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Abstract. The dissolution of sphalerite in aqueous sulfuric acid is studied in the 
presence of oxygen in an autoclave at 200 C. In the presence of oxygen, and an 
oxidized hydrogen sulfide there's formation of elemental sulphur and sulfuric 
acid. The kinetic of the reaction is studied as a function of the mass of zinc 
sulfide, the concentration of sulfuric acid, the oxygen partial pressure and 
temperature. A kinetic model taking into account those factors is hence 
proposed. On the other hand, the role of hydrogen sulfide on the progress of 
dissolution is highlighted.  
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1 Introduction 

Zinc is the third largest non-ferrous metal in the world and is conventionally produced 
from sphalerite. Strict environmental restrictions are imposed on sulfide smelters and 
the necessity of using complex deposits have stimulated the development of 
alternative methods in particular hydrometallurgical ones, as to avoid the production 
of SO2, a pollutant. In the course of this four decades, attention has been granted to 
the leaching of zinc sulfide ores concentrates with sulfuric acid (Forward and 
Veltman, 1959; Parker, 1961; Demopoulos and Baldwin, 1999) [ 1,2, 3 ], nitric acid 
(Bjorling, 1954) [ 4 ], hydrochloric acid (Mizoguchi and Habashi, 1981; Majima and 
al. 1981[5,6], and acidified solutions containing ferric ions (Bobeck and Su, 1985; 
Palencia Perez and Dutrizac, 1991) [7,8 ]. 

The hydrometallurgical pretreatment of sulfides can be performed using different 
methods (Havlik and Kammel, 2000, Havlik and al, 2001a, b) [9, 10, 11]. 

Weisener and al. (2003, 2004) [12, 13] suggested the rate of dissolution of sphalerite 
in the acid, the solution being controlled by oxygen diffusion through a porous nS° or 
polysulfide surface layer. As a result of their batch experiences at pH 2.5 in the  
presence of O2, Abraitis and al (2004) [14] have found that the main dissolution 
reaction for sphalerite in these conditions was a none-oxidization. Finally, Malmström 
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and Collin (2004) [15] have studied for a long period the dissolution ofsphalerite, using 
air purged and dissolution experiments by batch at pH values of 1 to 4 and showed that 
the dissolution rate of sphalerite is dependent on the pH.  

(Balaz and Ebert, 1991) [16] Studied the correlation between the changes on the 
surface and the properties of sphalerite because of the mechanic of activation with a 
rate of leaching and oxidation of minerals in presence. Hydrogen peroxide was 
selected as a strong oxidizing leaching model for leaching. This selective leaching 
agent for copper dissolves all the iron which is often present in the mineral in a large 
quantity as a precipitate (Anthony and al., 1990) [17] rushes. 

This study is about the application of the non-selective leaching agent 
(H 2 SO 4), which dissolves the zinc and iron from the sphalerite (15.53% Fe), and to 
evaluate the possible influence of sphalerite; activation by milling on the leaching 
selectivity defined as Zn / Fe ratio mass. 

The Direct leaching of sphalerite concentrate with ferric iron under atmospheric 
pressure has been described elswhere (Kammel and al. 1987; Crundwell, 1987; Suni 
and al. 1989; Palencia Perez and Dutrizac, 1991, Cheng and al. 1994; Pedlik and 
Lochmann, 1995) [18, 19, 20, 21, 22, 23]. As the zinc is leached, the ferric iron is 
reduced to ferrous iron by the sulfur in the zinc sulfide according to the following 
overall reaction stoichiometry: 

Fe2 (SO4)3(aq) + ZnS(s) → 2FeSO4 (aq) + ZnSO4 (aq) + S(s) 

The solid–liquid reaction takes place in acidic environment and elemental sulfur is the 
solid product formed. In currently applied large-scale zinc dissolution processes, the 
produced ferrous iron is re-oxidized in order to continue the leaching. However, if the 
aim is to reduce the ferric iron, the zinc sulfide concentrate can also be used as a 
reduction agent and is then leached simultaneously. 

2 Experimental 

Leaching under pressure of sphalerite of Algeria in an aqueous sulfuric acid was 
studied in an autoclave at temperatures up to 200 ° C with the presence of 
oxygen. Many parameters were involved in this reaction: influence of time, of the 
initial mass of zinc sulfide, of the oxygen pressure, of the temperature and of the 
concentration of sulfuric acid. A kinetic model taking into account these factors is 
proposed.  In the other hand, the role of hydrogen sulfide on the progress of 
dissolution is highlighted. The sample used as a 98.495 in sphalerite. Analysis by 
atomic absorption of the sample employees gave the following composition s= 
32.15% and Zn = 66,345%. 

3 Results and Comments 

3.1 Influence of Time 

The experiment consists in attacking 5g of concentrate ZnS with 400ml of initial 
concentration of sphalerite (0.125 M and 0.5 M) at a pressure of 106Pa for 2 to 120 
minutes at a temperature ranging from 50 °C to 200 °C. 
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3.6.1   In the Area 120-170 ° C 
The concentration of dissolved zinc by the reaction of dissolved oxygen under 
pressure can be expressed as a function of concentration [Zn 2 +] eq corresponding to 
the balanced relationship in the absence of oxygen: ሾܼ݊ାଶሿ ൌ ሾܼ݊ାଶሿ௘௤ା3.5. ݉. .ݐ ைܲమሾܪଶܵ ସܱሿ. ݁షభభ.మభ೅                  E6                                 

With P O2 (Pa), m (g) t (min) [H 2 SO 4] mole of sulfuric acid per liter; 
The concentration [Zn2+] eq can be calculated from the relation giving the  

equilibrium constant of the reaction without oxygen. This concentration depends only 
on the temperature and the initial concentration of sulfuric acid. 

This model corresponds to the slow reaction of oxidation of hydrogen sulfide. The 
dissolution rate is of order 1 with regard to the oxygen pressure in the initial mass of 
zinc sulfide and sulfuric acid concentration. The reaction takes place according to an 
electrochemical oxidation of hydrogen sulfide, but it is also limited by diffusion 
through a layer of liquid sulfur on the surface of the grains. 

3.6.2   Above 160 ° C to 200 ° C  
The kinetic model corresponding to the second step is of the same form as before: ሾܼ݊ାଶሿ ൌ ሾܼ݊ାଶሿ௘௤ା݉. .ݐ ைܲమሾܪଶܵ ସܱሿ. ݁షమబ.ఱఴ೅ ାଶଶ.଻଺ହ

            E7               

With P O2 (Pa), m (g) t (min) [H 2 SO 4] mole of sulfuric acid per liter; 
The reaction is faster than temperatures at 160 ° C. Hydrogen sulfide and elemental 

sulfur are rapidly oxidized as sulfuric acid. The oxidation of hydrogen sulfide and the 
complex reactions of hydrogen sulfide in sulfuric acid constitute the limiting steps of 
the dissolution reaction. 

4 Conclusion 

This present study is related to a dissolution process of sphalerite in aqueous solution 
of sulfuric acid.  Leaching experiments of this study are covering the temperature 
range of 25 ° C to 200 ° C, 

In the presence of oxygen, two areas above 120 ° C can be distinguished. 
Between 120 and 160 ° C the reaction takes place according to an electrochemical 

process. It is divided into two stages. The first corresponds to the dissolution of zinc 
sulfide which quickly reaches its equilibrium. And hydrogen sulfide is oxidized very 
slowly. The kinetic model thus proposed in this second step is   ሾܼ݊ାଶሿ ൌ ሾܼ݊ାଶሿ௘௤ା3.5. ݉. .ݐ ைܲమሾܪଶܵ ସܱሿ. ݁షభభ.మభ೅                                   

[Zn 2+] eq is the concentration of dissolved zinc in equilibrium, corresponding to the 
equilibrium reaction without oxygen. This concentration depends only on the initial  
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concentration of sulfuric acid and temperature.  The overall reaction is limited mainly 
by the reaction of oxidation of hydrogen sulfide and diffusion through a layer of 
liquid sulfur on the surface of the grains. 

Between 160 and 200 ° C the reactions of oxidation are faster, and the kinetic 
model is  ሾܼ݊ାଶሿ ൌ ሾܼ݊ାଶሿ௘௤ା݉. .ݐ ைܲమሾܪଶܵ ସܱሿ. ݁ିଶ଴.ହ଼் ାଶଶ.଻଺ହ

 

The overall reaction is limited by parallel chemical reactions oxidation of hydrogen 
sulfide, the reaction of hydrogen sulfide with sulfuric acid superimposed on the direct 
oxidation reactions. Elemental sulfur resulting from these reactions is itself oxidized 
as sulfuric acid. 
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