted by TpM,
is the set of all vectors tangent to M at p. The first issue to consider is how
to transport vectors from one point of M to another. Let p, q ∈ M and let γ :
[a, b] →M be a parameterized curve (or path) from γ(a) = p to γ(b) = q. For
v ∈ TpM, let V be the unique parallel vector field along γ with V(a) = v. The
map Pγ : TpM→ TqM determined by Pγ(v) = V(b) is called parallel transport
from p to q along γ, and Pγ(v) the parallel translate of v along γ to q. Note
that parallel transport from p to q is path dependent: the difference between
two paths is a rotation around the normal to M at q. The Riemannian distance
between two points p, q ∈M, denoted d(p, q), is defined as the minimum length
over all possible smooth curves between p and q. A geodesic γ : [0, 1] → M
connecting two points p, q ∈ M is the shortest path on M having elements
p and q as endpoints. The geodesic curve γ(t) can be specified in terms of a
starting point p ∈ M and a tangent vector (initial constant velocity) v ∈ TpM
as it represents the solution of Christoffel differential equation with boundary
conditions γ(0) = p and γ̇(0) = v. The idea behind exponential map Expp is to
parameterize a Riemannian manifold M, locally near any p ∈M, in terms of a
mapping from the tangent space TpM into a point in M. The exponential map
is injective on a zero-centered ball B in TpM of some non-zero (possibly infinity)
radius. Thus for a point q in the image of B under Expp there exists a unique
vector v ∈ TpM corresponding to a minimal length path under the exponential
map from p to q. Exponential maps may be associated to a manifold by the help
of geodesic curves. The exponential map Expp : TpM → M associated to any
geodesic γv emanating from p with tangent at the origin v ∈ TpM is defined as
Expp(v) = γv(1), where the geodesic is given by γv(t) = Expp(tv). The geodesic
has constant speed equal to ‖dγv/dt‖(t) = ‖v‖, and thus the exponential map
preserves distances for the initial point: d(p,Expp(v)) = ‖v‖. A Riemannian
manifold is geodesically complete if and only if the exponential map Expp(v) is
defined ∀p ∈ M and ∀v ∈ TpM. The inverse operator, named logarithm map,
Exp−1

p = Logp maps a point of q ∈ M into to their associated tangent vectors
v ∈ TpM. The exponential map is in general only invertible for a sufficient small
neighbourhood of the origin in TpM, although on some manifolds the inverse
exists for arbitrary neighbourhoods. For a point q in the domain of Logp the
geodesic distance between p and q is given by d(p, q) = ‖Logp(q)‖.

The idea behind the binary Riemannian morphology on smooth surfaces [21]
is to replace the translation invariance by the parallel transport (the transfor-
mations are referred to as “covariant” operations). Let M be a (geodesically
complete) Riemannian manifold and P(M) denotes the set of all subsets of M .
A binary image X on the manifold is just X ∈ P(M). Let A ⊂M be the basic
structuring, a subset which is defined on the tangent space at a given point ω
of M by Ã = Logω(A) ⊂ TωM. Let γ = γ[p,q] be a path from p to q, then the
operator

τγ(A) = Expq Pγ Logp(A) = B,

transports the subset A of p to the set B of q. As the image of the set X under
parallel translation from p to q will depend in general on which path is taken;
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the solution proposed in [21], denoted by δRoerdA , is to consider all possible paths
from p to q. The mapping δRoerdA : P(M)→ P(M) given by

δRoerd
A (X) =

⋃
x∈M

⋃
γ

τγ(A) =
⋃

x∈M

⋃
γ

Expx Pγ[ω,x] Logω(A), (7)

is a dilation of image X according to the structuring element A. Using the
symmetry group morphology [22], this operator can be rewritten as δRoerdA (X) =⋃
x∈M Expx Pγ[ω,x] Logω(Ā), where Ā =

⋃
s∈Σ sA , with Σ being the holonomy

group around the normal at ω. For instance, if Ã = Logω(A) is a line segment
of length r starting at ω then Ā is a disk of radius r centered at ω.

Coming back to our framework, we notice that working on a geodesically
complete Riemannian manifold M, our dilation and erosion for an image f ∈
F(M,R) can be rewritten as

δλ(f)(x) = sup
y∈M

{
f(y)− 1

2λ
‖Logx(y)‖2

}
, ελ(f)(x) = inf

y∈M

{
f(y) +

1

2λ
‖Logx(y)‖2

}
.

If we replace the geodesic structuring element function bx,λ(y) = − ‖Logx(y)‖
2λ by

a flat geodesic structuring element by defining

bx,λ(y) =

{
0 y ∈ Bλ(x)

−∞ y /∈ Bλ(x)

where Bλ(x) = {y : ‖Logx(y)‖ ≤ λ} is the geodesic ball centered at x of radius λ,
we obviously have that the corresponding Riemannian flat dilation and erosion
of size λ can be rewritten as:

δBλ(f)(x) = sup {f(y) : y ∈ Bλ(x)} , εBλ(f)(x) = inf {f(y) : y ∈ Bλ(x)} .(8)

From our viewpoint, if we consider the geodesic structuring element at a given
pixel ω ∈ M; i.e.,Bλ(ω), as the reference structuring element of Roerdink, i.e.,
A = Bλ(ω), we can now formulate the ω-driven Riemannian flat dilation and
erosion at scale λ as

δ̆ωλ (f)(x) = sup
{
f(y) : y ∈ Expx Pγ

geo
[ω,x]

Logω (Bλ(ω))
}
, (9)

ε̆ωλ(f)(x) = inf
{
f(y) : y ∈ Expx Pγ

geo
[ω,x]

Logω (Bλ(ω))
}
. (10)

However, with respect to dilation (7), we prefer to consider in our case that the
parallel transport from ω to x is done exclusively along the geodesic path γgeo[ω,x]

between ω and x, i.e., if Logω (Bλ(ω)) was a line in ω then it will be also at x a
line, but rotated.

4 Connections with Classical Euclidean Morphology

Riemannian dilation and erosion generalize previous operators in Euclidean
morphology for both, translation invariant and spatially-variant morphology.
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Spatially-invariant Operators. First of all, it is obvious that the Riemannian
dilation/erosion naturally extends the quadratic Euclidean dilation/erosion for
images F(Rd,R) by considering that the intrinsic distance is the Euclidean one
(or the discrete one for Zd), i.e., dM(x, y) = ‖x− y‖ = dspace(x, y). By the way,
we note also that the definition of the Riemannian flat dilation and erosion of
size λ given in (8) is compatible with the formulation of the classical geodesic
dilation and erosion [16] of size λ of image f (marker) constrained by the image
g (reference or mask), δg,λ(f) and εg,λ(f), which underly the operators by recon-
struction [25], where the upper-level sets of the reference image g are considered
as the manifold M where the geodesic distance is defined.

Spatially-variant (adaptive) Operators. From [13], the idea of embedding a
grey-level image f ∈ F(R2,R), x = (x1, x2), into a surface embedded in R3, i.e.,
f(x) �→ ξx = (x1, x2, αf(x1, x2)), α > 0 (scaling parameter useful for controlling
intensity distances). This embedded Riemannian manifold M = R2 × R has a
product metric of type ds2M = ds2space + αds2f , where ds2space = dx21 + dx22 and
ds2f = df2. The geodesic distance between two points ξx, ξy ∈ M is the length
of the shortest path between the points, i.e., dM(ξx, ξy) = minγ=γ[ξx,ξy ]

∫
γ dsM.

As shown in [26], this is the framework behind the morphological amoebas [18],
which are flat spatially adaptive structuring functions centered in a point x,
Aλ(x), computed by thresholding the geodesic distance at radius λ > 0, i.e.,
Aλ(x) = {y ∈ E : dM(ξx, ξy) < λ}. In the discrete setting, it is given by

dM(ξx, ξy) = min
{ξ1=ξx,ξ2,··· ,ξN=ξy}

N∑
i=1

√
(xi

1 − xi+1
1 )2 + (xi

2 − xi+1
2 )2+α|f(xi)−f(xi+1)|.

We should remark that for x→ y and smooth manifold, the geodesic distance is
asymptotically equivalent to the corresponding distance in the Euclidean prod-
uct space, i.e., dM(ξx, ξy)

2 ≈ dspace(x, y)
2 + α2|f(x) − f(y)|2, which is the dis-

tance appearing in the bilateral structuring functions [1]. We can also see that
the salience maps behind the salience adaptive structuring elements [8] can be
approached in a Riemannian formulation.

5 Various Useful Case Studies

We state in this Section several interesting cases of image manifolds (and their
corresponding Riemannian distances) which can be processed using Riemannian
morphological operators.

Embedding an Euclidean Image into the Structure Tensor Manifold.
Besides the embedding discussed in previous Section, we can consider other more
geometric embedding, using for instance the local structure. More precisely, given
a 2D Euclidean image f(x) = f(x1, x2) ∈ F(R2,R), the structure tensor repre-
senting the local orientation and edge information [10] is obtained by Gaussian
smoothing of the dyadic product ∇f∇fT :
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S(f)(x) = Gσ ∗
(
∇f(x1, x2)∇f(x1, x2)

T
)
=

(
sx1x1(x1, x2) sx1,x2(x1, x2)
sx1x2(x1, x2) sx2x2(x1, x2)

)

where ∇f(x1, x2) =
(

∂f(x1,x2)
∂x1

, ∂f(x1,x2)
∂x2

)T

is the 2D spatial intensity gradient and
Gσ stands for a Gaussian smoothing with a standard deviation of σ. From a
mathematical viewpoint, S(f)(x) : E → SPD(2) is an image where at each
pixel we have a symmetric positive definite matrix 2 × 2. The differential ge-
ometry in the manifold SPD(n) is very well-known [5]. Namely, the metric is
given by ds2SPD(n) = tr(M−1dM) and the Riemannian distance is defined as

dSPD(n)(M1,M2) = ‖ log
(
M

−1/2
1 M2M

−1/2
1

)
‖F , ∀M1,M2 ∈ SPD(n). Let con-

sider now the embedding f(x) �→ ξx = (x1, x2, αS(f)(x1, x2)), α > 0, in the
product manifold M = R2 × SPD(2), which has the product metric ds2M =
ds2space + αds2SPD(2). It is a (complete, not compact, negative sectional curved)
Riemannian manifold of geodesic distance dM(ξx, ξy) = minγξx,ξy

∫
γ dsM, which

is asymptotically equal to dM(ξx, ξy)
2 ≈ dspace(x, y)

2 + αdSPD(2)(S(f)(x),
S(f)(y))2. By means of this embedding, we can compute anisotropic morpho-
logical operators following the flow coherence of image structures.

Embedding an RGB-D Image into the (x, y,Depth, fR, fG, fB) Manifold.
Current technologies of range cameras, such as the popular Kinect one, produce
RGB images fRGB ∈ F(R2,R

3
) together with a depth map (or distance image)

fDepth ∈ F(R2,R). The three components of the colour image can be mor-
phologically processed using the following embedding: (fRGB(x), fDepth(x)) �→
ξx = (x1, x2, αfR(x), αfG(x), αfB(x), βfDepth(x)), α, β > 0. The Riemannnian
manifold M is embedded in R6 and has the metric ds2M = ds2space + αds2RGB +
βds2Depth, with ds2RGB = df2R + df2G + df2B and ds2Depth = df2Depth; the geodesic
distance is asymptotically dM(ξx, ξy)

2 ≈ dspace(x, y)
2 +αdRGB(x, y)

2 +βdDepth
(x, y)2. Working in this manifold, the 3D information from the scene 2D × Depth
is used to adaptively constraint the operators on the colour images.

Embedding Star-like 3D Surfaces into the Sphere S2. Let consider a
smooth surface S ⊂ R3 under the assumption that it corresponds to a star-
shaped 3D objet: that means that there exists a point z0 ∈ R3 within the
object, such that each ray originating from this point intersects the object’s
surface exactly one; this point is denoted πz0→S . We can assign to each ray,
representing a 3D orientation in space and therefore an element of the sphere
S2, the distance of the ray-surface-intersection to the origin of the ray. Hence,
we have a function f : S2 → R+, where (S, z0) �→ f(θ, φ) = ‖z0 − πz0→S‖,
(θ, φ) are the standard spherical coordinates. The Riemannian geodesic distance
in S2 (or Great circle distance) is simple the angle between the two points; i.e.,
dS2(ξ1, ξ2) = arccos (ξ1 · ξ2), where ξi = (sin θi cosϕi, sin θi sinϕi, cos θi). The im-
age f can be processed using the Riemannian morphological operators, obtaining
the image f ′ and the corresponding processed surface S ′ is simply obtained by
inversion of projective mapping πz0→S′ .
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(a)

(b) (c)

(d) (e)

Fig. 1. Morphological processing of real valued 3D surface: (a) original image on a
surface S ⊂ R3, f(x) ∈ F(S ,R+); (b) and (c) Riemannian dilation δλ(f)(x) with re-
spectively λ = 4 and λ = 8; (d) and (e) Riemannian closing ϕλ(f)(x) with respectively
λ = 4 and λ = 8

Morphological Processing of Real Valued 3D Surfaces. In Fig. 1(a) is
given an example of real-valued 3D surface, i.e., the image to be processed is
f : S ⊂ R3 → R. In practice, the 3D surface is represented by a mesh (i.e., trian-
gulated manifold with a discrete structure composed of vertices, edges and faces).
In our example, the grey-level intensities are supported on the vertices. In the
case of a discrete approximation of a manifold based on mesh representation, the
geodesic distance dS(x, y) can be calculated by the Floyd–Warshall algorithm for
finding shortest path in the weighted graph of vertices of the mesh. Efficient al-
gorithms are based on Fast Marching generalized to arbitrary triangulations [14].
Fig. 1 depicts examples of Riemannian dilation δλ(f) and Riemannian closing
ϕλ(f), for two different scales (λ = 4 and λ = 8).

6 Perspectives

This work on Riemannian mathematical morphology can be continued in vari-
ous ways. On the one hand, some points require a more deeply technical analy-
sis: granulometric framework for Riemannian openings/closings and other scale-
space properties, regularization properties of other morphological filters than the
pseudo-openings/closings, formulation of levelings and other connected operators
for Riemannian manifolds, etc. On the other hand, a deeper exploration of the
flat Riemannian operators, associated to a fixed geodesic structuring element,
inspired from the Roerdink idea of parallel transport, will be done considering
for instance notions from optimal transport. Finally, Riemannian morphologi-
cal framework can be also approached from a continuous viewpoint using the
corresponding Hamilton-Jacobi equation. In particular, the starting point can
be the study by Dragoni [9] (see also [3]), which considers the Hamilton-Jacobi
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equation ut +
1
2 |σ(x)Du|2 = 0, (x, t) ∈ Rd × R+, u(x, 0) = f(x) where σ(x)

is a Carnot–Carathéodory metric (naturally defined in Riemannian manifolds),
whose viscosity solution is u(x, t) = infy∈Rd

{
f(y) + d(x,y)2

2t

}
, with d(x, y) being

the Carnot–Carathéodory distance. In practice, that involves the construction of
stable intrinsic numerical methods for Hamilton-Jacobi equation on Riemannian
manifolds, and in particular to 3D surfaces.
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Abstract. In this paper, a family of weighted neighborhood sequence distance
functions defined on the square grid is presented. With this distance function,
the allowed weight between any two adjacent pixels along a path is given by
a weight sequence. We build on our previous results, where only two or three
unique weights are considered, and present a framework that allows any number
of weights. We show that the rotational dependency can be very low when as
few as three or four unique weights are used. An algorithm for computing the
distance transform (DT) that can be used for image processing applications is
also presented.

1 Introduction

In a digital space (given for example by the pixels on a computer screen), not all proper-
ties of the Euclidean geometry are fulfilled. This is mainly due to the discrete (as opposed
to continuous) structure of digital spaces. An example that shows that the Euclidean
distance function has some disadvantages in digital spaces is the following: Circles, i.e.,
points of equal distance form a single point, are in general not connected in the usual
sense: The eight points at distance

√
5 from a given point are disconnected with any

of the common digital connectivities. Moreover, for most of the positive real values r
there is not any point with this distance from any other point, see for example [6]. Also,
computing with the Euclidean distance [11], in some cases, is very time consuming,
especially for the so-called constrained distance transform, see the discussion in [14].

Therefore, the use of digital, i.e., path-based, distances is potentially very important
for both digital image processing and computer graphics. For a path-based distance,
each distance value attained is the cost of a connected path between two pixels in a
square grid. In this aspect, the digital approach we follow is fundamentally different
from the approach when Euclidean distances are computed. We believe that it is impor-
tant to develop both the theory based on these digital distances and practical algorithms
for image processing that effectively can utilize these distances.

The two digital distances first described in the literature are the city block and chess-
board distances [12]. It is very easy to compute and use them, but they have very high ro-
tational dependency (anisotropy). The theory of digital distances has developed rapidly
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from 1980’s. The weighted (chamfer) distances [1], where the grid points together with
costs to local neighbors form a graph in which the minimal cost path is the distance, is
a well-known and often used concept in image processing. Contrary to weighted dis-
tances, the allowed steps may vary along the path with distances based on neighborhood
sequences from a predefined set of steps [3]. For instance, by mixing the city block and
chessboard neighborhood. In [18,16], the concept of weighted distances is generalized
by allowing the size of the neighborhood to vary along the path. In this way, we get
a distance function with potentially lower rotational dependency compared to when a
fixed neighborhood is used. Recent results on Euclidean distance approximation are
found in [4,2,7].

In this paper, we extend the idea presented in [15], where distances defined by three
different local steps were considered. We allow using a fixed, but arbitrary large, num-
ber of possible local steps in the neighborhood sequence. Each of the allowed steps use
only the 8-neighborhood of the pixels, but with different weights. Our main motivation
is to provide a framework, to define digital distance functions that have as low rota-
tional dependency as possible, that can be used to develop efficient image processing
tools. Here, this is obtained by finding weight sequences that approximate the Euclidean
distance.

Given a distance function, a distance transform is a transform where each element in
a set is assigned the distance to the closest (as given by the distance function) element
in a complementary set. The result of a distance transform is called a distance map. This
tool is often used in image processing and computer graphics [5]. In digital geometry,
the geometry of integer grids is used for building algorithms for, for example, image
processing. It is very natural to define distance functions in this setting by minimal cost
paths. In this paper, we present an algorithm for computing the distance map.

The structure of the paper is as follows. In the next section we present definitions and
also some theoretical results, e.g., a formula to compute the point-to-point distance.
In Section 3 parameter optimization is shown to obtain distances with low rotational
dependency, i.e., approximating the Euclidean distance in this sense. Section 4 contains
an algorithm for computing the distance map (DM) with some examples.

2 Theory

In this paper, we consider grid points with integer coordinates. Of course, in image
processing, each grid point is associated with a picture element, pixel. In a city block
(resp. chessboard distance), points with unit difference in at most one (resp. two) of the
coordinates have unit distance. Here, we use the notion of 1- and 2-neighbors in the
following sense: Two grid points P1 = (x1, y1), P2 = (x2, y2) ∈ Z2 are ρ-neighbors,
ρ ∈ {1, 2}, if

|x1 − x2|+ |y1 − y2| ≤ ρ and (1)

max {|x1 − x2|, |y1 − y2|} = 1.

The points are strict ρ-neighbors if the equality in (1) is attained. Two points are
adjacent if they are 2-neighbors. A neighborhood sequence (ns) B is a sequence
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B = (b(i))∞i=1 of neighborhood relations [3,8]. The shortest B-path between any two
points can be computed by a greedy algorithm (see, e.g., [8]). A formula to compute
B-distances can be found in [9,10] for the square grid. However, in this paper we use
weight sequences instead of neighborhood sequences and will therefore use a modified
description. A weight sequences is denoted W = (w(i))

∞
i=1. A weight sequence W

can be used as follows: In a W -distance, opposed to the B-distance, a weight to the 2-
neighbors are always given by the weight sequence. The cost of a move to a 1-neighbor
is 1 in every step, and the cost of a move to a strict 2-neighbor is given in the weight
sequence.

In this work, we allow m ∈ N, m ≥ 2 different neighborhood relations:

– a traditional 1-step is a step between 1-neighbors with unit weights, the sign ∞
denote these steps in W (practically, strict 2-steps are not allowed);

– a traditional 2-step is a step between 2-neighbors with unit weights, they are de-
noted by 1 in W ;

and if m > 2, then let {w3, . . . , wm} be the used weight set and in these cases the
further steps are:

– weighted 2-steps are steps between 1-neighbors with unit weights, and
between strict 2-neighbors are steps with a weight wk (where 3 ≤ k ≤ m and
1 ≤ wk ≤ ∞).

In this paper the weight sequenceW can containm weights of a predefined weight set,
i.e., w(i) ∈ {1,∞, w3, . . . , wm} for all i ∈ N, i > 0.

A path in a lattice is a sequence of adjacent lattice points. A path P0, P1, . . . , Pn is
a path of n steps where for all i ∈ {1, 2, . . . , n}, Pi−1 and Pi are adjacent.

The cost (weighted length) of a path is the sum of the weights along the path, i.e.,

n∑
i=1

δi, where δi =

⎧⎨⎩w(i), if Pi−1 and Pi are strict
2-neigbors;

1, otherwise.

When the weight sequence W is fixed we use the term W -path for paths having finite
cost as defined by the weight sequence W . A W -path between P and Q is a minimal
cost W -path if no other W -path between the points has lower cost. (If a step with
weight ∞ has been taken, then the length of this path is ∞ and it is greater than any
finite number.) TheW -distance between P andQ is the cost of a minimal cost W -path
between P andQ.

Regarding only the W -distances and paths with minimal costs they are obtained
without any step with a weight value wi > 2. This fact allows reducing our notation,
the steps and so the values in the weight sequenceW with weight∞ (together with all
values that are larger than 2) can be replaced by the same number (and it could be any
number that is larger than 2). We use the notation∞ for these steps in this paper. Based
on this we can say that in our paths only weights between 1 and 2 play important role.

Example 1. Let the weight sequence W = (1, 1.9, 1.8, 1, 1.5, . . .). Then the shortest
W -path from (0, 0) to (2, 2) includes two diagonal steps with weights 1 + 1.9 = 2.9.
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However the shortestW -paths from (0, 0) to (3, 3) is not a continuation of the former
path, but consists of a diagonal step to (1, 1) with weight 1, then two consecutive 1-steps
(to either (1, 2) or (2, 1) and, then, to (2, 2)) and finally a diagonal step with weight 1:
in this way theW -distance of (0, 0) and (3, 3) is 4. Comparing these shortest paths with
four steps, one can reach the point (3, 3) in three steps from (0, 0), but the weight of
these three diagonal steps 4.7 together.

The W -distance of (0, 0) and (2, 3) is 3.8 and it comes from the shortest path
including a diagonal step (weight 1), then, we need a 1-step and diagonal step by
weight 1.8.

By Example 1, one can see that greedy algorithm cannot be used to provide shortest
paths. If a smaller weight appears after a larger weight in W , we may need this smaller
in our shortest path, but it depends on both the weight sequence and on the difference
of the coordinate values of the points.

2.1 Formula for Computing the Distance Function

Now we give a formula for computing the distance between any two grid points. The
formula is used for finding optimal parameters in Section 3.

Let the weight sequence W , with the the weight set {1,∞, w3, . . . , wm} and the
point (x, y) ∈ Z2, where x ≥ y ≥ 0, be given. The number of steps in an optimal path
from the point 0(0, 0) to the point (x, y) is between x and x + y since the last case
gives only 1-steps, which are always allowed. In this case, the distance is exactly x+ y.
The first case gives x − y 1-steps and y 2-steps, so to get the path cost, we sum up the
1-steps and the y smallest weights of the first x elements. In the general case, we find
the optimal value of f = 0 . . . y (that gives the number of 2-steps) by summing up the
x − y + 2f 1-steps and the y − f smallest weight among the first x + f elements in
the weight sequence (2-steps). The distance is defined for the f that gives the path with
the lowest cost. This gives the formula

d(0, (x, y);W ) = min
f=0..y

{
x− y + 2f +

∑
i∈I

w(i)

}
(2)

where the index set I contains the index of the smallest y− f weight values among the
first x+ f values of the weight sequenceW . Since the roles of the x- and y-coordinate
are similar, and our distance function is translation invariant, one can easily compute
the W -distance of any pair of points of Z2 by our formula.

Our general approach consists several special cases:

– W = (w3)
∞
1 – traditional chamfer distance

– W contains only 1’s and ∞’s – traditional distances based on neighborhood
sequences ([3,8,9])

– W contains only 1’s and w3 – distances defined by weighted neighborhood
sequences ([14])

– W contains only values 1, ∞, w3 – distances defined by three types of local
steps [15]
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Note that, as opposed to the above mentioned first three usual cases, in our general case
the greedy algorithm do not produce the optimal path and so the distance cannot be
obtained by their help.

3 Parameter Optimization

In this section, we give some results on the approximation of the Euclidean distance.
We find weight sequences that give a small difference between the Euclidean distance
dE(·, ·) and the weight sequence distance d(·, ·;W ) between the point 0 and the point
(x, y), where x ≥ y ≥ 0. See also [4]. The general case follows by symmetry as we
discussed at the previous section about the formula.

Lemma 1. If the weight sequence W is non-decreasing and all elements in W are
smaller than or equal to 2, the distance in (2) is given by

d(0, (x, y);W ) = x− y +
y∑
i=1

w(i)

Proof. Since the lowest weights are the first in the weight sequence, we have

min
f=0..y

{
x− y + 2f +

∑
i∈I

w(i)

}
= min
f=0..y

{
x− y + 2f +

y−f∑
i=1

w(i)

}
,

where the sum from i = 1 to i = 0 is 0. Since the weights are smaller than or equal to
2, the optimum is attained for f = 0, so

min
f=0..y

{
x− y + 2f +

y−f∑
i=1

w(i)

}
= x− y +

y∑
i=1

w(i). !�

Proposition 1. Given an integer x > 0, the Euclidean distance values from (0, 0) to
the set {(x, y) ∈ Z2, 0 ≤ y ≤ x} is given without errors by the weight sequence(
1 +

√
x2 + i2 −

√
x2 + (i − 1)2

)
i=1..x

.

Proof. All weights in the weight sequence are smaller than 2 and the sequence is in-
creasing, so by Lemma 1

d (0, (x, y);W ) = x− y +
y∑
i=1

w(i)

= x− y +
y∑
i=1

(
1 +

√
x2 + i2 −

√
x2 + (i− 1)2

)
= x− y +

√
x2 + y2 − (x − y)

= dE(0, (x, y)). !�
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The following remark follows by the construction of the index set I in the previous
section.

Remark 1. Proposition 1 holds for any permutation of the weights in the weight
sequence.

Given the number of weights in the weight set, Proposition 1 and Remark 1 gives a
set of weights that optimally approximates the Euclidean distance on the border of a
square. Now, a reasonable order of the weights are computed in order to obtain the
weight sequence. This is done by using a greedy algorithm, Algorithm 1.

Algorithm 1. Algorithm for computing suboptimal weight sequence from the
sequence obtained by Proposition 1.

Input: A sequence of weights 1 ≤ w(i) < 2, i = 1, .., k, obtained by Proposition 1.
Output: A sequence w′ with suboptimal order of the weights.
Let K = {1, 2, . . . , k} and w′ = (∞,∞, . . .);
foreach i = 1..k do

j′ =

argmin
j∈K

⎛
⎝ ∑

l=1..i

∣∣dE(i, l)− d(i, l;w′′)
∣∣ , where w′′(m) =

⎧⎨
⎩

w′(m) for m < i
w(j) for m = i
∞ for m > i

⎞
⎠;

w′(i) ← w(j′);
K ← K \ {j′};

Given a square centered in (0, 0) (a chessboard disk of radius k), for x = 0..k, the
weight that minimizes the difference to the Euclidean distance in the next step is added
to the weight sequence. The weight sets obtained by Proposition 1, for increasing x, are
listed in Table 1.

Table 1. Optimal weight sequences (with rounded weights) obtained by Proposition 1. The first
column shows the number of weights obtained by Proposition 1.

# w(1) w(2) w(3) w(4) w(5)
1 1.4142

2 1.2361 1.5924

3 1.1623 1.4433 1.6371

4 1.1231 1.3490 1.5279 1.6569

5 1.0990 1.2861 1.4458 1.5722 1.6679

In the (greedy) Algorithm 1, the mean absolute difference between dE(·, ·) and
d(·, ·;W ) is minimized in each step up to a radius 50. The sequences of weights ob-
tained are listed in Table 2.
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Table 2. Suboptimal weight sequences obtained by Algorithm 1 using the weights in Table 1.
The sequences show the first 20 indices of the corresponding weight sequence in Table 1. The
first column shows the number of weights in the sequence obtained by Proposition 1.

# weight sequence
1 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1

2 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1

3 2, 2, 1, 3, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3, 1, 3, 2, 1, 3

4 2, 3, 2, 1, 4, 3, 2, 1, 4, 2, 3, 1, 4, 2, 3, 1, 4, 2, 3, 1

5 3, 2, 4, 2, 3, 1, 5, 3, 2, 4, 1, 5, 3, 2, 4, 1, 5, 3, 2, 4

4 Distance Transform (DT)

The DT is a mapping from the image domain, a subset of the grid, to the range of the
distance function. In a DT, each object grid point is given the distance from the closest
background grid point. A modified version of a wave-front propagation algorithm can
be used.

Now the formal definition of image is given.

one weight two weights three weights

four weights five weights

Fig. 1. Distance maps from a single point using the weights and sequences in Table 1 and Table 2.
The distance values are shown modulo 10.
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Definition 1. The image domain is a finite subset of Z2 denoted by I. We call the func-
tion F : I −→ Rd an image, whereRd is the range of the distance function d.

An object is a subset X ⊂ I and the background is X = I \ X . We assume that
X,X �= ∅. We denote the distance map for path-based distances with DMd, where the
subscript d indicates what distance function is used.

Definition 2. The distance map DMd generated by the distance function d(·, ·;W ) of
an objectX ⊂ I is the mapping

DMd : I → Rd defined by

P �→ d
(
X,P ;W

)
, where

d
(
X,P ;W

)
= min

Q∈X
{d (Q,P ;W )} .

In the case of W -distances with two weights, a minor modification of the Dijkstra al-
gorithm (and with the same time complexity) can be used, see [17] and Theorem 4.1
in [13]. However, for multiple number of weights, this is not necessarily true. For W -
distances, the used weights are also of importance, and they are determined by the
number of steps of the minimal cost-path (not the cost). Therefore, in the general case
of multiple weights presented here, we need to store this value also when propagating
distance information. We define the auxiliary transformDMs that holds the number of
steps of the minimal cost path at each point, see Algorithm 2.

Note that we need to store not only the best distance values at the points, but the
best values that are computed by various number of steps. Therefore for each point
P a set S(P ) of pairs of values of the form (DMd, DMs) are stored with pairwise
differentDMs. After the run of the algorithm for each point the minimalDMd gives the
result.

The novel Algorithm 2 shows how the distance map can be computed based on an
extended optimal search (Dijkstra algorithm) and using the data structure described
above. At the initialization the object points are the only points that are reached and it
is done by 0 steps and with 0 cost. Then the border points of the object are listed in an
increasing order by the minimal cost path already known for them. Actaully every point
in the list has 0 cost, but the list will be updated by involving other points to where paths
are already found. The while loop chooses (one of the) point(s) with minimal cost from
the list since it is sure that we have the minimal cost path to this point already. Then in
the loop the data of all neighbor points of the chosen point are updated by computing
the cost of the new paths through the chosen point (having last step from the chosen
point to the actual neighbor point). Therefore the algorithm holds the optimal distance
attained at each point (as the usual algorithm), but this is done for each path length. So,
if there are paths of different lengths ending up at the same point, distance information
for each of the different path lengths are stored.
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Algorithm 2. ComputingDM forW -distances given by a weight sequenceW .

Input: W and an object X ⊂ Z2.
Output: The distance map DMd.
Initialization: Let S(P ) ← {(0, 0)} for grid points P ∈ X . Let
DMd(P ) = min{DMd | (DMd, DMs) ∈ S(P )}. For all grid points P ∈ X adjacent
to X: push (P,DMd(P )) to the list L of ordered pairs sorted by increasing DMd(P ).
while L is not empty do

Pop (P,DMd(P )) from L;
foreach Q: Q,P are strict 2-neighbors do

foreach pair (DMd, DMs) ∈ S(P ) do
if w(DMs + 1) ≤ 2 then

if there is an element (DM ′
d, DMs + 1) ∈ S(Q) then

if DM ′
d > DMd + w(DMs + 1) then

Replace (DM ′
d, DMs + 1) by

(DMd + w(DMs + 1), DMs + 1) in S(Q)
end

end
else

Add (DMd + w(DMs + 1), DMs + 1) to S(Q)
end

end
end
Let DMd(Q) = min{DM ′

d | (DM ′
d, DM ′

s) ∈ S(Q)}
Push (Q,DMd(Q)) to the ordered list L;

end
foreach Q: Q,P are 1-neighbors do

foreach pair (DMd, DMs) ∈ S(P ) do
if there is an element (DM ′

d, DMs + 1) ∈ S(Q) then
if DM ′

d > DMd + 1 then
Replace (DM ′

d, DMs + 1) by (DMd + 1, DMs + 1) in S(Q)
end

end
else

Add (DMd + 1, DMs + 1) to S(Q)
end

end
Push (Q,DMd(Q)) to L

end
end

5 Conclusions

When the optimal parameters are used, the distance function we have presented has
very low rotational dependency. With our method one uses digital (path-based) distance
that approximate the Euclidean distance on the grid points with small error. Still, the
distance is defined as the minimal cost-path and can therefore be used, for example, to
compute the distance map in an efficient way. We believe that the proposed distance
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function is potentially useful in many other image processing algorithms, for example
for computing skeletons, or other algorithms where the low rotational independency is
required.
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Abstract. The ubiquity of the Laplace-Beltrami operator in shape anal-
ysis can be seen by observing the wide variety of applications where it has
been found to be useful. Here we demonstrate a small subset of such uses
with their latest developments including a scale invariant transform for
general triangulated meshes, an effective and efficient method for denois-
ing meshes using Beltrami flows via high dimensional embeddings of 2D
manifolds and finally the possibility of viewing the framework of geodesic
active contours as a surface minimization having the Laplace-Beltrami
operator as its main ingredient.

Keywords: Laplace-Beltrami, denoising, scale invariant, active
contours, segmentation.

1 Introduction

The Laplace-Beltrami operator is a generalization of the Laplacian to non-flat
Riemannian manifolds. The Laplacian operator appears in differential equations
describing various physical phenomena, such as heat diffusion, wave propagation,
etc. In computer vision it has been used extensively, for example for blob and
edge detection, or image smoothing. When working with cruved manifolds, such
as 3D shapes or even images represented as surfaces in 3D or 4D, like volume
images, MRI or CT, we need a general representation of the Laplacian opera-
tor, such that it will take into account the non-trivial geometry of the manifold.
There are many instances in the field of shape analysis where various types of
metrics play an important role. The common approach presented in this arti-
cle is to view the problem within a manifold processing framework, and use an
appropriately defined metric in order to calculate the Laplace-Beltrami. Both
heat diffusion over a surface as well as minimal surfaces are direct applications
of the operator. More advanced methods involving this ubiquitous operator in-
clude the generation of various shape descriptors, diffusion distance definition,
isometry invariant embedding, to name just a few. In this paper we analyze sev-
eral such methods from the point of view of manifold processing and illustrate
their inherent inter-connectivity.

C.L. Luengo Hendriks, G. Borgefors, R. Strand (Eds.): ISMM 2013, LNCS 7883, pp. 302–316, 2013.
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2 Beltrami Patch Denoising

The Laplace-Beltrami is the generalization of the Laplacian on Riemanian man-
ifolds. It has been shown [25] that image denoising can be effectively formulated
by considering an image to be a 2D manifold embedded into a higher dimensional
spatial-spectral space such as {x, y,R,G,B}. This embedding can then be tra-
versed iteratively using the so called Beltrami flow which generates a scale space
over the manifold and leads to noise reduction of the image while preserving
relevant features such as edges.

More recent papers [23][28] have extended this approach by embedding the
image manifold into a so called patch-space. The improved denoising capacity of
these techniques, as well as their greater generality, suggests that the Beltrami
flow is indeed well suited for dealing with the problem of depth map and image
denoising. An example of the smoothing property of the Beltrami patch flow can
be seen in Fig. 1.

Fig. 1. Top row: Face with artificial Gaussian noise σ = 10, denoised using Beltrami
patch denoising PSNR = 42.45, original face. Bottom row: Respective mean curvature
of each face. It appears that despite the disruptive noise, the denoising process retains
the main features present in the face.

2.1 Mathematical Background

We consider a height field I to be a 2D Riemannian manifold embedded in a
higher dimensional space. We thus define the patch-space mapping P : Σ →
M ⊆ Rn(2w+1)2+2 such that

P (x, y) =
(
x, y,

{
Ik (x+ i, y + j)

})
, (1)
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for i, j = −w, .., w, k = 1, .., n where w ∈ N is the window size and n is the
number of channels we use. For the case of a single height field n = 1, however
if we were provided with a set of registered scans of a particular surface, n
could represent the number of scans. The manifolds Σ andM are equipped with
metrics G and H respectively. We require that lengths between corresponding
points measured on each manifold are the same. For that end, we write that

ds2 =
(
dx dy dIki,j

)
H

⎛⎝ dx
dy
dIki,j

⎞⎠ = (dx dy)G

(
dx
dy

)
. (2)

where Iki,j is the compact form for
{
Ik (x+ iw, y + jw)

}
. In reality, the coordi-

nates x and y do not possess the same physical measure as the intensity values
of the height field so we need to introduce a scaling factor into the patch-space
metric given by

hpq =

{
δpq

β2δpq

1 ≤ p, q ≤ 2

2 < p, q ≤ n (2w + 1)2 + 2
, (3)

where δpq is the Kronecker delta. We can now use the chain rule dIki,j = β2Ik
i,jx

dx+ β2Ik
i,jydy from which it follows that when we pullback the metric from the

embedding the induced metric tensor is given by

G =

(
1 + β2

∑
i,j,k I

k2
i,jx β2

∑
i,j,k I

k
i,jxI

k
i,jy

β2
∑
i,j,k I

k
i,jxI

k
i,jy 1 + β2

∑
i,j,k I

k2
i,jy

)
. (4)

Using this metric we define a measure S on the manifold. For a Euclidean em-
bedding in M , S is none other than the area of the surface as measured in Σ

S [Σ,G] = Area ∝
∫∫ √

det(G)dxdy, (5)

where the proportion is up to a scale as a result of the non-unity coefficients of
the diagonal entries of H . There is a more general version of the above measure
called the Polyakov action which can be useful for non-Euclidean embeddings
and details of its application to the Beltrami framework can be found in [25]. We
minimize Eq. (5) using variational calculus and then multiply by g−1/2 which is
permitted through the freedom of paramaterization. We arrive at

ΔgI
k
i,j =

1
√
g
div
(√
gG−1∇Iki,j

)
= 0. (6)

The left hand operator is recognized to be the Laplace-Beltrami operator and
we can now compactly write the reformulation of the Beltrami flow in pach
space as

It = ΔgI. (7)
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2.2 Method and Results

TheBeltrami flow in patch-space derived above can produce efficient and plausible
denoising schemes in natural images. The flow is performed by a novel explicit
update scheme. We fix the number of iterations and find the optimal β for a given
σ in order to maximize the quantative efficacy of the process as measured by the

Peak Signal to Noise Ratio PSNR = 10log10

(
1/E

[
(Iest − I)2

])
across a wide

range of different representative images. σ is the noise level assumed to be present
in the image. It has been empirically observed that these two variables have a
surprizingly simple relationship for natural images as seen in Fig. 2.

Fig. 2. Left: Example of PSNR as a function of β−2 with a typical global maximum.
Right: Linear relationship between the logarithms of σ and β−2. Error bars indicate
one standard deviation from the mean over a set of different images.

Accurate denoising of range images is often the first stage in 3D reconstruc-
tion pipelines that stitch depth images together to form a solid model and it is
thus imperative that this process be fast and efficient. In our naive Matlab im-
plementation we use an integral image and unit weighting of neighbouring height
values to speed up the calculation of the flow update for each iteration. Further-
more, the diffusion update of every pixel in an image is independent of every
other for a given iteration in our explicit scheme. This implies that an optimized
implementation would need to take advantage of this inherrent parallelism and
significant speed improvements could be expected. For implementation details
of the method itself see [28].

Point clouds and meshes are often assumed to have noise which is Gaussian
and that is offset along the normal direction to the true surface at every vertex
location. In contrast, the noise model for range scanners is mainly observed to
be offset in the direction of the capturing device’s focal point. Furthermore the
noise is not Gaussian in nature and also includes areas with missing data. This
presents a significant hurdle for state of the art image denoising algorithms due to
the fact that they are mostly tuned for optimal removal of additive white noise.
A case in point is BM3D [13] to which we compare Beltrami patch denoising on
a depth map obtained from a real scanner in Fig. 3.
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Fig. 3. Far left: Original noisy scan. Top row: BM3D for σ = 5 and σ = 20. Bottom
row: Beltrami patch for σ = 5 and σ = 20.

Together with the efficiency of our method the Beltrami patch flow has an
additional desirable property in that it can be tuned to eliminate weak high
frequency structures. This is especially relevant for a variety of structured light
scanners which tend to inject artifacts along the boundaries of the projected light
patterns of the scanner. These artifacts can be observed as horizontal wrinkles
in Fig. 3 and are faithfully preserved by BM3D whereas our method removes the
artifacts while leaving the main components of the scan intact.

In this section we have illustrated the applicability of the Beltrami patch
flow to height fields. One extension of this approach which is currently being
investigated is how to apply the technique onto general meshes and point clouds.
These data structures require a somewhat different treatment and a variety of
new techniques are currently being developed by researchers to better understand
and manipulate these discretized manifolds. With this in mind we now turn our
attention to a new metric for use on triangulated meshes which is invariant to
local changes in scale.

3 Invariant Decomposition of the Laplace-Beltrami
Operator

In [26] it was argued that the Laplace-Beltrami operator and the corresponding
heat operator acquire invariant properties when choosing an appropriately in-
variant metric. This observation was later exploited to construct an equi-affine
invariant Laplace-Beltrami operator in [21] from which an invariant diffusion
distance was extracted, and more recently in [1] where a scale invariant metric
for surfaces was introduced.

At the other end, the standard Laplace-Beltrami operator’s eigen-functions
were used as a natural basis for shape representation, analogous to the Fourier
basis in classical signal processing [16,17]. We follow [21] and show how the
results of [1] can be incorporated into the axiomatic world of shape processing.
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One of the useful properties of the Laplace-Beltrami is that the operator
admits a spectral decomposition. In this section we show how a new metric
coupled with a discrete version of the Laplace-Beltrami and its eigenfunctions
can be used to produce locally scale invariant signatures of shapes.

3.1 Introduction

Consider S(u, v) a parametrized surface S : Ω ⊂ R2 → R3. The length of a
parametrized curve C in S can be measured using a general parametrization p
with

l(C) =

∫
C∈S

ds =

∫
C

|Cp|dp =
∫
C

|Suup + Svvp|dp

=

∫
C

√
|Su|2du2 + 2〈Su, Sv〉dudv + |Sv|2dv2, (8)

from which we have the usual metric definition of infinitesimal distances on a
surface

ds2 = gijdω
idωj , (9)

where we used Einstein summation convention, ω1 = u, ω2 = v and gij =
〈Sωi , Sωj 〉.

Using this convention and given a metric G on a manifold, we write the
Laplace-Beltrami operator as

ΔGf =
1
√
g
∂i
(√
ggij∂jf

)
, (10)

where g is the determinant of G, gij =
(
G−1

)
i,j
, and ∂i is the derivative with

respect to the ith coordinate.
The spectral theorem applied to the operator Δg states that it admits a

spectral decomposition, i.e. an orthogonal eigenbasis {φi, i ∈ Z} and a set of
eigenvalues {λi, i ∈ Z} where

Δgφi = λiφi, 〈φi, φi〉 = 1, ∀i ∈ Z. (11)

This spectral decomposition has been extensively used for shape analysis.
Diffusion geometry was introduced in [2] and refined in [12]. It uses the Laplace-
Beltrami operator Δg of the surface as a diffusion or heat operator. The heat
profile on the surface from a source located at s, after heat has dissipated for
time t, is given by the heat kernel signature (HKS)[27,6]

HKS(s, t) =
∑
i

e−λitφ2i (s) (12)
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where φi and λi are the corresponding eigenfunctions and eigenvalues of Δg,
that satisfy Δgφi = λiφi. The diffusion distance is then defined as

d2g,t(s, s
′) = ‖hs,t(ŝ)− hs′,t(ŝ)‖2g
=

∫
S

(hs,t(ŝ)− hs′,t(ŝ))2da(ŝ)

=
∑
i

e−2λit(φi(s)− φi(s′))2. (13)

The choice of an appropriate metric that stays invariant to certain classes of
deformations is important in the context of shape analysis. Several distances
have been used, such as Euclidean [11,3], geodesic [14,19,15,18], diffusion [8], and
affine invariant versions thereof [22] to compare and match between shapes. Yet
another example is the scale invariant HKS [9] which is a non-linear function of
the HKS. In order to be robust to local scale changes and isometries the following
local scale-invariant isometric metric was proposed

g̃ij = |K|〈Sωi , Sωj 〉, (14)

so that
dτ2 = |K|

(
〈Su, Su〉du2 + 2〈Su, Sv〉dudv + 〈Sv, Sv〉dv2

)
. (15)

It is a similarity (local scale + isometry) invariant arc-length, where K is the
gaussian curvature.

3.2 Experimental Results

To demonstrate the robustness of the scale invariant metric with respect to local
scale transformation, we first consider the shapes shown in Fig. 4. We then
present the profile of the heat kernel signature as a function of time (see Eq.
(12)) at three different points, the left hand finger tip, the right hand one, and

Fig. 4. Left to right: A centaur and its local scale transformed version. Details preser-
vation for the coordinates reconstructed from the 1000 first eigenvectors of the Laplace
Beltrami decomposition for the regular metric and the scale invariant metric.
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Fig. 5. Scaled heat kernel signatures for the regular metric (bottom), and the invariant
version (top). The blue circles represent the signatures for three points on the original
surface, while the red plus signs are computed from the deformed version. Using a
log-log axes we plot the scaled-HKS as a function of t.

the horseshoe of the front left leg as shown in Fig. 5. Another experiment that
allows us to understand the importance of an invariant metric is done by the
following eigen reconstruction of a shape. The eigenbasis of the shape has been
studied in [17] and [16]. We compute the spectral decomposition of the Laplace-
Beltrami with respect to both usual and scale invariant metric and compute an
approximation of the original shape by projecting the coordinates of the shape

Fig. 6. Correspondences between the Armadillo and its local scale tranformed version
using GMDS with the scale invariant metric
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on the first one thousand eigenvectors in that basis. We notice that the local scale
invariant Laplace-Beltrami has a spectral decomposition that preserves details at
all scales, and can be useful not only to analyze a group of shapes with local scale
transfomations but also shapes whose small details are important as shown in
Fig. 4. In the last experiment depicted in Fig. 6 we applied the GMDS algorithm
[7] using local scale invariant diffusion distance to compute the correspondence
between an armadillo and its scaled version.

The Laplace-Beltrami’s ubiquity can be seen not only in its application to
shape understanding but also to the field of computer vision where its tendency
towards minimal surfaces can be elegantly linked with the classic problem of
segmentation through the geodesic active contours model.

4 Geodesic Active Contours and the Laplace-Beltrami
Framework

In this section the Laplace-Beltrami operator and the flow towards minimal
surfaces that it generates is shown to be intimately related to the Geodesic
Active Contours (GAC) model for image segmentation [10]. Related work include
the papers by Bresson et al. [5], who showed how to obtain the GAC flow by
minimizing a weighted Polyakov action, and Bogdanova et al. [4], who showed
similar results for embedding spaces other than 3-D Euclidean space. Sochen
et al. [24] examined the image filtering problem, and showed that there existed
an intimate relationship between the PDE-based geometric approaches, derived
from minimizing the Polyakov action with an appropriate metric, and non-linear
filters of robust statistics.

We proceed by briefly describing the two frameworks - the geodesic active con-
tours and the generalized minimal surface flow, and then provide a formulation
in which their relationship becomes evident.

4.1 Geodesic Active Contours

Geodesic active contours were introduced for object boundary detection using
active contours evolving in time according to the intrinsic measures of the image.
In [10] it was shown that curve evolution using the geodesic active contours model
is equivalent to finding minimal distance curves in a Riemannian space whose
metric is defined by the intrinsic image measures mentioned above. Specifically,
these are curves that minimize the following length measure

LR :=

∫
f (|∇I (C(q))|) |C ′(q)| dq =

∫
f (|∇I (C(s))|) ds, (16)

in a Riemannian space with the metric tensor gij = f (|∇I (C)|) δij . The function
f (|∇I (C)|) is an edge indicator function, designed to stop the active contour
when it arrives to the object boundary.
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Casseles et al. used steepest-descent method to minimize the length LR (16),
and obtained the following curve evolution flow

∂C(t)

∂t
= (f(I)κ−∇f ·N )N , (17)

where κ is the curvature of C, and N is its unit inward facing normal.
The level set formulation [20] of the geodesic problem (17) is given by

∂u

∂t
= |∇u| div

(
f(I)

∇u
|∇u|

)
= f(I) |∇u| div

(
∇u
|∇u|

)
+∇f(I) · ∇u, (18)

where u(x, y, t) is the level set function of the evolving curve - C(x, y, t) =

{(x, y) : u(x, y, t) = 0}, and κ = div
(

∇u
|∇u|

)
gives the curvature of the level sets

of the function u.
The level set function flow in Eq. (18) can be interpreted as a generalized

minimal surface flow. In order to show this we will use the methodology de-
scribed by Sochen et al. in [25], which we will review briefly in the following
section.

4.2 Generalized Minimal Surface Flow

Let us treat the level set function u(x, y) as a two-dimensional surface embedded
in a 3-dimensional space. As in Sec. 2 we define such an embedding by the map
X : Σ →M , where Σ denotes a 2-D manifold Σ with local coordinates (σ1, σ2),
and M denotes the 3-D embedding space M . Explicitly, X is written as X =(
X1(σ1, σ2), X2(σ1, σ2), X3(σ1, σ2)

)
. Both manifolds Σ and M are equipped

with metric tensors, gμν(σ
1, σ2) and hij(x

1, x2, x3), respectively. The map X
and the metric hij can be used to construct the metric on Σ

gμν(σ
1, σ2) = hij(X)∂μX

i∂νX
j. (19)

Here we keep the Einstein summation convention, following the original work
of [25]. Next, the following weight functional can be associated with the map
X : Σ →M

S
[
X i, gμν , hij

]
=

∫
dmσ

√
(g)gμν∂μX

i∂νX
jhij(X), (20)

where gμν is the inverse of the metric gμν (that is gμγgγν = δμν), and g is the
determinant of {gμν}. This weight functional is called Polyakov action, and can
also be viewed as a generalized area measure. A particular case of the Polyakov
action has already been shown in Sec. 2, Eq. (5).

The minimal weight map (embedding) X can be obtained using steepest-
descent. The gradient of the Polyakov action with respect to the embedding is

− 1

2
√
g
hil

δS

δX l
=

1
√
g
∂μ
(√
ggμν∂νX

i
)
+ Γ ijk∂μX

j∂νX
kgμν (21)
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In order to find the minimal measure embedding, Sochen et al. [25] used the
following gradient descent flow

X i
t = −

1

2
√
g
hil

δS

δX l
. (22)

We note that the gradient (21) was obtained by multiplying the Euler-Lagrange
equations of (20) by a strictly positive function and a positive definite matrix,
that together were called a pre − factor. It does not change the minimum,
and produces a geometric parameterization-invariant flow. We will see that the
pre-factor needed to produce the GAC flow will be somewhat different, stem-
ming from the different geometry of the problem. We can also see that the first
term in the right-hand side of the Eq. (21), 1√

g∂μ
(√
ggμν∂νX

i
)
is exactly the

Laplace-Beltrami operator acting on the embedding X , denoted above by Δg.
The second term includes the Levi-Civita connection coefficients Γ ijk, that de-

scribe the geometry of the embedding space. When M = R3 with Euclidean
metric, hij = δij , the second term vanishes, and the flow becomes Xt = ΔgX ,
as seen in the previous sections.

4.3 Back to GAC: Level Set Formulation as a Flow Toward Minimal
Surface

Next, we show that the level set geodesic active contour flow in Eq. (18) can be
obtained by minimizing a certain generalized area measure. First, let us choose
X that maps a 2D Euclidean space (σ1 = x, σ2 = y) to a 3D Euclidean space,
such that

X = (x, y, u(x, y)) . (23)

The action functional we would like to study is

S =

∫∫
dxdyf(|∇I(x, y)|)

√
1 + |∇u|2, (24)

This is Polyakov action obtained by choosing the following metric tensors for
the parameter and the embedding spaces Σ and M , respectively

gμν = f(σ2, σ2) (∂μX · ∂νX) ,

hij = f(x1, x2)δij . (25)

Both gμν and hij are legitimate metric tensors, and, since (σ2, σ2) = (x, y) and
(x1, x2, x3) = (x, y, z), Eq. (19) holds.

The metric tensor gμν written in a matrix form becomes

G = (gμν) = f

(
1 + u2x uxuy
uxuy 1 + u2y

)
(26)

The metric determinant is g = det(G) = f2
(
1 + ‖∇u‖2

)
, and

√
g =

f
√
1 + ‖∇u‖2. The inverse of the metric is

G−1 = (gμν) =
f

g

(
1 + u2y −uxuy
−uxuy 1 + u2x

)
. (27)
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Next, we use Eq. (21) in order to obtain the gradient-descent flow for the level
set function component of X, namely X3 = u(x, y),

ut = X3
t =

1
√
g
∂μ (

√
ggμν∂νu) + Γ 3

jk∂μX
j∂νX

kgμν . (28)

Let us develop the two terms of the flow in Eq. (28) separately. Substituting
the expressions for

√
g and gμν into the first term of the right-hand side of the

flow in Eq. (28) produces

1
√
g
∂μ (

√
ggμν∂νu) =

1

f
√
1 + |∇u|2

· div
(

∇u√
1 + |∇u|2

)
(29)

In order to calculate the second term of the flow in Eq. (28) we must find the
expression for the Levi-Civita connection coefficients Γ 3

jk. For the metric hij
defined in Eq. (25)

Γ ijk =
1

2
hil (∂jhlk + ∂khjl − ∂lhjk)

=
∑
l

1

2

1

f
δil (∂j (fδlk) + ∂k (fδjl)− ∂l (fδjk))

=
1

2

1

f
(δik∂jf + δji∂kf − δjk∂if) (30)

Therefore

Γ 3
jk =

1

2f
(δ3k∂jf + δj3∂kf) , (31)

or, in a matrix form,

Γ 3 =
1

2f

⎛⎝ 0 0 fx
0 0 fy
fx fy 0

⎞⎠ . (32)

Finally, the second term of the flow from Eq. (28) becomes

Γ 3
jk∂μX

j∂νX
kgμν =

∇f · ∇u
f2 (1 + |∇u|2) . (33)

Using Eq. (29) and Eq. (33) we obtain the expression for the level set
function flow

ut =
1

f
√
1 + |∇u|2

div

(
∇u√

1 + |∇u|2

)
+

∇f · ∇u
f2 (1 + |∇u|2) (34)

In order to obtain the GAC level set formulation we need to multiply the above
flow by a pre-factor of f2

(
1 + |∇u|2

)
. The flow obtained this way is

ut = div

⎛⎝f ∇u√
1 + |∇u|2

⎞⎠√1 + |∇u|2 (35)
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We see that, up to the additional constant 1, this is exactly the flow of the
level set function of the geodesic active contours model from Eq. (18). Since the
surface definition in Eq. (23) is arbitrary, we can choose the aspect ratio between
du and dx, dy to be as large as we want. Thus 1 can be viewed as ε that vanishes
upon the right selection of u.

Essentially what we have shown is that the geodesic active contours method in
its level set formulation can be regarded as a minimal surface detection problem
that minimizes the Polyakov action functional, and in doing so we have deter-
mined the related metric tensors for both parameter and embedding spaces.

5 Conclusions

We have shown the links between a patch based heat flow with the Beltrami
operator as a diffusion filter, an invariant metric that was introduced into the
operator yielding invariant geometries for shape matching and synthesis, and the
geodesic active contour model expressed as a Beltrami diffusion equation. The
Laplace-Beltrami operator acting on data in one form or another can be seen as
one of the most fundamental operators in the analysis and processing of images
and shapes. By manipulating the metric, the action and the filtering processes
we have observed its applicability across a wide range of problems which further
illustrates the inherent ubiquity of the operator. We believe that the Laplace-
Beltrami viewpoint in this field has the potential to enable and enhance the
understanding and exploration of images and shapes.
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Abstract. The introduction of nonlinear filters which approximate flat dilation
and erosion is an issue that has been studied during the past years. In the litera-
ture, we can find works which involve the definition of robust morphological-like
filters from well-known operators such as the Counter-Harmonic Mean (CHM).
The main goal of this paper is to provide the reader with a morphological CHM-
based regularization which simultaneously preserve both the structural informa-
tion in areas of the image with high gradient and the morphological effect in the
areas with low gradient. With this purpose, we introduce a suitable mathemat-
ical framework and then deal with the variational formulation which is derived
from it. Practical aspects of the implementation are discussed and some results
are provided to illustrate the behaviour of our approach.

1 Introduction

Mathematical morphology operators [14] [16] are formulated in terms of geometric
notions as well as in terms of complete lattice theory [11]. Morphological filters en-
tail mainly the computation of supremum and infimum values in neighbourhoods (or
structuring elements) which correspond respectively to the dilation and the erosion,
the two basic operators. Morphological operators present also good scale-space prop-
erties [12] [4] but, by the natural duality of complete lattices, most operators appear by
pairs, one acting on bright structures and the other one on dark structures. This latter
property of asymmetry is in fact an advantage which allows defining evolved operators
by product of a pair of dual ones. For instance, the opening (resp. closing) is obtained
by the product of an erosion (resp. dilation) followed by a dilation (resp. erosion). The
product of openings and closings leads to the alternate filters and other families of mor-
phological filters [15] [16].

The idea of using the Counter-Harmonic Mean (CHM) [5] for constructing robust
morphological-like operators, without the notions of supremum and infimum, was
firstly proposed by van Vliet [17]. More recent works go further and exploit the CHM
to introduce nonlinear filters whose effects mimic morphological dilation and erosion
[2] [1]. In other words, CHM shows its appropriateness to approximate flat dilation and
erosion. The general framework which results of these proposals can be utilized for

C.L. Luengo Hendriks, G. Borgefors, R. Strand (Eds.): ISMM 2013, LNCS 7883, pp. 317–328, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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the various algorithms of image diffusion. For example, as explained in [1], a pseudo-
morphological counter-harmonic nonlinear diffusion can be defined from Perona and
Malik-based models [13] [6]; comparing with respect to the standard filtering, the good
properties of denoising without blurring are still present, and an additional effect of
dilation/erosion is obtained.

In this work, the authors propose a specific regularization, within a variational frame-
work, of the CHM, in order to improve the performance of the pseudo-morphological
operators that can be derived from it. Our main aim is to come up with filters which
simultaneously preserve not only the structural information in areas of the image with
high gradient (such as edges or contours of objects) but also the pseudo-morphological
effect in the areas with low gradient (such as textures). At this point, it should be clar-
ified that our proposal has nothing to do with the total variation minimization with L1

data fidelity introduced by Darbon [7], who obtained contrast invariant filters with a
“morphological behaviour” which are particularly useful as a pre-processing stage be-
fore segmentation. The outline of the paper is as follows. We start out with the review
of the notion of Counter-Harmonic Mean. In the following section, the proposed varia-
tional approach for the morphological image regularization (which is based on the CHM
filter) is presented. Some interesting implementation aspects are also tackled in this sec-
tion. In Section 4 our methodology is tested on three academic and actual experiments.
Finally, the conclusions close the paper.

2 Counter-Harmonic Mean (CHM)

Let a = (a1, a2, · · · , an) and w = (w1, w2, · · · , wn) be real n-tuples, i.e., a, w ∈ Rn.
Supposing that r ∈ R̄, the r-th Counter-Harmonic Mean (CHM) of a with weight w is
given by [5]:

K[r](a;w) :=

⎧⎪⎨⎪⎩
∑n
i=1 wia

r
i∑n

i=1 wia
r−1
i

, if r ∈ R
max(ai) , if r = +∞
min(ai) , if r = −∞

. (1)

The equal weight case will be denotedK[r](a). We notice that K[1](a;w) is the weighted
arithmetic mean and K[0](a;w) is the weighted harmonic mean.

The CHM has been considered in the literature of image processing as an appropriate
filter to deal with salt and pepper noise [10]. More precisely, let v = f(x, y) be a grey-
level image: f : Ω → V . Typically, for digital 2D images, (x, y) ∈ Ω whereΩ ⊂ Z2 is
the discrete support of the image. The pixel values are v ∈ V ⊂ Z or R, but for the sake
of simplicity of our study, we consider that V = [0, 1]. The CHM filter is obtained as

κPB(f)(x, y) :=

∑
(l,m)∈B(x,y) f(l,m)P+1∑
(l,m)∈B(x,y) f(l,m)P

= K[P+1]
(
{f(l,m)}(l,m)∈B(x,y)

)
, (2)

whereB(x, y) is the window of the filter, centered at point (x, y), i.e., the region defined
by the structuring element in the case of morphological operators. This filter is well
suited for reducing the effect of pepper noise for P > 0 and of salt noise for P < 0.
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In the pioneering paper [17], starting from the natural observation that morphological
dilation and erosion are the limit cases of the CHM, i.e.,

lim
P→+∞

κPB(f)(x, y) = max
(l,m)∈B(x,y)

(f(l,m)) = δB(f)(x, y) , (3)

and

lim
P→−∞

κPB(f)(x, y) = min
(l,m)∈B(x,y)

(f(l,m)) = εB(f)(x, y) , (4)

it was proposed to use the CHM to calculate robust nonlinear operators which ap-
proach the morphological ones but without using max and min operators. In addition,
these operators are more robust to outliers (i.e., to noise) and consequently they can
be considered as an alternative to rank-based filters in the implementation of pseudo-
morphological operators.

It is easy to see that for P + 0 (resp. P " 0), the pixels with largest (resp. smallest)
values in the local neighbourhood B will dominate the result of the weighted sum.
Unlike the Mikowski mean [20], which does not reach the dilation (resp. erosion) even
for P = 100 (resp. P = −100), the error in the results for CHM is already negligible
for P = 20 (resp. P = −20). In the exhaustive study carried out in [1], it is also
shown that the convergence to the erosion with P " 0 is faster than to the dilation with
equivalent P + 0, i.e., assuming P > 0,∣∣κPB(f)(x, y)− δB(f)(x, y)∣∣ ≥ ∣∣κ−PB (f)(x, y) − εB(f)(x, y)

∣∣ , ∀(x, y) ∈ Ω .

Finally, it should be noted that κPB(f) and κ−PB (f) are not dual operators with respect
to the complement, i.e., for P > 0,

κPB(f) �= �κ−PB (�f) ,

with �f = 1− f . In particular, the following ordering relationship holds for P > 0:

κ−PB (f)(x, y) ≤ κPB(f)(x, y) .

Flat dilation, erosion, and derived filters, commute with any strictly increasing map-
ping A, i.e., v1 ≤ v2 ⇔ A(v1) ≤ A(v2), v1, v2 ∈ V ; which means for instance
that δB ((A(f)) = A (δB(f)). This property is related to the fact that morphologi-
cal operators are increasing (or order preserving): for any pair of images f and g, if
f(x, y) ≤ g(x, y) then δB(f)(x, y) ≤ δB(g)(x, y). CHM filter is generally not increas-
ing; however, this is not limiting for the purpose of robust approximation to dilation and
erosion.

As said above, we limit here our developments to positive bounded images f in
V = [0, 1]. We note that, for the general case of V ⊂ R, we have κPB(f) = �κPB(�f);
that is, the CHM filter is self-dual with respect to the involution �f = −f , meaning that
the CHM filter approximates a dilation for positive values and an erosion for negative
values.
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3 Regularization of the CHM-Based Filtering

Mathematically, the regularized gray-level image u(x, y) which results from the appli-
cation of our methodology to the original image f(x, y) has to meet two requirements.
On one hand, it has to be similar to the outcome of the CHM filter κPB(f) in areas of
the image with low gradient (such as textures). And on the other hand, it has to preserve
the structural information (i.e., edges or contours) in the areas with high gradient. This
problem can be approached in terms of the variational calculus [8] [9], as explained in
the following paragraphs.

The goal of the variational calculus is to obtain a function (i.e., an image, in the
current scenario) that minimizes a certain energy functional (or cost function) E(u):

u := argmin
u
E(u) , (5)

where, in a first approximation, the energy functional could be defined as

E(u) := 1

2

∫
Ω

(
u− κPB(f)

)2
dxdy . (6)

It should be noted that the latter definition leads to the trivial solution u = κPB(f),
and therefore the pretended requirements are unmet. As an alternative, in this work we
propose the following joint energy functional:

E(u) := α

2

∫
Ω

(
u− κPB(f)

)2
dxdy +

1

2

∫
Ω

‖∇f‖2(u− f)2dxdy , (7)

where α > 0 is a scalar parameter, usually referred to as the regularization parameter,
which is used to control and weight the influence of the first term of the functional (mor-
phological effect) versus the second term (fitting to the data). In the second term, the
squared difference between the regularized image and the original image is weighted by
the squared magnitude of the gradient of the latter; hence the fitting term does not con-
tribute to the cost function (7) in the spatial positions where the gradient is negligible,
thus allowing for a noticeable pseudo-morphological filtering in these regions.

According to the variational calculus, a necessary condition for a minimizer u of
the joint energy functional is that the first variation of E(u) in any direction (also
known as the Gâteaux derivative) vanishes for all suitable perturbations z ∈ R#Ω ,
i.e., dE(u; z) = 0. This yields the following expression:

dE(u; z) =
∫
Ω

〈
α
(
u− κPB(f)

)
+ ‖∇f‖2(u− f), z

〉
R
dxdy = 0 , (8)

where 〈·, ·〉R denotes the dot (or inner) product in R. The proof is detailed in the Ap-
pendix A. Since (8) must be valid for all z, we can conclude that

α
(
u− κPB(f)

)
+ ‖∇f‖2(u− f) = 0 . (9)

Equation (9) is the Euler-Lagrange equation which corresponds to the minimization
problem (5); this expression models the equilibrium state that u has to achieve in order
to be an actual minimizer of E(u).
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With the purpose of solving the Euler-Lagrange equation, a time-marching scheme
can be employed by adding an artificial time t and then computing the steady-state
solution. This strategy gives rise to the equation

∂

∂t
u+ α

(
u− κPB(f)

)
+ ‖∇f‖2(u − f) = 0 , (10)

where u = u(x, y; t); in the steady-state, ∂
∂tu = 0 and (10) holds (9). Equation (10)

can be solved numerically by discretizing the time (i.e., t := ξτ , with ξ ∈ N being
the iteration index and where τ > 0 is the time-step), and then replacing the temporal
partial derivative by its discrete approximation (first backward difference):

∂

∂t
u(x, y; t) ≈ u(x, y; ξτ) − u(x, y; ξτ − τ)

τ
. (11)

Using the notation u(ξ)(x, y) := u(x, y; ξτ), the resulting semi-implicit iteration for
the regularized image is the following:

u(ξ) = u(ξ−1) + τ
(
α(κPB(f)− u(ξ−1)) + ‖∇f‖2(f − u(ξ−1))

)
, (12)

where u(ξ) is initialized to the CHM filter, i.e., u(0) := κPB(f).

3.1 Practical Implementation of the Algorithm

When tackling the software implementation of the proposed regularization scheme,
some practical issues have to be considered. Firstly, the gray levels of the original image
must be normalized (i.e., f(x, y) ∈ [0, 1]) prior to the computation of κPB(f). This way,
overflow-related problems that could appear for high values of P when calculating the
CHM (see (2)) are avoided. Once the outcome of this filter is computed, the values of
both f and κPB(f) are restored to the original domain V ⊂ Z or R.

Another practical subject which deserves our attention is the following: in order to
control the evolution of the iteration (12), the squared magnitude of the gradient is
also normalized, i.e., ‖∇f‖2 ∈ [0, 1]. As a consequence, one can guess an approximate
value for the regularization parameterαwhich is appropriate for a particular application
scenario: if α " 1, the weight of the fitting term is higher and then the regularized
image u will be closer to the original image f ; if α ≈ 1, the pseudo-morphological
effect introduced by the CHM filter κPB(f) will be more noticeable in the regularized
image, even in the regions with high gradient.

Lastly, with the purpose of guaranteeing stability, the chosen value for the time-step
must satisfy τ < (

∑2
l=1 2/hl)

−1, where hl denotes the grid size in the l direction (see
e.g. [19]). Working on a uniformly-spaced regular grid, we assume hl = 1 for horizontal
and vertical directions, hence τ < 0.25.

4 Results

In this section, the proposed methodology is tested on three experiments involving data
of different nature. In all cases, the quality of the procedure has to be appreciated sub-
jectively by the reader (i.e., it has to be assessed by means of visual inspection). Addi-
tionally, we provide the computed value of the SSIM index [18], which measures the
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structural similarity between the original image and the filtered ones (where SSIM = 1
means a perfect match). In order to display the results, we use close-up views of
the original images with the aim of showing clearly the most illustrative features of
the outputs. For all experiments, we have chosen a time-step τ = 0.2, a flat window
B(x, y) for the filter (i.e., an all-ones structuring element), and ξ = 100 iterations of
the algorithm.
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Fig. 1. Experiment 1: synthetic data. (a) Test signal and mean filter; (b) Pseudo-dilation and
pseudo-erosion; (c) Pseudo-dilation vs regularized pseudo-dilation; (d) Pseudo-erosion vs reg-
ularized pseudo-erosion; (e) Pseudo-opening vs regularized pseudo-opening; (f) Pseudo-closing
vs regularized pseudo-closing.



Towards Morphological Image Regularization Using the Counter-Harmonic Mean 323

 

 

100 200 300 400 500

50

100

150

200

250

300

350

400

450

500
0

50

100

150

200

250

(a)

 

 

150 200 250 300 350

150

200

250

300

350

0

50

100

150

200

250

(b)

 

 

150 200 250 300 350

150

200

250

300

350

0

50

100

150

200

250

(c) SSIM = 0.929.
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(d) SSIM = 0.994.
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Fig. 2. Experiment 2: noisy picture. (a) Original image; (b) Zoom-in of the original image;
(c) Pseudo-dilation; (d) Regularized pseudo-dilation; (e) Pseudo-dilation vs regularized pseudo-
dilation (row #60); (f) Absolute difference between (b) and (d).

Simulated data is used to evaluate our method first. The input is a combination of
sinusoidal 1D signals and the step function (see Fig.1). In Fig.1(a), it can be seen how
the CHM with P = 0 equals a standard mean filtering. Fig.1(b) shows the pseudo-
dilation and pseudo-erosion of the test signal; as expected, the pseudo-dilation is always
over the test signal, whereas the pseudo-erosion is always under it. The order of the
CHM filter P (±251) is high (resp. low) enough for a good approximation to standard
dilation (resp. erosion). The outcome of regularizing the pseudo-dilation (resp. pseudo-
erosion) is shown in Fig.1(c) (resp. Fig.1(d)); it can be easily appreciated how the regu-
larized signal is close to the test signal around the high gradient zone, while accurately
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approximates the corresponding pseudo-morphological operator in the regions with low
gradient magnitude. Finally, Fig.1(e) and Fig.1(f) show respectively the non-regularized
and regularized pseudo-opening (i.e., pseudo-erosion+pseudo-dilation+regularization)
and pseudo-closing (i.e., pseudo-dilation+pseudo-erosion+regularization); it should be
noted how in Fig.1(e) the regularized pseudo-opening follows the test signal better than
the non-regularized pseudo-opening in the zone with high gradient. The value of the
regularization parameter is α = 0.7.

The second experiment focuses on a non-academic example. Fig.2 contains the re-
sults of applying the proposed framework to an actual gray-level image (a picture with
low pepper-like noise), see Fig.2(a)-2(b). In Fig.2(c) and Fig.2(d) the pseudo-dilation
and the regularized pseudo-dilation of the original image are respectively shown (P =
251, α = 0.02). When comparing Fig.2(b) and Fig.2(d), it is noticed that the small dark
fluctuations have been blurred while the edges (see eyes, lips, or stripes of the blanket)
have been preserved (thus preventing an excessive morphological effect). This can also
be appreciated in Fig.2(e), where corresponding rows of the non-regularized and the
regularized pseudo-dilated images are displayed; the regularized “signal” follows either
the original image if the gradient is high, or the output of the pseudo-morphological fil-
ter if the gradient is low. Finally, the absolute difference (which includes the removed
pepper-like noise) between Fig.2(b) and Fig.2(d) can be seen in Fig.2(f).

To further demonstrate the performance of our algorithm over actual gray-level im-
ages, it is tested on a photograph of the surface of the moon (Fig.4(a)-4(b)). The stan-
dard morphological dilation and erosion, and the regularized (α = 0.2) pseudo-dilation
(P = 251) and pseudo-erosion (P = −251) are respectively shown in Fig.4(c)-4(f).
Dark regions are pronounced in (pseudo-)erosion schemes whereas bright regions are
emphasized in (pseudo-)dilation schemes, but it should be noted that the CHM-based
regularized versions do not pay in exchange a loss of resolution (or, in other words,
the structural information is preserved). Indeed, in Fig.3 it can be seen how the reg-
ularized pseudo-dilation and regularized pseudo-erosion behave as expected: they are
close to the original image when the gradient magnitude is high, but also approximate
accurately the corresponding pseudo-morphological filtering when the gradient mag-
nitude is low. If we consider at this point the product of the previous operators, i.e.,
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Fig. 3. Experiment 3: surface of the moon. (a) Pseudo-dilation vs regularized pseudo-dilation
(row #60); (b) Pseudo-erosion vs regularized pseudo-erosion (row #60).
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(c) SSIM = 0.822.
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(d) SSIM = 0.854.
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(e) SSIM = 0.953.
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(f) SSIM = 0.955.
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(g) SSIM = 0.964.
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(h) SSIM = 0.953.

 

 

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100 0

50

100

150

200

250

(i) SSIM = 0.994.
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(j) SSIM = 0.985.

 

 

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100 0

50

100

150

200

250

(k) SSIM = 0.981.
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(l) SSIM = 0.996.
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Fig. 4. Experiment 3: surface of the moon. (a) Original image; (b) Zoom-in of the original im-
age; (c) Standard dilation; (d) Standard erosion; (e) Regularized pseudo-dilation; (f) Regularized
pseudo-erosion; (g) Standard opening; (h) Standard closing; (i) Standard toggle mapping; (j) Reg-
ularized pseudo-opening; (k) Regularized pseudo-closing; (l) Pseudo-toggle mapping; (m) Ab-
solute difference between (b) and (i); (n) Absolute difference between (b) and (l); (o) Absolute
difference between (i) and (l).



326 J. Larrey-Ruiz et al.

(pseudo-)opening and (pseudo-)closing, we can also study the differences between the
standard morphological results and the proposed regularized outputs. Fig.4(g)-4(i) show
respectively the standard opening, closing, and the so-called toggle mapping (con-
structed by choosing at each spatial position the value of the pixel from either the open-
ing or the closing whose gray-level is closer to that of the original image); in particular,
it is noticed that there exists an excessive “blurring” (or morphological effect) in the
opening and the closing, and that the toggle mapping is even more noisy than the orig-
inal image. Now let us focus on Fig.4(j)-4(l), where the regularized pseudo-opening,
the regularized pseudo-closing and the corresponding pseudo-toggle mapping are re-
spectively shown; when comparing these figures with Fig.4(b), it can be concluded that
the regularized operators act as expected. Moreover, if we pay attention to the pseudo-
toggle mapping, we can see that it is much closer to the original image than the standard
toggle mapping (the exact differences are displayed in Fig.4(m)-4(o)), while being at
the same time less noisy (i.e., it has an overall “morphological behaviour”).

We have considered for the examples given in this paper large enough values of |P |
which guarantee a good approximation to the dilation (resp. erosion). In fact, the same
regularization could be applied directly to the output of the dilation (resp. erosion).
However, by taking smaller values, the approximation turns out to be robust against
outliers (i.e., noise); this point will be developed in ongoing research.

5 Conclusions

In this work, a new methodology has been proposed for approaching the morphological
regularization of an image. In order to meet this goal, we incorporate the Counter-
Harmonic Mean (CHM) into a variational framework and then mathematically deduce
the expressions which give rise to the regularized image. The suitable iteration is ex-
plicitly provided, as well as some practical issues which have to be considered when
dealing with the software implementation of the algorithm. The fundamental property
of the resulting scheme is its ability to preserve simultaneously both the structural infor-
mation in areas of the image with high gradient magnitude and a pseudo-morphological
effect in the regions with low gradient magnitude. The performance of the proposed
methodology has been validated by means of illustrative examples involving simulated
and actual data.

In ongoing research, we would like to explore alternative applications of the varia-
tional framework in order to address how to find the optimal order of the CHM filter, i.e.,
a value of P such as the resulting pseudo-morphologically regularized image provides
the lowest possible energy of the joint functional to be minimized. We would also like
to establish links between our theoretical approach (more precisely, the pseudo-toggle
mapping) and the total variation (TV-L1) minimization.

Acknowledgements. This work is supported by the Spanish Ministerio de Ciencia e
Innovación, under grant TEC2009-12675.
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A Computation of the Gâteaux Derivative of the Joint Energy
Term

From (8) and the definition of the Gâteaux derivative (see e.g. [3]), the expression of
dE(u; z) can be deduced as follows:

dE(u; z) = lim
ε→0

1

ε

(
E(u+ εz) − E(u)

)
= lim
ε→0

1

2ε

∫
Ω

α
(
u+ εz − κ

P
B(f)

)2
+ ‖∇f‖2

(u+ εz − f)
2 − α

(
u − κ

P
B(f)

)2
− ‖∇f‖2

(u− f)
2
dxdy

= lim
ε→0

1

2ε

∫
Ω

α
(
(u− κPB(f))2 + 2ε(u− κPB(f))z + (εz)2

)
+ ‖∇f‖2

(
(u− f)2 + 2ε(u− f)z + (εz)2

)
− α

(
u− κPB(f)

)2
− ‖∇f‖2(u− f)2dxdy

= lim
ε→0

∫
Ω

α

(
(u− κ

P
B(f))z +

ε

2
z
2

)
+ ‖∇f‖2

(
(u− f)z +

ε

2
z
2

)
dxdy

=

∫
Ω

〈
α
(
u− κPB(f)

)
+ ‖∇f‖2(u− f), z

〉
R
dxdy = 0 ,

where z ∈ R#Ω is an arbitrary perturbation and 〈·, ·〉R denotes the dot (or inner) product
in R. This result is used in Section 3 in order to obtain the Euler-Lagrange equation (9)
which describes the equilibrium state needed for the regularization of the CHM-based
filtering.
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Abstract. We present a novel framework for learning morphological
operators using counter-harmonic mean. It combines concepts from mor-
phology and convolutional neural networks. A thorough experimental
validation analyzes basic morphological operators dilation and erosion,
opening and closing, as well as the much more complex top-hat trans-
form, for which we report a real-world application from the steel industry.
Using online learning and stochastic gradient descent, our system learns
both the structuring element and the composition of operators. It scales
well to large datasets and online settings.

Keywords: mathematical morphology, convolutional networks, online
learning, machine learning.

1 Introduction

Mathematical morphology (MM) is a nonlinear image processing methodology
based on computing max/min filters in local neighborhoods defined by struc-
turing elements [16,17]. By concatenation of two basic operators, i.e., the di-
lation δB(f) and the erosion εB(f), on the image f , we obtain the closing
ϕB(f) = εB (δB(f)) and the opening γB(f) = δB (εB(f)), which are filters
with scale-space properties and selective feature extraction skills according to
the underlaying structuring element B. Other more sophisticated filters are ob-
tained by combinations of openings and closings, to address problems such as
non-Gaussian denoising, image regularization, etc.

Finding the proper pipeline of morphological operators and structuring el-
ements in real applications is a cumbersome and time consuming task. In the
machine learning community there has always been lot of interest in learning such
operators, but due to the non-differentiable nature of the max/min filtering only
few approaches have been found to succeed, notably one based on LMS (gradi-
ent steepest descent algorithm) for rank filters formulated with the sign function
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[13,14]. This idea was later revisited [12] in a neural network framework combin-
ing morphological/rank filters and linear FIR filters. Other attempts from the
evolutionary community (e.g., genetic algorithms [7] or simulated annealing [21])
use black-box optimizers to circumvent the differentiability issue. However, most
of the proposed approaches do not cover all operators. More importantly, they
cannot learn both the structuring element and the operator, e.g., [11]. This is
obviously a quite important limitation as it makes very hard or even impossible
the composition of complex filtering pipelines. Furthermore, such systems are
usually limited to a very specific application and hardly generalize to complex
scenarios.

Inspired by recent work [1] on counter-harmonic mean asymptotic morphol-
ogy, we propose a novel framework to learn morphological pipelines of operators.
We combine convolutional neural networks (CNN) with a new type of layer that
permits complex pipelines through multiple layers and therefore extends this
models to a Morphological Convolutional Neural Network (MCNN). It extends
previous work on deep learning while making directly applicable all optimization
tricks and findings of this field.

Here we focus on methodological foundations and show how the model
learns several operator pipelines, from dilation/erosion to top-hat transform (i.e.,
residue of opening/closing). We report an important real-world application from
the steel industry, and present a sample application to denoising where operator
learning outperforms hand-crafted structuring elements.

Our main contributions are:

– a novel framework where learning of morphological operators and filtering
pipelines can be performed using gradient-based techniques, exploiting recent
insights of deep-learning approaches;

– the introduction of a novel pseudo-morphological layer for CNN, which we
name PConv, to let CNN benefit from highly nonlinear, morphology-based
filters;

– the stacking of many PConv layers, to learn complex pipelines of operators
such as opening, closing and top-hats.

2 Background

Here we illustrate the foundations of our approach, introducing the Counter-
Harmonic Mean formulation for asymptotic morphology and CNN.

2.1 Asymptotic Morphology Using Counter-Harmonic Mean

We start from the notion of counter-harmonic mean [2], initially used [19] for
constructing robust morphological-like operators. More recently, its morpholog-
ical asymptotic behavior was characterized [1]. Let f(x) be a 2D real-valued
image, i.e., f : Ω ⊂ Z2 → R, where x ∈ Ω denotes the coordinates of the pixel
in the image domain Ω. Given a (positive) weighting kernel w : W → R+, W
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being the support window of the filter, the counter-harmonic mean (CHM) filter
of order P , −∞ ≤ P ≤ ∞ is defined by,

κPw(f)(x) =
(fP+1 ∗ w)(x)
(fP ∗ w)(x) =

∫
y∈W (x)

fP+1(y)w(x − y)dy∫
y∈W (x) f

P (y)w(x − y)dy , (1)

where fP is the image, where each pixel value of f is raised to power P , / indi-
cates pixel-wise division, andW (y) is the support window of the filter w centered
on point y. We note that the CHM filter can be interpreted as P−deformed con-
volution, i.e., κPw(f)(x) ≡ (f ∗P w)(x). For P + 0 (P " 0) the pixels with largest
(smallest) values in the local neighborhood W will dominate the result of the
weighted sum (convolution), therefore morphological dilation and erosion are
the limit cases of the CHM filter, i.e., limP→+∞(f ∗P w)(x) = supy∈W (x) f(y) =
δW (f)(x), and limP→−∞(f ∗P w)(x) = infy∈W (x) f(y) = εW (f)(x), where W
plays the role of the structuring element. As proven earlier [1], apart from the
limit cases (e.g., a typical order of magnitude of 5 ≤ |P | < 10), we have the
following behavior:

(f ∗P w)(x) |P�0 ≈ sup
y∈W (x)

{
f(y) +

1

P
log (w(x − y))

}
, (2)

(f ∗P w)(x) |P�0 ≈ inf
y∈W (x)

{
f(y)− 1

P
log (w(x − y))

}
, (3)

which can be interpreted, respectively, as the nonflat dilation (supremal convo-
lution) and nonflat erosion (infimal convolution) using the structuring function
b(x) = 1

P log (w(x)). By using constant weight kernels, i.e., w(x) = 1 if x ∈ W
and w(x) = 0 if x /∈ W , and |P | + 0, we just recover the corresponding flat
structuring elementW , associated to the structuring function w(x) = 0 if x ∈ W
and w(x) = −∞ if x /∈ W .

From a precise morphological viewpoint, we notice that for finite P one can-
not guarantee that (f ∗P w)(x) yields exactly a pair of dilation/erosion, in the
sense of commutation with max/min [16,17]. Consequently, stricto sensu, we can
only name them as pseudo-dilation (P + 0) and pseudo-erosion (P " 0). The
asymptotic cases of the CHM filter can be also combined to approximate opening
and closing operators, i.e.,{

((f ∗−P w) ∗P w) (x) P�0−−−→ γW (f)(x),

((f ∗P w) ∗−P w) (x) P�0−−−→ ϕW (f)(x).
(4)

2.2 Convolutional Neural Networks

CNN are hierarchical models alternating two basic operations, convolution and
subsampling, reminiscent of simple and complex cells in the primary visual cortex
[8]. Their main characteristic is that they exploit the 2D structure of images
via weight sharing, learning a set of convolutional filters. Certain CNN scale
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CONVOLUTION POOLING

...

FULLY CONNECTED

Fig. 1. A schematic representation of an CNN. Convolutional and pooling layers are
stacked below the fully connected layers used for classification.

well to real-sized images and excel in many object recognition [3,4,6,10] and
segmentation [5,18] benchmarks. We refer to a state-of-the-art CNN as depicted
in Figure 1. It consists of several basic building blocks briefly explained here:

– Convolutional Layer : performs a 2D filtering between input images {fi}i∈I
and a bank of filters {wk}k∈K , producing another set of images {hj}j∈J
denoted as maps. Input-output correspondences are specified through a con-
nection table CT (inputImage i, filterId k, outputImage j). Filter responses
from inputs connected to the same output image are linearly combined. This
layer performs the following mapping: hj(x) =

∑
i,k∈CTi,k,j (fi∗wk)(x), where

∗ indicates the 2D valid convolution. Then, a nonlinear activation function
(e.g., tanh, logistic, etc.) is applied to hj . Recently relu activations have
been found to excel. They are the units we use for all our models. A relu
unit operates as relu(x) = max(lb,min(x, ub)). It is common choice to use 0
as lower bound (lb) and ∞ as upper bound (ub).

– Pooling Layer : down-samples the input images by a constant factor keeping
a value (e.g. maximum or average) for every non overlapping subregion of
size p in the images. Max-Pooling is generally favorable, as it introduces
small invariance to translation and distortion, leads to faster convergence
and better generalization [15].

– Fully Connected Layer : this is the standard layer of a multi-layer network.
It performs a linear multiplication of the input vector by a weight matrix.

Note the striking similarity between the max-pooling layer and a dilation trans-
form. The former is in fact a special case of dilation, with a square structuring
element of size p followed by downsampling (sampling one out of every p pixels).
Our novel layer, however, does not any longer limit the pooling operation to
simple squares, but allows for a much richer repertoire of structuring elements
fine-tuned for given tasks. This is what makes MCNN so powerful.

3 Method

Now we are ready to introduce the novel morphological layer based on CHM
filter formulation, referred to as PConv layer. For a single channel image f(x)
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and a single filter w(x) the PConv layer performs the following operation

PConv(f ;w,P )(x) =
(fP+1 ∗ w)(x)
(fP ∗ w)(x) = (f ∗P w)(x) (5)

It is parametrized by P , a scalar which controls the type of operation (P < 0
pseudo-erosion, P > 0 pseudo-dilation and P = 0 standard linear convolution),
and by the weighting kernel w(x), where the corresponding asymptotic structur-
ing function is given by w(x) = log (w(x)). Since this formulation is differentiable
we can use gradient descent on these parameters.

The gradient of such a layer is computed by back-propagation [20,9]. In min-
imizing a given objective function L(θ;X), where θ represents the set of pa-
rameters in the model, back-propagation applies the chain rule of derivatives to
propagate the gradients down to the input layer, multiplying them by the Jaco-
bian matrices of the traversed layers. Let us introduce first two partial results of
back-propagation

ΔU (x) =
f(x)

(fP ∗ w)(x) ; ΔD(x) =
−f(x) · (fP+1 ∗ w)(x)

(fP ∗ w)(x) . (6)

The gradient of a PConv layer is computed as follows

∂L

∂w
= f̃P+1 ∗ΔU + f̃P ∗ΔD (7)

∂L

∂P
= fP+1 · log(f) · ( f

fP ∗ w ∗ w̃) + fP · log(f) · (ΔD ∗ w̃) (8)

where f̃ , w̃ indicate flipping along the two dimensions and · indicates element-
wise multiplication. The partial derivative of the PConv layer with respect to its
input (to back-propagate the gradient) is instead

∂(f ∗P w)(x)
∂f

= ΔU (x) +ΔD(x). (9)

Learning the top-hat operator requires a short-circuit in the network to allow
for subtracting the input image (or the result of an intermediate layer) from the
output of a filtering chain. For this purpose we introduce the AbsDiffLayer
which takes two layers as input and emits the absolute difference between them.
Partial derivatives can still be be back-propagated.

3.1 Learning Algorithm

Minimizing a PConv layer is a non-convex, highly non-linear operation prone to
local convergence. Deep-learning findings tell us that stochastic gradient descent
is the most effective algorithm to train such complex models. In our experiments
we use its full online version where weights are updated sample by sample. The
learning rate decays during training. To further avoid bad local minima we use
a momentum term. For the opening/closing tasks we also alternate between
learning P , keeping w fixed, and vice-versa. This is common in online dictionary
learning and sparse coding. We also constrain w ≥ 0.
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4 Experiments

We thoroughly evaluate our MCNN on several tasks. First we assess the quality of
dilation/erosion operators, which require a single PConv layer. This gives a good
measure of how well training can be performed using the CHM derivation. Then
we investigate a two-layer network learning openings/closings. This is already a
challenging task hardly covered in previous approaches.

We then learn the top-hat transform for a very challenging steel industry ap-
plication. Using 2 filters per layer we learn to simultaneously detect two families
of defects without resorting to multiple training. Our implementation allows for
learning multiple filters for every layer, thus producing a very rich set of filtered
maps. Subsequent convolutional layers can learn highly nonlinear embeddings.
(We believe that this will also dramatically improve segmentation capabilities
of such models.) We also show that a simple CNN does not learn well pipelines
of morphological operators. This is actually expected a priori due to the nature
of conventional convolutional layers, and shows the value of our novel PConv
layer.

As final benchmark we consider denoising. Our MCNN shows the superiority
of operator learning over hand-crafting structuring elements for non-Gaussian
(binomial and salt-and-pepper) noise. We also show that our approach performs
well on total variation (TV) approximation for additive Gaussian noise.

In all our experiments we use stochastic gradient descent and a filter size of
11 × 11 unless otherwise stated. The per-pixel mean-squared error loss (MSE)
is used.

4.1 Learning Dilation and Erosion

In this first set of experiments we create a dataset as follows: for every input
image fi we produce a target image tj using a predetermined flat structuring
element Bk and a predetermined operator: tj = δBk(fi) or tj = εBk(fi). We
train until convergence. Overfitting is not an issue in such a scenario. The net
actually learns the true function underlying the data. In fact, for an image of
512×512 and a structuring element with support of 11×11 there are 5022 patches,
way more than the 112 elements in the structuring element. A CNN with equal
topology fails, producing mainly Gaussian blurred images, illustrating the need
for a PConv layer to handle this kind of nonlinearities. Figure 2 shows the results
of a dilation with three structuring elements: a line of 15 pixels and 45◦, a square
of size 5 pixels and a diamond of side 5 pixels. Figure 3 shows similar results
for the erosion transform. Note that the learned weighted kernels w(x) are
not exactly uniformly equal to 1. The corresponding morphological structuring
function w(x), obtained after applying the logarithm on the weights, produces
a rather flat shape. In practice, we observed that learning an erosion is slightly
more difficult than learning the dual dilation. This is related to the asymmetric
numerical behavior of CHM for P > 0 and P < 0. Nevertheless, in all cases the
learned operator has excellent performance.



A Learning Framework for Morphological Operators Using CHM 335

Input Target Net

PSNR 32.05dB

PSNR 30.54dB PSNR 30.44dB

Fig. 2. Examples of learning a dilation with three different structuring elements. The
target and net output are slightly smaller than the original image due to valid convo-
lution. The obtained kernel w(x) for each case is also depicted.

Input Target Net

PSNR 26.98dB PSNR 26.71dB

PSNR 26.28dB

Fig. 3. Examples of learning an erosion with three different structuring elements along
with the learned kernel w(x)
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4.2 Learning Opening and Closing

In this set of experiments we train our system to learn openings γBk(fi) and
closings ϕBk(fi). Learning such functions is extremely difficult. To the best of
our knowledge, we are the first to do this in a flexible and gradient-based frame-
work without any prior. For instance, in classical approaches [13] or more recent
ones [11], the operator needs to be fixed a priori.

Figure 4-top shows an example of a closing with a line of length 10 and an
orientation of 45◦, whereas Figure 4-bottom shows an example of an opening
with a square of size 5. In both cases, the obtained kernel for the first L1 and
second L2 PConv layers are depicted. We see that the associated structuring
element is learned with a good approximation. On the other hand, however, we
also start to see that learning a flat opening/closing is remarkably hard and that
the network output starts to be slightly “blurry”. On the one hand this is due
by the obtained values of P , e.g., in the closing PL1 = 6.80 and PL2 = −8.85, in
the opening PL1 = −7.64 and PL2 = 7.07 are in the interval of asymptotically
unflat behavior. On the other hand, they are not totally symmetric. We intend
to further study these issues in ongoing work.

Input Target Net

L1

L2

L1

L2

PSNR 30.07dB

PSNR 35.35dB

Fig. 4. Top: an example of learning a closing operator where a line of length 10 and
orientation 45◦ is used. Bottom: opening with a square structuring element of size 5.
The network closely matches the output and almost perfectly learns the structuring
elements in both PConv layers.

4.3 Learning Top-Hat Transform

Delegating the learning to a neural network allows for easily constructing com-
plex topologies by linking several simple modules. We recall that the white top-
hat is the residue of the opening, i.e., �+Bk(fi) = fi − γBk(fi), and the black

top-that the residue of the closing, i.e., �−Bk(fi) = ϕBk(fi)− fi. Thus, to learn a
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Input

L1

L2

Target Net

PSNR 35.68dB

Fig. 5. Learning a top-hat transform. The defected input image has bright spots to be
detected. The network performs almost perfectly on this challenging task.

top-hat transform we introduce the AbsDiff layer. It takes two layers as input
and emits their absolute difference in output. Backpropagation is performed as
usual.

Top-hat is particularly relevant in real applications such as steel surface qual-
ity control. It is a powerful tool for defect detection. Here we first show that
our framework can learn such a transform. Increasing the number of filters per
layer from 1 to 2, we show that our MCNN is also much more powerful when
jointly learning two transforms. Figure 5 shows the results for a single top-hat.
We create our training set by applying a white top-hat �+B, where B is a disk
of size 5 pixels. This operator extracts only the structures of size smaller than
B and brighter than the background. We clearly see that the network performs
almost perfectly. To further assess the advantages of a PConv layer over a con-
ventional convolutional layer, we also train a CNN with identical topology. The
discrepancy between the two models in terms of losses (MSE) is large: we have
1.28E-3 for our MCNN and 1.90E-3 for the CNN. More parameters are required
for a CNN to reach better performance. This clearly establishes the added value
of our MCNN.

Defect detection in steel industry requires many top-hat operations to extract
bright/dark structures, which can greatly vary in size and shape. Tuning them
one by one is a cumbersome process. Furthermore, several models’ outputs need
to be considered to obtain the final detection result. Figure 6 shows that by
simply increasing the number of filters per layer we can simultaneously learn
two top-hat transforms and address this problem. We learn a white top-hat with
a disk of size 5 and a black top-hat with a line of size 10 and orientation of
0◦. A convolutional layer is used to combine the output of the two operators.
The architecture is as follows: 2 PConv layers, Conv layer, AbsDiff layer with
the input. The network is almost perfect from our viewpoint. This opens the
possibility of using such a setup in more complex scenarios where several mor-
phological operators should be combined. This is of great interest in multiple
class steel defect detection.

4.4 Learning Denoising and Image Regularization

Finally we compare our MCNN to conventional morphological pipelines in the
denoising task. Morphological filters are recommended for non-Gaussian denois-
ing. The purpose of this evaluation, however, is not to propose a novel noise
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Input Target Net Input Target Net

PSNR 34.31dB PSNR 32.22dB

Fig. 6. Learning two top-hat transforms. On the left, bright spots need to be de-
tected. On the right, a dark vertical line. The network performs almost perfectly in this
challenging task.

removal approach, but to show the advantages of a learnable pipeline over a
hand-crafted one. We start with binomial noise where 10% of the image pixels
are switched-off. The topology in this case is: 2 PConv layers and filter size of
5 × 5. We compare to a closing with a square of size 2, empirically found to
deliver best results. We make the task even harder by using larger-than-optimal
support. Training is performed in fully on-line fashion. While the target images
are kept fixed, the input is generated by adding random noise sample by sample.
So the network never sees the same pattern twice. Figure 7–top compares the
two approaches, and shows the noisy image. We see that learning substantially
improves the PSNR measure.

We continue with an even more challenging task, a 10% salt’n’pepper denois-
ing. The network is made of 4 PConv layers, a very long pipeline. We compare
to an opening with a square of size 2× 2 on a closing with the same structuring

Target Net

PSNR 36.07dB

Closing

PSNR 33.49dB

Input

PSNR 15.63dB

PSNR 29.40dB PSNR 28.77dBPSNR 15.47dB

Morph. Transf.

Fig. 7. Top: Binomial noise removal task. The learned nonlinear operator performs
better than the hand-crafted one. Learning uses noisy and original images—there is
no prior on the task. Bottom: Salt’n’pepper noise removal task. Even here, the learned
operator performs better than the corresponding morphological one.
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element. Training follows the same protocol as the one for the binomial noise.
Images are generated online. This creates a possibly infinite dataset with very
small memory footprint. Figure 7–bottom shows results. Although we can ob-
serve some limitations of our approach, it still exhibits the best PSNR also in
this application.

Finally we consider the case of total variation (TV) restoration from an image
corrupted by 6% additive Gaussian noise. Morphological filtering does not excel
at this task. A MCNN is trained to learn the mapping from noisy image to TV
restored image. How well can it approximate any target transformation with a
pseudo-morphological pipeline? The architecture is composed of 2 PConv layers
with 2 filters each plus an averaging layer. Results are shown in Figure 8.

Input

PSNR 24.46dB

Target

PSNR 30.15dB PSNR 29.77dB

Net

Fig. 8. Total Variation (TV) task. The network has to learn to approximate the TV
output (target) by means of averaging two filtering pipelines.

5 Conclusion and Perspectives

Our MCNN for learning morphological operators is based on a novel PConv
convolutional layer and inherits all the benefits of gradient-based deep-learning
algorithms. It can easily learn complex topologies and operator chains such as
white/black top-hats and we showed its application to steel defect detection. In
future work we intend to let MCNN simultaneously learn banks of morphological
filters and longer filtering pipelines.
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Abstract. This paper defines floodings on edge weighted and on node
weighted graphs. Of particular interest are the highest floodings of a
graph below a ceiling function defined on the nodes. It is shown that
each flooding on a node weighted graph may be interpreted as a flooding
on an edge weighted graphs with appropriate weights on the edges. The
highest flooding of a graph under a ceiling function is then interpreted
as a shortest distance on an augmented graph, using the ultrametric
distance function. Thanks to this remark, the classical shortest distance
algorithms may be used for constructing floodings.

1 Introduction

Reconstruction openings and closings are the simplest connected operators [2],
[8], [6]. They are used for extracting marked particles in binary images or marked
blobs in grey tone images. They are combined in morphological filters, in particu-
lar in levelings [9], [3]. Reconstruction closings act as floodings of a topographic
surface and have all properties of a physical flooding. They are precious for
simplifying gradient images, in filling unwanted catchment basins, on which a
subsequent watershed transform extracts the targeted objects [4]. Flooding a
topographic surface may thus be modeled as flooding a node weighted graph,
with unweighted edges, the node weights representing the ground level. We call
such a graph topographic graph or TG.

In the context of interactive segmentation, it often happens that watersheds
have to be constructed: for each modification, addition of suppression of one
or several markers, a new watershed has to be constructed. For this reason, it
is advantageous to work at two scales. At the pixel level, a first watershed is
constructed, with a catchment basin associated to each regional minimum. The
information is then summarized in form of a region neighboring graph G, where
each node represents a catchment basin and edges connect neighboring nodes.
The edges are weighted by the altitude of the pass point between both adjacent
regions. The objects to be segmented are selected as markers. The graph is
flooded from sources placed at the marker positions and each node is assigned
to the source by which it has been flooded.

So it appears that two types of floodings are often used in the context of
segmentation or filtering, the one on node weighted graphs, the other on edge
weighted graph. We analyze below the relations between both types. We then
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c© Springer-Verlag Berlin Heidelberg 2013



342 F. Meyer

show that each flooding of a node weighted graph also is a flooding of an edge
weighted graph with appropriate edge weights.

The highest flooding under a ceiling function may be interpreted as the short-
est distance to the root for the ultrametric flooding distance in an augmented
graph. The ultrametric distance between two nodes is the minimal altitude of a
flooding for which both nodes are flooded. This remark permits to flood edge or
node weighted graphs by using shortest path algorithms.

2 The Laws of Hydrostatics and Floodings

2.1 Edge Weighted Graphs

Consider a non oriented node and edge weighted graph G = [E,N ], E repre-
senting the edges and N the nodes.

In order to give a physical interpretation to our graph, we consider the nodes
as vertical tanks of infinite height ; the tanks also have an infinite depth ; in
other terms, there is no ground level. The weight τi represents the level of water
in the tank i. Two neighboring tanks i and j are linked by a pipe at an altitude
eij equal to the weight of the edge. We call such an edge weighted graph a tank
network or TN.

We suppose that the laws of hydrostatics apply to our network of tanks and
pipes:

– if the level τi in the tank i is higher than the pipe eij , then the levels is the
same in both tanks i and j : τi = τj .

– the level τi in the tank i cannot be higher than the level τj , unless eij ≥ τi.

In fact this second condition implies the first one.

Definition 1. The distribution τ of water in the pipes of the graph [E,N ] is
a flooding of this graph, i.e. is a stable distribution of fluid if it verifies the

a b c d e f g h i j

Fig. 1. Tank and pipe network:
- A and B form a regional minimum with τA = τB = λ ; eAB ≤ λ ; eBC > λ
- B and C have unequal levels but are separated by a higher pipe.
- D and E form a full lake, reaching the level of its lowest exhaust pipe eCD

- E and F have the same level ; however they do not form a lake, as they are linked by
a pipe which is higher.
The distribution in the last four tanks is not compatible with the laws of hydrostatics.
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criterion <for any couple of neighboring nodes (p, q) : (τp > τq ⇒ epq ≥
τp) (criterion 1)>

Figure 1 presents a number of configurations compatible with the laws of
hydrostatics and others which are not.

The following equivalence yield other useful criteria for recognizing flooding
distributions on tank networks.

(τp > τq ⇒ epq ≥ τp)⇔ (not (τp > τq) or epq ≥ τp)⇔
(τp ≤ τq or τp ≤ epq)⇔ (τp ≤ τq ∨ epq) (criterion 2)

2.2 Node Weighted Graphs

A topographic surface may be modeled by a node weighted graph. The node
weights fi indicate the ground level. The edges are not weighted: the existence
of an edge (i, j) between the nodes i and j simply indicates that these nodes are
neighbors. We call such a graph a topographic graph or TG.

A topographic graph is flooded if the nodes are assigned a second family of
weights indicating the level of the flooding at each node. A distribution τ of node
weights will represent an effective flooding if it verifies a number of conditions
of equilibrium:

– A flooding being always above the ground level: τi ≥ fi.
– As there is nothing to prevent the water to flow from a higher to a lower

position, an inequal level of water at two neighboring nodes p and q is im-
possible, except when the highest node is dry ; hence τp > τq ⇒ τp = fp,
indicating that the highest level is dry, without water. It is the case in fig. 2A
but not in B, which is not physically possible.

– This criterion has the consequence that in a lake, the level of all nodes is
the same. Hence, if p and q are two neighboring nodes verifying τp > fp and
τq > fq, then necessarily we have τp = τq.

We have shown ([4]) that if this criterion is verified, then τ is a flooding of f. For
this reason, we take it as an axiom to be verified by a distribution τ to represent
a flooding.

Definition 2. The distribution τ of water on the nodes of the graph [E,N ] with
unweighted edges and ground level f is a flooding of this graph, i.e. is a stable

Fig. 2. A: a physically possible flooding ; B : an impossible flooding, where a lake is
limited by a wall of water at position p
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distribution of fluid if it verifies the criterion: τ ≥ f and for any couple of
neighboring nodes (p, q) we have τp > τq ⇒ τp = fp) (criterion 3)

2.3 Flooding a Topographic Graph = Flooding a Tank Network

Consider a topographic graph Gn = [E,N ] with a ground level distribution on
the nodes equal to a function f, the edges being not weighted. If such a graph
is flooded, the lowest level of flood covering two neighboring nodes p and q is
equal to fp ∨ fq. Consider now a second graph Ge with the same structure but
with edge weights epq = fp ∨ fq. These edge weights are the result of a dilation
e = δenf assigning to each edge a weight equal to the maximal weight of its
extremities.

Consider a flood distribution τ verifying τ ≥ f. We show that it is a valid
flood distribution on the node weighted graph Gn if and only if it is a valid flood
distribution on the edge weighted graph Ge with edge weights epq = fp ∨ fq.

If it is a valid flooding on the edge weighted graph Ge, it verifies the criterion
(1) : For any couple of neighboring nodes (p, q) we have: (τp > τq ⇒ epq ≥ τp)
which is equivalent with {τp ≤ τq or epq ≥ τp} ⇔ {τp ≤ τq ∨ epq = τq ∨ fp ∨ fq =
τq ∨ fp}. as τ ≥ f.

If it is a valid flooding on the node weighted graph Gn, It verifies the criterion
(3). As τ ≥ f, this criterion may be rephrased in {τp > τq ⇒ τp ≤ fp} ⇔ {τp ≤ τq
or τp ≤ fp} ⇔ {τp ≤ τq ∨ fp}.

Both criteria are identical, which shows that the flooding is a valid flooding
for both graph Gn and Ge.

Theorem 1. If f and τ are two weight distributions on the nodes of a graph
and verify τ ≥ f, then τ is a valid flooding of graph considered as a topographic
graph if and only if it is a valid flooding of the tank network with edge weights
epq = fp ∨ fq.

This theorem has important consequences. A topographic graph with a ground
level f immediately inherits all properties of tank networks, through the
equivalent tank network with edge weights epq = fp ∨ fq.

3 Lakes and Regional Minima

3.1 Lakes

A lake is a surface of water of uniform altitude, such that the addition of a drop
of water increases the level of its total surface or produces an overflow. For this
reason, in the case of tank networks, it is not sufficient that the nodes have a
uniform altitude, but simultaneously, the inside edges should have an altitude
which is lower or equal so as to permit the added drop of water to impact the
whole surface. We first define an equivalence relation: pRq if and only if there
exists a path (n1 = p, n2, ...nk = q) such that ni and ni+1 are neighbors, all
nodes on the path have the same flooding level λ and all edges (ni, ni+1) have
weights eij ≤ λ.
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Tank networks: A lake of a flooded tank network is a class of the equivalence
relation R.

Topographic graphs: The preceding definition yields the simpler following
definition for TG. A lake is a maximal connected component of nodes such that
all couples (p, q) of neighboring pixels in the lake verify τp = τq. A lake on a
topographic graph is dry if it has a uniform altitude at the ground level. It is a
wet lake, if it contains at least one pixel p for which τp > fp. If two neighboring
nodes p and q verify τp > fp and τq > fq, then τp = τq.

3.2 Regional Minima

Tank Networks. What happens at the boundary of a lake in a tank network?
Consider 2 neighboring pixels (p, q), q being inside a lake of altitude λ and p
outside. Being not both inside the lake, the relation pRq is not satisfied. They
verify one of the following conditions: a) τp �= τq or b) τp = τq = λ and along
each path (n1 = p, n2, ...nk = q) of altitude λ there exists an edge (ni, ni+1)
with a weight eij > λ. In particular epq > λ, as (p, q) is such a path. Thus in
situation b) one has to climb for going out of the lake.

Consider now the condition a) τp �= τq. There are two possibilities:
* τp > τq = λ which implies epq ≥ τp > τq = λ, one has to climb in order to
cross the outgoing edge.
* τp < τq = λ which implies epq ≥ τq = λ. If epq > τq, then the outgoing edge
is climbing. If epq = τq, then the node q is an exhaust node for the lake towards
a lower node p through the edge epq = λ.

Summarizing the situations a) and b): each outgoing edge (q, p) of a lake
is either a climbing edge epq > λ or an exhaust edge from q to p verifying
τq = epq = λ > τp. In other terms, in a lake without exhaust edges, all outgoing
edges are higher than the level of the lake. Such a lake is called regional minimum
lake. A lake with one or several exhaust edges is called full lake. Adding a drop
of water to a full lake provokes an overflow through the exhaust edges.

A regional minimum or a tank network is a lake with all outgoing edges, or
cocycle edges having a higher altitude.

A lake of level λ on a tank network is a full lake, if there exists a couple of
neighboring nodes p and q verifying τp < τq = λ and epq = λ.

Topographic Graphs. Consider now a topographic graph G with ground level
f and its derived tank network G′ with edge weights epq = fp ∨ fq. Let us apply
the preceding definitions to the derived tank network G′.

A regional minimum of G′ is a lake X with all outgoing edges, or cocycle
edges having a higher altitude. Consider such an edge (q, p), q inside the lake
at altitude λ and p outside the lake. Then epq > λ. But epq = fp ∨ fq and
λ = τq ≥ fq imply epq = fp. Inversely if all outside neighbors of a lake verify
fp > λ, then all edges of the cocycle of the lake verify epq = fp ∨ fq > λ. This
leads to the following classical definition: A regional minimum is a lake for
which the ground level of all outside neighbors has a higher altitude.
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A lake of the flooding of a topographic graph is a full lake, if there exists a
couple of neighboring nodes p outside the lake and q inside τp < τq = λ and
epq = fp ∨ fq = λ. But since fp ≤ τp < λ, we have τq = fq. This leads to the
characterization of a full lake: A lake on a topographic surface is a full lake of
altitude λ if there exist two neighboring nodes p inside the lake and q outside,
such that τp < τq = fq.

A full lake touches the ground level at at least one node on its boundary, with
a neighboring node where the flood is lower.

4 Constrained Highest Floodings on Node and Edge
Weighted Graphs

There exist infinitely many distributions of valid floodings of the same graph G.
If θ1 and θ2 are two floodings of the same graph (TN or TG), then θ1 ∨ θ2 also
is a flooding of this graph. For this reason, the supremum τ of all floodings or
G below a ceiling function h also is flooding of G, this flooding is unique.

Any flooding θ verifies the relation: θp ≤ θq ∨ epq, for each neighbor q of p. As
this relation is to be true for all neighbors of p, we have θp ≤

∧
q neighbor of p

(θq ∨ epq)

Simultaneously θp ≤ hp. So θp ≤ hp ∧
∧

q neighbor of p
(θq ∨ epq) and the highest of

them, τ verifies
τp = hp ∧

∧
q neighbor of p

(τq ∨ epq) (6).

Consider now a topographic graph Gn with a ground level f and a ceiling
function h ≥ f. The associated edge weighted graph or tank network has the
edge weights δenf. Any flooding θ ≥ f valid for one of the graphs is valid for the
other. In particular, the highest floodings below h for both graphs are identical.
For this reason, for getting the highest flooding of the topographic graphGn with
node weights f under the ceiling function h ≥ f, we simply may construct the
highest flooding of the associated tank network Ge with the same edge weigths
under the same ceiling function. The criterion 6, by replacing epq by its value,
becomes τp = hp ∧

∧
q neighbor of p

(τq ∨ fp ∨ fq) = hp ∧
∧

q neighbor of p
(τq ∨ fp) =

hp ∧
[
fp ∨

∧
q neighbor of p

(τq)

]
(7)

The regional minima of constrained highest floodings
The level of the full lakes is solely determined by the altitude of the lowest pass

point surrounding the lakes. In the regional minima lakes, the level cannot get
higher, as it is blocked by the ceiling function h.More precisely : Any regional min-
imum lake of the highest flooding of a tank network Ge with edge weights e, below a
ceiling function h, contains a regional minimum lake of the flooding [δenh ∨ e, h] .

In the case of a topographic graph Gn this theorem takes the simpler form:
Any regional minimum lake of the highest flooding of a graph Gn with node
weights f, below a ceiling function h, contains a regional minimum lake of the
function h.
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Fig. 3. Adding a dummy node linked to each node x in X by an edge weighted by the
offset at x.

5 Algorithms for Computing the Highest Flooding
on Node and Edge Weighted Graphs

5.1 Highest Floodings and Shortest Distances

We now add to the graph Ge a dummy node Ω with a weight τΩ = 0 linked
by a dummy edge (Ω, p) with each node p and holding a weight equal to hp.
We get like that an augmented graph Ĝe. Relation (6) may be rewritten as
τp = (τΩ∨eΩp)∧

∧
q neighbor of p

(τq ∨ eqp) . This formula expresses that the shortest

path between Ω and p is eΩp = hp if the path is simply the edge (Ω, p) or is
equal to (τs ∨ eps) if the path passes through the neighbor s of p, and if (τq ∨ eqp)
takes its smallest value for q = s.

For the ultrametric flooding distance, the length of a path in an edge weighted
graph is equal to the weight of the highest edge of the path. The shortest distance
between two nodes p and q is the lowest highest edge of all paths between p and
q in the algebra (min,max) and may be constructed by any shortest algorithm
published in the literature (see [1])

Theorem 2. The highest flooding of the graph G below a function h defined on
the nodes is the shortest distance of each node to Ω in the (min,max) algebra.

The Algorithm of Berge. Consider first a tank network Ge with edge
weights epq. This distribution being not a flooding, the algorithm recursively ap-
plies the relation (6), which lowers or keeps equal the node values, until stability
is reached.

Initialisation: τ (0)p = hp

Repeat until τ (m)
p = τ

(m−1)
p : τ

(n)
p = hp ∧

∧
q neighbor of p

(
τ
(n−1)
q ∨ epq

)
Stability is necessarily reached after a number n of iteration as the val-

ues of τ decrease and have a lower ceiling equal to 0. We then have τ (n)p =

hp ∧
∧

q neighbor of p

(
τ
(n)
q ∨ epq

)
, indicating that τ (n) is a flooding of the graph G.
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As τ (n)p ≤ τ
(n−1)
p ≤ hp, we get an equivalent algorithm with the following se-

quence.
Repeat until τ (m)

p = τ
(m−1)
p : τ

(n)
p = τ

(n−1)
p ∧

∧
q neighbor of p

(
τ
(n−1)
q ∨ epq

)
.

Consider now a topographic graph Gn with a ground level f. The highest
flooding of Gn under the node weights h also is the highest flooding of Ge with
the same ceiling function h. For this reason the algorithm of Berge becomes, if
one replaces epq by fp ∨ fq and remembers that τ ≥ f :

Initialisation: τ (0)p = hp

Repeat until τ (m)
p = τ

(m−1)
p : τ

(n)
p = hp ∧

∧
q neighbor of p

(
τ
(n−1)
q ∨ fp ∨ fq

)
=

hp ∧
∧

q neighbor of p

(
τ
(n−1)
q ∨ fp

)
or repeat until τ (m)

p = τ
(m−1)
p : τ

(n)
p = τ

(n−1)
p ∧

∧
q neighbor of p

(
τ
(n−1)
q ∨ fp

)
The Moore Dijkstra Shortest Path Algorithm [5]. This greedy algorithm
takes as many steps as there are nodes. At any step, S represents the subset
of nodes for which the shortest path is known. For any neighboring node of S,
the length of the shortest path for which all edges but the last belong to S
constitutes an overestimation of this length.

Initially, the only node whose flooding level is known is the dummy node Ω,
with a level equal to 0. The best guess of the flooding level of all other nodes is
τp = hp. For this reason the domain where the flooding level is guessed contains
all nodes : S = N. In fact, the dummy node is not necessary and we obtain the
same result if we initialize by S = ∅.

Consider now a step of the ongoing the flooding. S contains all nodes whose
flooding level is known, The estimation is made during the flooding, by assuming
that the flooding arrives through one of its neighbors already in S. The node
with the lowest guess has an estimated flooding level λ which is higher or equal
than the flooding level of all nodes in S. And for this particular node, the guess is
the correct flooding level. Indeed, if the flooding came through other neighbors,
not yet in S, its value could not be lower : such a flood would have to quit
S at a level higher or equal to λ and follow a path outside S along which it
could become bigger. For this reason the node for which this estimation, say λ,
is the lowest, has its flooding level correctly estimated. The algorithm proceeds
by incorporating this node into S and updates its neighborhood.

Case of tank networks Initialization:
S = ∅ ; S = N ; for each node p in N : τp = hp

Flooding:
While S �= ∅ repeat:

Select j ∈ S for which τj = mini∈S [τi]

S = S\{j}
For any neighbor i of j in S do τi = min [τi, τj ∨ eji]

End While
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Progression of the flooding
The algorithm of Moore Dijkstra produces a flooding starting at level 0 at the

node Ω.
The first node which is extracted from S is the node with the lowest estimation

λ1 representing the flooding level of this node. That means that the estimation
of all nodes remaining in S is higher or equal than λ1. Suppose that the n− th
node extracted is j with a flooding level λn, the smallest value of τ on S. Each
neighbor i of j which is updated with τi = min [τi, τj ∨ eji] remains above τj ,
since τi ≥ τj and τj ≥ τj ∨ eji. For this reason the level of flooding λn is never
decreasing with n.

If we keep the edges linking each node with the node through which it has
been flooded in the algorithm we get a tree. Along each edge of this tree, the
level of the flood also is never decreasing.

Case of topographic graphs After replacing epq by its value fp ∨ fq and simplifi-
cation, Dijkstra’s algorithm become:

Initialization:
S = ∅ ; for each node p in N : τp = hp

Flooding:
While S �= N repeat:

Select j ∈ S for which τj = mini∈S [τi]
S = S ∪ {j}
For any neighbor i of j verifying τi > τj ∨ fi do τi = τj ∨ fi

End While
Comments:
j is the smallest neighbor of i. If i is flooded through one of its neighbors,

this neighbor can only be j and as as soon the value τi is computed once, this
value is correct and final: τi = τj ∨ fi . Each node may be flagged as "guessed"
at initialization and as "final" as soon its value has been updated in the core of
the algorithm, as this value is now final.

5.2 Speeding Up the Algorithm of Dijkstra for Topographic Graphs

The core of the algorithm of Moore Dijkstra applies to any set S of nodes con-
taining Ω and for which the flooding level is known. We define ∂+S as the set
of nodes q having a neighboring node in S. The flooding level of each node q in
∂+S is estimated as follows : it is the smallest flooding value of q, if it is flooded
through one of its neighbors in S. This value is τ̃q =

∧
p∈S

(p,q)neighbors

τp ∨ epq. If

p = Ω, then τp ∨ epq = hq , otherwise τp ∨ epq = τp ∨ fq
This estimation is the true flooding level for the node t for which the estima-

tion is the lowest. Indeed, is the node t were flooded through a node q outside S,
then its flooding path would quit S through another edge (u, v) of the cocycle
of S, and the flooding level of t could only be higher.

This nice feature allows to expand S faster at the basic Dijkstra algorithm
would do.
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Consider a set S of nodes containing Ω and for which the flooding level is
known. If for neighboring nodes p and q, we have p ∈ S, p �= Ω and q /∈ S,
several configurations permit to determine directly the flooding level of q.

1. If fp = fq, then τp = τq, as the flooding is a connected operator.
2. If fp = hp, then ground and ceiling levels are identical, hence τp = fp = hp
3. If fq ≥ τp then τq = fq. The proof is the following. For any neighboring

nodes p and q the flooding levels verify τq ≤ τp ∨ fq = fq. But as τq ≥ fq we
get τq = fq.

4. If fp ∨ fq < τp then τq = fq. The proof is the following. {fp ∨ fq < τp} ⇔
{fp < τp and fq < τp}. On the other hand the criterion for floodings {τp >
τq} ⇒ {fp = τp} is equivalent with {fp < τp} ⇒ {τp ≤ τq}. And τq ≤
τp ∨ fq = τp ∨ fp ∨ fq = τp which shows that τp = τq

5. If fq < τp then τq ≤ fq ∨ τp = τp. .
6. Suppose that (p, q) are neighbors and p is the node of ∂−S for which the

flooding level τp is the lowest. If fq < τp, and if q is to be flooded by a node
in S, this node necessarily is p and the estimate of the flooding level of q is
τq = τp ∨ fq = τp.

We may now derive a fast algorithm from these remarks. Suppose that during
the flooding, the set S represents all flooded nodes and p is the node of ∂−S
for which the flooding level τp is the lowest. Then, according rule 3, if fq ≥ τp
then τq = fq. If on the contrary fq < τp, then the estimate of the flooding of
q is τq = τp, which is the smallest estimate possible, except if there exists in
S a node j with a smaller ceiling value hj as τp. In this case, according to the
algorithm of Dijkstra, the node h with the smaller estimation hj < τp has to be
introduced into S. This shows that in the case where hj ≥ τp, all neighbors of p
may be introduced at once into the set S, yielding the following algorithm:

A fast algorithm would then work as follows:
Initialization:

S = ∅ ; for each node p in N : τp = hp
for all other nodes τp =∞

Flooding:
While S �= N repeat:

Select j ∈ S for which τj = mini∈S [hi] ; select p ∈ ∂−S for which
τp = mini∈∂−S [τi]

if τp > τj then S = S ∪ {j} else
For any neighbor q of p in S do τq = τp ∨ fq and S = S ∪ {q}

End While

Marker based segmentation. In the case of marker based segmentation each
marker node gives birth to a region of the final segmentation. Each marker node
p is dry and may be introduced in S at initialization. .

Initialization:
S = ∅ ; for each marker node p : τp = hp

Flooding:
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While S �= N repeat:
select p ∈ ∂−S for which τp = mini∈∂−S [τi]
For any neighbor q of p in S do τq = τp ∨ fq and S = S ∪ {q}

End While
One obtains the classical segmentation algorithm with markers if one uses a

hierarchical queue for scheduling the treatment.
Initialization:

Create a HQ and introduce each marker node p into it with a priority
hp and a specific label. This label will be assigned to the total region flooded
through this marker

Flooding
While the HQ is not empty repeat:

(A) Extract from the HQ the node j with the lowest prioriy
Let λ be this priority

For any neighbor i of j without label
introduce i into the HQ with the priority fi ∨ λ and the

same label as j.
End While
This algorithm is exactly the same algorithm as the watershed algorithm

associated to all regional minima of an image or a node weighted graph. With the
same advantages, that is a selection of the geodesics with the highest steepness.

Flooding an Edge Weighted Graph Along Its Minimum Spanning
Tree: The Algorithm of PRIM. Floodings on a tank network follow the
laws of physics. If the nodes are partitioned into disjoint sets A and Ac, then a
flood coming from A will pass through one of the lowest edges linking A and Ac.
The algorithm of PRIM for constructing minimum spanning trees exploits this
remark. It starts with an arbitrary node and constructs a tree by appending at
each iteration the smallest edge of the cocycle to the tree. In the resulting tree,
each node p is linked with Ω through a unique path. The flood coming from Ω
necessarily follows this path.

Initialisation for a tank network
Initially, the tree T has only the node Ω and no edge: T = {Ω,∅}. τΩ = 0.
Expansion
As long the tree does not contain all nodes of the graph:

Chose the lowest edge (q, s) in the cocycle of T, such that q ∈ T and
s /∈ T.

Append the edge (q, s) and the node s to the tree: T = T ∪ {s, (q, s)}
τs = τq ∨ eqs

Case of a topographic graph The minimum spanning tree makes no sense for a
node weighted graph Gn. It does if we consider Ge the associated edge weighted
graph. By replacing eqs by its value fq∨fs, and since τq ≥ fq, we get τq∨fq∨fs =
τq ∨ fs. The flooding of the nodes and the construction of the tree may be done
simultaneously.
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6 Conclusion

The present study shows that there is no discrepancy between floodings on edge
and node weighted graphs. Flooding a topographic graph with a ground level
amounts at flooding a particular edge weighted graphs. Their highest floodings
under a ceiling function are the same.

The same remark holds for the application of floodings to segmentation. It is
equivalent to flood an image in order to fill all unwanted minima or to flood its
region adjacency graph.

We did not concentrate on implementation issues and have presented the
naked shortest distance algorithms. The scheduling of the operations may be
taken in charge by hierarchical queues. We also highlighted several ways to dis-
patch the processing among different processors. For instance, if the flooding
level at a node of a topographic graph is know, then all its neighbors with an
altitude higher or equal than this node are dry. A processor may be assigned to
the labeling of each dry zone. This process will be fast as it is independent of
the value of the ceiling function which has not to be accessed anymore.
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Abstract. In recent works, a new notion of component-graph has been intro-
duced to extend the data structure of component-tree –and the induced antiex-
tensive filtering methodologies– from grey-level images to multivalued ones. In
this article, we briefly recall the main structural key-points of component-graphs,
and we present the initial algorithmic results that open the way to the actual
development of component-graph-based antiextensive filtering procedures.
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1 Introduction

Among the connected filtering approaches, that aim to process images without al-
tering their contours, the component-tree [17] has received a specific attention. The
component-tree is a data structure that models the characteristics of grey-level images
by considering their successive binary level-sets. It is well-suited for processing grey-
level images, based on hypotheses related to the topology (connectedness) and the spe-
cific intensity (local extrema) of structures of interest. In particular, it has been involved
in several approaches (see, e.g., [9,19]), especially for filtering and segmentation.

The success of the component-tree in the field of grey-level image processing, to-
gether with the increasing need for applications involving multivalued images, motivate
its extension to the case of such images, which do not take their values in totally ordered
sets, but in any (possibly partially) ordered ones.

After a preliminary study of the relations between component-trees and multivalued
images [11], an extension of the component-tree to a more general notion of component-
graph has been initiated in [13]. A study of the structural properties of these component-
graphs has been proposed in [14], and we now consider the algorithmic key-points that
will lead to the effective development of antiextensive filtering procedures.

This article is organised as follows. Sec. 2 briefly recalls some previous works on
multivalued image handling in mathematical morphology. Sec. 3 describes the way
to extend the notion of component-tree into a compliant notion of component-graph.
The next sections explain how to build (Sec. 4), prune (Sec. 5) and recover a filtered
multivalued image (Sec. 6) from a component-graph. The article is concluded by an
illustrative example and perspective works, in Secs. 7 and 8, respectively.
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2 Previous Works

2.1 Mathematical Morphology and Multivalued Images

The extension of mathematical morphology –initially defined on binary, and then on
grey-level images [8]– to multivalued (e.g., colour, label, multi- and hyperspectral, etc.)
images is an important task, motivated by potential applications in multiple areas. Sev-
eral contributions have been devoted to this specific purpose. A whole state of the art is
beyond the scope of this article, and the reader is referred to [3] for a recent survey.

By opposition to the grey-level case, the spaces in which such multivalued images
take their values are not canonically equipped with total orders, but with partial ones.
Several strategies have been considered to deal with this issue. Except in few works
(see, e.g., [15]), the proposed attempts generally consist of decomposing these value
spaces into several totally ordered ones (marginal processing), or to define ad hoc total
order relations on them (vectorial processing), with several variants (see, e.g., [7,2,20]).

These approaches embed multivalued images into simpler frameworks, which autho-
rise to process them similarly to grey-level ones, reducing in particular the complexity
induced by partial orders. However, they also potentially bias the information intrinsi-
cally carried by these –more complex but richer– partially ordered value spaces.

2.2 The Case of Tree-Based Approaches

In the specific field of approaches based on tree structures (or more generally on par-
tition hierarchies) the difficulties raised by multivalued images vary according to the
proximity degree that exists between the data structure and the value space.

In the case of trees, or partition hierarchies, whose construction is not directly in-
duced by the value space, and more precisely by its associated order (e.g., partition
trees [16], hierarchical watershed [6]), the use of intermediate functions (e.g., a gradi-
ent for watershed, or more complex metrics for partition trees [18]) enables us to “hide”
the complexity of the space, but necessarily induces a bias in the obtained data structure.

In the case of trees whose construction directly derives from the value space –and its
order–, passing from total orders to partial ones leads to structural and algorithmic open
issues. The main problems are caused by the fact that such data structures inherit from
the structural complexity of the considered orders, and actually increase this complexity
via their hierarchical structure. Among such kinds of trees, we find the component tree
[17] and its autodual version, the tree of shapes [10]. Research about the extension to
color images of the tree of shapes are currently developed by other authors [5].

In this article, we consider the component tree, and we investigate its extension to a
more general hierarchical data structure that is no longer a tree, namely, the component-
graph. In particular, we focus on the algorithmic consequences of this last property.

3 From Component-Trees to Component-Graphs

We now recall basic notions related to component-trees (Sec. 3.2). Then we introduce
the recently proposed notion of component-graph [13,14] (Sec. 3.3). Due to space lim-
itations, we present the minimal set of definitions and properties that are required to
make this article self-contained. A more complete description may be found in [14].
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3.1 Definitions and Hypotheses

Let Ω be a nonempty finite set equipped with a given connectivity. In particular, for any
X ⊆ Ω, the set of the connected components of X is noted C[X].

Let V be a nonempty finite set equipped with an order relation �. We assume that
(V,�) admits a minimum, noted ⊥.

Let I be an image defined on Ω and taking its values in V , i.e., a function I : Ω→ V .
Without loss of generality, we can assume that I−1({⊥}) = {x ∈ Ω | I(x) = ⊥} � ∅.

For any v ∈ V , let λv : VΩ → 2Ω be the thresholding function at value v, defined for
any image I, by λv(I) = {x ∈ Ω | v � I(x)}.
3.2 Component-Trees

Here, we assume that � is a total order. In other words, the image I is a grey-level image.
Let us define Ψ as the set of all the connected components obtained from all the

thresholdings of I, that is
Ψ =
⋃

v∈V
C[λv(I)] (1)

Definition 1 (Component-tree [17]) The component-tree of I is the Hasse diagram T
of the partially ordered set (Ψ,⊆).

The component-tree has several virtues. Firstly, it can be built quite efficiently
[17,12,4]. Secondly, it models the associated image in a lossless way. Indeed, we have

I =
≤∨

v∈V

≤∨

X∈C[λv(I)]

C(X,v) (2)

where ≤ is the pointwise order relation on VΩ induced by �, and C(X,v) : Ω → V is the
cylinder function defined, for any x ∈ Ω by C(X,v)(x) = v if x ∈ X, and ⊥ otherwise.
Thirdly, any subset Ψ̂ ⊆ Ψ leads –by “substituting Ψ̂ toΨ” in Eq. (2)– to a well-defined
image Î : Ω→ V that verifies Î ≤ I.

From these properties, an antiextensive filtering framework, based on component-
trees, has been developed [17,9]. This framework, illustrated in Diagram (3), consists
of three successive steps:

(i) the construction of the component-tree T associated to I;
(ii) the pruning of T, based on an ad hoc criterion and a pruning policy, leading to a

reduced component-tree T̂, corresponding to the Hasse diagram of (Ψ̂ ,⊆); and
(iii) the reconstruction of the filtered image Î ≤ I induced by T̂.

I
Filtering−−−−−−−−→ Î ≤ I

(i)
⏐⏐⏐⏐⏐�

�⏐⏐⏐⏐⏐(iii)

T
(ii)−−−−−→ T̂

(3)

The main purpose of this article is to provide algorithmic solutions (Secs. 4–6) for mak-
ing this antiextensive filtering framework tractable in the case of component-graphs,
that extend the component-trees to multivalued images. Before discussing such algo-
rithmic issues, let us first introduce briefly this notion of component-graph.
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3.3 Component-Graphs

We now relax the hypothesis of totality on �, which can then be either a total or a
partial order. In Eq. (2), any cylinder function C(X,v) is generated by a couple (X, v)
where X ∈ C[λv(I)] is a connected component of the thresholded image λv(I) ⊆ Ω
of I at value v. In the sequel, (X, v) will be called a valued connected component. In
particular, we define the set Θ of all the valued connected components of I as follows

Θ =
⋃

v∈V
C[λv(I)] × {v} (4)

From the order relation � defined on V , and the inclusion relation ⊆ on 2Ω, we then
define the order relation � on Θ as follows

(X1, v1) � (X2, v2)⇐⇒ (X1 ⊂ X2) ∨ ((X1 = X2) ∧ (v2 � v1)) (5)

In first approximation, the component-graphG of I is the Hasse diagram of the ordered
set (Θ,�). However, three variants of component-graphs can relevantly be considered
by defining two other subsets Θ̈ ⊆ Θ̇ ⊆ Θ of valued connected components

Θ̇ =
⋃

X∈Ψ
{X} ×

��
{v | X ∈ C[λv(I)]} (6)

Θ̈ =
{
(Ω,⊥)

} ∪
⋂{
Θ′ ⊆ Θ ∣∣∣ I =

≤∨

K∈Θ′
CK
}

(7)

where
�

denotes the set of the maximal elements. Broadly speaking, Θ gathers all
the valued connected components induced by I; Θ̇ gathers the valued connected com-
ponents of maximal values for any connected components; and Θ̈ gathers the valued
connected components associated to cylinders functions which are sup-generators of I.
We note � (resp. �̇, resp. �̈) the cover relation associated to the order relation � on Θ
(resp. to the restriction of � to Θ̇, resp. to the restriction of � to Θ̈). We then have the
following definition for the three variants of component-graphs.

Definition 2 (Component-graph(s) [14]) TheΘ- (resp. Θ̇-, resp. Θ̈-)component-graph
of I is the Hasse diagramG = (Θ,�) (resp. Ġ = (Θ̇, �̇), resp. G̈ = (Θ̈, �̈)) of the ordered
set (Θ,�) (resp. (Θ̇,�), resp. (Θ̈,�)). (The term Θ̊-component-graph and the notation
G̊ = (Θ̊, �̊) will sometimes be used for the three kinds of component-graphs.)

The component-graph is a relevant extension of the component-tree, since (i) both no-
tions are compliant for totally ordered sets (V,�), and (ii) the component-graph satisfies
the image (de)composition model associated to component-tree, defined in Eq. (2).

Property 1 ([14]) If � is a total order, then two of the three variants of component-
graphs, namely Ġ and G̈, are isomorphic to the component-tree T.

Property 2 ([14]) For the three variants of component-graphs, we have

I =
≤∨

v∈V

≤∨

X∈C[λv(I)]

C(X,v) =

≤∨

K∈Θ̊
CK (8)
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4 Building the (Θ̈-)Component-Graph

Efficient algorithms [17,12,4] have been proposed to build the component-tree, leading
to algorithmic complexities which are nearly linear with respect to the image size. Such
a linear bound is hard to reach in the case of multivalued images, in particular due to
the structural properties of �, whose Hasse diagram is not necessarily a chain.

In the sequel, we specifically deal with the construction of the Θ̈-component-graph.
Our motivation is twofold. Firstly, the Θ̈-component-graph is the only of the three vari-
ants that guarantees to avoid the appearance of new values in the filtered images, since
any valued connected component of Θ̈ actually contributes to the formation of the image
I (see Eq. (7)). Secondly, due to the increasing cardinality of Θ̈-, Θ̇- and Θ, the algo-
rithmic process that is considered for building the Θ̈-component-graph may be further
used as a basis to develop (more complex) algorithms for building the other variants.

4.1 Algorithmics

Algorithm 1 describes the main procedure to compute the Θ̈-component-graph. The col-
lection of valued connected components (the nodes of the graph) is maintained using
Tarjan’s union-find algorithm, based on the makeSet, find and link operations, sim-
ilarly to [12]. The array graph stores, for each canonical element p , the set of fathers
of the node of p. To avoid to insert the same link twice, each cell of graph is managed
as a set data structure. The pixels are processed by decreasing values, using a priority
queue pq. More precisely (since the values are not totally ordered) a pixel of value v is
processed only if all the pixels of values v′ > v have been processed.

A key point of the algorithm relies on the lowestNodes function. This function
returns the set of minimal ancestors (the lowest nodes which are not comparable) of
a node given a value. This function plays the same role as the array lowestNode in
the component-tree computation, in Najman and Couprie’s algorithm [12]. However, in
the case of the component-tree, the lowestNode array can be maintained efficiently:
by contrast, in the case of the component-graph, the lowestNodes function must be
recomputed each time since its result depends on the value given in parameters.

4.2 Example

We illustrate the steps of the algorithm on a toy example. Fig. 1(a) depicts the Hasse
diagram of the partially ordered set (V,�) used by the image I (Fig. 1(b)). Successive
threshold sets of I are depicted on Fig. 1(c–g).

Let us suppose that we have processed the pixels1 having values f , d and b. The
current computed graph is depicted on Fig. 2(a). The level c is processed, and the pixel
4 is extracted from the priority queue. It has four processed neighbors: {2, 3, 5, 6}. We
observe that 4 and 2 are not comparable, while I(4) < I(3); then 4 is an ancestor of 3.
The result of the function lowestNodes(3,c) is the set {3}, so the pixel 4 is a direct
father of 3. It is inserted in the set graph[3]. Similarly, the pixel 4 is a direct father of

1 There is no pixel having the value e; then this value is not present in the Θ̈-component-graph.
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Algorithm 1. Computation of the Θ̈-component-graph
Data: image I : Ω→ V
Result: Θ̈-component-graph G̈ (array [0...N − 1] storing, for each canonical element, the

set of its “fathers”)
foreach p ∈ Ω do
makeSet(p);
pq.put(p,I(p));

while pq � ∅ do
p← pq.front();
foreach already processed neighbors q of p do

ad jNode ←find(q);
if I(ad jNode) = I(p) ∧ ad jNode � p then
link(ad jNode,p); // p is the new canonical element of the
node

else if I(ad jNode) < I(p) then
nodesList← lowestNodes(ad jNode,I(p));
foreach n ∈ nodesList do

if I(p) < I(n) then graph[n].insert(p);
else link(n,p); // p is the new canonical element of the
node

Function lowestNodes(node,value)
Data: active (array [0...N − 1] initialized to true)
Data: lowestNode (array [0...N − 1] initialized to true)
Result: nodesList: lowest ancestors of node having a value superior or equal to value
fifo.push(node);
while fifo � ∅ do

p←fifo.get();
foreach father f ∈ graph[p] do

q ← find( f);
if I(q) � v∧ active[q] then
fifo.push(q);
active[q]← f alse;

if active[q]= f alse then lowestNode[p]= f alse;

if lowestNode[p]= true then nodesList.add(p);

return nodesList

5 (see Fig. 2(b)). The level a is now processed. The point 0 is extracted. It has two pro-
cessed neighbors of higher value: {3, 4}. The result of the function lowestNodes(3,a)
is the set {4, 6}: 0 is then a direct father of these points (which are canonical elements).
The result of the function lowestNodes(4,a) is the set {0} (since 0 is now a father
of 4 and 6), i.e., the current visited point: nothing has to be done. The point 1 is pro-
cessed and compared to its five neighbors {0, 2, 3, 4, 5}. We have I(1) = I(0), then it
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Fig. 2. Θ̈-component-graph computation: illustration of some steps

becomes the canonical element of the (partial) node {0, 1}. We have I(1) < I(2) and
lowestNodes(2,a)= {2}, consequently 1 becomes a father of 2. The other compar-
isons do not change the graph, since lowestNodes(i,a)= {1} for i = 3, 4, 5 (see
Fig. 2(c)). Finally, the points 7 and 8 are processed. When 7 is compared to any of
its neighbors of greater value, the function lowestNodes returns the set {1}. Since 7
and 1 have the same value but belong to different nodes, 7 and 1 are linked to the same
node. At last, 8 is linked to 7 and becomes the new canonical element of the node
{0, 1, 7, 8}. The final (Θ̈)-component-graph is depicted in Fig. 2(d).

5 Pruning the Component-Graph

Similarly to the antiextensive filtering framework based on component-trees, filtering
with component-graphs requires to define a subset Θ̂ ⊆ Θ̊. This choice is based on (i)
a selection (Boolean) criterion ρ on Θ̊, and (ii) a pruning policy which determines, to-
gether with ρ, which parts of the component-graph should be preserved.

Pruning Policies. If ρ is a non-increasing criterion, then various pruning policies
can be considered. For component-trees, several classical policies have been defined
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(for example min, direct, max, subtractive, Viterbi [17,21]). In the case of component-
graphs, the direct and max policies can be directly transposed, while the min one leads
to two variants, min1 and min2, that can be axiomatically (and recursively) defined by

ρ(K1) =⇒ ((∀K2 � K1,K2 ∈ Θ̂min1
)⇒ K1 ∈ Θ̂min1

)
(9)

ρ(K1) =⇒ ((∃K2 � K1,K2 ∈ Θ̂min2
)⇒ K1 ∈ Θ̂min2

)
(10)

These four policies lead to increasing results, i.e., for a same criterion ρ, we have

Θ̂min1
⊆ Θ̂min2

⊆ Θ̂direct ⊆ Θ̂max (11)

Moreover, in the case where (Θ̊, �̊) has a tree structure, the min1 and min2 policies are
equivalent. In this case, which happens in particular when (V,�) is totally ordered (i.e.,
for grey-level images), we retrieve the standard min policy defined for component-trees.

Algorithmic Remarks. From their very definition, the min1 and min2 policies require
to define Θ̂ in a top-down fashion, i.e., by starting from (Ω,⊥). By contrast, the max
policy requires a bottom-up strategy. The direct policy –which can be applied indiffer-
ently in both directions– may be more relevantly involved in a bottom-up strategy.

The min1 and max Pruning. The pruning of a component-graph based on the min1

and max policies is globally straightforward, since the edges of the pruned component-
graph constitute a subset of the edges of the initial component-graph. This property
leads in particular to pruning procedures whose algorithmic complexity is O(|Θ̊| + |�̊|).

The min2 and Direct Pruning. In the case where (Θ̊, �̊) is not a tree, by opposition
to the previous two policies, the min2 and direct ones do not imply that �̂ ⊆ �̊. Indeed,
when a element K ∈ Θ̊ is not preserved in Θ̂, each pair of edges of the form K′ �̊ K �̊ K′′
may lead to an edge K′ �̂ K′′. However, the existence of such an edge in (Θ̂, �̂) is
conditioned by the non-existence of a series of edges K′ �̂ K1 �̂ . . . �̂ Kt �̂ K′′. Based
on these considerations, a relevant approach consists of first computing (Θ̂,�), where
� is a superset of �̂, containing redundant edges which may be obtained by transitivity
from the edges of �̂. Such an approach, that presents an algorithmic complexity O(|�|),
may then be followed by a standard transitive reduction procedure [1] to recover �̂
from �.

6 Recovering a Filtered Image from a Pruned Component-Graph

Once Θ̂ is defined, the filtered image Î : Ω → V should be obtained from the cylinder
functions {CK | K ∈ Θ̂}. However, the expression of Î via Eq. (8) (by substituting Î to
I, and Θ̂ to Θ̊) is not necessarily well-defined. Indeed, there is no guarantee that for any
x ∈ Ω, the set {CK(x) | K ∈ Θ̂} ⊆ V admits a maximum (or even a supremum) for �.

In such conditions, it is then necessary to define a reconstructed image Ĩ : Ω → V
formed by a set Θ̃ being “as similar as possible” to Θ̂. In this first study, we chose to
consider the sets Θ̃ leading to reconstructed images Ĩ being either greater or lower than
the putative image Î (w.r.t. ≤). To this end, let us first define the following notions.
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6.1 Well-Defined Sets of Valued Connected Components

We say that Θ′ ⊆ Θ̊ is well-defined if
∨≤

K∈Θ′ CK exists, i.e., if for any x ∈ Ω, the set

{CK(x) | K ∈ Θ′} admits a maximum for �. We note Ξ̊ ⊆ 2Θ̊ the set of all the well-
defined subsets of Θ̊, and for any Θ′ ∈ Ξ̊ we note IΘ′ =

∨≤
K∈Θ′ CK , namely the image

reconstructed from Θ′. Let ∼ be the equivalence relation on Ξ̊ defined by

(Θ′ ∼ Θ′′)⇐⇒ (IΘ′ = IΘ′′ ) (12)

that gathers the well-defined sets of valued connected components which lead to similar
images. Let � by the (partial) relation order on the quotient set Ξ̊/∼, defined by

([Θ′]∼ � [Θ′′]∼)⇐⇒ (IΘ′ ≤ IΘ′′ ) (13)

that embeds the relation ≤ on images into the space of the (sets of) generating valued
connected components. Given a subset of valued connected components Θ̂ ⊆ Θ̊, we set

Ξ̊+(Θ̂) = {Θ′ ∈ Ξ̊ | ∀K ∈ Θ̂,CK ≤ IΘ′ } (14)

Ξ̊−(Θ̂) = {Θ′ ∈ Ξ̊ | ∀K ∈ Θ̂, IΘ′ ≤ CK } (15)

Since our purpose is to define a result image Ĩ being “as close as possible” to the putative
image Î, the choice of the solution set of valued connected components has to be made
among the minimal (resp. maximal) equivalence classes [Θ′]∼, associated to the sets Θ′
of Ξ̊+(Θ̂) (resp. Ξ̊−(Θ̂)), for �. More precisely, in order to respect both the content of the
image I, and the nature of the component-graph (G, Ġ, or G̈), the sets Θ′ have actually
to be considered within Ξ̊−(Θ̂) ∩ 2Θ̂ (resp. Ξ̊+(Θ̂) ∩ 2Θ̊).

Note that in the case where a solution Θ̃+ is determined among Ξ̊+(Θ̂) (i.e., when Ĩ is
greater than the putative image Î), we do not necessarily have Θ̂ ⊆ Θ̃+. However, we do
have (Θ̂ ∪ Θ̃+) ∈ Ξ̊+(Θ̂), and (Θ̂ ∪ Θ̃+) ∼ Θ̃+. Broadly speaking (an equivalent version
of) Θ̃+ can be defined from Θ̂ by relevantly adding new valued connected components.

Under such assumptions, we have in particular

[∅]∼ = [{(Ω,⊥)}]∼ � [Θ̃−]∼ � [Θ̂]∼ � [Θ̂ ∪ Θ̃+]∼ = [Θ̃+]∼ � [Θ̊]∼ (16)

The pruned set Θ̂, obtained from Θ̊, leads to a partition of Ω into two sets: Ωw(Θ̂) that
contains the points x such that {CK(x) | K ∈ Θ̂} admits a maximum for �, and Ωw(Θ̂)
that contains the points x such that {CK(x) | K ∈ Θ̂} has several maximal elements for
�, i.e., where Î is not well-defined. We now discuss the way to deal with Ωw(Θ̂).

6.2 Algorithmics

Let us first assume that � is a lower piecewise total order (LPTO), i.e., that ({v′ ∈ V |
v′ � v},�) is totally ordered for any v ∈ V . In such conditions, a component-graph has
a tree structure [14], and we have the following property.

Property 3 If � is a LPTO, we have Ξ̊ = 2Θ̊ and [Θ̂]∼ =
∨�[Ξ̊−(Θ̂)]∼ =

∧�[Ξ̊+(Θ̂)]∼.

In other words, Ωw(Θ̂) = ∅, and Î = Ĩ is then straightforwardly obtained from Θ̂ by
applying Eq. (8). In the sequel, we now suppose that � is no longer a LPTO.
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Reconstruction from Ξ̊+(̂Θ). Let us first assume that � is a lower piecewise lattice
(LPL), i.e., that ({v′ ∈ V | v′ � v},�) is a lattice for any v ∈ V . In such conditions, we
have the following property for the Θ and the Θ̇-component-graphs.

Property 4 If � is a LPL, then
∧�[Ξ+(Θ̂)]∼ and

∧�[Ξ̇+(Θ̂)]∼ exist. Moreover, in the
case of the Θ-component-graph, Ĩ = IΘ̃+ is directly defined from Θ̂, by applying Eq. (8).

In other words, Ωw(Θ̂) � ∅ in general, but the (unique) solution Ĩ can be straightfor-
wardly obtained from Θ̃+ in the case of G, and from Θ̃+ and Ġ in the case of Ġ.

For G̈ (and for any G̊ when � is not a LPL), the definition of a solution Ĩ is no longer
straightforward. Such a solution Ĩ can be obtained by defining Θ̃+ by the following
(non-deterministic) process. (For the sake of concision in the next property, we note the
set of valued connected components ofΘ′ that are in conflict at a given point x ∈ Ωw(Θ′)
as Θ′x = {(K′, v′) ∈ Θ′ | (x ∈ K′) ∧ (v′ ∈ ��{v′′ | ((K′′, v′′) ∈ Θ′) ∧ (x ∈ K′′)})}.)

Property 5 A set Θ̃+ can be defined as F +(Θ̂) where F + : 2Θ̊ → 2Θ̊ is the extensive
function (recursively) defined by

F +(Θ′) =
{
Θ′ if Ωw(Θ′) = ∅
F (Θ′ ∪ {(K, v)}) if Ωw(Θ′) � ∅ (17)

where x ∈ argy min |Θ′y|, and (K, v) ∈ ��{(K′, v′) | (∀(K′′, v′′), (K′′, v′′) � (K′, v′)) ∧
(x ∈ K′)}
It has to be noted that in the case of G̈, this process is deterministic, and the solution Ĩ
is then unique. However, this is not the case for G and Ġ.

Reconstruction from Ξ̊−(̂Θ). When Θ̃− is determined among Ξ̊−(Θ̂), the solution Ĩ
is not unique in general, independently from hypotheses about the kind of component-
graph (G, Ġ, G̈), and the kind of order� (except in the case of LPTO). Indeed, a solution
Ĩ can be obtained by defining Θ̃− by the following (non-deterministic) process.

Property 6 A set Θ̃− can be defined as F −(Θ̂) where F − : 2Θ̂ → 2Θ̂ is the antiextensive
function (recursively) defined by

F −(Θ′) =
{
Θ′ if Ωw(Θ′) = ∅
F −(Θ′ \ X) if Ωw(Θ′) � ∅ (18)

where X = {(K′, v′) ∈ Θ′ | (K′ ∩ K ∩ Ωw(Θ′) � ∅) ∧ (v′ � v)} and (K, v) ∈ Θ′ verifies
K ∩ Ωw(Θ′) � ∅ and v ∈ ��{v′ | ((K′, v′) ∈ Θ′) ∧ (K′ ∩ Ωw(Θ′) � ∅)}.

7 An Application Example

In this section, we illustrate, on a simple application case, the interest of component-
graphs for multimodal imaging. The proposed example involves both PET (Positron
Emission Tomography) and standard CT (Computed Tomography) X-ray data. The CT
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(a) (b) (c)

Fig. 3. (a) CT image. (b) PET image. (c) Detected components. (Image courtesy of D.
Papathanassiou, Institut Jean-Godinot, France.)

image provides homogeneous zones that characterise specific tissues and organs. The
PET image provides local intensity minima where tumours are active, but with a spatial
accuracy that is lower that CT information. Consequently, by coupling both grey-level
value spaces into a single value space V , it may be possible to extract some valued
connected components that gather the spatial accuracy of CT images and the spectral
accuracy of PET ones, thus leading to accurate localisation of tumors.

In the considered example (Fig 3(a,b)), the resolution of the image is 1318 × 864
and V = [0, 255] × [0, 255]. Since the purpose is to extract bright objects in one image
and dark objects in the other one, we consider the partial order relation � defined by:
(v1, v2) � (w1,w2)⇔ (v1 ≤ w1)∧ (v2 ≥ w2). The graph G̈ is computed2 and we consider
for each node the attributes “area” and “height”3. Graph pruning is performed by using
a non-increasing criterion based on (minimal and maximal) thresholds on the attributes.
The reconstruction is performed “from bottom” based on the set Ξ̈−(Θ̂), therefore en-
suring the removal of all non-desired components. Fig. 3(c) shows the detected areas.

One may notice that using the same strategy on the component-tree of the CT-scan
image is not sufficient to extract the component, while using only the PET image pre-
vents the extraction of an accurate contour.

8 Conclusion

This article has proposed first algorithmic results that may lead to connected filtering
methodologies relying on component-graphs, and thus handling multivalued images
(and, more generally, any valued graph structures [22]) in a “component-tree” fashion.
Some issues remain however to be considered on the way toward such methodologies.

From an algorithmic point of view, solutions to (smartly) define both Θ- and Θ̇-
component-graphs still have to be found. Distributed strategies [21] may provide some
solutions to deal with these issues. Moreover, the reduction of the algorithmic complex-
ity of filtered image reconstruction(s), in the most general cases, also has to be carefully
considered. To this end, discrete optimisation strategies may be investigated.

2 The graph computation takes 50 s on an Intel Core-i7 for 130 000 nodes and 800 000 edges.
3 Maximal distance (L1-norm) between the value of the node and the value of all its descendants.
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Abstract. This paper introduces a generalization of self-dual marked flattenings
defined in the lattice of mappings. This definition provides a way to associate
a self-dual operator to every mapping that decomposes an element into sub-
elements (i.e. gives a cover). Contrary to classical flattenings whose definition
relies on the complemented structure of the powerset lattices, our approach uses
the pseudo relative complement and supplement of the bi-Heyting algebra and
a new notion of inf-structuring functions that provides a very general way to
structure the space. We show that using an inf-structuring function based on con-
nections allows to recover the original definition of marked flattenings and we
provide, as an example, a simple inf-structuring function whose derived self-dual
operator better preserves contrasts and does not introduce new pixel values.

Keywords: inf-structuring function, self-dual operator, flattening, Heyting alge-
bra, connection, hyper-connection, image processing, mathematical morphology.

1 Introduction

Duality is a principle which states that the content of a numerical function remains
the same after an inversion. Following this principle, an operator should process an
image and its opposite symmetrically, i.e. be self-dual. Although this property is always
achieved with linear filters, the problem is harder in mathematical morphology where
the operations of infimum and supremum treat differently bright and dark objects.

Several authors have explored various manners to define self-dual morphological
operators [3,4,9,5,20]. The first approaches are based on the notion of activity of a
boolean operator which leads to the activity lattice [15] where given two dual binary
operators, both their infimum (morphological centre) and supremum (flattening [7] and
levelling [8,19]) produce self-dual operators. The second approaches rely on the notion
of tree of shapes [9,5] which is the tree given by the relation of inclusion between the
shapes (level lines) in the image. The definition of shapes and the inclusion relation
being invariant to contrast inversion, this naturally leads to self-dual operators. A third
approach consists in working with the module of the gradient of the function.

This paper generalizes the first approach and more precisely the marked flatten-
ing [18]. Marked flattenings are defined as increasing set operators which are thus
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easily extended to functions by thresholding and stacking. One calls the flattening
θM(A) of the set A by the set M, the union of γM(A), the set of connected compo-
nents of A that intersect M, with the set of all pores (connected components of the
background) that do not intersect Mc, i.e. those which are included in the marker:
θM(A) = γM(A)∪ (Ac∩ γc

Mc(A)).
Currently, the definition of the marked flattening is only feasible in sets due to the

use of the complementation. We show that the use of the bi-Heyting algebra structure
removes this limitation and lets us generalize the flattenings in order to use connections
on functions [17]. In order to encompass all possible approaches for connections, in
section 3, we define the new notion of inf-structuring function (isf), which is a mapping
that associates to any function a set of smaller functions, and we propose two particular
isfs. In section 4, we propose two swamping functions based on isfs and we show that
it generalizes the classical notion of connected openings and closings. Then, section 5
presents the construction of the self-dual operator combining isf-swampings and Heyt-
ing algebra operators. We show that using adapted isfs, either based on connections or
on hyper-connections, enables us to recover the original definition of flattenings and to
define new self-dual operators that better preserve contrasts and that do not create new
pixel values. Finally, we conclude the work in section 7 and we give a few perspectives.

2 Mathematical Preliminaries

Let (L ,∨L ,∧L ,0,1,≤L ) be a complete lattice, where L is the set of elements of the
lattice, ∧L (resp.∨L ) is the infimum (resp. supremum), 0 (resp. 1) is the smallest (resp.
largest) element and ≤L is the associated partial order. The lattice L is infinite ∨-
distributive (resp.∧-distributive) if ∀a∈L , ∀B⊆L , we have a∧(∨b∈B b) =

∨
b∈B(a∧

b) (resp. a∨ (
∧

b∈B b) =
∧

b∈B(a∨ b)). It is infinite distributive if it is both infinite ∨-
and ∧-distributive. Given an element a ∈ L we note Ma (resp. Ma) the set of upper
bounds of a (resp. lower bounds): Ma = {b ∈L |b≤ a} and Ma = {b ∈L |b ≥ a}

We also define the particular complete infinite distributive lattice of mappings from
a non empty set D to a complete chain T : (F ,∨F ,∧F ,⊥,.,≤F ), where F is the set
of elements of the lattice, ∧F (resp. ∨F ) is the pointwise infimum (resp. supremum)
operator, ⊥ (resp. .) is the smallest (resp. largest) element and ≤F is the associated
partial order. For simplicity of notations, when possible, we omit the indices from the
infimum, supremum and ordering symbol. In image processing, we usually define T as
a closed subset of the completed real line R= R∪{−∞,+∞} or Z= Z∪{−∞,+∞}.

2.1 Self-dual Operator

We give here a short presentation of self-duality, a deeper exploration is given in [4].

Definition 1. An operator ϕ of L is an inversion if it is a decreasing involution (i.e. ϕ
is a decreasing, bijective mapping from L to L , such that ∀a ∈L , ϕ2(a) = a).

For simplicity of notation, we write a∗ for an element a ∈L where we assume that an
inversion ϕ exists and that a∗ = ϕ(a). If the lattice L is distributive and if an inversion
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ϕ exists for L then the image of L by ϕ is the dual lattice of L obtained by inverting
the ordering relation and exchanging the infimum and supremum operators.

If L =R (resp. L =Z), an inversion is given by: ∀a ∈L , ϕ(a) = n−a with n ∈R
(resp. n ∈ Z). If L is a closed subset [n,m] of R or Z, then an inversion is given by:
∀a ∈L , ϕ(a) = n+m− a. This extends to the lattice F using pointwise operations.

Definition 2. Being given an operator α of L , we define the dual operator α∗ for ϕ
by: ∀a ∈L , α∗(a) = (α(a∗))∗.

The dual transformation of a is the inverse of the transformation of the inverse of a.
Duality is a common method to define pairs of operators like openings and closings.

Definition 3. An operator α is self-dual if it is equal to its dual operator: α = α∗.

A self-dual operator treats an element and its inverse equally. In image processing this
can be interpreted as a being covariant to contrast inversion. The convolution and the
median filter are two well known examples of self-dual operators.

2.2 bi-Heyting Algebra

Heyting algebras are well known in the field of propositional logic, but, to our knowl-
edge, has only been used by Stell et al. in the field of mathematical morphology [22,21].

Definition 4. A complete Heyting algebra is a complete ∨-infinite distributive lattice
L with a binary operator pc called relative pseudo-complement such that ∀a,b ∈L ,
pc(a,b) is the largest element such that a∧pc(a,b)≤ b [23].

The lattice F is a Heyting algebra with ∀ f ,g ∈F , pc( f ,g) =
∨{h | f ∧h≤ g} (Fig. 1).

If L is a complemented ∨-infinite distributive lattice, then the mapping pc(a,0) for
a ∈L is indeed the classical complementation.

Fig. 1. Illustration of the relative pseudo-complement and the relative pseudo-supplement in F .
The first line shows the application of the relative pseudo-complement pc and the relative pseudo-
supplement ps on two functions f and g. The second line shows the duality between pc and ps.
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Definition 5. A complete co-Heyting algebra is a complete ∧-infinite distributive lat-
tice L with a binary operator ps, called relative pseudo-supplement such that ∀a,b ∈
L , ps(a,b) is the smallest element such that a∨ps(a,b)≥ b [6].

The lattice F is a co-Heyting algebra with ∀ f ,g ∈F , ps( f ,g) =
∧{h | f ∨h≥ g}.

An algebra that is both a Heyting and a co-Heyting algebra is then referred as a
bi-Heyting algebra [12].

ps and pc are dual operators: ∀a,b ∈ L , ps(a,b) = (pc(a∗,b∗))∗ and conversely
pc(a,b) = (ps(a∗,b∗))∗. Fig. 1 shows two examples of applications of pc and ps in
F . We see that pc( f ,g) is equal to . where f is smaller than g and to g otherwise,
conversely ps( f ,g) is equal to ⊥ where f is larger than g and to g otherwise.

3 Inf-structuring Functions

In this section, we present the new concept of isf which is a very general type of map-
ping that associates to each element of a lattice a set of sub-elements (Fig. 2)

Definition 6. We say that s : F �→P (F ) is an inf-structuring function (isf) of F if:

1. ∀ f ∈F , s( f )⊆M f (i.e. ∀g ∈ s( f ) ,g≤ f ): all sub-elements are smaller than f .
2. ∀ f ∈F ,

∨
s( f ) = f : the supremum of the sub-elements of f is equal to f

One can note that an important difference with (hyper-)connections is that an isf can
decompose an element into comparable elements.

Fig. 2. Example of decomposition of a function f into a set of five lower functions s( f ). The
assumptions made on the content of s( f ) are very weak.

A simple way of constructing isfs is to use the tool-box from the connection theory.
We present here two isfs, the first one based on the set connections [16] and the second
one the hyper-connections [17].

3.1 Set Connections for Isf

Set connections are a convenient way to describe how elements of a set are grouped in so
called connected components [16]. Being given a connection C on the powerset lattice
P (E), a subset A of E and a point x in E , the connected component of A containing
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x (for C ), noted γx (A), is the largest element of C containing x and included in A. We
can now define the isf based on the connection C and denoted by sC as:

∀ f ∈F , sC ( f ) =

{∨
v≤t

cyl

(
γx

(
f
¬v
)
,v

) ∣∣∣∣ t ∈ T , x ∈D

}
(1)

where cyl(X ,v) represents the cylinder of base X and level v: for all x∈D , cyl(X ,v)(x)
equals v if x∈ X and 0 otherwise. And, f

¬t is the threshold of the function f ∈F at level
t ∈T , i.e. the set of points where the value of f is larger than t: f

¬t = {x ∈D | f (x) ≥ t}.
This construction, depicted in Fig. 3, is indeed closely linked (see Prop. 1) to the

definition of anti-extensive connected operators in gray-level images [14].

Fig. 3. Set connection based isf: the function on the left is decomposed into the 6 functions in the
right box. We assume here that the value domain is discrete (dashed horizontal lines).

3.2 Ultimate Flat Zone Isf

We define here the ultimate flat zone isf noted su f z. Each element of the isf of f cor-
responds to the infimum between a maximal flat function of f (i.e. a flat function with
connected support such that there do not exist another flat function strictly larger than
it and lower than f ) and a flat zone of f (Fig. 4). This construction can be formalized
with hyper-connections [17] as an iterative decomposition into z-zones [1,11] using the
h-connection of flat functions [10].

4 Isf Swampings

The definition of the generalized flattening is done in two steps. We first give a general-
ized definition of a swamping (marked reconstruction) based on the notion of isf. Then,
in the next section, we define the generalized flattening using the swamping function
and the bi-Heyting algebra.

An isf provides a first way to structure the space by considering a notion of local min-
ima conditionally to the decomposition. We define an elementary swamping function,
i.e. a marked reconstruction, β : F ×F �→F by:

β ( f ,m) =
∨

min(Mm∩ s( f )) (2)
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Fig. 4. Ultimate flat zone isf: the function on the left is decomposed into 6 functions showed in
the right box. Each element of the isf is given by the infimum between a maximal flat function
(red dashed line) and a flat zone (green dot-dash line).

where f is the processed element, m is the marker and min(X) is the set of minimal
elements of the set X (min(X) = {x ∈ X |∀y ∈ X , y≤ x⇒ y = x}). The use of the min
in this formula insures that for each element g of s( f ) there exists a marker m such that
g = β ( f ,m).

Then, we define the isf-swamping α : F ×F �→F as an extension of β :

∀ f ,m ∈L , α( f ,m) =
∨

n≤m

β ( f ,n) (3)

The operators α and β and their differences are illustrated in Fig. 5. Observe that the
purple sub-element (dot-dash line) is included in α( f ,m) but not in β ( f ,m) as it only
intersects m. Also, in both cases, the blue sub-element (largely spaced dotted line) that
also intersects m is not included because there does not exist a n ∈ Mm such that n is
smaller than this sub-element but larger than the orange one (spaced dashed line).

The behaviour of α and its dual operator are illustrated in Fig. 6. α is similar to a
rasing of f marked by m as it removes all sub-elements of a that are completely outside
the marker. On the other side, the dual operator α∗ acts as a flooding of f marked by m,
adding all sub-elements of the inverse that are completely included in the marker.

α is not increasing with respect to f (Fig. 7) but it is trivially increasing with respect
to m as more and more sub-elements are included in the result when m increases. The
fact that α is not increasing with respect to its first argument is not a real drawback as
this property is indeed really important only for binary operators in order to naturally

Fig. 5. Example of application of the β and α operators on the function f decomposed in s( f )
and marked by m. Whereas β selects the lowest sub-elements that are greater than the marker, α
selects the lowest sub-elements whose support intersects the support of the marker.



Inf-structuring Functions and Self-dual Marked Flattenings in bi-Heyting Algebra 371

(a) (b)

Fig. 6. Illustration of the α operator and its dual operator with the ultimate flat zone isf (Fig. 4).
Fig. (a) shows a function f (dotted line) a marker m (dot-dash line) and the result α( f ,m) (in
grey). The first image of Fig. (b) shows the result of α( f ∗,m∗). Finally, the last image shows the
result of the dual operator α∗( f ,m).

(a) (b)

Fig. 7. Example showing that α is generally not increasing with the ultimate flat zone isf (Fig. 4).
Fig. (a) shows the result of α( f ,m), whereas we have the result of α(g,m) on Fig. (b). We have
f ≤ g but α( f ,m) and α(g,m) are not comparable.

extend them to the grayscale case by stacking. It is clearly anti-extensive with respect
to f but not to m. It is generally not idempotent with respect to f .

Proposition 1. When the isf is based on connection (sC : Eq. 1), then α reduces to a
classical marked connected opening (and closing for α∗).

5 Generalized Flattenings

Based on α , we can construct a new self-dual operator Θ : L ×L �→ L following
the method used for the definition of binary flattenings [7,18]. Nevertheless, binary
flattenings rely on the complemented structure of the binary lattice and we will show
that this construction can be extended using the notion of relative pseudo-complement
and -supplement. Formally, Θ is defined by:

∀ f ,m ∈L , Θ( f ,m) = α( f ,m)∨ps( f ,α∗( f ,m)). (4)

This equation is illustrated in Fig. 8. Its first part: α( f ,m) takes the supremum of
the smallest sub-elements of f that intersect m. Conversely, α∗( f ,m) takes the in-
verse of the supremum of the smallest sub-elements of f ∗ that intersect m∗ which
can be interpreted as adding to f the ”parts” of f ∗ that are completely included in m.
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Fig. 8. Example of application of the operator Θ( f ,m) = α( f ,m)∨ ps( f ,α∗( f ,m)) (Eq. 4) and
its equivalent definition Θ( f ,m) =α∗( f ,m)∧pc( f ,α( f ,m)) (Prop. 2) using an ultimate flat zone
isf (Fig. 4).
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Then ps( f ,α∗( f ,m)) filters α∗( f ,m) in order to only keep those added parts. Finally,
Θ( f ,m) is the supremum between the filtered version α( f ,m) and the added parts from
α∗( f ,m). Intuitively the final result is composed of the parts of f that intersect m and
the parts of f ∗ that are below m.

Proposition 2. For all f ,m ∈L , we have Θ( f ,m) = α∗( f ,m)∧pc( f ,α( f ,m))

This equation is illustrated in Fig. 8. Here, α∗( f ,m) adds to f the ”parts” of f ∗ that are
completely included in m. On the other side, pc( f ,α( f ,m)) determines which parts of
f are not selected by α( f ,m), i.e. those that do not intersect m. Finally we remove from
α∗( f ,m) the parts extracted by pc( f ,α( f ,m)).

Proposition 3. Θ is an self-dual operator: Θ( f ,m) = Θ( f ∗,m∗)∗

This is an immediate consequence of Prop. 2 and the duality between pc and ps.

Proposition 4. When the isf is based on connection (sC : Eq. 1), then Θ reduces to the
classical connected marked flattening operator as defined in [18].

This is a direct consequence of Prop. 1.

5.1 Discussion

It is also possible to interpret Θ as the supremum of activity between α and α∗ which
corresponds to the fact that binary marked flattenings can themselves be defined as the
supremum of activity of two operators. Nevertheless, this previous definition was only
feasible in complemented lattices while it is here directly expressed in the lattice of
mappings thanks to the bi-Heyting algebra structure. One can note that Serra touched
upon this construction with the Lemma 8.2 of [15] where he noticed that the use of an
infinite-distributive lattice was usefull in this frame.

One can note that Θ is not a generalization of marked levellings of [19] because the
later rely on two particular relations. In [19] a component of the foreground is selected
if it touches the marker and at the opposite a component of the background is selected
if it is strictly included in the marker. While in our definition, a part of the function
is selected if it intersects the marker and at the opposite a part of the inverse of the
function is selected it is under the marker. While the relations used in [19] ensure that
the resulting operator is adjacency stable we do not have this property and Θ is thus not
a levelling [2]. Nevertheless, if we use two different markers in the definition of Θ, then,
we can recover the classical marked leveling by taking the dilation of m as the marker
of α and the erosion of m as the marker of α∗.

One can also note that the self-duality of the complete application of the opera-
tor (computation of m and application of Θ) is indeed only verified if the marker is
computed with a self-dual operator. The question of the real properties of morpholog-
ical operators based on context information (marker for flattenings and levelings, set
of structural elements for spatially variant morphology) has been discussed by several
authors [13,19] and more extensively in [2].
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6 Applications

We propose applications to exhibit some differences between the self-dual operator Θ
obtained with the ultimate flat zone isf and the classical flattenings or levelings.

The first line of Fig. 9 illustrates the fact that Θ cannot introduce new pixel values
with the ultimate flat zone isf. The original image is a simple chess board while the
marker is the result of a convolution of the chess board with a Gaussian kernel. With
the classical leveling new pixel values coming from the marker are introduced in the
result while in our new definition, the result is equal to the original image. The second
line of Fig. 9 relies this time on a noisy version of the chess board image. Similarly to
the classical leveling, our operator reduces drastically the noise level, does not move
frontiers and moreover, it also better preserves the contrast. A profile view of the same
example is given Fig. 10.

Original a Marker m (Convolution) Leveling Θ(a,m)

Fig. 9. Comparison of the generalized flattening Θ with the classical levelling. First line: the
original image does not contain any noise, we see here that the use of the ultimate flat zone isf
prevents the introduction of new grey levels in the result. Second line: here the original image is
noisy and we show that Θ better preserves the contrast as it tends to reconstruct the maxima.

Fig. 10. Illustration of a profile through the images of the second line of Fig. 9. The black solid
curve is the original image, the green dashed line is the marker, the red dotted line is the classical
leveling and the blue dotted-dashed line is the result of Θ (built upon the ultimate flat zone isf).
We see that Θ tends to reconstruct the maxima and thus better preserves the contrast.
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Original f Marker m (Convolution)

Marked leveling Θ( f ,m)

Fig. 11. Comparison of Θ (built upon the ultimate flat zone isf) with to the connected leveling.

Finally, Fig. 11 shows a real life application on a picture of Uppsala. One can ob-
serve that our operator performs a simplification of the image that is similar to the one
provided by the connected leveling while offering a better preservation of the contrast.

7 Conclusion

In this article we have proposed a generalization of the self-dual marked flattenings
that provides a way to associate a self-dual operator to every mapping that decomposes
an element into sub-elements. It is defined directly in the lattice of mappings thanks
to its bi-Heyting algebra structure and it relies on the new notion of inf-structuring
functions. We derive two new swampings from the notion of isf and we show that they
generalize the connected openings. Then, we define a new self-dual operator based on
those swampings that generalizes the marked flattenings. Finally, we show that using a
naive isf allows to better preserve the contrast, which suggests that even better self-dual
operators can be obtained through the definition of more sophisticated isfs.

In future work, we plan to explore two directions: first the possibility to develop
the notion of activity based on the bi-Heyting algebra structure and, second, the deep
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exploration of the notion of inf-structuring functions and more precisely its various
links with connections, hyper-connections and the associated (h-)connected operators.

Acknowledgements. I would like to thank Prof. Jean Serra for his valuable comments
and corrections on the initial version of this paper.
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Abstract. Image simplification plays a fundamental role in Image Pro-
cessing to improve results in complex tasks such as segmentation. The
field of Mathematical Morphology (MM) itself has established many ways
to perform such improvements. In this paper, we present a new approach
for image simplification which takes into account erosion and dilation
from MM. The proposed method is not self-dual and only single-band
signals under a discrete domain are considered. Our main focus is on the
creation of concave structuring functions based on a relation between
signal extrema. This relation is given by two extrema according to their
degree of separation (distance) and the respective heights (contrast).
From these features, a total order relation is produced, thus supplying
a way to progressively simplify the signal. Some two-dimensional images
are considered here to illustrate in practice this simplification behavior.

Keywords: Mathematical Morphology, Regional Extrema, Concave
Structuring Functions, Image Simplification.

1 Introduction

Signal simplification involves reduction and/or improvement of the provided
data. Ideally, one would want to remove all the irrelevant data for the task
being performed while preserving everything else. In the case of edge recovery,
for instance, it is also needed to improve the input signal. In general, simplifying
an image is characterized as an inverse problem with possibly many solutions,
thus it is an ill-posed task. Nonetheless, many specific and general methods have
been developed as it is indispensable for an effective segmentation, for example.
Here we present a general approach based on erosion/dilation from Mathematical
Morphology (MM) [12], with non-flat scaled structuring functions. No particular
connectivity is assumed, and the method is described in terms of graphs.

The starting point of our approach is the creation of an order relationR taking
into account the signal extrema (either maxima or minima). The anticipated
benefit of R is twofold: a) the details of the used structuring function are made
unimportant for the user, b) the order conveys a clear indication for the degree
of simplification. The first item is particularly important because it is often

C.L. Luengo Hendriks, G. Borgefors, R. Strand (Eds.): ISMM 2013, LNCS 7883, pp. 377–389, 2013.
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the case [7,4] that the scaling of the structuring function is closely related to
its shape, and arbitrarily selecting a scale does not tell much about how it will
affect the signal. The specificities on how R is constructed and the corresponding
simplification process are discussed in the following sections. Figure 1 provides
a general view of the method which is not self-dual, so it is possible to opt
to work with either regional minima or maxima. Figure 1a can be seen as two
valleys corrupted by noise whose simplification process manages to suppress.
The original signal in Fig. 1b shows a valley next to a noisy minimum region. In
this example, the simplification is obtained by suppressing regional maxima of
the signal which indirectly suppresses minima of similar height in the originally
noisy region. In both cases, note the ramp-like path created between extrema.

(a) Example considering regional min-
ima. The whole area describes the in-
put signal, and the darker the area the
greater the simplification.

valley noisy region

(b) Example considering regional max-
ima. The lighter area describes the input
signal. The darker areas together with
the lighter ones represent the increasing
simplification.

Fig. 1. Overview of the simplification process

To situate this work, some examples of morphological approaches to signal
simplification are considered. On one hand, the proposed method is related to
those that provide means for simplification by considering specific signal fea-
tures. This includes the contrast measure bestowed by dynamics [5,1] and other
works [15,14] that select signal features based on the extinction values (e.g., area
or volume), as we also measure the persistence of the image extrema. In addition,
we simplify a signal, as illustrated in Fig.1, by using these obtained measures.
On the other hand, simplifications based on connected operators [13,9] are also
related to the proposed approach, although our focus is on merging flat zones
without extending them. In terms of relief and unlike flooding, our transforma-
tion can be seen as a producer of geomorphological benches as commonly found
in open-pit mines. This difference impacts the simplification, since a final flood-
ing can be seen as a more abrupt process while ours defines progressive steps
represented by ramps.

The next section begins by quickly revisiting restrictions upon our considered
structuring functions. In Sects. 3-5 the simplification procedure is detailed in
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a more formal manner. Section 6 illustrates the simplification process on some
two-dimensional images. Finally, conclusions are drawn in Sect. 7 which also
discusses future works on this subject.

2 Morphology with Concave Functions

Given the importance of the morphological operations of erosion, ε, and di-
lation, δ, of a function f with a structuring function (SF) g, we remember
them, respectively, as in [12]: ε(f, g)(x) = inf−y∈g f(x − y)− g(y); δ(f, g)(x) =
supy∈g f(x − y) + g(y). Here, the interest is in working with SFs that preserve
certain characteristics. From [12] we have that both non-flat erosion and dilation
maintain the increasing property on f when g contains the origin. So, in this
work, g is restricted to always contain the origin. Furthermore, dilation with g
is increasing with respect to itself while erosion with SFs g1 and g2 yields the
following property:

g1 ≤ g2 ⇒ ε(f, g1) ≥ ε(f, g2), (1)

and, therefore, erosion is decreasing with respect to g. Next, other restrictions
related to our SF g are discussed.

In special, recall the link of erosion and dilation with the order-statistics
filters [11]. For a flat SF g, ε(f, g)(v) = x corresponds to the 1st ranked-order
filter (rank 1), while dilation is given by the #Nv-th ranked-order filter. The
notation #X stands for the cardinality of set X , and Nv corresponds to the
neighbors of v, including v itself. Now, consider a non-flat g. We start by reusing
the definition of weighted rank-order filters in [16]. This weighted rank (wrank)
applies the weights in g to f(u ∈ Nv) before ordering and picking an element.
Thus, wrank produces the 1st wranked-order filter (wrank 1) for ε(f, g)(v) and
the corresponding #Nv-th wranked-order filter for δ(f, g)(v). In the following, a
stronger condition for g is sought so that

rank 1 ≤ wrank 1 ≤ wrank #Nv ≤ rank #Nv. (2)

In this sense, it is clear that our sought-after g is in the domain of the order
statistics and that, in general, a free-form g does not respect the ordering given
by (2). To this end, concave SFs, also known as concave down in literature, are
considered.

Some authors [7,3,4] have approached the use of these concave SFs. The work
in [3] focused on parabolic-shaped functions defined by gt(x) = − 1

2tx
2, where

t > 0 is a scale parameter. Besides the separability of the parabolic gt, it assumes
sup(gt) = 0 and gt(0) = 0. In [7], it was considered that when sup(gt) = 0, level-
shifting effects are avoided, as well as horizontal translations when gt(0) = 0. Still
in [7], it was proved that the scale-space [8] conditions of non-enhancement of
extrema and causality (non-creation of extrema) hold for such SFs. Since these
characteristics are also well desired for signal simplification, our g is further
restricted to these assumptions, albeit in discrete form, in order to respect the
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corresponding properties. As a consequence of the scale-space properties, it is
easy to see that the order in (2) is maintained. Finally, consider the height of
the support of g as hg = | inf(g)|. Equation (1) is then extended to

(g1 ≤ g2 ⇐⇒ hg1 ≥ hg2)⇒ ε(f, g1) ≥ ε(f, g2). (3)

With these considerations, the proposed simplification can now be introduced.

3 Extrema Relationship

Let f : Z × Z → R be a signal described by a connected labeled simple graph
G = (V,E, f). The set of edges E ⊆ V × V outlines the connectedness of the
underlying signal over its domain of vertices V . We consider that a given signal
f is devoid of structure which is provided by G. Given this configuration, we
claim to construct a morphological operator that simplifies f by means of the
suppression of regional extrema. As will be seen elsewhere, the corresponding
transformation operates by effectively creating ramps between these extrema.

The main concern of our approach is the relationship among the extrema of
the signal f . From this relation, structuring functions are derived such that they
guarantee a well-behaved suppression of extrema in the sense that no new ex-
trema are introduced in the transformed signal. Before stating how these extrema
are related, let us consider the following definitions.

Definition 1. Let G = (V,E) be a graph. Let u, v ∈ V . Let P be the set of
vertices along one of the paths of shortest length between u and v. Then u and
v are l′-separated according to l′(u, v) = # (P − {u, v}).

Definition 2. Let G = (V,E) be a graph. Let EA ⊆ E and EB ⊆ E be two
subsets from which the sets A and B are built such that A contains all the
vertices that form the edges in EA, respectively for B, and respect A ∩ B = ∅.
Then A and B are l-separated by l(A,B) = min {l′(u, v) | ∀u ∈ A, ∀v ∈ B}.

From Definition 1, it is established that given two distinct regional extrema X
and Y (both maxima or minima) and any u ∈ X , v ∈ Y , then l′(u, v) ≥ 1. This
result, together with Definition 2, yields l(X,Y ) ≥ 1. From now on, we will deal
exclusively with sets and shorten the notation to just l (if context allows) which
indicates the minimal number of vertices standing between both involved sets.
Next, sets are treated as being neighbors if they respect the following definition.

Definition 3. Given the same conditions as in Definition 2, then A and B are
s-neighbors if l(A,B) = 1.

In particular, by Definition 2, an edge (u, v) in G produces l ({u}, {v}) = 0
and, therefore, sets describing adjacent vertices are not s-neighbors. Figure 2
exemplifies the definitions discussed so far. The signal on Fig. 2a is structured
according to some arbitrary graph shown in Fig. 2b. Based on it, the annotations
of Fig. 2c are built. In this figure there are two regional minima, X and Y
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(the solid rectangles), with l (X,Y ) = 3. Now, suppose a function z that produces
the sets A,B from X,Y (the closed dashed curves), such that X ⊆ A and Y ⊆ B
with l(z(X,Y )) = l(A,B) = 1. In Mathematical Morphology, one such z would
be the watershed transform described as “Meyer 2” [6], where the vertices labeled
3 and 4 in Fig. 2c, outside of both sets A and B, act as water divisors.
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1

2 2

(a) Unstructured signal f
on a discrete space.
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1
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(b) A graph G provides
the structure for f .
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2 3

3

44

1

1 X
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(c) Minima X,Y , and the
built s-neighbor sets A,B.

Fig. 2. Illustrations of some developed considerations and definitions

The above mentioned z function has an important role in our simplification
method since it is useful to define, based on the produced sets A and B, whether
two minima (maxima) are s-neighbors. Note that the use of such a function
reduces the amount of relations generated among extrema. In the following,
we assume the use of a z function that relates every pair of regional minima
(maxima) as s-neighbors.

From these observations, the proposed relation among signal extrema can be
introduced. Consider two extrema X and Y (both minima or maxima) from a
signal f , and u ∈ X , v ∈ Y . If there is a function z so that the sets given by
z(X,Y ) are s-neighbors, then the following equation defines the height of the
scaled structuring function used in the simplification process:

σ =
|f(u)− f(v)|
l(X,Y )

. (4)

If (4) is considered for every pair of s-neighbor sets, one then obtain a meaningful
collection of values that can be used in the suppression of the signal extrema.
Now, by grouping each height σ with l(X,Y ) in a tuple, a strict total order
relation can be defined as follows. Let S = {(σ1, l1), . . . , (σn, ln)} represent the
set of these tuples. A relation R on S, between two tuples, is given by:

(σp, lp) ≺ (σo, lo) ⇐⇒ σp > σo ∨ (σp = σo ∧ lp < lo). (5)

The reasoning for such an ordering is closely related to the way the simplification
occurs, as explained next.
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4 Simplification Activity

The simplification process starts by choosing a tuple t = (σt, lt) ∈ S, from which
the σt value is used to define the structuring function gt : Z × Z → R. This
function is connected according to the graph of the input signal f and its size
extends only to the neighbors of a vertex v. The shape of gt is given by:

gt(x) =

{
0 if x = 0,
−σt otherwise.

(6)

Note that gt respects sup(gt) = 0 and gt(0) = 0. Furthermore, it is a concave
function, as discussed in Sect. 2, and has no problem in extending itself to handle
varying neighborhoods of the underlying graph. In a rectangular 8-connected
grid, gt is a discretized pyramid. By using this structuring function, the signal
can be simplified by either performing erosions (for regional minima) or dilations
(for regional maxima), as further discussed in the paper.

Let Γ (f, t) be the function that simplifies the signal f with the tuple t ∈ S.
This implies the construction of a function g from t, as in (6), written from now
on as gt. Also, the first element in t is referred as σt, and the second as lt. In such
a case, Γ (f, t) performs lt erosions/dilations, using gt as structuring function.

The meaning of relation R in (5) can be properly understood for regional
minima (and by duality for regional maxima) as follows. Let fp and fo be the
result of Γ (f, p) and Γ (f, o), respectively. First, suppose the situation in which
the height of the corresponding structuring functions is the same, i.e., σp = σo:

i) If lp > lo, then fp ≤ fo due to the increasing and anti-extensivity properties
of erosion with gp and go;

ii) If lp < lo, then fp ≥ fo, according to these same properties.

These simple considerations provide the basis for the ordering given by (5). In
the earlier case, (i), we have f − fp ≥ f − fo. Thus, opting for the second case,
an ordering of non-decreasing activity [10] is established in this situation.

Now, let us consider σp > σo:

iii) When lp = lo:
a) For lp = lo = 1, the property in (3) gives fp ≥ fo
b) The general case for lp = lo = n can be demonstrated by induction using

the anti-extensivity property of erosion together with (3).
iv) If lp < lo, then the first lp erosions yields the result in (iii.b), and we are

left with f ′p = Γ (f, p) = fp and f ′o = Γ (f, (σo, lp)). Now, there are lo − lp
remaining erosions which are executed exclusively on f ′o with go and, hence,
fp > fo.

v) Finally, if lp > lo, then a more subtle situation is encountered. Carrying
out lo erosions on f produces, as before, the result in (iii.b), which in turn
means f ′p = Γ (f, (σp, lo)) and f ′o = Γ (f, o) = fo. Now, the remaining lp− lo
erosions are to be done on f ′p, and the corresponding final result, fp, may
not be greater or lower than fo which may appear to lead to a meaningless
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order in (5). Nevertheless, as will seen further, there are signal extrema
that, in such a case, cannot be removed by σp but only by σo or some other
σ < σp. For the moment, we can intuitively consider that for successive
simplifications #Rmin(fp) ≥ #Rmin(fo), where Rmin(f) is the set of regional
minima in f .

The same considerations can be achieved for σp < σo, what completes the rea-
soning for the order relation in (5), although it still lacks a proof for case (v).
To further consider cases (i-v), let us enunciate our simplification operator.

5 Controlled Signal Simplification

From the previous discussions, it is clear that the simplification function, Γ , does
not have much control over which extrema it suppresses. Nevertheless, given a
t ∈ S, as before, it is possible to limit the simplification process solely to those
extrema influenced by t. In this regard, the range of the signal f is extended
to R ∪ {−∞,∞} and an operator τ is constructed. When working on regional
minima, τ is as follows:

“f(x) =

{
f(x) if x ∈ Rmin(f),
∞ otherwise.

(7)

τ(f, t) = inf

(
ε
(

“f, gt
)lt

, f

)
. (8)

The dual case, when working on regional maxima, is given by:

f̆(x) =

{
f(x) if x ∈ Rmax(f),
−∞ otherwise.

(9)

τ(f, t) = sup

(
δ
(
f̆ , gt

)lt
, f

)
, (10)

where lt indicates the number of erosions/dilations performed with the elemen-
tary structuring function gt described in (6). The τ operator is more restrictive
than Γ in the sense that the former considers the entire signal only after the
erosions/dilations have already been performed.

Figure 3 illustrates the application of the operators Γ and τ for regional min-
ima. Without loss of generality, we assume the signal is 2-connected, and the
function z relates each extremum, e, only to the extrema immediately to the
left and to the right of e (save edge cases). The original signal f is the same
for both examples. Based on (4), the tuple t = (6, 1) is obtained from the two
right-most regional minima (in this case, and according to (6), the structuring
function is given by the one-dimensional discrete function g = [-6 0 -6]). Ob-
serve how in Fig. 3a the minima at f(x) = 19 and f(x) = 16 are suppressed by
Γ (f, t) although they only relate to those extrema that produce σ < 6. On the
other hand, the operator τ provides a stronger condition for the simplification.
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(a) Operator Γ (f, t) (b) Operator τ (f, t)

Fig. 3. Simplification of a signal f with the tuple t = (6, 1) by considering regional
minima. In both cases, f is represented by the whole drawing, the lighter area is the
final simplified f , and the hatched bars indicate the original regional minima.

As shown in Fig. 3b, the only suppressed minimum by the tuple t is the supre-
mum (point at f(x) = 11) of the minima originating this tuple.

Let us now consider how the value l impacts the simplification process, by
first approaching the less restrictive operator Γ .

Proposition 1. If a tuple t ∈ S is selected, then at most lt erosions (dilations)
with gt are needed to suppress a minimum (maximum) using Γ (f, t).

Proof. The tuple t was created due to a relation between two regional extremaX
and Y . The need for lt = l(X,Y ) erosions/dilations comes from the elementary
size of gt and the propagation of values along lt vertices in graph G. It remains
to prove that the corresponding suppression takes place.

Let X ≤ Y and consider the suppression for regional minima. For clarity, let
us rewrite ε(f, gt)lt as ε(ε(. . .), gt), where the dots represent lt − 1 successive
erosions with gt. The application of the chain rule lt − 1 times gives

ε(ε(. . .), gt) = ε
(
f, δ(gt, gt)

lt−1
)
,

where δ(gt, gt)0 = gt. Let g′t be the resulting g after the above composition. From
the definition of dilation together with (6), and after gt being composed lt − 1
times, we have:

mg = |inf(g′t)| = σt × lt.

Also, σt × lt = f(b ∈ Y ) − f(a ∈ X) and the neighborhood extension of g′t
has increased from 1 (in the elementary gt) to lt. Since mg holds the difference
between the two involved extrema, mg + f(a ∈ X) = f(b ∈ Y ).

Finally, we conclude the proof based on the erosion definition. Consider the
path P between the above sets X and Y , as indirectly stated in Definition (2).
Then:
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1. ∀p ∈ P : ε(f, g′t)(p) ≤ f(b ∈ Y );
2. By ordering the vertices p ∈ P between X and Y , based on the number of

arcs needed to reach a ∈ X (the lower minimum), and assuming inf(P ) ≥
f(a), then for i = {1, . . . ,#P − 1}, [Γ (f, t)](pi) has an upper bound of
inf{f(pi), f(a)+ iσt} and [Γ (f, t)](pi) ≤ inf{f(pi+1), f(a)+ (i+1)σt}, since
iσt < (i + 1)σt. On the other hand, if inf(P ) �≥ f(a), then less than lt
operations are needed to suppress f(b ∈ Y ). !�

As illustrated before, this final result implies the signal simplification through
the definition of ramps between minima. This same proof can be done in a
complementary way for X ≥ Y and by duality for the regional maxima. As
shown next, the same aspect regarding the separation l between extrema is
equally valid for the more restrictive operator τ .

Proposition 2. If a tuple t ∈ S is selected, then at most lt erosions (dilations)
with gt are needed to suppress a minimum (maximum) using τ(f, t).

Proof. The need for lt operations is in the proof of Proposition 1. As before,
we will prove the suppression of extrema for regional minima. Let X and Y ,
where X ≤ Y , be the minima originating the tuple t. Let g′t be the structuring
function obtained as in Proposition 1. Again, let P be the path between X and
Y , defined as the byproduct of Definition 2. Consider the indices i as in the
proof for Proposition 1. Now, assume there is no minima in P related either to
f(a ∈ X) or f(b ∈ X) – otherwise, this proof should be applied piecewise for
each segment in P violating this assumption.

From (7), “f(p) =∞, ∀p ∈ P . Thus, a single erosion with g′t gives:

1. ∀p ∈ P : ε( “f, g′t)(p) ≤ f(b ∈ Y )

2. ε( “f, g′t)(pi) ≤ ε( “f, g′t)(pi+1)

At this point, we have to show that the operator in (8) maintains the suppression
of minima. To this end, it is needed to consider two specific configurations for
the path between X and Y , namely:

a) The path P is monotonically decreasing from p1 ∈ P to b ∈ Y . Hence,
ε( “f, g′t)(p) ≤ f(p), ∀p ∈ P ;

b) The path P is monotonically increasing from a ∈ X to pi ∈ P and then
monotonically decreasing from pi+1 ∈ P to b ∈ Y . Suppose f(pi+1) =
sup {f(p) | p ∈ P}. But f(pi+1), . . . , f(b ∈ Y ) must be higher than f(a), oth-
erwise X �≤ Y . Therefore, case (a) also holds for the monotonically decreasing
part here. Besides, f(pi+1) is transformed to f(a)+ kσt, where k is the num-
ber of arcs to the minimum X , and is the new smallest value for this part.
Now, to guarantee a non-decreasing path from X to Y , it is needed to show
that [τ(f, t)](pi) < [τ(f, t)](pi+1). Since [τ(f, t)](pi) = inf(ε( “f, g′t)(pi), f(pi))
= inf(f(a) + rσt, f(pi)), and r < k, then [τ(f, t)](pi) < [τ(f, t)](pi+1). !�

The same above considerations for X ≥ Y and concerning duality are applied
here. Finally, the next proposition explicits the extrema affected by the operator τ .
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An extension of this proposition, relating the evolution of the regional extrema
along the simplification step, yields the result discussed in Sect. 4, item (v). For
a sake of space, a proof is not presented here, but most of it can be given by
observing the support of the extended gt (as in earlier proofs) and considering
the progressive activity discussed in Sect. 4.

Proposition 3. A simplification τ(f, o), where o ∈ S and σo �= 0, suppresses
only the minima/maxima related with the tuple o and also with a tuple p ∈ S so
that p ≺ o and lo ≥ lp.

Observe that the order relation imposed on S turns the selection of a tuple t ∈ S
in a kind of meaningful threshold (but note that this information alone is not
enough to properly indicate which tuple(s) should be used in a given applica-
tion). The minimal element in S suppresses the influenced extrema of maximum
divergence, and the further we go from there, extrema of lesser disparity are
suppressed. Also note that in the uttermost case, there may be relations among
the regional extrema of equal height, which reduces gt to a planar SF, according
to (4) and (6). In this specific situation, the flat zones of a signal are extended.

6 Examples

This section illustrates the application of the τ operator in two instances. In
both of them, a regular 4-connected grid graph is considered and the z function
is given by the Meyer’s watershed transform mentioned in Sect. 3.

The following example highlights some of the first regions affected by the
different simplification levels. In natural and non-predominantly noisy images,
it is common to have fuzzy borders between objects and background defined
by regions represented by significant peaks and valleys. In such a case, and
based on (4), we expect to obtain high values of σ together with small distances
l, around this uncertain area. According to the relation R, these tuples are
among the first in the considered order, so that a simplification at almost any
level is bound to affect the related extrema and their corresponding connecting
paths giving origin to such tuples. As can be seen in Fig. 4, the simplification
progressively affects the image regions, where initially most of the modifications
happens close to their edges.

Figure 5 shows an example of image simplification which can be considered
in segmentation tasks. The problem concerns the segmentation of white blood
cells nuclei and illustrates how the proposed method can be applied to define
good marker images, commonly used in some morphological transformations.

The input image is particularly noisy, the gradient around the nuclei is weak,
and there are small dark regions unrelated to the cells. To partially handle the
noise and and also to remove part of the dark blobs, we initially considered the
regional maxima in the simplification process which defined the strongly simpli-
fied image in Fig.5b. This simplified version is then used as a marker to dually
reconstruct the original image, yielding a more homogeneous background where
most of the noise is filtered out, as shown in Fig. 5c. Now, to isolate the dark
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Fig. 4. Primary regions affected by the method. The leftmost image is the original one,
the others represent the difference between the original and the simplified image using
minima with increasing ti ordered by R, i = 100th, 500th, 1000th.

regions corresponding to the nuclei, we progressively simplify, till idempotence,
the regional minima of the simplified signal by considering the minimal element
in S at each iteration (Fig. 5d). Again, by using this simplified image as a marker
to reconstruct the signal in Fig. 5c, a useful image is obtained (Fig.5e) and it can
be applied, for example, in a segmentation procedure. The final result in Fig.5f is
a typical morphological segmentation by watershed in which the regional minima
in Fig.5e are imposed to its gradient image [2].

(a) (b) (c)

(d) (e) (f)

Fig. 5. White blood cell nucleus segmentation. (a) Original image f . (b) Strongly sim-
plified image after 50 simplification steps of the regional maxima with the 100th tuple.
(c) Dual reconstruction of (a) from (b). (d) Simplification of the regional minima in (c),
till idempotence, with the minimal element in S at each iteration. (e) Reconstruction
of (c) from (d). (f) Final segmentation of the nuclei by well-known morphological tools.
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7 Conclusion

A strict total order relation R based both on the height difference and sepa-
ration of the extrema in signal was defined in this paper. This relation can be
guided by a nominated function which decides whether to relate two extrema
or not. Also, R settles a non-decreasing activity with respect to the extrema,
allowing for a better controlled simplification. From this resulting relation, a
concave structuring function gt, which is easily adaptable to a general graph, is
constructed. With gt, the defined operator τ simplifies the input by means of a
well-behaved extrema suppression. Some short examples give a preliminary idea
of how the simplification approach can be used in real applications.

Current work on this subject concerns the formalization of a scale-space based
on the simplification defined by τ . Also, despite the fact that the operators τ
and Γ work on graphs, the above mentioned examples considered each pixel
in the digital image as a vertex. Naturally, it remains to investigate how these
operators behave in more varied and complex configurations. Other shapes of
structuring functions might be of interest too, as well as the use of the relation
R with other functions besides erosion and dilation.
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Abstract. Connected filtering is a popular strategy that relies on tree-
based image representations: for example, one can compute an attribute
on each node of the tree and keep only the nodes for which the attribute
is sufficiently strong. This operation can be seen as a thresholding of
the tree, seen as a graph whose nodes are weighted by the attribute.
Rather than being satisfied with a mere thresholding, we propose to ex-
pand on this idea, and to apply connected filters on this latest graph.
Consequently, the filtering is done not in the space of the image, but
on the space of shapes built from the image. Such a processing, that
we called shape-based morphology [30], is a generalization of the existing
tree-based connected operators. In this paper, two different applications
are studied: in the first one, we apply our framework to blood vessels
segmentation in retinal images. In the second one, we propose an exten-
sion of constrained connectivity. In both cases, quantitative evaluations
demonstrate that shape-based filtering, a mere filtering step that we
compare to more evolved processings, achieves state-of-the-art results.

1 Introduction

Mathematical morphology, as originally developed by Matheron and Serra [23],
proposes a set of morphological operators based on structuring elements. Later,
Salembier and Serra [21], followed by Breen and Jones [3], proposed morpholog-
ical operators based on attributes, rather than on elements. Such operators rely
on transforming the image into an equivalent representation, generally a tree of
components (e.g., level sets) of the image; such trees are equivalent to the orig-
inal image in the sense that the image can be reconstructed from its associated
tree. Filtering then involves the design of a shape attribute that weights how
much a node of the tree fits a given shape. Two different approaches for filtering
the tree (and hence the image) have been proposed: the more evolved approach
consists in pruning the tree by removing whole branches of the tree, and is easy
to apply if the attribute is increasing on the tree (i.e., if the attribute is always
stronger for the ancestors of a node). This process is depicted in the black path
in Fig. 1.

C.L. Luengo Hendriks, G. Borgefors, R. Strand (Eds.): ISMM 2013, LNCS 7883, pp. 390–401, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Fig. 1. Classical connected operators (black path) and our proposed shape-based
morphology (black+red path)

However, most shape attributes are not increasing. When the attribute is not
increasing, three strategies have been proposed (min, max, Viterbi; see [22] for
more details). They all choose a particular node on which to take the decision,
and remove the whole subtree rooted at this node. While it may give interesting
results in some cases, it does not take into account the possibility that several
relevant objects can have some inclusion relationship, meaning that they are on
the same branch of the tree (e.g., a ring object in a tree of shapes, see Fig. 3.a).

In the simplest approach, one simply removes the nodes of the tree for which
the attribute is lower than a given threshold [27]. Such a thresholding does not
take into account the intrinsic parenthood relationship of the tree. Moreover it is
often impossible to retrieve all expected objects with one unique threshold. Fig. 2
shows the evolution of a shape attribute, the circularity, along two branches of the
tree of shapes [15]. The light round shape and the dark one are both meaningful
round objects compared to their context. However, their attribute values are
very different. In order to obtain the light one, a higher threshold is applied, but
some non-desired shapes appear, the ones in the background in Fig. 2.f.

The founding idea of shape-based morphology is to apply connected filters
on the space of all the components of the image, such space being structured
into a graph by the parenthood relationship (i.e., the neighbors of a node are
its children and its parent). This process is illustrated by the black+red path of
Fig. 1. This surprising and simple idea has several deep consequences that were
first exposed in [30], where it is shown that this framework encompasses the usual
attribute filtering operators [30]. Novel connected filters based on non-increasing
criterion can also be proposed. When the first tree T is respectively a Min-tree or
a Max-tree, such filters are new morphological lower or upper levelings. When
the first tree T is the tree of shapes, we introduce a novel family of self-dual
connected filters that we call morphological shapings. The proposed framework
can also be used to produce extinction-based [28] saliency maps [18,16].
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(c)

(e)

(b)

(d)

(a)

(b) (c)

(d) (e)
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Fig. 2. (a) Evolution of “circularity” on two branches of T ; (b to e): Some shapes; (f)
Attribute thresholding; (g) Shaping

In general, shape-based morphological operators provide better results than
threshold-based approaches. As stated above, when we want to process both
upper and lower level sets at the same time, we use as T the tree of shapes, and
the such created operator is called a morphological shaping. In both Fig. 2 and
Fig. 3, the attribute A is the circularity. The result of the shaping on Fig. 2.a,
shown in Fig. 2.g, looks indeed better than the one of Fig. 2.f. In Fig. 3, we
compare this extinction-based self-dual shaping approach with a variant of the
state-of-the-art thresholding approach [27]. When the threshold ofA is low, some
objects do not appear (Fig. 3.b). To get all the expected objects, we have to set
a high threshold; however, in this case, too many unwanted objects are present
(Fig. 3.c). With our shaping filter, all the expected objects can be found, as
depicted in Fig. 3.d.

In this paper, we propose to detail how the framework can be used for two
different types of applications. The rest of this paper is organized as follows.
An application of our proposed shape-based upper levelings to blood vessels

(a) Input image. (b) Low threshold. (c) Higher threshold. (d) Our shaping.

Fig. 3. Comparison of extinction-based shapings with attribute thresholding
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segmentation in retinal images is explained in Section 2. In Section 3, we detail
how to extend the constraint connectivity framework first introduced in [24].
Finally we discuss and conclude in Section 4.

2 Blood Vessels Segmentation in Retinal Images

Blood vessels segmentation is a very important task in retinal images analysis.
Unlike classical linear filters, connected operators perfectly preserve the location
and the shape of the contours, which provides a motivation for using them.

Many existing methods work on the green channel of the color retinal image.
To improve the visibility of the blood vessels, for each color retinal image fc, a
black top-hat transform is applied to the green channel fg. When a mask of eye
fundus is available, we combine it with the black top-hat ft. We thus obtain an
image fi in which the blood vessels are visible: indeed, the main structures of the
blood vessels are present in the Max-tree T of fi (the connected components of
the upper level sets of fi, [22]).

For each connected component represented by some node Nk of the Max-tree
T , we compute a shape attribute A characterizing the blood vessels, which are
usually long and thin structures. The attribute used here is the elongation Ae:

Ae(Nk) = |Nk|/(π × l2max), (1)

where |.| denotes the cardinality and lmax denotes the length of the largest axis
of the best fitting ellipse for the connected component represented by Nk. Since
the blood vessels are long and thin, nodes having a low attribute Ae correspond
to the blood vessels.

The core of this application is the filtering of the Max-tree T . A mere thresh-
olding of the elongation Ae is not sufficient, often giving unwanted objects
(noise). However, a very low thresholding value tmin on Ae ensures that thresh-
olded nodes are blood vessels. Those initial extracted nodes are used as seeds
in the sequel. We then apply a morphological filtering with a depth criterion:
using the Min-tree T T of the node-weighted graph (T ,Ae), we only preserve
the nodes that have a certain depth d0 in T T and that furthermore contain
the seeds. The connected components represented by the preserved nodes are
considered as the segmented blood vessels. The whole process is one of the many
variants of shape-based upper levelings [30].

An example of this blood vessels segmentation methods is given in Fig. 4. As
compared with the manually segmented blood vessels segmentation (Fig. 4.f),
the elongation-based upper leveling (Fig. 4.e) correctly extracts most of the
blood vessels.

We have tested this specific shape-based upper leveling on the Digital Retinal
Images for Vessel Extraction (DRIVE) database [5], [25] and on the STruc-
tured Analysis of the Retina (STARE) database [26], [8]. DRIVE is a database
assembled in the Netherlands from a diabetic retinopathy screening program.
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(a) Input color image fc. (b) Green channel fg. (c) Inversed black top-hat fi.

(d) Inversed filtering result.(e) Segmented blood vessels. (f) Manual segmentation.

Fig. 4. Illustration of the complete process of blood vessels segmentation in retinal
image using elongation-based upper leveling (a-e); (f): Manual segmentation

It includes 40 color fundus images of 584×565 pixels, captured using a 45◦ field-
of-view fundus camera. The 40 color images are divided into a training set and
a test set, both containing 20 images. For the training images, a single manual
segmentation of the vasculature is available. For the test cases, two manual
segmentations are available: one is used as gold standard; the other one can be
used to compare computer generated segmentations with those of an independent
human observer. The complete database contains seven pathological cases (four
in the test set and three in the training set). The STARE database contains
20 images captured using a TopCon TRV-50 fundus camera at 35◦ FOV, and
digitized to 700× 605 pixels, 8 bits per RGB channel. A manual segmentation is
available for each image of the database. Masks of the eye fundus, derived from
the matched spatial filter [8], are also available. Note that, among the 20 images,
10 images are abnormal.

Fig. 5 and 6 show four segmentation results respectively from the DRIVE
database and the STARE database. Qualitatively, most of the blood vessels are
correctly extracted, although some noise points at the end of the vessels are also
kept, and some very thin blood vessels are missed.

Quantitative assesment is based on three performance measurements named
respectively sensitivity, specificity and accuracy [25]. Sensitivity measures the
true positive rate (TPR), specificity measures the true negative rate (TNR), and
accuracy measures the rate of pixels correctly classified. These measurements are
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Fig. 5. Illustration of four segmented blood vessels from the 20 test retinal images
of the DRIVE database. Top: Input color retinal images; Bottom: Corresponding seg-
mented results. (White pixels: true positive; Black pixels: true negative; Blue pixels:
false positive; Red pixels: false negative.)

Fig. 6. Illustration of four segmented blood vessels from the 20 test retinal images of
the STARE database. Top: Input color retinal images; Bottom: Corresponding seg-
mented results. (White pixels: true positive; Black pixels: true negative; Blue pixels:
false positive; Red pixels: false negative.)
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Table 1. Benchmark of different blood vessels segmentation approaches on DRIVE
and the STARE database

DRIVE STARE
Method TPR TNR Accuracy TPR TNR Accuracy

2nd Expert 0.7761 0.9725 0.9473 (0.0048) 0.8949 0.9390 0.9354 (0.0171)
mendonça [14] 0.7344 0.9764 0.9452 (0.0062) 0.6996 0.9730 0.9440 (0.0142)

Staal [25] 0.7193 0.9773 0.9441 (0.0057) - - -
Niemeijer [19] 0.6793 0.9801 0.9416 (0.0065) - - -

Our 0.6924 0.9779 0.9413 (0.0078) 0.7149 0.9749 0.9471 (0.0114)
Zana [31] 0.6696 0.9769 0.9377 (0.0078) - - -

Al-Diri [1] - - - 0.9258 (0.0126) - - -
Jiang [9] 0.6478 0.9625 0.9222 (0.0070) - - 0.9513
Perez [12] 0.7086 0.9496 0.9181 (0.0240) - - -
Hoover [8] - - - 0.6751 0.9567 0.9267 (0.0099)

defined below as:

sensitivity = TPR =
TP

P
=

TP

TP + FN
(2)

specificity = TNR =
TN

N
=

TN

TN + FP
(3)

accuracy =
TP + TN

TP + TN + FP + FN
, (4)

where TP stands for true positive, FP for false positive, TN for true negative
and FN for false negative.

A benchmark of different approaches (including ours) is provided in Table 1.
It shows the good performance of our proposed elongation-based upper leveling
for both databases. In the case of the DRIVE database, our result is slightly
under the best results given by the method of Mendonça [14]. Note also that
the approaches of Staal [25] and Niemeijer [19] are supervised approaches. On
the STARE database, our proposed method performs also very well, and is even
better than the method of Mendoņca [14]. Both methods give results that are
very close to one of the second human observer. Table 2 shows that our method
is more robust than others, in the sense that it performs equivalently on both
abnormal and normal images.

Last, note that the proposed elongation-based upper leveling is only a “sim-
ple” filtering step, whereas other approaches are more complicated. Besides, our
process is not complete, since further post-processing can improve the results.

3 Extending Constrained Connectivity

From an algorithmic point of view, constrained connectivity [24] is the applica-
tion of an increasing criterion (e.g., the range) on the Min-tree T of the minimum
spanning tree (MST) [16,17]. In the litterature, this tree T has been called the
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Table 2. Benchmark of vessels segmentation methods (STARE images - Normal versus
abnormal cases)

Method Sensitivity Specificity Accuracy
Normal cases

2nd human observer 0.9646 0.9236 0.9283 (0.0100)
Shape-based upper leveling 0.7178 0.9802 0.9493 (0.117)

mendonça [14] 0.7258 0.9791 0.9492 (0.0122)
Hoover [8] 0.6766 0.9662 0.9324 (0.0072)

Abnormal cases

2nd human observer 0.0.8252 0.9544 0.9425
Shape-based upper leveling 0.7120 0.9696 0.9447 (0.0106)

mendonça [14] 0.6733 0.9669 0.9388 (0.0150)
Hoover [8] 0.6736 0.9472 0.9211 (0.0091)

α-tree [20]. In this section, we apply our framework with a non-increasing crite-
rion A derived from a popular work [6]. Precisely, we use for T a binary Min-tree
of the MST [17]. The dissimilarity used for the MST is the maximal distance of
the red, blue, and green channels taken independently.

The attribute A is derived from [6], where the authors propose a region merg-
ing process that follows the edges of the MST by increasing order of the weights
(dissimilarity). When an edge {x, y} is considered, they search for the regions X
and Y that respectively contain the points x and y. The regions X and Y are
merged if

Diff(X,Y ) < min{ Int(X) +
k

|X | , Int(Y ) +
k

|Y | }, (5)

where |.| denotes the cardinality, Diff(X,Y ) is the minimum weight of the edge
connecting the two regions X and Y , Int(X) is the largest weight in the MST
of the region X , and k is a parameter favouring the merging of small regions
(a large k causes a preference for larger components). However, k is not a scale
parameter in the sense of the causality principle: as shown in [7] a contour
present at a scale k1 is not always present at a scale k2 < k1. The merging
criterion defined by Eq. (5) depends on the parameter k at which the regions
X and Y are observed. So let us consider the attribute A as the k defined by

k = max
{(

Diff(X,Y )− Int(X)
)
× |X |,

(
Diff(X,Y )− Int(Y )

)
× |Y |

}
. That is to

say, for each node Nk, let N c1
k and N c2

k be the two children of Nk in T , then
the attribute A for node Nk is given by

A(Nk) = max
{ (

Diff(N c1
k ,N c2

k )− Int(N c1
k )
)
× |N c1

k |,(
Diff(N c1

k ,N c2
k )− Int(N c2

k )
)
× |N c2

k |
}
. (6)

The maxima of the attribute A correspond to meaningful regions. We thus com-
pute a Max-tree T T on the node-weigthed graph (T ,A), with which we can
filter this graph. The contours of the flat zones of one level of filtering of (T T ,A)
provides a segmentation of the original image. Computing all levels of filtering
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Table 3. Preliminary region benchmarks on the BSDS500

Method
GT Covering Prob. Rand. Index

ODS OIS Best ODS OIS
FH [6] 0.43 0.53 0.68 0.76 0.79

Guimarães [7] 0.46 0.53 0.60 0.76 0.81
Ours 0.50 0.57 0.66 0.77 0.82

produces a hierarchy of segmentations. A good representation of such a hierarchy
is a saliency map [18,16], which is equal to the sum of all the contours of ev-
ery filtered image. An efficient algorithm for computing the saliency map in our
framework, based on the notion of extinction value [28], will be provided in an
extend version of this paper. The saliency map defines a duality between closed,
non-self intersecting weighted contours and a hierarchy of regions. Low levels of
the hierarchy correspond to weak contours, thus to over-segmentations. High lev-
els of the hierarchy correspond to strong contours, hence to under-segmentations.
Moving between levels gives a continuous trade-off between those two extremes.
A given level can be seen as an observation scale at which we consider the image.

We have tested our extended constrained connectivity framework on the
Berkeley Segmentation Dataset BSDS500 [2], an extension of the BSDS300 [13].
The dataset consists of 500 natural images divided into 200 test images, 200 im-
ages for training, and 100 validation images, together with human annotations.

Fig. 7. Hierarchical segmentation results on the BSDS500. From left to right: Input
image, saliency map, and segmentations at the optimal dataset scale (ODS) and at the
optimal image scale (OIS).
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Fig. 8. Additional hierarchical segmentation results on the BSDS500. From top to
bottom: Input mage, saliency map, and segmentations at the optimal dataset scale
(ODS) and at the optimal image scale (OIS).

Each image is segmented by an average of five different subjects. Fig. 7 and 8
show some saliency maps computed on some images from the BSDS500 dataset.
Two evaluation schemes are also provided by the authors. In the first one, the
same fixed threshold level (observation scale) is used for all saliency maps in the
dataset; we refer to it as the optimal dataset scale (ODS). In the second one, we
evaluate the performance using an image-dependent threshold for each saliency
map; we refer to this choice as the optimal image scale (OIS).

Quantitative evaluation is performed using the region-based performance mea-
surements described in [2], in terms of Ground-Truth Covering criterion and Prob-
abilistic Rand Index. Here, we compare our results with the graph-based image
segmentation (Felz-Hutt) [6], and with another method named hierarchical graph
based image segmentation (Guimarães et al.) [7], also relying on the same crite-
rion popularized by [6]. The comparison is given in Table 3. Our method ranks
first, for both the optimal dataset scale (ODS) and for optimal image scale (OIS).

4 Discussion and Conclusion

This paper has presented two applications of shape-based morphology, a general-
ization of existing tree-based connected operators. The first application uses one
of the many shape-based upper levelings. Althought such a filter is but a “sim-
ple” filtering step, it gives results almost as good as the second human observer
in the case of blood vessels segmentation. The second application is an exten-
sion of the constrainted connectivity framework to non-increasing constraints.
A quantitative evaluation based on a criterion given in [6] shows that our ap-
proach compares favorably to previous works.
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The potential of shape-based morphology is tremendous. In this paper, we
have hardly skimmed the surface of what this theory has to offer to the scientific
community. In [29], we have also used this framework to achieve object segmenta-
tion on the tree of shapes. The key idea was to propose an efficient context-based
energy estimator whose minima correspond to meaningful objects. Some other
criterions that can be used are, for example an energy derived from the number
of false alarms [4] or some snake energy [10]. A practical problem is that many
minima of such energies do not correspond to meaningful components of the in-
put image. In [29], a morphological closing in the space of shapes helps to filter
those spurious minima.

Implementations of shape-based filters are easy thanks to the open-source
Milena library [11]. A demonstration is available online fromhttp://olena.lrde.

epita.fr/ICPR2012 (see also http://olena.lrde.epita.fr/ICIP2012). More
applicationswill be studied in a forthcoming paper. Properties of those filters, such
as conditions for idempotence, will be also studied.
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de la Recherche, contract ANR-2010-BLAN-0205-03 and through “Programme
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Abstract. In this paper we present a keypoint detector based on the
bimodality of the histograms of oriented gradients (HOGs). We compute
the bimodality of each HOG, and a bimodality image is constructed from
the result of this bimodality test. The maxima with highest dynamics
of the image obtained are selected as robust keypoints. The bimodality
test of HOGs used is also based on dynamics. We compare the results
obtained using this method with a set of well-known keypoint detectors.

Keywords: dynamics, test of bimodality, keypoint detection,
histograms of oriented gradients.

1 Introduction

Keypoints of an image are widely used in many computer vision tasks, such
as object recognition, robot navigation, tracking, or image retrieval. They are
points of the image that must be easy to find, highly discriminative from other
image points, and their location must be geometrically stable under different
transformations of the image. Many keypoint detectors can be found in liter-
ature, i.e.: [9], [28], [14], [18], [1], ... having each one different advantages or
drawbacks. Schmid [30] and Juan [13] reported comprehensive surveys about
the performance of different keypoint detectors.

The Histograms of Oriented Gradients (HOGs) have mainly been used as
keypoint descriptors attempting to capture the structural information of the
keypoint obtained, taking into account the direction of the gradients in a por-
tion of the image. The most popular one is the SIFT descriptor, proposed by
Lowe [17]. Mikolajczyk and Schmid [21] presented the Gradient Location and
Orientation Histogram descriptor (GLOH).

Instead of using HOGs as keypoint descriptors, in [4], they present a new
method for keypoint detection based on the bimodality of HOGs. The bimodality
level of a HOG gives very useful information about if a pixel can be considered
as a robust keypoint. Concretely, they showed in [4] that highly bimodal HOGs
identify keypoints with excellent discriminability. They build a bimodality image
assigning a bimodality score to the center pixel of fixed size cells. Peaks of the
bimodality image are candidates for being keypoints.

The keypoints are selected locating the relative maxima of the bimodality
image. Mathematical morphology tools can help in this stage. The bimodality
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image makes possible to establish a hierarchy of keypoints based on their saliency.
The contrast extinction values [33] of the obtained local maxima can be used
to select the most significative keypoints. The dynamics of the maxima [8] of
the bimodality image has also shown to be an excellent criterion for evaluating
keypoint significance.

Another question that arises is which test of bimodality should be used. There
are six popular test that are often used to measure the bimodality of a data set,
namely, Variance Reduction Score (VRS) [11], Weighted Variance Reduction
Score (WVRS) [11], DIP test [10], Kurtosis [7], Likelihood Ratio Test (LRT) [36],
and Bimodality Index (BI) [35]. All these tests of bimodality have some draw-
backs measuring the bimodality of HOGs obtained from a real image, mainly
due to the fact that HOGs are cyclic, and the extension of these tests to cyclic
histograms is not trivial. Furthermore, they present a remarkable lack of linear-
ity to subtle histogram distortions. To overcome these problems, mathematical
morphology offers again some useful tools. In [5] is presented a new test of bi-
modality based on the dynamics of the histogram extrema. In section 3 we give
some details about this test.

We present a keypoint detector, based on the bimodality of HOGs. A bi-
modality image is so obtained. The keypoints are determined by the regional
maxima having highest dynamics values. The bimodality test of HOGs is also
based on dynamics. In the results section we compare the results obtained using
our method with the most popular keypoint detectors.

2 Preliminaries Keypoint Detectors

Hessian Detector. One of the first keypoint detectors was proposed by Beaudet
[2] based on Hessian matrix.

H =

[
Ixx(x, σ) Ixy(x, σ)
Ixy(x, σ) Iyy(x, σ)

]
(1)

Where Ixx(x, σ), Ixy(x, σ), and Iyy(x, σ) are the second-order Gaussian
smoothed image derivatives. It contains shape information by describing how
the normal to an isosurface changes. Particularly interesting are the filters based
on the determinant and the trace of the matrix H [32]. It has also been used to
detect blob-like structures in the image.

Harris Detector. Hans Moravec [23], one of the first authors on define the word
“Keypoint”, proposed the basis for the detection of corners in an image. Chris
Harris and Mike Stephens [9] proposed some improvements to the Moravec de-
tector, making it the most used method nowadays, known as the Harris Detector.

Harris and Stephens noted that the response of the Moravec operator was
anisotropic. They improved the localization performance by replacing the rect-
angular patches with Gaussian windows with a scale similar to the derivatives
used. This method has proven to be one of the most reliable keypoint detectors.
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The matrix used for Harris operator describes the gradient distribution in a
local neighborhood of a point (x):

M(x) = σ2Dg(σI) ∗
[

I2x(x, σD) Ix(x, σD)Iy(x, σD)
Ix(x, σD)Iy(x, σD) I2y (x, σD)

]
(2)

The eigenvalues of this matrix represent the principal signal changes in two
orthogonal directions in a neighborhood around the central point. Based on this
property, corners can be found as locations in the image where the image signal
varies significantly in both directions, or for which both eigenvalues are large.
In practice, Harris proposed to use the following measure for cornerness, which
combines the two eigenvalues in a single measure and is cumputationally less
expensive:

cornerness = det(M(x))− k(trace(M(x)))2 (3)

Harris-Laplace. Mikolajczyk and Schmid [20] developed a scale invariant corner
detector, referred to as Harris-Laplace. This method uses an automatic scale
selection [22].

Automatic scale selection and the properties of the selected scales have been
extensively studied by Lindeberg [16]. The idea is to select the characteristic
scale of a local structure, for which a given function attains an extremum over
scales. The ratio of the scales at which the extrema are found for corresponding
points is the actual scale factor between the point neighborhood.

The Laplacian-of-Gaussian, LoG, finds the highest percentage of correct char-
acteristic scales to be found.

|LoG(x, σn)| = σ2n|Lxx(x, σn) + Lyy(x, σn)| (4)

When the size of the LoG kernel matches the size of a blob-like structure, the
response attains to an extremum.

The Harris-Laplace detector uses the scale-adapted Harris function (Eq. 3) to
localize points in scale-space. It then selects the points for which the Laplacian-
of-Gaussian, Eq. 4, attains a maximum over scale.

FAST Operator. Rosten and Drummong presented the operator FAST (Features
from Accelerated Segment Test) [27].

It operates by considering a circular neighborhood around the keypoint can-
didate p. The detector classifies p as a corner if there exists a set of n contiguous
pixels in the neighborhood which are all brighter than the candidate pixel Ip
plus a threshold t, or all darker than Ip − t.

The second step to find corners employs the induction tree algorithm [26] and
begins by selecting the x which yields the most information about whether the
candidate pixel is a corner, measured by the entropy of Kp.

The entropy of Kp is:

H(P ) = (c+ c) log2(c+ c)− c log2 c− c log2 c (5)
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where c = |{p|Kp is true}| (number of corners)
and c = |{p|Kp is false }| (number of non corners)

DoG Detector. Lindeberg proposed that the derivatives of Gaussian can deter-
mine basic invariance properties for first stages of image analysis [15]. Therefore,
the scale space of an image is defined as a function, L(x, y, σ), that is obtained
from the convolution of a variable-scale Gaussian, g(x, y, σ).

In order to detect stable keypoint locations in scale space efficiently, Lowe
proposed in [17] the use of scale-space extrema in the difference-of-Gaussian
(DoG) function convolved with the image, D(x, y, σ), which can be computed
from the difference of two nearby scales separated by a constant multiplicative
factor k:

D(x, y, σ) = (g(x, y, kσ)− g(x, y, σ)) ∗ I(x, y) = L(x, y, kσ)− L(x, y, σ) (6)

The features obtained are invariant to image scale and rotation. We highlight
that Lowe uses HOGs to assign a consistent descriptor to each keypoint.

Fast-Hessian Detector. Herbert Bay proposed the operator SURF [1] (Speeded
Up Robust Features). It is based on the Hessian matrix because of its good
performance in computation time and accuracy. However, rather than using a
different measure for selecting the location and the scale (as in the Hessian-
Laplace detector [20]), it relies on the determinant of the Hessian for both.

For optimization, Bay uses the approximate second order Gaussian deriva-
tives, because it can be evaluated very fast using integral images.

Bay builds a scale spaces growing the size of the filter. So, use filters of size
9x9, 15x15 21x21, 27x27, etc. In order to localize interest points in the image
and over scales, a nonmaximum suppression in a 3D neighborhood is applied.

Hessian-Laplace detector The Hessian-Laplace detector, proposed by Mikola-
jczyk and Schmid [22], is similar in spirit as the Harris-Laplace, except that it
starts from the determinant of the Hessian rather than the Harris corners. This
turns the methods into viewpoint invariant blob-detector.

3 Test of Bimodality Using Dynamics

The dynamics, introduced by Grimaud [8], is a mathematical morphological
measure associated to each regional extrema of an image. This measure is a
powerful tool to quantify the saliency of a maximum or minimum. It has usually
been used as a concise and powerful measure of contrast for the identification
of regions of interest in the image, but in our work we use dynamics to quantify
the bimodality of an histogram.

The dynamics of a regional minimum is defined as the minimum height we
have to climb to reach another one with strictly higher dynamics, the climb being
the difference in altitude between the highest point of the path and the regional
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minimum under study. Formally: Let M be a regional minimum of a function f .
The dynamics of M is defined as:

min

{
max
s∈[0,1]

{f(γ(s))− f(γ(0))} | γ : [0, 1]→ /2, f(γ(1)) < f(γ(0)), γ(0) ∈M
}

(7)
where γ is a path linking two points.

Note that the dynamics are not defined for the global minimum of the image,
as there is no pixel with strictly lower altitude. However, it is assumed that
the image f has a global minimum on its boundary. This makes possible the
valuation of the global minimum inside the domain of definition of f .

Grimaud [8],presents the dynamics of regional minima instead of maxima.
However, we need the dynamics of the maxima of the histogram to compute the
bimodality. Dynamics of a regional maximum M is the minimum height that
we should fall, to reach another regional maximum higher than M . Figure 1
illustrates this idea. To determine the dynamics of M2 (DM2), there are two
higher maxima, M1 and M5, but it is necessary to climb down h1 in the first
path and h2, in the second. Being h2 < h1, the second path (dotted) is preferred,
and DM2 = h2.

The use of regional maxima agrees with the characteristics of the Max-tree.
A solution according to the original formulation, could also be modeled with the
Min-tree of the negative image.

Fig. 1. The dynamics of the maxima

Once we have the values of the two highest dynamics, dyn1 and dyn2, the
bimodality of the histogram is computed using equation 8

BM =
dyn1 · dyn2√
dyn21 + dyn22

(8)

The product of the dynamics is divided by the Euclidean norm for normalization
purposes. The algorithm for extracting the dynamics is based on the watershed
algorithm proposed by Vincent and Soille [34]. It consists in flooding from the
minima, level by level, until water from a catchment basin meets water from
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another one. The meeting point between two basins is a saddle point, and this
is the point where we can compute the dynamics of one of the two basins: the
basin with the lowest value floods the other one, and the dynamics of the basin
with the lowest minimum is equal to the grey-value of the saddle point minus
the grey-value of the minima.

Organizing the image as a set of regions enables a faster implementation
of dynamics. In this sense, the Component Tree[12,19] is a structure formed
by the decomposition of a grey-level image by thresholds, and very useful for
dynamics determination[3] . It is especially interesting because it requires only
the adjacency definition for its construction, and there exist several quasi-linear
time algorithms for constructing it[24].

Max-tree refers to the algorithm introduced by Salembier[29] for an efficient
implementation of the component tree. Silva and Lotufo describe in [31] an
efficient computation of the dynamics, based on the incremental determination
of attributes from the max-tree construction, in linear time.

4 Results

In this section, first we describe the process details for detecting the keypoints,
then we present the repeatability as the standard measure to test the robust-
ness of a keypoint detector. Finally we compare the repeatability results of our
method with the ones obtained with the most popular keypoint detectors.

A HOG is computed for the corresponding cell of every image pixel and after
that, we compute our bimodality test based on the dynamics for everyHOG.Then,
every central pixel of each cell receives its corresponding bimodality score, and a
bimodality image is built. Peaks of the bimodality image are candidates for being
keypoints. We select the keypoints locating the relative maxima of the bimodality
image. Figure 2b shows the bimodality image of the synthetic image 2a.

Fig. 2. (a) A synthetic image (b) A 3D representation of the bimodality image

The HOGs defined in [6] are blocks built from histograms of orientations ob-
tained from overlapping cells, and they were originally used to detect people
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in scenes. We work just with the histograms of gradient orientation of single
cells, thus, there is no need to work with blocks since the objective is not to
detect objects but simple keypoints. Our histograms are also constructed differ-
ently from the SIFT descriptors, which are based on HOGs too. We compute
the histograms at a single scale and without dominant orientation alignment.
Therefore, computing the histograms in our application becomes an easy task.

We first compute the gradient module and orientation images. For every pixel
in the orientation image, we construct a histogram of orientations over local
spatial windows called cells. Each pixel in the cell votes for its corresponding
orientation value. The weighted votes are accumulated into the orientation bins.

Histograms computation is speeded up using the integral histograms presented
in [25]. The integral histogram is computed in linear time. Once we have the
integral histogram, for each cell a HOG is computed with just four additions.

Once the HOGs have been computed, the next step is to obtain the bimodality
image. We have modified the original algorithm for extracting the dynamics to
make it able to work with cyclic histograms. As mentioned earlier, the dynamics
of the absolute maximum of an image is computed considering that the image
boundary has a virtual higher value. Since we are dealing with cyclic histograms,
we cannot make this assumption because a circular structure has no boundaries.
Thus, the global maximum of the histogram will be always considered the max-
imum with highest dynamics, and quantified with its height.

The other variation introduced to the original algorithm also concerns the cir-
cularity of HOGs. We have modified the original algorithm in order to avoid the
zero crossing discontinuity. We have considered the circularity of the histogram
in the flooding process, and taken into account that a saddle point can split two
domes whose maxima are at both sides of the histogram origin. The zero crossing
could also split a single dome in two, giving as a result two regional maxima,
one at each side of the histogram origin. Due to the nature of the flooding pro-
cess, this modification of the algorithm does not translate into any additional
computational cost.

In order to test the robustness of the keypoints detected, we change the image
point of view with a projective transform (see figure 3).

Fig. 3. (a) Image blocks, (b) Image house, (c)Image house projected 50◦
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Keypoints detected in one image should also be detected at approximately
corresponding positions in the subsequent image transformations. The most
commonly used criterion to prove that the keypoint detection is stable to im-
age transformation is repeatability [30]. The repeatability rate, r(I,ψ(I)), is
defined as the number of keypoints present in both the original I and the
transformed image ψ(I), with respect to the total number of detected key-
points. Keypoints that are not present within a certain neighborhood in both
images, decrease the repeatability measure. We have computed the repeatabil-
ity r(ψα(Keyp(I)),Keyp(ψα(I))) for all projective transforms ψα from α=0oto
α=70o. Keyp(I) is an image containing the keypoints of image I. Fig. 4 shows a
block diagram of the process. This process is repeated for all different keypoint
detectors.

Fig. 4. Process for measuring repeatability

The repeatability rates of our method are compared with the ones obtained
from the most popular keypoint detectors. Concretely, we have compared our
keypoint detector based on HOGs with Harris, Harris-Laplacian,
Hessian-Laplacian , FAST, SURF, and SIFT operators. For a fair evaluation,
these should not be a significant discrepancy among the amount of keypoints
detected by these algorithms. For this propose, we have fixed the parameters
of all algorithms to give a constant amount of 100 keypoints. Therefore, there
is no need to raise the issue about considering absolute o relative repeatabil-
ity. For our method we have selected the 100 maxima having highest dynamics.
Furthermore, the parameters of all other keypoint detectors have been tuned to
achieve the highest repeatability for every tested set of transformed images. Our
algorithm works with unsigned gradient, 180 bin histograms, and 17x17 pixels
cells. We show the results for the synthetic image (fig. 2a), the image blocks (fig.
3a) and the image house (fig. 3b). All images have progressively been distorted
using projective transforms (fig. 3c).

Figure 5 shows the repeatability of all methods for projective transformations
of the image under different viewpoints from 0◦ to 70◦. The repeatability ob-
tained using HOGs is higher than most of the other methods for most of the
different transforms.



410 M.A. Cataño and J. Climent

Fig. 5. Repeatability for the images:(a)synthetic, (b)blocks and (c)house. Images are
transformed with a projection from 0◦ to 70◦.

5 Conclusion

HOGs with high or low entropy, usually unimodal histograms, never correspond
to discriminative keypoints. This is due to the fact they are too similar to their
neighbor HOGs. The higher the unimodality of the HOG, the less discriminative
will be the keypoint. In this paper we have presented the use of histograms of
oriented gradients in the keypoint detection stage. The limitations of existing
solutions make the keypoint detection too dependent on image variations, and
their localization inaccurate. The method presented has shown to be more ro-
bust to projective transformations of the image. Mathematical morphology offers
some interesting tools to achieve our goals. First, the test of bimodality based
on dynamics overcomes the main drawbacks of existing tests. Furthermore, the
dynamics of the maxima of the bimodality image has shown to be an excellent
measure for evaluating the keypoint significance. So far, we have considered only
fixed-size cells to compute the histograms, however, cell size has a determinant
effect on the image scale where keypoints are detected. In this work we have
not considered working at different scales. The research for the extension of this
method to the scale space is currently in process.
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Abstract. The progress in the area of object recognition in the last
decade is impressive. The literature reports new descriptors, new strate-
gies, new ways to combine descriptors and classifiers and new problems
in a so fast pace that it is hard to follow the whole area. A recent problem
in the area is the fine-grained categorization. In this work, to address this
problem, we propose a descriptor based on the application of morpho-
logical granulometries in the map of edges of an image. This descriptor
is used to characterize the distribution of lengths and orientations of
edges and to build a model for generic objects. We also propose a new
spatial quantization with an arbitrary number of levels and divisions in
each level. This quantization is so flexible that adjacent regions may have
overlapping areas to avoid breakages in the structures that are near the
border of the regions as it happens in the traditional spatial pyramids.
Both approaches are used in a challenging and recent object recognition
problem, the categorization of very similar classes. The proposed descrip-
tor was used along with other descriptors and the overall performance
of our solution to this problem was about 8% better than other work
using the bag-of-words approach reported in the literature. Our descrip-
tor showed a result 12% better when compared to the results of other
edge-related descriptor in the categorization of very similar classes.

Keywords: Granulometry, Application, Spatial Quantization,
Descriptor, Edges, Object Categorization.

1 Introduction

Object recognition is a Computer Vision (CV) area that studies the problem of
recognizing objects in an image or video frame. A typical problem in this area
is to label an object in an image as a member of a set of known classes. That
problem is known as: object categorization. It is a simplification of the original
problem because it constraints the labeling to a finite set of known classes.
Object categorization datasets have labeled images and they are used to train
a classifier or a set of classifiers to produce a model for each different class. A
sample is classified by comparing it to a set of models and assigning to it the
most likely label. When the classes of a dataset are too similar, the problem is
known as fine-grained categorization [10].

C.L. Luengo Hendriks, G. Borgefors, R. Strand (Eds.): ISMM 2013, LNCS 7883, pp. 413–424, 2013.
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In this work, we propose a descriptor named: “Granulometry Based Descrip-
tor of Edges”, or GRABED for short. The descriptor is based on morphological
granulometries applied to the map of edges of the images that are used to build
the models for the objects in the dataset. Granulometries are usually applied
to binary or grayscale images and they measure the distribution of sizes and
shapes (binary case), or the distribution of textures and shapes (grayscale case).
We propose the application of families of morphological granulometries in a dif-
ferent way, i.e., to the map of edges of an image to characterize the objects in it.
This descriptor has been tested in an object categorization problem using a pub-
lic database with results similar to the state-of-the-art descriptors traditionally
used in this kind of problem. We also propose a spatial quantization with some
flexibilities when compared to other quantizations, for instance, spatial pyra-
mids [1]. The new spatial quantization may have: an arbitrary number of levels,
regions (in each level) and weights (for each level). A direct consequence is that
a region of a level may not be a partition of the regions of the prior level. The
proposed quantization has also a parameter that controls an overlapping area in
the border of the regions of a given level. This flexibility helps to avoid breakages
of structures (edges) that are near the border of the regions and improves the
performance of models created using this spatial quantization strategy.

Both proposals were used in a novel solution for a fine-grained object catego-
rization problem using a challenging public database. We built a class-specific
model using a combination of descriptors including the GRABED descriptor.
The overall performance of our technique technique was 8% better than other
work that also uses the Bag-of-Words (BoW) approach in the same problem and
dataset.

The text is organized in the following way: this section introduces the work
and the next section describes the object recognition problem. Section 3 briefly
reviews morphological granulometry. Section 4 describes the novel descriptor
(GRABED). The experiments and results are reported in Section 5. Conclusions
and final remarks are given in Section 6.

2 Object Recognition

Bag-of-Words (BoW) is one of the most popular approaches used to deal with
the object recognition problem [19]. It achieves good results in the categorization
process at a reasonable computational cost. BoW uses local descriptors that
are clustered, usually using k-means [4]. The central point of each cluster is a
codeword or visual word. The collection of all codewords forms a visual dictionary
and the final descriptor of an object is a histogram of codeword frequencies. No
spatial information is kept in the final descriptor. Spatial pyramids, proposed
in [1], is a very popular technique that adds some type of spatial information to
the orderless BoW approach improving its results [21]. A spatial pyramid consists
of partitioning an image in increasingly smaller sub-regions and computing BoW
in each sub-region. It can be viewed as an extension of the BoW approach because
a spatial pyramid may have just one level.
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Fine-grained object categorization is a problem of object categorization when
the classes are very similar, for instance: species of different birds [11]. This prob-
lem is very difficult. So far, there is no effective approach to deal with the prob-
lem yet [10]. The traditional BoW, even in conjunction with spatial quantization
does not present good results. BoW is a generalization technique and during its
application some subtle and discriminant characteristics are lost. Besides that,
BoW descriptors are not properly localized even with spatial quantization that
is a rough localization of descriptors (that is also a kind of generalization). Some
methods use human annotations in the training step to help building more accu-
rate models for the classes [12]. A disadvantage of this technique is the high cost
of human annotations. In [10], a template matching approach is used to solve a
birds’ categorization problem obtaining good results. A large number of image
templates are generated in random positions and dimensions for each image in
the training set. A response map is computed comparing the test image in dif-
ferent scales with each random generated template. Seven values are extracted
from each response map and all these values are concatenated in a template
matching based representation of the test image. The size of the feature vector
is 882000.

3 Granulometry

Granulometry has been firstly proposed by Matheron [6] to characterize images
by the distribution of a shape and its sizes. The idea is to think of an image as a
collection of grains that are sieved by a collection of screens of increasing sizes.
The first sieve holds the grains that are larger than the smaller screen size. The
second sieve holds the grains that are larger than the second smallest screen
size (that is larger than the first screen size) and so on until no more grains
are held. Granulometries are usually implemented by successive applications of
morphological openings (or closings) [8] of increasing sizes. The quantification
of the rate that grains pass through the mesh of sieves produces a numeric
distribution that characterizes the texture and shape of the image [7].

In this work we will attain ourselves to granulometries of morphological open-
ings γtB, where B is a convex structuring element (SE) and it is known as
generator of the granulometry [8], t ≥ 0 and tB = {tb|b ∈ B}.

Let Ω(t) define the area, in the binary case, or the volume, in the grayscale
case, that remains in the image after the application of the opening by tB. Ω(0)
is the area, or volume of the map of edges. Ω(t) is usually called size distribution.
The normalized size distribution scales the values of Ω(t) to [0, 1] and it measures
how much of the total area or volume are vanished from the original image until

t: Φ(t) = 1 − Ω(t)
Ω(0) . The derivative of Φ(t) is a probability density function and

it is known as the pattern spectrum of the image. The pattern spectrum can be
calculated globally or locally using a window [8]. In the discrete case, pattern
spectrum PS(t) can be calculated as:

PS(t) = Φ(t)− Φ(t− 1). (1)
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4 GRABED Descriptor

GRABED descriptor is based on morphological granulometries applied to the
map of edges of an image to compute class-models and later use them in ob-
ject categorization problems. The descriptor measures the distribution of ori-
entations and lengths of the edges of an image using openings by linear SEs.
This last characteristic differs it from Histogram of Oriented Gradients (HOG)
descriptor [9], another gradient-based descriptor, because HOG only calculates
local histograms of orientations but not lengths.

Basic Descriptor. The descriptor is calculated according to the following steps:

1. A parameter R defines how many different angles are going to be used to
rotate the linear SEs between 0 and 180 degrees producing the set of ori-
entations O = o1, o2, o3, ..., oR. As showed in [8], it not trivial to define all
possible directions of a 3 pixels-length linear segment in a discrete space.
In segments longer than that, it is practically impossible. So, we decided to
choose a fixed number of orientations to use. The higher the number of ori-
entations, the best is the accuracy but also, the higher is the computational
cost. It is a trade-off in the choice of parameters.

2. A family of linear SEs is produced for each orientation defined in the previous
step. The length of the first SE, in pixels, is equal to L0 (a parameter of the
descriptor). The next SE is twice longer. The third SE is twice longer than
the second SE and so on. The last SE of the family has length longer than
half of max axis. The length of the i-th SE of a family of SEs, len(i), can
be written as:

len(i) =

{
L0 if i = 1;
2 ∗ len(i− 1) if i > 1 and len(i− 1) < max axis

2 .
(2)

To strictly satisfy the granulometric properties, the family of line segments
must be extended k pixels at a time [8]. However, to reduce the number of
openings and the computational cost of the descriptor, we double the length
of the linear SEs at a time.

3. The map of edges of a given image is produced using Canny’s method [14]. In
a prior work [13], empirical experiments showed that Canny’s is more stable
than other methods to produce the map of edges.

4. For each family of linear SEs produced in Step 2, a set of openings are applied
to the map of edges using each SE:

γBi,j (X), (3)

where Bi,j is the i-th SE of the family of SEs with orientation oj ∈ O. So,
Ω(i) is calculated counting the number of pixels in the result of the i-th
opening. Ω(0) is the number of pixels in the original map of edges of the
image.
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Fig. 1. Steps to compute the pattern spectrum for an image of class Faces easy. The
family of SEs used has 0◦ of orientation. From top to bottom, left to right, the images
are: original image, map of edges, results of morphological opening using a linear SE
with 2, 4, 8, 16, 32, 64 and 128 pixels of length, respectively.

5. For each family of linear SEs and using Ω(i) calculated in the previous step,
PS(i) is calculated using Equation 1:

PS(i) = Φ(i)−Φ(i−1) = 1− Ω(i)

Ω(0)
−(1−Ω(i − 1)

Ω(0)
) =

Ω(i− 1)−Ω(i)

Ω(0)
. (4)

6. The final descriptor is a concatenation of all PSs calculated in the previous
steps.

Figure 1 shows the computation of the PS using a family of SEs for an image of
class Faces easy of Caltech-101 database. The family of SEs is composed by linear
SEs with 0◦ of orientation and initial length of 2 pixels. From top to bottom,
left to right, the figure shows the original image, the map of edges calculated
using Canny’s and the results of morphological opening using a linear SE of 2,
4, 8, 16, 32, 64 and 128 pixels.

Multiscale. The GRABED descriptor is calculated in a multiscale approach. A
parameter S indicates the number of scales to be used. The first scale uses the
image in the original size and a parameter F controls the resize factor. The idea is
to model morphological structures of different scales from details to the general
shape of the object. For each scale and orientation, the set of PSs described
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Fig. 2. An example of an image of class Leopards in 3 different scales

in the basic descriptor is computed. The resulting descriptor of the multiscale
approach is the concatenation of descriptors calculated for each scale. Figure 2
shows an image of class Leopards. It was used S = 3 and F = 0.5.

Spatial Quantization. Spatial pyramids (SPM) add spatial information to the
BoW approach improving its overall results [1]. We propose a new spatial quanti-
zation strategy that has less restrictions in relation to the original proposal. Flex-
ible Spatial Quantization (FSQ), proposed here, has an arbitrary number of levels
and regions in each level. Besides that, for each level, the regions do not need to
be partitions of the previous level as in SPM and they can overlap. Given a FSQ
with L levels, a weight ωi, i ∈ [1..L] is applied to the descriptors of level i. The

constraints for the weights are ωi ≥ 0 and
∑L

i=1 ωi = 1. Because they can over-
lap, a parameter V controls how many pixels of the border of a region advances
over its neighboring region. The motivation for this redundancy in the representa-
tion is to reduce the breakages of important structures that happens to be in the
frontiers of the regions and that may be important for the discrimination of the
image. The final descriptor is the concatenation of the descriptors for each region
of each level. Figure 3 shows (upper left corner) an original image of the class um-
brella of Caltech-101 database and its map of edges in the upper right corner. In
the bottom left, it shows a spatial quantization of the map of edges with one level
and 3 regions in this level. No overlapping area was set. In bottom right, it shows
a spatial quantization with the same divisions but with an overlapping area. Each
border moves over the adjacent region in 30 pixels. As it can be seen, this helps to
preserve the structure of edges present in border region.

4.1 Class-Specific Model for Fine-Grained Categorization

The proposed descriptor and spatial quantization are used in a new method
for fine-grained object categorization. We used a subset of 13 classes of a birds
database [11]. Our fine-grained object categorization has the following steps:

1. Initialization : using a similar approach as the one used in [15], new images
are generated from the original ones (in the training set) through geometric
transformations. Images are resized by a factor F and in S different scales.
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Fig. 3. From top to bottom, left to right, it shows the original image, the map of edges
calculated using Canny’s, spatial quantization without overlapping area and spatial
quantization with an overlapping area

A variable M specifies if the image is mirrored, or not, and a parameter
R specifies the number of different angles of rotation applied. The total of
generated images are S×2×R×len(training set), where len(training set) is
the length of the training set. The set of descriptors to be used in the building
of models can be any combination of the following descriptors: PHOW [16],
SURF [3], LBP [22], RGB Histogram [8], GRABED and PHOG [5].

2. Generation of descriptors: A visual dictionary for the BoW approach
can be built if PHOW, or SURF, is in the set of descriptors. For each vi-
sual dictionary, a parameter N is used to cluster the descriptors into N
visual words using k-means. Then, a matrix of descriptors for the images
in the training set is built [19]. The spatial quantization strategy described
previously is used in the generation of all descriptors.

3. Building of models: two different types of models are built for each used
descriptor:

(a) Model level 1 : the 13 classes of the birds dataset can be grouped in two
different groups. Seven classes of genus Vireo and six classes of wood-
peckers. Feature vectors of birds of genus Vireo are labeled as 1 and
feature vectors of woodpeckers are labeled as 2. A model is built using
the labels of these two groups of classes.

(b) Model level 2 : 13 models are built, one model for each class, in a One-
Vs-All, i.e., for each model, feature vectors of a class are labeled as 1
and all other feature vectors are labeled as 2.
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Table 1. MAP metric for 5 used classes in 3 different configurations of GRABED
descriptor

Configuration MAP(%)

GRABED 82
GRABED + multiscale 89
GRABED + multiscale + FSQ 97

A total of 14 models for each descriptor are built in this step. A SVM using
chi-squared kernel is used as the classifier. A cross-validation step using k-
fold is used during the building of models to measure the confidence of
each model [17]. We used a k = 5 for the k-fold cross-validation method in
experiments. The precision for each model is calculated. Models that do not
have a confidence greater than 0.75 for a level 1 model and greater than 0.3
for a level 2 model are eliminated. These values have been chosen empirically.

4. Testing : For each sample in this step, it is compared to all remaining mod-
els. The outputs of the SVM classifier is translated into confidence for each
label [23]. The probabilities are uniformly divided by the number of classes
that are represented by each label. The final probability of a sample belong-
ing to a class is the average of probabilities of all used models. The class
with the highest probability labels the sample.

5 Experiments and Results

This section describes the experiments and shows the results of the proposed
techniques.

To test the methods for object categorization, we have chosen five classes of
Caltech-101 database [18]: BACKGROUND Google, Faces, Faces easy, Leopards
and Motorbikes. Those are the five classes with the largest number of images in
the database. We used 100 images for each class in the training set and 50 im-
ages for each class in the test set. The used parameters are R = 12, L0 = 2 and
max axis = 500 pixels. Table 1 shows the mean of average precisions (MAP)
metric [20] for the 5 used classes using GRABED descriptor in 3 different config-
urations: GRABED alone, GRABED + the multiscale approach and GRABED
+ the multiscale approach + the spatial quantization. For the multiscale ap-
proach, S = 3 and F = 0.5. For the spatial quantization, a FSQ with 2 levels
was used: one region in the first level and nine regions in the second.

Table 2 shows the results for each of the 5 classes of the descriptor using
the same parameters for all classes. It uses 2 different scales and a FSQ with
1 region in the first level and 3-by-3 regions in the second level. Accuracy and
Precision [20] are abbreviated to Acc. and Prec., respectively. The table also
shows the recall.

Table 3 shows the best results for each class using its best setup. As it can be
seen, each class has its ideal configuration. Therefore, the overall performance
has a small improvement compared to Table 2.
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Table 2. Result for each tested class using the same parameters

Class
Measures

Acc.(%) Prec.(%) Recall(%)

BACKGROUND Google 91 90 92
Faces 98 96 100
Faces easy 99 98 100
Leopards 99 98 100
Motorbikes 97 100 94

Average 97 97 97

Table 3. Best parameters for each of the 5 classes of GRABED descriptor

Class
Parameters Measures

FSQ Scales R L0 Acc.(%) Prec.(%) Recall(%)

BACKGROUND Google 1x1;3x3 3 12 2 91 87 96
Faces 1x1;4x4 3 12 2 100 100 100
Faces easy 1x1;2x2 2 12 2 100 100 100
Leopards 1x1;3x3 2 12 2 99 98 100
Motorbikes 1x1;2x2 3 12 2 98 100 96

Average 98 97 98

Table 4 shows a comparison between GRABED and the other tested descrip-
tors. The best parametrization for GRABED is used and compared to the best
setup of parameters of the other tested descriptors.

5.1 Experiments in a Fine-Grained Categorization Database

We used a combination of descriptors (including GRABED) and FSQ in a new
technique for fine-grained object categorization (Section 4.1) of birds species. The
Caltech-UCSD Birds-200 2011 database [11], that is a very important database
focused in fine-grained categorization, has been used for this experiment. A sub-
set of the database with 6 species of Woodpeckers and 7 species of genus Vireo

Table 4. The comparative results of GRABED and the other tested descriptors:
PHOG, PHOW, SURF and SIFT. Average values of the 5 classes, the best parametriza-
tion for each descriptor was used.

Descriptors FSQ Multiscales BoW
Measures

Acc.(%) Prec.(%) Recall(%)

PHOG Yes Yes No 98 97 99
PHOW Yes Yes Yes 98 97 98
GRABED Yes Yes No 97 97 97
SURF No No Yes 88 86 93
SIFT No No Yes 86 84 90
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Table 5. Average precision (AP) for each tested class of Caltech-UCSD Birds-200 2011
database

Class AP(%) Descriptors

151 33.4 PHOW
152 58.8 GRABED, RGB Histogram, PHOW, PHOG
153 36.3 GRABED, RGB Histogram, PHOW, PHOG
154 21.2 GRABED
155 24.9 PHOW
156 20.3 GRABED, PHOW, PHOG
157 24.7 GRABED, RGB Histogram, PHOW, PHOG, LBP, SURF
187 46.4 GRABED
188 40.4 GRABED, RGB Histogram, PHOW, PHOG, LBP, SURF
189 56.5 GRABED, RGB Histogram, PHOW, PHOG, LBP, SURF
190 70.0 GRABED, RGB Histogram, PHOW, PHOG, LBP, SURF
191 43.9 GRABED, RGB Histogram, PHOW, PHOG, LBP, SURF
192 45.8 GRABED, RGB Histogram, PHOW, PHOG, LBP, SURF

MAP 40.2

has been used. This same subset was also used in other works [10]. Categoriza-
tion of bird’s species is a challenging task because bird’s visual appearance can
vary significantly because of: their different poses, different situations as flying,
in water or in the nest. Besides that, there are also differences between males
and females. No manual annotation was used during these experiments except
the bounding-box during the training step. In the initialization step, it was used
3 different scales, 9 different rotations between −20◦ and +20◦. Thus, for a total
of 389 images, 21006 images are generated for training. The visual dictionaries
for PHOW and SURF descriptors were built using 600 codewords.

Table 5 shows the best average precision (AP) for each tested class. GRABED
and PHOW are present in 11 of 13 best models. The obtained MAP for all classes
was 40.2. It is about 8% better than another work using BoW approach reported
in literature [12]. Using just one descriptor to classify all 13 classes, GRABED
descriptor obtained a MAP of about 12% better than PHOG, another gradient
related descriptor that also use a spatial quantization.

5.2 Discussion

GRABED showed results similar to PHOW and PHOG in the experiments re-
ported in Section 5. PHOW is reported in literature as one of the best descrip-
tors for object categorization [2]. It showed also the importance of multiscale
approach and the spatial quantization. The basic GRABED descriptor obtained
about 82% of MAP. Multiscale approach improved the overall results in about
8.5% and the combination of multiscale approach and spatial quantization im-
proved the MAP of the classification in about 18%.

As GRABED characterizes different features when compared to PHOW and
because they have similar performances in our tests, we tested the combination
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of both descriptors and some others descriptors to solve the bird’s categorization
problem. The obtained results, MAP of 40.2%, outperform other results using
the same BoW approach. Our technique uses 2-levels classifications, class-specific
combination of descriptors and different types of models for each descriptor. The
proposed method is incremental when compared to the original BoW approach
and it is not linked to a specific database. It can be easily adapted to solve
other fine-grained categorization problems. The best performance obtained in
this database was reported by Yao [10] and it uses a very specific technique using
the template matching approach. We described this technique in Section 2.

6 Conclusion

In this work, we applied families of morphological granulometries to the map of
edges of image databases in order to build generic models for some objects. A
novel descriptor using this approach is proposed and tested against other widely
known descriptors in Caltech-101 database. Our results showed that the pro-
posed descriptor has performance similar to the state-of-the-art descriptors like
PHOW, making it a morphological alternative to be used in object recognition
problems.

GRABED is used in a novel spatial quantization strategy that is more flexible
than the traditional spatial pyramids proposed in [1]. Adjacent regions in a given
level may have overlapping areas to avoid breakages in the edge’s structures near
the border. The number of levels, regions in each level and weights for each level
are arbitrary. They are chosen during the validation step in the training.

Finally, we proposed a novel method for fine-grained object categorization that
uses models specific for each class. We also tested different types of models using:
(1) grouped classes, (2) a multiclass, or (3) a 2-class approach. Models that do
not have a confidence larger than thresholds are eliminated. Average probability
of all models are used to the final result. Our technique improved the overall
results using the BoW approach to solve the fine-grained categorization for this
subset of 13 classes of Caltech-UCSD Birds-200 2011 database [12].
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Abstract. In recent years, many new methods have been proposed for
extracting curve skeletons of 3D shapes, using a mesh-contraction princi-
ple. However, it is still unclear how these methods perform with respect
to each other, and with respect to earlier voxel-based skeletonization
methods, from the viewpoint of certain quality criteria known from the
literature. In this study, we compare six recent contraction-based curve-
skeletonization methods that use a mesh representation against six ac-
cepted quality criteria, on a set of complex 3D shapes. Our results reveal
previously unknown limitations of the compared methods, and link these
limitations to algorithmic aspects of the studied methods.

Keywords: Curve skeletons, shape analysis, shape representation.

1 Introduction

Curve skeletons are among the most well-known, and widest used, descriptors
for 3D shapes. They have been extensively used in applications such as shape
matching and recognition, computer animation, virtual navigation, and shape
processing [8,27].

Earlier methods for computing curve skeletons used mainly voxel-based 3D
shapes. In recent years, several methods have been proposed to compute curve
skeletons from meshed 3D shapes, using a contraction principle, where the input
mesh is iteratively shrunk towards its local center. Such methods are highly com-
putationally scalable, and can easily handle mesh shapes with considerable more
details than voxel-based methods. However, their algorithmic complexity makes
it harder to reason analytically about the properties of the produced skeletons.
In particular, it is not fully clear how their results relate to desirable skeleton
properties. Moreover, since such methods are typically compared with methods
in the same class (mesh-based), it is unclear whether mesh-based methods are
indeed always superior to voxel-based methods.

In this paper, we compare six mesh-contraction-based curve-skeletonization
methods, all which are based on a collapse principle, against six accepted quality
criteria: centeredness, homotopy to the input shape, invariance under isometric
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transformations, detail preservation, smoothness, and independence from the
input shape’s sampling. Our work extends the earlier survey of Cornea et al. [8]
by studying six mesh-based curve-skeletonization algorithms published after that
survey was done. Our results reveal several limitations of the studied methods
which, to our knowledge, have not been highlighted in the literature, and link
these to algorithmic aspects of the studied methods.

The structure of this paper is as follows. Section 2 overviews related work
in curve skeletonization, with a focus on contraction-based methods. Section 3
details the quality criteria used for the comparison. Section 4 presents the com-
parison results. Section 5 discusses our findings. Section 6 concludes the paper
with future work directions.

2 Related Work

For a shape Ω ⊂ R3 with boundary ∂Ω, we first define its distance transform
DT∂Ω : R3 → R+

DT∂Ω(x ∈ Ω) = min
y∈∂Ω

‖x− y‖. (1)

The surface skeleton of Ω is next defined as

S(Ω) = {x ∈ Ω | ∃ f1, f2 ∈ ∂Ω, f1 �= f2, ‖x− f1‖ = ‖x− f2‖ = DT∂Ω(x)} (2)

where f1 and f2 are the contact points with ∂Ω of the maximally-inscribed
ball in Ω centered at x [12,24], also called feature transform (FT) points [15].
Surface skeletons consist of several manifolds with boundaries which meet along
a set of Y-intersection curves [9,17,7]. They can be computed by voxel-based or
mesh-based methods [21,5,28,14,3,14]. A recent comparison of surface-skeleton
extraction methods is given in [15].

In contrast to surface skeletons, curve skeletons are loosely defined as 1D
structures “locally centered” within the input shape Ω. The lack of a unani-
mously accepted formal definition has led to many methods which compute curve
skeletons following not necessarily identical definitions. This makes it hard to
analytically compare, and reason about, the properties of the produced curve
skeletons.

Tools from mathematical morphology [25] were among the first used to com-
pute curve skeletons: The residue of openings, based on Lantuéjoul’s formula
[16], usually leads to disconnected skeleton branches, whereas methods based
on homotopic thinning transformations [16,19,4,21] yield connected skeletons.
Combining such techniques with distance-driven thinning further ensures the
extraction of centered surface and curve skeletons [1].

Dey and Sun propose one of the first analytic definitions of curve skeletons
based on the medial geodesic function (MGF), where the curve skeleton is defined
as the locus of points having at least two equal-length shortest geodesics on ∂Ω
between their feature points [10,23]. Reniers et al. extend the MGF to regularize
curve skeletons by assigning each skeleton point an importance equal to the area
bounded by such geodesics, in a voxel setting [24], inspired by the so-called 2D



Contraction-Based Curve Skeletonization Comparison 427

collapse metric [20,32]. A GPU implementation of the above metric for mesh
models is presented in [15].

Voxel-based methods typically require significant resources to store and pro-
cess the large voxel volumes required to capture the fine details of complex 3D
shapes. To be used on 3D meshes, such methods require a costly voxelization
step. Mesh-based methods address these cost issues by working directly on a
mesh representation of ∂Ω. In recent years, several such mesh-based methods
have been proposed based on a contraction principle, which shrinks the input
mesh until the 1D curve-skeleton structure is reached, as follows. Au et al. shrink
the mesh via Laplacian smoothing until its volume gets close to zero, followed
by an edge-collapse (to extract the 1D curve skeleton) and a re-centering step
(to correct shrinking errors) [2]. Cao et al. extend this idea to extract curve
skeletons from incomplete point clouds [6]. The ROSA method defines, and ex-
tracts, curve skeletons using rotational, rather than positional, symmetry: ∂Ω
is cut with planes, and curve-skeleton points are found as the centers of planes
which minimize the variance between the plane’s normal and ∂Ω normals along
the cut curve [30]. Sharf et al. reverse the contraction direction: They find the
curve skeleton as the centers of a set of competing fronts which evolve to ap-
proximate the input surface [26]. A similar method is presented by Hassouna and
Farag [13]. Telea and Jalba define, and extract, curve-skeletons by contracting
the surface skeleton S(Ω) (computed as in [18]) inwards, along the gradient of
the 2D distance transform of ∂S(Ω), i.e. define the curve-skeleton as the result
of a two-step skeletonization [31].

Mesh-contraction methods are currently deemed to be the state-of-the-art
for extracting detailed curve skeletons from high-resolution shapes [29]. As 3D
models become more complex, it is arguable that such methods will dominate
the more costly voxel-based methods. Conceptually, such methods work very
similarly to voxel-based thinning. However, there are few, if any, comparisons
of contraction-based methods based on the accepted skeleton desirable crite-
ria used for earlier voxel-based methods. Also, the algorithmic complexity of
mesh-contraction methods makes a formal analysis thereof more complex than
for voxel-based methods. All in all, it is not clear if mesh-contraction methods
are indeed always superior to voxel-based methods, and if not, which are their
specific weak points with respect to desirable skeleton criteria.

3 Comparison Criteria

The literature knows a well-accepted set of quality criteria that curve skeletons
should conform to. For curve-skeletonization methods, such criteria are signifi-
cantly more important than for surface skeletonization methods: While the latter
can be rigorously checked against the formal surface skeleton definition (Eqn. 2),
the former do not use a single curve-skeleton definition. As such, the only com-
parison available for curve skeletons is a qualitative one, from the perspective of
desirable quality criteria. Following [8,15,27], we focus on the following generally-
accepted quality criteria for a curve skeleton:
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Homotopy: The curve skeleton is topologically-equivalent with the input shape,
i.e. has the same number of connected components and tunnels.

Invariant: The curve skeleton should be invariant under isometric transforma-
tions of the input shape.

Thin: The curve skeleton should be as thin as the sampling model used allows it.
Voxel-based curve skeletons should be one voxel thick. Mesh-based curve skele-
tons should contain only lines, and not polygons or loose points. Point-cloud
based curve skeletons should ideally have zero local thickness in any direction
orthogonal to the largest eigenvector of the covariance matrix of point neighbor-
hoods.

Centered: This is the hardest criterion to quantify, since it is not uniquely de-
fined when a curve is centered within a 3D shape. However, several weak forms
of curve-skeleton centeredness exist: The curve skeleton should be a subset of
the surface skeleton (since the latter is by definition centered within the shape);
and in no case should the curve-skeleton exit the input shape.

Smoothness: As centeredness, smoothness is also hard to formally define. Sur-
face skeleton manifolds are known to be at least C2 continuous [22,27]. Curve-
skeletons are centered subsets thereof [29,31]. Hence, it is arguable that curve
skeletons should be also piecewise, i.e. per branch, C2. In any case, curve skele-
tons should not exhibit curvature discontinuities induced by the sampling of
either the input surface or curve skeleton representation.

Detail Preserving: Curve skeletons should be able to capture fine-scale de-
tails, such as bumps, of the input shape, in a user-controlled manner. In other
words, the user should be able to select the scale of input shape details which
the curve skeleton should capture (being significant) and the scale of details to
ignore (being regarded as noise).

Sampling Robustness: Given two different samplings of an input shape (e.g.
two different level-of-detail meshes), the difference between the two correspond-
ing curve skeletons should be proportional with the difference of the two input
meshes. In other words, small input-sampling differences should not cause large
differences in the curve skeleton.

4 Comparison

Given our core question on how curve-skeletonization methods perform, we com-
pared six such methods (further denoted in the paper by the abbreviations
listed below):
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Au et al. (AU) [2]: We included this method as it is arguably the best-known
mesh-based skeletonization technique in existence [13,29,15].

Tagliasacchi et al. (ROSA) [30]: We chose this method given its advocated
noise-resistance and since it works on point clouds, which is a different type of
input than the other methods.

Cao et al. (CAO) [6]: We chose this method since it uses a contraction similar
to [2], but works on point clouds, like [30].

Telea and Jalba (TJ) [31]: In contrast to all other curve-skeletonization
methods, this technique contracts the surface skeleton, rather than the input
mesh, to compute the curve skeleton. It produces a point cloud rather than a
polyline curve-skeleton. For comparison fairness, we postprocessed the produced
point cloud using the polyline reconstruction proposed in [2].

We also developed and tested two extensions of [2], as follows.

Au et al. Improved (AUI): A well-known limitation of Au et al. is its skeleton
re-centering step [29]. As the input mesh is contracted, it can go off-center due to
numerical and discretization inaccuracies of the Laplacian smoothing. To address
this issue, we proceed as follows. During the Laplacian contraction and edge-
collapse steps of the method, we maintain a backwards, skeleton-node-to-mesh-
vertex mapping Π : S → ∂Ω, which can be used to identify those mesh vertices
v ∈ ∂Ω that ’collapsed’ into a given skeleton node s ∈ S(Ω). The re-centering
step uses Π to compute the final position of each node s as a weighted average of
the vertices in Π(s), with weights given by the areas of the input-mesh triangles
with vertices in Π(s).

Au et al. Using Surface Skeletons (AUS): The improved re-centering out-
lined above cannot fully correct errors accumulated during the iterative contrac-
tion. To further reduce these, we start the Laplacian contraction from the surface
skeleton, which is closer to the final target (curve skeleton) than the input mesh,
along the idea proposed in [31].

Global Considerations: In our method choice, we focused on recent contraction-
based techniques, not studied in the survey of Cornea et al. [8], proven by their
authors on complex shapes, and which use different curve-skeleton detection
principles. All studied methods satisfy the invariance criterion by construction,
since they work in 3D vector space. All methods also directly satisfy the thinness
criterion, since they model the curve-skeleton as a polyline. We used the original
implementations provided by their authors, all running on a Windows PC with
4 GB RAM. Since not all studied methods claim computational efficiency, we
excluded timings from the comparison.

Comparison Material: For comparison, we used a set of 21 3D shapes which
are frequently encountered in the curve-skeleton literature (for details, see [34]).
Figures 1, 2, 3 and 4 and show relevant samples from this set, within space
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limitations. The models have between 20K and 300K vertices. We used Mesh-
Lab [33] to clean mesh models for normal orientation consistency, T-vertices,
and duplicate vertices. To factor our parameter settings, we ran each method for
uniformly-sampled values of all its documented parameters, and retained in our
final comparisons the best results with respect to the quality criteria mentioned
in Sec. 3.

Au et al.

Cao et al.

Tagliasacchi 

et al.

Telea and Jalba

Au et al.

(improved)

Au et al.

(surf. skeleton)

bird: 46K points,

93K faces

fertility: 25K points,

50K faces

horse: 193K points,

387K faces

neptune: 28K points,

56K faces

Fig. 1. Overview comparison of skeletonization methods
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4.1 Overview

Figure 1 shows an overview of several curve skeletons extracted by the compared
methods. Even at this level, we quickly notice that not all skeletons are equally
well centered, equally smooth, and have the same number of terminal (detail)
branches.We next zoom-in on each criterion and discuss our findings with respect
to the studied methods.

4.2 Homotopy

For relatively simple shapes of genus 0 or higher, all studied methods behaved
equally well, i.e. produced curve skeletons homotopic with the input shape
(Fig. 1). This is due to the fact that all these methods start by contracting
the input shape and change only the geometry, but not the topology, of this
shape during the iterative contraction process. Still, detail differences exist be-
tween these methods. Skeleton junctions are not always identical, so the pro-
duced skeleton graph is different, see e.g. the marked limbs-to-body junctions of
the bird model in Fig. 2 (left) and the horse model in Fig. 3 (right). Differences
get larger for small-scale details, where curve skeleton terminal branches enter
saliencies of the input shape, see e.g. Fig. 3 (neptune, frog). An extreme case
happens when the input mesh has self-intersections, e.g. Fig. 2 (frog). Here, CAO
and ROSA create curve skeletons whose topology is far from the input shape
(fake loops and branches).

4.3 Centeredness

The methods AU, AUI, and AUS produce similar, well centered, results. Among
these, AUS is the best: Since contraction starts from the surface skeleton, nodes
go less off-center, as the surface skeleton is already centered by definition and
closer to the curve skeleton than the input mesh. For mesh-based methods,
TJ produced the best centering. This is due to the fact that TJ contracts the
surface skeleton along the gradient field of its 2D distance transform, which is
by definition tangent to the surface skeleton itself, so the curve skeleton stays
inside the surface skeleton by construction. In contrast, AU, AUI, and AUS
contract in the direction of the shrunken surface’s normals. These are delicate to
estimate as the shape shrinks and develops singularities (creases). The different
re-centering steps performed by these methods alleviate, but cannot fully correct,
these problems.

ROSA’s results are quite poorly centered in several areas. As mentioned
in [30], orientation information is unreliable around junctions, where the input
shape has many points with diverse orientations. To overcome this, ROSA treats
junctions specially. This works well for junctions whose branches correspond to
tubular shape parts of similar size. However, we discovered that junctions where
shape parts of very different sizes and shapes meet create problems, see e.g. Fig. 2
for the bird model (wings joining rump) and neptune (arm-torso junction).
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Input models

Au et al.

Cao et al.

Tagliasacchi 

et al.

Telea and Jalba

Au et al.

(improved)

Au et al.

(surf. skeleton)

bird: 46K points, 93K faces frog: 37K points, 74K faces neptune: 28K points, 56K faces

Fig. 2. Centeredness comparison. Details show areas marked by red insets.

The frog model (Fig. 2) reveals two other challenges. First, the model has
several very sharp bends around the leg joint. Secondly, in the same area, the
mesh has several self-intersections. Meshless methods (CAO, ROSA) generate
seriously erroneous skeletons here, and even skeleton disconnections. In these
areas, TJ still creates a smooth skeleton, but cannot handle centeredness per-
fectly. This is due to the fact that the surface skeleton it starts from has errors in
self-intersecting areas, since the technique used to compute it [15] cannot handle
self-intersecting surfaces. In contrast, AU, AUI, and AUS generate very similar,
relatively well-centered, skeletons in these challenging areas.

The neptune model (Fig. 2) highlights the situation where a relatively thin
object part (arm) joins a thick one (torso). In such areas, curve (and surface)
skeletons exhibit so-called ligature branches which connect the skeleton branches
of the two parts [22]. If the two parts form an angle different from 90◦, like in
our case, the ligature branch has to rapidly turn [27]. This turn is best captured
by AU. In contrast, all other methods emphasize smoothness too much, which
results in clearly off-centered skeletons close to the armpit.
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4.4 Detail Preservation

Detail preservation refers to the generation of separate curve-skeleton terminal
branches for all input shape bumps, or salient convexities, at a user-specified
scale. Detail preservation is important for applications such as shape matching,
retrieval, and reconstruction [8,24]. Large details, such as the limbs of shapes
in Fig. 1, are well captured by skeleton branches by all studied methods. For
smaller-scale details, the situation is different, see Fig. 3 left. The problem is that
all studied methods include explicit actions to smooth the computed skeletons.
Although desirable (see next Sec. 4.5), such smoothing will remove some small-
scale branches.

AU and AUI preserve small-scale, detail, branches best. In contrast, AUS and
TJ find detail branches of long protrusions (e.g. Fig. 3, neptune and frog fingers)
quite well, but fail to find branches for shallower bumps, such as gargoyle’s wing-
tips. Upon closer analysis, we found that this is caused by the fact that the
surface skeletons that both AUS and TJ start from, fail to capture such details.
Hence, these details cannot appear further in the curve skeleton.

CAO and ROSA perform the worst for this criterium. These methods fail find-
ing most detail skeleton branches found by the other studied methods. Moreover,
when found, small-scale terminal skeleton branches seem to be arbitrary, as Fig. 3
shows for all three models on the left.

Small-scale noise is ignored equally well by all methods. For all the studies
mesh-based methods, this is an effect to their built-in smoothing, which appears
to work well at small scale.

4.5 Smoothness

As outlined earlier, curve-skeleton branches should be at least C2 continuous
curves (Sec. 3). Hence, skeletonization methods should follow this property as
well as possible. Voxel methods are inherently constrained here by the sampling
resolution. In contrast, mesh-based methods which model the curve skeleton as a
polyline should distribute the computed skeletal points, or sample the skeleton,
to optimally approximate the desired smooth curve. Hence, for these methods,
the issue of skeleton smoothness is implicitly connected to the skeletal curve
sampling.

Contraction-based methods, as the ones we studied, have an additional chal-
lenge here. As the input mesh is contracted, the local point density naturally
increases in convex areas and decreases in concave ones. This potentially leaves
too few nodes to approximate well the curve skeleton in concave areas. Liga-
ture branches are an extreme case hereof. An example are the ligature branches
that connect the horse’s leg-skeletons to its rump-skeleton (Fig. 3 right). Here,
CAO, ROSA, and up to some extent AU, clearly show a lower point density
– see branches meeting at the marked junctions. This in turn creates spuri-
ous kinks in the rump’s curve skeleton. In contrast, AUS, AUI, and TJ create
smoother skeletons. The skeletons of TJ and AUS follow the rump’s curvature
best. This is explained by the fact that their contraction is constrained to stay on



434 A. Sobiecki et al.

Input models - detail preservation

Au et al.

Cao et al.
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Telea and Jalba

Au et al.
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Au et al.

(surf. skeleton)

Input models - skeleton smoothness

n
e

p
tu

n
e

fr
o
g

g
a

rg
o

y
le

h
o

rs
e

fe
rt

ili
ty

Fig. 3. Comparison for detail preservation comparison (left) and skeleton smoothness
(right)

the surface skeleton, whose shape already captures the input shape’s curvature.
AU and AUI both fail capturing the rump’s curvature, since they have no such
constraint. The same non-uniform skeletal point distribution is also observed for
the fertility model (Fig. 3 right). Here, again, AUS and AUI yield the most uni-
form point distribution, and ROSA and AU the least uniform one (which leads
to unnatural kinks).

4.6 Sampling Robustness

Sampling robustness refers to the relation between the resolution of the input
shape and changes in its curve skeleton. Ideally, we would like that when the for-
mer changes slightly, the curve skeleton also changes only slightly. This property
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is closely related to the concept of regularization, which states that small changes
in the input shape Ω should only yield small changes in its skeleton [32,24,15].

To study this, we produced three versions of the dragon model (see Fig. 4),
using the Yams mesh resampling tool [11]. Next, we ran the studied skeletoniza-
tion methods on these datasets, and analyzed the results. In the comparison, we
had to exclude CAO and ROSA, as the provided implementations of these meth-
ods were too slow to complete, even in several hours, for the largest-resolution
meshes.

Au et al.

Telea and Jalba

Au et al. (improved)

Au et al. (surf. skeleton)

small: 14K points, 25K faces medium: 58K points, 115K faces large: 231K points, 463K faces

Fig. 4. Sampling robustness comparison

The method AU is quite sensitive to the mesh sampling. Looking at Fig. 4,
we see that, in the dragon head area, the small and large resolution models
produce relatively similar skeletons, but the medium-resolution model yields a
very different skeleton topology. Given that higher resolution can only potentially
add extra details, but not remove existing ones, we expect to get an increasingly
rich curve skeleton (in terms of terminal branches), but the core structure of this
skeleton should not change significantly. This is not the case, which hints to an
important instability of the method with respect to mesh resolution.

In contrast, AUS and AUI show a much stabler curve skeleton with respect to
mesh resolution. Although these methods do not produce identical skeletons for
the same resolution, the changes of their respective skeletons as the resolution
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changes, are quite small. Both methods find more terminal skeleton branches as
the resolution increases, which is expected since higher-resolution models capture
more surface details.

The TJ method is the most sensitive to sampling. For the low-resolution
model, the method simply fails to extract many significant branches. Although
more branches are found for the high resolution model, many significant surface
details, like the upper spikes on the back and tail, fail to generate branches. This
can be directly traced to the quality of the surface skeleton: The underlying
method used to compute it [18] produces as many skeleton points as surface
points. To accurately capture the surface skeletal structure, very densely-sampled
models are required [15]. Less densely sampled surface skeletons will in turn
create a noisy distance-transform gradient, which will contract the skeleton mesh
in the wrong directions.

5 Discussion

Contrary to our initial belief, based on the studied contraction-based skeletoniza-
tion literature, all contraction methods studied here appeared to be much more
sensitive in terms of all studied quality criteria (except homotopy) than im-
plied by the examples in the literature. The CAO and ROSA methods per-
formed significantly under expectations. The AU method performed relatively
well for smooth shapes, but showed limitations for centeredness and smoothness
for more complex shapes. This is the main reason for us having designed the
two improved variants AUI and AUS. The trade-off between these variants is as
follows: While AUS yields smoother skeletons, AUI delivers a better centered-
ness. The TJ method dominates all others in terms of smoothness, but has clear
centeredness problems in ligature areas, and requires a very high input mesh
sampling to generate even moderately-detail skeleton branches, due to its usage
of the surface skeleton.

A key question is whether voxel-based skeletonization methods can overcome
the above limitations. Although answering this deserves a separate study, we
outline below several observations in this respect:

Homotopy: Voxel-based skeletonization methods are not, by definition, homo-
topy preserving. For example, Reniers et al. can occasionally create small dis-
connected components [24]. However, thinning methods can enforce homotopy
relatively easily [21,1].

Invariance: Like for homotopy, voxel methods are not invariant under isometric
transformations by construction, as mesh-based methods are. Using truly Eu-
clidean distance transforms helps invariance [14], but does not guarantee it [27].

Thinness: For voxel methods, this criterion translates to creating one-voxel-thin
skeletal manifolds and curve skeletons. Thinning methods are best suited to en-
force thinness [21,1], whereas general-field methods cannot guarantee it [14,24].
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Applying a thinning postprocessing step (in line with the former methods) to
general-field methods appears to be the optimal combination.

Centeredness: Just as thinness, centeredness for voxel methods is limited by
sampling resolution. Using an Euclidean distance transform to drive thinning [1]
or, alternatively, to find the skeleton by directly applying Eqn. 2[10,24], guaran-
tees thinness under this sampling limitation. In contrast, all contraction methods
studied here do not use a volumetric distance transform. Hence, their centered-
ness is subject to accumulated errors during the iterative contraction process,
which arguably makes them less accurate than voxel methods.

Detail preservation: This requirement is not fundamentally linked to the type
of object discretization (mesh or voxel-based). Using a global importance metric
can guarantee detail preservation for both mesh [15], voxel [24], or hybrid [10]
representations.

Smoothness: Voxel models can be preferable to mesh contraction models here.
Indeed, while the former typically treat each skeleton voxel separately, the latter
enforce local constraints on the surface and curve skeletons. This forces mesh-
based skeletons to be either smooth (but not well centered), or well centered
(but not smooth).

An additional desirable property of skeletons is reconstructability, i.e., the ability
to reconstruct the input shape from its skeleton. Surface skeletons should obey
this property, by definition, as the medial axis transform (MAT) is a dual of
the input shape [27]. Curve skeletons can obey this property only partially.
Although reconstructability is sometimes studied as a separate property [8,1], it
can be traced directly to a combination of centeredness and detail preservation.

The main challenge we find for voxel methods is, however, scalability: Vox-
elizing complex meshes to resolutions over 10003 voxels, and further processing
such volumes to extract curve or surface skeletons, is much slower, and more
memory demanding, than using mesh-based methods. For instance, a highly op-
timized parallel implementation of [24] processes the 7003 dragon model (Fig. 4)
in around 15 minutes; the equivalent mesh model (463K faces) is processed in
under a minute by all studied mesh-based methods. Moreover, the memory con-
sumption of voxel methods is at least an order of magnitude larger than for
mesh-based methods. If efficient data representation and GPU parallelization
schemes were designed to reduce this overhead, voxel-based methods may in the
end be a very strong competitor to mesh-based methods.

6 Conclusions

In this paper, we have presented a qualitative comparison of six contraction-
based curve-skeletonization methods that use a mesh representation of the input
shape to be skeletonized. The methods were compared from the perspective of
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several accepted quality criteria: homotopy, thinness, centeredness, detail preser-
vation, smoothness, and robustness to sampling. In contrast to recent insights
from the mesh skeletonization literature, the studied mesh-based methods ap-
peared to perform less optimal than expected.

Although our comparison is far from exhaustive, it raises a number of impor-
tant points about the current state of mesh-based curve skeletonization tech-
niques. First and foremost, the question is raised whether such methods can
outclass earlier voxel-based skeletonization methods (if we ignore computational
resources). A more critical more critical quantitative and qualitative evaluation
of such algorithms against each other and also against voxel-based skeletoniza-
tion methods is needed to answer this question. Finally, we believe that our
comparison will generate increased attention towards the development of effi-
cient algorithms that exploit the desirable properties of voxel-based skeletoniza-
tion techniques.
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Abstract. Recently, we introduced a morphological texture contrast
(MTC) operator that allows detection of textural and non-texture regions
in images. In this paper we provide comparison of the MTC with other
available techniques. We show that, in contrast to other approaches, the
MTC discriminates between texture details and isolated features, and
does not extend borders of texture regions. Using the ideas underlying
the MTC operator, we develop a complementary operator called morpho-
logical feature contrast (MFC) that allows extraction of isolated features
while not being confused by texture details. We illustrate an application
of the MFC operator for extraction of isolated objects such as individ-
ual trees or buildings that should be distinguished from forests or urban
centers. We furthermore provide an example of how this operator can
be used for detection of isolated linear structures. We also derive an
extended version of the MFC that works with vector-valued images.

1 Introduction

This paper focuses on the problem of distinguishing isolated features, also called
individual features, from features that are part of a texture1. We refer to the
latter features as texture details. This problem may occur when one wants to
detect texture regions, but distinguish them from isolated features that should
not be assigned to a texture class. The dual problem occurs when it is necessary
to detect isolated features avoiding detection of parts of neighboring or back-
ground texture even if texture details are similar to features of interest. Here we
consider both problems, namely detection of texture and of individual features.

Although a large variety of texture classification methods has been developed,
much less attention has been given to the apparently simpler problem of texture
detection that discriminates between high contrast texture (of any type) and
non-texture regions. This is not a simple task if accurate localization is required
and if texture must be distinguished from individual features.

In [1] it was proposed to use the difference between maximal and minimal
intensities (MaxMin difference) in a pixel neighborhood for a fast segmentation

1 By features we mean small image elements, for example blobs, ridges or edges.
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of an image into textured and non-texture regions. A standard deviation (StD) is
frequently used as a measure of texture that describes its smoothness [2]. In [3],
where the Local Binary Patterns (LBP) approach was developed, the authors
also suggested to incorporate a variance-based descriptor for texture classifica-
tion purposes. While the LBP descriptor is related to inherent texture proper-
ties, a complementary variance-based descriptor measures texture contrast. The
amplitude modulation function (AMF), derived from the amplitude-modulation
frequency-modulation model [4], can locally capture texture contrast. Though
each of the texture contrast descriptors mentioned above can be used to discrim-
inate between texture regions and non-texture areas, also called smooth areas
in this paper, they cannot distinguish individual features from texture details.

Recently, several descriptors were suggested to approach this problem. In [5]
the PanTex index was developed to detect settlements in panchromatic satellite
imagery. The operator is able to distinguish texture areas from individual linear
features such as roads or borders between homogenous cultivated fields in satel-
lite images. The PanTex index is defined as a minimal contrast among contrast
measures derived from the gray-level co-occurrence matrixes (GLCM) [6], com-
puted for different orientations of displacement vectors. The PanTex method,
however, does not distinguish other individual features, such as isolated peaks
or small isotropic blobs, from texture.

The component count (CC) method [7] is based on the product of two mea-
sures computed in small image blocks. The first one is the sum of the number
of connected components (component count) in the background and the fore-
ground obtained by simple binarization of image blocks. The second measure is
the difference between average intensities in the background and the foreground.
This descriptor is supposed to discriminate blocks covering texture and individ-
ual step edges at the borders between homogenous regions. A similar idea of
counting the number of local extrema (texture primitives) for detection of tex-
ture regions was proposed earlier in [8]. Since this method does not take into
account contrast of texture primitives, it can be very sensitive to noise.

Another disadvantage that all the above texture descriptors have in common,
is that they extend or blur the edges of texture regions preventing accurate lo-
calization of texture borders. Recently, we introduced a morphological texture
contrast (MTC) descriptor that does not suffer from the above disadvantages
[9]. This operator, briefly reviewed in Sec. 2, measures the difference between
upper and lower texture envelopes estimated by means of alternating morpho-
logical filters [10]. Its qualitative performance was illustrated in [9] using only
few remotely sensed images and no quantitative comparison was provided. In
Sec. 3 we provide a quantitative comparison using artificially created images
and qualitative comparison using a set of standard test images.

As we stated in the beginning of this section, the dual problem to the problem
of texture detection is detection of individual features while distinguishing them
from texture details. This problem has mainly been treated in the context of edge
detection capable of discarding texture surroundings. For example, recently in
[11] a surround inhibition mechanism was introduced to improve edge detection
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at region boundaries. In [12] a normal complexity measure was proposed that
is able to separate isolated curves and isolated edges from texture in binary im-
ages. The paper provides an original theoretical framework, but it seems to be
computationally very expensive.

In Sec. 4 we show how the ideas underlying the MTC operator lead to a
Morphological Feature Contrast (MFC) operator that aims at detection of small
isolated objects, rather than edges, in textured background. We illustrate the
potential of the MFC operator on gray-scale images and also derive its exten-
sion to vector-valued images. Additionally, we show how the MFC operator can
be incorporated into a scheme for extraction of isolated linear structures.

2 Detection of Texture Regions: The Morphological
Texture Contrast (MTC) Operator

Below, we define the morphological texture contrast (MTC) transformation
ψMTC(f) that we recently introduced in [9] for localization of high contrast
textured regions. It uses alternating morphological filters, γrϕr and ϕrγr, which
are closing ϕ followed by opening γ and opening followed by closing, respec-
tively. r denotes the size of the structuring element (SE). Alternating filters are
usually employed for noise filtering. We use them to estimate texture envelopes.
The difference between upper and lower envelopes2 defines a measure of texture
contrast, which can serve as an indicator of the presence of texture

ψMTC(f) = |γrϕr(f)− ϕrγr(f)|+ , (1)

where the argument f denotes a 1D signal or a 2D gray-scale image, and | · |+
is defined as

|ν|+ 	
{
ν, ν > 0
0, otherwise .

A remarkable property of these envelopes is that they coincide at individual
features, thereby yielding low response at individual features even if they are of
high contrast.

The results of applying this transformation to an artificial 1D signal and to
a remotely sensed image of a forested area are shown in Fig. 1 and Fig. 2(a,b),
respectively. Throughout this paper we use a square SE, where the size refers to
its side length. The size r of the SE in Eq. (1) should be chosen to be larger than
the maximal distance between details in textured regions. Features that stand
apart from texture details farther than r are treated as individual features and
are suppressed correspondingly. In general, we can use different sizes r1 �= r2 for
SEs in |γr2ϕr1(f) − ϕr2γr1(f)|+. While r1 should be chosen to be larger than
the maximal distance between texture details, r2 should be chosen to be smaller

2 Since in the 2D case, ϕrγr and γrϕr are not ordered [13], a lower envelope might be
above an upper envelope. However, it can be shown that regions where this happens
are small in the sense that an erosion with a structuring element of size r completely
removes these regions.
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Fig. 1. Left: An artificial signal composed of a slow varying component, a texture
region, and individual features. Upper and lower envelopes of the texture obtained
with alternating morphological filters are shown by red and green dashed lines. Right:
Extraction of the texture region and individual features with the MTC (Sec. 2) and
the MFC (Sec. 4) operators.

than the minimal size of texture regions. Thus, using r1 �= r2 adds an additional
degree of control of the minimal number of clustered details to be regarded as a
texture. Comparison of Fig. 2(b) and (c) illustrates this point.

(a) (b) (c) (d)

Fig. 2. (a) Pan-chromatic satellite image of 1360x1160 pixel size4. (b) and (c) The
MTC descriptor. r1 = r2 = 30 in (b) and r1 = 30, r2 = 35 in (c). (d) Extraction of in-
dividual dark features, i.e. individual trees, using the ψ−

MFC operator5 with r1 = r2 = 30
(Sec. 4). Note that trees in forest areas are almost completely suppressed.

The MTC operator is bias invariant, ψMTC(f) = ψMTC(f + a), where a ∈ R
is a constant, invariant to signal inversion3, ψMTC(f) = ψMTC(a− f), and pro-
portional to signal magnitude ψMTC(af) = aψMTC(f). An important property
of the MTC transformation is that it neither extends nor blurs the edges of
textured regions, thereby allowing accurate localization of texture borders. This
property is illustrated in Fig. 3 in the rightmost column.

3 Comparison of Texture Contrast Descriptors

In this section we qualitatively and quantitatively compare the performance of
the MTC algorithm with the CC, the MaxMin difference, the StD, the LBP

3 Bias invariant and self-complementary operators [14] are invariant to signal inversion.
4 The image was captured by the GeoEye-1 satellite ( c© GeoEye 2011).
5 High values of the transformation are represented by dark tones.
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contrast, the AMF, and the PanTex algorithms. We denote by w a scale pa-
rameter required for all algorithms. To allow a consistent comparison, a few
algorithms were slightly modified as follows.

In the CC algorithm we avoided several parameters suggested by the authors
since they need to be adjusted for each type of image. Specifically, we used the
simple product of contrast and number of connected components. Instead of
disjoint blocks, a sliding window of the single size w was used to compute the
texture measure at each pixel as in the other compared methods. In the PanTex
algorithm we used a square root of contrast measure derived from the GLCM
matrix. This contrast measure can actually be computed without explicit calcu-
lation of the GLCM matrix. The GLCM contrast measure was estimated within
a window of arbitrary size w, such that displacement vectors of the length w

3
were determined by all pixels on a circle of radius w

3 .
To compute the LBP local variance and the AMF measures we used a Matlab

code available online6. In the LBP we used the square root of local variance
computed as a variance of 4(w − 1) equally spaced point samples on a circle of
radius w

2 . In the AMF approach we set the largest period of a sinusoid in the
Gabor filters to 3w pixels. Note that similar to the MTC operator, all the algo-
rithms, after the small modifications described above (except for AMF), are bias
invariant, invariant to signal inversion and proportional to signal magnitude.

3.1 Qualitative Comparison

The contrast descriptors obtained using the compared transformations are shown
in the first three columns in Fig. 3. All the descriptors have high values in
textured areas and low values in smooth areas. However, contrary to the MTC
operator, the other approaches yield also high responses at isolated features
(edges, ridges, peaks) that do not belong to texture. The PanTex descriptor
partially succeeded to suppress isolated curvilinear structures.

To better visualize the accuracy in texture localization, the texture descriptors
were superimposed on the enlarged part of the satellite image in the forth column
of Fig. 3, where the contrast of red tones is proportional to the values of the
descriptors. Since the distribution of descriptor values is strongly bimodal, one
can distinguish two major levels of texture descriptors, low and high, that appear
as a gray-reddish and saturated red overlayed on the original image. As can
be seen from these images, another advantage of the MTC operator is that it
does not extend the borders of texture regions as other methods do. The CC
method does not extend borders of texture regions, instead it generates a halo
near texture borders and around individual features. This effect does not occur
in the original version of the CC method, in which disjoint/overlapping block
processing was performed (which, however, would not allow accurate texture
localization). The LBP method also leaves rings around individual trees due to
high response at distances equal to the radius of the circle used to compute the
variance of samples on it.

6 Matlab sources are available at http://www.cse.oulu.fi/CMV/Downloads/LBPMatlab
and http://cvsp.cs.ntua.gr/software/texture/

http://www.cse.oulu.fi/CMV/Downloads/LBPMatlab
http://cvsp.cs.ntua.gr/software/texture/
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Fig. 3. Comparison of texture contrast descriptors. The first two original images are
of size 512x512 pixels; the third image is the same as in Fig. 2(a); the forth image is
an enlarged part of the third image. w = 10 for the first two images and w = 30 for
the satellite images. Further details can be found in Sec. 3 and Sec. 3.1.
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3.2 Quantitative Comparison

In order to quantitatively compare the ability of the methods to distinguish be-
tween texture and non-texture areas we quantify separability between distribu-
tions of texture descriptors in these areas. We used the Fisher criterion [15] that
measures the distance between distribution means relative to their compactness.

The criterion is given by (μ1−μ2)
2

σ2
1+σ

2
2

, where μ denotes a class mean and σ2 denotes

a class variance. Since ground truth data is required to define textured and non-
texture regions, we created an artificial data set of gray-scale images along with
corresponding masks of texture regions and non-texture areas, whereby the last
also include individual features.

The data set consists of 100 images of 300x300 pixels with circular texture
clusters and individual features (clusters may overlap, see the upper-left image
in Fig. 5). The number of clusters and their diameters were chosen uniformly
randomly and varied from 2 to 4 and from 60 to 120 pixels, respectively. The
diameter of both individual features and texture details was 5 pixels. Texture
details within clusters were placed at positions on a regular grid with random
Gaussian offsets. The distance between nodes of the regular grid was set to 9
pixels. The amplitude of texture details and individual features varied randomly
with normal distribution. White noise was added followed by smoothing with an
averaging filter with a 3x3 kernel. The standard deviation of the noise was equal
to one third of the amplitude of the texture details.

In the first two experiments we set the mean amplitude of individual features
equal and triple, respectively, of the amplitude mean of texture details. Fig. 4(a,
b) show the resulting separability measure for the size parameter w from 10 to 70
pixels. The figures show superiority of the MTC operator when discriminating
non-texture regions from texture areas. These figures also reveal a high degree
of immunity of the MTC approach to individual features with high magnitude.

In the third experiment we restrict the class of non-texture areas to areas
adjacent to texture regions and to individual features including their neighbor-
hood. Fig. 4(c) shows separability between such restricted non-texture areas and
texture regions when mean amplitude of texture details and individual features
were equal. A comparison of Fig. 4(c) and Fig. 4(a) confirms that the superiority
in the performance of the MTC operator stems from its ability to distinguish
texture from isolated features as well as from regions adjacent to texture borders.

4 Extraction of Isolated Features: The Morphological
Feature Contrast (MFC) Operator

Using the ideas underlying the MTC operator, below we propose a Morpholog-
ical Feature Contrast (MFC) operator that extracts isolated structures while
suppressing texture details of textured background. Using alternating morpho-
logical filters, upper and lower texture envelopes were estimated in the MTC
approach. To extract bright or dark individual features, we suggest using the
difference between the original signal and one of its envelopes, as defined in the
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Fig. 4. (a) and (b): The measure of separability between texture and non-texture
regions as a function of the scale parameter w. The mean amplitude of individual
features is equal to the amplitude of texture details in (a) and tripled in (b). (c) The
measure of separability of texture regions from areas around individual features and
smooth areas adjacent to texture borders. The mean amplitude of individual features
equals the amplitude of texture details.

following equations

ψ+
MFC(f) = |f − γr2ϕr1(f)|+ , (2)

ψ−
MFC(f) = |ϕr2γr1(f)− f |+ . (3)

If one is interested in both dark and bright features, ψMFC = ψ+
MFC + ψ−

MFC

should be used. We call ψ+
MFC and ψ−

MFC white and black MFC, respectively.
Similar to the MTC transformation, ψMFC is bias invariant, invariant to signal
inversion, and proportional to signal magnitude. The MFC operators applied to
a 1D artificial signal are illustrated in Fig. 1. The size r1 of the SE should be
greater than the maximal distance between details of texture to be suppressed.
The size r2 should be greater than the size of features to be extracted. If not
stated otherwise, we use equal sizes for both SEs.

It can be shown that ψMFC is equal to max(ϕγ(f), f)−min(γϕ(f), f), while
ψ+
MFC and ψ−

MFC are equal to operators that were already defined in [16] as
f −min(γϕ(f), f) and max(ϕγ(f), f)− f , and were used for detection of defects
in the noisy background of a metallic surface.

Fig. 5 and Fig. 2(d) show examples of the MFC operators ψMFC and ψ−
MFC

applied to gray-scale images. One can observe that various individual features/
objects were highlighted while texture areas were simultaneously suppressed. For
example, in the middle image in Fig. 5 the forest texture area and the texture of
the village center on the right were suppressed, while isolated buildings outside
the dense village center were preserved in the output image.

The MFC operator is capable of suppressing texture areas even if composed
of details of higher magnitude and similar shape in relation with the magnitude
and shape of individual features. Although several methods were developed to
extract object boundaries (edge features) from textured background, we are not
aware of other techniques that perform qualitatively similar to the MFC when
extracting blob-like features (as well as features of an arbitrary shape).
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Fig. 5. First row: 312x312 artificial, 2570x1870 satellite4, and 1010x690 digital cam-
era images. Second row: individual features extracted by means of the MFC operator
ψMFC

5. r1 = 30, r2 = 10 for the artificial image; r1 = r2 = 90 for the satellite image,
and r1 = r2 = 25 pixels for the digital camera image.

4.1 Application of the MFC Operator to Extraction of Isolated
Linear Features

Above we have shown that the MFC operators are capable of extracting features
of different types with width smaller than r2. Specific features can be extracted
by a sequence of standard morphological transformations, with the structuring
element shaped similarly to features. Here we illustrate advantages of the use of
the MFC within such a sequence for the case of linear features.

The remotely sensed images in Fig. 6 (left) contain rectangular structures
composed of linear walls, which used to be livestock enclosures. A black top-
hat transform removes background and emphasizes small dark structures in the
image. A subsequent filter γlin obtained by the point-wise maximum of morpho-
logical openings with linear SE at different orientations extracts narrow linear
structures longer than the length of the structuring element. In the resulting
image shown in Fig. 6 (middle) linear walls were highlighted but also texture de-
tails were emphasized. Furthermore, an appropriate threshold setting is required
to obtain a binary map of features.

To remove texture while keeping isolated features, the MFC operator ψ+
MFC

may be applied7 prior to γlin. This sequence of operators completely removes
most texture details. Non-zero pixels of the resulting image are shown in black
in Fig. 6 (right). No threshold selection was required to obtain the binary
map of linear features. We are currently evaluating the potential of using the

7 The ψ−
MFC could also be directly applied to the initial image.
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Fig. 6. Left: Satellite images4 of 600x600 pixels size with man-made structures (linear
walls). Middle: Black top-hat transform followed by an opening filter γlin obtained by
the point-wise maximum of morphological openings with linear structuring elements
at different orientations5. Right: Black top-hat transform followed by ψ+

MFC and sub-
sequent γlin. Non-zero pixels are shown in black. Parameters: 5x5 SE in the top-hat
operator, r1 = 5, r2 = 10 in ψ+

MFC; the length of the linear SE in γlin equals 15 pixels.

MFC operators for extraction of linear features within the Silvretta Historica
project8.

4.2 Extension of the MFC Operator to Vector-Valued Images

In this section we generalize the MFC operators from gray-scale to vector-valued
discrete images, where each pixel is attributed by a vector of values. A multi-
spectral image is an example of such a vector-valued image. The problem with
extending morphological operators to vector-valued images lies in the lack of a
natural ordering of vectors. However, some morphological transformations de-
fined in terms of arithmetic differences between morphological operators can
naturally be extended to vector-valued images without the need to chose a vec-
torial order. Examples of such extended transformations were recently proposed
for morphological gradient and for top-hat in [18], [19]. Using similar ideas we
derive an extended version of the MFC operators below.

The MFC operator defined in Eq. (3) can be rewritten in the following form
ψ−
MFC(f) = |εr2δr2δr1εr1(f) − f |+ where δ and ε denote morphological dilation

and erosion, respectively. r1, r2 denote sizes of SEs B
(1)
p and B

(2)
p , respectively,

centered at p. Omitting the details of derivation, the last equation can further
be transformed to

[ψ−
MFC(f)](x) = min

k∈B(2)
x

max
j∈B(3)

k

min
i∈B(1)

j

|f(i)− f(x)|+ , (4)

8 Details on this project can be found in [17].
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where B(3) denotes the structuring element B(1) dilated by B(2). Similarly,

[ψ+
MFC(f)](x) = min

k∈B(2)
x

max
j∈B(3)

k

min
i∈B(1)

j

|f(x)− f(i)|+ . (5)

We now define a new vectorial MFC operator ψMFC(f̄) that applies to vector-
valued images f̄ . We replace the non-negative difference between intensity values
in the last two equations by a suitable metric distance D between vectors,

[ψMFC(f̄)](x) = min
k∈B(2)

x

max
j∈B(3)

k

min
i∈B(1)

j

D(f̄(x), f̄(i)) . (6)

In contrast to ψ+
MFC(f) and ψ

−
MFC(f), the ψMFC(f̄) operator extracts both dark

and bright structures when applied to multispectral images. If one is interested
in extraction of either dark or bright features only, pseudo-distances may be
used. For example, instead of using D∞ distance, pseudo distances defined by
D+

∞(f̄ , ḡ) = max
i
|fi − gi|+ and D−

∞(f̄ , ḡ) = max
i
|gi − fi|+ may be employed.

Vectorial operators may be preferable to independent processing of channels
of a vector-valued image followed by integration of the results. On the other
hand, in many cases, independent processing produces similar or even better
results due to smaller levels of output noise. A comparative evaluation of the
vectorial MFCs is beyond the scope of this paper.

5 Summary

We have shown how alternating morphological filters can be used to design op-
erators for detection of texture regions and isolated features. The comparison of
the morphological texture contrast (MTC) operator based on visual inspection
and quantitative experiments, reveals its superiority over other methods used for
texture detection. This operator is very attractive for various applications due
to its ability to discriminate texture from isolated features irrespectively of their
high magnitude, good localization properties, and simplicity. The complemen-
tary morphological feature contrast (MFC) operator was proposed for extraction
of isolated features in images containing also texture background. We show that
the MTC and the MFC have a similar structure and are of special interest where
it is important to distinguish isolated features from texture details. An extension
of the MFC operator was derived that allows the MFC operator to work directly
with vector-valued images. We have also proposed a simple scheme based on the
MFC operator for detection of isolated linear structures.
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Abstract. The problem of separating touching or overlapping objects is classical
in imaging. Many solutions have been proposed in 2D. While similar, the prob-
lem in 3D has differentiating features: apparent overlap due to projection effects
does not exist, but real or apparent interpenetration can occur only due to either
physical particle fusion or partial volume effects. Often the ability to separate ob-
jects logically is sufficient, however sometimes finding the orientation of tangent
separating plane is useful. In this article, we propose a method based on power
watershed for separating 3D touching objects and estimate a precise separating
plane. Power watershed is used in two steps, first to obtain individual object iden-
tification, and in a second step to allow sub-voxel accuracy in the plane fitting
procedure. We show that our approach is much more precise than a simple seg-
mentation. We illustrate this in an application involving the shearing of a sample
of sand grains imaged in various configurations by micro-CT tomography. Our
technique measures the orientation of the contacts between grains, a quantity that
is explicitly used in soil mechanics modeling, but which has up until now been
difficult to measure from experiments.

Keywords: Segmentation, random walker, orientations, micro-tomography.

1 Introduction and Motivation

In this article, we aim to accurately measure the contact orientations between touching
3D particles.

Our motivation is to enable some experimental measurements in soil mechanics.
When granular materials such as sand are mechanically loaded, strain localisation can
manifest itself as shear banding which leads to rapid failure of the material, associated
with catastrophic events such as landslides. In order to better understand the process of
strain localisation in a granular material such as sand, it must be studied at the scale at
which strain localises; for sands this is likely to be the grain scale. Historically, micro-
mechanical information has been difficult to measure in real experiments so this in-
formation has generally been obtained by numerical simulations on large numbers of
particles. Recent advances in X-ray tomography allow individual sand grains to be im-
aged in 3D, paving the way for grain-scale measurements on real granular materials. A
full micro-mechanical description of the kinematics occurring at the grain scale needs

C.L. Luengo Hendriks, G. Borgefors, R. Strand (Eds.): ISMM 2013, LNCS 7883, pp. 452–463, 2013.
© Springer-Verlag Berlin Heidelberg 2013
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Fig. 1. Top: Stress ratio and volumetric strain plotted against the axial shortening imposed on the
sample tested. Stress relaxations are visible when loading has been stopped to allow an x-ray
tomography to be performed. Bottom: Vertical cross sections from sample COEA01, oriented so
as the contain the axis of the sample as well as the normal to the shear band which can be seen
on the right. These slices have been taken along the x direction, (z is the vertical axis)

to include grain kinematics (rotations and displacements of grains), as well as contact
kinematics (the gain or loss of contacts, and the orientation of those contacts).

Fig 1 illustrates the process of strain localisation: vertical sections from 3D images
of a sample show that a small subvolume of grains is deformed by a shear band that
develops in the sample. In such a sample there are more than fifty thousand grains,
so automatically and accurately segmenting each grain as well as providing unbiased
estimates of grain contact orientation is essential for a complete micro-mechanical de-
scription of the processes at work.

In 2D images, separating binary overlapping convex objects is a common and classi-
cal problem in image analysis. It has been presented to students of Mathematical Mor-
phology (MM) for a long time [3], and is typically solved with distance transforms [18]
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and watershed [4]. It is one of the most well-known application of MM in general [10,11].
This simple distance-based solution has many drawbacks. Proposed improvements have
led to many fruitful concepts in MM, such as h-extrema [23], elliptical distance trans-
forms [21] and conditional bisectors [14,22,7].

In 3D the problem is different. In 2D the need to separate overlapping objects is
common due to projection effect, whereas in 3D this effect does not exist. However
there exist some physical cases where interpenetrating (quasi) convex objects are grown
or fused together such as sintering processes in materials science. Furthermore, when
objects are small, lack of resolution or diffusion in some imaging modalities may cause
an effect known as partial volume effect to become prevalent [5]. This may cause 3D
particles to appear fused rather than simply touching.

Separating fused objects in 3D is conceptually no different than in 2D, and indeed
most methods developed for 2D readily carry over to higher dimensions. However the
problem we study in this article is somewhat different again. In many applications, seg-
menting the fused objects is sufficient, allowing separated objects to be counted and
measured. Nonetheless, when two objects are touching physically, it is sometimes use-
ful to study the contact itself, in particular the spatial orientation of the plane of contact,
when such a concept can be defined. We consider a correctly oriented separation plane
between two grains to be a good approximation of a mechanically relevant contact
orientation. A reliable and accurate way to automatically measure orientation of the
contact surface between objects is therefore required.

The rest of the paper is organized as follows: in section 2 we provide the necessary
background notions. In section 3 we describe our proposed segmentation and separat-
ing plane orientation estimation procedure. In section 4 we present results on simulated
touching spherical particles. In section 5 we present results on real data, first on phys-
ical spherical beads, and then on actual sand grains. We conclude by showing that our
procedure is less biased than previous methods for separating grains.

2 Background Notions

Here we present the necessary notions for our proposed method.

2.1 Watersheds

Watershed is the de-facto standard procedure for segmentation in MM [16]. Watershed
as a segmentation procedure was proposed at the end of the 1970s [4], however fast
procedures enabling its efficient computation were only proposed in the 1990s [24,15].
Various types of watershed algorithms have been proposed. We mention some that pro-
duce labeled regions with a thin inter-pixel boundaries like Meyer’s algorithm [15],
some that produce a thick pixel boundary like the topological watershed [8], and some
that make explicit use of the graph structure of the underlying image like watershed
cuts [9]. In the latter case, the resulting separating cut or boundary is located inter-pixel.
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2.2 Power Watershed

Recently a new type of watershed was introduced, the power watershed [6]. It is defined
as the epi-convergence of the result of the optimization of the following energy:

argmin
x

∑

ei j∈E
wp

i j|xi − x j|q +
∑

vi∈V
wp

i |xi − yi|q, (1)

where (V, E) is a graph consisting of an edge set E linked by vertices belonging to
V . Vertex i is denoted vi ; the edge linking vi to v j is denoted ei j. The wi j and wi are
respectively pairwise and unary edge weights that are given. The yi are unary references
that are given (e.g. seeds), and the xi are vertex value belonging to x, the set of all
the vertex values that we seek to optimize. In imaging, the pixel locations correspond
to vertices and the edges represent the underlying neighborhood connectivity. In this
paper we consider the nearest neighbour, i.e. the 6-connectivity for 3D. In a Maximum
A Posteriori (MAP) interpretation, similarly to Graph Cuts, the first sum over edges is
interpreted as a regularization or smoothness term, while the second sum over vertices
is a data fidelity term. In particular, this data term can be easily used to enforce seeds
for image segmentation, i.e. regions where the labelling x is known and fixed.

Finally, in (1), p and q are integers with specific interpretations. In particular, when
q is set to 2, for every finite p, the solution to (1) represents the energy of a Random
Walker (RW) [12]. As p tends to infinity, the resulting x∞ epi-converges to a unique
solution, which is termed the power-watershed. Indeed, this x∞ has many of the proper-
ties of a usual watershed. In particular if the data fidelity represents binary seeds, then
x∞ is a binary labelling everywhere equal to the result of a watershed cut, except on
separating plateaus. These are the regions of constant edge weighting that are contested
between the two labels. On these edge plateaus, the solution is that of a random walker.

In [6], an efficient algorithm is provided to compute this solution without resorting
to a convergence process. On contested plateaus, as in the RW result, the values of x∞
can be interpreted as the probability of a discrete random walker moving from vertex
to vertex along the edges of the graph to reach one label vs. the others. In the case
with arbitrary n markers, one needs to compute n − 1 probability fields, as they sum
to 1. Specifically, in the case of two markers A and B, if the probability of reaching A
from some point is p, then the probability of reaching B is 1− p, so computing a single
probability field is indeed sufficient.

2.3 Objects Separation with Classical and Power Watersheds

The procedure for object separation with classical watershed is well known, but we de-
scribe it here for reference. We assume 3D volume images and a pair of interpenetrating,
approximately convex objects.

1. Given a binary image I containing the objects, a distance transform E(I) is com-
puted inside all objects. In this article we used the Euclidean distance transform [19]
because it is isotropic.

2. The maxima of this distance transform MAX(E(I)) are used as seeds. To account
for boundary noise, more robust h-maxima can be used instead [20].
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3. The Euclidean distance map image is inverted, and a watershed transform is com-
puted on it WS(−E(I)), stemming from the seeds computed at step 2.

This procedure finds a satisfactory separating surface, even if the objects are of different
size, if the objects interpenetration is not too deep, which will be the case in our applica-
tion. Depending on the watershed transform used, the output may be a labeled image, in
which case the watershed surface is assumed to be located between neighboring voxels
with different labels, or an actual discrete surface composed of voxels.

� �
�

Fig. 2. Object separation with power watershed/random walker. Assuming a constant edge
plateau, except on the thick vertical dotted line, where edges that are crossed are given a high
weight, i.e. are difficult to cross. A and B represent labels. We estimate the probability of a ran-
dom walker in C to move to the west as opposed to all the other directions (north, south or east).
We see that locally the probabilities are identical because all neighboring edges at this point have
the same weight. However globally, there are many ways for a random walker to come from C
to B. whereas there is only one way to go from C to A. Therefore, random walker probabilities
must be high east of C, and then drop rapidly through the vertical dotted line.

In the case of the power watershed, the procedure is different. Indeed, seeds are still
needed, and can be extracted from the maxima of the Euclidean distance map, however
the inverted distance map is not necessary for the computation of the labelling x de-
scribed in section 2.2. Indeed, if we consider the binary object as a contested plateau,
then the power watershed reduces to the computation of a pure random walker stem-
ming from the disjoint seeds. In this case the computation of x on the plateau exhibits
a sharp variation when crossing the boundary from one object domain to the next. This
is due to the fact that a random walker is much more likely to reach the nearest seed
in its domain of origin rather than cross the domain to the other seed through the small
aperture between them. Therefore, to first order approximation, the resulting labelling
x is almost binary on most of the contested plateau, with values very close to 1 near
one seed, and close to 0 near the other. However a random walker placed close to the
boundary between the two interpenetrating object is approximately as likely to reach
either seed, and so the values of x in this area are close to 0.5. To find a separating
surface between the two objects, we can therefore consider the 0.5-isosurface on x. It
has the advantage of a more precise location, benefiting from sub-pixel accuracy.
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3 Methodology

This section details the method by which the surface that separates two touching objects
in 3D can be accurately oriented. We describe our technique assuming a pair of touching
objects. Due to unavoidable partial volume effects, these two objects appear slightly
fused.

In this paper we present data from two sources: from simulations of spheres
(section 4), and from 3D images of experiments of a granular material. The simula-
tion directly produces a pair of contacting grains, whereas the images from experiments
contain several thousands of grains; experimental data are first segmented and labelled
with the standard distance-based approach to extract pairs of grains.

Once a 3D image with two grains is obtained, one seed is identified inside each grain.
In the simulations we simply use the centre of the spheres. In the real data, seeds inside
each grain are computed from the 3D Euclidean distance map of the fused particles and
h-maxima. The power watershed is then computed using these two seeds. As explained
above, the result of this is a map for each seed describing the probability of each voxel
of belonging to one or the other of these seeds. Points on the 0.5 isosurface are then
identified, by interpolating the probability along the edge linking two neighboring vox-
els with differing labels. We record the list of these points and their coordinates and we
fit a plane through these points using Principal Component Analysis (PCA). The normal
to this plane is recorded as the orientation of the contact surface (or tangent) between
the two grains.

For comparison, we followed a similar procedure with several standard watersheds,
namely the Meyer algorithm, the topological watershed and watershed cuts. We also
tested a proprietary algorithm. In cases were the algorithm yields a labeling with an
inter-pixel separating surface, we took the midway point between pairs of pixels with
different labels as being part of the separating surface. In cases where the algorithm
yields a voxel-thick surface, we recorded the center of the voxels belonging to the sur-
face. In all cases we performed a PCA analysis on the resulting point cloud to fit a
plane and identified its normal as the orientation of the surface of contact between the
two touching objects.

4 Testing on Simulations

In order to test our contact orientation measurement procedure, simulations of 3D Eu-
clidean balls of radius 10 voxels were placed in a random orientations so that their
centres are 20 voxels apart (so that the spheres are just touching). These balls were
digitized as binary objects.

Balls are used in this case since they have the unique property that the vector con-
necting their centres (“branch vector”) has the same orientation as the normal to the
contact surface between the balls, providing ground truth for comparing measured ori-
entations of the separation plane. Using the centres of the balls as seeds, the balls are
then segmented using the technique outlined in the previous section. Fig. 3 shows the re-
sult of the segmentation and the computed location of some points on the 0.5-isosurface
defining the contact plane.
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(a) (b)

Fig. 3. Two touching spheres. (a) shows the area of overlap in dark grey and is close to a discrete
disk. (b) shows the voxels on either side of the 0.5-isosurface in square or disk shape. In cross
shape the location of the interpixel 0.5-isosurface. All points are very close to being located on
the same plane.

The computed orientation of the contact plane as an (x, y, z) unit vector between the
two balls can then be projected onto the unit z-positive half-sphere, since we cannot
distinguish between either normals to the plane. To represent this projection, two num-
bers are sufficient, equivalent to a longitude and latitude. To represent these projections
on 2D paper, we used the Lambert polar equal-area projection [13], which is easy to
compute. If orientations are identically and independently distributed on the unit half-
sphere, this projection yields a point distribution on a disk indistinguishable from a 2D
Poisson point process [17]. However, in the case of this simulation, because we only
simulated balls with centers located on a voxel, there is a finite number of possible
orientations, and so our simulation shows a discrete bias.

Indeed, Fig 4(a) shows the ground truth of evenly-distributed orientations obtained
with a sufficient number of randomly places spheres. Figure 4(b) shows the orienta-
tions of the separation planes obtained with a standard topological watershed. Although
the distribution of the orientations should be the same, it is clear that the topological
watershed introduces strong artefacts into the measured orientations, aligned at 45° to
the coordinate system. Figure 4 (c) shows the orientations of the separation planes ob-
tained with the Meyer algorithm, in which the definition of the delimition between the
two particles is interpixel, showing some improvement, however insufficient for our
purpose.

Figure 4(d) shows the distribution of orientations obtained with the measurement
of the orientation of the separation place with the random-walker approach described
above; it is obvious that the distribution of contact orientations obtained with this method
is much closer to the true value. Indeed, the median orientation absolute error is 0.61◦,
which is very small. We now try our method on real data.
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(b) Topological watershed
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(c) Meyer algorithm
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(d) Power watershed

Fig. 4. Equal area projection of orientations of separation planes from simulated spheres

5 Testing on Real Data

The experimental data in this work come from tomographic images acquired on me-
chanical experiments on small samples of sand. Samples are prepared by “pluviating”
the granular material into a cylindrical, 22 mm height by 11 mm diameter latex mem-
brane. Sample are installed into a specifically-designed pressure cell; the cell is then
filled with water and pressurised. The cell allows the sample to be rotated while it is
imaged by x-rays – meaning that a 3D image of the sample can be obtained by re-
construction. The sample can then be deformed axially, by advancing a piston under
displacement control (and measuring the reaction force), and re-imaged in-situ.
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(a) (b)

Fig. 5. Glass beads (the flat areas are due to contact with other beads). (a) Center of mass of each
grain in dark grey. (b) Histogram of absolute angular deviation between branch and experimental
vectors.

5.1 Spherical Grains

A first test case was performed on images coming from a sample (labelled ABEA02) of
glass beads, which are close to perfect balls. This allows the same check to be performed
as was done with the simulated balls: the branch vector can be calculated, providing a
good estimation of the expected contact orientation. We computed the angle between
branch and experimental vectors. On 4353 detected contacts we obtain a median error
angle of only 4,27◦, as show on Fig 5. Overall this approach allows a new level of
precision to be obtained. This means that contact orientations can be measured even
without access to the branch vector. We now apply our technique to a real sample of
sand under stress.

5.2 Measuring the Change of Contact Orientation Due to Stress

Previous work has shown that individual grain kinematics (displacements and rotations)
can be obtained by tracking them with a methods developed in [2]. Figure 1 shows the
macroscopic stress reponse of the sample, and at the bottom shows two vertical sections
through the sample COEA01-GL (a sample of Caicos ooids, a very rounded natural
sand) in two different configurations. On the left the sample is under isotropic compres-
sion, before axial deformation. On the right, the sample has undergone considerable
deformation, has reached and passed the peak in axial strength and has developed a
shear band. In these images, the sub-selection of grains under study are shown in black,
and the rest of the grains in the sample are shown in grey. Particle tracking was used to
follow these grains from COEA01-GL-01 to COEA01-GL-17.

Figure 6 shows the orientations that can be obtained with the technique presented
in this paper, in the two configurations shown in figure 1. Immediately observable is
the much more uniform distribution of contact orientations, when compared to standard
techniques. Furthermore, a change in the distribution of orientations is visible between
the two granular configurations.



Estimation of Separating Planes between Touching 3D Objects 461

0°0° 30°30° 60°60° 90°90°
0°

30°

60°
90°

120°

150°

180°

210°

240°
270°

300°

330°

(a) COEA01-GL-01
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(b) COEA01-GL-17

Fig. 6. Orientations of contacts between grains in configurations COEA01-GL-01 and COEA01-
GL-17, as calculated using the power watershed

In order to make this distribution easier to study, the projected orientations are di-
vided into equal-area bins on the plane onto which they have been projected. The num-
ber of projected points that falls inside each bin is recorded, and bin totals are nor-
malised by the median bin value. In figure 7 the colourmap is centred on 1 such that
segments in white are those in which the median number of points has been counted,
red ones show ones where more than the median has been counted, and blue shows
where fewer than the median have been counted. This figure reveals that there is a
small amount preferential alignment of the orientations towards the cardinal directions
(up, down, left, right, front, back), this is likely due to very small contact areas where
the orientation can only be poorly defined.
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Fig. 7. Binned version of figure 6, where colours represent the number of projected points per
bin divide by the mean number of projected points in all bins. Please refer to the online colour
version for better interpretation.
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From a mechanical point of view, a clear evolution in the distribution of contacts is
visible: many contacts are gained in the x-direction and many are lost in the z-direction
between configurations COEA01-GL-01 and COEA01-GL-17. Recalling that the sub-
volume of grains on which this is calculated becomes part of the shear band that forms
(whose normal is approximately [-1,-1,0] ), this seems to indicate that grain-to-grain
contacts are lost in the direction of principal stress applied to the sample (along the axis
of compression). Conversely, contacts are gained in the direction in which the shear
band is advancing.

.

6 Discussion and Conclusion

In this article, we have proposed a new method based on power watershed (PW) to
compute the orientation vector of the contact plane between touching objects in 3D
micro-CT images. We rely on a number of assumptions, namely that the objects are
nearly convex, that as a result the contact is unique and somewhat regularized by partial
volume effects. We consider touching objects in pairs using a method based on the
standard watershed part of PW, and we compute the separating plane assuming the
contact area is relatively small, using the random-walker part of PW. The contact plane
is estimated with sub-voxel precision by estimating the equal-probability isosurface
between the two objects.

We have compared this approach using various standard watersheds and a Euclidean
distance map. On simulated data, as well as on real x-ray images of glass beads and sand
grains, we have shown that our results are nearly free of artefacts, and show a very good
isotropic spread of measurements. On simulated data, the measurement error is very low
(0.61◦), and on real glass bead data, for which we know the approximate contact plane
orientation, the still small estimated median error is 4.27◦. Consequently, we have been
able to use this tool in a sand compression test, that shows conclusively that as pressure
is applied, contact orientation anisotropy begins to develop in the sample.

This new technique paves the way towards a much more complete understanding of
the micro-mechanics of real granular materials, enabling experimental data acquired on
real granular media to be used in micro-mechanical models.
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Abstract. Barcode technology is essential in automatic identification,
and is used in a wide range of real-time applications. Different code
types and applications impose special problems, so there is a continuous
need for solutions with improved performance. Several methods exist
for code localization, that are well characterized by accuracy and speed.
Particularly, high-speed processing places need reliable automatic bar-
code localization, e.g. conveyor belts and automated production, where
missed detections cause loss of profit. Our goal is to detect automatically,
rapidly and accurately the barcode location with the help of extracted
image features. We propose a new algorithm variant, that outperforms
in both accuracy and efficiency other detectors found in the literature
using similar ideas, and also improves on the detection performance in
detecting 2D codes compared to our previous algorithm.

Keywords: barcode detection, morphological operations, bottom-hat
filter, distance map.

1 Introduction

Barcode detection is required in a wide range of real-life applications. Computer
vision algorithms vary considerably and each application has its own require-
ments. Many barcode localization methods have been developed for automati-
cally segmenting barcode patterns from images.

The term barcode can be used for various types of visual codes. In this pa-
per, we deal with classical 1D barcodes and stacked 2D barcodes. Barcodes are
not human-readable and traditional devices have been widely adopted for per-
sonal use. The traditional barcode structure is simple: the variation of different
thickness of parallel light and dark bars represent information. Such codes can
be read optically by a machine. Code types vary from each other in what con-
figurations of black and white bars correspond to a given character. The most
frequent application of barcodes is the trade, e.g. in goods packing. The identi-
fication number visualized with symbols permit the use of electronic reading by
machines which support and speed up the information streaming. Barcodes can
have fix or variable length. In fix length codes, the standard specifies how many
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Fig. 1. Barcode patterns (from left to right). Top row (1D codes): Code39, Codabar,
Code128, UPC-A; Middle row (1D codes): UPC-E, EAN-13, EAN-8, I2of5; Bottom
row (2D codes): Codablock, PDF417, Data Matrix, QR.

characters are represented in a code, while the other type may encode an arbi-
trary number of characters. Different standard code types have specific features
that help their localization. Figure 1 shows a set of standard 1D barcode types
and some widely used 2D barcode types. [1]

Barcode localization methods have two competing objectives: detection accu-
racy and speed. For industrial environment, accuracy is crucial since undetected
(missed) codes may lead to loss of profit. Processing speed is a secondary de-
sired property of the detectors. On smartphones, accuracy is not so critical,
since the device interacts with the user and reshooting is easily done, never-
theless, fast (and reasonably accurate) barcode detection is desirable. Various
techniques are used to locate and decode barcodes from photographs: from the
classical line scanning technique [2], through the widely studied morphological
approaches [3–10], and recent studies using wavelets [11].

We propose a novel barcode detection algorithm based on bottom-hat filtering
and other simple operations from mathematical morphology, which ensure high
efficiency. We compare the effectiveness of the proposed method with several
approaches from the literature and show that, in most cases, our algorithm out-
performs the others. It also improves on the detection accuracy of our previous
algorithm [10] for 2D stacked barcodes.

2 Methods

In this section, we present several barcode detection algorithms that use differ-
ent approaches to determine the barcode location in an image. The methods
presented in Sections 2.1, 2.2, and 2.3 were re-implemented according to the
original papers. Where some details were not available in the papers, we made
our best effort to fill in the gaps, and this is also noted in our description. The
new proposed algorithm is presented in full detail in Section 2.4. For visual refer-
ence, Figure 2 illustrates intermediate stages of the processing by the described
algorithms.
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Fig. 2. Intermediate stages of the processing by the described algorithms. Columns:
TT, ETJC, JJXQ, MKLN, and Proposed (see text). First row: original image, last row:
final output.

Nowadays, the quality of digital images are usually very good, although low-
quality recordings also exist. The reason for lesser quality may be e.g. the cap-
turing device, and the environment may also impose problems. Therefore, often
there is a need for correcting (improving) the image quality before the particular
detection process takes place.

2.1 Method Based on Basic Morphological Operations

In Tuinstra’s [3] algorithm, the author relies on that in the barcode region, the
intensity difference between the stripes is high, so the gradient would highlight
the bars. Sobel kernels are used to estimate the gradient in the x and y directions.
Next, the gradient image is thresholded, pixels having a high gradient value are
selected. On the binary image, first a hit-or-miss transformation is performed
with a line structuring element, which, unfortunately, is not specified in the
original article [3]. Next, morphological dilation is performed in order to merge
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nearby but not necessarily connected objects to be able to compose a region.
The structuring element is square shaped, but its exact size was not fixed in the
paper. We used a 10×10 block SE matching the size used for the previous step. In
practice, the image size determines this parameter. Morphological erosion follows
to discard thin objects from the image and remove undesired segments which
were fused by the dilation. Here, the structuring element is greater than that
used for dilation. We used a 20×20 block SE. The final operation is a solidity
test that compares the number of pixels turned on in a region to the convex hull
of the region. After this step, likely false positive objects are removed and only
barcode regions remain.

2.2 Method Based on Image Scanning

The procedure of Telkin and Coughlan [4] was designed for visually impaired
or blind people to facilitate their everyday lives. It is presented in two main
phases. First, the noise level is reduced by Gaussian smoothing. Since the original
paper did not specify the σ parameter, we used the same value of σ = 0.3
as in our Proposed method. Then, pixel gradient values are calculated using
the Sobel operator, thus yielding a kind of edge enhancement in the image.
Next, binarization is done so that pixels having a gradient above the threshold
become white and the others black. We used a threshold value set to 95% of the
maximal gradient value. In the detection phase, first, the image is scanned in four
directions (horizontally, vertically, and in direction of the diagonals (±45◦)). The
horizontal scan comes first, wherein those edge pixels are found whose orientation
is vertical. The method looks in the vicinity of each edge pixel for opposite
polarity pixels. An area will be kept if there is a sufficient number of such pixels
in the area (as if they were part of a line segment). Vertical scan follows, when
those segments remain which have almost the same beginning and end so they
most likely belong to barcode areas. At the final stage of the detection the
entropy value is calculated for each pixel in the resulting image that describes
the disorder of intensities within a given neighborhood around each pixel.

2.3 Method Based on Bottom-Hat Filtering

The algorithm by Juett and Qui [5] is based on bottom-hat filtering. In prepro-
cessing, the method corrects the non-ideal image with simple contrast stretching
in order to highlight differences between light and dark areas. Next bottom-hat
filtering is applied, wherein the size of the structuring element depends on the
widest bar in the barcode to be detected. The article specified 25×25 block SE
for images of size 720×480 pixels. After binarization, the contour is defined. It is
followed by the step to determine the orientation of the bars, which is performed
by directional image openings using a relatively large linear structuring element.
These openings are performed at 16 different orientations, with a step of 11.25◦.
The directional opening images are summed and a low resolution density image
is calculated, which is then converted back into binary. Each region represents a
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potential barcode region. In the last phase, objects whose area is smaller than a
given threshold are eliminated.

2.4 Proposed Method Using Bottom-Hat Filtering

Our aim was to devise an algorithm with sufficiently high speed and accu-
racy. The presented algorithm is a modified version of our previously published
method [10], and is summarized in Figure 3. Similarly to the above described

ALGORITHM:

f := (f • SE1)− f
for all pixels do

if fi,j > it then fi,j ← 1
else fi,j ← 0

Calculate Euclidean distance map
Compute the minimum X of row averages in the distance map
Drop those pixels, whose distance value is greater than X
f := f ⊕ SE2

f := f � SE3

for all components do
if component area > mina then Record this component as a barcode segment
else Discard this component

Fig. 3. Pseudocode of the Proposed algorithm

methods [3–5], our algorithm consists of two main phases. In the preprocessing
phase, the input image is converted to grayscale, because the pattern of dark
bars on a light background is apparent regardless of some codes being printed
using colors in certain applications.

To reduce the image noise, we smooth with a Gaussian kernel using σ = 0.3.
Edge enhancement follows. Instead of calculating grafient values (like done in
most barcode localization methods), we use bottom-hat filtering that is also
based on intensity differences. Although bottom-hat filtering is less attractive
regarding operation time than other non-directional edge enhancement opera-
tions, its accuracy is higher. The proposed algorithm calculates the frequency of
the most frequently occuring element. Later we refer to this value as MaxFreq.
We defined a linear structuring element and its rotated version by 90◦. We per-
form bottom-hat filtering using both structuring elements and later use the one
that produces stronger matches. The grayscale images are then converted to
binary, using a standard thresholding technique. We used MaxFreq value and
image size for calculating this threshold value. We assumed that, if MaxFreq is
very high, the image is noisy or blurred or both. In this case, we set the thresh-
old to 95% of the maximal value, otherwise the threshold is set to 80% of the
maximal value.
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After preprocessing, the digital image is suited to finding segments which
contain barcode. The resulting image so far contains many false positive regions.
There are many small connected components which satisfy the criteria but do
not belong to barcode regions. These false regions are eliminated using an area
threshold. Selecting a too high threshold value could remove small barcodes
from high-resolution images. If the image size is higher than 800×800, we set
the threshold to half the size of the largest component, otherwise the threshold
is set to 1/4 of the size of the largest component.

We take advantage of the structure of the barcode, the fact that it consists of
approximately regularly spaced parallel stripes. So, for each pixel, we calculate
the Euclidean distance of the pixel from the nearest nonzero pixel. Using the
distance map, objects that are far from other objects can be easily dropped, and
only nearby objects (sort of a cluster of bar segments) will be kept. The distance
threshold is selected as the minimum of the row averages of the distance map.

Our observations showed, that for the final detection steps, mostly dense text
regions remain along with the supposedly barcode areas. Since a barcode consists
of a sequence of parallel bars that are located at varying distance from each other,
they do not compose a connected component. Therefore, to merge these patterns,
we use dilation with a square structuring element whose size is defined as S =
max(40,width of the widest bar∗3). Nevertheless, this dilation may also thicken
and merge unwanted, non-barcode locations as well. To cope with this problem,
we also use the dual operation, i.e. erosion. Here, the structuring element is
linear, consistent with the size of the 1D barcodes. The structuring element size
is less than (about 1/3 of) the one used for dilation, i.e., it matches the width
of the widest bar. After erosion, those areas that likely contain barcodes can be
found. Of course, there may still be false positive objects. These are removed in
the last step on the basis of their size and proportions. Similarly to the previous
step, if the image size is higher than 800×800, objects smaller than half the size
of the largest object are removed, otherwise objects smaller than 1/4 of the size
of the largest object are removed.

3 Evaluation

In this section, we compare the discussed methods’ effectiveness under specific
conditions. We use the following acronyms for referring to the algorithms: TT
(Timothy R. Tuinstra’s method [3]), ETJC (Ender Telkin és James M. Cough-
lan’s method [4]), JJXQ (James Juett és Xiaojun’s method [5]), MKLN (our
previous method [10]), and Proposed (Prop.) for our new proposed algorithm.

3.1 Test Suite, Test Environment, and Implementation

We generated barcodes digitally with the types shown in Figure 1. Only one
base image was chosen for each code type. Test images contained one or three
barcodes from each types, respectively, and images were affected by distortions.
For each base image, we generated all combinations of the following properties:
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rotation in every 15◦ from 0◦ to 180◦, Gaussian blur filter using a 3×3 kernel
with 6 different values of σ, additive noise from 0% to 50% with a step of 10%,
and an optional 15% shear. In summary, the test set contained images presenting
either 1 or 3 codes of 10 different barcode types, with 12 orientations, 6 different
blur filters, 6 different rates of additive noise, with or without shear, totaling in
17,280 images. Figure 4 shows a selection of generated test images with various
code content and applied distortions.

Fig. 4. A selection of generated test images with various code content and applied
distortions

Another 100 images containing barcodes were collected from real-life images
without any modifications. These images presented scratches, blur, minor light
reflections and distortions also.

The methods were implemented in MATLAB using the Image Processing
Toolbox. Evaulation was performed on a computer with Pentium(R) Dual-Core
2.30GHz CPU.

3.2 Results and Discussion

In this section, we show how effective the implemented algorithms are on images
with various characteristics, and compare their running time also. For calculat-
ing accuracy we used the Jaccard coefficient of similarity, measuring the overlap
of the bounding boxes of the real and the detected barcode region. J(A,B) =
|A ∩B|
|A ∪B| , where A denotes the bounding box of the real barcode and B that of
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the detected code. This not only measures the success of detection, but also
considers the delination accuracy of the methods.

The performance of the algorithms do not seem to depend on the applied
stretching in the test images and also seem to be insensitive to rotation as well.

We can conclude that all five algorithms are capable of effectively localizing
barcodes. ETJC method is fast, but it looses efficiency when there are several
barcodes in the image and noise is also present. TT algotithm is slower than
the others, which can most probably be attributed to that here the image is
scanned in four different orientations. JJXQ, the method based on bottom-hat
filtering falls off to the discussed fast algorithms with respect to running time.
The process is slower than the others because in the detection phase the image
is scanned in 16 different orientations. However, this brings better accuracy to
the process at the expense of more computation.

Our proposed algorithms are also very fast. In most cases, faster procedures
locate barcodes less accurately or not at all, as if loss of accuracy were the
price for the speed gain. However, in our case, speed is not coupled with a
significant cost in accuracy. From the evaluation output we can conclude that
the proposed procedure has second best running efficiency for all test images
(only our previous version executes faster), and in many cases it also shows best
accuracy. The weakness of the method appears when the images is very noisy or
when there are such image areas which are similar to a barcode.

The efficiency of the methods, i.e. processing time is also an important aspect.
Table 1 presents the execution time of the detection methods for images with 1
or 3 barcodes. Here, one can easily appreciate the significant differences between
the different approaches.

Table 1. Running time of the algorithms. Mean values (± standard deviation) (ex-
pressed in seconds) for all test images of a certain class

TT ETJC JJXQ MKLN Proposed

1 code
1D 0.23±0.13 0.67±0.22 0.81±0.43 0.13±0.10 0.16±0.08
2D 0.21±0.14 0.77±0.47 0.73±0.44 0.12±0.12 0.14±0.09

3 codes
1D 0.54±0.35 1.73±0.66 1.86±0.78 0.18±0.09 0.35±0.12
2D 0.46±0.21 1.70±0.54 1.68±0.71 0.18±0.10 0.28±0.07

Subsequent tables show, how the algorithms behave on images which contain
either one or three code pieces of various 1D and 2D barcodes types. The struc-
ture of barcode types varies, which also has an effect on how well the algorithms
can perform. Accuracy of the detection methods for images containing a single or
3 pieces of codes for various code types is presented in Table 2. TT, ETJC, and
JJXQ has very bad performance for Code128, however MKLN and the Proposed
algorithm handle this variable-length code as well as the fixed-length types. For
the 2D codes, ETJC shows exceptionally good accuracy, but the other methods
also perform well on these stacked barcodes. There is more variance in per-
formance on images with 3 codes, and some methods (TT, MKLN, Proposed)



472 M. Katona and L.G. Nyúl

Table 2. Accuracy of the algorithms for various types of codes, for images containing
1 or 3 codes. Mean values (expressed in percent) for all distorted test images with 1D
barcodes and for all test images with 2D codes.

1 code 3 codes
TT ETJC JJXQ MKLN Prop. TT ETJC JJXQ MKLN Prop.

1D

Codabar 99.0 98.9 99.2 99.9 98.6 83.8 56.2 52.7 92.8 87.5
Code128 50.4 63.6 70.9 95.7 93.7 83.6 95.0 79.6 80.1 84.8
Code39 98.7 94.8 86.3 99.4 100.0 83.3 90.5 67.3 94.7 90.5
EAN-13 98.8 94.7 91.7 98.9 99.3 83.3 91.4 76.6 99.3 99.2
EAN-8 98.7 99.6 84.6 99.6 98.2 83.3 97.2 81.8 99.4 95.9
I2of5 98.6 84.6 84.4 93.1 92.5 78.8 35.5 93.8 99.2 84.9

UPC-A 99.1 98.2 94.9 86.4 100.0 74.6 65.5 92.6 99.9 95.4
UPC-E 82.7 92.6 76.0 99.6 100.0 98.7 77.5 96.7 99.3 92.5
all 1D 91.8 86.4 78.9 96.6 96.8 74.0 74.7 77.4 95.6 89.2

2D
Codablock 87.0 99.8 83.3 87.7 100.0 86.6 100.0 80.0 90.7 94.2
PDF417 81.7 99.6 79.7 93.9 97.6 83.3 100.0 83.9 91.7 90.8
all 2D 85.0 99.7 82.5 90.8 99.1 85.0 100.0 82.4 91.2 92.5

show a solid performance while the others very much depend on the type of code
present in the image.

The accuracy of the algorithms degrades on distorted images. Next, we analyze
the effect of distortions on efficiency. Table 3 shows the methods’ behavior with
respect to the level of blur applied to the test images. Image smoothing does
not change the performance considerably. Although there is a noticeable inverse
relation between values of σ and accuracy, this is not significant. It is interesting
to note that in some cases the barcode detection accuracy is higher in images
with three barcodes than for images with a single code present. This can be due
to the fact that relative size (w.r.t. image size) of individual codes are smaller in
the 3-code examples. ETJC, MKLN, and the Proposed method show outstanding
accuracy in images which contain 2D barcodes and there are not considerable
differences between the precision values.

In a similar manner, we analyzed how the algorithms perform on images hav-
ing different levels of noise added. We can see from Table 4 that each algorithm
is somewhat sensitive to noise. The studied literature methods loose much of
their accuracy as the noise level increases, however, our methods only degrade
to a lesser extent.

We also tested the methods on a set of 100 real-life images. These images
contain 1D barcodes each. The accuracy of the algorithms are respectively 92%
(TT), 91% (ETJC), 92% (JJXQ), 94% (MKLN), and 96% (Proposed).

In Figure 5 we show two result images of our algorithm for 2D barcodes. Here,
we have to locate all parts of the barcode, because stacked barcodes contain data
everywhere and there is a much smaller visual redundancy as in 1D barcodes.

For the digitally generated images maximal size was 800×800. At this resolu-
tion TT and JJXQ cannot compete with the other two methods in speed. MKLN
and the Proposed method is not far better on 800×800 images than ETJC, but
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Table 3. Accuracy of the algorithms for different blur levels, for images containing a
single code and for those containing 3 codes. Mean values (expressed in percent) for
all distorted test images with 1D barcodes and for all test images with 2D codes.

1 code 3 codes
TT ETJC JJXQ MKLN Prop. TT ETJC JJXQ MKLN Prop.

1D

0.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.5 91.2 88.4 91.3 96.1 95.7 93.8 94.4 92.4 98.0 100.0
1.0 90.4 88.5 89.4 97.1 95.4 92.4 86.7 89.1 98.0 100.0
1.5 90.4 88.5 89.4 96.8 95.4 91.7 86.7 89.1 97.0 100.0
2.0 90.3 90.4 87.5 97.1 93.3 86.3 82.9 90.2 97.0 100.0
2.5 90.4 90.4 87.5 97.1 93.3 82.7 82.0 90.2 97.0 100.0

all 1D 90.5 89.1 89.6 96.7 94.3 82.7 77.9 90.6 97.5 100.0

2D

0.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.5 88.8 100.0 83.1 95.8 100.0 89.1 100.0 83.2 100.0 100.0
1.0 88.4 100.0 82.6 95.7 100.0 87.7 100.0 82.5 100.0 100.0
1.5 87.7 100.0 82.6 95.7 100.0 87.0 100.0 82.5 100.0 100.0
2.0 83.6 100.0 82.6 95.7 100.0 85.9 100.0 74.5 100.0 100.0
2.5 83.6 100.0 82.6 95.7 100.0 85.0 100.0 74.5 100.0 100.0

all 2D 87.5 100.0 83.3 95.8 100.0 87.0 100.0 82.9 100.0 100.0

Table 4. Accuracy of the algorithms for different noise levels, for images containing a
single code and for those containing 3 codes. Mean values (expressed in percent) for
all distorted test images with 1D barcodes (top), and for all test images with 2D codes
(bottom).

1 code 3 codes
TT ETJC JJXQ MKLN Prop. TT ETJC JJXQ MKLN Prop.

1D

0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
10 90.2 89.5 93.9 97.4 97.1 94.8 97.5 92.6 96.0 95.8
20 89.7 86.9 87.5 97.4 97.1 89.4 87.6 89.5 96.3 91.6
30 89.4 86.2 79.2 97.4 92.5 84.6 86.3 82.7 96.7 95.8
40 90.1 90.1 78.5 97.8 92.5 87.2 84.9 79.9 96.7 95.8
50 93.3 84.2 69.9 94.9 91.6 73.8 82.7 64.4 90.6 91.6

all 1D 90.5 88.6 83.5 96.8 95.4 87.6 87.3 84.7 95.6 95.1

2D

0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
10 87.7 100.0 84.7 94.4 100.0 86.3 100.0 84.0 100.0 100.0
20 87.7 98.6 81.9 94.2 100.0 85.8 100.0 78.9 100.0 100.0
30 87.7 100.0 79.3 94.2 100.0 90.4 100.0 73.0 100.0 100.0
40 85.7 100.0 76.7 94.2 100.0 86.3 100.0 72.6 100.0 100.0
50 77.8 98.6 69.6 92.3 100.0 84.9 100.0 71.4 85.7 100.0

all 2D 85.8 99.5 77.3 94.8 100.0 86.4 100.0 73.3 95.6 100.0
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Fig. 5. Display examples of detection output by the propsed algorithm for PDF417
(left) and Codablock (right) code samples

when executing them on 2500×1722 images, ETJC runs for 3.2 sec, while our
algorithms finish under 1.5 sec. The Proposed algorithm is somewhat slower than
the MKLN version due to the extra computation of the distance map. We can
state, that for larger images there are considerable execution time differences
between the studied algorithms.

Our algorithms outperform the three algorithms from the literature both in
terms of accuracy an speed. Note, that methods which use bottom-hat filtering in
the preprocessing phase, have higher accuracy than the others, but their running
times are quite different from each other. JJXQ looses its accuracy proportional
to image degradation, while our proposed algorithms maintain higher accuracy
for those cases as well. The tests also demonstrated that in all cases the methods’
running time significantly grows with increasing image size. Among the two
methods of ours (MKLN and Proposed), MKLN accuracy is slightly better than
that of the Proposed version for the entire pool of our synthetic test images,
including many 1D as well as 2D code examples. Regarding images with 2D
stacked codes only, the newly proposed algorithm clearly outperforms the MKLN
version.

4 Conclusion

We have presented a new version of our barcode detection algorithm and com-
pared its performance (in terms of accuracy and speed) with our previous version
and three other methods from the literature using similar ideas. We concluded
that these algorithms do not specialize for individual barcode types, they can
efficiently detect various types of 1D and stacked 2D barcodes, but there are sub-
tle differences in performance. We have built a test database containing 17,280
synthetic images representing various degradations (blur, noise, shear) as well
as collected 100 real images for evaluation. We demonstrated that the proposed
new methods are less sensitive noise than those from the prior art. Our pro-
posed methods outperform the other three in detecting 1D codes both in terms
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of accuracy and speed, and the new proposed version has better accuracy for 2D
stacked barcode examples.
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Abstract. We propose a method for accelerating the computation of
fuzzy connectedness. The method is based on a precomputation step –
the construction of a supervertex graph whose vertices are clusters of im-
age elements. By constructing this supervertex graph in a specific way,
we can perform the bulk of the fuzzy connectedness computations on
this graph, rather than on the original image, while guaranteeing exact
results. Typically, the number of nodes in the supervertex graph is much
smaller than the number of elements in the image, and thus less compu-
tation is required. In an experiment, we demonstrate the ability of the
proposed method to accelerate the computation of fuzzy connectedness
considerably.

Keywords: Fuzzy Connectedness, Supervertex graph, Interactive
segmentation

1 Background

It is often crucial that image processing methods are computationally efficient.
This holds in particular for interactive image segmentation methods, where the
feedback to the user should be computed in real-time. Fuzzy connectedness, in-
troduced by Udupa et al. [6], forms the core of many methods for interactive
image segmentation.

Here, we will present fuzzy connectedness in a graph theoretic framework. In
this context, an image is represented by its pixel adjacency graph, i.e., a graph
whose vertex set is the set of image elements, and whose edge set is given by an
adjacency relation on the image elements. Each path through this graph is as-
signed a real valued strength of connectedness. The fuzzy connectedness between
two image elements is defined as the maximum strength of connectedness of
any path between the elements. Since its introduction, the fuzzy connectedness
framework has been extended to support the use of vectorial data and prior infor-
mation such as object/background intensities (through the homogeneity-based
component of the fuzzy affinity), intensity distribution or local size (through the
object feature-based component of the fuzzy affinity). See for example [1,2,8].

Here, we focus on the following computational problem:

Problem 1. Given a subset of the elements in an image (called seedpoints), find
a mapping that assigns to every image element the fuzzy connectedness between
the element and the seedpoint to which it is most closely connected.
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A formal definition of this problem is given in Section 3.2. Using dynamic pro-
gramming, Problem 1 can be solved in O(n logn) operations, where n is the
number of image elements. While this is an efficient algorithm, the real-time
requirement of fuzzy connectedness is not always met for large data sets. Here,
we show that this computation can be accelerated by precomputation, while still
guaranteeing exact results. The proposed approach is particularly effective if we
want to solve Problem 1 many times for the same image, but with different sets
of seedpoints, as is often the case in interactive segmentation.

The proposed method is based on pre-computing a supervertex graph, whose
vertices are disjoint sets (supervertices) of image elements. We show that by
constructing this supervertex graph in a specific way, we can guarantee the
following property: If two image elements belong to different supervertices, then
fuzzy connectedness between the pixels, in the pixel adjacency graph, is equal
to the fuzzy connectedness between their corresponding supervertices. Typically,
the supervertex graph has much fewer vertices than the original pixel adjacency
graph, and thus less computations are required.

2 Related Work

Falcão et al. [3] proposed a differential algorithm for solving a generalized version
of Problem 1. The differential algorithm solves the problem for a given set of
seedpoints in sublinear time, provided that a solution is known for a similar set
of seedpoints.

Another approach for accelerating the computation of fuzzy connectedness is
given in [7], where a GPU implementation is presented. The authors report a
speedup of about 7-14 times on large datasets. Note that this approach, due to
the GPU programming, it is hardware dependent.

The proposed method is also related to the hierarchical clustering technique [5]
in mathematical morphology, which is a sequence of non-overlapping clusters
such that, at each level, each cluster is contained in a cluster in the next level.
Common approaches include watershed-based, where the clustering is guided by
watershed segmentations where adjacent regions are merged to get the hierar-
chical representation, and tree-based approaches, where flat-zones are iteratively
merged with the most similar adjacent flat-zones.

3 Preliminaries

3.1 Graphs

We define a (undirected, edge weighted) graph as a triple G = (V (G), E(G), A)
where

– V (G) is a set.
– E(G) is a set of unordered pairs of distinct elements in V , i.e., E ⊆ {{v, w} ⊆
V | v �= w}.

– A is a map A : E → [0, 1].
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The elements of V (G) are called vertices of G, and the elements of E(G) are
called edges of G. In order to simplify the notation, the vertices and edges of a
graph will be denoted V and E instead of V (G) and E(G) whenever it is clear
from the context which graph they belong to. An edge spanning two vertices v
and w is denoted ev,w. If ev,w is an edge in E, the vertices v and w are adjacent.
The value of A represents the affinity, or degree of similarity, between adjacent
vertices in the graph, i.e., A(ev,w) is high if v and w are closely related.

A path in G is an ordered sequence of vertices π = 〈vi〉ki=1 = 〈v1, v2, . . . , vk〉
such that evi,vi+1 ∈ E for all i ∈ [1, k − 1]. For any path π = 〈v1, v2, . . . , vk〉, we
define the reverse path π−1 as 〈vk, vk−1, . . . , v1〉. A path consisting of a single
vertex is called a trivial path. We denote the origin v1 and the destination vk
of π by org(π) and dst(π), respectively. If π and τ are paths such that dst(π) =
org(τ), we denote by π · τ the concatenation of the two paths. The set of all
possible paths in G is denoted ΠG. The set of all possible paths in G starting at
v and ending at w is denotedΠG(v, w). The subscriptG will be omitted whenever
it is clear from the context which graph we are referring to. In the following, we
will only consider connected graphs, i.e., Π(v, w) �= ∅ for all v, w ∈ V .

3.2 Fuzzy Connectedness

The strength of connectedness μ(π) of a path π = 〈v1, v2, . . . , vk〉 is defined as

μ(π) =

{
1 if π is trivial;
min

i∈[1,k−1]
A(evi,vi+1) otherwise.

. (1)

Definition 1. The fuzzy connectedness, FCG(v, w), between two vertices v, w ∈
V is defined as

FCG(v, w) = max
π∈Π(v,w)

μ(π) . (2)

We are now ready to give a formal definition of Problem 1, that was outlined in
Section 1.

Problem 1. Given a set of vertices S ⊆ V (called seedpoints), find a mapping
φ : V → [0, 1] such that φ(v) = max

w∈S
FCG(v, w).

Problem 1 can be solved in O(|V | log |V |) operations by Algorithm 1 (with λ =
0). The key to an efficient implementation of Algorithm 1 is to store the set Q
in a data structure that allows rapid extraction of the element with maximum
value, e.g., some kind of priority queue. See, e.g., [4] for details.

4 Supervertex Graphs

Let G = (V,E,A) be a graph and let C = {C1, C2, . . . , Ck} be a partition of V .
Every vertex v ∈ V belongs to exactly one element of C, denoted C(v).
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Algorithm 1. A1(G,S, λ)

Input: A graph G = (V,E,A) and a set S ⊆ V of seedpoints. λ ∈ [0, 1]
Output: A map φ : V → [0, 1].
Auxiliary: Two sets of vertices F ,Q whose union is V .

1 Set F ← S, Q ← V \ S;
2 For all v ∈ Q, set φ(v) ← 0;
3 For all v ∈ F , set φ(v) ← 1;
4 while Q �= ∅ and max

v∈Q
φ(v) ≥ λ do

5 Remove from Q a vertex v such that φ(v) is maximal, and add it to F ;
6 foreach w ∈ N (v) ∩Q do
7 if min(φ(v),A(ev,w)) > φ(w) then
8 Set φ(w) ← min(φ(v), A(ev,w));

Definition 2. The boundary ∂C of the partition C is the set {ev,w ∈ E(G) |
C(v) �= C(w)}.

Definition 3. Let Ci, Cj ∈ C. The boundary ∂Ci, Cj between Ci and Cj is the
set {ev,w ∈ E(G) | v ∈ Ci and w ∈ Cj}.

Definition 4. The supervertex graph S induced by G and C is defined by:

V (S) = C . (3)

E(S) = {{Ci, Cj} | ∂Ci, Cj �= ∅} . (4)

A(eCi,Cj) = max
e∈∂Ci,Cj

A(e) for all eCi,Cj ∈ E(S) . (5)

Definition 5. Let W ⊆ V (G) and let S be the supervertex graph induced by G
and C. The image of W in S is defined as the set

{Ci | ∃v ∈W such that v ∈ Ci} . (6)

Definition 6. Let π = 〈vi〉ki=1 ∈ ΠG and let S be the supervertex graph induced
by G and C. The image of π in S is defined as the sequence obtained by removing
from 〈C(vi)〉ki=1 all but one vertex from every set of consecutive equal vertices.

5 α-Connectedness

Let α ∈ [0, 1] be a fixed value. We now define a binary relation, α−connectedness,
on V as follows

Definition 7. Two vertices v, w ∈ V are α-connected if FC(v, w) ≥ α. The
notation v ∼ w

α,G
is used to indicate that v and w are α-connected on G.



480 F. Malmberg and R. Strand

Theorem 1. α-connectedness is an equivalence relation, i.e., for any a, b, c ∈ V
it holds that

1. a ∼ a
α,G

.

2. if a ∼ b
α,G

then b ∼ a
α,G

.

3. if a ∼ b
α,G

and b ∼ c
α,G

then a ∼ c
α,G

.

Proof. 1. μ(〈a〉) = 1 ≥ α for any α ∈ [0, 1].
2. If π ∈ Πa,b such that μ(π) ≥ α, then π−1 ∈ Πb,a and μ(π−1) = μ(π).
3. Let π ∈ πmax(a, b) and let τ ∈ πmax(b, c). Then μ(π ·τ) = max(μ(π), μ(τ)) ≥
α, and so a ∼ c

α,G
.

!�

Thus, the set of equivalence classes of ∼
α,G

is a partition of V .

6 Method

Let G be a graph, let S ⊆ V (G) be a set of seedpoints, let α ∈ [0, 1] be a fixed
value, and let C be the set of equivalence classes of ∼

α,G
. Let S be the supervertex

graph induced by G and C, and let S′ be the image of the set S in S. We propose
the following procedure for solving Problem 1:

1. Compute φG = A1(G,S, α). Additionally, store the set F containing all
vertices v ∈ V (G) for which min

w∈S
FCG(v, w) ≥ α.

2. Compute φS = A1(S, S′, 0).
3. The solution to Problem 1 is then given by

min
w∈S

FCG(v, w) =

{
φG(v) if v ∈ F ;
φS(v) otherwise.

. (7)

In the remainder of this section, we will prove the correctness of the above
procedure.

Lemma 1. For all ev,w ∈ ∂C, it holds that A(ev,w) < α.

Proof. Assume to the contrary that A(ev,w) ≥ α. Then v ∼ w
α,G

, contradicting

that ev,w ∈ ∂C.

Lemma 2. Let π = 〈Ci〉ki=1 be a non-trivial path in S, and let � be the set of
paths in G whose image in S is π. Then μ(π) = max

τ∈�
μ(τ).

Proof. Let τ ∈ �. We can rewrite τ on the form τ1 · τ2 · . . . · τk, where each
subpath τi is contained in Ci. Then, by the definition of C, there exists a path
τ ′ = τ ′1 · τ ′2 · . . . · τ ′k ∈ � where each subpath τ ′i satisfies the following properties:
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1. org(τ ′i ) = org(τi) .
2. dst(τ ′i) = dst(τi) .
3. μ(τ ′i) ≥ α .

From Lemma 1 it follows that μ(τ ′) = max
i∈[1..k−1]

A(edst(τ ′
i),org(τ

′
i+1)

). The maxi-

mum value of μ(τ ′) is thus attained by selecting the endpoints of each subpath
τ ′i such that edst(τ ′

i),org(τ
′
i+1)

∈ argmax
e∈∂Ci,Ci+1

A(e). The strength of connectedness of

this optimal path is μ(τ ′) = min
i∈[1..k]

max
e∈∂Ci,Ci+1

A(e) = min
i∈[1..k]

A(eCi,Ci+1) = μ(π).

!�

We are now ready to derive our main result:

Theorem 2. Let v, w ∈ V (G), such that FCG(v, w) < α. Then FCG(v, w) =
FCS(C(v), C(w)).

Proof. For all π ∈ ΠS , let �(π) be the set of paths in G whose image in S is
π. Then ΠG(v, w) =

⋃
π∈ΠS (C(v),C(w))�(π), and FCG(v, w) = max

τ∈ΠG(v,w)
μ(τ) =

max
π∈ΠS(C(v),C(w))

max
τ∈�(π)

μ(τ). Since FCG(v, w) < α, the image of any path from v to

w in S is non-trivial, and so by Lemma 2 we have FCG(v, w) = max
τ∈ΠG(v,w)

μ(τ) =

max
π∈ΠS(C(v),C(w))

μ(π) = FCS(C(v), C(w)). !�

7 Experiment

To demonstrate the performance of the proposed method, we performed an ex-
periment using the two images shown in Figure 1. Pixel adjacency graphs were
built from these images using standard 4-connectivity. The affinity between ad-
jacent pixels was defined as

A(ev,w) = 1− 1

3
(|IR(v)− IR(w)| + |IG(v)− IG(w)|+ |IB(v)− IB(w)|) , (8)

where IR(v), IG(v) and IB(v) are the intensities of the red, green and blue
channels, respectively, at the image element corresponding to the vertex v.

Fifty sets of seedpoints, each containing a single randomly selected seedpoint,
were created. For each set of seedpoints, Problem 1 was solved using the proposed
method with α-values ranging from 0 to 1. For reference, we also solved the
problem using Algorithm 1 with λ = 0. The total execution time was measured
for both methods. Figure 2 shows the relative execution time of the proposed
method, compared to running Algorithm 1 without the precomputation step.
The reduction in execution time depends on the value of α. For the ”Peppers”
image, the maximum measured speedup was about a factor 4. For the ”Squares”
image the maximum measured speedup was about a factor 40.
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Fig. 1. Images used in the experiment. (Left) ”Peppers”. (Right) ”Squares”

Fig. 2. Relative execution time. (Left) Execution time for the ”Peppers” image. (Right)
Execution time for the ”Squares” image.

8 Conclusions

We have presented a method for accelerating the computation of fuzzy connect-
edness on undirected graphs. The method requires a precomputation step – the
construction of a supervertex graph – and it is therefore most effective in sit-
uations where we wish to repeatedly compute fuzzy connectedness on a static
graph with a varying set of seedpoints. One application where this situation
frequently occurs is interactive image segmentation.

In an experiment, we have demonstrated the ability of the proposed method to
accelerate the computation of fuzzy connectedness considerably. The reduction
in computation time depends on a parameter α used in the construction of the
supervertex graph. In future work we intend to investigate if this parameter can
be selected automatically, based on, e.g., the histogram of edge affinities in the
graph.
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Abstract. Second-generation connectivity opened the path to the use of
mask images to freely define connectivity among the image components.
In theory, any image could be treated as a mask image that defines a
certain connectivity. This creates a new problem in terms of which image
to use. In this paper, clustering masks suitable for the analysis of astro-
nomical images are discussed. The connectivity defined by such masks
must be capable of preserving faint structures like the filaments that link
merging galaxies while separating neighboring stars. In this way, the ac-
tual morphology of the objects of interest is kept. This is useful for proper
segmentation. We show that viscous mathematical morphology operators
have a superior performance and create appropriate connectivity masks
that can deal with the characteristic features of astronomical images.

1 Introduction

Second-generation connectivity [1–3] is an effective generalization of the notion
of connectivity. It models directly the perceptual clustering or partitioning that
is automatically made by an human observer while analysing an image or a scene.
Clustering lets objects close to each other in morphological terms to be consid-
ered as a single entity, whereas partitioning can split objects that are barely con-
nected. Algorithms that can compute attribute filters using second-generation
connectivity based on Max-Trees have been already presented, providing both se-
quential and parallel implementations [3,4] for shared-memory machines. Thus,
second-generation connectivity is an enabling technology in real applications. In
principle, any image can act as a mask that defines a connectivity, independently
from how it is computed. Given this lack of restriction, the problem is to evaluate
which masks work better according to the task at hand.

An important task in astronomy is to distinguish stars from galaxies and then
to classify the way in which the galaxies interact. It would be desirable to achieve
a clear separation of those objects that an human observer would immediately
identify as separate entities. Fig. 1 shows two examples of merging galaxies
connected by a filament. In such examples, nearby or double stars are visually
interpreted as separate stars while merging galaxies connected by a filament
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are identified as two linked objects. The state-of-the-art software used in the
astronomical community used for the detection, segmentation, and classification
of objects in astronomical images is called SExtractor [5]. SExtractor is based
on an estimation of the background grey levels to establish a threshold above
which an object is considered as such. Thresholding often removes not only
noise in the background but also important, if faint, structures like the filaments
between interacting galaxies. SExtractor would benefit from second-generation
connectivity, exploiting the notion of connected components of an image rather
than just cutting at a certain grey level threshold. The focus of this paper is
on finding connectivity masks that can be used specifically in the analysis of
astronomical images, moving from standard to viscous mathematical morphology
operators to generate them.

(a) (b)

Fig. 1. Filaments in merging galaxies; images taken from the Sloan Digital Sky Survey.

Filaments connecting merging galaxies such as those in Figure 1 reveal infor-
mation about the interaction between two galaxies. A filament is made of bright
speckles and faint elongated structures. These components must be treated as a
single connected entity and they should not be split up in smaller components,
which individually cannot describe the structure of the filament or its presence.
Clustering together the components of a filament, considering it a connected
component, can be achieved with connectivity masks generated by extensive op-
erators. The main problem is that, while we want to group together faint and
diffuse structures broken up by noise, we want to keep closely-spaced bright
structures, which have a far better signal-to-noise ratio, separated. We need op-
erators which adapt the degree of clustering to the local image intensity. Viscous
operators [6–8] seem ideally suited for the job.

The paper starts with the explanation of second-generation connectivity. Stan-
dard and viscous morphological operators are then presented. The next sections
are dedicated to the comparison of suitable masks for astronomical purposes,
showing how viscous morphological operators help in generating better masks.
We finish with conclusions and a discussion of future work.
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2 Second-Generation Connectivity

Let a binary image X be represented as a subset of some universal set V . Con-
nected filtering operates on the partition of V generated by the connected com-
ponents of X . In practice, V is often the discrete grid Zn, with n = 2 as the
most common case. Given this grid-based representation of the image domain, it
is natural to use adjacency relations to define connectivity. Therefore, in image
processing the standard form of connectivity is graph-based path connectivity,
in which a set is called connected if there exists a path made of adjacent (fore-
ground) points within the set that connects every pair of its points. To facilitate
this, we can extend our representation of a binary image as a subset of V to that
of a subgraph of the undirected graph (V,E), with E ⊆ V × V the set of edges.

A connected component is a connected set of maximal extent in the image.
More explicitly, a connected component to which some point x ∈ X belongs
is the union of all the connected sets C ⊆ X containing element x. Connected
components are retrieved by a family of connected openings denoted as Γx(X),
x ∈ V .

Fig. 2. Mask connectivity seen as modified path connection in a graph: (a) regular 4-
connectivity; (b) mask connectivity. White nodes are original pixels, grey nodes mask
pixels.

The concept of second-generation connectivity requires the creation of connec-
tivity masks that define a connectivity over an image. The easiest way to visualize
this is that we change the graph on which we work from (V,E) to (V ′, E′), as
shown in Figure 2. We extend the set of vertices of the graph by adding a sep-
arate plane containing the mask image, and thus V ′ = V ∪M , where M is the
set of mask-image pixels. We also remove the edges linking the original pixels
together. The mask image pixels (shown in grey) are connected to each other in
a conventional way. Furthermore, each original pixel is linked by an edge to the
corresponding mask pixel. This means the set of edges E′ ⊆M × (V ∪M) and
is disjoint from the original set of edges E. Thus, a pair of pixels x and y in the
original image is connected at grey level h if there is a path {x0, x1, . . . , xn} ⊂M
with (x0, x), (xn, y) ∈ E′ and such that f(xi) ≥ h, for all xi. Thus, the paths
through the mask dictate the connectivity. When computing any properties of
the connected components, the mask pixels are ignored, and only the original
pixels contribute [9].
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There is a simple relationship between the standard connectivity opening Γx
and the mask-based one ΓMx ,

ΓMx (X) =

⎧⎪⎨⎪⎩
Γx(M) ∩X if x ∈ X ∩M (1a)

{x} if x ∈ X \M (1b)

∅ otherwise (1c)

where M is the binary connectivity mask. A connectivity mask suitable for
clustering can be created through any desired extensive operator. For a given
mask M , the second-generation connected opening defined by ΓMx (X), with X
the image domain, returns as connected sets the intersection of the connected
components in the mask image with the image itself. Therefore, the components
in X are considered connected on the basis of the connectivity in the mask M
rather than of the connectivity in X .

Using this approach, the topological aspects of the components of the mask
image are exploited: the underlying connectivity is based on those and at the
same time the shape of the original components is preserved. Components that
are not connected in the original image can be connected through the underlying
mask. For example, if the mask is computed from a dilation of the original, the
concept of perceptual groups of image objects are perceived as clusters of con-
nected components if the distance between them is lower than a given threshold,
defined by the size of the structuring element. An example of the effect of a
clustering mask is shown in Fig. 3 for the globular cluster Messier 13.

(a) (b) (c) (d)

Fig. 3. Separating globular custer Messier 13 from isolated stars by an area thinning
preserving connected components with area between 50 pixels and a quarter of the
image size: (a) the original image; (b) the filtered image using no clustering mask; (c)
the mask generated through a standard closing; (d) the filtered image using (c) as a
connectivity mask.

3 Standard and Viscous Operators

The goal of viscous mathematical morphology [6–8] is to adapt the activity of a
structuring element to the local intensity information of an image. Morphological
filtering based on standard openings and closing applies the same transformation
for all the image level sets. It is desirable to have different smoothing for different
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grey values, for example in situations in which it is known that components with
high grey value do not require the same smoothing as components with lower
grey value. A gray level image f can be thresholded into level sets Xh = {x ∈
E : f(x) ≥ h} where h represents the intensity value, ranging from the minimum
to the maximum possible intensity value. The image can be reconstructed from
all the threshold sets by taking their supremum

∨
h h ·χh(f). The characteristic

function χh equals 1 if x ∈ Xh, else χh(x) = 0. Standard dilation δλ and erosion
ελ of an image f by a structuring element of size λ process all the threshold sets
with the same structuring element and commute with grey scale thresholding:

δλ(f) =
∨
h

hδλ[χh(f)] ελ(f) =
∨
h

hελ[χh(f)] (2)

In viscous mathematical morphology, the size of the structuring element is not
a fixed value λ. It is a function λ(h) defined for every intensity value h:

δviscλ (f) =
∨
h

hδλ(h)[χh(f)] εviscλ (f) =
∨
h

hελ(h)[χh(f)] (3)

The function λ(h) has been studied in two variants in previous work from Vachier
and Meyer [7]. They define two functions to model two different situations. In the
first case, regions of low intensity are dilated while points of higher intensity are
left unchanged, and vice-versa in the second case. The function proposed for the
former case was λ(h) = λm(M − h)/M and λ(h) = λmh/M in the latter, where
λm is the maximum possible size of the structuring element and [0,M ] is the
intensity range of the image. For the purposes of our work we are interested in
the first case that let faint objects be dilated more, thus increasing the likelihood
of identifying filaments. The equation that has been used in our work is Λ(h),
for h ≥ 1:

Λ(h) = λm
1

hp
(4)

Figure 4 illustrates Λ(h) for various p. Experiments were performed with different
values for the parameter p, ranging in the interval from 0.2 to 0.5 in which good
results were obtained. Since equation 4 must ideally create the biggest dilation
for the lowest intensity value actually present in the image, the equation is
rewritten as Λ(h) = λm

1
(h−min(f))p , where min(f) is the lowest intensity value

in the input image f , as a simple bias correction.
The dilation δΛ and erosion εΛ derived from equation 4 define an adjunction

and produce openings γΛ and closings φΛ:

δΛ(f) =
∨
h

hδΛ[χh(f)] εΛ(f) =
∨
h

hεΛ[χh(f)] (5)

and

γΛ =
∨
h

h · γΛχh φΛ =
∨
h

h · φΛχh (6)
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Fig. 4. Structuring element radius as a function of grey level h. Solid line shows the
equation studied by Vachier and Meyer; dotted and dashed lines show equations Λ(h),
with p = 0.1 and p = 0.5 respectively.

where γj = δjεj and φj = εjδj are the standard opening and closing by a struc-
turing element of size j. The closing φΛ can be decomposed in the corresponding
dilation and erosion:

δviscΛ (f) =
∨
h

hδΛ(h)[χh(f)] εviscΛ (f) =
∨
h

hεΛ(h)[χh(f)]. (7)

This means that a connectivity mask suitable for clustering can be obtained using
a viscous closing implemented as φΛ = εviscΛ δviscΛ , allowing for the preservation
of high intensities while dilating lower intensities.

4 Experiments and Discussion

The experiments aim to evaluate viscous operators in the generation of connec-
tivity masks suitable to be used for astronomical images. To identify a faint,
granular, galactic filament, clustering with a fairly large structuring element is
required at low grey levels. On the other hand, bright objects like stars do not
need to be processed by any underlying connectivity mask since they should be
identified as separate objects: little or no clustering is required in this case.

Reconstruction from markers [10] is used here to determine at which level
two objects are clustered together, being that a sign that any structure linking
the two objects is preserved through the mask. A measure in percentage that
quantifies the clustering will be given. We placed a δ-function marker in the
core of one of the two galaxies undergoing merger, or alternatively, in one of
two closely-spaced stars. The basic idea is shown in Figure 5. If no mask is
used, reconstruction restores the adjacent source at the level of the saddle point
between the two sources. When a mask is obtained from an extensive operator,
it may restore more of the second source, with a maximum at the lower of the
two peak levels.
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Fig. 5. Measuring level of connectivity in two closely-spaced sources. The solid curves
indicate brightness profiles of two sources. The vertical fine dotted lines indicate the
δ-function markers. On the left, the thick dashed line indicates the reconstruction from
the marker using regular connectivity. On the right, the thick dashed line shows the
worst-case merging height for clustering connections

4.1 Evaluation of the Experiments

A percentage value is used to quantify how much the adjacent source is restored
above the saddle point. A zero percent value is assigned to the intensity value
of the adjacent component after a reconstruction in absence of clustering. It is
not possible to reconstruct such a component at an intensity lower than the
intensity value of the saddle point. A one hundred percent value is assigned to
the intensity value of the adjacent component after a reconstruction that used
a mask obtained from a standard dilation with an S.E. diameter of 20 pixels,
corresponding to the maximum intensity that can be restored. Experiments were
conducted varying the diameter of the structuring element used for the creation
of the masks both for standard and viscous operators. The structuring element
used in all the morphological operations has a circular shape, with a diameter
ranging from 5 to 30 pixels. Viscous masks have been produced changing also
the value of the parameter p that shapes the rate of decrease of the diameter
length of the structuring element. The mask images were generated by standard
dilations, closings and viscous closings. Ten 16-bit integer images taken in the
R-band images of merging galaxies connected by filaments were selected from the
Sloan Digital Sky Survey Data Release 7 [11] archives. Code was implemented
to deal with 16-bit images. From the equations 3, a naive implementation of
a viscous mask is obtained by dilating or eroding all the level sets and taking
the supremum. To avoid looping over all the level sets in the intensity range,
our implementation works by looping instead over all the possible different sizes
of the structuring element. We use an adaptation of the multi-erode algorithm
from [12] to perform this efficiently. The time complexity scales now with the
number of possible different diameters that the structuring element can have.
Hence, the code would work also on floating point images where the number
of level sets is in principle infinite. Wall-clock time needed to generate a mask
reduces by two orders of magnitude. For the max-tree computation the algorithm
for high dynamic range images from [13] was used.

In every image, three positions for the markers were identified. A first marker
was placed on the rightmost galaxy between the two connected by a filament in
every image, the other two markers were placed in locations where two objects
close to each other but not interacting were identified; either two stellar objects,
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or two galaxies not showing signs of any interaction between them. The percent-
age of the reconstructed adjacent component quantifies how much these objects
are considered bound together. The box diagrams in Figure 6 summarise the
experiments. Figure 6a shows how the masks perform in clustering desired ob-
jects together, while Figure 6b shows how they perform in keeping separate the
objects that do not interact. The numbers on the x-axis indicate the twenty-four
connectivities that have been tested as listed in Table 1. Index 1 shows the case
where no mask image is used to define an underlying connectivity: in fact, it
shows a value of zero percent meaning no clustering above the level of the saddle
point. The mask generated by a standard dilation with a diameter of 20 pixels
is assigned to the index 4 and it has value of one hundred per cent. Parameter p
used in equation 4 takes the value of 0.2, 0.3, 0.4 and 0.5 for every diameter of
the structuring element tested. Percentage values after the reconstruction from
masks generated through standard operators are shown in gray boxes, through
viscous operators in black boxes.

Table 1. The table shows the mask images used in the diagrams in Figure 6

Index Operation S.E. Diameter p

1 - - -
2 Standard Dilation 5 -
3 Standard Dilation 10 -
4 Standard Dilation 20 -
5 Standard Closing 5 -
6 Standard Closing 10 -
7 Standard Closing 20 -
8 Standard Closing 30 -
9 Viscous Closing 20 0.2
10 Viscous Closing 20 0.3
11 Viscous Closing 20 0.4
12 Viscous Closing 20 0.5

Index Operation S.E. Diameter p

13 Viscous Closing 30 0.2
14 Viscous Closing 30 0.3
15 Viscous Closing 30 0.4
16 Viscous Closing 30 0.5
17 Viscous Closing 40 0.2
18 Viscous Closing 40 0.3
19 Viscous Closing 40 0.4
20 Viscous Closing 40 0.5
21 Viscous Closing 50 0.2
22 Viscous Closing 50 0.3
23 Viscous Closing 50 0.4
24 Viscous Closing 50 0.5

The ideal situation expected for a given mask would show a high percentage for
the corresponding box in Fig. 6a and a low percentage for the one in Fig. 6b. This
means that the object that should be considered linked to another is restored
more than an other object in the same image not linked to anything else. The best
results observed in the experiments are obtained with the connectivity defined
by a viscous mask generated by a structuring element whose diameter length
is 50 pixels and parameter p equals to 0.4 (at index 23) and by a structuring
element whose diameter length is 40 and p equals to 0.3 and 0.4 (at indexes 18
and 19). For larger values of p, too much clustering appeared, so these results
are not shown in the diagram. Previous experiments conducted on 8-bit images
taken from the same Sloan survey and derived from the 16-bit images showed
that p = 0.5, meaning that the diameter of the structuring element decreases
as the square root of the image intensity, turned out to be the best value. This
difference is probably due to some dynamic range compression in the conversion



492 U. Moschini, S.C. Trager, and M.H.F. Wilkinson

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0

10

20

30

40

50

60

70

80

90

100

  Reconstruction of components that should be clustered

%
 o

f t
he

 r
ec

on
st

ru
ct

ed
 c

om
po

ne
nt

(a)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0

10

20

30

40

50

60

70

80

90

100

Reconstruction of components that should not be clustered

%
 o

f t
he

 r
ec

on
st

ru
ct

ed
 c

om
po

ne
nt

(b)

Fig. 6. The diagrams show the percentage value of the reconstructed level of the adja-
cent component. At index 1, no mask image is used at all. Indices from 2 to 8 illustrate
the case of masks generated through standard operators. Indices from 9 to 24 illustrate
the case of mask images obtained through viscous closings. The settings of every mask
are given in Table 1.

to 8-bit per pixel. Using the actual 16-bit images, features like the filaments
appear to be fainter with respect to the main objects than in the 8-bit images.
This means that more clustering is necessary in this case to preserve the fainter
components, as reflected in p giving the best results for values lower than 0.5.
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Regarding the behaviour of the masks generated by standard operators, they
are obviously able to cluster merging galaxies at the same level as or higher than
the viscous masks. The drawback is that they also cluster unwanted objects
together. This is reflected in the diagram in the positions of indexes from 3 to 8.
Note that at index 2 the percentages show a decent reconstruction of the galactic
component while keeping other objects separate. However, it must be considered
that a dilation with a structuring element with diameter 5, shown at index 3,
also clusters the unwanted object. If masks generated from standard operators
are used, the reconstruction looks very sensitive to the diameter: an increase of
the length from 5 to 10 pixels modifies the output radically. In the viscous case,
closer percentages are obtained when similar settings are used, like for example
at indices 21, 22 and 23.

(a) (b) (c) (d)

Fig. 7. (a) is a region of the original image; (b) shows the reconstruction when no mask
is used; (c) and (d) show the reconstruction when a standard and a viscous closing were
used as masks, respectively. The marker used for reconstruction is placed on the big
star.

(a) (b) (c) (d)

Fig. 8. (a) is a region of the original image; (b) shows the reconstruction when no mask
is used; (c) and (d) show the reconstruction when a standard and viscous closing were
used as masks, respectively. The marker used for reconstruction is placed on a galaxy
on the right.

4.2 A Visual Evaluation

Figure 7 and Figure 8 represent two regions of Figure 1a, depicting a very critical
situation composed of two stars very close each other and two merging galaxies.
Image intensities have been clipped for the purpose of visualization. The markers
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were placed on the brighter star and on the rightmost galaxy. Two connectiv-
ity masks are compared here: the first is generated by a standard closing and
the other by a viscous closing. Figure 7b shows that with no second-generation
connectivity, the star component is weakly reconstructed: the small star is re-
constructed up to the intensity value of the saddle point, or 0% in our graphs.

When a masks generated by a standard closing is applied, as in Figure 7c, the
star component is reconstructed more than in the case of a mask generated by
a viscous closing (73% vs. 38%). On the other hand, as in Figure 8, the galactic
component reached thanks to a better preserved filament is reconstructed at the
same level (∼80%) both for a mask generated by a standard closing and by a
viscous closing. Generally speaking, for the viscous mask case, it is then observed
that stellar components that are not interacting are clustered less, while at the
same time the interacting galaxies are reconstructed to a level comparable to that
obtained in the standard closing or even higher. This depends on the maximum
size of the structuring element and on the value of p used.

5 Conclusions

In this paper, an evaluation of connectivity masks generated through viscous
mathematical morphology operators has been presented. These masks work well
in keeping nearby stars separate, while clustering together the faint filaments
typically linking merging galaxies. Viscous operators clearly work better than the
regular closing used in this experiment. The tuning of the parameters driving the
size reduction will be subject of further studies. More experiments are currently
being conducted to determine the optimal settings for both this parameter and
the maximum size of the structuring element in a wider range of test cases.
While more fine-tuning is needed, it is evident from this initial work that a
better object separation is already obtained by viscous masks. Other clustering
masks are also under investigation.

Mask-Edge connectivity [9] looks to be a promising tool to generate mask
images that do not allow clustering in presence of sharp edges. K-flat filters [14]
might be used as well to preserve faint components up to k intensity values
more, but only when they show certain characteristic or shape features, such
as elongation, for example, that can suggest that it is a filament. Moving away
from mathematical morphology, first experiments have been started with PDE-
based methods relying on Perona-Malik [15] diffusion, or variants that are driven
more by image intensities than by just image gradients. These might be suitable
to be used in astronomical imagery in some cases. Softwares performing object
segmentation like SExtractor would benefit from the use of connectivity mask
for a more reliable deblending of the objects of interest.

Acknowledgement. This work was funded by the Netherlands Organisation
for Scientific Research (NWO) under project number 612.001.110.
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Abstract. Digital diffusion processes have been introduced to capture
information about the neighborhood of points in a digital object. The
properties of these processes give information about curvature, about
specific symmetries and particular points on the discrete set. The evolu-
tion of diffusion is governed by the Laplace-Beltrami operator which
presides to the diffusion on the manifold, as for example random walks. In
this paper, we will study the discrete Laplacian operator defined on pix-
els in order to understand the symmetries and extract their intersections.
This will lead to the identifications of particular points or information
about geometry of a digital set.

1 Introduction

Can you hear the shape of a drum?
Spectral geometry is a domain that studies the link between spectral decom-

position of Laplace-Beltrami operator on a Riemanian surface and its geometric
characteristics. This domain is then related to the question: if we know the
spectral decomposition of an object like a drum, can we deduce its geometrical
structure? The study of eigenvectors and Laplace-Beltrami operator is a com-
mon problem in mathematics and there exists a large amount of works in the
XVIIIth and XIXth centuries that handle the subject for Riemanian surfaces.
Although this approach is particularly efficient, there exists few works in digital
processing that use spectral decomposition to study discrete shapes.

Moreover, in geometry processing applications, the spectral decomposition
on mesh structures has been used recently, for example lately by Sun, Ovs-
janikov and Guibas [11] and Gebal, Bærentzen, Aanæs and Larsen [7].
A generalization of those approaches has been proposed recently in [4].

Bruno Levy in [10] has proposed to use the classical notion of spectral geom-
etry to study the geometry of meshes structures. This approach is based on the
discretisation of the Laplace-Beltrami operator, and he studied the zero-values
of the greatest eigenvectors to characterize the meshes.

Those approaches are particularly interesting and offer us an important tool
widely approved in mathematics and we propose in this paper to recover those
classical notions for digital shape. However, on mesh structures the classical
approach is based on discretisation of Laplace-Beltrami operator. We will use a
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discrete diffusion process to define directly a discrete Laplace operator and then
we will study the eigenvectors decomposition of this operator. The Laplace-
Beltrami operator governs different diffusion processes, unrelated at first sight,
heat flows, acoustic and small mechanical deformations.

We introduced in [6] an auto-adaptive digital process which captures infor-
mation about the neighborhood of a point in a shape. This process is discrete
and take into account the geometry of the shape. We set walkers up on a digital
object, and we observe the possibilities for them to walk along the discrete set.
This approach allows us to compute weights for each point, according to the
time spent at each point. In [6], we let walkers diffuse on a digital function to
recover information about the curvature, enabling them to define derivative and
curvature estimator robust to noise. The geometrical information yield by the
process allows us to extend the diffusion to higher dimension sets, in particular
on digital stars.

In this paper, we will investigate the properties of the auto-adaptive process
on subset of Z2. We will set up walkers on a digital object and we will study the
eigenvectors of the discrete Laplacian to describe and understand its geometry.
The aim is to understand the geometry of discrete shapes given by pixels, using
a discrete digital process.

A possible application is the study of digital stars. Basic properties of digital
stars have recently been given by Valentin E.Brimkov and Reneta P. Barneva [3].
In this paper, one of the questions raised is to find a “center“ for a digital star. We
study the eigenvectors of the discrete Laplacian defined in Section 2.2 in order to
find a subset included in the star that contains good candidates for the solution. We
define Centroids as an intersection of many self directions (Section 3.1). We also
discuss the convergence of this topological approach, recovering Chladni acoustic
plates on a discrete set.

2 Diffusion Processes

2.1 Heat Diffusion

The heat kernel kt of a manifold M maps a pair of points (x, y) ∈ M × M to a
positive real number kt(x, y), which describes the transfer of heat from y to x in
time t. Starting from a (real) temperature distribution T on M , the temperature
after a time t at a point x is given by a convolution of the initial distribution
with the diffusion kernel:

Ht f(x) =
∫

M

f(y) kt(x, y) dy.

The heat equation is driven by the diffusion process, while the evolution of the
temperature in time is governed by the (spatial) Laplace-Beltrami operator
ΔM : ∂f(t,x)

∂t = −ΔM f(t, x) which presides to the diffusion on the manifold, just
as random walks.

The heat equation, lately used by Sun, Ovsjanikov and Guibas [11], yields
information about the geometry of the manifold. We have proposed in a last
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paper a digital diffusion process [6] which is adaptive to the geometry of a digital
object. Using this digital process, we aim to recover particular directions of
diffusion in a digital object, like a digital star, to find symmetrical points of
diffusion, which we will call the centroid of the digital object.

2.2 Auto-adaptive Process

We set up the diffusion of a walker wandering on the discrete object, in order to
recover its local geometry. This auto-adaptive process is a local Markov process,
a stochastic process in discrete time where the probability of a transition between
pixels depends only on the immediate past. We propose to define a diffusion
process using the topological adjacence of pointels in a discrete set.

Definition 1 (Standard adaptive process). [6]
We denote standard adaptive process, the Markov chain with the probabilities
of transition from pixel to pixel defined by the composition of transitions from a
pixel of the set to its four pointels and then from a pointel to adjacent pixels of
the set constrained by:

1. Equiprobability 1
4 to go from a pixel to one of its pointels;

2. Equiprobability to move from a pointel to an adjacent pixel of the set.

24

(a) From pixel to
pointels.

6

66

6

(b) From pointels to
adjacent pixels.

5

3

11

3 2

(c) On Z, the bino-
mial coefficients are
recovered.

Fig. 1. A walker has a probability of 1
4 to pick up a corner of a pixel, then 1

k
to select

a pixel among k possible

This standard choice of walkers with no memory and only local knowledge is
the same as the famous short-sighted drunken man. We denote this process Am

s

for a walker starting at any given point, with m being the number of iterations
in the process.

The 1-step Markov process transition matrix As is simply a weighted version
of the adjacency matrix of the digital object M (Fig.1). We denote u0 = u(m =
0, x) the number of walkers on the digital object at time 0 in x. We denote
Xm the Markov chain defined by Def. 1 of length m. Let h be the step of
digitalization: it is the length of the grid of the digital object. The diffusion time
in the Markov chain in terms of h after m steps is t = m h

c with m ∈ N∗ and c
a characteristic “speed” of the process.
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Let u(m, x) be the number of walkers at x after m steps. We can therefore
write:

u(m, x) = Exu0(Xm)

with Exu0(Xm) being the expected value to be in x with u0(Xm) walkers after
m steps. As in the case of the heat diffusion, we have the following diffusion
equation:

∂u(m, x)
∂m

= 1
h

(As − Id) u(m, x)

We define the discrete Laplacian ΔM := − 1
h (As − Id)

3 Spectral Decomposition

Ernst Chladni was a physician who studied vibrations of thin metal plates.
Spreading sand over it, he observed interesting patterns corresponding to the
accumulation of sand. In [10], Bruno Levy used the discretization of the Laplace
operator on digital meshes sets, in order to recover the contour of the eigenvec-
tors and therefore get similar patterns to the Chladni experiments. The study
of the eigenvectors has been recently used in [11,7,4]. The aim of this paper is to
study a particular digital diffusion process defined in [6] to compute without dis-
cretization the contour of the eigenvectors on digital sets. In the next section 3.1,
we will propose a simple application to recover, on digital stars with particular
symmetry, the centers of the stars using the contour of discrete eigenfunctions.
Then we will discuss the convergence of this approach by recovering on digital
plates the acoustics waves observed by the physician Ernst Chladni.

3.1 Symmetry Detection Using Diffusion Direction

The auto-adaptive process defined in Sec. 2.2, is adaptive to the geometry. In-
deed, a walker gives local information about the possibilities to explore the set.
We have therefore a characterization for the neighborhood of a pixel on the
set. Let λ0, λ1, . . . , λn be the eigenvalues of As the transition matrix of the
auto-adaptive process sorted in decreasing order. According to the definition of
a stochastic process, the largest eigenvalue is λ0 = 1 (see Theorem. 2). We
denote sp(As) the spectral space of the matrix As, and we note φi the i-th
eigenvector.

Theorem 2. Perron-Frobenius[2]
Let P be a square matrix positive and irreducible. Then there exists an eigenvalue
r with the following properties:

– r > 0
– for each eigenvalue λ ∈ sp(P ), |λ| ≤ r

– The eigenspace associated to r has dimension one
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We studied the eigenvector decompositions of particular sets to recover geomet-
rical information (see Figure 2). As we can see in this example, there are floors
corresponding to eigenvalues close to each other. The number of these eigen-
values correspond to the numbers of branches in the digital star related to the
position of the first sharp gap in the eigenvalues.

0 5 10 15 20 25

0.94

0.95

0.96

0.97

0.98

0.99

1

Fig. 2. Computation of the first eigenvalues of a digital star. The eigenvalues are
sorted in decreasing order. We can see a gap between the seventh and eighth values
corresponding to the number of branchs in the digital star. On right side the y-axis cor-
respond to the value of eigenvalue and x-axis correspond to the index of the eigenvalue
in decreasing order.

As in the case of the heat kernel, we have a spectral decomposition of the
kernel of the auto-adaptive process km:

km =
∑
y∈M

e−mλiφi(x)φi(y)

The process is characterized by the values of the eigenvectors associated to each
point of the digital set. For the first eigenvalues we sketch the values of the
eigenvectors (see Figure 3a, Figure 3b, Figure 3c, Figure 3d). The eigenvectors
give us geometrical information about particular diffusion directions in the set.

As we can see in Figure 3e, the values of the eigenvector just after the gap seem
to give information about the center of the star. The eigenvectors associated
with the larger eigenvalues characterize the symmetry in the digital set. The
gap characterizes a particular geometrical symmetry: with the help of physical
analogies, we can identify each symmetry as the direction of vibrations in the
object. The gap occur when all the branches vibrate at the same times. We
segment the object into constant sign eigenvector values and we compute their
intersection to extract particular geometrical points in a discrete shape. We then
fuse the information shared by each eigenvector.

Definition 3 (Vector Intersection).
Let As be the matrix of the auto-adaptive process, let P be the matrix of eigen-
vectors and D the diagonal of their eigenvalues, sorted in decreasing order, such
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(a) Values of the first
eigenvector associated
with λ1 = 1: all the
pixels have the same
value.

(b) Red and yellow
colours correspond to
the maxima and min-
ima of the values of the
second eigenvector.

(c) The third one gives
information about an-
other symmetry in the
digital star.

(d) The fourth one:
when the values of
the opposite petals are
maximal the others are
minimal.

(e) The eigenvector
just after the gap:
the center of the star
appears clearly.
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(f) First eigenvalues of a
digital Swiss cross sorted in
decreasing order.

Fig. 3. Values of the first five eigenvectors of the auto-adaptive process. The values
of these eigenvectors change from yellow (minimum) to red (maximum). The digital
symmetries in the Swiss cross appear clearly

that As = P DP T . That is to say that P = (φ0|φ1| . . . |φn) with φi the i-th
eigenvector. We denote the intersection of the � first vectors in x, I

(�)
x being the

following values:

I(�)
x =

�∑
i=0

φ2
i (x)

We compute for each point of the digital set, the value I
(�)
x starting with � = 1,

and we record the position x of the minimal value at each iteration. For the
first iterations, the position of the minimal value of I

(l)
x will move until the

intersections stabilize around the same point. We simply record the position of
this possible center and stop the iteration when the min stops moving.
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Definition 4 (Centroid position).
Let I� = {x ∈ D/I

(�)
x = miny∈D(I(�)

y )} be the set of positions where the minimal
value of I

(�)
x is reached for x ∈ D. We denote a centroid the set of points such

that I� = I�+1.

Remark 5. We introduce in the definition of centroids a specific geometrical
point given by the intersection of self directions. This is linked to the ques-
tion asked by Mark Kac in 1966,“ Can you hear the shape of a drum? “ The
eigenvectors could be seen as waves striding the discrete shapes and recording
geometrical properties. Moreover, in 1992 [8] C. Gordon, D. Webb et S. Wolpert
proposed isospectral decomposition of different planar domains. Therefore, the
information given by centroids is not generally clear. However, it is an interesting
benchmark to study or to research particular structures such as the simple and
symmetrical objects like the "digital stars".

4 Discussion about Convergence

4.1 Digital Stars

The process we used to compute the spectral domains of a shape is based on
the diffusion of a walker using the topology of a discrete shape, contrarily to
the study of the heat diffusion in a shape. A large proportion of the studies
taking place in mesh structures used a continuous process and gave an approxi-
mation of the Laplace operator on the meshes. Therefore the convergence of the
methodology is related to the efficiency of the discretization. Our approach cuts
short the problem of digitalization but we still need to study behavior when the
grid of digitalization of the discrete shape converges toward zero. In a generic
case, we are not able to characterize the spectral decomposition of a shape (see
Remark. 5). But if the object has particular symmetry we can prove that the
centroid is a geometrical particular point.

Definition 6 (Simple Star).
We denote a simple star, the gaussian discretisation of a star with two discrete
lines which are symmetries axes.

Proposition 7. Let D be a digital simple star, if I� = I�+1, the centroids I�

is a center of the digital star.

Remark 8. The existence of the eigenvalue which cuts a simple star on the geo-
metrical center can be seen with physical analogies. Let D be a digital star, seen
as the membrane of a drum. We hit the star at several positions and we listen to
the vibration of the sound in the star. Each eigenvector of the diffusion process
gives a particular vibration mode of the branches of the star.

Proof. Let λk+1 be the eigenvalue such that the minimum of the eigenvector
φk+1 associated with λk+1 is reached at the center of symmetry pk+1 of the
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digital star. The eigenvector φk+1 is such that all the branches vibrate at the
same time (we can see examples in Section 3.1).

Let λ� be an eigenvalue such that 1 > λ� > λk. Then φ� gives a symmetry
of the digital star, e.g the positive and negative values of the eigenvector cut
the star in several parts so that the zero values are on the symmetry axis. We
send the minimal values of the eigenvector on the symmetry axes in computing
N(φ�) = φ2

� (x) for x ∈ D. By the property of the digital center, two branches in
vibration modes have a common point p� the hit point of the sound diffusion.
On the supposition that D is a digital simple star, the symmetry axes are digital
straight segments included in the star. Therefore all the points of the branches
in vibrations can be joined by a straight segment to p� ∈ I�.

Let I
(�)
x =

∑�
i=0 φ2

i (x) be the intersection of the eigenvectors for i ∈ [1..�].
Let I� be the position of the minimum values after � intersections. The minimal
values of the norm of each eigenvector, by construction, are on the symmetry
axis. Then the position of the minimal value after � intersections, is a point close
to each symmetry axis. We suppose now that I� = I�+1. Let p�+1 ∈ I�+1 be
a position of the minimal value. Then p�+1 are close to all the symmetries axes,
it sees the points of the branches in vibration for the self direction φ�+1 and it
belongs to another self direction. Suppose now that a branch exists in the star,
not seen by p�+1. Then, if we call CD the set of solutions for the center of the
star, CD � I�+1 and p�+1 /∈ CD. Then there exists a symmetry in the star at
index e such that 1 > � > e > k + 1 and cut I�+1 = Ie ∪ R with R the rest of
the minimal value: p�+1 ∈ R. We have also I� = Ie ∪ R, then the self directions
φ�+1 cut I� exactly as φ� for I�−1 then φ� = φ�+1, contradiction. ��
Examples of these results is given Figure. 4.

4.2 Chladni Experiments

The experiment of Chladni [5] consists in spreading sand on a metal plate laid on
its center on top of a vibrating jar. The frequency of the plates vibrations induces
accumulation of sand on the plate. Ernst Chladni remarks that for different
frequency modes sand forms complex patterns (Figure. 5). This phenomenon
is explained by the nodes of the wave (the non-moving parts) which form a
complex pattern. The wave is also modeled by an eigenvector of the Laplacian.
The nodes of a wave are the null-values of the associated eigenvector. To discuss
the convergence, we propose a simulation of the Chladni experiment using the
discrete process. The aim is to recover the same patterns in order to give an
idea of the convergence of the discrete process on a shape. The idea is to use a
discrete plate with an appropriate length of discretization to see the convergence
of the Chladni plate eigenvectors contours.

We propose in Figure. 6, the results of the pattern found on a plate with a step
of digitalisation of 1

100 . We recover all the complex patterns observed by Chladni.
These results are already known for discrete shapes and the contour can be
easily computed with Bessel functions. Moreover it is interesting to see that our
Laplace operator recovers the exact patterns. To convince about the efficiency
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(a) Position in black of
Il for l = 0

(b) Position in black of
Il for l = 1

(c) Position in black of
Il for l = 2

(d) Position in black of
Il for l = 3: Il = Il+1

(e) Position in black
of Il for l = 5.

(f) Position in
black of Il for
l = 3

Fig. 4. Examples of stars centroids detection, with l being the number of eigenvectors
used to find the center

of our approach, we compute the contours of eigenvectors on the discretisation
of a triangle and a guitar with h = 1/100. These are interesting shapes because,
contrarily to the square plates, Bessel functions could not compute the contour
(see Figure. 8).

5 Conclusion

In this paper, we studied the spectral decomposition of a digital process based
on topological adjacencies between pixels. This approach is related to a large
number of works which all studied the heat diffusion on mesh structures in or-
der to extract geometrical characterization. Discretization is required to study
the eigenfunctions of the meshes. We introduce a digital diffusion process on
voxels based on topological adjacencies between voxels to recover information
about the geometry of the shape. On very simple objects like digital stars, we
segment the object into constant sign eigenvector values and compute their in-
tersection to recover the center called centroids. We discuss the convergence of
the process when the digitalization step converges towards zero. Considering the
convergence of the discrete Laplacian, this approach recovers the exact patterns
of the Chladni experiment.



Discrete Simulation of a Chladni Experiment 505

Fig. 5. Accoustic waves pattern of the
Chladni experiments on a metal square
plate with h = 1/100 (100x100 pixels)
[5].

Fig. 6. Discrete patterns computed on
a discrete plates of digitalisation step

1
100 .

Fig. 7. Comparison between the discrete patterns and the simulated pattern. We draw
the eigenvector values (red to blue) and the zero values in black. We recover the complex
pattern of the continuous waves on a metal plate. Considering the convergence of the
discrete Laplacian, this approach recovers the exact patterns of the Chladni experiment.
Due to lack of space, we propose only few examples of patterns computed.
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Fig. 8. We recover the complex pattern of the continuous waves on a triangle and on
a guitar. Considering the convergence of the discrete Laplacian, this approach recovers
the exact patterns of the Chladni experiment.
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In future works, we will use this diffusion process to compute the properties
of digital curves. We will show that this geometrical estimators used as a con-
volution mask in order to ponderate locally the shape is multigrid convergent,
meaning that the geometrical estimator converges toward the geometrical values
of the continuous shape inherent to digitalization.
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Eduard-Wallnöfer-Zentrum 1, 6060 Hall/Tyrol, Austria

{thomas.schwarzbauer,martin.welk,rainer.schubert}@umit.at

Abstract. We apply morphological image processing for quality inspec-
tion of microfluidic chips. Based on a comparison of measured topogra-
phies with design data, we provide a coherent solution to four central
tasks in the quality assessment of injection moulded polymer devices:
determination of channel depth, identification of burrs, calculation of
transcription accuracy, and detection of defective regions. Experimental
comparison to manual quality inspection procedures demonstrates the
good performance of the proposed automated method, and reveals its
clear advantages in terms of objectivity and reliability.

1 Introduction

Visual quality inspection of industrial products has been an important appli-
cation field for image processing from its beginnings, see e.g. [15,24]. Manual
quality inspection by humans faces numerous problems [14]. For example, hu-
man experts require training and their skills take a lot of time to develop. Even
between well-trained individuals, results tend to be observer-dependent. Fur-
thermore, the inspection task can be tedious and difficult. As [15] points out,
this conventional kind of quality control is not only slow and costly, but also
leads to high scrap rates and does not assure high quality.

In many mass production manufacturing facilities the actual goal is a 100%
quality assurance [15] which is often unfeasible in a manual inspection set-
ting. Hence, there is an ever-increasing demand for automated visual quality
inspection.

In this paper, we are concerned with the development of methods for semi-
automated quality inspection of microfluidic chips. Being used e.g. for in-vitro
diagnostics, life sciences research and medical technology, these chips constitute
a rapidly growing market. A microfluidic chip is a polymer plate incorporating
channels and filters through which liquid or emulsions can propagate and are
led to well-defined compartments where reactions can take place. Channel cross-
sections typically measure some tens of micrometers, while filter structures go
down to few micrometers in size. For an example, see Fig. 1.

C.L. Luengo Hendriks, G. Borgefors, R. Strand (Eds.): ISMM 2013, LNCS 7883, pp. 508–519, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Automated Quality Inspection of Microfluidic Chips 509

Fig. 1. Detail from a microfluidic chip (de-
sign data) featuring channel and filter struc-
tures. Grey-values represent depth values on
a scale that spreads about 60 µm.

A typical production process involves injection moulding of a half-product
plate with open channels and filter structures embossed in its surface, which is
afterwards covered by an unstructured even plate. The inspection of the half-
product surface is in the focus of our work.

Quality requirements for these products are extremely high due to the fact
that they are often used for the processing of unique and sensitive probes. It is
of utmost importance to ensure that no probes are wasted due to malfunctions
of the chip, and that results of analysis have a high degree of reliability. As a
consequence, a thorough quality inspection – ideally, a 100% quality check –
is crucial. At the same time, in order to keep scrap rates low, chips should be
discarded only if they feature defects which indeed impair the function of the
appliance.

Reviewing quality inspection of surfaces across industries, [24] classifies in-
spection methods with regard to the underlying features: statistical, structural,
filter-based and model-based.

Statistical approaches [24] utilize the spatial distribution of intensity values
in images. A variety of statistical features are available and applied in litera-
ture for visual inspection. These techniques comprise approaches like histogram
statistics, e.g. Ng [16] using global thresholding by Otsu [18], co-occurrence ma-
trices, e.g. Asha et al. [1], Novak and Hocenski [17], as well as registration-based
techniques, e.g. Chiou and Zhang [2], Tait et al. [20], Ibrahim et al. [8] and Leta
et al. [9].

Structural approaches [24] use texture primitives and their spatial arrange-
ment to analyze images [22]. Apart from primitive measurement, edge features
and skeleton representation, also morphological operations are widely used for
quality inspection purposes [24]. Elbehiery et al. [4] applied morphological tech-
niques for ceramic tile inspection. Different defects, like chips, cracks or scratches
can be detected by applying the proposed approaches, which are all sequences
of different image processing techniques, like edge detection, noise reduction and
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morphology operations. To improve the capability of a morphological approach,
Zheng et al. [26] tried to identify defects on aluminum surfaces by applying ge-
netic algorithms in order to estimate the optimal morphological parameters, a
segmentation threshold and a noise reduction threshold. Structural approaches
based on morphology are also applied in steel quality inspection by Wiltschi et
al. [23].

Filter-based techniques [24] are characterized by the application of filter banks
and the computation of the energy of the filter responses. Methods in this cate-
gory can be divided into techniques applied in spatial domain, frequency domain
and joint spatial-frequency domain. Gabor filters were applied by Tsai et al. [21]
to detect defects on tile, wood and fabric surfaces. A similar approach was pro-
posed by Lin et al. [11]. They identified defects on optical lenses.

Model-based approaches [24] comprise fractal models [12], random field mod-
els [10] or texem models [25].

Our Contribution. We describe a system for the inspection of the surface quality
of microfluidic chips. It is based on the comparison of topographic data obtained
by confocal microscopy to a reference dataset derived from the design model.
With a registration step as preprocessing, morphological techniques in combina-
tion with segmentation steps provide the core functionality of defect detection,
which is in the focus of the present paper. Morphological operations serve as an
efficient tool e.g. for noise reduction, recognition of structures and elimination
of biasing areas.

Relying on well-established image processing techniques, the contribution of
this work is to combine these methodologies into a coherent concept that goes
all the way down from the specification of the particular quality inspection task
to a practically usable solution.

2 Prerequisites

2.1 Data Acquisition and Problem Statement

In order to assess the conformity of the chip under inspection with its design,
the chip is imaged by a confocal microscope at a resolution around 1µm. This
resolution is necessary in order to resolve the finest filter structures on the chip.
From the measured data, a topographic map of the chip surface is created. This
depth map can be treated as a 2D greyscale image. By design, channel and filter
structures on the chip occur in a few discrete depth steps – besides the overall
surface level, typically two to three different depth levels are involved.

Given the high resolution, measurement of the entire chip surface is precluded
by both storage demand and measurement time. For this reason, the process is
applied to regions of interest where critical channel and filter structures are
located.

The processing is done by a combination of statistical and structural methods.
In order to enable comparison between measured data and the design dataset,
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both images will have to be aligned. This task is known in image processing as
image registration.

Using mainly morphological techniques, the depth map data is then evaluated
with regard to several predefined quality criteria. Characteristics like channel
depth, accuracy of transcription, and burr are of central interest here. Accuracy
of transcription is meant to describe particularly how well filter structures are
moulded. Filters typically consist of arrays of pillars, and it is important that
these columns reach the overall surface level in order to get in touch with the
closing plate. So the main criterion of transcription is the height of the columns.
Burrs are raised regions adjacent to channel edges caused by material accu-
mulations after injection moulding. A special challenge here is to discriminate
between real burrs and artifacts of the confocal microscope scanning procedure.
Transcription accuracy and burrs are indicators for possible functional problems
of the chip.

Morphological techniques lend themselves as an excellent tool for the eval-
uation step because they do not only provide direct solutions to most of the
shape processing tasks that occur herein, but also because of their simplicity
and speed, which is crucial in view of the large amounts of data that need to
be processed. Due to the layered design of the chips, set-valued morphological
operations are suitable for our purposes.

2.2 Image Registration

Image registration denotes the task to establish a spatial transformation between
the domains of two images by which corresponding points in both images are
taken to the same locations. [5] For this to make sense it is understood that both
images represent the same scene and differ by time of capture, viewpoint, and/or
image modality [27]. Registration problems occur in multiple variations differing
e.g. by dimensionality, registration basis, the realm of admissible transforma-
tions; registration algorithms differ further in their optimization procedures, and
degree of interactivity [13].

In terms of these criteria, the registration problem we face can be described
as 2D/2D because the depth dimension in both datasets is treated as (grey-)
value. The transformation can be assumed as rigid because the main source of
misalignment is the positioning of the probe under the confocal microscope which
may be shifted, rotated and tilted, while it is not expected that deformations
like shearing or bending of the chip itself as compared to its design model will be
large enough to be observable as nonrigid within a region of interest as handled
in the registration step. Furthermore, our registration problem is global (with
regard to the region of interest), and automatic.

Image registration is nowadays a well-studied problem, and algorithms for a
large variety of settings are available.
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2.3 Morphology

Once the datasets are aligned, our further processing uses the standard opera-
tions of set-valued morphology, see e.g. [6], namely erosion , dilation ⊕, opening
◦ and morphological gradient �B with a structure element B as given by

A B = {z ∈ E | Bz ⊆ A} , (1)

A⊕B = {z ∈ E | Bz ∩ A �= 0} , (2)

A ◦B = (A B)⊕B , (3)

�B(A) = (A⊕B) \ (A B) , (4)

where Bz denotes the translate of B to the location z.

2.4 Otsu Segmentation

Otsu segmentation [18] is a threshold-based segmentation method with auto-
matic adaptation of thresholds to the image histogram. In the simplest case
of a two-class (e.g. foreground-background) segmentation, a single threshold is
chosen such that the ratio σ2inter/σ

2
within of the variance σ2inter between classes

and the variance σ2within within classes becomes maximal. Given the histogram,
the threshold can be computed by an exhaustive search. The method is easily
extended to more than two classes by selecting two or more thresholds; how-
ever, the cost of exhaustive search increases exponentially with the number of
thresholds.

3 Methodology

In the registration step, the design depth-map is kept fixed, and the measured
dataset is subject to a rigid transformation. This distribution of roles ensures
that structures to be analysed later on are always found at the same positions.
The transformation is determined such as to minimize the L2-distance [3] of the
gradient magnitudes between the fixed and transformed images. To this end, we
apply a rigid multiresolution approach, see e.g. [5]. It is important here to work
with gradients since absolute grey-values – i.e. depths – are affected by slight
tilts of the chip caused by bending of the chip, or of the injection moulding mask.
Another reason is that the chip can lie askew during the image acquisition due
to dust particles on the locating surface. In order to remove this phenomenon
from the raw data, the upper surface has to be estimated and subtracted using
least squares plane fit [7].

Afterwards, the quality of the chip can be assessed by determining channel
depths, identifying burrs, calculating transcription and detecting defects.

3.1 Determination of Channel Depth

The algorithm for determining the global mean channel depth is roughly divided
into three steps. The results of the steps are depicted in Fig. 2.
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a b c d e

Fig. 2. The results of the intermediate steps of calculating the mean channel depth.
Left to right: (a) Raw image – (b) Segmentation of upper surface – (c) Segmentation
of channel layer – (d) Erosion of (b) – (e) Erosion of (c).

In a first step, the different layers have to be identified. To this end, Otsu
segmentation is applied to the corresponding region in the reference image. This
results in two or three segments depending on the present number of different
layers.

Secondly, in order to remove unwanted areas, which are likely to contain
burrs as well as measurement artefacts, morphological erosion is applied to the
different segments. Otherwise, these areas would have a negative influence on
the calculation and would distort the achieved results. Also small overlapping
errors that may be caused by a possibly insufficient registration accuracy are
eliminated.

Finally, the mean values ri and the variances σ2i of all regions in the sensed im-
age, which correspond to the eroded segments derived from the reference image,
are calculated. Thus, the mean channel depths di are calculated as the absolute
difference between the mean value of the eroded upper surface and the mean
values of the respective channel layers.

3.2 Identification of Burrs

The recognition of high burrs is realized by the application of several image
processing techniques. The algorithm basically consists of three processing steps.
The results of the subsequent steps are shown in Fig. 3.

In an initial step, regions have to be identified that are likely to contain
burrs. Thus, regions near channel boundaries have to be selected. In contrast,
regions on filter columns are not of interest. In order to remove them from
analysis, a combination of Otsu segmentation, morphological erosion and region-
growing segmentation is employed. The first segmentation step identifies the
upper surface, which also contains filter columns. By choosing an appropriate
size of the structure element, the applied morphological erosion entirely removes
the pillars. As this erosion also moves the channel boundaries, the latter are
reconstructed by a subsequent region-growing segmentation with the erosion
result as seed points. After this “opening by reconstruction” procedure, the full
upper surface without filter columns is available.

Secondly, in order to isolate regions that are likely to contain burrs, a morpho-
logical gradient (difference of dilation and erosion) is applied to the segmented
upper surface. As a result, the potential burr regions are isolated. Dilation is
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a b c d

Fig. 3. Results of essential steps in the identification of high burrs. Left to right: (a)
Raw image – (b) Segmentation of the upper surface – (c) Morphological gradient –
(d) Identified burr.

applied to discard the effects of small misalignments caused by inaccuracies of
the registration process.

Finally, in order to find high burrs, the identified regions are examined. Burr
is signalled at those locations i where the measured height value zi exceeds the
average level r̄ of the upper surface by more than a predefined threshold t, i.e.
where |r̄ − z| > t. Burr locations are then collected into connected sets, and
aggregated information on these burr regions is reported. This comprises the
number of regions, the highest value of each region, the position of the burrs
and statistics about sizes and ellipsoidal diameters.

3.3 Calculation of Transcription Accuracy

The algorithm for determining the transcription of all filter columns basically
consists of four steps. The results of the steps are presented in Fig. 4.

First, the upper surface is segmented by the Otsu method. In order to identify
the single filter columns on the entire upper surface, the surface is divided into its
connected components by a morphological labeling step. All connected compo-
nents are classified into filter columns or non-channel regions. This decision can
simply be made based on the sizes of the identified objects. Note that the seg-
mentation procedure is performed on the reference data so that defects of pillars
or in channels will not introduce erroneous splitting or joining of segments.

To suppress influence from burrs in near-edge areas and measurement arti-
facts, all objects identified before are reduced in size by erosion.

Finally, a transcription parameter is calculated for each filter column. This
involves the determination of the average value r̄i of the overlapping regions
between the eroded objects (columns) and the template image as well as the
calculation of the average value of the upper surface r̄0. Thus, the transcription
parameters are the height differences di between those respective values,

di = |r̄0 − r̄i| , i = 1, . . . , n . (5)

3.4 Detection of Defective Regions

The algorithm is divided into three main steps: exclusion of biasing areas, detec-
tion of deviations and characterization of the detected deviations. The results of
the steps are depicted in Fig. 5.
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a b c d

Fig. 4. Results of individual processing steps for calculating the transcription accuracy
of all filter columns. Left to right: (a) Raw image – (b) Segmentation of the upper
surface – (c) Result of morphological labeling – (d) Erosion of the labeled objects.

In a first step, all regions which do not contribute and may have a negative
influence on the detection results are excluded from the inspection. As already
explained above, those biasing areas are located around the channel boundaries.
In order to identify them, the surfaces are segmented by the Otsu method. Simi-
lar as in the transcription accuracy analysis, a morphological gradient operation
yields an image which contains a segmentation of all areas around the borders.

The second step is to detect all deviations between the reference and the
transformed template image. By calculating the difference between the sensed
image and the model image as well as excluding the overlapping regions of the
result from the first step, it is possible to identify all real deviations. Further
application of morphological opening removes the remaining artefacts. This cor-
responds to a similar approach proposed by Tait et al. [20]. The determination
of the structure element’s size plays a crucial role in this context. Oversized el-
ements would result in the removal of possible defects, undersized would lead
to the detection of small defects, which actually are phantoms. The defects or
impurities are then located by applying labeling. At this point the defects are
detected as well as labeled and can be characterized.

The last step aims at characterizing the individual defects and reporting in-
formation about them. For each defect, its ellipsoidal diameter and size are
determined. Aggregating over all defects, statistics of these quantities are calcu-
lated, including mean, standard deviation, minimum and maximum. Secondly,
information about the location of the defects is gathered. The locations of the
defects are determined by several processing steps. At first a distinction between
defects on the upper surface outside channels, and defects in channels is made.
This is accomplished by inspecting the defects overlapping regions in the refer-
ence image and the corresponding intensity values in the model. Additionally,
defects within channels are classified into defects within a filter structure, out-
side but near to a filter structure, or remote from all filter structures. This is
accomplished by calculating Euclidean distances between a given defects and the
nearest filter columns. If the distances of two or more columns are beneath a
given threshold, the defect is located in a filter structure and has the potential
to block the structure. If only one filter column is found in the proximity, the
defect lies near the filter structure but not within it. Finally, if the number of
nearby filter columns is equal to zero, the defect lies completely outside the filter
structure.
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a b c d e

Fig. 5. Results of the main processing steps for defect detection. Left to right: (a)
Raw image – (b)Morphological gradient – (c) Difference of model and acquired image –
(d) Opening of (c) – (e) Chip image with detected defects overlaid in white (originally,
defects are shown in color).

4 Experimental Validation

4.1 Comparison with Manual Inspection

A set of 42 test images were selected to calculate the defined quality parameters.
In order to draw a comparison with manual inspection, the manually achieved
results were gathered. Unfortunately, it turned out that transcription parame-
ters could not be compared since they showed an excessive operator dependency
in manual measurements. Nevertheless, channel depths and burrs could be com-
pared. Results are shown in Fig. 6.

On average there is a difference of (0.2 ± 0.15)µm as far as channel depths
are concerned. This deviation is not significant. However, the surface-based cal-
culation of the channel depth is not only highly objective but also reflects the
real channel depth of the whole channel depicted in the acquired image.

Surprisingly, there is no correlation between the automatically and the man-
ually determined burrs. From the results in Fig. 6 it is evident that burr heights
derived in the automatic procedure are systematically lower than the manually
gauged burrs. Part of a possible explanation for this might be the definition of
the burr itself. Burrs are raised edges which exceed the normal part geometry
and occur at channel edges. Contrary to this definition, no distinction between
edges on the filter columns and channel edges is made in the manual gauging
process. Moreover, operators doing manual measurements tend to gauge burrs
against the surface level in the vicinity of the burr region, which may involve
a systematic underestimation of this surface level as compared to the globally
adjusted surface level of the automatic procedure.

4.2 Defect Detection

In order to illustrate the localization capabilities of defect detection, the iden-
tified deviations were investigated. A set of 50 test images was used for this
purpose. Tab. 4.2 shows the localization results. An overall number of 130 de-
fects was detected by the system. At first, the defects were localized as either
being on the upper surface or within the channel. Altogether, 92 defects were
classified as channel defects. The remaining 38 defects were categorized as being
located on the upper surface. In addition, the 92 channel defects were classified
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Fig. 6. Top to bottom: (a) Comparison of channel depths – (b) Comparison of burrs

into three groups: in the filter structure, near the filter structure and outside the
filter structure. The system categorized 50 defects as being in the filter structure,
23 defects near the filter structure and 19 as being completely outside the filter.
Additionally, the identified defects were manually inspected in order to check
the reliability of the system. The classification was done independently from
the automated localization. The decision between channel defects and surface
defects completely matched with the automated inspection. However, results of
the second classification scheme slightly differed between manual investigation
and automated inspection. A total number of 54 defects were considered to be in
the filter, 20 near the filter and 18 completely outside the filter structure. These
small differences may indicate that the parameters for defect localization were
still not optimally adapted. Further work has to be done on fine tuning of the
parameters.

Table 1. Comparison of manual and automated localization of 130 detected defects

Localization Number of defects
Automated Manual

On Surface 38 38

In Channel 92 92
– In Filter 50 54
– Near Filter 23 20
– Outside Filter 19 18
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5 Conclusion

We have demonstrated a system for automated quality control of microfluidic
chips. The system is capable of both the calculation of different quality char-
acteristics and detection as well as localization of defects. Image registration is
used to localize the region of interest and establish independence of rotation and
translation. Morphological image processing techniques play a crucial role in the
analysis step.

Experimental comparison with manual inspection demonstrated the advan-
tages of the system. The benefit is not only that the demand for human work-
force for quality inspection is reduced but also the reproducibility and reliability
of so computed quality parameters is higher due to the elimination of the subjec-
tive manual gauging. The removal of the human influence leads to an objective
evaluation method.

Further work is necessary to raise the performance of the developed system,
primarily by more efficient implementation of critical parts, and overall code
optimization. Ongoing work focuses on revising the parameters and criteria in
the quality inspection. Besides introducing new quality criteria, defect detection
needs to be made more specific. For example, shape defects should be distin-
guished from surface defects. Shape irregularities may result in the jamming of
filter structures, thus interfering with the chip’s functionality. In contrast, sur-
face defects in uncritical areas may be completely irrelevant. Considerably more
work will be needed to develop classification capabilities. Given the determined
quality parameters and the number, size as well as location of the detected de-
fects, a classification system will be able to support the operators in deciding
whether the chip should be accepted or rejected.

We expect that the further development of the presented system will even
strengthen its benefit in terms of objectivity and reliability, and turn it into a
powerful tool in routine quality inspection.
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Abstract. Mathematical Morphology (MM) has been introduced in geographi-
cal sciences during the years 1970-1980. However it did not find the same echo 
in the geographer community according the areas of research. Unlike remote 
sensing where MM tools have been used as early as in the eighties and are 
nowadays widespread, in the research works resorting to spatial analysis and 
modelling, MM is much rarer. And yet morphological analyses exactly match 
the purpose of spatial analysis. This talk aims to demonstrate the relevance of 
MM in geography and more precisely in spatial analysis. The three applications 
proposed focus on socio-economic issues: urban zones of influence detection, 
regional differentiations analysis and spatial modelling. Finally, are highlighted 
and discussed the major shortcomings which hold up the spread of MM in geo-
graphy, planning and geomatics. 

Keywords: Geography, GIS, Morphology, Modelling, Spatial Analysis. 

1 Introduction 

Geography as it is being practiced nowadays is little known not only by the public at 
large, but also by other scientists and yet it very often works in collaboration with 
them. This paradox is mainly due to the fact that there are numerous currents in geog-
raphy, some of them opposed, which contributes to blurring its image. On the other 
hand, because of its interdisciplinary character, it is perceived as a discipline at the 
crossroads of various sciences. Yet the object of geography is clearly defined – it is 
neither man nor nature, instead it studies the spaces occupied by man and nature. Its 
purpose is to explain the relationships between societies and their space, and geo-
graphical currents correspond to the different points of view adopted to achieve this. 

The thoughts expressed in this paper are those of a geographer belonging to the 
quantitative geography current. This expression, which is not really the best, describes 
a way of analysing geographical phenomena using mathematics. Mathematical geo-
graphic analysis was developed in two phases. The first dates back to the introduction 
of statistical analysis and descriptive and explanatory methods in the course of the 
years 1950-1960; then at the beginning of the seventies, mathematical analysis be-
came integrated into geographic analysis and followed the development of theorisa-
tion and modelling. Geographers then endeavoured to relate mathematical concepts 
with the geographic concepts they wanted them to represent. 

One central notion in geography is the notion of spatial interaction – a reciprocal 
action between two or more places. Gravity models, by analogy with Newton’s law of 



 Geography, Mathematics and Mathematical Morphology 521 

 

universal gravity, were then widely used to formalise, study and predict the geogra-
phy of flows and interactions. The distribution of interactions in an ensemble of plac-
es is considered as dependent on their configuration, i.e. the force of attraction of each 
one of them and the difficulty of communication between them. The spatial interac-
tion functions most used to describe the influence of distance are negative power 
functions (called Pareto functions) and negative exponential functions. There are var-
ious types of gravity models. Potential models are based on measuring the accessibili-
ty of the place and assessing the amount of opportunities according to the position of 
the place. The aim of position models, for example Reilly’s and Huff’s, is to deter-
mine the theoretical market areas of an ensemble of places [1-2].   

More recently, quantitative geographers turned their interest towards morphologi-
cal theories – R. Thom’s Catastrophe theory, B. Mandelbrot’s Fractals theory, I. 
Prigogine’s Dissipative Structures theory. Some have, more than others, generated 
research work. Fractals induced the most research work. The fractal dimension was 
used to test the existence of a hierarchical organisation in urban morphology and 
population distribution [3-5].  

Intriguingly, Mathematical Morphology (MM) did not find the same echo in the 
geographer community. However, this observation should be qualified by distinguish-
ing two areas of research: geosciences and remote sensing on one hand, spatial analy-
sis applied to regional and urban analyses on the other hand. As regards remote  
sensing, MM tools have been used as early as in the eighties and are nowadays wide-
spread [6-7]. On the other hand, in the second area, resorting to MM both in spatial 
analysis and modelling is much rarer, though the first applications in regional geogra-
phy date back to 1989 [8].  Research works in spatial analysis are mainly carried out 
by researchers of the Laboratory ESPACE, a CNRS research unit. And yet mathe-
matical morphology’s method exactly matches the purpose of spatial analysis. 

The potential of MM in spatial analysis will be demonstrated by focusing on socio-
economic issues: urban zones of influence detection, regional differentiations analysis 
and spatial modelling. Finally, are highlighted and discussed the major shortcomings 
which hold up the spread of MM in geography, planning and geomatics. 

2 The Relevance of MM in Spatial Analysis  

The first law of geography according to Waldo Tobler is « Everything is related to eve-
rything else, but near things are more related than distant things » [9]. The concept of 
spatial dependence that forms the foundation of spatial analysis follows from that law. 

Too often, spatial analysis is reduced to a set of methods and tools measuring the 
distribution of phenomena across space, such as spatial autocorrelation, interpolation 
and concentration or dispersion indices, for example. Integrating these techniques in 
Geographical Information System (GIS)-type software has made their use common-
place, but also contributed to mixing up spatial analyses and geomatics. Yet, Spatial 
Analysis is first a way of viewing geography from a spatial standpoint. This position 
consists in taking explicitly the characters of the space into account – distance, spac-
ing, neighbourhoods – in order to determine in which way they participate in the or-
ganisation of space. In concrete terms, the “spatial standpoint” consists in: 
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• Paying more attention to the place geographic objects occupy in the space than to 
their number. The notions of spacing and neighbourhood are at the core of spatial 
analysis.  

• Giving preference to conditional analysis over global analysis and trying to  
find out how a geographic phenomenon spreads according to its distance from  
another.  

• Finding out the places’relative weights. What counts is not so much the absolute 
value of a variable in relation to a place than the weight of that place in the sur-
rounding space and its relationship with neighbouring places.  

• Measuring the role played by the spatial environment, 2D and 3D, more or less 
close, in the dynamics of the territorial system being studied, and the “range” of in-
teractions (the expanse of the area under influence, consequences in terms of 
speculation or vulnerability, or spatial effects and their territorial inequalities).   

• Focusing on the way in which certain mechanisms are slowed down, accelerated or 
modified by particular spatiotemporal situations. 

Mathematical Morphology is particularly adapted to this perspective and provides a 
formal frame to the morphological approach, both in spatial analysis and in modelling.  

In spatial analysis, image analysis through MM differs from that used in remote  
sensing. The processing aims neither to recognize objects from visible forms, nor  
to quantify parameters, instead it aims to detect structures from known geographic  
objects. The idea is to make them explicit by means of a form that reveals the  
invisible relations forged between objects – which “gives form” to the structure being 
looked for.  

Unlike in remote sensing, working images are not limited to satellite or aerial pho-
tographs. The document par excellence for spatial analysis using MM is the map - 
whether localisation maps, land surveys (investigations, excavations etc.) or zoning 
maps from GIS layers. The specificity of this kind of analysis lies in the fact that the 
images processed concern elements which are not visible directly: population data, 
socio-economic data, informations on behaviours, practices and standpoints. Mapped 
information also comes from prior statistical or mathematical processing: rate of 
population growth, of housing growth, urban pressure indices calculated on a com-
munal scale, for example. It may also focus on zonings relating to the level of reliabil-
ity of the spatial information collected (quality of archaeological prospecting, for 
example).  

The working images are built using a spatialised data table. This kind of table is 
obtained by gridmapping the area being studied. The columns and lines correspond 
respectively to the x and y coordinates of the area and each cell contains information 
on the corresponding portion of space. 

Themes and problems are most varied: detecting boundary effects, alignments, ar-
chaeological structures, analysing relations between urban fabric and road, space-time 
variations, detecting the hierarchical organisation of regional differentiations, the 
discontinuity between two regional subsets etc. [10-13]. 

In the following sections, three types of image processing representative of the use-
fulness of MM in spatial analysis and modelling are presented.  
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3 Applications 

3.1 Detecting and Mapping Regional Contrasts 

The first application aims to detect the home-building contrasts, in two departments of 
the South of France subjected to a strong residential pressure on the coastal areas which 
is one of the main features of the littoralisation process [14]. As disaggregated data on 
urbanisation are not available to make a retrospective analysis we work on the average 
annual growth rates of home-building aggregated at the municipal level (the commune).  

Detecting spatial regionalisations consists in bringing out spatial discontinuities, in 
other words, gaps which appear along the boundaries of a territorial grid. This ques-
tion can be treated within two different frameworks, statistical analysis and MM anal-
ysis. First, the degree of dissimilarity of contiguous spatial units taken by two is 
measured by a dissimilarity function. Its simplest form, i.e. the gap’s absolute value, 
is chosen. Therefore, the dissimilarity function measures, for each pair of communes, 
the number of points between their respective rates of home-building. Only the high-
est dissimilarity values are represented on a map, enabling us to observe the location 
of the strongest discontinuities in the studied area. We chose to map the two last de-
ciles of the discontinuity values (Fig. 1). The strongest local differentiations are 
shown in thick lines, and those who are a little less strong in medium-sized lines. As 
previously, the map of intra-regional differentiations is dependent on the class thresh-
olds used. However, this technique can bring out neither existing regionalisations nor 
the way they fit into one another. 

 

Fig. 1. Average annual growth rates of home-building on the French Riviera 
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Fig. 2. Home-building images on the French Riviera (Alpes-Maritimes and Var) 

Second, the morphological gradient is used to detect spatial differentiations of 
home-building values. The original image is converted into a mosaic image, where 
component contours are more highly contrasted (Fig. 2).  

Once the morphological gradient has been calculated the gradient-mosaic image is 
segmented using the watershed transformation. The dividing lines delimiting the cat-
chment basins are more and less high, according to the gradient values. The next 
process consists in removing these “walls” from the smallest to the highest in order to 
gradually suppress the internal differentiations [15]. This hierarchical pyramid me-
thod provides a convenient tool to detect the main regional structures in terms of con-
trasts. The Figure 3 represents successive hierarchy levels at different periods. The 
maps focus on the final results for each period.  

This analysis enhances the characterisation of the littoralisation phases: first the in-
dividuation of some parts of the coast, then the formation of a continuous coastal strip 
and its progressive spread towards the inner lands. More complex differentiation 
processes appear then with the individuation of sub-regional systems connecting  
different parts of the coast with their hinterlands, and finally a homogenisation of 
hinterlands.  

The gradient’s hierarchical organisation through the pyramid transformation takes 
all existing levels of contrast into account. Unlike the image of the dissimilarity func-
tion the watershed transformation on the gradient image, provides homogeneous 
zones with closed outlines, instead of portions of outlines. It becomes possible to map 
in turn the regions corresponding to all levels of contrast and the specificities of these 
regions can be highlighting by crossing their perimeters with other data, for example 
land use data. 
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Fig. 3. Successive levels of hierarchy in home-building values on the French Riviera 

3.2 Selecting Regional Centers and Detecting Their Influence Zones 

In the second application, the watershed of a gradient image is also used but now the 
goal is to detect places which play a local or a regional part, starting from two grey-
tone images [15]. The first one represents the population value of the 343 communes 
of Hérault, a department of the South of France; the second, the number of basic pub-
lic or private services of each commune, (nursery, elementary and secondary schools, 
post office, bank, doctor, chemist, lawyer). The first stage consists in detecting the 
local minima on the basic services image.  In order to range the 36 detected minima 
into hierarchical groups the usual approach generally considers their levels of services 
and their population values; here the chosen method is based on the levels of the mor-
phological gradient.  
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Figure 4 summarises the steps of the image processing. The levels of the gradient 
are progressively removed, starting from the lowest (A). At each step the minima of 
the services image (B) are intersected with the remaining gradient levels. Image C 
displays the pixels belonging to both images and from which the minima are recon-
structed (D). The speed at which the number of centers is decreasing after removing a 
gradient level, provides information about their significance. Some minima disappear 
very quickly; they correspond to 16 centers which stand out weakly against the neigh-
bourhood. On the contrary 20 minima correspond to higher gradient levels. They can 
be divided into three groups. The following step will focus on them. By using the 
minima of each group separately, the marked watershed transformation on the popula-
tion values is done.  

 

Fig. 4. Chart’s flow of the classification of centers 
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All the limits of the nested regions have been drawn on a same image (Fig.5). The 
limits of the 20 catchment basins have been coloured with different grey tones. Final-
ly, these theoretical influence zones have been compared with attraction areas pro-
vided by surveys about the travels from each commune to the most frequented city of 
the region [16]. The resemblance is quite striking. This application demonstrates that 
spatial criteria for selecting centers combined to segmentation and hierarchical pyra-
mids provide limits quite similar to those obtained with statistical surveys. Moreover 
the morphological approach brings higher information since it makes it possible to 
join every small area of influence to the upper one and to display the set of nested 
spheres of influence.  

 

Fig. 5. Comparison between nested zones of influence (A) and map of attraction areas (B) 

3.3 Simulating the Spread of Built-Up Areas 

We will now present an example of spatio-morphological modelling applied to simu-
late the built-up areas spread on a coastal region of the Languedoc (Southern of 
France). In this approach, the spatial spread process depends on both proximity and 
morphology of the built-up areas. These features explain the “spatio-morphological” 
qualifier given to this model [17]. The model is carried out with data relating to 1977 
and 1990. Five images are needed: the regional field on which the spread occurs; the 
state of the built-up areas surfaces in 1977 and in 1990; the roads and the extent of the 
protected natural zones. 

Closings of increasing sizes are used to simulate the spread during the period of 
1977-1990. The steps of the modelling by image processing have been summarised on 
the Figure 6. Each step of simulation consists of closing the built-up set (Image A1). 
The closing is conditional, i.e the closed set (image B) is intersected with the permit-
ted region in the field, in order to eliminate pixels falling into the sea, into the ponds 
or into zones where urbanisation is not allowed. Such a conditional closing is re-
peated.  At each step, the new built-up areas predicted (image C) are compared with 
the new built-up areas observed in 1990 (image A2). The criterion for stopping the 



528 C. Voiron-Canicio 

 

spread process is the value of a coefficient of similarity, simil, calculated on the new 
built-up areas only.  

simil (A2,C) = surface of intersection (A2,C) / surface of union (A2,C)            (1) 

d(A2,C) = surface of union (A2,C) - surface of intersection (A2,C) = [1-simil (A2,C)] 
* surface of union (A2,C)                                                       (2) 

The coefficient simil is related to the distance d but unlike it, simil doesn't depend on 
the size of the images. We outline that simil (A2,C) is different of simil (A2c, Cc). Its 
value is 0 when distance d is maximum and 1 when d is equal to zero. 

The matching is performed for all probable sizes of closing and one takes that 
which maximizes the coefficient simil. 

 

Fig. 6. The steps of the spatio-morphological modeling 
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Generally, map comparisons of observed and predicted states are used to evaluate 
the outputs of spatial models. Traditional pixel-by-pixel comparisons involve overlay-
ing mappings to evaluate the similarity between two maps. However, the variability at 
the pixel scale is always high and we agree with the fact that the predictive models are 
not expected to be accurate at the pixel scale. They are expected to predict the ap-
proximate shapes and locations of the phenomenon under study [18]. Therefore, the 
similarity has been evaluated by taking into account a margin of error of three pixels. 
The step consists of dilating the new predicted surfaces by 1, 2 or 3 pixels succes-
sively, before performing the intersection with the new observed surfaces. 

The output image of the intersection between predicted and observed new surfaces 
gives information about the built-up areas correctly located by the predictive model 
and makes it possible to detect both regions of agreement and of disagreement. Gen-
erally, this visual comparison is very useful because it contributes to improving the 
model by giving rise to new spread hypothesis. 

4 Conclusion 

MM offers huge application potential in geography, as much for structure analysis as 
for spatial modelling. Nowadays, spatial geo-archaeology is opening itself to MM, 
and new applications concern the processing of imprecise and uncertain geographic 
data by means of fuzzy sets and MM. However, this research concerns only a small 
number of initiated persons. 

The spread of MM in the areas of geography, planning and geomatics is at present 
held up by technical and conceptual reasons. MM belongs to the image analysis 
which comes under remote sensing and there is a compartmentalization between re-
mote sensing work and research work on territorial systems carried out in other envi-
ronments: statistics, geomatics, cellular automata and multi-agent system. Nowadays, 
GISs have become basic tools for geography processing, yet most do not include ma-
thematical morphology modules, except for a few elemental morphological transfor-
mations. Images have to be exported towards MM software, and then the processed 
images are reintroduced in the GISs.  

Two majors have to be underlined, the lack of user-friendly dedicated software. On 
that matter, one can but regret the fact that the Micromorph educational software has 
been dropped. The same phenomenon occurred in the nineties with expert system 
software for the general public. The absence of MM module in GISs is also a big 
disadvantage. While numerous complementary modules are available, there is none 
on MM. Applications are at present too few for companies to include them in their 
products, but as a reverse effect, the absence of MM module prevents it from becom-
ing widespread.  

Then, MM must be taught in order to be correctly used and developed in geogra-
phy; yet, very few university programs include MM in the teaching of theories and 
methods of spatial analysis.      



530 C. Voiron-Canicio 

 

Added to these technical reasons is the fact that space is more perceived as a field 
of forces than a field of forms, explaining geographic phenomena by fields of forces 
is still prevailing in modelling. 
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