
A Spectral Approach to Total Variation

Guy Gilboa

Department of Electrical Engineering, Technion, Israel Institute of Technology,
Haifa 32000, Israel

Abstract. The total variation (TV) functional is explored from a spec-
tral perspective. We formulate a TV transform based on the second time
derivative of the total variation flow, scaled by time. In the transforma-
tion domain disks yield impulse responses. This transformation can be
viewed as a spectral domain, with somewhat similar intuition of classical
Fourier analysis. A simple reconstruction formula from the TV spectral
domain to the spatial domain is given. We can then design low-pass,
high-pass and band-pass TV filters and obtain a TV spectrum of signals
and images.
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1 Introduction

The total variation (TV) functional is today a fundamental regularizing
tool in image processing. It is employed for denoising and deconvolution
[30,12,26,28,27,20], optical-flow [8], tomographic reconstruction [31], texture and
image analysis [7,4,3,35,21] and more. Since its introduction in [30] in the con-
text of image processing many studies have been devoted to its analysis and
interpretation, e.g. [12,26,13,14]. We attempt in this paper to further enhance
the intuition and applicability of this functional to feature extraction and image
analysis by formulating a spectral framework, where one can decompose and
reconstruct images using the basic TV elements of the image.

Spectral analysis has been used extensively in the analysis and processing
of signals modelled as stationary random processes (see e.g. [24,33]). For more
complex non-stationary signals, such as images and speech, harmonic analysis
methods were developed in the form of wavelets [17,25,18], spectral graph theory
[15] and diffusion maps [16]. We explore a way to provide spectral information
for total variation analysis.

In [32] Steidl et al have shown the close relations, and equivalence in a 1D
discrete setting, of the Haar wavelets to both TV regularization [30] and TV
flow [1]. This was later developed for a 2D setting in [37]. The development of
features in the scale space framework [38,22,29,36] and the emergence of critical
points were studied for example in [22,9,23,34,13,21]. This work relies on the
established theory of the TV flow proposed by Andreu et al in [1] and further
developed in [2,6,32,10,5,19] and the references therein.
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2 The TV Spectral Framework

The scale-space approach is a natural way to define scale:

ut = −p, u|t=0 = f, p ∈ ∂uJ(u), (1)

where ∂uJ(u) denotes the subdifferential of some regularizing functional J(u).
We are interested in the total variation functional:

J(u) =

∫
Ω

|Du|, (2)

where Du denotes the distributional gradient of u. It is therefore natural to ex-
amine the total variation scale-space, known as total-variation flow [1], formally
written as:

∂u
∂t = div

(
Du
|Du|

)
, in (0,∞)×Ω

∂u
∂n = 0, on (0,∞)× ∂Ω
u(0, x) = f(x), in x ∈ Ω,

(3)

where Ω is the image domain (a bounded set in RN with Lipschitz continuous
boundary ∂Ω). We assume f has sufficient spatial regularity.

We now give our line of thought how the transform was derived. Similar results
may probably be obtained using other, more formal, approaches.

In Fourier analysis, the sine and cosine functions (or exponents with imaginary
arguments) are the basic functions of the transform. They form impulses in the
Fourier domain. How can this be generalized to the total variation domain? We
begin by examining some atom-like elements in the TV sense. It is well known
that disks are elementary structures for the TV functional. For instance, they
satisfy the eigenvalue problem in RN : ∂uJ(u) = λu (where λ ∈ R), which implies
their shape stays the same during the entire evolution (their height decreases
until they disappear). Analytic solutions for disk regularizations and evolutions
were obtained for the TV regularization model [26,34], TV-flow [1,2,6], inverse-
scale-space evolutions [11] and more.

Let us recall the analytic solution of a simple case: evolution of a single disk
in two dimensions. The indicator function of a disk of radius r in R2 is:

I(x) =

{
1, |x| < r
0, otherwise

For a disk of height h, hI(x), we have that ∂uJ(u) = 2
r I(x) for all t until the

disk disappears. We denote by td = hr
2 the disappearance time.

The solution of the TV flow for u(t) is therefore

u(t) =

{
(h− 2

r t)I(x), 0 ≤ t < td
0, otherwise

The first and second derivatives in time are:

ut(t) =

{− 2
r I(x), 0 ≤ t < td

0, otherwise
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Fig. 1. Illustrating the evolution of a disk in R2. The value is within |x| < r, for
example at (x1 = 0, x2 = 0). The second derivative is an impulse at time td. [here we
set r = 4, h = 2 and therefore td = 4].

utt(t) =
2

r
δ(t− td)I(x),

where δ(t) denotes an impulse (Dirac delta) at t = 0. See Fig. 1 for an illustration.
We observe that utt yields an impulse of an elementary structure and is,

therefore, a good candidate for a spectral representation. We would also like that
the response will be invariant with respect to time. We normalize by multiplying
it by the evolution time t. It will be seen later that this yields a straightforward
reconstruction formula.

2.1 TV Transform

Let the TV transform be defined by

φ(t) = uttt, (4)

where t ∈ (0,∞) is the time parameter of the TV-flow, Equation (3), and utt is
the second derivative in time of u in that flow.

Having defined φ(t) ∈ L1(Ω), we now need the inverse transform, which re-
constructs a signal from all φ(t) responses. The reconstruction formula is very
simple and is defined as:

w(x) =

∫ ∞

0

φ(t)dt + f̄ , (5)

where f̄ = 1
Ω

∫
Ω
f(x)dx is the mean value of the initial condition. Naturally, if

we do not manipulate the spectral domain for filtering, we expect to reconstruct
the image of the initial condition f , as stated in the following:

Theorem 1. For φ(t) defined in (4), the reconstruction formula (5) recovers
f ∈ BV (Ω) ∩ L∞(Ω), that is w(x) = f(x).
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Proof. We examine the left-term on the right hand side of Eq. (5). Integration
by parts yields ∫ ∞

0

φ(t)dt =

∫ ∞

0

utttdt = utt|∞0 − u|∞0 .

We use the property of finite extinction time of the TV flow. A two-dimensional
proof by energy methods is given in [2] Th. 5. A more recent proof for all di-
mensions using energy estimates and Sobolev inequalities is given in [19] Th.
2.4, 2.5. In essence, this property means that for some t1 ∈ (0,∞) we have
u(t) ≡ const, ∀t > t1. Therefore also ut(t) ≡ 0 in a similar time range. The
expression ut ∈ −∂uJ(u) is finite for all t ∈ [0,∞) so that utt|t=0 = 0. We can
therefore conclude that the left term utt|∞0 = 0. For Neumann boundary condi-
tions the mean is unchanged, therefore u|t→∞ = f̄ . Using the initial condition
we have u|∞0 = f̄ − f . �

f S(t)
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Fig. 2. A single one-dimensional disk and the corresponding numerical spectral re-
sponse S(t)

Definition 1 (TV Spectral Response). The TV spectral response for t ∈
(0,∞) is defined as:

S(t) = ‖φ(t;x)‖L1 =

∫
Ω

|φ(t;x)|dx.

The spectral response roughly corresponds to the amplitude of the response in
a Fourier domain (see Fig. 3). If the response is high, a large “quantity” of the
element φ(t) is contained in the image. If it is low, this element can be consid-
ered negligible. A response for one dimensional disk, as computed discretely, is
depicted in Fig. 2. We will show in our experiments that, as can be expected,
elements with high spectral response compose the main features of the image.

2.2 Spectral Filtering

Let H(t) be a filter defined in the TV spectral domain as a real valued function
of t. The filtered response φH(t) in the spectral domain is defined by:

φH(t) = φ(t)H(t). (6)
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The filtered response in the spatial domain is then the corresponding reconstruc-
tion procedure

fH(x) =

∫ ∞

0

φH(t)dt+ f̄ , (7)

An ideal filter in Fourier analysis eliminates completely energy of undesired
frequencies while perfectly retaining frequencies in the desired range. We can
now define analogous ideal filters in the TV spectral sense:

Definition 2 (Ideal Spectral Filters). Let t1, t2 ∈ [0,∞). We define the
following ideal spectral filters:

(i) Ideal low-pass filter:

HLPF,t1(t) =

{
0, 0 ≤ t < t1
1, t1 ≤ t < ∞

(ii) Ideal high-pass filter:

HHPF,t1(t) =

{
1, 0 ≤ t < t1
0, t1 ≤ t < ∞

(iii) Ideal band-pass filter:

HBPF,t1,t2(t) =

⎧⎨
⎩

0, 0 ≤ t < t1
1, t1 ≤ t < t2
0, t2 ≤ t < ∞

(iv) Ideal band-stop filter:

HBSF,t1,t2(t) =

⎧⎨
⎩

1, 0 ≤ t < t1
0, t1 ≤ t < t2
1, t2 ≤ t < ∞

2.3 Feature Extraction

The spectral response S(t) can be used to characterize an image. It informs us
of the dominant scales and can be used when comparing images or as features
for a machine learning algorithms. See Figs. 5, 6 for the spectral response and
selected elements φ(t) of two image examples.

3 Examples

Examples demonstrating the qualitative properties of this transform are shown
below.

In Fig. 3 a 1D example is shown and compared with classical low-pass-
filtering in the Fourier domain. In the classical linear setting (bottom row)we have:
f2 = sin 2πϕ1 + 0.2 sin 2πϕ2, (in this specific example ϕ1 = 0.025, ϕ2 = 0.15).
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Fig. 3. One dimensional example of ideal low pass filtering versus scale-space low pass
filtering. Top row, processing f1 (left), middle - response by spectral filtering (full blue
line), and by TV flow (dotted green line). On the top right the spectral response is
shown. On the bottom row an analogue linear case filters f2 with Fourier ideal LPF
(full blue line) versus linear diffusion (dotted green line).

We compare two linear low-pass filters (LPF) - an ideal LPF and linear diffusion.
The ideal LPF (shown on bottom, right, dotted line) keeps all low frequencies and
sets to zero all frequencies above the threshold. The diffusion processes attenu-
ates more softly the frequencies near the threshold (as it is not an ideal LPF). We
observe that the ideal LPF retains the low frequency with better contrast.

A signal with similar properties, adapted for the TV case, is shown in Fig.
3 top row: f1 = sign(sin 2πϕ1) + 0.2 sign(sin 2πϕ2). The spectral response S(t)
shows three active bands (t < 30 high oscillations, t ≈ 100 low oscillations, and
200 < t < 250 low amplitude step). TV flow is compared to ideal TV LPF, as
defined above with filter threshold t1 = 30. The filter response is illustrated in a
dotted line at the top right. Note that in the TV spectral setting high frequencies
are on the left side (small t values) as oppose to Fourier domain.

One can observe the very sharp transitions of the ideal LPF using the spectral
filtering. Note that filtering with ideal LPF may result in too sharp transitions
which can produce some reconstruction artifacts. This can be the case both in
the linear and TV settings.

In Fig. 4 four circles of different sizes are processed. The ideal LPF is compared
to TV-flow. In both cases the extent of filtering is such that the smallest circle
completely vanishes. One can observe that the ideal LPF retains almost perfectly
the larger three circles, whereas TV-flow erodes their contrast considerably.
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f

Ideal low pass response uLPF Residual f − uLPF

TV flow response uTV F Residual f − uTV F

Fig. 4. Comparison between the ideal low-pass filter response and TV-flow. In both
cases the response is shown for the minimal extent of filtering in which the smallest
circle completely vanishes. One sees the considerable reduction of contrast of the larger
circles in the TV-flow versus the sharp and stable results of the ideal TV LPF.
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Fig. 5. Old Technion image. Results of ideal low pass filtering. This is compared to
TV-flow with equivalent filtering in the L2 sense (the norm of the residual, ‖f − u‖L2 ,
is the same). In addition, two examples of φ(t) are shown for different t values.
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Fig. 6. Feature extraction example. Salient features ate depicted as spectral peaks
(top right). The first three spectral peaks are shown as Bands I-III. These bands are
reconstructed together at the third row, right. This reconstruction is then superimposed
on the image to show the localization of the bands. Bottom right - a color coded
visualization of the image with the selected bands.
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In Fig. 5 an image of a building with landscape is examined. The ideal LPF
response is shown along with a standard TV-flow filtering. In both cases the L2

norm of the residual f −u is the same. The ideal LPF exhibits sharper features.
In addition two spectral elements φ(t) are shown. One can observe that the
spatial response for any φ(t) is highly localized with very particular structures
that emerge. The responses for the building windows (seen as black and white
structure on the bottom row) highly resemble 2D Haar wavelets, which can be
related to the analysis of [32,37]. Other structures can be related to the explicit
solutions of structures which retain their characteristic function, as analyzed
in [6].

In Fig. 6 a possible direction for image analysis is shown. The first most
salient peaks in the spectrum are examined (around times 60, 130, 170). We
band-pass filter them, as the response is not fully concentrated near a singular
time point. The composed three bands are shown on the third row, right. They
are superimposed back on the original image. It is shown that they contain
meaningful and well localized features with semantic meaning (in this case the
eyes). Therefore they may serve as good candidates for image features in higher-
level vision algorithms (e.g. face detection).

4 Conclusion

In this study a TV transform and a corresponding reconstruction formula were
presented. This transform yields large response to all image structure which
disappear at highly concentrated time intervals during the TV flow evolution.
We can regard these structure as the “atoms” of the image, with respect to the
total variation functional and gain a spectral understanding in the TV sense.

We have shown numerically that these structures are well localized spatially
and often represent significant image features with semantic meaning. Thus
they can serve for image analysis and as input features to higher-level vision
processing.

Extensions of this framework and relations to other TV-based formulations
should be further investigated. For example, it may be the case that inverse-
scale-space [11] can be interpreted as TV spectral low-pass filtering. Also other
scale-spaces and regularization procedure, not based on the TV-functional, may
be generalized using a similar approach.
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