

P. Cimiano et al. (Eds.): ESWC 2013, LNCS 7882, pp. 61–75, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Organizing Ontology Design Patterns as Ontology
Pattern Languages

Ricardo de Almeida Falbo, Monalessa Perini Barcellos,
Julio Cesar Nardi, and Giancarlo Guizzardi

Ontology and Conceptual Modeling Research Group (NEMO), Computer Science Department,
Federal University of Espírito Santo, Vitória, Brazil

{falbo,monalessa,jnardi,gguizzardi}@inf.ufes.br

Abstract. Ontology design patterns have been pointed out as a promising ap-
proach for ontology engineering. The goal of this paper is twofold. Firstly,
based on well-established works in Software Engineering, we revisit the notion
of ontology patterns in Ontology Engineering to introduce the notion of ontolo-
gy pattern language as a way to organize related ontology patterns. Secondly,
we present an overview of a software process ontology pattern language.

Keywords: ontology design patterns, ontology pattern language, software
process ontology.

1 Introduction

Although nowadays ontology engineers are supported by a wide range of ontology
engineering methods and tools, building ontologies is still a difficult task even for
experts. In this context, reuse is pointed out as a promising approach for ontology
engineering. Ontology reuse allows speeding up the ontology development process,
saving time and money, and promoting the application of good practices [1]. Howev-
er, ontology reuse in general is a hard research issue, and one of the most challenging
and neglected areas of ontology engineering [2]. The problems of selecting the right
ontologies for reuse, specializing them, and composing several ontology fragments
are not properly addressed yet [3].

Ontology Design Patterns (ODPs) are an emerging approach that favors the reuse
of encoded experiences and good practices. ODPs are modeling solutions to solve
recurrent ontology development problems [4]. Experiments, such as the ones con-
ducted by Blomqvist et al. [3], show that ontology engineers perceive ODPs as useful,
and that the quality and usability of the resulting ontologies are improved. However,
compared with Software Engineering, where patterns have been used for a long pe-
riod, patterns in Ontology Engineering are still in infancy. The earliest works address-
ing the issue of patterns in Ontology Engineering are from the beginning of the 2000s
(e.g. [5]), and only recently this approach has gained more attention in this area [1, 2,
3, 4] and in the Semantic Web area [6].

A striking feature of the current use of patterns in Ontology Engineering is that
they are generally being applied as stand-alone entities. However, as pointed out by

62 R. de Almeida Falbo et al.

Alexander and colleagues in their pioneering work [7], each pattern can exist only to
the extent that it is supported by other patterns. This is especially important to ontolo-
gy patterns that are related to a specific domain.

Although many ODPs in the literature refer to others, most of these references fail
to give more complete guidelines on how the patterns can be combined to form solu-
tions to larger problems. Contexts and problem descriptions are usually stated as gen-
eral as possible, so that each pattern can be applied in a wide variety of situations. In
addition, solution descriptions tend to focus on applying the patterns in isolation, and
do not properly address issues that arise when multiple patterns are applied in over-
lapping ways, such as the order in which they can be applied. This situation is prob-
lematic, since the features introduced by applying one pattern may be required by the
next. A larger context is therefore needed to describe the larger problems that can be
solved by combining patterns, and to address issues that arise when patterns are used
in combination. This context can be provided by what in Software Engineering has
been termed a Pattern Language [8].

It is important to highlight that we borrowed the term “pattern language” from
Software Engineering (SE), where patterns have been studied and applied for a long
time. A pattern language, in a SE view, is a network of interrelated patterns that de-
fines a process for systematically solving coarse-grained software development prob-
lems [8, 9]. Thus, we are not actually talking about a language properly speaking. In
“pattern language”, the use of the term “language” is, in fact, a misnomer, given that a
pattern language does not typically define per se a grammar with an explicit asso-
ciated mapping to a semantic domain. However, if we focus on a more general con-
cept of a representation system, we can consider the constituent patterns as an alpha-
bet of higher-granularity primitives. Moreover, in this case, we can consider the
procedural rules prescribing how these primitives can be lawfully combined as defin-
ing a set of valid possible instantiations for that representation system.

That all said, perhaps a more appropriate name would be a “Pattern System”. In
any case, since we intend to reuse notions well-established in SE to apply them in
Ontology Engineering as well as connect to the tradition in that area, we decided to
keep here the term “pattern language”. Thus, we define Ontology Pattern Language
(OPL) as a network of interrelated domain-related ontology patterns that provides
holistic support for solving ontology development problems for a specific domain.

An OPL contains a set of interrelated domain-related ontology patterns, plus a
process providing explicit guidance on what problems can arise in that domain, in-
forming the order to address these problems, and suggesting one or more patterns to
solve each specific problem. It is worthwhile to point out that, although an OPL pro-
vides a process describing how to use the patterns to address problems related to a
specific domain, an OPL is not a method for building ontologies. It only deals with
reuse in ontology development, and its guidance can be followed by ontology engi-
neers using whatever ontology development method that considers ontology reuse as
one of its activities.

According to Schmidt et al. [10], the trend in the SE patterns community is towards
defining pattern languages, rather than stand-alone patterns. We advocate this should
also be taken into account in Ontology Engineering, mainly for a class of ontologies

 Organizing Ontology Design Patterns as Ontology Pattern Languages 63

called Core Ontologies. Core ontologies provide a precise definition of structural
knowledge in a specific field that spans across different application domains in this
field [11]. Thus, we argue that core ontologies are good candidates to be presented as
ontology pattern languages.

In summary, the contribution of this paper is to incorporate ideas from patterns as
used in Software Engineering to patterns in Ontology Engineering. Firstly, based on
well-established works in Software Engineering, such as [9], we revisit the notion of
ontology patterns in Ontology Engineering, and introduce the notion of Ontology
Pattern Language as a way to organize domain-related ontology patterns. Secondly,
we present a particular ontology pattern language in the Software Process domain.

This paper is organized as follows. In Section 2, we present pattern-related con-
cepts, mainly as used in Software Engineering. In Section 3, we discuss ontologies
focusing on their generality level. This discussion is important in the context of this
paper to point out which is the generality level that we believe to be the most appro-
priate to build OPLs. In Section 4, we discuss ontology patterns and we introduce the
notion of Ontology Pattern Language. In Section 5, we briefly present the Software
Process Ontology Pattern Language (SP-OPL), and an example showing its use for
building a fragment of a measurement process ontology. Section 6 discusses related
works. Finally, in Section 7, we present the final considerations of the paper.

2 On Patterns and Pattern Languages

Patterns are vehicles for encapsulating knowledge. They are considered one of the
most effective means for naming, organizing, and reasoning about design knowledge.
“Design knowledge” here is employed in a general sense, meaning design in several
different areas, such as Architecture and Software Engineering (SE). According to
Buschmann et al. [9], “a pattern describes a particular recurring design problem that
arises in specific design contexts and presents a well-proven solution for the problem.
The solution is specified by describing the roles of its constituent participants, their
responsibilities and relationships, and the ways in which they collaborate”.

In SE, there are several types of patterns. The best known are analysis patterns, de-
sign patterns and idioms. An analysis pattern is a pattern that describes how to model
a particular kind of problem in an application domain. A design pattern provides a
scheme for refining elements of a software system or the relationships between them.
An idiom is a pattern specific to a programming language or environment. An idiom
describes how to implement particular behavior or structures in code using the fea-
tures of the given language or environment [9].

Patterns are often considered and applied separately. However, no pattern is an isl-
and. Contrariwise, patterns are fond of company: sometimes with one pattern as an
alternative to another, sometimes with one pattern as an adjunct to another, sometimes
with a number of patterns bound together as a tightly-knit group. The manifold rela-
tionships that can exist between patterns help to strengthen and extend the power of
an individual pattern beyond its specific focus [9].

64 R. de Almeida Falbo et al.

A pattern language is a set of patterns and relationships among them that can be
used to systematically solve coarse-grained problems [8]. A pattern language defines
a process that aims to provide holistic support for using the patterns to address prob-
lems related to a specific technical or application domain. This holistic view should
provide explicit guidance on what problems can arise in the domain, inform the order
to address them, and suggest one or more patterns to solve each specific problem [9].
A pattern language should also provide guidelines showing how the patterns can be
composed to form solutions to problems [8]. The patterns in a pattern language are
usually designed to be used within the context of the language. Therefore, they tend to
be tightly coupled, and it is difficult or even impossible to use them in isolation [8].

3 Ontologies and Their Generality Levels

There are different classifications of ontologies in the literature. In the context of this
work, we are interested in the one that classifies ontologies according to their general-
ity levels, discriminating between foundational, core and domain ontologies [11].

At the highest level of generality, there are the foundational ontologies. Founda-
tional ontologies span across many fields and model the very basic and general con-
cepts and relations that make up the world, such as object, event, parthood relation
etc. [12, 13, 14]. Domain ontologies, in turn, describe the conceptualization related to
a given domain, such as electrocardiogram in medicine [12]. With a level of generali-
ty between that of foundational and domain ontologies, there are core ontologies.
Core ontologies provide a precise definition of structural knowledge in a specific field
that spans across different application domains in this field. These ontologies are built
based on foundational ontologies and provide a refinement to them by adding detailed
concepts and relations in their specific field [11].

Guizzardi [15] makes an important distinction between ontologies as conceptual
models, known as reference ontologies, and ontologies as coding artifacts, called
here operational ontologies. A reference domain ontology is constructed with the
goal of making the best possible description of the domain in reality. It is a special
kind of conceptual model, an engineering artifact with the additional requirement of
representing a model of consensus within a community [15]. On the other hand, once
users have already agreed on a common conceptualization, operational versions of a
reference ontology can be created. Contrary to reference ontologies, operational
ontologies are designed with the focus on guaranteeing desirable computational
properties.

Although we agree with Scherp et al.’s classification for ontologies [11], we perce-
ive them as a continuum, ranging from pure foundational ontologies, such as DOLCE
[13] and UFO (Parts A [14] and B [16]), to domain ontologies. In our view, there can
be different levels of generality in ontologies that are classified as, for instance, core
ontologies. In [11], for example, three core ontologies are presented: Event-Model-F
provides a formal representation of the different aspects of events in which humans
participate; The Core Ontology on Multimedia (COMM) describes arbitrary digital
media data; The Cross-Context Semantic Information Management Ontology

 Organizing Ontology Design Patterns as Ontology Pattern Languages 65

(X-COSIMO) allows representing the communication taking place between different
persons and systems and the information associated with it. Although all three are
built based on DOLCE and classified as core ontologies, in our opinion, Event-
Model-F is more general than COMM and X-COSIMO, since the last two address
conceptualizations that are closer to a domain conceptualization (multimedia and
personal information management, respectively) than the former (events for
representing human experience).

We have experienced such situations when developing ontologies for the software
process domain. Originally, we classified our Software Process Ontology (SPO) [16,
17] as a reference domain ontology. However, it has been used as basis for develop-
ing other reference domain ontologies related to specific software processes, such as
the measurement process (Reference Software Measurement Ontology (RSMO) [18]).
The latest version of SPO [17] is grounded in UFO-C, an ontology of social entities
[16]. In [16], UFO-C is classified as a foundational ontology, but it builds on top of
UFO-A (an ontology of endurants) and UFO-B (an ontology of events) to systema-
tized social concepts such as action, goal, agent, commitment, among others.

In the light of the above, we see those categories of ontologies (foundational, core
and domain ontologies) as regions in a spectrum with fuzzy boundaries between them.
Figure 1 illustrates this continuous view using the aforementioned ontologies.
DOLCE, UFO-A and UFO-B are genuine foundational ontologies. UFO-C and Event-
Model-F are in the frontier between foundational and core ontologies. X-COSIMO,
COMM and SPO are core ontologies, but the last is in the region closer to domain
ontologies. Finally, RSMO is classified as a domain ontology.

Fig. 1. Ontology level of generality as a continuum

In this paper we are interested in core ontologies, mainly those that are in a region
closer to domain ontologies. Ontologies in this region, although general enough to be
specialized when applied to more restrict domains, are still domain-related. We claim
that these core ontologies should be presented as ontology pattern languages. Moreo-
ver, we are interested in patterns to support the development of reference domain
ontologies [15], which are to be reused in the conceptualization phase. In the next
section, we present a fuller argumentation defending our view that patterns defined in
the level of Core Ontologies are the ones which can be most appropriately defined as
a Pattern System or Pattern Language.

UFO-C

Event-Model-F

UFO-A / B

DOLCE

X-COSIMO

COMM
RSMO SPO

Foundational

Ontologies

Core

 Ontologies
Domain

 Ontologies

more specific more general

66 R. de Almeida Falbo et al.

4 Ontology Design Patterns and Ontology Pattern Languages

According to Gangemi and Presutti [2], an Ontology Design Pattern (ODP) is a mod-
eling solution to solve a recurrent ontology design problem. ODPs can be of different
types, such as content, logical, architectural, and so on. Content Ontology Patterns
(COPs) refer to small fragments of ontology conceptual models, and must be lan-
guage-independent [2]. A COP can extract a fragment of either a foundational or a
core ontology, which constitutes its background [19]. Thus, we consider two types of
COPs: Foundational (FOPs) and Domain-related ontology patterns (DROPs).

Since FOPs are COPs extracted from foundational ontologies, they tend to be more
generally applied. Although they certainly have dependencies with other patterns,
these dependencies tend to be weaker, and the pattern is easily applied in isolation.
Take the example discussed in [1] for the development of a context ontology network
called mIO!. The reused patterns were selected among ODPs present in catalogues
such as the one available in the ontologydesignpatterns.org portal. The
reused patterns were related to general (formal) problems, such as taxonomical or
part-whole relations, n-ary relations/participation. All the reused patterns are FOPs.
None of the examples there are of DROPs.

In contrast, DROPs for a specific domain are very inter-related, and it is very diffi-
cult (if not impossible) to apply them in isolation. It is important to highlight, none-
theless, that as patterns move closer to a Domain ontology, they agglutinate to form a
stable model, i.e., the constraints on how they can be inter-related become so strong
that the very domain model is practically the only way they can appear together, thus,
lacking the potential for recurrence which is part of the very definition of what a
pattern is. That is why we advocate that DROPs occurring at the level of Core Ontol-
ogies are the best candidates for being organized as ontology pattern languages.

Regarding the way they are documented and communicated, COPs, in general, are
comparable to design patterns in Software Engineering [2]. On the other hand, regard-
ing their contents, DROPs are comparable to Software Engineering analysis patterns.

COPs should be encoded in a higher-order representation language [2]. OntoUML
[14] is an example of an ontology representation language that is suitable for this
purpose. OntoUML is a UML profile that enables modelers to make finer-grained
modeling distinctions between different types of classes and relations according to
ontological distinctions put forth by UFO-A. Thus, we advocate for the use of On-
toUML as a modeling language for DROPs in an OPL. On the other hand, Gangemi
and Presutti [2] state that “a (sample) representation in OWL is needed in order to
(re)use the patterns as building blocks over the Semantic Web”. We agree that an
example in OWL could be useful, but it is not a requisite for DROPs. DROPs are to
be reused in the conceptualization phase. If they have a counterpart implemented in
some language (such as OWL), this operational version of the pattern can also be
reused, amplifying the benefits of applying the pattern. However, we defend here that
DROPs should be captured in a codification language independent manner. This al-
lows for a modeling solution to be implemented in multiple codification languages.

A COP has to be small (typically two to ten classes with relations defined between
them) [2]. Moreover, a COP can be an element in a partial order, where the ordering

 Organizing Ontology Design Patterns as Ontology Pattern Languages 67

relation requires that at least one of the classes or relations in the pattern is specialized
[2]. These characteristics are essential for DROPs in an OPL. A user should be able to
read the pattern, understand its applicability and decide if it is useful for the problem
at hands or not. Once decided which DROPs to reuse, the user can specialize their
concepts and relations.

A domain ontology typically results from the composition of several COPs, with
appropriate dependencies between them, plus the necessary design expansion based
on specific needs [3]. Making this knowledge explicit is essential for achieving the
main benefits of reuse. Thus, organizing DROPs in catalogues is not a good choice. In
a conventional catalog there is a lack of a strong sense of connection. We need some-
thing stronger than simply knowing that another pattern in the collection is related in
some way. When collections are presented in conjunction with, for example, pattern
sequences, we start to get a stronger sense of connection [9]. This is especially impor-
tant for reusing DROPs.

An Ontology Pattern Language (OPL) aims to provide holistic support for using
DROPs in ontology development for a specific application domain. It should provide
explicit guidance on what problems can arise in that domain, inform the order to ad-
dress these problems, and suggest one or more patterns to solve each specific prob-
lem. Thus, an OPL should support the explicit consideration of complementing or
conflicting pattern combinations to solve a given problem, along with guidelines for
integrating patterns into a concrete ontology conceptual model.

An OPL should indicate explicitly which referenced patterns address mandatory
aspects and which ones address optional aspects. To ensure a stable and sound pattern
application, referenced patterns should be presented in the suggested application or-
der. Without this explicit procedural guidance, a representation that fits the basic net-
work of the patterns might not provide a suitable process that helps to ensure a suffi-
ciently complete and well-formed ontology.

OPLs are structured to support and encourage the application of one pattern at a
time, in the order defined by the pattern sequences that result from the chosen paths
through the language. This guideline ensures that the main property of piecemeal
growth is preserved: the ‘whole’ always precedes its ‘parts’. A pattern language is of
little use if its audience loses the big picture. Conversely, the essential information of
each individual pattern within the language must still be preserved [9].

In summary, an OPL should give concrete and thoughtful guidance for developing
ontologies in a given domain, addressing at least the following issues: (i) What are the
key problems to solve in the domain of interest? (ii) In what order should these prob-
lems be tackled? (iii) What alternatives exist for solving a given problem? (iv) How
should dependencies between problems be handled? (v) How to resolve each individ-
ual problem most effectively in the presence of its surrounding problems?

Using the notion of OPLs, we can reorganize ontology pattern catalogues. We
might provide an entry in a catalogue for each domain of interest. Each entry in the
catalogue, in turn, can be viewed as a special purpose pattern language that advises
developers how to construct a domain ontology with the help of DROPs.

For illustrating the ideas discussed above, in the next section, we present an OPL in
the domain of Software Process. The patterns there were extracted from the Software

68 R. de Almeida Falbo et al.

Process Ontology (SPO) presented in [17]. SPO has been developed since 1997, and it
results from several revisions. The latest version was obtained as a result of a reengi-
neering effort to ground it in UFO [17]. In the version presented here, we managed to
advance further improvements, mainly regarding modularity, which directly affects
reusability. For this reason, we decided to restructure SPO as an OPL.

5 An Ontology Pattern Language for the Software Process
Domain (SP-OPL)

Figure 2 shows a UML activity diagram giving an overview of the SP-OPL. An activ-
ity diagram is one of the possible modeling notations comprising UML and it is the
standard UML notation for representing temporal sequencing constraints between
activity types and, hence, for specifying the possible order of execution between ac-
tivities. In the model of Fig. 2, we use activities in an activity diagram (rounded rec-
tangles) to represent specific patterns. Moreover, we use the activity ordering notation
to represent the procedural rules governing the admissible sequences in which these
patterns can be used. In that diagram, an extension to the original UML notation (dot-
ted lines with arrows) was introduced to show variant patterns.

It is important to emphasize that we would have employed activity diagrams (or a
language with similar representation capabilities) for that purpose regardless of the
domain under study, i.e., the choice for using an activity-ordering language is related
to the need for defining the permissible sequence of instantiation of the patterns. In
particular, it bears no relation to the fact that, incidentally, the domain under study is
about Software Processes.

Fig. 2. Software Process Ontology Pattern Language (SP-OPL)

 Organizing Ontology Design Patterns as Ontology Pattern Languages 69

The main problem areas addressed by the SP-OPL are: Standard Process Defini-
tion, Project Process Definition and Scheduling, Resource Allocation, and Software
Process Execution. Table 1 shows the patterns that compose the SP-OPL.

As shown in Fig. 2, SP-OPL has three entry points, depending on the focus of the
ontology engineer. When the requirements for the domain ontology being developed
include problems related to Standard Process Definition, the start point is EP1. In this
case, first the ontology engineer should address problems related to how a standard
process is structured in terms of standard sub-processes and activities (SPS). Follow-
ing, he can optionally address problems related to the definition of human roles
(HRD), types of resources (hardware and software) (RD), types of work products
required (input) and produced (output) (WPD), and procedures (methods, techniques,
guidelines etc.) (PD) that are required for performing each standard activity when it is
instantiated in the scope of a project.

When the requirements for the ontology being developed include problems related
to Project Process Definition and Scheduling, the start point is either EP2 or SPS. In
this case, the ontology engineer has to first deal with problems related with the
process planning in terms of project sub-processes and activities. If there is already
defined a standard process, project process planning can be done by means of instan-
tiating the standard process (SPI – Software Process Planning via Instantiation)1, oth-
erwise, the ontology engineer should consider planning the project process from
scratch (SPP). Once defined the project processes and activities, he can treat modeling
problems related to scheduling them (PSCH). Moreover, the ontology engineer can
optionally treat modeling problems related to planning human roles (HRPI/HRP),
types of resources (hardware and software) (RPI/RP), types of work products required
(input) and produced (output) (WPPI/WPP), and procedures (methods, techniques,
guidelines etc.) (PRPI/PRP) that are required for performing each project activity.

For dealing with problems related to Resource Allocation, it is necessary to have
the project process planed and scheduled. Resource Allocation involves patterns re-
garding hardware and software resource allocation (RAL), project team definition
(PTD), and human resource allocation. Human resource allocation problems can be
solved considering constraints imposed by a project team (TDHRA) or not (TIHRA).

Finally, when there are requirements related to the Software Process Execution, the
start point is either EP3 or PSCH. EP3 should be chosen when it is not a requirement
for the ontology to address process planning and scheduling. In this case, the ontology
engineer has to first deal with problems related to the execution of processes and ac-
tivities (PAE). Then he can address problems related to resource (human and other)
participation (HRPA and RPA), procedures adopted (PRPA), and work product inputs
and outputs (WPPA). On the other hand, if the project process is already scheduled, it
is possible to address problems related to process and activity execution and tracking,
which involves the corresponding variant patterns PAET, HRPAT, RPAT, PRPAT

1 The patterns SPPI, HRPI, RPI, WPPI, and PRPI shown in Fig. 2 are not listed in Table 1,

due space limitations. Those patterns are variant patterns of SPP, HRP, RP, WPP and PRP,
respectively, considering that they address the same problems, but considering the instantia-
tion of a standard process or activity.

70 R. de Almeida Falbo et al.

and WPPAT. These patterns, which are not shown in Table 1, address the same prob-
lems described above, but considering that it is possible to check if the execution of
activities and processes conforms to their previous definition (process tracking).

Table 1. Domain-Related Ontology Patterns (DROPs) in the SP-OLP

Id Name Intent

Standard Process Definition

SPS Standard Process Structure Represents how a standard software process is defined in

terms of standard sub-processes and activities

HRD Standard Activity Human Role

Definition

Defines the human roles responsible for performing a standard

activity in the projects that instantiate it

RTD Standard Activity Resource

Type Definition

Defines the types of resources (hardware and software) re-

quired for performing a standard activity

WPD Standard Activity Work Product

Definition

Defines the types of work products required (input) and pro-

duced (output) when performing a standard activity

PD Standard Activity Procedure

Definition

Defines the procedures (methods, techniques, guidelines etc.)

to be applied when performing a standard activity

Project Process Definition and Scheduling

SPP Software Process Planning Represents how a software process is planned in terms of sub-
processes and activities

PSCH Process Scheduling Defines the time boundary for project processes and activities

HRP Human Role Planning Defines the human roles responsible for performing a project
activity

RP Resource Planning Defines the types of resources (hardware and software) re-
quired for performing a project activity

WPP Work Product Planning Defines the types of work products required (input) and pro-
duced (output) when performing a project activity

PRP Procedure Planning Defines the procedures (methods, techniques, guidelines etc.)
to be applied when performing a project activity

Resource Allocation

PTD Project Team Definition Defines the human resources that are member of a project team

TDHRA Team-dependent Human
Resource Allocation

Allocates human resources to project activities, considering
team allocation constraints

TIHRA Team-independent Human
Resource Allocation

Allocates human resources to project activities, when there is
not a project team formally defined

RAL Resource Allocation Allocates resources (hardware equipments and software tools)
to project activities

Software Process Execution

PAE Process and Activity Execution Register the occurrences of processes and activities.

HRPA Human Resource Participation Registers the participation of Human Resources in an activity

occurrence

RPA Resource Participation Registers the participation of Resources (hardware equipment

or software tool) in an activity occurrence

WPPA Work Product Participation Register the participation of Work Products (as input or out-

put) in an activity occurrence.

PRPA Procedure Participation Register the adoption of procedures by an activity occurrence

 Organizing Ontology Design Patterns as Ontology Pattern Languages 71

Figure 3 shows the conceptual model of the “Process and Activity Execution
(PAE)” DROP. The intent of this pattern is to represent the occurrences of processes
and activities in the context of a project, and their mereological structure. The follow-
ing competency questions are addressed by this pattern: (CQ1) How is a process oc-
currence structured in terms of sub-processes and activities? (CQ2) When did a
process/activity occurrence start and when did it end? (CQ3) From which activity
occurrences does an activity occurrence depend on?

Fig. 3. The “Process and Activity Execution” (PAE) pattern

The foundations for the PAE pattern were given by UFO-B [16]. Process Occur-
rences and Activity Occurrences are complex events, and the whole-part relations
between events are strict partial order. In the software process domain, there are two
main kinds of Process Occurrences: General Process Occurrence and Specific
Process Occurrence. A general process occurrence is the whole execution of a
process. It is composed of specific process occurrences, allowing an organization to
decompose a general process into sub-processes. A specific process occurrence, in
turn, is decomposed into Activity Occurrences. Activity occurrences can be simple
or composite. A composite activity occurrence is a complex event that is composed
by other activity occurrences. A simple activity occurrence is not composed by other
activity occurrences, but it is still a complex event in UFO-B, since it is composed by
other events representing the participations of human resources, hardware and soft-
ware resources, work products, and procedures in the activity occurrence.

The PAE pattern has some related patterns, with different types of relations hold-
ing between them. PAE has a variant pattern, the “Process and Activity Execution and
Tracking (PAET)” pattern, which is an alternative to PAE when a project has a
process previously defined and scheduled, allowing to track the execution against to
what was previously planned. When PAE is used, its use can be followed by the use
of patterns whose intent is to represent the participations of human resources (HRPA),
software and hardware resources (RPA), procedures (PRPA), and work products
(WPPA). Figure 4 presents the conceptual model of the WPPA pattern.

This pattern shows that an activity occurrence can have as its parts Artifact Par-
ticipations, which are also events. An artifact participation is the participation of a
single artifact. This is in line with UFO-B, which says that events are ontologically
dependent entities in the sense that they existentially depend on objects in order to
exist. Artifact, in turn, is a category in UFO-A [14], since it is a dispersive universal
that aggregates essential properties (not shown in this pattern) that are common to

72 R. de Almeida Falbo et al.

different subtypes of artifacts. Artifact participations can be of three types: (i) Arti-
fact Creation, meaning that the artifact is created during the activity occurrence, and
thus it is an output of this activity occurrence (the /produces derived relation); (ii)
Artifact Usage, meaning that the artifact is only used during the activity occurrence,
and thus it is only an input for the activity occurrence (the /uses derived relation); and
(iii) Artifact Change, meaning that the artifact is changed during the activity occur-
rence, and thus it is both input and output of the activity occurrence. The foundations
for this conceptualization are given by UFO-C [16], which defines four types of re-
source participations: creation, termination, usage and change. In the case of software
processes, we consider that artifacts are not thrown away in activity occurrences, and
thus there is not a case of termination participation in this domain.

Fig. 4. The “Work Product Participation” (WPPA) pattern

SP-OPL was used for building a domain ontology about the software measurement
process. Figure 5 shows a fragment of this domain ontology, considering the reuse of
the two patterns presented before (PAE and WPPA). Concepts reused from the pat-
terns are presented in grey.

Fig. 5. A fragment of a Domain Ontology for the Software Measurement Process

As shown in Fig. 5, the Measurement Process is composed by activity occur-
rences of Measurement Planning, Execution, and Result Analysis. The first one is
a composite activity occurrence, although, for simplicity, its parts are not shown in

 Organizing Ontology Design Patterns as Ontology Pattern Languages 73

the figure. The other two are simple activity occurrences. Measurement Planning
produces a Measurement Plan, which is used by the other activity occurrences
(Measurement Execution and Result Analysis occurrences). Measurement Execution
produces Measurement Results, which are used by Measurement Result Analysis for
producing Measurement Analysis Results.

6 Related Works

Our work is strongly inspired, on one side, by works on Ontology Design Patterns,
especially those developed by Gangemi, Presutti and colleagues [2, 3, 19]; on the
other side, by works on Pattern Languages in Software Engineering, especially those
developed by Buschmann, Schmidt and colleagues [9, 10]. In fact, we believe that our
main contribution in this paper is to introduce the idea of pattern languages, as used in
Software Engineering, in the field of Ontology Design Patterns, which is especially
important for Ontology Engineering and consequently for Semantic Web.

At the best of our knowledge, we are the first to organize domain-related ontology
patterns as Ontology Patterns Languages (OPLs). However, it is important to rein-
force that we borrowed the term “pattern language” from Software Engineering (SE),
where it has a special meaning [8, 9]. A pattern language, in this context, is a network
of interrelated patterns, plus a process for systematically solving software develop-
ment problems [8, 9]. Highlighting the particular meaning that we associate to the
term Pattern Language is particularly important in order to avoid confusion with ex-
isting literature. For instance, in [20], Noppens and Liebig seek to develop a language
to encode OWL patterns in a declarative way. They did not use the term OPL in the
sense we did.

Finally, although an OPL defines a process for traveling along the patterns, it is not
a method for building ontologies. An OPL can be used jointly with several methods.
For instance, the measurement process ontology partially presented in Section 5 was
developed using the method SABiO [21], adapting one of its activities (Reusing Ex-
isting Ontologies) for using an OPL. In particular, the eXtreme Design (XD) method
[4] is quite suitable to be used with an OPL, since it is a content pattern-oriented me-
thod. Tasks such as “Match Competency Questions to Generic Use Case”, “Select
Content Patterns (CPs) to Reuse”, and “Reuse and Integrate Selected CPs” could be
easily adapted to consider patterns in an OPL. In fact, an OPL has great potential to
improve XD. Take the experiments done by Blomqvist et al. [3], which evaluate pat-
tern-based ontology design using XD. As pointed by these authors, the participants of
the experiments may be faster in using patterns if they are more familiar with them.
Moreover, the particular set of CPs could have an impact on the time spent in the
ontology development. In the reported experiments, most of the patterns were quite
general. Regarding this, Blomqvist et al. suggest that more specific patterns could also
improve this aspect. Based on those perceptions, we argue that an OPL could be used
to improve XD. Firstly, the patterns in an OPL are domain-related patterns, and thus
more specific ones. Secondly, the OPL gives a context for the patterns, and guides the
ontology engineer in traveling along them.

74 R. de Almeida Falbo et al.

7 Final Considerations

Nowadays, ontology design patterns are recognized as a beneficial approach for on-
tology development [2, 3]. Particularly in the case of Domain-related Ontology Pat-
terns (DROPs), these benefits can increase if we organize them as a pattern language,
as it has been shown to be the case in Software Engineering. In this paper we intro-
duced the notion of Ontology Pattern Language (OPL) as a network of interrelated
DROPs with procedural rules prescribing the order in which they can be combined.
OPLs can then be used to systematically solve ontology modeling problems in a given
(core) domain. We also briefly present an OPL for the Software Process domain (SP-
OPL), which illustrates the approach.

We shall consider that, as pointed out by Buschmann et al. [9], useful pattern lan-
guages must be sufficiently complete and mature. In particular, they must be complete
regarding the coverage of the problem and solution spaces for their subjects, and must
be mature regarding the quality and interconnection of their constituent patterns.
Quality and maturity cannot be produced casually and hastily, but require great care
and much time to age gracefully. OPLs are not an exception. Moreover, we claim that
OPLs must present some characteristics generally pointed as being present in “beauti-
ful ontologies”, such as [22]: satisfy relevant requirements, have a good coverage of
the targeted domain, be often easily applicable in some context, be structurally well
designed (either formally or according to desirable patterns), and their domains
should introduce constraints that lead to modeling solutions that are non-trivial.

Finally, pattern languages should evolve in response to various events and insights.
As new experiences are gained developing ontologies with reuse, it is certainly desir-
able to integrate these new experiences and patterns into related existing pattern lan-
guages to keep them up to date. Consequently, all pattern languages, from the rawest
to the most mature, should always be considered as a work in progress that is subject
to continuous revision, enhancement, refinement, completion, and sometimes even
complete rewriting [9].

Acknowledgments. This research is funded by the Brazilian Research Funding
Agencies FAPES (Process Number 52272362/11) and CNPq (Process Number
483383/2010-4).

References

1. Poveda-Villalón, M., Suárez-Figueroa, M.C., Gómez-Pérez, A.: Reusing Ontology Design
Patterns in a Context Ontology Network. In: Proc. of the 2nd International Workshop on
Ontology Patterns – WOP 2010, Shangai, China (2010)

2. Gangemi, A., Presutti, V.: Ontology Design Patterns. In: Staab, S., Studer, R. (eds.) Hand-
book on Ontologies, 2nd edn., pp. 221–243. Springer (2009)

3. Blomqvist, E., Gangemi, A., Presutti, V.: Experiments on Pattern-based Ontology Design.
In: Proc. of the Fifth International Conference on Knowledge Capture – K-CAP 2009,
California, USA, pp. 41–48 (2009)

 Organizing Ontology Design Patterns as Ontology Pattern Languages 75

4. Presutti, V., Daga, E., Gangemi, A., Blomqvist, E.: eXtreme Design with Content Ontolo-
gy Design Patterns. In: Proc. Workshop on Ontology Patterns, Washington, D.C., USA
(2009)

5. Clark, P., Thompson, J., Porter, B.: Knowledge patterns. In: Proc. of the 7th International
Conference on Principles of Knowledge Representation and Reasoning – KR 2000, San
Francisco, USA, pp. 591–600 (2000)

6. Svatek, V.: Design Patterns for Semantic Web Ontologies: Motivation and Discussion. In:
Proc. of the 7th Conference on Business Information Systems, Poznan, Poland (2004)

7. Alexander, C., Ishikawa, S., Silverstein, M.: A Pattern Language. Oxford University Press,
New York (1977)

8. Deutsch, P.: Models and Patterns. In: Greenfield, J., Short, K., Cook, S., Kent, S. (eds.)
Software Factories: Assembling Applications with Patterns, Models, Frameworks, and
Tools. Wiley Publishing Inc., Indianapolis (2004)

9. Buschmann, F., Henney, K., Schmidt, D.C.: Pattern-Oriented Software Architecture. On
Patterns and Pattern Languages, vol. 5. John Wiley & Sons Ltd. (2007)

10. Schmidt, D., Stal, M., Rohnert, H., Buschmann, F.: Pattern-Oriented Software Architec-
ture. Patterns for Concurrent and Networked Objects, vol. 2. Wiley Publishing (2000)

11. Scherp, A., Saathoff, C., Franz, T., Staab, S.: Designing core ontologies. Applied Ontolo-
gy 6(3), 177–221 (2011)

12. Guarino, N.: Formal Ontology and Information Systems. In: Guarino, N. (ed.) Formal On-
tology and Information Systems, pp. 3–15. IOS Press, Amsterdam (1998)

13. Borgo, S., Masolo, C.: Foundational Choices in DOLCE. In: Staab, S., Studer, R. (eds.)
Handbook on Ontologies, 2nd edn., pp. 361–381. Springer (2009)

14. Guizzardi, G.: Ontological Foundations for Structural Conceptual Models. Universal Press,
The Netherlands (2005)

15. Guizzardi, G.: On Ontology, ontologies, Conceptualizations, Modeling Languages and
(Meta)Models. In: Vasilecas, O., Edler, J., Caplinskas, A. (eds.) Databases and Informa-
tion Systems IV, pp. 18–39. IOS Press, Amsterdam (2007)

16. Guizzardi, G., Falbo, R.A., Guizzardi, R.S.S.: Grounding software domain ontologies in
the Unified Foundational Ontology (UFO): the case of the ODE software process ontolo-
gy. In: Proc. of the XI Iberoamerican Workshop on Requirements Engineering and Soft-
ware Environments – IDEAS 2008, Recife, Brazil, pp. 244–251 (2008)

17. Bringuente, A.C.O., Falbo, R.A., Guizzardi, G.: Using a Foundational Ontology for Reen-
gineering a Software Process Ontology. Journal of Information and Data Manage-
ment 2(3), 511–526 (2011)

18. Barcellos, M.P., Falbo, R.A., Dal Moro, R.: A Well-founded Software Measurement On-
tology. In: Proc. of the 6th International Conference on Formal Ontology in Information
Systems – FOIS 2010, Toronto, Canada, pp. 213–216 (2010)

19. Gangemi, A.: Ontology Design Patterns for Semantic Web Content. In: Gil, Y., Motta, E.,
Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 262–276. Sprin-
ger, Heidelberg (2005)

20. Noppens, O., Liebig, T.: Ontology Patterns and Beyond - Towards a Universal Pattern
Language. In: Proc. Workshop on Ontology Patterns, Washington, D.C., USA (2009)

21. Falbo, R.A.: Experiences in Using a Method for Building Domain Ontologies. In: Proc. of
International Workshop on Ontology in Action, Banff, Canada (2004)

22. d’Aquin, M., Gangemi, A.: Is there beauty in ontologies? Applied Ontology 6(3), 165–175
(2011)

	Organizing Ontology Design Patterns as Ontology Pattern Languages
	1 Introduction
	2 On Patterns and Pattern Languages
	3 Ontologies and Their Generality Levels
	4 Ontology Design Patterns and Ontology Pattern Languages
	5 An Ontology Pattern Language for the Software ProcessDomain (SP-OPL)
	6 Related Works
	7 Final Considerations
	References

