
M.Á. Fernández-Izquierdo, M.J. Muñoz-Torres, R. León (Eds.): MS 2013, LNBIP 145, pp. 91–98, 2013. 
© Springer-Verlag Berlin Heidelberg 2013 

Estimating Risk with Sarmanov Copula  
and Nonparametric Marginal Distributions 

Zuhair Bahraoui, Catalina Bolancé, and Ramon Alemany 

Dept. Econometrics, Riskcenter-IREA 
University of Barcelona Av. Diagonal,  

690, 08034 Barcelona, Spain 
{zuhair,bolance,ralemany}@ub.edu 

Abstract. We show that Sarmanov copula and kernel estimation can be mixed 
to estimate the risk of an economic loss. We use a bivariate sample from a real 
data base. We show that the estimation of the dependence parameter of the 
copula using double transformed kernel estimation to estimate marginal 
cumulative distribution functions provides balanced risk estimates. 
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1 Introduction 

Estimating the risk of loss is a major challenge in finance and in insurance, which has 
been extensively studied in the literature (see, for instance, the books by [1], [2] and [3] 
or articles such as [4], [5] and [6], among many others). In this work, we propose to use 
the Sarmanov copula (see [7]) with non-parametric marginals to estimate the risk of a 
loss that is obtained as the aggregation of two dependent losses. Value-at-Risk (VaR) 
and Tail Value-at-Risk (TVaR) are the selected risk measures. We show that estimating 
marginals using double transformed kernel estimation (DTKE) as proposed by [6] is the 
method that best fits our purpose. We apply our proposal to a real insurance database 
corresponding to a random bivariate sample of the cost of claims. 

The aim of this work is to show as the transformed kernel estimator of cumulative 
distribution function allows us to obtain a good fit of the Sarmanov copula. Unlike the 
rest, in this copula the dependence structure is not separated strictly of the marginal 
distributions, i.e. the marginals are incorporated into the dependence structure; 
therefore, the estimation of these marginal distributions is essential to estimate the 
parameter of the copula. 

2 Sarmanov Copula 

Let  be a bivariate random vector with marginal probability distribution 

functions (pdfs)  and . Also, let  and  be two bounded non constant 

function such that:  
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Then the bivariate pdf introduced by [7] is defined as: 
 

. 

 
From Sklar’s theorem, we deduce that the associated copula can be expressed as: 
 

. (1) 

 
and its density is: 
 

. (2) 

 
where  and  are cumulative distribution functions (cdfs) of and , 

respectively. Parameter ω is a real number that satisfies the condition 
 for all  and . This parameter is related to the correlation 

between and  (if it exists), ω is called the dependence parameter. As [8] shows, 
the dependence between and is: 

, 

 
where , ,  and  When we 

take  and , we have the classical Farlie-Gumbel–

Morgenstern (FGM) copula. In this case the dependence parameter has the range 
. 

Another special case is when we consider functions of the type: 
 

 and  (3) 
 

where  and . The author in [8] shows that, if the support of  

and  is contained in , then the range of the dependence parameter is: 

 

 . 

 
If the support of  is contained in and  is contained in , we can easy 

prove that: 
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2.1 Simulating from the Sarmanov Copula 

To generate a bivariate random variable from Sarmanov’s copula in (1), we use the 
procedure described by [9] which is based on the conditional distribution of a random 
vector   

 
 , 

 
where: 
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The algorithm is implemented as follows: 

1. Generate two independent random variables  and  from an Uniform  

distribution. 
2. Set , where  denotes a quasi-inverse of . 

3. The desired pair is . 

For our case, when we consider functions  and  as defined in (3), we have: 

 

. (4) 

 
This result can easily be shown if the derivative of (1) is calculated or, alternatively, 
using the following relationship (see Lee, 1996):  

 

, (4) 

 
Taking  and . Expression (4) can be calculated using the change 

of variable  in the integral. 

3 Nonparametric Approximation of cdf 

In this work, we propose to use different ways of obtaining a kernel estimation of the 
cdf in order to estimate marginal cdfs  and , respectively. We consider classical 

kernel estimation, transformed kernel estimation and double transformed kernel 
estimation. We describe these three methods to the specific case when marginals  

and  are the same. 

( )VU ,

( ) ( )vCuUvVP u==≤ |

u t ( )1,0

( )tCv u

1−= ( )tCu

1−
uC

( )vu,

1φ 2φ

( ) ( )( ) ( )( ) −−+= −−
v

YYXXu dssFuFvvC
0

11 μμω

( ) ( ) ( ) ( )
+∞

−==≤
y

YY dtttfyFxXyYP 2| φω

( )yFv Y= ( )xFu X=
( )sFt Y

1−=

XF YF

XF

YF



94 Z. Bahraoui, C. Bolancé, and R. Alemany 

Classical kernel estimation (CKE) of cdf  is obtained by integration of the 

classical kernel estimation of its pdf . By means of a simple change of variable it 

follows that: 
 

, (5) 

 
where is a pdf, which is known as kernel function. Very common kernels are 

Gaussian or Epanenchnikov kernels (see [10]).  Function  is the cdf of . 

Parameter  is the bandwidth; it controls the smoothness of the function estimate. 
Silverman in [11] analyzes the statistical properties of (5). 

Classical kernel estimation is not a good alternative when data are right skewed 
(see [6]). An alternative is transformed kernel estimation, that consists of 
transforming the data so that the transformed observations are symmetric. Authors in 
[12] propose to use a shifted power transformation family: 

 

, (5) 

 
where  and  for right skewed data. Transformed kernel 

estimation (TKE) of a cdf is: 

. (6) 

 
Then, the transformed kernel estimation is a classical kernel estimation with transformed 
data ([12] describe a method to choose transformation parameters  and ). 

Double transformed kernel estimation (DTKE) needs two steps. First, a 
transformation of the data , is chosen, where the transformed 

data have a distribution that is close to  the Uniform  distribution. Second, data 

are transformed again using the inverse of the Beta  distribution with pdf and cdf: 
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The resulting transformed data have a distribution that is close to the Beta  

distribution. This distribution can be estimated optimally using classical kernel 
estimation (see the discussion in [6]). 

The double transformation kernel estimation (DTKE) is: 
 

. (6) 

 
where T x  is the generalized Champernowne cdf: 

 

 
with parameters  and  (authors in [13] describe a maximum  

pseudo-likelihood method to estimate parameters of the Champernowne distribution). 

4 Value-at-Risk and Tail Value-at-Risk 

Let  be the sum of two possibly dependent random variables  and . 
The Value-at-Risk of S with a confidence level  is: 

 
. 

 
and the Tail Value-at-Risk of S with a confidence level  is: 

 

. 

 
Our goal in this section is to calculate the VaR and TVaR using Sarmanov copula to 
model dependency and the nonparametric approach to estimate marginal cdfs using 
the Monte Carlo method. The procedure is described here: 

1. Estimate with non-parametric method the cdfs  and . 

2. Replace the cdf estimates in (2) in order to obtain the parameters of the copula 
that maximize likelihood. 

3. Generate pairs  for  using (4), where  is the number of 

simulated pairs. 

4. Solve  and  and obtain the simulated losses . 

5. Calculate  and estimate  and  empirically once 

r repetitions are available. 
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5 Results 

The data corresponds to a random sample of claims that were obtained from motor 
insurance accidents. An insurance company kindly gave us access these data. We 
have two costs: Cost1, contains the amount paid to the insured person to compensate 
for own damages to the vehicle and all other losses to third-parties damages, and 
Cost2, corresponds to the expenses related to medical treatments and hospitalization 
as a result of the accident (see [14] for more information on these data).  

To estimate marginal cdfs with classical kernel estimation (CKE), transformed 
kernel estimation (TKE) and double transformed kernel estimation (DTKE) we use 
the Epanechnikov kernel and the bandwidth based on the asymptotic minimization of 
weighted integrated mean squared error (WISE, see [6]).  

In Table 1 we summarize the values of the dependence parameters of the Sarmanov 
copula for the different kernel estimations for the marginal cdf. We note that there are 
significant differences between the estimated dependence parameters when we use 
CKE, TKE or DTKE to estimate the marginal cdfs. The log-likelihood column refers 
only to the dependence parameter estimation, that is not a full likelihood, which is 
why positive values are obtained. The log-likelihood shows that the best fit is 
obtained using DTKE to estimate marginal cdfs. 

Table 1. Estimated parameters of Sarmanov copula for bivariate claims cost data  

  Log-Likelihood*

CKE 9.53×10  4.96227 

TKE 109.05 29.68099 
DTKE 0.99 87.86507 
* This is not full likelihood, so values can be larger than zero

Tables 2 and 3 summarize the  and  calculated for different 

confidence levels α, using a Monte Carlo simulation method. We use  
simulated samples. In Fig. 1 we plot the estimated  together with the 

confidence interval at 95% for the empirical estimation.  
To estimate the confidence intervals, we use the Bootstrap method. We generate 

samples with replacement with the same size of the original sample. This 
methodology allows us to obtain the intervals with different confidence levels.  

Table 2. Estimated VaR with Sarmanov copula for bivariate claims cost data at tolerance levels 
95%, 99% and 99.5%  

 0.95 0.99 0.995 
CKE 7639.09 20582.40 24781.87
TKE 8622.01 48179.00 100784.01
DTKE 9610.28 24638.11 26338.82

( )SVaRα ( )STVaRα

2000=r
( )SVaRα
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Table 3. Estimate TVaR with Sarmanov copula for bivariate claims cost data at tolerance levels 
95%, 99% and 99.5%  

 0.95 0.99 0.995 
CKE 47745.92 61114.87 81381.10
TKE 246990.90 326447.20 465581.20
DTKE 36907.52 46006.60 56690.85

 
Fig. 1. Estimated VaR  

The results show that using the DTKE we obtain the best results, inside confidence 
levels and ensuring balanced risk estimation, neither overestimated nor 
underestimated. 

6 Conclusions 

In this paper we present an example, using a random sample of claims from a real 
database, where, to estimate the risk of an aggregated loss, we mix copulas with 
kernel estimations. We show that double transformed kernel estimation (DTKE) of a 



98 Z. Bahraoui, C. Bolancé, and R. Alemany 

cdf can be a useful tool combined with copulas, which allows to  estimate the VaR 
and the TVaR using Monte Carlo simulation method. 

We propose to use the Sarmanov copula, which so far has not been used in the 
context of the quantifying risk. As we say in the introduction, in this copula the 
dependence structure is not separated strictly of the marginal distributions. We show 
how this fact can affect the risk estimate since the estimation of the marginal 
distribution affects significantly the goodness of fit of this copula. As principal future 
lines for research we want to analyze how kernel estimation can improve the 
goodness of fit of alternative and well known copulas. 
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