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Preface

The 4th International Conference on Scale Space and Variational Methods in
Computer Vision (SSVM 2013) was held in Schloss Seggau, Leibnitz, in the
vicinity of Graz, Austria. The biannual SSVM Conferences started in 2007 in
Ischia, Italy (2007), and were followed by editions in Voss, Norway (2009), and
Ein Gedi, Israel (2011).

This series of conferences originated from the biannual conferences on Scale
Space held in 1997 in Utrecht, The Netherlands, and Variational, Geometric, and
Level set Methods (VLSM) in 2001 in Vancouver, Canada. The aim of SSVM is to
bring together these two different communities with common research interests:
the one on scale space analysis and the one on variational, geometric, and level
set methods and their applications in image interpretation and understanding.
Just as in previous editions, the papers in these proceedings depict this successful
combination.

Following the tradition of the previous SSVM conferences, we invited out-
standing scientists to give keynote presentations and were happy to welcome:

– Gabriel Peyré (CNRS, CEREMADE, Université Paris-Dauphine): Inverse
Problem Regularization with Weakly Decomposable Priors

– Martin Rumpf (University of Bonn): Variational Time Discretization of
Geodesic Calculus in Shape Space

– Tony Lindeberg (KTH Royal Institute of Technology): A Framework for
Invariant Visual Operations Based on Receptive Field Responses

From the 69 submitted papers, 19 were selected to be presented orally and 23
as posters. We would like to thank the authors for their contributions and the
members of the Program Committee for their dedication and timely reviews.

We would like to sincerely thank Christine Haas from the sterreichische Com-
puter Gesellschaft (OCG), Christiane Tronigger from Nethotels, and Sabine
Tschernegg from Schloss Seggau for their help with the local arrangements.

March 2013 Arjan Kuijper
Kristian Bredies

Thomas Pock
Horst Bischof
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Mila Nikolova Ecole Normale Superieur Cachan, France
Stanley Osher UCLA, USA
Nikos Paragios Ecole Centrale de Paris, France



VIII Organization

Guy Rosman Technion, Israel
Martin Rumpf University of Bonn, Germany
Chen Sagiv SagivTech Ltd., Israel
Otmar Scherzer University of Vienna, Austria
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Targeted Iterative Filtering

Freddie Åström1,2, Michael Felsberg1,2,
George Baravdish3, and Claes Lundström2,4

1 Computer Vision Laboratory, Linköping University, Sweden
2 Center for Medical Image Science and Visualization, Linköping University, Sweden

3 Department of Science and Technology, Linköping University, Sweden
4 Sectra AB, Sweden

{freddie.astrom,michael.felsberg,george.baravdish,claes.lundstrom}@liu.se

Abstract. The assessment of image denoising results depends on the
respective application area, i.e. image compression, still-image acquisi-
tion, and medical images require entirely different behavior of the applied
denoising method. In this paper we propose a novel, nonlinear diffusion
scheme that is derived from a linear diffusion process in a value space
determined by the application. We show that application-driven linear
diffusion in the transformed space compares favorably with existing non-
linear diffusion techniques.

1 Introduction

Many image processing techniques such, as denoising algorithms, aim to improve
the quality of images. Naturally, the definition of quality is dependent on the
situation where the images are used. The focus of this work is on denoising
algorithms and our approach concentrates on that noise that actually will be
visible to an observer, rather than data noise in general.

A widely applied denoising technique was introduced by Perona and Malik [1]
who proposed a nonlinear partial differential equation (PDE) diffusion scheme.
It extends the linear diffusion scheme which is based on the image gradient ∇u
with an edge stopping function g(|∇u|) i.e.

∇u → g(|∇u|)∇u
Linear Perona and Malik

where a modification of the diffusion speed is based on the value domain of the
image gradient. Another PDE model which has received much attention in re-
cent years is the tensor-based diffusion scheme of Weickert [2]. These diffusion
models require the determination of parameters often estimated from the input
data. Thus the performance of these methods depend on the accuracy of the
parameter estimation. A particular problem is that image structure of differ-
ent scale can be present within the same value ranges, hence spatially varying
contrast parameters are required.

In this work we show that by the use of an application dependent transfor-
mation to the input data space given by a function m(u), we obtain a nonlinear

A. Kuijper et al. (Eds.): SSVM 2013, LNCS 7893, pp. 1–11, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



2 F. Åström et al.

diffusion formulation. The novel formulation modifies the value domain of u
rather than the gradient domain as done in Perona and Malik diffusion i.e.

∇u → ∇m(u)
Linear Targeted diffusion

An energy functional is formulated where the regularization term is expressed
using the mapping function m(u) and the resulting Euler-Lagrange equation
can be interpreted in terms of nonlinear diffusion. The difference between the
edge-stopping function g and the mapping function m is that the former is an
data-driven ad-hoc selection whereas m is application-driven.

Image processing tools that target specific regions of an image are relevant in
many areas of computer vision, and include high dynamic range imaging [3,4],
infrared imaging [5] and medical imaging [6]. One such region based diffusion
filtering method was proposed by Kačur et al. [7] who generalized the Perona
and Malik diffusion. They model the diffusion PDE with an additional nonlin-
ear function on the range domain from which the gradient is computed. This
allows the filtering process to be directed to regions containing particular image
structures. Their framework reduces the filtering process in regions determined
by the user, but the method still requires the determination of a parameter
corresponding to an edge-stopping function within the region of filtering.

In this work our main contributions are

• A novel diffusion scheme is derived by using a mapping function in a varia-
tional formulation of standard image diffusion.
• Necessary and sufficient conditions are derived to determine if the solution
given by the Euler Lagrange equation yield a minimum of the proposed
energy functional.
• We show how the mean and variance of noise present in the signal domain
is transformed by the mapping function.
• In experiments with computed tomography (CT) images of different noise
levels, it is shown that the novel scheme compares favorably to nonlinear
scalar diffusion on a data set of 400 images using the structural similarity
index [8].

2 Image Diffusion

2.1 Linear Diffusion

The variational approach to isotropic image diffusion is to minimize the energy
functional

E(u) =

∫
Ω

(u − u0)2 dx+ λ

∫
Ω

|∇u|2 dx , (1)

where x ∈ Ω and u0 denotes the observed image. The constant λ is a positive
scalar which determines the effect of the regularization. The domain Ω is a grid

described by the image size in pixels, and ∇ = ∂x =
(
∂x1 , ..., ∂xn

)T
is the
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gradient operator, and dim(∇) = n is the number of dimensions. Other types
of regularization terms have previously been investigated [9,10]. To minimize
E(u), one finds the stationary point u by computing the Euler-Lagrange (E-L)
equation

Eu(u) = 0 in Ω, ∇u · n = 0 on ∂Ω ,

where n is the normal vector on the boundary ∂Ω. The E-L equation for (1)
reads {

u− u0 − λΔu = 0 in Ω
∇u · n = 0 on ∂Ω

(2)

where Δu is the Laplacian operator. We solve (2) by solving an initial value
problem (IVP) and obtain the diffusion equation which has a closed form solu-
tion.

2.2 Nonlinear Diffusion

Before deriving the proposed diffusion scheme, we define the nonlinear scalar
diffusion process of Perona and Malik (PM) [1] as{

u− u0 − λdiv(g(|∇u|)∇u) = 0 in Ω
∇u · n = 0 on ∂Ω

(3)

where g(s) = (1 + (s/k)2)−1 is a popular choice as the diffusivity function and
k is a contrast parameter fixed to suppress the flux at edges and lines in the
image. It will be seen that the diffusion process introduced in the subsequent
section can be viewed as a nonlinear filter, closely related to PM-diffusion. We
solve (3) by solving an IVP and obtain the diffusion equation.

Tensor-based nonlinear diffusion is achieved defining T = w∗∇u∇uT where ∗
is a convolution operator and w is a Gaussian filter [2,11,12]. Then the diffusion
tensor can be computed as D(T ) = OT g(Λ)O where O are the eigenvectors and
Λ the eigenvalues of T [13]. This gives the PDE

u− u0 − λdiv(D(T )∇u) = 0 . (4)

3 Targeted Iterative Filtering

In order to simultaneously consider the signal domain and the application de-
pendent transformation of an image, we express the regularization term of the
energy functional (1) in the transformed domain. Let m(u(x)) be a mapping
function that maps u(x) to its application domain, then define

E(u) =

∫
Ω

(u− u0)2dx+ λ

∫
Ω

|∇m(u)|2dx (5)

where m(u) ∈ C3(Ω) and λ > 0 is a parameter determining the influence of
the regularization term. In the subsequent sections we derive the necessary and
sufficient conditions for the functional E(u) to attain a local minimum (for details
see supplementary material).
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3.1 Necessary Conditions for Local Minimum

The variational derivative of the the regularization term of E(u) is computed
using the Gâteaux derivative

〈∂R, v〉 = lim
ε→0

|∇m(u+ εv)|2 − |∇m(u)|2
ε

,

where v ∈ C1(Ω) is an arbitrary function such that ∂nv|∂Ω = 0. Using the chain
rule ∇m(u) = m′(u)∇u we obtain

〈∂R, v〉 = lim
ε→0

|∇u|2(m′(u+ εv)2 −m′(u)2) +m′(u+ εv)2(ε2∇ut∇v + ε2|∇v|2)
ε

With Green’s identity and Neumann boundary conditions we obtain

〈∂R, v〉 =
(
2|∇u|2m′(u)m′′(u)− 2div(m′(u)2∇ut)

)
v .

Now observe that div(m′(u)2∇u) = 2m′(u)m′′(u)|∇u|2 +m′(u)2Δu. Using this
result, and since v �= 0, the E-L equation reads{

u− u0 − λ(div(m′(u)2∇u) +m′(u)2Δu) = 0 in Ω
m′(u)2∇u · n = 0 on ∂Ω

(6)

Since m′(u)2 ≥ 0 it is guaranteed that a solution of (6) exists. Compared to
(3), the divergence operator is modulated with the squared steepness of the
mapping function. Also, the Laplacian is weighted with the same factor. If and
only ifm is a globally linear function, (6) becomes identical to (2). The difference
to nonlinear diffusion is easiest explained in terms of the Lagrangian: Replacing
g(|∇u|) with m′(u)2 means to replace the robust error function with an intensity
dependent factor.

3.2 Sufficient Conditions for Local Minimum

In this section we derive sufficient conditions for the solution of the E-L equation
to be a minimum of the regularization term in (5). The result is summarized in
the theorem below. We remark that if the mapping function is a strict monotone
function, the regularization term in (5) is obviously convex and the necessary
condition is also a sufficient condition. However, in the general case, m is not
always a strict monotone function, and this is the case we consider here.

Theorem 1. Let u0 be an observed image in a domain Ω ⊂ R2, and denote by
E(u) the functional

E(u) =

∫
Ω

(u− u0)2 dx+ λ

∫
Ω

|∇m(u)|2 dx

where u ∈ C2 and m(u) ∈ C3. Let ε > 0 be arbitrary and consider the set

Bε =
{
h,∇h ∈ L2(Ω) : ||h||2L2(Ω) ≤ ε2/CM , ||∇h||2L2(Ω) ≥ ε

}
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where

CM = max
x∈Ω

∣∣[m′(u∗(x))m′′′(u∗(x))− 3(m′′(u∗(x)))2]|∇u∗(x)|2
∣∣ .

Then u∗ is a local minimum of E(u) given by the solution of the E-L equation
(6) if there exists ξ ∈ Ω such that

(m′(u∗(ξ)))2||∇h||2L2(Ω) > ε2 , (7)

for every h ∈ Bε.

Proof. In order to find the sufficient condition for a minimum, define the regu-
larization term in the functional as

J(u) =

∫
Ω

|∇m(u)|2 dx =

∫
Ω

(m′(u))2|∇u|2 dx

Given a function ϕ ∈ C3, a third order Taylor expansion at the point 0 is

ϕ(a)− ϕ(0) = aϕ′(0) +
a2

2
ϕ′′(0) +

a3

6
ϕ′′′(aθ) 0 < θ < 1 .

Let h ∈ C1, then define ϕ(a) = J(u + ah), which determines the first variation
δJ of J(u) as

δJ = lim
a→0

J(u+ ah)− J(u)

a
= lim

a→0

ϕ(a)− ϕ(0)

a
= ϕ′(0)

In the same way the second variation δ2J follows. Since δJ is a linear functional
in h and δ2J is a quadratic form in h define L1(h) = δJ = ϕ′(0) and L2(h, h) =
δ2J = ϕ′′(0). Given that ϕ is differentiable then so is J . If a = 1 then the Taylor
expansion is given by

J(u(x) + h(x)) − J(u) = L1(h) + L2(h, h) + ||h||2ρ(h), (8)

where ρ(h)→ 0, as h→ 0.
A necessary condition of u∗ to be a minimum point of the functional J(u) is

ϕ′(0) = L1(h) = 2

∫
Ω

[m′(u∗)m′′(u∗)|∇u∗|2h+ (m′(u∗))2∇u∗ · ∇h] dx = 0 (9)

for every h in a neighborhood of u∗. According to the E-L equation the solution
u∗ must satisfy that

m′(u∗) �= 0 (10)

otherwise the trivial solution J(u∗) = 0 is obtained. Differentiating ϕ′(a) and
rewriting the E-L equation using condition (10) obtain L2(h, h) as

1

2
L2(h, h) =

∫
Ω

[m′(u∗)m′′′(u∗)−3(m′′(u∗))2]|∇u∗|2h2 dx+
∫
Ω

(m′(u∗))2|∇h|2 dx
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Since L2(h, h) > 0 implies a minimum, we consider the first integral. Assume
m ∈ C3 and u ∈ C1, then there is an upper bound CM > 0 such that

|[m′(u∗)m′′′(u∗)− 3(m′′(u∗))2]|∇u∗|2| ≤ CM .

Let ε > 0 and Bε be a set defined by

Bε =
{
h,∇h ∈ L2(Ω) : ||h||2L2(Ω) ≤ ε2/CM , ||∇h||2L2(Ω) ≥ ε

}
Given that h ∈ Bε, then the first integral of L2(h, h) reads∫

Ω

[m′(u∗)m′′′(u∗)− 3(m′′(u∗))2]|∇u∗|2h2 dx ≥ −CM
∫
Ω

h2 dx ≥ −ε2.

Since h ∈ Bε we have ∫
Ω

(m′(u∗))2|∇h|2 dx �= 0 .

By the mean value theorem of calculus there exists a ξ ∈ Ω such thatm′(u∗(ξ)) �=
0 and ∫

Ω

(m′(u∗))2|∇h|2 dx = m′(u∗(ξ))2||∇h||2L2(Ω)

Hence

L2(h, h) ≥ 2

∫
Ω

(m′(u∗))2|∇h|2 dx− 2ε2 ≥ 2(m′(u∗(ξ)))2||∇h||2L2(Ω) − 2ε2

> 2ε [(m′(u∗(ξ)))2 − ε ] > 0 (11)

since h ∈ Bε and we can always chose ε < (m′(u∗(ξ)))2 which is the sufficient
condition for u∗ to be a local minimum of J(u). And the theorem follows. �

4 Noise Estimation in the Transformed Domain

Due to the nonlinear mapping function, m, it is of interest to investigate the
transformation of the first and second statistical moments of the input signal.
We assume that the image signal can be described by a linear model

u0 = u0 + η ,

where η ∼ N (μ, σ2) and u0 is the observed signal, u0 is the noise-free signal and
η is a noise component normally distributed with mean μ and variance σ2. The
mean value and the variance are estimated using a second order Taylor series of
the mapping function, then the mean value and variance estimates

μ̂m = m(u0 + μ) +
1

2
m′′(u0 + μ)σ2 (12)

σ̂2
m = Ψ [m](u0 + μ)σ2 (13)
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where
Ψ [m](u0 + μ) = m′(u0)2 −m(u0)m′′(u0)

is the energy operator [14]. This shows that the mean value in the transformed
domain will depend on the curvature of the transformation used, implying that
the mapping will not preserve the average intensity level of the input space. Also
that the noise variance in the signal domain is amplified by the energy operator.
For complete derivations see supplementary material.

5 Application to Medical Imaging

For the purpose of evaluating the proposed application-driven diffusion scheme
we consider the application of medical visualization. We make no claim on su-
periority over existing techniques in medical visualization, merely we limit our-
selves to diffusion methods. The diffusion methods investigated are, the novel
targeted filtering scheme (TF), linear diffusion (LD), nonlinear diffusion (PM)
and tensor-based image diffusion (AD).

Visualizations in medical imaging are computed by transfer functions, which
usually are piecewise linear [6]. However, sufficiently similar functions produce
visualizations that are visually indistinguishable. We use combinations of sigmoid
functions, see Fig. 1, since they are three times continuously differentiable.

5.1 Selection of Mapping Function

Letm : R2 → [0, 1] be the visualization mapped using a transfer function m ∈ C3
computed from two user defined thresholds u(x) = u1 to u(x) = u2. We define
a sigmoid function

m(u(x), a, b) = (1 + exp(−(u(x)− b)/a))−1 , (14)

where a = (u2−u1)/4 is the steepness of the sigmoid function and b = (u1+u2)/2
defines the offset. For this choice of mapping function we show that the sufficient
condition in (7) is satisfied. Then the lower bound of (m′(u∗))2 is given by

(m′(u∗))2 =
1

a2
e

2(b−u∗)
a

(1 + e
b−u∗

a )4
≥ 1

a2
e

2(b−1)
a

(e
b
a + e

b
a )4
≥ 1

a216e
2(b+1)

a

thus the condition (11) is replaced with (16a2e
2(b+1)

a )−1 > ε. Details on the
determination of the lower bound can be found in the supplementary material.

0 1000 2000 3000 4000
0

0.5

1

 

 

logistic
piecewise linear

Fig. 1. Example of mapping function
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5.2 Numerical Aspects

The derived E-L equation (6) is solved as an IVP problem discretizised using a
standard forward Euler scheme. A forward and backward finite difference scheme
is used to approximate the image derivatives.

The derivatives of the mapping function, m are computed analytically. How-
ever, before evaluating the derivatives of m(u), the signal u is regularized with a
small Gaussian filter. Also to remedy the fact that different propagation speeds
are obtained for different slopes of the mapping function, derivatives are normal-
ized to attain a global maximum of 1. The implementation is available here [15].

5.3 Experiment Setup

For the evaluation, we add zero mean Gaussian noise to a set of computed tomog-
raphy (CT) images. The motivation for using additive noise is due to the projec-
tion data obtained from the CT scanner contains multiplicative noise. In the CT
reconstruction the logarithm of the data is taken, thus multiplicative noise can be
modeled as additive noise. All images were scaled to an 8-bit quantisation repre-
sentation and zero mean Gaussian noise with standard deviation σ = {5, 10, 15}
was added to the test images in the signal domain. According to (13), the noise
levels in the visualization domain is σm = {51.19, 102.38, 153.36} using a map-
ping function with endpoints u1 = 864 and u2 = 1264 where the endpoints are
represented using Hounsfield units.

All diffusion methods were set to iterate the solution until the peak signal to
noise (PSNR) value no longer increases. The steplength was set to 0.05 for all
methods except for the proposed method which utilizes the slope of the mapping
function as its steplength λ = min(1/(u2−u1)), 0.25) where 0.25 is the maximum
steplength to ensure stability in the case of linear diffusion [2].

The PM and AD contrast parameter was set using the estimated noise levels
σest based on [13] and computed according to [16] as k = (e− 1)(e− 2)−1σ2

est.
The peak signal to noise measure (PSNR) and the structural similarity index

(SSIM) [8] was used to evaluate the performance of the proposed algorithm.

5.4 Results

Table 1 shows the SSIM and PSNR values obtained in the visualization domain
for a dataset of 400 CT images. Comparing the filtering methods with respect
to the error measures, then the error values are in favor of the proposed tar-
geted filtering method (TF) higher noise levels. Here it is important to note the
fundamental difference between TF and PM. The performance of PM is deter-
mined based the estimation of a contrast parameter for the nonlinear mapping
function, whereas TF is not. The only parameter required to be determined in
TF (as with all iterative methods) is the stopping time to avoid trivial solu-
tions. Thus, disregarding the stopping time, TF is a non-parametric non-linear
diffusion scheme which behaves similarly to PM diffusion.
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Table 1. SSIM and PSNR values. σ̂m was computed according to (13).

σ σ̂m LD PM TF AD

SSIM
5 51.19 0.89 ± 0.005 0.92 ± 0.004 0.93 ± 0.003 0.94 ± 0.003
10 102.38 0.84 ± 0.004 0.87 ± 0.005 0.89 ± 0.005 0.87 ± 0.006
15 153.56 0.82 ± 0.006 0.83 ± 0.005 0.86 ± 0.006 0.82 ± 0.005

PSNR
5 51.19 28.44 ± 0.37 30.82 ± 0.56 30.76 ± 0.51 32.18 ± 0.72
10 102.38 25.92 ± 0.45 27.68 ± 0.49 28.13 ± 0.53 27.88 ± 0.49
15 153.56 24.81 ± 0.54 25.74 ± 0.53 26.82 ± 0.59 25.38 ± 0.51

Original Noisy Vis. Original Vis. Noisy

LD PM TF AD

Fig. 2. Slice 250. Noise level σ = 5. Details best viewed on monitor.

Figure 2 and 3 visualize the corresponding images of slices 250 with noise
level σ = 5 and 350 with noise level σ = 10. In addition to the visualizations,
respective details are depicted. Visually, the proposed diffusion scheme produces
superior results close to edges compared to LD and PM diffusion indicated by
the arrows in both figures. LD oversmooths the image and PM simply retains
noise close to edges. AD preserves edges well and produces high PSNR and SSIM
values but approximately homogeneous regions appear oversmoothed. In Fig. 3
it is clear that regions indicated by the arrows have been retained in the proposed
method whereas the other diffusion techniques have removed the structure.
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Original Noisy Vis. Original Vis. Noisy

LD PM TF AD

Fig. 3. Slice 350. Noise level σ = 10. Details best viewed on monitor.

6 Conclusion

The performance of image denoising methods has to be assessed with respect to
the respective application. In our case, we considered the application of denoising
medical images and limit ourselves to diffusion methods. The relevant quality
criteria is the result of the visualization after applying a mapping function. We
have used the mapping function to derive a novel nonlinear diffusion scheme for
targeted iterative diffusion and evaluated the method on a data set of CT images
with different noise levels. The proposed method is non-parametric in the sense
that it is application-driven rather than data-driven.
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tive Denoising of Images, from the ECs 7th Framework Programme (FP7/
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Abstract. We introduce a gradient operator that generalizes the Eu-
clidean and Riemannian gradients. This operator acts on sections of
vector bundles and is determined by three geometric data: a Rieman-
nian metric on the base manifold, a Riemannian metric and a covariant
derivative on the vector bundle. Under the assumption that the covariant
derivative is compatible with the metric of the vector bundle, we consider
the problems of minimizing the L2 and L1 norms of the gradient. In the
L2 case, the gradient descent for reaching the solutions is a heat equation
of a differential operator of order two called connection Laplacian. We
present an application to color image denoising by replacing the regular-
izing term in the Rudin-Osher-Fatemi (ROF) denoising model by the L1
norm of a generalized gradient associated with a well-chosen covariant
derivative. Experiments are validated by computations of the PSNR and
Q-index.

Keywords: Generalized gradient, Riemannian manifold, Vector bundle,
Total variation, Color image denoising, Rudin-Osher-Fatemi model.

1 Introduction

Total variation regularizationmethods have been widely used for image denoising
tasks. Given an image I0 : Ω ⊂ R2 −→ R ∈ BV (Ω) corrupted by additive white
Gaussian noise of standard deviation σ, the seminal model of Rudin-Osher-
Fatemi (ROF) [19] estimates the denoised image as the solution of the following
variational problem

argmin
I∈BV (Ω)

∫
Ω

1

2
λ (I − I0)

2 + ‖∇I‖ dΩ (1)

where λ is a tuning parameter. The first term in formula (1) is the attached
data term and the second one is the regularizing term. Since then, this model
has been extended in several ways (see e.g. [4],[9],[14],[15],[16],[17],[18],[24],[25],
for local methods based on a modification of the regularizing term, and [8],[10]
for nonlocal methods).
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In this paper, we construct a new regularizing term from a generalization of
the Euclidean and Riemannian gradient operators, as well as the Jacobian, on
vector bundles. Then, the ROF denoising model based on this new operator
generalizes the Euclidean approach of [19] and its multidimensional extension
[4], as well as the Riemannian ROF denoising model in [17]. The key idea is
to treat the term ∇I as a vector-valued differential 1-form ∇EI, that we call
connection gradient of I, where the operator∇E is a covariant derivative (also
called connection). Given Riemannian metrics on the base manifold and vector
bundle, a metric on the space of vector-valued differential 1-forms might be
constructed, and consequently the norm of the connection gradient ∇EI might
be considered. Then, for particular choices of metrics and covariant derivative,
the norm of ∇EI corresponds to the norm of the Euclidean or Riemannian
gradient.

In this paper, we focus on connection gradients where the covariant derivative
is compatible with the metric of the vector bundle. In this context, the covariant
derivative ∇E has an adjoint operator ∇E∗

and we show that both L1 and L2
norms minimization problems extend the Euclidean and Riemannian approaches
in a natural way. Indeed, we show that the gradient descent flow for reaching the
sections minimizing the L2 norm of the connection gradient is the heat equation
of a generalized Laplacian. Moreover, we show that the critical points of the L1
norm of the connection gradient satisfy the equation ∇E∗ (

∇EI/‖∇EI‖
)
= 0.

The outline of the paper is the following. Sect. 2 is mainly theoretical. We
first introduce the notion of connection gradient and its norm. Then, we restrict
to the case where the covariant derivative is compatible with the metric of the
vector bundle, and consider the L1 and L2 norms minimization of the connec-
tion gradient. In Sect. 3, we present an application to color image denoising by
considering the L1 norm of a suitable connection gradient as the regularizing
term of a ROF denoising model. We test our denoising method on the Kodak
database [11] and compute both PSNR and Q-index [23]. Results show that our
method provides better results than the split Bregman method [9] applied to
ROF functional.

2 Generalized Gradient on Vector Bundle

2.1 Definitions and Examples

We refer to [21] for an introduction to differential geometry of fiber bundles.
Given a vector bundle E, we denote by Γ (E) the set of smooth sections of E.

Connection Gradient

Definition 1. Let E be a vector bundle of rank m over a Riemannian manifold
(M, g) of dimension n. Let ∇E be a covariant derivative and h be a definite
positive metric on E. Given ϕ ∈ Γ (E), we call the term ∇Eϕ ∈ Γ (T ∗M ⊗ E)
the connection gradient of ϕ.
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The metrics g on TM and h on E induce a definite positive metric 〈 , 〉 on
T ∗M ⊗ E. Then, we define the norm of the connection gradient of ϕ as

‖∇Eϕ‖ :=
√
〈∇Eϕ,∇Eϕ〉 =

√√√√ n∑
i,j=1

gij h (∇E∂/∂xi
ϕ,∇E∂/∂xj

ϕ) (2)

where (∂/∂x1, · · · , ∂/∂xn) is the frame of TM induced by a coordinates system
(x1, · · · , xn) of M .

Example 1. Let E = C∞(M) be the vector bundle of rank 1 of smooth functions
on a Riemannian manifold (M, g). Let ∇E be the trivial covariant derivative on
E and h be the definite positive metric on E given by the scalar multiplication.
Then, the connection gradient of a function f is its differential df ∈ Γ (T ∗M).

The musical isomorphism � : T ∗M �−→ TM maps df onto the Riemannian gra-
dient ∇gf of f , of components gij ∂f/∂xi in the frame {∂/∂xj}. Moreover the
norm of df coincides with the norm of ∇gf since we have

‖df‖ :=
√
〈df, df〉 =

√√√√ n∑
i,j=1

gij
∂f

∂xi

∂f

∂xj
, (3)

Connection Compatible with the Metric

Definition 2. Let E be a vector bundle over a Riemannian manifold (M, g),
equipped with a definite positive metric h. A covariant derivative ∇E on E is
compatible with the metric h if it satisfies

dh(ϕ, ψ) = h(∇Eϕ, ψ) + h(ϕ,∇Eψ) (4)

for any ϕ, ψ ∈ Γ (E).

Example 2. On the vector bundle of smooth functions on a Riemannian mani-
fold, the trivial covariant derivative is compatible with the metric given by the
scalar multiplication on the fibers.

Assuming that E is associated with the principal bundle PSO(E) of orthonormal
frame fields of E, we have the following result.

Proposition 1 (see e.g. Lawson et al. [13] (Prop. 4.4 p.103)). There is
a one-one correspondence between connection 1-forms on PSO(E) and covariant
derivatives on E that are compatible with the metric.

Under the choice of a local trivializing section of PSO(E), i.e. a local orthonormal
frame with respect to h of the vector bundle E, a connection 1-form is a so(n)-
valued 1-form on M , i.e. ω ∈ Γ (T ∗M ⊗ so(n)). More precisely, we have

∇EXϕ = dXϕ+ ω(X)(ϕ) (5)

for any X ∈ Γ (TM).
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Connection Laplacian. Let ∇T∗M⊗E be the covariant derivative on T ∗M⊗E
defined as

∇T
∗M⊗E(η ⊗ ϕ) = ∇T

∗Mη ⊗ ϕ+ η ⊗∇Eϕ
where ∇T∗M is the covariant derivative on T ∗M induced by the Levi-Civita
covariant derivative on (TM, g) and∇E is a covariant derivative on E compatible
with a definite positive metric h. The adjoint ∇E∗

: Γ (T ∗M ⊗ E) −→ Γ (E) of
the operator ∇E : Γ (E) −→ Γ (T ∗M ⊗ E) is the operator

∇E∗
= −Tr∇T∗M⊗E (6)

where Tr denotes the contraction with respect to the metric g. In others words,
the following equality is satisfied∫

M

h(∇E∗
η, ϕ) dM =

∫
M

〈η,∇Eϕ〉 dM (7)

assuming that ϕ has compact support.

Example 3. On the vector bundle of smooth functions on a Riemannian manifold
(M, g), the adjoint d∗ : Γ (T ∗M) −→ C∞(M) of the trivial covariant derivative
d : C∞(M) −→ Γ (T ∗M) is the operator

d∗η = −
∑
i,j

(
gij∂xiη(∂/∂xj)−

∑
k

Γ k
ij η(∂/∂xk)

)

where Γ k
ij are the Christoffel symbols of (M, g).

Definition 3. The connection Laplacian ΔE is the second order differential
operator on Γ (E) defined as ΔE = ∇E∗∇E.

In the frame (∂/∂x1, · · · , ∂/∂xn) of (TM, g), we have

ΔE = −
∑
ij

gij

(
∇E∂/∂xi

∇E∂/∂xj
−

∑
k

Γ k
ij∇E∂/∂xk

)

Example 4. The Laplace-Beltrami operator Δg is the connection Laplacian
(up to a sign) associated to the trivial covariant derivative d on the vector bundle
of smooth functions on a Riemannian manifold (M, g), i.e.

Δg = −
∑
ij

gij

(
∂xi∂xj −

∑
k

Γ k
ij ∂xk

)

2.2 L2 Minimization of Connection Gradient and Dirichlet Energy

Let E be a vector bundle over a Riemannian manifold (M, g) equipped with a
definite positive metric h and a covariant derivative ∇E compatible with h. We
have the following result.
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Proposition 2 (Lawson et al. [13] Prop. 8.1 p.154). The operator ΔE is
non-negative and essentially self-adjoint. Furthermore,∫

M

h(ΔEϕ, ψ) dM =

∫
M

〈∇Eϕ,∇Eψ〉 dM (8)

for all ϕ, ψ ∈ Γ (E) provided that one of ϕ or ψ has compact support.
If M is compact, then ΔEϕ = 0 if and only if ∇Eϕ = 0.

We observe that the right term of equality (8) corresponds to the Gâteaux deriva-
tive in the direction ψ of the energy

E(ϕ) =

∫
M

‖∇Eϕ‖2dM (9)

Hence the critical points of the energy (9) satisfy ΔEϕ = 0. Moreover, they
correspond to the minimum of the energy.

Example 5. A non trivial covariant derivative ∇opt compatible with the metric
is constructed in [2] in the context of color image processing. Then, the gradient
descent for reaching the sections minimizing the corresponding energy (9) is
compared with the Beltrami flow in [20], that may be viewed as the gradient
descent for reaching the sections minimizing the energy (9) associated with the
trivial covariant derivative. Experiments show that colors and edges and better
preserved with the non trivial covariant derivative. The authors explain this
behaviour by the fact that the solutions, i.e. the sections ϕ satisfying ∇optϕ = 0,
are not necessarily constant.

Heat Equation and Heat Kernel of Connection Laplacian. The gradient
descent method for reaching sections minimizing the energy (9) corresponds to
the heat equation of the connection Laplacian ΔE

∂ϕ

∂t
+ΔEϕ = 0 (10)

Results about heat equation and heat kernel of connection Laplacian are well-
etablished (see e.g. [3]).

Given a connection Laplacian ΔE and ϕ0 ∈ Γ (E), there exists a smooth map

called heat kernel of ΔE and denoted by K such that the operator e−tΔ
E

defined by

(e−tΔ
E

ϕ0)(x) =

∫
M

Kt(x, y)ϕ0(y) dM

satisfies the heat equation (10).
The heat kernel of a connection Laplacian has a series expansion of the form(

1

4πt

)n
2

e−d(x,y)
2/4t Ψ(d(x, y)2)

+∞∑
i=0

tiΦi(x, y,Δ
E)J(x, y)−

1
2 (11)
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where Φi(x, y,Δ
E) ∈ End(Ey , Ex), n is the dimension of the base manifold M ,

and d stands for the geodesic distance on (M, g). The function Ψ is such that
the term Ψ(d(x, y)2) equals 1 if y is inside a normal neighborhood of x and 0
otherwise. At last, J are the Jacobians of the coordinates changes from usual
coordinates systems to normal coordinates systems.

The leading term of the series (11) is(
1

4πt

)n/2

e−d(x,y)
2/4t Ψ(d(x, y)2) τ(x, y)J(x, y)−1/2 (12)

where τ(x, y) is the parallel transport map on E associated to ∇E along the
unique geodesic joining x and y.

Example 6. In [22], convolution with the leading term (12) associated to the
Laplace-Beltrami operator was applied to anisotropic diffusion of color images.
It was extended in [1] to connection Laplacians with no trivial connections.

Parallel Section and Harmonic Map. Harmonic maps between two Rie-
mannian manifolds σ : (M, g) −→ (N,Q) are defined as critical points of the
Dirichlet energy

E(σ) =

∫
M

Tr(σ∗h) dM =

∫
M

‖dσ‖2 dM (13)

The Euler-Lagrange equations of the functional (13) are

τ(σ) : = Tr∇T∗M⊗σ−1(TN) = 0

Note that the Dirichlet energy (13) is at the core of the Beltrami framework of
Sochen et al. (see e.g. [20]).

Theorem 1 (Konderak [12]). Let E be a vector bundle over a compact Rie-
mannian manifold (M, g) equipped with a metric h and a covariant derivative
∇E compatible with h. Let h̃ be the Sasaki metric on E associated to (h,∇E , g).
Then σ ∈ Γ (E) is a harmonic map σ : (M, g) −→ (E, h̃) if and only if it is
parallel, i.e. ∇Eσ = 0.

Hence, the sections minimizing the energy (9) are harmonic maps with respect
to the Sasaki metric on the vector bundle.

2.3 Total Variation on Vector Bundle

Definition 4. Let E be a vector bundle over a compact Riemannian manifold
(M, g) equipped with a Riemannian metric h, and a covariant derivative ∇E
compatible with h. We define the total variation TV of ϕ ∈ Γ (E) as

TV (ϕ) =

∫
M

||∇Eϕ|| dM (14)
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Proposition 3. The critical points of (14) are the sections ϕ satisfying

−Tr∇T∗M⊗E
(
∇Eϕ
‖∇Eϕ‖

)
= 0 (15)

Proof. Let ψ be a section with compact support. The first variation of TV (ϕ)
in the direction ψ is

δ TV (ϕ;ψ) =

∫
M

〈 ∇Eϕ
‖∇Eϕ‖ ,∇

Eψ
〉
dM = −

∫
M

〈
Tr∇TM⊗E

(
∇Eϕ
‖∇Eϕ‖

)
, ψ

〉
dM

since −Tr∇TM⊗E is the adjoint of ∇E . As ψ has compact support, it follows

δ TV (ϕ;ψ) = 0 =⇒ −Tr∇T∗M⊗E
(
∇Eϕ
‖∇Eϕ‖

)
= 0 �

Remark 1. Formula (15) is not defined where ∇Eϕ vanishes. One way to tackle
this problem is to consider a regularized Total Variation

TV reg(ϕ) =

∫
M

√
||∇Eϕ||2 + β dM, β > 0 (16)

Example 7. Let E be a vector bundle of rank m equipped with the trivial con-
nection and Euclidean scalar product over a compact Euclidean manifold of
dimension n. Then, for ϕ ∈ Γ (E), we have

TV (ϕ) =

∫
M

√√√√ n∑
i=1

m∑
j=1

(
∂ϕj

∂xi

)2

dM (17)

Formula (17) corresponds to the total variation defined by Blomgren et al. [4].
In particular, for n = 2 and m = 1, this is the total variation of Rudin et al. [19].
Hence, these two approaches may be viewed as Euclidean restrictions of (14).

3 Application to Color Image Denoising

3.1 ROF Denoising Model on Vector Bundle: The General Case

Continuous Setting. Let E be a vector bundle of rank 3 equipped with a
definite positive metric h and covariant derivative ∇E compatible with h over a
Riemannian manifold (M, g) of dimension 2. Let I0 ∈ BV (E) be a color image
corrupted by additive Gaussian noise of deviation σ. We propose the denoising
model

argmin
I∈BV (E)

∫
M

1

2
λ‖I − I0‖2dΩ + ‖∇EI‖ dM (18)

where dΩ denotes the Euclidean measure on M and λ is a Lagrange multiplier
associated with the noise level.

The gradient descent for reaching solutions of (18) is

∂I

∂t
= −λ(I − I0) + Tr∇T

∗M⊗E
(
∇EI
‖∇EI‖

)
, I|t=0 = I0 (19)



Generalized Gradient on Vector Bundle – Application to Image Denoising 19

Discrete Setting. We follow the approach in [19] where forward and backward
finite difference operators are used for discretizing the trivial covariant derivative
d and its adjoint −div. The key idea is to use the discrete version of the adjoint
operator definition, which is written as follows in the context of connection
gradient ∫

M

− div η ϕ dΩ =

∫
M

〈η, dϕ 〉 dΩ

for ϕ ∈ C∞(M) and η ∈ Γ (T ∗M). Then, using forward differences for discretiz-
ing dϕ implies that div η must be discretized using backward differences.

We extend this approach by using the general definition of adjoint operator
(7). Let us give the explicit expressions in the case of base manifold of dimension

2 and vector bundle of rank 3. Let ϕ =
∑3

j=1 ϕ
jej ∈ Γ (E) where (e1, e2, e3) is

orthonormal with respect to h. Under the forward finite difference operators for
approximating dϕj , we have

∇Eϕm,n =

2∑
i=1

3∑
j=1

[
(ϕjm+δi1,n+δi2

− ϕjm,n) +

3∑
k=1

ϕkm,n Υ
j
ik m,n

]
dxi ⊗ ej (20)

where δ is the Kronecker symbol. Then, using the discrete form of (7) given by∑
m,n

hm,n(∇E
∗
η m,n, ϕm,n) =

∑
m,n

〈ηm,n,∇Eϕm,n〉m,n

we obtain, for η =
∑2

i=1

∑3
j=1 η

ijdxi ⊗ ej, the expression ∇E∗
ηm,n =

3∑
j=1

⎡
⎣ 2∑

i,k=1

(gikm−δk1 ,n−δk2
ηijm−δk1,n−δk2

− gikm,nη
ij
m,n) +

2∑
r,s=1

3∑
p=1

ηrpm,n g
rs
m,n Υ

p
sj m,n

⎤
⎦ ej
(21)

Hence, as in the Euclidean case [19], forward finite difference operators on ∇E
imply backward finite difference operators on ∇E∗

.

3.2 ROF Denoising Model on Vector Bundle: An Example

Connection Gradient Suitable for Color Image Processing. Let I0 =
(I10 , I

2
0 , I

3
0 ) be a color image defined on a domain Ω of R2.

We construct a surface S embedded in (R5, ‖ ‖2) parametrized by

ϕ : (x1, x2) �−→ (x1, x2, μ I
1
0 (x1, x2), μ I

2
0 (x1, x2), μ I

3
0 (x1, x2)), μ > 0

in the fixed orthonormal frame (e1, e2, e3, e4, e5) of (R
5, ‖ ‖2).

Let E be the vector bundle of R5-valued functions over the Euclidean mani-
fold (Ω, ‖ ‖2). Let (Z1, Z2, N1, N2, N3) be an orthonormal frame field of E with
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respect to the Euclidean norm, where Z1, Z2 ∈ Γ (TS). Let ∇E be the co-
variant derivative on E given by the connection 1-form ω ≡ 0 in the frame
(Z1, Z2, N1, N2, N3). Denoting by P the change frame field from (e1, e2, e3, e4, e5)
to (Z1, Z2, N1, N2, N3), ω is given in the frame (e1, e2, e3, e4, e5) by

P dP−1 (22)

As the connection 1-form ω is so(n)-valued, the covariant derivative ∇E is com-
patible with the Euclidean metric on R5.

Remark 2. The orthonormal frame field (Z1, Z2, N1, N2, N3) of E varies at each
point of Ω since the vector fields Z1 and Z2 are required to be tangent vector
fields of the surface S. Moreover, it is not unique since the vector fields Z1 and
Z2 are defined up to rotations in the tangent planes of S. By construction, the
frame (Z1, Z2, N1, N2, N3) takes into account the local variations of I0.

Algorithm. We test the denoising model (18) with this connection gradient.

The algorithm is the following:

1. Consider the (discrete) surface S parametrized by

ϕ : (m,n) �−→ (m,n, μ I10 (m,n), μ I20 (m,n), μ I30 (m,n)), μ > 0

2. Construct an orthonormal moving frame (Z1, Z2, N1, N2, N3) using Gram-
Schmidt process at each point (m,n) with the assumption that Z1, Z2 (m,n) ∈
Tm,nS, and denote by P (m,n) the basis change from (e1, e2, e3, e4, e5) to
(Z1, Z2, N1, N2, N3)(m,n).
3. Embed I0 into the frame (e1, e2, e3, e4, e5): (I

1
0 , I

2
0 , I

3
0 ) −→ (0, 0, I10 , I

2
0 , I

3
0 ).

4. Compute the components of I0 in the frame (Z1, Z2, N1, N2, N3):
(J1

0 , J
2
0 , J

3
0 , J

4
0 , J

5
0 )
T := P−1(0, 0, I10 , I

2
0 , I

3
0 )
T .

5. Perform the Euclidean ROF denoising algorithm on (J1
0 , J

2
0 , J

3
0 , J

4
0 , J

5
0 )
T with

stopping criteria
1

|Ω| × 3

∑
x∈Ω
‖Jt(x)− J0(x)‖2 ≥ σ2

or ∣∣∣∣∣ 1

|Ω| × 3

∑
x∈Ω
‖Jt+dt(x) − J0(x)‖2 −

1

|Ω| × 3

∑
x∈Ω
‖Jt(x) − J0(x)‖2

∣∣∣∣∣ ≤ 0.0005

whichever happens first.
6. Compute the components of the result in the frame (e1, e2, e3, e4, e5):
(I1t , I

2
t , I

3
t , I

4
t , I

5
t )
T := P (J1

t , J
2
t , J

3
t , J

4
t , J

5
t )
T , and return the function (I3t , I

4
t , I

5
t ).

Experiments. We run the algorithm on the Kodak database [11], for
σ = 5, 10, 15, 20, 25. We take μ = 0.0075 for σ = 5, μ = 0.005 for σ = 10,
μ = 0.0045 for σ = 15, μ = 0.004 for σ = 20 and μ = 0.0035 for σ = 25.
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The time step dt is 0.1. On Fig. 1, we test our denoising method and show that it
removes the noise efficiently. On Fig. 2, we compare our denoisingmethod with the
split Bregman denoising method [9] tested online [7]. We observe that our method
preserves more the details of the image. We claim that it comes from the choice of
the moving frame (Z1, Z2, N1, N2, N3), that takes into account the local variations
of the image. On Fig. 3, we compute the average increases of PSNR as well as the
average percent increases of Q-index [23] over the Kodak database for both meth-
ods (we define the Q-index of a color image as the mean of the Q-index on each
component). Results show that our method improves the split Bregman method.

Fig. 1. Example of our denoising method. Left: image corrupted by additive white
noise with σ = 25. right: denoised image.

Fig. 2. Comparison of our denoising method with split Bregman: From left to right:
original image, image corrupted by additive white noise with σ = 25, split Bregman
denoising result, our denoising result.
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Fig. 3. Comparison of our method with split Bregman. Left: PSNR increase for each
method. Right: Percent increase on Q-index for each method. Values averaged over
Kodak database.

4 Conclusion

In this paper, we introduced a generalization of the Euclidean and Riemannian
gradient operators in the context of vector bundles. We presented an applica-
tion to image denoising by replacing the Euclidean gradient in the regularizing
term of the Rudin-Osher-Fatemi denoising model by a generalized gradient on
a vector bundle. By the gradient operator we considered, the denoising method
is decomposed into 2 steps: first, a projection of the image on the tangent and
normal parts of a surface describing the image; then, an Euclidean ROF de-
noising method of the image projection in this moving frame. The relevance of
the method is justified by the PSNR and Q-index measures. In some sense, the
denoising method preserves the first order local geometry of the image.

We would like to point out that the step 2 of our denoising method might be
extended to any denoising method. In particular, we expect that nonlocal denois-
ing methods like Non Local Means [5] and BM3D [6] would increase significantly
both PSNR and Q-index. More generally, inspired by [8] where the Euclidean
ROF model [19] is extended to a nonlocal model by the construction of a nonlo-
cal gradient operator, we expect that our vector bundle ROF model extends to a
nonlocal model by the construction of a nonlocal connection gradient operator.
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Abstract. This study is concerned with constructing expert regulariz-
ers for specific tasks. We discuss the general problem of what is desired
from a regularizer, when one knows the type of images to be processed.
The aim is to improve the processing quality and to reduce artifacts cre-
ated by standard, general-purpose, regularizers, such as total-variation
or nonlocal functionals.

Fundamental requirements for the theoretic expert regularizer are for-
mulated. A simplistic regularizer is then presented, which approximates
in some sense the ideal requirements.

1 Introduction

In many cases one knows the type of images and objects which are to be pro-
cessed. Therefore it makes sense to incorporate this knowledge when solving an
image processing problem. In the variational approach this means selecting the
proper regularizer which best fits the signal. Thus avoiding, as much as pos-
sible, artifacts caused by the regularizer, such as over-smoothing, reduction in
contrast, removal of small details, corners, lines or textural patterns. We will
investigate the general problem of how such regularizers can be constructed,
propose some desired properties and suggest a simple procedure to construct an
expert regularizer (ER) for specific type of signals based on region similarity and
a collection of typical images. We first summarize briefly the main regularizers
which are currently being used.

1.1 A Brief Overview on Regularizers in Image Processing

Regularizers have been introduced to increase the robustness of a solution in
problems which are often ill posed and are therefore significantly affected by
noise, such as deconvolution, optical flow [7] or image-registration [14].

Very roughly, regularizers can be classified into three large categories: (i)
General model-based, (ii) Specific model-based, (iii) Self-similarity. The first two
can be considered parametric methods, whereas the third is a non-parametric
(data-driven) one.
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General Model-Based. This category is for general images. Images are ap-
proximated by a certain mathematical model. The most notable regularizer in
this class is the total-variation (TV) functional [28]

JTV (u) =

∫
Ω

|∇u(x)|dx, (1)

which is excellent for piece-wise constant images and copes well also with piece-
wise smooth images (introduces staircasing). This simplified model of images re-
tains edges well, but cannot distinguish well enough between textures and noise.
Other artifact associated with total-variation are some reduction in contrast and
oversmoothing of corners. Many other general regularizers were proposed in the
literature. Higher order derivatives were used to reduce staircasing and improve
the response in gradual luminance changes [6,11,18].

To avoid contrast reduction and erosion of fine details several approaches were
taken: An iterative procedure of TV regularizations was suggested, understood
as Bregman iterations [23]. In the limit of this procedure (as the regularization
parameter approaches zero) a continuous formulation is obtained, [10], keep-
ing better contrast and detail. A different approach retained the standard TV
functional and changed the fidelity term from L2 to norms which better favor
oscillatory patterns, such as G or H−1 norms [22,3,25].

Nonlinear diffusions and many related PDE’s can be viewed as steepest de-
scent of gradient-based regularizers (see more in [30,2]), which belong to the
general piece-wise smooth image model.

Specific Model-Based. Some regularizers were designed for specific tasks, us-
ing an underlying mathematical model. Special regularizers were proposed for
preferred convex shapes [24], rectangles [5], lines and vessels-adapted regulariza-
tion [4,19] and more.

Self-similarity. This category was introduced more recently, following the non
local means denoising approach [9]. Here the method is non-parametric, where
the model stems from the image data itself. It is based on a generic character-
istic of self-similarity: images tend to exhibit regions which are similar to one
another. Self-similarity regularizers were recently proposed, e.g. [20,16,17,21,1].
The simplest generic self-similarity regularizer, termed nonlocal H1 [17,21], is:

JNL−H1(u) :=

∫
Ω

∫
Ω

(u(x) − u(y))2w(x, y)dydx. (2)

1.2 The New Proposed Approach

The approach that will be presented here is task-specific and non-parametric.
That is, the smoothing properties are data-driven and not dictated in an a priori
manner. In Section 2 the ideal model is described, where several general desired
requirements for such regularizers are stated. In Section 3 a regularizer, which
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is essentially based on similarity to external data, is proposed. It is shown in
what aspects the proposed functional could be considered an expert regularizer.
In Section 4 some examples are shown.

Fig. 1. Illustration of an ideal regularizer response

2 Ideal Expert Regularizers

2.1 Definitions and Characteristics

We first define the generic requirements desired from an expert regularizer.

Definition 1 (Categorial Set). Let a categorial set Sc be the set of all possible
images belonging to a certain category C.

Category C here can be quite particular, like “Vehicles from 40-45 meters, as
seen by a surveillance camera” or “Computed Tomography (CT) images of liver
tissues” to more general concepts such as Clouds, Grass or Sand.

Definition 2 (Expert Regularizer). Let an expert regularizer Jc be a func-
tional which is designed to regularize images belonging to category C with minimal
degradations and regularization artifacts.

This is a very general definition, which leaves some degrees of freedom. We
advocate the following properties:

Desired Properties. For an expert regularizer Jc the following properties are
desired:
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(i) Jc(u) ≥ 0, Jc(u) = 0 iff u ∈ Sc.
(ii) If ∃u0 ∈ Sc, ‖u0 − u‖L2 ≤ δ then Jc(u) ≤ ε.
(iii) If ∀u0 ∈ Sc, ‖u0 − u‖L2 ≥ A, then Jc(u) ≥ kA,

where δ, ε, k and A are all positive. We would like δ to be as small as possible,
and typically ε would be a function of δ, ε(δ). These parameters characterize
Jc and Sc and are independent of any specific images u, u0. Naturally, various
other variations can be suggested, such as using norms other than L2.

Motivation of Properties: Property (i) states that Jc is a positive functional
(energy) which attains its global minimum (zero) if and only if the image belongs
to the category. Thus, the attractors are images in the category and not the
constant function of traditional regularizers. In other words, we have a nontrivial
null-space, whereas total variation (and other convex gradient-based functionals)
attain zero only for constants. This property should reduce artifacts associated
with classical regularizers, which are caused by over-simplifying the image model.
Properties (ii) and (iii) state that images close to the category will have a low
energy and images far from any instance in the category will attain a high energy.

Note that property (i) yields that for an input image f ∈ Sc an optimization
of the form: E = minu{Jc(u) + λ‖f − u‖2} will map f to itself (u = f , “artifact
free”) attaining E = 0, for any value of λ. See illustration in Fig. 2. An earlier
mention of non-trivial steady-states and their usefulness to preserve textures
appears in [8], but it is not in the ER context, where no external data is used
(therefore its power to preserve typical category properties is more limited).

3 Approximate Regularizers

Obtaining expert regularizers is not a trivial task and there may be various
ways to tackle this problem. A MRF approach to learn image priors can be
seen, for instance, in [26]. We present here a simple formulation that can give a
good approximation to the desired properties defined above. Let a category C
be approximated by a subset Ŝc ⊂ Sc of images.

The main idea is to separate the task into two: given the input image to
be regularized, select affinities from the external data set Ŝc which are most
relevant. Then use a convex functional for the regularization. See [12] for using
patch-based similarity measures of external data to improve segmentation.

Let gc(y) be a function over a region Ωc representing category C (practically it
consists of many images belonging to the category. To simplify the formulation we
can think of it as a single very large region, where all the images are concatenated
to each other, and the boundary pixels are not considered). Let w(x, y) be a non-
negative function (w(x, y) ≥ 0) which defines the similarity between point x (in
Ω) to point y (in Ωc). We examine the following functional:

J(u) :=
1

|Ω|

∫
Ω

∫
Ωc

(u(x) − gc(y))
2w(x, y)dydx, (3)
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Clean image Total Variation Nonlocal H1 Expert Regularizer λ

λ1

λ1
10

0

Fig. 2. Regularization of a clean image by various methods. Top left - clean image.
Regularization results for different fidelity weight λ using 3 regularizers: TV, Eq. (1),
Nonlocal H1, Eq. (2), and an approximated ER proposed here. To reduce artifacts, the
attractor in ER is an admissible instance in the category and not the constant function,
as in traditional convex regularization.

where |Ω| denotes the area of Ω (as the value of J(u) can be of interest to us,
especially when comparing different images, we want to normalize the image
size). The Euler-Lagrange is

J ′(u) =
2

|Ω|

∫
Ωc

(u(x) − gc(y))w(x, y)dy. (4)

For a given input image f , we can use the standard L2 fidelity term:

Jfid(u, f) =
1

|Ω|

∫
Ω

(u(x)− f(x))2dx. (5)

A total energy for denoising can be defined by:

E(u, f) = J(u) + λJfid(u, f). (6)

The solution in this case is very simple. Having fixed w(x, y), this energy is
convex and the local minimum coincides with the global one. The Euler-Lagrange
condition is:

J ′(u) +
2λ

|Ω| (u− f) = 0.

Using (4) we reach the solution:

u(x) =

∫
Ωc

gc(y)w(x, y)dy + λf(x)∫
Ωc

w(x, y)dy + λ
. (7)
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3.1 A Simple ER Approximation

One can construct a simple approximation of an expert regularizer using (3)
provided the weights w(x, y) are constructed properly.

Constructing the Weights. Let W be a neighborhood of radius r around the
origin, x̃ ∈ W if |x̃| ≤ r, with area |W | (in the discrete case a square is often
used, or “L∞ radius”). We define the following square distance measure:

d2W (f(x), g(y);x, y) :=
1

|W |

∫
W

(f(x+ x̃)− g(y + x̃))2dx̃. (8)

We denote for short

d2W (x, y) := d2W (u, gc;x, y) =
1

|W |

∫
W

(u(x+ x̃)− gc(y + x̃))2dx̃.

For every point x, we search for a domain Π(x; y) ⊂ Ωc of fixed size K with the
minimal distance. Let

Π(x) = Π(x; y) := {y | d2W (x, y) ≤ t},

where t is the minimal value obtaining |Π(x)| = K. The weights w(x, y) are
computed by

w(x, y) =

{
1
Ke

−d2W (x,y)/h2

, y ∈ Π(x)
0, otherwise

(9)

where h is a parameter characterizing the distance relevancy; in denoising it can
be assigned the value h = σ.

In the discrete case this translates to a K-nearest neighbors search, based on
the distance dW (x, y) where the area size K is proportional to the number of
discrete neighbors K.

3.2 Which Expert Regularizer Properties Hold?

The regularizer (3) can be considered a rough approximation of the ideal expert-
regularizer. We show below which ER properties (stated in Section 2.1) can be
satisfied, under some conditions, and which cannot.

We first define a regularity condition of the categorial set.

Definition 3 (Regular Set). A set Sc is regular if for some K > 0, ε > 0 and
d2W (gc(y), gc(ỹ); y, ỹ), there exists Π(y), |Π(y)| ≥ K, such that ∀y ∈ Ωc,

1

K

∫
Π(y)

(gc(y)− gc(ỹ))
2dỹ ≤ ε.

This essentially means that there are no large outliers (very rare instances which
do not repeat). In other words, for all types of signals in the set there are at
least a few similar instances, where “few” is defined by K and “similar” is defined
by ε.
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Proposition 1. If u ∈ Ŝc and Ŝc is a regular set, then J(u) ≤ ε.

Proof. From the definition of the weight, Eq. (9), we havew(x, y) ≤ 1
K . Moreover,

since w(x, y) = 0 for all y /∈ Π(x), (see Eq. (9)), the second integration domain
in Eq. (3), Ωc, can be replaced by Π(x), yielding

J(u) ≤ 1

|Ω|K

∫
Ω

∫
Π(x)

(u(x) − gc(y))
2dydx. (*)

As u ∈ Ŝc we can use the regularity condition of Ŝc to obtain
∫
Π(x)

(u(x) −
gc(y))

2dy ≤ Kε. �

Here we examine images which are close to the category. We denote Π |u as Π(x)
which is based on u. Here we require the following condition: (C)

∫
Π|u(u(x) −

gc(y))
2dy ≤

∫
Π|u0

(u(x) − gc(y))
2dy. In the case of infinitesimal patch size this

would naturally follow, since one takes the closest points in the definition of Π .

Proposition 2. If u0 ∈ Ŝc, ‖u0 − u‖L2 ≤ δ, Ŝc is a regular set and condition
(C) holds, then J(u) ≤ ε1.

Proof. We use the above upper bound on J(u), (∗), and show a bound on the
inner integral. We expand (u(x)− gc(y))2 to ((u(x)− u0(x))+ (u0(x)− gc(y)))2.
Then we use the bounds

∫
Π|u0

(u(x) − u0(x))
2dy ≤

∫
Π|u0

dy‖u0 − u‖2L2 ≤ Kδ2,∫
Π|u0

(u0(x) − gc(y))
2dy ≤ Kε (regularity condition), condition (C) and the

Cauchy-Schwarz inequality to obtain J(u) ≤ ε1 = (δ +
√
ε)2. �

A variation of Property (iii) in Section 2.1 cannot be proved with this regu-
larizer. Although, in most cases, images which are significantly different from
the category will attain a high regularizer value, it is possible to find specific
contradicting cases, as illustrated in Fig. 3 and formalized in the following:

Proposition 3. ∃u, Ŝc such that ∀u0 ∈ Ŝc, ‖u0 − u‖L2 ≥ A, J(u) = 0.

Proof. Examine the following simple example: Ŝc consists of a single image u0
of area |Ω| = 1 with half plain u0 = 0 and half u0 = 2A (see Fig. 3). The zero
image u = 0 satisfies ‖u0 − u‖L2 =

√
2A > A. For |W | + K < 0.5 we can find

Π(x) ⊂ Ω for which u0|Π(x) = 0, hence
∫
Π(x)

(u(x) − gc(y))
2dy = 0, ∀x and

J(u) = 0. �

3.3 Point Space versus Region Space

In the standard regularization functionals (such as (1), (2) and (3)) one works
in point space, the Euler-Lagrange is done point-wise and the result u(x) is the
regularized image. We would like to examine a region-based regularization. In the
discrete setting this is understood as pixel versus patch processing. See related
studies addressing this issue, e.g. in [13,15,29]. In a region approach a small local
region around each point is regularized and the image is then reconstructed. Our
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Fig. 3. Illustration of Proposition 3

Clean image f0 Noisy image f
σn = 20, PSNR=22.1

Point-based functional, Region-based functional
Eq. (6), u1, PSNR = 26.8 Eq. (11), u2, PSNR = 28.7 Difference u1 − u2

Fig. 4. Point vs. region functionals. Region functionals retain more coherent structural
results.

experiments, shown below, indicate that more coherent results are obtained,
which better fit the category, with improved SNR. Note that this is performed
in addition to the region-based similarity of w(x, y).

Using the window W defined in Section 3.1, we map an image f(x), x ∈ Ω
to F (x, x̃), (x, x̃) ∈ (Ω ×W ) by F (x, x̃) := f(x + x̃), x ∈ Ω, x̃ ∈ W. We thus
define G(y, x̃), (y, x̃) ∈ (Ωc × W ) by G(y, x̃) := g(y + x̃), y ∈ Ωc, x̃ ∈ W.
Appropriate boundary conditions (such as mirror) should be set to define the
values at the boundary of Ω (or Ωc). An associated weight can be added w̃(x̃) ≥
0,

∫
W
w̃(x̃)dx̃ = 1 with higher values near the origin. We can now define the

following regularizer:

JW (U) :=
1

|Ω|

∫
Ω

∫
Ωc

∫
W

(U(x, x̃)−Gc(y, x̃))
2w̃(x̃)w(x, y)dx̃dydx, (10)

where U(x, x̃), (x, x̃) ∈ (Ω ×W ) is the regularized function of regions. The as-

sociated (region-based) Euler-Lagrange is: J ′
W (U)(x, x̃) = 2w̃(x̃)

|Ω|
∫
Ωc

(U(x, x̃) −
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Gc(y, x̃))w(x, y)dy. Using a region-equivalent fidelity term Jfid,W (U, F ) =
1

|Ω|
∫
Ω

∫
W
(U(x, x̃)− F (x, x̃))2w̃(x̃)dx̃dx, and energy

EW (U, F ) = JW (U) + λJfid,W (U, F ), (11)

the solution for the minimizer is:

U(x, x̃) =

∫
Ωc

Gc(y, x̃)w(x, y)dy + λF (x, x̃)∫
Ωc

w(x, y)dy + λ
. (12)

Having solved for U(x, x̃) we would like to reconstruct u(x). For every point x
we now have an entire set representing this point:

{
x̂ |x = x̂ + x̃, x̃ ∈ W

}
. The

simplest way to reconstruct u(x) is by weighted integration:
u(x) =

∫
x=x̂+x̃

U(x̂, x̃)w̃(x̃)dx̃, x̃ ∈W . By replacing x̂ = x− x̃ we get,

u(x) =

∫
W

U(x− x̃, x̃)w̃(x̃)dx̃. (13)

Clean image f0 Noisy image f Confidence α Simple Confidence Difference
σn = 30, reconstruction, reconstruction u1 − u2

PSNR=18.5 Eq. (13), u1 Eq. (14), u2

PSNR = 30.7 PSNR = 32.1

Fig. 5. Standard reconstruction vs. confidence-based reconstruction. When confidence
is considered, boundaries between classes are regularized better.

Confidence-Based Integration. A more advanced way to reconstruct u(x)
from U(x, x̃) is to consider the local quality of the regularization. Some regions
may be more effectively regularized than others. A confidence function 0 ≤
α(x) ≤ 1 is associated with U(x, x̃). Then u(x) can be reconstructed by

u(x) =

∫
W

U(x− x̃, x̃)
α(x − x̃)∫

W
α(x − x̌)dx̌

dx̃. (14)

We use the following confidence measure: α(x) =
∫
Π(x)

w(x, y)dy. The supe-

rior effect of this approach can be seen in Fig. 5. As category boundaries are
reached, confidence is low, and information on the most adequate regulariza-
tion is gathered from regions within the window W that are farther from the
boundary.
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Noisy image f Expert Reg.: u K-SVD: u TV: u
σn = 30, PSNR=18.5 PSNR = 27.5 PSNR = 26.4 PSNR = 24.3

Clean image f0 f − u f − u f − u

Fig. 6. Denoising examples 1: Expert regularizer, K-SVD and TV

Noisy image f Expert Reg.: u K-SVD: u NL Means: u
σn = 10, PSNR=28.1 PSNR = 36.3 PSNR = 34.8 PSNR = 33.9

Clean image f0 f − u f − u f − u

Fig. 7. Denoising examples 2: Expert regularizer, K-SVD and nonlocal means

4 Examples

In Figs. 6 and 7 examples of denoising results are shown, with comparison to
total variation [28], non-local means [9] and K-SVD [15] (using the implementa-
tion of [27]). We show here simple cases of only a single category in the image.
More elaborate algorithms are required for multiple-category images, using a
pre-classification stage. A few images of similar nature were collected to create
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the representative category set Ŝc. The expert regularizer retains well the texture
and characteristics of the clean version. In terms of SNR, it competes well with
state-of-the-art methods.

5 Discussion and Conclusion

A new paradigm is suggested for regularization, when additional knowledge is
at hand on the category of images to be processed.

In the ideal case, one would like that admissible images in the category would
be unaffected by the regularizer, thus avoiding artifacts. This in turn suggests
a few properties on expert regularizers, which are different then generic ap-
proaches.

A basic way to form an approximated ER was described, by precomputing
weights, which define the attractor for the processed image, composed of parts
of instances of the external category data. The problem then becomes convex
and a simple solution yields the regularization result.

The approximation is a simplified approach, which does not take into account
more complex interactions between regions or larger structural context. We gave
examples of a single category case. In order to automatically select between
several categories, one can use the regularizer value as an indicator (a sort of
classifier) and select the one with minimal value.

The approach presented here gave encouraging results, further research is
planned to investigate more comprehensive methods for solving these regular-
ization problems.
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A Spectral Approach to Total Variation

Guy Gilboa

Department of Electrical Engineering, Technion, Israel Institute of Technology,
Haifa 32000, Israel

Abstract. The total variation (TV) functional is explored from a spec-
tral perspective. We formulate a TV transform based on the second time
derivative of the total variation flow, scaled by time. In the transforma-
tion domain disks yield impulse responses. This transformation can be
viewed as a spectral domain, with somewhat similar intuition of classical
Fourier analysis. A simple reconstruction formula from the TV spectral
domain to the spatial domain is given. We can then design low-pass,
high-pass and band-pass TV filters and obtain a TV spectrum of signals
and images.

Keywords: Scale Space, total variation, image analysis.

1 Introduction

The total variation (TV) functional is today a fundamental regularizing
tool in image processing. It is employed for denoising and deconvolution
[30,12,26,28,27,20], optical-flow [8], tomographic reconstruction [31], texture and
image analysis [7,4,3,35,21] and more. Since its introduction in [30] in the con-
text of image processing many studies have been devoted to its analysis and
interpretation, e.g. [12,26,13,14]. We attempt in this paper to further enhance
the intuition and applicability of this functional to feature extraction and image
analysis by formulating a spectral framework, where one can decompose and
reconstruct images using the basic TV elements of the image.

Spectral analysis has been used extensively in the analysis and processing
of signals modelled as stationary random processes (see e.g. [24,33]). For more
complex non-stationary signals, such as images and speech, harmonic analysis
methods were developed in the form of wavelets [17,25,18], spectral graph theory
[15] and diffusion maps [16]. We explore a way to provide spectral information
for total variation analysis.

In [32] Steidl et al have shown the close relations, and equivalence in a 1D
discrete setting, of the Haar wavelets to both TV regularization [30] and TV
flow [1]. This was later developed for a 2D setting in [37]. The development of
features in the scale space framework [38,22,29,36] and the emergence of critical
points were studied for example in [22,9,23,34,13,21]. This work relies on the
established theory of the TV flow proposed by Andreu et al in [1] and further
developed in [2,6,32,10,5,19] and the references therein.

A. Kuijper et al. (Eds.): SSVM 2013, LNCS 7893, pp. 36–47, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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2 The TV Spectral Framework

The scale-space approach is a natural way to define scale:

ut = −p, u|t=0 = f, p ∈ ∂uJ(u), (1)

where ∂uJ(u) denotes the subdifferential of some regularizing functional J(u).
We are interested in the total variation functional:

J(u) =

∫
Ω

|Du|, (2)

where Du denotes the distributional gradient of u. It is therefore natural to ex-
amine the total variation scale-space, known as total-variation flow [1], formally
written as:

∂u
∂t = div

(
Du
|Du|

)
, in (0,∞)×Ω

∂u
∂n = 0, on (0,∞)× ∂Ω
u(0, x) = f(x), in x ∈ Ω,

(3)

where Ω is the image domain (a bounded set in RN with Lipschitz continuous
boundary ∂Ω). We assume f has sufficient spatial regularity.

We now give our line of thought how the transform was derived. Similar results
may probably be obtained using other, more formal, approaches.

In Fourier analysis, the sine and cosine functions (or exponents with imaginary
arguments) are the basic functions of the transform. They form impulses in the
Fourier domain. How can this be generalized to the total variation domain? We
begin by examining some atom-like elements in the TV sense. It is well known
that disks are elementary structures for the TV functional. For instance, they
satisfy the eigenvalue problem inRN : ∂uJ(u) = λu (where λ ∈ R), which implies
their shape stays the same during the entire evolution (their height decreases
until they disappear). Analytic solutions for disk regularizations and evolutions
were obtained for the TV regularization model [26,34], TV-flow [1,2,6], inverse-
scale-space evolutions [11] and more.

Let us recall the analytic solution of a simple case: evolution of a single disk
in two dimensions. The indicator function of a disk of radius r in R2 is:

I(x) =

{
1, |x| < r
0, otherwise

For a disk of height h, hI(x), we have that ∂uJ(u) = 2
r I(x) for all t until the

disk disappears. We denote by td =
hr
2 the disappearance time.

The solution of the TV flow for u(t) is therefore

u(t) =

{
(h− 2

r t)I(x), 0 ≤ t < td
0, otherwise

The first and second derivatives in time are:

ut(t) =

{
− 2
r I(x), 0 ≤ t < td

0, otherwise
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Fig. 1. Illustrating the evolution of a disk in R2. The value is within |x| < r, for
example at (x1 = 0, x2 = 0). The second derivative is an impulse at time td. [here we
set r = 4, h = 2 and therefore td = 4].

utt(t) =
2

r
δ(t− td)I(x),

where δ(t) denotes an impulse (Dirac delta) at t = 0. See Fig. 1 for an illustration.
We observe that utt yields an impulse of an elementary structure and is,

therefore, a good candidate for a spectral representation. We would also like that
the response will be invariant with respect to time. We normalize by multiplying
it by the evolution time t. It will be seen later that this yields a straightforward
reconstruction formula.

2.1 TV Transform

Let the TV transform be defined by

φ(t) = uttt, (4)

where t ∈ (0,∞) is the time parameter of the TV-flow, Equation (3), and utt is
the second derivative in time of u in that flow.

Having defined φ(t) ∈ L1(Ω), we now need the inverse transform, which re-
constructs a signal from all φ(t) responses. The reconstruction formula is very
simple and is defined as:

w(x) =

∫ ∞

0

φ(t)dt + f̄ , (5)

where f̄ = 1
Ω

∫
Ω
f(x)dx is the mean value of the initial condition. Naturally, if

we do not manipulate the spectral domain for filtering, we expect to reconstruct
the image of the initial condition f , as stated in the following:

Theorem 1. For φ(t) defined in (4), the reconstruction formula (5) recovers
f ∈ BV (Ω) ∩ L∞(Ω), that is w(x) = f(x).
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Proof. We examine the left-term on the right hand side of Eq. (5). Integration
by parts yields ∫ ∞

0

φ(t)dt =

∫ ∞

0

utttdt = utt|∞0 − u|∞0 .

We use the property of finite extinction time of the TV flow. A two-dimensional
proof by energy methods is given in [2] Th. 5. A more recent proof for all di-
mensions using energy estimates and Sobolev inequalities is given in [19] Th.
2.4, 2.5. In essence, this property means that for some t1 ∈ (0,∞) we have
u(t) ≡ const, ∀t > t1. Therefore also ut(t) ≡ 0 in a similar time range. The
expression ut ∈ −∂uJ(u) is finite for all t ∈ [0,∞) so that utt|t=0 = 0. We can
therefore conclude that the left term utt|∞0 = 0. For Neumann boundary condi-
tions the mean is unchanged, therefore u|t→∞ = f̄ . Using the initial condition
we have u|∞0 = f̄ − f . �

f S(t)
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Fig. 2. A single one-dimensional disk and the corresponding numerical spectral re-
sponse S(t)

Definition 1 (TV Spectral Response). The TV spectral response for t ∈
(0,∞) is defined as:

S(t) = ‖φ(t;x)‖L1 =

∫
Ω

|φ(t;x)|dx.

The spectral response roughly corresponds to the amplitude of the response in
a Fourier domain (see Fig. 3). If the response is high, a large “quantity” of the
element φ(t) is contained in the image. If it is low, this element can be consid-
ered negligible. A response for one dimensional disk, as computed discretely, is
depicted in Fig. 2. We will show in our experiments that, as can be expected,
elements with high spectral response compose the main features of the image.

2.2 Spectral Filtering

Let H(t) be a filter defined in the TV spectral domain as a real valued function
of t. The filtered response φH(t) in the spectral domain is defined by:

φH(t) = φ(t)H(t). (6)
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The filtered response in the spatial domain is then the corresponding reconstruc-
tion procedure

fH(x) =

∫ ∞

0

φH(t)dt+ f̄ , (7)

An ideal filter in Fourier analysis eliminates completely energy of undesired
frequencies while perfectly retaining frequencies in the desired range. We can
now define analogous ideal filters in the TV spectral sense:

Definition 2 (Ideal Spectral Filters). Let t1, t2 ∈ [0,∞). We define the
following ideal spectral filters:

(i) Ideal low-pass filter:

HLPF,t1(t) =

{
0, 0 ≤ t < t1
1, t1 ≤ t <∞

(ii) Ideal high-pass filter:

HHPF,t1(t) =

{
1, 0 ≤ t < t1
0, t1 ≤ t <∞

(iii) Ideal band-pass filter:

HBPF,t1,t2(t) =

⎧⎨⎩
0, 0 ≤ t < t1
1, t1 ≤ t < t2
0, t2 ≤ t <∞

(iv) Ideal band-stop filter:

HBSF,t1,t2(t) =

⎧⎨⎩
1, 0 ≤ t < t1
0, t1 ≤ t < t2
1, t2 ≤ t <∞

2.3 Feature Extraction

The spectral response S(t) can be used to characterize an image. It informs us
of the dominant scales and can be used when comparing images or as features
for a machine learning algorithms. See Figs. 5, 6 for the spectral response and
selected elements φ(t) of two image examples.

3 Examples

Examples demonstrating the qualitative properties of this transform are shown
below.

In Fig. 3 a 1D example is shown and compared with classical low-pass-
filtering in the Fourier domain. In the classical linear setting (bottom row)we have:
f2 = sin 2πϕ1 + 0.2 sin 2πϕ2, (in this specific example ϕ1 = 0.025, ϕ2 = 0.15).
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Fig. 3. One dimensional example of ideal low pass filtering versus scale-space low pass
filtering. Top row, processing f1 (left), middle - response by spectral filtering (full blue
line), and by TV flow (dotted green line). On the top right the spectral response is
shown. On the bottom row an analogue linear case filters f2 with Fourier ideal LPF
(full blue line) versus linear diffusion (dotted green line).

We compare two linear low-pass filters (LPF) - an ideal LPF and linear diffusion.
The ideal LPF (shown on bottom, right, dotted line) keeps all low frequencies and
sets to zero all frequencies above the threshold. The diffusion processes attenu-
ates more softly the frequencies near the threshold (as it is not an ideal LPF). We
observe that the ideal LPF retains the low frequency with better contrast.

A signal with similar properties, adapted for the TV case, is shown in Fig.
3 top row: f1 = sign(sin 2πϕ1) + 0.2 sign(sin 2πϕ2). The spectral response S(t)
shows three active bands (t < 30 high oscillations, t ≈ 100 low oscillations, and
200 < t < 250 low amplitude step). TV flow is compared to ideal TV LPF, as
defined above with filter threshold t1 = 30. The filter response is illustrated in a
dotted line at the top right. Note that in the TV spectral setting high frequencies
are on the left side (small t values) as oppose to Fourier domain.

One can observe the very sharp transitions of the ideal LPF using the spectral
filtering. Note that filtering with ideal LPF may result in too sharp transitions
which can produce some reconstruction artifacts. This can be the case both in
the linear and TV settings.

In Fig. 4 four circles of different sizes are processed. The ideal LPF is compared
to TV-flow. In both cases the extent of filtering is such that the smallest circle
completely vanishes. One can observe that the ideal LPF retains almost perfectly
the larger three circles, whereas TV-flow erodes their contrast considerably.
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f

Ideal low pass response uLPF Residual f − uLPF

TV flow response uTV F Residual f − uTV F

Fig. 4. Comparison between the ideal low-pass filter response and TV-flow. In both
cases the response is shown for the minimal extent of filtering in which the smallest
circle completely vanishes. One sees the considerable reduction of contrast of the larger
circles in the TV-flow versus the sharp and stable results of the ideal TV LPF.
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Fig. 5. Old Technion image. Results of ideal low pass filtering. This is compared to
TV-flow with equivalent filtering in the L2 sense (the norm of the residual, ‖f − u‖L2 ,
is the same). In addition, two examples of φ(t) are shown for different t values.
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Fig. 6. Feature extraction example. Salient features ate depicted as spectral peaks
(top right). The first three spectral peaks are shown as Bands I-III. These bands are
reconstructed together at the third row, right. This reconstruction is then superimposed
on the image to show the localization of the bands. Bottom right - a color coded
visualization of the image with the selected bands.
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In Fig. 5 an image of a building with landscape is examined. The ideal LPF
response is shown along with a standard TV-flow filtering. In both cases the L2

norm of the residual f −u is the same. The ideal LPF exhibits sharper features.
In addition two spectral elements φ(t) are shown. One can observe that the
spatial response for any φ(t) is highly localized with very particular structures
that emerge. The responses for the building windows (seen as black and white
structure on the bottom row) highly resemble 2D Haar wavelets, which can be
related to the analysis of [32,37]. Other structures can be related to the explicit
solutions of structures which retain their characteristic function, as analyzed
in [6].

In Fig. 6 a possible direction for image analysis is shown. The first most
salient peaks in the spectrum are examined (around times 60, 130, 170). We
band-pass filter them, as the response is not fully concentrated near a singular
time point. The composed three bands are shown on the third row, right. They
are superimposed back on the original image. It is shown that they contain
meaningful and well localized features with semantic meaning (in this case the
eyes). Therefore they may serve as good candidates for image features in higher-
level vision algorithms (e.g. face detection).

4 Conclusion

In this study a TV transform and a corresponding reconstruction formula were
presented. This transform yields large response to all image structure which
disappear at highly concentrated time intervals during the TV flow evolution.
We can regard these structure as the “atoms” of the image, with respect to the
total variation functional and gain a spectral understanding in the TV sense.

We have shown numerically that these structures are well localized spatially
and often represent significant image features with semantic meaning. Thus
they can serve for image analysis and as input features to higher-level vision
processing.

Extensions of this framework and relations to other TV-based formulations
should be further investigated. For example, it may be the case that inverse-
scale-space [11] can be interpreted as TV spectral low-pass filtering. Also other
scale-spaces and regularization procedure, not based on the TV-functional, may
be generalized using a similar approach.
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Abstract. We introduce a generic convex energy functional that is suitable for
both grayscale and vector-valued images. Our functional is based on the eigenval-
ues of the structure tensor, therefore it penalizes image variation at every point by
taking into account the information from its neighborhood. It generalizes several
existing variational penalties, such as the Total Variation and vectorial extensions
of it. By introducing the concept of patch-based Jacobian operator, we derive an
equivalent formulation of the proposed regularizer that is based on the Schatten
norm of this operator. Using this new formulation, we prove convexity and de-
velop a dual definition for the proposed energy, which gives rise to an efficient
and parallelizable minimization algorithm. Moreover, we establish a connection
between the minimization of the proposed convex regularizer and a generic type
of nonlinear anisotropic diffusion that is driven by a spatially regularized and
adaptive diffusion tensor. Finally, we perform extensive experiments with image
denoising and deblurring for grayscale and color images. The results show the
effectiveness of the proposed approach as well as its improved performance com-
pared to Total Variation and existing vectorial extensions of it.

1 Introduction

This work deals with image reconstruction problems such as denoising and deblur-
ring. We adopt their classical formulation as linear inverse problems: Let u (x) =
[u1 (x) . . .uM (x)] : Ω → RM be a generic vector-valued image with M channels
that we seek to estimate. We consider that the observed image v is a degraded ver-
sion of u according to the model: z = Au + ε, where A is a linear operator and ε is
the measurement noise. Following the common variational approach, we estimate u by
minimizing a cost functional. This functional is typically the sum of a data term and a
regularization term. The former measures the consistency between the estimate and the
measurements, while the latter promotes certain solutions. A regularization parameter
τ ≥ 0 balances the contributions of the two terms.
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A widely used choice for the regularizer is the Total Variation (TV) [1], which is
applied on grayscale images u (M=1) and is defined as:

TV(u) =

∫
Ω

‖∇u‖2 dx. (1)

TV owes its popularity to its ability to reconstruct images with well-preserved and sharp
edges. This is due to the fact that it involves the gradient magnitude ‖∇u‖2 and it
thus undergoes an L1-type of behavior that does not over-penalize high variations of u.
Its downside, however, is that it oversmooths homogeneous regions and creates strong
staircase artifacts [2]. This behavior stems from its tendency to favor piecewise-constant
solutions. Another drawback of TV is that the gradient magnitude, employed to penalize
the image variation at every point x, is too simple as an image descriptor; it relies only
on x without taking into account the information from its neighborhood.

TV has been extended to general vector-valued image data in several ways, see
e.g. [3–7]. Another related regularizer is the Beltrami functional [8], which has been
recently generalized and unified with the Mumford-Shah functional [9]. In [10], TV
is extended in an anisotropic way by incorporating the structure tensor of the image.
But as in the image-driven anisotropic regularization of [5], this tensor is considered
fixed and computed by the observed image. In all the above cases, the regularizers in-
tegrate a penalty of image variation that, as in TV, is completely local. On the contrary,
in [11] a non-local version of TV is proposed, while in [12] an extension of the Beltrami
framework that uses image patches is introduced. In [13] the authors propose a generic
regularizer for vector-valued images that is based on the eigenvalues of the structure
tensor, therefore it also takes into account the vicinity of each point. They show that its
minimization is connected to tensor-based anisotropic diffusions.

In this work, to overcome the limitations of TV we adopt more sophisticated descrip-
tors of image variations that generalize the gradient magnitude. We build upon the work
of [13] and propose a generic convex energy functional that is based on the eigenvalues of
the structure tensor. However, the current work departs from [13] in several ways. First,
we provide more intuition about why the usage of the structure tensor’s eigenvalues leads
to effective generalizations of Total Variation. Also, the focus of [13] was in gradient de-
scent flows of solely the regularizers, whereas in this work we combine the regularizers
with data terms and we focus on the minimum rather than the flow towards the minimiza-
tion. Further, we prove convexity of the proposed regularizers and we design an efficient
algorithm for their minimization, which copes with their non-differentiability.Finally, in
[13] the regularizers were applied only on image denoising, whereas our regularization
framework is applied on more general linear inverse problems.

To the best of our knowledge, this is the first work that establishes a connection
between 1) generic anisotropic diffusion that is based on a spatially regularized and
adaptive diffusion tensor (in the sense that this tensor contains convolutions with a
kernel and is steered by the structure tensor field of the evolving image, as e.g. in [6, 14])
and 2) minimization of convex regularizers that can be incorporated in an optimization
framework and implemented efficiently using convex optimization algorithms.
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2 Structure Tensor-Based Regularization

2.1 Directional Variation and Structure Tensor Revisited

In this section, we revisit and reformulate the well-established theory behind the struc-
ture tensor [14, 15], in a way that better motivates the regularizers that we will propose.
The vectorial directional derivative of the vector-valued image u in an arbitrary 2D
direction n (‖n‖2=1) is: ∂u/∂n = (Ju)n, where Ju is the Jacobian matrix of u:

Ju =
[
∇u1 . . . ∇uM

]T
. (2)

The magnitude of the directional derivative ‖∂u/∂n‖2 yields a measure of the amount
of change of the image u at the direction n for any specific point x. This measure
is typically unreliable since it is computed by concentrating completely at the point
x. In order to be more robust and capture also the behavior of the image u in the
neighborhood of x, we consider the weighted root mean square (RMS) of ‖∂u/∂n‖2,
which we call (local) directional variation:

RMSK {‖∂u/∂n‖2} =
√
K ∗ ‖∂u/∂n‖22 =

√
nT (SKu)n . (3)

In the above equation K(x) is a non-negative, rotationally symmetric convolution ker-
nel (e.g., a 2D Gaussian) that performs the weighted averaging and SKu is the so-called
structure tensor of the image u defined as:

SKu = K ∗
(
JuTJu

)
. (4)

Similarly to [6, 13], in the above definition we do not consider any pre-smoothing of the
image before computing its Jacobian, since the single convolution with K seems suffi-
cient for the needs of image regularization. Let λ+≥λ− be the eigenvalues of SK(u)
and θ+, θ− be the corresponding unit eigenvectors. Also, let ω ∈ (−π, π] be the angle
between the direction vector n and the eigenvector θ+. Using the eigendecomposition
of SK(u), we can express the directional variation (3) as a function of the angle ω:

V (ω) � RMSK {‖∂u/∂n‖2} =
√
λ+ cos2 ω + λ− sin2 ω . (5)

If we consider the parametric equation X(ω)=(
√
λ+ cosω,

√
λ− sinω) of an ellipse

with semi-major axis
√
λ+ and semi-minor axis

√
λ−, V (ω) can be interpreted as the

distance of any point X(ω) from the center of the ellipse. Therefore,
√
λ+ corresponds

to the maximum of the directional variation V (ω) (which is achieved for ω=0,π),
whereas

√
λ− to the minimum of V (ω) (which is achieved for ω=±π/2).

2.2 Proposed Class of Regularizers

Based on the above analysis, we conclude that the vector
√
λ � (

√
λ+,

√
λ−) is a synop-

sis of the function of local directional variation V (ω): it consists of the upper and lower
bounds of this function. Therefore, we propose to generalize the Total Variation (1)
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via replacing the gradient magnitude ‖∇u‖2 by �p norms of
√
λ. More precisely, we

propose the following type of regularizers, with p≥1:

Ep(u) =

∫
Ω

∥∥√λ
∥∥
p

dx =

∫
Ω

∥∥(√λ+,√λ−)∥∥p dx . (6)

These norms measure the local variation of the image at each point more robustly than
the gradient magnitude used in TV, as they take into account the variations in its neigh-
borhood. At the same time, they incorporate richer information, since they depend not
only on the maximum but also on the minimum of the directional variation. For in-
stance, the response of these measures behaves differently at image edges than image
corners.

We note that all the regularizers of the type (6) generalize TV. The reason is that for
M=1 (grayscale images), if K(x) is chosen to be the Dirac delta δ(x) (degenerated
case where no convolution takes place at the computation of the structure tensor), then
λ+=‖∇u‖22 and λ− is always 0. Therefore

∥∥√λ
∥∥
p
=‖∇u‖2 for any p≥1.

Next, we describe some interesting cases of the proposed regularizers (6). For the
following three cases of Ep(u), the corresponding norms describe specific measures of
the directional variation V (ω):

– p=1:
∥∥√λ

∥∥
1
=

√
λ++

√
λ− corresponds (up to the scale factor 1/2) to the mid-range

of V (ω), i.e. the average of minimum and maximum values of V (ω).
– p=2:

∥∥√λ
∥∥
2
=

√
λ+ + λ− corresponds (up to the scale factor 1/

√
2) to the RMS

value of V (ω), as it can be easily verified using Eq. (5).
– p=∞:

∥∥√λ
∥∥
∞ =

√
λ+ corresponds to the maximum of V (ω).

Invariance Properties. Since our regularizers are generalizations of TV, one should ex-
pect that they also share the same invariance properties. Two of the most favorable ones
are the rotation invariance and contrast covariance (1-homogeneity), which according
to Proposition 1 are indeed preserved (see Supplementary Material for the proof).

Proposition 1. The energy functional (6) is rotation invariant and contrast covariant.

2.3 Connections to Tensor-Based Anisotropic Diffusion and Previous Work

The proposed class of regularizers Ep(u) (6) is a special case of the more generic form
proposed in [13]: E (u) =

∫
Ω ψ (λ+, λ−) dx. This special case corresponds to cost

functions of the form ψ (λ+, λ−) = ‖(
√
λ+,

√
λ−)‖p.

In order to make the cost function in the proposed regularizers differentiable, let us
consider the relaxation Ep,ε(u) that arises by setting ψ (λ+, λ−) = ϕp,ε(λ+, λ−) �∥∥(√ε + λ+,√ε+ λ−)∥∥p

, where ε>0 is a small constant. Note that we need this relax-
ation only to establish connections to anisotropic diffusion and not for the actual opti-
mization, since our optimization algorithm, described in Section 4, can cope with the
non-differentiability of the functionals. By applying [13, Theorem 1], we find the rela-
tion of minimizing the proposed regularizers with anisotropic diffusion:

Corollary 1. The functional gradient of Ep,ε w.r.t. each image component ui is:

δEp,ε
δui

= −div (D∇ui) , D = K ∗
(
2
∂ϕp,ε
∂λ+

θ+ ⊗ θ+ + 2
∂ϕp,ε
∂λ−

θ− ⊗ θ−

)
. (7)
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This gradient is a nonlinear anisotropic diffusion term, where the diffusion tensor D
contains convolutions with the kernel K and depends on the structure tensor of the
image. For the following characteristic choices of p, the diffusion tensor is given as:

– p=1:D = K∗
(

1√
ε+λ+

θ+⊗θ++ 1√
ε+λ−

θ−⊗θ−

)
. This tensor is adapting on the image

structures in a conceptually similar way to tensor-based anisotropic diffusion methods,
such as [6, 14]: 1) in the homogeneous regions (small λ+,λ−) it is strong and isotropic,
2) near the edges (large λ+, small λ−) it is weaker and mainly oriented by the edges,
whereas 3) near the corners (large λ+,λ−) it is even weaker.
– p=2: D =

(
K ∗ 1√

2ε+K∗
∑

i‖∇ui‖22

)
I2×2. This tensor is always isotropic, it thus cor-

responds to a diffusion coefficient. Similarly to nonlinear diffusion methods, such as
[16, 17], this coefficient is strong in the homogeneous regions, whereas weaker near
edges.
– p=∞: D = K ∗

(
1√

ε+λ+
θ+ ⊗ θ+

)
. This tensor is always highly anisotropic and

oriented perpendicular to image edges.

Further Relations to Previous Work. As already stated, the proposed regularizers are
special cases of the more generic functional of [13]. Furthermore, the special subcase
of p = 1 corresponds to the so-called Tensor Total Variation of [13]. In addition,
several other variational methods emerge as special cases of the proposed regularizers.
The kernel K that corresponds to all these cases is the Dirac delta δ(x), which means
that the regularization does not exploit information from the neighborhood of each point
and is thus less coherent. As already described in Section 2.2, if we set K(x)=δ(x) and
M=1 (grayscale images) then for all choices of p≥1 we recover the Total Variation
[1]. The case ofK(x)=δ(x), M>1 and p=2 corresponds to the usually called Vectorial
TV (TV-F) [3, 4], which is the most common extension of TV to vector-valued images.
Finally, the case K(x)=δ(x), M>1 and p=∞ corresponds to the method of [7], which
the authors call Natural Vectorial TV (TVJ).

3 Patch-Based Jacobian and the Discrete Structure Tensor

In this section, we introduce a generalization of the Jacobian of an image, based on
local weighted patches (see e.g. [12, 13]). This new operator, which we call patch-based
Jacobian, contains weighted shifted versions of the Jacobian of u, whose weights are
determined by the convolution kernel K . Then, we employ it to express the structure
tensor in a novel way, which finally leads us to derive an equivalent definition of the
proposed regularizers. This alternative definition provides more intuition, facilitates the
proof of convexity and opens the way for an efficient optimization strategy.

Hereafter, we will focus on the discrete formulation of the image reconstruction
problem. We consider that the discretized vector-valued image u is defined on a rectan-
gular grid with unary steps and that the corresponding intensities of each channel m of
u (m=1, ..,M ) are rasterized in the vector um of size N . By combining all the image
channels, we have that u ∈ RNM . We use the index n=1, .., N to refer to a specific pixel
of the grid and we denote by xn the coordinates of that pixel. Furthermore, we consider
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that the convolution kernel K (see Eq. (4)) has been discretized and truncated in order
to have compact support S={−LK , .., LK}2, where LK is a non-negative integer.

We define the patch-based Jacobian of an image u as the linear mapping JK :
RNM �→ X , where X � RN×(LM)×2 and L = (2LK + 1)2. For each pixel n we
denote by [JKu]n the element of JKu that corresponds to that pixel and we construct
it by: 1) taking the discrete versions of the M × 2 Jacobian matrices (2) of u for all
the pixels {xn − y : y ∈ S} in the S-neighborhood of pixel xn, 2) weighting these
matrices with the window function w[y] �

√
K[y] and 3) stacking all these matrices

vertically in the matrix [JKu]n, whose dimension is (LM) × 2. Formally, the patch-
based Jacobian can be defined as:

[JKu]Tn=

[
[Py1◦Dhu1]n· · · [PyL◦Dhu1]n· · · [Py1◦DhuM ]n· · · [PyL◦DhuM ]n
[Py1◦Dvu1]n· · · [PyL◦Dvu1]n· · · [Py1◦DvuM ]n· · · [PyL◦DvuM ]n

]
, (8)

where Dh, Dv are the two components of the discrete gradient, the shift vectors yl
(l=1, . . . , L) are the elements of the lattice S, and Pyl

are weighted shift operators. The
latter are designed to properly handle the image boundaries according to the assumed
extension (e.g., mirroring) and are defined as:

[Pyl
◦Dhum]n = w [yl]Dh {um} [xn − yl] . (9)

Next, we equip the space X (which is the target space of JK ) with the inner product
〈· , ·〉X and norm ‖·‖X . To define them, let X,Y ∈ X , with Xn,Yn ∈ R(LM)×2 ∀ n =
1, . . . , N . Then we have:

〈X , Y 〉X =
∑N

n=1 tr
(
Y T
n Xn

)
(10) and ‖X‖X =

√
〈X , X〉X , (11)

where tr (·) is the trace operator. For the Euclidean space RNM we use the standard
inner product 〈· , ·〉2 and norm ‖·‖2.

The adjoint of JK is the discrete linear operator J∗
K : X �→ RNM , defined by:

〈Y , JKu〉X = 〈J∗
KY , u〉2 . (12)

The following Proposition expresses J∗
K in a form that facilitates its computation (see

Supplementary Material for the proof).

Proposition 2. The adjoint operator J∗
K of the patch-based Jacobian is given by:

[J∗
KY ](n,m) =

∑L
l=1−div

[
P∗
yl
◦ Y ((m−1)L+l,:)

]
n
, (13)

where div is the discrete divergence,P∗ is the adjoint of the shift operatorP , andY (k,:)
n

corresponds to the k-th row of the n-th matrix component, Yn ∈ R(LM)×2, of Y .

Having introduced the necessary tools, we can now express the structure tensor in a
novel way. This is done in Proposition 3 (see Supplementary Material for a proof).

Proposition 3. Let [SKu]n be the discretized structure tensor at pixel n, which is de-
fined by adopting discrete derivatives and discrete convolution in (2) and (4), respec-
tively. Then, it can be written in terms of the patch-based Jacobian as:

[SKu]n = [JKu]
T
n [JKu]n . (14)
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Since λ+, λ− are the eigenvalues of [SKu]n, the singular values of [JKu]n are√
λ+,

√
λ−. This connection permits us to use Schatten norms [18] and the patch-based

Jacobian so as to write the proposed regularizers (6) (after discretization) as:

Ep(u) =
∑N

n=1 ‖[JKu]n‖Sp
, with p ≥ 1. (15)

Note that for a matrix Z, its Schatten norm of order p (Sp norm) denoted by ‖Z‖Sp
, is

defined as ‖σ (Z)‖p, with σ (Z) the vector of the singular values of Z. This equivalent
formulation of Ep(u) provides more intuition about the fact that the proposed regular-
izers are effective generalizations of TV. More precisely, [JKu]n encodes the vectorial
variation of the image u in the vicinity of the pixel n. Therefore, the Schatten norms
of this matrix provide different measures of the local variation of u, by taking into ac-
count its neighborhood in a weighted manner. In addition, an important contribution of
the above result is that the expression (6), which involves the eigenvalues of the non-
linear structure tensor, has been transformed to the expression (15) that is much easier
to handle, since it depends on a norm of a linear operator acting on u. We refer to the
proposed regularizers as STV-[k] (Structure tensor Total Variation) where the character
[k] denotes the order of the Schatten norm. For example, for the cases of p=1,2 and
∞ we use the notations STV-N (Nuclear norm), STV-F (Frobenius norm) and STV-S
(Spectral norm) respectively.

It has now become straight-forward to show the following important result:

Proposition 4. The regularizer Ep (u) is convex w.r.t u ∀p ≥ 1.

Proof. The regularizer of Eq. (15) is clearly convex since it results as the composition
of a norm (mixed �1-Sp norm; see (17) for its definition) and the linear operator JK .

4 Energy Minimization Strategy

4.1 Proximal Map Evaluation

In this section we propose an efficient algorithm that provides a numerical solution to
the following problem, for any p ≥ 1:

argmin
u∈RNM

1
2 ‖u− z‖22 + ψ (u) , with ψ (u) � τEp (u) + ιC (u) , (16)

where C is a convex set that represents additional constraints on the solution and ιC
is its indicator function: ιC (u) takes the value 0 for u ∈ C and ∞ otherwise. Note
that the case of no constraints is simply the special case C=RNM . The solution of (16)
corresponds to evaluating the proximal map [19] of the function ψ at z and arises in
most linear inverse imaging problems, including the ones considered by this work.

To proceed with our minimization approach, we write the energy Ep in the compact
form Ep (u) = ‖JKu‖1,p, where ‖·‖1,p corresponds to the mixed �1-Sp norm, which

for an argument X =
[
XT

1 , . . . ,X
T
N

]T ∈ X is defined as

‖X‖1,p =
∑N

n=1 ‖Xn‖Sp
. (17)

Next, we rely on the following lemma to derive a dual formulation of our problem.
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Lemma 1 ([20]). Let p ≥ 1, and let q be the conjugate exponent of p, i.e., 1
p + 1

q = 1.
Then, the mixed norm ‖·‖∞,q is dual to the mixed norm ‖·‖1,p.

Using Lemma 1 and the fact that the dual of the dual norm is the original norm [21], we
write (17) in the equivalent form:

‖X‖1,p = max
Ω∈B∞,q

〈Ω , X〉X , (18)

where B∞,q denotes the �∞-Sq unit-norm ball, defined as the set

B∞,q �
{
Ω =

[
ΩT

1 , . . . ,Ω
T
N

]T ∈ X : ‖Ωn‖Sq
≤ 1, ∀n = 1, . . . , N

}
. (19)

Note that from (19), it is clear that the orthogonal projection onto B∞,q can be obtained
by projecting separately each submatrix Ωn onto a unit-norm Sq ball (BSq ).

Combining (12) and (18) we re-write (16) as

û = argmin
u∈C

1
2 ‖u− z‖22 + τ max

Ω∈B∞,q

〈J∗
KΩ , u〉2 . (20)

This formulation naturally leads us to the following minimax problem:

min
u∈C

max
Ω∈B∞,q

L (u,Ω) , (21)

where L (u,Ω) = 1
2 ‖u− z‖22 + τ 〈J∗

KΩ , u〉2 . The function L is strictly convex
in u and concave in Ω, and thus, we have the guarantee that a saddle-value of L is
attained [21]. Therefore, the order of the minimum and the maximum in (21) does not
affect the solution and û can be equivalently obtained by solving the problem:

max
Ω∈B∞,q

min
u∈C

(
1
2 ‖u− (z − τJ∗

KΩ)‖22 + 1
2 ‖z‖

2
2 − 1

2 ‖(z − τJ∗
KΩ)‖22

)
. (22)

The inner minimization in (22) has an exact solution:

û = ΠC
(
z − τJ∗

KΩ̂
)
, (23)

where ΠC denotes the orthogonal projection onto the convex set C, while Ω̂ is the
maximizer of the dual problem:

max
Ω∈B∞,q

(
φ (Ω) � 1

2 ‖ΠC (c)− c‖22 + 1
2 ‖z‖

2
2 − 1

2 ‖c‖
2
2

)
, (24)

where c = z − τJ∗
KΩ. Contrary to the primal problem (16), where the function

to be minimized is not continuously differentiable, the dual one in (24) involves the
function φ which is smooth and has a well defined gradient. To compute it, we use
the result in [22, Lemma 4.1], according to which the gradient of a function h (x) =

‖x−ΠC (x)‖22 is equal to:∇h (x) = 2 (x−ΠC (x)). Based on that, we get:

∇φ (Ω) = τJKΠC (z − τJ∗
KΩ) . (25)



56 S. Lefkimmiatis et al.

Algorithm 1: Evaluation of the proximal map of ψ (u).
Input: z, τ > 0, p ≥ 1, ΠC .
Initialization: Ψ1 = Ω0 = 0 ∈ X , t1 = 1.
while stopping criterion is not satisfied do

v = ΠC (z − τJ∗
KΨn);

Ωn ← ΠSq

(
Ψn + 1

8τ
JKv

)
;

tn+1 ← 1+
√

1+4t2n
2

;

Ψn+1 ← Ωn +
(

tn−1
tn+1

)
(Ωn −Ωn−1);

n← n+ 1;
end
return û = ΠC (z − τJ∗

KΩn−1);

Then, we use (25) to design a gradient-based algorithm that solves (24). The solution of
our primal problem (16) is obtained in two steps: 1) we find the maximizer of the dual
objective function (24), and 2) we obtain the solution using (23).

Since (24) does not have a closed-form solution (JK has not a stable inverse), we
employ Nesterov’s iterative method [23] for smooth functions. This is a gradient-based
scheme that exhibits state-of-the art convergence rates of one order higher than the stan-
dard gradient-ascent method. A detailed description of the overall algorithm is provided
in Algorithm 1. Note that for the implementation of Algorithm 1, we need to perform a
projection of a matrix onto a Schatten norm ball. This is discussed in the next section.

4.2 Efficient Projection of Rectangular Matrices

Let X ∈ Rn1×n2 with an SVD decomposition X = UΣV T and Σ =
diag (σ1, . . . , σn) with n = min (n1, n2). According to [20, Proposition 1], the pro-
jection of X onto the unit-norm Sq ball is computed as:

ΠSq (X) = UΣqV
T , (26)

where Σq = diag (σq) and σq is the projection of the singular values of Σ onto the

�q unit-norm ball Bq =
{
σ ∈ Rn+ : ‖σ‖q ≤ 1

}
. The projection in (26) requires the

singular vectors and singular values of X . In our case n2 = 2 < n1, and we compute
the projection in an efficient way as described next. First, we note that the matrix XTX
is n2×n2 symmetric with an eigenvalue decomposition V Σ2V T . Therefore, for n2 =
2 both V and Σ can be computed in closed form. Now, if Σ+ is the pseudoinverse
matrix of Σ, defined as: Σ+ = diag

(
σ−1
1 , . . . , σ−1

k , 0, . . . , 0
)
, with σk the smallest

nonzero singular value, then U = XV Σ+. Using this result we write (26) as:

ΠSq (X) = XV Σ+ΣqV
T , (27)

and we avoid the computation of U . We note that the same idea was explored in [7] for
efficiently computing the projection step that arises in the minimization of TVJ.
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Fig. 1. Performance measures for different regularization methods

4.3 General Linear Inverse Problems

Algorithm 1 applies only in cases where no linear operator is involved in the data term.
For general inverse problems, under the proposed regularization framework, one needs
to solve a minimization problem of the form:

argmin
u∈RNM

1
2 ‖Au− z‖22 + τEp (u) + ιC (u) , ∀p ≥ 1, (28)

where A is a linear degradation operator, which for most practical cases is ill-
conditioned. To solve this type of problems we employ the MFISTA algorithm [22],
which exhibits state-of-the-art convergence rates. Nevertheless, our algorithm is still a
critical part, since the main step of MFISTA requires the evaluation of the proximal map
that we investigated in Section 4.1. For a detailed description of the MFISTA approach
we refer the readers to the Supplementary Material accompanying this paper.

5 Experimental Results

To evaluate the effectiveness of the proposed generic regularization framework, we re-
port results for the problems of gray/color image denoising and deblurring. For both
linear inverse problems we use the set of images shown in Fig. 1(a), taken from the
Berkeley BSDS500 dataset. In the image denoising setting we consider four differ-
ent standard deviations of Gaussian noise, σw={0.15, 0.2, 0.25, 0.3}. In the image de-
blurring setting we consider a Gaussian blur kernel, which has a support of 9× 9
pixel and a standard deviation σb=6 pixels, and four noise levels corresponding to
BSNR={15, 20, 25, 30} dB respectively, where BSNR is the Blurred Signal to Noise
Ratio, defined as BSNR = var (Au) /σ2

w.
In Figs. 1(b)-1(e) we report the average performance, in terms of Peak Signal to

Noise Ratio (PSNR), over all tested images. For the grayscale experiments, we com-
pare TV against three variants of our functional (STV-S, STV-F, STV-N). For the color
case, we compare the results we obtained with our STV-N regularizer against those ob-
tained using TVJ [7] and TV-F [3]. In these comparisons, we also include the variant of
STV-N where no smoothing is involved in the computation of the structure tensor (TV-
N), which is also a novel regularizer. For the sake of consistency among comparisons,
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Input (PSNR=13.98, SSIM=0.290) TV [1] (PSNR=24.45, SSIM=0.715) STV-F (PSNR=24.65, SSIM=0.731) STV-N (PSNR=24.89, SSIM=0.740)

Input (PSNR=12.04, SSIM=0.283) TVJ [7] (PSNR=23.76, SSIM=0.823) TV-N (PSNR=24.69, SSIM=0.839) STV-N (PSNR=24.82, SSIM=0.850)

Fig. 2. Grayscale (first row) and Color (second row) image denoising examples. The PSNR and
the Structural Similarity index (SSIM) are also reported.

Input (PSNR=20.18, SSIM=0.530) TV [1] (PSNR=24.26, SSIM=0.746) STV-F (PSNR=24.47, SSIM=0.750) STV-N (PSNR=24.83, SSIM=0.760)

Input (PSNR=21.88, SSIM=0.543) TVJ [7](PSNR=25.19, SSIM=0.761) TV-F [3] (PSNR=25.48, SSIM=0.766) STV-N (PSNR=25.61, SSIM=0.770)

Fig. 3. Grayscale (first row) and Color (second row) image deblurring examples. The PSNR and
SSIM measures are also reported.

the reported results for each regularizer were obtained using the individualized regular-
ization parameter that gives the best PSNR performance. Moreover, all reconstructions
are performed under box constraints, meaning that the restored intensities must lie in
the convex set C =

{
u ∈ RN |un ∈ [0 , 1]∀n = 1, . . . , N

}
. Finally, in all the STV reg-

ularizers, we choose the structure tensor’s convolution kernel to be a Gaussian with a
support of 3×3 pixels.

From the reported results, we observe that in the grayscale case the best performance
for both image denoising and deblurring is achieved by STV-N. On the other hand, TV
has the worst performance, especially in deblurring, since in denoising its performance
is very close to STV-S. In the color denoising experiments, TV-N performs slightly
better than STV-N, and both are superior than the competitive regularizers. However,
when we consider the image deblurring problem, STV-N behaves better than TV-N and
provides the best results. This can be attributed to the fact that deblurring is a more
ill-conditioned problem and, thus, the use of a convolution kernel K is more critical.
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Finally, apart from the quantitative comparisons, conclusions for the effectiveness of
the proposed approach can be drawn by a visual inspection of the results provided
in Figs. 2-3. From these examples we can verify that the proposed STV regularizers
perform better in reducing the staircase effects of other Total Variation methods and
better reconstruct the edges and the other image structures.

6 Conclusions

In this work we introduced a family of regularizers that is based on the eigenvalues of
the structure tensor. In image denoising and deblurring problems these regularizers can
more accurately restore image edges than TV and its vectorial extensions, and, thus,
lead to improved results. Furthermore, based on a novel formulation of the structure
tensor, we proved convexity for the regularizers and designed an efficient primal-dual
algorithm for their minimization. Since TV-based reconstructions are used in a host
of imaging applications, an interesting research direction is to investigate whether our
regularizers can also lead to an improved performance in other inverse problems, as
well. This will be the subject of future work.
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6. Tschumperlé, D., Deriche, R.: Vector-valued image regularization with PDE’s: A common

framework for different applications. IEEE T-PAMI 27(4), 506–517 (2005)
7. Goldluecke, B., Strekalovskiy, E., Cremers, D.: The natural vectorial total variation which

arises from geometric measure theory. SIAM J. Imaging Sci. 5, 537–563 (2012)
8. Sochen, N., Kimmel, R., Malladi, R.: A general framework for low level vision. IEEE Trans.

on Image Processing 7, 310–338 (1998)
9. Sochen, N., Bar, L.: The Beltrami-Mumford-Shah functional. In: Scale Space and Variational

Methods in Computer Vision, pp. 183–193 (2012)
10. Grasmair, M., Lenzen, F.: Anisotropic total variation filtering. Applied Mathematics & Op-

timization 62, 323–339 (2010)
11. Gilboa, G., Osher, S.: Nonlocal operators with applications to image processing. Multiscale

Modeling & Simulation 7(3), 1005–1028 (2008)
12. Wetzler, A., Kimmel, R.: Efficient Beltrami flow in patch-space. In: Scale Space and Varia-

tional Methods in Computer Vision, pp. 134–143 (2012)
13. Roussos, A., Maragos, P.: Tensor-based image diffusions derived from generalizations of the

total variation and Beltrami functionals. In: Proc. Int. Conf. on Image Processing (2010)
14. Weickert, J.: Anisotropic Diffusion in Image Processing. Teubner, Stuttgart (1998)
15. Jähne, B.: Digital Image Processing. Springer (2002)



60 S. Lefkimmiatis et al.

16. Perona, P., Malik, J.: Scale space and edge detection using anisotropic diffusion. IEEE T-
PAMI 12(7), 629–639 (1990)
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Adaptive Second-Order Total Variation:

An Approach Aware of Slope Discontinuities
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Abstract. Total variation (TV) regularization, originally introduced by
Rudin, Osher and Fatemi in the context of image denoising, has become
widely used in the field of inverse problems. Two major directions of
modifications of the original approach were proposed later on. The first
concerns adaptive variants of TV regularization, the second focuses on
higher-order TV models. In the present paper, we combine the ideas of
both directions by proposing adaptive second-order TV models, includ-
ing one anisotropic model. Experiments demonstrate that introducing
adaptivity results in an improvement of the reconstruction error.

Keywords: second-order total variation, adaptive, anisotropic, direc-
tional, TV, TGV, slope discontinuities.

1 Introduction

In 1992 Rudin, Osher and Fatemi [14] proposed to apply the total-variation (TV)
semi-norm for regularization in a variational framework for image denoising.
Their approach not only had a significant impact in the area of image restoration,
but in the whole field of inverse problems. Since then, various modifications and
improvements have been contributed by the community. Several publications
have been devoted to the idea of adaptive TV regularization methods, where the
regularization varies locally depending on the noise level or the image content
[3,4,6,7]. Non-local TV models (e.g. [10]), which have proven as effective variants,
can also be regarded as adaptive methods, since they use image information to
locally determine the regularization weights. Another subclass of TV approaches
are the anisotropic or directional methods, where the regularization not only
depends on the location but also on the local orientation of the signal to be
reconstructed [1,8,12,18]. TV regularization has the major benefit that it allows
piecewise constant signals to be recovered. Recent works have shown that in
certain cases it might be beneficial to assume even higher regularity of the signal,
and thus introduced higher-order regularization schemes [2,9,11,13,15,17].

Contribution. We combine adaptive and second-order TV approaches into one
regularization framework. Such a combination has not been proposed up to now.
Our approach uses information on local image structures, in particular on edges
and slope discontinuities obtained from structure tensors applied to the image
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Fig. 1.Graph Γ = (x, y, u(x, y))� (yellow) of a continuous and piecewise affine function
u with a discontinuity in the gradient (interface between Ω1 and Ω2). The epigraph of
u is the volume above Γ , represented as the super-level set of F (x, y, z) = u(x, y)− z.
On the graph the gradient ∇F of F coincides with the surface normal of Γ .

and its epigraph. We demonstrate, that our approach can be applied to the
standard second-order TV regularization as well as to regularization with total
generalized variation (TGV) [2] and infimal convolution (IC) [17]. Moreover, we
propose a new anisotropic second-order TV model and show its advantages over
the isotropic models.

Paper Organization. In Sect. 2 we describe how the information on image
structures required to steer adaptive regularization is retrieved. In Sect. 3 we
consider adaptive second-order TV models. Experiments are provided in Sect. 4.

2 Detecting Discontinuities in Piecewise Affine Functions

In this section we provide an approach to extract information about the direction
and location of edges and the location of slope discontinuities from a given input
image. The first task is already addressed in literature. We rely on the standard
structure tensor and just briefly recall the required definitions. However, we will
see that this approach is not suitable for detecting slope discontinuities (sharp
bends, kinks). For this second task, we propose a new approach.

2.1 Edge Detection

In the following, we represent an image as a function u : Ω → R, Ω ⊂ R2.
For detecting edges in u we follow the standard approach and use the classical
structure tensor (cf. [5]) to identify regions with high gradient magnitude. To
this end, let

Su(x, y) := (∇uσ(x, y)∇uσ(x, y)	)ρ. (1)

be the standard structure tensor calculated on uσ, which is obtained from u by
convolution with a Gaussian kernel with variance σ2. Furthermore, (.)ρ denotes
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Fig. 2. Test images roof and cone hat for detecting slope discontinuities

a component-wise convolution of each entry with a Gaussian kernel with vari-
ance ρ2. We denote by λS1 (x, y), λ

S
2 (x, y) the eigenvalues of Su(x, y) ordered with

decreasing value, i.e. λS1 (x, y) ≥ λS2 (x, y). Moreover, we consider the eigenvector
vS to the eigenvalue λS1 . It is known that along edges in the image, λS1 takes large
values, whereas λS2 is almost zero. Thus, dS(x, y) := λS1 (x, y)−λS2 (x, y) indicates
the presence of edges. We define ES : Ω → [0, 1] as ES(x, y) := min{c dS(x, y), 1}
with some constant c > 0. In Sect. 3 we make use of the edge indicating function
ES together with the vector field vS .

2.2 Slope Discontinuities

The standard structure tensor as considered so far is sufficient to identify dis-
continuities (edges) in u. We now focus on regions where u is continuous but has
discontinuities in its first derivatives. In addition, we assume that u is piecewise
affine. This assumption is in view of our ansatz in Sect. 3 to determine u as
the solution of a second-order TV approach. For the sake of simplicity, let us
consider a prototypical function model with only one discontinuity, which lo-
cally represents a part of a larger image: we assume that Ω can be divided into
two segments Ωi, i = 1, 2 such that u is affine in each segment, i.e. u can be
represented as

u(x, y) =

{
r	1 ( xy ) + b1 if (x, y) ∈ Ω1,

r	2 ( xy ) + b2 if (x, y) ∈ Ω2,
(2)

for Ωi open, such that Ω1 ∩ Ω2 = ∅ and Ω1 ∪ Ω2 = Ω, and ri ∈ R2, bi ∈ R for
i = 1, 2. Fig. 1 illustrates such a prototypical function u.

The aim of this section is to derive a method to detect the case where r1 �= r2.
To this end, we consider the epigraph of u defined as the super-level set {(x, y, z) |
F (x, y, z) ≥ 0} of F (x, y, z) := u(x, y)− z. In order to detect (surface) edges of
the graph (i.e. locations, where the slope changes), we now apply the three-
dimensional structure tensor to F , i.e.

(
(∇F )(∇F )	

)
ρ
, where ∇F (x, y, z) =

(∂xu
2+ ∂2

yu+1)−
1
2 (∂xu, ∂yu,−1)	. Note that ∇F is constant in z. Since we are

only interested in edges of the graph Γ := {(x, y, z) | F (x, y, z) = 0} (i.e. slope
discontinuities), we restrict this structure tensor to Γ :

Tu(x, y) :=
(
(∇F̃ (x, y))(∇F̃ (x, y))	

)
ρ
, (3)
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where ∇F̃u(x, y) := ∇F (x, y, u(x, y))). We observe that ∇F̃u(x, y) is the normal
to the graph Γ at (x, y, u(x, y)).

Remark 1. The following two scenarios are of particular interest:

Within an Affine Region: For an affine function u, Tu(x, y) has exactly one
non-zero eigenvalue. This is due to the fact that in this case∇F̃u(x, y) is constant
and convolution of ∇F̃u∇F̃	

u does not change the rank.

Interface between Two Affine Regions of Different Slope: For such u,
Tu(x, y) sums up two different directions (r1,1, r1,2,−1) and (r2,1, r2,2,−1): re-
writing the convolution of the matrix entries as a weighted integral,

Tu(x, y) = (∇F̃u∇F̃	
u )ρ =

∫
Ω

w(x)∇F̃u∇F̃	
u dx

= w1

( r1,1
r1,2
−1

)
(r1,1, r1,2,−1) + w2

( r2,1
r2,2
−1

)
(r2,1, r2,2,−1)

(4)

with wi :=
∫
Ωi

w(x) dx, we observe that in (4) two rank-1 matrices are added up.

Each matrix has one non-zero eigenvalue wi·‖(ri,1, ri,2,−1)‖22 with corresponding
eigenvector vi = (ri,1, ri,2,−1). Since the eigenvectors are linear dependent only
if r1 = r2, Tu(x, y) has rank 2 near the discontinuity, where r1 �= r2.

In the following we denote by λTi (x, y), i = 1, 2, 3 the eigenvalues of Tu(x, y)
in decreasing order. As an indicator for the existence of slope discontinuities
we propose to use λT2 (x). This is motivated by the fact that, similar to the
standard structure tensor in 2D, Tu(x, y) reveals two eigenvalues significantly
larger that 0 at edges of the graph, while in regions of constant slope the second
eigenvalue becomes 0. Therefore the magnitude of the second eigenvalue can be
used to distinguish between both cases. We propose ET : Ω → [0, 1], ET (x) :=
min(cλT2 (x), 1) with some constant c > 0 as an indicator for regions of slope
discontinuities. In order to be less sensitive to edges, which are already covered by
the standard structure tensor, we use an upwind scheme to compute the gradient
in (3). In practice, it is advisable to use the pre-smoothed uσ (cf. Sect. 2.1)
instead of u to be robust against noise.

To demonstrate the benefits of using ET to detect slope discontinuities, we
compare our approach to one approach based on the standard structure tensor
and one based on curvature, see Fig. 3. We observe that our approach detects
slope discontinuities more reliably than the competitive methods.

3 Adaptive Second-Order Total Variation

In the following we discuss three state-of-the-art approaches for second-order to-
tal variation (TV) regularization. First, we focus on the straightforward approach
of combining two TV semi-norms of first and second order [12,15]. We gener-
alize this approach to allow for anisotropic regularization with locally adaptive
strength. In addition, we consider two alternative approaches – infimal convolu-
tion (IC) [17] and total generalized variation (TGV) [2] – and propose a spatially
adaptive choice of the regularization parameters.
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(a) (b) (c) (d)

Fig. 3. Detecting slope discontinuities using the standard structure tensor (b), a cur-
vature based approach (c), and the proposed method (d) in the test images depicted in
Fig. 2 (black=0, white=1). In both cases the standard structure tensor fails to detect
the slope discontinuities as shown in the ideal result (a) (middle line in the first image,
ring and center point in the second image). Only the proposed approach detects the
slope discontinuity in the first test image (top row). On the second test image (bottom
row), the proposed approach provides a less noisy and more precise result than the
curvature based approach.

3.1 Proposed Approach

Let BV 2(Ω) (Ω open, bounded, with Lipschitz boundary) be the space of func-
tions with bounded first and second-order TV, i.e. u ∈ BV 2(Ω) iff u ∈ L1(Ω) and

TV l(u) := sup

{∫
Ω

u divl ϕ dx | ϕ ∈ C∞
c (Ω,R2l), ∀x ∈ Ω : ‖ϕ(x)‖2 ≤ 1

}
, (5)

is finite for l = 1, 2. Here, div1 is the divergence operator and div2 ϕ := ∂xxϕ1 +
∂yxϕ2 + ∂xyϕ3 + ∂yyϕ4, where ϕ = (ϕ1, ϕ2, ϕ3, ϕ4)

	. Note that for u ∈ BV 2(Ω)
we have ∂xu, ∂yu ∈ L1(Ω). For details on BV 2(Ω) we refer to [16, Chapter 9.8].
A standard denoising approach with first and second-order TV regularization
consists in minimizing the functional

FTV 2(u) := 1
2‖u− f‖2L2 + αTV (u) + β TV 2(u) (6)

for given data f ∈ L2(Ω) and regularization parameters α, β > 0. We generalize
this approach in two ways. Firstly, we allow α, β to vary depending on the
location, i.e., α, β : Ω → R+. Secondly, we allow anisotropic, i.e. directionally
dependent regularization. To this end, we consider the optimization problem

F(u) := 1
2‖u− f‖2L2 +R1(u) +R2(u) (7)

with two regularization termsR1(u) andR2(u) defined as follows. For first-order
TV, we use anisotropic TV regularization (cf. [7]) given as

R1(u) :=

∫
Ω

(
∇u	(x)A(x)∇u(x)

) 1
2 dx, (8)
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for some matrix-valued mapping A : Ω → R2×2
sym, where A(x) is symmetric and

positive semi-definite at every x. Every such matrix A(x) can be written as

A(x) = (v(x), v⊥(x))
(
α1(x) 0

0 α2(x)

)
(v(x), v⊥(x))	 with some vector field v(x),

‖v(x)‖2 = 1. We observe that (8) leads to an anisotropic regularization with
strength α1(x) in direction of v(x) and α2(x) in direction of v⊥(x).

For adaptive second-order TV regularization we propose a new approach,
which we motivate by the smooth case u ∈ C2(Ω) : for arbitrary ϕ ∈ C∞

c (Ω,R4)
we have ∫

Ω

(div2 ϕ)u dx =

∫
Ω

〈ϕ,∇2u〉 dx, (9)

where ∇2u := (∂xxu, ∂xyu, ∂yxu, ∂yyu)
	. For a given normalized vector field

v(x) = (v1(x), v2(x))
	 ∈ R2, ‖v(x)‖2 = 1, we represent ϕ as ϕ = t1w1 + t2w2 +

s1w3+s2w4, where t, s ∈ R2 and w1 := (v1, v2, 0, 0)
	, w2 := (0, 0, v1, v2)

	, w3 :=
(v⊥1 , v

⊥
2 , 0, 0) and w4 := (0, 0, v⊥1 , v

⊥
2 ). Note that {wi}i form an orthonormal basis

of R4. Then, standard calculus shows

〈ϕ,∇2u〉 = t	(Hu)v + s	(Hu)(v⊥) for Hu :=
(
∂xxu ∂xyu
∂yxu ∂yyu

)
. (10)

Now we calculate β1‖(Hu)v‖2 + β2‖(Hu)v⊥‖2 for some weighting constants
β1, β2 > 0. To this end, we take in (10) the supremum over t ∈ Bβ1(0) and
s ∈ Bβ2(0), where Br(0) denotes the ball centered at 0 with radius r, and derive

sup
t∈Bβ1

(0),s∈Bβ2
(0)

ϕ(∇2u) = β1‖(Hu)v‖2 + β2‖(Hu)v⊥‖2. (11)

Thus, we obtain in (11) the absolute values of the second order derivative of u in
direction of v weighted by β1 and in perpendicular direction weighted by β2. The
above considerations motivate the following definition for arbitrary u ∈ L1(Ω):

R2(u) := sup
{∫

Ω

(div2 ϕ)u dx | ϕ ∈ C
}
, with (12)

C := {C∞
C (Ω;R4), ∀x ∈ Ω : 〈ϕ(x), w1(x)〉2 + 〈ϕ(x), w2(x)〉2 ≤ (β1(x))

2, (13)

〈ϕ(x), w3(x)〉2 + 〈ϕ(x), w4(x)〉2 ≤ (β2(x))
2},

Existence Theory
We now show the existence of a unique minimizer of (7), where R1(u) andR2(u)
are given by (8) and (12), respectively.

Proposition 1. Assume that for every x ∈ Ω the eigenvalues λi(x) of A(x)
are uniformly bounded by 0 < c1 ≤ λi(x) ≤ c2 < ∞. Moreover, assume that
‖v(x)‖2 = 1 and that βi(x), i = 1, 2 are bounded by 0 < c3 ≤ βi(x) ≤ c4 < ∞.
Then functional (7) attains a unique minimizer in L2(Ω) ∩BV 2(Ω).

The proof of Prop. 1 utilizes the following two lemmas:



Adaptive Second-Order Total Variation 67

Lemma 1. Under the assumptions of Prop. 1 we have

c1 TV(u) ≤ R1(u) ≤ c2TV (u), c3 TV
2(u) ≤ R2(u) ≤

√
2c4TV

2(u). (14)

Proof. The first claim follows, since c1‖v‖2 ≤
√
v	Av ≤ c2‖v‖2 for any v ∈ R2.

To show the inequalities for R2, we note that cTV 2(u) = sup{
∫
Ω(div

2 ϕ)u dx |
ϕ ∈ C(c)} with C(c) := {ϕ ∈ C∞

C (Ω,R4) | ‖ϕ(x)‖2 ≤ c}. Since {wi}i is an
orthonormal basis of R4 and the set C in (12) includes C(c3), the first inequality
follows. Moreover, C is included in C(

√
2c4), providing the second inequality. �

Lemma 2 (Weakly-∗-semi-continuity). Let uk ∈ BV 2(Ω) be weakly-∗-con-
verging to u∗, i.e. ‖uk − u∗‖L1 → 0, ‖∂xiu

k − ∂xiu
∗‖L1 → 0, i = 1, 2, and

supk TV
2(uk) <∞. Then, again under the assumptions of Prop. 1, we have

R1(u
∗) ≤ lim inf

k→+∞
R1(u

k) and R2(u
∗) ≤ lim inf

k→+∞
R2(u

k). (15)

Proof. Semi-continuity of R1(u
k): note thatR1(u

k) ≤ c2‖∇uk‖L1 <∞. Since
‖∇uk −∇u∗‖L1 → 0, there exists a subsequence ∇ukl converging pointwise al-

most everywhere to ∇u∗. From the continuity of the mapping v �→
(
v	Av

) 1
2 it

follows that
(
(∇ukl)	A∇ukl

) 1
2 (x) →

(
(∇u∗)	A∇u∗

) 1
2 (x) almost everywhere.

Since any converging subsequence of ∇uk converges to ∇u∗ (Lebesgue thm.),

we find lim infk→+∞
(
(∇uk)	A∇uk

) 1
2 (x) =

(
(∇u∗)	A∇u∗

) 1
2 (x) almost every-

where. The claim then follows from Fatou’s Lemma.

Semi-continuity of R2(u
k): For ϕ ∈ C we have∫

Ω

(div2 ϕ)u∗ dx = −
∫
Ω

(∂xϕ1 + ∂yϕ2)∂xu
∗ + (∂xϕ3 + ∂yϕ4)∂yu

∗ dx (16)

= − lim
k→+∞

∫
Ω

(∂xϕ1 + ∂yϕ2)∂xu
k + (∂xϕ3 + ∂yϕ4)∂yu

k dx (17)

= lim
k→+∞

∫
Ω

(div2 ϕ)uk dx ≤ lim inf
k→+∞

R2(u
k). (18)

Thus

R2(u
∗) = sup

{∫
Ω

(div2 ϕ)u∗ dx | ϕ ∈ C
}
≤ lim inf

k→+∞
R2(u

k). (19)

�

Proof (of Prop. 1).
Since F(u) is bounded from below, we have Finf := infu∈BV 2(Ω) F(u) > −∞.

We consider a minimizing sequence {uk}k, F(uk) → Finf . Due to Lemma 1,
F(u) is finite on BV 2(Ω), thus supk F(uk) ≤ C < +∞ for some C > 0. We
show that {uk}k is bounded in L2(Ω) ∩ BV 2(Ω) due to coercivity of F : from
C ≥ F(uk) ≥ 1

2‖uk − f‖2L2 it follows that {uk}k is bounded in ‖ · ‖L2 and, since
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Fig. 4. Test images used in the comparison in Table 1

Ω is bounded, also in ‖·‖L1; C ≥ F(uk) ≥ Rl(uk) and Lemma 1 provide that the
minimizing sequence is bounded in TV l(·), l = 1, 2. From boundedness follows by
Theorem 9.83 in [16] that a weakly-∗-converging subsequence in L2(Ω)∩BV 2(Ω)
with some limit u∗ exists. We denote the subsequence also by {uk}k. We have
1
2‖uk−f‖2L2 → 1

2‖u∗−f‖2L2, and due to Lemma 2,Rl(u∗) ≤ lim infk→+∞Rl(uk),
l = 1, 2. Thus F(u∗) ≤ lim infk→+∞ F(uk) = Finf , i.e. u

∗ is a minimizer of F(u).
Uniqueness follows from the strict convexity of F(u). �

Choice of Regularization Parameters
It remains to choose appropriate regularization parameters αi(x), βi(x), i = 1, 2,
and directions v(x). For the vector field v(x) we choose vS(x) as defined in
Sect. 2.1. Recall that vS(x) provides a smoothed version of the image gradient,
which at edges coincides with the edge normals. To avoid a loss of contrast at
edges and over-smoothing at slope discontinuities, we reduce αi and βi at edges
and slope discontinuities using the indicator function E(x) := max(ES(x), ET (x))
based on structure tensors Sf , and Tf applied to data f . We propose

α1(x) := E(x)α + (1 − E(x))α, α2(x) := α,

β1(x) := E(x)β + (1− E(x))β, β2(x) := β,
(20)

with four free parameters α, α, β, β > 0 to be chosen appropriately. We propose
a weak smoothing at edges and slope discontinuities with small α, β. These
parameters can be chosen fairly independent from the image content or noise
level. Similar to other second-order TV approaches, it remains to choose two
appropriate values for α, β depending mainly on the noise level of the image.

3.2 Remarks on Alternative Approaches

Regarding second-order approaches based on total generalized variation (TGV)
[2] and infimal convolution (IC) [17], which both require two regularization pa-
rameters α, β, we observe that both approaches can be extended to be spatially
adaptive by locally varying these parameters. We propose to choose

α(x) := E(x)α + (1− E(x))α, β(x) := E(x)β + (1− E(x))β, (21)

with suitable α, α, β, β and E : Ω → [0, 1] as defined in Sect. 3.1.
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Table 1. Mean squared errors (MSE) to the noise-free image for the different methods.
For each method, the approximate optimal parameters were retrieve by grid search. In-
dependent of the model, introducing adaptivity always improves the error. The results
of the proposed anisotropic method show the lowest reconstruction error.

Example Roof Train (part) Lena Peppers

2nd order TV with std. struct. tensor 4.6946e-4 2.4249e-4 1.0703e-4 1.8858e-4
TGV 0.8857e-4 2.3644e-4 0.9362e-4 1.3883e-4
Adaptive TGV 0.8703e-4 2.3364e-4 0.8985e-4 1.3258e-4
IC 1.0405e-4 2.3968e-4 0.9519e-4 1.3822e-4
Adaptive IC 0.9861e-4 2.3693e-4 0.9205e-4 1.3589e-4
Proposed method 0.5703e-4 2.2560e-4 0.8749e-4 1.2997e-4

4 Experiments

In this section we perform a quantitative comparison of the total generalized
variation (TGV) approach, infimal convolution (IC), their adaptive counterparts
as proposed in Sect. 3.2, and the proposed anisotropic second-order TV model
(Sect. 3.1)1. For TGV and IC we use the original codes, which were kindly pro-
vided by the authors of [2,17]. In addition, we consider an anisotropic second-
order TV, where the adaptivity is determined only by the standard structure
tensor, i.e. E(x) = ES(x). As test images we use the image roof, cf. Fig. 2,
left, a part of the train image from [2] and the Lena and peppers image, adding
5% zero mean Gaussian noise, cf. Fig. 4. For each image, the approximate op-
timal parameters for each method (α,β,α,β) were determined via a grid search
minimizing the mean squared error (MSE) to the noise-free image. While other
error norms are also applicable, we have chosen the MSE as it is the most
commonly used. Table 1 shows the errors for each method. We observe that
by introducing adaptivity, we are able to decrease the error compared to the
non-adaptive methods. The proposed method achieves the smallest error across
all instances, showing the advantage of introducing anisotropic regularization.
Moreover, it becomes clear that using solely the standard structure tensor to
steer the anisotropy does not suffice, justifying our approach of also taking slope
discontinuities into account. Figs. 5 and 6 depict the results of the methods on
the roof and train images. For the latter, we observe that the results still con-
tain some amount of the original noise. It seems that minimizing the MSE by
grid search favors such residual noise rather than to strongly smooth the results.
Since human users generally prefer a stronger smoothing, we provide in Fig. 7
results with manually adapted parameters for TGV and the proposed methods
(due to space constraints, we omit IC here). The increased smoothing removes
some image structures, as can be seen in the difference images. The proposed
method preserves edges better than the competitive approaches.

1 Computational speed: 17 sec for a MATLAB implementation on an 256x256 image
using an Intel i7-2600K CPU 3.40GHz processor.
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(a) Noisy image (b) Std. second order TV

(c) TGV (d) Adaptive TGV

(e) IC (f) Adaptive IC

(g) Proposed

Fig. 5. Cross-section of the results (black lines) of TGV, IC, their adaptive variants
and the proposed method on the roof image and detailed views of the peak and the
left step. The noise-free data is shown in gray. We remark that standard second-order
TV (b), cf. (6), significantly flattens the peak. All considered approaches avoid such a
flattening to varying degrees. The TGV variants provide the sharpest reconstruction
of the peak. The proposed approach provides a sharp reconstruction of both kinks.
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(a) Noisy data (b) TGV (c) Adaptive TGV

(d) IC (e) Adaptive IC (f) proposed

Fig. 6. Results of the tested methods on the train image. For each method the param-
eters were selected by a grid search minimizing the mean squared error (MSE). As a
consequence, all methods preserve some noise. Visually, the results are very similar.

(a) TGV (b) Adaptive TGV (c) proposed

Fig. 7. Denoising results using manually chosen parameters (top row) and difference
image to noisy data (bottom row). TGV shows a strong smoothing effect, with the
drawback, that also edges become smoother. Adaptive methods preserve edge struc-
tures better, as can be seen from the weaker edges in the difference images. In textured
regions, all methods partly remove the texture. The proposed method shows the small-
est amount of structures in the difference image.
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5 Conclusion and Future Work

We proposed a way to modify state-of-the-art second-order TV models by in-
troducing spatial adaptivity. Moreover, we introduced a new anisotropic second-
order TV model. Experiments show that the modifications lead to an improved
reconstruction performance. Since all considered methods exhibit over-smoothing
in textured regions, future work will focus on how adaptive approaches can be
improved by including texture information. New insight into this problem could
also possibly close the conceptual gap to non-local regularization approaches.
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Abstract. Motion deblurring problems are considered, however, as ad-
ditional difficulty we consider that the motion occurs in front of a still
background. First we propose a model for the formation of this kind of
partly blurred images which involve four unknown quantities: The object,
the background, the blur kernel and a mask that encodes the shape of
the object. Then we propose variational methods to solve the deblurring
problem. We show that the method performs well if three of the sought-
after quantities are known. Finally we show that the method even works
for real world examples as soon as the user makes a crude selection of
the blurred region in the image.

1 Introduction

Deblurring is one of the most fundamental basic problems in image processing
since blurring occurs naturally in many imaging systems. Blur may occur due to
various reasons, e.g. wrong focus of the imaging system, failures of the imaging
system or due to motion of the camera or the object (cf. [1, Chapter 5]). Here we
are going to focus on the following case which has not received much attention:
The image consists of blurred objects in front of a sharp background and the
blur of the object is due to motion during exposure time.

(a) (b)

Fig. 1. Examples of motion blur in front of still background. (a) An artifi-
cially generated image. (b) A real-world example (Fort Washington Way@ Flickr,
http://www.flickr.com/photos/27745117@N00/2666006951/).
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There is a huge literature about deblurring, see, e.g., [2] and the references
therein. Typically, blur is modeled as a convolution of the image with a blur
kernel h and hence, deblurring is also known as deconvolution. The instance in
which the blur kernel h is not known, but which is still modeled as a convolution
is known as blind deconvolution and we refer to [3] for a fairly recent introduc-
tion. For the model of motion deblurring in front of a still background we are
only aware of two other works: The work [4] proposes a variational method and
is based on two images from a motion blurred video. It utilizes optical flow tech-
niques and assumes only linear movement of the object. The work [5] uses just a
single image but estimates the motion blur kernel from parts of the image where
the blurred object boundary is in front of a uniform background. In this work
we tackle the more difficult problem where we only assume that one image is
available. Moreover, we do not make special assumptions on the blurring process
(e.g. it is not limited to a linear motion) and propose a variational method to
approximate the blur kernel, the object and the background from just one single
image.

2 Modeling

If a rigid object moves in front of a still background during exposure time, the ob-
ject occupies different parts of the background at different times. At the points
where the object occludes the background only for a fraction of the exposure
time, the background “shines through” the object. We model this kind of trans-
parency by a binary mask which moves along with the object. The whole image
model is as follows: We consider a domain Ω ⊂ R2 and a background image
uB : Ω → R. The object image u0 is also modeled as a function on Ω, however,
its contours are modeled by a binary mask α : Ω → {0, 1} where α(x) = 1
means, that x is an object pixel and α(x) = 0 means that the pixel does not
belong to the object. Moreover, the motion blur is given by γ : [0, 1]→ Ω (where
we normalized the exposure time to 1), i.e., the object u0 at time t ∈ [0, 1] is
u0(x− γ(t)). The observed image u obtained from the object u0 (with mask α),
blurred by movement along γ in front of the still background uB is

u(x) =

∫ 1

0

α(x − γ(t))u0(x− γ(t)) + (1− α(x − γ(t)))uB(x)dt

In fact, we will model the movement γ by a convolution kernel h, rendering the
image formation model as

u = (αu0) ∗ h+ (1− α ∗ h)uB. (1)

Our goal is, to extract from a given image u the object image u0 along with its
mask α, the background image uB and the blur kernel h. This problem is highly
under-determined as there are several trivial solutions which are not of interest:
for example we could set u0 = u, α = 1, h = δ and uB arbitrary (i.e. we take
the image u as object, and no movement) or similarly uB = u, α = 0 and h and
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u0 arbitrary (i.e. we take the image u as background). To overcome this under-
determination and also the ill-posedness we employ variational regularization in
the following.

Note that the forward model is non-linear in the tuple of sought-after quan-
tities (α, h, u0, uB), but linear in each unknown individually.

The variational approach we propose consists of a quadratic discrepancy term

1
2‖(αu0) ∗ h− (α ∗ h)uB + uB − u‖2 (2)

which will be augmented by regularization terms for the sought-after variables. In
the next section we treat each sought after quantity individually and motivate
the variational models which we propose. The minimization of the respective
functional can be done by standard methods (by the primal-dual method from [6]
for the object u0 and the mask α, by projected gradient descent [7] for the
blur kernel h and directly for the background uB). In Section 4 we tackle the
problem of simultaneous reconstruction of all quantities by carefully choosing
initializations and alternating minimization.

3 Separate Reconstruction

We start to tackle the problem of reconstructing α, h, u0 and uB by investigating
how one can reconstruct a single one of these components when the others are
assumed to be known. We illustrate the methods with an artificially generated
image (cf. Figure 1 (a)). The background consists of a corner of a soccer field of
size 305× 600 pixels (Figure 2 (b)), the object is a football of size 75× 75 pixels
(Figure 2 (c)), the contour of the corresponding mask in depicted Figure 2 (a).
The blur kernel represents a severe motion blur of approximately 60 pixels length,
see Figure 2. As a matter of fact, it is an easy task to generate a crude initial
guess for the mask α of the object by hand from the given image u (Figure 2 (a))
by just marking the blurred region. We are going to use such an initial guess in
the following, which is depicted in Figure 2 (a).

3.1 Reconstruction of the Object

The object is assumed to be contained in the region specified by the mask α. In
that region we impose regularity by a total variation penalty [8], i.e. we penalize
u0 with μ0

∫
Ω α|∇u0|. Moreover, we explicitly enforce bound constraints on u0

to avoid over and undershoots. This leads to the minimization problem

min
0≤u0≤1

1
2‖(αu0) ∗ h− (α ∗ h)uB + uB − u‖2 + μ0

∫
Ω

α|∇u0| (3)

Since u0 enters the first norm linearly, this is almost a standard TV -denoising
problem [9] (apart from the bound constraints and the weighted TV -seminorm).
It can be tackled, e.g., by the primal-dual approach described in [6] as follows:
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(a) (b)

(c) (d)

Fig. 2. Data for the artificial example. (a) Image u with blurred object, contour of the
object (black) and contour of the user-generated crude guess of the mask (white). (b)
Background uB. (c) Object u0. (d) Blur kernel h.

We define a linear operator A by Au0 = (αu0)∗h and set Ku0 =
[
∇u0, Au0

]T
.

With

F (v, w) = μ0

∫
Ω

α|v| + 1

2

∫
Ω

|w − (α ∗ h)uB + uB − u|2

G(u0) =

{
0 0 ≤ u0 ≤ 1

∞ else

the problem (3) reads as minu0 F (Ku0) + G(u0). To employ the primal-dual
method we denote F (v, w) = Fv(v) + Fw(w) with Fv(v) = μ0

∫
Ω
α|v| and

Fw(w) = 1
2

∫
Ω
|w − (α ∗ h)uB + uB − u|2 and calculate the proximal map-

pings for G and the conjugates Fv
∗(v∗) = 0 (if |v∗| ≤ μ0α), = ∞ (else) and

Fw
∗(w∗) =

∫
Ω

1
2 (w

∗)2 + w∗((α ∗ h)uB + uB − u) as follows:

proxσG(u0) = (Id+σ∂G)−1(u0) = min(max(u0, 0), 1)

proxτFv
∗(v) = (Id+τ∂Fv

∗)−1(v) = min(|v|, αμ0)
v

|v|

proxτFw
∗(w) = (Id+τ∂Fw

∗)−1(w) =
w − τ((α ∗ h)uB − uB + u)

1 + τ

The primal-dual method with primal extra-gradient then reads as

vn+1 = proxτFv
∗(vn + τ∇u0n)

wn+1 = proxτFw
∗(wn + τAu0

n)

un+1
0 = proxσG(u

n
0 − σ(−∇ · vn+1 +A∗wn+1))

u0
n+1 = 2un+1

0 − un0

which converges under the condition that τσ‖K‖2 ≤ 1.
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If all quantities, except u0, were known, one could set μ0 = 0 and minimize
explicitly using the Fourier transform, see Figure 3 (a). However, if, e.g., the mask
α is only known approximately, e.g. the user generated mask α from Figure 2
(a), one needs the regularization term to obtain meaningful results. In this case
we also assumed the background image to be unknown and extracted it from
the given image u by the approximate mask, i.e. we used uB = u (1− α) (while
the blur kernel h was known), see Figure 3 for the result.

(a) (b)

Fig. 3. Reconstruction of the object. (a) Object reconstructed from exactly known uB,
h and α by solving (3) with μ0 = 0. (b) Object reconstructed from a user-generated
mask α and estimated background image uB = u (1− α) with μ0 = 10−2.

3.2 Reconstruction of the Background

The reconstruction of the background is probably the easiest part if we do not
aim to reconstruct parts which are occluded by the moving object at all times
(a problem which could, in principle, be tackled by inpainting methods which
we do not address here). The quadratic discrepancy (2) can be minimized with
respect to uB explicitly and easily by

uB =
u− (αuo) ∗ h

1− α ∗ h

if the denominator is not zero. To ensure this, we add a quadratic regularization
term λB

2 ‖uB‖22 with a small parameter λB > 0 and obtain

uB =
u− (αu0) ∗ h
1− α ∗ h+ λB

. (4)

where positivity of the denominator is ensured since α ∈ {0, 1} and h ≥ 0. The
results can be seen in Figure 4 (a). The results do not depend crucially on the
initial guess of the mask, as can be seen in Figure 4 (b).

3.3 Reconstruction of the Mask

The solution for the mask α is clearly of the type of a segmentation problem.
To approximate the binary mask α : Ω → {0, 1} we propose to relax the problem
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(a) (b)

Fig. 4. Reconstruction of the background. (a) Reconstructed background from exact
u0, h and α (note that the reconstruction is also accurate at the positions where the
background has been mostly occluded). (b) Reconstructed background from exactly
known u0 and h but a user-generated mask (see Figure 2 (a)) with λB = 10−8.

to a phase-field function φ : Ω → [0, 1]. In the spirit of [10] we propose the
variational approach for the calculation of φ (given the other quantities) as

min
0≤φ≤1

1

2

∫
Ω

|(φu0)∗h− (φ∗h)uB+uB−u|2+λφ

∫
Ω

|∇φ|+μφ

∫
Ω

φ(1−φ). (5)

The regularization term λφ
∫
Ω
|∇φ| is a regularity constraint for the boundary

of the mask (and in the case of a characteristic function φ it is the perimeter of
the support). The second term μφ

∫
Ω φ(1 − φ) is a term which forces the values

of φ towards the bounds 0 and 1. Note that this term is not convex but together
with the bounds 0 ≤ φ ≤ 1 the existence of a minimizer is still ensured by
standard arguments. The model bears similarities with phase field models which
involve double-well potentials

∫
φ2(1 − φ)2 (cf. [10]), however, in this form the

minimizers are guaranteed to respect the bounds 0 and 1 and tend to be binary
faster than for the double-well potential.

Although the problem is not convex, we can still tackle it by the primal-dual
approach already described in Section 3.1: We define a linear operator A by

Aφ = (φu0) ∗ h− (φ ∗ h)uB and set Kφ =
[
∇φ, Aφ

]T
. With

F (v, w) = λφ

∫
Ω

|v|+1

2

∫
Ω

|w+uB−u|2, G(φ) =

{
μφ

∫
Ω
φ(1 − φ) 0 ≤ φ ≤ 1

∞ else

the problem (5) reads as
min
φ

F (Kφ) +G(φ).

To employ the primal-dual method we denote F (v, w) = Fv(v) + Fw(w) with
Fv(v) = λφ

∫
Ω
|v| and Fw(w) =

1
2

∫
Ω
|w + uB − u|2 and calculate the proximal

mappings for G and the conjugates Fv
∗ and Fw

∗ (cf. Section 3.1) as follows:

proxσG(φ) = (Id+σ∂G)−1(φ) = max(min(
φ−μφσ
1−2μφσ

, 1), 0)

proxτFv
∗(v) = (Id+τ∂Fv

∗)−1(v) = min(|v|, λφ)
v

|v|

proxτFw
∗(w) = (Id+τ∂Fw

∗)−1(w) =
w + τ(uB − u)

1 + τ
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The primal-dual method with primal extra-gradient then reads as

vn+1 = proxτFv
∗(vn + τ∇φ̄n)

wn+1 = proxτFw
∗(wn + τAφ̄n)

φn+1 = proxσG(φ
n − σ(−∇ · vn+1 +A∗wn+1))

φ̄n+1 = 2φn+1 − φn

.

The convergence can not be ensured by the existing theory (due to non-convexity
of the problem), however, for small σ (especially smaller than (2μφ)

−1) conver-
gence is still observed in practice. This may be due to the fact that proxσG is
Lipschitz continuous with constant (1− 2μφσ) which is only slightly larger than
one (for small σ or small μφ). Put differently: The non-convexity of the penalty
may be so mild that it does not matter practically. The result of the minimiza-
tion can be seen in Figure 5. Note that we did not use any prior knowledge on the
mask or the location of the object as we initialized the mask with zero. However,
the result closely resembles the original contour (and the obtained phase field
function was in fact a binary function).

(a) (b)

Fig. 5. (a) Reconstruction of the mask by solving (5) with λφ = 0.02 and μ = 0.01. The
mask has been initiated as φ0 ≡ 0. (b) Overlay of the reconstructed contour (white)
and the original contour (black) over the given image.

3.4 Reconstruction of the Kernel

Our main assumption for the reconstruction of the blur kernel h is sparsity of h
which suggests to use an �1 penalty. However, since a pure sparsity constraint
may lead to overly sparse kernels, one may think of an elastic-net penalty [11],
i.e. a penalty of the form λh‖h‖1 + μh‖h‖22. But there are further assumptions
on the convolution kernel which suggest to use a different approach: First the
convolution kernel is assumed to be non-negative and second, we assume that it
sums to 1 (i.e. the convolution with h does not change to total intensity). The
first assumption is enforced directly by a bound constraint h ≥ 0 and the second
can be enforced by a constraint

∫
h = 1. Note that the last constraint does

also enforce sparsity of the kernel, since it is a natural generalization of an �1-
penalty ‖h‖1 ≤ 1 to non-negative kernels. The combination of the non-negativity
with the normalization of the one-norm has several advances: First, we can pass
from a “one-norm-ball”-constraint to the direct normalization ‖h‖1 = 1 since,



Variational Methods for Motion Deblurring with Still Background 81

in combination with the non-negativity, the resulting constraint set is convex.
Second, the normalization of the one-norm of the kernel partly resolves the
“scaling ambiguity” of bilinear problems like this one of “blind deconvolution
type”. Similar assumptions have been made previously however, in contrast to
e.g. [12,13], where these constraints are imposed implicitly in the algorithm, we
enforce the constraints directly in the minimization problem and the algorithm
we propose is guaranteed to converge to a global minimizer of the constraint
optimization problem.

To summarize, we approximate the kernel by solving

min
h≥0

1
2‖(αu0) ∗ h− (α ∗ h)uB + uB − u‖2 + μh

2 ‖h‖
2
2 s.t.

∫
h = 1. (6)

In fact, this problem can be reformulated as a standard quadratic program with
linear constraints: With the operator

Ah =

[
(αu0) ∗ h− (α ∗ h)uB√

μhh

]
the problem (6) reads as

min
h

1
2‖Ah−

[
u− uB

0

]
‖22 s.t.

∫
h = 1, h ≥ 0. (7)

The constraints on h form (after discretization) the standard simplex on which
one can efficiently project (cf. [14]). Hence, we solve for h by a projected gradient
method with Barzilai-Borwein step-sizes (cf. [7]). For known data u0, uB and α,
almost no regularization is needed, i.e. μh can be very small, see Figure 6 (b).
In Figure 6 (c) we show the result if we do not assume exact knowledge of the
other quantities but use the user-generated mask α (same as in Figure 3 (c))
and uB = u (1− α) as estimate for the background image.

If there is an initial guess h̃ for the kernel available (which is reasonable for
simple examples of motion blur), we could also use the penalty μh/2‖h− h̃‖22
which changes the data fit term in (7) into 1

2‖Ah−
[
u− uB√
μhh̃

]
‖22.

4 Joint Reconstruction

In conclusion of the previous findings, we propose to minimize the following cost
functional to solve the motion deblurring problem in front of a still background:

1
2‖(φu0) ∗ h− (φ ∗ h)uB + uB − u‖2

+ μ0

∫
Ω

φ|∇u0|+
λB
2
‖uB‖22 + λφ

∫
Ω

|∇φ|+ μφ

∫
Ω

φ(1 − φ) +
μh
2
‖h‖22

s.t. 0 ≤ u0 ≤ 1, 0 ≤ φ ≤ 1, h ≥ 0,

∫
h = 1.

(8)
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(a) (b)

(c)

Fig. 6. Reconstruction of the kernel by solving (7). The kernel has been initiated as
h0 = δ. (a) Original kernel. (b) Reconstructed kernel with exactly known data with
λh = 10−8and μh = 10−10. (c) Reconstructed kernel with user generated mask α and
estimated background uB = u (1− α) with λh = 5 · 10−6and μh = 5 · 10−6.

To reconstruct all quantities from just the given image u we propose alternating
minimization with respect to the four involved variables u0, uB, h and α by the
methods described in the previous sections. Due to numerous local minimizers
which are not meaningful (cf. Section 2) careful initial guesses for at least three
quantities are needed.

A widely used initial guess for the blur kernel h in the context of motion
deblurring is the delta peak (i.e. no blurring is assumed) which is usually not
very far from the true kernel. For the background image uB we may take the
given image u, which is in fact correct on a large part of the image domain. If
we would now choose to initialize the object also by the given image, we would
not get a meaningful estimate for the mask of the object, since any mask would
lead to a global minimizer of the cost functional (8). Hence, we propose to use a
user-generated initial guess for the mask α, i.e. the user extracts an approximate
mask from the given image manually by selecting the blurred regions. A task
which easily accomplished for images as the ones considered here. With this user
generated mask α, we can improve the initial guess of the background uB by
using u · (1 − α) (and similarly we could use u · α as an initial guess for the
object).

Once approximations for uB, h and α are available we enter the following
loop:

1. Solve for a new object u0, as described in Section 3.1.

2. Solve for a new background uB, as described in Section 3.2.

3. Solve for a new mask α, as described in Section 3.3.

4. Solve for a new blur kernel h, as described in Section 3.4, and iterate.
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The outcome of just one and a half iteration of this loop (i.e. stopped after step
2 has been executed for the second time) performed on a real world example
in shown in Figure 7. The size of the image is 239 × 365 pixel and the used
parameters are μφ = 0.1;, λφ = 1, λB = 5 · 10−4, μh = 103, and μ0 = 10−2. The
method identifies a meaningful blur kernel and the sharpening of the object is
satisfactory. On the downside, the reconstructed mask did not adapt properly
to the object boundaries.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 7. Deblurring of a real world example. (a) Input image u. (b) Overlayed back-
ground and deblurred object. (c) Initial guess for the object. (d) Deblurred object u0.
(e) Initial guess for the background. (f) Reconstructed background uB. (g) Initial guess
for the blur kernel. (h) Reconstructed blur kernel h.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 8. Deblurring of a real world example. (a) Input image u. (b) Overlayed back-
ground and deblurred object. (c) Deblurred object u0. (d) Reconstructed background
uB . (e) Reconstructed mask α. (f) Reconstructed blur kernel h.

Finally we note that the problem deblurring of a blurred object (by out of
focus blur) in front a sharp background can be handled by exactly the same
approach. A real world example of a small felt Santa Claus figurine in front of a
house is shown in Figure 8. Again, a crude estimate of the mask was generated
by hand and then four iterations of the loop has been performed. The image
size is 600× 427 pixels and the used parameters are μφ = 5 · 10−2, λφ = 10−1,
λB = 5 · 10−8, μh = 105, and μ0 = 10−2. The blur kernel was initiated with
a fairly out-of-focus kernel, however, the reconstructed kernel does not have a
specific “out-of-focus” shape. The reconstructed object is again acceptable and
again the reconstructed mask only differs slightly from the initial guess. Note,
that the background image is been partly cleared from the occlusion of the
blurred object (e.g. on the middle right boundary of the object). It should be
noted that this example is fairly difficult due to the low contrast within the
object which makes deblurring harder.

5 Conclusion

A variational method for deblurring of objects in front of a still background
has been proposed. The proposed model for image formation was shown to be
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accurate and a proof of concept for deblurring has been given. For the minimiza-
tion, an algorithm for bound constrained and weighted TV -deblurring has been
developed. Moreover, the primal-dual method for a slightly non-convex problem
has been used and it was observed that it converged nicely (which gives rise to
further studies of this subject). The projected gradient method with projection
onto the standard simplex for the identification of the blur kernel worked par-
ticularly well (especially in the real world examples, rapid convergence has been
observed). The overall results on real world examples are promising. In further
work, the minimization algorithm could be tuned directly to the full objective
functional, by directly incorporating the multilinear structure of the problem.
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Abstract. It was shown recently that the phase of the Fourier Trans-
form of an image could lead to interesting no-reference image quality
measures. The Global Phase Coherence, and its recent Gaussian variant
called Sharpness Index, rate the sharpness of an image in contrast not
only with blur, but also noise, ringing, etc. In this work, we introduce
a new variant of these indices, that can be computed with one Fourier
Transform only, hence four times quicker than the Sharpness Index. We
use this new index S to build an image restoration algorithm that, in
a stochastic framework, selects a radial-unimodal deconvolution kernel
for which the S-value of the restored image is optimal. Experiments are
discussed, and comparison is made with a radial oracle deconvolution
filter and the recent blind deconvolution algorithm of Levin et al.

Keywords: global phase coherence, sharpness, blind deconvolution, no-
reference image quality assessment, oracle deconvolution filter.

1 Introduction

No-reference image quality assessment consists in designing algorithms to eval-
uate the quality of an image (in particular in relation with its level of blur and
noise) without requiring either an ideal version of this image (full-reference) or
features extracted from this ideal image (reduced-reference). Finding good im-
age quality (and sharpness) metrics has several applications, like, e.g., parameter
selection, image restoration [16], benchmarking, or depth estimation [3].

A way to address the notion of image quality is to think in terms of precision
of its geometric elements (contours, alignments, etc.). Since the pioneering work
of Oppenheim and Lim [14], it is well known that the geometry of an image
is mainly encoded in the phase of its Fourier Transform. And yet, the phase
information itself is still very difficult to understand. A first definition of local
phase coherence was given in [13], [10] and used for edge detection. Later, it was
used to design a local sharpness measure in [15] and [9]. In 2008, the authors of [1]
defined a notion of Global Phase Coherence (GPC), which rates the sharpness of
an image depending on how the regularity of the image is destroyed as its phase
information is lost. Very recently in [2], a variant of GPC called Sharpness Index
(SI) was introduced. It has the advantage of being described by an explicit

A. Kuijper et al. (Eds.): SSVM 2013, LNCS 7893, pp. 86–97, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Blind Deblurring Using a Simplified Sharpness Index 87

closed-form formula, without needing computationally expensive Monte-Carlo
Simulations like GPC.

In the present paper, we show that the SI metric can be further simplified
to yield a new metric S that can be computed with only one Discrete Fourier
Transform (versus four for the SI metric), while being an excellent approxima-
tion of the latter (Section 2). The behavior of this new metric is analyzed, in
particular in comparison with the Q metric proposed by Zhu and Milanfar [16]
(Section 3). Then, a blind deblurring algorithm is built in Section 4, that looks
for the linear filter that maximizes the S-value of the restored image while im-
posing the Fourier Transform of the convolution kernel to be radial, unimodal
and smooth. The results of this algorithm are discussed, and compared with the
corresponding linear oracle and with the blind deconvolution algorithm recently
proposed by Levin et al. [11].

2 Global Phase Coherence and Derived Sharpness
Metrics

Let us first introduce some useful notations. In all the following, we consider
gray-level images u : Ω → R defined on a discrete M ×N rectangular domain

Ω = Z2 ∩
([
−M

2
,
M

2

)
×

[
−N

2
,
N

2

))
.

The discrete Fourier transform (DFT) of u is the complex function û defined by

∀ξ ∈ Z2, û(ξ) =
∑
x∈Ω

u(x)e−i〈ξ,x〉 , (1)

where 〈ξ,x〉 = 2π
(
x1ξ1
M + x2ξ2

N

)
with ξ = (ξ1, ξ2) and x = (x1, x2). The function

|û| will be called the modulus of u. A phase function for u is any function
ϕ : Z2 → R such that for all ξ ∈ Z2, one has û(ξ) = |û(ξ)|eiϕ(ξ).

The Ω-periodization of u is the image u̇ : Z2 → R that extends u to Z2 by
u̇(x) = u(x′), where x′ is the unique element of Ω such that x′−x ∈MZ×NZ.
The gradient of u̇ is defined by

∀(x, y) ∈ Z2, ∇u̇(x, y) =
(
∂xu̇(x, y)
∂yu̇(x, y)

)
=

(
u̇(x+ 1, y)− u̇(x, y)
u̇(x, y + 1)− u̇(x, y)

)
, (2)

and the (periodic and anisotropic) Total Variation of u is

TV(u) = ‖∂xu̇‖1 + ‖∂yu̇‖1 =
∑
x∈Ω
|∂xu̇(x)|+ |∂yu̇(x)| . (3)

The autocorrelation of ∇u̇ is the function Γ : Ω → R2×2 defined by

Γ (z) =

(
Γxx(z) Γxy(z)
Γxy(z) Γyy(z)

)
=

∑
y∈Ω

(∇u̇(y)) (∇u̇(y + z))
T
. (4)
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2.1 Global Phase Coherence

As mentioned earlier, the phase of an image u encodes a great part of the geom-
etry of u: if one reproduces the famous experiment of [14] consisting in imposing
the phase of an image u to another image v, one can see on the result that several
edges from u have appeared and all the geometric content of v has disappeared.
Indeed, phase coefficients need strong alignment constraints in order to produce
sharp edges and clean flat regions in an image.

The Global Phase Coherence metric introduced in [1] quantifies how the loss
of this phase coherence affects the image regularity, measured by its Total Vari-
ation (3). More precisely, the phase of an image u is randomized to produce the
Random Phase Noise image Uψ defined in Fourier Domain by

∀ξ ∈ Ω, Ûψ(ξ) = |û(ξ)|eiψ(ξ) , (5)

where ψ : Ω → R is a uniform random phase (the coefficients of ψ are indepen-
dent and uniformly distributed in (0, 2π), modulo the relation ψ(−ξ) = −ψ(ξ)
ensuring that Uψ is real-valued, see [8]), which leads to

Definition 1 (Blanchet, Moisan, Rougé, 2008 [1]). The Global Phase Co-
herence (GPC) of u is the number

GPC(u) = − log10 P(TV(Uψ) ≤ TV(u)) . (6)

For an image u with sharp edges and clean uniform zones, the Total Variation
is expected to be low amongst the ones of its phase randomizations. Therefore,
for such an image, the probability of the event {TV(Uψ) ≤ TV(u)} will be very
small, and the value of GPC(u) will be large. That is why this phase coher-
ence index (and the variants that follow) is expected to behave like an image
quality measure. Note that without the logarithm in (6), the values of GPC(u)
would often cause a numerical underflow (a value like, e.g., 10−1000 cannot be
represented in most computer environments).

The main issue with (6) is that no closed-form formula has been found so far to
compute GPC(u), so that a computationally expensive Monte-Carlo simulation
(coupled with a Gaussian approximation of the random variable TV(Uψ)) is
proposed in [1], which limits the potential application of the GPC metric.

2.2 Sharpness Index

Hopefully, a closed-form variant of GPC was recently found. In [2], the periodic
convolution of u with a conveniently normalized Gaussian white noise W is
considered instead of Uψ, and the first two moments of TV(u ∗W ) are explicitly
computed in function of u. Note that u ∗W is nothing but the natural Gaussian
approximation of UΨ , and these two random images only differ by a convolution
with the texton of a white noise, which is close to a Dirac distribution [6] (in

Fourier Domain, û ∗W and ÛΨ differ by a multiplicative Rayleigh Noise). Even
if the exact law of TV(u ∗W ) seems difficult to compute, it is expected to be
approximately Gaussian, which leads to
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Definition 2 (Blanchet, Moisan, 2012 [2]). The Sharpness Index of u is

SI(u) = − log10 Φ

(
μ− TV(u)

σ

)
(7)

where Φ(t) =
1√
2π

∫ +∞

t

exp

(
−x

2

2

)
dx , μ = (αx + αy)

√
2

π

√
MN , (8)

σ2 =
2

π

∑
z∈Ω

α2
x · ω

(
Γxx(z)

α2
x

)
+ 2αxαy · ω

(
Γxy(z)

αxαy

)
+ α2

y · ω
(
Γyy(z)

α2
y

)
, (9)

αx = ‖∂xu̇‖2 =
(∑

x∈Ω |∂xu̇(x)|2
) 1

2 , αy = ‖∂yu̇‖2, Γ is the autocorrelation of
∇u̇ given in (4), and ω is the function defined by

∀t ∈ [−1, 1], ω(t) = t · Arcsin(t) +
√
1− t2 − 1 . (10)

In practice, the numerical computation of SI(u) requires the computation of
TV (u), αx and αy (linear time), plus the three different components of Γ that
can be computed with four Fast Fourier Transforms (a direct FFT of u, and
3 inverse FFTs for the cross correlations of ∂xu̇ and ∂yu̇). The overall cost is
hence dominated by these four M × N FFT computations, which represents a
complexity of O(MN log(MN)) for well-suited image dimensions. Note that the
function Φ is available in most mathematical libraries through the complemen-
tary error function (often written erfc), but when t is greater than say, 20, the
following (almost exact) approximation is systematically used to avoid numerical
underflow:

− log10 Φ(t) �
t2 + log(2πt2)

2 log(10)
. (11)

2.3 A Simplified Version of SI

We now introduce a new index S which is analytically close to SI and faster to
compute. For that, let us observe that ω(t) is equivalent to t2/2 when t → 0.
Therefore, this approximation can be used to replace σ2 = Var(TV(u ∗W )) by

σ2
a =

1

π

∑
z∈Ω

α2
x ·

(
Γxx(z)

α2
x

)2

+ 2αxαy ·
(
Γxy(z)

αxαy

)2

+ α2
y ·

(
Γyy(z)

α2
y

)2

,

which after simplification yields the following

Definition 3. The S-metric of an image u is

S(u) = − log10 Φ

(
μ− TV(u)

σa

)
, (12)

where σ2
a =

1

π

(
‖Γxx‖22
α2
x

+ 2 · ‖Γxy‖
2
2

αxαy
+
‖Γyy‖22
α2
y

)
, (13)

and αx, αy, μ, and Γ are as in Definition 2.
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Whereas SI needed all the coefficients of the gradient auto-correlation matrix,
the S metric only depends on the overall energy of the three components Γxx,
Γxy and Γyy. Thanks to Parseval’s formula, they can be computed in Fourier
domain, recalling that

Γ̂xx(ξ) = |∂̂xu̇(ξ)|2 = 2 sin2
(
πξ1
M

)
|û(ξ)|2 , Γ̂yy(ξ) = 2 sin2

(
πξ2
N

)
|û(ξ)|2 ,

and |Γ̂xy(ξ)| = |∂̂xu̇(ξ)||∂̂yu̇(ξ)| = 2

∣∣∣∣sin(
πξ1
M

)
sin

(
πξ2
N

)∣∣∣∣ |û(ξ)|2 .
The computation of S only involves the l1 and l2 norms of the gradient, and the
FFT of u. Thus, the overall dominant cost is only one FFT (compared to 4 for
SI), while the approximation of SI by S is very good as stated by

Proposition 1. We have 0 ≤ σ2 − σ2
a

σ2
a

≤ π − 3 ≈ 0.142.

Proof. With the expressions of σ2 and σ2
a, one can write

σ2 − σ2a =
2

π

∑
x∈Ω

α2
x

[
ω

(
Γxx(x)

α2
x

)
− 1

2

(
Γxx(x)

α2
x

)2
]

+2αxαy

[
ω

(
Γxy(x)

αxαy

)
− 1

2

(
Γxy(x)

αxαy

)2
]
+ α2

y

[
ω

(
Γyy(x)

α2
y

)
− 1

2

(
Γyy(x)

α2
y

)2
]
.

Besides, Taylor Formula applied to ω yields

∀t ∈ [−1, 1], 0 ≤ ω(t)− 1

2
t2 ≤ ct4 ≤ ct2 , (14)

with c = ω(1)− 1 = π−3
2 , and thus

0 ≤ σ2 − σ2a ≤ 2c

π

∑
x∈Ω

α2
x

(
Γxx(x)

α2
x

)2

+ 2αxαy

(
Γxy(x)

αxαy

)2

+ α2
y

(
Γyy(x)

α2
y

)2

= 2cσ2a .

3 Validation of S as a Quality Measure

As in [1], we shall systematically apply two simple image transforms to an image
u before computing S(u) with (12), in order to avoid periodization and quan-
tization biases. First, as the S metric is defined (like GPC and SI) through a
periodic setting, the periodic component of u (see [12]) is first extracted to avoid
discontinuities across the image frame border. Then, a simple dequantization
procedure (a (1/2, 1/2) sub-pixel translation with Fourier interpolation, see [5])
is applied to ensure that the quantization of the original image (generally with
256 gray levels) does not artificially decreases its Total Variation.

On Fig. 1, we give a first empirical evidence that S behaves as an image quality
measure. Indeed, this blur-noise diagram shows that the value of S decreases as
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Fig. 1. Some level lines of the function (r, β) → S(gr ∗ u + βW ) where gr is the 2-D
Gaussian convolution kernel with standard deviation r, and W is a white noise image
with unit variance in each pixel. The absolute values of S and the exact shape of
the level lines depend on the image considered (here, Barbara), but the overall shape
remains similar.

the level of blur or noise increases, with a correspondence between noise and
blur which is similar to GPC and SI (see [1,2]).

The S metric not only decreases with respect to blur and noise, but unlike the
Q metric of Zhu and Milanfar [16], it also decreases when ringing artifacts (that
may result from excessive deblurring) appear, as shown on Fig. 2. This suggests
that S could be used in a parametric or even non-parametric blind deblurring
algorithm, as will be done in Section 4. Note however, that the Qmetric performs
slightly better than S for parameter selection in the SKR denoising method
presented in [16]. In fact, the reason is logical considering the origin of S: the
noise left by SKR in uniform zones is structured and the coherence of its phase
makes S prefer less denoised images than Q.

4 Application to Blind Deblurring

Removing blur from a single image is a difficult task. If the blur is linear and
spatially uniform, it can be modeled as a convolution. Several algorithms (see,
e.g., the recent efficient scheme for TV − L2 deblurring proposed in [4]), have
been proposed to invert the effect of this convolution when the blur kernel is
known. Addressing the problem of blind deconvolution, i.e. when the kernel is
not known, is even more difficult, and several solutions have been proposed in the
last decades. In the present paper, we shall consider in particular (for comparison
purposes) the very recent work of Levin et al. [11].

Here, rather than trying to reverse the effect of a convolution, we shall try
to improve the image directly by convolving the blurry image u with a unit-
mass (that is, average-preserving) filter k that maximizes Fu(k) = S(k ∗ u).
Indeed, Fig. 2 shows that, in a parametric Wiener deconvolution, the S metric is
able to select the blur parameter. In [3], Calderero and Moreno made a similar
observation for the SI metric in a context of reverse diffusion. In this section, we
will show that S can be used for non-parametric blind deblurring.
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Fig. 2. These diagrams plot the proposed metric S (left) and the metric Q (right) of
Zhu and Milanfar [16] obtained when applying (in Fourier domain) a H1-regularized
deconvolution filter to a natural image (Yale). The abscissa (ρ) corresponds to the
standard deviation of the supposedly Gaussian convolution kernel. Over the results
obtained for the whole range of ρ, one can see that contrary to Q, S attains a maximum
for ρ = 0.55, which roughly corresponds to the value beyond which ringing artifacts
begin to appear. This suggests that S is able to discriminate ringing, whereras Q does
not.

4.1 Kernels with Compact Support

Algorithm 1 below can be used to optimize Fu on particular sets of kernels k, as
soon as the number of coefficients that define k remains small enough. For exam-
ple, one can optimize Fu on the set of symmetric 5× 5 kernels (12 coefficients),
or on the set of separable symmetric 21× 21 kernels (20 coefficients, or 10 if the
same one-dimensional kernel is used for each coordinate). In general, the results
obtained with Algorithm 1 are good, but some images lead to interesting failure
cases, in particular when regions with highly structured textures or dominant
orientations are present (see Fig. 3). Since the functional Fu is not concave, it
does not necessarily have a unique local maximum, and a reason could be that
Algorithm 1 does not manage to converge to the actual global maximum of the
objective function Fu. However, experiments suggests that the failure is more
likely to be due to an inadequate set of kernels (in particular the set of separable
kernels). To avoid such degenerated cases, and get rid of the small-kernel-support
constraint, we consider in Section 4.2 other sets of kernels for which constraints
are considered in Fourier domain.

Algorithm 1

– Begin with k = δ0 (discrete Dirac kernel)
– Repeat n times

� Define k′ from a random perturbation of k
� If S(k′ ∗ u) > S(k ∗ u) then k ← k′

– Renormalize k to a unit-mass kernel
– Return k and k ∗ u
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original symmetric symmetric separable radial unimodal

Fig. 3. Blind deblurring of the original Room image (left). Algorithm 1 is applied for
two different sets of kernels: 5 × 5 symmetric kernels (second column) and 21 × 21
symmetric separable kernels (third column). The right image is the result obtained
with the method proposed in Section 4.2 (Algorithm 2, μ = 0). We observe that
Algorithm 1 fails in both cases (probably in reason of the large striped texture), while
the radial-unimodal constraint imposed in Algorithm 2 yields a nice-looking result.

4.2 Optimization of a Radial-Unimodal Kernel

Instead of imposing that the convolution kernel has a fixed compact support,
we here consider the set of kernels that are radial in Fourier domain, with a
unimodal profile, which is a plausible assumption for a deconvolution kernel.
More precisely, we assume that the DFT of the restoration kernel kr is given by

∀ξ ∈ Ω, k̂r(ξ1, ξ2) = Lr

(√
2(d− 1)

(( ξ1
M

)2

+
( ξ2
N

)2
) )

, (15)

where Lr : [0, d − 1] → R is the piecewise affine interpolate on [0, d − 1] of the
finite sequence r(0) = 1, r(1), r(2), . . . , r(d − 2), r(d − 1) = 0. This sequence is
supposed to be unimodal, which means that there exists a value im (mode index)
that satisfies

∀i < im, r(i + 1) ≥ r(i) , and ∀i ≥ im, r(i + 1) ≤ r(i) .

One possible perturbation strategy for this set of kernels consists in the addition
of a uniform random value to a randomly chosen coefficient of r, followed by a pro-
jection on the set U of unimodal sequences (this projection can be computed in
O(n2) operations with the Pool Adjacent Violators algorithm [7]). We observed
that with this strategy, moving the mode position was difficult, so we relaxed the
unimodality constraint and incorporated in the objective function the l2-distance
d(r, U) between r and the setU of unimodal sequences.We also found useful to add
the possibility to increase the regularity of the radial profile r by incorporating a
term depending on

‖r‖2H1 =
d−2∑
i=0

(r(i + 1)− r(i))2 . (16)

Finally, the objective function (to be maximized) is

Fu(r) = S(kr ∗ u)− λ d(r, U)− μ ‖r‖H1 , (17)

where λ and μ are weighting parameters.
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In order to maximize Fu, we used Algorithm 2 below. We observed that n =
10000 was sufficient to ensure convergence on r (the relative changes after 10000
iterations were less than 10−3); moreover, we checked that several realizations of
this stochastic technique led to the same local maximum. The other parameters
were set to d = 20, initial im = 5, a = 0.1, λ = 10000, and μ varying from 0
to 100. Let us comment the choice of im. As soon as several local maxima are
present, the result of an optimization technique may depend on the initialization,
and the natural solution would be to apply the algorithm for all possible values
of the initial mode index. But in a wide majority of cases, we observed that
the result of this algorithm was not depending on this initial value. In a few
cases, two different local maxima could be found, but the higher value of the
objective function Fu was always obtained for im ∈ [d/4, 3d/4]. This is why it
seems empirically sufficient to run the algorithm only once with the initial value
of im in that range.

Algorithm 2

– Initialize r with the piecewise-linear profile such that r(0) = 1, r(im) = 2,
and r(d − 1) = 0.

– Repeat n times
� Pick a random index i ∈ [1, d− 2]
� Draw a random value ε ∈ [−a/2, a/2] with uniform distribution
� Set r′ ← r, then r′(i)← r(i) + ε
� If Fu(r′) > Fu(r) then r ← r′

– Return r, kr and kr ∗ u

4.3 Results

We first used Algorithm 2 with μ = 0 on Room image, and checked that the
failure of Algorithm 1 was avoided (Fig. 3, right).

Then, to produce the results shown in Fig. 4, we took two classical images
(Capitol and Parrots) and corrupted them with a Gaussian blur kernel (width
1 pixel) and an additive white Gaussian noise (variance 1). We then applied
several deblurring algorithms (detailed below) and evaluated their performances
by computing their respective PSNR values with respect to the original clean
image. Notice, however, that for blind deblurring tasks the PSNR value is not
very reliable (in particular because even the original clean image is necessarily,
in some sense, blurry and noisy), and visual inspection is often preferable to
compare the algorithms.

First, we used Algorithm 2 with μ = 0 and μ = 10. We observed that the
results were stable, and that the restoration resulted in a significant sharpness
increase. However, for μ = 0 some low-frequency noise is still visible on uniform
zones. Increasing the value of μ to μ = 10 reduces the residual noise (because
it reduces the amplitude of Lr, that is, the amplification of noisy Fourier coeffi-
cients), but also attenuates some details in textured zones.
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Original Blurred and noisy input Levin et al.
S = 359 PSNR = 25.2, S = 79 PSNR = 24.2, S = 218

Oracle output Deblurred (μ = 0) Deblurred (μ = 10)
PSNR = 31.0, S = 144 PSNR = 28.8, S = 185 PSNR = 27.7, S = 160

Original Blurred and noisy input Levin et al.
S = 727 PSNR = 30.5, S = 140 PSNR = 32.7, S = 591

Oracle output Deblurred (μ = 0) Deblurred (μ = 10)
PSNR = 36.0, S = 370 PSNR = 24.8, S = 440 PSNR = 34.2, S = 394

Fig. 4. Blind deblurring of a degraded version of Capitol and Parrots images (Gaussian
blur of width 1 pixel plus Gaussian noise with variance 1). We present in each case
the original image, the blurred and noisy input, the result of Levin et al. algorithm
[11], the oracle output (best possible result obtained by a radial unimodal convolution
filter) and the results of Algorithm 2 with μ = 0 and μ = 10. The PSNR values are
computed in each case with respect to the original image.
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We then compared these results with the state-of-the-art blind deconvolution
algorithm of Levin et al. [11]. One can see in Fig. 4 that Algorithm 2 is more
precise on the fine details of the image, but it also keeps much more noise than
this method. In fact, the result of [11] is really “clean” and has a small Total
Variation, which explains incidentally why its S value is significantly larger com-
pared to Algorithm 2. Notice also that the method [11] is more general, and has
been shown to perform particularly well in the case of a motion blur, while the
radial constraint of Algorithm 2 cannot handle such motion blurs.

Another interesting experiment consists in computing the optimal kernel ko
that maximizes the expected distance between the reconstructed image and the
clean image u0, knowing the parameters (kernel κ and noise level β) of the
degradation process (this is an oracle since neither these parameters nor the
clean image are supposed to be known). One has

ko = Argmin
k

E‖u0 − k ∗ (κ ∗ u0 + βW )‖2 (18)

and if all kernels k were considered, the solution would be given by

∀ξ ∈ Ω, k̂o(ξ) =
κ̂(ξ) |û0(ξ)|2

|κ̂(ξ)|2|û0(ξ)|2 + σ2MN
. (19)

Now, since we only consider kernels whose DFT is built from a radial profile (lin-
early interpolated on d points), one can show that the optimal radial profile is the
minimumof a quadratic function and thus can be obtained by solving a small linear
system. In Fig. 5 we can see that the profile of the oracle radial kernel is unimodal,
with a mode at a position which is close to the one estimated by Algorithm 2. The
restored images obtained with this oracle filter are also displayed in Fig. 4: they are
a little more precise on the details, but present a significant amount of structured
noise; indeed, such a noise is not very costly for a l2 risk function. This is somehow
reassuring: this shows that the structured noise also appearing with Algorithm 2
(in particular with μ = 0) is truly a limit of techniques based on linear filtering.
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Fig. 5. Different radial profiles (oracle, and Algorithm 2 with μ = 0 and μ = 10)
obtained on images Capitol (left) and Parrots (right)

5 Conclusion

We introduced a new variant of the GPC and SI image quality metrics, that can
be computed four times faster than SI. This new index S provides a sharpness
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measure that can be used in a stochastic optimization framework to achieve blind
deblurring through linear convolution with a radial unimodal kernel. Though suf-
fering from the limits of linear filtering, the obtained results are convincing, and
visually similar to the best possible ones (oracle) obtained by such an approach.
The extension to motion blur kernels could be an interesting generalization, as
well as the use of more sophisticated (non-linear) restoration techniques to make
the best usage of the selection performances of the S metric.
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Abstract. This paper describes a cascadic image restoration method
which at each level applies a two-way alternating denoising and deblur-
ring procedure. Denoising is carried out with a wavelet transform, which
also provides an estimate of the noise-level. The latter is used to deter-
mine a suitable regularization parameter for the Krylov subspace iter-
ative deblurring method. The cascadic multilevel method proceed from
coarse to fine image resolution, using suitable restriction and prolonga-
tion operators. The choice of the latter is critical for the performance of
the multilevel method. We introduce a special deblurring prolongation
procedure based on TV regularization. Computed examples demonstrate
the effectiveness of the method proposed for determining image restora-
tions of high quality.

1 Introduction

Image restoration is a classical and important research area in image processing.
Let the function f δ represent the available noise- and blur-contaminated two-
dimensional image, and let the function û represent the associated (unknown)
blur- and noise-free image that we would like to recover.We assume the functions
f δ and û to be related by the degradation model

f δ(x) =

∫
Ω

h(x, y)û(y)dy + ηδ(x), x ∈ Ω, (1)

where Ω is a square or rectangle on which the image is defined, ηδ represents
additive noise (error) in the data f δ, and h is the point-spread function (PSF).
The integral may represent a space-invariant or space-variant blurring operator.
We would like to recover û given the observed image f δ and the PSF h.

It is well known that the solution of (1) is an ill-posed inverse problem and
therefore computationally challenging. Many algorithms are available for deter-
mining an approximate solution of (1), including recently proposed multilevel
and alternating methods; see, e.g., [1, 2, 7, 9–11, 13]. To be able to determine

A. Kuijper et al. (Eds.): SSVM 2013, LNCS 7893, pp. 98–109, 2013.
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accurate restorations, the methods apply regularization, i.e., they replace the
original problem by a nearby one that is less sensitive to perturbations.

The multilevel methods proposed in [9–11] proceed from coarser to finer im-
age resolution levels and are based on regularization by truncated iteration on
each level. Prolongation of a coarse-level approximation of û to a finer level is
carried out with the aid of nonlinear edge-preserving and noise-reducing opera-
tors. Restrictions are computed by a local weighted least-squares method that
is designed to preserve structures, such as edges, in the image. For many image
restoration problems, the multilevel methods demand fewer matrix-vector prod-
uct evaluations on the finest level than the corresponding one-level truncated
iterative methods and often determine restorations of higher quality. The num-
ber of iterations on each level is based on a computed estimate of the amount of
noise-contamination on each level.

The attractions of alternating iterative image restoration schemes, such as
the ones described in [1, 7, 13], include that deblurring and denoising can be
carried out independently, which simplifies the design and implementation of
these schemes, and that they often yield restorations of high quality. Huang et
al. in [7] describe a two-way alternating iterative method in which regularization
is achieved by a Total Variation (TV)-norm operator.

This paper proposes a new multilevel alternating method for solving image
restoration problems (1). The method applies an alternating method on each
level of a cascadic multilevel method, going from coarser to finer image resolution.
Denoising is achieved by wavelet transformation, and yields estimates of the
amount of noise on each level. These estimates determine the regularization
parameter for Tikhonov regularization, which is for deblurring. The prolongation
from coarser to finer resolution introduces slight blurring in the image. Therefore,
to further improve the quality of the restored image, we combine prolongation
with TV regularization.

This paper is organized as follows. Sect. 2 describes the new image restora-
tion method, in Sect. 3 we discuss the details of the denoising, deblurring, and
prolongation steps. Sect. 4 presents a few computed examples, and concluding
remarks can be found in Sect. 5.

2 A Cascading-Alternating Image Restoration Method

Consider a discretization of (1) and let the gray-scale image in the left-hand side
of (1) be represented by an array of n×n pixels. Ordering the pixels column-wise

defines a vector in Rn
2

, which we also denote by f δ. The integral operator in (1)

is represented by the matrix H ∈ Rn
2×n2

, which typically is large and severely
ill-conditioned. Let

W1 ⊂W2 ⊂ · · · ⊂Wm

be a sequence of nested subspaces of Rn
2

with Wj of dimension dim(Wj) = N(j)
and N(1) < N(2) < . . . < N(m) = n2. We refer to the subspaces Wj as levels,

with W1 being the coarsest and Wm = Rn
2

the finest level. The restriction
operator Rj : R

n2 →Wj is such that
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Hj = RjHRT
j f δj = Rjf

δ, 1 ≤ j < m, (2)

where the Rj are determined by repeated local weighted least-squares approxi-
mation; see [9–12] for more details.

Going from level 1 to m, we apply on each level an alternating procedure for
denoising and deblurring. To simplify the notation, we refer to the representa-
tions of Hj and f δj on level j also by H and f δ, respectively. The meaning of
these and other matrices and vectors is clear from the context. Thus, on level j
the initial iterate is u(0) := f δ ∈ RN(j) and the alternating method carries out
the iterations, for i = 1, 2, 3, . . . ,

w(i) = Sw(u
(i−1)) := argmin

w∈RN(j)

{‖w − u(i−1)‖2 +
∑
k

λkφ(〈w,ψk〉)}, (3)

u(i) = Sh(w
(i)) := argmin

u∈K�

{‖Hu− f δ‖2 + α‖u− w(i)‖2}, (4)

where the regularization parameter α > 0 is determined by the discrepancy
principle using an estimate of the noise in the image on level j. Thus, α depends
on the level j; see below for details. The function φ in (3) is a penalty function,
the λk denote weights, and {ψk} is an orthonormal wavelet basis. A common
choice of penalty function is φ(x) = |x|p for some 1 ≤ p ≤ 2. We use this
penalty function with p = 1. Minimization in (4) is on every level carried out
over an �-dimensional Krylov subspace K� determined by � steps of Golub-Kahan
bidiagonalization applied to H with initial vector f δ; see Subsection 3.2 for the
definition of K� and further details.

The prolongation operators are nonlinear edge-preserving and noise-reducing,
see Sect. 3, while the restriction operators are determined by weighted local
least-squares approximation following [11]. The purpose of the weights is to
avoid smearing of edges. Specifically, the prolongation method, inspired by the
work [8] for super-resolution image processing, maps the image u(i) ∈ RN(j) from
level j to an image u(0) ∈ RN(j+1) on level j + 1,

u(0) = Stv(u
(i)) := argmin

u∈RN(j+1)

{‖u‖TV + β‖u(i) −R(G ∗ u)‖2}, (5)

where ‖ · ‖TV is a vector semi-norm of TV-type, β > 0 is an empirically deter-
mined fixed parameter [8], and R is the restriction operator used in the cascadic
procedure. The kernel is assumed to be a convolution, and ∗ denotes convolution.
In the computed examples we use the Gaussian kernel

G(x, y) :=
1

4πγ
e−(x2+y2)/4γ , (6)

where γ is tuned based on the fact that the higher-resolution image has four
times as many pixels as the lower resolution image. The image u(0) obtained
from (5) in this manner is applied in (3), i.e., u(0) is the first iterate of the
alternating method on level j + 1.
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3 Denoising, Deblurring, and Prolongation Methods

This section describes the denoising, deblurring, and prolongation methods that
are used in the cascadic alternating method.

3.1 Denoising

Denoising methods seek to remove the noise in an image without removing the
signal. Thresholding in the wavelet domain for denoising has been pioneered by
Donoho [4]. Nonlinear soft thresholding in the wavelet transform domain consists
of three steps: 1) linear forward wavelet transformation, 2) nonlinear shrinkage
denoising based on thresholding of the wavelet coefficients, and 3) linear inverse
wavelet transformation.

In the denoising step (3) of the cascadic alternating method, the first term in
brackets can be written as

‖w − u(i−1)‖2 =
∑
k

(〈w,ψk〉 − 〈u(i−1), ψk〉)2

by using the unitary invariance property of the 2-norm. Therefore (3) can be
expressed as

w(i) = argmin
w∈RN(j)

{∑
k

(
(〈w,ψk〉 − 〈u(i−1), ψk〉)2 + λk|〈w,ψk〉|

)}
. (7)

The solution of (7) is obtained by soft thresholding [4]:

〈w(i), ψk〉 =

⎧⎨⎩
〈u(i−1), ψk〉 − λk/2, if〈u(i−1), ψk〉 ≥ λk/2

〈u(i−1), ψk〉+ λk/2, if〈u(i−1), ψk〉 ≤ −λk/2
0, otherwise.

The threshold parameter λk is determined by the BayesShrink soft thresholding
technique as described in [3]. Our cascadic alternating method applies this de-
noising technique as a first step on each level of the alternating method. This
yields an estimate of the amount of noise in the currently available contaminated
image. It is important that a fairly accurate estimate of the noise is available in
the subsequent deblurring step of the alternating method to be able to determine
a suitable value of the regularization parameter. Following [3], we use on each
level j the robust median estimator for the noise. Thus, the variance of the noise
σ2 is estimated by

σ̂j = MADj/C, (8)

where MADj denotes the median absolute value of appropriately normalized
fine-scale wavelet coefficients, and following [3], we let C = 0.6745. An estimate
of the norm of the noise in f δ, required in the deblurring step, now is obtained
from (8),

δ2 = σ̂2
jN(j).

We use this formula to estimate the amount of noise on all levels, including the
finest one.
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3.2 Deblurring

In step (4) on level j of the alternating method, we solve a sequence of discrete
image deblurring problems by the iterative Krylov subspace method proposed
in [1]. The solution method is based on partial Golub-Kahan bidiagonalization
of the blurring matrix Hj with initial vector f δj given by the restriction (2).

Similarly as above, we denote Hj and f δj by H and f δ, respectively. Application
of � steps of Golub-Kahan bidiagonalization to H yields the matrices U�+1 ∈
RN(j)×(�+1) and V� ∈ RN(j)×� with orthonormal columns, and a lower bidiagonal
matrix C̄� ∈ R(�+1)×� with positive diagonal and subdiagonal entries such that

HV� = U�+1C̄�, H∗U� = V�C
∗
� , U�+1e1 = f δ/‖f δ‖, (9)

where U� ∈ RN(j)×� is made up of the � first columns of U�+1, C� ∈ R�×�

consists of the first � rows of C̄�, the superscript ∗ denotes transposition, and
e1 = [1, 0, . . . , 0]∗ is the first axis vector. The columns of V� span the Krylov
subspace

K� := K�(H∗H,H∗f δ) := span{H∗f δ, (H∗H)H∗f δ, . . . , (H∗H)�−1H∗f δ}.

We assume � to be small enough, so that the decompositions (9) with the stated
properties exist. Substituting u = V�y into (4) yields the reduced minimization
problem

min
y∈R�

{
‖C̄�y − e1‖f δ‖‖2 + α‖y − V ∗

� w
(i)‖2

}
= min

y∈R�

∥∥∥∥[ C̄�√
α I�

]
y −

[
e1‖f δ‖√
αV ∗

� w
(i)

]∥∥∥∥2

, (10)

where, for i > 1, w(i) is obtained from the previous alternating step (3), and
w(0) := u(0). The minimization problem (10) has a unique solution y� = y�,α for
any α > 0, and the corresponding solution of (4) is given by

u(i) = u� = V�y�. (11)

Let δ be an available bound for the Euclidean norm of the error in f δ. A vector
u is said to satisfy the discrepancy principle if ‖Hu− f δ‖ ≤ ηδ for some chosen
value of the parameter η. Typically, η is chosen to be close to unity if an accu-
rate estimate of the norm of the noise δ is available. We let the regularization
parameter α be as large as possible so that the solution (11) of (4) satisfies the
discrepancy principle, i.e., so that

‖Hu� − f δ‖ = ηδ. (12)

It follows from (9) and (11) that

‖Hu� − f δ‖ = ‖C̄�y� − e1‖f δ‖ ‖. (13)

Therefore, a value of α such that the computed solution u� satisfies (12) can be de-
termined by only considering the reduced problem in the right-hand side of (13).
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The determination of such a value of α typically requires the solution of a se-
quence of small least-squares problems (10), each problem corresponding to a
different value of α. We may solve these problems, e.g., by using the singular
value decomposition of the matrix C̄�, or more cheaply by applying a scheme
described by Eldén [5]. Zero-finders for determining a value of α such that (12)
holds are discussed in [1].

The computations on each level are terminated as soon as two successive ap-
proximate solutions w(i) and w(i−1) are sufficiently close; see (15) below. The con-
vergence of a Krylov subspace-based alternating one-level method is established
in [1] by an adaption of the convergence proof in [7]. The computations with the
alternating multilevel method of the present paper on levels 1, 2, . . . ,m− 1, i.e.,
on all levels but the finest one, may be considered preprocessing for a one-level
Krylov subspace-based alternating method. The purpose of the preprocessing is
to determine an accurate initial iterate for alternation on the finest level. Since
the convergence result does not depend on the use of a particular initial iterate,
the convergence proof in [1] applies to multilevel methods. In fact, convergence
on each level can be established by considering the computations on the previous
levels a preprocessing step designed to determine an accurate initial approximate
solution of the solution on the next level.

The convergence proofs in [1, 7] do not address the quality of the restored
images in the sense that on each level the stopping rule (15) may be satisfied by
many images of varying quality. In fact, the quality of the computed restoration
depends on the quality of the initial iterate on the finest level. An accurate initial
iterate may help determine an accurate restoration. This is illustrated in [10, 11],
and is one of the benefits of multilevel methods. The design of the prolongation
method therefore is important. It is also important that no high-frequency errors,
such as spurious edges, are introduced during the computations on the firstm−1
levels, because such errors may be difficult to remove on the finest level.

3.3 Prolongation

The cascadic alternating method requires prolongation operators to be applied
to map the computed approximate solution from level j to the next finer level
j+1 for all j. Both linear and nonlinear prolongation operators can be used; see
[9] and reference therein.

The prolongation step is a super-resolution process and suffers from similar
difficulties as the latter due to the ill-conditioning of the problem. In fact, high-
resolution and low-resolution images are typically related through a convolution
operator and a down-sampling operator. Several methods have been proposed
in the literature for super-resolution. Many of them are based on least-squares
approximation, the use of Fourier series, and other L2-norm approximation meth-
ods; see Marquina and Osher [8], who propose a variational method that uses
the TV-norm as regularizing functional for deblurring and oversampling images.

We can solve the Euler-Lagrange equation associated to the variational prob-
lem (5) by means of the gradient-descent method formulated as the time evolu-
tion equation
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∂u

∂t
= ∇ · ∇u|∇u| + βG ∗ (S(u(i))− S(R(G ∗ u))),

where S represents an up-sampling operator implemented as a bilinear inter-
polation, R is the restriction operator, and G is defined in (6). We considered
homogeneous Neumann boundary conditions and initialize with u0 = S(u(i)).

(a) (b)

(c) (d)

Fig. 1. Example 4.1: Restoration of corrupted version of the tiger image: (a) Unper-
turbed image; (b) the corrupted image produced by Gaussian blur, determined by the
parameters band = 5 and sigma = 3, and by 20% noise, SNR=9.05; (c) restored im-
ages with 1−level alternating method (SNR=10.79), (d) 2−level cascadic-alternating
method (SNR=11.89).

4 Numerical Experiments

This section illustrates the performance of the cascadic alternating method de-
fined by (3)-(4) and (5). Given a representation of the blur- and noise-free image

û ∈ Rn
2

, we determine a blur- and noise-contaminated image f δ ∈ Rn
2

from

f δ = Hû+ e.
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The “noise-vector” e ∈ Rn
2

has normally distributed entries with mean zero,
and is scaled to yield a desired noise-level

δ =
‖e‖
‖û‖ . (14)

Our task is to compute an accurate approximation of û, given f δ and H by the
cascadic-alternating iterative method. We terminate the alternating iterations
and accept w(i) as the computed approximation of û as soon as the relative
difference between consecutive iterates w(1), w(2), w(3), . . . is sufficiently small;
specifically, we accept w(i) when for the first time

‖w(i) − w(i−1)‖/‖w(i)‖ < 1 · 10−4. (15)

The displayed restored images provide a qualitative measure of the performance
of the alternating methods. The signal-to-noise ratio

SNR(w(i), û) = 20 log10
‖û‖

‖w(i) − û‖ dB

is a quantitative measure of the quality of w(i). A high SNR-value indicates that
the restoration is accurate.

Example 4.1. We consider the restoration of tiger images that have been
corrupted by white Gaussian noise and Gaussian blur. Each image is represented
by 256 × 256 pixels, i.e., n = 256. The block-Toeplitz-Toepliz-block matrix H
represents a Gaussian blurring operator and is generated with the MATLAB
function blur.m from Regularization Tools [6]. This function has two parameters,
band and sigma. The former specifies the half-bandwidth of the Toeplitz blocks
and the latter the variance of the Gaussian point spread function. The larger
sigma, the more blurring. Enlarging band increases the storage requirement, the
arithmetic work necessary for the evaluation of matrix-vector products with H ,
and to some extent the blurring.

Tables 1 and 2 report results achieved with the cascadic-alternating method of
this paper and compare them to results obtained with a corresponding one-level
alternating method for several noise-levels δ. The first column of Table 1 shows
the cascadic level and the second column displays the noise-level (14). The third
column, labeled SNRi, reports the SNR-values for the available contaminated
image f δ, i.e., the value SNR(f δ, û). Columns four and five display the SNR-
values of the restored images determined by two levels of the cascadic-alternating
method after the alternating procedure at a given cascadic level (SNRalt) and
after prolongation (SNRprol) from the first to the second level. The number of
alternating iterations is reported in brackets (its). SNRalt in the sixth column
refers to a basic one-level alternating method applied to the given contaminated
image on the finest level only. The number of iterations required (its) is also
shown. Thus, the SNR-values increase with each level of the alternating method.
Moreover, the initial image for the second level has a larger SNR-value than the
available contaminated image f δ. The parameter η in (12) is set to 0.4 on the



106 S. Morigi, L. Reichel, and F. Sgallari

Table 1. Example 4.1: Results for restorations of tiger images that have been cor-
rupted by Gaussian blur, determined by band = 5 and sigma = 3, and by noise corre-
sponding to noise-level δ.

level δ SNRi SNRalt(its) SNRprol SNRalt(its)

1 0.10 10.82 12.15(2) 12.08
2 13.18(1)

12.85 (4)

1 0.20 9.05 11.33(1) 11.60
2 11.89(1)

10.79 (3)

1 0.30 7.00 10.31(1) 10.75
2 11.31(1)

10.72 (3)

first level and to 0.98 on the finer level. The number of bidiagonalization steps
is set to � = 10.

Tables 1 and 2 show the restorations obtained by cascadic-alternatingmultilevel
method to be of higher quality, as measured by the SNR-values, than restorations
computed by one-level alternating methods. This is in agreement with visual per-
ception. The SNRprol-values, which displays the SNR-value of the restored image
after prolongation, show how the prolongation method improves the restorations.
The observed blurred and noisy image represented by f δ is shown on the right-
hand side of Fig. 1(a) and the restoration w(3) is depicted in Fig. 1(d). �
Example 4.2. We consider the restoration of blur- and noise-contaminated
butterfly images. They are represented by 512× 512 pixels, i.e., n = 512. The
exact image is shown in Fig. 2(a). The observed image is corrupted by white
Gaussian noise and Gaussian blur, characterized by the parameter values of
band and sigma.

Table 3 is analogous to Tables 1 and 2, and reports SNR-values for restored
butterfly images determined by the proposed cascadic alternating method and
by a corresponding one-level alternating method. We observe that the compu-
tational effort required by the cascadic alternating method is smaller than for
the one-level alternating method, due to the fact that the cascadic alternating
method only requires one iteration on each level, while the one-level alternating
method demands 4 iterations on the finest level. Since the computational cost
of each cascadic alternating iteration grows with the image dimension, only the
cost for the iteration on the finest level is significant. The parameter η in (12) is
set to 0.5, 0.9, and 0.95, from the coarsest to finest level. The number of bidiag-
onalization steps � is increased with the level number according to � = 5, 10, 20.

Our experimental results show that the quality of restored images obtained
with a three-level cascadic alternating method is competitive with a correspond-
ing one-level alternating method with regard to image quality as well as with
regard to computational effort, since all iterations with the one-level method are
carried out on the finest level.
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Table 2. Example 4.1: Results for restorations of tiger images that have been cor-
rupted by Gaussian blur, determined by band = 3 and sigma = 3, and by noise corre-
sponding to noise-level δ.

level δ SNRi SNRalt(its) SNRprol SNRalt(its)

1 0.15 12.12 12.85(2) 13.75
2 14.88(1)

14.50 (4)

1 0.30 8.02 10.72(1) 12.07
2 12.88(1)

12.70 (4)

1 0.45 4.97 8.91(2) 10.58
2 11.18(1)

10.75 (5)

Table 3. Example 4.2: Results for restorations of butterfly images that have been
corrupted by Gaussian blur, determined by variable band and sigma, and by noise
corresponding to noise-level δ = 20%.

level band sigma SNRi SNRalt(its) SNRprol SNRalt(its)

1 3 3 11.57 11.05(1) 12.10
2 13.08(1) 13.55
3 15.35(1)

15.03 (4)

1 5 3 9.43 10.55(1) 10.64
2 12.26(1) 12.38
3 13.33(1)

13.02 (4)

1 7 3 8.09 9.11(1) 9.58
2 10.82(1) 10.89
3 11.74(1)

11.43 (4)

1 5 5 9.26 10.33(1) 10.53
2 12.05(1) 12.06
3 13.03(1)

12.65 (4)

The contaminated blurred and noisy image represented by f δ is shown in
Fig. 2(b) and the restorations obtained by the cascadic alternating and by the
one-level alternating methods are depicted in Fig. 2(c) and 2(d), respectively.
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(a) (b)

(c) (d)

Fig. 2. Example 4.2: Restoration of corrupted version of the butterfly image: (a)
unperturbed image ; (b) the corrupted image produced by Gaussian blur, determined
by the parameters band = 5 and sigma = 5, and by 20% noise, SNR =9.26; (c)
restored image by the 1-level alternating method with 4 iterations; (d) restored image
determined by 3-levels of cascadic alternating.

5 Conclusion and Further Developments

This paper describes a new cascadic alternating method for image deblurring
and denoising, in which we alternate between deblurring, carried out by a Krylov
subspace iterative method based on partial Golub-Kahan bidiagonalization of the
blurring matrix, and denoising by wavelet thresholding. The method combines
the performance of a cascadic method with the well-known accuracy obtained by
an alternating method at each level. Further numerical results and comparisons
with state-of-the-art methods will be reported and convergence properties and
accuracy aspects will be discussed in forthcoming work.

Acknowledgment. Research by LR was supported in part by NSF grant DMS-
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ex60% project by University of Bologna ”Funds for selected research topics”.
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Stefania Petra�, Christoph Schnörr, Florian Becker, and Frank Lenzen

IPA & HCI, Heidelberg University,
Speyerer Str. 6, 69115 Heidelberg, Germany

{petra,schnoerr,becker}@math.uni-heidelberg.de,
frank.lenzen@iwr.uni-heidelberg.de

http://ipa.iwr.uni-heidelberg.de,

http://hci.iwr.uni-heidelberg.de

Abstract. We introduce and study Bregman functions as objectives for
non-negative sparse compressed sensing problems together with a related
first-order iterative scheme employing non-quadratic proximal terms. This
scheme yields closed-form multiplicative updates and handles constraints
implicitly. Its analysis does not rely on global Lipschitz continuity in con-
trast to established state-of-the-art gradient-based methods, hence it is at-
tractive for dealing with very large systems. Convergence and a O(k−1)
rate are proved. We also introduce an iterative two-step extension of the
update scheme that accelerates convergence. Comparative numerical ex-
periments for non-negativity and box constraints provide evidence for a
O(k−2) rate and reveal competitive and also superior performance.

Keywords: multiplicative algebraic reconstruction, compressed sens-
ing, underdetermined systems of nonnegative linear equations, conver-
gence rates, limited angle tomography.

1 Introduction

Overview. Since the advent of Compressed Sensing [8,12] it is well-known that
the sparsest solution of an underdetermined system of equations can be found
via �1-minimization under adequate conditions. In many interesting applica-
tions the vector x∗ to be recovered is nonnegative or even binary. Recent results
[24,17,13,21] show that under appropriate conditions, a sparse nonnegative (or
binary) solution is also the unique solution of

Ax = b, x ∈ X, (1)

with X = �
n
+ or X = [0, 1]n, and thus recovery reduces to a simpler feasi-

bility problem. As a consequence, this may lead to alternatives superior to �1-
minimization since any objective function subject to the constraints (1) can
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recover the sparse solution. On the other hand, (1) becomes infeasible when
noise is present, and we have to allow for a distance of Ax∗ to b.

In this paper we suggest and study the approach

x∗ = argminx∈Xf(x), f(x) := Bφ(Ax, b), (2)

with Bφ an appropriate Bregman distance induced by φ. In the case of the
Euclidean distance Bφ(x, y) = 1

2‖x − y‖22 it is shown in [22] that recovery of
nonnegative sparse solutions via nonnegative least-squares is stable and outper-
forms �1-regularization when combined with thresholding. Other choices for Bφ

can be more adequate, however, if the noise is non-Gaussian, like e.g. Poisson
noise in tomographic applications, or when the data b and the sensor matrix A
are nonnegative.

For particular sparse (nonnegative) images and tomographic projection ma-
trices A the Simultaneous Multiplicative Algebraic Reconstruction Technique
(SMART) recently proved to be quite efficient by returning meaningful solutions
after few iterations [1]. It applies only to the specific but important case of sys-
tems with nonnegative b and A. SMART has been invented and re-invented sev-
eral times in the field of medical imaging. Convergence was proved in [7]. For con-
sistent projection equations (1), it returns the feasible point in {Ax = b, x ≥ 0}
that minimizes the cross-entropy distance KL(x, x0) to the initial vector x0.
When all entries of x0 are all equal SMART converges to the maximizer of the
Shannon entropy.

In a nutshell, past studies showed that SMART:

1. is adequate for ill-conditioned problems and huge problem sizes,
2. converges provably,

3. performs at each iteration only a single multiplication with A and A	, and
4. returns meaningful solution after few iterations.

Contribution and Organization. Motivated by the specific case of SMART
(section 2.1), we introduce in section 2.2 an iterative scheme for the general case
(2) based on a linearized objective and a related Bregman-based proximal term,
that enables closed-form multiplicative updates and handles the constraints im-
plicitly. We prove convergence and the convergence rate O(k−1) in section 2.3.

Our approach may be understood as a blend of (i) optimal gradient-based
schemes based on a linearized objective and upper bound surrogates through
quadratic proximation, and (ii) fully nonlinear Bregman-based proximal itera-
tions studied in [14]. While each step of the latter scheme is as costly as the
original objective, the former schemes depend on the Lipschitz constant of the
gradient of the objective that can be very large in large-scale nonnegative prob-
lems like 3D algebraic tomography. Our approach and the analyis do not require
global Lipschitz continuity.

In section 2.4 we specifically consider Bregman distances induced by the Shan-
non entropy and by the Fermi-Dirac entropy and the corresponding multiplica-
tive updates, to deal with nonnegativity or box constraints. Connections of the
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resulting objectives to nonnegative least-squares and �1-regression, that substan-
tiate our approach more formally, are outlined in section 2.5.

While proving a O(k−2) convergence rate is beyond the scope of the present
conference contribution, we suggest two algorithmic extensions called F(AST)-
SMART in section 3, aking to a Bregman-based versions of established first-order
optimal schemes [20,5]. Competitive numerical experiments discussed in section
4 illustrate the discussion above and support our claims.

Notation. We set [n] = {1, . . . , n} for n ∈ �. 〈·, ·〉 denotes the Euclidean inner
product and ‖ · ‖ = ‖ · ‖2 = 〈·, ·〉1/2 the corresponding norm. � = (1, . . . , 1)	,
that is ‖x‖1 = 〈�, x〉 for x ∈ �n+. Vectors are enumerated with superscripts xi,
and vector and matrix components with subscripts xi, Aij , while matrix rows
and columns we denote by Ai,• and A•,j respectively. Vector inequalities x ≥ y
and log x, expx etc., are understood component-wise. By x+ we denote �	x.
Δn = {x ≥ 0: ‖x‖1 = 1} ⊂ �

n
+ denotes the probability simplex. KL(x, y)

denotes the Kullback-Leibler distance of two nonnegative vectors, see Appendix.

2 B-SMART

2.1 Motivation: The SMART Iteration

It is well known [7] that the Simultaneous Multiplicative Algebraic Reconstruction
Technique (SMART) minimizes f(x) = KL(Ax, b) over the positive orthant,
provided that A ≥ 0, (A•,j)+ > 0, j ∈ [n] and b > 0. This corresponds to (2)
with ϕ being the negative entropy (21). For a positive iterate xk ∈ �

n
++ the

SMART iteration reads

xk+1
j = xkj

m∏
i=1

(
bi

〈Ai,•, xk〉

)tkAij

, j ∈ [n]. (3)

Here tk is a relaxation parameter, with tk ≤ minj{(A•,j)+}. We observe that
algorithm (3) employs at each step the minimization of the linearized objective
f plus a ”prox”-like term of the form

xk+1 = argminx∈�n
+
f(xk) +∇f(xk)	(x− xk) +

1

tk
KL(x, xk), (4)

with arbitrary starting vector x0 > 0. This implies

log(xk+1) = log xk − tkA
	(logAxk − log b), (5)

since for every xk > 0, xk+1 > 0 holds as well. This is exactly the SMART
iteration with relaxation parameter tk.

Remark 1. We note that the above algorithm (4) is closely related to the gradient
descent method

xk+1 = argminxf(x
k) +∇f(xk)	(x− xk) +

1

2tk
‖x− xk‖2, (6)
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better known as xk+1 = xk − tk∇f(xk). For convex LC1 functions there exist
precise bounds for the value of tk depending on the Lipschitz constant of the
gradient of f . Moreover, convergence rates are well understood and optimal
gradient methods have been established [18,5,19,23]. Our objective function f
however is only locally Lipschitz-continuous, due to differentiability, and non-
differentiable on the boundary of �n+, where sparse solutions occur.

2.2 A Nonlinear Projected Gradient Method

In this section we derive convergence rates for the iteration (4) by considering a
general minimization scheme for problems of the form (2).

Let ϕ : X → � and φ : Y → � be convex and continuously differentiable on
int(X) and int(Y ) respectively, with A(X) ⊂ Y . Further define the distance-like
functions Bϕ : X × int(X)→ � and Bφ : Y × int(Y )→ � by

Bϕ(x, y) = ϕ(x) − ϕ(y)− 〈x− y,∇ϕ(y)〉 (7)

and
Bφ(x, y) = φ(x) − φ(y)− 〈x− y,∇φ(y)〉. (8)

We assume A(X) ⊂ Y and b ∈ int(Y ), and define f : X → � by

f(x) = Bφ(Ax, b). (9)

Choosing an appropriate constant c > 0, we apply with ∇xBφ(Ax, b) = A	

(∇φ(Ax) −∇φ(b)) the iteration

xk+1 = argminx∈Xf(x
k) + 〈∇f(xk), x− xk〉+ c

tk
Bϕ(x, x

k) (10)

= argminx∈Xf(x
k) + 〈∇φ(Axk)−∇φ(b), Ax −Axk〉+ c

tk
Bϕ(x, x

k).

(11)

We will see that under an appropriate assumption the r.h.s. of (10) is an upper
bound of f .

2.3 Convergence and Convergence Rates

Iteration (10) is exactly the nonlinear projected gradient method from [4], except
for the fact that due to the particular form of the objective function, only relaxed
conditions of f are required. In fact, we can replace the Lipschitz-condition in
[4] by Assumption A, part (b), below.

Assumption A:

(a) X is a closed and convex set with nonempty interior;
(b) We have Bφ(Ax,Ay) ≤ cBϕ(x, y) for all x, y ∈ X ;
(c) The set of optimal solutions X∗ := argminx∈Xf(x) is nonempty.

The following results will turn out to be useful in the sequel.
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Lemma 1 ([10, Lem 3.1]). Let S ⊂ �
n be an open set with closure S, and

let ψ : S → R be continuously differentiable on S. Then for any three points
a, b ∈ S and c ∈ S the following identity holds

Bψ(c, a) +Bψ(a, b)−Bψ(c, b) = 〈∇ψ(b)−∇ψ(a), c− a〉.

Theorem 1 ([3, Thm. 3.12]). Suppose ϕ is closed proper convex and dif-
ferentiable on int(domϕ), X is closed convex with X ∩ int(domϕ) �= ∅, and
y ∈ int(domϕ). If ϕ is Legendre, then the Bregman projection x of y is unique
and contained in int(domϕ),

argmin
x∈X∩domϕ

Bϕ(x, y) = {x}, x ∈ int(domϕ). (12)

Remark 2. It is easy to see that assertion (12) also holds for the case

argmin
x∈X∩domϕ

{
Bϕ(x, y) + 〈l, x〉

}
= {z}, z ∈ int(domϕ), (13)

with l ∈ �n arbitrary and ‖l‖ ≤ ∞.

Our main result is stated next.

Theorem 2. Under Assumption A above, for the sequence {xk}k≤κ generated
by (10) with starting point x0 ∈ int(X) and tk = t ≤ 1, one has:

(a) Iteration (10) is well defined.
(b) For every κ,

min
0≤k≤κ

f(xk)−min
X

f(x) ≤ cBϕ(x
∗, x0)

tκ
. (14)

(c) The sequence {f(xk)}k≤κ is decreasing. In particular, the method converges.

Proof. Statement (a) follows by Remark 2.
(b) Let x∗ be the optimal solution. The optimality conditions for (10) imply

〈x− xk+1, tk∇f(xk) + c
(
∇ϕ(xk+1)−∇ϕ(xk)

)
〉 ≥ 0, x ∈ X.

In particular, for x = x∗ we get

〈x∗ − xk+1, c
(
∇ϕ(xk)−∇ϕ(xk+1)

)
− tk∇f(xk)〉 ≤ 0, x ∈ X. (15)

Since f is convex

0 ≤ tk(f(x
k)− f(x∗)) ≤ tk〈xk − x∗,∇f(xk)〉 (16)

= 〈x∗ − xk+1, c
(
∇ϕ(xk)−∇ϕ(xk+1)

)
− tk∇f(xk)〉 (17)

+ c〈x∗ − xk+1,∇ϕ(xk+1)−∇ϕ(xk)〉+ 〈xk − xk+1, tk∇f(xk)〉 (18)

:= s1 + cs2 + s3. (19)
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By equation (15) s1 ≤ 0 holds, and by Lemma 1 we have

s2 := 〈x∗−xk+1,∇ϕ(xk+1)−∇ϕ(xk)〉 = Bϕ(x
∗, xk)−Bϕ(x

∗, xk+1)−Bϕ(x
k+1, xk).

Furthermore

s3 = 〈xk − xk+1, tk∇f(xk)〉 = tk〈∇φ(Axk)−∇φ(b), Axk −Axk+1〉
Lem.1
= tk(Bφ(Ax

k+1, Axk) +Bφ(Ax
k, b)−Bφ(Ax

k+1, b)).

Summarizing

tk(f(x
k)− f(x∗)) ≤ cBϕ(x

∗, xk)− cBϕ(x
∗, xk+1)

+ tkBφ(Ax
k+1, Axk)− cBϕ(x

k+1, xk)︸ ︷︷ ︸
≤0,Ass.(b)

+ tkBφ(Ax
k, b)︸ ︷︷ ︸

=tkf(xk)

−tkBφ(Ax
k+1, b)) ,

gives

tk(f(x
k+1)− f(x∗)) ≤ cBϕ(x

∗, xk)− cBϕ(x
∗, xk+1).

Summing over k yields

min
0≤k≤κ

f(xk+1)− f(x∗) ≤ cBϕ(x
∗, x0)− cBϕ(x

∗, xκ+1)

t(κ+ 1)
≤ cBϕ(x

∗, x0)
t(κ+ 1)

.

(c) By Lemma 1 we have

〈∇φ(Axk)−∇φ(b), Ax −Axk〉 = Bφ(Ax, b)−Bφ(Ax,Ax
k)−Bφ(Ax

k, b)

= f(x)− f(xk)−Bφ(Ax,Ax
k) .

Thus

xk+1 = argminx∈Xf(x) +
c

tk
Bϕ(x, x

k)−Bφ(Ax,Ax
k)︸ ︷︷ ︸

:=fk(x)

, (20)

where fk(x) ≥ 0 due to Assumption A., part (b) and fk(x
k) = 0. Consequently,

algorithm (10) minimizes an upper bound on f , in analogy to the classical gra-
dient method. Now,

f(xk+1) + fk(x
k+1) ≤ f(xk) + fk(x

k) = f(xk)

follows and

f(xk)− f(xk+1) ≥ fk(x
k+1) ≥ 0 .

Hence, the sequence {f(xk)}k is decreasing and bounded from below by 0. State-
ment (c) then follows by standard arguments. �



116 S. Petra et al.

2.4 Application: Multiplicative Updates

It is well-known that multiplicative updates as e.g. employed by the exponential
gradient method [4,15], typically lead to faster convergence if the solution x∗ of
the optimization problem is sparse. As discussed in Section 2.1 the choice

ϕ1(x) = 〈x, log x〉, x ∈ �n+ (21)

and φ1(x) = 〈x, log(x)〉, x ∈ �m+ , leads to the update rule (3) of SMART, since
Bϕ1(x, y) = KL(x, y) and f(x) = Bφ1(Ax, b) = KL(Ax, y). For this particular
choice we obtain c1 = 1, for matrices A with columns that sum up to one,
compare Appendix, Prop. 2.

To include an upper bound on feasible points x, often known in applications
(e.g. x ∈ [0, 1]n), we additionally consider the generalization of the Fermi-Dirac
entropy

ϕ2(x) = 〈x− l, log(x − l)〉+ 〈u− x, log(u− x)〉, x ∈ X = [l, u], l < u. (22)

A simple computation shows Bϕ2(x, y) = KL(x − l, y − l) +KL(u− x, u − y).
With Bϕ2 and f(x) = Bφ2(x, y) = KL(Ax, b), we obtain again c2 = 1, compare
Appendix, Prop. 3. This choice leads to the following algorithm that we call
bounded-SMART

(xk+1 − l)j
(u − xk+1)j

=
(xk − l)j
(u− xk)j

m∏
i=1

(
bi

〈Ai,•, xk〉

)tkAij

. (23)

Proposition 1 below provides convergence rates for the multiplicative updates
(3) and (23). The proof of the following preparatory Lemma is given in the
Appendix.

Lemma 2. For a minimizer x∗ ∈ X∗ and some arbitrary starting point x0 ∈
intX with x0min := mini∈[n] x

0
i , we have

Bϕi(x
∗, x0) ≤

⎧⎪⎨⎪⎩
R(logR− log x0min − 1) + ‖x0‖1, i = 1, X = �

n
+

logn, i = 1, X = Δn

2R(R− log x0min), i = 2, X = [l, u]

(24)

for some sufficiently large R > 0 such that ‖x∗‖1 ≤ R. In the case of ϕ = ϕ2

and X = [l, u], we have R = ‖u− l‖1.

Proposition 1. Algorithms (3) and (23) converge for tk = 1 with rate

min
0≤k≤κ

f(xk)− f(x∗) ≤ c(R)

κ
,

with c(R) given by (24), for any x0 ∈ intX and all κ ≥ 0.

Proof. Propositions 2 and 3 in the Appendix establish c = 1 in both cases, in
the context of Assumption A, part (b). Parameter tk can be fixed to 1. Together
with parts (a) and (c), Theorem 2 then yields the assertion. �
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2.5 B-SMART: An Alternative to Nonnegative Least Squares and
�1–Regression

We briefly relate our approach to the more established objective functions

min
x≥0
‖Ax− b‖2 and min

x≥0
‖Ax− b‖1. (25)

The nonnegative least-squares approach on the l.h.s. corresponds to the special
case ϕ3(x) = φ3(x) =

1
2‖x‖2, cf. (7), (8). Iteration (10) reads (up to a constant)

xk+1 = argminx∈X 〈Axk − b, A(x− xk)〉+ c‖x− xk‖2, (26)

with c = ‖A‖22 = λmax(A
	A) for Assumption A, part (b), to hold. While directly

tackling the normal equations corresponding to the l.h.s. of (25) is known to be
ill-conditioned, the surrogate (right-most term) in (26) provides only a poor
approximation of the objective. The large weight c entails only small steps, in
addition to the need to take non-smooth projections onto X into account. By
contrast, c = 1 suffices for both cases (21) and (22), and the feasible set X is
taken implicitly into account by closed-form iterative updates.

Adopting a probabilistic viewpoint, non-negative least-squares may be
critized because the residuals (Ax − b)2i do not follow a Gaussian distribution.
Rather than rectifying this for specific applications (e.g. by a Poisson model in
connection with tomography), our approach is additionally motivated by recent
results of compressed sensing for non-negative sensing matrices, corresponding
to sparse expander graphs with constant column sums (cf., e.g., [6]): �	A =
d�, d > 0. As a consequence, we have ‖d−1Ax‖1 = ‖x‖1 = ‖b‖1 for consistent
systems Ax = b, that is x, b ∈ Δn, up to a common scale factor. This suggests to
adopt the distance KL(Ax, b) in the inconsistent case (noisy measurements b),
that is more natural for comparing points in the simplex Δn. Applying Jensen’s
inequality, we then get

KL(Ax, b) ≤ log
(∑

i

(Ax)2i
bi

)
= log

(∑
i

(Ax)2i
bi

+ ‖b‖1 − 2‖Ax‖1 + 1︸ ︷︷ ︸
=0

)

= log
(∑

i

(Ax − b)2i
bi

+ 1
)
= log

(
1 +

〈
Ax− b,Diag(b)−1(Ax− b)

〉)
.

(27)
This relates in view of non-negative least-squares our objective to (the logarithm
of) a scaled squared Euclidean objective, which is known as the χ2-distance that
provides a first-order expansion of the KL-distance at b [11].

The �1-regression objective in (25), suggested e.g. by [9], may be considered
as total variation distance dTV(Ax, b) =

∑
i |(Ax−b)i|, again from the viewpoint

of discrete probability distributions. Our objective upper-bounds this distance,
1
2KL ≥ d2TV, as shown in [16], hence minimizes the total variation as well. On
the other hand, unlike the residuals (Ax − b)i are known to be sparse (cf. [9])
(rather than x), considering the KL distance seems more appropriate.

Summing up, there are good reasons to consider and study (2) as objective
for a range of non-negative compressed sensing scenarios.
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3 F-SMART: Towards an Optimal Nonlinear
Proj. Gradient Method

Above we showed that SMART and its bounded version converge with rate
O(k−1). We believe that it should be possible to design an “optimal” entropic
gradient method in the sense of [20] with rate O(k−2). An elaboration is beyond
the scope of the present conference contribution. We therefore confine ourselves
to specifying below the algorithm and to providing empirical evidence supporting
our conjecture in Section 4.

Similar to Alg. 1 in [23], we suggest the following iteration called F(ast)-
SMART 1,

yk = (1 − θk)x
k + θkz

k (28a)

zk+1 = argminx∈X〈∇f(yk), x− yk〉+ c θkBϕ(x, z
k) (28b)

xk+1 = (1 − θk)x
k + θkz

k+1, (28c)

where x0 = z0 ∈ int(domϕ) and θk ∈ (0, 1] satisfies

1− θk+1

θ2k+1

≤ 1

θ2k
. (29)

Additionally, similar to FISTA [5], we suggest the following scheme calledF(ast)-
SMART 2,

xk = argminx∈XBϕ(x, y
k−1) + 〈∇f(yk−1), x− yk−1〉 (30a)

vk = ΠX

(
xk−1 +

1

θk
(xk − xk−1)

)
(30b)

yk = (1− θk+1)x
k + θk+1v

k, (30c)

where x0 = y0 = v0 ∈ int(domϕ) and θk satisfies again (29).
Numerical evidence for convergence and the rate of both F-SMART variants

is provided in the next section.

4 Experiments and Discussion

In this section we illustrate the performance of BSMART (10) compared
to FISTA [5]. BSMART includes the SMART scheme for ϕ1(x) (21) and
b(ounded)-SMART for ϕ2(x) (22) as special cases. In the following SMART
(3), FSMART1 (28) and FSMART2 (30) will minimize f(x) = KL(Ax, b)
over X = Rn

+, while b(ounded)-SMART, b(ounded)-FSMART1 and b(ounded)-
FSMART2 minimizes f(x) = KL(Ax, b) over X = [0, 1]n. Cf. the discus-
sion of Eq. (27), FISTA will be applied to f(x) = 0.5‖Ax − b‖2 and f(x) =
0.5〈Ax− b,Diag(b)−1(Ax− b)〉 subject to both X = �

n
+ and X = [0, 1]n. Matrix

A will be scaled so that the every column sums up to one.
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Fig. 1. The first test image consists of 15 particles at random positions (left). Compar-
ison of function value errors f(xk)−f(x∗) for all algorithms (middle). While BSMART
is competitive, the relative error decays faster for FSMART1 and FSMART1 (right).

NNLS χ2 SMART FSMART1 FSMART2

Fig. 2. Reconstructions of 15 particles at random positions at iteration 100 (top row)
and at the final iteration (bottom row). The reconstruction is accurate after a (signif-
icantly) smaller number of iterations in the case of the KL objective that copes better
with an ill-conditioned matrix A.

Test Case 1: Here we consider an infeasible ill-conditioned problem inspired by
a real-world application [1]. The original sparse image I, see Fig. 1 left, consists
of 15 Gaussian blobs (particles) at random positions in a square. The measure-
ment vector b ∈ �200 is computed by integrating the particle image exactly along
50 × 4 lines arranged in 4 fan beams (angles 45o, 15o,−15o,−45o). Image I is
discretized in 66× 66 Gaussian basis functions positioned on a regular grid. The
matrix entries Aij equal the line integral of every basis function along every
line, thus A ∈ �200×4356 and A ≥ 0. After scaling �	A = �, and Lχ2 = 1004.8,
LNNLS ≈ 53.6. We underline that no nonnegative solution exists which sat-
isfies the constraints Ax = b. Additionally we added uniform (non-Gaussian)
noise to b. The parameters for FISTA, FSMART1 and FSMART2 are chosen as

θk = 1, θk+1 = 0.5(
√
θ4k+1 + 4θ2k+1 − θ2k+1) and satisfy (29), according to [23].

The function value at iteration k of all algorithms is depicted in Fig. 1. The
function value for FSMART2 is lower than for FISTA, which is explained by the
high values of Lχ2 and LNNLS. The decay of f(xk)− f(x∗) for both FSMART1
and FSMART2 suggests a O(k−2) rate, consistently with FISTA, see Fig. 1,
middle. The solutions x∗ for the three problems considered, minx∈�n

+
KL(Ax, b),

minx∈�n
+
0.5〈Ax−b,Diag(b)−1(Ax−b)〉 and minx∈�n

+
0.5‖Ax−b‖2, are not known,
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Fig. 3. Original 256 × 256 binary test image from [2] (left). Comparison of function
values for all algorithms and X = [0, 1]n (right). Again FSMART1 and FSMART2
exhibit an O(k−2) rate.

NNLS χ2 SMART FSMART1 FSMART2

Fig. 4. Reconstructions after 50 iterations (top row) and after 100 iterations (middle
row). By replacing at iteration 100 all values above a globally determined threshold
with one and the others with zero, we obtain similar results for all algorithms with
slightly better and faster reconstructions for FSMART and FISTA.

but we computed an accurate solution via an interior point solver for the KKT
conditions. Iteration 100 and the final one are described in Fig. 2. The recon-
structions produced by SMART, FSMART1 and FSMART2 are of better quality
even if only few iterations are performed.

These preliminary computational results indicate that BSMART is sometimes
even faster then the proven predicted theoretical rate and FSMART is a promis-
ing extension with a high potential for designing fast algorithms for nonnegative
data.

Test Case 2: The second 256×256 test image [2] is a vascular system containing
larger and smaller vessels, see Fig. 3 (left). We consider 20 projecting directions,
although the uncorrupted image binary image is determined by 18 projections



B-SMART: Bregman-Based First-Order Algorithms 121

and is unique in [0, 1]n. Here A ∈ �7240×65536, Lχ2 = 5.0948, LNNLS = 12.2308
and X = [0, 1]n. Thus A is better conditioned than the previous one. To vector
b we add again 5% uniform (nongaussian) noise. This results in an infeasible
problem. Due to the low Lipschitz constant Lχ2 we expect a similar behavior of
FISTA and FSMART, which is exactly what happens, see Fig. 3 (right) for the
decrease of the function values.

Adding the additional information that the image entries are in [0, 1]n leads
to a fairly good reconstruction in Fig. 4 within the first iterations. This can be
improved by thresholding.

5 Conclusion and Further Work

This paper advocates Bregman functions as objectives for constrained nonnega-
tive compressed sensing problems, together with a corresponding non-quadratic
proximation scheme that only requires first-order gradient evaluations of the ob-
jective. The attractive properties of this approach concerning both mathemat-
ical and algorithmic aspects deserve further study. Our future work therefore
will take a closer look on the pros and cons in connection with other estab-
lished objectives in the field of compressed sensing, as initiated in section 2.5.
Furthermore, in view of established optimal first-order methods with O(k−2)
convergence rate, we will study from a more general mathematical viewpoint
surrogate objectives based on non-quadratic proximation that lead to efficient
two-step iterations with multiplicative updates, with a focus on the resulting
convergence rates.

Appendix

Properties of the Kullback-Leibler Distance. For positive scalars a, b, de-
fine KL(a, b) = a log(a/b) + b − a, KL(0, b) = b and KL(a, 0) = +∞. The
Kullback-Leibler distance can be extended to nonnegative vectors

KL(x, y) :=

n∑
j=1

(
xj log

(
xj
yj

)
+ yj − xi

)
. (31)

It is well known that for all x, y ≥ 0, we have KL(x, y) ≥ 0 and KL(x, y) = 0 iff
x = y. Furthermore, by Jensen’s inequality, we have (see, e.g., [11, Thm. 2.7.1])

n∑
i=1

xi log
xi
yi
≥

( n∑
i=1

xi

)
log

∑n
i=1 xi∑n
i=1 yi

, ∀x, y ∈ �n+. (32)

Proposition 2. For A ≥ 0 with 1	A = 1	, we have

KL(Ax,Ay) ≤ KL(x, y), ∀x, y ∈ �n+. (33)
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Proof. We compute

KL(x, y) =

n∑
j=1

(
xj log

xj
yj

+ yj − xi

)
=

n∑
j=1

m∑
i=1

Aij︸ ︷︷ ︸
=1

(
xj log

xj
yj

+ yj − xi

)

=

m∑
i=1

( n∑
j=1

Aijxj log
Aijxj
Aijyj

+

n∑
j=1

Aijyj −
n∑
j=1

Aijxj

)
Eq. (32)

≥
m∑
i=1

[( n∑
j=1

Aijxj

)
log

∑n
j=1Aijxj∑n
j=1 Aijyj

+

n∑
j=1

Aijyj −
n∑
j=1

Aijxj

]
= KL(Ax,Ay).

Lemma 3. For any x, y ≥ 0, with x ≥ t and y ≥ t, we have KL(x− t, y− t) ≥
KL(x, y).

Proof. Let g(t) = KL(x− t, x− t). Then g′(t) = x−t
y−t − 1− log

(
x−t
y−t

)
≥ 0 . Thus

g(t) ≥ g(0).

This immediately implies

Proposition 3. For A ≥ 0 with 1	A = 1	 and x, y ∈ [l, u], we have

KL(Ax,Ay) ≤ KL(Ax−Al,Ay −Al) +KL(Au− Ax,Au−Ay) (34)

≤ KL(x− l, y − l) +KL(u− x, u − y) . (35)

Proof of Lemma 2

Proof. In the case X = �
n
+, we may assume ‖x‖1 ≤ R for some sufficiently large

R > 0, due to Assumption A, part (c). Hence

Bϕ1 (x
∗, x0) =

∑
i

(
x∗
i log

x∗
i

x0
i

+ x0
i − x∗

i

)
= ‖x∗‖1

∑
i

x∗
i

‖x∗‖1
log

x∗
i

x0
i

+
∑
i

(x0
i − x∗

i )

= ‖x∗‖1
∑
i

x∗
i

‖x∗‖1
(
log

x∗
i

‖x∗‖1
+ log ‖x∗‖1 − log x0

min

)
+

∑
i

(x0
i − x∗

i )

≤ ‖x∗‖1(log ‖x∗‖1 − log x0
min − 1) + ‖x0‖1 ≤ R(logR− log x0

min − 1)+‖x0‖1

In the case X = Δn, we have R = 1 and may choose x0 = n−1
�. In the case

X = [l, u], the last two summands in (31) cancel. A similar computation then
yields

Bϕ2(x
∗, x0) ≤ ‖x∗ − l‖1(log ‖x∗ − l‖1 − log x0min) + ‖u− x∗‖1(log ‖u− x∗‖1 − log x0min)

≤ 2‖u− l‖1(log ‖u− l‖1 − log x0min).

�
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Abstract. This paper deals with the restoration of images corrupted
by a non-invertible or ill-conditioned linear transform and Poisson noise.
Poisson data typically occur in imaging processes where the images are
obtained by counting particles, e.g., photons, that hit the image sup-
port. By using the Anscombe transform, the Poisson noise can be ap-
proximated by an additive Gaussian noise with zero mean and unit
variance. Then, the least squares difference between the Anscombe trans-
formed corrupted image and the original image can be estimated by
the number of observations. We use this information by considering an
Anscombe transformed constrained model to restore the image. The ad-
vantage with respect to corresponding penalized approaches lies in the
existence of a simple model for parameter estimation. We solve the con-
strained minimization problem by applying a primal-dual algorithm to-
gether with a projection onto the epigraph of a convex function related
to the Anscombe transform. We show that this epigraphical projection
can be efficiently computed by Newton’s methods with an appropriate
initialization. Numerical examples demonstrate the good performance
of our approach, in particular, its close behaviour with respect to the
I-divergence constrained model.

1 Introduction

The Poisson distribution exhibits a mean/variance relationship. This
mean/variance dependence can be reduced by using variance-stabilizing trans-
formations (VST), one of which is the Anscombe transform [1] defined as

T : [0,+∞)n → (0,+∞)n : v = (vi)1≤i≤n �→ 2

(√
vi +

3

8

)
1≤i≤n

.

It transforms Poisson noise to approximately Gaussian noise with zero-mean and
unit variance (if the variance of the Poisson noise is large enough). The Anscombe
transform has been employed in order to solve inverse problems where one wants
to recover an original signal u ∈ [0,+∞)m from observations

f = P(Hu),

A. Kuijper et al. (Eds.): SSVM 2013, LNCS 7893, pp. 125–136, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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where P denotes an independent Poisson noise corruption process and H ∈
[0,+∞)n×m is a linear degradation operator, e.g. a blur. Note that we consider
images of size M ×N columnwise reshaped as vectors of length m = MN .

In this context, one of the possible uses of the Anscombe transform is i) to
transform the degraded observations f , ii) to apply a data recovery technique
which is valid for an additive white zero-mean Gaussian model and iii) to apply
an inverse transform to the so-recovered signal [7] (see also [18] for more recent
developments). Note that this method appears mainly to be well-founded for
denoising problems. When a linear degradation operator H is present, a better
approach consists of adopting a variational framework [8,13] where one minimizes
a data fidelity term

u �→ ‖T (Hu)− T (f)‖22 (1)

penalized by a (sum of) regularization term(s) serving to incorporate prior in-
formation about the sought signal u. The approach is also closely related to a
Maximum A Posteriori (MAP) estimate, where the function in (1) is substituted
for the neg-log-likelihood of the Poisson noise, i.e., the I-divergence (generalized
Kullback-Leibler divergence)

u �→ D(f,Hu) :=

{
〈1n, f log f

Hu − f +Hu〉 if Hu > 0,
+∞ otherwise,

where 〈· , ·〉 denotes the standard Euclidean inner product and 1n denotes the
vector consisting of n entries equal to 1 (see [14,21]). One of the drawbacks of
these penalized methods is that multiplicative constants weighting the regular-
ization terms (the so-called regularization parameters) need to be set carefully,
which may be a difficult task.

A way of circumventing this problem consists of adopting a constrained ap-
proach instead of a regularized one, by imposing that

‖T (Hu)− T (f)‖22 ≤ τ (2)

where τ ∈ [0,+∞). Based on the statistical properties of the Anscombe trans-
form and the law of large numbers, a consistent choice for the above bound
is τ = n, when the number of observations n is large. In this work, we will
investigate such an approach by solving the following problem:

minimize
u∈C

Φ(Lu) subject to ‖T (Hu)− T (f)‖22 ≤ τ, (3)

where C is a nonempty closed convex subset of [0,+∞)m, L ∈ Rq×m, and
Φ : Rq → (−∞,+∞] is a proper, lower-semicontinuous, convex function. A typi-
cal choice for C is the nonnegative orthant of Rm. The classical Total Variation
objective function [20] is obtained, as a special case, when Φ is an �2,1 norm and
L corresponds to a discrete gradient operator. Constrained models based on the
I-divergence have been considered in [5,22], where in the second paper special
attention was paid to the relation between the parameters of the constrained
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and the penalized problem via discrepancy principles. Note that recently penal-
ized versus constrained problems in a rather general form were handled in [2]. In
[9], the I-divergence constraint was replaced through a polyhedral approxima-
tion technique and an epigraphical projection method was applied to solve the
problem. In this work, we will also take advantage of an epigraphical projection
approach to solve the Anscombe constrained model (3) and we will show that
the required epigraphical projections can be easily determined in this context.

The structure of this paper is as follows: Section 2 recalls the notation. In
Section 3 we determine the epigraphical projection for a function related to
constraint (2) which plays a central role in the primal dual algorithms established
in Section 4. In particular, we provide a good starting point for the involved
Newton method. Numerical examples are presented in Section 5 emphasizing
the good approximation of the I-divergence constrained approach achieved by
our Anscombe constrained model. Finally, a summary of our contribution and
some conclusions are given in Section 6.

2 Notation

Let Γ0(R
n) denote the set of proper, lower-semicontinuous, convex functions

mapping from Rn to (−∞,+∞]. The epigraph of ϕ ∈ Γ0(R
n) is the nonempty,

closed, convex subset of Rn+1 defined as

epiϕ := {(v, ζ) ∈ Rn × R : ϕ(v) ≤ ζ}.

For a nonempty, closed, convex set C ⊂ Rm we denote by ιC ∈ Γ0(R
m) its

indicator function

ιC(u) :=

{
0 if u ∈ C,
+∞ otherwise,

and by PC the orthogonal projector onto C. Beyond epigraphs of functions from
Γ0(R

n) we will consider the half-space Vτ := {ζ ∈ Rn : 〈1n, ζ〉 ≤ τ}. Using this
notation and defining, for every i ∈ {1, . . . , n},

ϕi : [0,+∞)→ [0,+∞) : s �→
(
2
√
s−

(
T (f)

)
i

)2
,

problem (3) can be rewritten as

minimize
(u,ζ)∈R

m×R
n
ιC(u) + Φ(Lu) +

n∑
i=1

ιepiϕi

(
(Hu)i +

3

8
, ζi

)
+ ιVτ (ζ). (4)

Now one can choose a primal-dual splitting algorithm as those proposed in
[4,6,11,12,23] to solve this problem. One step in all these algorithms consists
of the orthogonal projections onto the epigraphs of ϕi for all i ∈ {1, . . . , n}
which is the topic of the next section.
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3 Epigraphical Projection

In this section, we deal with the projection onto the epigraph of the function
ϕ ∈ Γ0(R) defined as

ϕ(s) :=

{
(2
√
s− z)2 if s ≥ 0,

+∞ otherwise,
(5)

where z > 0, see Fig. 1.

� �

z2

4

�z2

s

epiϕ

�

�

(x, ζ)

Pepiϕ(x, ζ)

Fig. 1. The epigraph of ϕ for z = 3 and the epigraphical projection Pepiϕ(x, ζ) of some
point (x, ζ)

Proposition 1. Let ϕ be defined by (5) with z > 0. Then the epigraphical pro-
jection of (x, ζ) ∈ R2 is given by

Pepiϕ(x, ζ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(max{x, 0}, ζ) if ϕ(max{x, 0}) ≤ ζ,((
t++z

2

)2

, t2+

)
if ϕ(max{x, 0}) > ζ and 4x ≥ z2,((

t−+z
2

)2

, t2−

)
if ϕ(max{x, 0}) > ζ and 4x < z2,

where t+, resp. t− is the unique root in [0,+∞), resp. in (−z, 0) of the cubic
polynomial

p : t �→ 17t3 + 3zt2 + (3z2 − 16ζ − 4x)t+ z(z2 − 4x). (6)

Proof. The function ϕ fulfills ϕ(0) = z2 and

ϕ′(s) = 4− 2z√
s

⎧⎪⎨⎪⎩
< 0 if 0 < s < z2

4 ,

= 0 if s = z2

4 ,

> 0 if s > z2

4
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and therefore lims→0
s>0

ϕ′(s) = −∞. Thus, if x ≤ 0 and ζ ≥ z2, then Pepiϕ(x, ζ) =

(0, ζ). In addition, if (x, ζ) ∈ epiϕ, then Pepiϕ(x, ζ) = (x, ζ).
We consider the remaining cases when (max{x, 0}, ζ) �∈ epiϕ. The tangent

vector of the curve associated with the graph of ϕ reads (1, ϕ′(s)), s > 0. The

uniquely determined orthogonal projection (x̂, ζ̂) := Pepiϕ(x, ζ) has to satisfy((
x
ζ

)
−

(
x̂

ζ̂

))
⊥

(
1

ϕ′(x̂)

)
and ζ̂ = ϕ(x̂), x̂ > 0 (7)

which leads to

0 = (x− x̂)
√
x̂+ 2

(
ζ − (2

√
x̂− z)2

)
(2
√
x̂− z), x̂ > 0.

Substituting t̂ := 2
√
x̂− z > −z, this can be rewritten as

0 = 17t̂3 + 3zt̂2 + (3z2 − 16ζ − 4x)t̂+ z(z2 − 4x) = p(t̂), t̂ > −z.

Conversely, if t̂ > −z is a root of the polynomial p in (6), then x̂ =
(
t̂+z
2

)2

fulfills

(7). When x ≥ z2/4 then also x̂ ≥ z2/4 (see Fig. 1), thus we are interested in the
restriction of ϕ to [z2/4,+∞) i.e., the nonnegative roots of p. The restriction of
ϕ to [z2/4,+∞) is convex, monotonically increasing, and (x, ζ) /∈ epi ϕ. Hence,

there is a unique point (x̂, ζ̂) on its graph that satisfies (7), i.e., p has a unique
root in [0,+∞). Analogously, when x < z2/4 then also x̂ < z2/4, thus we are
interested in the restriction of ϕ to [0, z2/4) i.e., the roots of p in the interval
(−z, 0). The restriction of ϕ to [0, z2/4) is convex and monotonically decreasing,
and the uniqueness of the root follows by the same arguments. Finally, it can be

noticed that ζ̂ = ϕ

((
t̂+z
2

)2
)

= t̂2 since t̂ > −z, which completes the proof. �

The next proposition states that the root t+, resp. t−, of polynomial p can be
computed efficiently by Newton’s method with initial value t0 := 2

√
max{x, 0}−

z. Indeed, we have seen in our numerical examples that t0 is a very good starting
point.

Proposition 2. Let (max{x, 0}, ζ) �∈ epiϕ and t0 := 2
√
max{x, 0} − z. Let the

polynomial p be defined by (6). Then, after a finite number of steps, the Newton
method for finding a zero of p with initial value t0 converges monotonically to
the root t+ if 4x ≥ z2, resp., t− if 4x < z2.

Proof. 1. First we show that

i) p(t0)p(0) ≤ 0,
ii) p′(t0) > 0,

where equality in i) holds true iff 4x = z2.
If x < 0, then t0 = −z and consequently, since (0, ζ) �∈ epiϕ, i.e., z2 > ζ,

we obtain: p(0) = z(z2 − 4x) > 0 and p(t0) = p(−z) = 16z(ζ − z2) < 0, which
proves i). Further, since p′ : t �→ 51t2 + 6zt+ 3z2 − 4x− 16ζ, we obtain

p′(t0) = p′(−z) = 48z2 − 16ζ − 4x ≥ 16(4z2 − ζ) > 0.
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If x ≥ 0, then t0 = 2
√
x− z. Consequently, we have p(0) = −z(z + 2

√
x)t0 and

p(t0) = 17t30 + 2zt20 + (3z2 − 16ζ − 4x)t0 + (t20 + z2 − 4x)z = 16t0(t
2
0 − ζ).

Since (x, ζ) �∈ epiϕ, i.e., t20 > ζ we conclude that i) holds true. Finally ii) follows
by

p′(t0) = 51t20+6zt0+3z2−16ζ−4x = 8(6t20−2ζ+x) = 16(t20−ζ)+8(4t20+x) > 0.

Since, in both cases, p(t0) �= 0, equality arises in i) iff p(0) = 0 i.e. 4x = z2.
2. The following result is well-known, see, e.g., [15, Theorem 18.3]: Newton’s

method for finding the unique root of a differentiable, convex, strictly increasing
function on an interval converges monotonically if we start at the right endpoint
of the interval. There is an analogous result for concave functions.

3. Since p′′ : t �→ 6(17t + z), p is convex on [− z
17 ,+∞) and concave on

(−∞,− z
17 ].

3.1 Let t0 > 0 which implies 4x − z2 > 0. Then p(0) < 0 and, according to
Part 1i), p(t0) > 0. Hence, by Proposition 1, t+ is the unique root of p in (0, t0).
Since p is continuous, p(t+) = 0 and p(t0) > 0, we necessarily have p′(t+) ≥ 0
(otherwise there would exist another root of p on (t+, t0)). Thus, since p is
strictly convex, it is strictly monotone increasing on [t+, t0] and we can invoke
the argument in Part 2 of the proof.

3.2 Let t0 < 0 which implies 4x − z2 < 0. Then, p(0) > 0 and p(t0) < 0 and
by Proposition 1 we know that t− ∈ (t0, 0) is the unique root of p in (−z, 0). If
t− ≤ − z

17 , then we are done by similar arguments as in 3.1 for concave functions.
It remains to study the case when t− > − z

17 .
If t0 > − z

17 , then we know by the strict convexity of p on [t0,+∞) that p′

is strictly increasing on this interval and by Part 1ii) we further have p′(t) >
p′(t0) > 0 for every t > t0. Thus, p itself is strictly increasing on [t0,+∞). Con-
sequently, one Newton step with initialization t0 generates t1 = t0− p(t0)/p′(t0)
and the convexity inequality p(t1) ≥ p(t0) + p′(t0)(t1 − t0) shows that p(t1) ≥ 0.
We thus are in the setting of Part 2 and the method converges monotonically.

Finally, let t0 ≤ − z
17 so that

4x ≤
(
16

17

)2

z2. (8)

Since we must have p(− z
17 ) < 0, a straightforward calculation yields

p
(
− z

17

)
=

2z

17

(
z2

17
+ 7z2 + 8ζ − 32x

)
< 0 ⇔ 8ζ < 32x− z2

17
− 7z2. (9)

We shall now prove that p′(t) > 0 for all t ∈ R, so that p is strictly increasing.
Since p′ is a quadratic polynomial with minimimum at − z

17 , we have only to
show that p′

(
− z

17

)
= 2

(
24
17z

2 − 8ζ − 2x
)
> 0. Plugging in (8) and (9), we indeed

obtain

1

2
p′

(
− z

17

)
>

24

17
z2 − 34x+

z2

17
+ 7z2 >

25

17
z2 − 128

17
z2 + 7z2 =

16

17
z2 > 0.
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The sequence (tk)k∈N generated by Newton’s algorithm is such that there exists
k0 ∈ N \ {0} such that tk0 ≥ t−. Otherwise, (tk)k∈N would be an increasing
sequence which would necessarily converge to t− and there would exist k1 ∈ N

such that p is convex over [tk1 ,+∞[. Then, we would have p(tk1+1) ≥ 0.
Thus, after a finite number of steps, the algorithm arrives at tk0 ≥ t− and we

can apply Part 2 of the proof.
3.3 Let t0 = 0 which implies 4z − t2 = 0. Then, we get t+ = t0. �

4 Primal-Dual Algorithms

We can apply the projection onto the epigraph of ϕ in combination with any
primal-dual algorithm proposed in [4,6,11,12,23] or an alternating direction
method of multipliers. For example, we use here the primal-dual hybrid gradient
algorithm from [6,19] with an extrapolation (modification) of the dual variable
which will be designated by PDHGMp. Based on the following reformulation of
(4),

minimize
(u,ζ),(v1,v2,η)

ιC(u) + ιVτ (ζ) + Φ(v2) +

n∑
i=1

ιepiϕi(v1,i, ηi)

subject to

⎛⎝H 0
L 0
0 I

⎞⎠(
u
ζ

)
+

⎛⎝3/8
0
0

⎞⎠ =

⎛⎝v1
v2
η

⎞⎠ , (10)

this algorithm reads:

Algorithm 1 (PDHGMp for solving the Anscombe constrained problem)

Initialization: u(0), ζ(0), (p
(0)
j )1≤j≤3 = (p̄

(0)
j )1≤j≤3, θ ∈ (0, 1], (ρ, σ) ∈ (0,+∞)2 with

ρσ < 1/max{1, ‖H∗H + L∗L‖2}
For k = 0, 1, . . . repeat until a stopping criterion is reached

1. u(k+1) = PC

(
u(k) − σρ

(
H∗p̄

(k)
1 + L∗p̄

(k)
2

))
2. ζ(k+1) = PVτ

(
ζ(k) − σρp̄(k)3

)
3. (v

(k+1)
1,i , η

(k+1)
i ) = Pepiϕi

(
p
(k)
1,i + (Hu(k+1))i + 3/8 , p

(k)
3,i + ζ

(k+1)
i

)
, i = 1, . . . , n

4. v
(k+1)
2 = proxσ−1Φ(p

(k)
2 + Lu(k+1))

5. p
(k+1)
1 = p

(k)
1 +Hu(k+1) + 3/8 − v(k+1)

1

6. p
(k+1)
2 = p

(k)
2 + Lu(k+1) − v(k+1)

2

7. p
(k+1)
3 = p

(k)
3 + ζ(k+1) − η(k+1)

8. p̄
(k+1)
j = p

(k+1)
j + θ(p

(k+1)
j − p(k)j ), j = 1, 2, 3.

The projection in step 1 is quite simple if C is the nonnegative orthant of Rm,
as well as the projection onto the closed half-space Vτ in step 2. Step 3 requires
the epigraphical projections discussed in the previous section, Step 4 can be
performed by coupled soft shrinkage with threshold σ−1 if we use the �2,1-norm.
The other steps can be computed in a straightforward way.
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We will compare this algorithm with PDHGMp applied to the I-divergence
constrained problem

minimize
u∈C

Φ(Lu) subject to D(f,Hu) ≤ τI (11)

using a similar splitting to (10) but without the extra-variables ζ and η:

Algorithm 2 (PDHGMp for solving the I-divergence constrained problem)

Initialization: u(0), (p
(0)
j )1≤j≤2 = (p̄

(0)
j )1≤j≤2, θ ∈ (0, 1], (ρ, σ) ∈ (0,+∞)2 with ρσ <

1/‖H∗H + L∗L‖2
For k = 0, 1, . . . repeat until a stopping criteria is reached

1. Step 1 of Algorithm 1

2. minimize
v1

‖v1 − (p
(k)
1 +Hu(k+1))‖22 subject to D(f, v1) ≤ τI as in [22].

3.− 5. Steps 4. - 6. of Algorithm 1

6. p̄
(k+1)
j = p

(k+1)
j + θ(p

(k+1)
j − p(k)j ), j = 1, 2.

In [24] (see also [3]) statistical arguments were used to show that τI = 1
2n

is a good estimate in case of moderate Poisson noise. In [5] this estimate was
improved in case f has many zero components.

5 Numerical Examples

In this section, we demonstrate the performance of our algorithm by numerical
examples implemented in MATLAB (Intel Core i7-870 Processor with 8M Cache,
2.93 GHz, 8 GB physical memory). We have tested the two original images u,
namely ’cameraman’ (256× 256) and ’brain’ (184× 140), depicted in Fig. 2 and
denoted by B1, resp. B2 in the following.

Fig. 2. Original images ’cameraman’ (left) and phantom of a brain image (right)

The images were blurred by a matrix H corresponding to a convolution with
a Gaussian kernel with standard deviation 1.3 and mirrored boundary (we have
then m = n). Their gray values are interpreted as photon counts in the range
[0, ν], where ν is the intensity of the image. We tested ν = 100, 600, 1200, 2000,
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Table 1. The original values ofD(f,Hu)/n, ‖T (Hu)−T (f)‖22/n and PSNR,MAE of f

D(f, Hu)/n ‖T (Hu) − T (f)‖2
2/n PSNR MAE

B1100 0.5075 1.0086 20.58 66.41e-3
B1600 0.5020 1.0034 23.38 41.59e-3
B11200 0.5018 1.0039 23.79 37.17e-3
B12000 0.4979 0.9960 23.97 34.87e-3
B13000 0.4994 0.9989 24.06 33.58e-3
B2100 0.4954 0.8866 18.34 82.45e-3
B2600 0.5131 1.0004 20.17 61.01e-3
B21200 0.5122 1.0178 20.37 57.90e-3
B22000 0.5063 1.0085 20.49 56.02e-3
B23000 0.4956 0.9899 20.52 55.16e-3

3000 and denoted the blurred, noisy images by B1ν and B2ν . In order to syn-
thetically add Poisson noise to the noise-free image, we applied the MATLAB
routine imnoise(X,’poisson’). For a quantitative comparison of the images,
we computed the peak signal to noise ratio (PSNR) and the MAE defined by

PSNR = 10 log10
|maxu−minu|2

1
n‖u−u‖2

2

, and MAE = 1
nν ‖u− u‖1. The ’true’ constraints

between the blurred, noisy image f and the original image u are given in Table 1.
As can be seen, the estimates τI = n/2 and τ = n are good approximations of
the true constraints D(f,Hu) and ‖T (Hu)− T (f)‖22.

We computed a minimizer of our functional (3) with C = [0,+∞)n, the �2,1-
norm for Φ, and the discrete gradient operator L (q = 2n) by using Algorithm
1 with τ = n. We compared the result with the I-divergence constrained ap-
proach (11) and Algorithm 2 with τI = n/2. The parameters σ and ρ appearing in
PDHGMp (in this setting convergence is theoretically guaranteed for σρ < 1/9)
are fitted such that the algorithms give (up to two digits after the comma) the same
PSNR, MAE and TV semi-norm (times 105 or 106) after 1000 iterations as after
100000 iterations. The small values of the constraint misfit are yet another indi-
cation that our results are in the vicinity of the true limit points and we have not
terminated the algorithms prematurely. Furthermore, we set θ = 1. Fig. 3 shows
the restoration results for B11200 and Fig. 4 for B21200.

Fig. 3. Result for the ’cameraman’ image B11200 corresponding to Table 3. Corrupted
image (left), restoration result by the Anscombe constrained model and Alg. 1 (middle),
difference image between the middle image and the one recovered by I-divergence
constrained model and Alg. 2 (right). The gray values in the difference image are
between -10 and 10, while the image values were scaled up to 1200.
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Table 2. Results of Algorithms 1 and 2 with τ = n and τI = n
2

image σ ρ ‖T (Hu) − T (f)‖2
2 − n D(f,Hu) − n/2 TV semi-norm PSNR MAE

B1100
0.09

1.225
2.2837 - 1.2217e+5 24.28 30.76e-3

0.12 - 2.5643 1.2646e+5 24.39 30.36e-3

B1600 0.0599 2.8
-1.5323 - 8.9230e+5 25.58 25.69e-3

- 0.0049 8.9402e+5 25.59 25.67e-3

B11200 0.042 3
9.0207 - 1.9190e+6 26.08 24.16e-3

- 0.045 1.9198e+6 26.08 24.15e-3

B12000 0.027 3.03
0.2634 - 3.3007e+6 26.35 23.30e-3

- -0.1911 3.3017e+6 26.36 23.30e-3

B13000 0.0329 4.001
-0.3559 - 5.1667e+6 26.64 22.50e-3

- 0.2767 5.1673e+6 26.64 22.49e-3

B2100 0.55 0.25
0.9730 - 0.9349e+5 19.91 59.78e-3

- 0.001 1.0459e+5 20.39 53.35e-3

B2600
0.040

3.04
-2.7434 - 7.4158e+5 21.81 40.05e-3

0.050 - 9.0129 7.5693e+5 21.91 39.28e-3

B21200
0.034

3.97
0.0079 - 1.5598e+6 22.33 36.26e-3

0.042 - 4.2683 1.5673e+6 22.36 36.11e-3

B22000
0.021

4.108
0.7789 - 2.6780e+6 22.72 33.53e-3

0.041 - 0.8585 2.6885e+6 22.73 33.48e-3

B23000
0.0182

5.413
-0.5284 - 4.0565e+6 22.93 32.08e-3

0.0282 - 1.5536 4.0603e+6 22.94 32.03e-3

Fig. 4. Result for the ’brain’ image B21200 corresponding to Table 3. Corrupted image
(left), restoration result by the Anscombe constrained model and Alg. 1 (middle),
difference image between the middle image and the one recovered by the I-divergence
constrained model and Alg. 2 (right). The gray values in the difference image are
between -15 and 15, while the image values were scaled up to 1200.

Table 2 summarizes the results for the different intensities. In the I-divergence
constrained approach with the brain data, we stopped after 5000 iterations, while
in all the other cases we stopped after 1000 iterations. As expected, we observe
that the outcomes of the two algorithms are very similar. More precisely, if uA,
resp. uI denotes the output of the restoration procedure with Anscombe, resp. I-
divergence constraints, then we get for image B1 that ‖uA− uI‖2/(ν

√
n) ranges

from 0.004 to 1.74e-4 and max |uA−uI |/ν from 0.0612 to 0.0031 for the different
noise levels.

Finally, Table 3 compares Algorithms 1 and 2 for different constraints τ and
τI and a central part of the cameraman of size 130× 130 with ν = 3000.
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Table 3. Results of Algotithms 1 and 2 after 1000 iterations on a part of B13000
for different constraining parameters τ = scale·n, τI = scale·n

2
. The optimal scale is

computed as in Table 1.

scale σ ρ ‖T (Hu)− T (f)‖22 − n D(f,Hu)− n/2 TV semi-norm PSNR MAE

0.8 0.2 0.975
-0.0813 - 2.2400e+6 26.51 22.03e-3

- -0.0585 2.2416e+6 26.52 22.02e-3

1.0 0.0269 4
-2.4868 - 1.7071e+6 25.60 21.20e-3

- -0.0425 1.7073e+6 25.60 21.19e-3

1.0095 (optimal) 0.0239 4.002
-0.0616 - 1.6964e+6 25.56 21.29e-3

- -0.0927 1.6971e+6 25.56 21.29e-3

1.2 0.011 8
1.1405 - 1.5563e+6 24.93 22.96e-3

- 0.0611 1.5565e+6 24.93 22.96e-3

2 0.004 30.065
-1.7501 - 1.3388e+6 23.70 27.02e-3

- -0.0257 1.3391e+6 23.71 27.02e-3

6 Summary and Conclusions

We have considered a constrained restoration model for images corrupted by a
linear transform and Poisson noise by making use of the Anscombe transform.
In contrast with penalized approaches, a main advantage of the proposed one
is that it makes it possible to employ a simple estimate for the model param-
eter. We have provided proximal algorithms to find a minimizer of the model,
which are based on epigraphical projections, and we have shown that the per-
formance is similar to a recently introduced I-divergence constrained model.
Future research directions include the following: i) replacing or combining the
discrete gradient operator L with other ones (discrete higher order operators,
nonlocal means, wavelet-like transforms) and handling other problems than de-
blurring ones, ii) considering convex optimization problems involving multiple
constraints for which the epigraphical projection approach may be quite effi-
cient, see [10], iii) restoring images with Poisson+Gauss noise, see [16,17], and
iv) finding numerically efficient methods to map the constraint bound to the
parameter of the corresponding penalized functional.
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Abstract. This paper tackles the problem of mixing static and dynamic
texture by combining the statistical properties of an input set of images
or videos. We focus on Spot Noise textures that follow a stationary and
Gaussian model which can be learned from the given exemplars. From
here, we define, using Optimal Transport, the distance between texture
models, derive the geodesic path, and define the barycenter between sev-
eral texture models. These derivations are useful because they allow the
user to navigate inside the set of texturemodels, interpolating a new one at
each element of the set. From these new interpolated models, new textures
can be synthesized of arbitrary size in space and time. Numerical results
obtained from a library of exemplars show the ability of our method to
generate new complex and realistic static and dynamic textures.

1 Introduction

The problem of synthesizing new textures is central in Image Processing and
Computer Graphics. In order to render scenes for video games or animation films,
a texture is mapped onto a given surface. Because the shape and extension of
the surface may vary, the main goal of texture synthesis is to be able to generate
as much texture as it is needed in a fast and realistic way. This problem has
been addressed since the beginning of Computer Graphics, so we can find many
solutions in the literature.

1.1 Previous Works

Copy-Based Methods. These methods are adapted to complicated (not even
random) textures. The main assumption is that textures contain repeating local
patterns. They synthesize new textures by copying patches or pixels from the
original image in a way that preserves local structure. First proposed by Popat
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and Picard [1] in the context of clustering, it was simplified and popularized by
Efros and Leung [2] for texture synthesis. For a thorough review of copy-based
methods we refer the reader to the article [3].

Statistical Texture Models. Statistical parametric models are generally not
as good in handling complex texture patterns, but are more flexible and fast,
see for instance [4]. The main assumption of these models is that textures are
modeled by a probability distribution. Thus, texture analysis consists in esti-
mating the probability function and texture synthesis amounts to generate new
realizations of this probability distribution. Many methods have been proposed
within this category, specially relevant is the use of Markov random fields (i.e.
[5]) which model also copy-based methods (see for instance [6]) or stationary
Gaussian random fields [7].

Spot Noise models were first introduced by van Wijk [8] and are station-
ary models that replicate, in random locations, simple spot images. Galerne et
al.[7] analyze the asymptotical behavior of Van Wijk’s method to propose a new
method (Asymptotic Discrete Spot Noise), which consists in modeling texture
with a stationary Gaussian distribution. In this paper, we focus our attention
on this texture model and extend this framework to texture mixing.

Dynamic Texture Synthesis. Many methods for static image synthesis have
been adapted to the dynamic scenario (see for example [9], [6] in the context of
the copy-based methods), but very few have studied the specific dynamics of tex-
ture in time. In the context of Gaussian textures, linear dynamical systems [10]
and dynamic multiscale autoregressive models [11] have been proposed to model
the evolution of texture with time. However, these methods define models that are
difficult to manipulate (for instance to achieve model mixing.) Recently, an exten-
sion toGalerne et al.’smodel [7] for stationaryGaussian dynamic textures has been
proposed by Xia et al. [12]. In this paper, Xia et al. model dynamic texture as a 3D
Gaussian random field, with stationarity in space and time. Here, we take advan-
tage of this extension to generate newmixedmodels from input dynamic textures.

Texture Mixing. More complex textures can be obtained by texture mixing
which extends the traditional texture synthesis by considering the interplay be-
tween several texture models. This is a difficult problem since it requires to
average very distinct statistical features. Previous works make use of mixture
models, see for instance [13]. The use of non-parameteric histogram averaging has
also been proposed for grayscale [14] as well as color and wavelets features [15].
We propose here a simpler approach that makes use of a parameterization of the
Gaussian texture model. Defining a geodesic path with Optimal Transport (OT)
between the original Gaussian models, we can generate new textures sharing the
characteristics of the input ones. The proposed method ensures that the new
texture model stays Gaussian.

1.2 Contributions

We propose a new framework for texture synthesis based on the definition of
geodesic paths between stationary Gaussian texture models. Our first
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contribution is the definition of the geodesic distance, according to OT, be-
tween texture models, and the geodesic path associated to such distance. The
straightforward consequence of having this geodesic path is that we obtain a
method for interpolating new texture models with the statistical properties of
the input textures. Our second contribution consists in the extension of the in-
terpolation formula between two models to several models by defining the OT
barycenter. The final algorithm is solidly founded, the texture synthesis is fast,
and the obtained results look natural.

2 Spot Noise Texture Model

We model textures as stationary Gaussian random fields. These assumptions
allow us to learn the texture model parameters from a single texture exemplar.

2.1 Notations

Deterministic input exemplar textures are represented as f ∈ RN×d, where N =∏k
j=1Nj is the number of pixels (k = 2 for image and k = 3 for videos) and d

is the number of channels (d = 1 for grayscale and d = 3 for color datasets).
We refer to f(x) ∈ R3 to the color vector at position x, where there are N such
positions x. We denote Gaussian distributions as μ = N (m,Σ) wherem ∈ RN×d

is the mean of the distribution and Σ ∈ RNd×Nd is a positive semi-definite
covariance matrix.

The k-dimensional discrete Fourier transform f̂ ∈ RN×d of f ∈ RN×d is
defined as

∀ω = (ω1, . . . , ωk), f̂(ω) =
∑
x

f(x)e
−∑

j
2iπ
Nj

ωjxj ∈ Rd.

It is computed in O(Nd log(Nd)) operations and it is inverted with the same
complexity using the inverse FFT.

Given two periodic images or videos f, g ∈ RN , we define the convolution
h = f % g of f and g as

h(x) =
∑
y

f(x− y)g(y) ⇐⇒ ĥ(ω) = f̂(ω)ĝ(ω). (1)

2.2 Stationary Gaussian Models

We model a texture as a random vector X distributed according to some Gaus-
sian distribution μ, which we denote X ∼ μ. A random vector X is stationary
if the distribution of X(·) and X(·+ τ) are the same, for any translation vector
τ ∈ Zk, where we assume periodic boundary conditions. Section 2.4 details how
to learn the parameters when the input exemplar is non-periodic.

The fact that X is stationary implies that the meanm(x) ∈ Rd is independent
of the position x and the covariance operatorΣ is block-diagonal over the Fourier
domain, thus it can be computed using convolutions, that is to say, the covariance
operator y = Σf can be applied over the Fourier domain as ŷ(ω) = Σ̂(ω)f̂(ω)
where Σ̂(ω) ∈ Cd×d is a positive Hermitian matrix.
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2.3 Spot Noise Model

A Spot Noise (SN) random vectorX = (X1, . . . , Xd) is a Gaussian texture model
obtained from an input texture f = (f1, . . . , fd) by convolving each channel with
the same Gaussian white noise [7]. This reads

∀ j = 1, . . . , d, Xj = mj + fj % W (2)

where % is the k-dimensional periodic convolution and the W is a white noise
W ∼ N (0, IdN/

√
N), and mj is the mean of fj . We denote μ = μ(f) the

distribution of this random vector X , which is the SN distribution associated to
the exemplar f .

Equivalently, Spot Noise models are the stationary Gaussian vectors for which
the matrices Σ̂(ω) are rank one, and can thus be decomposed as

Σ̂(ω) = f̂(ω)f̂(ω)∗, (3)

where u∗ ∈ Cd is the complex conjugate transpose of u ∈ Cd.

2.4 Stationary Gaussian Model Synthesis

Once the parameters Σ and m of the Gaussian model μ = N (m,Σ) have been
computed, the synthesis of a texture g ∈ RN×d is obtained using a realization
of the Gaussian process.

For a generic stationary model, this is achieved by computing the Cholesky
factorization of the frequency covariance Σ̂(ω) = Â(ω)Â(ω)∗ where A(ω)∗ ∈
Cd×d is the complex conjugate transpose of the matrix A(ω) ∈ Cd×d. Then, we
compute ĝ(ω) = Â(ω)ŵ(ω) for ω �= 0 where w is a realization of N (0, IdNd/

√
N)

and ĝ(0) = Nm(0) is the constant mean of the model.
In the special case where the model is a Spot Noise μ(f), meaning that Σ̂(ω) =

f̂(ω)f̂(ω)∗, the synthesis is even faster using, for ω �= 0, ĝ(ω) = ŵ(ω)f̂(ω), or
equivalently using a realization of the convolution formula (2).

Boundary Conditions. Up to now, the image is assumed to be periodic in our
texture model. To be able to learn the parameters from a non-periodic image, a
preprocessing is required. Symmetrizing the image with respect to the boundaries
introduces axis-aligned artifacts. Following [7], we substitute each channel fj of
the input exemplar by its periodic component as defined by Moisan [16].

Extending the Texture Size. In our context, the process of extending the
input texture of sizeN1×N2×N3 to any arbitrary sizeM1×M2×M3 can be done
following the method proposed by Galerne et al. [7]. The periodic component of
the original texture is located at the center of a flat new image (or video) of value
m and dimensions M1×M2×M3. To avoid the introduction of high frequencies,
the new borders are smoothed with a spatial windowing function. This extended
image or video is then used to learn a texture model of size M1 ×M2 ×M3.
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3 Optimal Transport Geodesic of Spot Noise

Now that we have defined our texture model we proceed to the exposition of our
model mixing method. It operates using OT geodesic over the set of Gaussian
distributions. This is achieved by defining the OT geodesic interpolation [17]
over the space of Gaussian models.

3.1 Optimal Transport Geodesics of Gaussian Fields

The first step is to define a geodesic distance between texture models, that is
to say, between two arbitrary stationary Gaussian distributions. The L2 OT
distance between μi = N (mi, Σi) reads:

d(μ0, μ1)
2 = tr (Σ0 + Σ1 − 2Σ0,1) + ||m0 −m1||2,

where Σ0,1 = (Σ
1/2
0 Σ1Σ

1/2
0 )1/2 (see for instance [18]).

This distance is known to be geodesic, meaning that d(μ0, μ1) is equal to the
length of the shortest path (the so-called geodesic path) t ∈ [0, 1] �→ μt between
μ0 and μ1. This geodesic path satisfies

∀ t ∈ [0, 1], μt = argmin
μ

(1− t)d(μ0, μ)
2 + td(μ1, μ)

2,

where t �→ μt parameterizes the path, so μt can also be understood as a weighted
barycenter of the input texture models. The following proposition shows that
this geodesic path is composed of Gaussian models, so that the set of Gaussian
models are geodesically convex for the OT distance [19].

Proposition 1. If ker(Σ0) �⊂ ker(Σ1)
⊥ and rank(Σ0) � rank(Σ1), the unique

Gaussian OT-geodesic of Gaussian distributions μi = N (mi, Σi) (for i = 0, 1)
is a Gaussian distribution N (mt, Σt) where mt = (1− t)m0 + tm1 and

Σt = [(1− t)Id + tΠ ]Σ0[(1− t)Id + tΠ ] (4)

where Π = Σ
1/2
1 Σ+

0,1Σ
1/2
1 and where A+ is the Moore-Penrose pseudo-inverse

and A1/2 is the unique positive square root of a symmetric semi-definite matrix.

Proof. The proof follows the one in [19] with the extra care that the covariance
can be rank-deficient, hence requiring a pseudo-inverse.

Note that the condition rank(Σ0) � rank(Σ1) is not restrictive since one can
otherwise exchange the roles of Σ0 and Σ1 and replace t by 1−t when computing
the geodesic path.

We now show that if the input models μ0, μ1 are Spot Noise, then the geodesic
interpolation is also Spot Noise. This means that the texture models we consider
are geodesically convex.
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Theorem 1. For i = 0, 1, let μi = μ(f [i]) be Spot Noise distributions associated
with f [0], f [1] ∈ RN×d. The OT geodesic path μt defined in equation (4) is a
Spot Noise model μt = μ(f [t]) where f [t] = (1− t)f [0] + tg[1] with

∀ω, ĝ[1](ω) = f̂ [1](ω)
f̂ [1](ω)∗f̂ [0](ω)

|f̂ [1](ω)∗f̂ [0](ω)|
. (5)

Proof. The covariance operator is a matrix-convolution operator, thus we can
define in the Fourier domain its associated kernel as Σ̂i(ω) = f̂ [i](ω)f̂ [i](ω)∗ ∈
Cd×d. The symmetric operator Π from equation (4) is also a matrix convolution
Πg = π % g with kernel whose Fourier transform is

π̂(ω) = Σ̂
1
2
1 (ω)

(
Σ̂

1
2
1 (ω)Σ̂0(ω)Σ̂

1
2
1 (ω)

)− 1
2

Σ̂
1
2
1 (ω).

Note that the square root of a rank-1 matrix can be easily computed as

∀u ∈ Cd, (uu∗)1/2 =
1

|u|uu
∗ ∈ Cd×d.

Using this property, together with the definition of Σ̂, and denoting ui = f̂ [i](ω)
one proves that

π̂(ω) =
1

|u∗1u0|
u1u

∗
1(u1u

∗
1)

−1u1u
∗
1 =

u1u
∗
1

|u∗1u0|
. (6)

Observe that although the matrix u∗1u0 is non invertible, the above expression
is correct because the mapping π(ω) is zero on the orthogonal of u1.

The expression (4) of the covariance implies that it is also a matrix-convolution
operator with kernel defined over the Fourier domain as

Σ̂t(ω) = f̂ [t](ω)f̂ [t](ω)∗ ∈ Cd×d,

where

f̂ [t](ω) = [(1− t)Id + tπ̂(ω)]f̂ [0] ∈ Cd.

Using the expression (6) for π̂(ω), one thus has that μt = μ(f [t]) is a Spot Noise
model where f [t] is defined as

f̂ [t](ω) = (1− t)f̂ [0](ω) + t
f̂ [1](ω)∗f̂ [0](ω)

|f̂ [1](ω)∗f̂ [0](ω)|
f̂ [1](ω)︸ ︷︷ ︸

ĝ[1](ω)

∈ Cd.

Therefore the new interpolated models μt are Gaussian, Spot Noise, and their
covariances can be computed by a suitable averaging of the Fourier transforms
of the input exemplars. The pseudocode of the proposed method is provided in
Fig. 1.
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Table 1. Pseudocode for geodesic mixing between two input exemplars

Input: exemplars (f [0], f [1]), weight t ∈ [0, 1].
Output: realization h of the interpolated model μt between μi = μ(f

[i]) for i = 0, 1.
Preprocessing: for i = 0, 1,
• Replace f [i] by its periodic component. If needed extend its size by zero padding.
• Compute the mean mi and subtract it, ∀ x, f [i](x) ← f [i](x)−mi.
• Computes the Fourier transforms f̂ [i] of f [i] using FFTs.
Model mixing:
• Compute ĝ[1] with equation (5).
• ∀ω, compute f̂ [t](ω) = (1− t)f̂ [0](ω) + tĝ[1](ω)
• Compute mt = (1− t)m0 + tm1 ∈ Rd.
Spot Noise synthesis:
• Compute a realization w ∈ RN of N (0, IdN/

√
N) (using e.g. Matlab randn).

• Compute the Fourier transform ŵ of w using FFT.
• ∀ω �= 0, ∀ j = 1, . . . , d compute ĥj(ω) = f̂

[t]
j (ω)ŵ(ω). Set ĥ(0) = Nmt.

• Compute h ∈ RN×d from ĥ using the inverse FFT.

3.2 Numerical Results

Let us now show some results obtained with the Spot Noise geodesic mix method
explained in this section. Each row of Figure 1 corresponds to a single experiment
which consists in learning the Gaussian model of two input textures (f [0] and
f [1]) and interpolate new Gaussian models following the path between model f [0]

and f [1]. Note that the images in columns t = 0, 1 are instances of the original
models. We would like to point out how this instances are perceptually similar
to the original input textures.

Regarding the columns for t = 1/3 and 2/3, we would like to point out how the
color changes gradually as we move along the geodesic path and that the spacial
patterns of the original textures are being mixed also in different proportion.

An example of dynamic texture mixing can be observed in Figure 2. Each
row corresponds to a single video, where every image is a single frame, ordered
from left to right. The first and last rows are the inputs and the two middle ones
where interpolated with the geodesic mix method.

4 Optimal Transport Barycenter of Spot Noise

In the previous section, we explained how to create new texture models by
following a geodesic path between the two input models. This section extends
this idea to more exemplars using a geodesic barycenter of the models. In the
case of 3 exemplars (resp. 4), this can be visualized by locating the input models
on the vertices of a 2-D triangle (resp. 3-D tetrahedron). Computing the OT
barycenter allows one to navigate inside the triangle (resp. tetrahedron).
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f [0] t = 0 t = 1/3 t = 2/3 t = 1 f [1]

Fig. 1. f [0] and f [1] are the input texture images. After learning the input models, we
interpolate new ones (t = 0, 1/3, 2/3, 1) along the OT geodesic path from f [0] to f [1].

4.1 Optimal Transport Barycenter

Given a family of Gaussian distributions (μi)i∈I and weights ρi with
∑

i ρi = 1,
where ρi ≥ 0, the OT barycenter is defined as

μ� = argmin
μ

∑
i∈I

ρid(μi, μ)
2. (7)

Note that for |I| = 2 we retrieve the geodesic path by setting t = ρ2. For
the special case of a Gaussian distribution μi = N (mi, Σi), there is no close
form solution if |I| > 2. The barycenter can be shown to be Gaussian [20]

Fig. 2. Example of dynamic textures mixing. The first and last row correspond to f [0]

and f [1] respectively, being the order of the frames from left to right. The central rows
are instances of the interpolated dynamic texture models.
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Table 2. Pseudocode for mixing several input exemplars

Input: exemplars (f [i])i∈I , weight (ρi)i with
∑

i∈I ρi = 1.

Output: realization h of the interpolated model μ� between μi = μ(f
[i]) for i ∈ I .

Preprocessing: for i ∈ I , apply the pre-processing step of Table 1.
Model mixing: for each ω, do
• ∀ i ∈ I , compute Σ̂i(ω) = (f̂

[i]
p (ω))(f̂

[i]
p (ω))∗ ∈ Cd×d

• Initialize Σ̂(0)(ω) = 0 ∈ Cd×d.
• Repeat until convergence Σ̂(k+1)(ω) = Φω(Σ̂

(k)(ω)) (see (9)), k ← k + 1.
• Set Σ̂�(ω) = Σ̂(k)(ω). Compute the Cholesky factorization Σ̂�(ω) = Â(ω)Â(ω) of
Σ̂�(ω).
Gaussian model synthesis:
• Compute m� =

∑
i∈I ρimi ∈ Rd.

• Compute a realization w ∈ RN×d of N (0, IdNd).
• Compute the Fourier transform ŵ ∈ RN×d of w using FFT.
• ∀ω �= 0, compute ĥ(ω) = Σ̂�(ω)ŵ(ω) ∈ Cd. Set ĥ(0) = m�.
• Compute h ∈ RN×d from ĥ using the inverse FFT.

μ� = N (m�, Σ�), where m� =
∑

i∈I ρimi and the covariance matrix is solution
of the fixed point equation Φ(Σ�) = Σ� where

Φ(Σ) =
∑
i∈I

ρi

(
Σ1/2ΣiΣ

1/2
)1/2

. (8)

This barycenter can be shown to be unique if one of the Σi is full rank [20].
We leave for future work the theoretical analysis of the uniqueness when all the
covariances are rank-deficient.
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f [0]

f [1]

f [2]

(a) (b)

Fig. 3. (a) Spatial location scheme. (b) Each column corresponds to a single experi-
ment, where f [0], f [1], f [2] are the original textures located at the vertices of the trian-
gle in positions 0, 3, 7, respectively. The other numbers correspond to the interpolated
Gaussian models. Instances of all of these models can be observed in Figure 4 (a)-(e).
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0

1

2

3

4

5

6

7

(a) (b) (c) (d) (e) (f) (g)

Fig. 4. Each column corresponds to a single experiment. The parameter ρ = (ρ1, ρ2, ρ3)
of equation 7 is defined according to the triangle coordinates of the points in Figure
3(a). (a)-(e) Images obtained with the barycenter mix method whose input textures
are shown as columns in Figure 3, respectively. (f)(g) Results obtained by the first
method proposed by Rabin et al. [15].

4.2 Spot Noise Barycenter

When μi are Spot Noises, the covariance Σ� of the barycenter is block diagonal
over the Fourier domain, and the blocks Σ̂�(ω) satisfy the fixed point equation
Σ̂�(ω) = Φω(Σ̂

�(ω)) with
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Φω(Σ) =
∑
i∈I

ρi

(
Σ1/2Σ̂i(ω)Σ

1/2
)1/2

. (9)

We note that in general, μ� is not Spot Noise because Σ̂�(ω) is not necessarily
rank one.

Numerical Computation. Following [21], we propose to compute Σ̂�(ω) by
iterating the mapping Φω , i.e. compute the sequence Σ̂(k+1)(ω) = Φω(Σ̂

(k)(ω)).
Although the mapping Φω is not strictly contracting, we observe numerically the
convergence Σ̂(k)(ω)→ Σ̂�(ω) when k → +∞. The numerical computation of Φω
in the case d = 3 requires the computation of the square root of 3× 3 matrices,
which is performed explicitly by computing the eigenvalue of the symmetric
matrix as the root of a third order polynomial. The pseudocode of the method
is detailed in Table 2.

4.3 Numerical Examples

Given three input textures, f [0], f [1], f [2], and the path defined in Figure 3(a) by
the red numbers in increasing order, we generate the Gaussian models associated
to each point. A realization of each of these models can be observed in Figure
4 (a)-(e) using as input textures the columns of Figure 3, respectively. Note
how, as we approach an input model, the features of it tend to predominate in
the synthesized texture and how the color and the texture patterns are smoothly
interpolated along the geodesic path. We would also like to note that this method
is also able to reproduce small periodic patterns. Finally, in Figure 4 (f) (g) we
show the results obtained with the method by Rabin et al. [15], to be compared
with the columns Figure 4 (d) (e), respectively.

5 Conclusion

We have presented a new method for texture mixing that enables the creation
of new complex textures from a set of exemplars.

Given two texture models, we used the OT geodesic path over Gaussian dis-
tributions to interpolate new texture models. The numerical results show how
the method is able to merge the visual features of the original images into new
complex textures. We also generalized this OT geodesic method to the mixing
of an arbitrary number of models using OT barycenters. We postpone for later
research a thorough perceptual evaluation of the output textures.
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Abstract. We propose and state a novel scheme for image magnifica-
tion. It is formulated as a minimization problem which incorporates a
data fidelity and a regularization term. Data fidelity is modeled using a
wavelet transformation operator while the Total Generalized Variation
functional of second order is applied for regularization. Well-posedness
is obtained in a function space setting and an efficient numerical algo-
rithm is developed. Numerical experiments confirm a high quality of the
magnified images. In particular, with an appropriate choice of wavelets,
geometrical information is preserved.

1 Introduction

We consider the problem of obtaining a high resolution image from low resolu-
tion data. This can be seen as an inverse problem, where the objective is the
inversion of a downsampling operator denoted by A. This problem is ill-posed
since the kernel of A is large. A standard technique to obtain well-posedness is to
apply Tikhonov regularization with a regularization functional that we denote
by G. The task of reconstructing a high resolution image û that fits to given low
resolution image data d can then be realized by solving

min
u

G(u) + IUD (u)⇔ min
Au=d

G(u),

where UD = {u |Au = d} and IUD is the convex indicator function w.r.t. UD. In
order to achieve a natural-looking result, we have to make appropriate choices
for the downsampling operator A and the regularization term G, both having
strong influence on the obtained reconstruction quality.

Downsampling. The first question is how to describe the downsampling proce-
dure, i.e. the process of obtaining discrete pixel values from an image u defined,
for instance, on the unit square. The multiresolution approach of wavelet bases
provides a framework to describe downsampling procedures: In a simple, one
dimensional setting, given orthogonal scaling and wavelet functions (φj,k)j,k∈Z

and (ψj,k)j,k∈Z, respectively, any signal u ∈ L2(R) can be fully described by the
L2− inner products

(u, φR,k)2, (u, ψj,k)2, for j, k ∈ Z, j ≤ R,

A. Kuijper et al. (Eds.): SSVM 2013, LNCS 7893, pp. 149–160, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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and for any R ∈ Z fixed. In this context, the inner products ((u, φR,k)2)k∈Z, can
be interpreted to be the values of the signal u at resolution R, while the inner
products ((u, ψj,k)2)j≤R,k∈Z contain all remaining detail information. Thus, the
mapping that asserts to any given signal u the inner products ((u, φR,k)2)k∈Z

can be seen as a subsampling operation to a resolution R. Since this multires-
olution framework can be considered for any choice of wavelet basis, even for
non-orthogonal Riesz bases, it allows a general approach to a downsampling
operator for the zooming problem. Thus, given the multiresolution framework
of any wavelet basis and fixed a resolution level R ∈ Z, we define the linear
downsampling operator to be

u �→ ((u, φR,k)2)k∈Z.

Regularization. The second choice is the regularization term. Naturally, this
choice should reflect typical properties of realistic images, in particular allow
jump discontinuities. We will use the Total Generalized Variation (TGV) func-
tional of second order for regularization (see [3]). As the well known Total Vari-
ation functional, it allows jump discontinuities in the continuous setting, but
is also aware of second-order features. As a result, it favors piecewise linear
reconstructions, yielding an improved image quality (see for example [1–3]).

Thus, given the scaling functions (φR,k)k∈Z, in order to obtain a high resolu-
tion image from low resolution data d = (dk)k∈Z, our aim is to solve

min
u

TGV2
α(u) + IUD (u) (1)

where
UD = {u | (u, φR,k)2 = dk for all k ∈ Z}. (2)

We ask for the readers patience until Section 2 for a definition of TGV2
α.

The idea of image zooming by interpolating wavelet coefficients is not new;
we refer to [12] and the references therein for an overview. However, the crucial
point of these approaches is how to obtain the missing detail coefficients. In
contrast to the methods in [12], we propose to use a variational technique, in
particular TGV regularization, to resolve this issue.

Variational methods have already been applied for the related problem of
recovering wavelet data of JPEG 2000 compressed images, missing due to trans-
mission errors: We refer to [15] for a nonlocal TV regularized model and the
references therein. Last but not least we refer to [6,13] for TV regularized zoom-
ing methods.

TGV regularization has already been applied by the authors in [2] to a similar
problem setting in the context of JPEG decompression. Even though the setting
of [2] also allows for TGV regularized zooming, the analytical as well as numerical
framework relies on orthonormal basis transforms and thus is not applicable for
general wavelet transforms.

The present paper is structured as follows: In the next section we rigorously
state the minimization problem (1) in a function space setting and show existence
of a solution. In the third section, we provide an algorithm for the numerical
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solution and in the last section we present numerical results that illustrate the
good reconstruction quality of our approach.

2 Problem Statement

Let Ω ⊂ R2 be a bounded Lipschitz domain. The total generalized variation
functional, as introduced in [3], can be defined for arbitrary order K ∈ N and
is a non-trivial generalization of the total variation (TV) functional in the sense
that it is equivalent to the TV functional for K = 1.

We are interested in the second order TGV functional, which can be defined,
for α ∈ (R+)2, u ∈ L1

loc(Ω), as

TGV2
α(u) = sup

{∫
Ω

u div2 v dx
∣∣ v ∈ C2c , ‖v‖∞ ≤ α0, ‖ div v‖∞ ≤ α1

}
. (3)

It has been shown in [5], that TGV2
α can equivalently be written as

TGV2
α(u) = min

v∈BD(Ω,R2)
(α1‖Du− v‖M + α0‖Ev‖M) , (4)

with D and E being the weak gradient and the weak symmetrized gradient,
respectively, BD(Ω,R2) being the set of L1(Ω,R2) functions v such that Ev is a
finite Radon measure and ‖·‖M being the Radon norm. This gives insight to the
structure of TGV2

α: Its evaluation can be interpreted as local optimal balancing
between the first and the second order derivative of u, penalizing jumps in the
original function as well as the derivative, but not penalizing linear ascent. Thus
one would expect TGV2

α not to suffer from first order staircasing effects, as has
been confirmed in [4] in a particular setting.

The following proposition summarizes analytical properties of the TGV2
α func-

tional [3, 4].

Proposition 21. Let Ω ⊂ R2 be a bounded Lipschitz domain and α ∈ (R+)2.

– TGV2
α is proper, convex and lower semi-continuous as function from L1(Ω)

to R ∪ {∞}.
– TGV2

α and TGV2
α̃ are equivalent for any α̃ ∈ (R+)2.

– There exist constants c, C > 0 such that

c (‖u‖1 +TV(u)) ≤ ‖u‖1 +TGV2
α(u) ≤ C (‖u‖1 +TV(u))

for any u ∈ L1(Ω).
– There exists a constant C > 0 such that

‖u− P1(u)‖2 ≤ C TGV2
α(u)

for any u ∈ L1(Ω), where P1 is a linear projection to the space of affine
functions.
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These properties will allow us to obtain existence of a solution for the TGV2
α

regularized wavelet based zooming problem.
For data fidelity, in particular for the subsampling operation, we want to use

an arbitrary Riesz basis [14, Section 1.8] related to a wavelet based multireso-
lution framework: Given a function φ ∈ L2(R), the scaling function, it has been
shown in [8] that, under certain assumptions, one can define a corresponding
mother wavelet function ψ ∈ L2(R). With that, a Riesz basis of L2(R) can be
constructed from translations and dilatations of the scaling function and the
mother wavelet. We will in particular only consider scaling functions φ having
compact support, which then results in compactly supported basis elements.

This basis can then be used to first construct a Riesz basis of L2((0, 1)) by
applying a folding technique [9, Section 2] that corresponds to natural boundary
extension. Subsequently, a Riesz basis of L2((0, 1)×(0, 1)) can be obtained using
tensor products of the L2((0, 1))-basis elements, similar as in [10, Section 10.1].
Thus, given any suitable φ ∈ L2(R), and fixed a resolution level R ∈ Z, we can
construct a Riesz basis of L2((0, 1)× (0, 1)) that will be denoted by

(φR,k)k∈MR (ψj,k)j≤R,k∈Lj , (5)

with MR, (Lj)j≤R finite index sets in Z2. Note that finiteness of those index sets
is due to the folding and that (ψj,k)j≤R,k∈Lj has infinitely many elements since
j is an arbitrary integer less or equal to R.

For any Riesz basis, there also exists a dual Riesz basis [14, Chapter 1], which
in this setting again results from translations and dilatations of functions φ̃ and
ψ̃ [8, 9], and the dual basis to (5) can be denoted by

(φ̃R,k)k∈MR (ψ̃j,k)j≤R,k∈Lj . (6)

Further, any u ∈ L2(Ω), with Ω := (0, 1)× (0, 1), can be written as

u =
∑

k∈MR

(u, φ̃R,k)2φR,k +
∑

j≤R,k∈Lj

(u, ψ̃j,k)2ψj,k

=
∑

k∈MR

(u, φR,k)2φ̃R,k +
∑

j≤R,k∈Lj

(u, ψj,k)2ψ̃j,k.

Now assuming a low resolution image u0 ∈ span{φ̃R,k|k ∈ MR} to be given by
((u0, φR,k)2)k∈MR , our aim is to reconstruct a high resolution image

u ∈ L2(Ω) = span
(
{φ̃R,k|k ∈MR} ∪ {ψ̃j,k|j ≤ R,k ∈ Lj}

)
such that (u, φR,k)2 = (u0, φR,k)2 for all k ∈MR. This amounts to solve

min
u∈L2(Ω)

TGV2
α(u) + IUD (u), (7)

where UD = {u ∈ L2(Ω) | (u, φR,k)2 = (u0, φR,k)2 for all k ∈ MR}. In order to
obtain well posedness of (7), we need the additional assumption that the dual
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scaling basis (φ̃R,k)k∈MR is contained in BV(Ω) and that at least three of the
functions (φR,k)k∈MR have support contained in Ω.

These assumptions, however, are quite weak: By using the TGV2
α functional

as regularization we implicitly assume that images are contained in BV(Ω), thus
it is natural to require this weak form of regularity also for the basis functions
of the low resolution images. Also, one of the main points for wavelet bases to
be practicable is that they are compactly supported. In that case, the support
assumption is satisfied if the resolution R is sufficiently fine, i.e. if the discrete
image contains sufficiently many pixels. Using the Haar wavelet, for example,
this requires the image to have more that 2× 2 pixels.

The support assumption is necessary due to the folding: In order to ensure
that some folded functions (φR,k)k∈MR are indeed translations of each other,
their support must not intersect the boundary.

Proposition 22. Fixed any R ∈ Z, assume that the functions (φ̃R,k)k∈MR are
contained in BV(Ω). Further, assume that there exists k0 = (k10 , k

2
0) ∈MR such

that
supp(φR,k10+l1,k20+l2) ⊂ Ω

for all (l1, l2) ∈ {(0, 0), (1, 0), (0, 1)}. Then, the minimization problem (7) admits
a solution û ∈ BV(Ω).

Proof (Sketch of proof). We have that u0 ∈ BV(Ω)∩UD by being a finite linear
combination of BV(Ω) functions, thus the objective functional of (7) is proper
(see Proposition 21) and it is non-negative. Taking (un)n∈N to be a minimizing
sequence, by the estimate on ‖un − P1(un)‖2 as in Proposition 21, it suffices to
bound (‖P1(un)‖2)n∈N in order to bound (‖un‖2)n∈N. We denote

(P1(un))(x, y) = c1n + c2nx+ c3ny.

Now due to the support restriction we get that

φR,k10+1,k20
(x, y) = φR,k10,k20 (x− 1, y) and φR,k10 ,k20+1(x, y) = φR,k10,k20 (x, y− 1).

Thus, denoting by 1, x, y the functions mapping each (x, y) to 1, x, y, respectively,
if follows

(P1(un), φR,k10 ,k20 )2 = c1n(φR,k0 , 1)2 + c2n(φR,k0 , x)2 + c3n(φR,k0 , y)2,

(P1(un), φR,k10+1,k20
)2 = (c1n + c2n)(φR,k0 , 1)2 + c2n(φR,k0 , x)2 + c3n(φR,k0 , y)2,

(P1(un), φR,k10 ,k20+1)2 = (c1n + c3n)(φR,k0 , 1)2 + c2n(φR,k0 , x)2 + c3n(φR,k0 , y)2.

Now, by (u0, φR,k) = (un, φR,k) for all k ∈MR and n ∈ N, and by boundedness
of (‖un − P1(un)‖2)n∈N, the left hand sides of these equations are bounded. An
easy calculation hence yields boundedness of ((c1n, c

2
n, c

3
n))n∈N and, consequently,

boundedness of (‖P1(un)‖2)n∈N. Thus ‖un‖2 is bounded and, since bounded sets
in L2(Ω) are relatively weakly compact, there exists a subsequence, converging to
some û ∈ L2(Ω) weakly in L2(Ω). By convexity and norm closedness of UD we
get weak closedness, thus û ∈ UD, and by L1 lower semi-continuity and convexity
of TGV2

α that û is indeed a minimizer of (7).
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Within the assumptions of Proposition 22 we can now freely choose a scaling
function φ and the resulting multiresolution framework. In the following we will
briefly discuss some possible choices and their interpretation.

Choice of Scaling and Wavelet Functions. For a simple interpretation of the
choice of a scaling- and wavelet function, we will, for the rest of this section, go
back to the unconstrained, one dimensional setting. Assuming a discrete signal to
be given by ((u, φR,k)2)k∈Z, for fixed R ∈ Z, i.e. u ∈ span{φ̃R,k | k ∈ Z} ⊂ L2(R),

its projection onto the smaller, low resolution subspace span{φ̃R+1,k | k ∈ Z} is
described by

(u, φR+1,k)2 =
∑
l∈Z

hl(u, φR,l+2k)2, k ∈ N, (8)

i.e. linear filtering followed by subsampling, where the filters can be constructed
from φ (see [8]). Similar, obtaining a higher resolution representation from low
resolution data amounts to set

(u, φR,m)2 =
∑
k∈Z

[
h̃m−2k(u, φR+1,k)2 + (−1)m−2kh̃1−(m−2k)(u, ψR+1,k)2

]
,

i.e. upsampling followed by linear filtering, where again the filters can be con-
structed from φ. Not knowing the coefficients (u, ψR+1,k)2, a straightforward
upsampling can be obtained by assuming them to be zero, thus

(u, φR,m)2 ≈
∑
k∈Z

h̃m−2k(u, φR+1,k)2. (9)

We will now interpret this approximations for different choices of scaling func-
tions.

Haar Wavelet. A first, intuitive choice of one dimensional scaling function, from
which the two dimensional scaling and wavelet functions can be obtained, would
be to define

φ̃(x) = χ[0,1)(x).

This yields the well known Haar wavelet (cf. [8, Section 6.A]), and the filters
associated with φ and φ̃ are given by

2−1/2h0 = 2−1/2h̃0 =
1

2
, 2−1/2h1 = 2−1/2h̃1 =

1

2
.

Thus, the down- and upsampling as in Equations (8),(9) is given by

2−1/2(u, φR+1,k)2 =
1

2
[(u, φR,2k)2 + (u, φR,1+2k)2] ,

2−1/2(u, φR,2l)2 ≈
1

2
(u, φR+1,l)2, 2−1/2(u, φR,2l+1)2 ≈

1

2
(u, φR+1,l)2.

This corresponds to downsampling by averaging and upsampling by pixel repe-
tition.
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LeGall Wavelet. Another choice is to define

φ̃(x) = (1 + x)χ[−1,0)(x) + (1− x)χ[0,1](x)

i.e. a piecewise linear scaling function. This yields the LeGall wavelet used for
lossless coding in JPEG 2000 compression (cf. [8, Section 6.A]), and the filters
associated with φ and φ̃ are given by

2−1/2h̃0 =
1

2
, 2−1/2h̃±1 =

1

4
, 2−1/2h0 =

3

4
, 2−1/2h±1 =

1

4
, 2−1/2h±2 = −1

8
.

The down- and upsampling as in Equations (8),(9) can then be given by

2−1/2(u, φR+1,k)2 =
3

4
(u, φR,2k)2 +

1

4

∑
l=±1

(u, φR,2k+l)2 −
1

8

∑
l=±2

(u, φR,2k+l)2,

2−1/2(u, φR,2l)2 ≈
1

2
(u, φR+1,l)2,

2−1/2(u, φR,2l+1)2 ≈
1

4
(u, φR+1,l−1)2 +

1

4
(u, φR+1,l)2.

This corresponds to upsampling by linear interpolation.

CDF 9/7 Wavelet. At last we will also use the CDF 9/7 wavelets, which are the
basis for lossy JPEG 2000 coding, and whose filters can be found in [8, Table
6.2]. Again, the upsampling process can be seen as linear filtering, but we do not
have a direct interpretation.

3 Discretization

For the discrete setting, we define U = RN×N , N ∈ N, to be the space of discrete,
high resolution images, equipped with

‖u‖2U =
∑

0≤i,j<N
u2i,j.

Given scaling functions (φj,k)j∈Z,k∈N2
0
and the corresponding wavelet functions

(ψj,k)j∈Z, k∈N2
0
with their duals (φ̃j,k)j∈Z, k∈N2

0
and (ψ̃j,k)j∈Z, k∈N2

0
, we assume

that the pixels of any discrete image u ∈ U can be described by the coefficients

(u, φ0,k)2, 0 ≤ k < N,

where 0 ≤ k < N is meant component wise. For R ∈ N, a low resolution image

ṽ0 ∈ R(2−RN)×(2−RN) can then be obtained from v0 ∈ U by applying a discrete
wavelet transform operator W : U → U and taking

(Wv0)k = (v0, φR,k)2, 0 ≤ k < 2−RN,
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to be its pixel values. The other way around, assuming ṽ0 ∈ R(2−RN)×(2−RN) to
be given, one aims to find v0 ∈ U such that

(Wv0)k = (ṽ0)k, 0 ≤ k < 2−RN,

i.e. an image v0 ∈ U such that v0 yields ṽ0 when subsampled using the wavelet
transform.

Thus, given a discrete image u0 ∈ R(2−RN)×(2−RN) with R ∈ N and a wavelet
transform operatorW corresponding to scaling functions (φ̃R,k)k∈N2

0
, the discrete

data set UD can be written as

UD = {u ∈ U | (Wu)k = (u0)k, for all 0 ≤ k < 2−RN}. (10)

To define the TGV2
α functional we need the operators ∇ : U → U2, E =

1
2 (J + JT ) : U2 → U3, where ∇ and J are discrete gradient and Jacobian op-
erators, using forward and backward differences, respectively. Motivated by the
representation (4) we then define the discrete TGV2

α functional TGV2
α : U → R

as
TGV2

α(u) = min
v∈U2

α1‖∇u− v‖1 + α0‖Ev‖1, (11)

with

‖v‖1 =
∑
i,j

√
(v1i,j)

2 + (v2i,j)
2, ‖w‖1 =

∑
i,j

√
(w1

i,j)
2 + (w2

i,j)
2 + 2(w3

i,j)
2.

Note that we abuse notation by using the same symbol for a L1 type norm
on both U2 and U3 . Defining the spaces X = U3 and Z = U6, the discrete
minimization problem for wavelet based zooming can be written as

min
x∈X

F (Kx) (12)

with F : Z → R ∪ {∞}, K : X → Z, defined by

F (v, w, r) = α1‖v‖1 + α0‖w‖1 + ID(r), K =

⎛⎝∇ −idV0 E
W 0

⎞⎠
and D = {r ∈ U | (r)k = (u0)k, for all 0 ≤ k < 2−RN}. For numerical solution
of this problem, we apply a primal-dual algorithm as in [7] to the equivalent
saddle point problem

min
x∈X

max
z∈Z

(Kx, z)− F ∗(z), (13)

with F ∗ the convex conjugate of F .
For this setting, the updates performed in the algorithm consist of simple

arithmetic operations and the evaluation of (idZ + σ ∂ F ∗)−1(z) for σ > 0. By
subdifferential calculus, it can be shown that this reduces to

(idZ + σ ∂ F ∗)−1((v, w, r)) =

⎛⎝P{‖·‖∞≤α1}(v)
P{‖·‖∞≤α0}(w)
assign(u0,φ)(r)

⎞⎠ ,
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where P{‖·‖∞≤λ}(y) is a pointwise projection of y such that ‖y‖∞ ≤ λ, with
‖ · ‖∞ the dual norm of ‖ · ‖1, and

assign(u0,φ)(r)i,j =

{
ri,j − σ(u0, φR,(i,j))2 if 0 ≤ i, j < 2−RN
0 else.

Global convergence of the resulting primal dual algorithm can be assured if the
stepsize parameters τ, σ are such that στ ≤ ‖K‖−2, where ‖K‖ is the norm of
K as linear operator form X to Z. Even though this norm can be estimated an-
alytically, the estimate becomes quite large especially for higher levels of wavelet
decomposition, i.e. for larger zooming factors. Studying the convergence proof
of the algorithm in [7, Theorem 1], one can observe that it is possible to violate
στ‖K‖2 < 1 but still guarantee convergence, provided that

‖K(xn − xn−1)‖Z <
1√
στ
‖xn − xn−1‖X

is satisfied for all n ∈ N and (xn)n∈N the primal iterates. Ensuring this means
to use only the span of the iterates for the estimation of ‖K‖, one may hope
that this allows a significantly increased stepsize. Thus we propose the following
adaptive stepsize update, that allows to ensure global convergence of the primal
dual algorithm:

σn+1τn+1 = SK(σn, τn) =

⎧⎪⎪⎨⎪⎪⎩
‖K(xn−xn−1)‖Z

‖xn−xn−1‖X
if θσnτn >

‖K(xn−xn−1)‖Z

‖xn−xn−1‖X

θσnτn if σnτn >
‖K(xn−xn−1)‖Z

‖xn−xn−1‖X
≥ θσnτn

σnτn if σnτn ≤ ‖K(xn−xn−1)‖Z

‖xn−xn−1‖X
.

where 0 < θ < 1. With that, the primal dual algorithm for solving the wavelet
based zooming problem can be given as in Algorithm 1. The operants div : U2 →
U and div2 : U3 → U2 are defined as div = −∇T , div2 = −ET , i.e. discrete
divergence operators using backward and forward differences, respectively.

As stopping criterion we use a parameter dependent modification of the primal
dual gap as in [7], denoted by G̃. Provided a good parameter choice, we obtain
the estimate

∞ > G̃(xn, zn) ≥ α1‖∇un − vn‖1 + α0‖Evn‖1 + ICn(Wun)− TGV2
α(û) ≥ 0,

with xn = (un, vn), zn = (pn, qn, wn) being the iterates of Algorithm 1 and
x̂ = (û, v̂) an optimal solution of (12). Here

ICn(r) =
∑

0≤i,j<2−RN

(Cn)i,j
∣∣ri,j − (u0, φR,(i,j))2

∣∣,
with (Cn)i,j = γ|(wn)i,j |, γ > 1, incorporates data fidelity. Note that we cannot

expect to get the estimate G̃(xn, zn) ≥ α1‖∇un−vn‖1+α0‖Evn‖1−TGV2
α(û) ≥ 0

since the iterates (un)n∈N are only contained in the data set UD in the limit and
thus it is possible that α1‖∇un−vn‖1+α0‖Evn‖1 < TGV2

α(û). This was observed
also in numerical experiments.
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Algorithm 1. Scheme of implementation for wavelet based zooming

1: function TGV-Zoom(u0)
2: u←W−1(u0)
3: v ← 0, u← u, v ← 0, p← 0, q ← 0, w← 0
4: choose σ, τ > 0
5: repeat
6: p← projα1

(p+ σ(∇u − v))
7: q ← projα0

(q + σ(E(v))
8: w+ ← assign(u0,φ)(w + σ(W (u))
9: u+ ← u− τ(− div p+W ∗w+)

10: v+ ← v − τ(−p− div2 q)
11: u← (2u+ − u), v ← (2v+ − v)
12: σ+τ+ ← SK(σ, τ)
13: u← u+, v ← v+, σ ← σ+, τ ← τ+
14: until Stopping criterion fulfilled
15: return u+
16: end function

4 Numerical Experiments

Now we evaluate and compare numerical results obtained with the TGV based
wavelet zooming algorithm. We will see that the algorithm performs well in
general and in some situations it leads to highly improved results compared to
standard zooming methods. We use Algorithm 1 to obtain the high resolution
reconstruction, where we initialized the adaptive stepsizes with σ = τ = 1

3 and
fixed the ratio between α0 and α1 for evaluation of the TGV functional to 4.

As stopping criterion, we require the normalized primal dual gap, G = G̃/N2,
to be below 10−1 for all experiments. The purpose of using a normalized gap is
to get an image size independent estimate. We tested three different wavelets,
the Haar, Le Gall and CDF 9/7 wavelet as described in Section 2. For the Haar
wavelet, due to orthogonality, we used a simplified version of the algorithm,
similar to a the JPEG decompression algorithm presented in [2].

We first consider a four times magnification of a patch of the Barbara im-
age, containing a stripe structure. For better comparability, we used the original
image rather that a downsampled version. Thus the downsampling procedure
is not kown and cannot favor any particular method, but also no ground truth
is available. The results, using the three different wavelet types as well as in-
terpolation with a Lanczos 2 [11] filter, are shown in Figure 1. As one can see,
the linear filter based zooming leads to blurring of the stripes while our method
yields a reconstruction appearing much sharper. Using the CDF 9/7 wavelets
results in the best reconstruction quality. In particular, we observe that not only
the edges are preserved, but also the geometrical information is extended in a
natural manner for the CDF 9/7 wavelet (as opposed to the Haar wavelet, where
“geometrical staircasing” occurs).
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Next, Figure 2 shows results of the TGV based zooming method for the CDF
9/7 wavelet in the situation where the subsampling process is known and fits
to the model assumption, i.e. the subsampling was done by applying a wavelet
decomposition on the original image and neglecting the high resolution detail
coefficients. On the left of the figure, we show the subsampled version of the im-
age and its upsampling by setting the unknown detail coefficients to zero. This is
the initial image for our TGV based method. On the right, we show the outcome
of our method as the primal dual gap is below 10−1. With that we compare the
effect of TGV regularization independent of the wavelet basis. As one can see,
indeed the reconstruction quality is clearly improved when TGV based regular-
ization is applied, which justifies the application of TGV regularization instead
of simple wavelet based upsampling. This is reflected also by an improved Peak
Signal to Noise Ratio (PSNR) of the mean-value corrected images: The TGV
based reconstruction yields a PSNR of 29.70 while the wavelet upsampling yields
29.27. The PSNR is also highly increased with respect to standard interpolation
methods (Pixel repetition: 25.06, Cubic: 26.13, Lanczos 2: 26.13), however, this
must be partly explained by the downsampling being done accordance with the
wavelet model.

A B 1960

C 1360 D 1791

Fig. 1. A: 4 times magnification by Lanczos 2 filtering. B-D: 4 times magnification
by TGV based wavelet zooming using the Haar, Le Gall and CDF 9/7 wavelet, with
iteration number on top right. The stopping rule was G(xn, zn) < 10−1.
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Fig. 2. Girls-eye image (256 × 256 pixels). Left: CDF 9/7-Wavelet down- and up-
sampled image (without TGV regularization). Right: TGV based wavelet upsampling
using CDF 9/7 wavelet. The stopping rule was G(xn, zn) < 10−1.
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Abstract. We consider the problem of interpolating a surface based
on sparse data such as individual points or level lines. We derive in-
terpolators satisfying a list of desirable properties with an emphasis on
preserving the geometry and characteristic features of the contours while
ensuring smoothness across level lines. We propose an anisotropic third-
order model and an efficient method to adaptively estimate both the
surface and the anisotropy. Our experiments show that the approach
outperforms AMLE and higher-order total variation methods qualitat-
ively and quantitatively on real-world digital elevation data.

1 Introduction

We consider the problem of reconstructing an unknown two-dimensional height
map u : Ω → R on a two-dimensional domain Ω ⊆ R2, based on the values of
u on a small number of level lines: u(x) = li for x ∈ Ci, i = 1, . . . , N , where
Ci = u−1({li}) are the known level lines.

This is a problem that often appears in connection with digital elevation
maps (DEMs), such as in DEM reconstruction from sparse measurements or
tidal coastline data. Efficient DEM reconstruction methods might also lead to
more adapted compression algorithms for DEMs, although we will not consider
this application here.

In this work we are particularly concerned with approaches that do not impose
regularity on the level lines. This follows from the observation that in DEMs,
kinks in the level lines are characteristic features of the underlying surface, and
should therefore be propagated rather than removed.

We consider the following generic variational approach:

min
u
{R(u), u(x) = u0(x) for x ∈ C}, (1)

where R(·) is an appropriate regularizing term, and C ⊆ Ω is the set on which
the data is known. This approach is slightly more generic than the reconstruction
from full level lines, and can also be applied if only parts of the contours – or
even only the values on a set of disjoint points – are known.

In particular, we do not require a parameterization of the level lines Ci, but
rather rely on a grid discretization of the surface u only, as finding and matching
such parameterizations is a major task in itself.

A. Kuijper et al. (Eds.): SSVM 2013, LNCS 7893, pp. 161–173, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Fig. 1. Surface interpolation for digital elevation maps (DEMs). Left: Exemplary di-
gital elevation map. DEMs have a unique structure which requires careful consideration
when choosing a regularizer to avoid removing important features. Right: Surface in-
terpolation problem. Based on the given level lines (blue) the task is to reconstruct the
surface between the level lines. A particular difficulty is that level lines can have points
of high curvature or even be non-smooth (marked rectangular regions), while there
are generally no non-differentiabilities when crossing the contours along a path that
associates similar points (red). The proposed approach relies on a vector field v (red
arrows) that approximates the tangents to such paths in conjunction with a suitable
anisotropic regularizer.

The main difficulty lies of course in the choice of the regularizer R in order to
incorporate knowledge about the unique structure of DEMs (Fig. 1, left). The
assumption underlying the remainder of this work is that the level lines of u
can be non-smooth, but are generally “similar” to each other, i.e., points on two
sufficiently close level lines can be associated with each other (Fig. 1, right). We
therefore postulate the following three requirements on the reconstruction:

(P1) The surface should coincide with the given data on the set C.

(P2) The interpolated level lines should preserve the geometry of the given level
lines – in particular, non-differentiabilities – as accurately as possible.

(P3) The interpolated surface should define a smooth transition – at least con-
tinuity of the gradient – across level lines (e.g, along the red path in Fig. 1).

Contribution. Based on these requirements and motivated by the recent suc-
cess of higher-order total variation models, we discuss different choices for the
regularizer R based on L1-norms of second- and third-order derivatives.

We demonstrate that for an interpolation algorithm to fulfil the above re-
quirements (P2)-(P3) a third-order regularizer R is needed, and moreover it is
necessary to include directional information, i.e., anisotropy, in the form of an
auxiliary vector field v that incorporates information about the relation between
adjacent level lines. We propose an efficient method to approximate the unknown
vector field v for a known surface u as the direction in which the normals of the
level lines change least (Sect. 2).

The performance of the method on synthetic examples suggests that the pro-
posed method satisfies (P1)–(P3), and moreover that the surface u and the
directional vector field v can be efficiently jointly estimated. We conclude by
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a quantitative comparison on real-world DEM data against AMLE and higher-
order total variation methods (Sect. 3).

Related Models. In the literature on surface interpolation two main streams
of methods can be found. The first one is the explicit parameterization of given
level lines of the surface with subsequent pointwise matching and interpolation
steps [12,16,15].

One standard method to construct DEMs from a given set of level lines is
to use Geodesic Distance Transformations [19,20]. Here the interpolant between
two level contours is constructed pointwise as the linear interpolation between
their level values with respect to the geodesic distance.

A major drawback of such contour-based methods is that they require an
explicit parameterization of the given level lines, which may require a substantial
amount of preprocessing, intermediate reparameterisation, or may even fail in
the presence of scattered and sparse surface data. Furthermore, they generally
do not enforce a continuity of the slope across the level lines. For these reasons,
we shall not consider them here.

Our proposed approach belongs to the second methodological stream: surface
interpolation based on processing the surface as a function of height over a
domain in R2.

One of the most successful and most widely used interpolation approaches
within this class is the PDE-based absolutely minimizing Lipschitz extension
(AMLE) interpolation method [3,6]. AMLE interpolation is a diffusion-based
interpolation method that has been very successfully applied to the interpolation
of elevation maps [2]. An interpolant u of height values φ given on the boundary
of a hole Ω ⊂ R2 is computed as a viscosity solution of

D2u

(
Du

|Du| ,
Du

|Du|

)
= 0 in Ω, u|∂Ω = φ, (2)

where the quadratic form D2u(·, ·) is defined as D2u (x, y) =
∑

i,j xixj
∂2u

∂xi∂xj
.

As proved in [6], AMLE interpolation is able to interpolate data given in isol-
ated points and on level lines. This property distinguishes AMLE from simpler
PDE-based interpolation approaches such as the Laplace equation, and makes
it an ideal candidate for surface interpolation. However, level lines of AMLE in-
terpolants are smooth: in [18], Savin proved that a solution of (2) is C1-regular
in two space dimensions, which makes the perfect reconstruction of sharp cusps
and kinks in a surface impossible.

Another drawback of AMLE interpolation is that it cannot interpolate slopes
of a surface. In order to extend a PDE-interpolator like (2) to take into account
gradient information as well, one requires to introduce fourth-order differential
operators into the equation. Among others, the thin plate spline interpolator is
one of the simplest fourth-order surface interpolation models, see [17,8,14,9,5]
for instance. There, the interpolated surface is constructed by solving

Δ2u = 0 in Ω, u = φ on ∂Ω,
∂u

∂n
= ψ on ∂Ω, (3)
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Fig. 2. Surface interpolation on synthetic data using quadratic interpolation and
AMLE. The input contours are marked in blue and were prescribed on 25% of their
points. Quadratic interpolation by solving Laplace’s equation smoothes out the level
lines; characteristic features such as the non-differentiabilities along the ridges are lost.
AMLE preserves such features but does not cope very well with the sparsity of the
data. With full data, AMLE introduces less artifacts but generates an additional kink
on the middle blue level curve with prescribed value.

where φ and ψ are the given height and the gradient of the surface in normal
direction to the curve ∂Ω, respectively. While this model allows to incorporate
both grey values and gradient information into the interpolation process, the
interpolated surface is generally too smooth, still not preserving sharp surface
features (see also Fig. 3 below).

PDE-based interpolation approaches such as (2) and (3) are closely related to
certain types of statistical interpolation procedures. A standard technique within
this framework is Kriging [13,7,11,21]. Here, the interpolated surface is defined
as a realization of a random field, of which a finite number of values at some
sites of R2 is fixed. For a detailed account on surface interpolation methods and
their interrelations we refer to [1].

2 Anisotropic Higher-Order Regularizers

Proposed Model. We would first like to point out some observations to illus-
trate the points made in the introduction and to motivate the specific choice of
an anisotropic third-order regularizer:

Non-differentiabilities in the level lines should be preserved. To motivate (P2),
consider the synthetic example in Fig. 2, where the level lines of the ground truth
are piecewise linear with quadratic spacing. The example demonstrates that
preserving and extrapolating non-smooth features on the level lines according
to (P2) is important for a good visual quality of the result: classic inpainting
using R(u) =

∫
Ω ‖Du‖L2 (i.e., solving the Laplace equation) results in smooth

level lines. The example in Fig. 2 clearly shows that such features need to be
preserved to obtain a good reconstruction.

The model should be able to cope with partial or sparse data. Data where only
parts of the lines are known is common, as for example when extracting level
lines from satellite images or individual measurements. Such data is hard to deal
with using models that are based on matching and interpolation of explicit para-
meterizations of the contours, as obtaining the parameterizations then becomes a
major problem. This motivates the “wholistic” variational approach (1). AMLE
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original thin plate TV(2) TV(3)

Fig. 3. Effect of isotropic second- and third-order TV-based regularization. Although
less pronounced than in the quadratically regularized (cf. Fig. 2) and thin-plate model,
isotropic higher-order regularization enforces too much smoothness and motivates the
introduction of anisotropy.

seems to be prone to introducing artifacts when data is sparse or partly missing,
and fails to correctly extrapolate data outside the region defined through the
prescribed level lines (Fig. 2).

Non-smooth second-order models tend to introduce kinks. With full data on
the level lines, AMLE performs better but introduces a sharp bend at the middle
prescribed level line, i.e., a line where the slope changes. This is a typical feature
of non-smooth second-order models such as (2). We refer to the experimental
section for a comparison.

Isotropic higher-order regularization generates too much smoothness. One ob-
vious choice for the regularizer is to use third-order total variation-based reg-
ularization by setting R(u) =

∫
Ω ‖D3u‖. Unfortunately this enforces too much

smoothness on u, as can be seen in Fig. 3; even second-order regularization is
much too smooth.

In order to address the above issues, we propose to introduce an auxiliary
vector field v : Ω → R2 and consider anisotropic models of the form

R
(3)
1 (u) :=

∫
Ω

‖D3u(v, ·, ·)‖, R(3)
2 (u) :=

∫
Ω

‖D3u(v, v, ·)‖, R(3)
3 (u) :=

∫
Ω

‖D3u(v, v, v)‖,
(4)

where D3u are the third-order derivatives of the height map u, and ‖ ·‖ refers to
the usual Euclidean norm. In full generality, D3u can be defined as a measure on
the Borel functions fromΩ to R2×2×2, see [4] for the technical details. For smooth
functions, D3u(x) is the 2× 2× 2 tensor of all third-order partial derivatives.

The dot-notation refers to partial specialization: restricting ourselves to suf-
ficiently smooth functions for simplicity, D3u(v, ·, ·)(x) is a 2 × 2 matrix de-
scribing the derivative of the Hessian in the direction of v, D3u(v, v, ·)(x) is
the 2-dimensional vector of the second derivatives in the direction of v of the
gradient, and D3u(v, v, v)(x) is the (scalar) third derivative of u in the direction
of v.The difference between the regularizers in (4) is thus the level of anisotropy:

even for a constant vector field v = (1, 0), the regularizer R
(3)
1 still includes some

mixed derivatives, while R
(3)
3 uses purely derivatives in the direction of v.

In a similar manner we define the second-order anisotropic regularizersR
(2)
1 :=∫

Ω ‖D
2u(v, ·)‖ and R

(2)
2 :=

∫
Ω ‖D

2u(v, v)‖. The isotropic regularizers TV(3) :=
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Ω
‖D3u‖ and TV(2) :=

∫
Ω
‖D2u‖ are just the usual second- and third-order

total variation regularizers.
Crucially, the vector field v associates points on neighbouring level lines. More

precisely, we assume that any path through v, i.e., a path C : [c1, c2]→ R2 with
c1 < c0 < c2 and C(c0) = x and tangents v(C(c)) relates the point x to matching
points on other level curves (see Fig. 1).

As an example, consider u(x1, x2) = x21 − x2, where the level curves are
parabolas translated along the x2 axis. For x = (x1, 0), the path C(c) = (0, x21−c)
returns the point corresponding to x on the level set for level c, and we can set
v(x) = (0,−1).

The rationale behind this choice for v is precisely (P3): smoothness is desir-
able, but only across the level lines (P2). The vector field v gives meaning to
the rather vague definition of “across”. It is not obvious which of the variants is
the best choice, therefore we refer to the experimental section for a discussion
of their qualitative differences.

The Auxiliary Vector Field. Finding v is generally a difficult problem, since
it requires matching corresponding points on different level lines. In this work,
we propose to use for v(x) the direction in which Du/|Du| changes least. Un-
der the simplifying assumption that the level lines are only translates of each
other and have non-zero curvature, this allows to correctly recover v (note that
Du/|Du| are the normals of the level curves).

With the notation A = D(Du/|Du|)(x) ∈ R2×2, the vector v(x) ∈ R2 can
be found by finding w ∈ S1 minimizing ‖Aw‖2. This amounts to computing the
basis vector associated with the minimal singular value of the 2×2 matrix A, for
which a closed-form solution is available. In order to increase robustness we add
a convolution with a Gaussian kernel Kσ with (small) variance σ2 and obtain

v(x) = arg min
w,‖w‖2=1

‖Kσ ∗ (D(Du/|Du|))(x)w‖2. (5)

While this gives good results when the level lines are sufficiently curved, the
vector field tends to show erratic behaviour on straight sections of the level
lines: if Du/|Du| is locally almost constant, small variations in u can lead to
random jumps in v due to the normalization to unit length. Therefore we solve
an additional quadratic minimization problem to ensure that v is sufficiently
smooth:

min
v′

1

2

∫
Ω

w(x)‖v′(x) − v(x)‖22dx+
ρ

2

∫
Ω

‖Dv′(x)‖22dx. (6)

While many choices for the weights w are conceivable, we found that the most
robust is to set w(x) to the largest singular value of Kσ ∗(D(Du/|Du|))(x). This
ensures that the smoothing is increased in areas where u is almost planar, and
decreased in regions where the level lines have large curvature and v is therefore
most likely accurate.

The solution of problem (6) can be easily found by solving a system of linear
equations, and an additional normalization step ensures that the vectors v have
unit length. In all our experiments we used a 9×9 convolution kernel with σ = 2.
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A subtle difficulty when applying (6) is that, while the regularizers in (4) are
invariant with respect to sign changes of v, problem (6) is not. We counter this
by normalizing the vector field v so that 〈v(x), Du(x)〉 � 0, i.e., v always points
towards the negative gradient of u. While slightly heuristic, this scheme seems
to work remarkably well in practice, and avoids having to solve more difficult
non-convex optimization problems involving unit length constraints.

For unknown u, we start with a random field v0 and alternate between min-
imizing (1) to find uk+1 from vk and computing vk+1 from uk as outlined above.
Note that choosing v randomly approximately corresponds to using the isotropic

regularizers R
(3)
0 or R

(2)
0 , but has the additional advantage of introducing ran-

domness that can help to solve ambiguous situations (see below).

3 Experimental Results

We used the MOSEK commercial interior-point package to solve the fully as-
sembled problem. The examples were solved in less than one minute per outer
iteration on an Intel Core 2 Duo 2.66 GHz with 4 GB of memory.

Fixed Directions. The first question to answer is which of the existing and
proposed schemes performs best with respect to the requirements postulated in
(P1)–(P3). In order to separate this aspect from the issue of finding the vec-
tor field v, we performed several experiments on synthetic examples with the
directions v set to a known ground-truth.

In Fig. 4 we compare different levels of anisotropy on a “pyramid” example.
The challenge comes from the fact that the contours around the tip cannot be
interpolated between two given level lines, but must be extrapolated, preserving
the non-smoothness in the level lines. Since in the ground truth the level lines
are scaled copies of each other, the vector field v can be explicitly computed as
v(x) = (x− x0)/‖(x− x0)‖2 with center x0 = (1/2, 1/2).

It can be seen that the regularizers with a higher level of directionality gener-
ally perform better at reconstructing the pointed pyramid tip. However it should
be noted that this example is not very typical for digital elevation maps, where
a smoother result such as the one obtained using ‖D3u(v, ·, ·)‖ is more likely
appropriate. We also observed that higher levels of directionality seem to result
in harder optimization problems. This results in longer computation times and
sometimes less precise solutions with a slight smoothing effect.

The isotropic regularizers R
(3)
0 and R

(2)
0 enforce too much smoothness. The

second-order methods tend to introduce sharp bends along the given contours
due to their preference for piecewise planar surfaces.

Adaptive Directions. Figure 5 shows that in the case of the “pyramid” ex-
ample, the vector field v can be effectively found through the iterative procedure
outlined in Sect. 2, starting at random directions. The results are visually al-
most indistinguishable from the results in Fig. 4 that were computed with known
ground truth v. We found that the number of required updates for v is very low,
usually the result as well as v were stationary after five outer iterations.
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original AMLE ‖D2u‖ ‖D2u(v, ·)‖, |D2u(v, v)|
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‖D3u‖ ‖D3u(v, ·, ·)‖ ‖D3u(v, v, ·)‖ |D3u(v, v, v)|

Fig. 4. Comparison of different notions of anisotropy with known directions v. The
input consists of the contour lines marked in blue including the boundary of the domain,
and contains a level line around a region with a local maximum. In consequence, this
is an example for a problem that cannot be solved by pointwise interpolation between
contour lines. AMLE does not extrapolate the tip, and introduces kinks along the given
contours. The non-directional approaches result in smoothed-out contours. In contrast,
the directional methods do not smooth the level lines, but they still regularize – as
desired – the spacing of the contours to a varying amount.

‖D2u(v, ·)‖, |D2u(v, v)| ‖D3u(v, ·, ·)‖ ‖D3u(v, v, ·)‖ |D3u(v, v, v)|

Fig. 5. Reconstruction of the pyramid example in Fig. 4 using adaptive adjustment of
the vector field v after 50 iterations. The surfaces are visually identical to the results
in Fig. 4, where v was set to the (known) ground truth.

In Fig. 6 we show a more challenging example that was deliberately chosen so
that the solution is ambiguous. This highlights a particular issue with the iso-

tropic regularizers R
(3)
0 and R

(2)
0 : as their overall energy is convex, even assuming

that both solutions are in fact minimizers of the isotropic energy, all convex com-
binations of these solutions also have to be minimizers. Therefore the result is
an undesirable mixture of both solutions. The additional vector field v and the
randomness introduced in the first step effectively resolve the ambiguity.
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Fig. 6. Reconstruction of the “ambiguity” example using adaptive adjustment of the
vector field v with 50 outer iterations. The input contours (blue) allow two equally
good exact solutions. The non-directional approaches are entirely convex, and cannot
be expected to pick one of the two solutions; AMLE fails equally. The second-order
methods perform slightly better but introduce artificial non-differentiabilities. Using
third-order methods the ambiguity is resolved and one of the possible solutions is
correctly reconstructed.

In both examples third-order regularizers performed superior to second-order
methods. We attribute this to the tendency of second-order methods to generate
planar patches, which greatly aggravates the problem of reliably computing v as
in (5). Again the algorithm settles quickly on one of the possible solutions and
converges in less than 10 outer iterations.

We would like to emphasize that all the above examples were constructed
using a minimal amount of level lines and specifically in order to highlight char-
acteristics of the regularizer. On real-world data, the effects are generally much
less pronounced.

Reconstruction of Digital Elevation Maps. Figure 7 shows the performance
of the proposed approach on real-world DEM data extracted from the National
Elevation Dataset (NED) [10]. The input consists of 10 contour lines with equally
spaced heights, and contains approximately 5% of the original data points. We
only compare the result of the anisotropic approach with ‖D3u(v, ·, ·)‖, as the
other anisotropic approaches performed slightly worse.

The different approaches show remarkably similar behaviour as on the syn-
thetic data: The nondirectional approaches generated overly smooth solutions.
AMLE does not reconstruct the mountain peak correctly and introduces arti-
facts along the slopes and ridges. The directional third-order method gives a
clean result and reconstructs most prominent features.

Quantitative Evaluation. In order to quantify the performance of the various
methods, we compared the results on the DEM data to the known ground truth.
Since the L2-distance is not necessarily a good measure to judge visual quality,
we also computed the error between the normal fields of the surfaces.
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Fig. 7. Reconstruction of real-world digital elevation maps. Top row: input contours,
second-order isotropic total variation, third-order isotropic total variation. Bottom
row: AMLE, proposed method using ‖D3u(v, ·, ·)‖, ground truth. AMLE does not cor-
rectly recover the small peak and tends to hallucinate features. The proposed method
correctly recovers the mountain tops and ridges (top left corner).
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Fig. 8. Reconstruction of real-world digital elevation maps. Top row: input contours.
Middle row: results using the proposed method with ‖D3u(v, ·, ·)‖. Bottom row:
ground truth.
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Table 1. Solution quality for example (a) in Fig. 8, measured in the absolute L2

difference and L2 distance of the normals (in parentheses). The best results for each
method are marked in bold. Even without selecting the optimal smoothness parameter,
good quality solutions can be obtained. The overall best result is achieved with the
third-order anisotropic regularizer R

(3)
1 and ρ = 1 (underlined).

ρ 10−4 10−3 10−2 10−1 100 101 102

Lapl. 144. (11.05) 144. (11.05) 144. (11.05) 144. (11.05) 144. (11.05) 144. (11.05) 144. (11.05)
AMLE 140. (15.58) 140. (15.58) 140. (15.58) 140. (15.58) 140. (15.58) 140. (15.58) 140. (15.58)

TV(3) 15.34 (3.52) 15.34 (3.52) 15.34 (3.52) 15.34 (3.52) 15.34 (3.52) 15.34 (3.52) 15.34 (3.52)

R
(3)
1 9.72 (2.41) 9.73 (2.41) 9.75 (2.40) 9.62 (2.30) 8.55 (2.15) 9.83 (2.68) 15.48 (3.85)

R
(3)
2 11.84 (2.64) 12.11 (2.71) 12.61 (2.68) 13.75 (2.64) 10.88 (2.45) 11.31 (3.21) 18.83 (4.81)

R
(3)
3 10.17 (3.14) 10.58 (3.11) 10.68 (2.93) 17.96 (3.17) 15.14 (3.02) 14.75 (3.88) 28.13 (5.94)

TV(2) 31.07 (4.39) 31.07 (4.39) 31.07 (4.39) 31.07 (4.39) 31.07 (4.39) 31.07 (4.39) 31.07 (4.39)

R
(2)
1 15.82 (2.99) 16.17 (3.01) 17.40 (3.09) 18.67 (3.12) 18.29 (3.35) 18.76 (4.16) 52.13 (7.28)

R
(2)
2 12.06 (3.46) 11.09 (3.33) 14.69 (3.69) 21.35 (4.49) 22.87 (5.47) 30.55 (7.41) 70.46 (11.96)

Table 2. Quantitative evaluation for the data set in Fig. 8, measured in L2 distance
and L2 distance of the normals (in parentheses). The proposed third-order directional
regularizer consistently performed best (bold), followed by the second-order directional
regularizers and AMLE.

data set 1 2 3 4 5
Lapl. 141.57 (10.88) 95.55 (21.73) 202.06 (29.96) 79.33 (13.28) 103.76 (9.86)
AMLE 138.15 (15.33) 83.91 (22.94) 235.86 (42.91) 56.36 (11.39) 88.91 (10.36)

TV(3) 15.10 (3.46) 13.61 (6.66) 29.61 (10.67) 18.93 (5.34) 34.47 (5.09)

R
(3)
1 8.45 (2.12) 11.10 (5.77) 28.75 (10.49) 8.59 (3.31) 17.03 (3.15)

R
(3)
2 10.99 (2.43) 13.41 (7.04) 33.42 (12.64) 10.34 (3.74) 21.96 (3.74)

R
(3)
3 14.46 (2.95) 21.28 (10.85) 50.23 (19.12) 13.74 (4.76) 26.23 (4.65)

TV(2) 30.59 (4.32) 25.29 (9.45) 84.71 (15.32) 26.04 (6.78) 43.84 (5.77)

R
(2)
1 18.80 (3.35) 19.18 (9.07) 43.34 (15.02) 13.35 (4.44) 23.10 (4.41)

R
(2)
2 25.64 (5.49) 28.74 (13.71) 97.27 (21.74) 21.41 (6.63) 28.53 (5.68)

Table 1 shows the performance of the various approaches under varying smooth-
ness parameter ρ. We found that the relative performance is almost independent

of the choice of ρ, with the R
(3)
0 regularizer always being in the lead

in both performance measures. For this example and all other DEM data that
were tested, we found that setting ρ = 1 is nearly optimal.

To obtain more representative data on the relative performance, we evaluated
the methods on a set of details from the NED (Figure 8) that include vari-
ous qualitatively different features such as bifurcating and meandering valleys,
sharp ridges, and several styles of mountain peaks. Again we set ρ = 1 for all
of the examples. The results in Table 2 show that on all examples and across

all performance measure, the directional R
(3)
1 regularizer worked best, followed

by directional third-order-, directional second-order-, isotropic third-order-, iso-
tropic second-order regularization, and finally AMLE.

4 Conclusion

In our view the reconstruction of digital elevationmaps is a very interesting applic-
ation for higher-order regularization, whereminor variations in the regularizer can
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have large effects on the result. In this work we left out most questions concerning
the analysis such as how to choose suitable function spaces and the existence of
solutions and fixed points. All of these seem to be challenging questions, and we
leave them to future work.

From a practical viewpoint, the numerical results are very encouraging, and
suggest that the directional third-order regularizers together with the proposed
method of estimating the directional field v converge rapidly and give excellent
results on synthetic as well as real-world data.
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Abstract. In [12] a variational method using C2-smoothed �1-TV func-
tionals was proposed to process digital (quantized) images so that the
obtained minimizer is quite close to the input image but its pixels are all
different from each other. These minimizers were shown to enable exact
histogram specification outperforming the state-of-the-art methods [6],
[19] in terms of faithful total strict ordering. They need to be computed
with a high numerical precision. However the relevant functionals are dif-
ficult to minimize using standard tools because their gradient is nearly
flat over vast regions.

Here we present a specially designed fixed-point algorithm enabling
to attain the minimizer with remarkable speed and precision. This vari-
ational method applied with the new proposed algorithm is actually the
best way (in terms of quality and speed) to order the pixels in digital
images. This assertion is corroborated by exhaustive numerical tests.

We extend the method to color images where the luminance channel is
exactly fitted to a prescribed histogram. We propose a new fast algorithm
to compute the modified color values which preserves the hue and do not
yield gamut problem. Numerical tests confirm the performance of the
latter algorithm.

Keywords: Color image enhancement, Exact histogram specification,
Fast smooth convex nonlinear minimization, Fixed point algorithm,
Gamut preservation, Hue preservation, Minimizer analysis, Smoothed
�1-TV functionals, Total strict ordering, Variational methods.

1 Introduction

Histogram processing is a technique with numerous applications. The goal of ex-
act histogram specification (HS) is to transform an input image into an output
image having a prescribed histogram. Histogram equalization (HE) is a partic-
ular case of HS. Among the applications of HS let us mention invisible water-
marking, image normalization and enhancement, object recognition [7], [5], [16].
Let f be an input M × N digital image with L gray values. The set of values
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of f is denoted by1 Q = {q1, · · · , qL}. To simplify the notation we reorder the
image columnwise into a vector of size n := MN and address the pixels by the
index set2 In := {1, · · · , n}. The histogram of f , denoted by hf , is given by
hf [qk] = � {i ∈ In | f [i] = qk}, ∀ k ∈ IL, where � stands for cardinality.

Exact HS is straightforward for images whose pixels values are all different
from each other. However exact HS (and also exact HE) is an ill-posed problem
for digital (quantized) images since the number of pixels3 n is much larger than
number the possible intensity levels L [6] ,[17]. The clue to achieving exact HS is
to obtain ameaningful total strict ordering of all pixels in the input digital image.
Research on this problem has been conducted for four decades already [8]. The
Local Mean (LM) method of Coltuc, Bolon and Chassery [6], the wavelet-based
approach (WA) of Wan and Shi in [19] and the specialized variational approach
(SVA) of Nikolova, Wen and Chan [12] are the state-of-the-art methods. For any
input pixel f [i] in the input digital image f these methods extract K auxiliary
information, say ak[i], k ∈ IK , based on f . For simplicity, we set a0 := f . Then
an ascending order “≺ ” for all pixels is sought using the rule

i ≺ j if f [i] ≤ f [j] and ak[i] < ak[j] for some k ∈ {0, · · · ,K}. (1)

The numerical results in [12] have shown that SVA clearly outperforms its main
competitors—LM and WA—in terms of quality and memory requirements but
not in speed. In section 3 we derive a specialized fixed point minimization al-
gorithm that attains the minimizer with remarkable speed and precision. Con-
vergence and parameter selection are briefly discussed. Numerical tests confirm
that the SVA method along with the new FP algorithm outperforms by far all
other relevant sorting methods.

In section 4 we focus on HS for color digital images. Extension of gray scale
HS to color images is a quite complex task. As usual, a color image has three
components: red (R), green (G) and blue (B). Applying HS to each color channel
independently changes the hue of the image [17]. To avoid this problem, several
ways to define a 3-D color histogram were proposed, e.g. [18], [10]. Recently, Han
et al. [9] showed that these methods increase the brightness of the image and
cannot fit the prescribed (uniform) histogram. In the same article, the authors
propose to equalize the luminance (intensity) component of the image and apply
the hue-preserving transformation proposed by Naik and Murthy [11] to assign
the new color values. There are many methods that rely on modification of the
histogram of the luminance component and deduce the needed change in the
RGB space, see e.g. [2], [1], [16]. Our approach is to produce a correct template
for the luminance part by HS. To compute the color components, we propose a
new algorithm preserving the hue and the gamut, and ensuring that the resultant
luminance component fits the specified histogram. The new algorithm share the
same simplicity as the one used in [9] but provides much better results.

1 For 8-bit images we have L = 256 and Q = {0, · · · , 255}.
2 In what follows, Im := {1, · · · ,m} for any integer m.
3 E.g. for an 1024 × 1024 8-bit image we have n = 1048576 � 256 = L.
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2 The Specialized Variational Approach (SVA)

The functionals proposed in [12] are of the form

J(u, f) := Ψ(u, f) + βΦ(u), β > 0 (2)

with
Ψ(u, f) :=

∑
i∈In

ψ(u[i]− f [i]),

Φ(u) :=
∑
i∈Ir

ϕ(giu)
(3)

where gi ∈ R1×n, i ∈ Ir correspond to a forward discretization. More precisely,

– If only vertical and horizontal differences are considered

gi[i] = −1, gi[i+ 1] = 1 and gi[k] = 0 ∀ k ∈ In \ {i, i+ 1},
gj [j] = −1, gj [j +M ] = 1 and gi[k] = 0 ∀ k ∈ In \ {j, j +M}; (4)

– If diagonal differences are added, Φ(u) is nearly rotationally invariant and

gi[i] = −1, gi[i+M − 1] = 1 and gi[k]= 0 ∀ k ∈ In\ {i, i+M−1},
gj [j] = −1, gj[j +M + 1] = 1 and gj [k]= 0 ∀ k ∈ In\ {j, j+M+1}.

In both cases, Neumann or periodic boundary conditions are adopted. We denote

G =
[
gT1 , · · · , gTr

]T ∈ Rr×n ,

where the superscript T stands for transposed.
The functions ψ(·) := ψ(·, α1) : R → R and ϕ(·) := ϕ(·, α2) : R → R depend

on two parameters α1 > 0 and α2 > 0, respectively. When necessary, we shall
use the notation ψ(·, α1) and ϕ(·, α2). The functions ψ and φ in (3) belong to
the family of functions θ(·, α) : R→ R, α > 0, satisfying the conditions H1 and
H2 described below. We denote θ′(t, α) := d

dtθ(t, α), and similarly for θ′′.

H1 For any α > 0 fixed, θ(·, α) is Cs-continuous for s ≥ 2, even—i.e. θ(−t, α) =
θ(t, α)—and meets

t ∈ R ⇒ θ′′(t, α) > 0 .

Note that by H1, for any α fixed, t→ θ′(t, α) is strictly increasing in t. Further,

H2 For any α > 0 given, θ′(t, α) is upper bounded4 and for t > 0 fixed, it is
strictly decreasing in α > 0 with

α > 0 ⇒ lim
t→∞ θ′(t, α) = 1 ,

t ∈ R ⇒ lim
α→0

θ′(t, α) = 1 and lim
α→∞ θ′(t, α) = 0 .
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Table 1. Relevant choices for θ(·, α) obeying H1 and H2. When α > 0 decreases
towards zero, θ(·, α) becomes stiff near the origin.

θ θ′ θ′′

f1
√
t2 + α

t√
t2 + α

α(√
t2 + α

)3
f2 α log

(
cosh

(
t

α

))
tanh

(
t

α

)
1

α

(
1−

(
tanh

(
t

α

))2
)

f3 |t| − α log
(
1 +

|t|
α

)
t

α+ |t|
α

(α+ |t|)2

Under these assumptions, the functional J(·, f) in (2)-(3) is clearly a fully
smoothed �1-TV model. Good choices for θ meeting H1 and H2 are given in
Table 1.

Remark that θ′′ is even, positive and its upper bound is finite and

‖θ′′‖∞ = θ′′(0) > 0.

2.1 Preliminary Facts

Using H1 and H2, the properties listed below play a role in what follows.

1. For any β > 0 and any f , J(·, f) has a unique minimizer û [12, Proposition 1].
2. For any β > 0 and any f living in a dense open subset of Rn, say Kn, the

minimizer û of J(·, f) satisfies [12, Theorem 1]

û[i] �= û[j], ∀ i, j ∈ In, i �= j;
û[i] �= f [i], ∀ i ∈ In.

(5)

However, all digital images with L gray values (like f) belong to a subset
SnQ which is closed and of null Lebesgue measure in Rn. Using some results
from number theory, the conclusion drawn in [12, sect. 2, Remark (b)] is that
� (Kn∩SnQ)/ � SnQ should be a number close to zero5. Then the minimizer û of
J(·, f) for f ∈ SnQ satisfies (5) with a very high probability. Thus û provides
the auxiliary information to strictly order the pixels in f using (1).

3. Sice ψ′(·, α) is Cs−1 and odd, it has an inverse function

ξ(·, α1, ) := (ψ′)−1
(·, α) : (−1, 1)→ R , (6)

which is also odd, strictly increasing and Cs−1 (inverse functions theorem).
4. For any y ∈ (0, 1), the function α �→ ξ(y, α) is strictly increasing on (0,+∞)

[3, Lemma 2].

4 The upper bound of θ′ is set to 1 only for definiteness.
5 Note that no reasonable sorting algorithm can order strictly the pixels of all digital
images. E.g., the pixels of a constant image should not be ordered in a strict way.
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5. Let us denote η := ‖G‖1. If βη < 1 then [3, Theorem 1]

‖û− f‖∞ ≤ ξ
(
βη, α1

)
and α1 �→ ξ

(
βη, α1

)
is strictly increasing on (0,+∞).

6. Further, ‖û− f‖∞ ↗ ξ
(
βη, α1

)
as α2 ↘ 0 [3, Theorem 2].

3 A Fast Sorting Algorithm

3.1 Semi-explicit Formula for the Minimizer

The unique minimizer û of J(·, f) satisfies ∇J(û, f) = 0 where the gradient ∇
is taken with respect to the first variable, namely u. From the definition of J in
(2) this is equivalent to ∇Ψ(û, f) = −β∇Φ(û). Using (3), we have

dΨ(u, f)

du[i]
= ψ′(u[i]− f [i]) and

dΦ(u)

du[i]
=

∑
j∈Ir

ϕ′(gju)gj[i]. (7)

Thus the minimizer û satisfies

ψ′(û[i]− f [i]) = −β
∑
j∈Ir

ϕ′(gj û)gj[i], ∀ i ∈ In.

Using the notation in (6), the latter equations are equivalent to

û[i] = f [i] + ξ

⎛⎝−β ∑
j∈Ir

ϕ′(gj û)gj [i]

⎞⎠ , i ∈ In. (8)

The inverse function ξ(y, α) = (θ′)−1
(y, α) in (6) has an explicit expression for

f1, f2 and f3 in Table 1. This function and its derivative ξ′ := d
dy ξ(y, α) is given

in Table 2. Note that ξ′(·, α) is even and strictly increasing on [0, 1).

Table 2. The inverse function ξ(y,α) = (θ′)
−1

(y,α) in (6) and its derivative ξ′ with
respect to y for all functions in Table 1

ξ ξ′

f1 y

√
α

1− y2
√
α

(
√

1− y2)3

f2
α

2
ln

1 + y

1− y
α

1− y2
f3

αy

1− |y|
α

1− |y|
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3.2 A Fixed Point (FP) Algorithm to Minimize J

The proposed algorithm uses (8) and Table 2. The iterations are given by

uk+1 = X (uk), (9)

X (u) := f + ξ
(
− β∇Φ(u)

)
, (10)

where the function ξ, given in Table 2, is applied componentwise and u0 = f .

Theorem 1. Let α1, α2 and β be chosen so that βη < 1 and

β ξ′(βη)ϕ′′(0, α2) ‖GT G‖∞ < 1, (11)

where η is defined in 5, subsection 2.1. Then the iteration (9)-(10) converges.

Sketch of the proof. For any α2 > 0,

0 < ϕ′′(giu, α2) ≤ ϕ′′(0, α2) ∀ i ∈ Ir.

Further, one derives

‖∇X (u)‖∞ ≤ βξ′(βη)‖GT diag
(
ϕ′′(giu)

)
G‖∞ ≤ βξ′(βη)ϕ′′(0)‖GTG‖∞.

Then‖∇X (u)‖∞ < 1.The spectral radius of∇X (u)meetsρ(∇X (u)) ≤ ‖∇X (u)‖∞.
Since X has a fixed point by (8), Ostrowski theorem [13] entails the result. �

Some practical values of the parameters ensuring convergence are given next.

– If G corresponds only to (4), then η = ‖G‖1 = 4 and ‖GT G‖∞ = 8. For ψ
and ϕ given by f1 in Table 1 and α1 = 0.05, α2 = 0.3 and β = 0.1 we have

‖∇X (u)‖∞ ≤ 0.7745 and ‖û− f‖∞ � 0.0976.

– If G corresponds to jointly (4) and (2), η = ‖G‖1 = 8 and ‖GT G‖∞ = 16.
For ψ and ϕ given by f1 and α1 = 0.02, α2 = 0.4 and β = 0.07 we have

‖∇X (u)‖∞ ≤ 0.6963 and ‖û− f‖∞ � 0.0956.

Remark 1. When initialized with a nonconstant image, the iteration (9)-(10) pro-
vides fast convergence even if (11) is not satisfied. One of the reason is that for
many differences we have ϕ′′(giu) > 0 in which case ‖GTdiag

(
ϕ′′(giu)

)
G‖∞ &

ϕ′′(0)‖GTG‖∞. And when ‖X (u0)−X (u1)‖ < 1, then the iteration converges (see
[15, p. 142]). Another reason is that ρ(∇X (u)) is quite smaller than ‖∇X (u)‖∞
and so under the condition in (11), ρ(∇X (u)) is quite smaller than 1.

3.3 Comparison with the State-of-the-Art Sorting Algorithms

The variational method provides one auxiliary information which is the mini-
mizer û of J(·, f), i.e. a1[i] = û[i] ∀ i ∈ In and ordering is obtained by (1). As in
[12], J(·, f) was used with G corresponding to (4) and

ψ(t) =
√
t2 + α1, ϕ(t) =

√
t2 + α2, α1 = α2 = 0.05 and β = 0.01.
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airplane(5122) baril (5122) car (5122) clock (5122) couple (2562) F-16 (5122)

house (5122) Lena (5122) man (10242) raffia (5122) sand (5122) stream (5122)

Fig. 1. All 12 digital 8 bit images used to compare the algorithms and their histograms.
The gray values of these images belong to {0, · · · , 255}.

We ran the Polak-Ribière (PR) CG minimization with stopping rule given by
‖J(uk, f)‖∞ ≤ 10−6 and limiting the iteration number to 35, as in [12]. Our
FP algorithm was applied with stopping rule ‖J(uk, f)‖∞ ≤ 10−6. Our method
was compared with the local mean (LM) algorithm [6] for K = 6 and with the
wavelet-based algorithm (WA) [19] for Haar wavelet for K = 9. These values of
K were recommended by the authors. The experiments were performed using a
PC DELL Latitude E6220 with an Intel Core i7-2640M, 2.8 GHZ processor and
8 GB of RAM under Windows 7, using MATLAB v. 7.11.0.584, 64-bit.

Here we present sorting results on 12 digital images with various sizes and
content, with gray values in {0, · · · , 255}. The images and their histograms are
shown in Fig. 1. Note that most of these histograms are quite singular.

Remark 2. Since our parameter choice guarantees that ‖û− f‖∞ < 0.1 (see 5 in
subsection 2.1), ordering the pixels according to (1) amounts just to sort (û+f).

This fact was not noticed in [12] where (1) was used directly which is com-
putationally heavier. For the LM and WA methods, (1) must be applied for
K = 6 and K = 9 images, respectively, which requires much more memory and
computation than the SVA method [12] where K = 1.

The pixel ordering provided by the PR minimization in [12] and the new FP
algorithm should be the same since the obtained PSNR values for HE inversion
are the same (these experiments are not presented here). The experiments in [12,
section 5] have shown that SVA outperforms by far the LM and WA methods
in terms of PSNR in restoration of contrast compression and in HE inversion.
The proposed FP minimization scheme gives rise to a much shorter CPU time
and a more than 5 times better numerical precision. For fair comparison of the
numerical schemes, Remark 2 was not used to generate the results in Table 3.



Fast Exact Histogram Specification. Color Image Enhancement 181

Table 3. Comparison with the state-of-the-art algorithms. Fail denotes the percentage
of pixels that could not be sorted in a strict way. CPU is in seconds.

Fail % CPU SVA

LM WA SVA LM WA SVA SVA ‖∇J‖∞×10−7

Image PR FP PR FP

airplane 5.30 17.70 0.00 2.85 6.29 2.54 2.07 45.70 6.06
baril 0.17 0.24 0.00 2.15 5.34 2.37 1.92 3.83 6.45
car 7.84 19.91 0.00 3.67 6.51 2.28 2.22 5.96 7.30
clock 1.57 4.52 0.00 1.05 2.20 0.69 0.44 4.47 6.92
couple 2.50 3.30 0.00 0.94 2.11 0.53 0.37 6.68 7.38
F-16 0.18 0.57 0.00 2.48 5.21 5.21 2.11 63.19 7.22

houseB 0.36 1.58 0.00 1.62 5.40 2.40 2.37 15.02 5.71
Lena 0.00 0.20 0.00 2.84 4.91 4.57 1.67 58.95 5.81
man 0.34 0.68 0.00 7.58 15.68 9.24 9.38 29.13 7.65
raffia 13.66 16.05 0.00 2.71 6.99 2.37 1.87 10.60 5.43
sand 12.62 15.21 0.00 3.82 6.63 4.82 2.45 68.90 5.80
stream 0.41 0.75 0.00 2.75 4.98 2.34 2.29 6.08 7.22

means 2.97 5.28 0.00 2.19 4.46 2.46 1.79 20.23 4.88

When Remark 2 is applied, the mean CPU time for the SVA-FP algorithm is
reduced to 1.54 sec. In terms of faithful total strict ordering and CPU time,
the SVA with the proposed FP scheme and using the simple ordering rule in
Remark 2 provides the best results. The same conclusion was drawn on a test on
50 eight-bit gray-value images downloaded from http://sipi.usc.edu/database/.

4 HS for Color Images

4.1 Our Approach

Let w = (w1, w2, w3) be an input color image where w1, w2 and w3 are its red,
green and blue channels, respectively. Let ζ = (ζ1, · · · , ζL) be the prescribed
histogram. As in the previous section, we consider that all wk’s are reordered
columnwise as n-length vectors. The luminance of w is [4]

f =
1

3
(w1 + w2 + w3) ∈ Rn.

With the help of the ordering algorithm described in section 3, f is transformed
into f̂ ∈ Rn whose histogram is exactly ζ. We need a color image ŵ such that

1

3
(ŵ1 + ŵ2 + ŵ3) = f̂ (12)

and satisfying the classical requirements:

(c1) ŵ has the same hue as w;
(c2) to avoid gamut problem, 0 ≤ ŵk[i] ≤ L− 1, ∀ i ∈ In, k = 1, 2, 3.
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It is well known (and easy to verify) that the hue of a pixel w[i] is guaranteed
to be preserved in the restored ŵ[i] only if ŵ[i] is obtained from w[i] using an
affine transform [4], [11].

Our method to compute the color channels from w and f̂ consists in a “slight”
but important modification of the method proposed in [11] and used in [2], [9],
among others. It is composed of a forward step followed by a correction step.

Algorithm for color assignment

(step 1) Compute F ∈ Rn according to

F [i] :=
f̂ [i]

f [i]
∀ i ∈ In

and assign

ŵk[i] = F [i]wk[i] k = 1, 2, 3 ∀ i ∈ In. (13)

(step 2) Find the set

J := {i ∈ In | ŵ1[i] > L− 1 or ŵ2[i] > L− 1 or ŵ3[i] > L− 1}. (14)

Compute C ∈ R � J by

C[i] :=
L− 1− f̂ [i]

L− 1− f [i]
∀ i ∈ J

and correct the pixels in J as

ŵk[i] = L− 1− C[i] (L− 1− wk[i]) k = 1, 2, 3 ∀ i ∈ J. (15)

It is easy to check that that both modifications in (13) and (15) satisfy (12).
A value F [i] > 1 means that the color at pixel i should be enhanced, i.e.,
|wk[i]−wk′ [i]| < |ŵk[i]− ŵk′ [i]|, k �= k′, k, k′ ∈ {1, 2, 3}. So we wish to keep the
maximum number of pixels computed using (13). Some of them (quite a few in
practice) will fail the constraint (c2)—these pixels form the set J in (14). Their
value will be properly corrected at the correction step 2.

Remark 3. In the scheme of Naik and Murthy [11] (and the one of [16]) , step 1
is applied only if F [i] ≤ 1 and in all other cases step 2 is applied. We can note
that their strategy is quite conservative. For instance, if w[i] = (10, 30, 50) and
F [i] = 5, noticing that f [i] = 30, their strategy yields ŵ[i] = (140.67, 150, 159.33)
which results in a nearly gray-value pixel. Instead, our approach yields ŵ[i] =
(50, 150, 250), so the color is enhanced and the constraint (c2) is satisfied.

The computational cost of the algorithm of Naik and Murthy was analysed
in [9]. The conclusion was that the computational complexity is proportional to
the number of pixels. In all experiments, we observed that in mean 3.5 % of
the pixels go through step 2. So the computational cost of our color assignment
algorithm is nearly the same.
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4.2 Numerical Results

Here we compare our algorithm for color assignment with the algorithm proposed
in [11] and used in [9]. For fair comparison of the color assignment algorithms,
in all cases we used our sorting algorithm (section 3). Exhaustive comparison
with other algorithms for HE of color images can be found in [9].

Original image HS by [11], [9] HS - ours

0 255 0 255 0 255

Fig. 2. Images and their histograms—R (�), G (�), B (�), luminance (�)

The original image (800× 800× 3) in Fig. 2 is underexposed and has a poor
contrast. HE often produces overly enhanced unnatural looking images. The tar-
get histogram was chosen according to general recommendations of commercials
in image processing (seen on You Tube). It is exactly satisfied and can be seen
on the last row of the histograms of the restored images (in black). The image
obtained by [11], [9] suffers from being too gray. This confirms our Remark 3.
Using our algorithm (13)-(15)—only 4.7 % of the pixels needed the correction
step 2. The image quality is really improved.

In Fig. 3 the original image (750 × 1000× 3) seems nearly gray-valued. Fol-
lowing [1], the prescribed histogram is a linear combination of the histogram of
the input image and a uniform histogram—see the last row of the histograms of
the restored images. The image obtained by [11], [9] is almost gray-valued. Our
method enables us to recover all colors. In this case, only 1.27 % of the pixels
had to be rescaled using step 2.

In the original image in Fig. 4 (1000× 1000× 3) there is a snake that is not
easy to distinguish from the surrounding landscape. Our goal was to modify the
histogram so that the snake is clearly seen. This is the reason why we chose as
target histogram the curve on the bottom row of the restored images. For our
algorithm, only 3.3% of the pixels were reprocessed by step 2.
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Original image HS by [11], [9] HS - ours

0 0 0

Fig. 3. Images and their histograms—R (�), G (�), B (�), luminance (�)

Original image HS by [11], [9] HS - ours

0 255 0 255 0 255

Fig. 4. Images and their histograms—R (�), G (�), B (�), luminance (�)

5 Conclusions and Perspectives

The sorting algorithm proposed in section 3 is for the present the best one. The
proposed algorithm for color assignment in section 4 is fast and yields better
results than the one used in [9]. However it does not exploit color perceptual
facts that were used e.g. in [14]—but with an intensive computational cost. This
point deserves further exploration.
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10. Menotti, L., Najman, L., de Araújo, A., Facon, J.: A fast hue-preserving histogram
equalization method for color image enhancement using a bayesian framework. In:
Proc. 14th Int. Workshop Syst., Signal Image Process, pp. 414–417 (2007)

11. Naik, S.F., Murthy, C.A.: Hue-preserving color image enhancement without gamut
problem. IEEE Trans. on Image Processing 12, 1591–1598 (2003)

12. Nikolova, M., Wen, Y., Chan, R.: Exact histogram specification for digital images
using a variational approach. J. of Mathematical Imaging and Vision (2012)

13. Ortega, J., Rheinboldt, W.: Iterative Solution of Nonlinear Equations in Several
Variables. Academic Press, New York (1970)

14. Palma-Amestoy, R., Provenzi, E., Bertalmio, M., Caselles, V.: A perceptually in-
spired variational framework for color enhancement. IEEE Trans. on Pattern Anal-
ysis and Machine Intelligence 31, 458–474 (2009)

15. Schwartz, L.: Analyse: Topologoe générale et analyse fonctionnelle, Hermann, Paris
(1993)

16. Sen, D., Sankar, P.: Automatic exact histogram specification for contrast enhance-
ment and visual system based quantitative evaluation. IEEE Trans. on Image Pro-
cessing 20, 1211–1220 (2011)

17. Solomon, C., Breckon, T.: Fundamentals of Digital Image Processing. A Practical
Approach with Examples in Matlab, 1st edn. John Wiley & Sons (2011)

18. Trahanias, P.E., Venetsanopoulos, A.: Color image enhancement through 3-D his-
togram equalization. In: Proc. 15th Int. Conf. Pattern Recognit., vol. 1, pp. 545–548
(1997)

19. Wan, Y., Shi, D.: Joint exact histogram specification and image enhancement
through the wavelet transform. IEEE Trans. on Image Processing 16, 2245–2250
(2007)



Constrained Sparse Texture Synthesis

Guillaume Tartavel1, Yann Gousseau1, and Gabriel Peyré2
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Abstract. This paper presents a novel texture synthesis algorithm that
performs a sparse expansion of the patches of the image in a dictionary
learned from an input exemplar. The synthesized texture is computed
through the minimization of a non-convex energy that takes into ac-
count several constraints. Our first contribution is the computation of a
sparse expansion of the patches imposing that the dictionary atoms are
used in the same proportions as in the exemplar. This is crucial to enable
a fair representation of the features of the input image during the syn-
thesis process. Our second contribution is the use of additional penalty
terms in the variational formulation to maintain the histogram and the
low frequency content of the input. Lastly we introduce a non-linear re-
construction process that stitches together patches without introducing
blur. Numerical results illustrate the importance of each of these contri-
butions to achieve state of the art texture synthesis.

Keywords: texture synthesis, sparse decomposition, dictionary learn-
ing, variational methods.

1 Introduction

Texture synthesis aims at generating an image that is visually similar to a given
input exemplar but at the same time exhibits a strong randomness. Classical
methods learn a global statistical model from the exemplar, and then sample a
realization from this distribution. Simplest models consider independent station-
ary coefficients over a Fourier [6] or a wavelet basis [7,3]. More realistic syntheses
are achieved by using an adapted representation learned from the exemplar [16]
or by using higher order models taking into account dependencies among the
coefficients [12].

Another class of methods are based on the Markov Random Field (MRF)
assumption that each pixel of the texture depends only on its neighborhood. [2]
introduced a parametric MRF model to textures. [4] and [15] propose a non-
parametric MRF model where the probability law of a pixel given its neighbors
is sampled directly from an exemplar of the texture to be synthesized. These
approaches have been improved by several author, see for instance the recent
review [14].
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These patch-based synthesis methods share similarities with recent sparsity-
based methods developed for image restoration. These methods build a dictio-
nary to perform a sparse expansion of the patches of the image in order to
achieve state of the art denoising results, see for instance the work of Elad and
Aharon [5]. Peyré shows in [11] that dictionary learning can be used for texture
synthesis, the dictionary encoding in a compact manner the geometric features
of the input image.

Our method builds upon the sparse texture synthesis method of Peyré [11],
but extends it significantly to achieve state of the art results in terms of visual
quality. We integrate several constraints to enrich the model and propose a
variational energy that is minimized during the synthesis.

2 Dictionary Learning

The first step of our method trains a dictionary to approximate patches from
the input exemplar. We take here the opportunity to introduce our notations
while recalling the process of dictionary learning.

Matrix Notation. We denote ai and aj the rows and columns of a matrix
A = (aji )i,j . The transposed matrix is denoted by A∗. Its �2 (Frobenius) norm is

defined by ||A||2 = tr(A∗A) =
∑

i,j |a
j
i |2. The indicator function ιC of a set C is

by definition equal to +∞ outside C and equal to 0 inside C. The �0 pseudo-norm
of a vector w counts its non-zeros coordinates, ||w||0 = # {i \ wi �= 0}.

Patches and Dictionary. We process and synthesize an image u by manipu-
lating its patches. Given a set (xk)

K
k=1 of K pixel locations, the patch extractor

is Π(u) = (pk)k ∈ RL×K where for t ∈ {0, . . . , τ − 1}2, pk(t) = u(xk + t) defines
the patch pk ∈ RL of τ × τ pixels, so that L = dτ2 where d = 1 for grayscale
images and d = 3 for color images. We constrain the sampling locations on a
regular grid xk = kΔ for k ∈ Z2 where the spacing Δ > 0 controls the amount
of sub-sampling.

A dictionary D = (dn)
N
n=1 ∈ RL×N is used to approximate the patches P =

Π(u) as P ≈ DW , where W ∈ RN×K are the coefficients of the approximation.
Note that this corresponds to approximating independently each patch as pk ≈
Dwk within the dictionary. The quality of the approximation is measured using
the �2 norm, ||P −DW ||2 =

∑K
k=1 ||pk −Dwk||22.

Learning Stage. Given an exemplar u0 of a texture we want to synthesize,
an adapted dictionary D0 ∈ RL×N is learned to provide an optimal sparse
approximation of the patches P0 = Π(u0) ∈ RL×K . Similarly to most dictionary
learning methods, such as [5], we solve a non-convex optimization problem over
the coefficients W0 ∈ RN×K and the dictionary D0

(W0, D0) ∈ argmin
W,D

||P0 −DW ||2 + ιCcols
(W ) + ιCdict

(D) (1)
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where we enforce the coefficients to be S-sparse using

Ccols =
{
W ∈ RN×K \ ||wk||0 � S ∀k

}
(2)

and where the atoms of the dictionary are constrained to be normalized using
Cdict =

{
D ∈ RL×N \ ||dn|| � 1 ∀n

}
.

Several algorithms have been proposed to minimize approximately a non-
convex energy of the form (1), see for instance the K-SVD method of [5].

3 Variational Formulation of the Synthesis Process

Once the dictionary D0 has been learned from an input exemplar u0, a texture u
(and the associated coefficients W of Π(u)) is synthesized by minimizing a non-
convex energy E(u,W ) equal to

1

Z
||Π(u)−D0W ||2+ιCcols

(W )+ιCrows(W )+αW2
2 (μu, μu0)+β||h%(u−u0)||2. (3)

Here Z = ' τΔ(2 is constant so that the �2 data fidelity is normalized with respect
to the number of extracted patches. The two parameters α, β > 0 are weighting
the influence of their respective terms. The synthesized images are stationary
points of E that are sampled at random with an iterative scheme, which is
described in Sect. 4. We now give the precise definition and the rationale for
each term of this energy.

Sparse Coding Constraint. The sparse coding energy 1
Z ||Π(u) − D0W ||2 +

ιCcols
(W ) is the same as the one used for the dictionary learning minimization (1).

It requires that all the patches of u are well approximated by an S-sparse ex-
pansion in D0.

Frequency Constraint. The constraint Crows imposes that all the geometrical
features of u0 encoded in the dictionary are represented with the same respective
proportions in u and u0. It enforces that atoms of D0 be used with the same
frequencies of occurrence for the sparse expansion of both Π(u0) and Π(u). It
is defined as

Crows =
{
W ∈ RN×K \ ∀n, ||wn||0 � Fn

0

}
.

The frequencies Fn
0 are estimated from the input exemplar coefficients W0 as

Fn
0 =

K

K0
||wn0 ||0, (4)

whereK andK0 are the number of patches extracted from u and u0 respectively.
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Histogram Constraint. Maintaining the gray-level or color histogram of a
texture is perceptually important for texture synthesis. This is achieved by pe-
nalizing the deviation between the empirical gray-level or color distributions μu
and μu0 of u and u0.

An efficient and robust distance between distributions is the optimal transport
distance, also known as the Wasserstein distance (see e.g. [13]). When u and u0
have the same number of pixels, the L2 Wasserstein distance is defined as

W2
2 (μu, μu0) = min

σ
||u− u0 ◦ σ||2. (5)

where σ runs over all the permutations of the pixels. This definition can be
extended for images having a different number of pixels. For grayscale images,
the optimal permutation is computed by simply sorting the pixel values. For color
images, the Wasserstein distance is more involved to compute and to minimize.
We approximate it as the sum of the grayscale distances along the three channels
in a principal component orthogonal basis.

Low-Pass Constraint. Low frequency patterns, whose sizes exceed τ , are not
controlled by the patch decomposition. To avoid the apparition of artifacts, we
penalize the deviation of the low frequencies of u with respect to those of u0
using the term ||h % (u− u0)||2, where % is the discrete convolution. We use a box
filtering kernel h = (τ−2)1�i,j�τ which performs an averaging over the spatial
extension of a patch.

4 Synthesis Algorithm

The synthesis is obtained by randomly sampling the stationary points of E(u,W )
by a block-coordinate descent method that minimize E iteratively with respect
to u and W . Pseudo-code 1 details the different steps of the method that are
detailed in the remaining part of this section.

Algorithm 1: texture synthesis algorithm by minimization of (3).

Data: input texture u0.
Input: parameters τ,Δ, S, α, β,N .
Output: synthesized texture u.
1. Dictionary learning: compute (D0,W0) by minimizing (1).
2. Frequency estimation: compute (Fn

0 )n using (4).
3. Initialization: set u to be a random white noise image.
4. Block-coordinate minimization: repeat until convergence

– image update: u ≈ argmin
u

E(u,W ), see Sect. 4.1.

– coefficient update: W ≈ argmin
W

E(u,W ), see Sect. 4.2.
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4.1 Step 1: Minimization with Respect to u

Given a fixed set of coefficients W , we compute the minimization of E(u,W )
with respect to u alone

min
u

ẼW (u) =
1

Z
||Π(u)− P ||2 + αW2

2 (μu, μu0) + β||h % (u− u0)||2 (6)

where P = D0W is fixed.

Gradient Descent. The function ẼW is smooth almost everywhere since W2
2

is defined in (5) as the minimum among a set of paraboloids. It has a Lipschitz
gradient. We thus use a gradient descent scheme to solve approximately (6)

u(�+1) = u(�) − η∇ẼW (u(�))

where u(0) is initialized from the previous iteration of the synthesis process.
The gradient of ẼW reads

∇ẼW (u) = 2R(u, P ) + α∇uW2
2 (μu, μu0) + 2βh̄ % h % (u − u0) (7)

where R(u, P ) =
1

Z
Π∗ (Π(u)− P )

and where h̄(x) = h(−x). The step sizes η must be smaller than twice the inverse
of the Lipshitz constant of this gradient, 0 < η < 4× (1 + α+ β)−1.

Gradient of the Wasserstein Distance. When u and u0 are grayscale images
with the same number of pixels, the gradient of u �→ W2

2 (μu, μu0) reads

∇uW2
2 (μu, μu0) = 2

(
u− u0 ◦ σu0 ◦ σ−1

u

)
where σv is a permutation that order the pixel values (vi)i of an image v,

vσv(1) � . . . � vσv(i) � vσv(i+1) � . . .

The permutation σu is not unique when u �→ W2
2 (μu, μu0) is not differentiable.

However, a descent direction is obtained by considering any valid ordering. When
u and u0 are color images, ∇uW2

2 (μu, μu0) is computed as the sum of the gra-
dients over the three channels of the principal components of the distribution of
the pixels of u0.

Non-linear Improved Reconstruction. We note that 1
ZΠ

∗Π = diagi(ρi/Z)
where ρi � Z is the number of patches that overlap at a pixel location i. In the
case of a perfect tiling, ρi = Z is constant and 1

ZΠ
∗Π = Id: we can thus write

diagi(Z/ρi)R(u, P ) = u−Π+P

where Π+ = (Π∗Π)−1Π∗ = diagi(1/ρi)Π
∗ is the pseudo-inverse ofΠ . The term

R(u, P ) thus involves images that are reconstructed linearly by an averaging
of patches. This step thus typically induces blur in the image u recovered at
convergence. We improve this reconstruction by replacing the linear pseudo-
inverse Π+ by a Non-Linear (NL) reconstruction operator Π+

NL, and replace, in
the gradient expression (7), R(u, P ) by RNL(u, P ) = u−Π+

NL(P ).
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Graph-Cuts Reconstruction. As a particular example of non-linear, edge-
preserving, reconstruction operatorΠ+

NL(P ), we use the graph-cut reconstruction
introduced in [9] for texture synthesis. The idea is to sequentially blend each pair
of adjacent patches along a cut. The patches are juxtaposed instead of being
averaged. For a given patches collection, the resulting image is much sharper
than the image obtained by linear reconstruction Π+(P ).

A vertical cut γ between two consecutive patches (p1, p2) in P is a vertical
path splitting the overlapping pixels into 2 groups. It is thus a subset of edges
joining pairs of pixels (x1, x2). An optimal cut is computed by minimizing a
functional measuring how well the two patches can be juxtaposed seamlessly
along γ

J(γ, p1, p2) =
∑

(x1,x2)∈γ

||p1(x1)− p2(x1)||2 + ||p1(x2)− p2(x2)||2
||p1(x1)− p1(x2)||2 + ||p2(x1)− p2(x2)||2

. (8)

The minimization of J(γ, p1, p2) with respect to γ is done by linear programming.
The full image reconstruction Π+

NL(P ) is performed in a greedy manner. Patches
are first merged using vertical cuts resulting in complete rows. These rows are
then merged together using large horizontal cuts.

Note that the resulting term RNL(u, P ) = u −Π+
NL(P ) does not correspond

anymore to the true L2 gradient. The non-linear behavior of the graph cut
operator makes it difficult to analyze the convergence of the resulting process.
Numerical simulations indicate that the process converges in practice, and that
no blur is created by these iterations. An interesting question for future work is
to understand whether the modification of the descent scheme can be re-casted
as a minimization of some edge-preserving energy.

4.2 Step 2: Minimization with Respect to W

The minimization of E with respect to W when u is fixed corresponds to the
following combinatorial optimization problem

min
W
||P −D0W ||2 + ιCcols

(W ) + ιCrows(W ) (9)

where P = Π(u) is fixed. Even in the case where Crows is dropped (usual sparse
coding), this problem is known to be NP-hard. We thus extend the Matching
Pursuit (MP) greedy algorithm [10] to take into account the additional con-
straint Crows and compute an approximate solution of (9). Pseudo-code 2 de-
scribes the steps of this Constraint Matching Pursuit (CMP) algorithm, that
are detailed in the remaining part of this section.

Index Selection Step. At step �, the algorithm greedily updates the co-
efficients W (�) to reduce as much as possible the amplitude of the residual
R(�) = P − D0W

(�) while staying within the constraint sets Crows and Ccols.
This update only increases by at most one the number of non-zero coefficients

ε� = argmin
||ε||0=1

||P −D0(W
(�) + ε)||2 + ιCcols

(W (�) + ε) + ιCrows(W
(�) + ε).
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Algorithm 2: constrained matching pursuit to approximately solve (9).

Data: patches P , dictionary D0.
Input: sparsity S, frequencies F0.
Output: coefficients W .
for � = 0 to SK − 1 do

– select the indices (k�, n�) by solving (10).
– update the coefficients to obtain W (+1) using (11).
– update the residual R(+1) = P −D0W

(+1) using (12).

Similarly as in the case of the MP algorithm, the optimal 1-sparse vector ε�

indexes an atom dn� and a patch r
(�)
k� of the residual R(�) = (r

(�)
k )k. These

indices can also be shown to maximize the correlations

(k�, n�) = argmax
(k,n)∈I�

|〈r(�)k , dn〉| (10)

where I� is the set of indices that are still available at step �

I� =
{
(k, n) \

∑
n′ �=n||(w

(�))n
′

k ||0 < S and
∑

k′ �=k||(w
(�))nk′ ||0 < Fn

0

}
where W (�) =

(
(w(�))nk

)
k,n

are the coefficient at step �.

Coefficient Update Step. The coefficients are then updated according the
MP rule

(w(�+1))nk =

{
(w(�))nk + 〈r(�)k , dn〉 if (k, n) = (k�, n�),

(w(�))nk otherwise;
(11)

and the residual R(�+1) = P −D0W
(�+1) becomes

r
(�+1)
k =

{
r
(�)
k − 〈r

(�)
k , dn〉 · dn if k = k�,

r
(�)
k otherwise.

(12)

Computational Complexity. Under the assumption that S � L,N � K, the
number of operations of the CMP algorithm is O(KN(L + logK)) when pre-
computing the inner products and using a heap max-search. The computation
of all inner products 〈pk, dn〉 provides a rough lower bound KNL for both our
algorithm and the original version of MP [10].

4.3 Multi-scale Synthesis

The energyE(u,W ) is highly non-convex and the optimization process is likely to
fall in bad local minima. Following several works on texture synthesis such as [11],
we use a multi-scale strategy, that is particularly efficient when synthesizing
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images with features having various scales, such as a quasi-periodic tiling of
small scale features.

We first proceed by filtering and down-sampling the input exemplar u0 to
produce a multi-scale hierarchy of J images (uj)

J−1
j=0 , where uj corresponds to a

sub-sampling by a factor 2j. Keeping a fixed patch size but a varying resolution
allows the method to capture details of varying sizes. A dictionary Dj is learned
for each uj following the method described in Sect. 2. The synthesis algorithm
detailed in pseudo-code 1 is then applied for j = J − 1, . . . , 1, 0 with (uj , Dj) in
place of (u0, D0). Between two scales j and j − 1, the current texture u output
at scale j is up-sampled by a factor 2 using bi-cubic interpolation to serve as the
initialization for the synthesis step at scale j.

5 Synthesis Experiments

In this section, we provide comparisons between the proposed method and 3
classical synthesis algorithms. We also illustrate the contribution of each term
in the energy (3).

Choice of the Parameters. For all numerical experiments in this section,
we use patches of width τ = 12 and a spacing Δ = τ/2. The synthesis is
performed through J = 3 scales. We choose S = 4 non-zero values per patch
and N = 384 elements in the dictionary. The parameters of the energy (3) are
chosen as α = β = 1; we observed that changing these values within reasonable
proportions has little visual influence on the results.

Comparison. Our results are compared with 3 other decomposition-based tex-
ture synthesis algorithms [7,12,11]. Peyré’s approach [11] is, to the best of our
knowledge, the only synthesis model using sparse dictionary decomposition; our
work is based on this approach. The method from Portilla and Simoncelli [12]
is a state of the art method for generic texture synthesis. Let us here emphasize
that we are interested in algorithms that truly generate a new texture from an
exemplar. Copy-paste methods such as the classical Efros-Leung algorithm [4]
and numerous related approaches (see e.g. [14]) produce visually striking results
on a larger class of textures than [12]. However they merely proceed, either ex-
plicitly or not, by stitching together pieces from the exemplar, as illustrated in
Fig. 1. These approaches are therefore not included in the present comparison.
The method from Heeger and Bergen [7] is included for methodological reasons.
It relies on the prescription of both the marginals of wavelet coefficients and the
gray level (or color) distribution of images. Therefore, it is closely related to our
method, albeit working in a prescribed, non-adaptive dictionary.

In Figure 2 are displayed several successful synthesis examples on textures
from the Brodatz database [1]. On these, the proposed method performs sig-
nificantly better than the method from Heeger and Bergen [7], especially for
structured textures. This is mostly due to the fact that learned dictionary are
more efficient than wavelet dictionary at capturing edges, corners or other ge-
ometric characteristics of these textures. Second, results on these examples are



194 G. Tartavel, Y. Gousseau, and G. Peyré

Original Coordinates Synthesis [4] Coordinates

Fig. 1. A synthesis example using the method from [4]. From left to right: input, pixel
coordinates visualized via a colormap, synthesis result, original position of the pixels
used for the synthesis. Although pixels are synthesized one at a time, the texture is
produced by stitching together pieces from the exemplar.

Input [7] [12] Our method [11]

Fig. 2. From left to right: input texture, result using [7], result using [12], result from
the proposed method, and result using the original framework [11]. The latter is often
too smooth because of the multi-scale processing. All textures are from the Brodatz
album [1].
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comparable to those from [12]. Observe that this last method relies on second
order statistics (correlations) between wavelet coefficients, while our approach
only controls the proportion in which each dictionary atom is used. This indi-
cates that the learned atoms could provide an interesting mathematical model
of textons, as defined in [8]. Third, the importance of the penalty terms we
introduced in energy (3) is evident through the comparison with the original
method [11].

In Figure 3 are displayed two failure examples, a very large scale texture in
the first row and a micro-texture in the second row. While the synthesis of very
large scale textures without copy-pasting is still an open problem, micro-textures
are successfully captured by relatively simple models such as the random phase
model from [6]. A rough explanation of the inability of our method to synthesize
such textures is that the sparse decomposition model is not adapted for noise-like
patches.

Input [7] [12] Our method [11]

Fig. 3. Failure examples. Top: a large scale texture, bottom: a micro-texture for which
the sparse hypothesis is not adapted.

Step-by-Step Analysis. In this second set of experiments, we illustrate the
contributions of both the different components of energy (3) and the chosen min-
imization strategy. For each tested texture, we compare the following synthesis
procedures:

– basic: only keep the first two terms (sparse coding constraint) and the fourth
term (histogram constraint) of energy (3), which gives a method very similar
to the initial framework of [11],

– atom frequency: add the atom frequency constraint Crows,

– graph cut: add the graph-cut reconstruction described in Sect. 4.1,

– multi-scale: add the multi-scale strategy described in Sect. 4.3,

– low frequency: add the low frequency constraint (last term of (3)), yielding
the complete proposed procedure.
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Several observations can be drawn from the results shown in Fig. 4. First, the
atom frequency constraint is important for the generation of geometric structures
and avoids an excessive use of smooth patches. Second, the non-linear image re-
construction procedure yields sharper results than the averaging of patches by
the operator Π∗. Third, the multi-scale strategy introduces large scale coher-
ence, without the computational cost of using larger patch sizes. Last, the low
frequency constraint prevents from large scale variations due to the independence
of patches.

Input Basic Atom freq. Graph cut Multi-scale Low freq.

Fig. 4. Step-by-step examples. For each example, the result in the second column is
obtained using a basic sparse synthesis scheme. Each column then shows the effect of
adding a new constraint or of changing the minimization strategy. The last column is
the complete proposed synthesis procedure.

6 Conclusions and Future Work

In this article we presented a variational approach to the texture synthesis prob-
lem. It extends significantly the initial sparsity-based framework of [11].

We identifieda set of constraints tomake the sparse approach suitable for texture
synthesis. The first constraint controls the frequency of occurrence of each atom of
the dictionary. The second constraint compensates the lack of coherence between
adjacent patches. The third refinement is a cut-based reconstruction in the patch-
based framework. The last and common refinement is the multi-scale processing.

The resulting model is well adapted to textures with sharp edges and small
quasi-periodic patterns as shown in Fig. 2. It is less suitable for textures with
high frequencies or structures at very large scale. Interesting perspectives include
a better modeling of noisy textures, possibly through constraints on the power
spectrum of images as in [6], as well as the use of a multi-scale learned dictionary.

Another perspective is to explore the variational approach which formulates
the synthesis problem as a (highly non-convex) minimization problem. This pa-
per uses a basic gradient descent but more efficient approaches may be used.
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The solutions given by the minimization algorithm are (at most) local minima
of the energy. Do they all look similar? If not, how to get a “good” solution?

Acknowledgement. This work has been partly supported by the ANR project
MATAIM and by the ERC project SIGMA-Vision.
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Abstract. Super-resolution combines several low resolution images hav-
ing different sampling into a high resolution image. L1-norm data fit min-
imization has been proposed to solve this problem in a robust way. The
outlier rejection capability of this methods has been shown experimen-
tally for super-resolution. However, existing approaches add a regular-
ization term to perform the minimization while it may not be necessary.
In this paper, we recall the link between robustness to outliers and the
sparse recovery framework. We use a slightly weaker Null Space Prop-
erty to characterize this capability. Then, we apply these results to super
resolution and show both theoretically and experimentally that we can
quantify the robustness to outliers with respect to the number of images.

Keywords: super-resolution, interpolation, L1-norm.

1 Introduction

1.1 Problem Statement and State of the Art

The objective of super-resolution (SR) is to recover a high resolution (HR) image
from several low resolution (LR) images. SR relies on the different sampling
caused by motion between LR images acquisition. Several surveys of the subject
exist in the literature [1–3]. The variational approach to super-resolution leads
to the general form of a regularized minimization of the data-fit functional.

Most of the time, this data fit functional is an Lp-norm fit to the observed
data. The L2-norm (least squares data fit) has been the most frequent choice
because of the optimality properties of the solution when data is contaminated by
random noise [4]. Methods for least squares minimization such as the conjugate
gradient are also well-known and efficient. More recently, L1-norm minimization
has been proposed to remove outliers from images [5] and as a robust way to
perform super-resolution. It was shown that this method is robust to outliers
in super-resolution [6–8]. Whatever norm is chosen, a regularization term is
generally added to the variational problem.

Tychonov [4], bilateral total variation [6, 9], total variation [7, 8] or non-local
regularization [10, 11] have been considered. In all these cases, an a priori hy-
pothesis is made on the regularity of the HR image. However, when observa-
tion noise is random, it is likely that such regularization is not necessary when

A. Kuijper et al. (Eds.): SSVM 2013, LNCS 7893, pp. 198–209, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Outlier Removal Power of the L1-Norm Super-Resolution 199

many LR images are available [12]. When there is an unnecessary regulariza-
tion, high resolution features which could be recovered may be lost instead. In
the case of unbounded outliers, results based on the least squares solution of
super-resolution are not optimal because they are not well suited to the noise
configuration.

In other areas of applied mathematics, it is known that the L1-norm mini-
mization has the ability to remove outliers. Candès and Tao showed in [13] that
the outliers removal power of L1-norm minimization is equivalent to a sparse
recovery problem with sparsity having the cardinality of the support of outliers.
They also showed that the observation matrix leads to the right result if it fulfills
a restricted isometry property (RIP). Since this paper, the Null Space Property
(NSP) has been shown to be an equivalent characterization of the capability to
recover sparse vector from underdetermined observations [14].

1.2 Contributions

To our knowledge characterizations of L1 norm minimization have not been used
in the context of super-resolution. In Section 2, we set up the variational super-
resolution problem. We then (Section 3) formulate the problem of forgiving
outliers in the data in a slightly weaker way than in [13]. Vaswani [15] stud-
ied partially known support which is a stronger formulation of sparse recovery.
Knowledge of the support is also used for structured sparsity where dedicated
methods are designed [16]. [17] considered weaker formulation of the robustness
of L1-norm recovery by considering a fixed sparsity support. We consider arbi-
trary set of supports for outliers, which will allow an easy application to the
super-resolution problem. This leads to an equivalent slightly weaker Null Space
Property. In Section 4, we apply these results to the super-resolution inter-
polation problem. We find lower bounds on the number of images ensuring the
robustness to a given number of outliers. We also show that allowing for arbi-
trary sets of supports for outliers can provide better practical results. Finally,
we show experiments illustrating these results in Section 5.

2 Super-Resolution Interpolation Model

2.1 Low Resolution Image Generation

In a finite dimensional context, LR images are generated by a linear map A:

A : RML×ML →
(
RL×L

)N
u→ (Aiu)i=1,N = (SQiu)i=1,N

(1)

where M is the super-resolution factor, N is the number of LR images, L×L is
the size of LR images, u is a HR image of size ML×ML, the Ai are linear maps
generating LR images, S is the sub-sampling operator by a factor M and Qi are
the deformations associated with each LR image. SR is the process of recovering
u0 from w = Au0+n (n is the observation noise). In this paper, we suppose that
the Qi are known. In this setting, the inversion of A is called super-resolution
interpolation.



200 Y. Traonmilin, S. Ladjal, and A. Almansa

It has been shown in [12] that A is almost surely full rank when motions are
random compositions of translations and rotations and N ≥M2.

2.2 Variational Formulation

When A is full rank and M2 ≤ N , L2-norm minimization guarantees that the
energy of the reconstruction noise is bounded by the energy of observation noise
times the operator norm of the pseudo-inverse A† of A. This leads to useful
results when observation noise is bounded. In the case of outliers, no assumption
is made on the power of the noise and L2 reconstruction does not guarantee
a good result (unbounded reconstruction noise). In this paper, we study the
efficiency of the L1-norm minimization of the data-fit:

argminu‖Au− w‖1 (2)

with w = Au0 + n0. We look for conditions on A ensuring that u0 is the unique
solution of (2) when n0 is an outlying noise. Outliers have the form : n0 = n.T
with T a vector of 0 and 1 representing the support of the noise (the . represents
the component-by-component vector product). We do not make any hypothesis
on n. In Section 3, A will be a general full rank matrix of an over-determined
system. In other sections, A will be an over-determined full rank SR operator of
size NL2 × (ML)2 with N > M2.

3 Forgiving Matrices

3.1 Definitions

We introduce the concept of a T -forgiving matrix A (A : Rm → Rp) :

Definition 1. Forgiving Matrix Let T be a set of supports in Rp (subset of
{0, 1}p). A is called T -forgiving if for all T ∈ T , n ∈ Rp, u0 ∈ Rm, we have:

u0 = argminu‖Au− (Au0 + n.T )‖1 (3)

and u0 is the unique minimizer.

When a matrix is T -forgiving, the L1 minimization recovers u0 from any obser-
vation Au0 contaminated by outliers whose support is in T .

Definition 2. Sparse Capable Matrix Let T be a set of supports in Rp. B
(Rp → Rq) is called T -sparse capable if for all T ∈ T , x0 ∈ Rp, y ∈ Rq, we have:

x0.T = argminx‖x‖1 subject to Bx = B(x0.T ) (4)

and x0.T is the unique solution to problem (4).

The Null Space Property found in [14] only depends on the Null-Space of the
matrix (and its interaction with supports). It is a non-concentration property
which can be stated as follows:
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Definition 3. Non-Concentration Property
Let T be a set of supports in Rp and V a subspace of Rp. We say that V has the
T -Non-Concentration Property (NCP) if for all v ∈ V \{0} and all T ∈ T

‖v.T ‖1 < ‖v.T c‖1 (5)

where T c stands for the complement support of T .
We say that a matrix has the T -Null Space Property (T -NSP) if its null space

has the T -NCP.

Remark 1. Notice that, given the finite-dimensional setting, the NCP property
implies the existence of a constant γ < 1 such that for all v ∈ V and all T ∈ T :

‖v.T ‖1 < γ‖v.T c‖1 . (6)

This constant is called the NSP constant in the area of sparse recovery.

For the completeness of the paper, we now proceed with the direct proof of equiv-
alence between the forgiveness of A and the Non-Concentration Property for the
image of A (ImA). This equivalence can be obtained by combining [13] and [14]
and slightly modifying the proofs to introduce arbitrary T instead of consider-
ing families of supports with fixed size. Indeed, [13] proves that forgiveness of
a matrix (called linear coding capability) is equivalent to the sparse capability
of any matrix whose kernel is the image of the original one and [14] proves that
sparse capability is equivalent to the NCP (called there NSP).

3.2 Characterization of Forgiveness by the Non-Concentration
Property

Theorem 1. The two following propositions are equivalent:

1. A is T -forgiving
2. ImA has the T -Non Concentration Property.

Proof. 1 ⇒ 2: Let A be T -forgiving, and T ∈ T . Let w ∈ ImA\{0}, there is u0
such that w = Au0 �= 0. From the characterization of the L1 minimizer in (3),
we know that the following inequality holds

‖n.T ‖1 < ‖Au− (w + n.T )‖1 (7)

for all n ∈ Rp and for every sub-optimal u �= u0. The strict inequality is a
consequence of the uniqueness. In particular, for n = w and u = 2u0 (u �= u0
because Au0 �= 0), Au = 2w and:

‖w.T ‖1 < ‖w − w.T ‖1 = ‖w.T c‖1 . (8)

This shows that ImA satisfies the NCP on T .
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2⇒ 1: By hypothesis ImA has the NCP on T . Let u0 ∈ Rm, n ∈ Rp and T ∈ T .
We have to show that u0 is a minimizer of (3). Let u �= u0. The L

1-norm is the
sum of L1-norms taken on complementary supports:

f(u) = ‖Au− (Au0 + n.T )‖1
= ‖(Au− (Au0 + n.T )).T ‖1 + ‖(Au− (Au0 + n.T )).T c‖1
= ‖A(u− u0).T − n.T ‖1 + ‖A(u− u0).T

c‖1 .
(9)

We use the triangle inequality followed by the NCP :

f(u) ≥ ‖n.T ‖1 − ‖A(u− u0).T ‖1 + ‖A(u− u0).T
c‖1

f(u) > ‖n.T ‖1 = f(u0) .
(10)

This strict inequality shows that u0 is the unique minimizer of f . Consequently,
A is T -forgiving. �

With this slightly different result, the NCP can be checked on particular sets of
supports, and not only those having a given cardinal as usually done in the sparse
recovery framework. For example, in the context of image super-resolution, it is
interesting to consider outliers contaminating a fixed number of LR images. This
hypothesis models real situations like new object in the scene, light reflection...

Remark 2. The previous result implies the following already known result: the
NSP of order K is equivalent to the K-sparse recovery capability. We just have
to apply the result for TK the set of all supports of cardinal K.

Remark 3. Note that in the context of outlier removal, the NCP could be called
“Image Space Property“ for A.

4 Application to Super-Resolution

4.1 Sufficient Condition for K-Forgiveness

In this section, we suppose that we only have the knowledge of the number of
outliers K for the super-resolution problem. A is the super-resolution operator
and T is the set of supports of cardinal K. We call this special case of T -
forgiveness the K-forgiveness. We first give sufficient conditions on the number
of observed images for the NCP. Then we use the weaker Restricted Isometry
Property (RIP) which is another sufficient condition for sparse capability. For
any linear map A and support T , we call AT , the operator u→ (Au).T .

Sufficient Condition for the NCP. Let T be a support with cardinal K. We
look for a sufficient condition such that:

‖ATu‖1
‖AT cu‖1

< 1 (11)

holds for all supports T of size K.
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We start by bounding the L1-operator norm of AT . Let ai be the lines of A:

‖ATu‖1
‖u‖1

=

∑
i∈T | < ai, u > |
‖u‖1

≤
∑

i∈T
∑

j |ai,juj |
‖u‖1

. (12)

Because each coefficient of A is a sample of a cardinal sine, we have |ai,j | ≤ 1.
Therefore, we have

‖ATu‖1
‖u‖1

≤
∑

i∈T
∑

j |uj |
‖u‖1

≤ K .

(13)

Now we bound the ratio ‖ATu‖1

‖ATcu‖1
. We use the L1 conditioning κATc ,1 of AT c .

The Lp conditioning of an operator A is defined by:

κA,p =
sup‖u‖p=1‖Au‖p
inf‖u‖p=1‖Au‖p

(14)

This leads to the following inequalities :

‖ATu‖1
‖AT cu‖1

≤ K‖u‖1
‖AT cu‖1

≤ K

(
inf
‖AT cu‖1
‖u‖1

)−1

≤ K
κATc ,1

‖AT c‖1
.

(15)

We use the fact that the L1 operator norm ‖AT c‖1 can be bounded below the
values taken on particular examples. The SR operator transforms constant HR
images into constant LR images of same intensity. Consequently, ‖AT c‖1 ≥
(NL2 −K)/(ML)2 and:

‖ATu‖1
‖AT cu‖1

≤ K(ML)2
κATc ,1

NL2 −K
. (16)

We consider κmAT c ,1 the maximum L1 condition number of A restricted to the
lines T c. A condition for K-forgiveness is:

N > K
(
M2κmAT c ,1 + 1

)
. (17)

This inferior bound on N is linear with respect to K and is tight. Indeed, we
can find a case where it is easy to see that N must be at least greater that a
constant times K: Consider a 1D super-resolution problem with a sub-sampling
factor of M = 2 and a number N = 2P > 2 observations with the corresponding
translations being 0, 1, . . . , 0, 1 respectively (i.e. there are P observation with
translation 0 and P with translation 1). In this case, the reconstruction according
to equation (3) is the following HR signal: each sample is the median of the P
values measured for each sample of the original signal. It is then clear that the
L1 variational setting can not resist to more than P/2 outliers. The worst case
being that all outliers contaminate the same pixel (of the original signal) and
have the same (unrelated to the signal) value.
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Sufficient Condition for the RIP. A consequence of the equivalence between
outlier resistance and sparse recovery is that we can use the Restricted Isometry
Property [13] to find a sufficient condition for the K-forgiveness capability using
the more convenient L2 setting.

Definition 4. B has the restricted isometry property of order J and constant
δ ∈]0, 1[ if for all x ∈ RN(L×L), for all supports T such that |T | = J

(1 − δ)‖x.T ‖2 ≤ ‖B(x.T )‖2 ≤ (1 + δ)‖x.T ‖2 . (18)

Given a matrix A, we set B as the orthogonal projection on (ImA)⊥, that is
B = P(ImA)⊥ = I − A(AHA)−1AH . Showing a RIP of order J = K + K ′

with constant δ <
√
K′−√

K√
K′+

√
K

for B gives the K-sparse capability of B (See [18]).

Consequently, kerB = ImA has the NCP and A is K-forgiving. Moreover, if for
all T of cardinal J :

‖A(AHA)−1AH(x.T )‖2
‖x.T ‖2

≤
√
δ (19)

then B has RIP of order J and constant δ (we square equation (18) and use the
Pythagorean theorem). We can show using the same reasoning as in equation (13)
that ‖AHT ‖2 = ‖AT ‖2 ≤

√
J . Consequently, we bound the ratio:

‖A(AHA)−1AH(x.T )‖2
‖x.T ‖2

≤ σmax
‖(AHA)−1AH(x.T )‖2

‖x.T ‖2
≤ σmaxσ

−2
min‖AT ‖2

≤
κ2A,2
√
J

σmax
(20)

where σ? are the extremal singular values of A. Replacing with an admissible
value of δ gives the condition:

κ4A,2(K +K ′)
σ2
max

≤
√
K ′ −

√
K√

K +
√
K

. (21)

We take K ′ = 3K (which we found is the optimal choice for the resulting con-
stant) and get:

κ4A,2
σ2
max

≤ C1√
K

(22)

where C1 = 0.0670. σmax ≥ ‖Au‖2

‖u‖2
because σmax is the operator norm of A.

Taking u as a constant image leads to: σmax ≥
√
N/M2. Finally,

N > M2C−1
1 Kκ4A,2 (23)

is a sufficient condition for A to be K-forgiving. This bound uses the L2 con-
ditioning of the full operator. It has been shown [12, 19] that the conditioning
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κA,2 converges to 1 for a large number of images and random motions. For a 1D
signal and M = 2, this sufficient condition is roughly N > 30K asymptotically.
This bound has to be compared with the worst case scenario described in the
precious section N > 4K (which is a necessary condition).

4.2 Study of Particular Outlier Configurations

Here, the possibility to choose arbitrary sets of supports shows its benefit. Let T
be the set of supports contaminating Nc LR images. In the same way as before,
we want to find sufficient conditions for the NCP for T ∈ T . More precisely,
we allow for up to K = NcL

2 outliers as long as they contaminate at most Nc

images. We start by bounding operator norms with a tighter bound. Let S be
the set of contaminated LR images indices (|S| = Nc):

‖ATu‖1
‖u‖1

≤
∑
i∈S
‖Ai‖1

≤
∑
i∈S
‖SQi‖1

≤ C2Nc

(24)

where C2 is an upper bound of ‖Ai‖1. C2 is the maximum L1-norm of the
sinc used for interpolation. For 1D signals, the L1 norm of the sinc is roughly
bounded by the logarithm of the size of its support. We plot in Figure 1 a
numerical evaluation of this constant for 2D SR. Figure 1 shows the max of the
L1 norms of the sinc for translational SR. This bound yields:

‖ATu‖1
‖AT cu‖1

≤ ‖ATu‖1‖u‖1‖u‖1‖AT cu‖1

≤ ‖u‖1C2Nc

‖AT cu‖1
.

(25)

We introduce the pseudo-inverse A†
T c = (AHT cAT c)−1AHT c (recall that AT c has

full column rank if N −Nc < M2):

supu
‖u‖1
‖AT cu‖1

= supv∈ImATc

‖A†
T cv‖1
‖v‖1

≤ ‖(AHT cAT c)−1‖1supv∈ImATc

‖AHT cv‖1
‖v‖1

≤ ‖(AHT cAT c)−1‖1C3

(26)

where C3 is the maximum L1 norm of the columns of QH
i S

H . This leads to the
following sufficient condition :

Proposition 1. If Nc images are contaminated, having N images with :

NcC2C3‖
(
AHT cAT c

)−1 ‖1 < 1 (27)

guarantees a perfect reconstruction by L1 minimization.
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We evaluate in Figure 1, the constant C2 and the product C2C3. We cannot
bound ‖(AHT cAT c)−1‖1 without knowledge of the motions because the its L2

operator norm cannot be bounded (LR grids could be arbitrarily close). However,
with random motions, we know that (AHT cAT c)1 ∼ 1

N I (see [12]) when T is fixed
(on the first images for example) and N →∞. Asymptotically, the constraint is
Nc < C4N (for L = 200, C4 = 60). This is much better than the previous result
without hypothesis on the support, were the equivalent constant would have
been L2C−1

1 = 597000 for L = 200. To have an idea of how robust the L1 SR
problem is, we can compare this result asymptotically with the case of random
matrices [20] which have been studied in the context of sparse recovery. The
equivalent condition would be: for outliers with sparsity K, with NL2 −M2L2

observations and a signal of size NL2, the constraint would be K < (N −
M2)L2/log(N/(N −M2)). We see that asymptotically, this constraint is much
better because log(N/(N −M2))→ 0 when N grows.
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Fig. 1. Constants for translational SR (a) evaluation of C2 with respect to L (b)
evaluation of C3 with respect to L (c) evaluation of C2C3 with respect to L

5 Experiments

5.1 Algorithm

The equivalence of the L1 minimization with sparse recovery shown in Section 3
allows for the use of existing algorithms. Daubechies et al. [18] showed that
iteratively reweighted least squares (IRWLS) convergence to the L1 K-sparse
solution is guaranteed when A is K + 2γ

1−γ sparse capable (with γ the NSP

constant, see the remark in section 3.1) and when weights are carefully chosen
(and the regularization of the weights εn → 0 ). We use this algorithm with
the super-resolution L2 data-fit functional. We construct iterations equivalent
to [18]:

un+1 = argminu‖Ωn(Au − w)‖22
zn+1 = Aun+1 − w

rn+1 = decreasing sort of abs(zn+1)

εn+1 = min(εn, rn+1(K + 1))

Ωn+1 = diag
([
z2n+1 + ε2n+1

]−1/4
)

(28)
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We chose this algorithm because it converges quickly (a few iterations in practice)
and convergence can be checked by looking at the variations of ε. Our aim is to
give practical cases when outliers can be rejected.

5.2 Results

We show examples of outlier rejection using IRWLS. These practical results are
better than our theoretical bounds which match the experience from compressed
sensing. In Figure 2, we show an experimental evaluation of the number of im-
ages needed when Nc images are fully contaminated by outliers. For each Nc, N ,
the PSNR of the result of IRWLS is calculated for 30 experiments with different
motion parameters. We plot the value of 10th percentile (90% of the reconstruc-
tions have a better PSNR). Each line of this matrix can be interpreted as a
phase transition diagram. In Figure 3, we contaminate one LR image with the
absolute value of Gaussian random noise of variance 125 (pixels take values in

(a)

Nc

N
−

M
2
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20

40

60

80
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(b)

Fig. 2. Experimental outlier rejection (a) HR image used for all experiments (b) 10%
percentile of the PSNR (in dB) with respect to the number of outliers Nc and number
of images N −M2

(a) (b) (c)

Fig. 3. L1 SR interpolation outlier removal for M = 2 and N = 7 (a) Ideal HR image
(b) Reconstructed image (c) LR images (outliers on the last image)
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(a) (b) (c)

Fig. 4. L1 SR interpolation outlier removal for M = 2 and N = 8 (a) Ideal HR
image (b) Reconstructed image (c) LR images (outliers simulating saturated pixels
(red squares) on the last 4 ones)

[0, 255]). In this case, 6 clean images give a perfect reconstruction of the HR
image. In Figure 4, even with more contaminated images (4 noisy LR images
on 8 LR images), if the location of outliers is different between LR images, L1

minimization is still robust.

6 Conclusion

We have studied the outlier rejection capability of L1 super-resolution in a quan-
titative way. The link between the outliers resistance problem and sparse recovery
allows for the direct translation of the results of the literature of sparse recov-
ery to over-determined super-resolution. We showed that if enough images are
available, outlying noise can be completely removed from the observations. We
gave theoretical bounds on the ratio between the number of images and outliers
to ensure a perfect reconstruction without regularization. We showed that some
conditions on the support of outliers allows for a robustness to more outliers.
This result takes the form of much better theoretical bounds derived using these
particular supports. Experiments show that fewer images are necessary to resist
outliers in practice.
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Abstract. The census transform is becoming increasingly popular in
the context of optic flow computation in image sequences. Since it is
invariant under monotonically increasing grey value transformations, it
forms the basis of an illumination-robust constancy assumption. How-
ever, its underlying mathematical concepts have not been studied so far.
The goal of our paper is to provide this missing theoretical foundation.
We study the continuous limit of the inherently discrete census transform
and embed it into a variational setting. Our analysis shows two surprising
results: The census-based technique enforces matchings of extrema, and
it induces an anisotropy in the data term by acting along level lines. Last
but not least, we establish links to the widely-used gradient constancy
assumption and present experiments that confirm our findings.

Keywords: robust optic flow, census transform, illumination changes,
anisotropy, variational method.

1 Introduction

In 1994, Zabih and Woodfill have proposed the so-called census transform [1].
It computes for every pixel a binary string (census signature) by comparing its
grey value with the grey values in its neighbourhood. In particular, the signature
encodes whether the neighbours are smaller than the reference pixel or not. For
a 3×3 neighbourhood, the census signature has length 8 and can be represented
efficiently via a single byte.

The census transform is becoming increasingly important: It provides an
illumination-robust constancy assumption for solving correspondence problems
in computer vision, e.g. computation of the displacement field (optic flow) in
image sequences. The census signatures are by construction morphologically in-
variant, i.e. invariant under global monotonically increasing grey level rescalings.
This can be an important advantage in modern applications such as driver assis-
tant systems. Stein [2] uses the census signatures in an efficient feature matching
approach. A hash table-based indexing scheme provides flow estimates in real-
time and is well-suited for large displacements. Müller et al. [3] as well as Mo-
hamed and Mertsching [4] exploit these sparse feature matches to handle large
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displacements and to recover image details lost in a coarse-to-fine minimisation
technique, respectively. Furthermore, Müller et al. [5] embed the census trans-
form as a data term into a variational optic flow framework. Tests in real-world
scenarios show the desired morphological invariance of the resulting dense flow
fields. Also in the context of stereo estimation, Ranftl et al. [6] have demonstrated
the usefulness of the census transform under challenging lightning conditions.

In spite of its increasing popularity, however, the theoretical understanding of
the successful census transform is still rather limited.

Our Contributions. The goal of our paper is to provide a thorough theoretical
foundation of the census transform. Our contributions are threefold:

(i) We regard differences to neighbours as approximations of directional deriva-
tives and study the continuous limit where all possible angles are taken into
account.

(ii) We develop this concept into a constancy assumption, and we embed it as
data term in a variational model for optic flow computation.

(iii) Most importantly, we analyse the energy functional and its minimisation in
order to obtain a novel interpretation of census-based optic flow. We will
see that this interpretation reveals many clever properties of the census
transform which have not been used in other optic flow formulations.

We want to stress that the focus of our work is not on developing new competitive
high-end optic flow methods: We are interested in a mathematical underpinning
of census-based approaches. Once their properties are well-understood, these
ideas can easily be embedded in any highly sophisticated optic flow method that
ranks favourably in the Middlebury benchmark [7].

Related Work. Since 1994, the census idea has appeared under several names
in the literature: Ojala et al. [8] developed almost the same concept indepen-
dently but interpreted the resulting descriptor as a binary number (local binary
patterns). Later, Calonder et al. [9] revisited this idea by introducing the feature
point descriptor BRIEF.

There is also a long tradition of designing methods for illumination-robust
optic flow computation. Inspired by Uras et al. [10], Brox et al. [11] achieve ro-
bustness w.r.t. additive brightness changes by considering the image gradients
in addition to the intensity values. Chambolle and Pock [12] follow a different
strategy to tackle these additive illumination changes and estimate the additive
component explicitly. Another idea by Mileva et al. [13] is to make use of photo-
metric invariants to design illumination-robust flow methods for colour images.

Paper Organisation. Starting with a continuous interpretation of the census
transform, Section 2 presents our census-based variational optic flow method.
The energy formulation and its minimisation yield new insights into census-based
approaches. These results are presented in Section 3. After having sketched our
numerical algorithm in Section 4, we evaluate the proposed method in Section 5.
Finally, Section 6 concludes the paper with a summary and an outlook.
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2 Census-Based Variational Optic Flow

In this section, we introduce our census-based optic flow method. To this end,
we start with a formal definition of the original census transform and derive the
corresponding constancy assumption in a continuous manner. This provides the
basis of our energy functional and is the starting point of our analysis.

2.1 Census Transform

Let in a discrete setting gi,j denote the grey values of an image. Then, every

digit of the census signature in pixel (i, j)	 is computed as

H ( gi+d1,j+d2 − gi,j ) , (1)

where (i+ d1, j + d2)
	

is a neighbouring pixel, and H : R → {0, 1} denotes the
Heaviside step function

H (z) :=

{
0 if z < 0

1 if z ≥ 0
. (2)

2.2 Census-Based Constancy Assumption

Let us now transfer the census transform to the continuous setting and derive
the associated constancy assumption. For this purpose, the three-dimensional
function f (x, y, t) represents a spatio-temporal image sequence, where (x, y)

	

describes the location within the rectangular image domainΩ ⊂ R2 and t ∈ [0, T ]
denotes the time.

The argument of the step function in Equation (1) approximates a directional
derivative. Consequently, one census digit can be interpreted as the discrete
version of

H
(
∂eϕf (x, y, t)

)
, (3)

where the directional derivative operator ∂eϕ only acts on the spatial domain.

Here, the unit vector eϕ := (cosϕ, sinϕ)	 specifies the direction.

We now derive the constancy assumption that corresponding points (x, y, t)
	

and (x+ u, y + v, t+ 1)
	

in two consecutive frames have identical census sig-
natures. In our notation, the functions u, v :Ω→ R represent the sought optic
flow. With the abbreviations x := (x, y, t)

	
and w := (u, v, 1)

	
, the constancy

assumption of the census signature implies

H
(
∂eϕf (x+w)

)
− H

(
∂eϕf (x)

) !
= 0 ∀ ϕ ∈ [0, 2π) . (4)

In order to embed this constraint as a data term in an energy functional, we
consider a linearised version of it. To this end, we replace the Heaviside step
function H by the smooth approximation

Hε (z) :=
1

2

(
1 +

z√
z2 + ε2

)
, (5)
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Fig. 1. Different approximations Hε (z) of the Heaviside step function (left) and corre-
sponding derivatives H ′

ε (z) (right). Smaller choices of ε lead to closer approximations
of the original sharp step function.

with a small positive regularisation parameter ε > ε0 > 0 (cf. Figure 1). The
numerical parameter ε0 ensures that ε is also in the limit strictly larger than 0.
Otherwise, the linearisation becomes invalid and the resulting data term would
not be suitable for a typical variational optic flow framework [14].

Assuming small flow components u and v as well as a small change of the
directional derivative ∂eϕf (x) in time, we propose a twofold linearisation of the

regularised version of constraint (4). For this purpose, let ∇3 := (∂x, ∂y, ∂t)
	

denote the spatio-temporal gradient and

H ′
ε (z) =

ε2

2 (z2 + ε2)
3/2

(6)

the derivative of Hε (z). At first, we linearise ∂eϕf (x+w) around x and obtain

Hε

(
∂eϕf(x) +w	 ∇3

(
∂eϕf(x)

))
− Hε

(
∂eϕf (x)

) !
= 0 . (7)

In the second step, the first Hε term in (7) is linearised around ∂eϕf (x):

H ′
ε

(
∂eϕf(x)

)
·w	 ∇3

(
∂eϕf(x)

) !
= 0 . (8)

2.3 Energy Formulation and Minimisation

Now, we embed the derived constancy assumption into a variational framework.
To this end, let ∇ :=∇2 := (∂x, ∂y)

	
denote the spatial gradient operator. Fur-

thermore, let α>0 be a regularisation parameter that allows to steer the impact
of the data and smoothness term, respectively. Then, an energy incorporating
the proposed linearised constancy assumption is given by

E (w) :=

∫
Ω

(M (f,w) + α · S (w)) dx , (9)
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with the census-based data term

M (f,w) :=
1

π

∫ 2π

0

H ′
ε
2 (
∂eϕf

)
·
(
w	 ∇3

(
∂eϕf

))2
dϕ (10)

and the quadratic smoothness term

S (w) := |∇u|2 + |∇v|2 . (11)

For the sake of clarity, we omit the argument x of the functions f , u, and v.
Following the calculus of variations, the minimiser of the energy in Equation (9)
w.r.t. u and v has to fulfil the Euler-Lagrange equations

1

π

∫ 2π

0

H ′
ε
2 (
∂eϕf

)
· ∂eϕfx ·w	 ∇3

(
∂eϕf

)
dϕ − α Δu = 0 , (12)

1

π

∫ 2π

0

H ′
ε
2 (
∂eϕf

)
· ∂eϕfy ·w	 ∇3

(
∂eϕf

)
dϕ − α Δv = 0 , (13)

with reflecting Neumann boundary conditions n	∇u = 0 and n	∇v = 0. Here,
n denotes the outer normal vector to the boundary of Ω.

3 Interpretation

To analyse the presented census-based data term in Equation (10), we exploit
the symmetry of the integrand w.r.t. π and the equivalence ∂eϕf = e	ϕ∇f for
differentiable functions f :

M (f,w) =
2

π

∫ π

0

H ′
ε
2 (

e	ϕ∇f
)
·
(
w	 ∇3

(
e	ϕ∇f

))2
dϕ . (14)

Further algebraic rearrangements allow to isolate the census tensor C:

M (f,w) =
2

π

∫ π

0

H ′
ε
2 (

e	ϕ∇f
)
·
(
e	ϕ

(
w	∇3fx
w	∇3fy

))2

dϕ (15)

=

(
w	∇3fx
w	∇3fy

)	
· 2
π

∫ π

0

H ′
ε
2 (

e	ϕ∇f
)
eϕe

	
ϕ dϕ︸ ︷︷ ︸

=:C

·
(
w	∇3fx
w	∇3fy

)
. (16)

A thorough analysis of this symmetric tensor C ∈ R2×2 has already been per-
formed by Weickert in the context of anisotropic diffusion filtering [15]. Here, we
review the results that are relevant for us: Let (r, ψ)	 denote the polar coordi-
nates of ∇f �=0. Then, Weickert has shown that the first and second eigenvector
of C are parallel and perpendicular to isolines of f , respectively. They read

v‖ (ψ) =
(
− sinψ
cosψ

)
and v⊥ (ψ) =

(
cosψ
sinψ

)
, (17)
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and the corresponding eigenvalues are

λ‖ (r) =
4

π

∫ π
2

0

H ′
ε
2
(r cosϕ) · sin2 ϕdϕ , (18)

λ⊥ (r) =
4

π

∫ π
2

0

H ′
ε
2
(r cosϕ) · cos2 ϕdϕ . (19)

Let us now substitute the census tensor C in (16) by its eigendecomposition

C = λ‖(r) · v‖(ψ)v	
‖ (ψ) + λ⊥(r) · v⊥(ψ)v	

⊥(ψ) . (20)

Thus, we obtain

M(f,w) = λ‖(r) ·
(
v	
‖ (ψ)

(
w	∇3fx
w	∇3fy

))2

+ λ⊥(r) ·
(
v	
⊥(ψ)

(
w	∇3fx
w	∇3fy

))2

,

(21)
where the original data term is explicitly split into two perpendicular constraints.
In particular, this can be understood as a projection of the linearised gradient
constancy assumption along and across isolines of f . Moreover, both terms are
weighted with the corresponding eigenvalues λ‖ (r) and λ⊥ (r).

3.1 Anisotropic Data Term

Based on the formulation in Equation (21), the following two paragraphs discuss
the behaviour of the data term at different image regions:

Vanishing Gradient. At extrema and homogeneous regions, where |∇f | van-
ishes (r → 0), the eigenvalues of the census tensor C fulfil

lim
r→0

λ‖(r) = lim
r→0

4

π

∫ π
2

0

H ′
ε
2
(r cosϕ) · sin2 ϕdϕ = H ′

ε
2
(0) · 4

π

∫ π
2

0

sin2 ϕdϕ︸ ︷︷ ︸
=1

(22)

and accordingly

lim
r→0

λ⊥(r) = lim
r→0

4

π

∫ π
2

0

H ′
ε
2
(r cosϕ) · cos2 ϕdϕ = H ′

ε
2
(0) · 4

π

∫ π
2

0

cos2 ϕdϕ︸ ︷︷ ︸
=1

. (23)

Revisiting Equation (6), we see that H ′
ε
2
(0) = 1

4ε2 . Hence, both eigenvalues λ‖
and λ⊥ exceed all bounds for close approximations of the Heaviside function.
This means that the gradient constancy is assumed parallel as well as perpen-
dicular to isolines of the image (cf. Equation (21)).

The occurring second order image derivatives ∂eϕfx and ∂eϕfy in the Euler-
Lagrange Equations (12) and (13) behave differently in local extrema and homo-
geneous image regions. Consequently, our analysis of the constancy assumption
has to differentiate these two cases:
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Local Extrema. Here, the first order derivatives vanish, but the second order
derivatives are in general non-zero. Since the reaction parts are weighted with
the factor 1

4ε2 , they dominate the diffusion terms entirely for small ε.
This reveals a surprising property of the discussed census-based model: The

constancy assumption implicitly enforces a strong reliance on the local extrema,
which contributes to the observed morphological invariance. On the one hand
the positions of the minima and maxima remain constant under monotonically
increasing grey level rescalings, and on the other hand the property ∇f =0 at
the extrema is not violated under those illumination changes. Thus, the imposed
constancy assumption of the gradient holds here in all directions.

Homogeneous Regions. In contrast, the second order image derivatives ∇fx and
∇fy go to 0 in homogeneous regions. As a result, the terms

∂eϕfx = e	ϕ∇fx (24)

as well as

∂eϕfy = e	ϕ∇fy (25)

in the reaction parts of the Euler-Lagrange equations vanish. Hence, the solu-
tion at those regions is solely determined by filling-in the information from the
neighbouring pixels:

Δu = 0 , (26)

Δv = 0 . (27)

High Contrast Edges. The previous paragraph was concerned with image
regions where r → 0. Let us now shed light on the opposite case (r →∞), which
corresponds to high contrast edges of the image. Considering the eigenvalues of
the census tensor C shows the strong anisotropic behaviour in those regions:

lim
r→∞

λ‖ (r)
λ⊥ (r)

= ∞ . (28)

This ratio of the eigenvalues has already been analysed by Weickert for a family
of monotonically decreasing functions including H ′

ε
2
(z) [15].

Considering Equation (21), we see that the constancy of the gradient entries is
here strongly imposed along isolines of f . In contrast, the constancy assumption
across isolines is weighted down. This anisotropy is, besides the reliance on the
local extrema, another reason for the morphological invariance of census-based
methods. Under monotonically increasing grey level rescalings, the positions of
the isophotes are invariant and additionally the directional derivatives along
these isophotes remain zero. In other words, the gradient constancy assumption
is valid in this direction.
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3.2 Relation to the Gradient Constancy Assumption

Let us now illustrate the connection between the presented census-based con-
stancy assumption and the widely-used gradient constancy assumption [10, 11].
The data term of the linearised gradient constancy assumption reads

(
w	∇3fx

)2
+

(
w	∇3fy

)2
=

(
w	∇3fx
w	∇3fy

)	
I

(
w	∇3fx
w	∇3fy

)
, (29)

where I denotes the 2×2 identity matrix. This formulation inherently decouples
the constancy assumptions of the gradient entries fx and fy. Comparing the data
terms (16) and (29), we observe that the reason for the increased robustness of
census-based methods (compared to gradient constancy) is hidden in the census
tensor C. This confirms our findings from Section 3.1: Coupling the constancy
assumptions of fx and fy by C, or rather by its eigenvectors v‖(ψ) and v⊥(ψ),
induces an anisotropic behaviour which effects the proposed invariance.

Replacing the regularised step function Hε in Equation (16) by the identity
function, the matrix C comes down to

2

π

∫ π

0

1 · eϕe	ϕ dϕ =
2

π

∫ π

0

(
cos2 ϕ cosϕ sinϕ

sinϕ cosϕ sin2 ϕ

)
dϕ =

2

π

(
π
2 0
0 π

2

)
= I . (30)

The resulting data term coincides with the gradient constancy assumption in
Equation (29). Consequently, the census-based method may be regarded as a
censorisation of the gradient constancy. On the one hand, this censorisation
decreases the amount of extracted image information due to the binary quan-
tisation of the directional derivative values. On the other hand, however, the
induced anisotropy increases the robustness under illumination changes. While
the original gradient constancy assumption is solely invariant w.r.t. global addi-
tive illumination changes, the censored gradient constancy assumption provides
an invariance against any kind of monotonically increasing grey level rescalings.

4 Implementation

For the ease of implementation, we cast the linearised constancy assumption
from (8) into the versatile motion tensor framework by Bruhn [16]. To this end,
we exploit the equivalence

H ′
ε

(
∂eϕf

)
·w	 ∇3

(
∂eϕf

)
= w	 ∇3Hε

(
∂eϕf

)
. (31)

Furthermore, we approximate the periodic integral in Equation (10) by the Rie-
mann sum and finally obtain

M (f,w) = w	
(

2

N

N−1∑
n=0

∇3Hε

(
∂eϕn

f
)
·∇	

3 Hε

(
∂eϕn

f
))

w , (32)

where N denotes the number of considered neighbours and ϕn :=2π n
N . Choosing

e.g. N =8, the direct neighbours of each pixel are used to compute the census
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signatures. Generally, we assume the images to be sampled on a regular grid
with horizontal and vertical grid sizes h1 and h2, respectively. Accordingly, the
directional derivative ∂eϕn

f at pixel (i, j)
	

is approximated via the two point
stencil [

∂eϕn
f
]
i,j

=
[f ]i+d1,j+d2 − [f ]i,j√
(h1d1)

2 + (h2d2)
2
, (33)

where the vector d :=(d1, d2)
	 �=0 represents, especially for diagonal neighbours,

a scaled version of eϕn (cf. Section 2.1). All other spatial and temporal derivatives
are computed by means of standard finite differences.

The resulting discrete versions of the Euler-Lagrange Equations (12) and (13)
create a sparse linear system of equations, which we solve iteratively using a
variant of the Gauß-Seidel method, namely successive over-relaxation [17].

5 Evaluation

Our experiments have been performed on the commonly available test image
sequence New Marble1. We subjected the grey values g ∈ [0, 255] of the second
input image to the monotonically increasing transformation

gout = 255 ·
(
m · gin + a

255

)γ

, (34)

where the constant a represents additive changes, m > 0 multiplicative changes
and γ > 0 is used for gamma corrections.

The parameter ε of the regularised step function should be adapted to the
noise level and is here fixed to 0.1. Furthermore, the input images are pre-
smoothed with a Gaussian of standard deviation 0.8 and the census signatures
are determined on a 3×3 neighbourhood (N=8).

Figure 2 demonstrates the increased robustness of the census-based method
compared to the gradient constancy assumption. In the absence of artificial il-
lumination changes (first column), the gradient constancy provides a better av-
erage angular error (AAE) [18]. It extracts more information form the input
images. The resulting flow fields for additive changes (second column) are unal-
tered due to the inherent invariance of both methods. In contrast, the gradient
constancy assumption is not invariant under multiplicative rescalings and gamma
corrections (third and fourth column), while the censored version provides an in-
creased robustness. The absolute invariance is lost due to the presmoothing and
ε being unequal to zero.

In addition, the plots in Figure 3 confirm these observations. The gradient
constancy is not able to compensate for the multiplicative changes and gamma
corrections. Contrary, the census-based approach provides the proposed robust-
ness. However, this increase of robustness is associated with a loss of accuracy
in the presence of small illumination changes.

1 Available from http://i21www.ira.uka.de/image_sequences

http://i21www.ira.uka.de/image_sequences
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Fig. 2. Visual comparison of the gradient constancy assumption (second row, α=430)
and its censored version (third row, α=7) under illumination changes. The second input
image (first row) is manipulated by different grey level rescalings (cf. Equation (34)).
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Fig. 3. Comparison of the gradient constancy assumption and its censored version
under global multiplicative illumination changes (left) and gamma corrections (right).
The parameter setting can be found in Figure 2.

6 Conclusions and Future Work

We have seen that interpreting the census transform in the continuous limit
and embedding it into a variational framework reveals unexpected insights. The
presented census-based technique shows two key properties: the strong reliance
on local extrema as well as the restriction of the gradient constancy assumption
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along level lines. These advanced features are efficiently realised by a very simple
binary transform. They exploit the morphological invariance of the gradient
direction in a clever way and yield the observed robustness under illumination
changes. This builds the basis for the success of the census transform in the
context of correspondence problems.

These promising insights motivate us to investigate also generalisations of
the census transform that involve higher order constancy assumptions, e.g. con-
stancy of the Hessian. The key properties of the census transform are of course
not restricted to optic flow models. They have already proven to be equally ben-
eficial for other computer vision tasks such as stereo reconstruction [6] or face
detection [19].

Our findings confirm the general usefulness of studying continuous limits of
inherently discrete morphological transforms. Other examples include e.g. con-
tinuous reinterpretations of median filters in terms of mean curvature motion [20]
and morphological amoebae as self-snakes [21].
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Forschungsgemeinschaft (DFG) through the Saarbrücken Graduate School of
Computer Science and a Gottfried Wilhelm Leibniz Prize.
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DAGM 2007. LNCS, vol. 4713, pp. 152–162. Springer, Heidelberg (2007)

14. Horn, B.K.P., Schunck, B.G.: Determining optical flow. Artificial Intelligence 17,
185–203 (1981)

15. Weickert, J.: Anisotropic diffusion filters for image processing based quality con-
trol. In: Fasano, A., Primicerio, M. (eds.) Proc. Seventh European Conference on
Mathematics in Industry, pp. 355–362. Teubner, Stuttgart (1994)

16. Bruhn, A.: Variational Optic Flow Computation: Accurate Modelling and Ef-
ficient Numerics. PhD thesis, Dept. of Computer Science, Saarland University,
Saarbrücken, Germany (2006)

17. Young, D.M.: Iterative Solution of Large Linear Systems. Academic Press, New
York (1971)

18. Barron, J.L., Fleet, D.J., Beauchemin, S.S.: Performance of optical flow techniques.
International Journal of Computer Vision 12(1), 43–77 (1994)

19. Fröba, B., Ernst, A.: Face detection with the modified census transform. In:
Proc. 6th IEEE International Conference on Automatic Face and Gesture Recog-
nition, pp. 91–96. IEEE Computer Society Press (2004)

20. Guichard, F., Morel, J.M.: Partial differential equations and image iterative filter-
ing. In: Duff, I.S., Watson, G.A. (eds.) The State of the Art in Numerical Analysis.
IMA Conference Series (New Series), vol. 63, pp. 525–562. Clarendon Press, Oxford
(1997)

21. Welk, M., Breuß, M., Vogel, O.: Morphological amoebas are self-snakes. Journal of
Mathematical Imaging and Vision 39(2), 87–99 (2011)



Generalised Perspective Shape from Shading
in Spherical Coordinates

Silvano Galliani1,2, Yong Chul Ju1,3, Michael Breuß1, and Andrés Bruhn3

1 Institute for Applied Mathematics and Scientic Computing,
BTU Cottbus, 03046 Cottbus, Germany

{galliani,ju,breuss}@tu-cottbus.de
2 Institute of Geodesy and Photogrammetry,
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Abstract. In the last four decades there has been enormous progress in Shape
from Shading (SfS) with respect to both modelling and numerics. In particular
approaches based on advanced model assumptions such as perspective cameras
and non-Lambertian surfaces have become very popular. However, regarding the
positioning of the light source, almost all recent approaches still follow the sim-
plest geometric configuration one can think of: The light source is assumed to be
located exactly at the optical centre of the camera. In our paper, we refrain from
this unrealistic and severe restriction. Instead we consider a much more general
SfS scenario based on a perspective camera, where the light source can be posi-
tioned anywhere in the scene. To this end, we propose a novel SfS model that is
based on a Hamilton-Jacobi equation (HJE) which in turn is formulated in terms
of spherical coordinates. This particular choice of the modelling framework and
the coordinate system comes along with two fundamental contributions: While on
the modelling side, the spherical coordinate system allows us to derive a gener-
alised brightness equation – a compact and elegant generalisation of the standard
image irradiance equation to arbitrary configurations of the light source, on the
numerical side, the formulation as Hamilton-Jacobi equation enables us to de-
velop a specifically tailored variant of the fast marching (FM) method – one of
the most efficient numerical solvers in the entire SfS literature. Results on syn-
thetic and real-world data confirm our theoretical considerations. They clearly
demonstrate the feasibility and efficiency of the generalised SfS approach.

Keywords: shape from shading, Hamilton-Jacobi equation, viscosity solution,
fast marching, general light source configuration, spherical coordinates.

1 Introduction

Since the early works of Rindfleisch [1] and Horn [2] more than four decades ago,
Shape from Shading (SfS) is considered one of the key problems in computer vision.
Given the information about the reflectance of the surface and the position of the light
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source, its goal is to reconstruct the 3D depth of an object in a scene from a single
2D input image. In practice, SfS has a wide field of interesting applications. They range
from classical large scale problems such as astronomy [1] or terrain reconstruction [3,4]
to challenging small scale tasks such as dentistry [5] or endoscopy [6,7,8,9].

In order to make both the modelling and the computation tractable, early SfS approa-
ches relied on strongly simplified assumptions. Since these approaches were first used
for large scale problems such as astronomy, they were typically based on a camera
model with orthographic projection, a light source that illuminates the scene from in-
finity, as well as a physically incorrect light transport that neglects attenuation [2]. Not
surprisingly, these early methods worked reasonably well in the case of large scale
problems – the scenario they were designed for. However, if applied to tasks, where
the distance of the camera to the object is small, such methods revealed a consistently
poor performance in terms of reconstruction quality [10,11]. Moreover, independent
of the distance to the object, the corresponding mathematical models turned out to be
severely ill-posed showing a strong dependency of the result on the initialisation [12].
Evidently, all these simplified assumptions did not make the SfS problem easier but
actually rendered it more difficult from both a theoretical and a practical viewpoint.

This observation led to significant progress in the last few years. Nowadays, a per-
spective camera model [7,13,14] based on the inverse square law for light attenuation
[12,15] has become the standard assumption of recent SfS methods including those
techniques with more advanced, i.e. non-Lambertian, reflection models [16,17]. More-
over, with the consideration of the perspective camera model, the assumed position of
the light source was moved from infinity to the optical centre of the camera [7]. While,
this choice is very convenient from a computational viewpoint, it is obvious that a light
source cannot be located at this place. This holds particularly for flash photography,
where the position of the optical centre and the light source differ by construction.

In face of these considerations, it is surprising that there has hardly been any effort
in the literature to model perspective SfS with an arbitrary position of the light source.
In fact, there is only one work known to the authors, where a variational model for
endoscopic SfS was proposed with a position of the light source different than the one
in the optical centre [9]. This approach, however, suffers from two main drawbacks. On
the one hand, the approach does not make use of proper discretisations of the hyperbolic
terms such as e.g. upwind-type schemes [18]. This, however, would be necessary to
ensure solutions in the viscosity sense [19]. On the other hand, the numerical algorithm
proposed for this method is quite slow. In fact, the authors rely on a simple Jacobi-like
scheme that is moreover explicit in the irradiance equation [20].

Contributions. In this paper we address all of the aforementioned problems. To this
end, we formulate the perspective SfS problem in terms of a Hamilton-Jacobi (HJE)
equation based on spherical coordinates. While such approaches have already been
proposed for the standard case with the light source being located at the optical centre of
the camera [15,21], we demonstrate that employing such a spherical coordinate system
is perfectly suited for the general case where the position of the light source can be
arbitrary. In this context, our contributions are twofold:
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1. On the modelling side, we derive a novel mathematical model for SfS in spherical
coordinates which we call the generalised brightness equation. While the model
itself can handle the most general geometry with the light source not being located
in the optical centre of the camera, its compact and elegant structure suggests that
this approach is the natural and intuitive way to formulate this problem.

2. On the numerical side, we develop a highly efficient numerical algorithm for solv-
ing the resulting highly non-linear HJE. This specifically tailored algorithm not
only extends the popular fast marching (FM) method [22] by an iterative correction
step but also guarantees to find solutions in the viscosity sense at the same time.

Summarising, we propose a perspective SfS approach that combines the applicability
of a general SfS method with the efficiency of FM based approaches.

Organisation. In Section 2 we start by discussing the general perspective SfS frame-
work. In Section 3 we then describe the representation of a surface in both Cartesian and
the spherical coordinates. This allows us to compute the corresponding surface normal
in Section 4 and finally to derive a compact formulation of the brightness equation for
the general case. in Section 5. After we discuss our extended variant of the FM scheme
in to solve this equation efficiently in Section 6, we present the results of our method in
Section 7. The paper is concluded by a summary in Section 8.

2 Perspective Shape from Shading

Let us consider the general setting for perspective SfS with focal length f, where the
position of the light source can be anywhere in the scene. Let us furthermore assume
that the surface is Lambertian with uniform albedo and the light fall-off follows the
inverse square law. Then, the brightness of the acquired image I is given by the so-
called brightness equation [12]:

I(x) =
1

r2

(
n

|n| · L
)
. (1)

Here, x = (x1, x2)
	 ∈ Ω ⊂ R2 denotes a pixel position in the rectangular image plane,

· the scalar product, L the normalised light direction, n the surface normal vector, | · |
the Euclidean norm, and r the distance from the light source to the surface point.

Please note that in the literature this equation is typically parametrised such that the
light source is located in the optical centre of the camera [12,16,17]. We will denote this
specific variant of Eq. (1) as restricted brightness equation. In our approach, however,
we follow a more general approach. We allow the light source to be everywhere in the
image and parametrise the surface and thus the surface normal accordingly.

A sketch that illustrates the general scene geometry that comes with our model is
depicted in Fig. 1. As one can see, w.l.o.g. we have chosen the origin of the coordinate
system such that it coincides with the location of the light source. This decision will
allow us to derive a mathematical model that is compact and elegant at the same time.
As a first step towards this model, we have to parametrise the surface of the object



Generalised Perspective Shape from Shading in Spherical Coordinates 225
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Fig. 1. Cross section of a 3-D model for perspective SfS with arbitrary position of the light source.
The distance between the light source L and the point S on the surface is denoted by r in Eq. (1).

to compute the corresponding surface normal. This will be done in the next section.
Afterwards we can derive the general brightness equation – the brightness equation
that is parametrised such that it allows for an arbitrary position of the light source.

3 Parametrisation of the Surface

When it comes to the parametrisation of the object surface, recent SfS methods make
use of standard Cartesian coordinates [9,16,17]. In the general case, however, such co-
ordinates have one decisive drawback illustrated in Fig. 2(a) and Fig. 2(b): When the
light source is not located in the optical centre of the camera, the critical points, i.e. the
points of the object with largest local height, are not any longer the brightest points, i.e.
the points that are closest to the light source. In short: Local intensity maxima do not
identify critical points (local surface maxima). This is due to the fact that in SfS with
Cartesian coordinates, the depth is measured along the x3-axis (Fig. 2: vertical axis).

Since identifying critical points is required to apply efficient algorithms of fast march-
ing (FM) type [22,23,24,25,26] to solve the brightness equation in (1), we propose the
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(a) Light source located at optical centre.
Brightest and highest point (B,H) coincide.

(b) Light source not located at optical centre.
Brightest and highest point (B,H) differ(!).

Fig. 2. Relationship between the brightest point B (critical point) and the highest point H of
the object depending on the scene geometry. The problem of differing H and B is inherent to
Cartesian coordinates. In a spherical coordinates with origin at the light source, B is always H .

following solution to the problem: By considering a spherical coordinate system with
the origin placed at the position of the light source, we measure the depth and thus the
critical points from the viewpoint of the light source. Per construction, in such a coor-
dinate system, the locally brightest points in the image coincide again with the critical
points. Please recall in this context that (i) the albedo is assumed to be uniform, (ii) sur-
face normals at local maxima are parallel to the direction of incoming light (per defini-
tion of local maxima in our new coordinate system) and (iii) remaining convex-concave
ambiguities are resolved by the light fall-off factor 1/r2 in the brightness equation [12].

Let us now describe our parametrisation. To this end, we start with standard Cartesian
coordinates and then derive the corresponding formulation for the spherical case.

3.1 Surface Representation in Cartesian Coordinates

Considering Cartesian coordinates and following the notation from Fig. 1, the vector
from the camera position C to a point X in the image plane is given by

−−→
CX =

−−→
LX −−→LC =

⎡⎢⎣ x1

x2

−(c3 + f)

⎤⎥⎦−
⎡⎢⎣ c1

c2

−c3

⎤⎥⎦ =

⎡⎢⎣x1 − c1

x2 − c2

−f

⎤⎥⎦ , (2)

where
−−→
AB stands for a vector with starting point A and endpoint B. Furthermore we

can use (2) to express the vector between the light source L and the surface point S

−→
LS =

−→
LC +

−→
CS =

−→
LC + λ

−−→
CX

=

⎡⎢⎣ c1

c2

−c3

⎤⎥⎦+ λ

⎡⎢⎣x1 − c1

x2 − c2

−f

⎤⎥⎦ =

⎡⎢⎣λx1 + (1− λ) c1

λx2 + (1− λ) c2

−(c3 + λ f)

⎤⎥⎦ =:

⎡⎢⎣ s1s2
s3

⎤⎥⎦ ,
(3)
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where λ ∈ R is a scaling factor that we are looking for. In particular, it holds that

|−→LS|2 = s21+ s22+ s23 = [c1 + λ (x1 − c1)]
2
+ [c2 + λ (x2 − c2)]

2
+(c3+λ f)2 . (4)

In the following, we refrain from estimating the scaling factor λ, but solve for the dis-
tance s21 + s22 + s23 from the light source to the surface directly. To this end, it turns out
once again, that is advantageous to consider the problem in spherical coordinates.

3.2 Surface Representation in Spherical Coordinates

In order to express the distance from the light source to the surface in spherical coordi-
nates, we have to define a suitable basis. Following Fig. 3, we represent the Cartesian
vector r via two angles θ and ϕ, respectively, as well as a radius r:

r = Rx3 (θ) Rx2 (ϕ)

⎡⎢⎣0

0

r

⎤⎥⎦ =

⎡⎢⎣ cos θ cosϕ − sin θ cos θ sinϕ

sin θ cosϕ cos θ sin θ sinϕ

− sinϕ 0 cosϕ

⎤⎥⎦
⎡⎢⎣0

0

r

⎤⎥⎦ . (5)

Here, the two matrices

Rx3 (θ) =

⎡⎢⎣ cos θ − sin θ 0

sin θ cos θ 0

0 0 1

⎤⎥⎦ , Rx2 (ϕ) =

⎡⎢⎣ cosϕ 0 sinϕ

0 1 0

− sinϕ 0 cosϕ

⎤⎥⎦ (6)

represent rotations around the x3- and x2-axis. The corresponding orthonormal basis is

eϕ =

⎡⎢⎣ cosϕ cos θ

cosϕ sin θ

− sinϕ

⎤⎥⎦ , eθ =

⎡⎢⎣− sin θ

cos θ

0

⎤⎥⎦ , er =

⎡⎢⎣ sinϕ cos θ

sinϕ sin θ

cosϕ

⎤⎥⎦ , (7)

where [
ϕ

θ

]
=

⎡⎢⎣arccos
s3√

s21 + s22 + s23

arctan
s2
s1

⎤⎥⎦ . (8)

Thus, we can express the distance from the light source to the surface via the relation⎡⎢⎣ s1s2
s3

⎤⎥⎦ =: r := r er with r =
√
s21 + s22 + s23 . (9)
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Fig. 3. The spherical system employed in this work. x1, x2 and x3 are conventional Cartesian co-
ordinate axes. er, eϕ and eθ stand for basis vectors with respect to each direction in the spherical
system. The distance between the light source L and the point S on the surface corresponds to r.

4 Computation of the Surface Normal

After we have parametrised the distance to the surface in spherical coordinates, we have
to compute the surface normal for each pixel of the input image. This can be done by
first determining the vectors defining the tangent plane – these vectors are given by the
derivatives of the surface with respect to the two directions orthogonal to r, namely θ
and ϕ – and then by computing the cross product to obtain the corresponding normal
vector. Using the definition of r from (9), the surface normal is then given by

n =
∂ (rer)

∂θ
× ∂ (rer)

∂ϕ

=

(
∂ r

∂θ
er + r

∂ er
∂θ

)
×

(
∂ r

∂ϕ
er + r

∂er
∂ϕ

)
=

(
∂ r

∂θ
er ×

∂ r

∂ϕ
er

)
+

(
∂ r

∂θ
er × r

∂ er
∂ϕ

)
+

(
r
∂ er
∂θ
× ∂ r

∂ϕ
er

)
+

(
r
∂ er
∂θ
× r

∂ er
∂ϕ

)
=

∂ r

∂θ

∂ r

∂ϕ
(er × er)︸ ︷︷ ︸

=0

+ r
∂ r

∂θ

(
er ×

∂ er
∂ϕ

)
+r

∂ r

∂ϕ

(
∂ er
∂θ
× er

)
+r2

(
∂ er
∂θ
× ∂ er

∂ϕ

)

= r
∂ r

∂θ

(
er ×

∂ er
∂ϕ

)
+ r

∂ r

∂ϕ

(
∂ er
∂θ
× er

)
+ r2

(
∂ er
∂θ
× ∂ er

∂ϕ

)
(11)
= r

∂ r

∂θ
(er × eϕ) + r

∂ r

∂ϕ
(sinϕ eθ × er) + r2 (sinϕ eθ × eϕ)

(12)
= r

∂ r

∂θ
eθ + r sinϕ

∂ r

∂ϕ
eϕ − r2 sinϕ er . (10)
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Thereby we used the following relations that hold by definition

∂ er
∂ϕ

=

⎡⎢⎣ cosϕ cos θ

cosϕ sin θ

− sinϕ

⎤⎥⎦ (7)
= eϕ ,

∂ er
∂θ

=

⎡⎢⎣− sinϕ sin θ

sinϕ cos θ

0

⎤⎥⎦ (7)
= sinϕ eθ . (11)

as well as the fact that (eϕ, eθ, er) constitutes a right-handed system, i.e. we have

er × eϕ = eθ , eϕ × eθ = er , eθ × er = eϕ . (12)

5 Generalised Brightness Equation

After we have computed the surface normal, we are now in the position to set up the
brightness equations for the general case. Following Eq. (1) this requires to evaluate the
expressions n · L and |n|. Based on Fig. 1, the light direction is given by

L = − er . (13)

When plugging (10) and (13) into n and L, respectively, the dot product n ·L becomes

n · L =

(
r
∂ r

∂θ
eθ + r sinϕ

∂ r

∂ϕ
eϕ − r2 sinϕ er

)
· (− er)

= r2 sinϕ

(14)

while the (squared) magnitude of the surface normal is given by the expression

|n|2 = n · n = r2

[(
∂ r

∂θ

)2

+ sin2 ϕ

(
∂ r

∂ϕ

)2

+ r2 sin2 ϕ

]
. (15)

In both cases we have exploited the orthonormality of the basis vectors; see Eq. (12).
Using our results from (14) and (15) in Eq. (1) then gives the brightness equation

I =
1

r2

(
n

|n| · L
)

⇒ r2 I |n| − n · L = 0

⇒ r3 I

√(
∂ r

∂θ

)2

+ sin2 ϕ

(
∂ r

∂ϕ

)2

+ r2 sin2 ϕ− r2 sinϕ = 0

⇒ I

√
1

r2 sin2 ϕ

(
∂ r

∂θ

)2

+
1

r2

(
∂ r

∂ϕ

)2

+ 1− 1

r2
= 0 (16)

We can further simplify this equation using the following relation:

∇r = 1

r

(
∂ r

∂ϕ

)
eϕ +

1

r sinϕ

(
∂ r

∂θ

)
eθ . (17)
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Thus we finally obtain a very compact and elegant formulation that we will denote as
generalised brightness equation. It is given by the Hamilton-Jacobi equation (HJE):

I

√
|∇r|2 + 1− 1

r2
= 0 . (18)

6 A Fast Marching Scheme for Spherical Coordinates

After we have derived the generalised brightness equation in the previous section, let
us now discuss how it can be efficiently solved for the unknown radial distance field r
(solved in the viscosity sense [24]). For this kind of HJEs so called fast marching (FM)
schemes are among the fastest solvers in the literature [22,23,24,25,26]. Starting from
critical points, such schemes are based on propagating the solution to the remaining
points on the surface. Typically, each pixel is only visited once such that in the optimal
case the performance is linear in the number of pixels [25]. Unfortunately, standard
FM schemes cannot be applied in our case, since they have been designed for eikonal-
type of the form H(·,∇r) without an explicit dependency on r. Moreover, our HJE is
formulated in terms of spherical coordinates such that I actually depends on the solution
r via the parametrised Cartesian pixel position x = (x(θ, ϕ, r), y(θ, ϕ, r))	 . Therefore,
we propose the following specifically tailored variant of the FM scheme to solve our
general HJE of type H(·,∇r, r) in spherical coordinates:

1. We identify critical points of the surface based on their brightness (cf. Section 3).
Since their distance to the light source is minimal, we know that ∇r = 0, which in
turn allows us to solve Eq. (18) directly for the radial depth r.

2. The main task of the FM update process is to spread information from the critical
points to the other points on the surface and update them solving Eq. (18). Since our
HJE is highly nonlinear and depends on both r and∇r, we apply the iterative strat-
egy proposed in [17] in the context of nonlinear HJEs for Euclidean coordinates
and solve (18) using the classical regula falsi method. Thereby, spatial derivatives
are discretised using the standard upwind scheme [18]. Since our algorithm works
in spherical coordinates, we propagate the information to neighbouring locations in
terms of θ and ϕ rather than x and y. This also requires to evaluate the brightness
values of the input image at subpixel locations, which is realised in terms of bilinear
interpolation. Moreover, we need an additional correction step: Since the location
to evaluate the image brightness depends on r (see above), we have to update this
brightness value each iteration within our iterative regular falsi framework. The it-
erations are stopped, if the residual of the equation drops below a certain threshold.

3. We proceed to the adjacent locations in terms of θ and ϕ and solve (18) there.
Although the parametrisation is different, the order in which the locations are tra-
versed, is analogue to the Euclidean case (see [17] for details).
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(a) Vase input image. (b) Ground truth. (c) Our method. (d) Standard SfS.

Fig. 4. The Vase experiment

7 Experiments

Let us now evaluate our perspective SfS method for the general case. To this end, we
have considered both a synthetic and a real-world image.

In our first experiment, we used our method to reconstruct the shape of a vase. The
corresponding input image is depicted in Fig. 4(a). As one can see the light source
is located in the upper left corner of the scene. The result obtained by our method as
well as the ground truth are shown in Fig. 4(c) and Fig. 4(b), respectively. Evidently,
the reconstructed shape looks very realistic. Moreover, in order to evaluate the impact
of the general model on the reconstruction quality, we compared our result to the one
of a perspective SfS method based on the restricted brightness equation, i.e. where
the light source is assumed to be in the optical centre of the camera. As one can see
from the corresponding result in Fig. 4(d), this method fails completely. This shows
that the generalised brightness equation is essential for the success of SfS in practical
applications – in particular if the assumption that the light source is close to the optical
centre of the camera does not hold.

In our second experiment, we applied our perspective SfS technique for the general
case to a real-world image. This image shows a sculpture that depicts the head of a frog
(see Fig. 5(a)). This time, the light source is located in the right centre of the scene. Once
again, we can see that the reconstruction looks reasonable. Thereby, we have to keep in
mind that the head of the frog is reconstructed from the viewpoint of the light source.
Moreover, this experiment shows nicely that the discrepancy between the position of
the light source and the optical centre of the camera should not be too large. While
the general model is capable of handling such situations, the overlap between both
viewpoints may become quite small. In that case, the reconstruction will only show a
very small part of the original object. In our experiment, however, the reconstructed part
is still sufficiently large to give a good impression of the overall object surface.

The runtime of our approach is in the order of 40 seconds for a megapixel result, i.e.
a reconstruction of size 1024× 1024. Please note that this runtime is not related to the
size of the input image, but the angular sampling of the radial depth (i.e. of θ, ϕ).
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(a) Frog input image. (b) Our method. (c) Our method, rotated view.

Fig. 5. The Frog experiment

8 Summary

In this paper we proposed a novel model for perspective SfS for the general case. Unlike
previous methods that restricted the position of the light source to be located in the
optical centre of the camera, our model allows the light source to be placed anywhere in
the scene. In this context, a formulation of the problem as Hamilton-Jacobi equation in
terms of spherical coordinates turned out to be very useful: On the one hand, it allowed
us to formulate the brightness equation for the complex general case in a very compact
and elegant way. On other hand, it enabled us to determine critical points and thus to
develop a specifically tailored variant of the highly efficient FM scheme as solver for
our model. Experiments have shown that our method works well in practice and that
it gives reconstructions of good quality. It even allows to obtain results in those cases
where standard models based on the restricted brightness equation fail. This shows that
considering alternative parametrisations can be worthwhile in many computer vision
problems. They may turn an originally difficult problem into a simple one - from both
a modelling and a numerical viewpoint.
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Weighted Patch-Based Reconstruction:

Linking (Multi-view) Stereo to Scale Space
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Abstract. Surface reconstruction using patch-based multi-view stereo
commonly assumes that the underlying surface is locally planar. This is
typically not true so that least-squares fitting of a planar patch leads
to systematic errors which are of particular importance for multi-scale
surface reconstruction. In a recent paper [12], we determined the mod-
ulation transfer function of a classical patch-based stereo system. Our
key insight was that the reconstructed surface is a box-filtered version of
the original surface. Since the box filter is not a true low-pass filter this
causes high-frequency artifacts. In this paper, we propose an extended
reconstruction model by weighting the least-squares fit of the 3D patch.
We show that if the weighting function meets specified criteria the re-
constructed surface is the convolution of the original surface with that
weighting function. A choice of particular interest is the Gaussian which
is commonly used in image and signal processing but left unexploited by
many multi-view stereo algorithms. Finally, we demonstrate the effects
of our theoretic findings using experiments on synthetic and real-world
data sets.

Keywords: multi-view stereo, multi-scale surface reconstruction.

1 Introduction

The basis of virtually all multi-view stereo algorithms are correspondences found
between images. Hereby, the de facto standard is to find a planar patch in 3D
whose projected region in (some of) the images is photo-consistent, i.e., looks
similar. There are many ways to measure photo-consistency including normalized
cross-correlation (NCC) or the sum of squared differences (SSD, see Hu and
Mordohai [10] for an overview and evaluation of different measures). Whatever
measurement used, the underlying assumption is that the original surface is
locally planar or even has constant depth in the patch area. This leads to a
systematic error in reconstruction which becomes especially important when
combining multi-scale data [1, 2]. Recently, Klowsky et al. [12] analyzed this
systematic error and proposed a reconstruction model where the 3D patch is
fitted to the original surface in a least-squares sense. In the resulting linear
system they identified the modulation transfer function to be a sinc. In other
words, the reconstructed surface is equal to a convolution of the original surface
with a box filter. Since this is no true low-pass filter it causes high-frequency
artifacts such as amplitude inversion for some frequencies.

A. Kuijper et al. (Eds.): SSVM 2013, LNCS 7893, pp. 234–245, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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In this paper, we develop an extended reconstruction model by weighting the
fitting of the 3D patch. We derive constraints on the weighting function to ensure
that the reconstructed surface is a convolution of the original surface with that
weighting function. As a particular result, we will see that uniform weighting
used in our previous work [12] causes the box filter effect. A much better choice
for the weighting function fulfilling the derived constraints and allowing for true
low-pass filtered reconstructions is the Gaussian, which is widely used in the
imaging domain. When using different patch sizes (e.g., due to different image
resolution or camera-object distances) the reconstructions reflect different levels
of the scale space representation of the true surface. We show for one popular
multi-view stereo algorithm [5] how to implement the weighting and discuss
results on synthetic as well as real-world data sets. Our findings may influence a
broad range of algorithms in multi-view stereo but also in the field of multi-scale
surface reconstruction [2–4, 15] or geometry super-resolution [6, 20].

In summary the contributions of our paper are

– the generalization of a previously presented reconstruction model for (multi-
view) stereo by introducing weights,

– the theoretical derivation of the (predicted) reconstructed surface without
the detour in frequency space, and

– we show how a weighting, e.g., a Gaussian, can be implemented for a com-
mon multi-view stereo algorithm which expectably improves the frequency
behavior of the reconstruction.

1.1 Related Work

While there is a large body of work on multi-view stereo (see, e.g., the survey
paper and the constantly updated benchmark by Seitz at al. [14, 18]), the study
of multi-scale depth reconstruction has long been neglected. In previous work
we [12] introduced a theoretical reconstruction model and determined the mod-
ulation transfer function of patch-based stereo systems. We also discussed the
(loosely) related work on multi-scale analysis of (multi-view) stereo to which
we refer the reader for a more extensive discussion. Our current work builds
upon this reconstruction model and demonstrates how more freedom in the re-
construction outcome is possible. As one particular result, we demonstrate that
multi-view stereo can yield a scale space representation of the underlying geom-
etry. In contrast to [12], we derive our results directly in geometry space without
operation (at least in an intermediate step) in frequency space.

Our work is also related to existing work on patch-based photo-consistency
measures. An overview and evaluation of confidence measures used in (multi-
view) stereo is given by Hu and Mordohai [10]. In all their cost computations,
however, a square patch of N × N pixels is used and all pixels are weighted
uniformly. If we assume all measures aim at fitting a patch in 3D space, they
all result in a box filter. Kanade and Okutomi [11] already tried to find optimal
size and shape of the patch but still only used rectangular shapes. Habbecke and
Kobbelt [8] propose a multi-view stereo system where matching is performed on
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xx − δ x + δ

f(x)

Fig. 1. Fitting a planar patch (line segment) to the geometry for each point x

circular disks in object space. The size of the disks is selected to achieve a min-
imum intensity variance on each disk. Totally different shapes are achieved by
Micusik and Koseka [13] whose approach is suited for man-made environments
with many planar surfaces. Here, the reference view is first segmented into su-
perpixels, that are assumed to be planar in object space, and matching is then
performed using those superpixels. Thus the shape of the matching window is
adapted to the local scene structure and texture. Yoon and Kweon [21] were
probably the first to compute weights for each pixel in the patch that steer the
influence of that pixel in the matching process. Their weights are dependent on
the color similarity and the spatial distance from the center pixel. Hosni et al. [9]
improve on that by computing weights using the geodesic distance transform. In
contrast to all these efforts, we investigate the influence of a specific weighting
on the reconstructed geometry and derive the resulting (multi-scale) behavior of
the resulting surface.

2 Theoretical Considerations

2.1 Extension of the Reconstruction Model

In this paper, we build upon our previously introduced reconstruction model [12].
We describe the process of photometric consistency optimization between images
(e.g. using normalized cross-correlation (NCC), or sum of squared differences
(SSD)) as a geometric least-squares fitting of a planar patch to the unknown
geometry. Figure 1 visualizes this idea for a 2D geometry described as a height
field z = f(x). To obtain the reconstruction at some point x, a line segment
(parameterized by slope m and offset n) with extent 2δ is fitted to the geometry
in a least-squares sense minimizing the energy

E(m,n, x) =

∫ x+δ

x−δ
(mt+ n− f(t))2dt. (1)
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The reconstructed surface is then represented by the central patch points. For
this model we determined the modulation transfer function which turned out to
be a sinc. Though not explicitly stated in our prior paper [12] this is equivalent
to a convolution with a box filter. In the following we will show that the reason
for this result is the uniform weighting of pixels during optimization. We suggest
the following extension of the reconstruction model: Instead of considering each
point in [x− δ, x+ δ] uniformly we introduce a weighting function g allowing for
different areas of influence. Consequently, we alter the energy function to

E(m,n, x) =

∫ ∞

−∞
g(x− t)(mt+ n− f(t))2 dt (2)

where g(t) is a weighting function. Note that with g(t) = 1[−δ,δ] this is equal
to the former energy in Eq. 1. This weighting function could be implemented
as a weighting of the pixels during photo-consistency optimization. In Section 3
we will demonstrate this using a specific multi-view stereo algorithm. In the
following subsection, we derive theoretically how this weighting function affects
the reconstructed surface.

2.2 Reconstruction in 2D

For the sake of simplicity, we first look at a surface in 2D (a line) as illustrated in
Figure 1. For now, we put no further constraints on g(t) except for integrability.
Later on, we will discuss further desirable properties. Minimizing E in Equation 2
requires taking the partial derivatives with respect to m and n:

∂mE = 2

∫ ∞

−∞
g(x− t)t(mt+ n− f(t)) dt (3)

= 2m

∫ ∞

−∞
g(x− t)t2 dt+ 2n

∫ ∞

−∞
g(x− t)t dt− 2

∫ ∞

−∞
g(x− t)tf(t) dt

∂nE = 2

∫ ∞

−∞
g(x− t)(mt+ n− f(t)) dt (4)

= 2m

∫ ∞

−∞
g(x− t)t dt+ 2n

∫ ∞

−∞
g(x− t) dt− 2

∫ ∞

−∞
g(x− t)f(t) dt

We introduce a short notation for the zeroth, first and second moment of g

μ0 =

∫ ∞

−∞
g(t) dt μ1(x) =

∫ ∞

−∞
g(x−t)t dt μ2(x) =

∫ ∞

−∞
g(x−t)t2 dt (5)

and abbreviate the other convolution integrals using

(g ∗ ·f)(x) =
∫ ∞

−∞
g(x− t)tf(t) dt (6)

(g ∗ f)(x) =
∫ ∞

−∞
g(x− t)f(t) dt. (7)
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W.l.o.g. we can assume that μ0 = 1 which corresponds to normalizing the weight-
ing function g. Under the condition that μ2(x) �= 0 we set the partial derivatives
to zero and transpose the equations:

m =
(g ∗ ·f)(x) − nμ1(x)

μ2(x)
(8)

n = (g ∗ f)(x)−mμ1(x) (9)

We can now solve for m and n which leads to

m =
(g ∗ ·f)(x) − ((g ∗ f)(x) −mμ1(x))μ1(x)

μ2(x)

⇔ m =

(
1− μ1(x)

2

μ2(x)

)−1 (
(g ∗ ·f)(x)
μ2(x)

− (g ∗ f)(x)μ1(x)

μ2(x)

)
=

(g ∗ ·f)(x) − (g ∗ f)(x)μ1(x)

μ2(x)− μ1(x)2
(10)

n = (g ∗ f)(x) − (g ∗ ·f)(x)− (g ∗ f)(x)μ1(x)

μ2(x) − μ1(x)2
μ1(x)

=
(g ∗ f)(x)μ2(x) − (g ∗ ·f)(x)μ1(x)

μ2(x) − μ1(x)2
(11)

Since the final surface is represented by the central patch points it can be written
as

mx+ n =
(g ∗ ·f)(x)(x − μ1(x)) + (g ∗ f)(x)(μ2(x)− xμ1(x))

μ2(x) − μ1(x)2
. (12)

Though valid for very general weighting functions g this result is not very sat-
isfactory. On closer inspection we see that when μ1(x) = x, which is true for all
normalized symmetric functions g, it can be easily simplified to

mx+ n = (g ∗ f)(x). (13)

In other words, every function g with μ0 = 1, μ1(x) = x, μ2(x) �= 0, and
μ2(x) �= x2, used to weight the least-squares fitting results in a reconstruction
that is the convolution of the true surface with g. Note, that a uniform weighting
[12] naturally leads to the convolution with a box filter in this framework.

2.3 Building a Scale Space Representation

The derived constraints for the weighting function obviously allow for many
different choices. One of particular interest is the Gaussian since convolutions
with Gaussians are well studied and widely applied, e.g., in the image domain.
If we set g to be a normalized Gaussian with standard deviation σ

g(t) =
1√
2πσ

exp

(
−t2
2σ2

)
. (14)
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we obtain the following moments

μ0 = 1 μ1(x) = x μ2(x) = σ2 + x2. (15)

That is, the normalized Gaussian fulfills our constraints and we can determine
the slope m and offset n of the fitted patch at each point x by

m =
(g ∗ ·f)(x)− (g ∗ f)(x)x

σ2
(16)

n =
(g ∗ f)(x)(σ2 + x2)− (g ∗ ·f)(x)x

σ2
. (17)

In order to create a scale space representation of the underlying surface we
need to use Gaussians with varying standard deviations σ. However, during
reconstruction we can influence σ only to a limited extent because it depends on
the scene depth, image resolution and focal length of the camera. In that sense,
if we reconstruct depth maps of the same geometry using a variety of images
results in a natural variation of the standard deviation σ in real-world space.
The only parameter one can actively steer is the standard deviation σi (linked
with the window size due to approximation and clamping of the Gaussian) in
image space used for patch-based optimization. When selecting σi one often
has a rough depth estimate and also the camera parameters are known from
registration. With that it is possible to indirectly steer the standard deviation
σ in world space at least to a limited extent, e.g., for parts of the scene with
different depths. In Section 3 we will conduct some experiments with varying
the standard deviation σi but we first transfer our results into 3D.

2.4 Reconstruction in 3D

For the reconstruction in 3D we assume the 2D geometry is described as a height
field z = f(x, y). To obtain the reconstruction at some point (x, y), we fit a patch
(surface segment) that is parameterized by 2 slopes m1 and m2 and an offset
n. Again, the weighting function g allows for different areas of influence. As a
result we now have the following energy

E(m1,m2, n, x) =

∫ ∞

−∞

∫ ∞

−∞
g(x− t, y− s)(m1t+m2s+n− f(t, s))2 dt ds. (18)

Minimizing E requires taking the partial derivatives with respect to m1, m2,
and n:

∂m1E =

∫ ∞

−∞

∫ ∞

−∞
2tg(x− t, y − s)(m1t+m2s+ n− f(t, s)) dt ds

!
= 0 (19)

∂m2E =

∫ ∞

−∞

∫ ∞

−∞
2sg(x− t, y − s)(m1t+m2s+ n− f(t, s)) dt ds

!
= 0 (20)

∂nE =

∫ ∞

−∞

∫ ∞

−∞
2g(x− t, y − s)(m1t+m2s+ n− f(t, s)) dt ds

!
= 0 (21)
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Similar to the reconstruction in 2D, we introduce the short notation μ00, μ10,
μ01, μ20, μ11, and μ02 for the moments of g with respect to x and y, respectively.

μ00 =

∫ ∞

−∞

∫ ∞

−∞
g(t, s) dt ds, μ10 =

∫ ∞

−∞

∫ ∞

−∞
g(x− t, y − s)t dt ds

(22)

μ01 =

∫ ∞

−∞

∫ ∞

−∞
g(x− t, y − s)s dt ds, μ20 =

∫ ∞

−∞

∫ ∞

−∞
g(x− t, y − s)t2 dt ds

(23)

μ11 =

∫ ∞

−∞

∫ ∞

−∞
g(x− t, y − s)st dt ds, μ02 =

∫ ∞

−∞

∫ ∞

−∞
g(x− t, y − s)s2 dt ds

(24)

For the sake of clarity we chose an even shorter abbreviation for the other con-
volution integrals:

gtf =

∫ ∞

−∞

∫ ∞

−∞
tg(x− t, y − s)f(t, s) dt ds (25)

gsf =

∫ ∞

−∞

∫ ∞

−∞
sg(x− t, y − s)f(t, s) dt ds (26)

gf =

∫ ∞

−∞

∫ ∞

−∞
g(x− t, y − s)f(t, s) dt ds. (27)

Again, we can normalize g such that μ00 = 1. With this notation we can rewrite
Eqs. (19)-(21) as

∂m1E = 2(m1μ20 +m2μ11 + nμ10 − gtf)
!
= 0 (28)

∂m2E = 2(m1μ11 +m2μ02 + nμ01 − gsf)
!
= 0 (29)

∂nE = 2(m1μ10 +m2μ01 + n− gf)
!
= 0 (30)

Solving these equations for m1, m2, and n yields

αm1 = gf (μ02μ10 − μ01μ11) + gsf (μ11 − μ01μ10) + gtf
(
μ2
01 − μ02

)
(31)

αm2 = gf (μ01μ20 − μ10μ11) + gsf
(
μ2
10 − μ20

)
+ gtf (μ11 − μ01μ10) (32)

αn = gf
(
μ2
11 − μ02μ20

)
+ gsf (μ01μ20 − μ10μ11) + gtf (μ02μ10 − μ01μ11) (33)

where α = μ20μ
2
01 − 2μ10μ11μ01 + μ02μ

2
10 + μ2

11 − μ02μ20. Plugging in these
expressions in the patch P = m1x+m2y + n, we obtain

P =
1

α

(
gf

(
μ2
11 − μ02μ20 − μ01μ11x+ μ02μ10x− μ10μ11y + μ01μ20y

)
+ (34)

gsf
(
−μ11μ10 + μ01μ20 − μ01μ10x+ μ11x+ μ2

10y − μ20y
)
+ (35)

gtf
(
−μ11μ1 + μ02μ10 + μ2

01x− μ02x− μ10μ01y + μ11y
))
. (36)
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Taking symmetric filters yields μ10 = x and μ01 = y. Then immediately one gets

P = gf (37)

Of course we can use a classical anisotropic Gaussian characterized by σ and τ

g(t, s) =
1

2πστ
exp

(
−t2
2τ2

+
−s2
2σ2

)
(38)

because the moments are μ00 = 1, μ10 = x, μ01 = y, μ02 = x2 + τ2 , μ11 = xy,
μ02 = y2 + σ2.

3 Experiments

In order to verify our theoretic findings in practice we now conduct some ex-
periments. We hereby chose the depth map reconstruction method of Goesele
et al. [5] because it does a pure photo-consistency optimization (going back to
Gruen and Baltsavias [7]) to find depth and normal for a certain pixel and has
no regularization force. For a small region around a pixel i, j in a reference view
IR the method aims to find depth d and normal n of the associated 3D patch
such that it is photo-consistent with a set of neighboring views Ik. The algorithm
minimizes (see [5, Sec. 6.2] ignoring the color scale)∑

k,i,j

[IR(s+ i, t+ j)− Ik(P
d,n
k (s+ i, t+ j))]2 (39)

where Pk describes the projection of a pixel from the reference view in the
neighbor view Ik according to some depth d and normal n. We implement the
weighting on the least-squares patch fit by weighting the pixels, i.e., we compute
a weighted SSD:∑

k,i,j

g(i, j)[IR(s+ i, t+ j)− Ik(P
d,n
k (s+ i, t+ j))]2. (40)

The remaining question is whether this weighted photo-consistency optimization
still reflects the process of weighted least-squares fitting as described by Eq. 2.
We test this using a synthetic data set because of two reasons: First, we can as-
sure that our results are not affected by registration errors but solely reflect the
photometric consistency optimization, and second, we know the ground truth
surface and are able to compute the predicted reconstruction according to our
model. Our ground truth surface is created as a random sum of one-dimensional
B-Splines extruded into the third dimension. We then render five different views
(one central view looking perpendicular onto the surface and four views dis-
tributed uniformly around it with a parallax of 35◦) of this scene using the
PBRT system [16] while a random texture is mapped onto the surface to guar-
antee matching success at all pixels (see Fig. 2). For the central view we now re-
construct a depth map by using the other four views as neighbors and minimizing
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Fig. 2. Left: The central view of our synthetic data set. Right: The underlying mesh
(shaded) used to render the views.

Table 1. Mean deviation of the reconstruction from the theoretical predicted surface
(see Figs. 3&4)

Patch size mean deviation (L1-norm)
in pixels uniform weighting Gaussian weighting

11× 11 1.9 · 10−4 1.3 · 10−4

21× 21 4.1 · 10−4 2.8 · 10−4

41× 41 6.9 · 10−4 5.8 · 10−4

61× 61 6.3 · 10−4 7.0 · 10−4

the weighted SSD from Eq. 40. We start the optimization for each pixel with the
depth value obtained from PBRT and the normal representing a fronto-parallel
patch. To reduce noise we average the reconstructed values along the constant
dimension. Fig. 3 shows the reconstructions using a uniform weighting function.
The quadratic windows in image space are 11 (blue), 21 (green), 41 (red), and
61 (cyan) pixels wide which corresponds to a patch size (2δ) of 0.06,0.12,0.24,
and 0.36 in world coordinates, respectively. We also plotted the predicted re-
constructions, i.e., convolutions of the original surface with box filters of the
corresponding width. Overall, the reconstruction is close to the prediction al-
though there is some local deviation. The best conformity is achieved for the
small patch size which can also be seen in Table 1 where we computed the mean
deviation. Note the occasional amplitude inversion visible in the prediction as
well as the reconstruction, in particular for the largest filter at around −1.4.

In Fig. 4 we used Gaussian weighting with increasing standard deviation which
leads to a scale space representation of the underlying surface. The window
sizes are the same used for the uniform weighting and we always chose the
standard deviation σ such that δ = 2.5σ. That is, in world coordinates we used
σ = 0.012, 0.024, 0.048, 0.072. We can see from the figure and also by studying
the numbers in Table 1 that the deviation from the prediction again increases
for larger σ.

Finally, we show reconstruction results on real world data. Figure 5 (top left)
shows an input image of the Notre Dame data set consisting of 715 images
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Fig. 3. Multi-view stereo reconstruction using a uniform weighting with increasing
patch size. The black line denotes the original surface. The colored solid lines are the
computed predictions while the corresponding dots are the reconstructed values.
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Fig. 4. Reconstructing a scale space representation using a Gaussian weighting with
increasing standard deviation (see text). The black line denotes the original surface.
The colored solid lines are the computed predictions while the according dots are the
reconstructed values.

downloaded from the Internet. We use Snavely et al. [19] to register them and
compute depth maps for the shown image using different weightings and window
sizes. The middle and bottom row show reconstructions obtained using uniform
and Gaussian weighting, respectively. Although hard to jugde, the Gaussian
weighting seems to produce slightly more noise and less complete reconstructions.
On the other hand it better preserves the low frequencies. One must consider
though, that the algorithm [5] was tuned to work well with the uniform weighting
and on a broad range of data sets. That is, playing with the parameters in the
optimization or view selection might result in more favorable results for the
Gaussian weighting.

4 Conclusion and Future Work

This paper extends a recently introduced model for patch-based depth recon-
struction by adding a weighting function. We derive criteria on the weighting
function such that we can predict the reconstructed surface as the convolution of
the true surface with the applied weighting function. This includes using a Gaus-
sian instead of a uniform weighting during reconstruction which corresponds to a
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Fig. 5. Top left: Input image of the Notre Dame data set. The red box is roughly the
area seen in the bottom rows. Top middle,right: Full rendered view of reconstructed
depth map using uniform (middle) and Gaussian weighting (right) and a window size
in images space of 7× 7 pixels. Middle+Bottom: Enlarged area roughly corresponding
to red box (top left) of the reconstructed depth map. We applied uniform (middle) and
Gaussian weighting (bottom) using window sizes of 7× 7, 11× 11, and 21× 21 pixels
(from left to right) for reconstruction where the standard deviation of the Gaussian in
image space is σi = 1.2, 2.0, 4.0.

Gaussian instead of a box filter in geometry space. In contrast to previous meth-
ods, we achieve a true low-pass filter avoiding the introduction of systematic
high-frequency artifacts. Future work definitely includes to further investigate
the correlation between weighted photo-consistency optimization and weighted
least-squares fitting of a planar patch to the geometry.

Our findings are applicable in a broad range of applications. In contrast to
[12], we give a local characterization of the reconstruction outcome at the same
time offering more flexibility caused by the weighting. Multi-scale surface recon-
struction methods like [2–4, 15] could take that knowledge into account when
combining data from multiple depth maps. But also geometry super-resolution
methods [6, 20] can benefit from our findings. Since we provide evidence for a
generative model it is now possible to adapt well established methods from imag-
ing, e.g., Bayesian super-resolution [17], to the geometry reconstruction context.

Acknowledgements. This work was supported in part by the DFG Emmy
Noether fellowship GO 1752/3-1.
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with an Application to the Analysis
of 4D Microscopy Data

Clemens Kirisits1, Lukas F. Lang1, and Otmar Scherzer1,2

1 Computational Science Center, University of Vienna,
Nordbergstr. 15, 1090 Vienna, Austria

{clemens.kirisits,lukas.lang,otmar.scherzer}@univie.ac.at
2 Radon Institute of Computational and Applied Mathematics,

Austrian Academy of Sciences, Altenberger Str. 69, 4040 Linz, Austria

Abstract. We extend the concept of optical flow to a dynamic non-
Euclidean setting. Optical flow is traditionally computed from a sequence
of flat images. It is the purpose of this paper to introduce variational
motion estimation for images that are defined on an evolving surface.
Volumetric microscopy images depicting a live zebrafish embryo serve as
both biological motivation and test data.

Keywords: Computer Vision, biomedical imaging, optical flow, varia-
tional methods, evolving surfaces, zebrafish, laser-scanning microscopy.

1 Introduction

Advances in laser-scanning microscopy and fluorescent protein technology have
increased resolution of microscopy imaging up to a single cell level [11]. They
allow for four-dimensional (volumetric time-lapse) imaging of living organisms
and shed light on cellular processes during early embryonic development. Un-
derstanding cellular development often requires estimation and analysis of cell
motion. However, the amount of data captured is tremendous and therefore
manual analysis is not an option.

The specific biological motivation for this work is to understand the motion
and division behaviour of fluorescently labelled endodermal cells of a zebrafish
embryo. The marked cells develop on the surface of the embryo’s yolk, where
they form a non-contiguous monolayer [17]. Loosely speaking, they only sit next
to each other but not on top of each other. Moreover, the yolk deforms over time;
see Fig. 1.

We take these biological facts into account and restrict our attention to the
analysis of cell motion on the yolk’s surface. With this approach it is possible
to reduce the amount of data by one space dimension. The resulting problem
consists in the estimation of motion of brightness patterns that are restricted
to an itself moving surface. We approach this problem by adapting the classi-
cal concept of optical flow to the present setting, where the image domain is

A. Kuijper et al. (Eds.): SSVM 2013, LNCS 7893, pp. 246–257, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Fig. 1. Sequence of embryonic zebrafish images. The curved mesh represents a section
of the yolk’s surface. Depicted are frames no. 30, 45, 55, and 60 of the entire sequence.
All dimensions are in micrometer (μm). See Sec. 4.1 for more details on the microscopy
data.

both non-Euclidean and dynamic. Note that due to the monolayer structure
cell occlusions cannot occur. This makes the optical flow field a more reliable
approximation to the true motion field.

Our contributions in the field of optical flow are as follows. First, we formulate
the optical flow problem on an evolving two-dimensional manifold and give two
equivalent ways of linearising the brightness constancy assumption (Secs. 2.1
and 2.2). One uses a parametrisation of the evolving surface, the other one
is parameter-independent. Second, we use a generalisation of the Horn-Schunck
model to regularise the optical flow field (Sec. 2.3). For a given global parametri-
sation of the evolving surface, we solve the associated Euler-Lagrange equations
in the parameter domain with a finite difference scheme (Sec. 3). Finally, we
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apply this technique to obtain qualitative results from the afore-mentioned ze-
brafish data (Sec. 4). Our experiments show that the optical flow is an appro-
priate tool for analysing these data. It is capable of estimating global trends as
well as individual cell movements and, in particular, it is able to indicate cell
division events.

Related Work. Optical flow is the apparent motion in a sequence of images. Its
estimation is a key problem in Computer Vision. Horn and Schunck [5] were the
first to propose a variational approach assuming constant brightness of moving
points and spatial smoothness of the velocity field. Since then, a vast number of
modifications has been developed. See [1] for a recent survey.

Miura [13] observed that until 2005 optical flow has been mostly disregarded as
a method for motion extraction in cell biological data. Since then, a few articles
have explored this direction: Melani et al. [12] and Hubený et al. [6] extended
variational optical flow methods to volumetric images to obtain 3D displacement
fields. In the former article, the resulting algorithm is also applied to zebrafish
microscopy data. Quelhas et al. [15] use optical flow to detect cell divisions in
a live plant root. However, they work with 2D (plus time) data only. Therefore,
their approach suffers from errors caused by 3D off-plane motion.

Clearly, certain natural scenarios are more accurately described by a velocity
field on a non-flat surface rather than on a flat domain. With applications to
robot vision, Imiya et al. [7,16] considered optical flow for spherical images. In a
more general setting, Lefèvre and Baillet [10] extended the Horn-Schunck method
to 2-Riemannian manifolds and showed well-posedness. They solve the numerical
problem with finite elements on a surface triangulation. In all of the above works
the underlying imaging surface is fixed over time, while in this paper it is not.

2 Optical Flow on Evolving Surfaces

2.1 Brightness Constancy

Let Mt ⊂ R3, t ∈ I = [0, T ), be a compact smooth two-dimensional manifold
evolving smoothly over time. We assume the velocity to be unknown. Moreover,
denote by f̃ a scalar time-dependent quantity defined on the surface

f̃ :
⋃
t∈I

(Mt × {t})→ R.

We begin with a Lagrangian specification of the optical flow field. That is, for ev-
ery starting point x0 ∈ M0 we seek a trajectory where the data f̃ are conserved.
More precisely, we want to find a function

γ :M0 × I →
⋃
t∈I
Mt,

such that
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1. γ(x0, t) ∈Mt for all t ∈ I, for all x0 ∈ M0,
2. γ(·, t) is a diffeomorphism betweenM0 andMt for all t ∈ I,
3. γ(·, 0) = IdM0 ,

is fulfilled and which satisfies a “brightness” constancy assumption (BCA)

f̃(x0, 0) = f̃(γ(x0, t), t), for all (x0, t) ∈ M0 × I. (1)

In classical optical flow computations it is common practice to linearise the BCA
by taking its time derivative and to solve the resulting equation for the Eulerian
unknown γ̇.1 We also take this route, but differentiation of f̃ is more involved.
Observe, for example, that for an arbitrary t0 ∈ I and x ∈Mt0 the usual partial
derivative

∂tf̃(x, t0) = lim
h→0

1

h

(
f̃(x, t0 + h)− f̃(x, t0)

)
is not well-defined, simply because, in general, x is not an element ofMt0+h for
all h �= 0.

In the next section we linearise (1) in two different ways. First, we use a global
parametrisation to pull the data back to a fixed reference domain and linearise
afterwards. In our second approach we borrow some notions from continuum
mechanics [2] to directly linearise (1).

2.2 Linearisation

Linearisation after Pull-Back. Let Ω ∈ R2 be a compact domain and

x : Ω × I → R3, (x1, x2, t) = (x, t) �→ x(x, t) ∈Mt

be a parametrisation of the evolving surface. Denote by f the coordinate repre-
sentation of f̃ , that is,

f(x, t) = f̃(x(x, t), t) (2)

and let
β : Ω × I → Ω

be the coordinate counterpart of γ. This means, if we let x0 = x(x0, 0), then
β(x0, t) gives the coordinates of γ(x0, t) ∈Mt in Ω (see Fig. 2). In other words,
we have the identity

γ(x(x0, 0), t) = x(β(x0, t), t), for all (x0, t) ∈ Ω × I. (3)

Now, from (1), (2) and (3) we get

f(x0, 0) = f̃(x0, 0)

= f̃(γ(x0, t), t)

= f̃(x(β(x0, t), t), t)

= f(β(x0, t), t),

1 To simplify expressions we use Newton’s notation for those time derivatives that
correspond to actual velocities, for example γ̇ = ∂tγ.
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Ω Ω

M0 Mt

x(·, 0)

β(·, t)

γ(·, t)
x(·, t)

Fig. 2. Commutative diagram describing the relation between unknowns β and γ.

which is a coordinate version of the BCA. After differentiation with respect to t
it becomes

∇2f · β̇ + ∂tf = 0, (4)

where ∇2 = (∂1, ∂2)
	 is the two-dimensional spatial gradient. Note that the last

equation is nothing but the classical optical flow constraint (OFC) for Euclidean
data f and a displacement field β̇.

Direct Linearisation. We turn to our second derivation. While, as pointed out
above, the partial derivative ∂tf̃ is undefined in general, it does make sense to
differentiate f̃ following the surface movement. Let y be a point on Mt0 and
ξ : t �→ ξ(t) ∈ Mt an arbitrary smooth trajectory through the evolving surface
satisfying ξ(t0) = y. Now we can compute

d

dt
f̃(ξ(t), t)

∣∣∣∣
t=t0

= lim
h→0

1

h

(
f̃(ξ(t0 + h), t0 + h)− f̃(y, t0)

)
to obtain a valid derivative of f̃ . Since this time derivative only depends on the
vector v = ξ̇(t0), we denote it by dvt f̃ . A natural candidate for a trajectory along
which to differentiate is given by the parametrisation ξ(t) = x(x, t). Another
possible choice would be a trajectory that is normal toMt0 . The resulting normal
time derivative is accordingly denoted by dnt f̃ .

Finally, we also need the surface gradient ∇Mf̃ . If F is a smooth extension of
f̃ to an open neighbourhood of y ∈ Mt0 in R3, then the surface gradient of F
at y is defined as the projection of the three-dimensional spatial gradient ∇3F
onto the tangent plane toMt0

∇MF = ∇3F − (∇3F · n̂)n̂,

where n̂ is the unit normal to Mt0 . The surface gradient only depends on the
values of F on the surface; see e.g. [4, p. 389]. Thus, ∇Mf̃ = ∇MF is well-
defined.

The spatial and temporal derivatives of f̃ introduced above are related in a
simple way. As shown in [2], they satisfy the equality

dẋt f̃ = ∇Mf̃ · ẋ+ dnt f̃

= ∇Mf̃ · ẋtan + dnt f̃ ,
(5)
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where ẋtan is the tangential surface velocity, that is, the projection of ẋ onto the
tangent plane to Mt0 . This decomposition of dẋt f̃ into normal and tangential
components is clearly valid for any trajectory in place of x, and therefore in
particular for the unknown γ. This means we can use (5) in order to differentiate
the BCA (1) with respect to t. The resulting OFC reads

∇Mf̃ · γ̇tan + dnt f̃ = 0. (6)

Discussion. We conclude this section with a brief comparison of the two OFCs
derived above. We start by showing how to obtain (4) from (6) and vice versa. To
this end we again assume the existence of a global parametrisation and rewrite
all quantities in (6) in terms of x. First observe that, by (3), the velocity of γ
equals the surface velocity ẋ plus a purely tangential component

γ̇ = ẋ+ Jβ̇,

where J = (∂1x ∂2x) is the Jacobian matrix of x with respect to x. On the
other hand, by (5), the normal time derivative is equal to the time derivative of
f̃ following x minus its tangential component

dnt f̃ = dẋt f̃ −∇Mf̃ · ẋ.

Using the last two equations to rewrite the left-hand side of (6) yields

∇Mf̃ · γ̇ + dnt f̃ = ∇Mf̃ ·
(
ẋ+ Jβ̇

)
+ dẋt f̃ −∇Mf̃ · ẋ

= ∇Mf̃ · Jβ̇ + dẋt f̃ ,

which is already the left-hand side of (4) in terms of f̃ . It only remains to observe
that dẋt f̃ = ∂tf and to replace the surface gradient ∇Mf̃ by its coordinate
expression Jg−1∇2f , where g = J	J is the coefficient matrix of the Riemannian
metric; see e.g. [9].

We highlight the qualitative difference between the constraints (4) and (6).
Note that in the former the unknown is β̇, while in the latter it is γ̇tan = ẋtan+Jβ̇.
This means that (4) constrains the motion relative to the tangential surface
velocity ẋtan, while (6) constrains the absolute tangential motion.

The nature of our microscopy data suggests a simple global parametrisation
(see Sec. 3). We therefore pull the data back to the Euclidean plane and solve
(4). However, equation (6) is independent of any parametrisation. It can thus
serve as a starting point for alternative numerical approaches.

2.3 Regularisation

From now on we fix an arbitrary t0 ∈ I and turn to the actual solution of the
parametrised OFC for (u1(x), u2(x))	 = u(x) = β̇(x, t0). Recall that with this
notation u contains the coefficients of the tangential vector field u = Jβ̇ with
respect to the tangential basis (∂1x, ∂2x) of Mt0 . Note also that, by fixing t0,
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there is no more time-dependence in our problem which makes it effectively an
optical flow problem on a static surface. Hence we omit any reference to t0 from
now on and writeM instead ofMt0 .

The sought vector field is underdetermined by the OFC alone. We overcome
this by minimising a functional that penalises violation of the OFC while impos-
ing an additional smoothness restriction on u. More precisely, we adopt a recent
extension of the original quadratic Horn-Schunck regularisation to a Riemannian
setting [10]. Basically, they propose to minimise

E(u) = α

2

∥∥∇2f · u+ ∂tf
∥∥2

L2(M)
+

1

2

∥∥Du∥∥2

L2(M)
. (7)

Here, α > 0 is the regularisation parameter and Du = (Dju
i) is the 2×2 matrix

containing the coefficient functions of the covariant derivatives

∇ju =

2∑
i=1

Dju
i∂ix, j = 1, 2,

of u. Using the Christoffel symbols Γ i
jk (see Sec. 3) associated to the parametri-

sation x the coefficients are given by

Dju
i = ∂ju

i +

2∑
k=1

Γ i
jku

k, i, j = 1, 2.

Rewriting (7) as an integral over the coordinate domain, we arrive at the func-
tional

E(u) = 1

2

∫
Ω

[
α
(
∇2f · u+ ∂tf

)2
+ ‖Du‖2F

]√
det g dx, (8)

where ‖·‖F is the Frobenius norm.

3 Numerical Solution

We solve the problem of minimising functional E via its associated Euler-Lagrange
equations. Regarding the integrand of E as a function G(x, u,∇2u1,∇2u2), they
read

Gu1 = ∂1G∂1u1 + ∂2G∂2u1

Gu2 = ∂1G∂1u2 + ∂2G∂2u2 ,

where subscripts of G denote partial derivatives. The resulting pair of linear
PDEs is of the form

Δu1 = ∇2u1 · c+∇2u2 · d+ u · b1 + a1

Δu2 = ∇2u2 · c+∇2u1 · d+ u · b2 + a2.
(9)

The coefficient vectors a, b1, b2, c, d are rather lengthy functions of the data f
and metric tensor g, which is why we do not write them out in full here. Letting
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Ω = (0, 1)2 for simplicity, the natural boundary conditions of the variational
problem are

∂ju
i +

∑
k

Γ i
jku

k = 0, for xj ∈ {0, 1}, (10)

where i, j ∈ {1, 2}. In case of a flat manifold, e.g. M = Ω, the Euler-Lagrange
equations (9) reduce to those of the original Horn-Schunck functional and the
boundary conditions become the usual homogeneous Neumann ones. For more
details on the calculus of variations we refer to [3].

Due to the nature of the microscopy data (see Sec. 4.1 and Fig. 1), the man-
ifoldMt modelling the deforming yolk is a surface with boundary that is most
easily parametrised as the graph of a function z : Ω × I → R. Hence, we set
x(x1, x2, t) = (x1, x2, z(x1, x2, t))

	. Accordingly, for the metric we get

g = I2 +∇2z∇2z	, det g = 1 + |∇2z|2,

where I2 ∈ R2×2 is the identity matrix. The Christoffel symbols turn out to be

Γ i
jk =

1

2

2∑
m=1

gmi (∂jgkm + ∂kgmj − ∂mgjk) =
∂iz ∂jkz

det g
.

Partial derivatives of z and of the projected data f were approximated by central
differences. The system (9) with boundary conditions (10) was then solved with
a standard finite difference scheme. In the following section numerical results are
presented.

4 Experiments

4.1 Data

As mentioned before, the biological motivation for this work are cellular image
data of a zebrafish embryo. Endoderm cells expressing green fluorescent protein
were recorded via confocal laser-scanning microscopy resulting in time-lapse vol-
umetric (4D) images; see [11] for the imaging techniques. This type of image
shows a high contrast at cell boundaries and a low signal-to-noise ratio in gen-
eral. Our videos were obtained during the gastrula period, which is an early stage
in the animal’s developmental process and takes place approximately five to ten
hours post fertilisation. In short, the fish forms on the surface of a spherical-
shaped yolk; see e.g. [8] for many illustrations and detailed explanations. For the
biological methods such as the fluorescence marker and the embryos used in this
work we refer to [14]. The important aspect about endodermal cells is that they
are known to form a monolayer during gastrulation [17], meaning that the radial
extent is only a single cell. This crucial fact allows for the straightforward extrac-
tion of a surface together with a two-dimensional image of the stained cells. Since
only a cuboid region of approximately 860× 860× 340μm3 of the pole region is
captured by the microscope, this surface can easily be parametrised; cf. Sec. 3.
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Fig. 3. Optical flow field between frames 57 and 58 of the sequence. Colours indicate
direction whereas darkness of a colour indicates the length of the vector. Note that the
colour circle has been enlarged for better visibility.

The spatial resolution of the Gaussian filtered images is 512 × 512pixels and
all intensities are given in the interval [0, 1]. Our sequence contains 77 frames
recorded in intervals of 240 s with clearly visible cellular movements and cell
divisions.

4.2 Numerical Results

In the following we present qualitative results and demonstrate the feasibil-
ity of our approach. For every subsequent pair of frames we minimised the
functional (8) as outlined in Sec. 3. We chose grid size as well as temporal
displacement as h = 1 and the regularisation parameter was set to α = 10.
For demonstration purpose we make use of the standard flow colour-coding [1],
which maps (normalised) flow vectors to a colour space defined inside the unit
circle. It is easy to see that the same colours are valid all over the manifold due
to the parametrisation.

As representative candidates for this discussion we chose the displacement field
between frames 57 and 58 for the following reasons. First, the surface is distinctly
developed. Second, a considerable number of cells is present in the image, and
third, the interval contains cell divisions. Figure 3, left, shows the colour-coded
tangential vector field and the colour space whereas Fig. 3, right, displays the
same motion field as computed in the parameter space.2 A visual inspection of
the dataset shows that cells tend to move towards the embryo’s body axis, which
roughly runs along the main diagonal in Fig. 3, right. Clearly, the velocity field is
sufficiently smooth and suggests this behaviour in an adequate manner on a large

2 Some figures may appear in colour only in the online version.
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Fig. 4. Detailed view of a cell division occurring between frames 57 (left) and 58 (right).
All vectors are scaled and only every fourth vector is shown. Intensities are interpolated
for smooth illustration.

scale. The expected change in orientation along the body axis is well represented
by the colour shift from orange-yellow below the main diagonal to purplish blue
in the region above. On the contrary, the choice of the regularisation parameter
ensures that individual movements are well preserved as can be observed from
the image.

Figure 4 gives a detailed view of the section outlined by a (red) rectangle in
Fig. 3, right. This section was chosen because it depicts a cell division. Figure 4,
left, and Fig. 4, right, display the frames before and after the event, respectively.
Moreover, in Fig. 4, left, the velocity field is shown. From the raw data we
observed that when a cell actually splits, the two daughter cells drift apart in a
180 ◦ angle with respect to the mother cell. The displacement field clearly shows
the anticipated pattern caused by the diverging daughter cells. In Fig. 3, right,
the event is point up by two areas which are coloured mutually opposite with
respect to the colour space. Our results suggest that cell division can be indicated
reasonably well by our model. Both implementation and data are available on
our website.3

5 Conclusion

Aiming at efficient motion analysis of 4D cellular microscopy data, we generalised
the Horn-Schunck method to videos defined on evolving surfaces. The biological
fact that the observed cells move along an itself deforming surface allows for
motion estimation in 2D (plus time). In the course of this work, we presented two
ways to linearise the brightness constancy assumption and showed that one could

3 http://www.csc.univie.ac.at

http://www.csc.univie.ac.at
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be obtained from the other and vice versa. The resulting optical flow constraint
was solved by means of quadratic regularisation and verified on the basis of the
afore-mentioned data. Our qualitative results suggest that both global trends as
well as individual movements including cell division are well shown in the surface
velocity field. However, so far we only laid the basic groundwork in terms of a
mathematical model.
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Bourgine, P., Mikula, K., Peyriéras, N., Sarti, A.: Cells tracking in a live zebrafish
embryo. In: Proceedings of the 29th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society (EMBS 2007), pp. 1631–1634 (2007)

13. Miura,K.:TrackingMovement inCellBiology. In:Rietdorf, J. (ed.)MicroscopyTech-
niques. Advances in Biochemical Engineering/Biotechnology, vol. 95, pp. 267–295.
Springer (2005)

14. Mizoguchi, T., Verkade, H., Heath, J.K., Kuroiwa, A., Kikuchi, Y.: Sdf1/Cxcr4
signaling controls the dorsal migration of endodermal cells during zebrafish gastru-
lation. Development 135(15), 2521–2529 (2008)

15. Quelhas, P., Mendonça, A.M., Campilho, A.: Optical flow based arabidopsis
thaliana root meristem cell division detection. In: Campilho, A., Kamel, M. (eds.)
ICIAR 2010, Part II. LNCS, vol. 6112, pp. 217–226. Springer, Heidelberg (2010)

16. Torii, A., Imiya, A., Sugaya, H., Mochizuki, Y.: Optical Flow Computation for
Compound Eyes: Variational Analysis of Omni-Directional Views. In: De Grego-
rio, M., Di Maio, V., Frucci, M., Musio, C. (eds.) BVAI 2005. LNCS, vol. 3704,
pp. 527–536. Springer, Heidelberg (2005)

17. Warga, R.M., Nüsslein-Volhard, C.: Origin and development of the zebrafish endo-
derm. Development 126(4), 827–838 (1999)



Perspective Photometric Stereo with Shadows�
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Abstract. High resolution reconstruction of 3D surfaces from images
remains an active area of research since most of the methods in use
are based on practical assumptions that limit their applicability. Fur-
thermore, an additional complication in all active illumination 3D re-
construction methods is the presence of shadows, whose presence cause
loss of information in the image data. We present an approach for the
reconstruction of surfaces via Photometric Stereo, based on the perspec-
tive formulation of the Shape from Shading problem, solved via partial
differential equations. Unlike many photometric stereo solvers that use
computationally costly variational methods or a two-step approach, we
use a novel, well-posed, differential formulation of the problem that en-
ables us to solve a first order partial differential equation directly via an
alternating directions raster scanning scheme. The resulting formulation
enables surface computation for very large images and allows reconstruc-
tion in the presence of shadows.

Keywords: Photometric Stereo, Perspective Shape from Shading, Shad-
ows, up-wind scheme, semi-Lagrangian scheme.

1 Introduction

The classical computer vision topic of Shape from Shading (SfS) was recently re-
vitalized by a series of research contributions driven in part by some interesting
new applications [1–3]. The technique based on the shape recovery from several
pictures of the same scene taken under different illuminations, namely Photo-
metric Stereo (PS), has gained some popularity, due to the feasibility of imple-
menting controlled light systems. In this context, quite a few multi-image depth
recovery techniques based on inverting shading models have been addressed in
the literature [4, 5]. Utilizing multiple images in order to remove both the nonlin-
earities in the image irradiance equation and the generally unknown albedo, new
ideas have been introduced in order to solve the PS problems more efficiently,
see [6–9].

Most of the works which addressed the PS problem, for example [1, 5, 10, 11],
reconstruct the surface in two steps:

� This research was partly supported by European Community’s FP7- ERC program,
grant agreement no. 267414 and by Broadcom foundation.

A. Kuijper et al. (Eds.): SSVM 2013, LNCS 7893, pp. 258–269, 2013.
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1. the estimation of the gradient of the surface (usually via some local mini-
mization algorithms);

2. the recovery of the height from the gradient field all over the domain (by
integration or by functional minimization).

In the framework of classical PDEs for a single input image and known albedo
there exists a well known direct approach to SfS which uses level sets [12]. Its
drawback, among others, is the need to know a-priori the albedo, which limits
the scope of applications where this method can be employed. Here, we present
a new model for a direct recovery of the surface considering Perspective Photo-
metric Stereo with n images (PPSn) with shadows. In Section 2 we recall the
differential formulation for the PPS2 introduced in [9] with only two images.
Section 3 contains the construction of the proposed differential problem taking
into account multiple images containing shadows. Note that our hypotheses are
weaker than the ones assumed in [4] which addressed the same problem without
the perspective transformation and considered a two step procedure with regu-
larization terms for smooth surfaces. We will focus here on a surface recovery
based on the direct computation of the unique weak (Lipschitz) solution of a
linear PDEs.

The theoretical formulation of the new differential approach can be easily
extended when more than three images are considered. The mathematical proof
of the existence and uniqueness of a weak solution for this new formulation is
sketched in Section 4. The numerical schemes are presented in Section 5 where
both up-wind and semi-Lagrangian methods are implemented considering the
Fast Sweeping technique. In Section 6 we show some numerical tests in order
to demonstrate the order of consistency of the numerical schemes and the fast
reconstruction of the surface respectively. In particular, in these tests we consider
images of several megapixels with a significant portion of shadow areas. Section 7
concludes the paper.

2 Perspective Photometric Stereo Technique

In this section we briefly recall the model for the PSfS, and the direct solution
method described for this case, as presented in [9]. Let us define the observed
surface as h(x, y) = (x, y, ẑ(x, y)). We define a far light source by its unit vector
ω. The associated reflectance equation is given by the Lambertian illumination
model [13]:

I = ρ(ω · n), ω = (ω1, ω2, ω3), ω3 < 0 (1)

where ρ is the unknown albedo function, I is the image and n is the incoming
unit normal to the surface. There are several ways to describe the perspective
transformation of the surface [1, 2, 14]. Here we consider the one introduced in
[15], based on the following transformation

k(ξ, η) = (ξ, η, z(ξ, η)) =
(
− x

ẑ(x, y)
f,− y

ẑ(x, y)
f, ẑ(x, y)

)
(2)



260 R. Mecca et al.

where ẑ(x, y) = z(ξ, η) and the positive quantity f is the focal length and the
point (ξ, η) belongs to the perspective domain in the focal plane (in blue in Fig.
1), namely Ω

p
= Ωp ∪ ∂Ωp.

The differential formulation for the PSfS problem

ρ(ξ, η)
−fzξω1 − fzηω2 − (z + ξzξ + ηzη)ω3√

f2(z2ξ + z2η) + (z + ξzξ + ηzη)2
= I(ξ, η), for (ξ, η) ∈ Ωp (3)

is not well-posed even if the Dirichlet boundary condition, i.e. z(ξ, η) = g(ξ, η)
is given [15].

Fig. 1. Schematic representation of a surface taken under perspective view. The point
of the real surface (x, y, ẑ) is projected in the perspective domain in the point (ξ, η) of
the focal plane (in blue), parallel to the optical one (xy-plane) at a focal distance f .

In [9] the classical PS technique has been modified to a well posed formulation
of the PPS2 problem involving surface recovery via a direct differential approach.
Two light sources given by ω′ and ω′′ are considered resulting in the following
non-linear system of PDEs,⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ρ(ξ, η)
−zξ(fω′

1 + ξω′
3)− zη(fω

′
2 + ηω′

3)− zω′
3√

f2(z2ξ + z2η) + (z + ξzξ + ηzη)2
= I1(ξ, η), on Ωp

ρ(ξ, η)
−zξ(fω′′

1 + ξω′′
3 )− zη(fω

′′
2 + ηω′′

3 )− zω′′
3√

f2(z2ξ + z2η) + (z + ξzξ + ηzη)2
= I2(ξ, η), on Ωp

z(ξ, η) = g(ξ, η) on ∂Ωp.

(4)

Simplifying the common quantity ρ(ξ,η)√
f2(z2ξ+z

2
η)+(z+ξzξ+ηzη)2

, the system can be

written as the following well-posed problem,{
b(ξ, η) · ∇z(ξ, η) + s(ξ, η)z(ξ, η) = 0, on Ωp

z(ξ, η) = g(ξ, η) on ∂Ωp (5)
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where

b(ξ, η) =

(
(fω′

1 + ξω′
3)I2(ξ, η)− (fω′′

1 + ξω′′
3 )I1(ξ, η)

(fω′
2 + ηω′

3)I2(ξ, η)− (fω′′
2 + ηω′′

3 )I1(ξ, η))

)
(6)

and
s(ξ, η) = ω′

3I2(ξ, η) − ω′′
3 I1(ξ, η). (7)

We recall that (5) admits only one weak (i.e. Lipschitz) solution, under the main
assumptions that are the absence of shadows and the knowledge of the Dirichlet
boundary condition g(ξ, η). To overcome these limitations in real applications
we consider the PSfS problem with more than two images as the basic model. In
this case, an additional potential advantage beyond computational efficiency is
the possible noise robustness of the direct method. Furthermore, we exploit the
extra image data not only to address noise – but rather to allow reconstruction
in the presence of shadows. In the numerical tests we shall demonstrate that
significant portions of the image can be missing (see the black patches in Fig. 3)
without impeding the correct surface recovery.

3 Direct Surface Reconstruction Using Multiple Images
and Shadows

We now generalize the model shown in Section 2 for more than two images.
We start with 3 images, which is the minimal number of images that allow a
computation of the boundary condition without a-priori knowing the albedo
[11]. We start by writing the PDEs (5) resulting from each image pair⎧⎨⎩

b(1,2)(ξ, η) · ∇z(ξ, η) + s(1,2)(ξ, η)z(ξ, η) = 0, a.e. (ξ, η) ∈ Ωp

b(1,3)(ξ, η) · ∇z(ξ, η) + s(1,3)(ξ, η)z(ξ, η) = 0, a.e. (ξ, η) ∈ Ωp

b(2,3)(ξ, η) · ∇z(ξ, η) + s(2,3)(ξ, η)z(ξ, η) = 0, a.e. (ξ, η) ∈ Ωp

(8)

where

b(h,k)(ξ, η) =

(
(fωh1 + ξωh3 )Ik(ξ, η)− (fωk1 + ξωk3 )Ih(ξ, η)
(fωh2 + ηωh3 )Ik(ξ, η)− (fωk2 + ηωk3 )Ih(ξ, η)

)
(9)

and
s(ξ, η)(h,k) = Ik(ξ, η)ω

h
3 − Ih(ξ, η)ω

k
3 . (10)

A similar formulation has been given in [11], however in that paper the authors
propose a two step procedure, computing explicitly the partial derivatives in the
perspective variables (ξ, η). In other words, they do not treat the system (8) as a
PDE system, but rather as a linear system, where the unknowns i.e. the entries
of ∇z (namely p = ∂z

∂ξ and q = ∂z
∂η ), are computed locally.

Let us start by taking into account the differential formulation (8). We ex-
ploit the linearity of the hyperbolic equations in (8) by simply summing them,
resulting in the single differential equation{(

b(1,2) + b(1,3) + b(2,3)
)
· ∇z(ξ, η) +

(
s(1,2) + s(1,3) + s(2,3)

)
z(ξ, η) = 0

z(ξ, η) = g(ξ, η).
(11)
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It is clear that, since the solution of each equation in (8) is the same (i.e. the
differential problem (5) has a unique solution [9]), the problem (11) will be
also satisfied by the same solution. However, a proof of uniqueness can not be
obtained as a consequence of this sum. In fact, it is easy to prove that by sub-
tracting some terms instead of summing all the addends, the problem becomes
ill-posed. That is why we shall prove the existence of a unique weak solution for
a problem such as (11) which also takes into account shadows and occlusions.
In order to have a well-posed problem the boundary condition g(ξ, η) is needed
which can be readily obtained using the three available images and a two step
procedure applied only on the boundary pixels assuming no occlusions on ∂Ωp.

Note that, if more than three images are available, we can easily generalize
this reasoning. In the general case, defining the functions

bn(ξ, η) =
∑

r∈([n]
2 )

br(ξ, η) and sn(ξ, η) =
∑

r∈([n]
2 )

sr(ξ, η) (12)

the extension of the PDE-based approach for the PPSn problem can be readily
stated as {

bn(ξ, η) · ∇z(ξ, η) + sn(ξ, η)z(ξ, η) = 0, a.e. (ξ, η) ∈ Ωp

z(ξ, η) = g(ξ, η) ∀(ξ, η) ∈ ∂Ωp (13)

where with
(
[n]
2

)
we call the set that contains the couple of integer indexes with

no repetition. For example, if n = 3 we have
(
[n]
2

)
= {(1, 2), (1, 3), (2, 3)}.

3.1 Weighted Perspective Photometric Stereo for Multiple Images
with Shadows

The main idea of this paper is based on the possibility of ensuring the well-
posedness of the PPSn problem formulation (13) by exploiting the linearity of
the operation involved in the basic differential formulation (5). It is also clear
that (5) still does not lose the well-posedness if we multiply both sides (i.e. b(ξ, η)
and s(ξ, η)) by a function q(ξ, η). That is:{

q(ξ, η)b(ξ, η) · ∇z(ξ, η) + q(ξ, η)s(ξ, η)z(ξ, η) = 0
z(ξ, η) = g(ξ, η)

(14)

still has a unique Lipschitz solution. We do not go deeper with the discussion
on the weak regularity of q. Here, we merely consider it as a smooth function.

We are now able to define the weighted PPSn equation (W-PPSn) by replacing
bn, sn in (12) with

bwn (ξ, η) =
∑

r∈([n]
2 )

qr(ξ, η)b
r(ξ, η) and swn (ξ, η) =

∑
r∈([n]

2 )

qr(ξ, η)s
r(ξ, η) (15)

where the index r is used here only to make clear that we are now considering(
n
2

)
continuous functions.
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We have now completed the set-up of the W-PPSn formulation with{
bwn (ξ, η) · ∇z(ξ, η) + swn (ξ, η)z(ξ, η) = 0, a.e. (ξ, η) ∈ Ωp

z(ξ, η) = g(ξ, η) ∀(ξ, η) ∈ ∂Ωp.
(16)

We will explain in the next part how shadows will influence the definition of the
vector field bwn and the scalar field swn .

A key point is the possibility to use weights qr that are not only positive. It
is possible to maintain the well-posedness of the problem also by considering
non-negative weights qr that vanish at some points for some image pairs.

It can be shown that for the set of well-posed differential equations, main-
taining a non-negative weight for at least one image pair suffices to give us a
well-posed problem.

This allows us to adapt the W-PPSn equations for the case of shadows in
some of the images. Specifically, let Sr define the areas that are shaded in either
of the images in pair r. We define q̃r as the indicator function,

q̃r(ξ, η) = �[Ω
p\Sr](ξ, η). (17)

In other words we consider the weights as switches able to locally put out go
the global sums in (15) the functions br and sr that do not contain relevant
information due to the presence of shadows in the involved images. Finally we
construct the weights qr as smooth cutoff functions based on q̃r.

4 Uniqueness of the Weak Solution of W-PPS3

In order to complete the theoretical analysis we will extend the uniqueness re-
sults of the differential problem (16) in the case of a weak solution. Discussion of
depth-discontinuities and multiple objects is beyond the scope of this paper. Our
purpose is to prove the uniqueness of solution of (16) in the Lipschitz function
space via characteristics method. The meaning of weak solution here is intended
as combination of classical solutions, each defined on a different domain. These
domains are then going to be patched together in such a way that, across the
boundaries between domains on which there are discontinuities in some deriva-
tives, the equation (16) is satisfied. Let us recall that the points where the surface
z is not differentiable are the same where the functions bwn and swn are discontin-
uous (jump discontinuity) [8]. We assume the discontinuity points as the family
of regular curves (γ1(t), . . . , γk(t)) where t is the argument of the parametric
representation.

A complete proof of the well-posedness of our model can be given in a manner
similar to [16]. It is based on the following two features of our model:

1. the absence of critical points for the projected characteristic field, i.e.
bw3 (ξ, η) �= (0, 0);

2. the propagation of the information from the boundary is not prevented
between two sets separated by discontinuity curves (γ1(t), . . . , γk(t)), see
Fig. 2.
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The following result is very important since it guarantees the absence of critical
points that would prevent the method to work.

Lemma 1. Assume that
⋂
r Sr = ∅. Then |bw3 (ξ, η)| �= 0, ∀(ξ, η) ∈ Ωp.

This last result is not only important for the proof of uniqueness of weak solution.
We use it also for the well-posedness of the numerical schemes introduced in
Section 5.

(a) (b) (c) (d)

Fig. 2. Among the four possibilities shown for bw3 , only the cases (a) and (b) allow
the information to cross the discontinuity curve γ without needing additional data as
required in (c) and (d)

The next results ensure that the characteristic method can actually be applied
since the discontinuity on γ(t) is not an obstacle for propagating a solution of
the PDE.

Theorem 1. Let γ(t) be a regular curve of discontinuity for the function bw3 (ξ, η)
(and sw3 (ξ, η)) and let (ξ, η) be a point along γ(t). Let n(ξ, η) be the outgoing
normal with respect to the set Ωp

+, then we have[
lim

(ξ,η)→(ξ,η)
(ξ,η)∈Ωp

+

bw3 (ξ, η) · n(ξ, η)
][

lim
(ξ,η)→(ξ,η)
(ξ,η)∈Ωp

−

bw3 (ξ, η) · n(ξ, η)
]
≥ 0 (18)

The result that permits to prove the uniqueness of weak solution is readily proved
now. With Lemma 1 and Theorem 1 it is possible to show that the uniqueness
can be reached using the characteristic strip method. In order to understand the
idea behind the proofs of Lemma 1 and Theorem 1 we refer to [16] where the
same results are proved in the case with only two images.

We emphasize once more the advantages of this new formulation with respect
to [11]. The first is obviously the direct computation of the height of the surface,
without passing through the preliminary computation of the partial derivatives.
This would result in a slower computation of the 3D surface and also needs the
condition that the 3D surface has to be smooth. That is the surface should be at
least C1. The second and much more important point is that, since our W-PPS3
model is based on the differential problem (5) for two images (which admits a
unique Lipschitz solution), even if we have three images with disjoint shadows
we can still reconstruct the surface.
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5 Numerical Schemes

Next, we consider the numerical methods used to obtain the solution. The dif-
ference among those presented in [9] and our is related to the different imple-
mentation. It allows to speed up the convergence of the four numerical schemes
we will discuss in the following sections. The algorithms we implemented use the
fast sweeping technique [17–20] which exploits the regularity of the vector field
bw3 .

For the numerical schemes we consider the domain Ω
p
= [ap, bp]× [cp, dp] =

[−1, 1]2 with a uniform discretization space step Δξ = (bp − ap)/n and Δη =
(cp − dp)/m where n and m are the number of intervals divide the sides of the
rectangular domain (that is ξi = ap + iΔξ, ηj = cp + jΔη with i = 0, . . . , n and

j = 0, . . . ,m). We will denote by Ω
p

d all the points of the lattice belonging to
Ω
p
, by Ωp

d all the internal points and by ∂Ωp
d all the boundary points.

5.1 Forward Numerical Schemes

We want to recall now the numerical schemes used for the forward approximation
of (16) where the propagation of the information is considered starting from the
inflow part of the boundary

Γin =
{
(ξ̃, η̃) ∈ ∂Ωp : ν(ξ̃, η̃) · lim

(ξ.η)→(ξ̃,η̃)
(ξ,η)∈Ωp

bw3 (ξ, η) ≤ 0
}

(19)

where ν(ξ, η) represents the outgoing normal to the boundary ∂Ωp. It is clear
that in the previous definition the limit is taken since it can happen that a
discontinuity curve can coincide with the boundary. Now we can formulate the
differential problem solved by the forward schemes as follow:{

bw3 (ξ, η) · ∇z(ξ, η) + sw3 (ξ, η)z(ξ, η) = 0, a.e. (ξ, η) ∈ Ωp

z(ξ, η) = g(ξ, η) ∀(ξ, η) ∈ Γin.
(20)

In order to simplify the notation we will call bw3 (ξi, ηj) as bi,j = (b1i,j , b
2
i,j) and

sw3 (ξi, ηj) as si,j .

Forward Up-Wind Scheme:

ZF
i,j =

Δη|b1i,j |ZF
i−sgn(b1i,j),j

+Δξ|b2i,j |ZF
i,j−sgn(b2i,j)

|b1i,j |Δη + |b2i,j |Δξ +ΔξΔηsi,j
. (21)

In our case the numerical schemes are applied to digital images where clearly
Δξ = Δη = Δ.

Forward Semi-Lagrangian Scheme:

zFi,j = zF (ξi − hα1
i,j , ηj − hα2

i,j)
|bi,j |

|bi,j |+ hsi,j
(22)

where αi,j =
bi,j
|bi,j | and the parameter h > 0 is assumed equal to the size of the

grid Δ in order to reach the highest order of convergence equal to one ([9]).
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5.2 Backward Numerical Schemes

The backward numerical schemes are based on the approximation of the surface
propagating the information stored on the outflow part of the boundary

Γout = ∂Ωp \ Γin. (23)

The formulation of these schemes can be easily obtained considering the following
equivalent problem{

−bw3 (ξ, η) · ∇z(ξ, η)− sw3 (ξ, η)z(ξ, η) = 0, a.e. (ξ, η) ∈ Ωp

z(ξ, η) = g(ξ, η) ∀(ξ, η) ∈ Γout
(24)

and repeating always the same passages for the forward ones.

Backward Up-Wind Scheme:

ZB
i,j =

Δη|b1i,j |ZB
i+sgn(b1i,j),j

+Δξ|b2i,j |ZB
i,j+sgn(b2i,j)

|b1i,j |Δη + |b2i,j |Δξ +ΔξΔηsi,j
. (25)

Backward Semi-Lagrangian Scheme:

zBi,j = zB(ξi + hα1
i,j , ηj + hα2

i,j)
|bi,j |

|bi,j | − hsi,j
. (26)

Let us emphasize that, in order to have all these schemes well defined, we have
to take the parameter Δ (equal to h) small enough to have:

|b1i,j |+ |b2i,j |+Δsi,j �= 0 for both forward and backward u-w schemes

|bi,j |+ hsi,j �= 0 for the forward s-L scheme

|bi,j | − hsi,j �= 0 for the backward s-L scheme

(27)

always possible since |bw3 (ξ, η)| �= 0, ∀(ξ, η) ∈ Ωp, Lemma 1 ([9]). Due to lack
of space it is not possible to give theoretical results regarding these numerical
schemes. An exhaustive discussion about the consistency, proof of convergences
and estimation of the error with perturbed data, can be found in [16] where the
case with only two images is taken into account.

6 Numerical Tests

We now present several results of our method. We will consider the W-PPS3
problem with some artificial shadow regions defined in the images. The smooth
surface vreg exhibits three high slopes. The second one vlip is a Lipschitz sur-
face with a very high Lipschitz constant (i.e. the gradient changes sharply its
direction across the point where the surface is not differentiable). Note also that
the boundary condition is not constant for either of them. In particular, vlip
has a boundary condition differentiable almost everywhere. As mentioned at the
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v l
ip

ω′ : ϕ1 = 0.1 + π, θ1 = 0 → (I1) ω′′ : ϕ2 = 0.1 + π, θ2 = π
4

→ (I2) ω′′′ : ϕ3 = 0.1 + π, θ3 = 3
4
π → (I3)

v r
e
g

ω′ : ϕ1 = 0.1 + π, θ1 = 0 → (I1) ω′′ : ϕ2 = 0.1 + π, θ2 = π → (I2) ω′′′ : ϕ3 = 0.1 + π, θ3 = 3
2
π → (I3)

Fig. 3. Set of images used with the respective light sources described by their spherical
coordinates. In this case the albedo mask and Gaussian noise (10%) is added for all
the images.

beginning of the paper, well-posedness holds even if the albedo is not known.
In order to exploit this advantage of our model we consider the initial images
shown in Fig. 3. In order to reconstruct the surface in the worst situation we
set artificial shadows for which the union of the shadow sets almost completely
covers the image domain. In Fig. 3 are shown the starting data, images and light
sources directions, used in the numerical tests.

Table 1. The values of this table explain how (in precision and in time) the semi-
Lagrangian and the up-wind schemes converge for the vlip case

vlip Forward schemes Backward schemes

Δ L∞ s-L time (sec) L∞ u-w time (sec) L∞ s-L time (sec) L∞ u-w time (sec)

500 1.552 × 10−1 0.259 2.613 × 10−1 0.500 1.586 × 10−1 0.026 3.014 × 10−1 0.023

1000 9.586 × 10−2 1.313 1.651 × 10−1 2.257 9.968 × 10−2 0.135 1.818 × 10−1 0.078

2000 5.956 × 10−2 5.676 1.020 × 10−1 8.314 6.068 × 10−2 0.483 1.090 × 10−1 0.338

4000 3.957 × 10−2 21.372 6.366 × 10−2 32.089 3.856 × 10−2 1.650 6.650 × 10−2 1.247

1
0

%

500 1.980 × 10−1 0.273 2.650 × 10−1 0.492 2.587 × 10−1 0.031 3.065 × 10−1 0.021

1000 1.247 × 10−1 1.516 1.832 × 10−1 2.431 1.237 × 10−1 0.109 2.001 × 10−1 0.080

2000 8.742 × 10−2 5.601 1.127 × 10−1 8.786 8.805 × 10−2 0.418 1.194 × 10−1 0.325

4000 9.098 × 10−2 21.687 1.127 × 10−1 8.786 9.080 × 10−2 1.642 1.024 × 10−1 1.258

The size of the images take into account varies from 500 × 500 pixels (with
Δ = 0.004) to 4000 × 4000 pixels, that is 16 megapixels (for a spacial step
Δ = 0.0005). The running times quoted are for a 2.4 Ghz Core i5 computer
with 8 GB (1333Mhz) of RAM. Tables 1 and 2 show that the convergence of the
schemes is not prevented by the presence of noise even if the consistency order is
not even one like for the images without noise. The computational time is very
small even for the largest size images. The difference between the forward and
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Table 2. The values of this table explain how (in precision and in time) the semi-
Lagrangian and the up-wind schemes converge for the vreg case

vreg Forward schemes Backward schemes
Δ L∞ s-L time (sec) L∞ u-w time (sec) L∞ s-L time (sec) L∞ u-w time (sec)

500 6.152 × 10−2 0.077 1.916 × 10−1 0.062 6.152 × 10−2 0.031 2.671 × 10−1 0.019

1000 3.237 × 10−2 0.319 1.263 × 10−1 0.252 3.234 × 10−2 0.104 1.390 × 10−1 0.098

2000 1.672 × 10−2 1.416 8.065 × 10−2 1.098 1.671 × 10−2 0.415 8.167 × 10−2 0.331

4000 8.518 × 10−3 5.024 5.141 × 10−2 3.954 8.515 × 10−3 1.642 5.178 × 10−2 1.233

1
0

%

500 1.019 × 10−1 0.077 2.186 × 10−1 0.156 1.024 × 10−1 0.026 2.395 × 10−1 0.019

1000 1.303 × 10−1 0.324 1.894 × 10−1 0.737 1.299 × 10−1 0.103 1.913 × 10−1 0.106

2000 1.048 × 10−1 1.462 1.193 × 10−1 3.681 1.052 × 10−1 0.492 1.202 × 10−1 0.327

4000 4.698 × 10−2 5.096 7.186 × 10−2 16.935 4.691 × 10−2 1.649 7.228 × 10−2 1.255

the backward time of convergences is due to the direction of the vector field bw3
which results for both cases much more easy passable from the backward than
the forward.

Fig. 4 demonstrates the results obtained with the semi-Lagrangian and up-
wind fast-sweeping approach.

v l
ip

v r
e
g

Fig. 4. Left-to-right: groundtruth surface, reconstruction via the semi-Lagrangian
scheme, reconstruction via the up-wind scheme

7 Conclusion and Perspective

In this paper we have presented a new direct method for Photometric Stereo
in the case of perspective viewing geometry in the case of multiple images and
shadows. Using a fast-sweeping update, we are able to update the solution along
characteristic lines in an efficient an accurate manner. The resulting algorithm
is highly parallelizable and efficient to compute also on a single CPU, and seems
promising for real-time implementation.
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Abstract. In this paper we propose a new method to solve the problem
of uncalibrated photometric stereo, making very weak assumptions on
the properties of the scene to be reconstructed. Our goal is to solve the
generalized bas-relief ambiguity (GBR) by performing a total variation
regularization of both the estimated normal field and albedo. Unlike most
of the previous attempts to solve this ambiguity, our approach does not
rely on any prior information about the shape or the albedo, apart from
its piecewise smoothness. We test our method on real images and obtain
results comparable to the state-of-the-art algorithms.

1 Introduction

Photometric stereo has first been introduced by Woodham in [28] in the early
80’s, using the commonly used Lambertian model to recover both the surface
shape and its albedo, given m � 3 pictures of a scene taken from the same view-
point but under different illumination conditions. In this pioneering work, the
lights are supposed to be known. When these lighting conditions are unknown,
the problem is much harder, as one has to estimate both the normal field and
the lights. Assuming the integrability of the surface [30], this can be done up to
a GBR transformation [4]. This transformation is a 3-parameters (here they will
be called μ, ν and λ) transformation which affects the normal field (and thus
the lights) without changing the images the scene can create or the ability of
the field to be “integrated” into a shape. Despite the few number of parameters
induced by this transformation, estimating them without any assumption on the
scene we want to reconstruct appears to be everything but an easy task, and
most methods addressing this issue assume prior knowledge of shape properties
[14], albedo distribution [3] or presence of outliers which violate the Lambertian
assumption [8].

We introduce a new method for estimating these parameters, which does not
rely on any of those assumptions, except that we say the surface parameters
(albedo and normal field) should “vary few apart from the edges”, which seems
quite a reasonable assumption, and appears to work as well as the state-of-the-
art methods like [10]. Total variation minimization was introduced by [23] for

A. Kuijper et al. (Eds.): SSVM 2013, LNCS 7893, pp. 270–281, 2013.
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noise removal because of its edge preserving property, and has become an ubiqui-
tous tool in image analysis. This regularization method has the very interesting
property to preserve edges of an object, depending on its scale [25]. This prop-
erty has, to our knowledge, never been used for photometric stereo, and appears
to be a good way to propose both a new model for uncalibrated photometric
stereo and a novel method for solving the generalized bas-relief ambiguity.

Our paper is organized as follows: after recalling the basic equations to solve
the uncalibrated photometric stereo (UPS) problem (see Sec. 3) up to a GBR,
we propose in Sec. 4 a new method to recover the GBR parameters, before
introducing a new model for the UPS problem (Sec. 5) and a 3-step solution to
it (Sec. 5.2). Finally, we present some results on synthetic and real images in
Sec. 6.

2 Prior Work

Photometric stereo (PS) [28] was introduced in the early 80’s for dealing with
3D-reconstruction, allowing the user to recover both the surface normal field
and the albedo at the same time. In this technique, m images of a scene are
taken from the same viewpoint but under variable lighting conditions. Unlike
traditional stereo 3D-reconstruction, only the visible face can be reconstructed
(PS is thus a 2.5D-reconstruction method), although it has been shown in [15]
that it could be coupled with multi-view techniques to acquire the full shape.

It is an extension of the shape-from-shading problem [17], which is known for
being ill-posed. The use of additional images with different lighting conditions
allows one to solve for the ambiguities of shape-from-shading. Under the condi-
tion of a Lambertian reflectance model and knowledge about the light sources
positions, a very efficient reconstruction can be achieved, recovering up to the
tiniest details of the scene normal field (see Eq. 2 and Eq. 3). An additional step
is then needed to “integrate” the field into a surface. This step, which can be
very tricky, will not be presented in this paper, but the reader could learn about
it in [9,11,18].

The usual assumptions about the number of images (i.e. the number of light
sources) is that m � 3 and the sources should be non-coplanar. Some attempts
have been made to solve the problem with m = 2 in [22], and a very interesting
recent application of the coplanar sources configuration is the 3D-reconstruction
from an outdoor webcam (as the Sun moves within a plane), which is dealt with
by Abrams et al. in [1] and by Ackermann et al. in [2]. In those papers, the
lighting configuration is deduced from GPS coordinates and time.

In this paper, we will focus on the traditional problem with m � 3 non-
coplanar distant light sources, which are supposed to be unknown. The problem
becomes the so-called uncalibrated photometric stereo problem, which was first
addressed by Hayakawa in [14]. Using a SVD, Hayakawa shows that one can solve
the problem up to a linear transformation (see Eq. 4), and given some (strong)
prior knowledge on the normals distribution he gives a way to recover the lights,
normals and albedo. Assuming the estimated normal field should derive from
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a surface (the one we want to reconstruct), Yuille and Snow showed in [30]
that one could impose the “integrability constraint” (see Eq. 5) to reduce the
linear ambiguity to a special type of transformation, called generalized bas-relief
(GBR) and presented by Belhumeur et al. in [4] (see Eq. 6).

In order to solve this last ambiguity, several approaches have been presented.
Alldrin proposed in [3] to choose the parameters which minimize the entropy of
the albedo distribution, so as to compress the range of albedo values. This should
work for most simple objects but may perform poorly on some complex materials.
Shi et al. advocated the use for 3-channels colour information in [24] and proved
this information (when available) can resolve the ambiguity. Another approach
is to use the information given by the outliers of the Lambertian model, like
interreflections [7], specularities [8] or shadows [26]. Those approaches suppose
that such outliers are available (which is the case for most real-world scenes) and
that one can detect them, which can be achieved using low-rank approximation as
in [19] and [29]. One could also use another illumination model like the Torrance
and Sparrow model as described in [12], or make no assumption at all about the
model by using a reference object, as in the work of Hertzmann and Seitz [16],
or, assuming an additive non-Lambertian reflectance component, identify pixels
which hold the isotropy and reciprocity constraints like in [27].

However all these methods are either doing some assumptions on the model
(even though these assumptions are mostly realistic) or very difficult to set up
and long to converge. Recently, Favaro and Papadhimitri proposed in [10] a
new method for solving the GBR ambiguity, making very few assumptions on
the model, by using local diffuse maxima. Their method showed to perform as
good or better than previous ones with fewer assumptions, and thus will be our
reference for the experiments.

3 Photometric Stereo

3.1 Calibrated Photometric Stereo

In the sequel, we note Iip the intensity of pixel p in the ith image, with i ∈ [1,m]
andm � 3. ρp is the albedo in pixel p,Np = [Nx, Ny, Nz](p) is the surface normal
in p, and Si = [Six, S

i
y, S

i
z]

	 will be the light source, in norm and direction, in the

ith image. We assume the light is constant over each image (directional light),
so that Si does not depend on p.

According to the Lambertian model, in every pixel p and every image i, one
can write the equation:

Iip = ρpNpS
i (1)

Writing Ip = [I1p , . . . , I
m
p ], S = [S1, . . . , Sm] and Mp = ρpNp, we obtain the

system of linear equations Ip = MpS. If S is known and is of rank 3 (3 sources
at least are non-coplanar), a least-square solution is given by the Moore-Penrose
pseudo-inverse, and one can recover both the normal and the albedo in p:

M̂p = IpS
+ N̂p =

M̂p

‖M̂p‖
ρ̂p = ‖M̂p‖ (2)
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Stacking each image column-wise, we can note I = [I	1 , . . . , I
	
|Ω|]

	 where Ω is a

mask of the scene within the image and |Ω| is the number of pixels inside this
mask. Similarly, we note M = [M	

1 , . . . ,M
	
|Ω|]

	, so that the Lambert’s law can

be written I = MS. We can now rewrite Eq. 2 into Eq. 3 in order to get M̂ :

M̂ = IS+ (3)

3.2 Uncalibrated Photometric Stereo

When the light matrix S is unknown, things are much more complicated. We
now want to estimate both M̂(p) = ρ̂(p)N̂(p) in every pixel p and a 3×m light

matrix Ŝ.
Finding Ŝ and M̂ satisfying I = M̂Ŝ is not that hard, as it can be done in a

least square sense using SVD [14]. Indeed, I can be decomposed in I = UWV T ,
with U ∈ R|Ω|×|Ω|, W ∈ R|Ω|×m and V ∈ Rm×m. As both lightings and normals
lie in R3, I should be of rank 3, and thus it is reasonable to restrain W to its
first 3 × 3 submatrix, and U and V to their first 3 columns, i.e U ∈ R|Ω|×3,
W ∈ R3×3 and V ∈ Rm×3, so that I ≈ UWV T . The solution can be finally
obtained by Eq. 4 : {

M̂ = UPT

Ŝ = QV T
(4)

where P and Q are two 3× 3 matrices verifying PTQ = W .
But the solution is not unique, as there is an infinity of such (P,Q) matrices.

Yuille and Snow showed that imposing the integrability constraint on the esti-
mated normal field N̂ reduces this ambiguity to a GBR [30]. The integrability
constraint has the form:

curl N̂ = 0, where curl [a, b, c] =
∂

∂y

a

c
− ∂

∂x

b

c
(5)

and extends immediately to M̂ .
Expanding this equation, they show one can identify 6 over the 9 coefficients

in P−1, and the remaining 3 correspond to the GBR. They propose to fix those
3 to random values, and then the only transformation which would hold both
the Lambertian assumption and the integrability constraint is M̂ ′ = M̂G and
Ŝ′ = G−1Ŝ with G and G−1 given in Eq. 6:

G(μ, ν, λ) =

⎛⎝1 0 0
0 1 0
μ ν λ

⎞⎠ G−1(μ, ν, λ) =

⎛⎝ 1 0 0
0 1 0
−μ
λ −

ν
λ

1
λ

⎞⎠ (6)

Estimating the best parameters μ, ν and λ is still an open problem for research,
especially difficult as the images produced by the transformed normals and light-
ings are the exact same, and the normal fields are exactly as “integrable”. We
now propose a new method for estimating those parameters.
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4 Solving the GBR Ambiguity with Total Variation

4.1 Total Variation of a Vector Field

The total variation of a function is a widely used measure for regularization.
For an almost everywhere differentiable function f : Rn → R, it can be written
as: TV (f) =

∫
Rn |∇f(x)|dx and extends to the class of so-called functions of

bounded variations. In the sequel we take n = 2 as we deal with planar images.
When f takes its values in Rm with m > 1, we define TV (f) =

∫
R2 ‖J(f)‖Fdx,

where ‖J(f)‖F is the Frobenius norm of the Jacobian matrix of f , although
other choices may be considered (see [5] for some discussion).

Approximating this in the discrete case, and adapting it to a vector field
M : Ω ⊂ R2 → R3, p �→ [Mx(p),My(p),Mz(p)], we get Eq. 7:

TV (M) =
∑
p∈Ω

√
‖∇Mx(p)‖2 + ‖∇My(p)‖2 + ‖∇Mz(p)‖2 (7)

where ∇ is a suitable discrete gradient operator.

4.2 Why Use Total Variation

In [3], Alldrin et al. propose to choose the GBR parameters which minimize
the entropy of the histogram of albedo. They want to favor materials which
are “homogeneous”, i.e. made of a small amount of components. This looks
a reasonable assumption, but the entropy of the albedo can be pretty tricky to
minimize. Besides, this entropy does not consider spatial variation of the albedo,
and when looking for “homogeneous” zones, one would expect that similar albedo
pixels would be close to each other.

When trying to find such homogeneous materials, a similar approach can be
to use the total variation of the albedo: it also favors homogeneous zones as we
would expect the variations of albedo to be small apart from the edges. And,
contrary to standard Tikhonov regularization, these edges are better preserved:
this will lead to different zones in the image, and inside each zone the albedo
would vary few, but we allow it to vary between adjacent zones. This effect of
total variation, called stair-casing, is well-known and studied [21].

Thus, to take into account the spatial consistency, total variation minimization
of the albedo seems to be a more consistent choice than entropy minimization,
which cannot choose between different configurations having the same histogram
of albedo, as shown in Fig. 1. As the albedo is linked to the vector field M
by ρ = ||M ||, and as the GBR transformation G with parameters μ, ν and λ
transforms M into MG(μ, ν, λ), we could look for a GBR transformation which
minimizes TV (||MG(μ, ν, λ)||), i.e estimate the three parameters (μ, ν, λ) such
that:

(μ̂, ν̂, λ̂) = argmin
(μ,ν,λ)∈R×R×R+

TV (‖MG(μ, ν, λ)‖) (8)
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(a) (b) (c) (d) (e) (f)

Fig. 1. Three different albedo configurations and the corresponding histograms: (a)
has a huge entropy value, cf. histogram (d); (b) and (c) have the same small entropy,
cf. histograms (e) and (f), but the spatial distributions of the albedo are very different.
Total variation would tend to favor distributions like (b).

But we can do even better: it seems reasonable to also ensure that the unit
normal field N should vary few inside zones. Thus one can consider minimizing
both the total variation of the albedo and the total variation of the field. As they
are simply linked by M = ρN , we can try to estimate this GBR transformation:

(μ̂, ν̂, λ̂) = argmin
(μ,ν,λ)∈R×R×R+

TV (MG(μ, ν, λ)) (9)

Doing so, we will favor homogeneous zones in terms of both albedo and normals,
but still allowing edges, so that we do not prevent edges in the albedo map or
in the normal field (which would lead to smooth shapes).

The following calculation gives a hint of it, and shows that minimizing TV (M)
is linked to minimizing simultaneously TV (ρ) and TV (N):

‖J(M)‖F = ‖J(ρN)‖F (10)

= ‖NTJ(ρ) + ρJ(N)‖F (11)

= ‖ (∇ρN)
	
+ ρJ(N)‖F (12)

� ‖ (∇ρN)
	 ‖F + ‖ρJ(N)‖F (13)

= ‖∇ρ‖2 + ρ ‖J(N)‖F (14)

� ‖∇ρ‖2 + ‖J(N)‖F (15)

The equality (14) comes on one hand from a direct calculation using the fact
that N has norm 1 and on the other hand from the fact that ρ is positive. The
last inequality comes from the fact that ρ ∈ [0, 1]. From this, it follows that

TV (M) ≤ TV (ρ) + TV (N). (16)

Note also that
∫
R2 ρ‖J(N)‖F is the ρ-weighted total variation of N and when

minimizing it, it allows for “relaxing” the minimization of TV (N) where the
albedo is low, i.e, where the material is dark. As it is obvious that an albedo
equal to zero induces an ill-posedness in normals, this “relaxation” allows us not
to consider areas which would induce errors in the reconstruction.
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5 Our Model

5.1 Formal Definition

One can now rewrite the full problem of uncalibrated (Lambertian) photometric
stereo as the estimation of the field M , the lighting matrix S and the three GBR
parameters μ, ν and λ. We can write this estimation problem as the constrained
regularized optimization problem of Eq. 17:⎧⎪⎪⎨⎪⎪⎩

(M̂, Ŝ, μ̂, ν̂, λ̂) = argmin
(M,S,μ,ν,λ)

∑
p∈Ω ‖Ip −MpS‖2

+α TV (MG(μ, ν, λ))

s.t. curl(M) = 0

(17)

• The loss function is here the l2-norm between the data and the images pro-
duced by our estimated field and lightings, which is the reprojection error.
This allows a Gaussian random noise on the input data.
• The penalty function is the TV-regularization of the estimated field trans-
formed by a GBR, which as we explained in the previous section will allow
us to estimate the “optimal” parameters μ, ν and λ.
• The constraint is the integrability constraint, which can be rewritten as

∂
∂y (

Mx(p)
Mz(p)

) = ∂
∂x (

My(p)
Mz(p)

) for any pixel p ∈ Ω.

• α is the weight between the loss function and the penalty function.

To solve the problem in 17 which looks very much like the Rudin-Osher-Fatemi
model [23] apart from the transformation G, one could think separating the
problem into two optimization problems. One of them would be a simple least-
square problem, the other looks very much like a total variation based zooming
problem like in [20], which could be solved by some kind of primal-dual scheme
like [6]. But, although this looks really nice, our tests have shown to be quite
disappointing: finding the right α is really painful as wrong choices of it will
either produce an over-smoothed field or let the GBR unsolved.

We propose another approach which is actually much simpler as it does not
involve such a hyper-parameter. We replace 17 by the following pair of mini-
mization problems, which must be solved sequentially:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(M̂, Ŝ) = argmin
(M,S)

∑
p∈Ω ‖Ip −MpS‖2

s.t. curl(M) = 0

(μ̂, ν̂, λ̂) = argmin
(μ,ν,λ)

TV (M̂G(μ, ν, λ))

(18)

After the optimization process, the resulting field is given by M = M̂G(μ̂, ν̂, λ̂),

and the resulting lighting matrix by S = G−1(μ̂, ν̂, λ̂)Ŝ.
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5.2 The Full 3-Step Solution

To solve the optimization problem in 18, we adopt the common method used by
(among others) Alldrin et al. in [3] or by Favaro and Papadhimitri in [10]:

1. First find a pair (M,S) which minimizes the loss function. As this is a l2-
norm, this can be achieved using SVD as proposed by Hayakawa in [14]
(see Sec. 3). This gives U ∈ R|Ω|×3, W ∈ R3×3 and V ∈ Rm×3, so that
I ≈ UWV T .In the end we get M = UPT , S = QV T , where P and Q are
unknown 3× 3 matrices holding PTQ = W .

2. Then restrict P by integrability. In some sense we “project” M on the space
of integrable fields to force the estimated field to respect the constraint. This
is done identifying 6 out of the 9 cofactors of P (i.e. the coefficients of P−1),
as explained by Yuille and Snow in [30]. We fix the remaining 3 cofactors to
empirical values, assuming they will be “corrected” in the next step.
We know that this linear transformation will not affect the loss function, so
up to this point we have solved the first part of 18.

3. Finally solve for the GBR, to estimate the three parameters μ, ν and λ that
minimize TV (M̂G(μ, ν, λ)), where M̂ = UPT . This is achieved using some
standard convex optimization method. In our tests we used the “fminunc”
function of Matlab which is basically a variant of a Gauss-Newton algorithm,
specifying a literal expression for the gradient which can be easily obtained
by differentiating the penalty function with respect to each parameter.
As the GBR is a linear transformation, the loss function will not be affected,
and we know a GBR maintains integrability, so the constraint is not violated.
Then both the loss function and the penalty function are minimized, and the
constraint is respected. Thus, we can finally compute M̂ = UPTG(μ̂, ν̂, λ̂)

and Ŝ = G−1(μ̂, ν̂, λ̂)P−TWV T which are our field and lighting solutions.

5.3 Initialization Issues

The total variation being convex but not strictly convex, the starting point
for the gradient descent has to be carefully chosen. In the step 3 of the al-
gorithm above, we initialize the optimization process with the solution to the
l2-regularized problem with λ = 1:

(μ̂0, ν̂0) = argmin
(μ,ν)∈R×R

∑
p∈Ω
‖J(M(p)G(μ, ν, 1))‖2F (19)

which, writing down the Euler-Lagrange equations, gives:

μ̂0 =
∑
p∈Ω

∂Mx
∂x

(p) ∂Mz
∂x

(p) + ∂Mx
∂y

(p) ∂Mz
∂y

(p)

( ∂Mz
∂x

(p))2 + ( ∂Mz
∂y

(p))2
ν̂0 =

∑
p∈Ω

∂My

∂x
(p) ∂Mz

∂x
(p) +

∂My

∂y
(p) ∂Mz

∂y
(p)

( ∂Mz
∂x

(p))2 + ( ∂Mz
∂y

(p))2

(20)
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which depends only on the already computed M = UPT field, and thus can be
computed directly.

Problem 9 can then be solved efficiently by a few Gauss-Newton iterations
(less than 10 iterations in every test we ran).

Note that we do not solve this TV problem the usual way: one would expect
to use some algorithm like Chambolle’s [6] to recover the whole field. Here we
do not need doing so because we assume we already have a field M , and we only
want to estimate the 3 parameters of the GBR which transform this field. It is a
much easier 3-parameters problem which can be solved by standard optimization
methods.

6 Experiments

In this section, we give some results obtained with the method described before.
As dealing with outliers like shadows or highlights is not our point in this paper,
we just skip the preprocessing part. We use preprocessed data that can be found
on Papadhimitri’s and Alldrin’s homepages, five set of images from the Yale
Dataface B [13] and synthetic images generated with the Lambertian model.

One image of each set is presented in Fig. 2. Note that the Sphere and Teapot
dataset contain 8 images, Cat, Owl and Horse datasets contain 12 images, the
Doll dataset contains 15 images, and the Faces datasets contain 21 images each.

Fig. 2. One image of each dataset used for validating our method

We compare in Fig. 3 the recovered normals and depth maps on the Cat
dataset to both a “ground truth” which is the result from calibrated photometric
stereo, and to the results from [10]. Note how close the three results are. Some
rendered images can be found in Fig. 4 and Fig. 5.

We also show in Table 1 a comparison of the angular errors (expressed in de-
grees) between normal fields estimated by uncalibrated photometric stereo tech-
niques and by calibrated photometric stereo. We chose to compare our method
to the Diffuse-Maxima method [10] which seems to be the most efficient known
method, and to Minimum-Entropy [3] because our approach can be seen as an
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extension of this one. Our method appears to be as good as the most state-
of-the-art uncalibrated photometric stereo method for Lambertian models, and
slightly faster, even though the tests were made without any special care in the
optimization task, so the method could still be greatly accelerated.

Fig. 3. Normal and depth comparison. From left to right: first, second, and third
components of the normal, and height map. First row: calibrated photometric stereo.
Second row: diffuse maxima [10]. Third row: our method.

(a) (b) (c) (d)

Fig. 4. Cat reconstruction: (a,c) calibrated PS (frontal and lateral views); (b,d) our
method (frontal and lateral views)

(a) (b) (c) (d) (e) (f)

Fig. 5. Faces reconstructions (lateral views), with estimated albedo mapped as texture
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Table 1. Performance comparison with the Minimum-Entropy method (ME) [3] and
with the Diffuse-Maxima (DM) method [10]. We give the mean angular error (expressed
in degrees) of the estimated normal field and the CPU time.

Dataset Sphere Teapot Cat Doll Owl Horse

ME 5.64 (19.22 s) 24.01 (27.83 s) 13.91 (20.82s) 27.67 (15.18 s) 16.16 (25.15 s) 11.10 (15.80 s)

DM 6.84 (1.59 s) 23.94 (2.09 s) 5.37 (1.22 s) 12.15 (1.11 s) 6.63 (1.07 s) 4.80 (1.62 s)

TV 6.29 (1.40 s) 16.48 (1.41 s) 5.26 (0.67 s) 11.90 (0.69 s) 7.06 (0.76 s) 5.53 (0.67 s)

Dataset YaleB05 P00 YaleB06 P00 YaleB07 P00 YaleB08 P00 YaleB09 P00 YaleB10 P00

ME 9.44 (14.90 s) 18.00 (14.57 s) 12.63 (14.62 s) 19.61 (14.79 s) 17.10 (14.45 s) 9.22 (13.72 s)

DM 6.90 (2.07 s) 11.46 (1.98 s) 8.59 (1.84 s) 11.49 (1.29 s) 13.09 (1.11 s) 10.21 (3.63 s)

TV 13.33 (0.59 s) 7.94 (0.50 s) 10.25 (0.55 s) 8.80 (0.52 s) 7.94 (0.51 s) 8.34 (0.56 s)

7 Conclusion

In this paper, we presented a novel approach to the resolution of the generalized
bas-relief ambiguity, introducing the total variation of the estimated field. We
showed how this approach could produce a new model for uncalibrated photo-
metric stereo and gave a very simple and efficient algorithm for finding a solu-
tion to this problem. Unlike most attempts to solve this issue, our method does
not rely on any property of the scene except its Lambertian reflectance, so the
method should work for any Lambertian dataset. For a real world application
though, it would be necessary to make a preprocessing step on the data in order
to remove the outliers.

We also compared the solution given by our algorithm to the most efficient
known method, and the results show that our method performs as good as it.
The key point of it is the optimization step of the algorithm, which could be
greatly improved in order to get a really fast solver. This would open the doors
to some real-time reconstruction in the wild using photometric stereo, and could
be useful for many applications like augmented reality.
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Abstract. We introduce a method to approximately minimize varia-
tional models with Total Generalized Variation regularization (TGV)
and non-convex data terms. Our approach is based on a decomposition
of the functional into two subproblems, which can be both solved globally
optimal. Based on this decomposition we derive an iterative algorithm
for the approximate minimization of the original non-convex problem.
We apply the proposed algorithm to a state-of-the-art stereo model that
was previously solved using coarse-to-fine warping, where we are able to
show significant improvements in terms of accuracy.
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1 Introduction

Total Generalized Variation (TGV) [1], a generalization of the Total Varia-
tion (TV) regularization, has recently been successfully applied to a number
of problems, like Optical Flow [2], Stereo [3] and Image Fusion [4]. Especially
for Stereo and Optical Flow, TGV is arguably a better prior than the classical
TV prior. For example in the second-order case, TGV does not penalize piece-
wise affine solutions. Such assumptions on planarity of the scene are frequently
made in stereo matching (e.g. [5,6,7]) and also find application in optical flow
estimation (e.g. [2,8]).

However, TGV regularization currently is restricted to convex functionals (i.e.
convex data terms). If the functional is non-convex, as it is the case in stereo
matching, one has to rely on convex approximations to the non-convex problem,
which often decreases the performance of the model. This is not the case for TV,
where global solutions can be computed even in the presence of non-convex data
terms, provided that the continuous label-space is discretized and some natural
ordering can be imposed onto the resulting discrete label space [9]. The idea of
this approach is to lift the functional to a higher dimensional space, where the
resulting functional is convex. Similar results were shown by Ishikawa [10] for
discrete first-order Markov Random Fields (MRF). The lifting approach [9] was
later extended to a broader class of convex first-order priors such as Quadratic
and Huber regularization [11].
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(a) Venus (b) Groundtruth (c) Proposed

Fig. 1. Example from the Middlebury stereo dataset

Previous work on Stereo and Optical Flow that used TGV regularization [2,3]
relied on the classical coarse-to-fine warping scheme [12] to approximately solve
the original non-convex problem. The basic idea of this approach is to solve a
series of convex models that arise from linearizations of the non-convex data
term. In order to capture large motion or disparity ranges, respectively, this
procedure has to be embedded into a coarse-to-fine framework, which is known
to suffer from loss of fine details.

In the context of discrete MRFs, planarity assumptions can be enforced using
a second-order prior. The resulting models can be approximately solved using a
move-making strategy: The multi-label problem is reduced to a series of binary
subproblems (each deciding if a node retains its label or switches to a proposed
label), where each subproblem can be solved partially optimal [5]. The outcome
of this approach crucially depends on the quality of the proposals in each move.
Moreover, each of the subproblems is only solved partially optimal, which means
that some nodes in the MRF may remain unlabeled.

Contribution. In this work we show how approximate solutions to non-convex
functionals with TGV regularization can be computed. Our approach does not
suffer from loss of fine details like the coarse-to-fine approaches do. The frame-
work builds on the observation that functionals with TGV regularization and
non-convex data terms can be split in two subproblems, where one is convex and
the other, although non-convex, falls into the class of functionals covered by the
lifting procedure described in [11] and can therefore be solved globally optimal.

In contrast to [5], where in each iteration a binary labeling problem, defined
on a second-order energy, is solved, our approach solves a first-order multi-label
problem in each iteration, in order to minimize the full second-order energy.
This frees us from the need to specify proposals and also guarantees a complete
labeling. Our splitting approach is similar to Alternating Convex Search [13],
which itself falls under the broader class of Block-Relaxation methods [14].

We apply the proposed algorithm to a variational stereo model [3], which
was solved using a coarse-to-fine strategy in the original formulation. By switch-
ing the optimization strategy to the herein proposed method, we are able to show
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significant improvements in terms of accuracy. An exemplary result of the pro-
posed method is shown in Figure 1. This is an example where the scene consists
only of planes, which is perfectly modelled by the prior. Consequently we are
able to recover high-quality disparity maps. Our evaluation shows that we obtain
state-of-the-art results on the challenging KITTI stereo benchmark [15] as well
as the Middlebury high-resolution benchmark [16].

2 Alternating Optimization

We focus on models with second-order TGV regularization, as this is the most
widely used and also the simplest instance of TGV (besides TV), i.e. we consider
functionals of the form

min
u,w

E1(w|u)︷ ︸︸ ︷
α

∫
Ω

|Dw|Γ +

∫
Ω

|Du− w|Σ + λ

∫
Ω

ρ(u)︸ ︷︷ ︸
E2(u|w)

, (1)

where u : Ω → R and w : Ω → R2, D is the distributional derivative, which
is also well defined for discontinuous functionals, and the norms are defined as

|x|M = 〈x,Mx〉
1
2 , M symmetric and positive definite. The introduction of the

operator M will later allow us to easily incorporate anisotropic edge-weighted
diffusion into the model. Note that for Γ = I and Σ = I, the definition reduces to
the standard definition of second-order TGV [1]. We will assume throughout the
rest of this paper that the data term ρ(u) is non-convex. Note that an extension
of this basic formulation to higher-order instances of TGV is straight-forward,
as it only involves a modified version of subproblem E1(w|u).

Our main observation is as follows: It is possible to decompose problem (1)
into the two subproblems E1(w|u) and E2(u|w). Let the pair (u∗, w∗) be a global
minimizer of (1), then it is obvious that the relation

u∗ = argmin
u

E2(u|w∗) (S1)

w∗ = argmin
w

E1(w|u∗) (S2)

holds, i.e. given w∗ it is possible to deduce u∗ by solving a possibly simpler
subproblem and vice versa. Note that (S1) is a non-convex problem, while (S2)
is a convex problem, which is equivalent to a generalized vectorial TV-L1 de-
noising problem [17]. This observation points to an iterative scheme for finding
approximate solutions to (1):

un+1 = argmin
u

E2(u|wn)

wn+1 = argmin
w

E1(w|un+1). (A1)

Note that by definition we have E(un, wn) ≥ E(un+1, wn) ≥ E(un+1, wn+1)
and 0 ≤ E(u,w) < ∞, ∀(u,w), therefore the procedure will converge in the
functional value, although not necessarily to a global optimum.
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The update steps in (A1) already constitute the basic iterations of the pro-
posed algorithm for optimizing (1). It remains to show how to solve the individual
subproblems in each step.

2.1 Minimizing E2(u|w)

The subproblem E2(u|w) is a non-convex variational problem with a non-convex
data term and a convex regularization term. It was shown by Pock et al. [11]
that problems with this special structure can be solved globally optimal using
the framework of calibrations. The basic idea is to lift the problem to a higher-
dimensional space, where a globally optimal solution to the original problem can
be computed.

Let us first introduce the general framework: In order to find a minimizer u∗

of functionals of the form

min
u

∫
Ω

f(x, u(x), Du), (2)

we can solve the auxiliary problem

min
v∈C

sup
φ∈K

∫
Ω×R

φ ·Dv, (3)

where the convex sets C and K are given by

C =
{
v ∈ BV (Ω × R; [0, 1]) : lim

t→−∞ v(x, t) = 1, lim
t→∞ v(x, t) = 0

}
and

K = {φ = (φx, φt) ∈ C0(Ω × R;Rd × R) :

φt(x, t) ≥ f∗(x, t, φx(x, t)), ∀x, t ∈ Ω × R} . (4)

Here f∗ denotes the convex conjugate of the function f . Note that the sets C and
K are defined point-wise. The intuition behind this formulation is, that instead of
minimizing u directly, one represents the energy in terms of characteristic func-
tions of its upper level-sets v. Given a minimizer v∗ the corresponding minimizer
u∗ can be recovered by u∗(x) =

∫
R
v∗(x, t)dt.

This formulation is very general, the specific form of the convex regularization
term only influences the set K. Pock et al. [11] derived the set K for Quadratic,
TV, Huber and Lipschitz regularization terms. In problem E2(u|w), the regular-
ization term is similar to TV regularization, with the difference that a constant
vector is subtracted from the gradient, before the absolute value is measured.
We identify f(x, t, p) = |p(x)− wn(x)|Σ + λρ(x, t), and consequently its convex
conjugate with respect to p is

f∗(x, t, φ) =

{
〈φx(x, t), wn(x)〉 − λρ(x, t), if |φx(x, t)|Σ ≤ 1

∞, else.
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(a) TV (b) TGV

Fig. 2. The feasible set K for (a) TV and (b) TGV

The resulting set K is illustrated in Figure 2(b). The feasible set for TV regu-
larization is shown in Figure 2(a). It can be seen that for problem E2(u|w) the
feasible set is slightly more complicated than in the TV case. While for TV the
set is given by the interior of a cylinder with radius 1, which is bounded from
below by a vertical plane centered at (0, 0,−λρ(x, t))T , the set in the TGV case
is bounded from below by plane that includes the point (0, 0,−λρ(x, t))T but can
be arbitrarily oriented (in fact the normal of this plane is given by [wn,−1]T ).
This makes projection onto this set slightly harder, as a closed-form solution is
no longer available.

Discretization and Optimization. In order to solve (3) it is necessary to
discretize the domain Ω × R of the continuous functions v and ρ. For the sake
of simplicity let us only consider the case Ω ⊂ R × R, higher-dimensional cases
can be derived analogously.

We discretize on a three-dimensional grid of size Nx×Ny×Nt with discretiza-
tion steps Δx, Δy and Δt:

GΔ = {(iΔx, jΔy, kΔt) : (0, 0, 0) ≤ (i, j, k) < (Nx, Ny, Nt)} . (5)

Here the triple (i, j, k) denotes the location in the grid.
For numerical reasons we replace the vector field φx, with a rotated version

Σ
1
2φx, which leads to a simplification of the convex set KΔ, without changing

the formulation.
The feasible sets for the discrete version of (3) are then given by

CΔ =
{
vΔ ∈ [0, 1]NxNyNt : vΔi,j,0 = 1, vΔi,j,Nt−1 = 0

}
(6)

and

KΔ =
{
φΔ = (φΔx , φ

Δ
y , φ

Δ
t ) ∈ R3NxNyNt :

(φΔt )i,j,k + λ(ρ)i,j,k ≥
〈
(φΔx , φ

Δ
y )

T
i,j,k, Σ

1
2wi,j

〉
,

|(φΔx , φΔy )Ti,j,k|2 ≤ 1, ∀(i, j, k) ∈ GΔ
}
. (7)
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In order to discretize the differential operator D, we use forward differences with
Neumann boundary conditions. Furthermore we allow Σ to vary locally, which
allows us to incorporate image-driven TGV regularization similar to [3] into the
framework, i.e. we define a linear operator ∇Σ : RNxNyNt → R3NxNyNt , with

(∇ΣvΔ)i,j,k =

⎛⎝Σ
1
2

i,j

0
0

0 0 1

⎞⎠⎛⎝ (δxv
Δ)i,j,k

(δyv
Δ)i,j,k

(δtv
Δ)i,j,k

⎞⎠ (8)

and

(δxv
Δ)i,j,k =

{
(vΔi+1,j,k − vΔi,j,k)/Δx if i < Nx − 1

0 else
(9)

(δyv
Δ)i,j,k =

{
(vΔi,j+1,k − vΔi,j,k)/Δy if i < Ny − 1

0 else
(10)

(δtv
Δ)i,j,k =

{
(vΔi,j,k+1 − vΔi,j,k)/Δt if i < Nt − 1

0 else.
(11)

Note that (8) reduces to the standard discretization of a gradient operator, if

Σ
1
2

i,j is set to identity everywhere. On the other hand, it is possible to incorporate
image-driven diffusion into the model by setting the matrix appropriately. We
will later discuss the specific choice of this matrix.

The discrete version of (3) is now given by

min
vΔ∈CΔ

max
φΔ∈KΔ

〈
∇ΣvΔ, φΔ

〉
(12)

For optimization of the convex-concave saddle-point problem (12) we use the
primal-dual algorithm [18]. The iterations of this algorithm are shown in Algo-
rithm 1.

A crucial part of this algorithm are the pointwise projections ProjKΔ(.) and
ProjCΔ(.) respectively. The projection of the primal variables is simple and can
be carried out in closed-form:

(ProjCΔ(v̂))i,j,k =

{
max{0,min{1, v̂i,j,k}} if k > 1

1 else.

Algorithm 1. Primal-dual algorithm for solving (12)

1. Initialize
Set (vΔ)0 ∈ CΔ, (φΔ)0 ∈ KΔ, (v̄)0 = (vΔ)0, n = 0
Choose time-steps τ, σ > 0, τσ < 1

‖∇Σ‖2

2. Iterate⎧⎪⎨
⎪⎩
(φΔ)n+1 ← ProjKΔ((φΔ)n + σ(∇Σ v̄

n))

(vΔ)n+1 ← ProjCΔ((vΔ)n − τ (∇T
Σ(φΔ)n+1))

v̄n+1 ← 2(vΔ)n+1 − (vΔ)n
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The projections for the dual variables ProjKΔ(.), although also point-wise, are
more complicated. The feasible set KΔ is defined point-wise via the intersection
of two convex sets. We experimented with different variants to incorporate these
constraints: Lagrange multipliers, solving the projection problem in each itera-
tion of the primal-dual algorithm using FISTA [19] (including a preconditioned
variant) and finally Dykstra‘s Projection algorithm [20]. Our experiments show
that Dykstra‘s algorithm provides the best performance for this type of problem
and is very light-weight, we therefore resort to this variant to incorporate the
dual constraints. The iterations of Dykstra‘s algorithm are shown in Algorithm 2,
where we set n = [wni,j,k,−1]T and c = λρi,j,k. In practice we run the algorithm

until the distances to both convex sets (|xn − yn|2 and |yn − xn+1|2) are below
a tolerance of 10−3 (which is typically achieved in under 10 iterations).

Algorithm 2. Algorithm for projecting onto the set K

1. Initialize
Set n = 0, x0 = φi,j,k, p

0 = 0, q0 = 0
2. Iterate⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

yn ← (xn+pn)
max{1,|xn+pn|2}

pn+1 ← pn + xn − yn

xn+1 ←
{
yn + qn if 〈yn + qn, n〉 ≤ c
yn + qn − 〈yn+qn,n〉−c

〈n,n〉 n else

qn+1 ← qn + yn − xn+1

2.2 Minimizing E1(w|u)
The subproblem E1(w|u) is a non-smooth convex optimization problem, which
can be solved using standard techniques. We will show how to cast this problem
in a saddle-point formulation and again apply the primal-dual algorithm [18].

The optimization problem reads

min
w

∫
Ω

|Dun+1 − w|Σ + α

∫
Ω

|Dw|Γ , (13)

where un+1 is given by the last solution of problem E2(u|w). Note that this
problem corresponds to denoising the gradients of un+1.

Using the definition divM z = div(M
1
2 z), the equivalent saddle-point formu-

lation is given by:

min
w

sup
‖p‖∞≤1
‖q‖∞≤1

−
∫
Ω

un+1 divΣ p dx−
∫
Ω

〈
w,Σ

1
2 p+ α divΓ q

〉
dx. (14)

Discretization of (14) follows analogously to the lifted problem: The two-
dimensional grid is given by

ĜΔ = {(iΔx, jΔy) : (0, 0) ≤ (i, j) < (Nx, Ny)} , (15)
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Algorithm 3. Primal-dual algorithm for solving (17)

1. Initialize
Set (uΔ)0 = un+1, (wΔ)0 = ∇Σu

n+1, (ū)0 = (uΔ)0, (w̄)0 = (wΔ)0

Set ((pΔ)0)i,j = (0, 0)T , (qΔ)i,j =

(
0 0
0 0

)
, n = 0

Choose time-steps τ, σ > 0, τσ < 1
‖A‖2 , where A =

(
∇Σ −I
0 DΓ

)
2. Iterate⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(pΔ)n+1 ← Proj‖p‖∞≤1((p
Δ)n + σ(∇Σ ū

n − diag(Σ
1
2
i,j)w̄

n))

(qΔ)n+1 ← Proj‖q‖∞≤1((q
Δ)n + σ(DΓ w̄

n))

(uΔ)n+1 ← ProjB((u
Δ)n − τ∇T

Σ(pΔ)n+1)

(wΔ)n+1 ← (wΔ)n − τ (DT
Γ (q

Δ)n+1 − diag(Σ
1
2
i,j)(p

Δ)n+1)

ūn+1 ← 2(uΔ)n+1 − (uΔ)n, w̄n+1 ← 2(wΔ)n+1 − (wΔ)n

where the tuple (i, j) again denotes a location in the grid, which also coincides
with the spatial coordinates of the lifted problem. The discrete saddle-point
problem can be written as

min
wΔ

max
‖pΔ‖∞≤1

‖qΔ‖∞≤1

〈
∇Σun+1, pΔ

〉
−

〈
diag(Σ

1
2 )wΔ, pΔ

〉
+ α

〈
DΓwΔ, qΔ

〉
, (16)

where the discrete differential operators ∇Σ and DΓ are again based on forward
differences with Neumann boundary conditions, i.e. we have

(∇ΣuΔ)i,j = Σ
1
2

i,j

(
(δxu

Δ)i,j
(δyu

Δ)i,j

)
(DΓwΔ)i,j = Γ

1
2

i,j

(
(δxw

Δ
1 )i,j (δyw

Δ
2 )i,j

(δyw
Δ
1 )i,j (δxw

Δ
2 )i,j

)
.

In practice direct usage of (13) for the estimation of the second-order part w may
be problematic if the discretization step Δt for the solution of the lifted problem
was chosen too coarsely. In this case discretization artifacts are propagated from
the lifted problem to problem (13), which may deteriorate the estimation of
the second-order part, since in the context of this subproblem such artifacts are
merely additional edges.

To cope with this problem, we modify (16) to allow un+1 to slightly vary in
a neighborhood of half the discretization step Δt of the lifted problem:

min
wΔ,uΔ∈B

max
‖pΔ‖∞≤1

‖qΔ‖∞≤1

〈
∇ΣuΔ − diag(Σ

1
2
i,j)w

Δ, pΔ
〉
+ α

〈
DΓwΔ, qΔ

〉
, (17)

where B =
{
uΔ ∈ RNxNy : |(uΔ)i,j − (un+1)i,j | ≤ Δt/2

}
.

The iterations for optimizing (17) are shown in Algorithm 3. As before, we
again have to perform projections onto convex sets in each iteration of the algo-
rithm. The projections of the dual variables are given by (Proj‖r‖∞≤1(r))i,j =

ri,j
max{1,|ri,j |2} . For the primal variables u, the projection onto B can be computed

by clamping (u)i,j in the interval [(un+1)i,j − Δt
2 , (u

n+1)i,j +
Δt
2 ].
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(a) Reference image

(b) Disparity - ITGV [3] (c) Disparity - Proposed

(d) Error - ITGV [3] (e) Error - Proposed

Fig. 3. Example from the KITTI benchmark for (b) ITGV [3] and (c) the proposed
algorithm. The corresponding error maps are shown in (d) and (e). Occluded pixels
are marked red in the error maps.

3 Application to Stereo

We show the effectiveness of our optimization approach on the application of
stereo matching. We use the variational model that was proposed in [3] as basis
for our experiments. This model introduced an image-driven TGV regularizer
and based the matching term on the Census Transform. The original formulation
used a warping procedure together with a coarse-to-fine scheme for the optimiza-
tion. Such approaches are commonly used in variational stereo and optical flow,
but are known to suffer from loss of detail due to the downsampling procedure.

Let us briefly explain, how the model [3] is realized in our framework: The
matching term is based on the ternary Census transform [21]. We denote the
ternary Census transform of the image I by C(I) . Then the matching cost for
disparity t is given by the Hamming distance [22] between the ternary Census
transforms of the warped matching image IL and the reference image IR, i.e.:

ρ̂(x, t) = Δ(C(IL(x+ [t, 0]T )), C(IR(x))), Δ(p, q) =
∑
pi �=qi

1. (18)

In order to cope with small calibration errors and to improve robustness with
respect to the discretization, we employ a similar strategy to the Birchfeld-
Tomasi dissimilarity measure [23], i.e. we sample the cost in a neighborhood of
x and assign the minimum value as the final data term:

ρ(x, t) = min{(ρ̂(x, t), ρ̂(x+ a, t), ρ̂(x− a, t), ρ̂(x+ b, t), ρ̂(x− b, t)}, (19)

where the offset vectors a and b are given by a = [Δx2 , 0]T and b = [0, Δy2 ]T .
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Image-driven regularization can be realized by setting Γ
1
2
i,j = I and Σ

1
2
i,j =

exp(−γ|∇IL|βi,j)nnT + n⊥n⊥T

, where n = ( ∇IL
|∇IL| )i,j and γ, β > 0.

Evaluation. We focus the evaluation on qualitative results on the task of stereo
estimation, instead of direct comparisons of final energies. A meaningful and fair
comparison in terms of final energies between our approach and the baseline [3] is
hardly possible, since the results of the baseline heavily depend on the parameters
of the coarse-to-fine strategy.

We first compare the proposed approach to the baseline algorithm using the
KITTI stereo benchmark [15]. This benchmark consists of 195 test images and
194 training images captured from an automotive platform. Groundtruth data
is given in the form of semi-dense disparity maps that were captured using a
laser sensor. We used the groundtruth that is provided with the training images
to tune the parameters of the model. For all experiments the discretization of
the disparity range was fixed to Δt = 1px and Algorithm (A1) was run for 10
iterations. The optimization of each subproblem was run for 2000 iterations.

Figure 3 shows an example from the test set and compares the proposed
approach (Figure 3 (c)) to the baseline approach (Figure 3 (b)). We observe
that the proposed approach preserves more fine details and is better at handling
large disparities than the coarse-to-fine approach. This higher accuracy is also
reflected in the average number of bad pixels on the test set (Table 1), where the
proposed approach currently ranks second, while the baseline is ranked on the
7th place. Note, that the method shows a slightly worse inpainting capability,
when compared to the baseline, in areas, where there is no overlap between
the input images, which results in a slightly higher error if those regions are
considered in the evaluation (Avg-All in Table 1).

Our second evaluation uses a subset of 9 images from the Middlebury high-
resolution benchmark [16] (Teddy, Cones, Lamp2, Cloth3, Aloe, Art,Dolls, Baby3,

Table 1. Results on the KITTI-Benchmark. Columns Out-Noc and Out-All show the
average percentage of pixels with an error larger than 3px in non-occluded and all
regions, respectively. Columns Avg-Noc and Avg-All show the mean absolute errors.

Rank Method Out-Noc Out-All Avg-Noc Avg-All Runtime

1 PCBP [7] 4.13 % 5.45 % 0.9 px 1.2 px 5 min

2 Proposed 5.05 % 6.91 % 1.0 px 1.6 px 6 min

3 iSGM [24] 5.16 % 7.19 % 1.2 px 2.1 px 8s

7 ITGV [3] 6.31 % 7.40 % 1.3 px 1.5 px 7s

Table 2. Error on the Middlebury high-resolution benchmark

Method > 2 pixels > 3 pixels > 4 pixels > 5 pixels

PCBP [7] 2.8 % 2.4 % 2.1 % 2.0 %

Proposed 4.4 % 3.1 % 2.5 % 2.2 %

ELAS [25] 4.7 % 3.9 % 3.5 % 3.2 %

OCV-SGBM [26] 5.9 % 5.5 % 5.3 % 5.2 %
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(a) Cones (b) Baby3 (c) Cloth3

Fig. 4. Example results from the Middlebury stereo benchmark

Rocks2 ). Exemplary results for this benchmark are shown in Figure 4. The av-
erage scores for different error thresholds and a comparison to state-of-the-art
methods is shown in Table 2. We again observe that the proposed method is
competitive to the other methods.

4 Conclusion

We presented an approach to approximately solve variational models with Total
Generalized Variation regularization and non-convex data terms. Our approach
alternates between solving a non-convex subproblem that can be solved globally
optimal using functional lifting, and solving a convex subproblem.

We demonstrated the benefit of our approach on a variational stereo model
that was previously solved using coarse-to-fine warping. Experiments on the
challenging KITTI stereo benchmark show that this alternating minimization
algorithm is able to significantly increase the performance of the model and
consequently provides state-of-the-art results.

For future work, we plan to extend our approach to non-convex variants of
TGV (i.e. truncated potentials). While we expect such regularization terms to be
stronger priors and a splitting is in principle still possible, the problem is much
harder to solve, because both of the resulting subproblems are non-convex.

References

1. Bredies, K., Kunisch, K., Pock, T.: Total Generalized Variation. SIAM J. Img.
Sci. 3(3), 492–526 (2010)

2. Werlberger, M.: Convex Approaches for High Performance Video Processing. PhD
thesis, Institute for Computer Graphics and Vision, Graz University of Technology,
Graz, Austria (2012)

3. Ranftl, R., Gehrig, S., Pock, T., Bischof, H.: Pushing the Limits of Stereo Using
Variational Stereo Estimation. In: Proc. Intelligent Vehicles Symposium (2012)

4. Pock, T., Zebedin, L., Bischof, H.: TGV-Fusion. In: Calude, C.S., Rozenberg, G.,
Salomaa, A. (eds.) Maurer Festschrift. LNCS, vol. 6570, pp. 245–258. Springer,
Heidelberg (2011)

5. Woodford, O., Torr, P., Reid, I., Fitzgibbon, A.: Global stereo reconstruction under
second order smoothness priors. In: Proc. CVPR, pp. 1–8 (2008)

6. Bleyer, M., Rhemann, C., Rother, C.: Patchmatch Stereo - Stereo Matching with
Slanted Support Windows. In: Proc. BMVC, pp. 14.1–14.11 (2011)



Minimizing TGV-Based Variational Models with Non-convex Data Terms 293

7. Yamaguchi, K., Hazan, T., McAllester, D., Urtasun, R.: Continuous markov ran-
dom fields for robust stereo estimation. In: Fitzgibbon, A., Lazebnik, S., Perona,
P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part V. LNCS, vol. 7576, pp. 45–58.
Springer, Heidelberg (2012)

8. Trobin, W., Pock, T., Cremers, D., Bischof, H.: An unbiased second-order prior for
high-accuracy motion estimation. In: Rigoll, G. (ed.) DAGM 2008. LNCS, vol. 5096,
pp. 396–405. Springer, Heidelberg (2008)

9. Pock, T., Schoenemann, T., Graber, G., Bischof, H., Cremers, D.: A convex formula-
tion of continuousmulti-label problems. In:Forsyth,D.,Torr, P., Zisserman, A. (eds.)
ECCV 2008, Part III. LNCS, vol. 5304, pp. 792–805. Springer, Heidelberg (2008)

10. Ishikawa, H.: Exact optimization for markov random fields with convex priors.
PAMI 25, 1333–1336 (2003)

11. Pock, T., Cremers, D., Bischof, H., Chambolle, A.: Global solutions of variational
models with convex regularization. SIAM J. Img. Sci. 3(4), 1122–1145 (2010)

12. Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: High accuracy optical flow estima-
tion based on a theory for warping. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004.
LNCS, vol. 3024, pp. 25–36. Springer, Heidelberg (2004)

13. Gorski, J., Pfeuffer, F., Klamroth, K.: Biconvex sets and optimization with bi-
convex functions: a survey and extensions. Mathematical Methods of Operations
Research 66, 373–407 (2007)

14. de Leeuw, J.: Block-relaxation algorithms in statistics. Technical report, Dept. of
Statistics, UCLA (1994)

15. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? the kitti
vision benchmark suite. In: Proc. CVPR, pp. 3354–3361 (2012)

16. Scharstein, D., Szeliski, R., Zabih, R.: A taxonomy and evaluation of dense two-
frame stereo correspondence algorithms. In: IEEE Workshop on Stereo and Multi-
Baseline Vision (SMBV), pp. 131–140 (2001)

17. Nikolova, M.: A variational approach to remove outliers and impulse noise.
JMIV 20(1-2), 99–120 (2004)

18. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems
with applications to imaging. JMIV 40, 120–145 (2011)

19. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear
inverse problems. SIAM J. Img. Sci. 2(1), 183–202 (2009)

20. Boyle, J.P., Dykstra, R.L.: A method for finding projections onto the intersection
of convex sets in Hilbert spaces. Lexture Notes in Statistics 37, 28–47 (1986)

21. Zabih, R., Ll, J.W.: Non-parametric local transforms for computing visual corre-
spondence. In: Eklundh, J.-O. (ed.) ECCV 1994. LNCS, vol. 801, pp. 151–158.
Springer, Heidelberg (1994)

22. Hamming, R.W.: Error detecting and error correcting codes. Bell System Technical
Journal 29(2), 147–160 (1950)

23. Birchfield, S., Tomasi, C.: A pixel dissimilarity measure that is insensitive to image
sampling. PAMI 20(4), 401–406 (1998)

24. Hermann, S., Klette, R.: Iterative semi-global matching for robust driver assistance
systems. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012,
Part III. LNCS, vol. 7726, pp. 465–478. Springer, Heidelberg (2013)

25. Geiger, A., Roser, M., Urtasun, R.: Efficient large-scale stereo matching. In:
Kimmel, R., Klette, R., Sugimoto, A. (eds.) ACCV 2010, Part I. LNCS, vol. 6492,
pp. 25–38. Springer, Heidelberg (2011)

26. Hirschmueller, H.: Accurate and efficient stereo processing by semi-global matching
and mutual information. In: Proc. CVPR, pp. 807–814 (2005)



A Mathematically Justified Algorithm

for Shape from Texture

Helge Rhodin1 and Michael Breuß2

1 Graphics, Vision and Video Group,
Max-Planck-Institut für Informatik, Campus E1 4, 66123 Saarbruecken, Germany

hrhodin@mpi-inf.mpg.de
2 Applied Mathematics and Computer Vision Group,

BTU Cottbus, Institute for Applied Mathematics and Scientific Computing,
Platz der Deutschen Einheit 1, 03046 Cottbus, Germany

breuss@tu-cottbus.de

Abstract. In this paper we propose a new continuous Shape from Tex-
ture (SfT) model for piecewise planar surfaces. It is based on the as-
sumptions of texture homogeneity and perspective camera projection.
We show that in this setting an unidirectional texture analysis suffices
for performing SfT. With carefully chosen approximations and a separa-
ble representation, novel closed-form formulas for the surface orientation
in terms of texture gradients are derived. On top of this model, we pro-
pose a SfT algorithm based on spatial derivatives of the dominant local
spatial frequency in the source image. The method is motivated geomet-
rically and it is justified rigorously by error estimates. The reliability of
the algorithm is evaluated by synthetic and real world experiments.

Keywords: single view reconstruction, shape from texture, texture gra-
dients, unidirectional texture analysis.

1 Introduction

Three-dimensional (3-D) shape reconstruction is a highly challenging task if
only a single input image is available. The Shape from Texture (SfT) process is
among the approaches that can be applied in this setting. Based on assumptions
on the regularity of texture in the input image, SfT aims at reconstructing the
3-D shape of object surfaces by reversing the apparent distortion of the texture
caused by the objects’ geometry. An illustration of a characteristic reconstruction
is shown in Figure 1. It is worth to note that SfT is complementary to other
single-view methods, like e.g. shape from shading which does not consider texture
information for reconstruction [1], and it is potentially very useful for the purpose
of 3-D reconstruction since real-world images often incorporate texture.

Research in the domain of SfT has accomplished a solid theoretical founda-
tion. However, existing SfT algorithms appear to be applicable only to settings
with relatively specific model assumptions. Furthermore, the majority of existing
algorithms are computationally expensive as they rely on costly texture analysis
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c© Springer-Verlag Berlin Heidelberg 2013



A Mathematically Justified Algorithm for Shape from Texture 295

Fig. 1. a) Textured version of the Cornell box, b) its surface normal ground truth in
standard colour code, c) dense normal reconstruction by our algorithm with sampling
distance w = 3, and d) the angular surface normal error displayed by intensities in [0, 1]

methods such as wavelet transforms in multiple directions. In this paper we con-
tribute in closing this gap between theory and application of SfT. Making use of
a well-engineered combination of model components, we show that it is possible
to keep the benefits of the developed theory, such as locality and precision, while
defining a more efficient SfT algorithm with significantly reduced computational
effort for texture analysis.

We advance the findings of G̊arding [2] with respect to the relation between
projective effects of geometry and texture gradients in order to enable a meaning-
ful application of unidirectional texture analysis for SfT. Therefore, we propose a
novel combination of model components: (i) A dedicated semi-perspective model
for camera projection, (ii) a separable parametrization of surface slant, and (iii)
linearisation for small sampling distances. The benefit of these choices is that
they allow to express surface slant in a closed-form equation via unidirectional
local texture measurements. We proceed in the algorithmical realization of SfT
with a dense estimate of the surface slant by sampling the frequency content of
the digital source image with one-dimensional Gabor wavelets along pixel rows
or columns, respectively. It makes our new SfT algorithm very efficient compared
to other methods in the field that either rely on two-dimensional texture analysis
or one-dimensional texture analysis in multiple directions.

Our paper is structured as follows. After a discussion of the SfT methods in
the field in Section 2 we proceed in Section 3 with the detailed derivation of our
model. After proposing then our new SfT algorithm in Section 3.3 we discuss a
number of experiments and give a conclusion in Sections 4 and 5, respectively.

2 Review of Shape from Texture Methods

A large group of SfT algorithms relies on the identification and extraction of
repeating texture elements in a preprocessing step. During shape reconstruction
either the individual instances are examined for projective distortions [3], or the
global distribution of elements is measured and related to the apparent surface
shape [4]. Also joined approaches have been proposed [5]. Unavoidably, the se-
lective texture element extraction process discards information before the actual
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shape reconstruction. The alternative is to apply continuous-scale, potentially
lossless filters such as transformations in the frequency domain [6, 7].

Independently of the texture model, SfT algorithms have to be restrained
to a restricted class of regular textures, in order to make the reconstruction
unambiguous and meaningful. In particular textures that fake perspective effects
such as perspective drawings have to be excluded. In the SfT literature texture
isotropy and homogeneity, i.e. the directional and spatial uniformity of texture
characteristics, are utilised for this purpose. For instance, Witkin estimates the
degree of texture isotropy of line drawings by the distributions of apparent line-
tangents [4]. Galasso and Lasenby measure homogeneity by combining Fourier
and wavelet filters [6] and Clerc and Mallat utilise a probabilistic interpretation
[7]. Wavelet-like filters are frequently employed due to practical reasons and their
consistency with visual coding in the early stages of human perception [8].

Explicit back projection is one way to relate the measured degree of isotropy
and deviation from homogeneity to the underlying surface shape. In this ap-
proach, the object shape is inferred by searching for the most regular back
projection of the observed image onto a set virtual surfaces, like planes [6] or
low-dimensional parametrised curves [9]. Alternatively, implicit shape represen-
tations leading to the task to solve linear [7] or non-linear equations [10] have
been proposed. In view of the technical difficulties involved in these methods,
modelling assumptions are particularly attractive for which closed-form relations
between texture distortion and surface shape are available.

2.1 Closed-Form Shape from Texture Methods

G̊arding proposes a unified scheme for various texture gradients in the slant-
tilt surface representation [2]. The slant-tilt representation parametrises surface
orientation in relation to the image screen by the tilt direction τ which is the
direction with the largest inclination of the surface and slant σ as the angle of
inclination in direction τ , i.e. the maximal amount of slant between surface and
image plane. Texture gradients are the spatial gradients of texture characteris-
tics such as density, size, and length on the image screen. From these texture
gradients G̊arding achieves closed-form solutions for tilt, slant, and additional
curvature parameters. Two-dimensional Gabor filters are applied to estimate the
texture gradients in practice.

The slant-tilt representation involves a coupling of slant and tilt in the recon-
struction process. As a result, errors in the tilt direction estimation are carried
over to the dependent slant estimation.

2.2 Separable Representations

In addition to his solutions in the slant-tilt representation G̊arding proposes to
separably compute surface slant in fixed directions by texture length gradients [2,
Section 3.3]. A classical texture length measure is the cycle length of a periodic
texture as utilized for the example in Figure 1. Thereby, G̊arding proposes to
determine the degrees of freedom of 3-D orientation by a pair of 2-D procedures.
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Let us note that he employs a non-classic representation for the perspective
camera projection, in that he utilises a simplified projection model via suitable
first-order approximations and a spherical image screen instead of an image
plane.

Greiner et al. investigate a method which is separable in 2-D procedures but
not based on texture gradients [11]. Surface slant in one direction is determined
robustly by texture length measures at two arbitrarily spaced points. More-
over, in contrast to first-order approximations of perspective projection a semi-
perspective projection map is applied. However, let us stress that it is assumed
that the surface at the measurement points is textured by the same homogeneous
texture and, even more restricting, that both points lie on the same plane. In con-
trast, formulas based on texture gradients only examine a local neighbourhood
and assume that the model assumptions are fulfilled in this small surrounding.

3 Shape from Texture Model

In this section we develop a pair of formulas for reconstructing surface slant from
unidirectional length gradients. We apply a dedicated semi-perspective projec-
tion model that intuitively explains the formation of length gradients and di-
rectly models imaging devices with planar image screens. Our projection model
allows to clearly separate important effects of the perspective projection, and
this is a key feature in order to obtain finally a closed-form solution for the sur-
face slant. We utilise the piecewise-planar surface assumption which ensures that
surface orientation is uniquely determined for homogeneous textures. Of partic-
ular importance is that we construct individual formulas for surface orientation
dependent on the direction of the unidirectional length gradient. First, we de-
rive relations abstractly by examining the projection of arc length. A numerical
algorithm and its utilized texture arc length measure is described in Section 3.3.

3.1 Perspective Camera Model

We model 3-D perspective projection as two independent 2-D projections in
horizontal and vertical direction. In each direction we apply a semi-perspective
projection P , that approximates the usual pinhole projection model locally by
an affine transformation. Figure 2a explains how the perspective projection
Pperspective around q̃ on plane S is approximated by the concatenation of three
affine transformations. Their effects are:

(i) Marked in blue, the foreshortening effect, i.e. the scaling of the projection
of an object in relation to its orientation, is modelled by orthographic
projection PS→V from surface S on the auxiliary line V which is placed
orthogonally to the projection direction. Thereby, the remaining projec-
tion steps are independent of the object orientation in relation to the
projection direction.
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Fig. 2. a) Semi-perspective projection model in 2-D which separates the foreshortening,
positioning, and perspective effect; b) coordinate system for 3-D surface orientation
parametrised by vertical and horizontal slant σx and σy and projection angles θx, θy

(ii) Marked in red, the positioning effect, i.e. the influence of the angular
position θ of the object in the field of view, is modelled by orthographic
projection PV→I′ from V to the auxiliary line I ′ placed in parallel to
the image plane I. This effect is not explicitly accounted in the semi-
perspective projection applied by Greiner et al. [11].

(iii) Marked in green, the perspective effect, i.e. the reduction of projected size
that is inversely proportional to the depth of the object to the observer, is
modelled by planar perspective projection PI′→I from I ′ onto the image
plane I.

A similar semi-perspective projection model employing two affine transformation
steps was introduced by Ohta et. al. [12]. Applied at the projection of a line
segment of S with arc length λ, the three described projection steps are

PS→V (λ) := cos(σ)λ, PV→I′(λ) :=
λ

cos(θ)
, and PI′→I(λ) :=

F

z
λ, (1)

where F is the focal length, slant σ is defined as the angle between the plane
S and the auxilliary line V and z is the depth of the centre of the line segment
to the optical centre. The projection direction is parametrised by angle θ. Fig-
ure 2b shows the setting of surface S and planes V, I ′, I in 3-D. The image plane
is spanned by vector x pointing in horizontal direction and y in vertical direc-
tion. We parametrise the orientation of S by horizontal and vertical slant σx,σy
and the horizontal and vertical projection direction by θx, θy, where subscripts
distinguish directions.
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The displayed projection of a circle of width λx in Figure 2b explains the pro-
jection of arc length in 3-D. Dependent on the surface orientation it is distorted
into an ellipse like shape. We name its projected width in direction v on the
image screen the projected arc length in direction v and denote it with λIv. In
general, λIv jointly depends on vertical and horizontal slant σx, σy. Separability
of σx and σy is obtained if v is oriented in either horizontal direction x or ver-
tical direction y. For horizontal direction x the concatenation of projections (1)
gives

λIx = PI′→I (PV →I′ (PS→V (λx))) = λx
cos(σx)

cos(θx)

F

z
, (2)

where λx denotes the original arc length in direction x, i.e. the original width
of the projected object in the direction of the back projection of x onto S.
The projection of arc length λy is defined equivalently and for the projection of
non-circular objects λy can differ from λx.

3.2 Surface Slant Reconstruction

Here, we prove Theorem 1 which represents our key result relating texture length
gradients to surface slant in our new model.

Theorem 1. Let S be an arbitrarily oriented plane and λIx the projection of
constant arc length λx on S in horizontal direction x, as introduced before. Then
horizontal surface slant σx is determined via the the normalised projected length
gradient ∂xλ

I
x/λ

I
x on the image plane I up to an error ε with

σx = arctan

⎛⎝−1

2

∂xλ
I
x

λI
x

cos2(θx)
+ tan(θx)

⎞⎠+ ε, (3)

and vertical slant σy by the normalised length gradient
∂yλ

I
x

λI
x

in y-direction by

σy = arctan

⎛⎝− ∂yλ
I
x

λI
x

cos2(θy)
+ tan(θy)

⎞⎠+ ε, (4)

with σx,σy, θx and θy defined as before, and ∂xλ
I the partial derivative of the

projected arc length λI in direction x.

Proof. Starting point of the slant derivation is the quotient of arc length projec-
tions at two points q,p on the image plane. Let q,p be on a horizontal line then
the quotient of the projections of λx at q,p is according to equation (2)

λIx(q)

λIx(p)
=

zp cos (σqx) cos (θ
p
x)

zq cos (σpx) cos (θ
q
x)
, (5)

where superscripts distinguish the parameters for locations q and p. Note that
the original arc lengths λx is assumed constant and drops out. Let us now con-
sider the quotient of projected arc length at vertically spaced points q and p, i.e.
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p = q+(0, w). The parameters σx and θx in projection formula (2) are constant
in vertical direction. Thus, they drop out for q,p on the considered vertical line:

λIx(q)

λIx(p)
=

zp cos (σqx) cos (θ
p
x)

zq cos (σpx) cos (θ
q
x)

=
zp

zq
. (6)

The foreshortening and positioning effects acting in vertical position on a slanted
plane are invariant to the horizontal position. This is different in equation (5)
as slant σx is defined in relation to the horizontal projection direction θx which
varies dependent on the horizontal position on the image plane. It follows that
the horizontal gradient of λIx is simultaneously influenced by all three projective
effects, while the vertical gradient is solely dependent on the perspective effect.

The left hand sides of equations (5) and (6) can be measured on the image
plane, it remains to relate the depth quotient zq/zp to the surface slant. To
finally obtain the notion of texture gradients, we assume in the following an
infinitely small sampling distance w between q,p, and we aim to consider the
limit w → 0. We derive in the Appendix by trigonometric relations that in this
case slant σq at point q is determined for the quotient of zq, zp by

tan(σq) =

(
zp

zq − 1
)

cos2(θq)w
+ tan(θq). (7)

To obtain vertical slant σy in closed form we substitute the projected arc length
quotient (6) for vertically spaced p = q+ (0, w) into (7):

tan(σq
y) =

λI
x(q)
λI
x(p)
− 1

cos2(θqy)w
+ tan(θqy) (8)

Similarly, for horizontal slant we substitute (5) for horizontally spaced p =
q+(w, 0) into (7). Due to the additional dependency on the slant σx in equation
(5) we have to solve for σ explicitly. This is done in the Appendix, we derive

tan(σq
x) =

1

2

λI
x(q)
λI
x(p)
− 1

cos2(θqx)w
+ tan(θqx). (9)

Finally, we conclude the proof by applying for horizontally spaced p = q+(w, 0)
the difference quotient relation

lim
w→0

λI
x(q)
λI
x(p)
− 1

w
= lim

w→0

λIx(q) − λIx(p)

w λIx(p)
= −∂xλ

I
x(q)

λIx(q)
(10)

at equation (9) and accordingly for vertically spaced p = q + (0, w) on (8) to
obtain the two postulated formulas (3), (4) for horizontal and vertical slant.
Error ε occurs for non-zero sampling distances w, its influence is evaluated in
Section 4. �

Corresponding formulas apply to vertical arc length λIy with x and y swapped.
Therefore, the slants σx and σy can be derived by projected arc length measures
in direction x or y, respectively.
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3.3 Shape from Texture Algorithm

For the numerical implementation we analyse texture by its dominant local spa-
tial wavelength in horizontal direction. It is a reasonable length measure as the
wavelength of the texture is proportional to the arc length of the covered surface
if the texture homogeneity assumption of constant dominant spatial wavelength
and fixed wave orientation throughout the surface is fulfilled. This is the case for
textures with a strong directional component such as wood grain and repetitive
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Fig. 3. Wavelength content in
horizontal and vertical direc-
tion for the bisecting horizon-
tal slice of Figure 1a with
marked dominant frequency

textures occurring in man-made environments.
Figure 3 illustrates how the wavelength spec-
trogram of Figure 1a) is distorted according to
the scene geometry. The gradient of dominant
wavelength is linked to the surface orientation.
We determine surface slant σx and σy from this
length measure through equations (3), (4). The
required partial derivatives are approximated by
forward differences. We estimate the dominant lo-
cal spatial wavelength by a sampling of the source
image with unidirectional one-dimensional Gabor
filters, which have an optimal space-frequency lo-
calization. Our SfT model is not restricted to the
described texture analysis by the dominant lo-
cal spatial frequency. For other possible means to
compute texture gradients we refer to the work of
Clerc and Mallat [7] where texture gradients are
derived for a larger class of homogeneous textures.

In order to obtain reliable estimates of the surface slant one can compute
wave-length estimates in horizontal and vertical direction and compute surface
orientation from the estimate with the larger response. Low responses usually
correspond to situations where the analysis direction is close to orthogonal to
the texture pattern direction, compare Figure 3 and the geometry in Figure 1.

4 Numerical Evaluation

First we analyse the error ε of equation (4) for differently oriented and positioned
planes. Error ε originates from non-zero sampling distances w and the semi-
perspective projection model, which was applied to separate projective effects.
We obtain ε in closed form by deriving the unknown projected arc length λI in
equation (4) with the usual pinhole camera model from the parameters F, θ, z, λ,
and σ. The influence of the different parameters on ε is illustrated in Figure 4a-
c: Graph a) indicates that ε is bounded for all values of σ and for values of θ
not close to ±π/2, graph b) shows that ε is insignificant for sufficiently small
quotients λ/z and a small sampling distance w, and graph c) displays the nearly
linear dependence on the sampling distance w. The error in equation (3) leads
to graphs of the same shape. This analysis covers typical parameter ranges and
shows that our dedicated camera model is as accurate as the usual pinhole model.
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Fig. 4. Reconstruction error ε in relation to the parameters λ = F , z = 10F , w =
0.01F , θ = 0.22, and σ = π

4
, unless otherwise stated in the legend. a) Influence of σ, θ,

b) of λ, z, and c) of the sampling distance w, lengths are measured in multiples of F .

In the first practical experiment we apply the described algorithm to a ren-
dered view of the Cornell box scene textured by differently oriented and mod-
ulated sinusoids. Figure 1 shows the source image, its per-pixel surface normal
reconstruction in standard colour code and its error. This experiment shows that
independently of the texture orientation and scaling piecewise planar surfaces
are reconstructed precisely for an idealised texture. Only at edges separating
planar surface parts errors occur.

Table 1. Slant reconstruction for the
images shown in Figure 5 measured at
the image centre in degree

Source image Surface slant σx, σy
truth our method

Alu Wall

Steps
Blind
Ventilator

0, 0
10, 0
20, 0
30, 0
0, 70
0, 40
0, 20

3.3, -0.9
14, -0.8

17.9, 1.3
28.0, -2.8
-2.0, 61.8
6.1, 41.6
1.8, 16.6

The applicability of our method to nat-
ural scenes is evaluated at hand of test
images provided by Super and Bovic [13],
see Figure 5. The image dimensions are
248x160 for the landscape images and
248x216 for the portrait images. These
were also used by Greiner et al. [11] for
experimental validation. Therefore, we de-
termined an estimate of the focal length
of the imaging device by cross-validation.
We determined F = 500 pixel from the

Fig. 5. Pictures of real world textured planar surfaces published by Super and Bovic
[13]. Top: stairs, blind, and ventilator, Bottom: aluminum wall.
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alu wall image with the given slant ground truth of 20 degree and applied the
same value for the remaining images. Table 1 shows that our reconstructions
are reasonable. To make our algorithm more robust to noise we calculated the
wavelength derivatives from locations spaced w = 10 pixel apart and average
the slant in the centered window of dimension 30x30 pixel.

The method of Super and Bovic infers surface orientation by a sampling with
two-dimensional Gabor filters and explicit back-projection in the slant tilt sys-
tem [13]. For comparing the reconstruction error we transformed their results

Table 2. Error analysis of the surface
slant reconstruction for the source im-
ages shown in Figure 5, compared to the
findings in [13] and [11]

Absolute slant error εx, εy
source
image

our
method

Super,
Bovic

Greiner
et al.

Alu Wall

Steps
Blind
Ventilator

0.8, 0.0
0.1, 1.4
0.0, 0.0
0.1, 0.2
3.3, 0.3
6.0, 1.7
2.4, 2.4

1.0, 0
0.3, 0.5
3.3, 0.3
3.6, 0.2
3.5, 2.0
0.6, 7.9
1.8, 4.9

0.0, n/a
0.4, n/a
0.6, n/a
0.6, n/a
n/a, 1.5
n/a, 0.2
n/a, 0.2

Mean 1.34 2.14 0.50*

*Mean of the available estimates.

to horizontal and vertical slant. Also,
the approach of Greiner et al. [11] is re-
stricted to a single planar surface and
globally homogeneous textures. More-
over, robustness of the texture analy-
sis is increased by fitting a parametrised
curve to selected support points in the
texture analysis.

To be comparable to these global ap-
proaches, we increase the sample width
to w = 30 pixel and average over a
larger window of size 80x80 pixel. The
results are compared in Table 2. Our re-
constructions are superior to the results
of Super and Bovic and, considering the
specified ground truth precision of 1-3
degree [13], comparable to the results of
Greiner et al.
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Fig. 6. a) Geometric relations for two points q,p on the image plane and their origins
q̃, p̃ on line S, b) Close-up view with additional right angled auxiliary triangles
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5 Conclusion

In this paper we elaborated on a novel approach to SfT in that only an unidirec-
tional texture analysis is employed to reconstruct surface orientation. The main
tool in this is a well-engineered composition of model components. Our work
shows that a careful mathematical investigation can lead to improvements even
for difficult problems in computer vision.

Acknowledgments. The authors would like to thank Super and Bovic for
releasing their test images.

A Appendix

Derivation of Relation (7) between σ and Depths zq, zp. The relation between
the depths zq, zp of the back projections of points q and p onto line S and
the slant σq of S is explained geometrically in Figure 6a. Figure 6b shows its
close-up view with additional auxiliary lines. For convenience we assume that
lengths are measured in multiples of F . For the rectangular triangle with sides
q̃p̃, b0 and b1 the definition of tangens is for slant angle σq

tan(σq) =
b1
b0
. (11)

Similarly, b0, b1 are related to the projection angles θq, θp, and depths zq, zp by
the definition of cosinus and tangens. From known angle and side length pairs
we determine lengths b0, b1 through:

b1 = cos(θq)(a4 + a3), b0 = cos(θq)(wzq + a1), a1 = tan(θp)a4 − a2,

a2 = tan(θq)a4, a3 = tan(θq)(wzq + a1 + a2), a4 = zp − zq, (12)

with spatial sampling distance w and auxiliary variables ai. In combination the
system of equations from (11) and (12) gives the desired relation between σq

and the quotient of depths by

tan (σq) =
(1 + tan (θq) tan (θp))

(
zp

zq − 1
)
+ w tan (θq)

w + (tan (θp)− tan (θq))
(
zp

zq − 1
) . (13)

Next, we simplify this formula in the limit w→ 0. The angle θp depends on θq

with θp = θq+γ. We reach (7) by approximating tan θp at γ = 0 with its Taylor
linearisation and applying the approximation

γ = θp − θq = tan−1(tan(θq) + w) − θq =
w

1 + tan(θq)
+ O(w2), (14)

consider Figure 6a for the geometric relation. Remaining terms in O(w) vanish
in the considered limit w→ 0 and are dropped out.
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Derivation of Equation (9). We first substitute σq
x = σx + γ and θqx = θx + γ in

(5), and linearise in γ. Solving for zp

zq leads to

zp

zq
=

λIx(q)

λIx(p)
· 1− γ tan(σq)

1− γ tan(θq)
. (15)

We substitute the thereby linearised version of (5) into (7) and relate γ to w by
(14). Finally, solving for tan(σ) with the help of a computer algebra system and
dropping terms in O(w) leads to (9). Note that some factors in O(w) cancel out
during the derivation, hence, terms in O(w) cannot be dropped earlier.
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Abstract. We present Multi Scale Shape Index (MSSI), a novel feature
for 3D object recognition. Inspired by the scale space filtering theory
and Shape Index measure proposed by Koenderink & Van Doorn [6],
this feature associates different forms of shape, such as umbilics, saddle
regions, parabolic regions to a real valued index. This association is use-
ful for representing an object based on its constituent shape forms. We
derive closed form scale space equations which computes a characteristic
scale at each 3D point in a point cloud without an explicit mesh struc-
ture. This characteristic scale is then used to estimate the Shape Index.
We quantitatively evaluate the robustness and repeatability of the MSSI
feature for varying object scales and changing point cloud density. We
also quantify the performance of MSSI for object category recognition
on a publicly available dataset.

1 Introduction

The availability of cheap IR sensors have considerably lowered the cost of real
time 3D data acquisition [11] and has led to a renewed interest in 3D object
recognition [13,5]. This has encouraged research into the development of a num-
ber of shape inspired features for 3D, several of which are extensions to popular
2D features [23,12,5] and do not directly operate on point cloud data, while
others [18,17] are not robust enough to sensor noise. In this work, we propose a
novel feature called the Multi Scale Shape Index (MSSI) which is jointly moti-
vated by scale space filtering theory [21,10] and the shape categorization work
of Koenderink [6]. Shape Index (SI) maps points on surfaces to a linear scale
[−1 : 1] and thus classifies them into categories such as Umbilics, Parabolics
and Saddle points. Fig. 1 shows a few canonical shapes and their corresponding
shape index. The proposed MSSI feature operates directly on a point clouds and
are robust to noise in the data.

The SI measure at a 3D point is a function of the principal curvatures at that
point. This measure was originally proposed for the continuous domain. However,
computing the principal curvatures at a point from noisy 2.5D or 3D data can
be erroneous if the characteristic scale at that point is not known (see Fig. 2 for
an example). In this work, we show how to compute the characteristic scale at
a point in a discrete domain (point cloud) and then estimate the shape index at
this scale. We then construct the MSSI feature at a point as a concatenation of its
characteristic scale, shape index and a measure of curvedness [6]. An example

A. Kuijper et al. (Eds.): SSVM 2013, LNCS 7893, pp. 306–318, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Fig. 1. Illustration of shape index measure mapping shapes to real number. From [6].

Fig. 2. Effects of computing Shape Index at an erroneous scale for a real world scene.
Shape Index computed at the characteristic scale (d) is more stable as compared to
one computed at a fine scale (b), which is sensitive to noise, or a coarse scale (c) which
blurs high curvature regions. Best viewed in colour.

of each of these features for a real world scene is shown in Fig. 3. The RGB
image and the corresponding depth map from a Kinect sensor is shown in Fig. 3
(a,b). The dummy’s head has a large scale and is classified as an umbilic (doubly
convex shape) in Fig. 3 (d). It also has low curvedness as seen in Fig. 3 (e). The
tip of the nose has low scale, and is an umbilic with high curvedness. The map
of the triplet of these three features is the MSSI map shown in Fig. 3 (c). To
show the efficacy of our proposed feature for category recognition we compare it
with the work of Lai et al. [7] using their publically available dataset.

The remainder of our paper is organised as follows. In Sec. 2 we discuss relevant
literature. TheMSSI feature computation is described in Sec. 3. Our experimental
setting and results are elaborated in Sec. 4. We conclude in Sec. 5.

2 Literature Review

Their exist many 3D features in literature that try to capture local shape. Re-
cently, Zaharescu et al. [23] provided an extension of HOG features for meshes,
by bining the directional derivatives of the mean curvature. However, computing
the mean curvature in the discrete domain is not straight-forward as we show
in section 3. The Heat kernel signature proposed in [18] is based on the funda-
mental solution to the heat diffusion equation. However this method is sensitive
to noise and changes in the configuration of the original mesh. Furthermore,
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Fig. 3. RGB image of an example scene (a), its depth map obtained from kinect sen-
sor(b). The shape index map (d) categorizes forehead and nose as umbilics, while the
nose bridge is estimated as a saddle. Background is correctly assigned as a flat region.
The characteristic scale map(e) assigns the nose tip to a fine scale, while the fore-
head has a relatively coarser scale. The Curvedness map (f) assigns the nose tip to a
very high curvedness value while the background has very low curvedness. The three
components together gives the MSSI feature map (c). Best viewed in colour.

although approaches for triangulating and generating surfaces/meshes from a
point cloud do exist, they are slow, noise sensitive or require dense point clouds
as pointed out in the survey in [3].

Features that operate directly on 3D point clouds do exist [19,5] and are exten-
sions of popular 2D features(SIFT,SURF). These methods however do not assign
stable canonical frames which are needed for them to be rotationally invariant.
To address this issue, the authors of [12] provide a method to compute a stable
canonical frame. Unlike their previous approach [19] which worked directly on
point clouds, this method requires a mesh structure.

Many of the advances made in 2D Object Recognition in the past decade
have been adopted for 3D Object Recognition and have shown promising results.
Knopp et al. [5] extends the Implicit Shape Model (ISM) model proposed by [9]
to 3D Object Recognition. They use a Hessian-based interest point detector
that encodes an extension of 2D SURF features to 3D [2]. These interest points
are then clustered to form the ISM. Their method showed promising results
on clean meshed data. However, they do not report any results on real world
3D/2.5D point cloud data. Lai et al. combine colour and depth information
using pyramid Histogram Of Gradients(HOG) features [7,4]. These features are
used with a linear Support Vector Machine(SVM) to perform sliding window
based object detection. They show competitive results using depth and colour
features individually, and improve it further by combining both features on one
of the largest publicly available 2.5D dataset. Both these methods concentrate
on a fusion of depth and intensity/colour features for recognition in real world
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scenarios. However, there is no explicit attempt to capture shape for recognition.
In this work, we propose a local shape based feature (MSSI) to exploit depth data
and demonstrate that competitive results can be achieved with lesser training
data.

Fig. 4. Scale space approximation for a synthesized dumbell shape. Our method ap-
proximates the original scale space while predictions from MSIR [20] are erroneous.

3 Proposed Multi-Scale Shape Index (MSSI) Feature

Shape index (SI) as proposed by Koenderink [6] is a function of the principal
curvatures(κ1, κ2)

1. Principal curvatures are primarily defined for a continuous
parameterization of the 3D surface. While their exist methods to approximate
them for discrete spaces (point clouds) [15] they require a support region to
compute them. However, the size of the support region itself is dependent on
the principal curvatures. This can be seen from Fig. 4; when the shape index
is computed at a fine scale, it is sensitive to noise thus falsely classifying noisy
low curvature (flat) regions as umbilics. On the other hand, at a coarser scale,
regions of high curvature get blurred out (nose) while low curvature regions are
classified correctly. To address this ambiguity in the size of the support region,
we propose to obtain a characteristic scale automatically by relating the effect of
blurring at different scales to the underlying local shape of the point clouds. Our
approach is motivated by Multi-Scale Interest Region (MSIR) [20] approach to
locate interest regions. However, the scale space model in their work is neither
accurate for basic shapes nor is stable as shown in Fig. 4 and Fig. 5. In the
remainder of this section we derive the relationship between characteristic scale
and principal curvature and compare it with MSIR.

Curves in 3D Space. We start by considering a continuous arc-length param-
eterized curve α(s) in R3, where s ∈ (−B, B). Here, B denotes extent of the

1 SI = 2
π
arctan

(
κ2+κ1
κ2−κ1

)
κ1 ≥ κ2,
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Fig. 5. a) Mean prediction error of the approximated scale space for the synthesized
dumbell shape in Fig 4. MSIR [20] is accurate only at lower scales but our fourth order
model approximates quite accurately the Gaussian scale space at all scales. b) Mean
estimation error of the computed shape index as we vary the scale for the head model,
Fig. 3. Due to the relatively coarser scale of the head a larger error is seen as the
scale is increased and a smaller error for lower scales. c) Mean estimation error of the
computed shape index as we vary point cloud density is smooth for smaller changes
in density. As the density decreases to low values very few points remain to correctly
estimate both the characteristic scale as well as the shape index.

curve. We define A : R3×R+ → R3 as the family of curves obtained by filtering
the original curve at different scales. i.e,

A(α(s), σ) =

∫ B

−B
φ(s− u, σ)α(u) du, (1)

where, φ is the Gaussian kernel. We consider the evolution of a point x as it is
filtered. Without loss of generality, we take this point to be s = 0 and define
x = α(0). Performing a Taylor series expansion of α around x up to fourth order
terms, we can approximate the integral as shown below:

A(x, σ) ≈ 1√
2πσ

∫ B

−B

e
− u2

2σ2

(
x+ uα′(0) +

u2

2!
α′′(0) +

u3

3!
α′′′(0) +

u4

4!
α′′′′(0)

)
du

(2)

For better readability we set x′ = α′(0), x′′ = α′′(0) and so on. Observing
that the second and fourth term in the equation go to zero and performing the
integration over the remaining terms we get:

A(x, σ) = Φ

(
B√
2σ

)(
x+ x′′

σ2

2
+ x′′′′

σ4

8

)
−
√

2

π
Bσe

− B2

2σ2

(
x′′

2
+B2 x

′′′′

24
+ 3σ2

x′′′′

24

)
(3)

Using results from differential geometry (see the supplementary material) the
above equation can be approximated as:
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A(x, σ) ≈ Φ
(
B√
2σ

)(
x+ κN

σ2

2
+

(
3κ′κT− κ3N

) σ4
8

)
− (4)√

2

π
Bσe

− B2

2σ2

(
κN

2
+B2

(
3κ′κT− κ3N

)
24

+ 3σ2
(
3κ′κT− κ3N

)
24

)
,

Note that functions κ,T,N are evaluated at xwhich is suppressed for better read-
ability. Here, κ, T,N are the curvature, tangent and normal to the curve α and Φ
is the error function. If σ & B the error function can be approximated to 1 and the
second term→ 0. This resulting equation is similar to the MSIR model. However,
for a bounded curve, as the scale of blurring increases(σ → B) the contribution
of the second term and the error function is significant and cannot be ignored (see
Fig. 5). We next extend these equations to surfaces in 3D space.

Extension to 3D Surfaces. Let x be a point on a surface M . Further, let the
normal at x be denoted as N and its tangent plane as Tx. There then exists
a family of planes Πθ that contain the normal N . The normals of these planes
lie in the tangent plane Tx. Let the angle subtended by these planes with the
first principal direction be θ [6]. These planes then intersect the surface to give
a family of curves αθ(s) which are called the normal sections. Now, the net
displacement of the point x = αθ(0), after blurring, will be equal to the average
displacement caused by each normal section. Using Eq.( 1) we have:

A(x, σ) =
1

2π

∫ 2π

0

A(αθ(0), σ) dθ =
1

2π

∫ 2π

0

(∫ Bθ

−Bθ

φ(0 − u, σ)αθ(u) du

)
dθ.

(5)

Fig. 6. Computed shape index map on stanford dragon and happy buddha models.
Spikes on the back of dragon and the pointed tail are estimated as umbilics. Regions
where the dragons body twists are estimated as saddle. The intricate structure on
happy buddha produces more variations in the shape index. Best viewed in colour.
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Solving this equation is not trivial as both (Bθ) and (αθ) are functions of θ.
Moreover, we do not have any explicit form for Bθ which represents the extent
of the 3D surface in all directions. Using empirical evidence, we propose setting
Bθ to be a constant value B proportional to the average geodesic distance in all
directions. In practice, for a given point in a discrete point cloud, this is equal to
the average geodesic distance of that point to all other points. From Eqs.( 4),( 5)
we get (see supplementary material for further details):

Ã(x, σ) � A(x, σ)

Φ
(

B√
2σ

) ≈ (
x+HN

σ2

2
− H

16
(5H2 − 3G)σ4N

)
, (6)

Again, note that functionsH , G andN are evaluated at x which is suppressed for
better readability. Here,H , G andN are the mean curvature, Gaussian curvature
and normal to the surfaceM . Ã(x, σ) is the normalized family of surface obtained
from Gaussian blurring with scale σ. This can be further rearranged to give:

D(x, σ) � ||Ã(x, σ) − x||2 =

(
H

σ2

2
− H

16
(5H2 − 3G)σ4

)
=

Hσ2

2

(
1− σ2H2

4

(
1 +

1.5

S2

))
,

where, S relates to the shape index via S = tan(2π × SI), and D(x, σ) can
be viewed as the approximate distance traveled by a point when blurred with
a kernel of scale σ. Inspired by the principle of automatic scale selection, as
defined by Lindeberg [10], we define the characteristic scale (σmax) as the max-

ima in the normalized distance (D(x,σ)
σ ) traveled by a point. This is given by

∂
(
D(x,σ)

σ

)
/∂σ = 0, which gives:

σ2
max =

4

3H2(1 + 1.5
S2 )

. (7)

This derivation can also be carried out in the discrete domain by assuming a
uniform point cloud sampling and approximating the integral by a sum.

Eq.( 7) relates the shape index to the characteristic scale and thus motivates
the term Multi-Scale Shape Index. The characteristic scale that we obtain is dif-
ferent from that proposed in MSIR due to two reasons: a) we explicitly consider
the curve to be bounded and b) we model the effect of blurring until the fourth
order of the Taylor series. Fig. 4 shows an example of a dumbell shaped point
cloud on which we demonstrate the effect of these changes. The actual scale space
obtained by Gaussian blurring is shown, along with the prediction obtained us-
ing our model and that of MSIR. Fig. 5 shows a quantitative comparison of the
mean error for the two models. MSIR is accurate only at lower scales but our
fourth order model approximates the Gaussian scale space accurately.

Algorithm 1 gives a stepwise procedure to compute the characteristic scale
from a point cloud. As input our algorithm requires the range of scales (σk)
to search over and an initial smoothing parameter (σs) before computing the
scale space. We set B to be proportional to the average geodesic distance and
call this as the bounding factor (Bfct) which is also an input for our algorithm.
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The estimated characteristic scale is used as a support region to compute the
shape index. We only calculate the magnitude of the shape index and not its
sign. Fig. 6 shows the shape index map on some publically available 3D models.

We compare the robustness and repeatability of the computed shape index
against variations in scale and point cloud density. We use a 3D point cloud of
the head model used in Fig. 3 for these experiments. As we cannot establish the
ground truth, we treat the shape index computed at the original scale and cloud
density as the reference.

input : Point Cloud: X = {xi}, Range of Scales: σk, Bounding factor: Bfct,
intial smoothing: σs

output: Characteristic Scale for each point σmax(xi)

1. Compute a Disjoint Minimum Spanning Tree on X to form a graph G.
2. Using Dijkstra’s algorithm approximate the graph distance between points,
dG, as the geodesic distance.

3. Calculate the average geodesic distance for each point davg.
foreach xi do

4. x̂i ← 1
nxi

∑
j exp

(
− d2

G
(xi,xj)

2σ2
s

)
xj , where nxi is the normalizing factor.

// Intial Smoothing

foreach σk do
5. A(xi, σk) ← 1

nxi

∑
j exp

(
− d2

G
(xi,xj)

2σ2
k

)
xj

6. Ã(xi, σk) ← A(x, σ)×
(
Φ
(

Bfct∗davg(xi)√
2σk

))−1

7. D(xi, σk) ← ||Ã(x, σ)− x||2
end
8. σmax(xi) ← maxσkD(xi, σk)

end

Algorithm 1: Computation of the characteristic scale for point clouds

Change in Scale. We vary the scale from half the original scale to 1.5 times
the original scale. The left panel in Fig. 5 plots the resulting deviation from the
ground truth. All parameters (σk, σs, Bfct) are kept constant. Since the head is
of a relatively coarser scale and the initial smoothing is kept constant, a higher
rate of deviation from the ground truth is seen as we increase the size of the
head model. On the other hand, decreasing the scale of the model while keeping
the initial smoothing constant does not affect the coarser scale regions and thus
a lower deviation from the ground truth is observed in this case.

Change in Density. We vary the density from the original density to half its
density. The right panel in Fig. 5 plots the resulting deviation from the ground
truth averaged over 10 different trials. Once again σk, σs, Bfct are kept constant.
A smooth deviation form the ground truth is observed as the density is reduced
to 3/4 its original density. As the density decreases to low values very few points
remain to correctly estimate both the characteristic scale as well as the shape
index and thus a higher deviation from ground truth is observed at low densities.



314 U. Bonde, V. Badrinarayanan, and R. Cipolla

3.1 Object Recognition with the MSSI Feature

The shape index alone does not capture all the information about the underlying
shape [6]. Being a ratio of the principal curvatures, it does not provide any
information about the magnitude of the curvatures. For example, a tennis ball
and a football are both spherical, but have completely different size with the
tennis ball having a higher magnitude of the principal curvatures compared
to a football. This notion is captured by the curvedness measure proposed by
Koendrink 2. The characteristic scale is used as another feature to capture the
scale and thus we form a triplet of features, which we call the Multi-Scale Shape
Index (MSSI) feature.

Detecting interest points, followed by a bag-of-visual-words approach is a
common strategy in 2D object recognition [1,8]. However in 3D, as reported in
the survey by [22], corner detectors are relatively less robust to noise compared
to region based methods. We therefore follow a region based approach to object
shape encoding. We start by super-pixellizing the MSSI feature map. We use the
fast and efficient SLIC super-pixels [14]. Fig. 7 shows an example of super-pixels
for different viewpoints of the head model. As seen from the images, these super-
pixels are fairly stable across viewpoints. This empirical observation motivates us
to use super-pixels for category recognition. To further capture the variations of
shape within a superpixel, we also include the angle between each pixel normal
and its corresponding superpixel normal3. Although this is correlated to the
variation in shape index, empirically we observed that it improves recognition
rate by introducing redundancy.

Fig. 7. An illustration of the stability of MSSI feature based superpixels across view-
points. Super-pixels with similar MSSI features appear at approximately the same
relative location in both view points. See supplementary material for an example on
cluttered scenes. Best viewed in colour.

We cluster the concatenation of MSSI features and normals at each pixel into
a preset number of clusters4. The super-pixel descriptors are obtained by binning
the MSSI+normal features for each of their pixels. As these super-pixels using
MSSI features, the resulting super-pixel descriptors are very sparse. Therefore

2 curvedness =

√
κ2
1+κ2

2
2
.

3 Mean of normals of all pixels within it.
4 We empirically fixed this to 300.
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to enrich the descriptor of a super-pixel, we compute a weighted average of
descriptors of super-pixels that are at most two hops away from it (1 and 2
neighbourhood in a graph sense). The weights used are proportional to the depth
difference between the super-pixels.

We train our super-pixel based recognition approach using an RBF kernel
SVM. We use a 1-vs-all setup. The super-pixel in the test set are classified
individually during testing. The resulting classification gives us an initial region
of interest for possible object locations. Thresholding on the number of connected
pixels within these region of interests gives the final object detection.

4 Experiments, Results and Discussion

Many 3D object recognition datasets have been introduced in the recent years
[16,13,7]. Of these, one of the largest is the RGB-D dataset [7]. We compare our
recognition algorithm using MSSI features with the pyramid hog based depth
features of Lai et. al [7]. We used the original authors code to obtain their results.

Dataset: The RGB-D dataset [7] contains challenges for both instance level as
well as category level object recognition and detection. We perform our experi-
ments for the category level object detection. For the category case, five items
are ground truth-ed by the authors. Of these we choose four categories: cap,
coffee mug, flashlight and soda can. We do not choose the bowl category since
there is a large variation in the size of the bowl category. This results in a large
variation in the characteristic scale (and thus in MSSI feature) which is difficult
to capture with limited training instances per category. Each category has 4 or
more instances and we train on only 2 instances. The training set contains about
600-1000 depth and RGB (which we do not use) images of 640x480 resolution
each captured on a turntable at 3 different angles. As mentioned earlier since
shape is fairly constant with small changes in viewing angles, we use only 1/3rd
of the training data. The test set contains 8 video sequences with 98-230 frames
per sequence. The number of objects in each sequence varies as does the clutter.
We currently use 320x240 resolution images to process this large dataset and
hence the results quoted in [7] are different from those computed here. At this
resolution, we consider minimum object size to be at least 1000 pixels. Varying
the threshold on the number of connected pixels we plot the resulting Precision-
Recall (P-R) curve in Fig. 8. The qualitative recognition results of our system
are shown in Fig.9.

We downsampled the dataset depth images by half to 320x240 resolution to
speed up computation. This particularly affects performance on small object
categories (soda can). We expect to perform better when our system is scaled
up to a larger resolution of images. From Fig. 8 we see that our MSSI features
based recognition easily outperforms the method of [7] in two classes (coffee
mug and flashlight). MSSI features cope better with reduced training data and
lower image resolution. For the soda can category, although our performance is
relatively better than [7], both methods suffer due to the small size of the object.
Only on the cap class, we are marginally worse off in performance.
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Fig. 8. Precision/Recall curves for our MSSI feature based category recognition and its
comparison with depth features based recognition of Lai et. al [7](shown as washigton
in plots). MSSI features based recognition clearly outperforms the method of Lai et.
al in the coffee mug and flashlight classes. For the cap class, we are only marginally
worse off in performance, and for the soda can category, although our performance is
relatively better than Lai et. al, both methods suffer due to small size of the object.

We now discuss the effect of some of the influential parameters of our system:

Effect of Bounding Factor Bfct. Setting Bfct to a large value we obtain only
coarse scale changes and mask the effect of smaller scale objects in the scenes.
On the other hand by setting it to a small value we obtain small neighbourhood
scale changes which mostly originate from the sensor noise present in the data.
In general we found the average geodesic distance (or a fraction of it) to be a
good approximation.

Weighting of Super-Pixel Neighbourhoods. To form the final descriptor
for a super-pixel, we compute a weighted average of individual super-pixel de-
scriptors in its 2-neighbourhood. We found the performance to vary based on
the weights that were assigned to the neighbourhood super-pixels. In our exper-
iments, we used a Gaussian weighting, based on depth difference between the
super-pixels. We set the standard deviation for the 1-neighbours to 20 and 10
for the 2-neighbours in our experiments.

The current algorithm is computationally expensive, for example it takes
about 15 minutes on the stanford dragon model on a single core CPU with
our unoptimized code.
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Fig. 9. Sample results of our object recognition and segmentation system. Our methods
performs well in the presence of partial occlusion (cap), clutter and change in object
pose. More results can be found in the supplementary material. Best viewed in colour.

5 Conclusions

In this work we presented a novel shape based feature called multi scale shape
index (MSSI). This feature is a triplet of shape index, curvedness and charac-
teristic scale. The shape index component of this feature assigns a real valued
index to shapes such as umbilics (double convex), parabolics (double concave)
and saddle points (convex-concave). We developed a scale-space method to com-
pute MSSI at each discrete point at its characteristic scale from noisy 2.5D data.
We studied the robustness and repeatability of this feature and demonstrated
its efficacy in category recognition. Our quantitative studies indicate that the
MSSI feature based recognition outperforms the current state-of-the-art method
and is better able to cope with lesser training data.
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Abstract. The efficient compression of depth maps is becoming more
and more important. We present a novel codec specifically suited for this
task. In the encoding step we segment the image and extract between-
pixel contours. Subsequently we optimise the grey values at carefully
selected mask points, including both hexagonal grid locations as well as
freely chosen points. We use a chain code to store the contours. For the
decoding we apply a segment-based homogeneous diffusion inpainting.
The segmentation allows parallel processing of the individual segments.
Experiments show that our compression algorithm outperforms compa-
rable methods such as JPEG or JPEG2000, while being competitive with
HEVC (High Efficiency Video Coding).

Keywords: depth map, image compression, segmentation, homogeneous
diffusion inpainting, partial differential equations (PDEs).

1 Introduction

In recent years, 3D cinema technology has become increasingly popular. In the
corresponding so called multi-view video + depth (MVD) format, multiple im-
ages are captured from different perspectives along with their respective depth
images. To cope with the huge amount of data, an efficient compression is in-
dispensable. Combined compression methods have been presented (see e.g. [1]),
where the correlated information between the colour images and the correspond-
ing depth maps is exploited. It is also possible to incorporate a temporal compo-
nent into the compression framework. In this paper, however, we focus exclusively
on the problem of depth map compression.

Besides well-established methods like JPEG or JPEG2000, compression algo-
rithms based on partial differential equations (PDEs) recently gained attention.
While in the encoding step, only a small subset of all pixels is selected and
stored, the missing information is reconstructed by means of PDE-based inter-
polation when decoding. This idea was introduced by Galić et al. in 2005 [2]
and extended in 2008 [3]. A further developed version of Schmaltz et al. [4] was
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c© Springer-Verlag Berlin Heidelberg 2013



320 S. Hoffmann et al.

able to beat JPEG2000. In the special case of cartoon-like images, which are in
their nature very similar to depth maps, a much simpler and computationally
favourable PDE-based codec has been proposed: In [5] the authors encode the
grey or colour values on both sides of image edges. In contrast to the nonlinear
anisotropic diffusion processes used in the aforementioned methods, a basic ho-
mogeneous diffusion inpainting is then sufficient to reconstruct missing pixels.
For cartoon-like images the method could outperform JPEG2000. Indeed, for
depth map compression, extracting and storing edges is actually a natural idea
as they are crucial to obtain a good visual perception of the geometry. However,
due to the fact that the above codec cannot handle homogeneous variations, it
turns out that its application to depth maps leads to unsatisfactory results.

In [6, 7] modified versions of this edge-based approach have been suggested.
The main changes consist of adding grey values at regular mask points, exploiting
different edge detectors, and encoding parts of the extracted data with other
methods. Similarly homogeneous diffusion can be incorporated in existing block-
based approaches where additional edge information is used to attain sharp
edges [8]. However, all these methods are either data intensive or lead to a fairly
complex overall codec.

Other approaches try to split the depth image recursively into smaller parts,
resulting in a tree structure, and recover the depth map on the lowest tree level
by means of linear interpolation [9, 10]. In [11], the depth map is approximated
by linear functions within segments. A similar method, also working on seg-
ments, has been introduced in [12] where mainly bilinear interpolation of data
on a regular grid has been used to reconstruct the depth information. All these
methods have the drawback that a lot of information has to be stored to be
sufficiently flexible.

The goal of the present paper is to address the aforementioned problems. We
present a conceptually simple codec for depth maps. While it is also based on ho-
mogeneous diffusion inpainting, it differs from [5–7] by the fact that it replaces
edges by closed contours that result from a segmentation. This creates a de-
coupling into sub-problems and allows to benefit from parallel implementations.
More importantly, by assuming homogeneous Neumann boundary conditions be-
tween segments, we show that it is unnecessary to store grey values at contours.
Instead, we select hexagonal grid points as well as points at some specific loca-
tions. The corresponding grey values to be stored are optimised. In the end we
do not only achieve a codec for depth maps that outperforms JPEG [13] and
JPEG2000 [14], but even has the potential to compete with the substantially
more complex HEVC (High Efficiency Video Coding), which is one of the most
favorable methods to encode this type of images [15].

Our paper is organised as follows. First we introduce segment-based homoge-
neous inpainting in Section 2. Based on this concept we describe our encoding
process in Section 3 and discuss the corresponding decoding steps in Section 4.
Experimental results will be presented in Section 5, and a summary in Section 6
concludes the paper.
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2 Segment-Based Homogeneous Diffusion

One key element of our compression codec is the segment-based homogeneous
diffusion (SBHD) that is used to reconstruct an image from a small amount of
stored data. Given a greyscale image f(x, y), SBHD relies on a segmentation of
the image domain into several sub-domains. For each of the segments, we assume
the grey values at specific points - the so called mask points - to be given. This
information is used to inpaint the rest of the respective segment.

The inpainting can be described as computing the steady state solution of the
homogeneous diffusion equation [16]

∂tu = Δu (1)

subject to the following mixed boundary conditions :{
u = f at mask points (Dirichlet boundary conditions)

∂nu = 0 at segment boundaries (homogeneous Neumann boundary cond.)

Thereby, n is the unit normal vector to the respective segment boundary, and
∂nu denotes the partial derivative of u in normal direction. The discretisation of
this partial differential equation can be done in a straightforward way by using
finite differences [17]. Then, as long as we have at least one mask pixel in each
segment, there exists an unique solution of the discrete problem (cf. [18]).

As a result of SBHD we obtain an image containing (i) sharp edges at segment
boundaries and (ii) smooth transitions within segments steered by the values at
the mask points. These transitions can also represent unsharp edges. SBHD is
therefore well suited for the representation of depth images.

An important advantage of this SBHD is the fact that, by construction, each
mask point does not have a global influence: Its impact is limited by the respec-
tive segment boundaries. This allows a segment-wise parallel processing as we
will see later. In order to get a solution of the diffusion equation we make use of
the fast explicit diffusion (FED) scheme [19] together with a CUDA implementa-
tion on the GPU. Compared to a CPU version we achieve a substantial speedup
due to the parallelism. Another speedup is gained by reducing the number of
required iterations to reach a steady state. To this end, we initialise all unknown
values at non-mask points with the mean value of the known grey values within
each individual segment.

3 Data Extraction and Encoding

Our encoding algorithm consists of several parts that are described next.

3.1 Part 1 – Segmentation

The first step is to find a segmentation fulfilling two properties. On the one hand
there should be a large contrast at the boundary between adjacent segments,
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Fig. 1. Contours extraction example. Left: Original depth image breakdancers (1024×
768). Middle: Extracted closed contours between pixels gained by the segmentation
(T1 = 1, T2 = 5, σ = 0.5). Right: Zoom at the contour of one head. Gray values are
given at specific mask points (black dots).

Type i Type ii Type iii Type iv Type v Type vi

Fig. 2. Different types of edge crossings along with their respective reference point (red
dot)

such that it pays off to save information at these locations. Since we store the
contour information it is possible to precisely recover these sharp edges. On the
other hand we want to have smooth transitions within each of the segments such
that they can be reconstructed well by our SBHD inpainting from the existing
information at mask points.

Our segmentation algorithm consists of two steps. First a region growing al-
gorithm is applied to get four-connected segments. A threshold T1 thereby de-
termines whether or not a neighboring pixel belongs to the same segment. Small
values of T1 usually lead to a slight over-segmentation. Therefore, in a second
step, we consider a Gaussian smoothed version of the original image with a
standard deviation of σ. In this image we compute the mean contrast between
adjacent pixels along a contour separating two neighboring segments. Succes-
sively we remove the boundary with the lowest average contrast. We repeat this
as long as the lowest contrast is smaller than some threshold T2. This method
yields very precise contours between adjacent segments while allowing smooth
transitions not to be split.

As already mentioned the segmentation immediately yields closed contours
at between-pixel locations. An example depth image along with the extracted
contours is depicted in Figure 1. As desired, there is no contour around the two
people on the right hand side of the image because of the smooth transition to
the background. It is the task of data points within the segments to restore such
smooth flows in the reconstruction.
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If we want to use an existing codec like the JBIG (Joint Bi-level Image Experts
Group) standard [20] to encode the contour information we would have to store
two binary images, i.e., the edges in x- and y-direction, respectively. Alternatively
we store this information more efficiently with a chain code. The advantage of
between-pixel edges is that there are only three possible directions, whereas we
would have seven directions when considering pixel chains. Thus, the chain code
is highly efficient.

In the beginning we extract all T-junctions in the edge map (see Fig. 2, types
i-iv). To store them, we have to save the respective reference point coordinates
along with the type number. Starting at these crossings we can build a chain code
and stop whenever we reach an edge that has already been visited. Not needed
starting elements can be removed afterwards. The only thing which remains are
contours without any crossing. Therefore, we add two more starting element
types representing only one edge, either in x- or in y-direction, respectively
(see Fig. 2, types v and vi). The corresponding chain code has to be stored as
well. Afterwards we employ a sophisticated lossless context-based entropy coder
to encode the obtained edge information, namely the PAQ compression [21],
version PAQ8o6.

3.2 Part 2 – Mask Points

So far we only focused on the location of segment boundaries in the image.
However, we also have to encode some data for being able to reconstruct the
grey values within each of the segments. Therefore, we use a mixture of regu-
larly sampled mask points and points at freely chosen positions as described in
the following subsections. The overall amount of selected mask pixels is a free
parameter which allows us to steer the compression ratio.

(a) Hexagonal Mask

To reduce the coding costs for the location of prescribed grey values we initially
choose points according to a specific pattern or algorithm to limit the coding
overhead. One possibility would be to uniformly sample random points over the
whole domain given a specific seed. A drawback of this method is that there are
specific areas where points are clustered, i.e., the distance between neighboring
points is not equal. Another approach would be to use mask points at a regular
grid as done in [6]. However, since we want a good covering of the whole domain
this is still not optimal. What we want is a mask where the minimum distance
between two distinct points is maximised. To get a good approximation one
could assume that no boundaries are present. In this context it is known that
the hexagonal packing is the optimal one in the two-dimensional Euclidean plane
[22]. This is why we make use of such an hexagonal grid pattern. In order to
make sure that there is at least one mask point in each segment, we compute the
hexagonal mask separately for each individual segment. Thereby a given density
value determines the number of points.



324 S. Hoffmann et al.

Input: Original image f , initial mask m,
percentage p, percentage q, desired mask density r

Output: Mask m with density r

While density of m smaller than r do

1. Apply SBHD using the mask m and save result in u.

2. Choose randomly p percent of all non-mask points as a candidate set C.

3. At all locations in C, compute the squared difference between f and u

4. Let T ⊂ C be the set containing the q percent of all locations from C where
the error computed in Step 3 is largest.

5. Set all locations from T as mask points in m.

6. Clear T and C.

Fig. 3. Probabilistic densification algorithm

(b) Probabilistic Densificaton and Nonlocal Pixel Exchange

In addition to the hexagonal mask we want to store some more mask points for
a further quality gain. We accept the larger coding costs of these free points and
place them at locations where the quality can be improved most. Therefore, we
perform in a first step a so-called probabilistic densification, which is similar to
the probabilistic sparsification process described in [18]. We consecutively select
points as additional mask points, starting with the ones from the hexagonal
mask as an initialisation. The decision where we insert new points in each step
depends on where the difference of the respective reconstruction to the original
image is largest. This process is repeated until we reach a desired density. The
exact algorithm is depicted in Figure 3. Experiments have shown that a good
choice for the parameters is p = 10% and q = 0.1%.

Moreover, it has been demonstrated that it pays off to apply a so called non-
local pixel exchange [18], which tries to find better combinations for the mask
points not lying on the hexagonal grid. Thereby a small number k of non-mask
points is randomly selected, and the local error is computed. Then one mask
point is chosen, exchanging its position with the position of the largest computed
error. If this improves the reconstruction we use the new mask, otherwise the
exchange is reverted. Thus, we can only improve our result. For more details
we refer to [18]. We use the parameter k = 10, as this choice turns out to yield
good results. After only 1000 iterations, the reconstruction quality can already
be improved tremendously. The pixel exchange step can also be left out if one is
interested in a faster encoding method with lower quality.

While only having to store one density parameter for the hexagonal mask,
the location of the additional free mask points is encoded using the JBIG en-
coder [20].
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Fig. 4. File structure of our proposed codec

3.3 Part 3 – Grey Values

After the determination of the mask pixel locations it also pays off to optimise
the grey values that are stored at these positions. Usually the respective grey
values of the original image are adopted. However, this is not always the best
solution with respect to the global reconstruction error. Instead of being fully
exact at the selected pixels, it makes sense to allow for some deviation at these
locations to achieve an overall smaller global error. In order to find optimal
values we make use of a least squares approach as suggested in [18]. Note that,
as we are using SBHD, the computations can be speeded up by computing the
optimal grey values for the individual segments in parallel.

The resulting values at mask locations are then quantised to d different values
and afterwards stored in a list. The order of the mask points is chosen such that
we go from segment to segment, which has the advantage that subsequent values
in the list are more likely to be similar due to the design of our segmentation.
To obtain a compact representation, we use the PAQ encoder mentioned in
Section 3.1.

3.4 Overview of File Structure

We are now able to write all the gathered information into one file having the
structure as depicted in Figure 4. Note that we do not have to store the image
dimensions in the header since they are already contained in the JBIG mask
data.

4 Decoding

In the decoding phase we can follow a straightforward process chain. First of all
we scan the stored header information and split the main data into the edge data,
the irregular mask, and the grey value information. Edges can be restored by
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placing the starting points and following the single contour chains. Afterwards
we compute the hexagonal mask and add the irregular mask points to it. The
grey values are placed at the corresponding locations, and we finally obtain the
reconstruction via SBHD.

5 Experiments

In this section, the potential of the proposed codec is presented by considering
three different existing methods. Besides the well-established standard JPEG
and its successor JPEG2000, we will also compare our method with the desig-
nated future standard HEVC (High Efficiency Video Coding), version HM-8.2.
Although this codec is designed for the purpose of video coding, it also provides
an intra-coding mode for the efficient compression of still images [15].

As test images we use the so-called breakdancers and ballet depth maps, both
taken from the MVD sequence in [23] (respective image size: 1024 × 768). We
determine that 80% of all mask points lie at hexagonal grid locations and set the
quantisation parameter to d = 64. This choice has experimentally shown to yield
a good trade-off between coding costs and quality gain. We keep these parameters
fixed for all experiments. Figure 5 depicts the results for a compression rate of
0.045 bits per pixel (bpp), which roughly corresponds to a compression ratio of
180 : 1. The overall mask density in this case is 0.3% and 0.45% for the images
breakdancers and ballet, respectively.

The transform-based methods JPEG and JPEG2000 often perform well when
it comes to the compression of standard natural images. However, both meth-
ods suffer from artifacts around edges. When it comes to depth images, these
block or ringing artifacts around object boundaries are visually perceived much
more unpleasant than in smooth image regions. HEVC seems to overcome these
problems, but tends to smooth out some of the edges, which can lead also to a
distorted geometric perception. With our SBHD method it is hard to notice any
difference between the original image and the reconstruction.

In a quantitative comparison we measure the error between the original im-
age and the respective reconstruction by means of the peak-signal-to-noise ratio
(PSNR). The resulting measurements can be seen in Figure 6. Note that for
JPEG it is not possible to reach very high compression rates. As a larger PSNR
value corresponds to a higher similarity between two images, one can see that
our method clearly outperforms JPEG and JPEG2000. Our codec is even able
to exceed the quality of HEVC for some compression rates.

Furthermore, we can also evaluate the results considering a more perceptual
error measure like the structural similarity index (SSIM) [24]. We use the avail-
able MatLab version with standard parameters from [24]. Figure 7 depicts the
results. Note that a SSIM closer to 1 denotes a better visual similarity. Com-
pared to JPEG or JPEG2000, it is visible that our proposed method reaches
better results for almost all tested compression rates. HEVC and SBHD give
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Fig. 5. Comparison of different compression methods for two depth images using a
compression rate of 0.045 bpp. The boxes denote the area of the respective close-ups.

reconstructions of comparable quality. This result is remarkable since, in contrast
to HEVC, our algorithm makes use of relatively simple and straightforward
concepts. We thus believe that it has potential for further improvement.

In our current proof-of-concept implementation, it takes several minutes for
an image to be encoded, depending on its size and the number of mask points.
The decoding of a depth image of size 1024×768 can be done within a second on
a modern PC. It is important to mention that there is a lot of potential for ac-
celerating this process. For example, one can incorporate bidirectional multigrid
methods into SBHD [5]. In this way, we expect that real-time decoding becomes
feasible for practical applications.
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Fig. 6. Quantitative comparison to JPEG, JPEG2000 and HEVC. Left: Breakdancers
image. Right: Ballet image.
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Fig. 7. Perceptual comparison to JPEG, JPEG2000 and HEVC using the SSIM mea-
sure. Left: Breakdancers image. Right: Ballet image.

6 Summary

We have shown that a combination of two relatively elementary concepts can
lead to a remarkable compression quality of depth maps: a region-growing seg-
mentation method as well as a homogeneous diffusion inpainting with carefully
selected data points. In our evaluation, this segment-based homogeneous dif-
fusion (SBHD) codec clearly outperforms JPEG and JPEG2000. Moreover, it
performs competitively with HEVC, especially in terms of perceptual quality.

In our ongoing work we are extending our framework to colour-valued data
such as cartoon-like images. Moreover, we are going to incorporate additional
information such as multiple views, combined colour / depth images, and their
temporal extensions. We are optimistic that this will help to demonstrate the
widely unexplored strength of diffusion ideas for data compression.

Acknowledgements. We thank Marco Zamarin and Søren Forchhammer from
the Technical University of Denmark for drawing our attention to this topic.
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Abstract. A hierarchy of segmentations(partitions) is a multiscale
set representation of the image. This paper introduces a new set of
scale space operators or transformations on the space of hierarchies of
partitions. An ordering of hierarchies is proposed which is endowed by
an ω-ordering based on a global energy over the classes of the hierarchy.
A class of Matheron semigroups are shown to exists in this ordering of
hierarchies. A second contribution is the saliency transformation which
fuses a saliency function corresponding to a hierarchy, with an external
function, rendering a new or transformed saliency function. The results
are demonstrated on the Berkeley dataset.

1 Introduction

This paper addresses the questions of synthesizing and improving hierarchies
of segmentations by means of scale space operators. A hierarchy of partitions
has been previously obtained, and is given. It provides a stack of coarser and
coarser segmentations of the scene under study. Some external information, or
“ground truth” composed of sets, drawings, auxiliary numerical functions, etc.. ,
may come, or not, with the hierarchy. The problem is thus twofold, and suggests
to separate the situations with no external information form those with ground
truth. They lead indeed to two rather different approaches.

The first one -no outside information- is based on already known techniques
which extract an optimal cut form the hierarchy by minimizing some energy
ω. The most often, the energy ω depends on a positive parameter [11] [4] [13]
[5]. Under which conditions this parameter can be understood as a space scaler,
leading to an improved hierarchy and to scale space semi-groups? This will be
the matter of section 3, which is preceded by a reminder on optimal cuts in
hierarchies.

The second situation involves disparate data. For answering the question
“How to enrich the hierarchy with ground truths?” we have to find a common
basis to express them, and from this basis, to build up a few laws of composition.
The scale spacing will then intervene as distance functions associated with the
ground-truths. These questions will be treated in sections 4.

A. Kuijper et al. (Eds.): SSVM 2013, LNCS 7893, pp. 331–342, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



332 B. Ravi Kiran and J. Serra

Fig. 1. Top: Dendrogram representation of hierarchy, Input 25098 Image, Bottom:
Topographic view of UCM, Inverted (and contrasted for better view) Ultrametric
contour Map(UCM) where the edges with strongest saliency values are the darkest,
and the weakest values are the lowest, while zeros are white(background)

2 Optima Cuts and Hierarchies (Reminder)

The definitions and prerequisites needed in understanding the rest of the paper
are given in this section [5], [12]. The usual distinction between continuous and
digital spaces is not appropriate for the general theory developed in sections 2
to 4. What is actually needed reduces to the two following assumptions

i) the space E to partition is topological, like R2,Z2, or others,

ii) the smallest partition π0 taken into account has a finite number of classes.

The first assumption allows us to speak of frontiers between classes, or edges.
The second one aims to avoid things like fractal sets.

2.1 Partitions, Partial Partitions

Intuitively, a partition of E is a division of this set into classes, i.e. regions that
do not overlap, and whose union gives E. Below, the symbols S, T stand for
classes, and π for partitions. Partition π1 is smaller than partition π2 when each
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class of π1 is included in a class of π2. This condition provides an ordering on
the partitions, called refinement, which in turn induces a complete lattice.

Let S be a subset of E. Following Ch. Ronse [10], any partition π(S) of S
is called partial partition of support S (in short p.p.). In particular, the partial
partition of S into a single class is denoted by {S}. If the q classes of the partition
π(S) are {Tu, 1 ≤ u ≤ q}, one writes

π(S) = T1  ..Tu..  Tq,

where the symbol  indicates that the classes are concatenated. The set of all
partial partitions of E is denoted by D.

An energy on D is a numerical function ω : D →[0,∞]. In the following, D
will be provided with several energies ω, which may satisfy two axioms

i) ω is h-increasing, i.e.

ω(π1) ≤ ω(π2) ⇒ ω(π1  π0) ≤ ω(π2  π0). (1)

where π1 and π2 are two partial partitions of same support, and π0 a partial
partition disjoint from π1 and π2 ,

ii) ω is singular, when the energy ω({S}) of class S is differs from that of any
p.p. of S, i.e.

π(S) p.p. of {S} ⇒ ω({S}) �= ω(π(S)). (2)

The geometrical meaning of Rel.(1) is depicted in Figure 2.

2.2 Hierarchies of Partitions

A hierarchy H is a chain of ordered partitions πi, i.e.

H = {πi, 0 ≤ i ≤ n | i ≤ k ≤ n⇒ πi ≤ πk}, (3)

where πn is the partition {E} of E in a single class called the root. The classes
of the finest partition π0 are called the leaves, and the intermediary classes are
the nodes.

Let Si(x) be the class of partition πi of H at point x ∈ E. Denote by S the
set of all classes Si(x) of H , i.e. S = {Si(x), x ∈ E, 0 ≤ i ≤ n}. Expression (3)
means that at each leaf x the family of those classes Si(x) of S that contain x
forms a finite chain Sx in P(E), of nested elements from S0(x) to E :

Sx = {Si(x), 0 ≤ i ≤ n}.

According to a classical result, a family {Si(x), x ∈ E, 0 ≤ i ≤ n} of indexed
sets generates the classes of a hierarchy iff

x, y ∈ E ⇒ Si(x) ⊆ Sj(y) or Si(x) ⊇ Sj(y) or Si(x) ∩ Sj(y) = ∅. (4)
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Fig. 2. h-increasingness

The partitions of a hierarchy may be represented by their classes, or by the
saliency map of the edges, or again by a dendrogram where each node of
bifurcation is a class S, as depicted in Figure 1. The classes of πi−1 at level
i− 1 which are included in class Si(x) are said to be the sons of Si(x). The set
of all classes S of all partitions involved in H is denoted by S(H). Clearly, the
descendants of each S form in turn a hierarchyH(S) of root S, which is included
in the complete hierarchy H = H(E).

2.3 Cuts in a Hierarchy

Any partition π of E whose classes are taken in S defines a cut π in a hierarchy
H . The set of all cuts of E is denoted by Π(E) = Π . Every “horizontal” section
πi(H) at level i is obviously a cut, but several levels can cooperate in a same cut,
such as π(S1) and π(S2), drawn with thick dotted lines in Figure 1. Similarly,
the partition π(S1)  π(S2) of the figure generates a cut of H(E).

Given an energy ω over the set D(E) of the partial partitions of E, an optimal
cut π∗ ∈ Π(E) is a cut that minimizes ω, i.e. such that ω(π∗) = inf{ω(π) |
π ∈ Π(E)}. Now, though the hierarchies are discrete, the number of their
possible cuts becomes rapidly huge: a small hierarchy of 200 leaves and 10 levels
generates billions of cuts! How to find out the best one? The following two
theorems answer the question.

Theorem 1. Let H be a hierarchy and ω be a h-increasing and singular energy.
Energy ω induces an ordering on the set Π(E) of all cuts of H. Given two cuts
π, π′ ∈ Π(E), cut π is said to be less energetic than cut π′ w.r.t. ω, and one
writes π ≤ω π′, when in each class S of the refinement supremum π∨π′ the p.p.
of π inside S is less energetic than that of π′inside S. The energetic ordering
induces the ω-lattice (∧ω , ∨ω).

In the notation, we distinguish the refinement lattice from the ω-lattice by using
for the former the three symbols ≤,∨, and ∧, without ω subscript. The meaning
of the energetic lattice (∧ω , ∨ω) is clear: it associates energetic minimum and
maximum with each class of π ∨ π′, and not globally only.

Theorem 2. Let ω be h-increasing and singular energy. Then for any H ∈ H
and any node S of H with p sons T1..Tp of optimal cuts π∗

1 , ..π
∗
p , there exists a
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Fig. 3. The leaves are the four classes of a. The three levels of the hierarchy H1 are
[a b d] and those H2) are [a c d], and d is the whole space. The indicated energies ω
show that H1 ≤ω H2.

unique optimal cut of the sub-hierarchy of root S. It is either the cut π∗
1π∗

2 ..π∗
p ,

or the one class partition {S} itself:

ω(π∗(S)) = min{ω({S}), ω(π∗
1  π∗

2 ..  π∗
p)} (5)

Theorem 2 governs the choices of models for energies, and their implementations:
Firstly, the dynamic programming Rel.(5) allows us to find the optimal cut

of H in one ascending pass. The nodes of H above the leaves have to be visited
according to an order which respects the inclusions. One then compares the
energy of each node with that of the p.p. of its sons, and the less energetic of
the two is kept for continuing the ascending pass, and so on until the top node
E is reached [4], [5].

Secondly, the obtained optimal cut π∗(E) is indeed globally less energetic than
any other cut in H , but, moreover, if we compare π∗ with any other partition π
of E, then in each class S of the refinement supremum π∗ ∨ π the energy of π∗

is smaller than that of π.

3 Openings on H(S)

Studies on hierarchies often hold on the family of all hierarchies whose nodes are
taken among the set S of nodes of some initial hierarchy H , a family denoted
by H(S) below. Now, optimal cutting is an operation which maps hierarchies on
partitions. If we wish to insert it in a series of transformations on hierarchies,
this optimal cutting must be interpreted differently.

We observe firstly that both energetic and refinement orderings on partial
partitions induce orderings on the set H(S) of hierarchies, for which H1 ≤ H2

when at any level i, π1(i) ≤ π2(i) (resp.π1(i) ≤ω π2(i)). For the refinement one,
the optimal element is the cylindric hierarchy whose all horizontal sections are
the leaves partition, and the maximal one is obtained by taking the one class
partition {E} at all levels, leaves level excepted. In the ω-lattice, the two extreme
elements are the two cylinders H∗ and H∗∗ whose all sections above the leaves
level are the optimal cut, or the maximal one.
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Fig. 4. Minimal pyramid H∗ obtained by replacing non optimal classes in H up till
level of the optimal cut

Consider now the refinement supremum H ∨H∗ of H and of the ω- optimal
cylinder H∗ and view it as an element of the ω-lattice H(S).

Theorem 3. The operation γ∗ω(H) = H∨H∗ from the ω-lattice H(S) into itself
is an opening.

Proof. γ∗ω is anti-extensive, since each class S of H is replaced by a less energetic
class of H∗ when S ≤ S∗ and left unchanged when not. On the other hand
γ∗ω[γω(H)] = H ∨ H∗ ∨ H∗ = γ∗ω(H), which is thus idempotent. Finally, γ∗ω is
also increasing since when H ≤ω H ′ then each class of H ∨ H∗ has an energy
smaller or equal to that of the class of same level in H ∨H ′∗, which achieves the
proof. �

Introduce the cone S(x) = {Si(x), 1 ≤ i ≤ N} of all classes of H that contain
the leaf x. As x spans π0, the cones { S(x), x ∈ π0} characterize the hierarchy
H . The transform γ∗ω(H) can be described by its characteristic cones S∗(x):

S∗(x) = {S∗
j (x) = S∗

i (x), 1 ≤ j ≤ i }
S∗(x) = {S∗

j (x) = Si(x), i < j ≤ N},

where S∗
i (x) denotes the class of the optimal cut at leaf x, and i the level at

which this class is located. In the cone S∗(x) all classes below level i + 1 are
replaced by S∗

i (x), and the other ones are those of H itself.
Instead ofH∨H∗, we can as well start fromH∧H∗, and consider the operation

ζ∗ω(H) = H ∧ H∗, which also turns out to be an opening. In the cone at leaf x
of ζ∗ω(H) all classes above level i+ 1 are replaced by S∗

i (x), and the other ones
are those of H itself.

3.1 Semi-groups of Climbing Energies on H(S)

We now consider a climbing family {ω(λ), λ ∈ Λ} of energies, i.e. a family of
h-increasing and single energies, as previously, to which we add the axiom of
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scale increasingness [5]. This axiom states that if the energy ω(λ;S) of node is
lesser than the energies ω(λ;π) for all p.p. π of support S, then the inequality
remains true for the energies ω(μ) , λ ≤ μ:

λ ≤ μ and ω(λ;S) ≤ ω(λ;π)⇒ ω(μ;S) ≤ ω(μ;π), S ∈ S. (6)

The climbing family {ω(λ), λ ∈ Λ} generates a semi-group of operators. Denote
by H∗

λ and H∗
μ the smallest elements of H(S) for the two ω(λ)-lattice and ω(μ)-

lattice respectively. The scale increasingness Rel.(6) implies that H∗
λ ≤ H∗

μ, or
equivalently:

H∗
λ ∨H∗

μ = H∗
μ H∗

λ ∧H∗
μ = H∗

λ (7)

for the refinement supremum and infimum. It follows that:

γ∗ω(μ)[γ
∗
ω(λ)(H)] = (H ∨H∗

λ) ∨H∗
μ = γ∗ω(μ)(H).

As the two suprema commute, the optimal cut openings γ∗ω turn out to satisfy
the Matheron semi-group1:

γ∗ω(λ) ◦ γ∗ω(μ) = γ∗ω(μ) ◦ γ∗ω(λ) = γ∗max{ω(λ),ω(μ)} λ, μ > 0.

Concerning the dual form ζ∗ω one finds similarly/

ζ∗ω(λ) ◦ ζ∗ω(μ) = ζ∗ω(μ) ◦ ζ∗ω(λ) = ζ∗min{ω(λ),ω(μ)} λ, μ > 0.

This time, the lower energy imposes its law. Finally, the whole collection of the
optimal cuts can appear in the synthetic hierarchy

Hsyn = (...((H ∨ω1 H∗
λ1) ∨ω2 H∗

λ2)...) ∨ωp H∗
λp

which is a succession of the increasing optimal cuts of the energies ω1, ω2, ...ωp.

4 Saliency Transformation

We now address the second question set in the introduction: how to merge
hierarchy and ground-truth ? This time, hierarchy H is represented by its
saliency; i.e. by a weighting function associated with the edges between classes
ofH [8]. For a given edge, this function, constant along the edge, is the level ofH
when the edge disappears. If we associate also one or more numerical functions
g with the ground-truth, the merging question comes back to that of combining
numerical functions for generating a new saliency.

In order to make saliencies and hierarchies equivalent notions, we consider
the latter as sequences of partitions that appear at different levels, and not

1 There are two broad classifications of scale spaces semigroups based on the
underlying algebraic structure, used in scale space applications. First is the linear
semigroup, based on a vector space. Second is the semigroup of Matheron’s
granulometries [7] which uses an underlying lattice for analysis, and where the most
active transformation imposes its law.
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Fig. 5. A set of Optimal cuts form a Matheron semigroup: Three partitions of 25098
Image at λ = 0(leaves), 5000 and 8000

just ordered. Any strictly increasing mapping α of the levels, e.g. square root,
log, etc., transforms a saliency into another one, as well as the addition by a
constant value. However, a distribution of arbitrary weights on the edges may
not be saliency. It is also required that by removing one edge one still maintains a
partition, i.e. that one does not create pending edges. This condition is formalized
below by the operation of class opening.

4.1 The Class Opening

This operation appeared in literature on the same date, in two independent
contexts. The first is the ultrametric opening [6] which concerns discrete
classifications by ultrametrics. The second is the pruning [14], which is a
morphological thinning, and transforms a skeleton into a skeleton by zones of
influence. More recently, in [9] the same opening allows to identify hierarchical
segmentation with ultrametric watershed in digital spaces (see also [3]). Here,
we start from the same notion, but more simply, without any ultrametric, or
graphs or any digital background.

The difference between what follows and the three above references concerns
the consequences of the class opening, namely the corollary 1, and above all
the key theorem of structure 4, ignored in [6], [14], [9], and which answers the
question set in the first sentence of this section. Given a finite set E of simple
arcs in the 2 − D space R2 or Z2, which can meet at their extremities only,
consider the binary operation γ : P( E)→ P( E) which reduces each set of arcs
X ∈ P( E) to the closed contours it may produce.

Theorem 4. the operation γ : P(E)→ P(E) is an opening.

Proof. Let be X,Y ∈ P( E). Then each closed contour of X is also a closed
contour of Y , and γ(X) ⊆ γ(Y ). On the other hand, as γ(X) is reduced to its
contours, γγ(X) = γ(X). Finally, γ(X) ⊆ X , which achieves the proof. �
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Fig. 6. A class opening demonstrated: Initial set of arcs, Class opening providing a
partition

We call “binary class opening” the operation γ, since it selects the arcs that
delineate the classes of a partition of E.

The numerical extension of γ, for which we keep the same symbol γ, holds on
a numerical function g on the 2 − D underlying space R2 or Z2. The edges of
the leaves are thus formed by elements of E, points or pixels. Denote by Xt( g)
the set of pixels of the leaves where g is ≥ t, and define the numerical opening
γ( g) by its level sets Xt[γ( g)] by putting

Xt[γ(g)] = γ[Xt(g)], t > 0.

As the number of edges is finite, the number of changes between level sets is
also finite. Let Si+1 be a class which appears at level ti+1. When t decreases,
the next new class Si appears at ti. Since there is no change in the interval ]
ti, ti+1], we have

ti = inf{g(x) | x ∈ ∂Si}. (8)

We assume that g is discrete, or lower semi-continuous, so that the value ti occurs
at one point of some edge ei of Si. This value is nothing but the weight of the
edge ei in the saliency transform γ( g) which in turn generates hierarchy H , and
ti is the highest level of class Si in H . If several classes appear at ti, generated
by several closing edges, then their intersections are empty and the description
remains valid. Therefore, an opening being characterized by its invariants, we
can state.

Corollary 1. Let G be the family of all integer functions g : R2 → Z+, or
Z2 → Z+. The image I = γ(G) of G under the class opening γ is exactly the
family of all possible saliencies on the set E of the leaves edges.

4.2 Composition of Class Openings

The composition problems are the following:

1- A first saliency, s say, already weights the set of edges E. When a non
negative function g over space the underlying space R2 or Z2 is introduced, how
to compose it with s?
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2- When in turn a second function, g2, acts on the saliency s1 resulting of g1,
how the two effects are composed?

The combination of saliencies and functions is not straightforward. Given s and
g, the sum, the difference, the product, the ratio, the supremum, or the infimum
between s and g, may not be saliencies. The only exception arises when both
s and g are saliencies. Then their supremum results in a saliency, but not the
other operations. However, a few nice properties can be stated:

Theorem 5. Let g1and g2 be two non negative functions on R2 or Z2, then:
i) γ(g1) (resp. γ(g2)) is the largest saliency smaller than g1 (resp. g2);
ii) γ(g1)∨ γ(g2) is the largest saliency whose value at each edge is smaller or

equal to that of γ(g1) or γ(g2);
iii) if g1 	 g2 denotes an operation from G × G → G, such as +,−,×,÷,∨,or

∧, then γ(g1 	 g2) is the largest saliency smaller than g1 	 g2, and γ(g1 ∨ g2) ≤
γ(g1 + g2).

In all cases the resulting saliency is unique.

The proposition suggests two paths for combining saliencies. Given a primary
saliency s and the ground truths g1, g2, ...gn, the sequence s, s∨ γ(g1), s∨γ(g1)∨
γ(g2), etc..provides an increasing family of saliencies, and the ground truths
commute in the various s ∨ γ(g1) ∨ ...γ(gi). Alternative families are given when
we compose various gi and then perform the class opening, namely γ(s ∨ g1) ,
γ(s ∨ g1 ∨ g2), etc.. and γ(s+ g1) , γ(s+ g1 + g2), etc..In all cases the series is
increasing, and simplify more the hierarchy H(s) when suprema are involved.

Owing to the equivalence “saliencies⇔ hierarchies” all the above compositions
map the whole space H of the hierarchies into itself. We have the succession

H → saliency s→ saliency γ(s, g)→ new hierarchy H ′

We are no longer in the situation of the semi-groups of section 3, where the
framework was restricted to H(S). Here new classes, absent in H , can appear
in H ′. The adopted approach, via the class opening, provides also the space H
with a lattice structure isomorphic to that of the openings.

5 Experiments and Analysis

Here we demonstrate an example of the class opening on the Ultrametric contour
map (UCM) from the Berkeley database [1].

5.1 Saliency Transformation by Ground Truth

Conventionally the ground truth information is intended to assess the quality
of a segmentation, here a hierarchy H of segmentations. Here in the place
of evaluating the hierarchy, we analyse it with respect to the given ground
truth. The saliency transformation by a ground truth is an amelioration of
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Fig. 7. 239096 Image, One of the Ground truth partitions(G1), Inverse distance
function for g1, Point ground truth inverse distance function gp(point at top right),
where g1 and gp are the corresponding euclidean distance functions

Fig. 8. Original Saliency s(Image 239096), new transformed saliency by class opening
γ(g1 + s) with ground truth G1. Saliency by class opening with point ground truth
γ(gp + s) to demonstrate the effect of the inverse distance function. we see the profile
of the transformed saliency γ(gp + s) follows the inverse distance function gp.

the partitions in the hierarchy to generate new partitions with the same edges
ordered by combined effect of: 1. proximity to the ground truth 2. high saliency.
More clearly, how do we combine a ground truth and a hierarchy of partitions ?

The inputs given to us are the saliency function s representing the initial
hierarchy H and the ground truth partition of edges G. Here we use the distance
function of ground truth d, to define the inverse distance function g = 1 − d.
The output is a new saliency γ(s + g) and thus a new hierarchy Hg which
contains partial partitions from H that are closest in distance to the ground
truth partition G and the saliency (see figure 7).

Figure 8 summarizes the input and output saliencies. The input saliency is
shown for input image 239096 from the Berkeley database. The ground truth G1

is more or less representative of the image structure in the saliency s, and thus
the resulting transformed saliency sG1 is not too different, except that in general
edges very far from the ground truth are reduced or weakened, while the ones in
close proximity are reinforced. For the sake of pedagogy we demonstrate with a
inverse distance function of a point shown in Figure 7 (gp) and its corresponding
saliency γ(gp + s). We see the radial attenuation in the transformed saliency.

6 Conclusion

This paper discussed two main contributions, namely: 1. The different scale space
semigroups on hierarchies of partitions. 2. A saliency transform that introduces
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external information into some initial hierarchy. The synthesis was obtained by
means of a class opening that reduces a set of arcs containing loops into just its
loops, and its numerical equivalent. An application of fusing the ground truth and
saliency function was demonstrated, which reordered arcs in the hierarchy based
jointly on the saliency and ground truth proximity. The distance function here
can be replaced by other external information, like color and depth information,
[2], thus enabling the evaluation of the hierarchy using many different functions.
Following this algebraic structure, applications in multi-variable fusion and
feature extraction will be explored.

Acknowledgements. The authors are grateful to Prof. L. Najman for his
valuable comments on the class opening.
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Abstract. The discrete scale space representation L of f is continuous in scale
t. A computational investigation of L however must rely on a finite number of
sampled scales. There are multiple approaches to sampling L differing in accu-
racy, runtime complexity and memory usage. One apparent approach is given by
the definition of L via discrete convolution with a scale space kernel. The scale
space kernel is of infinite domain and must be truncated in order to compute an
individual scale, thus introducing truncation errors. A periodic boundary condi-
tion for f further complicates the computation. In this case, circular convolution
with a Laplacian kernel provides for an elegant but still computationally complex
solution. Applied in its eigenspace however, the circular convolution operator
reduces to a simple and much less complex scaling transformation. This paper
details how to efficiently decompose a scale of L and its derivative ∂tL into a
sum of eigenimages of the Laplacian circular convolution operator and provides
a simple solution of the discretized diffusion equation, enabling for fast and ac-
curate sampling of L.

1 Introduction

The concept of deep structure – the way critical points and structures change under in-
fluence of scale – in continuous Gaussian scale space was introduced by Koenderink [1]
and has been developed later on [2, 3]. It has proven to reveal information useful for
various tasks such as image matching and retrieving, reconstruction and topological
partitioning [4]. Practical applications however are rare. An implementation of impor-
tant scale space based algorithms can be found in the software tool ScaleSpaceViz [5].
ScaleSpaceViz has, according to the authors, “proven to be useful in exploring the deep
structure of images and constructing applications involving scale space interest points,
such as reconstruction and matching” [4, 6, 7]. Although this holds true under certain
conditions, ScaleSpaceViz suffers from robustness problems [8]. As it is the case with
many such scale space applications, its implementation is based on a discretized contin-
uous scale space. The instability of tracts at higher scales is due to fluxes and interaction
in-between critical paths. This interaction problem became clearly apparent when aim-
ing for image-editing via scale space singularities [4]. In [7] the top-point reconstruc-
tions were kept on the bounded domain suffering much less from these instabilities,
but still the mutual fluxes in between critical paths were not taken into account in the
implementations.

The discrete scale space proposed by Lindeberg [9] takes the discrete nature of com-
puter processed signals into account. It is based on equivalent assumptions and axioms

A. Kuijper et al. (Eds.): SSVM 2013, LNCS 7893, pp. 343–354, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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that have been used to derive the continuous Gaussian scale space adapted to discrete
signals. Transferring scale space algorithms from a discretized continuous to the dis-
crete scale space will eventually lead to more accurate, robust and possibly faster im-
plementations.

Using so-called Laplacian Eigenimages [10], we compute a discrete scale space.
We show how one can do this fast and discuss the consequences in deep structure: the
movement of critical points as scale changes. The discrete scale space formalized by
Lindeberg does not respect important topological invariants such as the Euler number.
Since most algorithms that operate on the deep structure of the Gaussian scale space
require this topological invariant to hold, we use a six-neighborhood respecting the
Euler number [11]. A subsequent investigation of various properties of this discrete
scale space then results in a fast and robust sampling algorithm. We finally propose
the application of topological graphs [12] together with adaptive sampling in order to
reliably extract the deep structure of the discrete scale space.

2 Discrete Scale Space

For periodic discrete signals f with discrete domain D (f) = [1,M ] × [1, N ], the
diffusion equation ∂tL = ∇2

5L can be written as a circular convolution with finite
Laplacian kernel

∂tL =

⎡⎣ 1
1 −4 1

1

⎤⎦	 L =

⎡⎣ 1
−2
1

⎤⎦	 L+
[
1 −2 1

]
	 L

where 	 denotes the circular convolution operator. In matrix form, this translates to a
direct summation of two substantially smaller matrices. The discrete circular convolu-
tion is a linear operator and can be expressed in matrix form if we consider L (·, ·; t) to
designate a vector. ScaleL (·, ·; t) of the scale space representationL can be represented
as a vector L (t) ∈ RMN with f= L (0).

L (t) =

⎡⎢⎢⎢⎣
L (1, 1; t)
L (1, 2; t)

...
L(M,N ; t)

⎤⎥⎥⎥⎦ ∈ RMN

For periodic f , the diffusion equation can be written in matrix form as ∂tL = ∇2
5L ⇔

∂tL = ΔM,NL, where ΔM,N ∈ RMN×MN denotes a circulant block matrix corre-
sponding to the Laplacian operator ∇2

5. It can be written as the direct sum of two ∇2
3

operators ΔM ∈ RM×M and ΔN ∈ RN×N by ΔM,N = ΔM ⊕ΔN = (ΔM ⊗ IN ) +
(IM ⊗ΔN ), where ΔM and ΔN are the matrix representations of the row wise ap-
plied central difference operator of second order. They differ only in their dimensions.
⊗ denotes the Kronecker product. For M ≥ 3, ΔM has the form of a Toeplitz matrix.
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ΔM =

⎡⎢⎢⎢⎣
−2 1 1
1 −2 1

. . .
. . .

. . .
1 1 −2

⎤⎥⎥⎥⎦ ∈ RM×M

Each eigenvector ui,j of ΔM,N can be expressed as the outer product of two eigen-
vectors vi and wj of ΔM and ΔN . The corresponding eigenvalue λi,j is then the
sum of the corresponding eigenvalues υi and ωj of ΔM and ΔN , i.e. ΔM,Nui,j =
λi,jui,j ⇔ (ΔM ⊕ΔN ) (vi ⊗wj) = (υi + ωj) (vi ⊗wj): Let ΔMvi = υivi and
ΔNwj = ωjwj . Then vi ⊗ wj is an eigenvector of ΔM,N with eigenvalue υi + ωj ,
since

ΔM,N (vi ⊗wj) = (ΔM ⊕ΔN ) (vi ⊗wj)

= (ΔM ⊗ IN ) (vi ⊗wj) + (IM ⊗ΔN ) (vi ⊗wj)

= (ΔMvi ⊗wj) + (vi ⊗ΔNwj)

= (υivi ⊗wj) + (vi ⊗ ωjwj)

= (υi + ωj) (vi ⊗wj) .

ΔM and ΔN are symmetric and have M respective N orthogonal eigenvectors. Then
there are M · N orthogonal combinations vi ⊗ wj which are eigenvectors of ΔM,N .
Since ΔM,N has only M · N eigenvectors, all eigenvectors have been found, that is,
each eigenvector ui,j of ΔM,N can be written as ui,j = vi ⊗ wj with corresponding
eigenvalue λi,j = υi + ωj for a suitable numbering of υi + ωj .
ΔM and ΔN are still sparse and symmetric matrices. In analogy to the previous

step, the Laplacian kernel can be further split into a combination of discrete forward
and backward difference kernels.

The matrix ΔM,N ∈ RMN×MN can be rewritten via (ΔM ⊕ΔN )L as the direct
sum of the discrete forward and backward difference operators ∂FM and ∂BM in RM×M

respecively ∂FN and ∂BN in RN×N :⎡⎣ 0
−1
1

⎤⎦	 L−

⎡⎣−11
0

⎤⎦	 L+
[
0 −1 1

]
	 L−

[
−1 1 0

]
	 L =

(
∂FM∂BM ⊕ ∂FN∂

B
N

)
L

For M ≥ 3, ∂FM and ∂BM take the form of circulant matrices.

∂FM =

⎡⎢⎢⎢⎢⎣
−1 1

−1 . . .
. . . 1

1 −1

⎤⎥⎥⎥⎥⎦ ∈ RM×M , ∂BM =

⎡⎢⎢⎢⎣
1 −1
−1 1

. . .
. . .
−1 1

⎤⎥⎥⎥⎦ ∈ RM×M
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The forward difference matrix ∂FM can also be written as a column- or rowwise cyclic
shift of the backward difference matrix ∂FM = TM∂BM = ∂BMTM with

TM =

⎡⎢⎢⎢⎣
1

. . .
1

1

⎤⎥⎥⎥⎦ ∈ RM×M

being a cyclic permutation matrix. Alternatively, we can write ∂FM = TM − IM which
then leads to

ΔM = ∂FM∂BM = (TM − IM ) ∂BM = ∂FM − ∂BM . (1)

Using Eq. (1) we get⎡⎣ 0
−1
1

⎤⎦	 L−

⎡⎣−11
0

⎤⎦	 L+
[
0 −1 1

]
	 L−

[
−1 1 0

]
	 L

⇔
(
∂FM ⊗ IN

)
L−

(
∂BM ⊗ IN

)
L+

(
IM ⊗ ∂FN

)
−

(
IM ⊗ ∂BN

)
=

((
∂FM − ∂BM

)
⊗ IN

)
L+

(
IM ⊗

(
∂FN − ∂BN

))
L

=
(
∂FM∂BM ⊗ IN

)
L+

(
IM ⊗ ∂FN∂

B
N

)
L

=
(
∂FM∂BM ⊕ ∂FN∂

B
N

)
L.

We will later see that ∂FM and ∂BM have the same eigenvectors. The eigenvectors of
ΔM = ∂FM∂BM then are identical to those of ∂FM and its eigenvalues are υi = δFM,iδ

B
M,i.

The matrices ∂FM and ∂BM are both real symmetric and thus diagonalisable. They com-
mute and are therefore simultaneously diagonalisable

U∂FMU † = diag
(
λFM,1, . . . , λ

F
M,M

)
U∂BMU † = diag

(
λBM,1, . . . , λ

B
M,M

)
with λFM,i and λBM,i denoting the eigenvalues of ∂FM and ∂BM . From Eq. (1) it follows that
U∂FM∂BMU † = U

(
∂FM − ∂BM

)
U † = diag

(
λFM,1 − λBM,1, . . . , λ

F
M,M − λBM,M

)
. For the

eigenvalues then holds

λFM,i − λBM,i = λFM,iλ
B
M,i ⇒ λBM,i =

λFM,i(
λFM,i + 1

)
Using the properties of the simultaneous diagonalisation, we can now express the eigen-
values υi of ΔM = ∂FM∂BM uniquely in terms of λFM,i.

υi = λFM,iλ
B
M,i =

(
λFM,i

)2(
λFM,i + 1

)
It still remains to calculate the eigenvaluesλFM,i using Eq. (1) and det

(
∂FM − λFM,iIM

)
=

det
(
TM − IM − λFM,iIM

)
= det

(
TM −

(
λFM,i + 1

)
IM

)
= det (TM − θiIM ) where
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λFM,i = θi − 1 with θi denoting the eigenvalues of TM . TM is a circulant matrix and
the eigenvectors and eigenvalues of these matrices are well known. The i-th eigenvalue
of a circulant matrix

C =

⎡⎢⎢⎢⎢⎣
c0 cn−1 · · · c1
c1

. . .
...

...
. . .

...
cM−1 · · · · · · c0

⎤⎥⎥⎥⎥⎦ ∈ RM×M

is known to be of value c0 + cM.−1ϕ
1
i + . . . + c1ϕ

M−1
i with ϕ = e(2πι

i
M ) where

ι denotes the imaginary unit. The i-th eigenvector of C is given by
[
ϕ0
i , . . . , ϕ

M−1
i

]
.

The eigenvectors of C and CT are equivalent. The eigenvalues λFM,i are then given
by λFM,i = θi − 1 = ϕ − 1. The eigenvectors dFM,i are identical to those of TM and
given by dFM,i =

[
ϕ0, . . . , ϕM−1

]
. The eigenvectors dBM,i are identical dFM,i and ui,j =

vi ⊗ wj = dFM,i ⊗ dFN,j: Using orthonormality of TM , we have ∂B = ∂F (TM )
T

=

(TM − IM ) · (TM )
T
= TM (TM )

T − (TM )
T
= IM − (TM )

T
= −

(
∂F

)T
. Since the

eigenvectors of ∂B = IM − (TM )
T are equivalent to the eigenvectors of − (TM )

T and
thus TM , they are equivalent to the eigenvectors of ∂F .

As a result we have an analytic formula expressing the eigenvalues λi,j and eigen-
vectors ui,j of the Laplacian matrix ΔM,N .

λi,j = υi + ωj =

(
λFM,i

)2(
λFM,i + 1

) +

(
λFN,j

)2(
λFN,j + 1

) =

(
e(

2πι
M i) − 1

)2

e(
2πι
M i)

+

(
e(

2πι
N j) − 1

)2

e(
2πι
N j)

ui,j =

[
e(

2πι
M i)0, . . . , e(

2πι
M i)M−1

]
⊗

[
e(

2πι
N j)0, . . . , e(

2πι
N j)N−1

]

2.1 Efficient Time Evolution

The restriction of a scale space representation L (t) to a fixed scale t can be written
as a weighted sum of eigenimages of the Laplacian operator, i.e. as a scalar product
of the orthonormal eigenvectors ui,j of ΔM,N and the scalar coefficients ci,j (t) =
〈L (t) ,ui,j〉 resulting from the projection of L (t) to ui,j : L (t) =

∑
i,j ci,j (t)ui,j .

Its partial derivative ∂tL (t) can then be computed from scaling each projected com-
ponent separately by the corresponding eigenvalue.

∂tL (t) = UΛUTL (t) =
∑
i,j

ci,j (t) λi,jui,j

This implicit change of base allows us to give a simple solution for the discretized
diffusion equation. using ∂tL (t) = Δ2

5L (t)⇔ ∂tL (t) = ΔMNL (t):∑
i,j

∂tci,j (t)ui,j =
∑
i,j

ci,j (t)λijui,j
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Multiplying both sides with uk,l and exploiting the orthonormality 〈ui,j ,uk,l〉 =
δi,kδj,l, where δ represents the Kronecker delta, gives us the partial derivate ∂tf
projected onto eigenvector uk,l. This differential equation can easily be solved for

c (t):
〈
uk,l,

∑
i,j ∂tci,j (t)ui,j

〉
=

〈
uk,l,

∑
i,j ci,j (t)λi,jui,j

〉
, thus ∂tck,l (t) =

ck,l (t)λk,l and consequently ck,l (t) = exp (λklt) ck,l (0). The scale space representa-
tion L is the solution of the discretized diffusion equation and has the form

L (t) =
∑
i,j

ci,j (t)ui,j =
∑
i,j

exp (λi,jt) ci,j (0)ui,j

with scalar coefficients ci,j (t) = 〈L (t) ,ui,j〉. In matrix representation, the solution
simplifies to L (t) = Q exp (Λt)QTL (0), with Q the orthogonal matrix mapping the
standard basis to the orthonormal basis of eigenvectors.

The computational complexity needed to compute scale L (t) using naive matrix

multiplication is in O
(
(MN)

3
)

, since each matrix involved is of dimension MN ×
MN . Using more efficient matrix multiplication algorithms, the complexity can be

reduced to O
(
(MN)

k
)

for some k between 2 & k ≤ 3, but it cannot be faster than

Ω
(
(MN)

2
logMN

)
[13] .

However, using the results from the previous section, namely the relation uij = vi⊗
wj , the computational complexity can be reduced by separating

∑
i,jwith i = 1, . . . ,M

and j = 1, . . . , N into two individual sums.

L (t) =
∑
i,j

e(υit+ωjt)ci,j (0) (vi ⊗wj) =
∑
i

e(υit)vi ⊗
∑
j

e(ωjt)ci,j (0)wj .

First we have to compute the coefficients ci,j (0), given vi and wj:

ci,j (0) = 〈f ,ui,j〉 =
MN∑
k=1

f (k) (vi ⊗wj) (k) .

Now we can separate the computation of L (t) into two steps:

gi (t) =
∑
j

exp (ωjt) ci,j (0)wj

L (t) =
∑
i

exp (υit)vi ⊗ gi (t) .

The scalar coefficients ci,j (0) are independent of scale t. Since we require usually more
than one sampled scale, it is useful to precompute these coefficients in a preliminary
step and then compute the individual scales using the cached results. The number of
steps required to compute all ci,j for i = 1, . . . ,M and j = 1, . . . , N is bounded

above by O
(
(MN)

2
)

. Given ci,j (0) , computing gi (t) is of complexity O
(
N2

)
and

the combined complexity of
∑

i gi (t) is O
(
MN2

)
. Given gi (t), the computation of
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L (t) is then bounded by O
(
MN2

)
. Thus, the overall complexity of computing a scale

L (t) given ci,j (0) is bounded by O
(
MN2

)
which is significantly better compared to

Ω
(
(MN)2 logMN

)
.

As stated in the introduction to the previous section, the intuitive way to compute a
scale L (·, ·; t) is by convolution with the scale space kernel. A naive implementation
however is inefficient. Far better results are obtained using the Fast Fourier Transforma-
tion. Truncating the scale space kernel and using the circular convolution theorem, it is
possible to reduce the computational complexity for each scale to O (MN log2MN)
[14]. However, regardless of its effectiveness, this method has the apparent disadvantage
of introducing artificial truncation errors in addition to the inevitable rounding errors.
The 2D-FFT of f itself can be computed in a preliminary step and is of complexity
O

(
M2N2 log2MN

)
[15].

2.2 Additional Properties

Fig. 1. Eigenvalue
distribution for
M,N = 200

The eigenvaluesλi,j ofΔM,N are real, λi,j ≤ 0 and there is exactly
one λi,j = 0. ΔM,N equals the negative Laplacian matrix ΔG of
the simple graph representation Gf of signal f , obtained by using
a symmetric 6-neighborhood on the discrete grid. These matrices
are known to have some interesting properties:

– ΔG is always positive-semidefinite, thus all eigenvalues of
ΔM,N are negative or 0.

– The number of times 0 appears as an eigenvalue in ΔG is the
number of connected components in Gf . Thus, there is exactly
one eigenvalue having value 0.

– The second smallest eigenvalue of ΔG is the algebraic connec-
tivity of Gf bounded above by the traditional graph connectiv-
ity. It equals the biggest non-zero eigenvalue of ΔM,N .

The analytic formula for the eigenvalues confirms these facts. All λi,j are symmetrically
and unimodally distributed over [−8, 0] ∈ R (Fig. 1) while the smallest and biggest
eigenvalue occur exactly once, as in the bounded domain case [7].

3 Deep Structure of the Discrete Scale Space

The kernel of the linear Laplacian operatorΔM,N , ker (ΔM,N ) = {L : ΔM,NL = 0} ,
consists of scales or arbitrary signals L with ∂tL (t) = 0 for every point in its do-
main. Those signals are also called harmonic. ker (ΔM,N ) equals the one dimensional
0-eigenspace of ΔM,N , its base is the eigenimage to the eigenvalue 0. On a finite
connected graph such as the graph representation Gf of L (·, ·; t0), harmonic func-
tions and thus the forementioned eigenimage must be constant [16]. Repeated aver-
aging or application of the Laplacian operator does not affect the average intensity
favg = 1

MN

∑
(x,y)∈D(f) f (x, y). For increasing scale t, L (t) converges in every di-

mension against favg (Fig. 2 top).
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lim
t→∞L (t) = lim

t→∞

∑
i,j

(
eλi,jtci,j (0)ui,j

)
= cM,N (0)uM,N + lim

t→∞

∑
i,j �=M,N

(
eλi,jtci,j (0)ui,j

)
= 〈L (0) ,uM,N 〉uM,N = favg

Fig. 2. Top: For increasing scale t, L (t) converges to the average favg . Bottom: For increasing
scale t, the topology of L (t) converges to the topology of the most significant eigenimages
(right). The range of each scale is normalized to [0, 1].

For increasing scale t, the topology of L (t) is dominated by the eigenimages ui,j with
the biggest non-zero eigenvalues having non-zero coefficient ci,j (0) (Fig. 2 bottom).

3.1 Critical Point Drift and Critical Curves

Analysing the evolution of non-degenerate spatial critical points as scale changes leads
to trajectories of critical points in scale space. In the continuous scale space, critical
points can be traced over scale. They form so called critical curves, one-dimensional
manifolds satisfying ∇L = 0. Using the implicit function theorem, it can easily be
shown that for a non-degenerate critical point, there exists an open interval over scale
in which the point can be uniquely identified. Additional properties such as the drift
velocity of critical points can then be derived from the trajectory.

In discrete scale space however, the meaning of drift velocity is unclear [9]. Spatial
movement of critical points can only happen in discrete steps. The drift will have a
tendency to move along the Cartesian grid lines violating rotation covariance. Also, the
implicit function theorem cannot be applied to discrete functions, even though there
apparently is a relation between between critical points in discrete scale space.

Using the results from the previous section however, we can show that for a spatial
critical point (x, y) at scale t0 there exists an open interval over scale in which the point
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can be uniquely identified as long as its initial neighborhood at t0 does not contain
plateaus, i.e. connected points of similar value.

At scale t0, (x, y) is a valid critical point with with value Lx,y (t0). Sufficiently small
changes in scale do not invalidate the neighborhood based critical point definition. For
the neighborhood based critical point criterion to become invalid at (x, y), topological
changes must occur. Therefore, we can guarantee the critical point criterion to hold as
long as we do not observe a zerocrossing in the pair-wise differences

Lx1,y1 (t)− Lx2,y2 (t)

of two connected points (x1, y1) and (x2, y2) in the 6-neighborhood around (x, y) with

Lx,y (t) =
∑
i,j

(
eλi,j tci,j (0) (ui,j)x,y

)
denoting the value of point (x, y) at scale t, see Figs. 3-4.

Fig. 3. Sampled scale space over a 5 × 10 image f . The number above each image denotes the
scale t. The colored boxes denote positions of maxima found using the N6 neighborhood. While
the purple maximum is stationary over scale, the red/orange maximum changes its position twice
before it disappears.

3.2 Topological Changes over Scale

In order to extract critical curves, the discrete scale space has to be sampled along its
continuous scale parameter, since we do not know how to compute the exact occur-
rences of the zerocrossings in the neighborhood as stated above. The known way to
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Fig. 4. Tracing maxima over scale. Left: The value of the red maximum at L (3, 7; ·) and its
neighbors (blue) plotted over scale. Right: The values of the orange maximum at L (3, 8; ·) and
its neighbors (blue) plotted over scale.

extract critical curves is to compute several scale images of L at preselected scales,
then detecting spatially critical points on these scales and finally linking spatially close
critical points on subsequent scales into critical curves. The critical curves extraction
algorithm implemented in ScaleSpaceViz computes the first spatial derivatives of the
sampled scales and then makes use of the marching cubes algorithm to extract zero
crossing surfaces in L. Their intersections form critical paths. These intersections may
be inaccurate due to undersampling [8]. Increasing the sampling density might increase
the accuracy, however we can never guarantee that, even for very high sampling densi-
ties, the resulting critical curves are correct - see Fig. 5.

Therefore we need a criterion that tells us when further subsampling is required and
when the sampling density is high enough to guarantee a correct result. Such a criterion
might be found in topological graphs or more precisely in the difference of topological
graphs of subsequent scales. Tracking changes in the surface network over scale is a
promising approach, since the set of possible changes between scale space events such
as creations or annihilations of critical points is strictly limited.

Fig. 5. Left: Undersampling and subsequent annihilation and creation events lead to inaccuracies.
Right: Finer sampling increases the accuracy. However, there is no lower bound on the sampling
density that guarantees a correct linking of critical curves.
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Fig. 6. Left: A sampled discrete scale space. From the critical points alone (left), the subsequent
annihilation and creation between scale t1 = 0.005 and t2 = 0.125 is not visible and might lead
to incorrect linking. However, the surface networks (middle, incomplete) of these scales differ,
thus providing a criterion whether further subsampling might be necessary. The Reeb graphs
(right, incomplete) are identical. Right: Topological changes over scale manifest themselves in
changes of the Reeb graph (middle) and the surface network (right).

A multi-graph surface network that allows for multiple edges between related ver-
tices depicts changes in subsequent scales even more accurate [12]. The number of
edges is then proportional to the number of saddle points. Annihilations and creations
of extremum saddle pairs reduce or increase the number of vertices and edges in a
predictable manner (Fig. 6).

4 Conclusion and Future Work

The discrete scale space as an equivalent to the two-dimensional Gaussian scale space
has been discussed and some important properties have been derived. A computation-
ally practicable implementation of the discrete scale space framework has been out-
lined. A computationally efficient sampling method, based on properties of the discrete
finite difference Laplacian kernel, has been proposed and compared to competing ap-
proaches. A first investigation of the deep structure of the discrete scale space has il-
lustrated the need for a more robust algorithm for critical curve extraction. Topological
graphs have show promising properties under the influence of changes in scale. How-
ever, further and more formal investigation of the deep structure of the discrete scale
space is necessary. Also, the positions of critical points detected on the homogeneous
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6-neighborhood are not invariant under certain transformations such as rotations and
thus formal differential geometrical analysis of generic scale space singularities where
co-dimension 1 is filled in with the scale derivative. Depending on the choices made
during the triangulation of the square lattice, positions of saddle points can change up
to one pixel [17].
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Abstract. The performance of matching and object recognition meth-
ods based on interest points depends on both the properties of the
underlying interest points and the associated image descriptors. This
paper demonstrates the advantages of using generalized scale-space in-
terest point detectors when computing image descriptors for image-based
matching. These generalized scale-space interest points are based on link-
ing of image features over scale and scale selection by weighted averaging
along feature trajectories over scale and allow for a higher ratio of correct
matches and a lower ratio of false matches compared to previously known
interest point detectors within the same class. Specifically, it is shown
how a significant increase in matching performance can be obtained in
relation to the underlying interest point detectors in the SIFT and the
SURF operators. We propose that these generalized scale-space interest
points when accompanied by associated scale-invariant image descriptors
should allow for better performance of interest point based methods for
image-based matching, object recognition and related vision tasks.

Keywords: interest points, scale selection, scale linking, matching, ob-
ject recognition, feature detection, scale invariance, scale space.

1 Introduction

A common approach to image-based matching consists of detecting interest
points with associated image descriptors from image data and then establishing
a correspondence between the image descriptors. Specifically, the SIFT opera-
tor [1] and the SURF operator [2] have been demonstrated to be highly useful
for this purpose with many successful applications, including object recognition,
3-D object and scene modelling, video tracking, gesture recognition, panorama
stitching as well as robot localization and mapping.

In the SIFT operator, the intitial detection of interest points is based on
differences-of-Gaussians from which local extrema over space and scale are com-
puted. Such points are referred to as scale-space extrema. The difference of
Gaussian operator can be seen as an approximation of the Laplacian operator,

� The support from the Swedish Research Council (contract 2010-4766), the Royal
Swedish Academy of Sciences and the Knut and Alice Wallenberg Foundation is
gratefully acknowledged.

A. Kuijper et al. (Eds.): SSVM 2013, LNCS 7893, pp. 355–367, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



356 T. Lindeberg

and it follows from general results in [3] that the scale-space extrema of the
Laplacian have scale-invariant properties that can be used for normalizing local
image patches or image descriptors with respect to scaling transformations. The
SURF operator is on the other hand based on initial detection of image features
that can be seen as approximations of the determinant of the Hessian operator
with the underlying Gaussian derivatives replaced by an approximation in terms
of Haar wavelets. From the general results in [3] it follows that scale-space ex-
trema of the determinant of the Hessian do also lead to scale-invariant behaviour,
which can be used for explaining the good performance of the SIFT and SURF
operators under scaling transformations.

The subject of this article is to show how the performance of image matching
can be improved by using a generalized framework for detecting interest points
from scale-space features involving (i) new Hessian feature strength measures
at a fixed scale, (ii) linking of image features over scale into feature trajectories
to allow for a better selection of significant image features and (iii) scale selec-
tion by weighted averaging along feature trajectories to allow for more robust
scale estimates. By replacing the interest points in the regular SIFT and SURF
operators by generalized scale-space interest points to be described below, it
is possible to define new scale-invariant image descriptors that lead to better
matching performance compared to the performance obtained by corresponding
interest point detection mechanisms as used in the SIFT and SURF operators.

2 Generalized Scale-Space Interest Points

Basic requirements on the interest points on which image matching is to be
performed are that they should (i) have a clear, preferably mathematically well-
founded, definition, (ii) have a well-defined position in image space, (iii) have
local image structures around the interest point that are rich in information
content such that the interest points carry important information to later stages
and (iv) be stable under local and global deformations of the image domain,
including perspective image deformations and illumination variations such that
the interest points can be reliably computed with a high degree of repeatability.

2.1 Differential Entities for Detecting Scale-Space Interest Points

As basis for performing local image measurements on a two-dimensional image
f , we will consider a scale-space representation [4–10]

L(x, y; t) =

∫
(u,v)∈IR2

f(x− u, y − v) g(u, v; t) du dv (1)

generated by convolution with Gaussian kernels g(x, y; t) = 1
2πt e

−(x2+y2)/2t of
increasing width, where the variance t is referred to as the scale parameter, and
with scale-normalized derivatives with γ = 1 defined according to a ∂ξ = tγ/2 ∂x
and ∂η = tγ/2 ∂y [3]. To detect interest points within this scale-space framework,
we will consider:
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(i) either the scale-normalized Laplacian operator [3]

∇2
normL = t (Lxx + Lyy) (2)

or the scale-normalized determinant of the Hessian [3]

detHnormL = t2 (LxxLyy − L2
xy), (3)

(ii) either of the following differential analogues/extensions of the Harris oper-
ator [11] proposed in [12, 13]; the unsigned Hessian feature strength mea-
sure I

D1,normL =

{
t2 (detHL− k trace2HL) if detHL− k trace2HL > 0
0 otherwise

(4)

or the signed Hessian feature strength measure I

D̃1,normL =

⎧⎨⎩ t2 (detHL− k trace2HL) if detHL− k trace2HL > 0
t2 (detHL+ k trace2HL) if detHL+ k trace2HL < 0
0 otherwise

(5)

where k ∈ [0, 14 [ as derived in [12] with the preferred choice k ≈ 0.06, or
(iii) either of the following differential analogues and extensions of the Shi and

Tomasi operator [14] proposed in [12, 13]; the unsigned Hessian feature
strength measure II

D2,normL = t min(|λ1|, |λ2|) = t min(|Lpp|, |Lqq|) (6)

or the signed Hessian feature strength measure II

D̃2,normL =

⎧⎨⎩ t Lpp if |Lpp| < |Lqq|
t Lqq if |Lqq| < |Lpp|
t (Lpp + Lqq)/2 otherwise

(7)

with Lpp and Lqq denoting the eigenvalues of the Hessian matrix ordered
such that Lpp ≤ Lqq [10].

2.2 Scale Selection Mechanisms

To perform scale selection for the abovementioned differential feature detectors,
we will consider two different approaches:

– Detection of scale-space extrema (x̂, ŷ, t̂) where the scale normalized differ-
ential entities assume local extrema with respect to space and scale [3], and
with image features ranked by the magnitude of the scale-normalized re-
sponse |DnormL| at the scale-space extremum.

– Linking image features at different scales into feature trajectories over scale
and performing scale selection by weighted averaging of scale values along
each feature trajectory T delimited by bifurcation events [12, 13]

τ̂T =

∫
τ∈T τ ψ((Dγ−normL)(p(τ); τ)) dτ∫
τ∈T ψ((Dγ−normL)(p(τ); τ)) dτ

(8)
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with the integral expressed in terms of effective scale τ = log t to give a scale
covariant construction of the corresponding scale estimates t̂T = exp τ̂T ,
and with significance measure taken as the integral of the scale-normalized
feature responses along the feature trajectory [12, 13]

WT =

∫
τ∈T

ψ(|(DnormL)(p(τ); τ)|) dτ (9)

where ψ(|DnormL|) = wDL |DnormL|a represents a monotonically increasing
self-similar transformation and wDL = (L2

ξξ+2L2
ξη+L

2
ηη)/(A(L

2
ξ+L

2
η)+L

2
ξξ+

2L2
ξη + L2

ηη + ε2) with A = 4/e representing the relative weighting between
first- and second-order derivatives [15] and with ε ≈ 0.1 representing an
estimated noise level for image data in the range [0, 256].

In [13] it is shown that when applied to a rotationally symmetric Gaussian blob
model f(x, y) = g(x, y; t0), both scale-space extrema detection and weighed
scale selection lead to similar scale estimates t̂ = t0 for all the above interest point
detectors. When, subjected to non-uniform affine image deformations outside the
similarity group, the determinant of the Hessian detHnormL and the Hessian
feature strength measures D1,normL and D̃1,normL do, however, have theoretical
advantages in terms of affine covariance or approximations thereof [12, 13].

3 Scale-Invariant Image Descriptors for Matching

For each interest point, we will compute a complementary image descriptor in
analogous ways as done in the SIFT and SURF operators, with the difference
that the feature vectors will be computed from Gaussian derivative responses in
a scale-space representation instead of using a pyramid as done in the original
SIFT operator [1] or a Haar wavelet basis as used in the SURF operator [2].

For our SIFT-like image descriptor, we compute image gradients ∇L at the
detection scale t̂ of the interest point. An orientation estimate is computed in
a similar way as by Lowe [1], by accumulating a histogram of gradient direc-
tions arg∇L quantized into 36 bins with the area of the accumulation window
proportional to the detection scale t̂, and then detecting peaks in the smoothed
orientation histograms. Multiple peaks are accepted if the height of the sec-
ondary peak(s) are above 80 % of the highest peak. Then, for each point on a
4 × 4 grid with the grid spacing proportional to the detection scale measured

in units of σ̂ =
√
t̂, a weighed local histogram of gradient directions arg∇L

quantized into 8 bins is accumulated around each grid point, with the weights
proportional to the gradient magnitude |∇L| and a Gaussian window function
with its area proportional to the detection scale t̂ with trilinear interpolation for
distributing the weighted increments for the sampled image measurements into
adjacent histogram bins. The resulting 128-dimensional descriptor is normalized
to unit sum to achieve contrast invariance, with the relative contibution of a
single bin limited to a maximum value of 0.20.
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For our SURF-like image descriptor, we compute the following sums of deriva-
tive responses

∑
Lx,

∑
|Lx|,

∑
Ly,

∑
|Ly| at the scale t̂ of the interest point,

for each one of 4× 4 subwindows around the interest point as Bay et al [2] and
with similar orientation normalization as for the SIFT operator. The resulting
64-D descriptor is then normalized to unit length for contrast invariance.

4 Matching Properties under Perspective
Transformations

To evaluate the quality of the interest points with their associated local image
descriptors, we will apply bi-directional nearest-neighbour matching of the image
descriptors in Euclidean norm. In other words, given a pair of images fA and
fB with corresponding sets of interest points A = {Ai} and B = {Bj}, a match
between the pair of interest points (Ai, Bj) is accepted only if (i) Ai is the best
match for Bj in relation to all the other points in A and, in addition, (ii) Bj is
the best match for Ai in relation to all the other points in B.

To suppress matching candidates for which the correspondence may be re-
garded as ambiguous, we will furthermore require the ratio between the distances
to the nearest and the next nearest image descriptor to be less than r = 0.9.

Next, we will evaluate the matching performance of such interest points with
local image descriptors over a dataset of poster images with calibrated homo-
graphies over different amounts of perspective scaling and foreshortening.

Distance variations Viewing variations
s ≈ 1.25 ϕ ≈ 0◦

s ≈ 6.0 ϕ ≈ 45◦

Fig. 1. Illustration of images of posters from multiple views (left) by varying the dis-
tance between the camera and the object for different frontal views, and (right) by
varying the viewing direction relative to the direction of the surface normal. (Image
size: 768× 576 pixels.).
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4.1 Poster Image Dataset

High-resolution photographs of approximately 4900× 3200 pixels were taken of
12 outdoor and indoor scenes in natural city and office environments, from which
poster printouts of size 100× 70 cm were produced by a professional laboratory.
Each such poster was then photographed from 14 different positions:

(i) 11 normal views leading to approximate scaling transformations with relative
scale factors s approximately equal to 1.25, 1.5, 1.75, 2.0, 2.5, 3.0, 3.5, 4.0,
5.0 and 6.0, and

(ii) 3 additional oblique views leading to foreshortening transformations with
slant angles 22.5◦, 30◦ and 45◦ relative to the frontal view with s ≈ 2.0.

For the 11 normal views of each objects, homographies were computed between
each pair using the ESM method [16] with initial estimates of the relative scaling
factors obtained from manual measurements of the distance between the poster
surface and the camera. For the oblique views, for which the ESM method did
not produce sufficiently accurate results, homographies were computed by first
manually marking correspondences between the four images of each poster, com-
puting an initial estimate of the homography using the linear method in [17,
algorithm 3.2, page 92] and then computing a refined estimate by minimizing
the Sampson approximation of the geometric error [17, algorithm 3.3, page 98].

The motivation for using such poster image for evaluation is to reflect natural
image structures while allowing for easy calibration without 3-D reconstruction.

4.2 Matching Criteria and Performance Measures

Figure 2 shows an illustration of point matches obtained between two pairs of
images corresponding to a scaling transformation and a foreshortening transfor-
mation based on interest points detected using the D̃1,normL operator.

To judge whether two image features Ai and Bj matched in this way should be
regarded as belonging to the same feature or not, we associate a scale dependent
circle CA and CB to each feature, with the radius of each circle equal to the
detection scale of the corresponding feature measured in units of the standard
deviation σ =

√
t. Then, each such feature is transformed to the other image

domain, using the homography and with the scale value transformed by a scale
factor of the homography. The relative amount of overlap between any pair of
circles is defined by forming the ratio between the intersection and the union of
the two circles in a similar way as Mikolajczyk et al [18] define a corresponding
ratio for ellipses

m(CA, CB) =
|
⋂
(CA, CB)|

|
⋃
(CA, CB)|

. (10)

Then, we measure the performance of the interest point detector by:

efficiency =
#(interest points that lead to accepted matches)

#(interest points)

1 - precision =
#(rejected matches)

#(accepted matches) + #(rejected matches)
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Scaling transformation Foreshortening transformation

Fig. 2. Illustration of matching relations obtained by bidirectional matching of SIFT-
like image descriptors computed at interest points of the signed Hessian feature strength
measure D̃1,normL for (left) a scaling transformation and (right) a foreshortening trans-
formation between pairs of poster images of the harbour and city scenes shown in Fig-
ure 1. These illustrations have been generated by first superimposing bright copies of
the two images to be matched by adding them. Then, the interest points detected in
the two domains have been overlayed on the image data, and a black line has been
drawn between each pair of image points that has been matched. Red circles indicate
that the Hessian matrix is negative definite (bright features), blue circles that the Hes-
sian matrix is positive definite (dark features), whereas green circles indicate that the
Hessian matrix is indefinite (saddle-like features).

The evaluation of the matching score is only performed for image features that
are within the image domain for both images before and after the transformation.
Moreover, only features within corresponding scale ranges are evaluated. In other
words, if the scale range for the image fA is [tmin, tmax], then image features are
searched for in the transformed image fB within the scale range [t′min, t

′
max] =

[s2 tmin, s
2 tmax], where s denotes an overall scaling factor of the homography.

In the experiments below, we used [tmin, tmax] = [4, 256].

4.3 Experimental Results

Table 1 shows the result of evaluating 2 × 9 different types of scale-space in-
terest point detectors with respect to the problem of establishing point corre-
spondences between pairs of images on the poster dataset. Each interest point
detector is applied in two versions (i) with scale selection from local extrema
of scale-normalized derivatives over scale, or (ii) using scale linking with scale
selection from weighted averaging of scale-normalized feature responses along
feature trajectories.

In addition to the 2 × 7 differential interest point detectors described in sec-
tion 2, we have also included 2×2 additional interest point detectors derived from
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Table 1. Performance measures obtained by matching different types of scale-space
interest points with associated SIFT- and SURF-like image descriptors for the poster
image dataset. The columns show from left to right: (i) the average efficiency over all
pairs of scaling transformations, (ii) the average efficiency over all pairs of foreshort-
ening transformations and (iii) the average total computed as the mean of the scaling
and foreshortening scores. The columns labelled “extr” and “link” indicate whether the
features have been detected with scale selection from extrema over scale or by scale
linking.

Efficiency: SIFT-like image descriptor

scaling foreshortening average
Interest points extr link extr link extr link

∇2
normL (D1L > 0) 0.7484 0.7994 0.7512 0.7574 0.7498 0.7784

detHnormL (D1L > 0) 0.7721 0.8225 0.7635 0.7932 0.7678 0.8079

detHnormL (D̃1L > 0) 0.7691 0.8163 0.7602 0.7841 0.7647 0.8002
D1,normL 0.7719 0.8280 0.7596 0.7977 0.7658 0.8128

D̃1,normL 0.7698 0.8241 0.7578 0.7916 0.7638 0.8079
D2,normL (D1L > 0) 0.7203 0.8187 0.7111 0.7776 0.7157 0.7981

D̃2,normL (D1L > 0) 0.7204 0.8261 0.7113 0.7766 0.7159 0.8014
Harris-Laplace 0.7002 0.7855 0.7046 0.7535 0.7024 0.7695
Harris-detHessian 0.7406 0.7608 0.7561 0.7319 0.7406 0.7463

Efficiency: SURF-like image descriptor

scaling foreshortening average
Interest points extr link extr link extr link

∇2
normL (D1L > 0) 0.7424 0.7832 0.7280 0.7140 0.7352 0.7486

detHnormL (D1L > 0) 0.7656 0.8072 0.7402 0.7504 0.7529 0.7788

detHnormL (D̃1L > 0) 0.7628 0.8015 0.7372 0.7430 0.7500 0.7723
D1,normL 0.7661 0.8126 0.7354 0.7537 0.7507 0.7831

D̃1,normL 0.7640 0.8081 0.7334 0.7478 0.7487 0.7779
D2,normL (D1L > 0) 0.7157 0.8014 0.6870 0.7284 0.7013 0.7649

D̃2,normL (D1L > 0) 0.7158 0.8100 0.6873 0.7328 0.7015 0.7714
Harris-Laplace 0.6948 0.7620 0.6724 0.6944 0.6836 0.7282
Harris-detHessian 0.7345 0.7381 0.7192 0.6705 0.7268 0.7043

the Harris operator [11]: (i) the Harris-Laplace operator [19] based on spatial
extrema of the Harris measure and scale selection from local extrema over scale
of the scale-normalized Laplacian, (ii) a scale-linked version of the Harris-Laplace
operator with scale selection by weighted averaging over feature trajectories of
Harris features [12], and (iii-iv) two Harris-detHessian operators analogous to the
Harris-Laplace operators, with the difference that scale selection is performed
based on the scale-normalized determinant of the Hessian instead of the scale-
normalized Laplacian [12].
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Table 2. The five best combinations of interest points and image descriptors among
the 2× 2× 9 = 36 combinations considered in this experimental evaluation as ranked
on the ratio of interest points that lead to correct matches. For comparison, results
are also shown for the SIFT descriptor based on scale-space extrema of the Laplacian,
the SIFT or SURF descriptors based on scale-space extrema of the determinant of the
Hessian and the SIFT descriptor based on Harris-Laplace interest points.

Interest points and image descriptors ranked on matching efficiency

Interest points Scale selection Descriptor Efficiency

D1,normL link SIFT 0.8128

D̃1,normL link SIFT 0.8079
detHnormL (D1L > 0) link SIFT 0.8079

D̃2,normL (D1L > 0) link SIFT 0.8014

detHnormL (D̃1L > 0) link SIFT 0.8002
...

...
detHnormL (D1L > 0) extr SIFT 0.7721
detHnormL (D1L > 0) extr SURF 0.7656
∇2

normL (D1L > 0) extr SIFT 0.7484
Harris-Laplace extr SIFT 0.7002

The experiments are based on detecting the N = 800 strongest interest points
extracted from the first image, regarded as reference image for the homography.
To obtain an approximate uniform density of interest points under scaling trans-
formations, an adapted number N ′ = N/s2 of interest points is searched for
(i) within the subwindow of the reference image that is mapped to the interior
of the transformed image and (ii) in the transformed image, with s denoting
relative scaling factor between the two images.

This procedure is repeated for all pairs of images within the groups of distance
variations or viewing variations respectively, implying up to 55 image pairs for
the scaling transformations and 6 image pairs for the foreshortening transforma-
tions, i.e. up to 61 matching experiments for each one of the 12 posters, thus up
to 732 experiments for each one of 2× 9 interest point detectors.

As can be seen from the results of matching SIFT- or SURF-like image de-
scriptors in Table 1, the interest point detectors based on scale linking and with
scale selection by weighted averaging along feature trajectories generally lead to
significantly higher efficiency rates compared to the corresponding interest point
detectors based on scale selection from local extrema over scale. Specifically, the
highest efficiency rates are obtained with the scale linked version of the unsigned
Hessian feature strength measure D1,normL, followed by scale-linked versions of

the unsigned signed Hessian feature strength measure D̃1,normL and the deter-
minant of the Hessian operator detHnormL with complementary thresholding
on D1,normL > 0.
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Fig. 3. Graphs showing how the matching efficiency depends upon (left) the amount
of scaling s ∈ [1.25, 6.0] for scaling transformations (with log2 s on the horizontal
axis) and (right) the difference in viewing angle ϕ ∈ [22.5◦, 45◦] for the foreshortening
transformations for interest point matching based on SIFT-like image descriptors.

Corresponding experimental results that cannot be included here because of
lack of space show that the lowest and thus the best 1-precision score is obtained
with the determinant of the Hessian operator detHnormL with complementary
thresholding on D̃1,normL > 0, followed by the determinant of the Hessian op-
erator detHnormL with complementary thresholding on D1,normL > 0.

Among the more traditional feature detectors based on scale selection from
local extrema over scale, we can also note that the determinant of the Hes-
sian operator detHnormL performs significantly better than both the Laplacian
operator ∇2

normL and the Harris-Laplace operator. We can also note that the
Harris-Laplace operator can be improved by either scale linking or by replacing
scale selection based on the scale-normalized Laplacian by scale selection based
on the scale-normalized determinant of the Hessian.

When comparing the results obtained for SIFT-like and SURF-like image de-
scriptors, we can see that the SIFT-like image descriptors lead to both higher
efficiency rates and lower 1-precision scores than the SURF-like image descrip-
tors. This qualitative relationship holds over all types of interest point detectors.
In this respect, the pure image descriptor in the SIFT operator is clearly better
than the pure image descriptor in the SURF operator. Specifically, more reliable
image matches can be obtained by replacing pure image descriptor in the SURF
operator by the pure image descriptor in the SIFT operator.

Table 2 lists the five best combinations of interest point detectors and image
descriptors in this evaluation as ranked on their efficiency values. For comparison,
the results of our corresponding analogues of the SIFT operator with interest
point detection from scale-space extrema of the Laplacian and our analogue of
the SURF operator based on scale-space extrema of the determinant of the Hes-
sian are also shown. As can be seen from this ranking, the best combinations
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of generalized points with SIFT-like image descriptors perform significantly bet-
ter than the corresponding analogues of regular SIFT or regular SIFT based on
scale-space extrema of the Laplacian or the determinant of the Hessian.

Figure 3 shows graphs of how the efficiency rate depends upon the amount of
scaling for the scaling transformations and the difference in viewing angle for the
foreshortening transformations. As can be seen from these graphs, the interest
point detectors detHnormL, D1,normL and D̃1,normL that possess affine covari-
ance properties or approximations thereof [12, 13] do also have the best matching
properties under foreshortening transformations. Specifically, the generalized in-
terest point detectors based on scale linking perform significantly better than
scale-space extrema of the Laplacian or the determinant of the Hessian as well
as better than the Harris-Laplace operator.

5 Summary and Conclusions

We have presented a set of extensions of the SIFT and SURF operators, by
replacing the underlying interest point detectors used for computing the SIFT
or SURF descriptors by a family of generalized scale-space interest points.

These generalized scale-space interest points are based on (i) new differen-
tial entities for interest point detection at a fixed scale in terms of new Hessian
feature strength measures, (ii) linking of image structures into feature trajec-
tories over scale and (ii) performing scale selection by weighted averaging of
scale-normalized feature responses along these feature trajectories [12].

The generalized scale-space interest points are all scale-invariant in the sense
that (i) the interest points are preserved under scaling transformation and that
(ii) the detection scales obtained from the scale selection step are transformed in
a scale covariant way. Thereby, the detection scale can be used for defining a local
scale normalized reference frame around the interest point, which means that
image descriptors that are defined relative to such a scale-normalized reference
frame will also be scale invariant.

By complementing these generalized scale-space interest points with local im-
age descriptors defined in a conceptually similar way as the pure image descriptor
parts in SIFT or SURF, while being based on image measurements in terms of
Gaussian derivatives instead of image pyramids or Haar wavelets, we have shown
that the generalized interest points with their associated scale-invariant image
descriptors lead to a higher ratio of correct matches and a lower ratio of false
matches compared to corresponding results obtained with interest point detec-
tors based on more traditional scale-space extrema of the Laplacian, scale-space
extrema of the determinant of the Hessian or the Harris-Laplace operator.

In the literature, there has been some debate concerning which one of the SIFT
or SURF descriptors leads to the best performance. In our experimental evalua-
tions, we have throughtout found that our SIFT-like image descriptor based on
Gaussian derivatives generally performs much better than our SURF-like image
descriptor, also expressed in terms of Gaussian derivatives. In this respect, the
pure image descriptor in the SIFT operator can be seen as significantly better
than the pure image descriptor in the SURF operator.
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Concerning the underlying interest points, we have on the other hand found
that the determinant of the Hessian operator to generally perform significantly
better than the Laplacian operator, both for scale selection based on scale-space
extrema and scale selection based on weighted averaging of feature
responses along feature trajectories obtained by scale linking. Since the difference-
of-Gaussians interest point detector in the regular SIFT operator can be seen
as an approximation of the scale-normalized Laplacian, we can therefore regard
the underlying interest point detector in the SURF operator as significantly
better than the interest point detector in the SIFT operator. Specifically, we
could expect a significant increase in the performance of SIFT by just replacing
the scale-space extrema of the difference-of-Gaussians operator by scale-space
extrema of the determinant of the Hessian.

In addition, our experimental evaluations show that further improvements are
possible by replacing the interest points obtained from scale-space extrema in the
SIFT and SURF operators by generalized scale-space interest points obtained
by scale linking, with the best results obtained with the Hessian feature strength
measures D1,normL and D̃1,normL followed by the determinant of the Hessian

detHnormL and the Hessian feature strength measure D̃2,normL.
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Abstract. Osmosis filters are based on drift–diffusion processes. They
offer nontrivial steady states with a number of interesting applications.
In this paper we present a fully discrete theory for linear osmosis filtering
that follows the structure of Weickert’s discrete framework for diffusion
filters. It regards the positive initial image as a vector and expresses its
evolution in terms of iterative matrix–vector multiplications. The matrix
differs from its diffusion counterpart by the fact that it is unsymmet-
ric. We assume that it satisfies four properties: vanishing column sums,
nonnegativity, irreducibility, and positive diagonal elements. Then the
resulting filter class preserves the average grey value and the positivity
of the solution. Using the Perron–Frobenius theory we prove that the
process converges to the unique eigenvector of the iteration matrix that
is positive and has the same average grey value as the initial image. We
show that our theory is directly applicable to explicit and implicit finite
difference discretisations. We establish a stability condition for the ex-
plicit scheme, and we prove that the implicit scheme is absolutely stable.
Both schemes converge to a steady state that solves the discrete elliptic
equation. This steady state can be reached efficiently when the implicit
scheme is equipped with a BiCGStab solver.

Keywords: osmosis filtering, drift–diffusion, finite difference methods,
BiCGStab.

1 Introduction

Osmosis filtering relies on the idea of making diffusion filters unsymmetric. This
is achieved by supplementing it with a drift term that allows nontrivial steady
states. While specific applications of this idea to the fields of digital halftoning
and numerical methods for hyperbolic conservation laws can be found in two ear-
lier publications [1,2], the first comprehensive description of osmosis models for
a variety of visual computing applications is presented in our companion paper
[3]. In [3] we demonstrate that osmosis models are powerful tools for compact
data representation, for editing an existing image, and for fusing information
from different images. Most of these applications go far beyond of what can
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be achieved with nonlinear diffusion filters, in spite of the fact that the osmosis
models in [3] are linear. Osmosis filters have some similarities to gradient domain
methods from computer graphics [4,5], but offer additional advantages such as
invariance under multiplicative illumination changes.

Since osmosis can be interpreted as a modification of diffusion filtering and
there is a well-established theory for diffusion filters, it is natural to study which
results can be generalised from diffusion to osmosis. The goal of the present
paper is to provide a fully discrete theory for linear osmosis filtering that has
a similar structure as Weickert’s discrete framework for diffusion filters [6]. We
will see that this theory offers some fundamental differences to diffusion filters,
and that it is applicable to the design of osmosis algorithms that are not only
reliable, but also efficient.

Our paper is organised as follows. In Section 2 we review the basic structure
of continuous osmosis filters, and we consider finite difference discretisations
in space and time. This leads us to fully discrete osmosis filters that can be
expressed as iterative matrix–vector multiplications. Section 3 provides our the-
oretical framework for this filter class, in which we establish useful properties
such as preservation of positivity and convergence results. In Section 4 we apply
this theory to two popular finite difference discretisations: an explicit and an
implicit scheme. The performance of these schemes is evaluated in Section 5,
and a summary in Section 6 concludes our paper.

2 From Continuous to Discrete Osmosis

Before we can introduce a theory for discrete linear osmosis processes in visual
computing, we have to discuss the continuous concept first and show how it can
be turned into a discrete filter representation. This is the topic of the present
section.

2.1 Continuous Linear Osmosis Filtering

Let us consider a rectangular image domain Ω ⊂ R2 with boundary ∂Ω, and a
positive greyscale image f : Ω → R+. Moreover, assume we are given some drift
vector field d : Ω �→ R2. Then a (linear) osmosis filter computes a processed
version u(x, t) of f(x) by solving the drift-diffusion PDE

∂tu = Δu − div (du) on Ω × (0, T ], (1)

with f as initial condition,

u(x, 0) = f(x) on Ω, (2)

and homogeneous Neumann boundary conditions. They specify a vanishing flux
in normal direction n to the image boundary ∂Ω:

〈∇u− du, n〉 = 0 on ∂Ω × (0, T ]. (3)

Let us now sketch three key properties of our osmosis model [3]:
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(a) Preservation of the Average Grey Value:
Since the osmosis process is in divergence form, its solution preserves the
average grey value of the initial image:

1

|Ω|

∫
Ω

u(x, t) dx =
1

|Ω|

∫
Ω

f(x) dx ∀ t > 0 . (4)

This property can also be found for diffusion filters.

(b) Preservation of Positivity:
One can show that the solution remains positive for all times:

u(x, t) > 0 ∀x ∈ Ω, ∀t > 0. (5)

This is a weaker property than the maximum–minimum principle for diffu-
sion [6]. Osmosis may violate a maximum–minimum principle.

(c) Convergence to a Nontrivial Steady State:
The continuous linear osmosis model differs from a homogeneous diffusion
filter only by its drift term. However, the drift vector field d is a powerful
tool to steer its convergence: If d satisfies

d = ∇(ln v) =
∇v

v
(6)

with some positive image v, one can show that the osmosis process converges
to v up to a multiplicative constant which ensures preservation of the average
grey value of f . Thus, osmosis creates nontrivial steady states. This is a
fundamental difference to diffusion that allows only flat steady states [6].

Since d contains the gradient information of ln v, we may regard osmosis as a
process for data integration. In that sense it resembles so-called gradient domain
methods that are popular in computer graphics [4,5]. Therefore, it is not sur-
prising that it can also be used for similar applications such as image editing
and image fusion. We refer to our companion paper [3] for such applications.
Other applications are concerned with alternative numerical schemes for hyper-
bolic conservation laws [2]. Moreover, also the PDE limit of a lattice Boltzmann
model for halftoning [1] is an osmosis equation.

Applying osmosis to colour images is as simple as applying it to greyscale
images: One proceeds separately in each RGB channel using the individual drift
vector fields of each channel.

2.2 Finite Difference Discretisation

Let us now consider a finite difference space discretisation of the drift–diffusion
equation (1). We consider a grid size h in x- and y-direction, and we denote
by ui,j an approximation to u in the grid point ((i − 1

2 )h, (j −
1
2 )h))

	. Setting
d = (d1, d2)

	, we approximate (1) by
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u′i,j =
ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4ui,j

h2
− 1

h

(
d1,i+ 1

2 ,j

ui+1,j+ui,j
2

− d1,i− 1
2 ,j

ui,j+ui−1,j

2

)
− 1

h

(
d2,i,j+ 1

2

ui,j+1+ui,j
2

− d2,i,j− 1
2

ui,j+ui,j−1

2

)
(7)

This also holds for boundary points, if we mirror the image at its boundaries
and assume a zero drift vector across boundaries. Rearranging (7) gives

u′i,j = ui+1,j

(
1

h2
−
d1,i+ 1

2 ,j

2h

)
+ ui−1,j

(
1

h2
+
d1,i− 1

2 ,j

2h

)
+ ui,j+1

(
1

h2
−
d2,i,j+ 1

2

2h

)
+ ui,j−1

(
1

h2
+
d2,i,j− 1

2

2h

)
+ ui,j

(
− 4

h2
−
d1,i+ 1

2 ,j

2h
+
d1,i− 1

2 ,j

2h
−
d2,i,j+ 1

2

2h
+
d2,i,j− 1

2

2h

)
. (8)

From now on we restrict ourselves to drift vector fields (d1(x), d2(x))
	 with

|d1(x)| <
2

h
, |d2(x)| <

2

h
∀x ∈ Ω. (9)

This ensures that in (8) the weights of all four neighbours of ui,j are positive.
We want to write this discretisation in a more compact notation. To this end,
we replace the double indexing in each pixel by a single index and assemble all
unknown grey values in a single vector u ∈ RN where N denotes the number of
pixels. Then we end up with the following dynamical system:

u(0) = f , (10)

u′(t) = Au(t) (11)

where the matrix A ∈ RN×N is unsymmetric. This differs from the diffusion
scenario that leads to symmetric matrices [6]. Since the weights of the neighbours
in (8) are positive, it follows that A has nonnegative off-diagonals. Moreover,
one can show that all column sums of A are zero and A is irreducible.

We have different options to discretise this ODE system in time. In the sim-
plest case one can consider the explicit scheme:

uk+1 − uk

τ
= Auk (12)

where τ > 0 denotes the time step size, and the upper index k refers to an
approximation at time kτ . With P := I + τA, we can rearrange this scheme to

uk+1 = Puk (13)

An alternative time discretisation is given by the implicit scheme

uk+1 − uk

τ
= Auk+1. (14)
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It requires to solve a linear system in the unknown vector uk+1. If the system
matrix is invertible, the problem can also be formally written as a matrix–vector
multiplication of type (13) with P := (I − τA)−1.

3 A Discrete Osmosis Theory

We have seen that both the explicit and the implicit scheme are examples of
numerical methods that can be written in the general form (13). This motivates
us to derive a general theory for discrete osmosis processes of this type. Here is
our main result.

Proposition 1. [Theory for Discrete Linear Osmosis]

Let f ∈ RN+ and consider a process

u0 = f , (15)

uk+1 = Puk (k = 0, 1, ...) (16)

where the (unsymmetric) matrix P ∈ RN×N satisfies the following properties:

(DLO1) All column sums of P are 1.
(DLO2) P is nonnegative.
(DLO3) P is irreducible.
(DLO4) P has only positive diagonal entries.

Then the following results hold:

(a) The average grey value is preserved:

1

N

N∑
i=1

uki =
1

N

N∑
i=1

fi ∀ k > 0 . (17)

(b) The evolution preserves positivity:

uki > 0 ∀i ∈ {1, .., N}, ∀ k > 0 . (18)

(c) There exists a unique steady state for k →∞. It is given by the eigenvector
v ∈ RN+ of P to the eigenvalue 1, that has the same average grey value as f .

Proof. Average grey value invariance and preservation of positivity are very
easily seen, while the convergence result requires some more technicalities.

(a) Average grey value invariance for osmosis has already been shown in [2],
where the reasoning is identical to the diffusion case [6, Proposition 4]:

(b) In order to verify preservation of positivity, we observe that applying one
osmosis step to the positive initial image f gives

u1i = pi,i︸︷︷︸
>0

fi︸︷︷︸
>0

+

N∑
j=1
j �=i

pi,j︸︷︷︸
≥0

fj︸︷︷︸
>0

> 0 ∀ i ∈ {1, ..., N} . (19)

Applying this reasoning iteratively ensures that uk is positive for all k > 0.
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(c) To establish our convergence result, first we show that 1 is an eigenvalue of
P . As the eigenvalues of P and P	 are identical, we can exploit the unit
row sum of P	 instead of the unit column sum of P . Hence, we can compute

P	

⎛⎜⎜⎜⎜⎝
1

1
...

1

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
∑N

j=1 p1,j∑N
j=1 p2,j
...∑N

j=1 pN,j

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
1

1
...

1

⎞⎟⎟⎟⎟⎠ . (20)

Thus, 1 is an eigenvalue ofP	 and therefore also ofP . Note that (1, 1, . . . , 1)	

is an eigenvector for P	, but not for P .

Next we prove that all eigenvalues λ ∈ C with λ �= 1 satisfy |λ| < 1. Since
P has unit column sums, its column sum norm satisfies ‖P ‖1 = 1. Thus,
we have |λ| ≤ 1. By Gershgorin’s theorem, all eigenvalues of P lie within
disks in the complex domain whose centres are given by the diagonal entries,
respectively. As the spectrum of eigenvalues of a matrix is the same as the
spectrum of eigenvalues of a transposed matrix, we can compute the set of
all Gershgorin disks as

Λ :=
N⋃
j=1

⎧⎨⎩z ∈ C

∣∣∣∣∣∣|z − pj,j | ≤
N∑

i=1,i�=j
|pi,j |

⎫⎬⎭︸ ︷︷ ︸
=:Bj

. (21)

Since P is nonnegative with unit column sums and positive diagonal ele-
ments, we conclude that

N∑
i=1,i�=j

|pi,j | =
N∑

i=1,i�=j
pi,j = 1− pj,j < 1. (22)

As it holds for all j that Bj ∩ {z ∈ C | |z| = 1} = {1}, we can describe Λ as

Λ ⊂ {z ∈ C | |z| < 1} ∪ {1}. (23)

By the assumptions λ ∈ Λ and λ �= 1, we have |λ| < 1.

For the final step of our convergence analysis, we need the following results
from the Perron-Frobenius theory (see e.g. Theorem 8.4.4 in [7]):
If A ∈ RN×N is irreducible and nonnegative, then its spectral radius ρ(A)
is a simple eigenvalue of A. Moreover, there exists a positive eigenvector to
ρ(A).
Since ρ(P ) = 1, this theorem states that λ = 1 is a simple eigenvalue
and has a positive eigenvector. Hence, the iteration (15)–(16) attenuates all
components outside the eigenspace of λ = 1 to zero. Therefore, the process
converges to a vector v in the eigenspace of λ = 1. Since f ∈ RN+ and the
iteration preserves the positive average grey value, it converges to a vector
v ∈ RN with the same positive average grey value as f . Because of the cited
Perron-Frobenius result we know that v is positive. �
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Our framework for discrete linear osmosis allows to analyse osmosis algorithms
in a very simple way: All one has to do is to check the four properties (DLO1)–
(DLO4). If they are satisfied, we can be sure that the filter preserves the average
grey value and the positivity of the original image, and we have full control over
its steady state.

It should be mentioned that this theory is very general: It does not rely on
any specific space discretisation on a regular grid. Without any alterations, it is
applicable to osmosis processes acting on graphs, on surface data, or on higher
dimensional data sets.

4 Application to Finite Difference Discretisations

Let us now apply our discrete osmosis theory to two important finite difference
discretisations that we have already mentioned: the explicit and the implicit
scheme. We will see that they are not only useful for computing the parabolic
time evolution, but also for the elliptic steady state.

4.1 The Parabolic Time Evolution

Applying Proposition 1 to the explicit and the implicit scheme gives the following
result.

Proposition 2. [Finite Difference Discretisations]

Let f ∈ RN+ and consider the semidiscrete linear osmosis evolution

u(0) = f , (24)

u′(t) = Au(t) (25)

where the (unsymmetric) matrix A = (ai,j) ∈ RN×N fulfils the following prop-
erties:

(SLO1) All column sums of A are 0.
(SLO2) A has only nonnegative off-diagonal entries.
(SLO3) A is irreducible.

Then the following results hold:

(a) The explicit scheme
uk+1 = (I + τA)uk (26)

satisfies the requirements (DLO1)–(DLO4) for discrete linear osmosis pro-
cesses provided that

τ <
1

|ai,i|
∀ i ∈ {1, ..., N}. (27)
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(b) The implicit scheme
(I − τA)uk+1 = uk (28)

satisfies (DLO1)–(DLO4) for all time step sizes τ > 0.

Proof. We check (DLO1)–(DLO4) by applying classical matrix analysis.

(a) It holds that ai,i �= 0 because otherwise (SLO1) implies that the whole
column i of A is 0, and thus the digraph associated with A is not strongly
connected. This contradicts the irreducibility of A. The unit column sum
property (DLO1) follows directly from the zero column sums ofA. Moreover,
I+τA is nonnegative (DLO2) with positive diagonal elements (DLO4), since
(SLO2) holds true and τ fulfils (27). Clearly, (27) guarantees that I + τA
and A have the same digraph. Thus, I + τA is also irreducible (DLO3).

(b) We start by observing that I − τA is strictly column diagonally dominant:
From the zero column sum property (SLO1) it follows that

−aj,j =
N∑

i=1,i�=j
ai,j ∀ j ∈ {1, . . . , N} (29)

and thus

1− τaj,j > τ

N∑
i=1,i�=j

ai,j ∀ τ > 0. (30)

By (SLO2) the off-diagonals of A are nonnegative. Hence, we can apply
Gershgorin’s theorem to the columns of I−τA and conclude that this matrix
is nonsingular. Let us consider the row vector e := (1, 1, . . . , 1) with N
components. Clearly, (SLO1) means that I−τA has unit column sums. The
same holds true for its inverse since

e (I − τA) = e ⇐⇒ e = e (I − τA)−1. (31)

This proves (DLO1). The nonpositivity of the off-diagonals of I − τA and
its strict column diagonal dominance imply that I− τA is a nonsingular M-
matrix, cf. [8, Theorem 6.2.3 (C10)]. For any nonsingular M-matrix, it holds
that its inverse has only strictly positive entries, see [8, Theorem 6.2.7]. This
shows (DLO2)–(DLO4). �

Proposition 2 gives stability results with respect to preservation of positivity.
Since also the average grey value is preserved, it follows that 0 < ukj <

∑
i fi

for all j ∈ {1, ..., N} and for all k > 0. This ensures that also the �p norms of
the solution remain bounded for p > 1. Note that osmosis does not allow to
give stability results in terms of decreasing �p norms for p > 1, since comparable
properties for the Lp norms do not hold for the continuous equation: An osmosis
process that starts with a flat image and converges to a nonflat one with identical
average grey value may serve as counterexample. This shows that preservation
of positivity is a very natural stability criterion for osmosis.
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For a spatial grid size of h = 1, the condition (9) becomes

|d1(x)| < 2, |d2(x)| < 2 ∀x ∈ Ω, (32)

and inspecting the central weight in (8) shows that |ai,i| < 8. Thus, the stability
condition (27) for the explicit scheme becomes τ < 1

8 . This stability bound
is half as large as the well-known stability limit of an explicit scheme for the
homogeneous 2-D diffusion equation ∂tu = Δu.

The absolute stability of the implicit scheme is in full accordance with the
corresponding diffusion result from [6, Theorem 8]. The implicit scheme yields
nonsymmetric pentadiagonal systems of linear equations that are strictly diago-
nally dominant in their columns. Using the classical theory of regular splittings
[9], one can show that the Gauß-Seidel algorithm converges under these circum-
stances. More efficient alternatives include Krylov subspace methods such as the
BiCGStab method [10] and its preconditioned variants [11]. Implementing these
iterative methods is fairly straightforward. Also multigrid methods [12] appear
promising, but are more cumbersome to implement.

4.2 The Elliptic Steady State

For many applications of osmosis – such as the ones discussed in [3] – one is
mainly interested in the osmotic steady state. Thus, it appears tempting to
approximate the elliptic PDE

Δu− div (du) = 0 (33)

and its homogeneous Neumann boundary conditions directly with numerical
solvers. However, this can become unpleasant since the elliptic problem has in-
finitely many solutions: For any solution w(x), also cw(x) with some arbitrary
constant c is a solution.

This suggests to use also our parabolic time evolution schemes to obtain the
desired solution that is positive and has the same average grey value as the initial
image f . For the explicit scheme (26) the steady state w is characterised by

w = (I + τA)w (34)

and for the implicit scheme (28), it satisfies

(I − τA)w = w . (35)

Interestingly both equations (34) and (35) are equivalent to

Aw = 0 (36)

which is a space discretisation of the elliptic PDE (33). Thus, we have the re-
markable situation that any stable time step size τ gives the correct elliptic
steady state w. This makes the implicit scheme with large τ attractive for this
task, if one has an efficient solver for the resulting linear systems of equations.
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Fig. 1. Seamless image cloning with osmosis. From left to right: (a) Painting of George
Washington by Gilbert Stuart (Source: Wikimedia Commons, public domain work). (b)
Painting of Abraham Lincoln by George Story (Source: Wikimedia Commons, public
domain work). (c) Mask for the seamless image cloning. (d) Osmotic steady state
using combined drift vector fields.

5 Experimental Evaluation

The preceding discrete osmosis framework provides general criteria that guar-
antee the reliability of osmosis schemes. However, it tells us nothing about their
speed. To evaluate the practical performance of the explicit and the implicit
scheme, let us now consider a typical image editing problem where one is inter-
ested in the osmotic steady state.

For our experiment we want to combine the two images from Figure 1(a) and
(b). They depict contemporary paintings of famous US presidents. The task is
to replace the face of George Washington with the face of Abraham Lincoln in
a seamless way. The image of Washington serves as initialisation of our osmosis
process. In order to apply osmosis, we first have to specify its drift vectors.
We choose the drift vectors of the Washington image where the binary mask
image of Fig. 1(c) is black, and the drift vectors of the Lincoln image where the
mask image is white. At the interface we perform arithmetic averaging of both
drift vector fields. With this combined drift vector field we compute the osmosis
evolution. Its steady state gives the seamlessly cloned image in Fig. 1(d).

Now let us discuss some numerical details. For a positive image f , we use the
following discretisation of its canonical drift vector field (d1, d2)

	 = ∇f
f in the

sense of (6):

d1,i+ 1
2 ,j

=
2 (fi+1,j − fi,j)

h (fi+1,j + fi,j)
, d2,i,j+ 1

2
=

2 (fi,j+1 − fi,j)

h (fi,j+1 + fi,j)
. (37)

These vectors are fed into our space discretisation (7), and as time discretisation
we use the explicit and the implicit scheme. In the implicit case, we have tested
different solvers for the linear system of equations, including Gauß-Seidel, SOR,
BiCGStab, and two preconditioned BiCGStab variants. Because BiCGStab with-
out preconditioning offered the best performance, we only report results for this
solver here. Since we approach our steady state solution iteratively, we need a
stopping criterion: We compute the average �1 distance per pixel between our
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Table 1. CPU times [s] and number of iterations for different image sizes and different
osmosis schemes. For the explicit scheme we use τ = 0.12, and in the implicit case
τ = 105.

image size explicit: time[s] iterations implicit: time[s] iterations

100× 115 14.689 61184 0.3179 2
200× 230 359.49 240115 4.5454 2
400× 460 4487.6 948484 61.909 3

numerical solution and a precomputed ground truth. The iterations are stopped
if this error is less than 0.1, where the initial range of each colour channel is
[1, 256].

Table 1 shows a comparison of the CPU times for the explicit and the implicit
scheme for three different image sizes. The run times are obtained with a dou-
ble precision C implementation on a standard desktop PC with an Intel Xeon
processor, clocked at 3.2 GHz with single threading and without GPU support.
We observe that the implicit scheme with BiCGStab allows to reach the desired
steady state solution up to 79 times faster than the explicit scheme.

6 Summary and Conclusions

We have introduced a fully discrete theory for osmosis filters that can be ex-
pressed in terms of linear drift-diffusion equations. Its prerequisites differ from
the ones for discrete diffusion filtering by the fact that the iteration matrix is
not symmetric. We have seen that this seemingly small difference has a substan-
tial impact on properties such as maximum-minimum principles and nontrivial
steady states. The possibility to design interesting steady states is a key fea-
ture of osmosis filtering, and our paper has provided a discrete characterisation
of the osmotic steady state. Moreover, we have established stability results in
terms of preservation of positivity which is a very natural stability concept for
osmosis. We have shown that our theory is applicable to important finite dif-
ference approximations such as explicit and implicit schemes. Finally, we have
demonstrated that an implicit scheme with a BiCGStab solver also constitutes
an efficient method for obtaining the osmotic steady state. This method is not
very difficult to implement and can be two orders of magnitude faster than the
explicit scheme.

In our ongoing work we are exploring alternative numerical options such as
multigrid solvers [12] and additive operator splittings (AOS) [13,14]. Moreover,
we are establishing semidiscrete and continuous theories for osmosis filtering that
have a similar structure as their diffusion counterparts.
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Abstract. Anisotropic diffusion filters with a diffusion tensor are
successfully used in many image processing and computer vision ap-
plications, ranging from image denoising over compression to optic flow
computation. However, finding adequate numerical schemes is difficult:
Implementations may suffer from dissipative artifacts, poor approxima-
tion of rotation invariance, and they may lack provable stability guaran-
tees. In our paper we propose a general framework for finite difference
discretisations of anisotropic diffusion filters on a 3×3 stencil. It is based
on a gradient descent of a discrete quadratic energy where the occurring
derivatives are replaced by classical as well as the widely unknown non-
standard finite differences in the sense of Mickens. This allows a large
class of space discretisations with two free parameters. Combining it with
an explicit or semi-implicit time discretisation, we establish a general and
easily applicable stability theory in terms of a decreasing Euclidean norm.
Our framework comprises as many as seven existing space discretisations
from the literature. However, we show that also novel schemes are possi-
ble that offer a better performance than existing ones. Our experimental
evaluation confirms that the space discretisation can have a very sub-
stantial and often underestimated impact on the quality of anisotropic
diffusion filters.

Keywords: diffusion filtering, finite difference methods, stability, rota-
tion invariance, dissipativity.

1 Introduction

Anisotropic diffusion filters with a diffusion tensor instead of a scalar-valued dif-
fusivity are flexible tools that permit to steer the diffusion process in a desired
direction [1]: This can be very useful for image processing tasks ranging from
image denoising and enhancement (see e.g. [1, 2]) to lossy image compression
[3]. Anisotropic diffusion terms also appear in computer vision applications, e.g.
in the Euler-Lagrange equations of variational methods for optic flow compu-
tations [4, 5], for stereo reconstruction [6], and for range image integration [7].
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An anisotropic diffusion filter in the sense of [1] computes a filtered version
u(x, t) of some initial image f(x) by solving the diffusion equation

ut = div (D∇u) (1)

with f as initial condition,

u(x, 0) = f(x) , (2)

and homogeneous Neumann boundary conditions. Here the lower index t denotes
a time derivative, and the divergence and the nabla operators involve spatial
derivatives only. The diffusion tensor D is a positive definite (and thus also
symmetric) 2×2 matrix that is space-variant and may even depend on derivatives
of the evolving image u(x, t). For our discussions below, one can use positive
semidefinite diffusion tensors as well.

A large number of numerical schemes has been proposed for anisotropic dif-
fusion processes, including finite elements [8], finite volume methods [9], and
lattice Boltzmann techniques [10]. However, mostly finite difference methods are
used [1, 2, 11–14], sometimes realised as wavelet shrinkage [15, 16]. Apart from
[13], all finite difference schemes approximate the divergence term on a 3 × 3
stencil.

Unfortunately, finding good finite difference schemes for anisotropic diffu-
sion filters is much more challenging than for their isotropic counterparts with
a scalar-valued diffusivity. While the time discretisation mainly influences the
efficiency of the method and does not create specific difficulties, the major prob-
lem comes from the space discretisation: If the diffusion process is strongly
anisotropic, the corresponding direction has to be approximated with very high
accuracy in order to avoid undesired dissipative blurring effects. The approxima-
tion quality of the rotationally invariant model can also vary a lot even among
schemes with identical order of consistency. Last but not least, it is difficult to
establish a stability theory for anisotropic diffusion filters: Weickert [1] presents
a discrete theory that analyses stability in terms of a maximum-minimum prin-
ciple. However, he shows that on a 3 × 3 stencil, this can only be guaranteed
if the spectral condition number of D does not exceed 5.82 (see also [17]). In
practice, one is usually interested in using more pronounced anisotropies. In this
case, there is no L∞-stability guarantee for the nonnegativity scheme from [1]
and its generalisations by Mrázek and Navara [12]. Thus, it would be desirable
to have at least an L2-stability theory such as for the wavelet-inspired schemes
from [15, 16]. However, none of the finite difference discretisations in [1, 2, 11–13]
gives L2-stability results.

Our Contributions. The goal of the present paper is to provide a general
framework for L2-stable discretisations of anisotropic diffusion filters on a 3× 3
stencil. It is derived as gradient descent of a discretised energy functional with
a positive definite quadratic form. By considering also the widely unknown non-
standard discretisations in the sense of Mickens [18], we end up with a two-
parameter family of space discretisations on a 3 × 3 stencil. Interestingly this
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family covers seven existing finite difference discretisations that have been pro-
posed for such a stencil [1, 2, 11, 12, 15, 16]. Moreover, we establish stability
results in the Euclidean norm for explicit and semi-implicit time discretisations,
providing a theoretical foundation for many of these schemes that has not been
available so far. Last but not least we present an experiment that illustrates
the large impact that the free parameters can have. With a suitable parameter
choice, one can design novel schemes with low dissipativity and an excellent
approximation of rotation invariance.

Organisation of the Paper. In Section 2 we derive our general finite difference
stencil from a discrete energy. Its theoretical properties are analysed in Section
3. In the fourth section, we evaluate various discretisations that arise as special
cases, and we conclude our paper with a summary in Section 5.

2 General Discretisation

Quadratic Energy Model. To discretise the anisotropic diffusion process (1)
in time, we will use a sequence t0 < t1 < t2 < . . . of discrete time nodes. Freezing
the space-variant diffusion tensor D within each time interval [tk, tk+1), k ∈ N0

then creates a sequence of linearised processes. In each interval, the evolution
equation is a gradient descent of the quadratic energy

E(u) =
1

2

∫
Ω

∇	uD∇u dx dy (3)

with a space-variant but time-invariant positive definite diffusion tensor

D =

(
a(x, y) b(x, y)

b(x, y) c(x, y)

)
. (4)

For discretisation in space, we adopt for u a regular grid {1, . . . , N}×{1, . . . ,M}
with mesh size h in both x and y direction, i.e. the index (i, j) refers to the
location (xi, yj) with xi = x0 + i h, yj = y0 + j h. Following the proceeding
in [15, 16], we assume that approximations for a, b, and c are available in the
locations (i + 1

2 , j +
1
2 ). Provided that also u2x, uxuy, and u2y are approximated

in (i+ 1
2 , j +

1
2 ), a discrete version of the energy (3) is then given by

E(u) =
1

2

N∑
i=0

M∑
j=0

(
au2x + 2buxuy + cu2y

)
i+ 1

2 ,j+
1
2

. (5)

Suitable approximations should be local, i.e. involve only the four pixels in the
cell {i, i+1}× {j, j+1}. In terms of accuracy, we require their consistency to be
of second order. At boundary locations (rows j ∈ {0,M}, columns i ∈ {0, N}),
values of a, b, c, and ux, uy must satisfy appropriate constraints to be compatible
with Neumann boundary conditions.
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Derivative Approximations. To derive approximations with these properties,
we start by discretising ux and uy. To this end, we consider combinations of the
forward differences

� � := Dxui,j :=
ui+1,j − ui,j

h
, (6)

� �

:= Dxui,j+1 :=
ui+1,j+1 − ui,j+1

h
, (7)

�

�

:= Dyui,j :=
ui,j+1 − ui,j

h
, (8)

�

�

:= Dyui+1,j :=
ui+1,j+1 − ui+1,j

h
. (9)

Nonstandard Finite Difference Approximations. Since our quadratic en-
ergy involves expressions in u2x, u

2
y, and uxuy, let us study approximations of

these terms with second order of consistency using the discretisations (6)–(9).
We approximate u2x by affine combinations of the arithmetic mean and the

geometric mean of the finite differences in x-direction:

u2x

∣∣∣
i+ 1

2 ,j+
1
2

≈ (1 − αi+ 1
2 ,j+

1
2
) · 1

2

(
� � · � � +

� � · � �
)

+ αi+ 1
2 ,j+

1
2
· � � · � � , (10)

where αi+ 1
2 ,j+

1
2
in an arbitrary weight that may be space-variant.

Analogously, u2y is approximated by affine combinations of the arithmetic
mean and the geometric mean of the finite differences in y-direction:

u2y

∣∣∣
i+ 1

2 ,j+
1
2

≈ (1 − αi+ 1
2 ,j+

1
2
) · 1

2

(
�

� · �� + �

� · �

�
)

+ αi+ 1
2 ,j+

1
2
· �

� · �

�

. (11)

To treat u2x and u2y equally, we have chosen the same weight αi+ 1
2 ,j+

1
2
.

Eventually, uxuy involves all four combinations of the two finite differences in
x-direction and the two finite differences in y-direction:

uxuy

∣∣∣
i+ 1

2 ,j+
1
2

≈
1− βi+ 1

2 ,j+
1
2

2
· 1

2

(
� � · �� +

� � · �

�
)

+
1 + βi+ 1

2 ,j+
1
2

2
· 1

2

(
� � · �

�

+
� � · ��

)
(12)

with a space-variant weight βi+ 1
2 ,j+

1
2
.

The approximations (10)–(12) deserve some further discussion. Note that for
αi+ 1

2 ,j+
1
2
�= 0, the second summand in (10) approximates u2x at the location

(i+ 1
2 , j+

1
2 ) by multiplying two different approximations for ux, namely Dxui,j
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and Dxui,j+1. This is in accordance with one of Mickens’ principles for so-called
nonstandard finite difference schemes [18]: “Nonlinear terms must, in general,
be modelled nonlocally on the computational grid or lattice”. Here, the term
nonlocal means that both approximations refer to different grid points: Dxui,j
is a central difference approximation in (i+ 1

2 , j), while Dxui,j+1 is centred in
(i+ 1

2 , j+1).
In a similar way, one sees that also (11) uses nonstandard finite differences for

αi+ 1
2 ,j+

1
2
�= 0, and so does (12) for βi+ 1

2 ,j+
1
2
�= 0. Note that for βi+ 1

2 ,j+
1
2
= 0,

approximation (12) is equivalent to

uxuy

∣∣∣
i+ 1

2 ,j+
1
2

≈ 1

2

(
� � +

� �
)
· 1

2

(
�

�

+ �

�
)

(13)

which is a standard approximation, since both factors are centred in (i+1
2 , j+

1
2).

Mickens advocates his principle of nonlocal approximation of nonlinear terms
as an ingredient for obtaining qualitatively correct discrete models of continuous
equations. The evaluation in Section 4 will show the benefit of this idea.

Gradient Descent. Our space-discrete approximation of the anisotropic diffu-
sion process in every pixel i is finally given by the gradient descent

dui
dt

= − ∂E(u)

∂ui
(14)

for the discrete energy (5) with the approximations (10)–(12). The right hand
side gives the desired discretisation of div (D∇u). It can be represented by the
weights in a (3 × 3)-stencil. For inner pixels 1 < i < N , 1 < j < M one obtains
after some tedious but straightforward calculations the stencil

1

2h2
·

[
(β−1) b+ α (a+c)

]
i− 1

2 ,j+
1
2

[
(1−α) c− αa− β b

]
i+ 1

2 ,j+
1
2

+
[
(1−α) c− αa− β b

]
i− 1

2 ,j+
1
2

[
(β+1) b+ α (a+c)

]
i+ 1

2 ,j+
1
2

[
(1−α) a− α c− β b

]
i− 1

2 ,j+
1
2

+
[
(1−α) a− α c− β b

]
i− 1

2 ,j− 1
2

−
[
(1−α) (a+c)− (β−1) b

]
i+ 1

2 ,j+
1
2

−
[
(1−α) (a+c)− (β+1) b

]
i+ 1

2 ,j− 1
2

−
[
(1−α) (a+c)− (β+1) b

]
i− 1

2 ,j+
1
2

−
[
(1−α) (a+c)− (β−1) b

]
i− 1

2 ,j− 1
2

[
(1−α) a− α c− β b

]
i+ 1

2 ,j+
1
2

+
[
(1−α) a− α c− β b

]
i+ 1

2 ,j− 1
2

[
(β+1) b+ α (a+c)

]
i− 1

2 ,j− 1
2

[
(1−α) c− αa− β b

]
i+ 1

2 ,j− 1
2

+
[
(1−α) c− αa− β b

]
i− 1

2 ,j− 1
2

[
(β−1) b+ α (a+c)

]
i+ 1

2 ,j− 1
2

(15)

where the y-axis is oriented upwards. This stencil approximates div (D∇u) with
consistency order 2. In boundary pixels, homogeneous Neumann boundary con-
ditions can be taken into account just by mirroring the first and last rows and
columns of u.
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Table 1. Seven existing space discretisations as special cases of our general stencil

discretisation α β

standard discretisation [11] 0 0
Cottet and El-Ayyadi [2] 0 −1
nonnegativity discretisation [1] 0 sign(b)

Mrázek and Navara II [12] min(a,c)
a+c

0

Mrázek and Navara III [12] min(a,c)
2(a+c)

1
2
sign(b)

wavelet-inspired scheme I [15] 1
2

0
wavelet-inspired scheme II [16] [0, 1

2
] 0

A General Framework for Existing Schemes. Interestingly our space dis-
cretisation subsumes a number of anisotropic diffusion stencils from the litera-
ture. Table 1 lists seven representatives with the corresponding weight param-
eters α, β of our general stencil. In three of the listed schemes the weights are
chosen space-variant. All but the last two schemes have originally been stated
with the diffusion tensor discretised either at locations (i, j) or (i+ 1

2 , j), (i, j+
1
2 ).

In these cases, full correspondence with our scheme is achieved by a suitable grid
resampling with linear interpolation. In Section 4 we will see that our general
stencil also contains new parameter settings with favourable performance.

3 Theoretical Properties

In the anisotropic diffusion process (1), the diffusion tensor field D is required to
consist of positive definite tensors. As a consequence, the quadratic form within
the continuous energy (3) is nonnegative. It is therefore natural to ask whether
also the discrete energy (5) retains this property. This will help to determine
stability properties of the gradient descent.

3.1 Positive Semidefiniteness of the Discrete Energy

Introducing the notations

wi+ 1
2 ,j+

1
2

:=
(
� � ,

� �

, �

�

, �

�
)	

, (16)

Hi+ 1
2 ,j+

1
2

:=

⎛⎜⎜⎜⎜⎜⎜⎝

1−α
2 ai+ 1

2 ,j+
1
2

α
2 ai+ 1

2 ,j+
1
2

1−β
4 bi+ 1

2 ,j+
1
2

1+β
4 bi+ 1

2 ,j+
1
2

α
2 ai+ 1

2 ,j+
1
2

1−α
2 ai+ 1

2 ,j+
1
2

1+β
4 bi+ 1

2 ,j+
1
2

1−β
4 bi+ 1

2 ,j+
1
2

1−β
4 bi+ 1

2 ,j+
1
2

1+β
4 bi+ 1

2 ,j+
1
2

1−α
2 ci+ 1

2 ,j+
1
2

α
2 ci+ 1

2 ,j+
1
2

1+β
4 bi+ 1

2 ,j+
1
2

1−β
4 bi+ 1

2 ,j+
1
2

α
2 ci+ 1

2 ,j+
1
2

1−α
2 ci+ 1

2 ,j+
1
2

⎞⎟⎟⎟⎟⎟⎟⎠ , (17)
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we can rewrite our discrete energy (5) as

E(u) =
1

2

N∑
i=0

M∑
j=0

w	
i+ 1

2 ,j+
1
2
Hi+ 1

2 ,j+
1
2
wi+ 1

2 ,j+
1
2
. (18)

Now we state our main result on the discrete energy functional.

Proposition 1 (Positive Semidefiniteness of Hi+ 1
2 ,j+

1
2
). The matrix

Hi+ 1
2 ,j+

1
2

is positive semidefinite for any positive definite diffusion tensor

Di+ 1
2 ,j+

1
2
if and only if |β| ≤ 1− 2α.

Sketch of the proof. We decompose R4 into the subspaces

V := span{(1, 1, 0, 0)	, (0, 0, 1, 1)	} and (19)

V ⊥ = span{(1,−1, 0, 0)	, (0, 0, 1,−1)	} . (20)

On V , the matrix Hi+ 1
2 ,j+

1
2
acts like 1

2Di+ 1
2 ,j+

1
2
: To see this, let (x, y)	 be an

eigenvector of Di+ 1
2 ,j+

1
2
with eigenvalue λ. Then (x, x, y, y)	 is an eigenvector

of Hi+ 1
2 ,j+

1
2
with eigenvalue λ

2 . This guarantees positive definiteness on V .

On V ⊥, it is easy to check that the action of Hi+ 1
2 ,j+

1
2
is given by the matrix

T :=
1

2

(
(1− 2α)a βb

βb (1− 2α)c

)
(21)

with respect to the basis vectors stated above. To ensure nonnegativity of the
eigenvalues of T for any positive definite D, the inequality |β| ≤ 1 − 2α is
necessary and sufficient. �

Remark. As a consequence, the largest value of α for which positive semidef-
initeness can be established is α = 0.5. However, we do not recommend using
α = 0.5, since the stencil can decouple into two checkerboard-like subgrids then.
For α < 0.5 one has strict positive definiteness and no decoupling problems.

3.2 Stability Results for Fully Discrete Diffusion Schemes

The positive semidefinite energy (18) can be rewritten as

E(u) = − 1

2
u	Au (22)

with a negative semidefinite matrix A ∈ RNM×NM where each row contains the
nine stencil entries of the corresponding spatial node. Its gradient descent

du

dt
= Au (23)

is a space-discrete and time-continuous anisotropic diffusion process. Let us now
consider two common time discretisations of this dynamical system.
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Explicit Time Discretisation. An explicit scheme with step size τ is given
by

uk+1 − uk

τ
= Ak uk , (24)

where the upper index denotes the time level. It can be written as

uk+1 = (I + τAk)uk . (25)

Stability in the Euclidean norm requires ‖uk+1‖2 ≤ ‖uk‖2. This is guaran-
teed for ρ(I + τAk) ≤ 1, where ρ denotes the spectral norm. For a negative
semidefinite Ak, this comes down to

τ ≤ 2

ρ(Ak)
. (26)

An estimate for ρ(Ak) can be derived via Gershgorin’s Theorem. The stability
bound (26) also allows to design extremely efficient variants of (24), so-called
fast explicit diffusion (FED) schemes [19]. They use cycles of varying time steps,
preserve the L2-stability of the underlying scheme, and are well-suited for GPUs.

Semi-implicit Time Discretisation. The semi-implicit scheme

uk+1 − uk

τ
= Ak uk+1 (27)

requires to solve a linear system of equations:(
I − τAk

)
uk+1 = uk . (28)

For negative semidefinite Ak, the matrix I − τAk has only eigenvalues ≥ 1 and
is thus invertible. Since ρ((I − τAk)−1) ≤ 1, the semi-implicit scheme

uk+1 =
(
I − τAk

)−1
uk (29)

is absolutely stable in the Euclidean norm.

4 Evaluation of Specific Discretisations

Now that we have derived a general class of L2-stable discretisations for aniso-
tropic diffusion processes, let us study the performance of different parameter
settings. Since more recent applications of anisotropic diffusion focus on its inter-
polation quality (see e.g. [3, 5]), we consider an idealised demosaicking scenario,
where we know the ground truth solution and where subpixel accuracy w.r.t. the
interpolation direction plays an important role. For other applications such as
denoising and image enhancement we have found similar performance rankings.

Demosaicking addresses a problem of many camera sensors: They use a colour
filter array which allows them to measure only one out of three colour channels
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Table 2. Performance of different space discretisations

discretisation α β PSNR [dB]

standard discretisation [11] 0 0 24.60
Cottet and El-Ayyadi [2] 0 −1 25.38
nonnegativity discretisation [1] 0 sign(b) 29.86

Mrázek and Navara II [12] min(a,c)
a+c

0 24.17

Mrázek and Navara III [12] min(a,c)
2(a+c)

0.5 sign(b) 27.42

wavelet-inspired scheme I [15] 0.5 0 29.57
wavelet-inspired scheme II [16] 0.49 0 32.88
our nonstandard stencil 0.44 0.118 sign(b) 33.99

at each pixel location: either red (R), green (G), or blue (B). Thus, exactly
one third of the colour image information is available, and two thirds must be
interpolated. Often the colour information is arranged in the order of the so-
called Bayer array that consists of a periodic repetition of the pattern

R G

G B
(30)

For our evaluation we consider the synthetic test image in Figure 1(a). It con-
sists of concentric circular structures of varying frequencies. Thus, it allows us
to assess the directional and the frequency behaviour of anisotropic diffusion
interpolation. By removing two thirds of the colour information by means of
the Bayer mask, we obtain the image in Figure 1(b). Now we interpolate the
missing information at the unspecified channels in each pixel by evolving an ex-
plicit anisotropic diffusion scheme to its steady state. The data at the specified
pixels serve as Dirichlet boundary conditions. In this synthetic example we can
design a positive semidefinite diffusion tensor in such a way that only diffusion
in tangential direction is allowed. Thus, the directional error of D is zero, and
all reconstruction errors are caused by limitations of our space discretisation due
to dissipative artifacts or deviations from rotation invariance.

Table 2 compares the peak signal-to-noise ratio (PSNR) between the interpo-
lated image and the original image. In spite of the fact that we interpolate over
a distance of at most two pixels and that we prescribe the correct interpolation
direction, we observe that the seven stencils from the literature differ strongly
in their performance: While the standard discretisation and the Mrázek–Navara
scheme II perform fairly bad, the nonnegativity discretisation and the wavelet-
inspired scheme II with α = 0.49 give rather good results. It should be noted
that the wavelet-inspired scheme I always uses α = 0.5. Hence, it suffers from
the before mentioned checkerboard decoupling which is particularly undesirable
for demosaicking. Therefore, we recommend to use only stencils with α ≤ 0.49.

We see that all seven schemes from the literature can be outperformed by
our nonstandard scheme with suitable parameters. Its demosaicking result is
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Fig. 1. (a) Left: Test image, 256× 256 pixels. (b) Middle: After applying the Bayer
colour filter array. (c) Right: Demosaicking result with our nonstandard scheme with
α = 0.44 and β = 0.118 sign(b).

depicted in Figure 1(c). Since all stencils from Table 2 have the same consistency
order (namely 2), it is remarkable that their actual performance is so different:
The PSNR difference between the best and the worst stencil is 9.82 dB! This
confirms the fundamental importance of a good discretisation when one wants
to use anisotropic diffusion processes with a diffusion tensor. Similar findings
have also been made in [12, 13, 15, 16].

The best 3 × 3 finite difference stencil in the anisotropic diffusion literature
is given by the wavelet-inspired filter class II [16]. It contains α as a free para-
meter. Our nonstandard stencil class identifies β as a second degree of freedom.
According to Proposition 1, β has to fulfil |β| ≤ 1 − 2α. Often it is advisable
to use a β-value that has the same sign as b, since this can help to reduce the
well-known over- and undershoots due to a lack of nonnegativity in the stencil.
Thus, it is convenient to replace the parameter β by a parameter γ that is linked
to sign(b) and can vary in the interval [−1, 1] for all α < 1

2 :

β = γ · (1− 2α) · sign(b) . (31)

For example, β = 0.118 sign(b) in Table 2 can be expressed by γ = 0.98.
Table 3 illustrates the advantages of our nonstandard stencil over the wavelet-

inspired stencil II. For small values of α, one can easily improve the PSNR in
the demosaicking test case by more than 5 dB: All one has to do is to choose
γ = 1 instead of γ = 0. The latter corresponds to the wavelet-inspired stencil
II. As long as α is not too close to the critical value 1

2 (which should be avoided
anyway due to checkerboard artifacts) it turns out that γ = 1 gives the highest
PSNR. However, even for α ∈ [0.43, 0.49], where γ = 1 is suboptimal, it still
outperforms γ = 0. Thus, choosing γ = 1 works well in practice and reduces the
parameter space to a single degree of freedom.

We see that within our stencil class, schemes with fairly large values for α
and γ perform particularly well. This confirms Mickens’ principle of nonlocal
approximation of nonlinear terms: The more α and γ differ from 0, the larger is
the contribution of the nonstandard finite difference terms within (10)–(12).
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Table 3. Comparison between the wavelet-inspired filter class II from [16] and our
nonstandard filter class. The table depicts the PSNR for the demosaicking test scenario,
and γopt refers to the γ-value where the nonstandard stencil yields the highest PSNR.

α wavelet-insp. II nonstandard γopt
0 24.60 29.86 1
0.1 25.27 30.81 1
0.2 26.14 31.90 1
0.3 27.32 33.04 1
0.4 29.08 33.83 1
0.42 29.57 33.87 1
0.44 30.16 33.99 0.98
0.46 30.90 33.96 0.96
0.48 31.98 33.87 0.90
0.49 32.88 33.78 0.80
0.5 29.57 29.57 −

5 Conclusions

We have shown that seven finite difference discretisations for anisotropic diffusion
filtering with a diffusion tensor are special cases of a novel, unifying framework.
It is derived systematically from a discrete energy formulation, and it exploits
the widely unknown nonstandard finite differences of Mickens [18]. We have es-
tablished general L2-stability results. Our framework does not only provide a
theoretical foundation of existing schemes as L2-stable discrete energy minimis-
ers, but also comprises novel stencils that outperform existing ones.

Our evaluation has shown that different discretisations of the same continu-
ous model can give PSNR differences of almost 10 dB, even though they have
identical consistency order. This confirms the widely underestimated fact that
appropriate numerical algorithms are at least as important as good models.

We expect that the ideas in our paper can also be generalised to other
anisotropic equations that create similar numerical challenges.
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Abstract. This paper is concerned with the theoretical analysis of structure-
adaptive median filter algorithms that approximate curvature-based PDEs for
image filtering and segmentation. These so-called morphological amoeba filters,
introduced by Lerallut et al. and further developped by Welk et al., achieve sim-
ilar results as the well-known geodesic active contour and self-snakes PDEs. In
the present work, the PDE approximated by amoeba active contours is derived in
the general case. This PDE is structurally similar but not identical to the geodesic
active contour equation. Implications for the qualitative behaviour of amoeba ac-
tive contours as well as for the approximation of the pre-smoothed self-snakes
equation are investigated.

1 Introduction

Introduced by Lerallut et al. [11,12], morphological amoeba filtering is a class of dis-
crete image filtering procedures based on image-adaptive structuring elements. These
structuring elements are defined by a so-called amoeba metric that combines spatial
proximity and grey-value similarity. Amoeba filters adapt flexibly to image structures.
For example, iterated amoeba median filtering (AMF) improves the favourable edge-
preserving denoising capabilities of traditional iterated median filtering [17] by remov-
ing its tendency to dislocate edges, and introducing even edge-enhancing behaviour.

Extending the author’s earlier work with co-authors [18,19], this paper is concerned
with comparing AMF methods to two curvature-based PDEs of image processing.
Firstly, we consider geodesic active contours [3,4,8,9]

ut = |∇u| div
(
g(|∇f |2) ∇u|∇u|

)
(1)

which can be used to segment a given image f by evolving a contour towards regions of
high contrast in f . The evolving contour is encoded as zero-level set of the function u.
The (decreasing, nonnegative) edge-stopping function g can be chosen e.g. as a Perona-
Malik-type function [15]

g(s2) =
1

1 + s2/λ2
, λ > 0 . (2)

Secondly, we are interested in self-snakes [16], a PDE filter for a single image u that is
obtained from (1) by identifying f with the evolving function u.

A. Kuijper et al. (Eds.): SSVM 2013, LNCS 7893, pp. 392–403, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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As shown in [19], AMF is linked to the self-snakes equation in a way similar to
the connection of traditional median filtering to (mean) curvature motion [1] that was
proven by Guichard and Morel [6]: One amoeba median filtering step asymptotically
approximates a time step of size '2/6 of an explicit time discretisation for the self-
snakes PDE when the radius ' of the structuring element goes to zero. The exact
shape of the (decreasing, nonnegative) edge-stopping function g depends on the specific
choice of the amoeba metric, with the Perona-Malik-type function (2) being associated
to the L2 amoeba metric.

Building on this amoeba/self-snakes connection, [18] proposed a morphological
amoeba algorithm for active contour segmentation. Experimentally, this process be-
haves similar to geodesic active contours, with a tendency to refined adaptation to struc-
ture details, see [18, Fig. 2]. Analysis in [18] was restricted to a rotationally symmetric
situation where asymptotic equivalence to geodesic active contours (1) could be proven.
The present paper aims at closing this gap in theoretical analysis.

Writing the self-snakes equation ((1) with f ≡ u) as ut = g · |∇u| div(∇u/|∇u|)+
〈∇g,∇u〉 accentuates an important difference between the (mean) curvature motion
equation ut = |∇u| div(∇u/|∇u|) and self-snakes: the edge-enhancing component
〈∇g,∇u〉 is related to a shock filter [14,16] or backward diffusion [16]. Analyti-
cally, this makes the self-snakes PDE ill-posed, and in particular induces staircasing
behaviour [20]. Numerically, this shock component needs specific consideration. In
finite-difference discretisations, it is usually treated by an upwind discretisation [13].
Still, severe numerical dissipation artifacts appear. As [19] demonstrates, results de-
pend heavily on the grid mesh size, rendering the approximation of the PDE unreliable.

One approach to defeat these undesired phenomena on the PDE level itself, and
to construct a PDE that can properly be numerically approximated, is pre-smoothing
[5]. To this end, one replaces ∇u in the argument of g by a smoothed version like
∇uσ := Kσ ∗∇u where Kσ denotes a Gaussian of standard deviation σ.

As [19] suggests, AMF can be considered as an unconventional discretisation of
self-snakes. Experiments in [19] indicate that it is less susceptible to the above-mentio-
ned sort of artifacts. This indicates that the AMF procedure also acts in some way
regularising. To make a first step towards a better understanding of the regularisation
effects of pre-smoothing and amoeba filtering is another objective of this work.

Our Contribution. We extend the analytical investigation of amoeba filters. First, we
derive the PDE corresponding to the amoeba active contour method in the general case,
which is no longer fully identical to the geodesic active contour equation. To this end,
we introduce a proof strategy substantially different from that used in [18,19]. Qualita-
tive differences between geodesic and amoeba active contours are discussed based on
the approximation result.

Finally, we apply our extended analysis of amoeba active contours to amoeba ap-
proximation of pre-smoothed self-snakes.

Structure of the Paper. We give a short account of the basic concepts of amoeba
filtering in Section 2. Our main theoretical result on PDE approximation is proven in
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Section 3. It is used for comparing amoeba active contours to geodesic active contours
in Section 4. Pre-smoothing in the self-snakes PDE and its approximation in the amoeba
framework is discussed in Section 5, followed by a conclusion in Section 6.

2 Amoeba Filters

In this section we recall shortly the definition of amoeba metrics and amoeba filters. We
assume that a 2D image is given as a smooth function f : Ω → IR where Ω ⊂ IR2 is
closed.

Amoeba Metrics. Following the spatially continuous formulation of the amoeba frame-
work in [18,19], we associate with f the image manifold Γ ⊂ IR3 consisting of the
points (x, y, βf(x, y)). As a Riemannian metric on Γ , an amoeba metric is given by

dνs = ν
(√

dx2 + dy2, β df
)
, (3)

where ν is some norm on IR2. The use of the Euclidean norm
√
dx2 + dy2 in the spatial

component ensures rotational invariance of the amoeba metric, while the combination
of spatial and tonal distances is governed by ν. The factor β is a scale that balances the
spatial and tonal information.

The amoeba distance d(p, q) between two points p, q of the image domain is the
minimum of L(c) =

∫
c dνs among all curves c connecting p with q.

Continuous-Scale Amoeba Filtering Formulation. For amoeba filters, one defines
a structuring element Ap for each point p ∈ Ω as the set of all q ∈ Ω such that
d(p, q) ≤ ', where the global parameter ' is the amoeba radius. With the so defined
structuring elements several morphological filters can be carried out straightforward.
In particular, for amoeba median filtering (AMF), the median of the grey-values of the
given image f within Ap becomes the filtered grey-value at p. Like traditional median
filtering, this filter can be applied iteratively. This process was studied in [19].

Amoeba Active Contours. The amoeba active contour method described in [18] acts
in a similar way: Structuring elements are determined as before but on the basis of the
given image f , and are used for median-filtering the evolving level-set function u.

Discrete Amoeba Filtering Algorithms. Practically, computations are done on dis-
crete images, using a discrete version of the above-mentioned amoeba distance obtained
by restricting curves to paths in the neighbourhood graph of the image grid, either with
4-neighbourhoods as in [11,12] or with 8-neighbourhoods as in [18,19]. More sophisti-
cated constructions using geometric distance transforms [2,7] would be possible.

Choice of the Amoeba Metric for the Analysis. In the following, we use the L2

amoeba metric given by ν(s, t) =
√
s2 + t2. The amoeba metric parameter β can be

fixed to 1 since a change of this parameter is equivalent to a simple rescaling of the
steering function f .
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3 Analysis of Amoeba Active Contours

We study an amoeba median filter for ' → 0, in which f is a smooth function from
which the amoeba structuring elements are generated, and u is another smooth func-
tion, to which the median filter is applied. In our analysis, local orthonormal bases
aligned to the gradient and level-line directions of both functions will play an impor-
tant role. Given a location x0 in the image domain, we will therefore denote by χ =
(cosϕ, sinϕ)T the normalised gradient vector of f at x0. The unit vector ζ ⊥ χ then in-
dicates the local level line direction of f . Analogously, we denote by η a normalised gra-
dient vector for u, and by ξ ⊥ η the unit vector in the level line direction. The angle be-

tween the gradient directions will be called α, such that η =
(
cos(ϕ+α), sin(ϕ+α)

)T
.

We will prove the following fact.

Theorem 1. One step of amoeba median filtering of a smooth function u governed by
amoebas generated from f with an amoeba radius of ' asymptotically approximates a
time step of size τ = '2/6 of an explicit time discretisation for the PDE

ut =
uξξ

1 + |∇f |2 sin2 α
− |∇f | |∇u|

1 + |∇f |2 sin2 α
·
(
fζζ cos3 α

1 + |∇f |2

+ 2 fζχ sin3 α+
fχχ cosα

(
2 + sin2 α+ 3 |∇f |2 sin2 α

)(
1 + |∇f |2

)2
)
. (4)

Remark on the Proof Strategy. The proofs in [18,19] were based on measuring level
line segments within the amoeba. Throughout the proofs, Taylor coefficients of f and
u up to second order were used in the calculations. This strategy could be followed in
the more specialised cases treated in those papers. However, the complexity of such
calculations would increase a lot in the general case we are about to discuss. In the
following proof of the theorem we follow therefore a different strategy that measures
areas not segments but sectors of amoebas via a polar coordinate representation. Level
lines other than the one through the amoeba centre are not considered directly any more.

Finding the Amoeba Contour. To determine the shape of the amoeba A := Ax0

around a point x0 ∈ Ω, we start by considering the 1D case: given f : IR → IR, we
seek z± ∈ IR such that the arc-length of the image graph of f between x0 and each of
x0 + z+, x0 − z− equals '. Certainly, z± ≤ '.

Using Taylor expansions for f and the square root function, we have for the arc-
length from x0 to x0 + z (where z > 0)

x0+z∫
x0

√
1 + f ′(x)2 dx = z

√
1 + f ′(x0)2 +

z2

2

f ′(x0) f ′′(x0)√
1 + f ′(x0)2

+O('3) . (5)

Equating this to ' yields a quadratic equation in z with the solutions

z1,2 =
1+ f ′(x0)2

f ′(x0) f ′′(x0)

(
−1±

√
1 + '

f ′(x0) f ′′(x0)(
1 + f ′(x0)

)3/2
)

+O('3) (6)
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Fig. 1. Left to right: (a) Area difference Δ1 in an asymmetric amoeba with straight level lines.
– (b) Area difference Δ2 in a symmetric amoeba with curved level lines. – (c) Compensation of
the area difference Δ by shifting the central level line (schematic).

which gives z+ as the “+” case (because of z > 0). Using again the Taylor expansion
of the square root function, and doing an analogous derivation for z−, we arrive at

z± =
'√

1 + f ′(x0)2
∓ '2 f ′(x0) f ′′(x0)

2
(
1 + f ′(x0)2

)2 +O('3) . (7)

Turning to the 2D case, we approximate each shortest path in the amoeba metric from
x0 to a point on the amoeba contour by a Euclidean straight line in the image plane. This
introduces only an O('3) error for the path length. We consider now the straight line
through x0 in the direction of a given unit vector v ∈ IR2. By our previous 1D result,
with the directional derivatives fv(x0) = 〈v,∇f(x0)〉 and fvv(x0) = vTD2f(x0)v,
we see that said straight line intersects the amoeba contour at x0 ± z±(v) · v with

z±(v) =
'√

1 +
〈
v,∇f(x0)

〉2 ∓ '2
〈
v,∇f(x0)

〉
vT D2f(x0)v

2
(
1 +

〈
v,∇f(x0)

〉2)2 +O('3) . (8)

Contributions to the Amoeba Median. The median ofuwithin the structuring element
A equals u(x0) if (a) the amoeba is point-symmetric w.r.t. x0, and (b) the level lines
of u are straight: The central level line u(x) = u(x0) of u then bisects A, i.e. A+ :=
{x ∈ A | u(x) ≥ u(x0)} and A− := {x ∈ A | u(x) ≤ u(x0)} have equal area. For a
similar bisection approach in a gradient descent for segmentation compare [10].

Deviations from conditions (a) and (b) lead to imbalances betweenA+ andA−. The
median is determined by the shift of the central level line that is necessary to compensate
for the resulting area difference. The separate area effects of asymmetry of the amoeba,
and curvature of u’s level lines are of order O('3), while any cross-effects are at least
of orderO('4), and can be neglected for the purpose of our analysis. Therefore, the two
effects can be studied independently.

Asymmetry of the Amoeba. We start by analysing the effect of asymmetries of the point
set A, compare Figure 1(a). As the amoeba shape is governed by f , we will use the ζ,
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χ local coordinates. For an arbitrary unit vector v =
(
cos(ϕ + ϑ), sin(ϕ + ϑ)

)T
we

have then

fv(x0) = |∇f(x0)| cosϑ , (9)

vT D2f(x0)v = fζζ sin
2 ϑ+ 2 fζχ cosϑ sinϑ+ fχχ cos2 ϑ (10)

which can be inserted into (8) to obtain z±(ϕ+ ϑ) := z±(v).
Assume now that u has straight level lines; remember thatϕ+α is the direction angle

of its gradient direction. Since the amoeba shape is given by z±(v) in polar coordinates,
the sought area difference is then obtained as

Δ1 := |A+| − |A−| =
ϕ+α+π/2∫
ϕ+α−π/2

(
z+(ϑ)− z−(ϑ)

) z+(ϑ) + z−(ϑ)
2

dϑ+O('4) .

(11)

The integral on the right-hand side equals

−'3 |∇f |
α+π/2∫
α−π/2

fζζ cosϑ sin2 ϑ+ 2 fζχ cos2 ϑ sinϑ+ fχχ cos3 ϑ(
1 + |∇f |2 cos2 ϑ

)5/2 dϑ (12)

which evaluates to

−2

3
'3 |∇f |

(
fζζ cos3 α(

1 + |∇f |2
)(
1 + |∇f |2 sin2 α

)3/2 +
2 fζχ sin3 α(

1 + |∇f |2 sin2 α
)3/2

+
fχχ cosα

(
2 + sin2 α+ 3 |∇f |2 sin2 α

)(
1 + |∇f |2

)2(
1 + |∇f |2 sin2 α

)3/2
)
. (13)

Curvature of the Level Lines. The second source of area imbalance between A+ and
A− is the curvature of the level line of u through x0. Using the ξ, η local coordinates
pertaining to u, this curvature equals uξξ/(2|∇u|). The resulting area difference is

Δ2 := |A+| − |A−| = −2
z+(ϕ+α+π/2)∫

−z−(ϕ+α+π/2)

− uξξ
2 |∇u|z

2 dz +O('4)

=
2

3

uξξ
|∇u|

'3(
1 + |∇f |2 sin2 α

)3/2 +O('4) . (14)

Median Calculation. As the median μ of u withinA belongs to the level line of u that
bisects the area of the amoeba, the difference μ − u(x0) corresponds to a shift of the
central level line that compensates the area difference Δ1 +Δ2. This compensation is
obtained when

2
μ− u(x0)

|∇u| ·
(
z+(ϕ+ α+ π/2) + z−(ϕ+ α+ π/2)

)
= Δ1 +Δ2 +O('4) , (15)
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which finally gives μ = u(x0) + ('2/6) · ut with ut given by (4) up to an error O(').
This concludes the proof of Theorem 1.

Special Cases. The following two statements reproduce the more specialised approxi-
mation results from [19] (in the case of the L2 amoeba metric) and [18], respectively.

Corollary 1. The amoeba median filter with f ≡ u/λ approximates the self-snakes
equation

ut =
uξξ

1 + |∇u|2/λ2 −
2 uηη |∇u|2

λ2
(
1 + |∇u|2/λ2

)2
= |∇u| div

(
1

1 + |∇u|2/λ2
∇u

|∇u|

)
(16)

in the sense of Theorem 1.

Corollary 2. If input image f and evolving level-set image u are rotationally symmetric
with respect to the origin, amoeba median filtering approximates the geodesic active
contour equation

ut =
uξξ

1 + |∇f |2 −
2 fηη |∇u| |∇f |(

1 + |∇f |2
)2 = |∇u| div

(
1

1 + |∇f |2
∇u

|∇u|

)
(17)

in the sense of Theorem 1.

In the case of Corollary 1, one observes that its hypothesis entails that the identities
α = 0, ζ = ξ, and χ = η hold everywhere. For Corollary 2, the assumed rotational
symmetry yields α = 0, ζ = ξ, χ = η, uξη ≡ fξη ≡ 0, and uξξ/uη ≡ fξξ/fη.
Substituting the respective sets of identities into (4) implies the corollaries.

4 Comparison to Geodesic Active Contours

In the general amoeba active contour setting, however, it is evident that equation (4)
does not exactly coincide with (1). For a better understanding of the differences between
both active contour methods, we consider further typical configurations.

Homogeneous Image Gradients. In flat image regions (∇f = 0), geodesic active
contours (1) as well as amoeba active contours evolve the level set function u by cur-
vature motion. Let us consider now an image region with a homogeneous non-zero
gradient, ∇f = const. In such a region, geodesic active contours still perform curva-
ture motion, but with an evolution speed slowed down by the contrast-dependent factor
g(|∇f |2) = 1/(1 + |∇f |2). The amoeba-based PDE (4) in this case becomes

ut =
uξξ

1 + |∇f |2 sin2 α
, (18)

i.e. also a slowed-down curvature motion, but the evolution is slowed down the less,
the more the level lines of f and u are aligned. This leads to a faster straightening of
aligned contour segments, thereby boosting adaptation of u’s level lines to those of f ,
see the schematic representation in Figure 2(a).
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(a) (b) (c)

Fig. 2. Evolution of level lines under the PDE (4) in exemplary configurations (schematic). Solid
lines: level lines of u, dashed lines: level lines of f . Left to right: (a) In a region with homoge-
neous ∇f , aligned level line segments of u evolve faster. – (b) At a location with aligned ∇u
and ∇f , the contour evolves inward faster when the curvature of u exceeds that of f . – (c) At
locations with orthogonal ∇u and ∇f , the curvature-dependent movement of the contour is at-
tracted towards high-contrast regions of f . Assuming that η points to the right, fξη < 0 holds in
the left, and fξη > 0 in the right part, while uξξ < 0 in both cases.

Aligned Gradients. Relaxing the condition of Corollary 2, we assume now that the
gradient directions of f and u coincide, α = 0, ζ = ξ, χ = η, but make no assumption
on their curvatures. At such a location, (4) takes the form

ut = uξξ − |∇f | |∇u|
(

fξξ
1 + |∇f |2 +

2 fηη(
1 + |∇f |2

)2
)

=
uξξ

1 + |∇f |2 −
2 |∇f | |∇u| fηη(

1 + |∇f |2
)2 +

2 |∇f |2 |∇u|
1 + |∇f |2

(
uξξ
2 uη

− fξξ
2 fη

)
(19)

which coincides with the corresponding geodesic active contour evolution except for
the last summand that speeds up the evolution if the level line curvature uξξ/(2 uη) of
u exceeds that of f , see Figure 2(b). The same offset is obtained in the anti-aligned
case, α = π, ζ = −ξ, χ = −η; note that the curvature of f ’s level lines is measured
with respect to the orientation of u’s level lines. Relative to geodesic active contours,
this implies an accelerated removal of sharp contour corners that do not match the given
image f .

Orthogonal Gradients. Consider now the complementary situation where the gradient
directions of u and f are orthogonal, i.e. α = π/2, ζ = η, χ = −ξ. Then (4) becomes

ut =
uξξ

1 + |∇f |2 +
2 |∇f | |∇u| fξη

1 + |∇f |2 (20)

where the last summand is by a factor
(
1 + |∇f |2

)
larger than in the corresponding

geodesic active contour evolution. This means that attraction of the contour in u towards
high-contrast regions in f is strengthened, see Figure 2(c).

In summary, our findings indicate that compared to geodesic active contours (1) the
amoeba active contour equation (4) tends to attract the contour u faster to high-contrast



400 M. Welk

image regions and to strengthen the alignment of level lines of u to those of f . These
effects are in line with the somewhat finer adaptation of amoeba active contours to
structure details that was observed in [18].

5 Pre-smoothing and Amoeba Filters

The approximation result of [19], compare Corollary 1, refers to the self-snakes PDE
(1) with f ≡ u/λ. As pointed out in the introduction, a disadvantage of this PDE is its
ill-posedness that is often countered by pre-smoothing, i.e.

ut = |∇u| div
(
g(|∇uσ|2)

∇u

|∇u|

)
(21)

with uσ = Kσ ∗ u.
This procedure can be translated in a straightforward way to our amoeba median

filter setting. One only needs to carve the amoeba structuring elements based on the
pre-smoothed image uσ instead of u. The resulting filtering step is described by our
amoeba active contour model with f ≡ uσ/λ, such that the approximation result from
Theorem 1 applies. Analogous to our discussion in the amoeba active contour setting
this means that in the limit ' → 0 not exactly (21) is approximated but a self-snakes
equation with a modified pre-smoothing.

However, in practical computation of amoeba filters one always uses a positive
amoeba radius '. This means that such a filtering procedure with amoebas derived from
f = uσ/λ would contain two spatial scale parameters, σ and ', both of which act as
some sort of spatial averaging.

It can therefore be conjectured that the amoeba radius itself acts similarly as a pre-
smoothing step. While a more exhausting investigation of this issue has to be left for
future work, we compare pre-smoothed self-snakes with g(s2) = 1/(1+s2) to amoeba
median filtering (f = u) with positive amoeba radius for a very simple example.

Test Case. We consider the function u : IR2 → IR given by

u(x, y) = x+ ε cos(kx) , ε << 1 . (22)

It is composed of a simple linear slope (which would be stationary under each of the
filters) and single-frequency perturbations of small amplitude. We will analyse the re-
sponse of filters to that perturbation, dependent on the frequency parameter k.

Given the nonlinearity of the filters in question, there is no superposition property
for these perturbations. Nevertheless, sufficiently small perturbations will interact with
each other only in higher order termsO(ε2), such that the technique will still give some
intuition of the behaviour of the filters.

The chosen setting is representative of the practically meaningful situation of stair-
casing arising in a smooth transition.

Self-snakes. In our test case all level lines are parallel, so the 2D self-snakes equation
simplifies to ut = g |∇u| div

(∇u/|∇u|
)
+ 〈∇g,∇u〉. The first summand vanishes,

while the second one simplifies to gxux. From (22) we obtain ux = 1 − ε k sin(kx),
and with g as given by (2) further gx = 1

2 ε k
2 cos(kx) +O(ε2). Thus, we have
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ut = gxux =
ε k2

2
cos(kx) +O(ε2) (23)

indicating an indefinite amplification of higher frequencies. At the same time, the higher-
order terms resulting from nonlinearity lead to an instantaneous propagation of the per-
turbation from a given frequency k to higher frequencies, which means that even for a
single-frequency perturbation arbitrarily high frequencies with arbitrarily high amplifi-
cation ratios will appear within short evolution time, enabling a loss of regularity of the
evolving function.

Pre-smoothing. Replacing g ≡ g(|∇u|2) with gσ ≡ g(|∇uσ|2), we have in our test
case uσ = x + ε e−k

2σ2/2 cos(kx), thus ∂xgσ = ε k2

2 e−k
2σ2/2 cos(kx) + O(ε2) and

finally

ut = ∂xgσ · ∂xu =
ε k2

2
e−k

2σ2/2 cos(kx) +O(ε2) . (24)

Unlike before, the amplification ratio k2 exp(−k2σ2/2) is bounded and reaches a max-
imum for k =

√
2/σ, such that regularity of the evolving function is kept.

Amoeba Filter with Finite-Size Radius. We calculate the effect of amoeba median
filtering with amoeba radius ' on our test case in the same way as in the proof of
Theorem 1 via the area difference Δ := |A1| − |A2|. As in our test settings level lines
are not curved, only the asymmetry contribution Δ1 needs to be considered.

The amoeba around x0 = (x0, y0) is symmetric with respect to the line y = y0
(parallel to the x-axis). We parametrise this symmetry line as (x(s), y0), where s is an
arc-length parameter in the amoeba metric, i.e.

x(s)∫
0

√
1 + u2x(z, y0) dz = s . (25)

From the level line through (x(s), y0) (parallel to the y-axis), the amoeba cuts out a
piece of length 2

√
'2 − s2. The sought area difference is therefore

Δ(x0) =

$∫
0

2
√
'2 − s2√

1 + u2x(x(s), y0)
ds−

0∫
−$

2
√
'2 − s2√

1 + u2x(x(s), y0)
ds

= 2

$∫
0

√
'2 − s2

(
1√

1 + u2x(x(s), y0)
− 1√

1 + u2x(x(−s), y0)

)
ds (26)

with ux(x, y) = 1− k ε sin(k x).
Analogously to (15), the resulting median is u(x0) +Δ(x0)/(4 '). Numerical inte-

gration of (26) confirms that Δ(x, y0) itself is approximately a multiple of the pertur-
bation function ε cos(k x). For easy comparison with (24), we divide the amplification
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Fig. 3. Comparison of amplification
factors depending on the frequency
parameter k for pre-smoothed self-
snakes and amoeba median filtering
with fixed amoeba size. Horizontal
axis shows k, vertical axis shows
amplification factors.

factor Δ(x, y0)/(4 ' cos(k x)) by '2/6 (the evolution time corresponding to amoeba
radius ' in the asymptotic approximation results).

Figure 3 shows the numerically computed factor Δ(x, y0)/(4 ' cos(k x)) · 6/'2
along with the factor k2 exp(−k2σ2/2)/2 from (24) as functions of the frequency pa-
rameter k. Here, ' and σ were chosen for an optimal fit of the first maximum. It is
evident that the first lobe of the amplification functions is very similar. For higher fre-
quencies the exponential dampening of the pre-smoothed self-snakes is superior to the
oscillations of the amoeba amplification factor around a positive value. However, when
practically filtering images, higher frequencies are cut off by spatial discretisation any-
way. If the amoeba radius is not larger than approx. 10/π ≈ 3, the higher lobes of the
amplification function in Figure 3 will disappear entirely.

6 Conclusion

We have analysed our amoeba active contour method proposed in [18] and derived a
partial differential equation that it approximates asymptotically for vanishing structur-
ing element size. Our result reproduces as special cases two earlier results from lit-
erature: the approximation of geodesic active contours in a special case [18] and the
approximation of self-snakes by iterated amoeba median filtering [19]. In the general
case, the PDE derived here differs from the geodesic active contour equation. The im-
plications of the differences for active contour segmentation have been discussed and
found to be consistent with the experimental findings of [18].

Finally, we have discussed from the same view point the approximation of self-
snakes with pre-smoothing by amoeba filters. As a first step towards a more comprehen-
sive investigation of the relation between curvature-based PDEs with pre-smoothing,
and amoeba filtering with non-vanishing structuring elements, we have compared the
effect of both methods in a simple special case with single-frequency perturbations of
a constant gradient image. Future work extending this analysis is expected to lead to a
deeper understanding of the interplay between adaptive morphology and PDE methods.
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Abstract. A typical task of image segmentation is to partition a given
image into regions of homogeneous property. In this paper we focus on
the problem of further detecting scales of discontinuities of the image.
The approach uses a recently developed iterative numerical algorithm for
minimizing the Mumford-Shah functional which is based on topological
derivatives. For the scale selection we use a squared norm of the gradient
at edge points. During the iteration progress, the square norm, as a func-
tion varied with iteration numbers, provides information about different
scales of the discontinuity sets. For realistic image data, the graph of
the norm function is regularized by using total variation minimization to
provide stable separation. We present the details of the algorithm and
document various numerical experiments.

Keywords: Mumford-Shah Functional, Topological Derivatives, Scale
Selection, Total Variational Filtering.

1 Introduction

One of the most well-studied image segmentation model is the Mumford–Shah
functional [16], which is to find the image u which minimizes the following:

F (u,K) =
1

2

∫
Ω

(u− f)2dx+
α

2

∫
Ω\K
|∇u|2dx+ βH1(K) (1.1)
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over all sets K ⊂ Ω and all smooth functions u defined on Ω\K. The first
component provides a piecewise smooth approximation of the given image data
f : Ω → [0,∞). The second component provides the information on the discon-
tinuity set of the image f . Here Hs(K) denotes the s-dimensional Hausdorff-
measure of the set K. We focus on the two-dimensional case Ω ⊂ R2.

There are number of methods proposed to minimize the Mumford-Shah func-
tional. One of the most important approach is by Ambrosio and Tortorelli [1,4].
The general idea is to approximate the functional by a family of elliptic func-
tionals, where each of them in principle can be minimized with numerical par-
tial differential equation solvers. Related works include the Chan–Vese model
[7], where the Mumford–Shah model is simplified to the reconstruction of piece-
wise constant functions only, and the discontinuity sets are eliminated using an
explicit notion of boundary via a level set formulation or using well-potential
models (see [13,21]).

Recently, a numerical algorithm for minimizing the Mumford–Shah functional
based on topological derivatives has been developed [12]. The implementation of
the algorithm is iterative in nature and selects edges successively according to
certain rules. In this paper, we further experimentally analyse these criteria. We
show that the algorithm based on topological derivatives can distinguish between
edges of different scales and therefore can be used for detecting scales of edges.
This is different from [1,4] where the global approximation of the Mumford–Shah
functional is achieved by partial differential equations, which, however, does not
allow a selective selection of edges.

The approach of [12] consists of approximating the Mumford–Shah functional
by the family of functionals

Jε,κ(u,K) = Gε,κ(u,K) + 2βεmε(K)

=
1

2

∫
Ω

(u− f)2dx+
α

2

∫
Ω\K
|∇u|2 dx+ κ

α

2

∫
K∩Ω
|∇u|2 dx+ 2βεmε(K) ,

(1.2)

where

mε(K) = inf{H0(Y ) : Y ⊂ R2, K =
⋃
y∈Y

Bε(y)
}
.

The minimization is performed over all u ∈ H1(Ω) and K ⊂ R2. It has been
shown in [12] that these functionals Γ -converge to F , if κ = o(ε). For fixed
ε and κ the approximate minimization of the functional Jε,κ is performed by
using a topological asymptotic analysis (see [9,10,22]). In the context of image
processing, topological asymptotic analysis has been recently applied by Auroux
et al. [2,3] and by Muszkieta [17]. In [12], an implementation for minimizing Jε,κ
is proposed, and compared to the Ambrosio–Tortorelli approach [1].

The outline of this paper is as follows: In the following section, we recapitulate
the algorithm from [12] for approximate minimization of the Mumford–Shah
functional. We present a simple example where we can explain the idea of scales
of edges in Section 3. Section 4 considers scale detection for realistic image
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data. In the later cases, total variation regularization of the according scale
detection functions over the number of iterations has to be performed to be able
to calculate the according edges. We use the taut string algorithm for computing
the total variation minimizers.

2 A Topological Algorithm for Edge Detection

We shortly review the algorithm from [12] for detecting edges in an image
f : Ω → R. In this iterative algorithm, the edges are approximated by a col-
lection of balls of small diameter 2ε (in implementations, the diameter is chosen
as the pixel distance). In each iteration, we smooth the original image using a
diffusivity which is small at the (previously found) edge set and large outside
this set. Then we add the new balls where the gradient norm is largest to the
edge set. A detailed outline is given in Algorithm 1.

Algorithm 1. Topological algorithm for edge detection.

Let f ∈ L∞(Ω), α, β > 0, ε > 0 and 0 < κ < 1 be given. Set k = 0 and K0 := ∅.
Step 1. Define

uk := argmin
u

Gε,κ(u,Kk).

Step 2. For i = 1, . . . , m, find y
(i)
k ∈ Ω\Kk such that |∇uk(y)|2 is maximal, and replace

Kk by Kk ∪ {Bε(y
(i)
k )}.

Step 3. If

max
i

α

2
π
1− κ
1 + κ

|∇uk(y(i)k )|2 < β
ε
,

stop the iteration; else set Kk+1 := Kk, u := uk, increase k by 1, and go to Step 1.

Result: Approximation of an optimal edge set K and smoothed image u for the
Mumford–Shah functional with parameters α and β.

It is shown in [12] that the resulting set K and the smoothed image u can be
considered approximations of the minimizer of the Mumford–Shah functional.

Remark 1. The parameters α and β in Algorithm 1 are identical with the param-
eters in the Mumford–Shah functional. For noisy images, they should be chosen
in dependence of the noise level: the larger the parameters are the smoother the
filtered results are and the smaller the edge sets are. In the numerical experi-
ments, we used α in the range from 5 to 10 and β between 100 and 200, and the
size of the images are 256× 256, of which the intensities range from 0 to 255.

In the numerical implementations, the parameter ε is always chosen as half the
distance between adjacent pixels. According to [12], the parameter κ should be
chosen as o(ε). In our implementations we have set κ equal to 0.005. In general,
the results proved quite robust with respect to the variations of κ, except for
the optimization problem Gε,κ(u,K) → min in Step 2 of the algorithm, which
becomes more difficult to solve as κ decreases.
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The original algorithm from [12] uses an update of the function u whenever a
ball has been added to K; this corresponds to setting m = 1 in Algorithm 1. For
larger images, this is obviously not feasible. In this paper, we add multiple balls
during each iteration, slightly compromising the accuracy in favour of vastly
improved computation times.

3 Detecting Scale of Discontinuities

We present how the iterative construction of the edge set K in Algorithm 1 can
be applied to detecting the edges of different scales. To highlight the idea, we con-
sider the test image depicted in Figure 1, which consists of different flat regions
that appear well separable. For this piecewise constant example the different
scales of edges correspond to edges of a certain magnitude.

We first define the following norm to distinguish between different scales of
the edges:

S(k) := |∇uk(y(1)k )|2 . (3.1)

This is the squared norm of the gradient of uk at the center point of the first
ball detected in each iteration, i.e., the largest gradient outside of the edge set
at the previous iteration.

Figure 1 shows the results of Algorithm 1 for a fixed set of parameters. The
function S shows some discriminative features: there are intervals where the val-
ues are approximately constant. This reflects that the edges recovered during
these iterations are of a similar magnitude. Moreover, there are clear disconti-
nuities (clear drops in height), which reflects that all the edges of a certain scale
have been completely detected.

This change in the edge jump is illustrated in the lower images in Figure 1.
They present the current edge indicatorsKk at steps k of the iteration where the
most significant jumps in S occur. In addition, we have chosen the depicted jumps
sufficiently far from each other so that the differences between subsequent edge
indicators are not too small. The first jump in S appears after approximately 40
iterations. The corresponding edge indicator K40 indicates the upper left edges
of the image, which have the largest absolute value of the gradient. The next
significant jump of the function S occurs at iteration 74 — here we extract the
full shape of the spade; the surface of the clubs is fully recovered at iteration
124 and the diamond comes out last around the 182 iterations with a very slight
drop of S as the last obviously detectable scale.

4 Regularization of S(k)

The Cards image consists of large piecewise constant regions and the edges
betweens these regions are clearly pronounced, and different scales of edges are
easily identified. For natural images, the scales of edges are less pronounced, and
the function S shows a less regular behaviour. This effect worsens if the data are
noisy. We experimented with the Cameraman and the Peppers image data (see
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Fig. 1. Cards pictures. We apply Algorithm 1 with parameters α = 5, β = 100, and
m = 20. Upper row, left: The cards image. Upper row, right: The graph of the function
S, one can discern distinct jumps of this function. Middle row: The edge set Kk at the
iterations k where the most important jumps occur (from left to right: iterations 40,
74, 124, and 182). Lower row: The difference between two neighbouring edge sets.

Figure 2), and the functions S do not reveal similar obvious plateaus as for the
Cards image.

To better deal with these natural images, we smooth the function S (consid-
ered as a function of iterates) by minimizing the discrete total variation, setting

Ŝλ := argmin
R

(∑
k

(R(k)− S(k))2 + λ|R(k + 1)−R(k)|
)
.

This optimization problem has been studied for a long time in the contexts
of one-dimensional signal processing and non-parametric regression (see for in-
stance [8,15,23]). There are numerous methods for solving this minimization
problem, most of which deal specifically with total variation regularization for
image denoising (see for instance [5,6,19]). In the one-dimensional case, the most
efficient method for total variation minimization is the taut string algorithm
[8,11,18], which can be implemented in the form of a dynamical programming
algorithm with linear time and space complexity. A detailed derivation of this
method can be found in [11,20]. The dynamical programming algorithm for the
solution is described in [8]. For this algorithm recall that a one-dimensional func-
tion of bounded variation is continuous outside its jump set, and that a function
U ∈W 1,1(Ω) is continuous.
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Fig. 2. Edge sets and scale detection function S for the Cameraman and Peppers
images. (c) and (e) are the edges of the Cameraman and Peppers images, respectively,
detected by our algorithm. In both cases the algorithm has been used with parameters
α = 10, β = 200, and m = 50. (d) and (f) are the graphs of the functions S for the
Cameraman and Peppers images, respectively, where the horizontal axis represents the
iteration numbers and the longitudinal axis is the maximum norm of gradients for the
center of added balls in that iterations.
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Algorithm 2. Taut String Algorithm

Given discrete data uδ = (fi), i = 1, . . . , s, and λ > 0, the taut string algorithm is
defined as follows:
Step 1. Let Uδ

0 = 0 and Uδ
i = 1

s

∑i
j=1 fj , i = 1, . . . , s. We denote by Uδ(x) the linear

spline with nodal points xi = i/s, i = 0, . . . , s, and function values Uδ
i at xi.

Step 2. Define the λ-tube

Yλ :=
{
U ∈W 1,1(0, 1) : U(0) = Uδ(0) , U(1) = Uδ(1) ,

and |U(t)− Uδ(t)| ≤ λ for t ∈ (0, 1)
}
.

Step 3. We calculate the function Uλ ∈ Yλ which minimizes the graph length, that is,

Uλ = argminU∈Yλ

∫ 1

0

√
1 + (U ′)2 .

Step 4. uλ := U ′
λ is the outcome of the taut string algorithm.

In this approach, the amount of regularization depends on the parameter λ > 0.
However, due to the properties of one-dimensional total variation regularization,
the results are quite stable with respect to λ. We recall that one-dimensional total
variation regularization satisfies a semi-group property: Repeated regularization
first with a parameter λ1 > 0 and then with a parameter λ2 > 0 is the same as
a single regularization step with a parameter λ1 + λ2 (see e.g. [20, Thm. 4.38]).
In particular, this implies that for μ > λ, the jump set of Ŝμ is contained in the

jump set of Ŝλ. For this reason, the precise choice of the regularization parameter
has, for modest values, no effect on the location of the most prominent jumps
of Ŝλ. In our implementations, we therefore chose the regularization parameter
experimentally, using a sufficiently large parameter in order to remove most of
the noise, but still retaining all the significant jumps.

Another possibility is to choose the smallest parameter λ for which the func-
tion Ŝλ is monotonically decreasing, since it is sufficient to find points where the
scale of edges suddenly decreases.

Finally, we present some experimental results with Cameraman and Peppers
image data, respectively in Figure 3 and Figure 4. To obtain these results, we first
applied the taut string algorithm to filter the plots of the oscillating function S
defined in (3.1). The plateaus between two discontinuities in the filtered function
Ŝλ mark areas of a specific scale. Actually, there are more jumps detected than
which we are separately displaying, as well shown in the filtered graphs with the
figures, for the purpose of emphasising the scales detected by Algorithm 1, we
just specify the most obvious jumps and figure them out part by part.

See Figure 3 and Figure 4, respectively. In Figure 3, the first discontinuity
of S appears at iteration 17. There the most contrasty edges of the image —
the boundary of the hair and black coat of the photographer — are almost
developed. The next significant jump appears at iteration 23, where the outline
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of the photographer has almost been formed. Then, at iteration 43, the structure
of the cameraman has been caught. Finally, at iteration 64, also smaller details
like the the camera are segmented.

In Figure 4 the situation is slightly different. The data contains many peppers
where the contrast of the edges is rather similar. Thus the algorithm does not
select complete pepper components but only parts of them on different peppers
and associates them to a unique scale.

As a final example we apply the algorithm to the Cameraman, superim-
posed with Gaussian noise (see Figure 5). The results show the robustness of
the method. Because of the noise, we used a larger regularization parameter in
the taut string algorithm in order to select the different scales. Note that it was
not necessary to change the regularization parameters α and β.
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Fig. 3. Edge and scale detection in the Cameraman image. Upper row, left: The Cam-
eraman image. Upper row, right: The TV filtered graph of function S. Middle row: The
edge set Kk at the iterations k where the most prominent jumps occur (from left to
right: iterations 17, 23, 43, and 64). Lower row: The difference between two subsequent
edge sets.



412 G. Dong et al.

0 50 100 150 200
0

200

400

600

800

1000

1200

1400

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

Fig. 4. Edge and scale detection of Peppers image. Upper row, left: The Peppers image.
Upper row, right: The TV filtered graph of function S. Lower row: The edge set Kk at
the iterations k where the most prominent jumps occur (from left to right: iterations
15, 60, 85, and 108). Lower row: The difference between two subsequent edge sets.
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Fig. 5. Edge and scale detection in the presence of noise. Upper row, left: The noisy
Cameraman image. Upper row, right: The edge set after 200 iterations. Middle upper
row, left: The graph of the function S. Middle upper row, right: TV filtered graph of
function S. Middle lower row: The edge set Kk at the iterations k where the most
prominent jumps occur (from left to right: iterations 16, 43, 74, and 91). Lower row:
The difference between two subsequent edge sets.
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5 Conclusion

We presented a method to detect different scales of jumps across the boundary,
using a recently developed algorithm [12] for approximating the Mumford–Shah
algorithm using topological derivatives. This process is possible due to the local-
ity of the algorithm, contrasting the globality of approaches like the Ambrosio–
Tortorelli approximation. By considering the function S which represents the
scale change of the edges, one can distinguish different parts of boundaries with
different levels of jumps. For realistic images (also noisy), we applied total varia-
tion minimization using the taut string algorithm for a more stable scale separa-
tion. For future works, different norms can be considered for the function S, and
there are possible improvements by adapting particular image features to the
function Ŝλ, or either considering to replace the current discrete count k which
is the variable of the function S by a continuous parameter, as well, the impact
of the roughness of edges on the scales separation is worth to be discussion.
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Abstract. Segmenting the image into an arbitrary number of parts is
at the core of image understanding. Many formulations of the task have
been suggested over the years. Among these are axiomatic functionals,
which are hard to implement and analyze, while graph-based alternatives
impose a non-geometric metric on the problem.

We propose a novel approach to tackle the problem of multiple-region
segmentation for an arbitrary number of regions. The proposed framework
allows generic region appearance models while avoiding metrication er-
rors. Updating the segmentation in this framework is done by level set
evolution. Yet, unlike most existing methods, evolution is executed using
a single non-negative level set function, through theVoronoi Implicit Inter-
face Method for a multi-phase interface evolution. We apply the proposed
framework to synthetic and real images, with various number of regions,
and compare it to state-of-the-art image segmentation algorithms.

1 Introduction

Image segmentation plays an important role in object detection and classifi-
cation, scene understanding, action classification, and other visual information
analysis processes. In this paper we consider active contour approaches, which
have been proven to be very successful for that goal. These include edge-based
methods [15,5,18,6] , region-based techniques [21,8,10,13] , and combined ap-
proaches [37,24,28], to mention just a few.

Several approaches have been suggested for numerical computation of region
boundaries. These include explicit spline evolution [15], level set evolution [23,5],
graph-cuts [3,27,12], and continuous convex optimization [25,7]. Among these,
the level set framework provides a significant amount of flexibility in the design
of the segmentation criterion. While being naturally suitable for variable topol-
ogy of the regions, this framework has been extended to accommodate different
assumptions on the image and its structure. These include various appearance
models [13,20,22,1], and different shape priors [16,11,26].

However, the level set framework is geared towards two-region image segmen-
tation. To alleviate this limitation, various methods were developed; most of
them require managing multiple level set functions. Some associate a level set
function with each image region, and evolve these functions in a coupled manner

A. Kuijper et al. (Eds.): SSVM 2013, LNCS 7893, pp. 416–427, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Active Contours for Multi-region Image Segmentation 417

[36,35,29]. Others perform hierarchical segmentation, by iteratively splitting pre-
viously obtained regions using the conventional level set framework [33,4]. These
methods too require coupled level set evolution, so that the resulting regions do
not develop gaps or overlaps. It is also possible to use a smaller number of level
set functions, say n, and segment an image into 2n regions [34]. Another approach
was recently suggested in [17]. It uses a single level set function, similar to the
proposed approach. However, when evolving the contour, it requires managing
multiple auxiliary level set functions, so that no gaps/overlaps are created.

Other approaches to multi-region image segmentation either use a discrete
labeling problem formulation and solve it using graph-cuts [27,12], or perform
convex relaxation [25,7]. These methods are less easy to adapt for arbitrary
segmentation functionals, in terms of both data and geometry priors. In addition,
such approaches usually require knowing the number of regions a priori. Yet
another method for image segmentation is by mean-shift clustering [10]. This
approach does not, however, allow flexible choice of shape priors or arbitrary
probability models.

We propose a new level set method for multiple region image segmentation. It
overcomes previous challenges and allows segmenting images with arbitrary num-
ber of regions using various image appearance models. For this purpose we utilize
a novel level set framework for multi-phase, or multi-region, interface evolution,
named the Voronoi Implicit Interface Method (VIIM), which was introduced by
Saye and Sethian in [30]. According to it, evolution is performed using a single
non-negative level set function, while implicitly dealing with regions merging and
splitting, and naturally handling arbitrary topological structures such as triple
junctions.

Our main contributions can be summarized as follows: first, we review the
axiomatic formulation of the multi-region image segmentation problem as an
energy functional minimization. Specifically, we consider energy terms used in
image segmentation based on region statistics, and extend them to the context of
multiple regions. We then derive the active contour evolution equation minimiz-
ing the above energy functional, formulate it as a level set evolution problem, and
solve it by utilizing the VIIM level set framework. The proposed approach does
not require knowing the number of the regions in the image or their statistics a
priori, and produces good segmentation results for various initial contours.

The structure of the paper is as follows: we begin by reviewing the Voronoi Im-
plicit Interface Method, which is the numerical basis for our approach, in Section
2. In Section 3 we describe the main ideas that underlie the proposed method.
We shortly review the multi-region segmentation model, for which we derive the
corresponding level set evolution equation in terms of the VIIM framework, and
describe prominent segmentation priors that fit within the suggested framework.
In Section 4 we present segmentation results of the proposed approach, and com-
pare it to state-of-the-art methods. Section 5 concludes the paper and describes
potential extensions of the proposed framework.
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2 Review of the Voronoi Implicit Interface Method

The VIIM was recently suggested for the solution of interface propagation prob-
lems with arbitrary number of phases, or regions, in m-dimensional Euclidean
space. In 2D, the interface separating between different phases is a curve, pos-
sibly with multiple junctions. In 3D, the interface consists of two-dimensional
surfaces. Illustrations of 2D and 3D interfaces can be found in [30].

The interface propagation is performed using a single non-negative level set
function φ(x),x ∈ Rm, given by the unsigned distance from the interface Γ , and
defined on a fixed regular grid. The propagation is governed by the equation

φt = Fext |∇φ| , (1)

where Fext is the extension of the interface propagation speed F to the whole m-
dimensional region. The examples in [30] include curvature and mean curvature
flows, as well as physical simulations of the dynamics of dry foams.

The central idea of the VIIM is as follows: assume we are given a zero level set
of a function φ, and a velocity F defined along it. We can extend this velocity to
the neighboring level sets in a smooth manner, to obtain the extension velocity
Fext and apply Eq. (1). Then, two evolving ε-level sets will always encapsulate
the evolving zero level set they are adjacent to. Moreover, the ε-level sets of φ
are simple curves, without multiple-junction points, and their evolution is well
defined. Thus, the evolved ε-level sets of the level set function can be used to
reconstruct the evolving interface, which is assumed to lie at an equal distance
from the two ε-level sets adjacent to it. It is calculated using the Voronoi regions
of the ε-level sets.

In order to evolve the interface as described above, Saye and Sethian suggested
the following three step-algorithm.

1. Evolve the level set function φ by solving Eq. (1).
2. Find the ε-level sets of the new function. Reconstruct the interface Γ to be

the intersections of the Voronoi regions of the ε-level sets, where φ(x) < ε.
Update the level set function φ using the reconstructed interface Γ .

3. Update the propagation speed function F ; return to 1.

The VIIM is formulated in terms of a general interface velocity F , and thus
it is applicable to various interface evolution problems utilizing the level set
approach. Below, we show how it can be employed for multiple regions image
segmentation, where the active contour acts as an interface, and the regions it
defines are the phases in the VIIM notation.

3 Multi-region Image Segmentation

A general energy functional describing an active contour model is given by

E(C) = Edata(C) + μEreg(C). (2)
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The data term Edata(C) is determined by the region-based image intensity
model, for instance [21,8,13,20], etc. In this paper we demonstrate region-based
terms that rely on two specific image models - the piecewise-constant model of
[21,8] and a more general Gaussian mixture model (GMM). The regularization
term Ereg(C) is determined by the properties of the segmenting contour, and
may depend on the contour alone [15,21], or incorporate image information as
well [5,6]. The minimizing flow is derived from (2) using methods from calculus
of variations, namely the active contour evolution is proportional to the first
variation of the above energy functional.

3.1 Region-Competition Model with Geodesic Active Contours
Regularization

Here, we consider a modified version of the region competition model of Zhu and
Yuille [37], with added geodesic active contour (GAC) regularization term

E(C, {αi}) =
∑
i

∫∫
Ωi

− logP (I(x, y)|αi) dxdy + μ

∮
C

g(C(s))ds, (3)

where I(x, y) is the image to be segmented, defined on a 2D domain Ω. The
contour C divides the image domain into non-overlapping regions {Ωi}i, such
that Ω = {

⋃
iΩi}

⋃
C. In the data term, P (z|αi) is the probability distribution

function of the image intensity values in region Ωi, with corresponding param-
eters αi. In the GAC term, g(x, y) is the edge indicator function. Following [6],

in this work we used g(x, y) =

(
1 +

∣∣∣∇Î∣∣∣2)−1

, where Î is a smooth version of

I. For color images we used g(x, y) suggested in [28]: we treat the image as a
5-dimensional manifold (x, y,R(x, y),G(x, y),B(x, y)) with metric gμν(x, y), so

that the edge indicator function becomes g(x, y) = det (gμν(x, y))
−1 .

We perform alternating minimization: for a fixed contour C, for each region
Ωi we calculate the optimal parameters maximizing the image probability in
that region

α∗
i = argmax

αi

∏
(x,y)∈Ωi

P (αi|I(x, y)) , ∀i. (4)

Then, for fixed region probability distribution parameters, the active contour
evolution minimizing the energy E(C, {αi}) is given by

Ct = −
δE

δC
=

∑
i∈N(x,y)

logP (I|αi)ni + μ (κg − 〈∇g,n〉)n. (5)

For some (x, y) ∈ C, Ni(x, y) denotes the set of indices of the regions Ωj adjacent
to C at (x, y). In each region, the normal ni is defined such that it points
outwards of the region Ωi. The first term of the minimizing flow is obtained by
differentiating the functional Edata(C), as shown in [37]. The second term is the
well known explicit geodesic active contour flow, obtained by differentiating the
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regularization term in Eq. 3. The above evolution rule is well-defined for (x, y)
lying on a contour segment defining a boundary between two regions Ωi and Ωj ,
for which |N(x, y)| = 2. We will denote such contour segments by Cij .

The traditional methods, described in the introduction, require using multiple
level set functions to perform the above evolution implicitly. In this work we
suggest to exploit the advantages of the Voronoi implicit interface method for
this purpose. The next section describes how to adapt the evolution rule Eq. (5)
to be applicable within the VIIM framework. We would also like to note that
the above formulation is general and may be applied for various models of image
intensity probability distribution. In order to demonstrate this we apply the
proposed method to two such models – Gaussian probability distribution with
constant variance, leading to piecewise constant image segmentation functional
[21,8], and a more elaborated Gaussian mixture model (GMM). Both models
will be described in details in Section 3.3.

3.2 Contour Evolution Using the VIIM

In terms of the VIIM framework, the contour (interface) velocity F (x, y) is well
defined for points lying along a boundary between two regions, and is given by

F (x, y) = [logP (I(x, y)|αi)− logP (I(x, y)|αj)] + μ (κg − 〈∇g,ni〉) , (6)

in the direction ni, for (x, y) ∈ Cij . According to the VIIM formulation, the
contour velocity F needs to be extended to the neighboring level sets of the
level set function φ(x, y), to create Fext(x, y). We observe that a straight forward
extension of (6) produces a velocity profile with discontinuities at the boundaries
of the Voronoi regions of different contour segments. This is also related to the
fact that the interface velocity F is not well defined at the junction points.

Alternatively, we suggest to evolve the level sets of φ(x, y) in each region
according to the local information of that region alone. Thus, the extension
velocity, used to evolve the level set function according to Eq. (1), is defined by

Fext(x, y) = logP (I(x, y)|αi) + μdiv

(
g(x, y)

∇φ
|∇φ|

)
, (x, y) ∈ Ωi. (7)

Proposition 1. Assume that the level set function is given by an unsigned dis-
tance function from the evolving contour, and the parameters {αi} are fixed.
For ε& 1, the VIIM framework with the extension velocity Fext(x, y) defined in
Eq. (6) will move every regular point (x, y) on the contour in the direction of the
velocity F (C(x, y))ni (6) minimizing the energy functional E(C) in Eq. (3).

The suggested extension velocity Fext (7) evolves the contour points along the
same direction as F (C(x, y)) (if not by the same amount). Our experiments show
that the suggested extension velocity produces valid segmentation results. Partic-
ularly, for the two-region piecewise constant problem, the results obtained with
the proposed method are similar to those obtained using the original formulation
of Chan-Vese [8]. Proof of Prop. 1 is given in the accompanying supplementary
material.
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The proposed approach can be summarized as follows: assume we are given
an initial contour C0 and the corresponding unsigned distance level set function
φ(x, y).

1. Calculate extension velocity in each region using Eq. (7). Evolve the function
φ(x, y) using the obtained velocity according to the evolution equation (1).

2. Extract the ε-level sets of the evolved level set function. Calculate the Voronoi
regions of these ε-level sets in the narrow band {(x, y) : φ(x, y) < ε}, and
reconstruct the evolved contour C as the collection of the boundaries be-
tween these Voronoi regions, as suggested by [30]. Perform re-distancing:
re-calculate the unsigned level set function φ(x, y) using the new contour C.

3. Stop the evolution if a pre-defined stopping criterion was met; otherwise,
return to Step 1.

3.3 Image Segmentation Models

Piecewise constant model: In this case we assume Gaussian probability distribu-
tion, given by I ∼ N (ci, σ

2
i ) in region Ωi. Further simplified by an assumption

σi = σj , ∀i, j, the energy functional becomes

EMR(C, {ci}) =
∑
i

∫∫
Ωi

(I(x, y)− ci)
2
dxdy + μ

∮
C

g(C(s))ds. (8)

The above is a modified version of the piecewise constant Mumford-Shah energy
functional [21], in the sense that the regularization term is given by the geodesic
active contours model (GAC). The contour C now separates multiple regions,
denoted by Ωi, and may have multiple-junction points. For N = 2 and g = 1,
(8) is the well known Chan-Vese functional [8].

According to Equation (7), the extension velocity Fext in the region Ωi is
given by

Fext(x, y) = − (I(x, y)− ci) + μdiv

(
g(x, y)

∇φ
|∇φ|

)
, (x, y) ∈ Ωi. (9)

For a given contour C, the optimal mean intensity values in each region, c∗i , are
given by

c∗i =

∫∫
Ωi

I(x, y)dxdy∫∫
Ωi

dxdy
. (10)

Gaussian Mixture Model: Here, we model image intensity values in each region
using the Gaussian mixture model [19], which have been successfully applied
to various signal analysis tasks; specifically, in computer vision it was used for
tracking [32], MR image segmentation [14], background substraction [38], etc.
In GMM, the intensity probability distribution in region Ωi is modeled by a

weighted sum of m Gaussians, each with mean c
(j)
i and covariance matrix σ

(j)
i I,

P (z|αi) =
m∑
j=1

λ
(j)
i N

(
z | c(j)i , σ

(j)
i I

)
, (11)
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where N
(
z | c(j)i , σ

(j)
i I

)
is the jth component of the Gaussian mixture in the

region Ωi. The results shown in the next section were obtained with m = 6.
The extension velocity (7) becomes

Fext(x, y) = log

⎡⎣ m∑
j=1

λ
(j)
i N

(
I(x, y)|c(j)i , σ

(j)
i I

)⎤⎦+ μdiv

(
g(x, y)

∇φ
|∇φ|

)
,

(x, y) ∈ Ωi. (12)

The optimal model parameters α∗
i , where αi =

{
λ
(j)
i , c

(j)
i , σ

(j)
i

}m
j=1

, are then

calculated as suggested in Eq. (4), using an Expectation Maximization (EM)
algorithm [19].

Finally, note that though the above problem formulation is given in terms of
the image intensity values, other image representations can be easily utilized in
the suggested framework, depending on a specific segmentation problem.

4 Experimental Results

In this section we present segmentation results obtained with the proposed
method for different types of images, and compare them to the results ob-
tained using the convex relaxation method of Chambolle and Pock [7]. In all
our experiments, the image intensity values were normalized to the range [0, 1].
The algorithm parameters were μ ∈ [0.02, 0.1], the time step dt = [25, 50], and
ε = 0.1. In order to prevent over-segmentation, we united separate regions with
similar region statistics, as a part of Step 2 of the algorithm. For the piecewise
constant model, we united regions with mean intensity value difference smaller
than some threshold (if not stated explicitly, T = 0.1 was used).For color im-
ages, we used the maximal difference among the three color channels. For the
GMM, we used the L2-distance between sampled three-dimensional (for color
images) probability distributions. The level set function evolution (1) was per-
formed using the forward Euler scheme. To perform re-distancing and Voronoi
region calculation we used the fast marching method [31], efficiently initialized
as suggested in [9]. Both the ε-level set and the evolved contour extraction were
performed with sub-pixel precision. It should be also noted that the width of the
ε-level sets influences the size of the smallest feature that the algorithm is able
to segment. To capture small features one may up-sample the image before the
segmentation, similar to the technique used in [2].

It is important to note the computational efficiency of the proposed method.
Typically, significant parts of the evolution can be performed in a narrow-
band fashion. Specifically, the update of the piecewise-constant model, as well
as the M-step of the EM estimation for the Gaussian mixture model can be
performed incrementally, keeping the same complexity of the 2-region active
contours scheme. The expectation step of the EM algorithm, however, requires
computation over the entire image domain. Exploring efficient implementation
aspects such as incremental update of the expectation is left for future work.
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Fig. 1. Segmentation of noisy synthetic color image with overlapping objects. Left
to right: the original image, noisy image with the initial contour, region boundaries
obtained using the piecewise constant model, piecewise constant segmentation.

In our first experiment, we applied the algorithm with the piecewise constant
model to a noisy synthetic image with several overlapping regions, with triple-
junction boundary intersections. The segmentation result is shown in Fig. 1.

Fig. 2 presents a comparison of the proposed method, and the convex re-
laxation method of Chambolle and Pock [7], minimizing the piecewise constant
Mumford-Shah functional [21], closely related to the piecewise constant model
described above. To evaluate [7] we used the code published by the authors, with
the algorithm parameters chosen to obtain visually optimal results: isotropic TV,
simple relaxation, initialization with k-means clustering, K = 8, and λ = 5.0.
We further compared the proposed method with the graph-cut based approach
of [12], which we applied to the piecewise constant model. We iterated segmen-
tation and model-estimation, as described in [12], with initial model parameters
obtained with k-means clustering, and the algorithm parameters chosen to obtain
optimal results with the same number of regions as the two previous algorithms:
8-connected neighborhood, λ = 1/16, with label cost set to be zero. From exam-
ining the images in Fig. 2, (d),(e) and (f), we observe that in this case the three
methods produce comparable results.

Fig. 3 presents segmentation results obtained with the piecewise constant vari-
ant of the proposed method, and different values of the threshold T . Specifically,
increasing T results in more regions being deemed similar and merged during the
evolution process, thus producing less detailed segmentation. The above results
were compared to segmentation obtained with [7] and [12], with algorithms’ pa-
rameters chosen to produce similar number of regions as the proposedmethod. [12]
was used with 8-connected neighborhood, with the initial parameters obtained
using k-means clustering for both methods. The results are shown in Fig. 4. We
observe that in this case both latter approaches fail to segment one of the objects,
namely, the orange candy, and associate part of it with the background.

Fig. 5 presents the segmentation result obtained with the proposed method
for an image from the Berkeley Segmentation Dataset1, along with the ground-
truth segmentation. Our method captures the main objects in the image, though
it does not detect small image features, such as thin lines and tiny structures.

1 http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/
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(a)

(d)

(b)

(e)

(c)

(f)

Fig. 2. Comparison of the proposed method using the multi-region piecewise constant
model, the convex relaxation approach of [7], and the graph-cut based method of [12].
(a) The original image. (b) Initial contour. (c) Region boundaries detected by our
method. (d) Regions detected by our method, colored according to their mean intensity
values. (e), (f) The results of [7] and [12], accordingly.

Original image T = 0.20 T = 0.15 T = 0.10

Fig. 3. Segmentation results obtained with the proposed method using different values
of the absolute intensity difference T

(a) (K, λ) = (12, 6) (b) (K,λ) = (16, 8) (c) λ = 1/8 (d) λ = 1/16

Fig. 4. Segmentation results obtained with (a), (b) [7] and (c), (d) [12], with different
algorithm parameters
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Fig. 5. Segmentation of an image from the Berkeley Segmentation Dataset. Left to
right: the original image, region boundaries obtained using our method with piecewise
constant model, ground-truth segmentation.

Fig. 6. Tracking in a thermal camera video sequence from a surveillance camera. Yellow
contours show the region boundaries in four frames from the sequence. The leftmost
subfigure demonstrates the initial contour.

Fig. 7. Segmentation obtained using the Gaussian mixture to model image intensity
probability density. Left to right: the original image, the initial contour, region bound-
aries obtained by our method, regions colored according to their mean intensity values.

This can be overcome by up-sampling the image prior to the segmentation [2]. It
also should be noted that some of the object boundaries provided in the ground-
truth segmentation and not detected by the proposed method, may be found
only using a prior knowledge of the object structure.

In Fig. 6 we demonstrate the application of multi-region piecewise constant
model (8) for tracking in a thermal camera video sequence, where the segmen-
tation obtained for k-th frame is used to initialize the algorithm in frame k+ 1.
The proposed approach seemlessly allows multiple target tracking in the video se-
quence. In Fig. 7 we demonstrate the segmentation obtained using the proposed
method with Gaussian mixture model. The introduction of more expressive re-
gion appearance models naturally allows us to segment more complex images.
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5 Conclusions and Future Work

In this paper we addressed the problem of segmenting an image into an arbi-
trary number of regions using a novel active contours formulation. The proposed
framework allows utilizing various region appearance priors and employs the new
Voronoi implicit interface method in order to treat multiple regions in a uniform
manner, while avoiding metrication errors. Finally, we demonstrated that the
proposed method works well on challenging images from various data sets and
applications.
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Abstract. This article introduces a generalization of discrete Optimal
Transport that includes a regularity penalty and a relaxation of the bi-
jectivity constraint. The corresponding transport plan is solved by min-
imizing an energy which is a convexification of an integer optimization
problem. We propose to use a proximal splitting scheme to perform the
minimization on large scale imaging problems. For un-regularized relaxed
transport, we show that the relaxation is tight and that the transport
plan is an assignment. In the general case, the regularization prevents
the solution from being an assignment, but we show that the correspond-
ing map can be used to solve imaging problems. We show an illustrative
application of this discrete regularized transport to color transfer be-
tween images. This imaging problem cannot be solved in a satisfying
manner without relaxing the bijective assignment constraint because of
mass variation across image color palettes. Furthermore, the regulariza-
tion of the transport plan helps remove colorization artifacts due to noise
amplification.

Keywords: Optimal Transport, color transfer, variational regulariza-
tion, convex optimization, proximal splitting, manifold learning.

1 Introduction

A large class of Image Processing problems involves probability densities esti-
mated from local or global image features. In contrast to most distances from
information theory (e.g. the Kullback-Leibler divergence), Optimal Transport
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takes into account the spacial localization of the modes of the densities [1]. Fur-
thermore, it also provides as a by-product a warping (the so-called transport
plan) between the densities. This plan can be used to perform image modi-
fications such as color transfer. However, an important flaw of this Optimal
Transport plan is that it is usually highly irregular, thus introducing unwanted
artifacts in modified images. In this article, we propose a variational formalism
to relax and regularize the transport. This novel regularized Optimal Transport
improves visually the result for color image modification.

1.1 Optimal Transport and Imaging

Discrete Optimal Transport. The discrete Optimal Transport (OT) is the solu-
tion of a convex linear program originally introduced by Kantorovitch. It corre-
sponds to the convex relaxation of a combinatorial problem when the densities
are sums of the same number of Diracs. This relaxation is tight (i.e. the solu-
tion of the linear program is an assignment) and extends the notion of Optimal
Transport to arbitrary sum of weighted Diracs, see for instance [1]. Although
there exists dedicated linear solvers (transportation simplex) and combinatorial
algorithms (such as the Hungarian and auction algorithms), computing Optimal
Transport is still a challenging task for densities composed of thousands of Dirac
masses.

Optimal Transport Distance. The OT distance (also known as the Wasserstein
distance or the Earth Mover distance) has been shown to produce state of the
art results for the comparison of statistical descriptors, see for instance [2].

Optimal Transport Map. Another line of applications of OT makes use of the
transport plan to warp an input density on another one. Optimal transport is
strongly connected to fluid dynamic partial differential equations [3]. These con-
nexions have been used to perform Image Registration [4]. Color transfer between
images is a challenging problem, and has been tackled by computing non-linear
mappings between color spaces, see for instance [5,6,7]. For grayscale images, the
usual histogram equalization algorithm corresponds to the application of the 1-D
Optimal Transport plan to an image, see for instance [8]. It thus makes sense to
consider the 3-D Optimal Transport as a mathematically-sound way to perform
color palette transfer, see for instance [9] for an approximate transport method.

1.2 Regularized and Relaxed Transport

Removing Transport Artifact. The Optimal Transport map between complicated
densities is usually irregular. Using directly this transport plan to perform color
transfer creates artifacts and amplifies the noise in flat areas of the image. Since
the transfer is computed over the 3-D color space, it does not take into account
the pixel-domain regularity of the image. The visual quality of the transfer is thus
improved by denoising the resulting transport using a pixel-domain regulariza-
tion either as a post-processing [10] or by solving a variational problem [10,11].
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Transport Regularization. A more theoretically grounded way to tackle the prob-
lem of colorization artifacts should use directly a regularized Optimal Transport.
This corresponds to adding a regularization penalty to the Optimal Transport
energy. This however leads to difficult non-convex variational problems, that have
not yet been solved in a satisfying manner either theoretically or numerically.
The only theoretical contribution we are aware of is the recent work of Louet
and Santambrogio [12]. They show that in 1-D the (un-regularized) Optimal
Transport is also the solution of the Sobolev regularized transport problem.

Quadratic Assignment Problems. Regularized transport shares similarities with
regularized graph matching, which is a quadratic assignment problem, known to
be NP-hard to solve. This class of problems have been convexified using an SDP
relaxation of the quadratic assignment problem [13]. Such a relaxation is only
tractable for small size problems, and cannot be used for imaging applications.
We propose here to use a simpler convexification that works well in practice for
imaging problems.

Graph Regularization. For imaging applications, we use regularizations built on
top of a graph structure connecting neighboring points in the input density.
This follows ideas introduced in manifold learning [14], that have been applied
to various Image Processing problems [15]. Using these regularizations enables us
to design regularizations that are adapted to the geometry of the input density,
that often has a manifold-like structure.

Transport Relaxation. The result of Louet and Santambrogio [12] is deceiving
from the applications point of view, since it shows that, in 1-D, no regularization
is possible if one maintains a 1:1 assignment between the two densities. This is
our first motivation for introducing a relaxed transport which is not a bijection
between the densities. Another (more practical) motivation is that relaxation
is crucial to solve imaging problems such as color transfer. Indeed, the color
distributions of natural images are multi-modals. An ideal color transfer should
match the modes together. This cannot be achieved by classical Optimal Trans-
port because these modes often do not have the same mass. A typical example
is for two images with strong foreground and background dominant colors (thus
having bi-modal densities) but where the proportion of pixels in foreground and
background are not the same. Such simple examples cannot be handle properly
with Optimal Transport. Allowing a controlled variation of the matched densities
thus requires an appropriate relaxation of the bijective matching constraint.

1.3 Contributions

In this paper, we generalize the discrete formulation of Optimal Transportation
to tackle the two major flaws that we just mentioned: i) the lack of regular-
ity of the transport and ii) the need for a relaxed matching between densities.
Our main contribution is the integration of these two properties in a unified
convex variational problem. This problem can be solved using standard convex
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optimization procedures such as proximal splitting methods. Our second con-
tribution is the application of this framework to the problem of color transfer.
Numerical results show the relevance of this approach to this particular imaging
problem.

2 Discrete Optimal Transport

Optimal Assignment. We consider discrete measures in Rd with a fixed number
N of points, that we write as μX = 1

N

∑N
i=1 δXi where δa is the Dirac at position

a ∈ Rd, and X = (Xi)
N
i=1 ∈ RN×d, is the position of the N points supporting

the distribution.
The Optimal Transport between two such distributions solves the optimal

assignment

W (μX , μY )
2 =

∑
i

Ci,σ�(i) where σ� ∈ argmin
σ∈S1

∑
i

Ci,σ(i) (1)

where S1 is the set of permutation of N indexes.
A usual choice is to consider the Lα Wasserstein distance for some α > 0, so

that the cost is Ci,j = ||Xi − Yj ||α where || · || is the Euclidean norm in Rd.

Convex Relaxation. The Kantorovitch Optimal Transport formulation uses the
embedding of permutation σ as permutation matrixM(σ) ∈ RN×N

M(σ)i,j =

{
1 if j = σ(i),
0 otherwise.

The convex hull of permutation matricesM(S1) is the set of bi-stochastic ma-
trices

S̄1 =
{
Σ ∈ RN×N \ ΣI = I, Σ∗I = I, Σ � 0

}
where I = (1, . . . , 1)∗ ∈ RN , where A∗ is the adjoint of the matrix A, which
for real matrices amounts to the transpose. One can show that the relaxation is
tight, i.e. there exists a solution Σ� of

min
Σ∈S̄1

〈C, Σ〉 where 〈C, Σ〉 =
N∑

i,j=1

Ci,jΣi,j

such that Σ� =M(σ�) where σ� is a solution of (1).

3 Relaxed Transport

For many applications in Imaging Science, it is not desirable to impose that
the mapping σ between X and Y is 1:1. This is for instance the case for the
colorization problem we consider in Section 5 where the ratio of similar colors
across the image is not constant.
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We relax this constraint by only imposing a maximum number of elements of
X linked to a single element of Y

Sκ =
{
σ : {1, . . . , N} → {1, . . . , N} \ ∀ j = 1, . . . , N, |σ−1(j)| � κ

}
where κ ∈ N∗ is a maximum capacity parameter. Note that for κ = 1 one recovers
the set S1 of permutations. The natural convex relaxation is

S̄κ =
{
Σ ∈ RN×N \ Σ∗I � κI, ΣI = I, Σ � 0

}
.

The following proposition shows that this relaxation is tight when κ is an integer.

Proposition 1. For κ ∈ N∗, there exists a solution Σ� of

min
Σ∈S̄κ

〈C, Σ〉 (2)

such that Σ� =M(σ�) where σ� is solution of

min
σ∈Sκ

∑
i

Ci,σ(i). (3)

Proof. One can write S̄κ =
{
Σ ∈ RN×N \ A(Σ) � bκ

}
where A is the linear

mapping A(Σ) = (−Σ,ΣI, Σ∗I) ∈ RN×N × RN × RN and bκ = (0N×N , I, κI).
A standard result shows that A is a totally unimodular matrix [16]. For any
κ ∈ N, the vector bκ has integer coefficients, and thus the polytope S̄κ has
integer vertices. Since there is always a solution of the linear program (2) which
is a vertex of S̄κ, it has coefficients in {0, 1}.

Note however that this relaxation is in general not tight when κ is an arbitrary
real number. When κ � N , there is no restriction on the map σ ∈ Sκ. The
solution of (3) is then the nearest neighbor assignment,

∀ i = 1, . . . , N, σ�(i) = argmin
0�j�N

Ci,j . (4)

3.1 Numerical Illustrations

In Fig. 1, we show a simple example to illustrate the properties of the method
proposed so far. Given a set of points X (in blue) we compute the mapping
with the set of points Y (in red), that is a solution of (2). For all the mappings
between Xi and Yj with a value Σi,j > 0, we draw a line, solid if Σi,j = 1, and
dashed otherwise.

As we pointed out in last section, for non integer values of κ, the mappings
Σi,j are in [0, 1] while for integer values of κ, Σi,j ∈ {0, 1}. Note that as we
increase the values of κ (Fig. 1, right), the points in X tend to be mapped to
the closer points in Y , as defined in (4).
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κ = 1 κ = 1.5 κ = 2 κ = 10

Fig. 1. Relaxed transport computed between X (blue dots) and Y (red dots) for dif-
ferent values of κ. Note that κ = 1 corresponds to classical OT. A dashed line between
Xi and Yj indicates that Σi,j is not an integer.

4 Discrete Regularized Transport

4.1 Gradient on Graphs

One can view a relaxed assignment σ ∈ Sκ as a vector field Xi �→ Vi = Yσ(i)−Xi

defined on the point cloud X . A usual way to impose regularity of such a map V
is by measuring the amplitude of its derivativesGV whereG : RN×d → RP×d is a
discrete differential operator. A natural way to define a gradient is by imposing
a graph structure defined by GX ⊂ {1, . . . , N}2, and where P = |GX |. This
graph structure is application dependent, and one can think of it as some sort
of nearest neighbor graph. Section 5 gives an example of such a construction
for the color transfer problem. The gradient measures the (weighted) difference
along the edges of the graph

GV = (wi,j(Vi − Vj))(i,j)∈GX
∈ RP×d.

where wi,j > 0 is some weight. A classical choice, to ensure consistency with the
directional derivative, is to choose wi,j = ||Xi −Xj ||−1.

4.2 Convex Formulation

The regularity of a transport map V ∈ RN×d is then measured according to
some norm of GV , that we choose here for simplicity to be the vectorial �p norm
Jp(GV )

Jp(GV ) =
∑

(i,j)∈Gx

||wi,j(Vi − Vj)||p2.

The case p = 2 corresponds to a graph-based Sobolev H1 norm, whereas the
case p = 1 corresponds to a graph-based total variation norm, see for instance
[15] for applications of these functional to imaging problem regularization.
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The relaxed and regularized optimal assignment problem thus reads

min
σ∈Sκ

∑
i

Ci,σ(i) + λJp(G(X − Y ◦ σ)) (5)

where Y ◦σ = (Yσ(i))
N
i=1 ∈ RN×d. To introduce a convexified regularized energy,

we replace the relaxed assignment σ ∈ Sκ by Σ ∈ S̄κ, and consider X − ΣY in
place of the mappingX−Y ◦σ. We consider the following relaxed and regularized
convex formulation

Σ� ∈ min
Σ∈S̄κ

〈C, Σ〉+ λJp(G(X −ΣY )) (6)

The case (κ, λ) = (1, 0) corresponds to the usual Optimal Transport, and λ = 0
corresponds to the un-regularized formulation (3).

4.3 Minimization Algorithm

Problem (6) is a convex minimization. In the case p = 2, it corresponds to a
quadratic minimization, whereas in the case p = 1 it can be cast as a conic opti-
mization problem. They can be solved for medium-scale problem using standard
interior point methods. An alternative solution is to use first order proximal
scheme (see for instance [17]), that are well tailored for such highly structured
problems.

Proximal Splitting. Problem (6) can be reformulated as

min
Σ
〈C, Σ〉+ λJp(G(X −ΣY )) + ιD1(Σ) + ιCκ(Σ

∗) (7)

where ιC is the indicator function of a convex set C and we introduced the
constraint sets

Cκ =
{
Σ \ Σ � 0, ΣI � κI, Σ ∈ RN×N}

.

and ιD1 is the indicator function of the convex set D1 defined as:

D1 =
{
Σ \ Σ � 0, ΣI = I, Σ ∈ RN×N}

,

where every line of Σ ∈ D1 belongs to the N -dimensional simplex. Problem (7)
can be re-casted as a minimization of the form

min
Σ∈RN×N

F (K(Σ)) +H(Σ)

where

⎧⎨⎩
K(Σ) = (Σ,GΣY ), K∗(Σ,U) = Σ +G∗UY ∗,
F (Σ,U) = λJp(U −GX) + ιD1(Σ),
H(Σ) = 〈C, Σ〉+ ιCκ(Σ

∗).
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Orthogonal Projection on Constraint Sets. The proximal operators read

ProxγF (Σ,U) = (ProjD1
(Σ), λGX + ProxγJp(·)(U − λGX))

ProxγH(Σ) =
(
ProjCκ

((Σ − γC)∗)
)∗

where the orthogonal projection on Cκ is computed for each line Σ� of a matrix
Σ as

Σ̃ = ProjCκ
(Σ) where Σ̃� =

{
max(0, Σl) if max(0, Σl)I � κ
ProjDκ

(Σl) otherwise,

}
where ProjDκ

(V ) is the projection of the line vector V on the convex set Dκ

Dκ = {V \ V � 0, V I = κ} .

This last projection, as well as the projection on D1, can be efficiently computed
as detailed for instance in [18].

Proximal Operators. Let us now recall that the proximal operator of a function
F is defined as

ProxγF (Σ) = argmin
Σ̃

1

2
||Σ − Σ̃||2 + γF (Σ̃).

One can check that for p = 1 and p = 2, the proximal operator of Jp evaluated
at U ∈ RN×d can be computed in closed form as:

ProxλγJ1(·)(U)i = max

(
0, 1− λγ

||Ui||

)
Ui and ProxλγJ2(·)(U)i =

Ui
1 + 2γλ

Note that being able to compute the proximal mapping of F is equivalent to
being able to compute the proximal mapping of F ∗, thanks to Moreau’s identity

Σ = ProxγF∗(Σ) + γ ProxF/γ(Σ/γ).

Primal-Dual Splitting Scheme. The primal-dual algorithm of [17] applied to our
problem finally reads

Γ k+1 = ProxμF∗(Γ k + μK(Σ̃k),

Σk+1 = ProxτH(Σk − τK∗(Γ k+1)),

Σ̃k+1 = Σk+1 + θ(Σk+1 −Σk),

where θ ∈ [0; 1] and the two other parameters should satisfy μτ ||K||2 < 1 where
||K|| is the spectral norm of the operator K. Under these conditions, it is shown
in [17] that Σk converges to a solution Σ� of (6).
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4.4 Numerical Illustrations

In Fig. 2, we can observe, on a synthetic example, the influence of the parameters κ
and λ (see equation (6)). Given two sets X (in blue) andY (in red), we compute the
mapping an optimal regularized transportΣ� solving eq. 6 with the minimization
algorithm proposed in Section 4.3, and plot in green the set Σ�Y . Points Xi and
Yj are connected by a line if Σ�

i,j > 0, which is dashed if Σ�
i,j ∈]0, 1[ or solid if

Σ�
i,j = 1. For λ = 0 and κ = 1, one obtains the classical OT solution. The influence

of regularization can be observed as we increase λ: the influence of the two outliers
in Y (top of the figures) in the mappings is reduced.

λ = 0 λ = 2 λ = 100

κ = 1 κ = 2 κ = 2.5 κ = 1 κ = 2 κ = 2.5 κ = 1 κ = 2 κ = 2.5

Fig. 2. Given two sets of points X (in blue) and Y (in red), we show in ΣY (in green),
and the mappings Σi,j as lines connecting Xi and Yj , which are dashed if Σi,j ∈]0, 1[
and solid if it is an integer

5 Application to Color Transfer

The color transfer problem consists in modifying an input image X0 ∈ RN0×d

(here d = 3 for RGB color image) to obtain X̃0 = T (X0) whose color palette (its
pixel empirical distribution) μX̃0 is equal or close to a target color distribution
μY 0 . This target distribution is here chosen as the empirical distribution of a
second image Y 0.

Nearest-Neighbors Transport Interpolation. We compute T as an interpolation of
a regularized Optimal Transport map between sub-sampled point clouds X,Y ∈
RN×d. These two points clouds X,Y are computed by applying the K-means
algorithm to the input clouds X0, Y 0.
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(a) (b) (c)

Fig. 3. In blue, the empirical distribution of the “Wheat” image pair (Fig. 4 second
column), projected on the Red-Green plane. (a) Nearest neighbor graph GX with K =
1, (b) Y in red, and (c) U = Σ�Y in green with the lines connecting Xi to Ui.

The regularized Optimal Transport matrix Σ� ∈ RN×N is obtained by solv-
ing (6). The quantized regularized transport then maps X to U = ΣY . It is then
extended to the whole space by a nearest neighbor interpolation

∀x ∈ Rd, T (x) = Ui(x) where i(x) = argmin
1�i�N

||x−Xi||.

This transport is then applied to the input image to obtain the new pixel values
(X̃0)i = T (X0

i ).

Graph and G Operator. As exposed in Section 4.1, computing a regularized
transfer requires the user to design a graph structure GX and weights wi,j that
reflects the geometry of the input cloud X that supports the distribution μX .
Inspired by several recent works on manifold learning (see Section 1.2), we use
here a K-nearest neighbor graph, where K is the number of edges adjacent to
each vertex, i.e. | {j \ (i, j) ∈ Gx} | = K.

Comparison with the State of the Art. In Fig. 4, we show some results and
compare them with the methods of Pitie et al. [9] and Papadakis et al. [10]. The
goal of the experiment is to transfer the color palette of the images in the second
row to the image on the first row. Note that the methods in the state of the art
introduce color aberration (in the first column there is violet outside the flower,
and in the second column the wheat is blueish), which can be avoided with the
proposed method by an appropriate choice of λ and κ.

Implementation Details. The results shown in this paper were obtained setting
wi,j = ||Xi−Xj||−1 and N = 400. The set of parameters (λ, κ,K, p) used in Fig. 4
are, by column from left to right (1400,1.05,2,1), (1000,1.2,1,1), and (1000,1,1,1).
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Fig. 4. Comparison between the results obtained with our method and with the meth-
ods of [9] and [10]
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6 Conclusion

In this paper, we have proposed a generalization of discrete Optimal Transport
that enables to regularize the transport map and to relax the bijectivity con-
straints. We show how this novel class of transports can be applied to color
transfer. Regularization is crucial to reduce noise amplification artifacts, while
relaxation enables to cope with mass variation of the modes of the color palettes.
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Abstract. In this paper, we develop a variational method for the com-
putation of average images of biological organs in three-dimensional Eu-
clidean space. The average of three-dimensional biological organs is an
essential feature to discriminate abnormal organs from normal organs.
We combine the diffusion registration technique and optical flow com-
putation for the computation of spatial deformation field between the
averages and each input organ. We define the average as the shape which
minimises the total deformation.

1 Introduction

In this paper, we introduce an algorithm for the computation of the average
shape of a collection of biological organs in three-dimensional Euclidean space.
We first define the warp between a pair of shapes. Using the warp to represent the
deformation between shapes, we define the average shape in three-dimensional
space as the shape which minimises the total deformation to the given collection
of shapes. By computing the difference between the average shapes of organs, it
is possible to discriminate normal organs from abnormal organs as a prescreening
step in medical diagnosis.

In medical image registration, the establishment of relations between different
images is the main issue in research. This registration process between images,
clarifies the difference between images which is used for medical diagnosis. This

� This research was supported by “Computational anatomy for computer-aided diag-
nosis and therapy: Frontiers of medical image sciences” funded by the Grant-in-Aid
for Scientific Research on Innovative Areas, MEXT, Japan, the Grants-in-Aid for
Scientific Research funded by Japan Society of the Promotion of Sciences and the
Grant-in-Aid for Young Scientists (A), JSPS, Japan.

A. Kuijper et al. (Eds.): SSVM 2013, LNCS 7893, pp. 440–451, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Variational Method for Computing Average Images of Biological Organs 441

registration process is mainly achieved by a matching process, which is an es-
tablished fundamental methodology in pattern recognition.

In medical image diagnosis and retrieval [2,3], the average image and shape
of individual organs provide essential properties for the general expression of
organs. Shape retrieval categorises and classifies shapes, and finds shapes from
portions of shapes. In shape retrieval, the matching of shapes based on the
deformorpholism of shapes [8,9] and the descriptor of shape boundary contours
[11] is used. In the matching process for discrete shapes, the string edit distance
[5,7] computed by dynamic programming is a fundamental tool. Moreover, in the
matching process of images, the variational registration strategy [2,3] is a typical
tool. In computational anatomy, the statistical average shape, which is computed
using principal component analysis of the shape descriptor, is well defined [13,14].
In both structure pattern recognition [5,6] and variation registration [2,4], the
average shape of a collection of given shapes is of interest.

There are some methods for the calculation of the average shape that are
based on the mathematical definition that shapes are the boundary contours
of physical objects with shapes defined in the shape space S [17,18,19]. This
definition is suitable for dealing with highly nonlinear geometric variations [17].
Setting d(Si, Sj) to be a distance measure [1] between shapes Si and Sj over the
shape space S, the averages and median in a shape subset {Si}ni=1 = Sn ⊂ S are

average(Sn) = arg

(
min
S∈S

n∑
i=1

d(Si, S)

)
, (1)

median (Sn) = arg

(
min
S∈Sn

n∑
i=1

d(Si, S)

)
. (2)

We adopt eq. (1) for the construction of the average shape for the numerical
atlas in computational anatomy. Equation (1) is an ill-posed problem. Therefore,
setting {φi}ni=1 to be a collection of shape-deformation operation

average(Sn) = arg

(
min
S∈S

n∑
i=1

d(Si, φi(S)) + λP (S) + μQ(φi)

)
, (3)

where P and Q are regularizes for S and φi. We establish a variational method to
compute the average of simple planar curves, which are derived as the boundary
curves of biological organs.

We give the preliminaries for the calculation of average images by the vari-
ational method in Section 2. In Section 3 and Section 4, we derive our model
using the variational registration. Moreover, we test our method by computing
the deformation fields between average images and input images in Section 5
and conclude in Section 6.
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2 Preliminaries

Diffusion Registration[16]
The nonparametric registration of images g(x) to f(x) is achieved by minimising
the criterion

J [u] = D[g, f ;u] + αS[u], (4)

where u is the displacement vector between g(x) and f(x), D is the flow warp
between f and g and S(u) is the smoothness constraint on the deformation field
u. In diffusion registration [16],

D[g, f ;u] =
1

2

∫
Ω

|fu − g|2dx, S[u] =
1

2

∫
Ω

‖∇u‖2dx, (5)

where fu is an image warped by u such that fu = f(x − u). This regulariser
causes images to be smooth [16] and it is introduced in context of optical flow
[15].

Local Linear Space and Geometric Perturbation
If an image f(x) defined in the n-dimensional Euclidean space Rn is geometri-
cally perturbed, it satisfies the relation

f(x+ δ) = f(x) + δ	∇f(x). (6)

This is because for i = 1, 2, · · · , n, x = (x1, x2, · · · , xn)	,∫
Rn

f(x)∂xif(x)dx = 0, ∂xif(x) =
∂f

∂xi
(7)

and {∂xif(x)}ni=1 are independent 1.
For an image f

g(x) = f(Rx+ t) (8)

for a small rotation R and small translation vector t, we can assume the relation

g(x) = f(x) +

n∑
k=1

ak∂xk
f(x). (9)

Equation (9) implies that the number of independent images in the collection of
images

L(f) = {fij |fij(x) = λf(Rix+ tj)}p,qi,j=1 (10)

is (n+ 1).
Therefore, Setting f ⊗ g to be a linear operation such that (f ⊗ g)h = (h, g)f ,

where (·, ·) is the inner product of image space, the covariance of L(f) is defined
as Lf = Eijfij ⊗ fij where Ek

i=1(fi) is the expectation of {fi}ni=1. We can use
the first (n+ 1) principal vectors of Lf as the local bases for image expression.

1 For a calculation of volumetric image f(x) such the
∫
R2 |f |2dx <∞,

∫
R2 |∂xf |2dx <

∞,
∫
R2 |∂yf |2dx < ∞,

∫
R2 |∂yf |2dx < ∞, we have the relation

∫
f∂xfdx =∫

f∂yfdx =
∫
f∂zfdx = 0, since ∂xf �= λ∂yf, ∂yf �= μ∂zf, ∂zf �= κ∂xf .

f, ∂xf, ∂yf, ∂zf are independent.
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f1

f2

f3

fk

g
u1

u2

u3

uk

Fig. 1. Concept of variational
mean image calculation. A varia-
tional mean image represents the
mean image among m images
fk (1 ≤ k ≤ m). The mean image
warps each image fk with deforma-
tion fields uk (1 ≤ k ≤ m) defined
on the variational mean image g.
The deformation fields approach to
each image fk from the variational
mean image g.

u1

u2

uk

Average Image g

(1, 1)

i

j

(i, 1)

(1, j)

Fig. 2. Regularisation term of de-
formation fields. This figure sug-
gests that the mean image is the
median point among the input im-
ages when the sums of vectors on
each pixel are minimised.

3 Modeling of Variational Average

First we define the variational average image g. The variational average image
g should be a “average” image when the sum of the variations uk (1 ≤ k ≤ m)
defined on g applied to each image fk (1 ≤ k ≤ m) is minimised. In other
words, we define a variational average image g as an image with minimised
deformation energies. Figure 1 depicts the concept of the variational average
image computation.

We define an energy function for calculating a variational average image as

J(g, u1, u2, . . . , uk) = Jd + Jg + Js + Jc. (11)

Here, Jd is a data term that models the image registration. Jg and Js are regu-
larisation terms which cause flow fields and the variational image to be smooth,
respectively. Jc denotes a constraint on the flow fields.

The data term models image registration problem and is given by,

Jd =

m∑
k=1

∫
Ω

(g(x)− fk(x− uk))
2dx. (12)
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We generate the average image at the median point among the input images to
minimise the distance metric

Jc = γ

∫
Ω

(

m∑
k=1

uk)
2dx. (13)

Figure 2 depicts the geometric relation of this term.
We deal with this ill-posed problem by introducing the regularisation terms

Jg and Js. They cause the average image and deformation fields to be smooth
in their frames, respectively,

Jg = α

∫
Ω

(∇g)2dx, (14)

Js = β
m∑
k=1

∫
Ω

(∇uk)2dx. (15)

Since Jd, Jg, Js, and Jc are quadric functions, the functional defined by eq. 11 is
convex. Therefore, the minimizer of eq. 11 is unique.

Minimising the energy function (11), we can obtain the variational average
image g and deformation fields uk. We derive Euler-Lagrange equations,

αΔg(x)−G = 0, βΔuk(x)− Uk = 0, (16)

where

G =

m∑
k=1

(g(x)− fk(x− uk)), (17)

Uk = (γ

m∑
k=1

uk + (g(x)− fk(x− uk))∇(g(x)− fk(x− uk))). (18)

We convert eqs.(16) to the diffusion equations

∂g

∂t
= Δg(x)− 1

α
G,

∂uk
∂t

= Δuk(x)−
1

β
Uk, (19)

and discretise them as follows

g(n+1) − g(n)

τ
= Lg(n+1) − 1

α
G(n),

u
(n+1)
k − u

(n)
k

τ
= Lu

(n+1)
k − 1

β
U

(n)
k . (20)

Therefore, we obtain the iteration forms

(I − τL)g(n+1) = g(n) − τ

α
G(n), (I − τL)u

(n+1)
k = u

(n)
k − τ

β
U

(n)
k . (21)

4 Numerical Method

A 3D discrete Laplace matrix consists of three 1D discrete Laplace matrices D
according to the Kronecker product [23,24,25]

L = D ⊗ I ⊗ I + I ⊗D ⊗ I + I ⊗ I ⊗D. (22)
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For fast computation we employ eigenvalue decomposition and the discrete co-
sine transform [23,20,24]. We can decompose D as D = ΦΛΦ	, where Λ =
Diag(λ1, · · · , λn), with the eigenvalues of D,

λi =
4

h2
sin2(

π(i − 1)

2(n+ 1)
), (23)

for i = 1, · · · , n and the eigenmatrix is the discrete cosine transform matrix Φ. h
means the resolution of spatial derivation, in this paper h = 1. Moreover, matrix
L is decomposed as

D ⊗ I ⊗ I + I ⊗D ⊗ I + I ⊗ I ⊗D = UΣU	, (24)

where U = (Φ ⊗ Φ ⊗ Φ), Σ = (Λ ⊗ I ⊗ I + I ⊗ Λ ⊗ I + I ⊗ I ⊗ Λ) and I is
identity matrix. Therefore, we obtain the equation

g(n+1) = U(I − τΣ)−1U	(g(n) − τ

α
G), (25)

u(n+1) = U(I − τΣ)−1U	(u(n) − τ

α
Uk). (26)

Equations (25) and (26) are numerically solved using DC(S)T-II [20] for Neu-
mann boundary conditions [24,25].

We need to analyse the convergence of the iterative algorithm by setting up
the spectral radius of the iterative matrix. First, we deform eq.(25) and obtain

g(n+1) = M(1 − mτ

α
)g(n) + c, (27)

where M = (I − τL)−1, c =
∑m

k=1
τ
αfk(x− uk). If

max(|( 1

1− τ(λi + λj + λk)
)(1 − mτ

α
)|) < 1 (28)

is satisfied, the iterative calculation converges.We assume the Lagrangemultiplier
and the time marching parameter 0 < α, 0 < τ, τ & 1, 0 < 1− mτ

α . Equa-

tion.(23) derives 0 ≤ (λi+λj+λk) ≤ 4
∑

n=h,w,d sin
2(π(n−1)

2(n+1) ),whereh,w, d equals

imags’s height, width, depth. When 1
1−τ(λi+λj+λk)

is maximised, λi + λj + λk =

4
∑

n=h,w,d sin
2(π(n−1)

2(n+1) ) and
1

1−τ(λi+λj+λk)
> 0. Therefore, we obtain the relation

α < m
max(λi+λj+λk)

, 0 < τ < α
m as the convergence condition.

Next, we deform eq.(26) and obtain

u
(n+1)
k = M(1 − (1 + ε)γτ

β
)u

(n)
k + c, (29)

where M = (I − τL)−1, c = τ
β
(γ

∑m
j=1,j �=k uj), and ε represents the warping

term. Similar to eq.(28), we obtain the relation

max(|( 1

1− τ(λi + λj + λk)
)(1 − τ(1 + ε)γ

β
)|) < 1 (30)

Hence of, β < (1+ε)γ
max(λi+λj+λk)

, 0 < τ < β
(1+ε)γ is satisfied, the iteration forms

of eq.(21) converges.
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Fig. 3. Examples of used data. These figures are the 20th slices of different 3D liver
images and are aligned according to their centre of gravity.

Table 1. Used data and their sizes

Region Size(pixel)

Liver 84× 95× 68

Pancreas 39× 72× 27

Lung(R) 88× 79× 91

Lung(L) 89× 63× 94

Kidney(R) 31× 31× 34

Kidney(L) 35× 32× 37

Heart 59× 70× 50

5 Numerical Examples

To evaluate average images, we define some criteria : warped image error(WIE),
flow norm(FN) and flow sum norm (FSN). WIE is defined on each pixel x as

WIE(x) = ‖g(x)− f(x− u)‖2. (31)

WIE indicates the closeness of the correspondence between the average image g
and the input image f . FN and FSN are also defined on each pixel x as

FN(x) = ‖u(x)‖2, FSN(x) = ‖
∑
k=1

uk(x)‖2. (32)

The average image g is located near the median point of images fk when FSN
is small. Moreover, FN shows how far one of the input images lies from average
image g.

We tested our algorithm with 3D medical images. First, we need to preprocess
the images. We resize the images so that they fit in the surrounding box and
align the images using their centres of gravity. Figure 3 shows examples of liver
images and Table 1 shows the data used for testing and their image sizes.

In addition to our algorithm, we used two more methods: linear average glinear
and eigen average geigen, given as

glinear =
1

n

n∑
k

fk, geigen =
∑
i

λivi, (33)
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Table 2. Parameters used for numerical computation

α β γ τ

10−1 102 103 10−2

Linear

Eigen

Variational

10th slice 20th slice 30th slice 40th slice 50th slice 60th slice

Fig. 4. Mean images of livers. Linear images and eigenimages are blurred. However,
the contour of the variational mean image is clear.

where λi is the ith eigenvalue and vi is the correspondent eigenvector 2.
Table 2 shows parameters used for numerical computation. These parameters

are selected to counterbalance each term.
Figure 4 shows average liver images. In this figure, the contours of linear

images are blurred. Eigenimages are fabricable and have clearer contours than
linear images. However, colours of eigenimages are affected by the background
colour. On the other hand, the variational average images have clear contours
and their original colours. Therefore in this figure, we can see the variational
average images have good correspondences to the input livers. Table 3 to Table
9 show the values of WIE. To calculate this criterion, we set zero vectors as
the deformation fields for linear averages and eigenaverages. In these tables,
the variational average images have smaller WIE values than other methods.
Therefore, we can conclude that there are good correspondences between the
the variational average images and the input images.

Next, we tested whether the average images lie at the median points of the
input images. Table 10 shows FSN for each organ. These values are smaller than
the values of FN are in Table 11; hence, we can conclude that the variational
average images are located at the centre of the input images.

2 For a small displacement, we have the relation f(x+δ) ∼= f(x)+a+∇f(x). therefore,
f(x) is expressed by four principal eigen functions of covariance of f0 and E =
E(f ⊗ f), (f ⊗ f)g = (g, f)f for inner product (f, g) =

∫
R3 fgdx.
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Table 3. WIE among liver images. The error of the variational method is smallest.

Data 1 Data 2 Data 3 Data 4 Data 5
Method Mean SD Mean SD Mean SD Mean SD Mean SD

Variational 2.33 6.83 2.63 8.88 2.35 7.08 2.19 6.60 2.31 7.07

Linear 8.34 20.50 9.04 22.16 9.50 23.35 8.11 19.91 11.43 27.30

Eigen(1st) 6.83 17.07 7.85 20.34 13.75 33.26 8.44 21.74 13.20 31.69

Eigen(1st-4th) 12.29 32.19 10.44 27.25 15.10 39.22 4.85 11.94 14.25 39.38

Table 4. WIE among pancreas images

Data 1 Data 2 Data 3 Data 4 Data 5
Method Mean SD Mean SD Mean SD Mean SD Mean SD

Variational 1.19 4.91 1.43 6.29 1.34 5.69 1.30 5.45 1.26 5.30

Linear 6.50 17.66 7.51 20.41 7.61 20.70 7.37 20.06 6.63 18.01

Eigen(1st) 4.11 11.39 6.23 18.86 9.20 26.05 9.81 27.72 9.58 28.50

Eigen(1st-4th) 5.64 15.19 8.77 24.22 13.37 36.97 13.07 36.46 10.08 28.50

Table 5. WIE among right lung images

Data 1 Data 2 Data 3 Data 4 Data 5
Method Mean SD Mean SD Mean SD Mean SD Mean SD

Variational 1.62 4.33 1.34 3.84 1.70 4.20 2.01 4.39 1.93 4.90

Linear 8.23 15.56 6.80 12.64 8.32 15.34 7.12 12.97 8.85 16.19

Eigen(1st) 7.85 13.64 7.78 12.49 12.32 19.74 6.30 11.41 14.12 22.45

Eigen(1st-4th) 8.75 13.76 12.77 21.53 10.91 17.26 10.28 17.34 16.27 26.50

Table 6. WIE among left lung images

Data 1 Data 2 Data 3 Data 4 Data 5
Method Mean SD Mean SD Mean SD Mean SD Mean SD

Variational 2.01 5.52 1.67 4.71 2.02 4.88 1.96 4.66 2.18 6.01

Linear 8.99 16.42 7.92 14.42 8.44 14.91 7.34 13.22 9.56 17.34

Eigen(1st) 7.94 14.30 7.92 13.26 11.89 19.74 6.53 12.16 14.20 23.57

Eigen(1st-4th) 11.91 20.83 7.64 12.66 15.98 27.78 10.89 19.62 13.10 22.20

Table 7. WIE among right kidney images

Data 1 Data 2 Data 3 Data 4 Data 5
Method Mean SD Mean SD Mean SD Mean SD Mean SD

Variational 1.79 6.37 1.57 5.80 1.78 6.06 1.68 6.27 1.86 6.50

Linear 11.91 23.02 10.41 19.69 14.20 27.19 10.21 19.47 14.00 26.71

Eigen(1st) 8.78 17.00 12.13 24.25 13.22 26.34 12.22 24.60 21.37 40.41

Eigen(1st-4th) 11.94 23.17 8.95 16.41 21.50 41.48 14.70 30.61 22.66 46.91
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Table 8. WIE among left kidney images

Data 1 Data 2 Data 3 Data 4 Data 5
Method Mean SD Mean SD Mean SD Mean SD Mean SD

Variational 2.10 6.97 1.82 6.27 1.86 6.60 1.84 6.45 2.09 7.00

Linear 12.73 25.61 10.39 21.07 10.13 20.41 11.05 22.39 12.86 25.86

Eigen(1st) 6.80 15.58 14.69 31.77 7.73 17.96 12.79 28.45 19.65 39.37

Eigen(1st-4th) 9.15 17.83 21.60 42.51 13.56 27.27 16.31 31.93 19.34 37.04

Table 9. WIE among heart images

Data 1 Data 2 Data 3 Data 4 Data 5
Method Mean SD Mean SD Mean SD Mean SD Mean SD

Variational 1.11 4.47 1.01 4.47 1.03 4.31 0.97 4.17 1.00 4.07

Linear 12.01 26.18 9.85 21.63 9.79 21.40 9.42 20.62 10.62 23.26

Eigen(1st) 13.35 22.95 11.82 19.34 12.80 21.80 14.46 25.09 18.06 31.85

Eigen(1st-4th) 17.02 30.65 14.02 25.02 18.02 34.36 11.16 18.40 19.64 39.34

Table 10. FSN for each organ images

Mean SD Max

Liver 0.02 0.07 2.78

Pancreas 0.01 0.05 1.23

Lung(R) 0.01 0.03 1.35

Lung(L) 0.01 0.03 0.82

Kidney(R) 0.02 0.07 1.08

Kidney(L) 0.02 0.07 1.52

Heart 0.01 0.04 1.67

Table 11. FN values for each organ image. For example, for the case of the liver Data
2 has the largest mean and largest SD. Therefore, Data 2 is furthest from the average
liver.

Data 1 Data 2 Data 3 Data 4 Data 5
Region Mean SD Mean SD Mean SD Mean SD Mean SD

Liver 0.39 0.62 0.42 0.85 0.40 0.72 0.33 0.58 0.38 0.69

Pancreas 0.12 0.38 0.15 0.45 0.14 0.41 0.14 0.43 0.13 0.41

Lung(R) 0.43 0.78 0.28 0.56 0.44 0.81 0.37 0.67 0.55 1.05

Lung(L) 0.40 0.82 0.32 0.64 0.38 0.77 0.31 0.63 0.44 0.88

Kidney(R) 0.30 0.44 0.22 0.32 0.37 0.57 0.21 0.33 0.43 0.66

Kidney(L) 0.27 0.54 0.19 0.38 0.17 0.35 0.18 0.35 0.27 0.55

Heart 0.37 0.75 0.26 0.55 0.27 0.52 0.26 0.55 0.35 0.65

Since the heart images are not temporally synchronised, the average image is
not considered phase.
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Our method found correspondences between the variational average image
and input images. That is, image registration between each of input images and
the average image is achieved. Moreover, we can conclude that the variational
average image is located at the median point of input images from the fact that
the sum of the vectors of the flow fields on the average image is smaller than
each vector. Therefore, we could calculate the average image that we modeled.

6 Conclusion

We defined the variational average image based on variational registration and
modeled the energy function to calculate it. In our experiments, we confirmed
that our method can generate the variational average image and the deformation
fields. Moreover, the variational average images are characterised by the median
point of the input images. This information was obtained from the deformation
fields.
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A Hierarchical Approach to Optimal Transport

Bernhard Schmitzer and Christoph Schnörr

Heidelberg University

Abstract. A significant class of variational models in connection with
matching general data structures and comparison of metric measure
spaces, lead to computationally intensive dense linear assignment and
mass transportation problems. To accelerate the computation we present
an extension of the auction algorithm that exploits the regularity of
the otherwise arbitrary cost function. The algorithm only takes into ac-
count a sparse subset of possible assignment pairs while still guarantee-
ing global optimality of the solution. These subsets are determined by
a multiscale approach together with a hierarchical consistency check in
order to solve problems at successively finer scales. While the theoretical
worst-case complexity is limited, the average-case complexity observed
for a variety of realistic experimental scenarios yields a significant gain
in computation time that increases with the problem size.

1 Overview and Contribution

Overview. The linear assignment problem (LAP) and, more general, optimal
transport (OT) can be considered fundamental tools in computer vision and
mathematical image processing and their properties have been thoroughly ex-
amined [10,12]. For optimal transport between smooth distributions on �n with
convex cost functions, in particular the squared Euclidean distance, specialized
solution methods are available [5,6]. However, this is a rather restricted class
of scenarios and the proposed ODE/PDE solutions are very involved numeri-
cally. For the LAP there are two classical algorithms: the Hungarian method
[7] and the auction algorithm [1], which is apt for parallelization [2] and can be
generalized to OT [4]. The evolution of the auction algorithms has also sparked
investigation of more general min-cost flow problems [3].

Despite all its merits as a metric on measures [8], optimal transport has the
disadvantage of being computationally considerably more expensive than simple
comparisons like the L1 distance. Thus, equivalent, yet more easily computable
metrics [11], thresholded cost functions [9] or tangent space approximations [13]
have been proposed.

The mentioned classical algorithms do not take into account any particular
structure of the cost function, whereas for virtually all practical problems, the
cost functions are far from arbitrary, but usually obey some regularity criterion.
Secondly, said algorithms become very slow for large, dense problems. However
many natural problems are a priori dense, i.e. any conceivable mass assignment
is theoretically possible (e.g. linear shape matching relaxations discussed in [8]).
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The regularity of the cost function can sometimes be exploited to devise
heuristics that aim at ruling out very unlikely (mass) assignments, to reduce
the problem size beforehand. Yet, in general it is very hard to come up with a
simple in-/exclusion rule, that can both rule out a substantial fraction of possi-
ble assignments, so as to significantly reduce the problem size, and, at the same
time guarantee, that the global optimum of the full problem will not be lost.

Contribution. In this paper we present a modification of the auction algorithm
that (a) can exploit any available heuristic for estimating a relevant sparse subset
of assignments. However, it will at the same time be (b) guaranteed to find
a globally optimal solution of the underlying dense problem by hierarchically
checking for violated constraints of the dual problem, which relies on regularity of
the cost function. In fact the hierarchical structure will lend itself to (c) provide
a reasonable sparsity estimate for the problem at hand by a multiscale approach.
Although some additional steps are required as compared to the standard auction
algorithms, we show that (d) the worst case complexity overhead of our proposed
method is limited. At the same time (e) we demonstrate with realistic examples,
that the ‘typical’ problem complexity for practical setups is significantly reduced
(see Fig. 1). In fact, the gain in computation time grows with problem size.
This will enable application of the auction algorithm to problem sizes that were
unfeasible so far and which due to their more general structure cannot be solved
by PDE methods.
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Fig. 1. (a) Illustration of experimental scenario “mesh”: mass distributions on point
clouds sampled from manifolds, cost function given by point distance in underlying
geodesic metric. (b) Ratio of runtimes of standard auction algorithm and our proposed
extension for various scenarios (see Sect. 6) and problem sizes N . †: P2H, ⊕: P3H,
×: grid, ∇: mesh. P2H-P1, P2I and P2H-LB perform essentially like P2H. N gives
the number of points per point cloud or vertices per grid. For N = 6000 (i.e. N2 =
3.6 · 107 potential assignment pairs) the observed speedup ranges between 4.6 and 48,
consistently increasing with problem size.

In Section 2 we will recall the definitions of LAP and OT. Section 3 reviews the
auction algorithm for the LAP and discusses the extension to OT. In Section 4
we present our proposed method. A comparative worst case complexity analysis
is given in Sect. 5, before demonstrating with realistic experiments in Sect. 6 the
significant benefit of the proposed extensions. The paper concludes in Sect. 7.
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2 Linear Assignment Problem and Optimal Transport

The Linear Assignment Problem. For two finite sets X,Y and a cost func-
tion c : X × Y → �+ ∪ {∞} let N = {(x, y) ∈ X × Y : c(x, y) < ∞}. We call
N the set of neighbours and write N (x) = {y ∈ Y : (x, y) ∈ N} and similarly
N (y). We will refer to a subset S ⊂ X × Y as assignment [4] if it satisfies

(a) S ⊆ N ,
(b) |{(x′, y′) ∈ S : y′ = y}| ≤ 1 ∀ y ∈ Y ,
(c) |{(x′, y′) ∈ S : x′ = x}| ≤ 1 ∀x ∈ X .

An assignment is called complete if for any x ∈ X there is a y ∈ Y such that
(x, y) ∈ S and vice versa.

The LAP [10] is then readily stated as

min

⎧⎨⎩ ∑
(x,y)∈S

c(x, y) : S is a complete assignment between X and Y

⎫⎬⎭ . (1a)

The corresponding dual problem is

max

{∑
x

α(x) +
∑
y

β(y) : α(x) + β(y) ≤ c(x, y)

}
. (1b)

Note that for any fixed β the corresponding best choice of α is given by

α(x) = min
y

c(x, y)− β(y) . (2)

It is a well known result that for any optimal assignment S of the primal problem
(1a) and optimal (α, β) of the dual problem (1b) one finds

(x, y) ∈ S ⇒ α(x) + β(y) = c(x, y) . (3)

Optimal Transport. For two finite sets X,Y let μX ∈ �
|X|, μY ∈ �

|Y | be
two vectors with non-negative entries and equal sum of entries

∑
x μX(x) =∑

y μY (y), indicating mass distributions on X,Y . Here, c : X × Y → �∪{∞} is
a cost function, giving the cost to transport one unit of mass between elements
of the sets.

The optimal transport problem [12] can then be written as

inf

{∑
x,y

c(x, y)μ(x, y) : μ ≥ 0,
∑
y

μ(x, y) = μX(x),
∑
x

μ(x, y) = μY (y)

}
(4a)

where a μ is dubbed a coupling. The respective dual is given by

sup

{∑
x

α(x)μX(x) +
∑
y

β(y)μY (y) : α(x) + β(y) ≤ c(x, y)

}
. (4b)

Analogous to the primal-dual relation of the LAP (3) one finds for optimal
transport: for any optimal μ of primal (4a) and (α, β) of dual (4b) have

μ(x, y) > 0⇒ α(x) + β(y) = c(x, y) . (5)
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3 The Auction Algorithm

The Auction Algorithm for the Assignment Problem. We now recall
the description of the auction algorithm for the LAP from [4, Sect. 2]. Note that
we flipped the signs relative to the original presentation. Thus in the following
the comparison to an auction is no longer very intuitive (the lowest bid gets
accepted). However this makes the algorithm compatible with the usual notion
of optimal transport as presented in Sect. 2.

The main loop of the algorithm is divided into two phases: bidding and as-
signment. During the bidding phase elements of X locally determine their most
suitable assignment partner in Y and propose a corresponding dual variable
change. After that, during the assignment phase, for each y ∈ Y the best pro-
posed dual variable change is implemented. Different x do not interact during
the bidding phase and neither do different y during the assignment phase. Thus
both stages can be easily parallelized.

The state of the algorithm is represented by an assignment S and dual variable
β. The corresponding α is held implicitly via (2). The algorithm is initialized
with the empty assignment S = ∅ and some arbitrary β. A key property of the
auction algorithm is, that condition (3) does not hold strictly throughout the
iterations. Instead at any stage during the algorithm, for any (x, y) ∈ S the
weaker condition α(x) + β(y) ≥ c(x, y) + ε is satisfied, where ε is some positive
parameter. Positivity of ε is essential for convergence of the algorithm. However,
as long as ε < Δc/|X | the resulting complete S is guaranteed to solve (1a),
where Δc is the smallest difference between two non-equal values of c.

Bidding Phase. For every x ∈ X that is unassigned under S:
Compute the corresponding value of α(x) as given by (2):

α(x) = min
y∈N (x)

c(x, y)− β(y) (6)

and find a minimizer y∗. Determine also the slack of the second ‘nearest’
constraint:

α′(x) = min
y∈N (x)\{y∗}

c(x, y)− β(y) (7)

Then element x ∈ X bids for element y∗ ∈ Y with value

bxy∗ = c(x, y∗)− α′(x)− ε . (8)

Assignment Phase. For each y ∈ Y let P (y) be the set of x ∈ X from which
y received a bid in the bidding phase of the iteration. If P (y) is nonempty,
decrease β(y) to the lowest bid

β(y) := min
x∈P (y)

bxy , (9)

remove from the assignment S any pair (x, y) (if one exists), and add to S
the pair (x∗, y) where x∗ is some element in P (y) attaining the minimum in
(9). If P (y) is empty, β(y) is left unchanged.

Repeat the two stages until S is complete.
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The Auction Algorithm for Optimal Transport. In principle any optimal
transport problem with integer mass distributions can be translated into an LAP
by introducing a ‘mass-atom’ and splitting up each node x ∈ X, y ∈ Y into mul-
tiple copies, depending on how many atoms fit into μX(x), μY (y). By applying
suitable data structures this splitting can be made implicit and the auction algo-
rithm does not actually need to handle each mass atom separately. For example,
assignments S will be replaced by couplings μ. Also, some modifications in the
bidding process are advisable to prevent inefficient competition between atoms
originating from the same elements of X .

Such a reformulation is given in [4, Sect. 4], which we cannot repeat here, due
to space limitations. Instead we will briefly comment on the modifications which
are relevant for our proposed extensions to be discussed in the next section.

In the generalized algorithm, due to the splitting, the dual variable β need
not be constant ‘within’ every y. Thus, there is a dual variable β̃ for every pair
(x, y) and one variable β̃(♦, y) for mass atoms in y which have not yet received
a bid. A dual variable β can be obtained by

β(y) =

{
maxx′∈X : μ(x′,y)>0 β(x

′, y) if
∑

x′ μ(x′, y) = μY (y)

β(♦, y) else
.

In the bidding phase, any x with
∑

y μ(x, y) < μX(x) can submit bids to multiple
y simultaneously. To determine the bid recipients, consider the set

Π(x) = {c(x, y)− β(x′, y) |y ∈ N (x), x′ �= x and x′ ∈ N (y), μ(x′, y) > 0}
∪ {c(x, y)− β(♦, y) |y ∈ N (x),

∑
x′ μ(x′, y) < μY (y)} (10)

and assume that the entries are arranged in ascending order, i.e. we have

Π(x) =
{
c(x, y1)− β(x′1, y1), . . . , c(x, y|Π(x)|)− β(x′|Π(x)|, y|Π(x)|)

}
(11)

with c(x, yi)− β(x′i, yi) ≤ c(x, yi+1)− β(x′i+1, yi+1), for all i = 1, . . . , |Π(x)| − 1,
where by abuse of notation we allow x′i = ♦ for some i.

Values (6) and (7) are the first two entries of this list in the LAP case, for
determining the bids in a general OT problem, more than two entries might be
relevant. Depending on the mass distributions μX , μY , one will determine an
integer m > 1 such that the equivalent of (7) is given by

α′(x) = c(x, ym)− β(x′m, ym) . (12)

For a complete description of the algorithm we refer the reader to [2].

4 A Hierarchical Multiscale Approach to Optimal
Transport

Motivation. Obviously both algorithms will perform faster on sparse problems,
where the set of neighbours N is small. For example, the creation of the list
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(10) will require much fewer queries. In practice however, many problems are
dense and a priori any assignment (x, y) could be possible. For some applications
one might be able to devise good heuristics to exclude certain pairs, which are
unlikely part of an optimal solution. But due to the combinatorial structure of
the underlying LAP it is in general hard to rule out a significant amount of
potential assignments and yet guarantee that the global optimum of the full
problem will be attained.

In most practical problems the sets X and Y are equipped with some addi-
tional structure and notion of closeness or similarity which is also represented
in the cost function. If x and y are close to x′ and y′ respectively, then we ex-
pect |c(x, y)−c(x′, y′)| to be somehow bounded. The details of this boundedness
condition (e.g. Lipschitz continuity) may depend on the problem at hand and
are not crucial for the applicability of the scheme to be discussed.

We will now present a sparse/dense hybrid variant of the auction algorithm,
that can be initialized with a good heuristic guess for the subset of relevant
assignment pairs and will benefit from the sparsity of this set and the additional
available structure of X,Y and c. Yet it will be guaranteed to find a globally
optimal assignment or coupling measure (Proposition 1). This hybrid variant
can then be used in a multiscale scheme, that successively generates optimal
couplings at finer and finer scales of the problem, using the results from the
coarser scales for efficiently solving the finer scales. A central concept of this
algorithm are hierarchical partitions, to be introduced next.

Hierarchical Partitions. Let A1 ⊂ 2X be a partition of X , such that any two
elements x, x′ of one partition cell are considered to be ‘close’ in the aforemen-
tioned sense. Then let A2 be another (coarser) partition that is compatible with
A1 in the sense that any element a ∈ A2 can be written as the union of some cells
of A1. This coarsening can be repeated multiple times, each time ensuring that
elements in the same cell satisfy some (scale-adjusted) closeness criterion. The

resulting structure implies a directed tree graph with vertex set A =
⋃g−1
i=0 Ai

where A0 = {{x} : x ∈ X} is the set of singletons of X and g is the depth of the
hierarchy. For 0 ≤ i < g we say a′ ∈ Ai is a child of a ∈ Ai+1 (and a is parent of
a′) and write a′ ∈ ch(a), a = pa(a′) if a′ ⊂ a. We call this a hierarchical partition
of X .

Analogous we let B be a hierarchical partition of Y and w.l.o.g. assume that
A and B have the same depth.

Now for a given dual variable α define the extension α̂ onto the whole hierar-
chical partition by

α̂(a) = max
x∈a α(x) =

{
α(x) if a = {x} ∈ A0 for some x

maxa′∈ch(a) α̂(a
′) if a ∈ Ai for some i > 0

(13)

and analogous for β and β̂.
Similarly define an extension ĉ of c onto A× B via

ĉ(a, b) = min
x∈a,y∈b

c(x, y) . (14)
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We now define an extension of the dual constraints of (1b,4b) to coarser scales:
we will refer to the following set of inequalities as dual constraints of generation
n:

α̂(a) + β̂(b) ≤ ĉ(a, b)∀ (a, b) ∈ An × Bn (15)

Obviously if the dual constraints of generation n hold for some extended α̂, β̂
and ĉ, then so will the constraints at all generations n′ < n. For n = 0 these
constraints are those of the original optimal transport problem. The requirement
that elements within the same partition cell of any generation should be close,
will ensure, that the dual constraints of generation n will not be a lot tighter
than those of generation n− 1.

A Sparse/Dense Hybrid Variant of the Auction Algorithm. Consider
a feasible optimal transport problem between (X,μX) and (Y, μY ) with cost
function c. Let N̂ ⊂ X × Y such that (x, y) ∈ N̂ ⇒ c(x, y) < ∞. However
not necessarily c(x, y) < ∞ ⇒ (x, y) ∈ N̂ , i.e. we might start with a set of
neighbours which is smaller than the maximally possible one. We now give an
algorithm that will run on a given submaximal neighbour set N̂ , but detect
if some (x, y) ∈ N might have to be considered as part of an assignment and
extend N̂ accordingly if necessary. The bidding and assignment phases will work
just as in the standard auction algorithms, Sect. 3, with N̂ in place of N . But
there will be an additional consistency check step in between:

Consistency Check Phase. Let α̂′ be the hierarchical extension of α′ as de-
fined in (7,12) and β̂ the hierarchical extension of β(·). Then start with

checking whether ĉ(a, b) − β̂(b) ≥ α̂′(a) for all a ∈ An, b ∈ Bn at some
generation n > 0.

If a checked inequality holds, then certainly c(x, y)− β(x′, y) ≥ α′(x) for
all x ∈ a, y ∈ b, x′ ∈ X and thus no y ∈ b could lead to a different bid for
x ∈ a if (x, y) ∈ N̂ during the bidding phase, since these potential candidates
would appear further behind in the ordered list Π(x), (11).

If a checked inequality ĉ(a, b)− β̂(b) ≥ α̂′(a) is found to be violated, check

on a finer level: ĉ(a′, b′)− β̂(b′) ≥ α̂′(a′) for a′ ∈ ch(a), b′ ∈ ch(b). Recursively
continue this process until either all inequalities hold, or at generation 0 a
candidate c(x, y)−β(y) < α′(x) is found. If for such a candidate (x, y) �∈ N̂ ,
then update N̂ := N̂ ∪ {(x, y)} and list x for rebidding.

After the consistency check, reevaluate the bidding phase for all listed x.

Proposition 1. The sparse/dense hybrid auction algorithm, initialized with
some non-maximal neighbourhood set N̂ , such that the problem constrained to
N̂ is still feasible, will converge to a globally optimal coupling μ under the same
conditions as the dense algorithm variant.

The proof is rather simple and thus for lack of space will be postponed to a more
thorough article on the subject. It hinges on the fact, that elements in the list
Π(x), Eq. (11), that appear beyond position m (which determines the value of
α′, see (12)), do not influence the process of the algorithm.
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It should be noted, that this modification preserves the parallel structure of
the algorithm. Bidding and assignment work as before and the tree structure
of the successive hierarchical consistency checks allows for distribution of the
consistency evaluation onto multiple processors.

A Hierarchical Multiscale Approach to Optimal Transport. The hybrid
variant will give a globally optimal coupling μ for valid initializations of N̂
and usually require far less queries than a näıve dense algorithm, if the initial
N̂ is chosen well and c is ‘sufficiently regular’ within the partition cells. For
specific problems one may devise good heuristics for such an initial guess. Now
we want to propose a generic scheme, that works in principle for any problem.
Its practicality will be evaluated in Sect. 6. Again, to save space, we can only so
much as give a sketch and must omit proofs for now.

For an optimal transport problem the coarsened problem at generation n is
defined by

inf
∑

(a,b)∈An×Bn

ĉ(a, b) μ̂(a, b) subject to

μ̂ ≥ 0,
∑
b

μ̂(a, b) =
∑
x∈a

μX(x),
∑
a

μ̂(a, b) =
∑
y∈b

μY (y) . (16)

Denote by Dn its optimal value.
Let Δcn be an upper bound on the variation of c within one partition cell of

An×Bn, i.e. ĉ(a, b) ≤ c(x, y) ≤ ĉ(a, b)+Δcn for (a, b) ∈ An×Bn, (x, y) ∈ a× b.
In addition, any feasible μ̂ of the coarsened problem at some generation n does
induce feasible couplings on lower generations. Let μ̂′ be some feasible coupling
of generation n − 1 induced by an optimizer μ̂ of generation n, then one can
easily proof that

Dn ≤ Dn−1 ≤
∑

(a,b)∈An−1×Bn−1

ĉ(a, b) μ̂′(a, b) ≤ Dn +Δcn ·M ,

where M =
∑

x μX(x). Thus, solving the problem of generation n not only
provides a bounded interval for Dn−1 but also gives a feasible candidate for the
problem of generation n− 1 which is at most suboptimal by a margin Δcn ·M .

Since c is supposed to be regular in some sense and partitions are to be chosen
according to the closeness structure on X and Y , we can assume, that Δcn is
usually small compared to the fluctuations of c throughout the whole coupling
space and that, thus, this bound is of actual practical value.

Also, it seems natural, to pick the support of μ̂′ as initial guess for N̂ , when
solving the refined problem with the hybrid algorithm. Obviously the restriction
to N̂ keeps the problem feasible, since it allows μ̂′.

Thus, in short, instead of directly solving the problem at generation 0, we
start at some coarser scale n, where the problem is small enough for direct dense
solution. Then we use the obtained minimizers to recursively solve the problem
at finer scales, each time producing an initial guess for the sparse support subset.
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5 Complexity Analysis

We will first give the worst case complexity analysis of the auction algorithm for
the dense LAP with N = X × Y , |X | = |Y |. It can be considered a special case
of a class of min-cost flow algorithms presented in [3]. From [3, Lemma 5] we
can see that the number of bids submitted per source is O(|X | · C) where

C = max
x,y

c(x, y)−min
x,y

c(x, y) .

From the description in Sect. 3 we can see that cost of one bid for a given source
is of order O(|X |), i.e. scanning every possible assignment partner once. This
already incorporates the costs of bid acceptance at one sink, since at most one
bid is accepted per submitted bid. Hence the total worst case complexity of the
algorithm is O(|X |3 · C).

The extension to the sparse/dense hybrid variant requires several additional
steps, of which we must estimate the worst case costs. In a worst case scenario any
possible link will be added to N̂ , i.e. N̂ = X×Y , as in the full problem. Let p be
an upper bound on the number of elements in one partition cell at any generation
of the hierarchical partitions and let g be the number of generations. Then per
bid submission at most O(g) steps are required to compute the extension α̂′ and
at most O(p · g) per reception to update β̂. There will be of the order O(|B|)
hierarchical constraints to be tested per bid. Thus for one bid we get costs of
the order O(|X |+ g · (p+1)+ |B|), resulting in a total worst case complexity of
O
(
|X |2 ·C ·(|X |+g·(p+1)+g·|B|)

)
. In the worst case, after the consistency phase,

the bidding phase needs to be rerun completely. However, this only amounts to
a constant factor 2 in the number of steps.

If the hierarchical partitions satisfy a relation like |Bn+1| ≤ |Bn| · q for some

q ∈]0, 1[ then |B| ≤
∑g−1

k=0 |X |qk < |X |/(1 − q). For octrees one has for example
q = 1/8. Also, usually g, p & |X |, for example p ≈ |An+1|/|An| ≈ 1/q (= 8 for
octrees) and g = O

(
log(|X |/|Ag−1|)/ log(1/q)

)
whereAg−1 would be the coarsest

generation of the hierarchical partition. Thus, the complexity of the hybrid vari-
ant is usually dominated by the last term, which yields O

(
|X |3 · C · g/(1 − q)

)
.

Hence, the overhead scales with a constant factor (1− q)−1, depending on the hi-
erarchy structure, and a term logarithmic in |X | which accounts for the hierarchy
resolution.

In principle the algorithm presented in [3] can also be used to solve the general
optimal transport problem, resulting in a similar complexity bound. The variant
referred to in Sect. 3 has a much higher worst case complexity but tends to
perform faster in practice due to increased resistance to a phenomenon dubbed
price haggling [3]. This means that the additional steps required by our hybrid
variant are of little significance in the worst case, yet are very useful in the
‘typical’ case, as demonstrated in the next section.

In practice runtime of the auction algorithms does exhibit a strong sensitivity
to C. This can be remedied by a method called ε-scaling [3] which can be shown
to replace the factor C by log(|X | · C) in the complexity estimates. Also, this
method is compatible with our presented additions.
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6 Experiments

In the previous section we have considered the theoretical worst case complexity
of the auction algorithm and its hybrid extension. It is however very hard to
obtain a theoretical estimate for the ‘typical’ complexity. Thus, for demonstrating
the benefit of the augmented algorithmwe need to rely on numerical experiments.

Implementation Details. For evaluation we implemented the auction algo-
rithm in c++ with sparse data structures. The hybrid variant is based on the
same implementation, extended by the consistency phase, to obtain a meaning-
ful performance comparison. All mass distributions were picked to be integer and
the cost functions were truncated to a fine discrete grid of equidistant values.
To get practically relevant solving times, we used a very rudimentary form of
ε-scaling, in which the problem is repeatedly solved for decreasing values of ε
until global optimality can be guaranteed.

Performance Measures. Computation time is naturally the measure of per-
formance that matters most in the end. To gain additional insight we also con-
sider the number of queries reguired to construct the list Π(x), (11), the addi-
tional number of queries in the hierarchical consistency phase and the degree of
sparsity of N̂ in the hybrid method.

Experimental Scenarios. We consider a variety of problem scenarios for eval-
uation: (a) P2H: point clouds, each uniformly sampled from the 2D unit square,
squared Euclidean distance as cost, (b) P3H: same as P2H, but points sampled
from 3D unit cube, (c) P2H-P1: same as P2H but with non-squared Euclidean
distance as cost, (d) P2I: same as P2H but with inhomogeneous sampling densi-
ties and (e) grid: smooth 2D mass distribution, approximated by a discrete grid,
cost given by squared Euclidean distance, (f) mesh: mass distributions on points
sampled from the surface of a 3D mesh, geodesic distance (within mesh surface)
as cost function. In all experiments quadtrees (resp. octrees in 3D) were used as
hierarchical structures.

Last, we test an additional scenario, (g) P2H-LB: same as P2H, but instead
of computing ĉ by explicit minimization as in (14), we use lower bounds directly
obtained from the quadtree structure. This demonstrates that the method can
also be applied to avoid explicit computation of all pairwise costs, which for
more complicated problems might be a costly task in itself.

Results. A summary of the numerical results is given in Table 1. The hybrid
variant is significantly faster than the regular algorithm for all presented sce-
narios. This is due to a drastic decrease in the number of necessary constraint
violation queries. In particular one can see (Fig. 1) that the gain increases with
growing problem size. For N = 6000 (i.e. for 3.6 · 107 possible assignment pairs)
the ratio of runtimes ranges from 4.6 to 48. In the hybrid variant, for most sce-
narios at the finest scale less than one percent of potential assignments was added
to N̂ . Only for mesh it was slightly more (≈ 4%), owed to the more complicated
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Table 1. Summary of numerical experiments for the scenarios introduced in Sect.
6 and various problem sizes. N gives the (in all experiments equal) cardinality of
X and Y . For each scenario the first row gives the results of the dense algorithm,
where ‘queries’ gives the number of pairs checked for creating the lists Π(x), (11),
throughout the algorithm. The second row gives the results of the hybrid algorithm,
only at the finest scale. Here ‘queries’ gives the number of checks for creating all Π(x)
plus the number of hierarchical consistency checks. The third row gives the results for
the hybrid algorithm summed over all scales, i.e. for solving the whole problem from
scratch. All results are averaged over multiple instances.

In all scenarios the number of queries is reduced significantly by the hybrid variant,
resulting in a corresponding runtime decrease. For some scenarios the runtime ratio
full/hybrid slightly decreased from N = 4000 to N = 6000. We attribute this to the
changing relation of problem size to hierarchy depth, the effects of which have yet to
be more carefully examined. We expect the ratio to increase again for N > 6000.

N 500 1000 2000 4000 6000 500 1000 2000 4000 6000

time queries

/s /10s /102s /103s /103s /107 /107 /108 /109 /1010

2.81 2.00 1.93 1.98 6.54 2.31 12.00 6.63 4.06 1.10

P2H 1.06 0.53 0.31 0.20 0.73 0.41 1.51 0.40 0.15 0.04

1.38 0.59 0.38 0.21 0.74 0.57 1.79 0.57 0.18 0.04

1.16 1.07 0.97 6.54 7.52 3.88 1.93 0.52

P3H 0.31 0.20 0.17 0.99 1.93 0.63 0.20 0.04

0.42 0.34 0.24 1.41 2.90 1.30 0.34 0.07

3.04 1.98 1.58 1.00 3.58 2.49 12.30 6.09 2.63 0.67

P2H-P1 1.05 0.49 0.24 0.10 0.31 0.53 2.30 0.61 0.17 0.05

1.34 0.54 0.29 0.11 0.32 0.69 2.54 0.77 0.19 0.05

3.64 2.92 2.14 2.35 7.68 2.55 13.20 7.02 4.51 1.21

P2I 1.32 0.67 0.38 0.34 1.14 0.46 2.22 0.43 0.21 0.03

1.69 0.73 0.45 0.35 1.33 0.62 2.49 0.60 0.24 0.04

54.70 19.60 19.30 5.92 13.20 56.00 185.00 162.00 46.90 9.91

grid 9.46 1.67 0.94 0.15 0.26 22.90 22.90 26.70 2.00 0.46

9.53 1.76 0.95 0.16 0.27 23.00 23.70 26.80 2.15 0.47

21.30 13.10 9.97 N/A 150.00 86.90 49.60 N/A

mesh 2.95 1.55 0.88 10.9 45.40 17.60 9.78 8.52

3.18 1.84 0.93 11.1 48.40 22.20 10.60 8.70

2.75 1.82 2.00 1.93 9.04 2.26 11.60 6.74 4.07 1.15

P2H-LB 1.10 0.52 0.35 0.24 1.35 0.41 1.63 0.46 0.20 0.03

1.57 0.57 0.38 0.25 1.41 0.65 1.97 0.62 0.23 0.04
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cost function. Also in the scenario P2D-LB the hybrid variant clearly outper-
forms the regular algorithm, while at the same time potentially saving explicit
assignment cost computation. Thus, for the presented scenarios the multiscale
scheme obviously works as intended.

7 Conclusion

As demonstrated in the last Section, the presented extension of the auction algo-
rithm clearly outperforms the regular variant on all presented test scenarios. The
observed gain in computation time grows with problem size. Compared to PDE
approaches for OT problems our method is much more flexible:X and Y need not
be regular grids on �n and the cost can be chosen freely, as long as a certain reg-
ularity is retained. Due to the very limited space we could only give a very brief
sketch on the theoretical properties of the algorithm, i.e. its worst case complex-
ity, the claim that it reliably finds the global optimum and the relation between
the different scales of the problem. Proofs for these claims will be presented in a
more detailed future publication. It also remains to be examined more carefully
how the hierarchical structure we proposed interacts with the ε-scaling scheme or
whether under further assumptions on the cost function better theoretical com-
plexity bounds can be obtained. Yet, already at this stage of research the potential
of the extension is evident in all tested scenarios.
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10. Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency, Algorithms
and Combinatorics, vol. 24. Springer (2003)

11. Shirdhonkar, S., Jacobs, D.W.: Approximate earth mover’s distance in linear time.
In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2008
(2008)

12. Villani, C.: Optimal Transport: Old and New. Springer (2009)
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Abstract. Segmentation is one of the most discussed problems in im-
age processing. Many various methods for image segmentation exist. The
mean-shift method is one of them and it was widely developed in re-
cent years and it is still being developed. In this paper, we propose a
new method called Layered Mean Shift that uses multiple mean-shift
segmentations with different bandwidths stacked for elimination of the
over-segmentation problem and finding the most appropriate segment
boundaries. This method effectively reduces the need for the use of large
kernels in the mean-shift method. Therefore, it also significantly reduces
the computational complexity.

Keywords: layer, segmentation, image, mean shift, over-segmentation.

1 Introduction

Segmentation can be solved by many various algorithms. They differ in speed
and accuracy. Both goals are often contradictory, very fast methods are often
not very accurate and vice versa. Mean shift (MS) is one of the most popular
methods in recent years, although it was firstly presented in 1975 [1]. Nowadays,
this method is known as Blurring MS (BMS) and it was deeply discussed in
2006 [2]. The mean-shift methods belong to the more precise methods giving
very nice filtration results. Many of them give nice segmentation results too.
The problem of MS is in a high computational complexity, although many faster
variants were presented in few recent years. The high computational complexity
is most obvious in general mean-shift method usually denoted as MS. It was
presented in 1995 [3] and deeply studied in [4], [5], and [6].

Mean shift is an iterative method that seeks for a position with the locally
highest density of data points. During computation, a kernel density estimate is
computed for every data point. Because we are segmenting images, the pixels in
images are used as these data points in our case. Each pixel is shifted according
to the density estimate and computation is carried out until the convergence
when the shift is very small or zero. Two datasets are used in general MS. We
distinguish between an original and a shifted data. In the first iteration, both
are the same. In the following iterations, we compute mean shift for the already
shifted pixel, but the neighboring pixels in the kernel placed on the computed
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pixel are taken from the original dataset that is never changed. BMS uses a
slightly different approach because only one dataset is used. After each iteration,
the output from the previous iteration is used as an input dataset for the next
one. Therefore, the dataset is slightly blurred after each iteration (the computed
pixel is not taken from the original dataset like in MS but it is taken from the
slightly blurred dataset) and convergence is faster. All the pixels that converged
to the same position, create one segment in the processed image.

The speed of all mean-shift methods is highly dependent on the size of kernel
(the number of pixels that are needed to compute the kernel density estimate)
and the number of iterations needed to achieve the convergence. It was proved
that MS has a higher number of iterations per pixel than BMS [2]. In 2009,
Evolving MS (EMS) was presented in [7] and [8]. It promises even lower number
of iterations per pixel but each iteration requires a lot of overheads. Minimizing
of the kernel sizes is mostly utilized in the hierarchical approaches [9], [10] and
[11], where a small kernel is used in the first stage of these algorithms and then
larger kernels are used in the following stages where the input is the computed
segmentation from the previous stage. In this paper, we present a new Layered
Mean Shift method family that is based on minimization of kernel sizes in order
to achieve a faster segmentation. Our method also improves the detection of
significant boundaries of objects and minimizes the over-segmentation problem.

In the next section, the basics of Mean Shift are going to be described. Section
3 is devoted to our new method called Layered Mean Shift. We use layered
versions for several mean-shift methods, but for explanation, LxMS abbreviation
for an unspecified layered mean-shift method will be used generally.

2 Mean Shift

Let X = {xi}ni=1 ⊂ Rd be a dataset of n points in the d-dimensional space. The
kernel density estimator is given by the equation

p(x) =
1

nσd

n∑
i=1

K

(
x− xi
σ

)
, (1)

where σ is a bandwidth parameter limiting the size of kernel function K(x). In
some literature, denomination the bandwidth parameter as h is also used. We can
distinguish between two types of bandwidths in images. The spatial bandwidth
σs is the first one and limits the neighbourhood of the processed pixel in x and y
axis. The range bandwidth is the second one and it is denoted by σr . It indicates
the maximal luminance difference of the sample that can fall inside the kernel.
We can have more bandwidths in colour images, for example, three bandwidths
for each colour channel. In our work, we are focused on the greyscale images and
only one σr is needed. The fraction before the sum in Eq. (1) is a normalization
constant. The processed pixel is denoted as x and all pixels in the neighbourhood
(kernel) are labeled as xi.

Many types of kernel functions exist. The Gaussian is the most popular and
often gives the nicest results, but it has also few drawbacks. It is not trun-
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cated kernel and covers the whole dataset. The bandwidth is not limiting the
size of kernel but only the contribution of the samples. For computation of one
mean-shift vector, we need to compute the kernel function with all image pix-
els. Therefore, the Gaussian kernel is very slow and inherently not appropriate
for using it in our method that limits the size of kernel. Of course, there is a
possibility of truncation of the Gaussian kernel in a defined distance.

In our approach, we use another very famous kernel, the Epanechnikov kernel.
It is truncated and the σ parameters limits the contribution of the pixels in
the distance of σ. All pixels that are out of the hypersphere given by these
parameters, are not involved in computation and the algorithm can be much
faster, especially with smaller values of σ. The Epanechnikov kernel is given by
the equation

K(x) =

{
1− x2, if ‖x‖ ≤ 1

0, otherwise
. (2)

All inferences of kernel estimates and their relationship to mean-shift methods
are deeply described in [4] and [6]. Therefore, we do not deal with them deeply
in this paper. On the other hand, the mean-shift vector should be mentioned at
least. Its equation is given by

mσ,k(x) =

∑n
i−1 xik

(∥∥x−xi

σ

∥∥2
)

∑n
i−1 k

(∥∥x−xi

σ

∥∥2
) − x , (3)

where the function k(x) is a derivative of the kernel K(x). The first term on
the right-hand side is a new position of the processed pixel x (estimate of the
position with the highest density of data points), the second term is the former
position. The difference mσ,k(x) between them is called the mean-shift vector. In
this case, we present the equation for Blurring MS that is faster than general MS.
It uses the modified dataset in each iteration and its results are more regular.
General experiments with our LxMS method will be carried out with the LBMS
version of it.

3 Layered Mean Shift Methods

We present a new Layered Mean Shift (LxMS) that is aimed to the reduction
of computational time as well as to reduction of the over-segmentation problem.
It is well known that the size of segments is highly dependent on the value of
σ parameter. The larger the σ parameter is, the larger are the segments. If we
expect large segments, we are forced to use larger σs. This leads to slower com-
putation because of O(σs

2) complexity for evaluation of one mean-shift vector
for one pixel. Our LxMS method solves this speed and over-segmentation prob-
lem. LxMS does not suffer from over-segmentation even if it is used with small
bandwidths.
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The main idea of LxMS is in execution of multiple mean-shift segmentations
with different kernel sizes that are not very large in any of executed segmenta-
tions. General MS, Blurring MS, and Evolving MS can be used as a basic method
that will be executed repeatedly. Layered mean-shift method using BMS segmen-
tation as its base can be called LBMS (Layered Blurring Mean Shift), the same
applies to MS in HMS method and EMS in HEMS method. As we already said,
presented results that explain the layered approach use BMS as its base in all
cases (LBMS method).

We use m segmentations, each with a different spatial bandwidth. Then these
segmentations are overlaid. Important edges in the image are highlighted in
all segmentations, whereas over-segmentation artifacts are positioned in various
locations in each segmentation. If we stack these segmentations, these artifacts
are almost invisible (they are placed only once in some area) and only important
edges remain (each segmentation produces the same border in the same place).
For example, we can execute three different mean-shift segmentations, the first
one with σs = 3, second one with σs = 4, and third one with σs = 5. We use the
same σr for all segmentations but it is not necessary.

(a) original image (b) σs = 5 (c) σs = 7 (d) σs = 9.8

Fig. 1. Phases of the LBMS method. The original image is in the first column. The
images with different bandwidths are shown in next three figures.

Three different segmentations are visible in Fig. 1. Each was computed with
a different spatial bandwidth and, therefore, created a different segmentation.
In all three cases, the boundaries of church are clearly evident. The number of
stacked segmentations is not limited, of course.

Fig. 2(a) shows that even very small searching windows (kernels) with σs < 10
in the 481×321 pixel image completely reduces the problem of over-segmentation.
There is no need to use spatial bandwidth with the size of hundreds of pixels.
The better speed is achieved, because we carry out a small number of fast seg-
mentations instead of one very slow segmentation.

It is obvious that only the image of stacked segmentations (Fig. 2(a)) is use-
less and it has to be processed to create one useful result. In Fig. 2(b), the
result of merging the segments is visible. Many approaches are possible. If we
want only edges, we can use simple edge following algorithms. If we need a real
segmentation, another approach should be used. In LxMS, we use our own seg-
ment merging algorithm. We pick all pairs of pixels from the image and sum how
many times they were in the same segment from m executed segmentations. The
threshold t lower than the number of stacked segmentations is set. If the sum
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(a) Stacked image from three seg-
mentations

(b) Result after basic processing

Fig. 2. Stacked segmentation and result of merging the segments

is higher or equal to the threshold, both pixels are inserted into one segment.
For example, we have three segmentations and we can set the threshold value to
2. If two random pixels were in the same segment at least in two of three seg-
mentations, they belong to one segment. It can be clearly seen in Fig. 3. After
carrying out this proces, we should remove very small segments; see the small
spots in 2(b).

(a) σ = 5 (b) σ = 7 (c) σ = 9.8

Fig. 3. Merging of segments. For example, if two random pixels are twice in one
segment from three possible segmentations (Fig. 3(a) and Fig. 3(c)), they are given
the same segment label. The number of segmentations and necessary number of the
same assignments to segments is adjustable. It does not need to be 3 and 2 like in this
example.

Intuitively, we should try to find the pairs between all pixels in the whole
image. It leads to high complexity of O(n2) that is the same as complexity of MS
and BMS algorithm. We observed that approx. 20− 40% of computational time
is spent on this merging the segments with such a naive approach. It is obvious
that there is almost no possibility to obtain two pixels in one segmentation if
their spatial distance is larger than the spatial bandwidth (if they are not covered
by the kernel, they will be hardly assigned to one attractor). Therefore, we do
not need to check all pixels with all pixels in the whole image, but only with
their close neighbourhood given by σ parameter. Our experiments showed that
the results were the same with such an acceleration and complexity dropped to
O(σs

2).
If we limit the maximal distance for merging more, we prevent the merging

of the points that are divided by an another segment spatially between them.
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(a) n = σ (b) n = 3 (c) n = 2 (d) n = 1

Fig. 4. Segmentation merging with limiting the neigbourhood for searching pairs of
pixels belonging to the same segment. Parameter n is the radius of this neigbourhood.

It should not be acceptable in statistical usage of MS method but sometimes
it can be useful in digital images. This method is sort of a trade off. Some
details are suppressed (segments have more regular shapes) but also does not
connect corresponding parts of segments which can divide one object to more
pieces and also can make additional artifacts. Therefore, we recommend to use
n = σ. In Fig. 4, reduction of small segments with the size smaller than 50
pixels was used. These small segments emerge in the places where boundaries
of true segments differ very slightly in different segmentations. These pixels are
not assigned to any segment and create their own small segment. Such small
segments are assigned to a neighboring segment.

Algorithm 1. Layered Mean Shift

Input: Dataset X, spatial bandwidth σs, range (luminance) bandwidth σr, bandwidth
multiplier l, number of segmentations m, threshold t.

Output: A clustered dataset Xs

1: Set index i = 0
2: repeat
3: Evaluate MS (or BMS) segmentation Xi with bandwidths σs and σr, where i

is a index of segmentation
4: Multiplicate σs by l and increase index i by 1
5: until index i = m
6: for all pixels xj do
7: for all pixels xk in circle neighbourhood of pixel xj with radius of σs do
8: Sum the number of segmentations Xi where pixels xj and xk belong to

the same segmentation
9: If the sum is equal or higher than a threshold t, both pixels xj and xk

are assigned to the same segment
10: end for
11: end for
12: Eliminate segments with size smaller than a preset threshold (fraction of image

area).
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4 Experiments

In this section, the experiments with our algorithm are provided. We tested
LBMS algorithm in comparison with the original BMS and we studied the seg-
mentation quality as well as the speed of algorithm. Also, the hierarchical version
of BMS (called HBMS) was tried. We use removal of small segments with the
size smaller than a preset threshold (for example 1/5000 of image area). The
bandwidth range and the number of stacked segmentations are mentioned for
each test. We use images from Berkeley Image Dataset [12].

(a) original image (b) 4; 1.4; 3-2/24 (c) 4; 1.25; 4-3/24 (d) 4; 1.4; 4-3/24

(e) original image (f) 5; 1.4; 3-2/24 (g) 5; 1.25; 4-3/24 (h) 5; 1.4; 4-3/24

Fig. 5. Comparison of LBMS segmentations. The range bandwidth σr is the number
after the slash. ”The first number stands for the value of σs in the first segmentation,
the second number is the multiplier. The notation 3−2 says that 3 segmentations were
processed and pixels that were 2 or more times in the same segmentation have been
merged.

In Fig. 5, we see that different parameters lead to slightly different segmen-
tations but we can not fully determine general influence of parameters to the
segmentation quality. Of course, the larger number of processed segmentations
causes a higher computational time. The higher values of multiplier increase
computational time too because of higher values of σs parameters in the follow-
ing segmentations. A small difference of spatial bandwidths between the stacked
segmentations causes the increase of the number of segments. The same effect
can be seen if we increase the number of stacked segmentations (of course, it can
be lowered by lowering the threshold). We can say that the higher number of
stacked segmentations often produces the resultant segmentation with a higher
quality of details (see the incomplete stones in Fig. 5(f) and better result in Fig.
5(h)) but also with slightly more visible over-segmentation.

We can see several examples in Fig. 6 and processing times in Table 2. It is ob-
vious that LBMS does not suffer from over-segmentation even if the kernel sizes
were below σs = 10. Both BMS and HBMS used σs = 20, but there is a visible
over-segmenation in both results. If we want to reduce this effect, we have to
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(a) original image (b) BMS 20/24 (c) HBMS 4,20/24 (d) LBMS
4; 1.4; 3-2/24

(e) original image (f) BMS 20/24 (g) HBMS 4,20/24 (h) LBMS
4; 1.4; 3-2/24

(i) original image (j) BMS 20/20 (k) HBMS 4,20/20 (l) LBMS
4; 1.35; 4-3/20

(m) original image (n) BMS 20/24 (o) HBMS 4,20/24 (p) LBMS
4; 1.35; 3-2/24

(q) original image (r) BMS 20/24 (s) HBMS 4,20/24 (t) LBMS
4; 1.3; 5-4/24

Fig. 6. Range bandwidth σr is the number after the slash. In BMS, the number
before the slash is the spatial bandwidth σs. In HBMS, the numbers 4,20 mean that
the first stage used σs = 4 and the second one used σs = 20. The first number in the
LBMS notation is the value σs in the first segmentation and the second number is the
bandwidth multiplier. The notation 3 − 2 says that 3 segmentations were processed
and pixels that were 2 or more times in the same segmentation have been grouped.
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Table 1. Comparison of the numbers of segments and speed depending on parameters

image bandwidth σs multiplier segmentations threshold time segments

mountains 4 1.4 3 2 56.2 s 85

mountains 4 1.25 4 3 70.6 s 178

mountains 4 1.4 4 3 108.5 s 119

stones 5 1.4 3 2 87.2 s 90

stones 5 1.25 4 3 117.6 s 150

stones 5 1.4 4 3 171.6 s 121

Table 2. Comparison of the numbers of segments (seg) and the computational time
(t[s]) depending on the algorithm

BMS HBMS LBMS

image t[s] seg t[s] seg t[s] seg

church 158.1 s 274 9.6 s 253 58.7 s 114

mountains 158.1 s 238 10.1 s 262 56.2 s 85

stones 155.9 s 198 9.7 s 185 106.3 s 149

bird 150.6 s 260 10.4 s 265 59.8 s 103

airplane 185.0 s 145 9.4 s 146 168.6 s 27

enlarge the kernel size. That would lead to enormous increase of computational
time (quadratically). The segmentation is subjectively visually very nice and the
computational times are much better than in BMS. On the other hand, the hier-
archical approaches are still much faster but they suffer from over-segmentation.
In many images, only 3 stacked segmentations are sufficient but a higher num-
ber of segmentations could be useful in images with more noticeable textures.
Enlarging the number of executed segmentations would cause the increase of
computational time. The more simple the images are, the smaller number of
segmentations and smaller kernel size has to be used. Small bandwidths are of-
ten sufficient because they also produce different segmentation boundaries in flat
areas and the same boundaries on the true edges of detected objects.

In Fig. 7, you can see five images segmented by various mean-shift methods.
We used MS, BMS, EMS, their hierarchical versions HMS, HBMS, HEMS and
their layered versions LMS, LBMS and LEMS. The first image is a synthetic
image with smooth background gradient and smooth shapes. MS had very big
problem to segment it because of zero gradient of underlying structure. The data
point can not move and image is segmented only around the edges, where the
non-zero gradient of density exists. The second image is the noisier version of the
first image. Therefore, it can be segmented by MS. The following three images are
the real-life images from the Berkeley Image Database [12]. One stage algorithms
(MS, BMS and EMS) used the spatial bandwidth σs = 25. All of the hierarchical
approaches were used in their 3-stage versions using bandwidths of σs1 = 3.5,
σs2 = 12 and σs3 = 50. The layered version used two possible configurations. The
first one is 3− 2, where 3 stages were processed and the pixels were merged into
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Fig. 7. Rows 1: the original image; 2/3/4: MS/BMS/EMS (spatial bandiwdth σs =
25); 5/6/7: HMS/HBMS/HEMS (σs = 3.5/12/50); 8/10/12: LMS/LBMS/LEMS (3-2
stages, σs = 4, multiplier of the bandwidth mul = 1.3); 9/11/13: LMS/LBMS/LEMS
(4-3 stages, σs = 4, mul = 1.3); the notation is similar to Fig. 6.
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a larger segment if they both were at least twice in the same segment. The last
configuration was analogically 4 − 3. It is obvious that LMS is unusable as the
original MS gives an unstable result that can not be easily merged. LBMS and
LEMS usually give a stable result around the most visible edges and, therefore,
the layered approach is very beneficial here. In our additional tests, it has been
shown that LMS needs at least σs1 = 9 for satisfactory result.

Although the largest spatial bandwidth was 6.7 in 3 − 2 configuration or 8.7
in 4− 3 configuration, it definitely outperforms all other algorithms in the area
of the over-segmentation problem. We can enlarge the spatial bandwidth in the
classical and hierarchical algorithms to decrease the over-segmentation but it will
lead to much longer computational time and potentially inaccurate results (the
large σs will cover the large image or even the whole image and the spatial term
will be unimportant - all the pixels with the same brightness in the image will be
grouped even if they are separated by another segments). Such a situation does
not happen in layered algorithms because of small spatial merging bandwidths.

Table 3. Comparison of the speed (t[s]) depending on algorithm

synth. image1 synth. image 2 airplane mountains savana

MS 2185.35 s 2014.93 s 2112.62 s 3348.3 s 2999.28 s

BMS 82.29 s 94.34 s 107.2 s 80.58 s 103.35 s

EMS 1061.62 s 1129.69 s 629.86 s 543.26 s 753.63 s

HMS3 67.9 s 20.18 s 23.71 s 24.81 s 24.29 s

HBMS3 7.56 s 7.63 s 6.63 s 6.96 s 6.84 s

HEMS3 27.14 s 33.94 s 16.63 s 14.41 s 18.86 s

LMS3/2 318.67 s 123.08 s 282.11 s 345.74 s 222.02 s

LBMS3/2 21.21 s 19.43 s 24.08 s 23.22 s 21.62 s

LEMS3/2 79.41 s 75.21 s 70.12 s 72.05 s 73.28 s

LMS4/3 603.13 s 280.99 s 538.54 s 695.87 s 442.88 s

LBMS4/3 36.75 s 36.22 s 40.52 s 37.88 s 34.78 s

LEMS4/3 385.45 s 318.73 s 125.6 s 152.81 s 127.33 s

Table 3 shows the speed of all the algorithms. The hierarchical approaches
are the fastest but they still suffer from the over-segmentation problem. The
layered versions are 2.5 to 4-times slower (with the exception of LEMS4-3 in the
synthetic images) with no over-segmentation problem. There rises a question
whether this trade off is acceptable or not.

5 Conclusion

The layered mean-shift methods showed that they are relatively fast methods
that primarily reduce the over-segmentation problem even with very small kernel
sizes. They are very well suited for images with not very noticeable textures. In
other cases, the number of stacked segmentations should be enlarged to achieve
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a proper segmentation. Mean-shift, blurring mean-shift and evolving mean-shift
approaches can be embedded into the LxMS method but it has been shown that
general MS is not a very good choice. In LMS case, it needs much larger initial
spatial bandwidth. The next goal is to improve the grouping of pixels in the
stacked segmentations to achieve smaller a sensitivity to stronger textures.
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/ 185 of VŠB-TU of Ostrava, FEECS.

References

1. Fukunaga, K., Hostetler, L.: The estimation of the gradient of a density function,
with applications in pattern recognition. IEEE Transactions on Information The-
ory 21, 32–40 (1975)
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Abstract. We propose a novel method to obtain a part of an optimal non-relaxed
integral solution for energy minimization problems with Potts interactions, known
also as the minimal partition problem. The method empirically outperforms pre-
vious approaches like MQPBO and Kovtun’s method in most of our test instances
and especially in hard ones. As a starting point our approach uses the solution of
a commonly accepted convex relaxation of the problem. This solution is then it-
eratively pruned until our criterion for partial optimality is satisfied. Due to its
generality our method can employ any solver for the considered relaxed problem.

1 Introduction

1.1 Problem Formulation

Continuous Model. Consider the minimal partition problem

min
u∈BV (Ω ;{1,...,k})

ˆ
Ω
|Du|+W(x,u(x))dx . (1.1)

This problem and approximation algorithms for it are discussed in [12] for the discrete
case, and in [7] and [15] for the continuous case.

Minimizing discretizations of the above problem is NP-hard for n≥ 3, therefore it is
common to resort to a convex relaxation. Introduce

ui(x)≥ 0 , i = 1 . . . ,k ,
∑k

i=1 ui(x) = 1 , x ∈Ω ,
(1.2)

or equivalently u(x) ∈ Δk, x ∈Ω , and minimize (1.1) over (1.2). In general a minimizer
u∗ of the relaxed problem will not be binary anymore, but for some x ∈ Ω it may
still hold true. A natural question is: Is there a minimizer ũ of the original NP-hard
problem (1.1) and such a subset A⊂ Ω , that ũ(x) = u∗(x) for x ∈ A? In other words, is
u∗ partially optimal or persistent on some set A? How can we determine such a set A?

Finding persistency is not only theoretically interesting, but it also allows in many
cases to solve the problem w.r.t. the remaining non-persistent variables with other meth-
ods as done in [3] and thereby to obtain its complete globally optimal solution. Moreover,
solving the problem with respect to the non-persistent variables is simplified by the fact,
that the latter are often weakly connected or/and form small connected components.

A. Kuijper et al. (Eds.): SSVM 2013, LNCS 7893, pp. 477–488, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Discrete Model. For solving problem (1.1) in practice, one must discretize it. There are
many possible ways to do so, see e.g. [7] or [15]. We consider a discretization, which
introduces anisotropies, but can be stated for general graphs G = (Ω ,E):

J(u) = ∑
a∈Ω
〈c(a),u(a)〉+ ∑

(a,b)∈E

k

∑
l=1

αa,b|ul(a)− ul(b)| (1.3)

with αa,b > 0, (a,b) ∈ E , c(a) ∈ Rk and u(a) ∈ {0,1}k, a ∈ Ω , satisfies addition-
ally (1.2). The discrete problem (1.3) is also known as a Potts model.

Note that for a grid graph, uniform weights αa,b and c being a local average of W , this
is a particular discretization of the minimal partition problem (1.1). One can systemat-
ically approximate the minimal partition problem with graphs of higher connectivity
with the method presented in [6], while still solving a problem of the form (1.3).

1.2 Related Work and Contribution

The task of finding persistent variables in labeling problems has been studied and many
approaches have been proposed [5,9,10,13,14,16,17,20]. To our best knowledge the ear-
liest paper concerning itself with persistency is [16], which states a persistency criterion
for the stable set problem and verifies it for every solution of a certain relaxation, which
the roof duality method in [5] uses and which is also the basis for the well known QPBO-
algorithm [5,17]. Roof Duality has been extended for Multi-Label problems in [13,20]
and for higher order binary problems in [10]. A different approach, specialized for Potts
models, is pursued in [14], where possible labelings are tested for persistency.

MQPBO. In [13] the authors transform the multilabeling problem into a quadratic bi-
nary problem. Their transformation is dependent upon choosing a label order and their
results are so as well. It is not known how to choose an optimal label ordering to obtain
the maximum number of persistent variables. For actually solving their problem they
use a relaxation which is an outer relaxation of the local polytope [18, Prop. 1]. One
can show that the relaxation we use is strictly tighter than theirs and our approach also
generalizes to tighter relaxations as well. Experimentally we are able to label a much
higher percentage of points persistently. In case of high regularization weights our ap-
proach can determine a substantially higher number of persistently labeled variables.
While the model [18] can solve more general interaction potentials, it needs significantly
more memory for the interaction terms. For the Potts model our approach consumes sub-
stantially less memory, if a suitable algorithm for solving the relaxation is used.

Kovtun’s Approach [14] consists in searching for partially optimal labelings by con-
structing auxiliary problems, solving these and testing for persistent variables. Each of
the auxiliary problems is however less tight than the relaxation we use. Also experi-
mentally, we could usually label more variables than this method.

1.3 Organization

We present

– a new persistency criterion for ensuring a labeling to be partially optimal, see Sec-
tion 2,
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– an algorithm for finding the provably biggest labeling, such that the persistency
criterion is satisfied, see Section 2,

– experimental validation of our approach and a comparison to existing methods and
new ways to use them together, see Section 3.

For the sake of clarity of presentation we have moved the proofs of all theoretical state-
ments to Section 5.

1.4 Notation

We reserve the variable k for the number of classes in problem (1.3) and denote by
ei = (0, . . . ,0,1,0, . . . ,0)) the ith basis vector of Rk with a 1 in its ith component. Let
Ek := {e1, . . . ,ek} contain the k unit basis vectors and denote by Δk = conv(Ek) its
convex hull. For notational convenience we introduce two labeling spaces. Let

D = {u : Ω → Ek} , (1.4a)

D′ = {u : Ω → Δk} . (1.4b)

The set D consists of all integral labelings and is nonconvex. The set D′ is its convex
hull, consists of functions defined by (1.2) and is used as feasible set in the relaxations.

The characteristic function of a set C is defined as δC(x) =

{
0 ,x ∈C
∞ ,x /∈C

.

For a subset of nodes A⊂Ω let the functional restricted to A be

JA(u) = ∑a∈A〈u(a),c(a)〉+∑(a,b)∈E ∑k
l=1 αa,b|ul(a)− ul(b)| . (1.5)

For A⊂Ω let its boundary be given by

∂A = {a ∈ A : ∃b ∈Ω\A s.t. (a,b) ∈ E} . (1.6)

Definition 1. For a boundary term w : ∂A→ Ek let the functional restricted to A with
the boundary term w be defined by

JA,w(u) = JA(u)+ ∑
(a,b)∈E:a∈A,b∈Ω\A

2αa,b〈w(a),u(a)〉 . (1.7)

2 Persistency for the Discretized Potts Problem

First we propose a criterion for partial optimality. Suppose we have found an integer
labeling on a set A, optimal for JA, which is not affected by what happens on its com-
plement Ω\A. Then it is immediate that the labeling is partially optimal. We propose
in the following Lemma 1 a sufficient condition for this situation. More specifically, a
binary minimizer of JA,w + δD′ , which conforms to the boundary conditions w on ∂A is
partially optimal.

Lemma 1. Let w : ∂A→ Ek be given. Suppose u∗ : A→ Ek is optimal for the functional

JA,w(u)+ δD(u) (2.1)

and u∗(a) = w(a) ∀a ∈ ∂A. Then there exists a labeling ũ : Ω → Ek which is optimal
for J(u)+ δD and such that ũ|A = u∗.
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Fig. 1. An exemplaric graph for the set-
ting of Lemma 1. The blue dashed line
encloses the set A, the green nodes with
the diagonal pattern have a boundary la-
beling w while the yellow node with the
crosshatch pattern is in the interior of A
and thus has no boundary labeling.

For computational purposes we must relax the functional JA,w + δD. Still the state-
ment of Lemma 1 essentially holds:

Corollary 1. Let w : ∂A→ Ek be given. Suppose the integral labeling u∗ : A→ Ek, is
optimal for the relaxed functional

JA,w(u)+ δD′ , (2.2)

and the boundary condition

u∗(a) = w(a), a ∈ ∂A , (2.3)

holds. Then there exists ũ : Ω → Ek optimal for J(u)+ δD such that ũ|A = u∗, i.e. u∗ is
partially optimal.

Corollary 1 forms the basis for Algorithm 1, which constructs a set of persistent vari-
ables. The algorithm is initialized with the whole set Ω and recursively shrinks it by
removing variables taking non-integral values or not conforming to the boundary con-
dition (2.3). The process stops, when there is an optimizer u∗ fulfilling the conditions
of Corollary 1 for the remaining set A∗.

Algorithm 1. Finding persistent variables

Data: G = (Ω ,E), c : Ω →Rk,
αa,b ∈ R+ : (a,b) ∈ E

Result: A∗ ⊂Ω , u∗ : A∗ → Ek

Initialize:
A0 = Ω ;
w̃0 = 0;
Choose a ũ0 ∈ argminu JA0,w̃0(u)+ δD′ ;
t = 1;

Solve the relaxed prob-
lem over Ω without
boundary conditions

while ũt /∈ D or ũt
|∂At �= w̃t do

Wt = {b ∈ ∂At−1 : ũt−1(b) �= w̃t−1(b)};
At = {a ∈ At−1 : ũt−1(a) ∈ Ek}\Wt ;
w̃t = ũt

|∂At ;

Choose a ũt ∈ argminu JAt ,w̃t (u)+ δD′ ;
t = t + 1;

Shrink the set At by
removing variables tak-
ing non-integral values
or not conforming to the
current boundary condi-
tion

end
A∗ = At ;
u∗ = ũt ;



Partial Optimality via Iterative Pruning for the Potts Model 481

In each iteration the set At shrinks. Since Ω is finite, the algorithm converges in at
most |Ω | steps. If the algorithm stops, then we have that

u∗ ∈ argminu JA∗,w + δD′ , (2.4)

w = u∗|∂A∗ and u∗ ∈ D. Hence u∗, w and A fulfill the conditions of Corollary 1, which
proves persistency. In what follows we will show, that under a mild technical assump-
tion Algorithm 1 is in some sense optimal, i.e. it delivers the greatest persistent set
conforming to Corollary 1.

Assumption 1. There is a unique solution of JAt ,wt + δD′ for each At and each wt :
∂At → Ek obtained during iterations of Algorithm 1.

Definition 2. A subset A⊂ Ω is the greatest persistent set for the functional J + δD′ , if
for all other sets A′ ⊂Ω fulfilling the conditions of Corollary 1, it follows that A′ ⊂ A.

Theorem 1. Under Assumption 1 Algorithm 1 returns the greatest persistent set A∗.

Remark 1. If Assumption 1 does not hold, then Algorithm 1 is not deterministic and the
obtained set A∗ is not necessarily the greatest persistent set. The simplest example of
such a situation occurs if the relaxation J+δD′ is tight, but has several integer solutions.
Any convex combination of these solutions will form a non-integral solution. However
this fact cannot be recognized by our method and hence these entries of the solution
will not be marked as persistent.

Remark 2. Algorithms similar to Algorithm 1 can be applied also to tighter relaxations,
e.g. when one includes cycle inequalities similar to [19]. All our results are indepen-
dent of the specific relaxation and the method one uses to optimize the relaxed prob-
lems (2.2). One can show that the persistent variables one obtains with a tighter relax-
ation are a superset of persistent variables one gets from a weaker relaxation.

At first glance it may seem that Algorithm 1 is not very efficient, due to the need to
compute optimal solutions to possibly many slightly differing problems in the iterations
of the while loop in Algorithm 1. The procedure is however significantly accelerated
with a warm start, i.e. initializing the algorithm with the variables from the previous
iteration. We discuss time issues in Section 3.

3 Experiments

We compare to the following methods:

– MQPBO: see section 1.2 and [13,18]. As in [13] we fix a label order before running
the MQPBO algorithm. The labels are ordered according to the strength of the
local data term. Note that contrary to our and Kovtun’s approach, MQPBO can also
detect persistency for labels which will not belong to any optimal solution.

– Kovtun: see section 1.2 and [14].
– KMQPBO: We first run Kovtun’s method and then we run MQPBO on the vari-

ables which could not be found persistent by Kovtun’s method.



482 P. Swoboda et al.

– KMQPBO100: We first run Kovtun’s method and then run sequentially 100 itera-
tion of the MQPBO algorithm with a randomly sampled label order and accumulate
persistent variables.

Note that KMQPBO100 is an improvement upon the remaining (K)MQPBO methods
and obviously also over Kovtun’s method. MQPBO’s results really depend upon the
label ordering and therefore finding a good or somehow optimal label order for spe-
cific problems remains an interesting task. This can be seen in the experiments, where
KMQPBO100 outperforms KMQPBO. While it would be favourable for KMQPBO to
optimize over all possible permutation per variable, this is computationally not tractable.
The problem of choosing the best label order has not been dealt with in literature, as far
as we know.

Our method uses the fast primal-dual method from [8] for minimizing the relaxations
JAt ,wt + δD′ .

For illustrating the strength of our method we present three datasets for the Potts
model. The datasets are explained in greater detail in [11] and are available on the
accompanying website [2]. The first dataset contains segmentation problems, for which
we are given a few prototypical color vectors. The distance between each pixel’s color
value and each prototypical vector is measured, thereby obtaining the local data term
c(a) in (1.3). The regularization strength αa,b in (1.3) was set uniformly. See Table 1 for
the results. The number of classes is written in parentheses behind the instance name
and the numbers denote the percentage of persistently labelled variables. The image
dimensions are usually 360×240 or slightly less. We have also included a time plot for
the clownfish dataset in Table 1, see Fig. 2.

Table 1. Results for segmentation problems with prototypical color vectors. Entries in the table
denote the percentage of persistently labelled variables. The numbers in parentheses behind the
dataset name denote the number k of classes.

Dataset Our method KMQPBO KMQPBO100 Kovtun MQPBO

clownfish (12) 0.9852 0.7659 0.9495 0.7411 0.0467
crops (12) 0.9308 0.6486 0.8803 0.6470 0.0071
fourcolors(4) 0.9993 0.6952 0.7010 0.6952 0.0
lake (12) 0.9998 0.7613 0.9362 0.7487 0.0665
palm (12) 0.8514 0.6866 0.7192 0.6865 0.0
penguin (8) 0.9999 0.9240 0.9471 0.9199 0.0103
peacock (12) 0.1035 0.0559 0.1234 0.0559 0.0
snail (3) 0.9997 0.9786 0.9819 0.9778 0.5835
strawberry-glass (12) 0.9639 0.5502 0.5997 0.5499 0.0

The second dataset consists of segmentation problems of a simulated brain scan with
5 prototypical vectors. The brain images were generated with the simulator [1]. The lo-
cal data terms c(a) in (1.3) were computed as for the first dataset and the regularization
strength αa,b in (1.3) was set uniformly as well. Instances can become very huge due
to the volumes being three-dimensional. See Table 2 for results. The dimensions of the
problems are denoted in the left column, while the entries denote the percentage of the
variables determined to be persistent.
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Fig. 2. Percentage of partial optimal variables of the 5 compared methods over time for the clown-
fish dataset. The method of Kovtun provides partial optimality very fast. KMQPBO100 finds
more and more partially optimal variables, which illustrates that the performance of MQBPO
depends on the label order. While our pruning method gives the best result, our current research
implementation is not competitive with respect to time.

Table 2. Results for the simulated brain scan dataset. Entries in the table denote the percentage
of persistently labelled variables. The numbers in the left column denote the image dimensions.
The number k of classes is 5. Entries denoted by † indicate that the instance could not be solved
with the specified method for implementation reasons.

Dataset Our method KMQPBO KMQPBO100 Kovtun MQPBO

181×217×20 0.9968 0.9993 0.9994 0.9235 0.3886
181×217×26 0.9969 1 0.9996 0.9322 0.3992
181×217×36 0.9967 † † 0.9363 0.4020
181×217×60 0.9952 † † 0.9496 0.4106

The third dataset consists of object segmentation problems with the local data terms
c(a) in (1.3) denoting the probability of pixels to belong to object classes. The regular-
ization strength αa,b in (1.3) is chosen to be inversely proportional to the image gradient.
The data was taken from [4]. It turned out that the relaxation we use was already tight
for the data. Hence we could determine all variables in the initial run. This illustrates
experimentally, that the relaxations used in Kovtun’s method and in MQPBO are less
tight than our relaxation. See Table 3 for results.

Most often we could label over 95% of all variables persistently with our method
and outperform the other tested approaches. Note that we can use an arbitrary algo-
rithm for solving the problem (2.2) in contrast to the approaches based on roof duality.
It is very noteworthy, that KMQPBO and KMQPBO100 outperform our approach in the
brain scan dataset as well as in one instance of the color segmentation dataset. Although
the relaxation we use is tighter than MQPBO’s, all the integral variables MQPBO ob-
tains are persistent. In contrast, only a subset of the integral variables of the solution to
the relaxation we use are found persistent. Hence, it may occur that in some instances
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Table 3. Results for the object segmentation dataset. Entries in the table denote the percentage of
persistently labelled variables. The numbers in the left column the number of classes k.

Dataset Our method KMQPBO KMQPBO100 Kovtun MQPBO

Plane (4) 1 0.9833 0.9833 0.9833 0.0002
Bikes (5) 1 0.9570 0.9570 0.9569 0.0
Road (5) 1 0.9579 0.9579 0.9579 0.0
Building (7) 1 0.8051 0.8053 0.8051 0.0
Car (8) 1 0.9902 0.9904 0.9902 0.0002

(K)MQPBO(100) can label more variables persistently although our approach yields
more integral variables which however cannot be proved persistent. The same reason-
ing applies to Kovtun’s method, so possibly some variables could be found persistent in
Kovtun’s method and hence also in KMQPBO and KMQPBO100 which could not be
verified to be persistent in our approach.

Kovtun’s method from [14] is very fast, usually faster than solving the relaxation of
problem (1.3). Therefore using a layered approach by first applying Kovtun’s Partial
Optimal Labeling Search from [14] and then applying our approach on the remaining
variables will result in at least the same number of persistent variables while still retain-
ing a very fast runtime. For properly comparing the approaches however, we have used
our method on its own.

4 Conclusion and Outlook

We have presented a method for finding persistent variables for the Potts model, which
outperforms other approaches to this problem with respect to the number of persistent
variables found. The presented method can use an arbitrary algorithm for minimizing a
relaxed labeling problem and generalizes to tighter relaxations as well.

In future we will address the problem of finding persistent variables for arbitrary
graphical models and the discretized minimal partition problem with better discretiza-
tions.
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5 Appendix

Lemma 1

Proof. Let u : Ω\A→ Ek be optimal for the functional

JΩ\A(u)−∑a∈(Ω\A),b∈A,(a,b)∈E 2αa,b〈w(b),u(a)〉+ δD. (5.1)
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Then

ũ(a) =

{
u∗(a) ,a ∈ A
u(a) ,a /∈ A

(5.2)

is optimal for J + δD. Let u′ : Ω → Ek be another labeling. If we will show, that J(ũ)≤
J(u′), it will prove the lemma. Indeed, taking into account that u∗(a) = w(a), a ∈ ∂A
we have

J(ũ)
= JA(u0)+ JΩ\A(u)+∑b∈Ω\A,a∈A,(a,b)∈E ∑k

l=1 αa,b|ũl(a)− ũl(b)|
= JA(u0)+ JΩ\A(u)+∑b∈Ω\A,a∈A,(a,b)∈E ∑k

l=1 αa,b|wl(a)− ũl(b)|
= JA(u0)+ JΩ\A(u)+∑b∈Ω\A,a∈A,(a,b)∈E 2αa,b(1−�u(b)=w(a))

= JA(u0)+ JΩ\A(u)+∑b∈Ω\A,a∈A,(a,b)∈E 2αa,b〈w(a),u0(a)− u(b)〉
≤ JA(u′|A)+ JΩ\A(u

′
|Ω\A)+∑b∈Ω\A,a∈A,(a,b)∈E 2αa,b〈w(a),u′(a)− u′(b)〉

= JA(u′|A)+ JΩ\A(u
′
|Ω\A)+∑b∈Ω\A,a∈A,(a,b)∈E 2αa,b(�w(a)=u′(a)−�w(a)=u′(b))

≤ JA(u′|A)+ JΩ\A(u
′
|Ω\A)+∑b∈Ω\A,a∈A,(a,b)∈E αa,b ∑k

l=1|u′(a)− u′(b)|
= J(u′) ,

(5.3)

which finalizes the proof.

Corollary 1

Proof. u∗ ∈ argminJA,w+δD′ and u∗ ∈D⇒ u∗ ∈ argminJA,w+δD. Now apply Lemma 1
and get statement of the corollary.

To prove Theorem 1 we will require the following three lemmas.

Lemma 2. Let α ∈ Ek, β ∈ Δk. Then

2〈α,α−β 〉=
k

∑
l=1

|α l−β l | (5.4)

Proof. Without loss of generality assume α = ei. Then

2〈α,α−β 〉= 2− 2β i = 1−β i+ 1−β i

= 1−β i+∑l �=i bl = |1−β i|+∑l �=i|bl |= ∑k
l=1|α l−β l| (5.5)

Lemma 3. Let α,β ∈ Δk and ei ∈ Ek. Then

2〈ei,α−β 〉 ≤
k

∑
l=1

|α l−β l|. (5.6)

Proof.

2〈ei,α−β 〉= 2(α i−β i) = (α i−β i)+ (1−∑l �=i al)− (1−∑l �=i β l)

= (α i−β i)+∑l �=i(β l− al)≤ ∑k
l=1|α l−β l |. (5.7)

Note that equality holds in (5.6) iff ai ≥ β i and α j ≤ β j for all j �= i.
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Lemma 4. Let A⊂ Ω , u : A→ Ek and w : ∂A→ Ek satisfy the persistency criterion of
Corollary 1.

Then for any B ⊃ A and boundary condition w̃ satisfying w̃(a) = w(a) for all a ∈
∂A∩∂B, such ũ exists, that

ũ ∈ argminu JB,w̃(u)+ δD′ (5.8)

and ũ|A = u and w̃(a) = ũ(a) for a ∈ ∂A.

Proof. Let u′ be optimal for the functional

JB\A(u)− ∑
(a,b)∈E : b∈B\A,a∈A

2αa,b〈w(a),u(b)〉

+ ∑
(a,b)∈E : a∈B\A,b∈B\Ω

2αa,b〈w̃(a),u(a)〉+ δD′ . (5.9)

Let

ũ(a) =

{
u(a) ,a ∈ A
u′(a) ,a ∈ B\A . (5.10)

The lemma will be proved when we show that ũ∈ argminu JB,w̃(u)+δD′(u). For this let
û be arbitrary relaxed labeling from ∈ δD′ . The following inequalities then hold:

JB,w̃(ũ) (5.11)

=JA(u)+ JB\A(u
′) (5.12)

+∑(a,b)∈E : a∈A,b∈B\A

k

∑
l=1

αa,b|ul(a)− (u′)l(b)| (5.13)

+∑(a,b)∈E : a∈B,b∈Ω\B 2αa,b〈w̃(a), ũ(a)〉 (5.14)

=JA(u)+ JB\A(u
′) (5.15)

+∑(a,b)∈E : a∈A,b∈B\A

k

∑
l=1

αa,b|ul(a)− (u′)l(b)| (5.16)

+∑(a,b)∈E : a∈A,b∈Ω\B 2αa,b〈w(a),u(a)〉 (5.17)

+∑(a,b)∈E : a∈B\A,b∈Ω\B 2αa,b〈w̃(a),u′(a)〉 (5.18)

(∗)
=JA(u)+ JB\A(u

′) (5.19)

+∑(a,b)∈E : a∈A,b∈B\A 2αa,b〈w(a),u(a)− u′(b)〉 (5.20)

+∑(a,b)∈E : a∈A,b∈Ω\B 2αa,b〈w(a),u(a)〉 (5.21)

+ ∑
(a,b)∈E : a∈B\A,b∈Ω\B

2αa,b〈w̃(a),u′(a)〉 (5.22)

=JA(u)+ JB\A(u
′) (5.23)

+∑(a,b)∈E : a∈A,b∈Ω\A 2αa,b〈w(a),u(a)〉 (5.24)

−∑(a,b)∈E : a∈A,b∈B\A 2αa,b〈w(a),u′(b)〉 (5.25)
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+∑(a,b)∈E : a∈B\A,b∈Ω\B 2αa,b〈w̃(a),u′(a)〉 (5.26)

(∗∗)
≤ JA(û|A)+ JB\A(û|B\A) (5.27)

+∑(a,b)∈E : a∈A,b∈Ω\A 2αa,b〈w(a), û(a)〉 (5.28)

−∑(a,b)∈E : a∈A,b∈B\A 2αa,b〈w(a), û(b)〉 (5.29)

+∑(a,b)∈E : a∈B\A,b∈Ω\B 2αa,b〈w̃(a), û(a)〉 (5.30)

=JA(ũ|A)+ JB\A(û|B\A) (5.31)

+∑(a,b)∈E : a∈A,b∈B\A 2αa,b〈w(a), û(a)− û(b)〉 (5.32)

+∑(a,b)∈E : a∈A,b∈Ω\B 2αa,b〈w(a), û(a)〉 (5.33)

+∑(a,b)∈E : a∈B\A,b∈Ω\B 2αa,b〈w̃(a), û(a)〉 (5.34)

(∗∗∗)
≤ JA(û|A)+ JB\A(û|B\A) (5.35)

+∑(a,b)∈E : a∈A,b∈B\A

k

∑
l=1

αa,b|ûl(a)− ûl(b)| (5.36)

+∑(a,b)∈E : a∈B,b∈Ω\B 2αa,b〈w̃(a), û(a)〉 (5.37)

=JB,w̃(û) , (5.38)

where (∗) is due to lemma 2, (∗∗) is due to the optimality of u and u′ for the respective
functionals and (∗ ∗ ∗) is due to lemma 3.

Theorem 1

Proof. We prove the statement that A∗ is the greatest persistent set by showing the
following claim to hold true:
Claim: Assume that for some A⊂ Ω there exists a persistent labeling u. Then in each
iteration of the algorithm A ⊂ Ai holds. Furthermore u = u∗|A and hence w(a) = w∗(a)

for a ∈ ∂A∩∂A∗, where w∗ = u∗|∂A∗ .

In the initialization step the claim clearly holds true, since A0 = Ω and Lemma 4
ensures that there exists ũ0 ∈ argminJΩ + δD′ such that u = ũ0

|A and w(a) = w̃0(a) for

all a ∈ ∂A∩∂Ω =∅ is an empty condition. Finally assumption 1 gives us that there is
only one such minimizer ũ0, so the claim holds initially.

Now assume the claim to hold for i− 1. We need to show that it also holds for i.
For this just invoke Lemma 4 with A = A, B = Ai−1 and w̃ = w̃i−1. The conditions
of Lemma 4 hold by assumption on i− 1. Lemma 4 now ensures existence of ũi ∈
argminu JAi−1,w̃i−1(u)+ δD′(u) with the required properties. Again by Assumption 1, ũi

is unique, so we are done.
Inspecting the proof of the claim above, we see that Assumption 1 is necessary be-

cause otherwise the labels for nodes in A could possibly change during iterations of the
algorithm or be convex sums of optimal persistent labellings in which case they would
be discarded from the sets Ai at some point.
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Abstract. We consider a task of tracing out target figures hidden in
teeming figure pictures come to known as Wimmelbild(er). Wimmelbild
is a popular genre of visual puzzles; a timeless classic for children, artists
and cognitive scientists. Particularly suited to the considered task, we
propose a diffuse representation which serves as a heuristic approxima-
tion mimicking curvature coding distance images. Curvature coding dis-
tance images received increased attention in recent years. Typically, they
are computed as solutions to variants of Poisson PDE. The proposed ap-
proximation is based on erosion of the white space (background) followed
by isotropic averaging, hence, does not require solving a PDE.

Keywords: Poisson PDE and its variants, level sets, non-linear diffusion,
figure-hunt games, teeming figure pictures, applications of variational
and PDE methods.

1 Introduction

Level set methods have been successfully applied to knowledge based segmenta-
tion; bringing in an ability to deal with physically corrupted incomplete data.
Most typically, shape knowledge is coded via signed distance transform, embed-
ding the 1 − D shape boundary as the zero-level set of a function defined on
a connected bounded open subset of 12 [9,8]. It is also possible to replace the
sharp interface model in level set based segmentation methods with diffuse ones
[12,10], decaying exponentially and coding curvature.

In recent years, there is a growing interest in exponentially decaying curvature
coding distance images with examples including [1,5,2,11,12].

The idea is to replace a point set S denoting possibly incomplete object bound-
aries with a smooth function ν : R → 1 where R ⊂ 12 is an open connected
bounded set s.t. R ⊃ S. The function ν is the solution of

∇ · (∇ν) − α2ν = 0 (1)

subject to boundary conditions:

ν

∣∣∣∣
S

= 1 and ∂ην

∣∣∣∣
∂R

= 0 (2a,b)

� Corresponding author.

A. Kuijper et al. (Eds.): SSVM 2013, LNCS 7893, pp. 489–500, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



490 J. Bergbauer and S. Tari

where ∂R denotes the boundary of R and ∂ην the derivative of ν in the normal
direction to ∂R. Interestingly, from [12],

ν(x, y) ≈ 1

2α2

(
2α+ curv(x, y)

)
∂ν

∂η
+O

(
1

α3

)
(3)

where curv(x, y) is the curvature of the level curve passing through the point
(x, y) at (x, y). Eq. 3 indicates a reciprocal relationship between the level curve
curvature and the gradient of ν. That is, unlike the usual distance transform, ν is
an implicit coder of the curvature, a valuable geometric feature, without explicit
estimation of higher order derivatives. (One of the original goals in proposing ν
was to bridge low level and high level vision [11,12]).

In this paper, in the setting of a specific task, namely tracing out target
figures hidden in teeming figure pictures, we present a much simplistic way of
obtaining an analogous (curvature dependent) behavior in a band around S. Our
computation does not require the computation of the entire ν function on the
entire domain R by solving a PDE.

Preliminary experiments are highly encouraging and indicate the potential of
the approach.

2 The Problem Setting

Wimmelbild is a popular genre of visual puzzles. It means teeming figure picture.
Abundant masses of small figures are brought together in complex arrangements
to make one scene in a Wimmelbild, to be used for a figure hunt game (Fig. 1).

Fig. 1. An elephant in a zoo. A sample wimmelbild (left) and an elephant figure (right)
to hunt for in the Zoo Wimmelbild.
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Figure-hunt games have been a timeless classic for children, artists and cogni-
tive scientists. As early as 1926 Kurt Gottschald experimented with intentionally
designed hidden figures – simple drawings where simple shapes such as polygons
are embedded within more complex organizations– to study the influence of ex-
perience on perception and the extent to which wholes influence the perception
of parts [4].

There are of course colorful versions of these genre of visual puzzles. Interest-
ingly, sketch-like black and white versions of teeming figure pictures pose even
a bigger challenge than their colored counterparts:

Firstly, during a hunt for the elephant, suppose we somehow landed on the
correct location in the picture yet hypothesized a wrong scale, say a smaller scale,
such that the hypothesized elephant fits inside the white space (background)
surrounded by the figural loci of the actual elephant, yielding a matching cost of
zero; providing, therefore, no clue as to whether we are in the right neighborhood,
on a white space, or on a region containing a figure which has no common
elements with the elephant. Whereas each point on a dense picture (be it color
or gray) is informative, information in sketch-like binary pictures is concentrated
on loci of lower dimension, i.e., curves denoting figural loci.

Secondly, as a consequence of lower dimensionality of the figural loci, final
pictures could get extremely complicated. Observe that it is impossible to trace
out the hidden clover in Fig. 2 using Gestalt parsing rules. The final picture is
not simply a superposition of figures. Indeed, figures are first added, but then
thresholded.

Therefore, the task can not be simply cast as locating a subpicture within a
whole picture.

Fig. 2. Can you trace out the hidden clover?
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Related Work. To the best of our knowledge, Wimmelbild(er) has not been
studied within the variational and PDEmethods community before. Saarbruecken
group recently presented an inpainting based steganography application [7]. The
nature of their problem hence their solution strategy, however, are quite differ-
ent. Their goal is to hide a secret image by embedding it into arbitrary cover
images. Both the secret and the cover are dense images and recovery of the se-
cret is possible only via a password. Therefore, ordinary observer can not detect
whether an image contains a secret or not. In reconstructing frescos, Fornasier
et.al. [3] addressed the problem of locating small fragments within a whole; for
each small piece of plaster that still showed an element of the design of the fresco,
they were able to find where it belonged. Such approaches can not be used due
to non-additive and non-linear nature of the binary drawings that we consider
(such as Fig. 2). Curvature coding distance fields are becoming more and more
commonplace. Theoretical investigations can be found in [12,1,5,2], among oth-
ers. They have been used to address a variety of shape related problems, including
skeleton computation and knowledge based segmentation as well as other vision
problems.

3 Our Approach

The key idea is to propagate information restricted to figural loci to neighboring
areas so that it becomes possible to know whether a location is close or far away
from the desired locations.

We start by uniformly eroding the white space, or equivalently, dilating the
figure. Hence, the drawings (both the wimmelbild and the target figure) become
thicker. Then, we diffuse by computing a local isotropic average. It is sufficient to
compute the local average only for the points falling on the thickened figural loci
or in a slightly wider band surrounding it. This transforms the sketch-like binary
drawing to a gray-tone picture which may be referred as a diffuse drawing. This
diffuse drawing is an approximation to a curvature coding distance image.

The rightmost column in Fig. 3 depicts the outcome of the described proce-
dure. The leftmost column is the original drawing and the fourth column from
the left is the thickened drawing. If the averaging and the dilation radii are
identical, the highest value is attained on the figural loci; from thereof values
decrease as a function of distance in the normal direction. Thus, diffusion pro-
duces iso-intensity contours, each following the figural loci from a fixed distance.
The lower the intensity, the further away the iso-intensity curve from the figural
loci. The two columns in the middle (second and third from the left) depict the
results of two different local isotropic averaging applied to the original thin draw-
ing. There, one can not observe the distance-coding behaviour, i.e., the initial
thickening is a crucial step.

What makes the iso-intensity contours of our diffuse drawings further inter-
esting is that they implicitly code curvature: Let us select two locations on the
white space of the drawing such that the nearest figural point to the first loca-
tion has a high curvature, while on the contrary, the nearest figural point to the
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Fig. 3. Mimicking curvature coding distance via erosion of the white space (dilation of
the figural loci) followed by averaging

second location is on a flat part. Let us make sure, however, that their distances
to their respective nearest figure points are equal. That is each of the points
have the same normal distance to the drawing. For example, let us consider the
two locations marked by the intersection points of the two crosses in Fig. 4.

Note that even though the normal distances from each location to the figural
loci are identical, the distances in the tangential directions are not.

In the tangential direction, indeed, the first location (marked by the cross on
the upper right in Fig. 4) is closer to the figural loci, causing the average value at
that location to be higher compared to the average value at the second location
(marked by the cross on the lower left in Fig. 4) . Consequently, the level curve
passing through the second location will not pass through the first location but
through a location further down in the direction of inward normal.

As a result, within a band surrounding the figural loci, our diffuse drawing
(obtained by dilation followed by isotropic diffusion) mimics a curvature coding

Fig. 4. Two locations of identical normal distance to the figural loci are marked by the
two crosses. In the tangential direction, however, the location of which nearest figural
point has a higher curvature is closer to figural loci.
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distance field similar to the ν, the solution of a damped Poisson PDE [12]. In
Fig. 5, we compare our diffuse drawing to a usual distance image (i.e. Eikonal
PDE with constant right hand side) restricted to a band surrounding the figural
loci. Whereas the effects of discretization noise remains (even amplified) in the
usual distance image, the iso-intensity contours in our diffuse model smoothly
follow the boundary.

Fig. 5. Curvature coding distance image obtained by thickening + isotropic averaging
(left) versus the usual distance image (right)

We avoid solving Poisson PDE or variants for two reasons. Firstly, our approx-
imation is both easier and faster to compute. But more importantly, a Poisson
based distance field, being the steady state solution to a biased diffusion equa-
tion, ∂ν

∂τ = ∇ · (∇ν) − α2ν, is too much influenced by long-range interactions
among opposing boundaries. This may be detrimental if several figural loci over-
lap as in Fig. 2.

Once the drawings (both the wimmelbild and the target figure to be hunted
for) are converted to diffused forms, the best match is formulated as finding the
deformation parameters (e.g. scale, location and orientation) that yield the best
match. The matching cost is measured as the sum of the gray value differences
between the wimmelbild and the target figure. Of course, the sum is taken over
those locations that fall within the band surrounding the figural loci within
which the diffuse field has been constructed. Moreover, the cost is normalized
by dividing it to the number of locations contributed to its computation.

In Fig. 6, the cost calculation is illustrated. Observe how matching cost be-
comes informative when raw binary figures are replaced with diffuse ones.
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Once the matching cost is defined, the optimizing parameters are determined
via a probabilistic algorithm which returns multiple solutions. The importance
of using such an algorithm is discussed in [6]. We use genetic algorithms based
optimization which is readily available in Matlab environment. It minimizes an
energy functional by varying its input variables. It is called via the comment:

[variables, energy] = ga(fitnessfcn, nvars, [], [], [], [], lb, ub, [], IntCon);

fitnessfcn = @energyfunctional, pattern, shape, diffusingparam;

The output includes the determined value of the vector of variables for rotation,
scaling and translation as well as the value of the corresponding minimal energy.
As input it requires a fitnessfcn. This has to be a functional which takes the
variables as the first input. Its single output has to be the value of the cor-
responding energy. Furthermore, the parameters nvars (number of variables),
lb (lower bound for variables), ub (upper bound for variables) and IntCon (an
interval containing the indices of variables that should be integers) have to be
specified.

Each call to ga returns the best fit obtained after a certain number of trials.
Due to randomization, multiple calls to ga generate multiple hypotheses. We
depict all the generated hypotheses after an ordering based on the matching
cost.

4 Experimental Results

In this section, we will present our experiments with the two wimmelbilder:

– hunt for the elephant in the Zoo Wimmelbild;
– hunt for the clover in a heap of overlapping contours.

Prior to that, however, we test our approach on simpler drawings of repeated
patterns: Mandalas. One purpose of these supporting illustrations is to examine
the robustness of the method to scale and pose variations. The second purpose
is to observe whether the genetic algorithm returns correct fits more often than
the wrong ones.

First, to observe the robustness with respect to scale, we consider a composi-
tion of circles of varying size. One of the circles (shown in blue color on the left
column of Fig. 7) is selected as the target figure. On the right column, we depict
all the circles detected after several runs of the genetic algorithm. Observe that
the method can handle scale variations.

Second, to observe the robustness with respect to pose, we consider a simple
Mandala pattern (Fig. 8). The two subfigures extracted from it (on the right)
are to be used as targets. We expect to find 8 instances of the butterfly target
and 4 instances of the second target.

The results are depicted in the left column of Fig. 9. The top row depicts the
results for the butterfly target and the second row for the second target. The
ga is invoked around 100 times and all of the 100 results are displayed. Each
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Fig. 6. Illustration of cost calculation. When raw binary drawings are used (top), it is
hard to tell how well the target figure is located. Observe how matching cost becomes
informative when raw binary figures are replaced with diffuse ones (bottom).

outcome of the ga is tone-coded based on the matching cost. Lighter the tone,
lower the matching cost hence better the fit. The correct fits are found regardless
of their pose. Moreover, the matching cost is significantly lower for the correct
fits. This indicates the robustness of the representation to pose changes.

Third, we have tested whether the good fits (those of lower matching cost) are
obtained more often than the bad fits. This is important as the algorithm is not a
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deterministic one. We have performed independent ga runs, each run producing
several hypotheses.We have then computed the average of the batches of indepen-
dent runs. As the results shown in the right column compellingly demonstrate, ga
has a tendency to return good fits more often than the bad ones.

Fig. 7. Circles of varying scale

Fig. 8. A Mandala pattern and two subfigures extracted from it

Finally, we present our two figure hunt experiments. The results of the ele-
phant hunt is given in Fig. 10. On the left, multiple hypotheses produced by ga
are tone-mapped. The correct hypothesis is significantly lighter than all the oth-
ers. On the right, the best match is shown in red, whereas the others in shades
of green.

Fig. 11 depicts the results of the clover hunt. The generated hypotheses are
depicted on the top left. The hypothesis with the lowest matching cost is depicted
on the top right. The best hypothesis is traced with red marker on the original
drawing (bottom left), and the original drawing is repeated (bottom right) as a
convenience to the reader.
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Fig. 9. (Left) several hypotheses returned by the genetic algorithm. Gray-tones reflect
the matching cost. The lighter the tone, the better the fit.

Fig. 10. Hunt for the elephant
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Fig. 11. Hunt for the clover

5 Summary and Conclusion

We have addressed the task of tracing out target figures in sketch-like binary
teeming figure pictures. Particularly suited to the task, we propose a simple
heuristic for generating diffuse drawings that imitate curvature coding distance
images which are typically computed as solutions to elliptic PDEs. Our work
extends the applications of diffusion based ideas to an interesting problem.
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Abstract. In many practical problems wavelet theory offers methods to
handle data in different scales. It is highly adaptable to represent data
in a compact and sparse way without loss of information. We present an
approach to find and classify defects on specular surfaces using pointwise
extracted features in scale space. Our results confirm the presumption
that the stationary wavelet transform is better suited to localize sur-
face defects than the classical decimated transform. The classification is
based on a support vector machine (SVM) and furthermore applicable
to empirically evaluate given wavelets for specific classification tasks and
can therefore be used as quality measure.

Keywords: Defect detection, Wavelet Transform, SVM, Classification,
Deflectometry, Surface inspection.

1 Introduction

We inspect different transforms and several wavelet bases for the detection of de-
fects on surfaces. The detection and moreover classification of defects is realized
directly in scale space. For evaluation we choose height maps as measurements of
(partially) specular surfaces as application. In contrast to matt surfaces, specular
surfaces are not observable directly in the visible spectrum. Therefore the mea-
surements are made exploiting the specular reflectivity by using deflectometry.
The paper is structured as follows:

In section 2 we show previous work with similar approaches for inspection.
Section 3 gives an introduction to deflectometry and the measurements of the
surface used for evaluation. The underlying idea of this work is illustrated in
section 4. Then a short introduction to wavelet theory, important wavelet trans-
forms and important properties of wavelets are given in section 5. In section 6
the requirements that have to be met and the composition of the feature vector
are explained. Finally in section 7 it is described how a support vector machine

A. Kuijper et al. (Eds.): SSVM 2013, LNCS 7893, pp. 501–512, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



502 A. Hahn et al.

(SVM) is used to classify each point on the surface into error-free area or a spe-
cific defect type. Experimental results using deflectometric measurements from
specular surfaces are shown in section 8. Section 9 summarizes the proposed
method.

2 Related Work

Automated defect detection has been a wide area of research for at least twenty
years. In recent works more and more publications use the wavelet decomposition
for defect detection. It is a well studied tool that is widely used to analyze signals
in scale space. One of its applications is the evaluation of image data in multiple
scaling levels. As a surface height map can be represented as an image, methods
from image classification can be adapted to our task. We list some publications
which also use wavelets for feature extraction in combination with a support
vector machine as classifier.

Jiang and Blunt [1] and later on Jiang et al. [2] investigate different ways to
realize a wavelet transform on surface data. Their main interest is the use of the
stationary wavelet transform together with complex wavelets to get good surface
representations. Rosenboom et al. [3] study different wavelets to represent recon-
structions of specular surfaces, obtained by deflectometry, in a sparse manner.
Rajpoot and Rajpoot [4] use a discrete wavelet decomposition and reconstruction
of singular details to extract local features in the spatial domain. These features
are classified with a support vector machine to detect fabric defects. Ghorai et
al. [5] analyze a wider variety of orthogonal wavelets to detect different defects
on images of hot-rolled steel products. Their approach is to partition the surface
into square areas that are classified by a support vector machine using extracted
features. Zhang et al. [6] use the discrete wavelet transform to smooth images of
strongly reflecting metal and to emphasize edges. Then an edge filter is applied
and features based on a Fourier transform are extracted to detect metal defects.

Our method differs from the established methods to detect and classify defects
on surfaces with wavelets in combination with SVMs by utilizing scale space in-
formation directly for classification. This makes our approach less complex and
computationally more efficient. There are similarities to an adaptive Bayesian
wavelet shrinkage approach proposed by Chipman et. al [7]. While their task
is completely different as they want to suppress noise, their methods to dis-
criminate between noise and signal are similar to our discrimination between
the surface and defects. But our classification differs from theirs because we use
non-parametric statistics to learn decision boundaries.

3 Deflectometry

Specular surfaces are present almost everywhere in daily life. For example sur-
faces on dishes, mirrors, furniture, home appliances or laquered car bodies are
strongly or at least partially specular. More than on diffuse surfaces the visual
impression of these surfaces is an important aesthetic property. Because of the



Defect Classification on Specular Surfaces Using Wavelets 503

specular surface, not only the object itself can be seen, but moreover the re-
flected surrounding. In this reflection both very small flaws and large bumps
can be seen and reduce the value of the object. Consequently quality inspection
on specular surfaces is essential. Unfortunately classical approaches to measure
zero-order surface properties are difficult to apply. Deflectometry offers methods
to measure first-order surface properties and to infer the shape. Due to the mea-
surement principle of deflectometry, it is especially sensitive to surface curvature
which corresponds to the human perception of specular surfaces and is there-
fore appropriate to detect aesthetical defects. For the measurement, a system
consisting of a camera with image plane I, a specular surface S and a screen L
arranged in a triangular setup, as seen in Fig. 1, is used. The camera observes

Fig. 1. Deflectometric system setup consisting of camera I , surface S and screen L

a sequence of phase shifted sinus patterns projected onto the screen over the
specular surface. By decoding this information, viewing rays from the camera
plane to the surface PI can be uniquely assigned to points on the screen PL:

l : PI �→ PL, l[u, v] = (xL, yL) . (1)

This mapping is called deflectometric registration. It contains first order informa-
tion about the surface, because the direction of each reflected ray is determined
by the normal of the reflecting surface. But without knowledge of the distance
between the camera and the surface, it is impossible to unambiguously recon-
struct the surface from the deflectometric registration. An overview of the topic
is given by Werling et al. in [8, 9]. Theoretical and practical accuracy proper-
ties are studied by Knauer [10]. In our case the surface is reconstructed using an
iterative algorithm that finds a surface whose gradients match the measured gra-
dients under consideration of some a priori known points on the surface. These
a priori known points are determined by a separate measurement. Two contour
plots of reconstructed surfaces are given in Fig. 2. The lines mark points of equal
height, black areas are below a threshold and white areas above a threshold.

4 Defects in Frequency Domain

As shown in section 2 most approaches for defect detection use features in spa-
tial space. Because defects can have a great variety in shape and size, one either
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(a) Defects: 3 dents, pimples (b) Defects: pimples

Fig. 2. Contours of two reconstructed surfaces with orange peel and defects

has to find invariant features or very complex classifiers. We assume that a rep-
resentation of defects in the frequency domain provides the required invariance.

This conjecture is illustrated in the following example using deflectometric
measurements of lacquered metal sheets with large defect-free areas and small
local defects of two different types. We used a Fourier transform to represent the
windowed defect in the frequency domain. Figure 3 shows the frequency spectrum
of sections through two of the defects and a section through a defect-free area.
As it can be seen, the frequencies of the non-defect area mainly concentrate
around zero. The large dent contains a wide band of low frequencies. In contrast
to this the smaller pimple has a lot more impact on higher frequencies. Besides
the observation that the occouring frequencies are depending on the size of the
defect and the steepness of the flanks, it is important that the shape of the
spectrum differs according to the shape of the defect. Note that this illustration
of the underlying idea works, because we only transformed a selected area around
the defect. When the location of the defect is unknown and one has to find its
location, the Fourier transform as a global transform is not suitable.
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Fig. 3. Three sections through different defects and their frequency spectrum



Defect Classification on Specular Surfaces Using Wavelets 505

5 Wavelet Theory

5.1 Continuous Wavelet Transform

Similar to the Fourier transform, the wavelet transform describes frequency prop-
erties. In contrast to the fourier transform, which is a global transformation, the
wavelet transform gives localized frequency information, by using basis functions
which only differ significantly from zero in a small interval.

The continuous wavelet transform for a function f ∈ L2(IR) is defined as a
convolution with the window function ψ

Wψf(s, u) =
1√
s

∫
IR

f(t)ψ

(
t− u

s

)
dt = 〈f, ψu,t〉 . (2)

Its advantage is the choosable window function that is variable and limited by
the Heisenberg principle. The higher the extracted frequencies are, the smaller
is the window in the spatial domain. To allow the perfect reconstruction of f , ψ
has to satisfy the admissibility condition [11].

5.2 Discrete Wavelet Transform

In practice the wavelet transform is usually calculated using the discrete wavelet
transform (DWT). Instead of all scales only discrete, i.e. dyadic scales are con-
sidered and instead of all translations only non-overlapping translations of the
wavelet are considered. For this purpose a scaling function φ is introduced, which
represents f in approximations a:

as[u] =

∫
IR

f(x)
1√
2s
φ

(
x− 2su

2s

)
dx, (s, u) ∈ ZZ2 . (3)

The scaling function has a low-pass property. Together with a suitable wavelet
function, which works as a high-pass filter, we are able to construct a multires-
olution analysis. The calculation is realized using filter banks. Starting with a
sampled signal a0[x] in scale s = 0 the approximation in the next scale is calcu-
lated using the filter h of the scaling function φ:

as+1[x] =

∞∑
n=−∞

h[n− 2x]as[n] . (4)

The details lost in the approximation are extracted using the orthogonal high-
pass filter g of the wavelet function ψ:

ds+1[x] =
∞∑

n=−∞
g[n− 2x]as[n] . (5)

As we want to extract features from a two-dimensional surface we use a tensor
wavelet approach with a one-dimensional filtering in both directions. This results
in one approximation space as[x, y] and three detail spaces ds,1[x, y], ds,2[x, y],
ds,3[x, y], where x, y ∈ ZZ determines the position on the surface, in each scale.
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5.3 Stationary Wavelet Transform

For our purposes a good localization of the detail coefficients in all scales is
desired. The stationary wavelet transform (SWT, desribed in [12] as algorithme
à trous) achieves this by omitting the subsampling and by widening the filters
on each scale. We start with the filters h0 and g0 on scale s = 0 and use dilated
filters in each scale:

hs+1[n] =

{
hs[n/2], n even

0, n odd
, gs+1[n] =

{
gs[n/2], n even

0, n odd
. (6)

This results in a higher redundancy and consequently higher computational ex-
penses of the transform, but is invariant to shifts of the signal. Furthermore it
gives us the good localization of each coefficient in all scales. Hence it leads to
better classification results as we will show in section 8.

5.4 Important Properties of Wavelets

The properties of the wavelet transform are determined by the choice of a
wavelet. We discuss some important properties of wavelets and their relevance
for our application.

Support. The support of a wavelet is the smallest interval containing all of its
non-zero values. Its size determines the size of the interval that is influenced by
a single position of the signal. As we want to distinguish between neighboring
defects the size of this interval has to be as small as possible. Furthermore a
small support leads to few calculations and a precise localization of defects.

Symmetry. The localization, especially in higher scales, is affected by the sym-
metry of the scaling function. Orthogonal wavelets cannot be symmetric and
compactly supported at the same time. But it is possible to construct almost
symmetric orthogonal wavelets, called symlets [13]. Biorthogonal wavelets can
be constructed symmetrically.

Vanishing Moments. A wavelet ψ with p vanishing moments is orthogonal to
polynomials of degree less or equal to p− 1:∫

IR

tkψ(t)dt = 0 for 0 ≤ k < p . (7)

This means functions that can be described by polynomials of degree p− 1 ap-
pear in the approximation space only. If we want to extract high frequency parts
like defects we want to ignore surface properties that can be assumed as low
frequency parts. As the surface is usually modeled with splines it is piecewise
polynomial with low order [14]. Thus consequently we should use wavelets with
many vanishing moments. Ingrid Daubechies proved that the number of vanish-
ing moments is proportional to the support of a wavelet. The wavelets with a
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maximum of vanishing moments at minimal support are the so-called Daubechies
wavelets. Usually wavelets are named by the number of their vanishing moments,
e.g. the symlet 3 is a wavelet with 3 vanishing moments.

Choice of the Wavelet. On the one hand a good localization is essential for
detecting even small defects. On the other hand we need enough vanishing mo-
ments to make sure the smooth parts of the surface don’t appear in the detail
space. Therefore we need to find a trade-off between the number of vanishing mo-
ments and the length of the support. In section 8, we study different orthogonal
and biorthogonal wavelets for defect detection and classification.

6 Features

The detection and classification of defects depends on good features. With good
features, we obtain sparse representations that only show problem specific prop-
erties. This sparsity is achieved with invariances under translation, curvature of
the surface and scaling. Scaling and translation invariance are obtained by the
multiresolution analysis of the stationary wavelet transform. Note that the used
scaling function has to be symmetric, otherwise the location of a defect would
shift over the scales and introduce a bias in the estimation of the location. In-
variance against surface curvature depends on the number of vanishing moments
of the wavelet. We use biorthogonal spline wavelets and symlets with up to five
vanishing moments and invariance under curvature up to fourth order polyno-
mials. The tensor wavelet approach we use considers only three directions and
can therefore not be used to extract anisotropic features. This limitation doesn’t
matter in our case, because the defects we consider are approximately round.

Each pixel of the surface is associated with a value of each scale and each
direction of the wavelet transform as seen in Fig. 4. On s scales together with r
directions of the 2D wavelet transform we get s · r features for each pixel (x, y)
on the surface. While for the SWT one coefficient in each scale for each point is
calculated, the coefficients of the DWT describe, depending on the scale, more

d1 d2 d3 a 

s 

Fig. 4. Feature vector depicted as cut through all scales of the SWT
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than one point on the surface. We interpolate the DWT coefficients for each
point using the nearest neighbored coefficient.

The 2D tensor wavelet gives us r = 3 directions. We analyze s = 5 scales
which leads us to a feature vector of 15 coefficients from (5) for each pixel:

d = (d1,1, d1,2, d1,3, d2,1, . . . , d5,1, d5,2, d5,3) . (8)

7 Classification

The classification is performed by a support vector machine (SVM) as described
by Vapnik [15]. For the discrimination of more than two classes, the SVM has
to be extended. We use the free library LIBSVM by Chang and Lin [16] for
our classification. They provide an implementation of Vapniks SVM with an
extension to combine several two-class SVMs to one multiclass SVM. Moreover
they implement an extension that allows the SVM to give probability estimates
for each class.

Fig. 5. Classification process

We use a radial basis function e−γ|u−v|
2

as kernel function. Besides the ne-
cessity for training data the SVM needs to be parametrized with two parame-
ters: a regularization parameter for weighting the costs of misclassifications C
and the width of the kernel function γ. The optimization of these parameters
γ ∈ {2i/2}, C ∈ {2j/2}, i ∈ {−4, . . . , 40}, j ∈ {−24, . . . , 24} is realized using a
five fold cross validation with 1500 feature vectors for each class and a grid search
as proposed in [17].

7.1 Training of the SVM

As described in section 6 one feature vector is extracted for each point on the
surface separately. We annotated some measurements to provide training data
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for each class. Since the classification accuracy improves when the feature values
are limited, we normalize the feature values to mean 0 and variance 1. The
parameters for this normalization are determined by the training data and are
applied to the testing data later on as well.

7.2 Classification

Using the probability estimates of the support vector machine p (d | c) for a
feature vector d with class c, instead of a voting decision a maximum likelihood
decision can be made:

argmax
c

p (d | c) . (9)

If additional prior information p(c) is available and necessary a maximum a
posteriori decision can be made. Prior information may be given by an expert,
for example if only certain classes are possible. Another reason to include prior
information is to connect adjacent points on the surface, for example it is unlikely
that in the middle of a small defect some points belong to a larger defect.

7.3 Evaluation of Wavelets

The comparison of ground truth and the classification results obtained based on
features calculated with a certain wavelet allows an empirical evaluation of that
wavelet. To measure the evaluation results we use the accuracy of the results (i.e.
the number of true classifications divided by the number of all classifications).

8 Results

To evaluate our method we used manually classified height maps of two lacquered
metal sheets on which dents and pimples occurred. First the features using one
specific wavelet were determined. One sheet was solely used as training data
for estimating the normalization parameters and to learn the classifier. For each
class we randomly selected 1000 points on the surface to train the SVM.

The other sheet was used to test the trained classifier. Here the features of
1500 points on the surface for each class were randomly selected to evaluate the
quality of the classification.

Figure 6 shows a classification of a surface classified with a biorthogonal 3.3
wavelet over five scales using an SWT and a DWT. The differences between both
transforms are obvious. A first noticeable difference is the blocky classification
due to the discretization of the DWT. And secondly the classification is overall
worse as many misclassification’s can be observed.

The results of the SWT are much better. There are still some misclassifica-
tion’s at the borders of the surface that result from boundary effects. Further-
more one can recognize that defects tend to be classified larger than they are in
reality.

Table 1 shows the accuracy of our method with various wavelets and methods
as well as the percentage of samples used as support vectors. As we used nearly
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(a) training sheet

(c) stationary wavelet transform

(b) evaluation sheet

(d) discrete wavelet transform

Fig. 6. Relief plots of the training data (a) and the evaluation data (b). (c), (d) Clas-
sification results for (b) using the biorthogonal 3.3 wavelet.

plane surfaces the results are good with few vanishing moments. Furthermore
the SVM complexity decreases by using good wavelets like Symlet 2 and the
SWT.

A glance at Table 1 confirms the expectations after viewing Fig. 6. A classifica-
tion using the discrete wavelet transform is very inaccurate. The comparatively
good results using wavelets with few vanishing moments can be reasoned with
the good localization properties. More vanishing moments and a wider support
lead to worse localization and separation of neighbored defects on flat surfaces.
Detailed results are shown in Tab. 2 and reveal weaknesses detecting pimples.

Table 1. Accuracy values on 4500 evaulation samples and percentage of the 3000
training samples used as support vectors

accuracy support vectors
Wavelet SWT DWT SWT DWT

Biorthogonal 3.5 77.73% 55.31% 28.17% 56.40%
Biorthogonal 2.4 92.73% 70.84% 11.37% 42.40%
Biorthogonal 3.3 89.22% 57.11% 17.27% 42.47%
Symlet 2 93.60% 84.22% 11.00% 16.97%
Symlet 3 90.00% 75.20% 12.50% 24.27%
Symlet 4 88.07% 65.78% 17.07% 41.83%
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Table 2. Confusion matrices. Actual classes defect-free d, pimple p and bump b. Pre-
dicted classes d̂, p̂ and b̂.

d̂ p̂ b̂

d 1445 29 26
p 766 655 79
b 14 88 1398

d̂ p̂ b̂

d 1461 18 21
p 181 1243 76
b 11 20 1469

d̂ p̂ b̂

d 1448 26 26
p 371 1109 20
b 2 40 1458

d̂ p̂ b̂

d 1459 16 25
p 117 1351 32
b 17 81 1402

SWT Bior3.5 SWT Bior2.4 SWT Bior3.3 SWT Sym2

d̂ p̂ b̂

d 1441 21 38
p 199 1253 48
b 90 54 1356

d̂ p̂ b̂

d 1450 15 35
p 283 1135 82
b 70 52 1378

d̂ p̂ b̂

d 1353 51 96
p 680 708 112
b 711 361 428

d̂ p̂ b̂

d 1406 38 56
p 558 868 74
b 256 330 914

SWT Sym3 SWT Sym4 DWT Bior3.5 DWT Bior2.4

d̂ p̂ b̂

d 1366 40 94
p 527 842 131
b 818 320 362

d̂ p̂ b̂

d 1460 27 13
p 171 1303 26
b 77 396 1027

d̂ p̂ b̂

d 1440 26 34
p 337 1158 5
b 434 280 786

d̂ p̂ b̂

d 1438 48 14
p 474 979 47
b 639 318 543

DWT Bior3.3 DWT Sym2 DWT Sym3 DWT Sym4

It can be seen that much better results can be achieved with the stationary
wavelet transform. The classification quality remains on a high level even with
wavelets of larger size.

9 Summary

We presented an approach for defect detection and classification directly in scale
space. While being computationally efficient due to the use of the wavelet trans-
form, the simple feature extraction and the application of the SVM, it offer
numerous advantages over existing approaches. The approach was evaluated on
deflectometric measurements of lacquered surfaces. Our results show that us-
ing only the small feature vectors it is possible to detect and classify two defect
classes ranging over multiple scales with high accuracy. Additionally we observed
that only few samples were used by the SVM, which leads to the conclusion that
our features are highly representative for the given task. Furthermore our ap-
proach is suitable as a measure to evaluate the ability of a wavelet to discriminate
given defect classes.

This work was financed by Baden-Württemberg Stiftung within the project
MID-Wave.
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