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Abstract. Deep brain stimulation (DBS) is an invasive therapeutic option for 
patients with Parkinson’s disease (PD) but the mechanisms behind it are not yet 
fully understood. Animal models are essential for basic DBS research, because 
cell based in-vitro techniques are not complex enough. However, the geometry 
difference between rodents and humans implicates transfer problems of the sti-
mulation conditions. For rodents, the development of miniaturized mobile sti-
mulators and adapted electrodes are desirable. We implanted uni- and bipolar 
platinum/iridium electrodes in rats and were able to establish chronical instru-
mentation of freely moving rats (3 weeks). We measured the impedance of un-
ipolar electrodes in-vivo to characterize the influence of electrochemical 
processes at the electrode-tissue interface. During the encapsulation process, the 
real part of the electrode impedance at 10 kHz doubled after 12 days and in-
creased almost 10 times after 22 days. An outlook is given on the quantification 
of the DBS effect by sensorimotor behavioral tests. 

Keywords: EIS, Intracerebral electrodes, Basal ganglia, Subthalamic nucleus, 
Rat brain, Chronic instrumentation, 6-OHDA, Parkinson’s disease. 

1 Introduction 

Parkinson’s disease (PD) is a widespread degenerative disorder of the central nervous 
system that affects motor function, speech, cognition and vegetative functions. The 
cardinal symptoms such as tremor, rigidity, bradykinesia and postural instability re-
sult mainly from the death of dopaminergic cells in the substantia nigra pars compacta 
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and the subsequent lack of dopaminergic inputs into the striatum. This causes an alte-
ration of the activity pattern in the basal ganglia [2]. Deep brain stimulation (DBS) is 
a novel therapeutic option for PD as well as an increasing number of neuropsychiatric 
disorders. Before DBS became a therapeutic intervention, electric stimulation of basal 
ganglia had been used to guide neurosurgeons to the precise position for a surgical 
lesion, the ultimate therapy of a late-stage PD. The main advantage of DBS over sur-
gical lesions is the reversibility and possibility to modulate stimulation parameters 
[3]. The small volume of the target region for DBS in the human brain requires a 
highly specific adaption of the electrodes which need to be thoroughly tested in ani-
mal models, including different materials and geometries. So far, DBS-data of animal 
models of PD are scarce. During in-vivo stimulation, the properties of the DBS elec-
trodes are changing as a function of time caused by electrochemical processes at the 
surface of the implant and the subsequent tissue response [5]. The tissue response is a 
foreign substance reaction. Its intensity depends on the material [Grill and Mortimer, 
1994] and is correlated with the thickness of the adventitia finally encapsulating the 
implant [18]. Adventitia formation causes a steady change in the impedance of the 
electrodes leading to changes in the attenuation of the stimulating signal. As a result, 
the efficiency of the surrounding tissue stimulation is changing [12]; [13]; [7]. One 
opportunity to minimize this problem is to choose an appropriate electrode material. 
Previous investigations of our group [6]; [8] have shown that the use of stainless steel 
electrodes is not appropriate because of the corrosion and erosion processes intensi-
fied by electrolytic electrode processes. Electrochemically induced alterations are 
negligible for inert platinum electrodes, even though electrode processes may still 
influence the surrounding tissue [5]. For an optimal adjustment of the DBS signal, the 
kinetics of the electrode-impedance alterations caused by the adventitia formation 
must be taken into account [12]; [13]. 

2 Materials and Methods 

2.1 Animal Treatment 

Forty, adult, male Wistar Han rats (240-260 g) were obtained from Charles River 
Laboratory, Sulzfeld, Germany) and housed under temperature-controlled conditions 
in a 12 h light-dark cycle with conventional rodent chow and water provided ad libi-
tum. The rats were subject to the following treatments: 

• anesthesia (40 rats) 

• 6-OHDA-lesioning (40 rats, 2 rats died while surgery) 

• electrode implantation (38 rats (2 rats died while surgery): 15 unipolar electrodes, 
21 bipolar electrodes) 

• chronical instrumentation (26 rats: 21 rats with bipolar electrodes, 5 rats with un-
ipolar electrodes) 

• impedance measurement without chronical instrumentation (10 rats with unipolar 
electrodes) 

The study was carried out in accordance with European Community Council directive 
86/609/EEC for the care of laboratory animals and was approved by Rostock’s Ani-
mal Care Committee (LALLF M-V/TSD/7221.3-1.2-043/06). 
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Anesthesia. The rats were anesthetized by ketamine-hydrochloride (10 mg per 100 g 
body weight, i.p., Ketanest S®, Pfizer, Karlsruhe, Germany) and xylazine (0,5 mg per 
100 g body weight, i.p., Rompun®, Pfizer). Before surgery, the eyes of the rats were 
medicated with Vidisic (Bausch and Lomb, Berlin Germany). After surgery, the 
wound was sutured and the rats received 0.1 ml novaminsulfone (Ratiopharm, Ulm, 
Germany) and 4 ml saline subcutaneously. Rats were exposed to red light (Petra, Bur-
gau, Germany) until normalization of vital functions. 

6-Hydroxydopamine (6-OHDA) Lesioning. The 6-OHDA (Sigma, Deisenhofen, 
Germany) lesioning was performed by stereotactic surgery in adaption to Strauss et al. 
[17]. The lesions of the right medial forebrain bundle of rats were induced by injec-
tion of 26 µg 6-OHDA in 4 µl saline with 1 g/l ascorbic acid delivered over 4 min via 
a 5 µl hamilton microsyringe (Postnova Analytics, Landsberg/Lech, Germany). The 
coordinates relative to bregma were: anterior-posterior (AP) = -2.3 mm, medial-lateral 
(ML) = 1.5 mm and dorsal-ventral (DV) = -8.5 mm [16]. 

Electrode Implantation. Electrodes were implanted into the subthalamic nucleus 
(STN), which is the most common target region for treatment of PD patients. The 
surgical procedure was performed using a stereotactic frame (Stoelting, Wood Dale, 
IL, USA) modified according to Harnack et al. [9]. To support the surgical procedure, 
a cold light source (KL 1500 LCD, Schott, Mainz, Germany) was used in combina-
tion with a stereo-microscope (Leica, Wetzlar, Germany). The skull was opened by a 
dental rose-head bur (Kaniedenta, Germany). The coordinates relative to bregma 
were: anterior-posterior (AP) = -3.5 mm, medial-lateral (ML) = 2.4 mm and dorsal-
ventral (DV) = -7.6 mm [16]. A dental drill was used to bore an additional hole in the 
skull for an anchor screw. The electrode was fixed to the skull by an adhesive-glue 
bridge (Technovit 5071, Heraeus, Germany) to the anchor screw. After all, a subcuta-
neous wire was implanted. The suture exit hole was located in the middle of the back 
of the rat. 

The counter-electrodes (dental wires and suture clips in combination with the un-
ipolar electrodes) were implanted into the neck of the rats. 

Chronical Instrumentation. Commercial rat jackets (Lomir Biomedical, Quebec, 
Canada) with a backpack were used to fix all electronic components of the miniatu-
rized custom-made stimulator system (Rückmann und Arndt, Berlin, Germany) to the 
rat. The DBS stimulator and the battery were located in the backpack of the rat jacket. 
The DBS electrode and the battery were connected to the DBS stimulator via plug 
connectors (RS Components GmbH, Mörfelden-Walldorf, Germany). Both were sol-
dered with a lead-free solder tin (RS Components GmbH) and insulated with a bio-
compatible shrink tubing (RS Components GmbH). 

Impedance Measurement. Ten rats were used to measure the kinetics of the elec-
trode impedance alterations caused by the adventitia formation at the surface of un-
ipolar electrodes. During the measurement, the rats were anesthetized. The measuring 
procedure was performed every day over a measuring period of 12 days (in experi-
ment 1) and over 22 days (in experiment 2). In the first experiment we used a dental 
wire as counter-electrode and in the second step an array of suture clips (Allgaier 
Instrumente GmbH, Frittlingen/Tuttlingen, Germany) to evaluate the influence of the 
counter-electrode (shape and position) on the measurement results of the impedance. 
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2.2 Stimulation- and Counter-Electrodes 

For impedance measurements, we designed unipolar platinum-iridium (Pt/Ir) micro-
electrodes which were covered with polyesterimide insulation and custom-made by 
Polyfil (Zug, Switzerland; Fig. 1). In a first step, dental wires made of biocompatible, 
nickel-free steel alloy (18% Cr, 18% Mn, 2% Mo, 1% N, remander iron) of 1 mm 
diameter and 10 mm length were used as counter-electrodes (see: Fig. 4a) in combina-
tion with the unipolar DBS electrodes. In a second step, an array of counter-electrodes 
was pierced into the necks of a number of rats, to evaluate the influence of the coun-
ter-electrode on the impedance measurement. For this, suture clips (see: Fig. 4b) were 
used. Electrochemical electrode effects were negligible at the counter-electrode due to 
the low current density at its large surface. 

We also designed and implanted bipolar Pt/Ir electrodes (Fig. 2) with two stacked 
tips to test the effects of nonaxial symmetric field distributions. Further, this electrode 
type does not require the implantation of counter-electrodes. 

 

Fig. 1. Photograph (a) and scheme (b) of the unipolar Pt/Ir electrode (Polyfil, Zug, Switzer-
land). The electrode pole was a round wire made from Pt90Ir10 with a diameter of 200 µm. The 
length of the non-insulated tip of the electrode pole was 100 µm. The insulation consists of 
polyesterimide 180 with a thickness of 25 µm [15]. 

 

Fig. 2. Photograph (a) and scheme of the bipolar Pt/Ir electrode (FHC, Bowdoin, ME, USA). The 
two electrode poles were round wires made from Pt90Ir10 with a diameter of 125 µm. The lengths of 
the non-insulated tips were 100 µm. The thickness of the epoxylite insulation was 25 µm. 
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2.3 Electric Impedance Spectroscopy (EIS) 

Electric impedance spectroscopy (EIS) is a common measuring technique for deter-
mining the electrical properties of tissues [4]. It is used in a wide range of applica-
tions, such as breast cancer detection [10], the monitoring of the lung volume [1] and 
in material sciences. EIS is nondestructive and therefore suitable for the characteriza-
tion of the DBS electrodes during the encapsulation process. 

Equipment. The EIS measurements were conducted with an impedance spectrometer 
Sciospec ISX3 (Sciospec Scientific Instruments, Pausitz, Germany) and a test fixture 
HP16047D (Hewlett-Packard, Japan) connected to a personal computer with Scios-
pec-measuring software. The two connectors of the test fixture were connected to the 
DBS and the counter-electrodes. 

Measurement. To characterize the electrode properties during encapsulation, the 
impedance was recorded in the frequency range from 100 Hz to 10 MHz over a period 
of two weeks after implantation. Frequency range, amplitude, number of points and 
the averaging of the impedance spectrometer were programmed by the measuring-
software (Sciospec). 401 frequency points were logged which were distributed equi-
distantly over a logarithmic frequency scale. The measuring voltage (peak to peak) 
was 12.5 mVPP. The measuring-software logged the measuring data of the impedance 
spectrometer (real and imaginary parts of the impedance vs. frequency) by saving 
them as a data file. 

Before each measurement, the impedance spectrometer was calibrated by open, 
short and load measurements. Each measurement was repeated three times to improve 
the statistical significance. The measurements were repeated every day for one week 
and every second day during the second week. 

The stimulation pulse usually applied in DBS has a frequency of 130 Hz and a 
pulse width of 60 µs. Because of the steep slopes of the needle-shaped pulse, the sig-
nal is rich in high harmonic frequencies [5]. For this reason, we measured the imped-
ance within the wide frequency range from 100 Hz to 10 MHz, which is beyond the 
range of up to 10 kHz reported by Lempka et al. [12]. 

Impedance Theory. The electrical impedance describes the magnitude ratio between 
the applied AC voltage and the resulting current flowing with a certain phase shift. 
Mathematically speaking, the impedance Z* is a complex number with the unit [Ω], 
which is composed of a real (Z´) and an orthogonal imaginary part (Z´´) marked by 
the complex unit j = √ 1: 

Z* = Re(Z*) + j·Im(Z*) = Z´+ j Z´´ (1) 

For interpretation of the measuring data, an equivalent circuit model is required to be 
fitted to the measuring data. The aim was to model electrochemical processes and 
adherent cell growths by combinations of resistors, capacitors and constant phase 
elements [12]. 

Data Analysis. The logged data were transferred to Matlab (The MathWorks™, Ver-
sion 7.9.0.529) to calculate means and standard deviations. For their graphic represen-
tation, they were finally copied to Sigma Plot 11.0 (Systat Software, 11.0, Build 
11.2.0.5). 
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In future experiments, we aim for a comparative study of uni- and bipolar elec-
trodes with a conventional and a modified stimulation program. The quantification of 
the DBS effect on locomotion, exploration and anxiety will be analyzed by drug- and 
non-drug induced behavioral tests. For these experiments, the operating life of the 
battery of the miniaturized DBS stimulator has to be prolonged. 

An equivalent circuit model will be developed for a better understanding of the mea-
suring data in order to extract encapsulation parameters. These investigations aim at clari-
fying the phenomenon of the impedance drop at the second day after implantation. 

Potential effects at the electrode-tissue interface will be analyzed by histological, 
immunochemical and electron-microscopical methods. 
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