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Preface

Following the successful 1st CEAS (Council of European Aerospace Soci-
eties) Specialist Conference on Guidance, Navigation and Control (CEAS
EuroGNC) held in Munich, Germany in 2011, Delft University of Technol-
ogy happily accepted the invitation of organizing the 2nd CEAS EuroGNC
in Delft, The Netherlands in 2013. Starting with the lessons learnt from the
CEAS EuroGNC 2011, the EuroGNC 2013 conference was realised by a lo-
cal organising committee, chaired by Bob Mulder and consisting of Daniel
Choukroun, Qiping Chu, Erik-Jan van Kampen, Coen de Visser and Bertine
Markus. The EuroGNC 2013 which took place in Delft, The Netherlands, on
April 10-12, 2013, fundamentally owed its success to its International Pro-
gram Committee: a selected group of eminent scientists and engineers who
were crucial in setting the high standards of the conference technical program,
either by soliciting, authoring, or reviewing and selecting the final proceed-
ings papers. The book you are reading now is an additional outcome of this
committee’s work: a selection of papers presented at the EuroGNC 2013.
The goal of the conference is to promote new advances in aerospace GNC
theory and technologies for enhancing safety, survivability, efficiency, per-
formance, autonomy and intelligence of aerospace systems using on-board
sensing and computing systems. In modern guidance, navigation and con-
trol, digital computers were already applied in the mid 60s for the Apollo
program. The Apollo Primary Guidance, Navigation and Control System
(Apollo PGNCS) included even a Kalman filter for optimally estimating the
position from on-board measurements using the Apollo Guidance Computer
(AGC) that was introduced in 1966. Space technologies have always been a
drive for innovations in civil and military aeronautical applications. In fact
the AGC was used in the first experimental digital Fly-By-Wire (FBW) sys-
tem installed into an F-8 Crusader to demonstrate the practicality of digital
computer driven FBW in 1972. The results led to a series of applications
in military aircraft at the time including the Space Shuttle digital FBW in
the 1980s. In civil aviation, Europe took a next revolutionary step by in-
troducing digital FBW flight control in the Airbus A320 in 1987. Boeing
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later on joined this development for their B777. In guidance and navigation,
by applying digital computers as well, equally impressive steps forward were
achieved. Precise navigation using the Global Positioning System (GPS) with
millimetre accuracy for space applications and centimetre accuracy for aero-
nautical applications is one of the most striking and challenging examples.
The efforts from aerospace GNC scientists and engineers have made current
GNC systems more accurate and robust than ever before, not only due to the
introduction of new hardware but also of theoretical advancements in GNC
algorithms. As digital computers become more and more powerful, scientists
and engineers in aerospace GNC have virtually unlimited opportunities to
respond to new challenges dictated by the higher and higher requirements
from aerospace industries.

A great push for new developments in GNC are the ever higher safety
and sustainability requirements in aviation. Impressive progress was made in
new research fields such as sensor and actuator fault detection and diagnosis,
reconfigurable and fault tolerant flight control, online safe flight envelop pre-
diction and protection, online global aerodynamic model identification, online
global optimization and flight upset recovery. All of these challenges depend
on new online solutions from on-board computing systems. Scientists and en-
gineers in GNC have been developing model based, sensor based as well as
knowledge based approaches aiming for highly robust, adaptive, nonlinear,
intelligent and autonomous GNC systems. Although the papers presented at
the conference and selected in this book could not possibly cover all of the
present challenges in the GNC field, many of them have indeed been ad-
dressed and a wealth of new ideas, solutions and results were proposed and
presented.

GNC scientists and engineers in Europe benefit from their long history
in mathematics and physics and their associated education systems through
centuries. Many theoretical developments in GNC have found their common
foundations based on theories developed in Europe far before the emergence
of GNC problems. Although the European countries have their own research
styles and foci , European Framework Programmes for Research and Techno-
logical Development, and the Group for Aeronautical Research and Technolo-
gies in EURope GARTEUR have brought all EU nations together in sharing
their knowledge and experience. The GNC community in Europe benefits
also from international cooperation with the United States, the Russian Fed-
eration and the BRIC countries where aerospace is a booming business.

The organization of the CEAS EuroGNC 2013 would have been impossi-
ble without the strong support of many people and communities. On behalf
of the Local Organization Committee of CEAS EuroGNC 2013, we would
like to take the opportunity to thank all contributors to the conference.
These contributors are: Council of European Aerospace Societies CEAS, the
organizers of the first CEAS EuroGNC 2011 in particular also DGLR, the
Faculty of Aerospace Engineering of Delft University of Technology, the Eu-
ropean Conference on Aerospace Sciences EUCASS, the American Institute of
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Aeronautics and Astronautics AIAA, the Institute of Electrical and
Electronic Engineers IEEE, the European Collaborative Dissemination of
Aeronautical research and applications E-CAero, all members of the CEAS
EuroGNC 2013 International Program Committee, all reviewers of techni-
cal papers, the ‘Nederlandse Vereniging voor Luchtvaarttechniek’ NVvL, the
‘Nederlandse Vereniging voor Ruimtevaart’ NVR, the Delft University of
Technology, and the City of Delft.

Last but not least, we are delighted to acknowledge the prominent contri-
bution of the conference Secretary, Ms. Bertine Markus, to the success of the
conference.

The papers in the book are divided into four parts based on the four
technical tracks of the conference: Guidance and Control, Navigation and
Estimation, Atmospheric Applications and Space Applications. Some papers
from invited sessions and papers from the graduate student competition have
also been selected.

The Editors
Delft, The Netherlands
April, 2013
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Linear Parameter Varying Control of an Agile
Missile Model Based on the Induced L,-norm
Framework

Raziye Tekin and Harald Pfifer

Abstract. This paper deals with the application of a linear parameter varying (LPV)
controller synthesis for a modern air defense missile model. The model represents a
challenging control problem due to the wide operation range. First, an LPV model
of the missile is constructed via a novel approach of function substitution. Then,
an LPV controller is designed based on the induced L,-norm framework. A mixed
sensitivity weighting scheme is applied to specify the performance requirements.
In order to fulfill various time and frequency domain criteria, a multiobjective opti-
mization is used to tune the weighting functions of the mixed sensitivity weighting
scheme. Finally, the robustness and performance of the controller is evaluated by
nonlinear simulations.

1 Introduction

Tactical missiles operate over a large flight envelope. Moreover, they need to be
able to perform rapid maneuvers leading to fast variations in the flight conditions.
Hence, a major requirement on the control system is to be able to retain good perfor-
mance despite these fast varying parameters. An autopilot designed on a set of linear
models over different flight conditions and ad hoc scheduling seems unsuitable to
fulfill this demand. Such a design always assumes sufficiently slow parameter vari-
ations. In contrast to this classical approach, the LPV framework introduced in
can directly deal with fast varying scheduling parameters.

In this paper, first a brief theoretical background is given including the derivation
of LPV systems and the controller synthesis in the induced L,-norm framework.
Then, the notions of generalized plant and mixed sensitivity weighting schemes
are introduced. Afterwards, an LPV model is obtained for the considered nonlinear

Raziye Tekin - Harald Pfifer

Institute of System Dynamics and Control,

German Aerospace Center - DLR, Muenchner Str. 20, 82234 Wessling, Germany
e-mail: {raziye.tekin, harald.pfifer}@dlr.de



4 R. Tekin and H. Pfifer

missile based on a function substitution proposed in [2]. A comparison of classical
Jacobian linearization approach to obtain LPV model and function substitution is
given to show the effectiveness of the latter method. A state feedback LPV con-
troller is designed for the function substitution based LPV model using the methods
proposed in [ to track the normal acceleration commands. The controller objec-
tives are defined in the frequency and time domain. In order to fulfill the require-
ments, the weightings are parameterized related to the system dynamics regarding
the closed loop behavior of the LPV system. A multiobjective optimization is used
to tune the parameters of the weightings. Finally, the performance and robustness of
the resulting LPV controller is assessed using nonlinear simulations.

2 Theoretical Background

In this section, linear parameter systems and methods to obtain LPV systems are
introduced. Then, a brief overview of the concept of generalized plant is presented.
Finally, the solution to the state feedback LPV synthesis in the Ly-norm framework
is given.

2.1 LPV Systems

LPV systems are defined as systems which are linear in [x” u”]” but nonlinear in
some exogenous time varying parameters p (¢) : Z* — 22 as shown in Eq.[I]

-[eo 31

For most physical applications, the parameter variation rate is bounded i.e. p(t):
At — P with .
P ={qeZ" | |qi|<vi,i=1,...,n,} )

It shall be pointed out that an LPV system reduces to an LTI (linear time invariant)
system if p is constant and it reduces to an LTV (linear time varying) system when p
is along a predefined trajectory. In contrast to LTV systems, the parameter trajectory
is not now a priori but assuming to be online measurable for LPV systems. Hence,
the following synthesis is not performed along a trajectory p () with p() but over
the corresponding parameter spaces represented by p € &2 with ¢ € &2 as given in

Eq.B

x| _ [A(p) B(p)} H

u {C(P) D(p) | |u 3)
2.1.1 Derivation of LPV Systems

There are various methods in literature to obtain LPV systems from nonlinear sys-
tems such as Jacobian linearization, function substitution and state transformation.
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Detailed information about derivation of LPV systems can be found in [3]]. In this
section, only the two methods which are applied in this study are introduced.

Jacobian Linearization: This method is the most common methodology used to
obtain LPV systems. It requires trimming at a set of equilibrium points and lineariz-
ing at equilibrium points which must span the operation space of the system. There
are various examples using Jacobian linearization to derive LPV systems and de-
sign LPV controllers, e.g [4]. While it is the most widespread, it is generally not
possible to acquire the transient behavior of the nonlinear system. See for the
shortcomings of this approach.

Function Substitution: This approach has been first presented in [6] and further
enhanced in and [3]]. Unlike the Jacobian linearization approach, this method
does not rely on a set of equilibrium points. It is essentially only an analytic trans-
formation of the nonlinear differential equations. Hence, it is possible to capture
the transient behavior of a nonlinear system well. Details of the chosen analytic
transformation for the missile model are presented in Section [3.1]

2.2 LPV Controller Synthesis

In the presented LPV controller synthesis, the requirements of the closed loop sys-
tem are specified using induced L,-norm (i.e. input/output gain) performance objec-
tives. For more detailed description of the method see [1].

:#g
o

(&
>
Y

Fig. 1 Generalized plant

In Fig.[Il a generalized plant is presented where P represents the LPV plant in-
cluding weightings and K the controller. The synthesis problem is to find a controller
that minimizes the closed loop induced L, gain ¥ from the performance inputs d to
performance outputs e as described below:

min | 71 (Kl 4, 2, o)

s.t. Z(P,K) is stable for all admissible trajectories p(f) with bounded parameter
variation rate p(r). #; describes the lower fractional transformation, as seen in
Fig.[
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The synthesis problem Eq. [l can be solved by applying a generalized version of
the Bounded Real Lemma for LPV systems. The Bounded Real Lemma provides
an upper bound on the induced L,-norm of a given LPV system for the bounded pa-

rameter variation rate p(¢). In order to shorten the following notation, a differential
operator dX (p,q) is introduced as in [[7]. For continuously differentiable X (p), the

differential operator X (p,q) is defined as 9X (p,q)=X.;" "f;f,j’ ) gi- With this choice

of dX(p,q) represents the first time derivative of X (p(¢)) for any trajectory p(z).

Bounded Real Lemma: Let P be an LPV system of the form Eq. Bl then P is expo-
nentially stable and [|P|| o, _, ,, < yforallV(p,q) € & x Z,if 3X(p) > 0 such that

V(p,q) e P x P

AP)XT(p)+ X (p)AT (p)+ 09X (p,q) X(p)B(p)] = [CT(p)
Y BT(ﬁ)X(Péj e f}ﬂ]p ] + { P } [C(p) D(p)] <0

2.2.1 State Feedback Synthesis

With the help of the Bounded Real Lemma, the synthesis problem defined in Eq. ]
can be turned into a semidefinite program. In this study, only the state feedback
problem is considered, as the missile example belongs to this class. In this case, the
generalized plant can be written as Eq.

X Alp) Bi(p) Ba(p)|

el _ Cl](p) 0 0 d (6)
e Cu(p) O I "

y 1 0 0

Introducing new variables R(p) = ¥y X (p), dR(p,q) = —y X '9X (p,q)X ' (p)
and A(p) = A(p) — B2(p)Ci2(p), and applying the Bounded Real Lemma on the
closed loop F;(P,K), the controller synthesis problem Eq. @l becomes:

miny, s.t. I(p,q) € P x P
R(p)

R(p)>0
R(p)A(p)" +A(p)R(p) — IR(p,q) — Ba(p)BL (p) R(p)CT,(p) v 'Bi(p)
Cui(p)R(p) —I 0 <0
Y 'Bi(p)” 0 -1
@)

It is not possible to solve Eq.[Zlover the whole function space of R(p). Hence, R(p)
has to be restricted to a finite dimensional space. The function R(p) is defined by a
set of basis function g(p) of the form:

R(p) = 2.8(P)R; ®)
J
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Note that the constraints in Eq.[Zlare actually infinite dimensional due to their depen-
dency on p and ¢. Since g enters in Eq.[Zlonly affinely and the set Z is a polytype,
it is sufficient to check the constraints on the vertices of 2. To deal with depen-
dency on p, a grid over P is generated and the constraints are only checked on this
grid. This approach is common in literature, see for example [1]]. Finally, the state
feedback control law is given by

K(p)=—(B3(p)R"'(p)+Cra(p)), ©)

where the controller K(p) is a continuous matrix function of p.

2.2.2 Generalized LPV Plant

The mixed sensitivity weighting scheme is a well known and common concept to
define the controller objectives in the induced L,-norm framework [8]. The gener-
alized plant which is the plant augmented by the weighting functions is depicted in
Fig.[l In this weighting scheme, the closed loop sensitivity function S = (I +GK) ™!
and KS are shaped by W, and W, respectively. Due to the choice of the performance
input d as seen in Fig.[2] the sensitivity function S and KS are weighted by the plant.

Fig. 2 Structure of mixed sensitivity scheme for generalized plant

The transfer functions of W,, and W, are given in Eq. [0l where ), is the desired
roll-off frequency of the controller input, k, the low frequency gain of W,, @ is
the desired minimum bandwidth of the closed system and ky, is high frequency gain
of Wy to penalize the overshoot which are further going to be optimized for LPV
controller design.

S+ Wy S+ p

W, = 100k W, =k, 10
! “s+100w," 7 Ts+0.005 (10)

3 LPV Controller Design for the Missile Model

In the following section, the design process of the LPV controller is described for
longitudinal motion of a missile. First, an LPV model of the nonlinear missile dy-
namics is derived by function substitution. Jacobian linearized and function substitu-
tion based LPV models are compared with nonlinear simulation. A mixed sensitivity
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weighting scheme is applied for the controller design. After defining the structure
of the weighting functions given in Section[2.2.2] they are optimized. Then, an LPV
controller is designed based on the approach described in Section

3.1 LPV Modeling

The model and aerodynamic database is taken from [9] which includes all flight
regime including boost phase with thrust vector control. However, in this paper,
only the post boost phase is studied. The body axes longitudinal motion of the tail
controlled air defense missile, extracting flexible and high angle of attacks phenom-
enas, can be described by the following differential equations:

Wzl(FZ_qu)a q:M7 (11)
m I

where m is the missile mass, I, the inertia in principal axes, ¢ the pitch rate, o the

angle of attack and u the longitudinal velocity. Since in this study only the post boost

phase is studied, mass, inertia and center of gravity are constant and the gravitational

force is neglected. All the considered forces and moments are aerodynamic. The

related aerodynamic forces and moments are modeled as:

F, = Q(Ma,h)SC,(Ma,c,d,)

12

M = Q(Ma,h)SICyy(Ma, ., d,) (12)

Here, h is the altitude and Q, S, Ma, 8, and I denote dynamic pressure, reference

surface, Mach number, elevator deflection and reference length, respectively. The
aerodynamic coefficients can be decomposed into the following structure:

Cy = Cz()(Ma, O() +C256 (Ma, O()5e

13
Cy = Cyo(Ma, o) +Cyy(Ma,a)lq/(2V) + Cys,(Ma, o) 0. (13)

where V is absolute velocity and Czs, and Cys, are the derivatives of the aerody-
namic coefficients with respect to the elevator deflection angle. Note that in the
aerodynamic data set of [9] C;, and Cy, are actually not affine in J,. Still, this as-
sumption is well justifiable as they are almost affine.

Using Eq. Eq. [[3l and u = V cos ¢, the nonlinear missile dynamics can be
written as

; 0  Vcosa ! Czo(Ma, o) Bc,s (Ma, o)
w w Z0 ) Z0, )
"= 2 +0S | T + - 5
[q} [O gf‘finMq(Ma,oc) [q} Q 1, Cmo(Ma, @) QI?ICMT(;E(Ma,a) ¢
~ -

F(Ma,0)
(14)
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The system Eq.[I4]is already almost in the form of an LPV model. The only remain-
ing step is a function substitution of f(Ma,a), such that f(Ma, o) = A|(Ma, ot)w.
For this purpose the method proposed in is used. It exploits the relation w =
Vsin o by introducing

Con 0, ifa=0 Con 0, ifa=0
Zhar = Cz/(sine), otherwise’ Mbar = Cmo/(sina), otherwise

With Eq. [15] the missile dynamics can be written in LPV form with the parameter
vector [Ma o] as

| OSCipyr/mV Veos(a) 0SC,5,/m

w
|:q:| B |:QSlCmbar/1}V QSlszq/ZI}V} |:q:| + |:QSlCm5£/Iy:| 86 (16)

400 150 -
0 ——Nonlinear
e i - - -Func. Subs.
100 -=Jac. Lin.

w (m/s)

Q
=
-150 ! — Nonlinear
- - -Func. Subs.
200 - -Jac. Lin.
0 1 2 3 4 5 5 6 7 8 9 10
time (s) time (s)

Fig. 3 Comparison of linearly scheduled Jacobian linearized and function substitution based
LPV systems

A comparison between a Jacobian linearized and a function substitution based
LPV system is presented in Fig. 3l In the simulation, the velocity is decreasing from
Mach 2.5 to Mach 1 and the angle of attack range is between O and 20 degrees.
The Jacobian linearized LPV system seems better at the low angle of attack regime.
The worse accuracy of the function substitution based model in this region most
likely stems from the affine approximation of the dependence of the aerodynamic
coefficients on the elevator deflection angle. This assumption is not required in the
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Jacobian linearization case. Although Jacobian linearized LPV system has this ad-
vantage, when the whole flight regime including the high angle of attack regime is
examined, it can be said that the function based LPV system is the better approxi-
mation. Hence, the controller design will be applied onto the function substitution
based LPV system.

3.2 Controller Design

Based on the function substitution LPV model described in the previous section, an
induced Ly-norm LPV controller is designed for the nonlinear missile model. The
weighting scheme introduced in Section is used to specify the performance
requirements of the controller. The major aim of the controller is to provide good
tracking performance in the acceleration (a,). First of all, a state transformation is
applied on the system, in order to turn the synthesis into a state feedback problem.
The new states are the acceleration (a,) and the pitch rate ¢ which can both be mea-
sured by an inertial measurement unit (IMU). The controller synthesis is conducted
using 64 grid points to cover the flight envelope which are:

e a=[0:3:21)°
e Ma=1[1121314151.6224]

It shall be emphasized that the Mach number gridding needs to be finer in the tran-
sonic region, where the system dynamics are changing critically. The parameter
variation rates are bounded by |Ma| < 0.2(Ma/s) and |¢&| < 100(°/s). These values
are chosen with respect to the flight envelope of the missile [10].

The structure of the parameter dependent R is chosen as:

R(Ma, o) = Ry + Ma;R, +Ma’Ry + 04R3 + 0’ Ry

This choice of R(Ma, o) is motivated by using a few simple basis functions to keep
the computational burden of the synthesis low.

3.3 Optimization of the Weighting Functions

Finding suitable weighting functions is not an easy task. In order to handle this
problem, the weighting functions are parameterized and optimized over all the grid
points. The roll-off frequency (w;,) and the low frequency gain (k,) of W, are pa-
rameterized with respect to the most dominant flight parameter, namely the velocity
which has a large impact on the dynamics.

©ro =wy (1) +wy,(2)Ma;, ky = wy(3) +wy(4)Ma; 17)

The corresponding control effort penalty is depicted in Fig.[dl As seen in the Fig. [l
as the Mach number increases, the control effort is penalized more because con-
trol power is higher than at low Mach numbers, i.e. the missile needs less elevator
deflection angle to achieve the same accelerations at high Mach numbers.
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The gain and bandwidth of W) is not only parameterized with respect to the
Mach number but also the angle of attack. Moreover, the minimum bandwidth of
the closed system is parameterized as a function of the natural frequency of the
missiles short period dynamics (®,). With this parameterization less bandwidth is
demanded at low velocities, where the open loop system is slower than at high ve-
locities, see Fig. [ Similarly, the tracking performance is less penalized at higher
angle of attacks, because the open loop bandwidth is lower in comparison to lower
angle of attacks.

wp = Oy (Ma, c)wy(1), ky=wy(2) +wy(3)Ma; —wy(4) (18)

30

20E
Ma T, o. constant
10f

Ma constant, o T

maghnitude (dB)

10° 10° 10
frequency (rad/s) frequency (rad/s)

Fig. 4 Performance penalty W), and control effort W,

With the weighting functions W, and W, only a general trend can be specified for
the controller objectives, as shown in Fig. @l Detailed performance and robustness
requirements are usually not given in terms of input/output gains but as a mixture
of frequency and time domain criteria. For the present missile model these require-
ments are defined in Table [Il Note that the demanded settling and rise time depend
on the Mach number to better exploit the capabilities of the missile. To ensure that
the controller is robust, classical gain and phase margin requirement are used.

Using these criteria (Table[T)), an optimization problem is specified. The tuners of
the optimization are the free parameters in the weighting functions, see Eq.[I7]and
Eq.[I8 The aim of the optimization is to find suitable weighting functions that min-
imize rise and settling time while not violating any of the specified constraints. The
problem is solved for each point of the synthesis grid using the Matlab optimization
environment MOPS [[11]]. At each grid point, it successfully surpasses the demand
values and satisfies the constraints. Table [2| presents the optimized tuners, w,, and
wy, respectively.
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Table 1 Optimization parameters

Inequality Constraints Value Demands Value
Phase Margin 50—90° Settling Time 0.5/Mas
Gain Margin 10-20 dB Rise Time 0.2/Ma s
Undershoot <20%

Overshoot < 10%

Gamma Value [12.9]

Table 2 Optimization results of weighting tuners

Wy, Value W, Value
wy(1) 0.55 wy (1) 90
wy(2) 0.1 wyu(2) 9.125
wy(3) 0.995 wy(3) 0.4237
wy(4) 0.018 wy(4) 0.33

4 Nonlinear Simulations

To assess the robustness performance of the design, £10% uncertainty are consid-
ered in mass, center of gravity, inertia, aerodynamic forces and moments. Nonlinear
simulations are performed for every combination of minimum and maximum values
of these uncertainties. This results in 512 simulations.

The simulation results are presented in Fig.[3] and Fig.[@l During the simulation,
step signals in the reference acceleration are applied between 250-50 m/s*> depend-
ing on the velocity, Fig.[3 All of the nominal results are given in bold lines. Overall,
the degradation of the performance due to the considered uncertainties is very low.

The scheduling parameters are illustrated in Fig. During the simulation the
angle of attack is changing from 0 to 16 degrees. The velocity is decreasing from
Ma =2.5to Ma = 1.In addition, the altitude is also changing from 2500 to 4000 me-
ters. Note that the controller is not scheduled with respect to these altitude changes.
The control surface deflections are depicted in Fig. As seen in the figure, the
deflection angles are between +18 degrees which is within the limits of the consid-
ered actuator system. In the transonic region, the control effort increases drastically
for the uncertain cases in comparison to the nominal simulation. In the worst case
15 degrees of deflection have to be applied instead of 5 degrees to achieve the same
performance. However, 15 degrees are still within the limits of the actuator system.
The difference in the rest of the flight is not very noticeable.
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Fig. 5 Tracking performance of the LPV controller
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Fig. 6 Time histories of the nonlinear simulations

5 Discussion and Conclusion

An LPV controller synthesis for a tail controlled missile is presented in this paper.
First, the nonlinear missile dynamics are brought into an LPV form using the inno-
vative method of function substitution, see [2]. It is shown that the resulting LPV
system captures the behavior of the nonlinear missile over wide operation condi-
tions better than a classical LPV modeling approach based Jacobian linearization.
Second, a state feedback LPV controller in the induced L,-norm framework (see
[1) is designed for the LPV model. A multiobjective optimization problem is used
to tune the weighting functions for the controller design. Robust performance simu-
lations are conducted with £10% uncertainty on all relevant flight parameters. The
results of these nonlinear simulations show that the proposed controller synthesis
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method is capable of providing the required level of performance for the missile
model. In the future, the complete flight envelope shall be covered by the LPV con-
troller including the very challenging boost phase.
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Improving the Performance of an Actuator
Control Scheme during Saturation

Chang How Lo, Hyo-Sang Shin, Antonios Tsourdos, and Seung-Hwan Kim

Abstract. This paper first introduces a new control scheme for a four fin missile
actuation system. Exiting missile autopilot systems generally compute aileron, ele-
vation, and rudder commands since these three variables dominantly influence the
roll, pitch, and yaw motion of the vehicle. These commands are distributed to four
fin deflection commands and fin controller actuates the fins to track the defection
command. The performance of such control schemes can be significantly degraded
when fin actuators are saturated due to certain physical constraints, such as voltage,
current, or slew rate limit. This paper analytically proves that the proposed control
scheme mitigates this problem, so it outperforms the conventional control scheme in
the tracking performance if an actuator is saturated. Without any actuator saturation,
the performance of the proposed scheme is also proved to be equivalent to that of
a conventional actuator scheme. Numerical simulations verify the superiority of the
proposed scheme and the theoretical analysis.

1 Introduction

The performance of the actuation system plays a decisive role in determining the
performance of the flight control system, especially for a highly manoeuvrable
air vehicles [[7]. The vehicles are generally controlled by fins of which defection
produces aerodynamic force. However, in classical autopilot design, the autopilot
produces virtual roll, pitch and yaw moment demands instead of physical fin
deflection commands. These moment demands are then ‘mixed’or allocated by an
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control allocation algorithm to generate individual actuator commands. The actuator
commands will typically be tracked by their individual actuator controllers. Com-
mon problems faced in the actuators are that they may be saturated due to their
physical constraints such as voltage, current, or slew rate limit. These problems can
result in the significant performance degradation of the flight control system, or
worse still, destablize the entire system.

Many approaches have been proposed to tackle this problem. One way is to treat
this as a control allocation problem, and methods such as redistributed pesudo in-
verse [8]], dynamic control allocation [3]], and direct allocation [4] have been devised
to optimally handle these actuator constraints. However, many control allocation
methods do not track the actuator’s actual performance, and thus possible devia-
tions from the desired autopilot virtual commands can happen whenever there are
unexpected degradations in the physical actuator due to faults, or disturbances.

In the design aspect, numerous control methodologies have been researched on in
designing control schemes to handle actuator saturations and constraints with con-
siderations on the stability, domain of attraction, and performance of actuation sys-
tem. Extensive reviews and design methodologies of them can be found in Ref. []]
and Ref. [6]. In a typical conventional actuator scheme, each actuator has a dedi-
cated controller to track its assigned command from a outer control loop. Practical
implementations of such schemes are commonly found; an example is Ref. [9].

However, many of these methodologies aim at the design of a single actuator, and
not as an actuation system. This may not fully exploit the analytical redundancies
found in many systems to improve on the performance, or enhance its robustness to
faults.

In our previous study [[7], a new alternative actuator control scheme for a four
tail fin controlled missile is proposed to alleviate the performance degradation re-
sults from actuator saturation. To utilize the analytically redundant actuator, the pro-
posed scheme regulates the error in the virtual moment space rather than the physical
fin deflection space. This alternative approach contrasts with ideas from Ref. [10],
where linear in-line filters are used to exploit the actuator redundancy space to alle-
viate input rate and magnitude saturations.

This paper extends on our previous work in Ref. [7] to theoretically analyse the
performance of the proposed actuator control system, which presented simulation
results without formal proof. The main aim of this analysis is to analytically show
that the proposed scheme outperforms the conventional actuator control scheme un-
der actuator saturation. The performance index for the analysis is defined as the
magnitude of the actuator tracking error, since the smaller the tracking error is,
the better the performance is. From the analysis, in unsaturated operation region,
it is proved that the performance of the proposed scheme is equivalent to that of
a conventional scheme. The superior performance of the proposed scheme is also
proved when one actuator is saturated. Simulation results verifying the analysis is
then shown.

The organization of the rest of the paper is as follows. A description of the con-
ventional and proposed control schemes are presented in SectionPl The main results
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of the paper are presented in Section[3, where the two control schemes are compared
analytically. In Section F] the simulation setup is described, and simulation results
verifying the analysis are shown. Finally, the paper is concluded in Section[3l

2 Description of Control Scheme

2.1 Conventional Control Scheme

Figure [Il shows a conventional actuator control architecture for a four tail fin con-
trolled missile. A classical autopilot outputs virtual command &y in the roll, pitch
and yaw moment space to the actuators. These commands are then allocated or mixed
to individual actuator’s controller for tracking by their local controller. The response
achieved from actuator controllers in the moment space can be found by deallocating
the individual actuator response as a measure of the control performance.

1) %4 )

L2 con |—=5{ act -

1) vV )

2551 cON 25 ACT
8re ——) — 5,
Spe | Allocation 5 v ‘ 5 Deallocation > Op
o) BCA ] 3¢ 3¢ 3 PCA o)
ye ——> CON ACT —— &,

54_ % ‘ 64-

—— con 251 AcT

Fig. 1 Conventional Actuator Control Architecture

The closed loop transfer function for the conventional actuator control scheme
for the autopilot demands is

_ 6m(s)
N 5mc(s)

KK;G
ca (I+KKSG> ca ( )

Go(s)

where Ope = [5rc Opc Oye ] " is the virtual control demand from the autopilot,6y, =

[5, 3p 3y ] T is the resultant response from the actuators in the virtual space, K =
diag(K;) is the actuator controller. The i actuator is described by two terms: a lin-
ear actuator model Gj;, which is preceded by a physical voltage constraint Kj;. The
four actuators can be combined mathmatically as G = diag(G;) and Kg = diag(Kis).



18 C.H.Loetal.

Kis is the standard saturation function to describe the physical voltage input
constraint, V.. In frequency domain, the nonlinear saturation function can be
represented as

Kis = la ‘Vc| < Vinax 2)

0<Ki<1, Vel > Vinax (3)

It is assumed there is no unstable pole zero cancellation in the system. For a four
tail fin missile under consideration here, the control allocation matrix is

0= Bca 5m
o 11 -1
5; (111 gr @)
G| [1-11 3”
04 1 —1-1 Y
and the deallocation matrix P¢, being
1 111 1
Pca:4 I 1-1-1 (5)
-11 1 —1
with
PeaBea =1 (6)

or P¢, being the pseudo inverse solution of B¢,. The control allocation matrix is
obtained by considering the resultant torque generated by each actuator’s position
from the aerodynamics point of view.

2.2 Proposed Control Scheme

Figure 2l shows the control scheme first proposed in our previous study [[7]]. Here,
the actuator control scheme regulates the tracking error in the virtual moment space
space before control allocation. This contrasts with the conventional control scheme
regulating the physical tracking error of each individual actuator. The closed loop
transfer function of the proposed scheme can be derived as

KP. KsGBe,

Gols) = || KP,K,GB

@)
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Fig. 2 Proposed Actuator Control Architecture

3 Comparison of Control Schemes

The comparison of the two control schemes is divided into two cases: linear (non-
saturating) case, and when one actuator is saturated.

3.1 Non Saturation Case

Replacing K;; with unity gain in Equations[lland [7, and assuming the actuators and
their controllers are similar G; = G and K; = K, it can be verified that both control
schemes can be reduced to the following linear transfer function:
Som(s) GK 100

= 010 (8)
Ome(s) GK+1 001

The significance of this case is to show the two control schemes are equivalent
during nominal operation, and proof that the improvement in performance of the
proposed scheme shown later is not due to increase in gain. In practice, this may
reduce the amount of design analysis needed to convert from the proposed scheme
for any existing actuator scheme.

3.2 One Actuator Saturation Case

Next, the analysis is extended to the case when one actuator is saturated during
operation. First, assume Actuator Number 4 is saturated. This can be represented by

100 0
010 0
Ks = 001 0 ©)

000 Ky
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where Ky; < 1. Substituting Equation [9] into Equation[7 for the proposed scheme,
and rearranging with Equation[Qlreveals

GK
O = (GK+1> Ore
1
Ky — 1
~1 Spe
* (K (G+3GK4S)+4) B 5
yc

1
GK
= 6rc
GK+1

1 Ky — 1
Ty (K(G+3GK4S)+4> Osc (10)
GK
% = (GK—i—l) Ope
T
+ K4Y 1 _11 grc
K (G+3GKy) +4 i 3""
ye
_( GK )6[]6
GK +1
1 Ky — 1
- . 11
4<K(G+3GK4s)+4> 04 (D

GK
6y(GK—|—1> %
T
N K4S71 *11 grc
K (G+3GKy) +4 i e
GK
B (GK+1) O

1 Ky —1
- . 12
4<K(G+3GK4s)+4> 2 (12)

Equations[I0]to [[2] show the effect of actuator saturation. The first term on the right
hand side of these equations is the nominal unsaturated performance of the actua-
tor, while the second term is the additional dynamics introduced by the saturated
actuator. For the conventional scheme, similar relationships can be obtained by ma-
nipulating Equation[]in the same manner to obtain Equations[I3]to
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GK
o

+ K4s_1 11 grc
4GKKsys+4) | 4 5""
yc
_( GK g
“\GK+1) "
1/ Ki—1
. 13
+4(4GKK4S+4)84° (3)
GK
5"_(GK+1)5’”
T
K4S71 -1 Src
+ 1 Ope
4GKKi+4) | | 5
C
_( GK N\
" \GK+1) "
1 Ky — 1
- 5 14
4<4GKK4S+4> e (14)

GK
%= (GK+ 1) O

T
+( Ko 1 ) R
'pc
4GK Ky +4 1 8y

_( GK s
\GK+1) ™"
1 Kiy—1
- 1
4 <4GKK4S+4> Orc (1)

Similarly, the effects of actuator 4’s saturation can be accounted for the conventional
actuator scheme. The second term on the right hand side of Equations [I3] to [[3]is
the detrimental contribution by the saturation.

Comparing between the proposed and conventional schemes, it can be seen the
numerator of the saturation dynamics for both schemes are the same at (K — 1)
from Equations [10] to Now, comparing the denominator of conventional and
proposed scheme, it can be seen that

(4GKKys+4) < (GK +3GKKys+4) (16)



22 C.H.Loetal.

by noting that K4; < 1 during actuator saturation. This implies the magnitude of
the effect caused by the saturation term for the conventional scheme will be bigger
than the proposed scheme. The alleviation in actuator saturation in the proposed
scheme in this case is due to the availability of actuator redundancy, which enables
the controller to increase the commands of the other non-saturated actuators.

The same results are obtained when saturations occur with other actuators in
the control scheme. For the single actuator saturation case, the proposed control
scheme’s results in Equations[I0]to M2 can be generalised to

GK

Ome = cp

(I+PeaDBca) 6m a7)
with the appropriate actuator being saturated, and the other Kj; being equal to 1. For
the proposed actuator scheme, D is defined as

. K, —1
D = diag |4 18
’“g[ (KG+3GKKiS+4)] (18)

Similarly, the corresponding single actuator saturation case using conventional ac-
tuator control scheme’s results, described in Equations[I3]to[I3] can be generalised
to Equation[I’7] with D defined as

Kis—1
D = diag |4 1
d’ag[ (4GKK,<S+4>} (19)

The generalizations here assumes the structure of B¢y and Py, and their relation-
ship described in Equations M to [l Overall, one can see that the proposed scheme
is superior to the conventional scheme, as the magnitude of D in Equation [[§] for
the proposed scheme is smaller than the magnitude of D in Equation [19] for the
conventional scheme. Next, simulations results are presented.

4 Simulation

4.1 Simulation Model

The actuator plant used in the simulation is described in [7], which is shown in
Figure Bl The plant is a typical DC motor with gearing, and explained in Ref. [3].
The parameters used in are detailed in Table[dl

A cascaded two loop controller shown in Figure@is used to provide good control
performance of the actuator plant from Ref. [7]. The control law is

Vi(t) = K, (8:(1) — 8(t)) — Ky (3(;)) (20)

where & is the commanded deflection angle, and K, = 6 and K; = 0.02 are gains for
the control law. The reference command used in this simulation is a sinusoidal input
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Table 1 Actuator plant parameters used in the simulation

Parameters Values Parameters ~ Values
Kr 0.303125 Kp 5.7333x10~%4
L 0.35x 1073 H 0
R 0.933 Viim 28
J 8.5354x 1077 N 274
B 2.0835x 1076
H
N
Viim )
1
V. — j'C * Ky + 1 > l — §
_|Ls+R Js+B S N
~Vlim
1 .
N
Fig. 3 Actuator plant model used in the simulation
+ +
Wa S, -
8 T K >

Fig. 4 Controller used for controlling the actuator plant used in the simulation

at 0.3 rad/sec as input virtual commands for all 3 virtual demands. This continuously
changing reference input allows for visualisation of the differences between the two

control schemes.

4.2 Simulation Results

The unsaturated simulation results are first shown in Figures[§land [6] The two con-
trol schemes perform exactly the same as expected from theoretical analysis pre-

sented earlier.
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Fig. 5 Simulation results showing the 2 control schemes having exact responses when there
is no actuator saturation events. The blue line is the proposed scheme, green dotted line is the
conventional scheme, and red line is the virtual command.
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Fig. 6 Simulation plots showing no saturation results showing the 2 control schemes having
exact responses when there is no actuator saturation events. The blue line is the proposed
scheme, green dotted line is the conventional scheme, and red line is the virtual command.
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Fig. 7 Simulation results for 1 actuator saturation case. The blue line is the proposed scheme,
green dotted line is the conventional scheme, and red line is the virtual command.
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Fig. 8 Individual actuator responses for 1 actuator saturation case. The blue line is the pro-
posed scheme, and green dotted line is the conventional scheme. The red line shows the
unsaturated reference signal from previous simulation in comparison.

To simulate the effect of actuator saturation, the maximum voltage input level for
Actuator Number 2 is reduced by 90 percent of its original value. This can also be
thought of the actuator having a fault to reduce its effectiveness.

Figure[7] shows the simulation results with Actuator Number 2 voltage range re-
duced. The proposed scheme is able to track the virtual demand relatively well for all
three virtual demands. In contrast, the conventional scheme shown with green dot-
ted line exhibits poor tracking consistent across the three virtual demands. Figure[8]
shows the individual actuator responses for the same simulation. It can be seen the
proposed scheme is able to exploit the available actuator capability when actuator
2 is saturated to improve the performance over the conventional scheme. This also
implies the need for the remaining healthy unsaturated actuators to have remaining
actuator margins in physical constraints for the proposed scheme to exploit.

5 Conclusion

Analytical analysis of a proposed actuator control scheme over conventional control
scheme is presented. By directly regulating tracking error in the moment space, the
change in the control variables over conventional actuator control schemes improves
the tracking performance during actuator saturation when there is available actuator
redundancy available. The proposed scheme is shown to be superior in performance
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when one actuator is saturated with smaller magnitude in the error dynamics. This
is due to its ability to utilize the available redundancy to reduce the performance
degradation. Simulations verified the theoretical analysis.
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Concurrent Learning Adaptive Model
Predictive Control

Girish Chowdhary, Maximilian Miihlegg, Jonathan P. How,
and Florian Holzapfel

Abstract. A concurrent learning adaptive-optimal control architecture for aerospace
systems with fast dynamics is presented. Exponential convergence properties of con-
current learning adaptive controllers are leveraged to guarantee a verifiable learning
rate while guaranteeing stability in presence of significant modeling uncertainty.
The architecture switches to online-learned model based Model Predictive Control
after an online automatic switch gauges the confidence in parameter estimates. Feed-
back linearization is used to reduce a nonlinear system to an idealized linear system
for which an optimal feasible solution can be found online. It is shown that the states
of the adaptively feedback linearized system stay bounded around those of the ide-
alized linear system, and sufficient conditions for asymptotic convergence of the
states are presented. Theoretical results and numerical simulations on a wing-rock
problem with fast dynamics establish the effectiveness of the architecture.

1 Introduction

Model based optimal control of dynamical systems is a well studied topic. For ex-
ample, one of the most commonly used techniques for linear and nonlinear systems
with constraints is model predictive control (see e.g. [4} 30, 20]). While this tech-
nique has been heavily studied and implemented for slower industrial processes,
only in the past decade enough computational power has become available to en-
able online optimization for fast system dynamics typical of aerospace applications
(some relevant demonstrations are in [14} [15} [13} 132} |33} 5]). MPC depends on a
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dynamic predictive model of the system. However, unaccounted modeling errors
and dynamic variations in any real world scenario often result in an a-priori gener-
ated model of a system becoming obsolete or inaccurate. In such cases, the stability
and performance of an MPC approach cannot be guaranteed, especially if the un-
derlying dynamics are nonlinear [31]. One way to deal with this is to estimate pa-
rameters of the dynamic model online, and then generate optimal controllers at each
time step assuming that the estimated model at that time step is the correct one. This
results in an indirect adaptive control approach that uses the principle of certainty
equivalence (see e.g. [19} 2]]). The benefit of this indirect-adaptive MPC approach
is that it allows for a way to incorporate learning in the MPC framework. However,
the main drawback of this method is that it is difficult to guarantee stability, espe-
cially during parameter estimation transient phases. This is one major challenge in
synthesizing algorithms for online adaptive-optimal control [25].

Several authors have made key contributions to implementing such adaptive MPC
architectures. Fukushima et al. used the comparison principle to develop adaptive
MPC for linear systems [[17]. Adetola et al. considered adaptive MPC of linearly
parameterized nonlinear systems and showed that one way to guarantee stability is
to ensure that the initial parameter errors are within certain bounds [[1]. Aswani et
al. explored and experimented in flight with the notion of safe-MPC by guarantee-
ing that control inputs are selected such that the system evolution is constrained to
(approximations of) invariant reachable sets. Their work has clearly demonstrated
that adaptive MPC can indeed result in improved flight performance through flight
testing. However, they used an EKF for parameter estimation, which is known to
not guarantee predictable and quantifiable learning rates under general operating
conditions, and concentrate on linear dynamical systems [} 3]. In general, while
significant progress has been made in adaptive MPC, the results tend to be con-
servative, as the presence of learning transients prevent a general non-conservative
solution to be formed.

On the other hand, adaptive control is one of the most well studied areas in con-
trol systems theory. In adaptive control algorithms and techniques are developed
for dealing with modeling uncertainties and disturbances. Direct adaptive control
methods directly modify the system input to account for modeling uncertainties. In
a certain light, these techniques could be viewed as model-free, in the sense that they
do not focus on learning the system model, but rather on suppressing the uncertainty
pointwise-in-time to minimize the instantaneous tracking error. Direct adaptive con-
trollers can guarantee stability, even during harsh transients, however, they do not
offer any long-term improvement due to model learning unless the system states are
persistently exciting (PE; see e.g. [6]). Furthermore, it is difficult to generate opti-
mal solutions in presence of input and state constraints with direct adaptive control
architectures.

Adaptive control literature also consists of hybrid-direct-indirect control archi-
tectures. For example, Duarte and Narendra, Lavretsky, and Chowdhary and John-
son have shown that modifying direct adaptive controllers such that they focus
also on learning the uncertainty improves performance (see e.g. [12, 24} [9]). The
power of these techniques is that they can handle harsh learning transients,guarantee
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learning of unknown model parameters subject to conditions on the system trajecto-
ries, and guarantee system stability during the learning. It is natural therefore, to hy-
pothesize that adaptive-optimal control algorithms can be devised that use provable
hybrid adaptive control techniques to guarantee stability in the learning phase and
then switch automatically to model-based optimal control algorithms (e.g. MPC) af-
ter sufficient confidence in estimated parameters has been gauged online. One such
architecture is proposed in this paper and displayed in Figure [[l The main chal-
lenges in developing such an architecture include guaranteeing a verifiable learning
rate for the uncertainty estimation such that the uncertainty is approximated in fi-
nite time before the architecture switches to the online learned model-based optimal
controller, guaranteeing stability before and after the switch, and guaranteeing that
the architecture can switch back to the adaptive controller if ideal parameters of the
system change.

In this paper, we present a Concurrent Learning based adaptive-optimal Model
Predictive Controller (CL-MPC) to address these challenges. Our architecture lever-
ages the CL algorithm of Chowdhary and Johnson [9, 8], which guarantees simulta-
neous system stability and exponential convergence to the ideal parameters without
requiring persistency of excitation. This allows us to guarantee verifiable conver-
gence rates. A online metric is developed to initiate a switch to MPC. Learning
continues while the system is in MPC using a variant of the CL algorithm, and it
is shown that exponential convergence of parameters can be guaranteed if the basis
of the uncertainty is known. Furthermore, using a feedback linearization approach
we show that a feedback linearizable nonlinear system can be transformed into a
a linear system for which an optimal feasible MPC solution can be formulated in
presence of constraints. This greatly helps in ensuring feasibility of obtaining an
optimal solution for aerospace systems with fast dynamics, as one need only to
solve the MPC problem for the ideal feedback linearized system. It is also shown
that the actual feedback linearized system’s solution is mean square exponentially
bounded around the ideal system, and sufficient conditions are provided to guar-
antee asymptotic convergence to the ideal solution. The presented architecture is
validated through simulation on a wing-rock dynamics system. The results show
significant improvement over an adaptive-only approach in presence of significant
modeling uncertainty.

2 Approximate Model Inversion Based Model Reference
Adaptive Control

Let x(¢) € Dy C R", §(t) € D5 C R!, and consider the following multiple-input
nonlinear uncertain dynamical system

() = f(x(1),6(1))- (D

The unknown function f(-) is assumed to be globally Lipschitz and the control
input 6 is assumed to be bounded and piecewise continuous, so as to ensure the
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Fig.1 An adaptive-optimal control architecture. A learning-focused adaptive controller guar-
antees stability while learning uncertain system parameters. Once sufficient confidence has
been gauged online in the estimated parameters, the architecture switches to using an online
model-based controller, such as MPC. The resulting switched adaptive-optimal controller is
guaranteed to be stable without being conservative about initial parameter errors.

existence and uniqueness of the solution to (). Furthermore, it is assumed that an
admissible control input exists that drives the system from any initial condition in
D, to a neighborhood of any arbitrary point in Dy in finite time. It is further assumed
that / < n (while restrictive for overactuated systems, this assumption can be relaxed
through the design of appropriate control assignment [16]).

The Approximate Model Inversion based MRAC approach used here feedback
linearizes the system () by finding a pseudo-control input v(z) € R that achieves
a desired acceleration. If the exact plant model in equation () is known and invert-
ible, the required control input to achieve the desired acceleration is computable by
inverting the plant dynamics. However, since this usually is not the case, an approx-
imate inversion model f(x,8) is employed. The inversion model is chosen to be
invertible w.r.t. §; the operator /! : Rt/ — R/ is assumed to exist and assign for
every unique element of R"*! a unique element of R’.

The following assumption guarantees invertibility of 7(x,8) w.r.t. § [21]].

A . f(x,8) . .

ssumption 1. °’ 55/ is continuous w.r.t 6 and nonsingular over Dy x Ds.
Given a desired pseudo-control input v € R a control command & can be found by
approximate dynamic inversion:

§=F"xv). 2)

Let z = (x,0) for brevity. The use of an approximate model results in a modeling
error A for the system,

A(2) = f(z) - (). 3)
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It should be noted that if the control assignment function (the mapping between
control inputs to states) is known and invertible with respect to 8, then an inversion
model exists such that the modeling error is not dependent on the control input J.

The modeling uncertainty can be assumed to be represented using a linear com-
bination of basis functions. The basis functions can often be designed based on
knowledge of the system dynamics (see e.g. [37, 9]). Alternatively, universally ap-
proximating bases, such as Gaussian radial basis functions, can be used ([23])). In
either case, letting the basis be represented by ¢(z) € R”, we assume the existence
of an ideal weight matrix W* € R"*! such that

A2) =W 9(2)+n(2), )

where the representation error Nsup = sup,cp_||7(z)]| is bounded over D.
A designer chosen reference model is used to characterize the desired response
of the system

Xrm :frm(xrmvr)v 5

where f,, () denote the reference model dynamics, which are assumed to be con-
tinuously differentiable in x,,, for all x,,, € D, C R". The reference command r(t)
is assumed to be bounded and piecewise continuous, furthermore, f, (+) is assumed
to be such that x,,, is bounded for a bounded reference input.
Define the tracking error to be e(¢) = x,,, (t) — x(t), and the pseudo-control input
Vv to be
V=V + Vpd — Vad, (6)

consisting of a linear feedback term v,; = Ke with K € R a linear feedforward
term Vi, = %,; and an adaptive term V,4(z). Since A is a function of v, as per
equation (@), and v, needs to be designed to cancel A, the following assumption
needs to be satisfied:

Assumption 2. The existence and uniqueness of a fixed-point solution to v,y =
A(+, Vaq) is assumed.

Sufficient conditions for satisfying this assumption are available in [40, 21]. As-
sumption 2] implicitly requires the sign of the control effectiveness matrix to be
known ([21]).

Using equation (B) and the pseudo-control (@) the tracking error dynamics can be
written as

é=Ae+B[Vu(z) — A(2)], @)

where the state space model (A, B) is in canonical form with the eigenvalues of A
assigned by v,,. The baseline full state feedback controller v, is chosen to make
A Hurwitz. Hence, for any positive definite matrix Q € R"*", a positive definite
solution P € R™*" exists for the Lyapunov equation

0=ATP+PA+Q. (8)
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The adaptive controller framework described above guarantees that the tracking er-
ror is uniformly bounded if the following well known gradient based update laws
that minimize a cost on the instantaneous tracking error e’ ¢ are used:

W(t) = —Two(z(t))e’ (t)PB. ©9)

However, this adaptive law guarantees that the adaptive parameters (W) stay bounded
within a neighborhood of the ideal parameters (W*) only if the regressor vector ¢(z)

is PE (see e.g. [351[29] 28] 22]]). Note that even when ¢ (z) is PE, e(#) -+ 0 uniformly
only if sup,cp,_[|7(z)|| = 0. Therefore, this adaptive law cannot be used within the

proposed framework as there is no guarantee that the weights will converge to their
true values and an (approximate) representation of the system uncertainty will be

learned. This has been a major reason why MRAC-MPC switching systems cannot
be formulated easily.

Fortunately, it is possible to incorporate long term learning in the MRAC frame-
work by ensuring that the adaptive law learns the modeling uncertainty by incor-
porating additional information [24} [12} [9]. It was shown in [8, [9] that for linearly
parameterized uncertainties the requirement on persistency of excitation can be re-
laxed if online recorded data is used concurrently with instantaneous data for adap-
tation. In particular, for a linearly parameterized representations of the uncertainty,
the following theorem can be proven [8, |9, [10]]:

Theorem 1. Consider the system given by (Il), with the inverse law ([2), and the ref-
erence model of (3). Assume that the uncertainty is linearly parameterizable using
an appropriate set of bases over a compact domain Dy. For each online recorded
data point i, let &(t) = WT(t)¢(x;, ) —A(xi,Si), with AA(xi,Si) =% —v(x, &),
where %; is the bounded estimate of X;, and consider the following update law

W=—Two(z TPBf ZFW,, o (x;, &)el (10)

where Iy, > 0 is the learning rate for training on online recorded data. Let Z =
[0(z1),....,9(zp)] and assume that rank(Z) = m. Furthermore, let By be the largest

compact ball in Dy with radius o, and assume x(0) € By, define 6 = 21PBln

mm(Q)
l.inE/fé) with Q = ZZ", and assume that Dy is sufficiently large such that m,, = o —

d is a positive scalar. If the states X, of the bounded input bounded output reference
model of (3) remains bounded in the compact ball By, = {xpm : ||Xrm|| < mpm} for all
t > 0 then the tracking error e and the weight error W =W —W* are mean-squared
exponentially uniformly ultimately bounded. Furthermore, if the representation is
exact over Dy, that is if sup,cp [[71(2)|| = O, then the tracking error and weight
error converge exponentially fast to a compact ball around the origin for arbitrary
initial conditions, with the rate of convergence directly proportional to the minimum
singular value of the history stack matrix Z.

Remark 1. The size of the compact ball around the origin where the weight
and tracking error converge is dependent on the representation error 7] and the
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estimation error & = max; ||%; — £i|. The former can be reduced by choosing appro-
priate number of RBFs across the operating domain, and the latter can be reduced
by an appropriate implementation of a fixed point smoother. A fixed point smoother
uses data before and after a data point is recorded to form very accurate estimates of
% using a forward-backward Kalman filter [18, [11]]. Note that )E(t) is not needed at
the current time instant ¢, which is a much more restrictive requirement. Therefore,
an appropriate implementation of a fixed point smoother alleviates the time-delay
often observed in estimating £(¢) with forward Kalman filter (or a low pass filter)
only.

Remark 2. The history stack matrix Z = [¢(z1),....,$(zp)] is not a buffer of the last
p states. It can be updated online by including data points that are of significant in-
terest over the course of operation. Theoretically, convergence is guaranteed as soon
as the history stack becomes full ranked. New data points could replace existing data
points once the history stack reaches a pre-determined size. It was shown in [[10] that
the rate of convergence of the tracking and weight error is directly proportional to
the minimum singular value of Z. This provides a useful metric to determine which
data points are most useful for improving convergence. Consequently, an algorithm
for adding points that improve the minimum singular value of Z for the case of
linearly parameterizable uncertainty was presented there.

Remark 3. The main limitation of the linearly parameterized RBF NN representa-
tion of the uncertainty is that the RBF centers need to be preallocated over an esti-
mated compact domain of operation D,. Therefore, if the system evolves outside of
D, all benefits of using adaptive control are lost. This can be addressed by evolv-
ing the RBF basis to reflect the current domain of operation. A reproducing ker-
nel Hilbert space approach for accomplishing this was presented in [23]. However,
when the basis is fixed, in order for the adaptive laws above to hold, the reference
model and the exogenous reference commands should be constrained such that the
desired trajectory does not leave the domain over which the neural network approx-
imation is valid. Ensuring that the state remains within a given compact set implies
an upper bound on the adaptation gain (see for example Remark 2 of Theorem-1
in [39]).

3 Feedback Linearization for MPC

The key enabling factor for the proposed switching CL-MPC architecture presented
here is the guaranteed convergence property of CL-MRAC as established in Theo-
rem[Il Once the approximation of the uncertainty is good enough the system shall
change to the new MPC structure. Therefore a decision algorithm is implemented
which tests for

[x[| # 0 and [[£— v — Vil < €, (11)

where &, > 0 represents a tolerated approximation error. Note that due to The-
orem [ it can be shown that this guarantees an upper bound on W (¢s), where
ts is a switching time. Note further that other automatic-switching algorithms,



36 G. Chowdhary et al.

including those that approximate the switching surface probabilistically, are pos-
sible and expected to be investigated in our future work.

Once the weights converged to a neighborhood around their optimal values, as
determined by the test in (1)), the system switches to the model-based optimal con-
troller. In this mode, the plant does not track a reference model but use the complete
available control authority v,,.; € R! after feedback linearization to track com-
mands optimally. For the case that the system switched to the model-based optimal
controller and with regard to equation (&) redefine the pseudo-control v to be

V = Vyp + KBVayait — Vad, (12)

consisting of the linear feedback term vy, = Kyx with Ky € R""; a feedforward
part KpVqi with Kg € R*!; and the adaptive part v,,. Let B,, = BKp, then the
feedback linearized system becomes

x(t) :Amx+BmVavail+B(A_Vad)a (13)

where the state space model (A,,, B;,) is in canonical form with the eigenvalues of
Ay, assigned by vg;,. Choose the gains such that if A —v,; = 0, a unique solution
to (I3) exists and B,, satisfies assumption [[l Furthermore, the resulting matrices
(A, B) need to be chosen such that a feasible optimal solution to the system (13)
is known; one possibility is to choose (A, By,) equal to the reference model, which
was used during the exclusively adaptive case. The available control authority V.
is dynamically constrained by the physical maximum and minimum control allowed
Vimin/max» Minus the adaptive part (v,4) of the pseudo control which is needed to
cancel the uncertainty and the part (vy;) which is required in order for the feedback
linearized system to recover the dynamics in[I3] For each element of v, we have

Kz ' (Vinin =+ Vad = V) < Vavait < Kg' (Vimax + Vaa — Vo) (14)
Using equation (@), the last term in equation (I3)) is
1A(2) = vaa @) | < (W@ (2)[] + Nsup- (15)
Let B(z) = A(z) — Vua- The feedback linearized system can be written as
X(t) = Amx + BnVavait + BB (2) (16)

Let 5 be a time instant when the control architecture switches to using MPC. Due
to Theorem/[T]it follows that W () approaches a neighborhood of zero exponentially
fast, furthermore, since the algorithm switches to the optimal controller (MPC) only
when ||£— v+ Vgl < €01 and ||x|| # 0, it follows that ||W (t5)| is small. Leveraging
this fact, MPC design is performed on the ideal feedback linearized system with
states ¥(¢) given by

X(t) = Anx(t) + BnVayair (1), a7

assuming 3(z) = 0.
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3.1 Stability

Let [f5,¢5+1] be a finite interval where the algorithm has switched to using the opti-
mal model based controller (e.g. MPC). It is clear that when the algorithm switches,
although B (z) is likely to be very small, it will probably not be zero. In this case,
the question arises as to whether learning should continue or not. Since any possible
initial transients have already passed, there seems no reason to continue to learn. In
fact, such an approach can be thought equivalent to an assumption on allowable ini-
tial parameter error W (0) for a non-switching based MPC [[17, 1}, 5]. One approach
therefore, could be to continue to learn using a smaller learning-rate I" and using
estimates of model error only (not using also the tracking error as was the case
in Theorem [I)). The following lemma characterizes that in this case, a concurrent
learning gradient descent law guarantees that the feedback linearization error 3(z)
is exponentially bounded. To facilitate the analysis, it is assumed that a noise free
estimate of X; for all online recorded data points i is available. This assumption can
be relaxed to yield mean squared exponential ultimate boundedness of W instead of
mean square exponential stability [27].

Lemma 1. Consider the model error given by ), &(t) as defined in (L) for the
recorded data points, and the following gradient descent law

W=-IY ¢(x;,6)e). (18)

Assume also that the history stack is full ranked, that is rank(Z) = m, then the
parameter error is exponentially bounded as |W (t)|| < exp™! |W (t5)|| for some

c1 > 0 dependent on Z and the parameter error W (t5) at the instant the algorithm
switches to model based optimal control. Furthermore,

B(z(r)) < exp™ 1 [|W(to)||9(2()) + Neup for all t € [te,1i11].

Proof. Consider the quadratic function given by V(W) = JW(¢)"T'~'W(r), and
note that V(0) = 0 and V(W) > 0 ¥V W # 0, hence V(W) is a Lyapunov func-
tion candidate. Since V(W) is quadratic, letting Amin(.) and Amax(.) denote the op-
erators that return the minimum and maximum eigenvalue of a matrix, we have:
Amin(C™D[W|)? < V(W) < Amax (T ~1)||W||%. Differentiating the Lyapunov candi-
date with respect to time along the trajectories of (I8]) we have

VW(n) < W(t)T[iq)(Xj)q)T(x]')}W(t)- (19)

J

Let Q= § @ (x;) @7 (x;) and note that since ¢ (x(¢))d7 (x(t)) > 0V (x(t)), Anin(£2)
=1
> 0. Thén it follows that

2'min('Q)

VW) < Anin QWP < =, "7

V(W). (20)
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Let ¢ = Aﬁ:xuz(r@]) then ||[W(¢)|| < exp~ 1" ||W (5 )||. It follows from the definition

of B(z) in (I6) that for all 7 € [ts,t;11]

B(a(1)) < exp " [|[W(t5)[19 (2(2)) + Nsup- @D
O

The next theorem shows that ¥ = x — X, the difference between the ideal feedback
linearized system (I6) and the true feedback linearized system (I7) is bounded.
Therefore, applying the stabilizing feasible solution of the ideal system (I7) to the
true system (16) guarantees boundedness of the true system states.

Theorem 2. Consider the true feedback linearized system in (L) and Lemma [1|
Assume that a feasible optimal solution v, ., exists for the ideal feedback linearized
system of ([Z). Then, the states of the true system with the control V..., are uniformly
ultimately bounded around those of the ideal system, and approach asymptotically
a compact set that is a function of the representation error Nsyp over every switching

interval [t 15 1] where MPC control is active.

Proof. Note that
¥=AnX+BB(2). (22)

Let V(%) = é)?TPm)E, where P, is the positive definite solution to 0 = Q,, + AL P, +
PnA; for a positive definite Q,,, guaranteed to exist due to the feedback vy,
which is chosen such that A,, in (I3) is Hurwitz. Hence V(W) is a radially un-
bounded quadratic Lyapunov function candidate with: Ay (I~ ||W|? < V(W) <
Amax (T~ 1)||[W||?. Tt follows therefore that

V(%) < " Qi+ 5" PBB(2). (23)
Applying Lemma[ll we have

V(&) < ~Zsin(Q) | E]1° + 5|1 Pl (exp™ 1 |W (1) |0 (2(1)) || + Msup) .~ (24)

Let ¢ = ||PuB||||W(t5)||, and noting that the m basis functions are bounded by
[¢()[| < c3, we have

V(f) < _)«min(Qm)H)zH2 + ||)?||(mc2c3 expiclt +rlsup)~ (25)

. . €1t g -
Therefore, outside of the compact set ||&|| > " ix? 0 e y(%) < 0. Therefore

X is uniformly ultimately bounded and approaches asymptotically the set ||%|| >
Nsu

A’miném :

]
Corollary 1. Assume that Theorem 2| holds and that an exact representation exists
such that Nswp = 0 in @), then, the states of the true feedback linearized system
asymptotically approach the states of the ideal feedback linearized system over ev-
ery switching interval [ts,t5+1] where MPC control is active.
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Proof. The proof follows by noting that (23) becomes
V(&) < —Aumin (o) [5]* + (1] (meacz exp™1"), (26)

hence,V — 0 ast — oo.

4 Model Predictive Control

For the implementation of the MPC a discrete model of the feedback linearized
system in equation (I7) is formulated:

F(k+1) = A% (k) + B Vayai (k), (27)

where A,, and B,, denote the discretized versions of the respective matrices in equa-
tion (2. Let AvVayair (k+ 1) = Vapair (k+ 1) — Vayai (k) be a future incremental con-
trol. The optimal control trajectory is captured by a sequence of incremental control
signals:

A Vavail (k)

A Vavail (k +1 )

AU = , (28)

Avavail(k+Nc_ 1)

where N, denotes the control horizon. Within the prediction horizon N, > N, the
MPC drives the state of the system %(k) onto the desired reference signal (k) by
minimization of a quadratic cost function. Define the following matrices:

A B 0 ... 0
AZ AwBw By 0 ... 0

F=| | @=| . . @)
AN A, AN TR, AN Nep

where F € R*Np*" and @ € RNy Ne'ts Let Ax(k+ 1) = %(k+ 1) — %(k). Then the
vector containing the predicted states X € R"Mr within the prediction horizon can
be built by

X = FAx(k)+ @AU. (30)

In the MPC framework constraints can be formulated for the input and the states.
The goal is to formulate the constraints dependent on the incremental control AU.
For the control input we have

Vavail,min < Ml V(k - 1) +M2AU < Vavail,maxv (31)
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7 10...... 0
I110...0

where My = | . | € RNensxns and M, = . € Rs"Nexns"Ne The input
! I ... 1

constraints are placed by the vectors Vyyuir min a0d Vyyail max» €ach consisting of N,
elements of the minimum and maximum control input. Equation (3I)) can also be
expressed in matrix form:

—M; —Vavait,min + M1 Vavail (k —1 )
AU < ; . 32
|: M; :| - |: Vavail,max — M\ Vayair (k - 1) (32)

Similarly, constraints on the states can be placed by
KXinin < FAf(ki) + QAU < X (33)

Similar to equation (31I)), X,nin and X, are vectors containing the lower and upper
constraints for the states. Written in matrix form we have

o ~Xouin + FAT(K)
{ ® }AU = [ Xpnax — FAZ(K) } 34

There exists a functional relationship between the predicted system state and the
incremental control input Av,,,;. Using hard constraints on input and the states si-
multaneously can cause constraint conflicts. Introducing a slack variable s > 0 and
relaxing the constraints X, /mqx solves this problem. Let Rs € R™Np be a vector con-
taining the reference command r(k) with Ry = [1, ..., 1]r(k) and define the following
quadratic cost function, which reflects the control objective:

J=(Rs—X)TO(Rs — X)+ AUTRAU. (35)

Here R and Q denote positive definite diagonal matrices. Inserting equation (30)
into equation (33) the problem of model predictive control is finding the control
sequence AU which minimizes the cost function

J = (Ry— Fx(k))" Q(Rs — Fx(k)) — 2AU" ®T Q(R; — FAX(k))

+AUT (@7 0@ +R)AU, G0
subject to the inequality constraint
—M, ~Vavail,min + M1 Vayait (k — 1)
ﬁ/lczb AU < Vavailft;}cm; 1:_1 1}’2?(1 ]E/)C -0 | 37)
@ Xnar — FAX(K)

Note that since A,, is known a-priori, it may be possible to solve a significant portion
of this problem off-line to create the optimal value-function which can be directly
used on-line for an approximate optimal solution.
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5 Trajectory Tracking in the Presence of Wing Rock Dynamics

Modern highly swept-back or delta wing fighter aircraft are susceptible to lightly
damped oscillations in roll angle known as “Wing Rock”. Wing rock often occurs at
low speeds and at high angle of attack, conditions commonly encountered when the
aircraft is landing (see [34] for a detailed discussion of the wing rock phenomena).
Hence, precision control of the aircraft in the presence of wing rock dynamics is
critical in order to ensure safe landing. In this section we use concurrent learning
adaptive control and the proposed MPC framework to track a sequence of roll com-
mands in the presence of wing rock dynamics. Let ¢ denote the roll attitude of an
aircraft, p denote the roll rate and 9, denote the aileron control input . Then a model
for wing rock dynamics is ([26]):

d=p (38)
p=08,+A(x), (39)

where A(x) = Wy + Wi + Wap + Ws|¢|p + Wu|p|p + Ws¢>. The parameters for
wing rock motion are partly adapted from [36} 138, [7]; they are W; = 6.2314,W, =
2.1918,W3 = —0.6245, W4 = 0.0095, Ws = 0.0214. In addition to these parameters,
a trim error is introduced by setting Wy = 0.8. A simple inversion model has the
form v = §,. The linear part of the control law is given by v,q = —4¢ —2p for the
exclusive adaptive as well as the MPC part of the control framework of Figure [1l
These values are chosen as they result in good baseline control performance without
exciting high-gain oscillations. Furthermore, in the MPC part the feedforward gain
is chosen to be Kz = 4. The reference model is chosen to be of second order with
natural frequency of 2rad/sec and a damping ratio of 0.5. This choice results in
reasonably smooth trajectories without large transients and without exceeding the
constraints when baseline or CL-MRAC controllers are used. The learning rate is
set to Iyy = 6 for both the instantaneous update and the update based on stored data.

For the concurrent learning adaptive controller only points which increase the
rank of the history stack are considered for storage. As long as the history stack
does not contain at least as many linearly independent data points as the dimension
of the regressor vector, a o-modification term with gain xk = 0.01 is added to the
update law. Once the history stack is full, an algorithm is employed which increases
its minimum singular value ([LLO]).

The simulation runs for a total of 60s with a time step of 0.01s. The reference
signal r(z) is comprised out of several step inputs. The first two steps start at 55 and
15, each having an amplitude of 30° and lasting 5 s. The next two step inputs occur
after 255 and 35, each having an amplitude of 45° and also lasting 5s. After 50s
more aggressive commands shall be tracked. Therefore consecutive steps with an
amplitude of —45° or 45° are commanded, alternating every 3.

Figure [2] shows the performance of the proposed control architecture. During
the first step the plant states still deviate from the reference model significantly.
However, the tracking performance increases quickly, the plant tracks the reference
model at the second step nearly perfectly. After about 30s the switching condition
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is met and the system automatically switches to the MPC part of the control frame-
work. It can be observed that the performance increases drastically. This is attributed
to the fact that the CL-MPC architecture leverages available control authority fully
while simultaneously ensuring that the constraint on the roll rate is not violated.

Figure [3] shows the evolution of the adaptive weights. As soon as the history
stack meets the rank condition after about 6s the weights start to converge to their
optimal values, thus increasing the tracking performance significantly. At the switch
to the MPC framework the weights have already nearly converged to their optimal
weights. Still, the resulting parameter error is further reduced by the CL update law
of Lemmal[Il which learns only on stored data.

Figure @] shows the trajectory of the system in the phase plane during the simula-
tion. It can be seen that, once the MPC is switched on, the region the states reside
in increases drastically. This is attributed to the fact that the full available control
authority is used, thus increasing the roll rate in transient phases. In addition, de-
spite the increased performance, the chosen state constraints on the roll rate are not
violated.

Finally, Figure[3lshows the control input. As long as only the adaptive controller
is used, the available control authority is not completely leveraged. Once the MPC
is switched on, the complete available control authority is used. Additionally, the
constraints placed on the input are not violated.

States
50 b

o]

——— Plant State
= = = Reference Model
= = = Reference Signal
“1 1 Constraint
®  Switch to MPC
T

w
ook ok kK kK

-50
0

10 20

p[°/5]

Fig. 2 Performance of the proposed control architecture. At the beginning of the simula-
tion a distinct deviation tracking error is observed. Due to the concurrent learning adap-
tive controller the performance increases drastically over time. After the switch to the MPC
framework, instead of tracking the suboptimal reference model, the plant tracks the command
optimally. The constraints on the roll rate are not violated.
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Evolution of the adaptive weights

—— Current Weights
= = =Optimal Weights

0 10 20 30 40 50 60
Time|s]

Fig. 3 Evolution of the adaptive weights. Once the history stack meets a condition of linearly
independence on the stored data the weights start to converge to their optimal values. Even
after the switch to the MPC framework learning based on stored data continues using the
algorithm in Lemma[I]and the parameter error is further reduced.

State Space
T T

1.5 T T T T
- = =Only adaptive controller
——— Adaptive controller and MPC
s ]
05F .
=
o o 7
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—o5L ]
1k ]
-15 L L L L L L L L L
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Fig.4 Phase portrait of the system trajectory. Once the controller switches to the MPC frame-
work the region in which the states evolve is drastically increased as the controller can execute

optimal commands w.r.t. the constraints. In addition, MPC ensures that aggressive commands
can be tracked without violating the constraints on the roll rate.
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Control input
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—— Plant Input
100 - = =Input Constraint
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Fig. 5 Control input with constraints. In the beginning of the simulation the controller is
concerned with letting the uncertain system behave like the reference model. For this, only
a part of the available control authority is used as a conservative reference model is used to
ensure constraints are not vioalated. Once the controller switches to the MPC framework the
complete control authority is leveraged without violating input constraints.

6 Conclusion

Initial transients often observed during online learning can result in undesirable per-
formance of (receding horizon) online optimal control architectures such as Model
Predictive Control. This could make it difficult to implement adaptive MPC on
aerospace systems that have fast dynamics. We proposed an adaptive-optimal con-
trol architecture in which a concurrent learning adaptive controller is used to guar-
antee system stability while parameters are adaptively learned. The online-learned
model is used to feedback linearize the system and transform its behavior to an
ideal feedback-linearized system for which a feasible optimal MPC can be formu-
lated. The MPC takes over after an online metric has gauged sufficient confidence
in the learned parameters. It was shown that the states of the feedback linearized
system stay exponentially mean square bounded around those of the ideal system,
and sufficient conditions were provided to guarantee asymptotic convergence. Sim-
ulation results were presented on a wing-rock dynamics system with fast dynamics.
These results establish the feasibility of the CL-MPC architecture. Furthermore,
these results indicate that learning in adaptive controllers can be used to improve
the performance of the system.
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Model Reference Adaptive Control of
Mildly Non-Linear Systems with Time
Varying Input Delays — Part I

James P. Nelson, Mark J. Balas, and Richard S. Erwin

Abstract. In this paper, we develop a Direct Model Reference Adaptive
Tracking Controller for mildly non-linear systems with unknown time varying
input delays. This controller can also reject bounded disturbances of known
waveform but unknown amplitude, e.g. steps or sinusoids. In this paper a
robustness result is developed for DMRAC of mildly non-linear systems with
unknown small constant or time varying input delays using the concept of un-
delayed ideal trajectories. We will show that the adaptively controlled system
is globally stable, but the adaptive tracking error is no longer guaranteed to
approach the origin. However, exponential convergence to a neighborhood
can be achieved as a result of the control design. A simple example will be
provided to illustrate this adaptive control method. The proof of the corollary
for the application and further examples are provided in the paper: Model
Reference Adaptive Control of Mildly Non-Linear Systems with Time Varying
Input Delay - Part II.

1 Introduction

Time delay affects many engineering, physics and biological systems [1]-[5].
These manuscripts present a firm motivation for the study of time delay
systems and a brief overview of the different control approaches commonly
used when delays are present. In this overview the open problem of control via
the delay and constructive use of the delayed inputs is presented [5]. Further,
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many control systems suffer from unknown delays [6]-[7]. Often these are
introduced via systems controlled through a network, e.g in [7].

In previous work [8]-[11] direct model reference adaptive control (DM-
RAC) and disturbance rejection with very low order adaptive gain laws for
MIMO systems was accomplished. Feuntes and Balas developed an ultimate
bounded-ness theorem for DMRAC in [11]. When systems are subjected to
an unknown internal delay, the adaptive control theory can be modified to
handle this situation [12]. However, delays appearing in the inputs or outputs
of systems seem to cause more system sensitivity to the delay. A robustness
result for the Direct Adaptive Control (DAC) or input delay systems was
developed in [13]. A robustness result for the DMRAC of linear systems with
“small” input/output delays was developed in [14] using the concept of un-
delayed ideal trajectories for the development of the adaptive error system.
Using the concept of un-delayed ideal trajectories and this “small-ness” as-
sumption the results of [13] can achieved for the DMRAC of mildly non-linear
systems. We will show that the adaptively controlled system is globally sta-
ble, but the adaptive error is no longer guaranteed to approach the origin.
However, exponential convergence to a neighborhood can be achieved as a
result of the control design. A simple example will be provided to illustrate
this adaptive control method. The proof of the corollary for the application
and further examples are provided in the paper: Model Reference Adaptive
Control of Mildly Non-Linear Systems with Time Varying Input Delay -
Part II.

2 Development of the Adaptive Error System Using
“Undelayed Ideal Trajectories”

Our Mildly Non-Linear Plant with Unknown Delay will be modelled by the
following mildly non-linear system with an input delay term and an external
persistent disturbance:

{s‘c(t)=Ax()+Bu(t—T())+ up(t) + f(=) ()
(t) = Cux(t); x(0)

where the plant state, x(t), is an N-dimensional vector with M-dimensional

control input vector, u(t), and M-dimensional sensor output vector, y(t), i.e.

the plant is square. The delay 7(¢) > 0 is time varying and unknown. The

disturbance input vector up(t) is Np-dimensional and will be thought to

come from the following Disturbance Generator:

{ ’uD:@ZD

Z’D :FZD; ZD(O) = 20

(2)
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The objective of control in this paper will be to cause the output y(t¢) of the
plant to asymptotically track the output y,, (t) of an un-delayed Reference
Model:
{ Tm = AmTm + Bmum + fm(xm) (3)
Ym = mem§ .’L‘m(O) = xsn

where the reference model state x,, (t) is an Np,-dimensional vector with
reference model output y., () having the same dimension as the plant output
y(t). In general, the plant and reference models need not have the same
dimensions. The excitation of the reference model is accomplished via the
vector .y, (t) which is generated by:

Um = FinUm; um(0) = ug’ (4)

The reference model parameters (A, B, Crn, Fin) will be completely known.
We define the output error vector:

eyEy_ymtjoo (5)

and this control objective will be accomplished by an Adaptive Control Law
of the form:
U= Gpmom + Gum + Geey + GDQOD (6)

2.1 Ideal Trajectories

We define the “Un-Delayed Ideal Trajectories” for () in the following way:

(7)

Ty = S11%m + SToum + Si32p
Uy = S31Tm + S5l + S552D

where the ideal trajectory . () is generated by the ideal control u., (t) from

{i* = Az, + Bu, + I'up + f(z.) (8)

If such ideal trajectories exist, they will be linear combinations of the refer-
ence model state and input ([B]) and they will produce exact output tracking
in a delay-free plant (g]).
By substitution of (@) into (8)) using (3)-), we obtain the Model Matching
Conditions:
ASY) + BS3 = S114m 9)

ASTy + BS5, = S13Fm + 571 Bm (10)

CSt =Chn (11)
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CSiy =0
AS%y + BSyy + 16 = SiyF

BS3; =0

CSs =0

F(ST12m + SToum + Si32p) = ST1 fmTm

(12)
(13)
(14)
(15)

(16)

These conditions [@)-(I8) are necessary and sufficient conditions for the ex-

istence of the ideal trajectories in the form of ().

2.2 Fixed Gain Controller

In this section only we will assume that all parameters (A, B,C,I',0, F) are
known, as well as the solutions to the Model Matching Conditions (3)-(I0).
This section will help to explain the development of the adaptive scheme; it is
not meant to be used in place of such a scheme. We define the state tracking

error:
€y =T — Ty

and, from (&) and (8) , we obtain
ey =Y —Ym =Y —Yx = Cx — Cz, = Ce,.
Furthermore, from () and (®)) , we have

€x =T — Ty

Au = u — Uy

€y =Y — Y
Af = f(z) — f(=z)

ée = Aew + Bu(t — 7(t)) —us) + Af
= Auzu(t—r(t))—u*:1é(t—7'(t))—u+u—u*

We define a Fixed Gain Controller:

u = (531Tm + Sopum + S33Lpp) + Geey = uv + Geey,.

(17)

(18)

(19)

(20)
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From ([9) and 20), we have

éx = Ace. + B(u(t —7(t)) —u) + Af
Ac = A+ BG:C . (21)
Af = fx) = f(xs)

The above can be summarized as:

If (A, B, C) is output feedback stabilize-able with a gain G and the delay
equation (1)) is stable, then the fixed gain controller (20) will produce local
output tracking, i.e.:

lim ey < R, (22)

t—o0
Note that output feedback stabilization can be accomplished when

M+P+Np>N (23)

and (A, B, C) is controllable and observable; see [14]. Since (23] does not
require detailed knowledge of the parameter matrices, this suggests that an
adaptive control scheme might be possible.

2.3 The Adaptive Controller

The form of our adaptive controller remains (B). In this we must develop the
gain adaptation laws to make asymptotic output tracking possible. We form

AGa = Gu — S
AG = Gy — 53
AG, =G, — G- (24)

AGp = Gp — SisL

where the starred gains come from (@))-(8) and @0). Now, from (@), and
@0,

Au = u —uy = AGytm + AGpm @ + (G + AGe)ey, + AGpyp (25)
Then, via (I8) and (25), with appropriate definitions, we have

e« = Aex + B(u(t — 7(t)) —u) + BAu+ Af

=(A+ BG:C)e,+ B(u(t — 7(t)) — u)+B [ AGy, AGm AG. AGp | n+ Af
= Ace, + B(u(t — 7(t)) —u) + BAGn+ Af

(26)

where,

n=[uhahelob)l”

is the vector of known available signals.
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We combine ([I8) and (26]) to obtain the Tracking Error System:

e = Aces + B(u(t — 7(t ))*U)‘FBAGU‘FA]C (27)
ey = Ce,
Now we specify the Adaptive Gain Laws:
G=—en"H—aG(t) (28)
where
H= dz’ag[hn, hgg, h33, h44] >0
is an arbitrary, diagonal, positive definite matrix. This yields
Gu = —eyul by — aGl(t)
Gm = ey.’ﬂmhgg G (t) (29)
eyey h33 (t)
GD —eypEhag — aGD (t)

3 Robustness of the Adaptive Error System

Our closed loop Adaptive Error System becomes (21]) with the above adaptive

gain laws (29)

éx = Acex + B(u(t — 7(t)) —u) + BAGn + Af
ey =Ce . (30)
AG =G = —e,nTH — aG(t)

With the development of the above adaptive error system, recall the theorem
developed in [13]

Theorem: Consider the nonlinear, coupled system of differential equations,

¢=Ace+ fle)+ B(G{t) — G*)z+v+ f(2)
. ey =Ce . (31)
G(t) = —eyzTy —aG(t)

where G* is any constant matrix and is any positive definite constant matrix,
each of appropriate dimension. Assume the following:

1. the delay-free linear part (4., B, C) is SPR (see [15]),
2. IM, > 03 \/tr(G*G*T) < Mg
3. M, > 0> sup|jv(t)] < M,

120

4. da>03a< mem i B = Gmin — 204 fDmax > Owhere ppin, Pmas are the min-
imum and maximum eigenvalues of P and ¢, is the minimum eigenvalue
of Q with respect to the Kalman-Yacubovich equations,
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5. the positive definite matrix v satisfies

6. the nonlinear term f(x) is Lipshitz continuous at 0, i.e.

£ (@) < g [l ]]
with i
< min
Mf 2p1nax

Then the gain matrix, G(t), is bounded, and the state, e(t) exponentially
with rate approaches the ball of radius

(1 + \/le’laX)

R, =
a\/pmin

M,

We can obtain a corollary of the above theorem for the adaptive error system
(B0) with the following assumptions:
We will say that the unknown time varying delay 7(t) is small when

[T(t)] < 7w < 00
Ju(t) = u(t = @) < M(r) =, 0 (32)

the above system must have output tracking to a neighborhood:

ey — R, (33)

t—o0

The adaptive controller will have the form:

Gu = —eyu%hn (t)
Gm ey.’b h22 aG (t)
! ) 34
Ge = —eye, Thss —aG.(t) (34)
GD = 7€yg0Dh44 - aGD(t)
Using the above, we have the following corollary about the corresponding
direct adaptive control strategy for the adaptive error system in B0t
Corollary: Assume the following:

1. There exists a gain, Gisuch that the triple (Ac = A + BG:C, B,C) is
SPR (this is known to be equivalent to CB > 0 and the open loop transfer
function

P(s)=C(sI - A)~'B (35)

is minimum phase),
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2. ([B2) is satisfied
3. Span(I" ) C Span(B)

with a positive constants, then the output y exponentially approaches a
neighborhood with radius proportional to the magnitude of the disturbance,
v, for sufficiently small a and ~;. Furthermore, each adaptive gain matrix is
bounded.

This corollary provides a control law that is robust with respect to persis-
tent disturbances and, exponentially with rate e~%*, produces:

lim Je(t)] < (1T VP

T a\/pmin

1Bl M(7) = 0.

The Proof of the Corollary is provided in the paper: Model Reference Adap-
tive Control of Mildly Non-Linear Systems with Time Varying Input Delay -
Part II.

4 Simulation and Results

We will illustrate the above robust adaptive controller on the following plant:

t= {0.3*2;(:“)] + m ult=m)+ m up
K ) )

~

A(x) B r (36)
y=[101]=z
N N~

c

We use step disturbances to provide simulation results for various small time
varying values of delay 7(¢). An adequate reference model must be developed
for output tracking. The open loop output response to a step disturbance of
magnitude 1 can be seen in Fig. The desired reference model output,
ym (t), for the closed loop reference model linear plant and lead controller to a
step disturbance of magnitude 1 can be seen in Fig. This reference model
output was created by designing a lead controller to stabilize the plant and
achieve the desired temporal response characteristics. Further simulations
to illustrate this adaptive control method are provided in the paper: Model
Reference Adaptive Control of Mildly Non-Linear Systems with Time Varying
Input Delay - Part II.

4.1 Step Disturbances

The waveform of time varying delay 7(¢) = |0.56 % sin(10t) +0.34|(s) is shown
in Fig. The response to a step disturbance of magnitude 10 of the output
response, y(t), control effort u(t), and the adaptive gains for the input delay
time, 7(t) = |0.56 % sin(10t) + 0.34|(s) are shown in Fig. [2(b)} [2(c)| and [2(d)|
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Fig. 1 Output response, (a) y(t), for the open loop plant and (b) ym(t), for the
closed loop reference model plant and lead controller to a step disturbance of mag-

nitude 1
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(d) Response of adaptive gains

Fig. 2 (a)Delay waveform, 7(¢), (b) Output response, y(t), (c) Control Effort, u(t)
and (d) Response of adaptive gains for a step disturbance of magnitude 10 and

7(t) = 10.56 * sin(10t) 4+ 0.34|(s)

respectively. This simulation has shown that the adaptive controller can force
a simple midly-nonlinear plant to adequately track a linear reference model.
The adaptive controller can operate in the presence of “small” constant and
time varying delays without any knowledge of the delay.
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5 Conclusions

In this paper, we developed a Direct Model Reference Adaptive Tracking Con-
troller for mildly non-linear systems with unknown time varying input delays.
This controller can also reject bounded disturbances of known wave form but
unknown amplitude, e.g. steps or sinusoids. In this paper a robustness result
was developed for DMRAC of mildly non-linear systems with unknown small
constant or time varying input delays using the concept of un-delayed ideal
trajectories. We showed that the adaptively controlled system is globally sta-
ble, but the adaptive tracking error is no longer guaranteed to approach the
origin. However, exponential convergence to a neighborhood can be achieved
as a result of the control design. A simple example was provided to illustrate
this adaptive control method. The proof of the corollary for the application
and further examples are provided in the paper: Model Reference Adaptive
Control of Mildly Non-Linear Systems with Time Varying Input Delay -
Part II.
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Model Reference Adaptive Control of
Mildly Non-Linear Systems with Time
Varying Input Delays — Part II

James P. Nelson, Mark J. Balas, and Richard S. Erwin

Abstract. In this paper, a proof for the corollary developed for the Direct
Model Reference Adaptive Tracking Control of mildly non-linear systems
with unknown time varying input delays found in Model Reference Adaptive
Control of Mildly Non-Linear Systems with Time Varying Input Delays - Part
I is completed. The adaptive error system was developed for the DMRAC of
mildly non-linear systems with unknown small constant or time varying input
delays using the concept of un-delayed ideal trajectories. We will show that
the adaptively controlled system is globally stable, but the adaptive tracking
error is no longer guaranteed to approach the origin. However, exponential
convergence to a neighborhood can be achieved as a result of the control
design. A simple example will be provided to illustrate this adaptive control
method.

1 Introduction

This paper is the companion to Model Reference Adaptive Control of Mildly
Non-Linear Systems with Time Varying Input Delays - Part I. The introduc-
tion and some of the theoretical development will be restated so it can be
read as a stand alone paper. Time delay affects many engineering, physics
and biological systems [1]-[5]. These manuscripts present a firm motivation
for the study of time delay systems and a brief overview of the different con-
trol approaches commonly used when delays are present. In this overview the
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open problem of control via the delay and constructive use of the delayed
inputs is presented [5].Further, many control systems suffer from unknown
delays [6]-[7]. Often these are introduced via systems controlled through a
network, e.g in [7].

In previous work [8]-[11] direct model reference adaptive control (DM-
RAC) and disturbance rejection with very low order adaptive gain laws for
MIMO systems was accomplished. Feuntes and Balas developed an ultimate
bounded-ness theorem for DMRAC in [11]. When systems are subjected to
an unknown internal delay, the adaptive control theory can be modified to
handle this situation [12]. However, delays appearing in the inputs or outputs
of systems seem to cause more system sensitivity to the delay. A robustness
result for the Direct Adaptive Control (DAC) or input delay systems was
developed in [13]. A robustness result for the DMRAC of linear systems with
“small” input/output delays was developed in [14] using the concept of un-
delayed ideal trajectories for the development of the adaptive error system.
Using the concept of un-delayed ideal trajectories and this “small-ness” as-
sumption the results of [13] can achieved for the DMRAC of mildly non-linear
systems. We will show that the adaptively controlled system is globally sta-
ble, but the adaptive error is no longer guaranteed to approach the origin.
However, exponential convergence to a neighborhood can be achieved as a
result of the control design.

2 Robustness of the Adaptive Error System

In the paper: Model Reference Adaptive Control of Mildly Non-Linear Sys-
tems with Time Varying Input Delay - Part I the concept of “undelayed ideal
trajectories” was used to develop the adaptive error system:

€« = Acex + B(u(t — 7(t)) —u) + BAGn+ Af
ey =Ce . (1)
AG =G = —e,nTH — aG(t)

Recall the theorem developed in [13]
Theorem: Consider the nonlinear, coupled system of differential equations,
é=Ace+ fle)+ B(G(t) —G)z+v+ f(x)

. ey = Ce . (2)
G(t) = —eyzTy — aG(t)

where G* is any constant matrix and is any positive definite constant matrix,
each of appropriate dimension. Assume the following:

1. the delay-free linear part (4., B, C) is SPR (see [15]),
2. M, 02 /tr(G*G*T) < Mg
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3. AM, 03> sup|jv(t)]] < M,
>0

4. da0>a < Zpi;n 18 = Gmin — 21 fPmax > OWhere pmin, Pmar are the mini-
mum and maximum eigenvalues of P and ¢, is the minimum eigenvalue
of Q with respect to the Kalman-Yacubovich equations,

5. the positive definite matrix - satisfies

tr(y™!) < (GJ\AZY

6. the nonlinear term f(x) is Lipshitz continuous at 0, i.e.

(@) < pg [l
with o
< min
Mf 2pmaX

Then the gain matrix, G(t), is bounded, and the state, e(t) exponentially
with rate approaches the ball of radius

1+ /Pmax)

(
R, =
a\/pmin

M,

We can obtain a corollary of the above theorem for the adaptive error system
in () with the following assumptions:
We will say that the unknown time varying delay 7(¢) is small when

[T(t)] < 7 < 00
lu(t) = u(t = ()] < M(r.) = 0 (3)

the above system must have output tracking to a neighborhood:

ey — R, (4)

t—o0

The adaptive controller will have the form:

_Gu = —eyul hi1 — aGy(t)
G = —eyxl hag — aGy(t)
Ge = —eyeq hag — aG.(t)
Gp = —eypphas — aGp(t)

()

Using the above, we have the following corollary about the corresponding
direct adaptive control strategy the adaptive error system in [T
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Corollary: Assume the following:

1. There exists a gain, Gisuch that the triple (Ac = A + BG:C, B,C) is
SPR (this is known to be equivalent to CB > 0 and the open loop transfer
function

P(s)=C(sI - A)'B (6)

is minimum phase),
2. @) is satisfied
3. Span(I" ) C Span(B)

with a positive constants, then the output y exponentially approaches a
neighborhood with radius proportional to the magnitude of the disturbance,
v, for sufficiently small a and ~;. Furthermore, each adaptive gain matrix is
bounded.

This corollary provides a control law that is robust with respect to persis-
tent disturbances and, exponentially with rate e=¢, produces:

. 1+ \/pmax
tin (o)) < V1B13) = 0.
T—00 a\/pmin t—0
Proof
We form the Energy Storage Functions:

V= ;eTPe + ;tr [AGy 1 AGT] (7)

N
where tr@ = > ¢; and P > 0 is the solution of the following pair of
i=1

equations:

(®)

ATP4+PA. =-Q<0
PB=CT

These equations are usually known as the Kalman-Yacubovic Conditions.
The existence of a symmetric positive definite solution of () is known to be
equivalent to the following condition:

T.(s)=C(sI —A.)'B 9)
strict positive realness (SPR). T¢(s) (SPR) means, for some o > 0,
ReTc(—0o + jw) =0 (10)

for all w real. When the open-loop system (A, B, C) can be made SPR by
output feedback Ac = A + BGEC, we say the open-loop system is almost
strictly positive real (ASPR). This is known to be equivalent to CB > 0
and the open-loop T(s) = C(sI — A)"' B being minimum phase, i.c. all
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transmission zeros stable; for example, see [16]. If we calculate the derivatives
along the trajectories of (@), we have, using (), that

V =eTPA.e+ e’ PBw+ T PAf + tr [AG"y_lAGT} + T Pe;
where
w = AGn

and
v = B(u(t —7(t)) — u).

Invoking the equalities in the definition of SPR and substituting into the last
expression, we get

V=- 1etQe+ (ey,w) + " PAf —a-tr [walAGT] —tr(eyz" AGT) 41" Pe

~ ~ -
<ey*“’>
< = L (@min — 217D lel|” = a- tx [(AG + G )y AGT] + v Pe
~ -

~
B
< 7(%5”8“2 +a-tr [AGW_IAGT]) +a- |tr G*’y_lAGT] ’ + ’vTPe’
7(210511‘ e"Pe+2ae tr [AG’yflAGT]) +a-|tr [G*’yflAGT] | + ’vTPe|
< —-2dV+a- ’tr [G*'y_lAGT] ’ + |’UTP6’

IA

Now, using the Cauchy-Schwartz Inequality
’tr [G*’Y_lAGT” < [IGHLIAG],

and
e < [P e

‘ = VovTPveVeT Pe

We will say that the unknown delay 7(¢) is small when (3] is satisfied so,
vl = 1B llu(t) — u(t — ~(®)) | < Bl M(7).

We have

V +2aV < a-[|G*|l,| AG|ly + v/Pmax ||V]| VeT Pe
< a- |G|, AG|ly + (v/Pmax|| Bl M (7)) Vel Pe

1
2

y 1 1
< (@G|l + Vpuaxl| B M (1)) V2 [ e" Pe + , | AG] 3]
~ ~ -
v
] V +2aV

v S G + Vomax| B M(7)v2
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Now, using the identitytr [ABC] = tr [CAB],
IG*[ly = [tr(G*y=H(GH)T )]1 = [“’((G*)TG* Rk
< [(tr(@)7CH (@G (tr( 1913
_ [tT(G*(G*)T)];[tT’Y_I]Q < | Bl|M(7) o Mg = 1 BIIM(T)

aMG a

V +2aV
= 1 S0 e Bl M() V2, (11)
from
d 1 oV 24V
a2V = et U e 1 ) | B M () V2

Integrating this expression we have:

6atV(t)1/2 _ V(0)1/2 < (1 + \/pmax) ”BH M(T) (eat _ 1)

L+ /Pmax) [ B]| M(7) (

S VY2 <V(0) 2t 4 ( .

1—e %) (12)
The function V is a norm function of the state e(t) and matrix G(t): so, since
V2 is bounded for all t, then e(t) and G(t) are bounded. We also have the
following inequality:

VPmin |le(®)]| < V(£)1/2

Substitution of this into (I2)) gives us an exponential bound on state e(7):

e—at V(0)1/2 n (1 + \/pmaX) ||BH M(T)

le®ll< )
\/pmln a\/pmln

(1-e)  (13)

Taking the limit superior of ([I3]), we have

lim [e(r)] < (T VPmas)

Jm el < B MG) = e (14)

#

3 Simulation and Results

We will illustrate the above robust adaptive controller on the following plant:

= {O.S*zfn(xl)] + m ult =7)+ m up
L U Ll

Ale) B r (15)
=[101]=
N~ N 7
c
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We use step disturbances to provide simulation results for various small time
varying values of delay 7(¢). An adequate reference model must be developed
for output tracking. The open loop output response to a step disturbance of
magnitude 1 can be seen in Fig. The desired reference model output,
ym (t), for the closed loop reference model linear plant and lead controller to
a step disturbance of magnitude 1 can be seen in Fig. This reference
model output was created by designing a lead controller to stabilize the plant
and achieve the desired temporal response characteristics.

Output of Open Loop Planty
Response of Reference Model Outputy,
o o o o
2 &5 & . &

°

(] 5 10 15 20 25 30 0 5 10 15 20 25 30
Time,s Time.s

(a) Output response, y(t) (b) Output response, ym (t)

Fig. 1 Output response, (a) y(t), for the open loop plant and (b) ym(t), for the
closed loop reference model plant and lead controller to a step disturbance of mag-
nitude 1

3.1 Step Disturbances

The response to a step disturbance of magnitude 10 of the output response,
y(t), control effort u(t), and the adaptive gains for no input delay are shown
in Fig. [2(a)l [2(b)| and [2(c)| respectively.The response to a step disturbance
of magnitude 10 of the output response, y(t), control effort u(t), and the
adaptive gains for the input delay time, 7 = 0.09s are shown in Fig.
and respectively. The response to a step disturbance of magnitude
10 of the output response, y(t), control effort u(t), and the adaptive gains
for the input delay time, 7 = 0.115s are shown in Fig. 4(a)} 4(b)| and [4(c)]
respectively. It can be seen that the adaptive error system adequately tracks
the desired reference model output for the delay free system and the “small”
delay case. As the constant delay grows, the adaptive system still tracks the
desired reference model output, albeit with poor temporal characteristics.
The waveform of time varying delay 7(¢) = |0.56 % sin(10t) +0.34|(s) is shown
in Fig. The response to a step disturbance of magnitude 10 of the output
response, y(t), control effort u(t), and the adaptive gains for the input delay
time, 7(t) = |0.56 % sin(10t) + 0.34|(s) are shown in Fig. [5(b)l [5(c)| and [5(d)|
respectively. This simulation has shown that the adaptive controller can force
a simple midly-nonlinear plant to adequately track a linear reference model.
The adaptive controller can operate in the presence of “small” constant and
time varying delays without any knowledge of the delay.
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Fig. 2 (a) Output response, y(t), (b) Control Effort, u(t) and (c) Response of
adaptive gains for a step disturbance of magnitude 10 and no delay
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Fig. 3 (a) Output response, y(t), (b) Control Effort, u(t) and (c) Response of
adaptive gains for a step disturbance of magnitude 10 and 7 = 0.09s
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4 Conclusions

In this paper, a proof for the corollary developed for the Direct Model Refer-
ence Adaptive Tracking Control of mildly non-linear systems with unknown
time varying input delays found in Model Reference Adaptive Control of
Mildly Non-Linear Systems with Time Varying Input Delays - Part I was
completed. The adaptive error system was developed for the DMRAC of
mildly non-linear systems with unknown small constant or time varying in-
put delays using the concept of un-delayed ideal trajectories. It has been
shown that the adaptively controlled system is globally stable, but the adap-
tive tracking error is no longer guaranteed to approach the origin. However,
exponential convergence to a neighborhood is achieved as a result of the con-
trol design. A simple example was provided to illustrate this adaptive control
method.
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Flight Control Algorithms for a Vertical Launch
Air Defense Missile

Raziye Tekin, Ozgur Atesoglu, and Kemal Leblebicioglu

Abstract. The necessity of high maneuverability and vertical launching require
thrust vector control additional to aerodynamic control. That hybrid usage of aero-
dynamic and thrust vectoring controls effectively increases the agility of the missile
against air defense threats. This requirement and the rapidly changing dynamics
of this type of missiles renders the guidance and control design critical. However,
the findings suggest that classical guidance and control design approaches are still
valuable to apply and can have successful performance within the effective flight
envelope. It is very rare that a study concerns from detailed dynamics and analysis
of the dynamics covering flight mission and algorithms. In this study, together with
the modeling of the agile dynamics of a vertical launch surface to air missile and
the corresponding thrust forces and moments depending on linear supersonic the-
ory, the application of the flight control algorithms are presented. Two classic linear
autopilot structures are studied. During autopilot design process, an additional term
related to short period dynamics of boost phase is proposed and the drastic effect
of this term is shown. In addition to control algorithms, guidance algorithms are
also defined to fulfill the mission of the missile. Body pursuit algorithm is applied
for rapid turnover maneuver and midcourse guidance. Proportional navigation guid-
ance is chosen for terminal phase. In addition, an alternative maneuvering technique
is proposed to reduce further side slip angle during vertical flight.
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1 Introduction

This paper presents the practical application of guidance and control methods for
a vertical launch surface to air missile (VLSAM). Through the paper, the challeng-
ing dynamics of the mentioned missile is briefly presented with the modeling of
the thrust vector control forces and moments, that are formed by the jet vane de-
flections, originating from the linear supersonic theory. There are many advanced
control methods for such a rapidly varying dynamics. However, the authors of this
papers advocate from a practical point of view that developing advanced con-
trol techniques should be an option only after classical control techniques have
been proven to be inadequate. Hence, classical control techniques and ad-hoc gain
scheduling is applied for the VLSAM. The autopilot design is pursued separately
for the mid-course and terminal guidance phases of the flight. Angle autopilots are
designed for the mid-course, including the rapid turnover maneuver and accelera-
tion autopilot for terminal guidance phase respectively. The gains of the autopilot
are scheduled with respect to time during boost phase and Mach for the post boost
phase. The performance of the autopilots are analyzed within nonlinear simulation.

The effect of the axial acceleration during the boost phase is emphasized. Recent
studies covering boost phase do not present such a term. The effect is illustrated
within the simulation results regarding the comparison of schedules linearized sys-
tem with the nonlinear system. The second important issue is to define a constant
hybrid control ratio that interconnects the thrust vector with aerodynamic control; a
singular value analysis of the linear control influence is conducted for that reason.

In addition, autopilots are integrated with body pursuit and proportional naviga-
tion guidance (PNG) guidance schemes. The overall guidance and control design
is tested for a defense maneuver to defeat an approaching target. In literature, a
study regarding the initial roll maneuver for interceptors based on fuzzy guidance
has been found [[1]]. Here an alternative maneuver based on a basic approach: initial
roll command generation to minimize side slip angle during vertical flight is studied
which is very practical and efficient to implement.

2 Modeling of the Vertical Launch Missile Dynamics

Dynamic modeling of the VLSAM is carried out by implementing the well known
Newton-Euler equations with rigid body assumption. The VLSAM, analyzed in this
paper, is axi-symmetric and has a blunt nose. It is a tail controlled missile and uses
both the aerodynamic tail fins and jet vanes. Two main coordinate systems as the
body coordinate system (B) and the earth fixed inertial coordinate system (E) are
defined and the equations of motion are derived with respect to them. The origin of
the body axis system is assumed to be at the final center of gravity location after
burnout. Also, since the propellant of the missile is burning throughout the flight,
the mass, inertia and the position of center of gravity are formulized as a function
of thrust and total impulse values and included in the model. Hence, since the thrust
and impulse are modeled as a function of time, the mass, inertia and center of gravity
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position of the missile change as a function of time. Hence, the translational and
rotational motion of the missile can be written as Eq.[Il Detailed information about
the dynamics and aerodynamics can be found in [2].

l rv—qw+ (Fax+ Fgy + Fry)/m

% pw — ru+ (Fay+ Fgy+ Fry) /m

w _ qu—pv+ Fa+ (Fo. + Fry) /m (1

p (MAx +MTx)/Ixx

6] (MAy—FMTy—Pr(lxx_lyy))/lyy

7 (Maz + Mz — pq(Lo— Lyy)) [ Iyy
Here, F ffay-z)’ FT(?X)_),J) and F, C(?l(?-,xZ) are the Cartesian components of the aerody-
namic, thrust and gravity forces. Mf(fay-d’ M;lay‘z) and are the Cartesian compo-

nents of the aerodynamic and thrust moments. u, v, w are the components of missile
velocity in body coordinates, p,q,r are the missile body rates, m is mass. As, the
VLSAM in this study is axi-symmetric and has cruciform geometry, I,y = I, .

As for the calculation of the rates of the Euler angles, to avoid the singularity
when the pitch angle is equal to F90°, direction cosine matrix (DCM) formulation
is rather preferred to the Euler angle formulation to avoid the singularity problem.
Although the quaternion formulation is computationally more efficient, it is not cho-
sen because the DCM is more practical to apply and interpret physically.

2.1 Aerodynamic Forces and Moments

The aerodynamic forces/moments are functions of dynamic pressure (Q,), missile
reference area (S ) and the aerodynamic force coefficients, i.e. C; ’s. Hence the aero-
dynamic force vector in matrix representation can be written:

F{®) = [Fay By Fa.] = 0uS[C. G, C.]

0 2
) 2)
MA =04S [Cl Cn Cn] + (xcgref *xc(t))FAz

(xcgref — X (t) )FAy

The aerodynamic force/moment coefficients as nonlinear functions of flight vari-
ables; Ma, o, 3,0,, 0., 0, where Ma is the Mach number, o is the angle of attack
and f is the angle of sideslip, 0, 0y, 0, are the aileron, elevator, rudder deflections
of aerodynamic control surfaces. xc,. is the final, i.e. after the propellant burn-out,
and x.() is the instantaneous position of the center of gravity, Q, is the dynamic
pressure, S is reference surface. the VLSAM has high angle of attack flight regime,
so that an aerodynamic database is created including £90 degrees of angle of attack
and cross coupling terms. The details of the aerodynamic modeling and analysis of
the VLSAM can be found in [2].
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2.2 Thrust Forces and Moments

The thrust forces and moments, are generated by deflecting the thrust vector by the
jet vanes located at the nozzle exit of the missile. The magnitude of thrust force (7'),
duration of the boost phase, the time to reach the maximum thrust level and the ge-
ometrical properties of the jet vanes are the critical parameters for thrust vectoring.
These parameters are adapted to achieve desired maneuvering capabilities for the
VLSAM [3]]. The maximum thrust vectoring forces and moments are dependent on
the maximum jet vane deflection angle and vane characteristics such as thickness
(tx ), chord (c) and thrust motor characteristics as nozzle exit pressure (P) and flow
velocity (M..). To determine the lift and drag forces, linear supersonic theory is di-
rectly applied. The area of the jet vane is not changing or may be neglected. There
are studies that include the jet vane erosion phenomenon which effects the lift and
drag forces created by vane deflections, [4], 3], [6] and [[7].

PCLyMZS, PCpyMZS;
I — LY =20 p— DY Jv (3)
2 2
Here, lift and drag force coefficients (Cy, and Cp) are functions of deflection of jet

vanes (9yy ), nozzle exit pressure, thickness and chord of the jet vanes:

48y 4
Y S NV S

Within the scope of this paper, the area of the jet vanes are assumed to be fixed.
Linear supersonic theory may sometimes overestimate the lift and drag forces, and
it has to verified with 3D computational fluid dynamics analysis and experiments.
However, it is known that the accuracy of linearized theory is high when jet vanes
are located at enough distance to with respect to each other and outside the nozzle
[8]. Also, the dynamics between the jet vane deflection and total thrust deflection
is taken as unity, because of the high the inflow rate [9]. The moments created by
the deflection of the jet vanes are calculated by using the forces and the moment
arms which are the distance between the nozzle exit diameter and jet vane center of
pressure and the distance between the jet vane center of gravity and missile center
of gravity.

C (& +(")?) @

3 Autopilot Model

There are studies on different algorithms for the control techniques applied at high
angle of attack flight regimes. They can be mentioned as the robust control design
for IRIS-T [10], the sliding mode controller [I1]], the adaptive control [12]] and some
nonlinear control strategies comparison with classical control [13]]. As mentioned
earlier, the aim of this study is to investigate the applicability of the classical control
design techniques on that challenging VLSAM dynamics and identify the possible
advantages and disadvantages. Other control techniques may then come into picture



Flight Control Algorithms for a Vertical Launch Air Defense Missile 77

to defeat the discrepancies that the classical control design techniques cannot han-
dle. In what follows, it will be demonstrated that autopilots designed with classical
control techniques can meet the mission requirements of the VLSAM.

3.1 Linearized Systems

The state space matrix calculated with the Jacobian linearization of the nonlinear
missile dynamics, at different instants of the vertical flight, can be written in the
following form to express the control efficiency originating from the control surfaces
separately:

A% = AAZ + Bpiig + Biiy (5)
where ity = [Oa4 O Oar| and ity = [Or4 Ore Or/], and By, Br are the control matrices
for the aerodynamic and thrust vector control. Here, AX =[AU a B pgr ¢ A 0] is
in general form. The eigenvalues and system matrices of vertical flight at different
velocities and altitudes before and after burnout are given in .

To apply linear control techniques, nonlinear missile dynamics is decoupled into
three simplified representations of the overall motion since there is no clear distic-
tion between lateral and longitudinal dynamics because of its axi-symmetry prop-
erty. The pitch plane state space equations can be formulated as:

101 Zo—u/U 1+Z,] [ Zus, Zr;, | | Oae
| = + e o (6)
q My, Mg | la] |Ma,s, Mry,| |Ore
Sd N Sd? Sd
where My = Q}i‘. Cings Zo = %i/ Cop» My = %11/1”. Cing» Zg = 2Q('jszZq, Mas, =

QqSd _ Q4S _ T _ I ; :
I CmAée’ ZA&) =0 CzAse’ MTae =y and ZTﬁe = .U including aerodynamic

derivatives e.g. Cy,,, Cs, €tc.

3.1.1 Enhanced Short Period Approximation

The addition of the term /U as seen in Eq.[6lenhances short period approximation
[13]. Conventional short period approximation assumes that the directional velocity
component of the air vehicle is constant (& = 0), however the missile under study,
especially accelerates rapidly in the boost phase. Thus, the 11/U becomes significant
especially at the beginning of the vertical climb.

In Fig.[Il the normal acceleration time histories for a given longitudinal control
input is presented to show the comparison between linearized and nonlinear mod-
els. Here, the linearized systems are scheduled with respect to time in the boost
phase. As it is seen from the figure, the linear system behavior is drastically sepa-
rated from the nonlinear system behaviour especially where i1/U is high, i.e. at the
beginning of the boost phase. Thus, as for the acceleration autopilot design, it is cru-
cial to add 1/U compensation to the short period approximation when the missile
velocity is comparably low. Otherwise, the normal acceleration controller, designed
without i1/U compensation, may show either inadequate performance or unstable
behavior [13]].
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Fig. 1 Effect of missile axial acceleration in linearized missile acceleration dynamics

3.2 Thrust Vector-Aerodynamic Control Effectiveness

Control surfaces of such missiles are generally actuated using the same servo ac-
tuator. The challenging design problem is to set the ’hybrid control ratio” which
is directly related with the desired control capability. This ratio has to be consid-
ered together with the mission requirements and the control effectiveness. A static
control effectiveness analysis is conducted for that purpose. As expected, at low ve-
locities aero control is less effective than TVC and becomes powerful as the speed
increases. However, it looses control efficiency at high angle of attack values and
also at relatively high altitudes. The control effectiveness analysis of the aerody-
namic and thrust vectoring controls for the VLSAM at different altitudes is shown
in Fig. 2l Here, the singular values of the B matrices are computed. TVC efficiency
stays nearly constant. This is an expected result that only the total mass of the missile
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Fig. 2 Maximum singular value of B matrix
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is decreasing while thrust level is nearly constant and it does not effect the TVC ef-
ficiency much. Further, the aerodynamic control becomes more effective than TVC
after 0.7 or 0.9 Mach depending on the altitude. In order to have maximum maneu-
verability, the control allocation between the two control schemes is distributed as
1, but a detailed analysis and optimization study is done for this purpose [14].

3.3 Autopilot Simulations

In order to be used for the mid-course guidance, autopilot is designed to operate
on roll and pitch angles [16]). In that phase, autopilot gains are time scheduled. The
performance of autopilot for pitch/roll angle reference commands and deflection
histories of aileron and elevator deflections are presented in Fig. and Fig.
Time histories of critical parameters are also depicted in Fig.[l Although large angle
difference (45°) are demanded for both the roll and pitch attitudes, autopilot results
are quite successful considering high variation of parameters such as o (0 —30°),
speed (0-3 Ma) and drastic increase in dynamic pressure.
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Fig. 3 Angle autopilot nonlinear simulations
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Fig. 4 Velocity, angle of attack and dynamic pressure histories
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For the terminal guidance, acceleration autopilot is designed using the 3-loop
acceleration autopilot scheme [13]. Autopilot gains are scheduled with respect to
Mach. The performance of the autopilot to square command input of 15g is illus-
trated in Fig.[5(a) and the elevator deflection in Fig.[5(b)] Since the speed is decreas-
ing and demand stays constant in magnitude (15g), control commands increase to
compensate this kinetic energy loss.

20| —— Demand

5 6 7 8 9 10 11 12 4 5 6

7 8 0 11 12
time (s) time (s)

(a) Acceleration autopilot response (b) Elevator deflection

Fig. 5 Tracking performance of acceleration autopilot

4 Guidance Algorithms

One of the main advantages of vertical launching is the engagement capability to
the targets in all possible directions that brings the necessity to direct the missile to
the plane of motion of target as soon as possible. Here, body pursuit guidance is a
possible candidate, and simple to apply, to align the missile body axis to the line
of sight. This procedure tries to minimize the look angle and effectively increases
the target detection possibility. The aim of the body pursuit guidance algorithm is to
produce reference body angle commands to be processed in the previously designed
angle command controller. As for the terminal guidance after the boost phase, the
conventional PNG guidance methodology is chosen for its proven performance and
ease of application.

In this study, the design of the guidance algorithms are divided into two phases
as the mid-course and the terminal guidance. The mid-course guidance starts in the
launch phase and operates until the hand-over to the terminal guidance phase. The
switching condition from mid-course to terminal guidance generally depends on
the current state of the missile and the target, trajectory constraints and the target
detection sensor, i.e. seeker, properties. A simple switching condition is defined and
set to occur when the lock-on range is less than 5 km and the field of view is less than
3 degrees. Intercept condition is defined based on the achievable minimum value of
the closing distance as 1 m.
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4.1 Guidance and Control Simulations

The proposed flight control algorithms are implemented in a defense scenario on a
closing target that has a velocity of 1 Mach and starts a pull-up maneuver with 7g
when the target to missile range becomes less than 3 km. The initial position of the
target with respect to the missile is py = [10, 2, —2] km. In Fig.[6(a)] the acceleration
time histories are presented. Fig. illustrates time histories of the look angle,
angle of attack, sideslip angle of the missile. Look angle is decreasing from 80° to O
during the mid-course guidance phase. Whenever the guidance algorithm switches
to PNG, look angle starts increasing again (the behavior of the look angle at the
end is not a numerical but dynamical trend). More maneuvers on different type of
targets are simulated, see [14]]. In all of the target types, flight control algorithms are
succesfull. Besides, the flight envelope has to be clarified and the overall success of
the flight control algorithms has to be examined.
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Fig. 6 Engagement simulations

5 Turnover Strategy

In the previous section, the turnover strategy used in mid-course guidance was skid-
to-turn strategy in which missile does not roll and yaw/pitch channel commands
are applied together to maneuver the missile towards the desired direction. Here,
the proposed turn-over strategy is actually a mixed ascend that turnover maneuver
composed of an initial roll followed by skid-to-turn (Fig.[Z). That kind of maneu-
vering is also used in the mid-course guidance of air to air missiles and [18].
[1]] discusses a turn over strategy implemented with back to turn and roll maneu-
vers, however a direct comparison of skid-to-turn and skid-to-turn with initial roll
maneuver, and their advantages and disadvantages are not explicitly conducted.

In this turn-over strategy, the missile has an initial roll maneuver and then starts
turning towards the target. The objective of the initial roll maneuver is to align the
pitch plane of motion of the body of the missile to the same vertical plane with the
target. Thus, after the initial roll maneuver that aligns the missile’s pitch plane of
motion, a maneuver in that single plane is required to head on towards the target.
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This brings the advantage of flying with less control effort and reduces the side slip
angle values. In order to analyze the differences between standard turn-over and the
turnover with initial roll maneuver, they are implemented for different simulations
for the same static target which is at py = [1, 1, —0.2] km with respect to the
missile. This necessitates a roll angle command of 45 degrees. Upon executing the
roll maneuver, the engagement will become planar; so, only pitching control can
be used to capture the target. Fig. [8] shows angle of attack and side slip angle time
histories compared for the standard skid-to-turn and skid-to-turn with initial roll
maneuvers. With the proposed maneuver, yaw maneuver is not required to head on
the target. However, as a draw back, it necessitates higher angle of attack than the
standard skid-to-turn maneuver as also seen in Fig. [8l
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6 Discussion and Conclusion

The paper illustrates practical flight control algorithms for an advanced missile, the
VLSAM. First, six degrees of freedom flight dynamics is briefly introduced. An en-
hancing linearization term for the short period approximation which has not directly
mentioned in literature is proposed. Its drastic effect to similarity of scheduled lin-
earized systems and nonlinear dynamics is shown. Two different autopilots, angle
and acceleration, are designed using classical control techniques for the flight enve-
lope of the VLSAM in co-operation with guidance algorithms requirements. Aero-
dynamic and thrust vector control capabilities are blended in 1 : 1 ratio to have more
agility. The scheduled autopilots demonstrate satisfying performance in a highly
nonlinear, rapidly parameter and time varying environment which is a promising
start up for design process of industrial applications.

There are also advanced guidance techniques for agile missiles, but the analysis
and numerical results show that a body pursuit guidance for midcourse guidance
phase and proportional guidance for terminal guidance can be directly applied to
the VLSAM. Moreover, a turnover maneuver, which is the initial roll maneuver, is
also accomplished for midcourse guidance phase that decreases maneuver require-
ments in lateral direction. To sum up, classical approaches are still applicable for
such an agile system. In order to start up a design, from industrial point of view,
the flight control algorithms which are applied in this paper can be implemented
easily and effectively. For further studies, maneuvers and autopilots are going to be
optimized in order to maximize total energy and increase flight time. Regarding the
optimization results, advanced flight control algorithms may be considered.
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LFT Model Generation via /;-Regularized
Least Squares

Harald Pfifer and Simon Hecker

Abstract. The paper presents a general approach to approximate a nonlinear sys-
tem by a linear fractional representation (LFR), which is suitable for LFT-based
robust stability analysis and control design. In a first step, the nonlinear system will
be transformed into a quasi linear parameter varying (LPV) system. In the second
step, the nonlinear dependencies in the quasi-LPV, which are not rational in the pa-
rameters, are approximated using polynomial fitting based on /;-regularized least
squares. Using this approach an almost Pareto front between the accuracy and com-
plexity of the resulting LFR can be efficiently obtained. The effectiveness of the
proposed method is demonstrated by applying it to a nonlinear missile model of
industrial complexity.

1 Introduction

Linear fractional transformations (LFTs) can be considered a standard form for
many modern robust control methods. In literature, a plethora of algorithms based
on LFTs exist for analysis or synthesis, see e.g. [[I]]. In general, control problems are
dealing with nonlinear systems of the form

X = f(x,p,u)

1
y=g(x,p,u), M
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where x € X C R™ is the state vector, y € R" the output vector and u € R™ the input
vector. In addition the system can depend on a parameter vector p € I1. In order to
apply modern robust control methods on them, an efficient approach to approximate
(D by a linear fractional representation (LFR) needs to be available.

As an intermediate step on the way of obtaining an LFR of (1), the system is first
transformed into an LPV system of the form

x=A(0)x+B(0)u )

y=C(8)x+D(d)u.
In @), 8 can not only consist of the parameter vector p but also includes state-
dependent nonlinearities, i.e. § € (X x IT) C R"s, see [2]]. In the latter case, the
system is called quasi-LPV. Various techniques have been proposed in literature to
perform the transformation of ({J) into an quasi-LPV system (see for example [3} 4])).
If the quasi-LPV system (2)) depends only rationally on &, the transformation into

a linear fractional representation (LFR) of the form

XxX=Ax+Byw—+ Byu

z=Cix+Dyyw+ Diou

y=Cx+Dyw+Dyu 3)
w=A(d)z

A= diag(5llsl,...,5nélsn6)

is straightforward.

Many sophisticated methods have been proposed in literature to obtain low order
LFRs of a given LPV system, see [3] and the references therein. Usually, three
steps are applied in the transformation process. First, a symbolic preprocessing of
the LPV model is performed. Second, the actual transformation is conducted via
object oriented LFT realization. Finally, numerical order reduction can be utilized
to further reduce the order of the resulting LFR.

In several cases one may directly derive an analytic quasi-LPV (@) suitable for
transforming into an LFR from a nonlinear system (I)) via symbolic calculations.
However, especially in aeronautical applications the models usually include highly
nonlinear functions (neural networks, tables) or may only be given for a discrete
set of conditions (linear aeroelastic models). In such cases the quasi-LPV model
obtained via function substitution cannot be directly transformed into an LFR. The
highly nonlinear functions or the discrete set of conditions have to be approximated
by rational functions first.

It is largely an open question, how a function approximation is obtained, which
is suitable for transformation of (2)) into an LFR. Note that the minimal achievable
LFR order depends mainly on the complexity (order of rational or polynomial ap-
proximations) and the structure of ). In [6], we proposed a method to generate
optimal LFT models achieving a good accuracy while keeping the complexity low.
It involves directly minimizing a weighted sum of the LFR order and some error
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metric via a complex non-convex optimization. While this procedure provides good
results as shown in [7] and [§], it is rather cumbersome and time consuming. The
major contribution of this paper is a convex relaxation of the optimization of [6],
which allows to efficiently obtain an (almost) Pareto front representing the compro-
mise between the LFR order and accuracy.

In Section2] the general problem formulation is stated. In Section3] an overview
over /|-regularized least squares and its application to polynomial fitting will be
presented. Then the LFR generation problem is reformulated in the ¢;-regularized
least squares framework in Sectiondl Finally, in Section[3 the proposed algorithms
are applied to a nonlinear missile model of industrial complexity with a nonlinear
dynamic inversion based controller. It is shown that the approach allows to transform
the highly nonlinear system into an LFR of sufficient accuracy, which still possesses
a complexity suitable for performing LFT based stability analysis.

2 Problem Statement

The starting point of the LFT model generation is a quasi-LPV model @), which
can for instance be obtained via a function substitution technique as introduced by
[3]. It is assumed that (2) does not depend rationally on the parameter vector 6.
More precisely, there are {s;(6)}{ elements in (2) which need to be approximated
by a rational/polynomial function, in order to transform (2)) into an LFR. In a typical
aerospace application the set {s;(6)}} would contain for example the aerodynamic
forces and moments coefficients. In the present work due to its simplicity only poly-
nomial functions will be considered to approximate the original functions s;(3).

The first step is to generate a grid of values s; for each function s; at a set of
pre-specified parameter values. The value s; ; represents the i" function evaluated
at the k™ point and & is the corresponding parameter vector. For each index value
k an LTI system with transfer function Gy = Cy(s/ fAk)_lBk + Dy, can be built by
evaluating the quasi-LPV model @)) at § = &.

The goal is now to calculate a polynomial approximation of the elements s;, such
that (@) can be transformed into an LFR of low complexity. It should, however,
still represent the original nonlinear system (I)) adequately. The problem can be
conceptually described by

min d(Glfrv{Gk}’{l) —‘rWC(Glfr), 4)

Glfr 6,5’1/',

where d(.,.) is the notation of distance or model error between the approximate
model G;¢, which is restricted to the class of LFT-based LPV models .7} ,, see @,
and the grid point LPV model {Gy}". In addition, c(.) describes the complexity of
the resulting LFR and w is a weighting factor to balance complexity and accuracy.
As a measurement of the LFR’s quality the v-gap metric, as specified by [9],
between the {G;}]" and the LFR evaluated at {0} is applied. The v-gap met-
ric can take values between zero and one with zero meaning that two plants match
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closely and one that they are far apart. In general, any system norm can be used,
e.g. s%-norm. The v-gap metric has a decisive advantage over other system norms,
though, as an error measurement for LPV model generation: It is also defined for
unstable systems. Since in many practical cases the plant may be at least partially
unstable in the admissible parameter set, special care has to be taken when choosing
other system norms.

The complexity of the resulting LFR is estimated by the lower bound on its order
as defined in [5]], which is computationally faster than using the actual achievable
order. For a given linear parametric model S(8) with 6 € R"s the lower bound can
be calculated as follows: Substitute all but one parameter §; with random values and
compute a minimal order, one parametric LFR with order m;. Note, that for sin-
gle parametric systems one can always calculate a minimal order LFR. Repeat this
procedure for all parameters. Finally, the lower bound is given by my;p = Z;’jl m.

3 Polynomial Approximation by /-Regularized Least Squares

The algorithm for finding polynomial approximations of the single matrix elements
is based on a regularized least squares fitting. In the following x; ; denotes the nu-
merical values of the j parameter at the k™ grid point, y is a vector including the
m grid point values of an element s; and b is a vector including the polynomial co-
efficients. In a first step, a matrix X will be built, which considers all possible bases
for a multivariable polynomial of a given order evaluated at the m grid points.

In function approximation, it is often desired to choose from a set of potential
bases one subset, which offers the best approximation of all subsets of the same
cardinality, see [10]. The aim is to find a solution to the least squares problem with
a sparse coefficient vector b, i.e with a small cardinality card(b), which is defined
as the number of nonzero elements in the vector . Considering a coefficient vector
b € R" and k < n, it can be described as

mbinHXb —y|I3, s.t. card(b) < k. (5)

As shown in this is a hard combinatorial problem. However, there exists a good
heuristics to approximate (3), which is called ¢;-regularized least squares. In (@)
1Dl = X7 |bi] is the £;-norm and A the regularization parameter.

H}]inHXb*yll%/lllblll (6)

For a given A this problem is actually convex and can be easily solved. By
performing a sweep over A a Pareto front is obtained, which presents the trade-off
between card(b) and the residual || Xb — y||>. Various techniques exist in literature
to solve the convex problem (@), e.g. specialized interior-point methods as proposed
in .
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4 Procedure for the Generation of LFT Models

A weighted form of (6) can be used to simultaneously approximate all {s;(8)}] by
polynomials.

14
min 3w | X B~ yill3 + w3 [b]. ™
i=1

where b is a vector containing the polynomial coefficients over all elements that
should be approximated. The vectors {f;}} consist of those coefficients which are
used in the approximation of the i element. The weightings w; and w, will be used
later on to bring (@) closer to the original problem of minimizing the LFR order and
an error metric between the LFR and the quasi-LPV.

Since all elements and especially all polynomial coefficients over all elements are
considered in the cost function, scaling them is important. In the presented approach,
the data is normalized so that each column of X and y has unit length and zero mean

[12).

m m
zy, =0 in’j 0
l;l l;l (8)

Syi=1 Y X} =1forj=1,.n
i=1 i=1

Note that making use of orthogonal polynomials as e.g. Chebyshev polynomials and
the standardization (§) results in X being orthonormal, i.e. X7 X = I. This simplifies
solving the ¢;-regularized problem (Z).

The regularization parameter A in (Z) is employed as a weighting between the ac-
curacy and the complexity of the polynomial approximation as described in Section
Bl The Pareto front between card(b) and the polynomial fit serves as an approxima-
tion of the trade-off between the LFR order and the accuracy of the LFR model.

The starting value of A is is chosen in accordance with the following proposition.

Proposition 1. Setting 2 in (4 to

o= 2man (wl,,-m?x ((xm-);) ) o

w2, j
yields a constant approximation, i.e. b = 0.

For the proof the reader is referred to [11]]. Incrementally decreasing A will result in
steadily better fits with higher card(b).

An advantage of this approach is that a lot of computations can be done upfront
and reused at each iteration. Additionally, the solution of the last iteration is used
as the starting point of the new iteration. Hence, performing a sweep over A is
computationally comparably cheap.

To demonstrate the validity of the convex approximation some brief results of
the polynomial approximation used in the missile model with nonlinear dynamic
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Fig. 1 Results of /;-Regularized Least Squares Problem for LFR Model Generation

inversion controller are presented (see Section[3]for more details). The elements that
require approximation in the missile model are the aerodynamic force and moment
coefficients.

In Fig. [1l the difference between the cost function of the convex problem (Z)
and the lower bound of the LFR order as well as the maximum v-gap metric Oy nax
is presented. As shown in the upper figure the number of polynomial coefficients
and the lower bound LFR order m;p follow a similar trend. However, it can be
seen that it is possible to increase the cardinality of the coefficient vector b without
increasing myp.
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A likewise statement can be made about the relation between the sum of the resid-
uals ¥;||Xb; — y;||3 and the maximum v-gap metric between the LFR and the grid-
point LPV model. Minimizing the residual in general seems to also lower Sy ax.
Still, it has to be kept in mind that this is only a heuristics and no direct relation
between the residual and some system metric can be established.

4.1 Weighting of the Elements

The quality of the LPV approximation is only accounted for in the weighted sum of
the polynomial approximation errors in a least squares sense. Since not all elements
s; have the same significance for the LPV model, equally weighting them would not
reflect the major aim to find an LFR of good accuracy and low order. Hence, for
each element s; a so-called influence coefficient /C; is determined.

An element s; has a low influence coefficient if its variation among the set of
grid point models does not significantly influence the transfer matrix of the frozen
models in terms of a specified error metric. For each s; a set of transfer matrices
{Gy, }1' is generated, which is equal to the set {Gy}]" except that for s; the mean
value of the m grid point values y; is chosen. Finally, the influence coefficient IC; of
s; is defined as

IG; :m]?X(SV(GkaGki))a k= L...,m, (10)

where 8, denotes the v-gap metric between Gy and Gy,.

The IC can be directly used as weighting w; in the convex approach. Hence, the
algorithm is biased towards minimizing the approximation errors of elements with
a high IC.

In order to show the advantage of using the influence coefficient as weighting
w1, a comparison between a weighted sum and weighting each elements equally is
made. The example uses again the data from the missile model. In Fig. [2] the max-
imum error in terms of the v-gap metric Sy jmqy is shown over the lower bound on
the LFR order for a sweep over the regularization parameter A. The case, where
each approximation error is weighted equally, is depicted by the circles. The crosses
represent the results of the approximation with using the influence coefficients of
the elements as weightings wy in (). As can be seen in the figure, the weighted
£-regularized problem yields much better results for most A in comparison to the
unweighted problem. Note, that in both cases not each point is actually Pareto opti-
mal in terms of v-gap and LFR order.

In addition to its usage to weight the elements, the influence coefficients are also
used to determine which elements can be considered constant in the proposed ap-
proach. Is the influence coefficient of an element below a specified threshold, the
respective element will be approximated by its constant mean value over all grid
points.
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4.2 Weighting of the Polynomial Coefficients

Instead of minimizing the lower bound LFR order a weighted ¢;-norm over all pos-
sible polynomial coefficients is used. The weighting w, shall be chosen such as to
penalize polynomial bases which would lead to higher order LFRs. A good heuris-
tics for choosing wy is to set w» ; to the degree of the respective polynomial basis
g(x). For instance considering the monomial basis g;(x) = x3x3, the corresponding
weighting factor w; ; would be four. This also coincides with the minimum achiev-
able LFR order of g;.

5 Example: Missile Model

The example is based on a nonlinear model of a modern air defense missile. The
missile is in a cruciform configuration with four fins at the tail. It is axis symmetric
with a slender body. A controller based on nonlinear dynamic inversion has been
designed for the missile model within [I3]]. The aim of this work is to obtain an
LFR of the closed loop missile, which is suitable for modern LFT based robust
stability analysis.

The mathematical model has six states, namely the velocities in y- and z-direction
v and w respectively, the roll rate p, pitch rate ¢, yaw rate r and the bank angle around
the velocity vector @y. The inputs are the deflections angles in aileron &, elevator 1
and rudder £. As outputs the accelerations in y- and z-direction a, and a, @y and
the angular velocities Q = [p,q,r]! are available. The parameter vector § consists
of the Mach number Ma, the angle of attack ¢ and the side slip angle f3.

In the following, the general differential equations of momentum and angular
momentum are given in the body-fixed coordinate system. F' and M represent the
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external forces and moments respectively acting on the missile and I the inertial
tensor.

1 p u
= YF—|q|x|v (11)
m
r w
p p p
q "I SXM—|q| x|Ir|q (12)
7 r r

Note that the acceleration in x-direction # has been neglected in the quasi-LPV
model, as the control has no influence on them.

In the following equations the C; are the aerodynamic coefficients which are non-
linear functions of 8. In addition, p is the air density, V = Maa is the absolute
velocity with a being the speed of sound. The other parameters are the reference
area Sy, reference length /,.¢, mass m and moments of inertia Iy, Iy, and I ;. For
the sake of brevity the auxiliary variables Kj = pVS,.r/(2m), Ky = pVSyeflrer/2
and K3 = pVS,, fl / 4 are introduced.

In the quasi- LPV model the forces and moments will be described by their re-
spective dimensionless coefficients, which is common practice in aerospace. These
aerodynamic coefficients are nonlinear functions of the parameter vector 6 and are
only available as discrete table data.

1] -y [(08) 70

Fz Cz0(8) +Czn(8)1

L Cr0(8) +Cpe(6)8 Crp(0)p (13)
M| =KV |Cuo(6) +Cun(0)n | + K3 [Cuy(0)q

N Cno(8) +Cp¢ (6)8 Cnr(6)r

The state equations are given in (I8), where A;(J) is obtained via a function substi-
tution of the aerodynamic coefficients. The following substitutions have been used:

_ 0 if =0
Co=< " . if p _ fori=Y,L N (14)
Cip/sinf, otherwise
- 0 if «a=0
Co=14" BEEY fori=zM (15)
Cio/(sinccosf), otherwise

v v
w w g
by Dy

—A 16
» () » +B(8) [n (16)
q q
r r



94 H. Pfifer and S. Hecker

K1 Cyo 0 0 Vsinacos 0 —Vcosacos B
0 KiCzo 0 —VsinfB Vcosacosf 0
AS) = 0 0 0 cosacosf sin 8 sin cccos 8
K> /IxCro 0 0 K3/IMCLP 0 0
0 K/lyCu0 0 K3/LyCog 0
K> /IZZCNO 0 0 0 0 K3 /IZZCNr
(17)
0 0 KiVCye
0 K\VCzy 0
0 0 0
B(s) = KzV/IxxCLé 0 0 (18)
0  KV/LyCuy O
0 0 KV/LCy

Note that as a requirement for the application of the inversion based control method,
the system has to be minimum phase. This is not the case when considering the
accelerations at the center of gravity. As a remedy, in [[13]], it has been proposed to
use accelerations ay, and a; at a virtual point P instead. If the point P is sufficiently far
in front of the center of gravity the system is minimum phase. The output equations
for the accelerations at P can be written as

ay = qf:f Cy +ixgp a; = qir;sz — gxgp (19)
with xg, being the distance between P and the center of gravity. Using the same
function substitution (I9) can be written in a suitable form to fit into the quasi-LPV
framework. The equations for the remaining outputs, namely @y and €2, are easily
obtained, as both @y and (2 are states of the system.

In addition to the quasi-LPV parameters defined above also uncertainties in the
aerodynamic data are considered in the model. For the moment and control surface
coefficients (6Cr, 6Cy, 6Cy and 8C,,y) these are +20 percent and for the force
coefficients (6Cy and 6Cz) +5 percent.

The controller is a standard nonlinear dynamic inversion based one. It is separated
into three parts: the inversion of the rotational dynamics €2, the inversion of the
outer dynamics a;, ay and @y and a reference model, which is only used in the feed
forward path. A classical PI-controller has been developed for the inverted plant. A
detailed description of the controller is found in [13]].

5.1 Generation of the LFR Model

In order to transform (I6) into an LFR the aerodynamic coefficients need to be
approximated by polynomials. The results of this /| -regularized least squares fitting
are shown in Fig. Bl An approximate Pareto front between the lower bound of the
LFR order and the approximation error in terms of the v-gap metric for the plant can
be seen. Both the maximum error (dashed red line) and the mean error (solid blue



LFT Model Generation via ¢1-Regularized Least Squares 95

045 ‘ ‘ 60
A = = = max error
M mean error "
----- N ‘= = LBLFR order| 1
>

0.3} Sel Lo 50
—_ Ss ; T
1 ~ ol —
L N - -
£ N ! B
- ~ °
g€ 0.2} N ! 140 1
g : z

1

v @
> -l

0.1

0 10 20 30 40 50 60 70 80
Iteration [-]

Fig. 3 Results of the /) -regularized Least Squares Fitting

line) over all grid points are provided. The black vertical line designates the chosen
iteration for the LFR generation. This iteration has a maximum error Sy jar = 0.11,
a mean error Oy meqn = 0.054 and a lower bound of LFR order of myp = 35.

The nonlinear dynamic inversion controller is already in LPV form. The same
polynomial approximations for the aerodynamic coefficients can be used for it. The
trigonometric functions in (IZ) can simply be approximated by a Taylor series ex-
pansion and truncation after a sufficient high order.

At this point, the closed loop of the missile benchmark is available as a symbolic
description of an LPV model in its general form @)). It only depends rationally on
the parameter vector 8. This is a requirement for transforming the system into an
LFR. By employing the sophisticated techniques of [14] the resulting closed loop
LFR has a dimension of 65, with the A-Block having the following structure:

A = diag(Malysy2s, 011919, BI11x11,0Cy,0C;,8C;,8Cp, 6Cp, 0Cetyil5x5)  (20)

5.2 Model Assessment

In order to show that the closed loop LFT system still closely matches the origi-
nal nonlinear system, a Monte-Carlo simulation is conducted. To estimate the error,
which has been introduced due to the various approximation steps, the LFT system
is run in a parallel setup with the fully nonlinear model. The error is then measured
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in terms of the maximum of a relative .%-norm over a finite time horizon, which is
defined as

11 2 05
<ﬁ0 (ynls,i _ylfr,i) dt)
error = max (2D

05
i o
(ftO ynls,idt>

with Ynls = [q)\/,nlsaaz,nlsaay,nls and Yifr = [(DV,Ifraaz,lfraay,lfr

Simultaneous sinusoidal sweeps in all three command channels are applied as
input signals for the nonlinear simulation. The amplitude of the signals are 10°,
20m/s> and 10m/s” for the ®y-, a.- and ay-channel respectively. The frequencies
from the sinusoidal sweeps range from 0.1 Hz to 10 Hz.

I '

Sample size: 1000
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Fig. 4 Statistical Results of the Monte-Carlo Simulation

The only parameters considered in the Monte-Carlo simulation are Ma, o and f3.
All parameters corresponding to model uncertainty are set to their respective max-
imum values. The results of the Monte-Carlo run with 1000 samples are shown in
Fig.@lin form of the cumulative distribution function (CDF). The CDF gives the per-
centage of simulation runs which are less than a specified error. The samples are uni-
formly distributed over the considered flight envelope spanned by Ma = [0.9,4.4],
o =1[0,25]° and B = [0, 10]°. In the CDF, it is seen that in 90 percent of the cases
the error is less than 5 percent. The worst case found in the Monte-Carlo run is 10.2
percent.

The time history of the worst case found in the Monte-Carlo simulation is shown
in Fig.[3l i.e. the erroris 10.2 percent. It can be seen in the figure that the LFR model
still matches the original nonlinear model well.
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6 Conclusion

A very general algorithm for generating LFT models has been developed, which
can be applied to arbitrary nonlinear systems, as long as the system behavior can
be accurately described/approximated with polynomial or rational parametric state-
space systems. In order to efficiently generate LFT models, a convex relaxation has
been proposed. It is very time efficient and can compute an almost Pareto front
between the LFR order and accuracy.

In the present work, this algorithm has been successfully applied to an industrial
benchmark problem. LFRs of high accuracy and reasonable order could be gener-
ated for a highly nonlinear missile model. The quality of the LFRs has been assessed
using Monte-Carlo simulations.

In the future, it is contemplated incorporating the approximation error made dur-
ing the polynomial fitting as a dynamic unstructured uncertainty. Methods as the
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ones described in can likely be adopted for this purpose. Such mixed para-
metric dynamic uncertainty models might be better suited for controller synthesis
purpose.
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An Impulsive Input Approach to Short Time
Convergent Control for Linear Systems

Martin Weiss and Yuri Shtessel

Abstract. The paper considers the problem of bringing the state of a controllable
linear system to the origin in a very short time. It takes the approach of considering
an “ideal” control input consisting of a linear combination of the Dirac delta func-
tion and its derivatives that realizes this goal instantaneously. Three schemes are
introduced to approximate the impulsive input with physically realizable functions:
a smooth approximation with compact support, a Gaussian function approximation
and a step approximation. It is shown using a numerical example that all approxi-
mations work reasonably well, with the Gaussian approximation providing slightly
worse results. It is also shown that a direct approach to obtain a state nulling input
by solving an integral equation runs quicker into numerical problems than the im-
pulsive input approach as the convergence time decreases. Finally, an application to
an orbital rendez-vous problem is presented.

1 Introduction and Motivation

The interest in impulsive control theory has steadily increased over the past few
years with many new books and articles being added to an already impressive list.
Without any ambition to be exhaustive we may cite here books like [T} 2, [3, 4] and
numerous journal and conference contributions such as [5} [6} [7]. The idea of us-
ing the delta distribution and its derivatives in control synthesis is not new. This
approach seems to be first considered in [8]. Another work that takes a similar ap-
proach is [9]]. More recent publications such as [[7] have even extended the problem
to the case of linear descriptor systems. In the paper [3] a dynamic programming
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approach is proposed for optimal impulsive control laws that turn out to be linear
combinations of delta and delta derivatives. Another recent contribution [6] uses
delta and delta derivative state feedback for the adaptive stabilization of a second
order nonlinear system.

There are numerous practical situations in which impulsive control is not just an
option, but the only solution to achieve the required performance. In general, this is
the case in all situations that large deviations from equilibrium need to be corrected
in very short time. An example in this direction are the reaction control systems for
steering and attitude control of space vehicles. For instance, see the works [10], [6]
and [11]]. For exo-atmospheric missiles, reaction control based on solid fuel rocket
thrusters is an attractive solution, but they are not throttable and deliver a large
impulse during a short time period. The action of small thrusters on the missile can
largely be approximated by an impulsive signal.

Let us illustrate the approach of this paper using a simple example of a perturbed
double-integrator

X1 =Xy,
X = f(t) +u, (D

with a control input # and an unknown disturbance f(¢). This may be the model of a
high precision positioning system of a point mass, with x;, the position, and x,, the
velocity. Typically a fine positioning control system will use high accuracy sensors
and actuators to ensure that the disturbing force is effectively rejected. However,
high accuracy sensors and actuators typically have a limited range. The system is
designed in such a way that, most of the time, the disturbance will not bring the
system out of the range of the fine positioning control system, except if a peak in
the disturbing force occurs. These occurrences may be rare, but a fine positioning
control system will be poorly equipped to deal with these situations, so an additional
system needs to be in place.

In this situation it is important to restore as quickly as possible the system to the
neighborhood of the origin, so that the fine control system can take it over. This is
in essence the problem that we consider in this paper.

As the occurrence of peaks in the disturbance is assumed to be a rare event, we
are not very much concerned with limitations in the energy necessary to perform
the correction. We will even allow for impulsive inputs. For example, an impulsive
input of the form

u=1x2(0)0 +x1(0)
brings the double integrator (1)) instantaneously to the origin. Of course, this input
needs to be practically implemented, and we are examining this problem in this
paper too. We limit ourselves here to the open loop control problem, leaving the
feedback control for future work.

One of the main problems in impulsive control consists is in the approximation
of the delta function and its derivatives. The most popular approximation is one
based on the Gaussian bell function as used in [9] and [7]]. In this paper, we com-
pare this approximation with two other approximations that have the advantage of
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having finite support. The main goal and the contribution of this paper is to present
a theoretical and practical study of these approximations of the delta function and
its derivatives and to compare these approximations with a direct approach to bring
the state of the system to the origin that is based on a solution of an integral Volterra
equation. We will see that the Gaussian function approximation provides slightly
worse results in practice, whereas the direct approach runs into serious numerical
problems as the convergence time decreases.

The structure of the paper is as follows. Next section formulates the problem
that we consider in this paper: nulling the state of the system in very short time us-
ing an impulsive type of input. Section 3] presents the main theoretical contribution
of the paper, deriving the formula’s for the ideal impulsive input, as well as offer-
ing three different solutions to approximate the impulsive inputs with practically
implementable signals. These solutions are compared to a conventional solution
both qualitatively, as on a numerical example in Section [4l In Section[3] the pro-
posed techniques are illustrated on a satellite rendezvous problem. Finally, Section
6l presents some concluding remarks and ideas for future work.

2 Problem Formulation
Consider the following linear system with n states and m inputs:
X =Ax+ Bu, x(0) = xo. 2)

The problem that we consider in this paper can broadly be formulated as: Find an
input signal u that brings the state to the origin in a short time. Of course, the
problem formulated in this way has very many solutions. In fact, it has many ways
to approach it.

One of the well-known approaches is the Minimum Time Optimal Control Prob-
lem, often used as an application of the Optimum Principle of Pontriaghin. In this
case, it is assumed that there is a bound on the magnitude of the control signal u
and the problem is to find an admissible input u that brings the state in the origin in
minimum time.

This is not however the approach that we take here. In fact, we will not put any
bound on the magnitude of u, but we will rather fix a time interval within which
the state should be nulled. By making this time interval arbitrarily short, we hope to
achieve the stated objective. Even under this formulation of the problem, there are
infinitely many solutions. The most straightforward approach, that we will call the
direct approach, consists of determining an input that solves the integral equation
of Volterra-type

0 = exp(Ag)xp+ /0&3 exp(A(e —5))Bu(s)ds, 3

that can be deduced directly by imposing x(€) = 0 and using the variations of con-
stants formula for @). If the system (@) is controllable (an obviously necessary
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condition for the problem to have a solution at all), there are infinitely many so-
lutions of this equation that can be generated in the following way: Let Q(-) be an
m X m-matrix valued function such that

We = / exp(A(e — 5))BQ(s)B" exp(A” (€ —s))ds 4)
0
is invertible. Then

u(t) = ~Q(1)B" exp(A” (e — )W, exp(Ae)xo (5)

is a solution of (), as can be easily verified. In this way, we constructed an entire
set of solutions for the equation (3). Each of them represent an input function that
brings the state of @) in the origin at time €.

The approach that we introduce in this paper and that we call the impulsive in-
put approach is based on starting with an input u that brings the state in the origin
instantaneously. Of course, such an input signal necessarily has an impulsive char-
acter. In fact, it is a sum of Dirac delta derivatives. By approximating the Dirac delta
derivatives, we can determine practical input signals that “almost” bring the state in
the origin. We will actually present two different systematic ways of determining an
approximation for the impulsive input.

3 The Impulsive Input Approach

As explained before, we are looking for an input of the form
n—1 )
u(t) =3, 8" (1) o, (6)
k=0

where 5§k> are the generalized derivatives of the Dirac-delta distribution centered in

€ > 0, defined (see e.g. [12, Sec. 2.2]) as

/ 69 (10 (1)dr = (—1) 6 (&),

for any test function ¢, and ¢ are vectors of dimension m, that need to be deter-
mined. By substituting (@) in the variation-of-constants formula for system (@), we

have
n—1

t
x(1) = exp(At)xo+ Y, [/ exp(A(r — s))BSE(k)(s)ds] 0.
k=0 /0
Using familiar properties of derivatives of the Dirac-delta distribution, this is equiv-

alent to
n—1

x(t) = exp(At)xo+ D exp(A(r — £))A*Boy,
k=0
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for ¢ > €. Requiring that x(g) = 0, the coefficients oy need to satisfy

0
(09]
[BAB ... A" 'B] . = —exp(A€)xp. (7)

01

Notice that the matrix in the left hand side of () is the controllability matrix of the
pair (A, B). If system (@) is controllable, () has a least one solution for every xo and
every €. For each such solution, the input (6) will make x(g) = 0.

Obviously, to make such an approach practical, it is necessary to approximate the
impulsive input with a regular input. Fortunately, this is possible. In fact, there are
infinitely many ways to do this. We will propose here two types of approximations:
using smooth functions (one with bounded support and one using the Gaussian func-
tion) and using step functions.

3.1 A C” Approximation with Bounded Support

Consider the following kernel function

t2
(1) = e [t < h,
0 t| > h,

2
where Kk = fll e-1dt is a normalization factor, and & > 0 is arbitrary. It is well
known that the functions @y, are C* smooth, and as & — 0, these functions approxi-
mate in a special sense the Dirac-delta distribution (i.e. they weakly converge to the
delta distribution, see e.g. [13, pag. 13 and following]).
We propose to replace the input (&) by

n—1
u(t) =Y ot — &)y ®)
k=0

For any € > h > 0, this function is smooth and is null everywhere outside the interval
[€ — h,&+ h]. Due to the approximation property of the kernel function, it is to be
expected that the state response will come close to the origin for > h+ €.

Proposition 1. Let x;,(+) denote the solution of @) for u = uy, for some positive h.
Then

li h+¢€)=0.

Jim x, (1 + &)

Proof. Introducing (8) into
xp(h+¢€) = exp(A(h+€))xo

h+€
+ / exp(A(h + & — 5))Buy(s)ds,
0
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and using the formula
h+e "
/ exp(A(h—i—e—r))Boca),(l >(r—£)d7: =
0
h+e
/ exp(A(h+ € — 1))A*Boay, (T — €)dr,
0

that can be proven by using integration by parts and induction, we obtain
xi(h+€) = exp(A(h+ €))%

h+¢g n—1
—1-/ exp(A(h+e—1)) Y, ABogw,(t —€)dr.
0 k=0

By substituting here formula (7)) we obtain
xp(h+¢€) = exp(A(h+€))xo

h+¢€
- / exp(A(h+2e—1))xowp(T — €)dT.
0

Because of the finite support of the function wy, the limits of integration in the
previous expression can be extended to the entire axis. Now, using the fact that, for
every continuous function ¢ (r)

tim [~ o(e~ 2)an(e)dz = ().

h—0

we can take directly the limit in the last expression of x;,(h + €) and the assertion is
readily proved.

3.2 A Gaussian Function Approximation

The approximation of the impulsive input by the Gaussian function approximation
was proposed and studied in quite a few references (e.g. [8, [7]). In this case, the
Dirac delta function is approximated as

12

Dy(t) = x/27rh62h2 .

Although, this is a C* function, unlike the previous approximation, this function
does not have compact support. A similar result as Proposition[I] holds for this ap-
proximation, but we will not state here since this approximation was extensively
studied in the literature.
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3.3 A Piecewise-Constant Function Approximation

The function

1
Oy aps lI<h
t) =

6’1 ®) { 0, rest. ©)
is clearly a piecewise constant approximation of the Dirac delta function. The first
order derivative of the delta function can be approximated by the following “sym-
metric finite difference” relation

. s+ My =8 =1 (L, —h<t<0,
5 =7 2 =< L. o<r<n, (10)
h I
0, rest.

Notice that the support of 5,El] as defined above, just as the support of S}EO] is [—h,h].
Approximations of the higher order derivatives are defined iteratively as

5%"‘”(r+ h— 5&"‘”(;* h

5[k] £ = 11
h ( ) h ) ( )
forall k > 1.
We propose to replace the input (&) by
n—1 I
up(t) = 8, (1 — €) . (12)
k=0

Just as the approximation (§), for any € > & > 0, this function is null everywhere
outside the interval [¢ — &, € 4 h]. The next result shows that this input is also bring-
ing the state close to the origin for ¢ > h + € for & small enough.

Proposition 2. Let x;,(+) denote the solution of @) for u = uy, for some positive h.
Then

li h+¢€)=0.

Jim x, (1 + &)

Proof. Introducing (I2) into
xp(h+¢€) =exp(A(h+€))xo+

h+e
-1-/0+ exp(A(h+ € —s))Buy(s)ds,

while taking into account that the support of uy, is [h + €,€ — h],
xa(h-+€) = exp(A(h+))xo

n—1 h+e .
+ Y o Alre=s)psi (s — g)ds,
k=0 —h+e
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and after a simple change of variable
n—1 h .
xp(h+g) =M ey + > Otk/ eA(hfwBS}E ](s)ds.
k=0 —h

From the last relation and from (@), it is clear that the assertion is proved if we show

that
h

lim [ exp(A(h—s))BS} (s)ds = A*B. (13)
h—0 —h
We prove this relation by induction. First of all, for k = 0, the relation

1 [h
li A(h—s))Bds=B
lim /7hexp( (h—s))Bds

follows from the properties of the matrix exponential.
Let us denote by

h

I(h) = / exp(A(h — 5))B8 (s)ds. (14)
—h

By hypothesis

limI,_(h) =A*'B.
lim 7 1(h)

Using the recursive definition (1)), we can write

h
i) =, [ Al sk )-8 s las
—_h 2 2

Taking into account that the support of 5,[,](_” is [— g, ]21] we have
2

0
L(h) = ;l[ [ expan—s)me) s+ Z)ds

B / " exp(a(h— 585 (s — ")),
0 2 2

and translating the variable in each integral,

3h
expAC

-~
—
=
=
I
= =
—
S

[N]

—5)B8¥ (s)ds
2

— /J. exp(A(Z —s))BSékil](s)ds},
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that is

S

Since

it is clear that

and the proof is completed.

4 Comparing the Impulsive Input Approach with the Direct
Approach

The approach based on approximating the impulsive input requires very simple
computations, and they are independent of the convergence time 4. Formula (12))
can be computed by solving a linear equation (7) and using analytic functions such
as the function @, and its derivatives that can be even computed off-line. Simi-
larly, the approximation using piecewise constant function and the approximation
using Gaussian functions can easily be implemented using appropriate data com-
puted off-line. The piecewise constant approximation may be easier to implement
in a practical situation, and presents a definite advantage that it allows a good es-
timate of the maximum value of the control input. On the other hand, formula (3))
requires numerical integration to compute W), and then matrix exponentials are also
required.

However, formula (I2) is only an approximate solution of the state nulling prob-
lem, whereas formula (@) is an exact solution. Also, any choice of Q(t) that keeps
W), invertible generates a solution to the state nulling problem. Notice that equation
(@ may also have an infinity of solutions in case m > 1, that is, if there are more
than a single input.

So far the qualitative analysis. We tested the various approximations of the im-
pulsive control as well as the direct approach on a few numerical examples. Due to
space limitation, we present only a single example of a third order system with one
input:
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The results for the first, impulsive input approach are represented in Figures [T] and
for the case of the C* approximation and in Figures B and F for the case of the
piecewise constant approximation. The results for the Gaussian approximation are
represented in Figures [3] and |6l Notice that the Gaussian approximation provided
worse results than the other two approximations especially as the convergence time
decreases. We have seen this for all the examples considered, and it is probably due
to the fact that the Gaussian function has no compact support, but we do not have at
this time a rigorous argument to explain this observation.

St3ndOrder: reachability error Impulsive Control

Fig. 1 State value after applying the impulsive input approach with C*approximation for
different times &
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5 40 200
0 20 o
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Fig. 2 Input and state response using the impulsive input approach with C*approximation

for different times &
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St3ndOrder: reachability error Impulsive Control
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Fig. 3 State value after applying the impulsive input approach with piecewise constant ap-
proximation for different times &
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Fig. 4 Input and state response using the impulsive input approach with piecewise constant
approximation for different times £
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Fig. 6 Input and state response using the impulsive input approach with Gaussian approxi-
mation for different times &

Applying the direct approach on the same example, we obtain the results repre-
sented in Figures [7] and 8l This is much worse than expected. Actually, the state is
effectively brought close to the origin only for the case of 4 = 0.1, in which case the
state coordinates are of the order 0.01. However, this is not visible in Figure [7] due

to the very bad performance for the other two values of &.

Analyzing the cause of the failure of the direct approach in this case, we no-
tice that formula (@) involves the inverse of the matrix Wj,, which even if invertible
for all 4 > 0 in case that the pair (A, B) is controllable, may actually be quite poorly
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x10° St3ndCrder: reachability error Nulling Control
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Fig. 8 Input and state response using the direct approach

conditioned. In this case, the computation of the nulling input will be challenging.

Let us consider

h
Wh:/ exp(—As)BBT exp(—ATs))ds,
0

which is related to W), by the relation

Wy, = exp(Ah)Wy,exp(AT h).

Therefore, inverting W, is just as difficult as inverting W;,. Figure 0] represents the
condition number of W}, that is defined as the ratio of the largest and the smallest
singular value. It is well known that a large value of the condition number is indi-
cating that the matrix is badly conditioned numerically, and it is easy to see that for
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Fig. 9 Numerical condition number of W}, as a function of &

h =0.01, the condition number is 10'°, whereas for 4 = 0.001, the condition num-
ber is around 10'3. This explains the failure of the direct approach for these values
of h, whereas the impulsive input approach is clearly not affected by this issue.

The phenomenon illustrated in this example is generic. Even in the two dimen-
sional case, we show that the condition number of W), tends to infinity as /2 decreases

to zero. Indeed let
_|la1 0 o bl
a=[5alo=a]

It is easy to compute the expression of W, in this case explicitly as

_ | wi(h) wia(h)
Wi = [Wllz(h) wl;(h)]

2aph ay+ap)h
Aaul—ipo elarta) ~1bby
B )

(15)

21;1 1 aj+ap
aj+ap h7] gz"Zh—l 2
aj+ap b1b2 2a; bz
where can see that, as h — 0
wi(h)
h

h h
WZ}E ) —>b§, Wl;l( ) — b1bs.

— b%,
The two eigenvalues of W), are

1
M(h) = (w1 +W2+\/(W1 —w2)2+4w,),
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1
),2(/’1) = 2(W1 +wy — \/(Wl — W2)2 —|—4W%2).

Using repeatedly the fact that limj,_, eaZ,;l = 1, and the expressions in (I3), we
readily deduce that

Mh) 5 o
1 =b7+b
w0 h 1o

which is not zero unless the system is uncontrollable. On the other hand

tim 2 o,

=0 h
Consequently

. Ai(h)

1 — oo

oo Ay (h)

which shows that W), becomes badly conditioned as /2 becomes small. It is very likely
that this result holds true for the higher dimensional case, but it is already clear that
the example presented in this section is not isolated in the sense that the impulsive
control approach is better suited than the direct approach to drive the state quickly
to the origin.

5 Application to an Orbital Rendezvous Problem

We consider the linearized model for orbital rendezvous that is well-known as the
Clohessy-Wiltshire equations [[14] that expresses the relative motion of a chasing
spacecraft in the coordinate system fixed to the target spacecraft, as represented in
Figure

X—20y— 3% = Uy,
V+2mwx = uy, (16)

i+’ = Uz,
where o is the orbital rate, x, y and z are the components of the relative displacement
between chasing spacecraft and the target, and uy, u, and u; are the components of
the thrust acceleration of the chasing spacecraft. If we denote by X = [x yzxXy Z] ’

. T .
the state space vector of this model, and by U = [ux iy uz] the input vector, the
motion equations (I6) can be written as

d
X =AX +BU, 17
gt + (17



114 M. Weiss and Y. Shtessel

Target
Satellite

Chase
_ Satellite

Fig. 10 Schematic representation of the satellite rendez-vous problem

where
03 I
2
A= 3w~ 0 0 0 2w0 B— 03
00 0 2w 00 LI
0 0-w> 0 00

Clearly, the rendezvous problem can be formulated as bringing the initial state X (z,)

to a final state X(tf) = [xf yrzr 00 O]T, where xr, yr and zy are the final relative
displacements between the two spacecrafts. We seek inputs of the form

U(t)=8(t—t;)otp +8'(t —t;) ey,
where o, and o are constant vectors in R3. The state at final time tyis
X(tf) — eA(ff—to)X(to) + eA(tf—t,‘)Bao + eA(tf_ti)ABOC] )

If the initial and the final states are known, this relation can readily be solved for the
impulse coefficients

{al ] = [4B B] " [AX (1) — AUOX (1)

0
This expression can be used to give an analytic expression for the impulse coeffi-

cients if we notice that
-1_ | I O3
[AB B] - |:_Ao 13 ’
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Table 1 Numerical values of the parameters for the rendez-vous problem

Parameter Symbol Value
Major semi-axis target Rr 9000 km
Orbital inclination target —50 deg
Orbital rate of the target 0= \/ ,g‘; 7.39444 10~ rad/s
Initial semi-axis chaser R; 12000 km
Orbital inclination chaser —30 deg
Final time ty 1500 s
Impulse application time ti 1000 s
Rendez-vous position (Hill coordinates) xf,yr,zf 10,10,10 km
Time step for impulse approximation h 200, 100, 20 s
I

—— Chaser
—Target

5000

10000

5000 5000

(a) Three dimensional orbits.

—u

—u

E 000 1500 h 500 000 1500
1000 [
Time [¢] Time <] Time <]

(b) Positions, velocities and thrust accelerations of chaser in Hill coordinates.

Fig. 11 Simulation results for the case of pulse width 7 =200 s
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(a) Three dimensional orbits.
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(b) Positions, velocities and thrust accelerations of chaser in Hill coordinates.

Fig. 12 Simulation results for the case of pulse width 7z =100 s

0 2w0
withA, = | —2w 0 O | and that
0O 00
2—coswr 0 0 i S'f’wml 2(" coset) g
6sinot—07)1 0 Tl dsnor-der g
AT — 0 0 coswt 0 0 e
3wsinwt 0 0 cosmT 2sinwT 0
6(coswt—1) 0 0 —2s8in@T 4coswt—3 0
0 0 —wsinwt 0 0 cosmT

By applying these relations and the approximations schemes proposed here, it is
possible to devise efficient online algorithms for computing the steering thrust for
solving the rendezvous problem. For illustration purposes, we consider a numerical
example with the parameter values given in Table [[l Only the piecewise constant
approximation approach is considered as it is better suited for the case of solid fuel
thrusters. The time & was succesively varied from 200 s, 100 s, and 20 s. The results
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(a) Three dimensional orbits.
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Fig. 13 Simulation results for the case of pulse width 7 =20 s

of the simulations are represented in Figure [[T] Figure and respectively Figure
[[3l As expected, the necessary thrust acceleration level is increasing as /# becomes
smaller. However, the vectors o, and ¢ are independent of A. It is therefore easy to
determine, using our approach, a minimum # that is compatible with the maximum
achievable thrust acceleration.

The proposed impulsive control technique, combined with a robust feedback con-
trol, including traditional and higher order sliding mode control algorithms (see e.g.
[T6]]) can also be applied to the satellite formation control problem considered
in [17]. However, such a closed loop implementation will be the subject of future
work.

6 Conclusions and Way Forward
An impulsive input approach to the problem of driving the state of a linear system

to the origin in very short time is studied in this work. The control input was derived
as a linear combination of the Dirac delta function and its derivatives. Subsequently,
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two approximation schemes were proposed for approximating the impulsive input
and theoretical results were proven to confirm their validity. Using a numerical ex-
ample, we have shown that a direct approach to obtain a nulling input by solving an
integral equation runs into numerical problems for short time intervals, whereas the
solutions obtained by the impulsive input approach are not affected. For the second
order case, we showed that the numerical problems are generic and not particular to
the chosen example. Another observation is that the approximation using the Gauss
function may give poor results due to the unbounded support, although this seems
to be the approximation most studied in the literature.

Future work will concentrate on combining the proposed approach with robust
feedback control, including adaptive output feedback sliding mode estimation and
control.
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Model Formulation of Pursuit Problem
with Two Pursuers and One Evader

Sergey S. Kumkov, Stéphane Le Ménec, and Valerii S. Patsko

Abstract. We study a model differential zero-sum game, which can be re-
garded as an idealized variant of the final stage of a space pursuit, in which
two pursuing objects and one evader are involved. Results of numeric con-
structions of level sets of the value function for qualitatively different cases
of the game parameters and results of simulation of optimal motions are
presented.

1 Introduction and Problem Formulation

1) In the paper, a model differential zero-sum game with two pursuers and
one evader is studied. Three inertial objects moves in the straight line. The
dynamics descriptions for pursuers P; and P, are

Zp, = ap,, Zp, = ap,,

ap, = (u1 —ap,)/lp,, ap, = (u2 — ap,)/lp,, )
lui| < pa, uz| < p2,

ap, (to) =0, ap,(to) = 0.
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Here, zp, and zp, are the geometric coordinates of the pursuers; ap, and
ap, are their accelerations generated by the controls u; and wy. The time
constants [p, and [p, define how fast the controls affect the systems.

The dynamics of the evader F is similar:

Zp = ag, éLE:(U—aE)/lE, ‘U‘ <v, aE(to) =0. (2)

Let us fix some instants 77 and T5. At the instant T3, the miss of the first
pursuer with respect to the evader is computed, and at the instant T5, the
miss of the second one is calculated:

rp,e(Th) = |z6(Th) — 2p (Th)], 7P, E(T2) = [26(T2) — 2p,(T2)|.  (3)

Assume that the pursuers act in coordination. This means that we can join
them into one player P (which will be called the first player). This player
governs the vector control u = (u1, us). The evader is regarded as the second
player. The resultant miss is computed by the following formula:

¢ =min{rp, (1), 7p,,6(T2)}. (4)

At any instant ¢, both players know exact values of all state coordinates zp,,
Zp, Qpy, 2Py, 2Py, GPy, 2B, 2B, 0. The vector composed of these components
is denoted by z. The first player choosing its feedback control minimizes the
miss ¢, the second one maximizes it.

Relations (I)-() define a standard antagonistic differential game. One
needs to construct the value function (¢, z) — V(t, z) of this game and optimal
(or quasioptimal) strategies of the players.

2) Up to now, there are a lot of publications dealing with differential games
where one group of objects pursues another group; concerning games with
linear dynamics see, for example, works [I,4L6l[1TL12]. The problem under
consideration has two pursuers and one evader. So, from the point of view
of number of objects, it is the simplest one. On the other hand, strict math-
ematical studies of problems “group-on-group” usually include quite strong
assumptions onto the dynamics of objects, dimension of the state vector, and
conditions of termination. Unlike, this paper considers the problem without
any assumptions of these types.

3) Let us describe a practical problem, whose reasonable simplification gives
the model game ([l)-(@). Suppose that two pursuing objects attack the evad-
ing one with high velocities. They can be rockets or aircrafts in the horizontal
plane (Fig. [I). A nominal motion of the first pursuer is chosen such that at
the instant 77 the exact capture occurs. In the same way, a nominal motion
of the second pursuer is chosen (the capture is at the instant T5). But indeed,
the real positions of the objects differ from the nominal ones. Moreover, the
evader using its control can change its trajectory but not essentially, without
sharp turns. Coordinated efforts of the pursuers are computed during the
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Fig. 1 Scheme of the nominal motions in the pursuit problem with weak-
maneuvering objects

process by the feedback method to minimize the resultant miss, which is the
minimum of the distances at the instants 77 and T5 from the first and second
pursuers, respectively, to the evader.

Assume that we can choose a line (in Fig.[I] it is a horizontal line) such that
the major components of velocities of all three objects are directed along it.
Then, the misses at the instants 77 and 75, can be computed along a direction
orthogonal to such a line ignoring difference of positions along this line.

The passage from the original non-linear dynamics to a dynamics, which
is linearized with respect to the nominal motions, gives [I3l[14] the problem
under consideration.

2 Passage to Two-Dimensional Differential Game
At first, let us pass to the relative geometric coordinates

Y1 =2 — Zp,, Y2 =ZE — 2P, (5)

in dynamics (), @), and payoff function (@]). After this, we have the following
notations:

1 =ag — ap,, Yo = ag — ap,,

ap, = (u1 —ap,)/lp,, ap, = (u2 —ap,)/lp,, (©)
ag = (v—ag)/lp,, luz| < pa,

lua| < p1, o[ <, ¢ =minf[y1 (T1)], |y2(T2)[}-

State variables of system (@) are y1, 91, ap,, Y2, U2, ap,, ag; uy and uy are
controls of the first player; v is the control of the second one. The payoff
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function ¢ depends on the coordinate y; at the instant 73 and on the coor-
dinate yo at the instant 7.

A standard approach to study linear differential games with fixed termi-
nal instant and payoff function depending on some target coordinates of the
state vector at the terminal instant is to pass to new state coordinates (see,
for example, [7[8]) that can be treated as values of the target coordinates
forecasted to the terminal instant under zero controls. Often, these coordi-
nates are called the zero effort miss coordinates [I3L[14]. In our case, we have
two instants 77 and T», but coordinates computed at these instants are inde-
pendent; namely, at the instant T3, we should take into account y;(73) only,
and at the instant T, we use the value yo(7%). This fact allows us to use
the mentioned approach when solving the differential game (). With that,
we pass to new state coordinates x; and x2, where x1(t) is the value of y;
forecasted to the instant 77 and z2(t) is the value of yo forecasted to the
instant 7T5.

The forecasted values are computed by formula

Ti =Y + Ui — apilfgih(ri/lpi) + aEl%h(Ti/lE), 1=1,2. (7)

Here, x;, i, Ui, ap,, and ag depend on ¢; 7; = T; — t. Function & is described
by the relation h(a) = e~ + o — 1. Emphasize that the values 7 and 7
are connected to each other by the relation 7 — 75 = const = 171 — T5. It is
very important that z;(T;) = y;(T;). Let X (¢, z) be a two-dimensional vector
composed of the variables 1, o defined by formulae [, ().

The dynamics in the new coordinates x1, x2 is the following [9]:

i1 = —lp,h(71/lp Jur + Igh(Ti [lp)v, | < s Jug| < po,
to = —lp,h(2/lp,)us + lgh(a/lg)v, |v] <.

(®)
The payoff function is <p(x1(T1), xQ(Tg)) = min{|z1(T1)|, |z2(T2)|}.

The first player governs the controls u;, us and minimizes the payoff ¢;
the second one has the control v and maximizes .

Note that the control uy (u2) affects only the horizontal (vertical) compo-
nent @1 (i2) of the velocity vector & = (i1, 42)T. When T} = Ty, the second
summand in dynamics () is the same for &, and @5. Thus, the component
of the velocity vector & depending on the second player control is directed at
any instant ¢ along the bisectrix of the first and third quadrants of the plane
z1,22. When v = 4v, the angle between the axis x; and the velocity vector
of the second player is 45°; when v = —v, the angle is 225°. This property
simplifies the dynamics in comparison with the case T} # T5.

Let 2 = (z1,22)T and V (¢, x) be the value of the value function of game (8]
at the position (¢,z). From general results of the differential game theory,
it follows that V(t,2) = V/ (¢, X(t, 2)). This relation allows one to compute
the value function of the original game ([I)—(@) using the value function for

game (g]).
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Fig. 2 Variants of the solvability set evolution in an individual game

For any ¢ > 0, a level set (a Lebesgue set) We = {(t,z) : V(t,z) < c} of
the value function in game (§)) can be treated as the solvability set for the
considered game with the result not greater than ¢, that is, for a differential
game with dynamics (8) and the terminal set

M. ={(t,z) : t =T, |o1| <} J{(t,2) 1t =Ty, |a| < c}.

When ¢ = 0, one has the situation of the exact capture. The exact capture
means equality to zero, at least, one of 21 (T}) and x2(T3). Let We(t) = {« :
(t,z) € W.} be the time section (t-section) of the set W, at the instant ¢.
Similarly, let M.(¢t) for t = T and t = T be the t-section of the set M, at
the instant t.

Comparing dynamics capabilities of each of pursuers P; and P, and the
evader E, one can introduce the parameters [Q14] n; = pi/v, ; = lg/lp,
1 =1, 2. They define the shape of the solvability sets in the individual games
P,—F and P>—E. Namely, depending on values of n; and 7;e; (which are
not equal to 1 simultaneously), there are 4 cases [I4] of the solvability set
evolution (see Fig. 2):

expansion in the backward time (a strong pursuer);

contraction in the backward time (a weak pursuer);

expansion until some backward time instant and further contraction;
contraction until some backward time instant and further expansion (if
the solvability set still has not broken).

Respectively, given combinations of pursuers’ capabilities in individual games
and durations T3, T» (equal/different), there are significant number of vari-
ants for the problem with two pursuers and one evader.

The ideology of solving the game used by us is the following. Choose the
parameters 7;, £;, and, also, the instants T;, i = 1, 2; then, using some fine
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grid for values of ¢, we compute the level sets W, of the value function. After
that, we can build optimal or quasioptimal strategies of the first and second
players.

Nowadays, different workgroups suggested many algorithms for numeric
solution of differential games of quite general type (see, for example, [2[3L5]
[TO,[T5]). Problem () has the second order on the state variable and can be
rewritten as

& =Di(t)ur + Da(t)uz + E@)v,  |ur] < pa, fuz| < po, o] <ve (9)

Here, z = (w1, 72)T; vectors Dy (t), Da(t), and E(t) look like

Dl(t) = (_lplh((Tl - t)/lpl)Tv O)’ DQ(t) = (07 _lpzh((TQ - t)/lpz))Tv
E(t) = (Ish((Ty — t)/1g), Leh((Ts — t)/1)) "

The control of the first player has two independent components w; and us.
The vector Dy (t) (D2(t)) is directed along the horizontal (vertical) axis. The
second player’s control v is scalar. When T} = T5, the angle between the axis
x1 and the vector £(t) equals 45°; when T; # T», the angle changes in time.

Due to peculiarity of our problem, we use special methods for constructing
level sets of the value function.

3 Maximal Stable Bridge: Control with Discrimination

A level set W, of the value function V' is a maximal stable bridge (MSB)
breaking on the terminal set M. [7[§].

Let Ty = T». Denote Ty = T. Using the concept of MSB from [7L[], we
can say that W, is the set maximal by inclusion in the space t < T, = such
that W.(Ty) = M.(Ty) and the stability property holds: for any position
(ti,zs) € Welts), t« < Ty, any instant t* > t,, t* < Ty, any constant
control v of the second player, which obeys the constraint |v| < v, there
is a measurable control ¢t — (U1(t),U2(t)) of the first player, t € [t.,t*),
lur ()] < pa, |uz(t)] < po, guiding system (B) from the state x, to the set
W.(t*) at the instant t*.

The stability property assumes a discrimination of the second player by
the first one: the choice of the first player’s control in the interval [t.,t*) is
made after the second player announces his control in this interval.

It is known (see [71[8]) that any MSB is close. The set W/(t) = cl (R?\
We(t)) (the symbol cl denotes the operation of closure) is the time section
of MSB W/ for the second player at the instant ¢. The bridge terminates
at the instant Ty on the set M/(Ty) = cl(R?\ M.(Ty)). If the initial po-
sition of system (§]) is in W/ and if the first player is discriminated by the
second one, then the second player is able to guide the motion to the set
M/(Ty) at the instant Ty. Thus, OW, = OW/. It is proved that for any
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initial position (tg,zo) € OW,, the value ¢ is the best guaranteed result for
the first (second) player in the class of feedback controls.

Due to symmetry of dynamics (8) and the set W,(Ty) with respect to the
origin, one gets that for any ¢ < Ty the time section W,(¢) is symmetric also.

If T1 # T5, then there is no any appreciable complication in constructing
MSBs for the problem considered in this paper in comparison with the case
Ty = Ts. Indeed, let T} > T,. Then in the interval (T3, T1] in (&), we take into
account only the dynamics of the variable x7; when building the bridge W,
backwardly from the instant 77. With that, the terminal set at the instant T3
is taken as M (T1) = {(x1,z2) : |x1| < ¢}. When the constructions are made
up to the instant T, we add the set M.(T»), that is, we take

WC(TQ) = WC(T2 + 0) U{(l‘l,l‘g) : |$2| < C},

and further constructions are made on the basis of this set.

So, our tool for finding a level set of the value function in game (&) corre-
sponding to a number c is the backward procedure for constructing a MSB
with the terminal set M,.. Presence of an idealized element (the discrimi-
nation of the opponent) allowed us to create effective numeric methods for
backward construction of MSBs.

The solvability set with the index equal to ¢ in the individual game P1-F
(P2-E) is MSB built in the coordinates ¢, 1 (¢, x2) and terminating at the
instant 77 (T») on the set |z1] < ¢ (Jz2| < ¢). Its t-section, if it is non-empty,
is a segment in the axis x1 (x2) symmetric with respect to the origin. In the
plane x1, x2, this segment corresponds to a vertical (horizontal) strip of the
same width near the axis zo (x1). It is evident that when ¢t < T3 (¢ < Tb),
such a strip is contained in the section W,(t) of MSB W, of game () with
the terminal set M..

4 Results of Numeric Constructions of Maximal Stable
Bridges

Case of Strong Pursuers. In the case of two strong pursuers, the t-sections
of MSBs in individual games P1-F and P2-FE grow with increasing of the
backward time. This gives that for any ¢ > 0 and any ¢t < ¢ = min{7Ty, T2}
the set W,(t) includes a cross near the axes x1, x, which expands with
decreasing t.

Let us give results of constructing t-sections W, (t) for the following values
of the game parameters: p3 = 2, uo = 3, v =1, lp, = 1/2, Ip, = 1/0.857,
lg=1.

Equal terminal instants. Let Ty = To = 6. Fig. Blshows results of constructing
the set Wy (that is, with ¢ = 0). In the figure, one can see several time
sections Wy(t) of this set. The bridge has a quite simple structure. At the
initial instant 7 = 0 of the backward time (when ¢ = 6), its section coincides



128 S.S. Kumkov, S. Le Ménec, and V.S. Patsko

with the target set, which is the union of two coordinate axes. Further, at the
instants t = 4, 2, 0, the cross thickens, and two triangles are added to it. The
widths of the vertical and horizontal parts of the cross correspond to sizes
of MSBs in the individual games with the first and second pursuers. These
triangles are located in the I and IV quadrants (where the signs of z7 and
x9 are different, in other words, when the evader is between the pursuers).
They give the zone where the exact capture is possible only under collective
actions of both pursuers.

Time sections W,(t) of other bridges W, ¢ > 0, have a shape similar
to W() (t)

Different terminal instants. Let T3 = 7, Ty = 5. Results of constructing the
set Wy are given in Fig. @l When ¢ < 5, time sections Wy(t) grow both
horizontally and vertically; two additional triangles appear, but in this case
they are curvilinear. In Fig. Bl the set Wy is shown in the three-dimensional
space t, x1, 3.

The given results are typical for the case of strong pursuers. When T = Tb,
the sets W.(t) can be described analytically. This was done in paper [9]. Also,
there the case Ty # T, was studied. But for it, only an upper approximation
of the sets W,(t) was obtained.

Case of Weak Pursuers. Since in the case of weak pursuers the t-sections
of MSBs in individual games P1-F and P2—-FE contract with growth of the
backward time and become empty at some instant, the set We(t) for any ¢ > 0
with decreasing of ¢ loses infinite sizes along axes x; and 5.

Fig. 3 Two strong pursuers, equal ter- Fig. 4 Two strong pursuers, different
minal instants: time sections of the max- terminal instants: time sections of the
imal stable bridge Wy maximal stable bridge Wy
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Fig. 5 Strong pursuers, different terminal instants: 3D-view of the set Wy

The most surprising fact discovered during the numeric study was that
the connected set W,(¢) with decreasing of ¢ loses connectedness and disjoins
into two separate parts.

Take the parameters pu; = 0.9, uo = 0.8, v = 1, lp, = lp, = 1/0.7,
lgp = 1. Let us show results for the case of different terminal instants only:
T, =9, Ty = 7. Since in this variant the evader is more maneuverable than
the pursuers, the first player cannot guarantee the exact capture.

The set W, in the space t, z1, xo for ¢ = 2.0 is shown in Fig. [l During
evolution of the sections Wao(t) in ¢, they change their structure at some
instants. These places are marked by drops in the constructed surface of the
set.

One Strong and One Weak Pursuers. Let us take the following parame-
ters: up =2, po =1, v=1,1p =1/2,1p, =1/0.3, Iz = 1. Now the evader
is more maneuverable than the second pursuer, and an exact capture by this
pursuer is unavailable. Assume T} = 5, To = 7.

In Fig.[1 a three-dimensional view of MSB Wj ¢ is shown. The part along
the axis 7 of its time section W5 () contracts with decreasing of 7, and
breaks further. The part along the axis xo grows. After breaking the indi-
vidual MSB P2-F (and respective collapse of the part of the cross along the
axis 1), there is a strip along the axis o only with two additional parts
determined by the joint actions of both pursuers.

Varying Advantage of Pursuers. Consider a variant when both pursu-
ers P and P, are equal, with that at the beginning of the backward time,
the bridges in the individual games contract and further expand. Choose the
game parameters in such a way that for some ¢ the section W,(t) of MSB W,
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Fig. 7 One strong and one weak pursuers, different termination instants: 3D-view
of the set Ws.o

with decreasing of ¢ disjoins into two parts, which join back with further
decreasing of ¢.

Parameters of the game are p1 = po = 1.5, v = 1, lp, = lp, = 1/0.25,
lp = 1. Termination instants are equal: T} = T, = 15.

A three-dimensional view of MSB W1 315 is shown in Fig.
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Fig. 8 Varying advantage of the pursuers, equal termination instants: 3D-view of
the maximal stable bridge Wi.315

5 Control on the Basis of Switching Lines

A control based on the switching lines assumes separation of the state space
1, T2 to some cells at instants from some grid in time. In each cell, every
scalar control keeps some extreme value. The time grid should contain intants,
when a player chooses its control in a discrete scheme. Under a discrete control
scheme [7l[8] with the step A, a control chosen at the instant ts is kept until
the instant t511 = ts+ A. At the position (ts+1, x(t8+1)), a new control value
is chosen, etc.

1) In the game under consideration, the first player has two scalar controls u1,
ug2, which are bounded by the inequalities |ui| < p1, |uz| < p2. The com-
ponent of the velocity of system (@), which is affected by the control uy,
is connected to the vector D;(t) and is horizontal in our case. The compo-
nent corresponding to the control us is connected to the vector Da(t) and is
directed vertically.

To separate the plane 1, x2 into parts, in which the control u; takes one
of the extreme values u; = +pu1 or u; = —pq, we study the change of the
value function at the instant ¢ in lines parallel to the vector Dy (t), that is, in
horizontal lines.

In the problem that we investigate, the following property is true (except
situations of varying advantage of the pursuers) for each horizontal line. The
restriction of the value function V (¢, -) to a horizontal line is a function having
only one interval of local minimum, which is either a point, or a segment, or
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the entire line. With that, the restriction grows when the argument goes from
the interval of minimum.

Considering an arbitrary horizontal line, we can gather the points of mini-
mum of the restriction of the value function to this line. We take an arbitrary
point from such an interval of minimum as a point for the switching line of
the control u;. Taking points from all horizontal lines in such a way, we ob-
tain a switching line IT; (t) separating the plane x1, x5 into two parts. In the
part, where the vector Dy (t) is directed from the switching line, we define the
control u] equal to —pu1, and in the another part, it is equal to +pu1. During
numeric constructions, the switching line I7; (¢) is built on the basis of some
number (quite great, but finite) of time sections W, (t) of the level sets of
the value function for some collection {c;} of values of the parameter c.

In the same way using corresponding objects, the switching line IT5(¢) can
be built for the control wus.

The control of the first player based on the switching lines I7; (t) and T2 (t),
we call quasioptimal because we assume that in the switching lines, the con-
trol uy (ug) is taken arbitrary from the interval [—puq, +pu1] ([—pe, +p2]). For
the cases of “strong” and “weak” pursuers, it can be proved that such a choice
is optimal indeed. But for the case of varying advantage of the pursuers, it
is possible that for some small neighborhood of the switching lines we need
some additional information about the value function. The authors have not
studied this question yet.

Fig. 9 The case of varying advantage of the pursuers. The typical picture of the
switching lines for the first player; the dark green line is for the control w1, the light
green one is for the control us.
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Fig. 10 The case of varying advantage of the pursuers. The typical picture of the
switching lines for the second player for the same instant ¢ = 12.5 as in Fig.

Fig. @ shows the typical picture of the time sections W, (t) of the level sets
and switching lines IT; (t) and I15(t) for the case of varying advantage of the
pursuers.

Emphasize once more that the switching lines depend on time ¢, and the
choice of the control is defined by the current state position of the system
with respect to the corresponding switching line. The vectors Dy (t) and Da(t)
are used. Drawing a ray from the point x(¢) with the directing vector D;(t),
one can decide whether it crosses the switching line I7;(¢). If it does not, then
uf (t,x(t)) = —pi, if it crosses, then u} (t, x(t)) = 4.

Thus, to organize computations of the discrete control scheme of the first

player, we should keep in memory of the computer a collection of the switch-
ing lines in some time grid.
2) The direction of the action of the second player’s scalar control v is defined
by the vector £(t). Its direction is constant in the case Th = T3 and changes
in time if 71 # T5. When constructing the switching lines for the second
player, we analyze points of local maxima and minima of restrictions of the
value function to lines parallel to the vector £(t). For each of these lines,
the collection of all points of minima and maxima can consists, generally
speaking, of several intervals. Nevertheless, their number is small. This allows
us to take corresponding points from them and to constitute some lines, which
separate the plane 1, xo into parts, in which the control v keeps one of its
extreme values —v or +v.

To construct v* (t, m(t))7 we use the vector £(t). Compute how many times
(even or odd) a ray with the beginning at the point x(¢) and the directing
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vector E(t) crosses the second player switching lines. If the number of crosses
is even (absence of crosses means that the number equals zero and is even),
then we take v* (t, x(t)) = +v; otherwise, v* (t, x(t)) = —v.

The typical picture of the switching lines of the second player is given
in Fig. for the case of varying advantage of the pursuers. Here, one can
see 6 domains of constancy of the second player’s control v. Direction of
its action are shown by arrows. In the lines, which are composed of points
of local maxima of the value function, the control can be taken arbitrary
from the interval [—v, +v]. But in the lines consisting of the point of local
minima, from the theoretic point of view, only extreme values —v and +v
are allowed, which push the system from the switching line. Due to errors of
numeric construction of the swiching lines, this way of control can lead to a
motion in a sliding regime along the switching line (that changes in time).
Such a motion can be unoptimal from the point of view of the second player.
Assuming this situation to be almost impossible, we regard the suggested
method of the second player’s control as a quasioptimal one.

6 Optimal Motion Simulation Results

Let the pursuers P;, P», and the evader EF move in the plane. This plane is
called the original geometric space. At the initial instant ¢y, velocities of all
objects are parallel to the horizontal axis and sufficiently larger than the pos-
sible changes of the lateral velocity components. The components of object
velocities, which are parallel to the horizontal axis, are constant. Magnitudes
of these components are such that the rendezvous of the objects P; and FE
happens at the instant 73, and the objects P, and E encounter at the in-
stant T5. The dynamics of lateral motion is described by relations (), (2));
the resultant miss is given by formula ().
The initial lateral velocities and accelerations are assumed to be zero:

20 _ 30 _ 50 _ 0 _ 0 _ 0 _
ip, =ip, =25 =0, ap, =ap, =ap =0.

ZPLP‘Z,E

100
P2

-130 P1 T,=1,

Fig. 11 Optimal trajectories in the case of varying advantage of the pursuers; large
initial deviations
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Zp1pop

P2

10 E
0

P1
-20

Fig. 12 Optimal trajectories in the case of varying advantage of the pursuers;
small initial deviations

The simulation is made for the following parametes of the game:
M1 = M2 = 11, UV = 1, lpl = lp2 = 1/06, lE = 1, T1 :T2 = 20.

The parameters are such that the pursuers can achieve a higher acceleration
than the evader, but they are more inertial, that is, the achievement of the
extreme acceleration lasts longer than the evader’s one. We have

l
o =ui/v=11>1 ne; =mn;- E =11-06=066<1, =1, 2.

lp,

i

So, we consider the case of varying advantage of the pursuers. In this situaton,
the exact capture is not guaranteed.

In Figs. [l and [I2] the horizontal axis is denoted by the symbol d. The
coordinate d shows the longitudinal position of the objects. Controls of the
objects affect the vertical (lateral) coordinate.

Fig. [Ilshows the optimal trajectories of the objects for the following initial
positions at the instant tqg = 0:

2, = —130, 2§, =100, 23 = 0.

The initial deviations are so large that the second pursuer (the upper one)
is unable reach the evader, even applying its extremal control. But the first
pursuer (the lower one) has a quite small miss, which, nevertheless, is still
non-zero.

In Fig.[I2 the optimal trajectories are given for the initial positions

2P, = —20, 2§ =10, 2 =0.

Now, both pursuers have small terminal misses, but they are non-zero due
to the advantage of the evader at the final stage of the pursuit. Note that
the evader is just in the middle between the pursuers at the instant 77 = T5:
such a position provides the maximal possible payoff value for him.
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7 Conclusion

For a model zero-sum differential game with two pursuing ond one evading
objects, a numeric solution is obtained: the level sets of the value function,
quasioptimal strategies on the basis of switching lines, simulation of motions
using the suggested strategies. A complete investigation of the problem can be
made because the original formulation allows an equivalent presentation with
two-dimensional state vector in the plane of coordinates of one-dimensional
forecasted misses (zero-effort miss coordinates). Similar problems are much
harder if the miss between each pursuer and the evader are computed in a
two-dimensional geometric space.
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Nonlinear Output-Feedback H.. Control
for Spacecraft Attitude Control

Alon Capua, Nadav Berman*, Amir Shapiro, and Daniel Choukroun

Abstract. In this paper, a novel computational scheme is proposed in order to solve
the output-feedback H.. control problem for a class of nonlinear systems with poly-
nomial vector field. By converting the resulting Hamilton-Jacobi inequalities from
rational forms to their equivalent polynomial forms, we overcome the non-convex
nature and numerical difficulty. Using quadratic Lyapunov functions, both the state-
feedback and output-feedback problems are reformulated as semi-definite optimiza-
tion conditions, while locally tractable solutions can be obtained through sum of
squares (SOS) programming. A numerical example shows that the proposed com-
putational scheme results in a better disturbance attenuation closed-loop system, as
compared to standard methods, by using classical quadratic Lyapunov functions.
The novel methodology is applied in order to develop a robust spacecraft attitude
regulator.

1 Introduction

In the past decade, there has been substantial interest in H.. control of nonlinear
systems [8]]. Interpreting nonlinear H.. control in terms of dissipativity and
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differential game [2, 24] where the solution has been related to an appropriate
Hamilton-Jacobi inequality. For hyperbolic nonlinear systems whose linearized
plant is stabilizable, the solution of the Hamilton-Jacobi inequality was character-
ized by an invariant manifold of Hamiltonian vector fields using differential geo-
metric theory 4.

In linear systems, it is well known that the Hamilton-Jacobi partial differential
inequality reduces to the Riccati inequality, which can be solved easily by efficient
numerical algorithms. However, in the nonlinear case, there is no systematic numer-
ical algorithm currently available for the solution of this partial differential inequal-
ity. Therefore, the key difficulty of nonlinear H.. control theory is the solvability of
the Hamilton-Jacobi inequality. To this end, various approaches have been proposed
to solve the Hamilton-Jacobi inequality numerically. One of the suggested methods
is a Taylor series expansion of the storage function [[10}, 29], in an iterative fashion,
provided that the linearized model of the nonlinear system has a solution. However,
a numerically efficient solution remains an unsolved issue [].

Isidori showed, that the solution to the output-feedback control problem is
determined by a pair of coupled Hamilton-Jacobi inequalities. Parallel to linear H..
control theory, a separation principle was also established under a detectability hy-
pothesis [9]]. Obviously, there are major advantages of the output-feedback problem
for continuous-time nonlinear systems over linear systems [[1]], despite the fact that
the output-feedback problem for nonlinear systems has not been studied as widely
as for linear systems. Although there are studies of the static output-feedback for
nonlinear systems, the dynamic output-feedback for nonlinear systems was studied
much less; one of the reasons is the non-complex structure rather than the dynamic
output-feedback case. In addition, it preserves the controllers structure, based on
the physical intuition from the actual system. Yet, the dynamic output-feedback re-
sults in high order controllers which are more accurate. The dynamic output-
feedback problem has been investigated while parameterized as a nonlinear frac-
tional transformation on locally contractive and stable nonlinear operators [12]. A
solution based on allowing nonhyperbolic equilibria for the Hamiltonian systems
associated with the two Hamilton-Jacobi-Isaacs equations: the state-feedback and,
respectively, output-injection design problems are presented in [8] 25]. However, the
solutions from these approaches do not have a closed form and therefore may not
converge to an analytic solution, due to their non-convex nature.

A recent computational relaxation based on the sum of squares (SOS) decom-
position for multivariable polynomials and semidefinite programming [16, 4] pro-
vides potentially effective ways for the analysis and synthesis of nonlinear systems.
In nonlinear system design, the verification of the non-negativity of the Lyapunov
conditions is a complex task. However, the new computationally tractable analysis
methodology provides a new way of searching for SOS decomposition to relax the
original problem. This crucial property of the SOS based methodology finds appli-
cations successfully in several nonlinear control problems. For example, the stabil-
ity analysis and synthesis problem have been studied in [[19, for nonlinear
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systems. In local stability analysis was considered, and the region of attrac-
tion inner-bound enlargement problem was presented for polynomial systems with
uncertain dynamics. A semidefinite programming approach based on state depen-
dent inequalities is proposed in to obtain global stability and performance ob-
jective by using quadratic Lyapunov functions.

As a result, a convex parametrization of the nonlinear H.. control problem was
derived in based on a pair of positive definite matrix functions. Prempain [21]]
formulated the %%-gain analysis problem for polynomial nonlinear systems as a
convex state-dependent LMI, which can be recasted as a SOS optimization problem.
This approach was shown promising to overcome the numerical difficulty in solving
the Hamilton-Jacobi inequality and provides an analytic solution at the same time.
Wei et al. proposed an iterative method based on SOS programming [[18],
to solve a special case of the state-feedback H.. control problem. As a powerful and
promising technique, SOS programming has also been applied to solve nonlinear
analysis [[13]], [28] and stabilization [17], [20] problems. The main advantages of
SOS decomposition are the resulting computational tractability and the algorithmic
characteristics of the solution procedure [[16]. This could help to provide coherent
methodology of synthesizing Lyapunov functions for nonlinear systems. In addi-
tion, the importance of SOS technique also lies in its ability to provide tractable
relaxations for many difficult optimization problems, such as the nonlinear output-
feedback H.. controller.

Motivated by all of these developments, we propose a computational scheme for
solving the nonlinear dynamic output-feedback design problems for a class of affine
nonlinear systems. Moreover, the resulting output feedback controller will be con-
structed to achieve closed-loop stability as well as %»-gain performance. Specifi-
cally, we use polynomial type Lyapunov functions to convert the original Hamilton-
Jacobi inequalities into linear matrix inequalities for polynomial nonlinear systems.
As a result, the numerical difficulty in solving the nonlinear H.. output-feedback
problem is overcome, and the output-feedback controllers and Lyapunov functions
are constructed in an efficient computational manner.

Spacecraft attitude control is a critical function in any space mission. The devel-
opment of nonlinear spacecraft attitude control algorithms has been following many
paths over the last four decades, from Lyapunov-based regulator [14], nonlinear
adaptive control [22]], dynamic inversion [3], optimization [26], model predictive
control [T1]], to sliding mode control, State-Dependent-Riccati-Equation (SDRE)
control [6]], and H.. control [30]. Applying the proposed novel methodology, a robust
attitude controller will be developed in the final manuscript under the assumptions of
rigid body dynamics, three-axis control authority, and full state information. Using
the quaternion of rotation and the angular velocity vector as state variables yields a
polynomial structure of the dynamical model, enabling the novel H.. control design.
Particular attention will be given to the quaternion properties, i.e., non-uniqueness
with regard to attitude and norm unity.
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2 Sum of Squares

A basic problem that appears in many areas of mathematics is that of checking
global non-negativity of a function of several variables. In particular, the problem is
to establish equivalent conditions or a procedure for checking the validity of:

F(xi,...,x;) >0, Vxj,...,x, €R (1

A polynomial F(x) € R[x] is said to be nonnegative or positive semidefinite (PSD)
if F(x) > 0V x € R". Clearly, a necessary condition for a polynomial to be PSD is
that its total degree be even. We say that F (x) is sum of squares (SOS), if there exist
polynomials fj(x),... f(x) such that:

Fv)=3 ) @
=1

It is clear that F(x) being SOS implies that F(x) is PSD. We define a function
q:R" — R as a monomial if:

q(x) =cax*, xeR" c,eRae N 3)
such that g(x) = ¢, (x{'x5? - xén). Defining a function p = ¥/_; gi(x) to be poly-
nomial if it is a sum of monomials ¢1,¢>,...,q, :R" — R with finite degree. The

largest degree of the monomials ¢y,¢>,...,q, is defined to be the degree of p. A set
of polynomials p : R” — R is denoted by &7, where the polynomial with the largest
degree defines the degree of the family &2. We define x4 e RO with x € R”
as a vector of monomials for the polynomials in &2 of degree d, as a basis of &2,

where 0 (n,d) is defined as, o(n,d) = (&tﬁ;!:j)!l
of the method is the following: express the given polynomial as a quadratic form
in some new variables x{¢}. These new variables are the original x ones, plus all
the monomials of degree less than or equal to g, given by the different products of
the x variables, where d is the degree of the polynomial. Therefore, F(x) can be

represented as:

in n scalar variables. The basic idea

F(x) = At gyl “)

where Q is a constant matrix called the Gramian matrix, not necessarily unique.
The following representation is also called the square matrix representation (SMR).
If in the representation above Q is positive semidefinite, then F(x) is also positive
semidefinite. Notice that in the case of quadratic forms, for instance, the two con-
ditions (nonegativity and sum of squares) are equivalent. The problem of checking
if a given polynomial may be written as a sum of squares can be solved via con-
vex optimization, in particular semidefinite programming. SOSTOOLS a free, third
party MATLAB toolbox provides a way of finding sum of squares, over an affine
family of polynomials. For instance, it can be used in the computation of Lyapunov
functions for proving stability of nonlinear systems.
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3 The Nonlinear H.. Problem

Considering the following system where the plant is represented by an affine causal
state space system defined on a smooth n-dimensional manifold 2~ C R" in local
coordinates x = (x,...,X,):

%= £(3) + g1 (x)w+ g2 ()
X y=x (5)
z=hi(x)+kpp(xX)u, zeRS

with two sets of inputs # and w and two sets of outputs y and z. Where x € 2" is
the state vector, u € 2 C R? is the p-dimensional control input, which belongs to
the set of admissible controls %, w € # is the disturbance signal, which belongs
to the set #" C % ([to, ), R") of admissible disturbances. The output y € R" is the
states vector of the system which is measured directly, and z € R® is the output to
be controlled. The functions f : 2" — C*(Z), g1: Z — A" (X)), g2: X —
ML), hy X = R and kyp 0 X — AFP(Z7) are assumed to be real C*-
functions of x. The H.. control problem, is described as finding a controller K (x)
which produces a control input such that in the closed-loop configuration satisfies,

[ wlRar < i+ [CIwoPal . wez ©

then we can say that the closed loop system has an .%2%-gain< 7. Furthermore, the
closed-loop system should be stable.

A state-space system X is said to be dissipative with respect to the supply rate s
if there exists a function S : X — R™, called the storage function, such that for all
xo € 2, all 1 > 19, and all disturbances w € %.

|

S(x(11)) < Sx(t0)) + | s(w(t),z(1))dr (7

fp

The latter inequality is called the dissipation inequality. It expresses the fact that the
’stored energy” S(x(¢1)) of X at any future time #; is, at most, equal to the sum of the
stored energy S(x(fo)) at the present time #; and the total externally supplied energy
is, ftg s(w(t),z(¢))dt, during the time interval [fy,#;]. Hence, there can be no internal
’creation of energy”’, only internal dissipation of energy is possible.

By choosing a supply rate:

1 1
s(w2) =, VIl =, l2l”, v>0 ®)

X is dissipative with respect to this supply rate if and only if there exists S > 0 such
that for all #; > 1, x(#p) and u valid the following:

o [ (P11 = IR do = S(0)) = Sts0) ©)
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It follows that the system X has .%5-gain > y if it is dissipative with respect to the
2 2
supply rate s(w,z) = 4 (2 [Iwll” [lzIP )

We will consider a storage functions S as C! functions. By letting t; — fy we see
that (@) is equivalent to:

Sex <s(w,z(x,u)), Vx,u (10)

with S, (x) denoting the vector of the partial derivatives Sy (x) = < g XS] (x), ey g XS (x )) .

Furthermore, one can establish a direct link between dissipativity and Lyapunov
stability. Assume now that x* € 2" is a strict local minimum of S. Then x*, is a
stable equilibrium of the unforced system x = f(x), i.e. w =0, u = 0, with Lyapunov
function V (x) = S(x) — S(x*) > 0, for x around x* [24]]. According to (I0) we can
write for the above system as the following dissipation inequality:

Vi (f (x) + g1 (x)w + g2(x) }’ZIIWH + ||Z(x,u)||2§0 (I

maximizing with respect to w results in w* = 2 g VI while minimizing with re-

spect to u results in u* = —g; TvI. Substituting these into the above inequality and
assuming that /1 (x)7 ki (x) = 0, yields the Hamilton Jacobi inequality (HJT):

v+ (W) — kel kW) ) v "
o m )i (x) <0

which needs to be satisfied for all x € 2. Thus, if exists a V > 0 which satisfies

the latter inequality, then it is said that X has an .%5-gain < y. Therefore, sufficient

condition for a system to have .%5-gain is the existence of a controller u(x) = K (x)

Which renders a dlss1pat1ve closed loop system. By taking #y = 0 and assuming that
) <92 |1x(0 | then the dissiptivity implies that .%5-gain < 7.

3.1 Sum of Square Based Nonlinear H.. State-Feedback

Consider the following input-affine nonlinear time invariant system which is in a
state dependent linear-like representation:

%= A()x + By (x)w+ By (x)u
z=C (x)x{d} + Dy (x)u (13)
y=x

where x{?} is an N x 1 vector of monomials in x satisfying the following
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Assumption 1. x{¥} =0 iffx =0

Remark 1. Tt should be noted that, given f(x), 1 (x) € ", the representation f(x) =
A(x)x19} and hy (x) = C; (x)x{4} is highly non-unique. Notice that for any E(x) with
E(x)x!9 =0, A(x) 4+ E(x) can also be used as a representation for f(x). A special
case of the representation corresponds to x4} = x, while x{?} can be selected to
contain all the monomials in f(x), i.e. A(x) becomes a constant matrix.

Let M(x) be a N x n polynomial matrix whose (i, /)" entry are given by

oxtdh

Mij= ox;
J

,i=1,...,N,j=1,....n (14)

Assumption 2. C (x)D12(x) = 0 and Ry(x) = D1, (x)D12(x) >0

Theorem 1. Consider system (I3), if exists X = X' > 0 and Y (x) such that the
following linear matrix inequality is satisfied while minimizing y

YT (x)BY (x)MT + M (x)By(x)Y (x)
+XAT ()M + M(x)A(x)X ~ M(x)Bi(x) YT(x) XCT(x)

* —7I 0 0 <0, (19
* * —Ry(x) O
* * * —1

then the control law u = K (x)x{d} stabilizes the system and achieves the H.. perfor-
mance [|2(x)||; < y[lw(x)[|, with

K(x)=Y(x)x ! (16)
where x indicates symmetric entries in a symmetric matrix.

Proof. Considering the closed-loop system of (13D, a storage function V(x) =
AT (x)Px{d} and controller matrix (I6), then, according to the dissipation inequal-
ity (@) we obtain,

AT (x)MT P+ P(x)M(x)A(x) + PYT (x)BY (x)M" P+ P(x)M (x)B,(x)Y (x)P
+ ;2 PM(x)B; (x)B! (x)M" P+ C] (x)Cy (x) + PYT (x)D1, (x) D12 (x)Y (x)P < 0
(17

multiplying both sides by X = P~!, and applying the schur complement, then with
the zero initial condition, the system is stable and the H.. performance is achieved
as [|2(x) ][, < y[lw(x) |, with (E). O
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4 Nonlinear H.. Output-Feedback

For the output-feedback suboptimal H.. control problem one wants to construct,
if possible, for a given attenuation level ¥ > 0 an output-feedback controller. We
begin by synthesizing a dynamic observer-based controller using the output mea-
surements. As before we consider an affine causal state space system defined on a

smooth n-dimensional manifold 2" C R" in local coordinates x = (x1,...,xy):
X = f(x)+g1(x)w; + ga(x)u
2=hy(x) +kia(x)u (18)
vy =ho(x) + ko (x)wa

the output y € % C R™ is the measured output of the system, h, : 2~ — R™ and
c X — M (Z) are assumed to be real C*-functions of x. The estimator and
control law are modeled as

E=F(&)+81(E)w1 +82(E)u+G(E)[y — ha(E) — kar (E)wo]

MZOCQ(é), 062(0)20 (19)

Substituting into the observer the optimal control law u* = (&), obtained from
the state-feedback problem and the worst disturbance wj = o (§), obtained as well
from the state-feedback problem . Results in the following matrix formed dynamical
equations

H_{ f(x) +g1(x)on (x) + -+
&l |G(&) [ (x) +kar(x)ou (x) — ha(§) — ka1 (§) o (§)] + -+

3 FE) i
X X,
(e (E) |+ o1 ] - o
O @) E) 4 02(E)(@)]  [0E (o] 7
8(x.8)

Similar to the case of the state-feedback, dissipativity results in,
Vi + [|2l[* = 7 [wll> = HIT+ lu = 02(x) |7y = P Iw = ca 0> @D
where the latter inequality can be written as,
Vi (f )+ g1(x)w+ g2 (x)0a(§) +[IzlI* = 7 Wl < VIl = 7 II7I1> - (22)
where, v = u— a5 (x), Ry (x) = kT, (x)k12(x) and r(x) = w— o (x). Implementing the
above supply rate such that the .#5-gain will be sustained for the nonnegative C!

storage function W (X) yields,

Wy [F(X)+ g(X)r] < 7 [Irl1* = [V, o - (23)
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While, substituting the essential supremum of r(x) into the (23) results in the Hamil-
ton Jacobi inequality for the unified system,

4;2 Wg(X)g" (X)W +V7 (X)Ra(x)v(X) <0. (24)

WxF(X)+
This approach has essentially two disadvantages. The Hamilton Jacobi has twice
as many independent variables as that of the state-feedback Hamilton Jacobi. The
second disadvantage is the fact that the inequality is not convex since G(&) is a
design parameter. An alternative set of sufficient conditions for the solution of the
problem are proposed in order to solve the problem of disturbance attenuation via
measurement-feedback. The solution is based on an additional Hamilton Jacobi in-
equality which has the same number of independent variables as the Hamilton Ja-
cobi inequality for the state-feedback problem. Assuming W (X) = Q(x — &) we
have,

HIlg:  Qulf(x) = GWh(x)] + o (§)Ra(x) e ()

@il () — G s () - G 0 <0

where, f(x) = f(x) + g1 (x)ou (x), h(x) = ho(x) + ka1 (x) 01 ().

By completion to square of the HJI, we obtain,

Oxfox) + 41?2 0:20(x)gh (0)Qy +To <0 (26)
where,
fol®) = F(x) — g1 (k3 Ry (0)h(x)
Tox) = of (x)Ra(x)onx) ~ 7P ()R; ! (x)h () o
g0(x) = g1 (N)[I — k3 Ry (x)ka ()]
Ry (x) = kg (x)ka1 (x)
This is valid if and only if
= 27A" (x) + Qg1 (X)k3; ()R} () (28)
so that,
= 27L(x) + g1(x)k3, () Ry (%) (29)

if and only if Q satisfies hT(x) = Q,L(x), for some matrix L(x) of smooth function
of x.
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4.1 Sum of Square Based Nonlinear H.. Output-Feedback

Consider the following input-affine nonlinear time invariant system which is in the
state dependent linear-like representation:

%= A + B (x)w) + By (x)u
7=2C (x)x{d} +Dip(x)u (30)
y = Co(x)x!} + Dy (x)wy

where the dynamics of the estimator describes as,

E =A@ +BI(E)wi +Ba(E)u+G(E)y— CaAE)EM =D (E)wa] (31

Assumption 3. The system matrices are such that Ry (x) = D%, (x)D2; (x) > 0 and
Dy & — ///mxm(%), W C gg([l‘o,OO),Rm) or Dy : X — %m(%), W C
32([t07°°)aR)'

Theorem 2. Consider system (30), if exists T =TT > 0, such that the following
linear matrix inequality is satisfied while minimizing §

AG (0M" (x )T+TM( )Ao(x)

—PCY ()R ' (x)Ca(x)  PMBy(x) PMB, (x)DY, (x) TM(x)B; (x)
* —R(x) 0 0 <0
* * —'}/2R] ()C) 0
* * * 77721
(32)

then the measurement-feedback nonlinear H.. control problem for the system is solv-
able with the controller (I8), (31) iff G(.) is selected as

= (29°L(x) + B, (x)D%, (x)) Ry ' (x) (33)
for some n x m smooth C* matrix function L(x) which satisfies the condition
(MT ()T~ 4 DT T=11(x))L(x) = €T () (34)
Where P,y are obtained from the solution of the state-feedback problem (I3), and
Ao(x), Bi(x),CT (x) are defined as,
Aolw) =AW+ By ()BT (TP By (DT (R (1) (Cae) + Do ()BT ")

By(x) =By (x)[I - D}, (x)R; ! (x) D21 ()]

C(x) = (Co(x)+ }/12 Dy (x)Bf (x)P)xl"}
(35)
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Proof. Suppose exists a negative definite function & (x) for each nonzero x,

&(x) =0 1By (1)1 (x) ~ G() (G (D + Doy (9)w)] + o (1)R2 (x) ot (4)

+ 4;2 Q:[B1 (x) — G(x)Da1 (x))[B1 (x) — G(x)Da1 (x)]7 QT <0

(36)
such that its Hessian matrix ‘9286)( z(x) is nonsingular, where Q(x) is a C3 positive-
definite function Q : N; C 2" — Ry locally defined in a neighborhood N; of x =0,
and vanishing at x = 0. In order for Q to satisfy HJIg (23), i.e. Q(x — &) = W(X),
is to proof that a function £(x, ) is non-positive, for

1
R0, &) =WxF (X) +v" (X)Ra (x)v(X) + 492 Wxg(X)g" (X)Wy
= [Wa(X) W (X)] F(X) + 5T (X)Ra (x)h¢ (X) (37)
! g1(x)g] (x) 0 } [WXT (X )]
D 0] [T G Gnie | i)
By setting ¢ = x — & and defining
S(eaé) :ﬁ(xaé) (38)
x=e+&
then by a second order Taylor expansion we obtain,
- 793(e,5) 79°§(e,8)
§le.c)~5(0.6)+e de le=0 te de?  le=0 (39
It can be shown that,
_9%(e,8)| 4
§0,6)="" "% =0 (40)
and that 25 (e.) 226
e, B X
de? e,E=0 02 =0 “0
Since we set S(x) to be non-positive we obtain that
9°6(x)
92 o <0 (42)

which results in F(e, &) being non-positive in the neighbourhood of (e,&) = (0,0).
Thus the function Q(x — &) satisfies HJIg @23). By completion of the squares it can
be shown that the function &(x) satisfies the following inequality,
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S(x) 20 AW +By(0)au (x) ~ By (D] (R} (1) (Ca )l + Dy (1))
+4;Q£M@U*DQ@Wﬂ@ﬂhmﬂBﬂﬂQaﬂﬂ@mﬂ@%@)

P (Gl 1 Dy () Ry () (Cox + D ()
43)

The latter inequality becomes an equality when,

0.G(x) = 27 (Co(x)x"} + Dy (x)w) L 0BDL W]RT () (@)

As a result we can conclude that in order for &(x) to be non-positive, it is suffices
to assume that the right hand side of inequality @3), which does not contain G(x),
is negative for each nonzero x. The right hand side of (@3) can be written as,

1 .
Qo)+ 1, OsBo (x)B) (x)QF +To(x) <0 45)

where Ag(x), Bo(x) and Ty(x) are similarly defined in (Z7) . Assuming that Q =
pato (x)T_lx{d}, and by the use of the schur complement we obtain (32) a

Remark 2. Tt seems that the latter result is true for G(x) and not for G(§), although
it can be easily shown that G(x) and G(&) are dual. This is done proving that

0(e) = Q(x—&§) = 0(§ —x) = O(—e) (46)

i.e. @3), B3) can be written for £ and not x. Thus, to show that W(X) = Q(& —x)
satisfies the Hamilton Jacobi inequality (24)), is to show that the function £(&,x) is
non-positive. Therefore, similar to the proof which was presented before, by setting
e = —e and defining

3(76>x) = ﬁ(éax) 47

E=—etx
results in §(—e, x) being non-positive in the neighbourhood of (—e, x) = (0,0). Thus
the function Q(& — x) satisfies the HJT @24).

If we conclude, in order to solve the H.. control via output-feedback with the use
of SOS, the following convex optimization problems needs to be solved, for the
state-feedback
minimize Yy V¢
subjectto  V(x) € SOS (48)
—¢THIIE €S0S
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and for the output measurement-feedback
minimize 7 v
subjectto  Q(x) € SOS (49)
—~¢"HILE €SOS

Thus, in order to implement the algorithm, ones needs to compute:

The state-feedback problem (@8)), which result in K(x), P and }.

The output-feedback problem (@9) for K(x), P and ¥, which result in T and .
Compute a suitable matrix L(x) which satisfies (34).

Compute the estimators dynamic gain G(x) from (33).

Solve the estimator dynamics (31) for wy = wy = ;2 BT (&)PELd},

The following example will present the advantages of the use of SOS over the tra-
ditional solution; where by the use of SOS, the acceptable domain of suitable Lya-
punov functions is much larger.

Example 1. Considering the following non linear system:

X] o [ 0 1 X1 + 0 + 0
6] T |=0.01-0.12 —1] |x] " |0.8] 1T 140,132 "
] [0603] [x], [0
MR INRHE 5
o _1.61 0 X1 + 10 w1
YT 0 138] ] T |01 [wa

Solving the output-feedback H.. problem for a second order Lyapunov function
yields ¥ = 1.55 and storage function,

O(x) = 1.53x3 4 1.3x1x, + 1.62x3

while the solution of output-feedback H.. problem for a fourth order Lyapunov func-
tion yields ¥ = 1.02 and a storage function,

O(x) = 0.38x] + 1.87x7 + 1.93x1x5 4+ 1.13x3

The above example reveals the advantages of the use of SOS, where a better distur-
bance attenuation closed-loop system is achieved.

5 Spacecraft Attitude Control

Consider a rigid body spacecraft which rotates around its center of mass under
the influence of control and perturbations torques. Let Z denote a spacecraft body
frame, i.e., a Cartesian coordinates frame with the origin at the center of mass. Let
Z% denote the Earth Centered Earth Inertial reference frame (ECEI). Let q denote
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the quaternion of rotation from Z to 4, with vector part e and scalar part ¢ p-
758], and @ denote the angular velocity of % with respect to &Z expressed in Z.
The rotational dynamics and kinematics of the rigid body spacecraft are governed
by the following differential equations [33, Chap. 16]

J]@ —J Nox])Jo S
e|=|l(gh+[ex))o|+ T, (51)
dt 1.T 0453
q —e'

where J denotes the spacecraft tensor of inertia matrix in %, [® x| denotes the cross-
product matrix related to @, and T}, is the vector of total external torques applied to
the spacecraft, i.e.

Ty, =u,+w, (52)

where u,, denote the 3 x 1 vector of control torques and w;, denote the 3 x 1 vector
of disturbance torques. It is assumed that the Attitude Control System is equipped
with a triad of three orthogonal reaction wheels, providing full control authority in
all axes. The perturbation torques, modeled via wy, typically include the gravity
gradient torque, the aerodynamic torque, a residual magnetic torque, and the solar
pressure torque. Equation (31)) is re-written as follows

x = f(x) + Gu, + Gw,, (53)

where x = {®,q}. Notice that f(x) is a polynomial function of the state variables.
Also notice that f, G are C* with k > 2, and that the unforced system has two equi-
librium points:

(w,e,q) = (0,0, 1) (54)

where both q; » = (0,0,0,=£1) correspond to the null attitude. It is assumed that the
Attitude Determination and Control System is equipped with a suite of sensors that
guarantee full observability of the state, such that q and ® can be estimated. As
a first step, before applying more realistic assumptions, it is further assumed that
the estimation errors can be neglected, i.e., that there is full state information. The
attitude control objectives consist in globally stabilizing the system state Eq. (33)
with respect to the equilibrium point (0,0, 1), while attenuating the influence of the
exogenous inputs w;, on the system dynamics.

5.1 Spacecraft Attitude Control Simulation

Considering the rotational dynamics and kinematics of a rigid body spacecraft by
the differential equations governed in (3I). The disturbance torque, wy, is simu-
lated as the sum of a torque caused by a impact collision and the aerodynamic drag.
The impact collision, which is caused by the impact of a 1 gr particle, is described
as a impulse function of 1.5 Nm with a duration of 0.1 sec. The particle hits the
spacecraft at a velocity of 10 km/s and at a distance of 1 cm from the center of
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mass. The aerodynamic drag disturbance torque will be modeled as a first order
Markov process, which has the worst case magnitude for approximately 5% of the
orbital period,
Tav1 = O(dJV+ (1 — O(d)Td
If ||7y] >1.89-10°Nm

2.89-1073
T4l

(55)
Then Td = Td

where o; = 1/6000 is a filter constant, which determines the speed of the random
walk, where a smaller value means a smaller speed. The variable .4 is a Gaussian
white noise with a standard deviation of 0.75- 107> Nm. The initial value Ty is
chosen as a random unit vector with a magnitude of 2.89 - 107> Nm.

The measurement noise w,, is described as a finite energy Gaussian white noise.
Let 0, (f) denote the time-varying variance intensity of the gyro’s angler velocity
measurements, which are equal to 0.25 - 1073, and Gq(t) as a time-varying vari-
ance intensity of the line-of-sight quaternion’s measurements noise, which is equal
to 0.25-10~*. The inertia matrix which was chosen is similar to a typical micro-
satellite system and is equal to

006 1-10736-107¢
J=[1-1073 0.05 5-10~*| kgm. (56)
6-107%5-107* 0.015

In order to use a quadratic Lyapunov function such that x4} = x and such that
the equilibrium vector is [013 0.3 O]T and not [01,3 01,3 I]T we shall perform
a change in variables, i.e § £ g — 1 which result in the following tracking error
dynamic system,

4@ —J ox]J 03,4 ) Lis =
€| = I —lox| o €
dr | - 0.5-[0?1 0.5[[60T] 0} e +{04X1]Wb+{04xs]ub
X
uy (0]
z=|€&|=C|€|+Dpu (57)
q q
@ Oq
y=1I7.7 | €| + | %03xl|w,
g Oq3x1

AT .
where 1 denotes a vector of ones. The measurements of [e q] are obtained

. . N T . .
from the line-of-sight quaternion’s measurements [e q] . Several simulation were
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Fig. 1 Closed-loop angular velocities based on three different controllers. All three con-
trollers use the nonlinear H.. estimator. It can be clearly seen that the H., controller achieves
a better disturbance attenuation closed-loop system.

performed, in order to measure the performance of the H.. output-feedback con-
troller which was derived. The attenuation level which was obtained from the semi-
definite optimization problem was y = 0.08 and 7 = 4.9, where the matrix L was
chosen by minimizing its Euclidean norm, while satisfying (34). In addition the
Lyapunov functions which where obtained are,

V(x) =114.2¢% + 114.26¢% + 114.23¢3 + 0.014qe3 + 114.2¢% + 4.07q o,

+0.1e30; +0.070? +0.11gw, + 0.0801e30, + 0.03; @, +0.1303
+e3(0.14g +0.0409¢3+ 0.11; +0.067a, + 0.0603) (58)
+ 1 (0.09¢ +0.099¢5+0.11e340.122; +0.15@, +0.113)

+0.13g3 +0.053e303 + 0.090; 03 + 0.08 w03 + 0.08 w3
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Fig. 2 Closed-loop attitude quaternion time histories for three different controllers. All three
controllers use the nonlinear H.. estimator.

0(x) =15.61¢% + 14.57¢2 +15.55¢3 + 0.05ge3 + 14.56¢3 + 0.12q o,
+0.15e301 +0.010f +0.064g0; +0.07e30, + 0.08w; @, + 0.023
+¢2(0.11g+0.14e3+0.810; + 0.05@; + 0.042w5)
+¢1(0.19¢+0.14e5+0.14e3 4+ 0.090; +0.13w, +0.123) + 0.11g w3

+0.92¢303 4 0.11@ 03 4 0.06@,03 +0.07 w3
(59)

It is of great interest to compare the H., performance with a standard proportional
controller [T4]], and with an optimal nonlinear control law, for example the state
dependent Riccati equality (SDRE) controller [6]. The proportional controller, PD..,
was derived based on the H.. controller. While, in both cases the SDRE and the pro-
portional controller used the H.. estimator. The initial conditions for the simulations
were considered as [1 05-05010 0] T An extended Kalman filter (EKF) was
implemented as well for the SDRE controller, but was not capable to cope with the
disturbances and as a result did not converge. It can be seen from Fig.[Tland Fig.
that the H.. controller achieves a better disturbance attenuation closed-loop system
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Fig. 3 Control signals time histories obtained from three different controllers

than the SDRE and the proportional controllers. Moreover, the measurement noise
is better attenuated, and the control effort is reduced, despite the fact that they are
both based on the H.. estimator.

6 Conclusions

A novel computational scheme was presented in order to solve the output-feedback
H.. control problem for a class of nonlinear systems with polynomial vector field.
By converting the resulting Hamilton-Jacobi inequalities from rational forms to
their equivalent polynomial forms, we overcome the non-convex nature and nu-
merical difficulty. Using quadratic Lyapunov functions, both the state-feedback and
output-feedback problems were reformulated as semi-definite optimization condi-
tions, while locally tractable solutions were obtained through sum of squares (SOS)
programming. A numerical example and a spacecraft attitude control simulation
showed that the proposed computational scheme result in a better disturbance atten-
uation closed-loop system, and more robust, while compared to standard methods.
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Estimation and Navigation



Rotorcraft System Identification: An Integrated
Time-Frequency Domain Approach

Marco Bergamasco and Marco Lovera

Abstract. The problem of rotorcraft system identification is considered and a novel,
two step technique is proposed, which combines the advantages of time domain and
frequency domain methods. In the first step, the identification of a black-box model
using a subspace model identification method is carried out, using a technique which
can deal with data generated under feedback; subsequently, in the second step, a-
priori information on the model structure is enforced in the identified model using
an /%, model matching method. A simulation study is used to illustrate the proposed
approach.

1 Introduction

The problem of system identification of helicopter aeromechanics has been studied
extensively in the last few decades, as identification has been known for a long time
as a viable approach to the derivation of control-oriented dynamic models in the ro-
torcraft field (see for example the recent books [21} [12] and the references therein).
Model accuracy is becoming more and more important, as progressively stringent
requirements are being imposed on rotorcraft control systems: as the required con-
trol bandwidth increases, accurate models become a vital part of the design problem.

In the system identification literature, on the other hand, one of the main novelties
of the last two decades has been the development of the so-called Subspace Model
Identification (SMI) methods (see for example the books [22, 23]), which have
proven extremely successful in dealing with the estimation of state space models
for Multiple-Inputs Multiple-Outputs (MIMO) systems. Surprisingly enough, even
though SMI can be effectively exploited in dealing with MIMO modelling prob-
lems, until recently these methods have received limited attention from the rotorcraft
community, with the partial exception of some contributions such as [24, [7, [16]).
SMI methods are particularly well suited for rotorcraft problems, for a number of

Marco Bergamasco - Marco Lovera
Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano
e-mail: {bergamasco, lovera}@elet.polimi.it
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reasons. First of all, the subspace approach can deal in a very natural way with
MIMO problems; in addition, all the operations performed by subspace algorithms
can be implemented with numerically stable and efficient tools from numerical lin-
ear algebra. Finally, information from separate data sets (such as generated during
different experiments on the system, i.e., different test flights) can be merged in a
very simple way into a single state space model. Recently, see [13]], the interest in
SMI for helicopter model identification has been somewhat revived and the perfor-
mance of subspace methods has been demonstrated on flight test data. However, so
far only methods and tools which go back 10 to 15 years in the SMI literature (such
as the MOESP algorithm of and the bootstrap-based method for uncertainty
analysis of [8]]) have been considered. Therefore, the further potential benefits of-
fered by the latest developments in the field have not been fully exploited. Among
other things, present-day approaches can provide:

e unbiased model estimates from data generated during closed-loop operation, as is
frequently the case in experiments for rotorcraft identification (see, e.g., [9 [11]]);

e the possibility to quantify model uncertainty using analytical expressions for the
variance of the estimates instead of relying on computational statistics (see [9]]);

e the direct estimation of continuous-time models from (possibly non-uniformly)
sampled input-output data (see [6] and the references therein).

Some preliminary results in the application of continuous-time SMI to the rotorcraft
problem have been presented in [J3].

The only, well known, downside of the SMI approach to state space model iden-
tification, on the other hand, is the impossibility to impose a fixed basis to the
state space representation. This, in turn, implies that it is hard to impose a param-
eterisation to the state space matrices in this framework, and therefore recovering
physically-motivated models is a challenging problem. This, to date, prevents the
successful application of SMI methods to the problem of initialising iterative meth-
ods for the identification of structured state space representations and constitutes a
major stumbling block for the application of such methods in communities in which
physically motivated models represent the current practice.

In this paper the problem of bridging the gap between “unstructured” models
obtained using SMI and structured ones deriving from flight mechanics is addressed
as an input-output model matching one, in terms of the .7 norm of the difference
between the two models (see also [3]]). The solution of the problem is then computed
using recent results in non-smooth optimisation techniques, see [1I], which yield
effective computational tools (see [10]).

In view of the above discussion, this paper has the following objectives. First,
a set of methods suitable for time-domain, continuous-time identification of rotor-
craft dynamics using SMI is presented. The proposed technique can deal with data
generated in closed-loop operation as it does not require restrictive assumptions in
this sense. Subsequently, a frequency-domain 7%, approach to the problem of deriv-
ing a structured model from the unstructured one is proposed. Finally, the achiev-
able model accuracy is illustrated by means of simulation results for a full-scale
helicopter.
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The paper is organised as follows. In Section [2] the problem statement is given
and some definitions are provided. Section [3] provides a summary of the proposed
two-step approach. Finally, some simulation results are presented in Section H] to
illustrate the performance of the proposed method.

2 Problem Statement and Preliminaries

Consider the linear, time-invariant continuous-time system

(1) = A(A)x() + BA)u(t) +w(t), x(0) = xo

M) : {y(t) = C(A)x(r) + D(A)u(t) +v(7) v

where x € R", u € R™ and y € R? are, respectively, the state, input and output vectors
and w € R" and v € R? are the process and the measurement noise, respectively, with
covariance given by

w(t)] we)]" | _[e S
E { L(n)} {v(tz)} } = |:ST R] §(t —11).
The system matrices A(1), B(A), C(A), and D(A) are dependent on the constant pa-
rameter vector A €R” such that (A(1),C(A)) is observable and (A(1), [B(1),Q'/3])
is controllable.

Assume now that a dataset {u(t;),y(#;)}, i € [1,N] of sampled input/output data
(possibly associated with a non equidistant sequence of sampling instants) obtained
from system () is available. Then, the problem is to provide an estimate of the
parameter A on the basis of the available data. Note that unlike most identification
techniques, in this setting incorrelation between u and w, v is not required, so that
this approach is viable also for systems operating under feedback.

In the following Sections a number of definitions will be used, which are sum-
marised hereafter for the sake of clarity (see, e.g., [26] 2] for further details).

Definition 1. (Laguerre basis) Let %5 (0, ) denote the space of square integrable
and Lebesgue measurable functions of time 0 < ¢ < oo. Consider the first order all-
pass (inner) transfer function

s—a
= 2
Wi =270 @
a > 0. w(s) generates the family of Laguerre filters, defined as
i (s—a)
Zi(s) =w'(8)Z(s) = V2a 3)

(s+a)*l

Denote with ¢;(¢) the impulse response of the i-th Laguerre filter. Then, it can be
shown that the set

{lo,l1,... . bi,...} 4)
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is an orthonormal basis of .%5(0, ), i.e., all signals in .%5(0, ) can be represented
by means of the set of their projections on the Laguerre basis.

Definition 2. (.72, norm) Consider an asymptotically stable, linear time-invariant
system with transfer function G(s). Then the 7%, norm of the system is defined as

61 = sup {sup (G + j) | = sup3 (G j). ®

where & is the maximum singular value.

Identifiability is an important issue in system identification problems; for the
purpose of this study we adopt the following definitions:

Definition 3. (Local identifiability) Let A° € A C R"2, the model structure is said
to be locally identifiable in A° if VA;, A, in the neighborhood of A° it holds that

MM = Me(D2) = A = Do

Definition 4. (Global identifiability) The model structure .#(A) is said to be glob-
ally identifiable if it is locally identifiable VA € A, i.e., over the entire parameter
space.

In the following the model structure .#;(A ) is considered globally identifiable.

3 An Integrated Time-Frequency Domain Approach

The problem formulated in the previous Section can be faced using a two-steps
approach: in the first step a black-box model is identified using a continuous-time
SMI method, which can deal with data generated under feedback but generates an
“unstructured” model; in the subsequent step a-priori information on the model
structure is enforced in the model using an 7%, model matching method.

In Section [2] the gray-box model .#;(1) was introduced, while a generic ”un-
structured” black-box model .7, can be described as the linear time-invariant
system

. { %(t) = Ax(t) + Bu(t) +w(t), x(0) = xo
Mps - A A (6)
y(t) = Cx(t) +Du(t) +v(z)

where x, u, y, w, and v are defined as in Section2l The system matrices A, B, € and D
have been estimated from a dataset {u(#;),y(t;)}, i € [1,N] of sampled input/output
data using the continuous-time predictor-based subspace model identification al-
gorithm introduced in the Section Bl Suppose .#,,; belonging to the same model
structure of .#;(1), and that (I)) and (6) describe the same system with different state
space basis. Therefore the problem becomes to provide estimates of A such that the
input-output behaviors of .#,,; and .#(A) are equivalent under some criterion, and
it is faced using an %, approach described in Section[3.2]
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3.1 Continuous-Time Predictor-Based Subspace Model
Identification

3.1.1 From Continuous-Time to Discrete-Time Using Laguerre Projections

The main issue in the application of subspace model identification methods to
continuous-time model identification is the need of computing the high order deriva-
tives of input-output measurements arising from the continuous-time data equation.
This problem can be faced using a method, based on the results first presented in
[19L[17]], and further expanded in [[14 18]}, that transforms a continuous-time system
and signals to their discrete-time representations. First note that under the assump-
tions stated in the previous section, (6) can be written in innovation form as

x(t) = Ax(t) + Bu(t) + Ke(r)

y(t) = Cx(t) + Du(t) +e(t) (7

and it is possible to apply the results of [AIL_QI] to derive a discrete-time equivalent
model, as follows. Note that the notation (-) has been dropped for clarity. Consider
the first order inner function w(s) defined in @) and apply to the input u, the output

y and the innovation e of () the transformations
fi(k) = /0 " b (0)u(t)de
500 = [ oo ®)
o) = [ lnjeoyar,

where ii(k) € R™, é(k) € R? and (k) € R”. Then (see for details) the trans-
formed system has the state space representation
E(k+1) = Ao (k) + Boii(k) + Koé(k), £(0) =0
(k) = Co& (k) + Dot (k) + (k) 9

where the state space matrices are given by

Ay =(A—al) " (A+al)

B, =V?2a(A—al)"'B

K, =V2a(I—C(A—al)'K) " "(A—al) 'K (10)
Co=—V2aC(A—al)™!

D,=D—C(A—al)"'B.

It is worth to underline that in this context k is not a time index, but refers to the
projection of the signals onto the k-th basis function.
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3.1.2 Predictor-Based Subspace Model Identification

In this Section a summary of the continuous-time PBSID algorithm proposed in
[4.[6]], called CT-PBSID,, is provided, and its implemention is discussed. More pre-
cisely, starting from system (7)), a sketch of the derivation of a PBSID-like approach
to the estimation of the state space matrices A,, By, C,, D,, K, is presented. Consid-
ering the sequence of sampling instants #;, i = 1,..., N, the input u, the output y and
the innovation e of (7)) are subjected to the transformations

/ gk t1+T

/ L(T)y(ti+7)d 1rn

/ Le(T)e(ti +1)d

(or to the equivalent ones derived from (8)), where #;(k) € R™, &;(k) € R” and
3i(k) € R”. Then (see [19] for details) the transformed system has the state space
representation

Cik+1) = A,&i(k) + Boiii (k) + Kpéi(k), £(0) = x(1;)
Ji(k) = Co&i(k) + D,iti (k) + &;(k) (12)

where the state space matrices are given by (10).
Letting now

and
Ao = Ao - K,C,
Eo =B,—-K,D,
B, = [B, K,],

system (I2) can be written in predictor form as

Ei(k+1) = A&i(k) + Bozi(k), &(0) = x(t;)
Ji(k) = Co&i(k) + Dyiti (k) + &;(k), (13)

to which the PBSID,, algorithm, summarised hereafter, can be applied to compute
estimates of the state space matrices A,, B,, C,, D,, K,. To this purpose note that
iterating p — 1 times the projection operation (i.e., propagating p — 1 forward in the
index k the first of equations (I3)), where p is the so-called past window length) one
gets
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i+ D) =50+ 1B, 5] |, 5

| (14)
&i(k+p) = AL&i(k) + 272"
where
%P = |:A_57150 EO] (15)

is the extended controllability matrix of the system in the transformed domain and

Zi(k)
Zrt=1
Zilk+p—1)

Under the consider_ed assumptions, A, has all the eigenvalues inside the open unit
circle, so the term AL &; (k) is negligible for sufficiently large values of p and we have

that
Ei(k+p) ~ P77

As a consequence, the input-output behaviour of the system is approximately given
by

Jilk+ p) = Co P20 4 Dyiis(k + p) + &(k + p)

: (16)
Filk+p+ £) = Cot PZIP I L Dokt p + f)+
+éi(k+p+ 1),
so that introducing the vector notation
Y/ = [5ilk+p) itk +p+1) ... 5ilk+p+f)]
UMY = [@i(k+ p) @i(k+p+1) ... @ilk+p+f)]
EP' = [ai(k+p) &i(k+p+1) ... &i(k+p+f)]
2P = [&(k+p) &(k+p+1) ... &lk+p+f)]
Zf”f _ {Z?,p—l Zl » Zif.,p+f—1 a7

equations (I4) and (I6) can be rewritten as
= f ~ >D.f
EP ~ Pzl
v/ ~c, 2 + DUl + EPY. (18)
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Considering now the entire dataset fori = 1,..., N, the data matrices become

YP =[5 (k+p)...9n(k+p)...

Jilk+p+f)..Inlk+p+ 1), (19)
and similarly for U/ S E’ S o / and zr /The data equations (I8), in turn, are
given by

EPS ~ PP S

yPS ~C, 77" + D, UPS + EPY. (20)
From this point on, the algorithm can be developed along the lines of the discrete-
time PBSID,,; method, i.e., by carrying out the following steps. Considering p = f,

estimates for the matrices C,.#? and D, are first computed by solving the least-
squares problem

min_ ||[Y?? — C, ¢ PZPP — D,UPP
CotP.D,y

12 21

where by || - ||f we denote the Frobenius norm of a matrix. Defining now the ex-
tended observability matrix I'? as

G

CoA,
rr= : (22)

C,AL!

and noting that the product of I'? and %7 can be written as

C,AP"'B, ... C,B,
0 ... C,AB,
IPAP ~ . , (23)
0 ...CA" B,

such product can be computed using the estimate CT%TP of C,. 2P obtained by
solving the least squares problem @1).
Recalling now that
EPP ~ g P7P:P (24)

it also holds that
TPEPP ~ [P ¢ P7PP, (25)

Therefore, computing the singular value decomposition

reyrzer =yzsy’ (26)
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an estimate of the state sequence can be obtained as
Ere = VPV = 5Pyt e zee, 27)

from which, in turn, an estimate of C, can be computed by solving the least squares
problem

min [ Y77 D,UPP —C,EP (28)
The final steps consist of the estimation of the innovation data matrix E”-”
EPP =YPP _C,EPP _D,UPP (29)

and of the entire set of the state space matrices for the system in the transformed
domain, which can be obtained by solving the least squares problem

min_[|EPTIP A EPPT g uP Tl K EPPTY g, (30)
A()7B()7 -0

The state space matrices of the original continuous-time system can then be retrieved
by inverting the (bilinear) transformations (IQ).

3.2 From Unstructured to Structured Models with an 772,
Approach

Suppose that the linear continuous-time time-invariant system .#,, has been esti-
mated from a dataset of sampled input/output data using the CT-PBSID,, algorithm
presented in the previous Section. Consider now the model class .#;(A) introduced
in Section [Il .#,; and .#(1) should have the same input-output behavior. This
problem can be faced in a computationally effective way by defining the input-
output operators associated with .#,; and .#;(1) and seeking the values of the
parameters corresponding to the solution of the optimisation problem

l*:argII}linH///ns*///s(l)H G

for a suitably chosen norm. In the linear time-invariant case, the input-output oper-
ators can be represented as the transfer functions Gy;(s) and Gs(s;A) and the .77,
norm is considered, so that the model matching problem can be recast as

)L*:argrrhinHCA}m(s)—Gs(s;),)Hm. (32)

Note that the open-loop dynamics of a helicopter is unstable in most flight condi-
tions and so the /%, norm is undefined. In this case the eigenvalues of .#;(1) and
My are shifted on the real axis by a suitable value u as follows
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Guls:A) = C(A)((s — I~ A(A)) ' B(A) + D(2) (33)

Gs(s) =C((s—u)—A)'B+D, (34)

where U is chosen such that all eigenvalues of .#,,; have negative real part. Then the
model matching problem is reformulated as

)L*:argrrhinHGm(s)—Gs(s;),)Hm. (35)

As mentioned in the Introduction, this is a non-convex, non-smooth optimisation
problem, which has been studied extensively in recent years in the framework of
the fixed-structured controller design problem and for which reliable computational
tools (see [10]) are presently available.

4 Simulation Study: Model Identification for the BO-105
Helicopter

The simulation example considered in this paper is based on the BO-105 helicopter.
Possibly it is the most studied helicopter in the rotorcraft system identification liter-
ature. The BO-105 is a light, twin-engine, multi-purpose utility helicopter.

It is considered in forward flight at 80 knots, a flight condition which corresponds
to unstable dynamics, with the aim of demonstrating the identification of a nine-
DOF state-space model with test data extracted from a simulator based on the nine-
DOF model from [20]. As described in the cited reference, the model includes the
classical six-DOF and some additional states to account for some additional effects,
namely:

o the BO-105 exhibits highly coupled body-roll and rotor-flapping responses; their
interaction is represented in the model with a dynamic equation that describes
the flapping dynamics using the cyclic controls.

e A second order dipole is appended to the model of roll rate response to lateral
stick in order to account for the effect of lead-lag rotor dynamics.

Therefore, the simulator includes a nine-DOF linear model including the six-
DOF quasi steady dynamics, the flapping equations and the lead-lag dynamics mod-
elled with a complex dipole. Delays at the input of the model are also taken into
account in the simulation, though they are not estimated. The state vector and the
trim values are

x= [uvaqr(i) 0 ais big xi xz]

and, respectively,
up=40m/s, vo=3m/s, wo=-5m/s, ¢yp=0rad, 6p=0rad. (36)

In details, the state vector includes the longitudinal flapping aj,, the lateral flapping
bis and two state variables x; and x,, coming from the lead-lag dynamics complex
dipole. The corresponding equations of motion are
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= X,u+Xyw+Xpp + (Xy —wo)g +vor — 80+ X5, Son+Xs,,,0col
v=Yyv+Yow+ (Y, +wo)p+Yuq+ (Yr—uo)r — g +Ys, 01 + Y5, Ocol
W= Zu+Zyw+(Zp —vo)p+uoq+Zs,, 0col

p =L+ Ly+Lyw+Leg+Ls, bis+Ls, Sion + Ls,, Opea + L, 6cor  (37)
q:A@v+ﬂmw+w@p+ﬂmr+ﬂgma“+A@W5Ww+M@w&d

i =N+ Nyw+Nyq+N;r+Ng, Son+ N, Orar + Ngea Oped +Ns,, Ocol
¢=p

0=q

1

K,
d]s:*LI* Tfals+ ;f“ 8]0n>

; 1 Ky,
biy=—-p— b+ N 5Iat+Kx1x] +Kx2x2
i i

X1 =Xxo
i =Cix1+Coxy + 8y

Finally, the output vector is

y:[uvaqraxayaz¢>9],
where

ay =u-+woq—vor+g0
ay =V —wop+uor — g¢
a; =w+vop —uog,

i.e., the state variables related to quasi-steady dynamics and the linear accelera-
tions are measured. Considering (37), A contains the stability derivatives, the con-
trol derivatives, the flapping and lead-lag rotor dynamics parameters, for a total of
47 parameters.

The identification experiment is performed in closed-loop because of the insta-
bility of the model, with the helicopter operating under feedback from an LQG
controller tuned in order to maintain the helicopter close enough to trim to justify
the identification of a linear model. In the experiment, additive perturbations have
been applied to the input variables (8;4,0/0n,0ped 0cor) computed by the controller;
in particular, all the channels have been excited in the same experiment with pseu-
dorandom binary signals with a duration of 60 s and a dwell time of 0.8 s. The per-
turbation of the control inputs has a 1% amplitude and the sampling time is 0.008s.
For the purpose of the present preliminary study, measurement noise has not been
included in the simulated data. The parameters of the algorithm presented in the
previous Section have been chosen as p = 40 and a = 45. The obtained results are
illustrated in Table[dl
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Table 1 Comparison between simulator and black-box identified eigenvalues

Simulator Identified Model (CT-PBSID,)

Real Imag Omega Zeta Real Imag Omega Zeta

Pitch phugoid 0.119 0.278 0.302 -0.394 0.119 0.278 0.302 -0.394
Dutchroll  -0.571 2.546 2.609 0.219 -0.571 2.546 2.609 0.219

Roll/flapping -9.904 7.740 12.569 0.788 -9.901 7.7399 12.568 0.788
Lead-Lag  -0.868 15.567 15.592 0.0557 -0.867 15.566 15.590 0.0556

Spiral -0.0510 -0.0507
Pitch; -0.448 -0.448
Pitch; -5.843 -5.844
Long. flapping -15.930 -15.901

As can be seen from the Table, the CT-PBSID,, algorithm is able to identify the
dynamics of the system with a slight loss of accuracy at high frequency.

The study in the reconstruction of the above described structured state-space rep-
resentation has been carried out by applying the approach presented in Section 3] to
estimate the relevant parameters. In order to evaluate the performance of the pro-
posed method the relative estimation error is defined as follows

0 3

2ferr = A 20 A ’ (38)
where A and A° are respectively the estimated and the actual value of the parameter
A. In this example the relative errors of the estimated physical parameters in (37)
are below 0.03%. It is clear from Table Pl where the eigenvalues of the real system
and the identified gray-box model are shown, that using a-priori information, i.e.,
exploting the model structure, the estimation accuracy increases.

Table 2 Comparison between simulator and gray-box identified eigenvalues

Simulator Identified Model (Gray-box)

Real Imag Omega Zeta Real Imag Omega Zeta

Pitch phugoid 0.119 0.278 0.302 -0.394 0.119 0.278 0.302 -0.394
Dutchroll  -0.571 2.546 2.609 0.219 -0.571 2.546 2.609 0.219

Roll/flapping -9.904 7.740 12.569 0.788 -9.903 7.740 12.568 0.788
Lead-Lag  -0.868 15.567 15.592 0.0557 -0.868 15.566 15.590 0.557

Spiral -0.0510 -0.0507
Pitch; -0.448 -0.448
Pitchy -5.843 -5.843

Long. flapping -15.930 -15.929
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Fig. 1 Doublet input signal used for model validation

Outputs
T

8
Time [s]

Fig. 2 Doublet output signals (real: solid line; black-box: dashed line; gray-box: cross)

Table 3 Relative errors norm

Output RMScr—ppsip, RMSGray—Box

u 0.0013 0.0013
v 0.0044 0.0044
w 0.0026 0.0026
p 0.0002 0.0002
q 0.0003 0.0003
r 0.0003 0.0003
ay 0.0013 0.0013
ay 0.0017 0.0017
a 0.0077 0.0077
¢ 0.0001 0.0001
0 0.0001 0.0001
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Finally, a time-domain validation of the identified models has been also carried
out, by measuring the simulation accuracy of the models in response to a doublet
input signal on each input channel. The input sequence used in the validation exper-
iment is illustrated in Figure [Tl while the time history for two of the outputs (z and
w) is presented in Figure 2l Again, even though the open-loop system is unstable,
the simulated outputs obtained from the identified models (dashed lines: black-box;
cross: gray-box) match very well the ones computed from the nine-DOF model
(solid lines).

In quantitative terms, considering the root mean square error, defined as

N
RMS = ]lv Y, (i) —$(0)?, (39)
i=1

where y is the real output and ¥ is the estimated one, its value is below 0.01 on all
the considered output variables as shown in Table Bl Note that most of the error is
due the unestimated input delays, as can be seen in Figure 2l

Translational velocities — Inputém

Frequency [rad/s]

Angular rates — Input Bkm

p [rad/s]

q [rad/s]

r [rad/s]
/

Frequency [rad/s]

Fig. 3 Frequency response from longitudinal input to linear (top) and angular (bottom) ve-
locities. (real: solid line; error: dashed line)
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Translational velocities — InputﬁIat

u [m/s]

v [m/s]

w [m/s]

Frequency [rad/s]

Angular rates - Input Bm

p [rad/s]

q [rad/s]

r[rad/s]

Frequency [rad/s]

Fig. 4 Frequency response from lateral cyclic input to linear (top) and angular (bottom) ve-
locities. (real: solid line; error: dashed line)

Finally, in Figures BHI4] the magnitude of the frequency response of the error
transfer function defined as

Ey(s) = Gy(5:1°) — Gy(s5; 1)

is shown, where G(s;lo) is the true transfer function of the BO-105 model and
Gi(s; QAL) is the gray-box estimated one. As can be seen from the figures, the magni-
tude of the error frequency response is always several orders of magnitude smaller
than the one for the true transfer function.
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Translational velocities — Inpulﬁped

u [m/s]

v [m/s]

w [m/s]

Frequency [rad/s]

Angular rates - Input Sped

p [rad/s]

q [rad/s]

r[rad/s]

Frequency [rad/s]

Fig. 5 Frequency response from pedal cyclic input to linear (top) and angular (bottom) ve-
locities. (real: solid line; error: dashed line)
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w [m/s]

q [rad/s] p [rad/s]

r [rad/s]

Translational velocities — InputéSmI
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177

Fig. 6 Frequency response from collective input to linear (top) and angular (bottom) veloci-
ties. (real: solid line; error: dashed line)

Fig. 7 Frequency response from longitudinal input to linear accelerations. (real

error: dashed line)

Translational accelerations — Inpulﬁ‘on
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Fig. 8 Frequency response from lateral cyclic input to linear accelerations. (real: solid line;
error: dashed line)
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Fig. 9 Frequency response from pedal cyclic input to linear accelerations. (real: solid line;
error: dashed line)
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Fig. 10 Frequency response from collective input to linear accelerations. (real: solid line;
error: dashed line)



Rotorcraft System Identification 179

Attitude angles - Input Bum

T
o

¢ [rad]

0 [rad]

Frequency [rad/s]

Fig. 11 Frequency response from longitudinal input to attitude angles. (real: solid line; error:
dashed line)
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Fig. 12 Frequency response from lateral cyclic input to attitude angles. (real: solid line; error:
dashed line)
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Fig. 13 Frequency response from pedal cyclic input to attitude angles. (real: solid line; error:
dashed line)
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Fig. 14 Frequency response from collective input to attitude angles. (real: solid line; error:
dashed line)

5 Concluding Remarks

The problem of rotorcraft system identification has been considered and a two step
technique combining the advantages of time domain and frequency domain methods
has been proposed. A simulation study based on a model of the BO-105 helicopter
has been used to illustrate the proposed approach. Simulation results show that the
proposed schemes are viable for rotorcraft applications and can deal successfully
with data generated during closed-loop experiments. Future work will focus on the
analysis of the impact on the solution of (33) of an identified model that has been
obtained under noisy conditions.
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Air Data Sensor Fault Detection
Using Kinematic Relations

Laurens van Eykeren and Qiping Chu

Abstract. This paper presents a Fault Detection and Isolation (FDI) method for Air
Data Sensors (ADS) of aircraft. In the most general case, fault detection of these
sensors on modern aircraft is performed by a logic that selects one of, or combines
three redundant measurements. Such a method is compliant with current airwor-
thiness regulations. However, in the framework of the global aircraft optimization
for future and upcoming aircraft, it could be required, e.g. to extend the availabil-
ity of sensor measurements. So, an improvement of the state of practice could be
useful. Introducing a form of analytical redundancy of these measurements can in-
crease the fault detection performance and result in a weight saving of the aircraft
because there is no necessity anymore to increase the number of sensors. Further-
more, the analytical redundancy can contribute to the structural design optimization.
The analytical redundancy in this method is introduced using an adaptive form of
the Extended Kalman Filter (EKF). This EKF uses the kinematic relations of the
aircraft and makes a state reconstruction from the available measurements possible.
From this estimated state, an estimated output is calculated and compared to the
measurements. Through observing a metric derived from the innovation of the Ex-
tended Kalman Filter (EKF), the performance of each of the redundant sensors is
monitored. This metric is then used to automatically isolate the failing sensors.

1 Introduction

In this paper a newly developed architecture for Air Data Sensors (ADS) moni-
toring is proposed. The method deals with the Fault Detection and Isolation (FDI)
of measurements required for the Electronic Flight Control System (EFCS) of air-
craft and is part of the work performed for the Advanced Fault Diagnosis for
Sustainable Flight Guidance and Control (ADDSAFE) project. The goal of the
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ADDSAFE project is to research and develop model-based Fault Detection and Di-
agnosis (FDD) methods for aircraft flight control systems, mainly sensor and actua-
tor malfunctions [12]. Furthermore, the ADDSAFE project aims at closing the gap
between the academic field of research of FDD and the practical application of these
methods in industry.

1.1 Motivation

In Fig. [l an overview is given of the typical architecture of EFCS of an aircraft.
As can be noticed, one way of how faults can be introduced in the control loop
is by sensor faults, indicated as Air Data and Inertial Reference System (ADIRS)
faults in the figure. Faulty measurements which are fed back to the flight control
laws can create unwanted control signals, leading e.g. to higher loads on the aircraft
structure. For that reason, the aircraft structures are designed to withstand these
unwanted loads up to a level at which it is guaranteed that the faults can be detected
and appropriate actions can be taken.

However, for upcoming and future aircraft one important aspect is the structural
design optimization. This can lead to a substantial decrease in the weight of the
aircraft, which again leads to an increase in the aircraft’s performance, including a
decrease in fuel consumption, a decrease of produced noise and an increased range.
Furthermore, these advantages also satisfy the newer societal imperatives toward an
environmentally friendlier aircraft.

Sensor fault detection for flight parameter measurements, like e.g. air data and
inertial measurements in modern aircraft is generally achieved through the use of
typically three redundant measurement units (e.g. Air Data and Inertial Reference
Units (ADIRUS) [22]]). Through a decision logic, also called consolidation process,
the correct measurement is selected and used by the EFCS [10],[22].

|§—) Objectives

Flight Control
Laws

\ /

N

A 2
N

Consolidation

Aircraft state

ADIRS faults

Fig. 1 Flight control architecture of an aircraft
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Improving the FDD performance of the aircraft’s EFCS allows to optimize the
aircraft structural design and performance, resulting in a lower operating cost and
decreased environmental impact [13]], as explained above.

Another motivation for the development of analytical redundancy for aircraft pa-
rameter measurements is to extend the availability of the sensor measurements. In-
stead of adding one or several new sensors, the option of adding a “virtual” sensor,
i.e. analytical redundancy, gives the advantage no additional weight is required. This
results again in the same advantages as described in the previous paragraph.

These two main reasons indicate the need to create new advanced FDD methods
and to close the gap between academic research and industrial application.

1.2 Antecedents and Main Contribution

In this work a model-based FDD approach is presented for the fault detection of
Air Data Sensors (ADS), in particular applied to the angle-of-attack measurements.
Different methods have been investigated for mitigating the effects of failing ADS,
such as: signal based diagnosis [[16]],[9], alternative sensing methods which are fault
tolerant [4]], robust fault detection approaches [11]], finding ways to operate without
traditional ADS[6]]. Other solutions for the problem of ADIRS monitoring dealing
with oscillatory faults are presented in [3]],[2].

In this paper a method is introduced based on the general kinematic relations
of aircraft. By relating different available measurements in the ADIRU, it becomes
possible to perform FDD of the ADS. For this purpose, an adaptive modification
of the EKF is applied to the kinematic equations. The Kalman Filter (KF) and its
numerous modifications have been used in the field of aerospace engineering since
it was developed in the 1960s [14]. In this way, the EKF has also been used for
sensor fault detection [7]].

The EKF was originally formulated for state estimation of dynamic systems when
the dynamics and measurement equations are nonlinear, but linearizable [17] and
has been widely used for sensor monitoring and fusion techniques [1]]. The method
that will be proposed here directly builds on this principle, i.e., using the redundant
measurements available form the multiple ADIRUs the state of the aircraft is re-
constructed by means of a adaptive version of an EKF which was first introduced
by [19]. [15] proposes sensor fault detection by evaluating the innovation sequence
of the filter. This information can furthermore be used to fuse the measurements in
such a way that failing sensors are detected and isolated.

1.3 Structure of the Paper

In the next section the FDD problem to solve is introduced, giving the system de-
scription and the fault scenarios. In Section[3]the proposed FDD method is described
and in Section ] the simulation results are presented. The paper ends with a conclu-
sion in Section
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2 Problem Definition

2.1 System Definition

One of the key elements of this method is the use of the kinematic equations that
describe the aircraft’s behavior, i.e., the state reconstruction is achieved using the
measurements of the Inertial Reference Unit (IRU). When the load factors and the
rotational rates are used as inputs to the EKF, the state of the aircraft can be recon-
structed ([3]]). The big advantage of this approach lies in the following three points:

1. The method developed is valid over the whole flight envelope of the aircraft. This
means that no special measures need to be taken such as gain scheduling, etc.

2. Secondly, the method can be applied to any aircraft, without large modifications
(except for the location of the sensors). So the developed method is general for
aircraft.

3. The method is insensitive to other types of faults, e.g. actuator faults, control
surface jamming, etc.

The aircraft kinematics can be represented by the following nonlinear system:

z(r) = Cx(t) (1)
Cx(1)+v(t)

N
3
—

-~
~—

|

Where x represents the state of the system, u the input and z the measurable output
of the system. w(z) and v(¢) represent Gaussian white noise sequences and are the
measurement noise of respectively the measured input and output. In this particular
case, the state description can be reduced to a five state system, and these states are
measurable:

x= Vs B¢ 6] (2)
u=[A A A pgr]’ 3)
2= [Viasa B ¢ 6] )

Where Vs is the true airspeed, o the angle-of-attack, f the side-slip angle, ¢ the
roll angle and @ the pitch angle. Ay, Ay, and A, are the accelerations at the center
of gravity, p, g, and r the rotational rates. Note that a transformation is necessary
to convert the measured load factors at the IRU to accelerations at the center of
gravity. Furthermore, note that C = I. In fact, both the inputs to this system and the
outputs are measured from the aircraft and can be assumed available in the EFCS
for each modern aircraft. Although the position of an aircraft can be considered a
part of the state, it is not required for the purpose of fault detection of the ADS.
Having only these five states, will decreases the computational load of the proposed
method. Furthermore, no wind influences are accounted for in this work. However,
according to [20] it is possible to estimate the wind, giving a more precise estimate
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of the state of the aircraft if necessary, at the cost of a larger state vector and so
increased computational load.
According to [8]], the kinematic state update equations can be described by:

V = g(—sinBcosocos B + sin¢ cos O sin B+ cosd cos O sinarcos B)

+Acosacosf+A,sinfB +A;sinocosf (5)
o= Vcisﬁ (cos ¢ cos O cos o + sin 6 sin o)
+Vcosﬁ (Azcosa—Axsino) + g —tanf (pcos o+ rsinar) (6)

B = ‘(g; (sinBcososin B 4 sin¢ cos 6 cos § — cos ¢ cos O sin oz sin 3)

1
+V (—Axcososinff +A,cos B —A;sinosinf3) + psino — reos o (7)

@ = p+gsingtan 6 + rcos ¢ tan 6 (8)
6 = gcosp —rsing “

which defines f(x) and G(x) in Eq. ().

2.2 Fault Scenario

The definition for the fault scenario follows from the ADDSAFE project [12]. All
faults investigated in this paper are related to the measurement of the angle-of-attack
o, however the method developed can be extended to the monitoring of the measure-
ments of the true airspeed V745 and the side-slip angle 3, without losing generality.
Different types of faults are considered, such as oscillating faults, runaway faults
and increased noise faults, of which examples are shown in Fig.[2l Note that in this
graph, and all other graphs in this paper, all values are normalized to the operational
range of the measurements. Furthermore, also the time axis will be normalized for
each simulation.

Each of the different type of faults can occur on one or simultaneously on two
sensors. Whereas the fault detection of the case of only one failing sensor is a trivial
task, the fault detection when two sensors fail at the same time is less obvious with-
out incorporating any kind of analytical redundancy. An overview of the different
faults investigated and there amplitudes is shown in Table[Il

3 FDD Approach

The general idea of the approach taken here is to fuse the redundant measurements
based on the quality of the measurement. This is achieved by filtering the available
measurements using an EKF and comparing the state estimates with the redundant
measurements based on a so-called “R-adaptation” , which will be explained in
Section
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Fig. 2 Difterent types of faults

Table 1 Fault Amplitudes (for the runaway, the rate is expressed as a percentage of Qiyax, for
the extra noise the standard deviation of the noise as a percentage of Otmax)

Scenario Fault type
1 Oscillation 1 sensor
Oscillation 2 sensors
Runaway slow 2 sensors
Runaway fast 2 sensors
Extra noise 1 sensor

Extra noise 2 sensors

AN R W

For this purpose, first the basic principles of

Amplitude (% of Oumax)
4
11

the EKF are briefly explained, which

is essential in understanding the method. Then the sensor monitoring algorithm is

addressed, which is used to perform the FDD.
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3.1 Extended Kalman Filter

The standard EKF exists of two main steps. The first step can be called the predic-
tion of the estimated mean of the state of the system, and uses the system dynamic
equations. Also the covariance of the estimate is predicted. This step can be repre-
sented by:

1)

Rt = Retjr + [ “R& (D)) + G(R(T))un(7)] dT (10)
k—1

Pyt = P @) +Qq (11)

Where R is the estimated state at time ¢ = #;, knowing the measurement at time
t = ti_1. Wy(t) represents the measured input to the system. The matrix Py
represents the covariance matrix of the estimated state at time ¢ = #;,_;. The matrix
@, is the discretized version of the Jacobian matrix Fy, both defined as follows:

= F! (Ar)"
_ JFAr _ k
@k_ek’_; o (12)
d (f G
with: F, = 2 (X);r (x)u) (13)
X X:ﬁk‘k
and from we can approximate Q as:
Qq(k) = TQI (14)
k
with: Ty, = ( / CDkAt> G(Rep) (15)
k-1
where Q = E [w(t)w ' (¢)] represents the input noise covariance matrix.
The second step is the measurement update. It is represented by:
T T -
K = Py H (HPk|k_1H +R) (16)
Rek = Rt + K (2 — h(Rep_1)) (17
P = [I- KH] Py [I- KH] T+ KRK] (18)

Where K is the Kalman gain, H = ‘32 =1, and R=E [v(t)v'(t)] the measure-
ment noise covariance matrix. Furthermore, from these equations we can define the
innovation as z,,, — 2 and the innovation covariance matrix as:

V. =HPy_H' +R (19)

This standard EKF can be applied to the system described in Section 2.1] with the
triple measurement of the angle-of-attack o augmented in the measurement vec-
tor. Note that is was chosen for this approach in favor of a dedicated filter for each
ADIRU, as to reduce the computational load. In this case, a simulation was chosen
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with a double runaway fault, i.e., sensor 1 and 2 experienced the same runaway fault
att = 0.03. In Fig. Blthe result of the estimated angle-of-attack (&) can be seen com-
pared to the three different measurements. As can be noticed, the estimated value
of the angle-of-attack is in between the measured values. This is logical, as the as-
signed variances to the different sensors, through the matrix R, are equal. Therefore,
each measurement of the same variable is equally weighted by the filter. From the
figure it is clear that it cannot be decided on this information which sensor is failing,
and which sensor is providing a correct value. In this we find a motivation to modify
the algorithm such that FDI becomes possible by monitoring the performance of the
Sensors.

/amax [-]

o

04| N ]
—06} ~ ]
—0.8} |

L L

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
Time [-]

Fig.3 06 compared with measurements for runaway fault of sensor 1 and 2 (equal fault value),
regular EKF

3.2 Adaptive Fusion

Instead of using all redundant measurements as separate observations in an adaptive
EKF [23]], here is chosen to fuse the redundant measurements based on their per-
formance. For this, a certain metric is introduced which represents the performance
(fault-free/fault) of the sensor.

The theoretical innovation covariance of the EKF is represented by (I9). This
value can also be estimated online:

A T . ,
Ve = N 2 (Zm; — 2i) (2Zm; — Zi)T (20)
i=k—N+1

where N represents the moving window width. In the case a sensor fails, for each
diagonal value, the estimated value will exceed the theoretical value, i.e.:
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Ve, = [HPHT| 4Ry e
where the subscript ...; ;) means the value on the ith diagonal. Now one can intro-
duce the diagonal scale factor matrix S(k) ([21]]) such that:

A

Vek(i.z) = [HPk|k71HT} w +Sk(l-_,-)R(i,i) (22)

And therefore the values of S(k) can be calculated as:
— [V _ T -1
Sty = (vek(u> HPy H| (,-,,-)> R (23)

In the fault free case, the matrix S(k) will approximate the unity matrix I, in a faulty
case, the diagonal value related to the failing sensor will increase and become bigger
than 1. To perform the fusion of the redundant measurements, the scale factors are
calculated for the different sensors. Then a weighted average of the three measure-
ments is taken using the reciprocals of S(k) as weights:

_ s, 24)
23 1 S:;l g

D1 ook
i=1 Sai i=1

e

As can be noticed, in the case one or two sensors give a bad measurement, the related
value of S(k) will increase and the faulty measurement will be given a lower weight.
As will be shown in the results, the scale factor of the faulty measurement is much
larger than 1, so S(k) > 1, and as such the faulty measurements will have almost no
influence on ¢. The detection and isolation signal will then be based on whether
the value of S(k) will exceed a preset threshold. Another approach would be to set a
threshold, and disregard any measurement with a scale factor above this threshold.

Note that the method as presented here is limited to the detection of measurement
faults related to the signals in z, as defined in Eq. (). It is assumed that the input
measurements u are fault-free.

4 Simulation Results

The method described above is applied to the system described in Section 2.1l Sim-
ulations were run on the ADDSAFE benchmark. Two main tuning parameters are
required to be determined for the application of the filter. First of all, there is the
time window N, over which the estimate of the innovation covariance is calculated.
This parameter depends on the system dynamics and the required detection perfor-
mance. However, setting this parameter is trivial, and is done by trial and error. The
second tuning parameter is the threshold T introduced in the previous paragraph.
This parameter can be set based on the amplitude of the residuals in fault-free cases.
Although the matrices Q and R can be considered as tuning variables, they are re-
lated to the performance of the sensors measuring the input and output vectors u and
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Fig. 5 S, for the different sensors for runaway fault of sensor 1 and 2 (equal fault value),
EKF with adaptive fusion

z. Therefore, both matrices should be based on the real sensor performances which
are considered to be known.

First, the method was applied to the same simulation as shown in Fig. 3l The
result is shown in Fig.[dl As can be noticed, the estimated & now follows the correct
measurement o3 and o and oy are discarded. Fig. 3 shows the values of Sy, i =
1,2,3. The scale factors related to sensor 1 and 2 clearly show an increase in value
after the fault occurred. Other typical results for the different scenarios described in
Table[Tlare shown in Figs. [6] [7] Bl and

A simulation campaign was set-up to test the proposed FDI method. This cam-
paign existed of fault-free simulations in which different maneuvers were performed
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Fig. 7 Sy for the different sensors for oscillatory fault of sensor 3, EKF with adaptive fusion

to test the false alarm rate. These simulations included sudden pitch up maneuvers
with high angle-of-attack attitudes and lateral maneuvers including substantial side
slipping of the aircraft. The introduction of faults occurred during simulations of the
cruise condition of the aircraft, for the faults presented in Table Il

The simulation campaign involved changing the following parameters of the sim-
ulations: the flight parameters (altitude, velocity), geometric parameters (mass, posi-
tion of center of gravity), uncertainties in the measurements (mass, velocity, center
of gravity, altitude) and the aerodynamic coefficients. All these parameters were
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adjusted in two different ways: using the extreme values (all uncertainties on the
minimum or maximum value at the same time) and using Monte Carlo simulations.
In this way, a large part of the flight envelope of the aircraft was covered.

In TablePlan overview is given of the detection performance of these simulations,
consisting of 252 simulations (152 parametric variations and 100 Monte Carlo vari-
ations) for each scenario. In this table, “DTP” stands for “Detection Time Perfor-
mance” and is expressed in function of the maximal allowed detection time for that
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Table 2 Summary of obtained simulation results

# Detection DTP DTP DTP
(%) mean max min
100 0.0063 0.0068 0.0062
100 0.16 0.18 0.14
100 041 095 0.32
100 0.16 020 0.13
100 0.0035 0.0042 0.0030
100 0.06 0.06 0.06

o W B~ W N =

type of fault. As can be noticed, for the different fault scenarios considered, a 100%
fault detection performance was achieved, i.e., no missed detections and no late de-
tections. The low values for scenario 1 and 5 are due to different maximum allowed
detection times. It can be noted that the absolute detection times for both one or two
sensors failing were in the same magnitude order, i.e., the absolute detection time is
not influenced by the amount of sensors (one or two) that are failing. Furthermore,
no false alarms were obtained during the simulation of fault-free maneuvers. Here
only results are presented for the detection of faults in the angle-of-attack sensors.
However, it should be noted that this FDI method can be extended to the other vari-
ables in the measurement vector z without losing any functionality. As these types
of faults can be detected and accounted for by the same methodology, it can be
stated that the fault detection of one specific variable is insensitive to other faults.
The detection of measurement faults of the variables in the input vector u, being the
accelerations and rotational rates, is not considered in this work, and so these mea-
surements are assumed to be fault-free, i.e., FDI for these measurements is covered
by a different methodology.

5 Conclusion

This paper presented an algorithm based on an adaptive modification to the EKF
that is capable of providing mathematical redundancy for the purpose of sensor
fault detection. The main advantages of this method are the independence from the
dynamics of the aircraft and it’s low tuning complexity. In fact, the only aircraft spe-
cific knowledge required is the exact location of the IRU and the sensor performance
characteristics. Because only kinematic and no dynamic (forces and moments) rela-
tions are used, no special measures need to be taken to make to method valid over
the whole flight envelope of the aircraft. This results in a very low tuning complex-
ity, limited to setting a time window and one threshold. Furthermore, it should be
noted that this method can be extended to other air data measurements, which will
be investigated in future work.
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A Multiple-Observer Scheme for Fault
Detection, Isolation and Recovery
of Satellite Thrusters

Antoine Abauzit and Julien Marzat

Abstract. The method proposed in this paper aims at automatically detecting, iso-
lating and identifying faults on actuators of a satellite model and also aims at auto-
matically reconfiguring the reference input once the fault has been isolated. The
method uses two sliding mode observers to detect and reconstruct the fault. A
cusum test on the output of the detection observer triggers a bank of Unknown
Input Observers in order to isolate the faulty actuator. The reference input is
automatically reconfigured in order to pre-compensate the fault, which makes the
satellite capable of fulfilling its mission with the desired performances and good
precision. Monte Carlo analysis, based on performance criteria, is carried out to
assess the performance of the strategy. The combination of these different types of
filters might provide better detection, isolation and identification capabilities than a
single filter that would be forced to achieve a trade-off between fast detection and
accurate estimation.

1 Introduction

During the last decades, fault detection, isolation and recovery (FDIR) has met a
growing interest in the scientific community. The higher levels of automation
expected from modern systems require a higher reliability. Hardware redundancy
is usually employed to achieve this reliability yet it implies added complexity and
higher costs. For satellite systems, hardware redundancy is particularly cumber-
some since each actuator should be built several times, and the cumulated mass
leads to a much higher launch cost. Furthermore, it is almost impossible to repair
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the satellite if a fault occurs after launch. Therefore, methods avoiding hardware
redundancy and making it possible for the satellite to fulfil its mission in spite of a
fault are highly recommended.

By using a mathematical model of the system, model-based fault diagnosis
(also called analytical redundancy) can be able to detect and isolate faults on ac-
tuators or sensors. Thus, the reliability of the system can rely less heavily on
hardware redundancy and more on software efficiency.

Different model-based methods have been studied for satellite models: parity
space [10], neural-network [8], parameter estimation techniques [4], observer-
based techniques [1], bank of Kalman filters [12] and techniques based on un-
known input observer (UIO) [6].

When a fault occurs, the system has to be able to carry on its mission. A Fault-
Tolerant Control System (FTCS) is a closed-loop system that has the ability to
tolerate faults without threatening its performances or its stability. The reader may
refer to the excellent bibliographical review [13], which explains the existing ap-
proaches on this topic.

The method presented in this paper aims at automatically detecting a fault on an
actuator of a satellite model, isolate it, and reconfigure the control input in order to
carry on the mission. This allows the assessment of the performance of a whole
FDIR loop on a realistic aerospace model, which is seldom addressed in the litera-
ture. The detection and the reconstruction of the fault are achieved via sliding
mode observers like in [3]. The obtained residuals are analyzed by cusum tests in
a decision-making scheme. Once the fault is detected, a bank of UlIOs isolates the
actuator on which the fault occurred. An interesting feature of the proposed
method is to make use of observers with different dynamics for the detection and
estimation of faults to escape from the classical trade-off between reliable detec-
tion (few false alarms) and fast estimation. Finally, the reference input is modified
in order to compensate for the effect of the fault like in [9]. This way, the dynam-
ics of the feedback laws remain unchanged and a good precision can be achieved,
without the need to reconfigure entirely the controller. The performance of the
fault diagnosis method is evaluated with Monte-Carlo (MC) simulations.

2 Satellite Modelling

2.1 Satellite Dynamics

The vehicle considered is a deep-space satellite with 12 thrusters (organized in 4
sets), similar to the one presented in [12]. The state of the satellite is described
in Eq. (1). p is the inertial position, v, the inertial velocity, q the quaternion de-
scribing the rotation from the inertial frame to the body frame, and ® the angular
velocity of the satellite.
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X =

p
v

ey
q

@
The sensitivity matrix By represents the force due to each thruster input. The j"

column of By refers to the direction of the jlh thrust of the satellite, d;, described in
the body frame.

B.=[d, d, --- d,] )
(11 g Lottt 1111
2 2 2 2 2 2
By;=(0 0 0 0 O ﬁ —ﬁ 0 0 —ﬁ ﬁ 0
2 2 2 2
0000 V3 0 0 RERE) 0 0 3
2 2 2 2

The input from the thrusters is defined by the vector u. Thereby the input of the i

thruster is the i component of the vector, u;. It is a positive scalar value between 0
and 100 N.

In the end, the net force of all the thrusters, in the body frame, simply is:

12
F=Bu=>du, 3)

i=1

The dynamics of the inertial position and the inertial velocity are described in
Eq. (4):

p=v
4
v=LR,_ B.u @
m

where Rg_,; is the rotation matrix that turns a vector described in the body frame into
a vector described in the inertial frame. The mass of the vehicle is denoted by m.
The rotational dynamics are generally described by [7]:

0-p—q-r
. 1lp 0 r —gq
=_ 5
q2q—r Opq )
r g —p O
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14
0=|q (6)

r
o=1"Bu-I"oxIlo (7)

The inertia of the satellite in the body frame is defined as I. The sensitivity matrix
B represents the torque of each thruster input. The /™ column of By refers to the
direction of the torque due to the /" thruster in the body frame.

B, =[d; d, -~ d,] €]

with d; = GA, Xd, where 4; is the point where the thrust applies and G is the

center of mass of the satellite.

Table 1 Description of the parameters of the satellite model (from [12])

Parameter  Value Unit

Mass 879 kel
Ixx 2787 [kg.m?]
Iyy 2836 [kg.m?]
Izz 2266 [kg.m?]

2.2 Control Allocation

Two state feedback laws are used to control the state of the satellite. The first one
is dedicated to the control of the position and the velocity while the second one is
for the attitude and the angular velocity. The outputs of the linear controller and
the attitude controller are respectively linear and angular accelerations.

A nonlinear iterative control allocation procedure [11] is used to compute the
reference thrust for each actuator, in order to respect the commands coming from
the feedback laws. The output of the allocator is a desired thrust level for each
actuator, which is assumed to be achieved instantaneously.

2.3  Measurement Model

Star trackers assumed to be faultless measure the attitude of the satellite relative to
the inertial frame. Let q be the actual attitude of the satellite. The measurement of
the star trackers is corrupted by a rotation error .. The measured quaternion qy,
is given by the quaternion product:
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q,=4., ®q 9)

For the measurement of the angular velocity, the quaternion between the previous
measured quaternion q, and the current measured quaternion is first computed:

dq=q,' ®q, (10)
The attitude variation is:
COS%
0q = (11)
sin Qe
2

where e is a unit vector that gives the axis of the rotation. In the end, we have an
angular increment of ¢ around the axis e between two steps.
The angular velocity estimation is then:

0] -2 (12)

eSt_At

where At is the time step of the control system. In the following, we assume that
the measurement of the angular velocity is given by ®yes = ®es. It is of course
worth mentioning that more refined methods may lead to a better estimation of the
angular velocity, yet it seemed to be a sufficient modelling level to assess the in-
terest of the proposed method.

3 FDIR Methodology

The objective of the proposed method is to quickly detect, then isolate, and finally
compensate a fault on a thruster when it happens. Since two thrusters can have the
same force direction but different torque directions, we assume that it is easier to
get explicit residuals from the angular velocity than from the linear velocity. If
two thrusters have the same force and torque directions, it is necessary to study the
linear velocity too in order to determine the sign of the fault and isolate the faulty
actuator.

Two sliding mode observers are used to detect and to reconstruct the fault sig-
nals. The design of these observers is based on [3]. This kind of non-linear ob-
server generates an output estimate ¥ and a state estimate X such that the estima-

tion error converges to zero in finite time. In [3], this observer is written in the
form:
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x=Ax+Bu-Gge, +G,v (13)

where €, = y —Y is the output error, v is a non-linear switched function of the

output error and G; and G, are gain matrices. It is shown that once the sliding
motion €, = 0 and éy =0 is attained, it becomes possible to estimate actuator

or sensor faults from the equivalent output injection signal required to maintain
sliding motion.

The two observers only differ in their tuning since opposite properties are re-
quired for them: one has to provide explicit residuals while the other has to
quickly reconstruct the disturbance.

Once a detection flag has been raised, a bank of Unknown Input Observers
(UIO) is used to isolate the faulty thruster as in [6].

All these observers only reconstruct the angular velocity of the satellite from
Ones and the satellite model. The computational cost is then reduced, since there is
no need to process the entire state vector.

Figure 1 depicts the interaction between the satellite dynamics and the on-board
algorithms including navigation, state feedback, the control allocation procedure,
the FDI functions and the reconfiguration of the input command.

Faults
Disturbances

Reconfigured Control | commanded
Allocation thrusts

Satellite » Navigation —

Fault
Estimator

FDI

Commanded
torques and forces

Controller

Fig. 1 Control system and FDIR methodology

Figure 2 is a detailed illustration of the FDI block from the previous diagram. It
depicts the faulty actuator isolation process and the estimation of the torque dis-
turbance due to the fault.
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UIO Bank
u Detection Decision -~ uio1 Actuator
y SMO Logic 002 isalation

By

Reconstruction Estimated torque
SMO disfurbance

Fig. 2 Detailed FDI scheme

3.1 Detection Observer

In order to decide if a fault happened or not, a detection observer is designed. For
computational complexity, the detection observer is the same as the reconstruction
observer described further, but with a different tuning.

The dynamics of this observer are chosen to be slow, as a result, when a fault
occurs, the error between the measured angular velocity and the output of the ob-
server quickly increases.

3.2 A Cusum Test to Trigger the Isolation Process

The decision is based on a cusum test [2] on the angular velocity estimation error.
The mean error of this state is supposed to be small when no fault occurs. If a fault
happens, the mean value of the estimation error evolves. When a threshold is
crossed on the cusum statistics, the test indicates that an actuator may be faulty. It
is then time to isolate the fault.

3.3 Fault Isolation: A Bank of UIOs

For real-time applicability, the UIOs are triggered only when the decision criterion
indicates that a fault has occurred. Even if only the angular velocity is estimated,
keeping the UIOs switched off before the fault is detected seems to be a good
strategy, regarding the number of actuators of the satellite studied here.

The isolation of the actuator is based on a bank of observers like in [6]. Un-
known Input observers have been chosen here because of their decoupling capa-
bilities. Once again, the angular velocity measurement is used by the observers,
but this time for isolation.
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For each thruster, an UIO is designed. The tuning is the same for all the actua-
tors. Each UIO is such that it can fully reconstruct the angular velocity with all the
inputs but one. As a result, the UIO dedicated to the faulty actuator will not be
affected by the fault while all the others will be.

A UIO can be written in the form:

z=Fz+TBu+Ly

N (14)
x =z+ Hy
For the state to be observable despite an unknown input, the design of the UIO has
to respect some constraints.
In our case, the output equation of the state space representation simply is:

y=Cx=x,ie.C=1; (15)

Thus, for each UIO, the matrix H is such than T = I;-H is orthogonal to the direc-
tion of the "missing" thruster, i.e.:

(Is-H)dr;=0 (16)
Here, the matrix F is very simple:
F=-K a7

where K is a feedback matrix designed by pole placement. This matrix should be
stable in order to ensure the convergence of the estimation error € =X —X .

Finally, the last condition to ensure the convergence is to design the matrix L as
follows:

L = K(I;-H) (18)

Since we are not trying to reconstruct the fault here — we just want to isolate the
faulty actuator — a classical observer design is proposed for the UIOs.

The UIO bank has to indicate clearly which actuator is faulty. Since the UIO
dedicated to the faulty actuator is insensitive to the fault, the residuals of the other
UIOs have to be very sensitive to input errors. The tuning of the UIO is such that
the error estimation rapidly increases when the fault appears, while the residuals
on the faulty UIO stay small. One drawback of this method is that even if an UIO
can fully reconstruct the state, it can take time to have a small estimation error in
the direction of the "missing" actuator.

To overcome this drawback, the residuals on the angular velocity are described
in a specific frame for each UIO: the rotation matrix is such that the first axis of
the new frame is the direction of the torque of the dedicated actuator. This means
that the transient phase only happens on the first component while the others are
quickly fully reconstructed. This is closely related to projections used in the con-
text of parity space techniques for enhancing sensitivity to faults.
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As a result, the residuals on the first component of each UIO will always con-
verge to 0, with or without fault. On the other hand, the residuals on components 2
and 3 of all the UIO but the faulty one will increase when the fault appears.

It is now possible to study the norm of the residuals on components 2 and 3.
The UIO that minimizes the norm of the residual on components 2 and 3 indicates
which actuator is faulty.

3.4 Disambiguation Process

The UIOs use the direction of the torque due to the thrusters to isolate the faulty
actuator. However, among the 12 thrusters of the satellite, two pairs of actuators
have opposite directions making a disambiguation process necessary if the fault
happens on one of these thrusters. We have:

d;; =-d

19)
d, =-d,
As a result, isolating the faulty thruster between actuators 1 and 3 or 2 and 4 re-
quires the knowledge of the sign of the fault.
These four thrusters have the same force direction that is, described in the body
frame:

d =d,=d,=d, (20)

The sign of the fault can be determined by comparing the commanded linear ac-
celeration (i.e. the output of the control law on position and velocity) with the
estimate of the linear acceleration computed from velocity measurement. Once the
sign is known, the fault is easily isolated.

3.5 Reconstruction Observer

The design of this observer is based on the sliding mode observer proposed by [3]
where the sliding motion is maintained even in the presence of faults. An estimate
of the fault can be computed thanks to the equivalent output injection signal that
maintains the sliding motion.

The reconstruction observer proposed here only deals with the angular velocity
of the satellite. The state estimation follows the dynamics:

A -1 -1
o=TBu-I"yxIy+We +v 1)
where W is a stable design matrix and the vector v is defined as:

v =—M arctane  with M>0 (22)
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When an additive fault Au occurs, the dynamics of the angular velocity become:
o=1"B,(u+Au)-I"oxIo (23)
The state estimation error is defined as e, = O—®, so its dynamics are:
. -1 -1 -1
e, =We +v-I"B,Au-TI"yxIy+I" oxIo (24)

It has been shown by [3] that during the sliding motion, €, =0 and €, =0, so if

no fault happens, v—0 and if a fault occurs v— I_lBTAu :

Thanks to the reconstruction observer, it is possible to compute an estimation of
the torque disturbance due to the fault. If the fault has been correctly isolated, it is
now possible to estimate it.

3.6 Reconfiguration of the Input Command

Once that the faulty actuator has been isolated and that the torque disturbance due
to the fault has been reconstructed, it is possible to compute the value of the fault
on the actuator thanks to the method of least squares.

Let Fpere and T be the estimation of the disturbance due to the actuator fault
on the force and the torque respectively, and let F., and T, the output of the con-
trol laws.

Once that a fault is detected, the input of the allocator becomes:

F, =F_-F

alloc pert

T, =T -T

alloc pert

(25)

The disturbance is directly pre-compensated in the control laws; therefore, even if
the disturbance is not perfectly rejected because of the model errors, the "actual”
commands F,., and T, can be respected.

4 Simulations
4.1 An Example

The proposed method has been applied to the satellite model described in
Section 2.1. The method is first illustrated on one example. For our scenario, the
faulty actuator is the number 12. Figure 3 shows the residuals of the detection
observer. The residuals clearly increase after the occurrence of the fault. The
cusum test on the residuals of the detection observer triggers the bank of UIO.

The UIO dedicated to the 12" actuator is insensitive to faults on this actuator.
Its residuals remain close to zero, despite the model errors that we considered
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here, while the residuals of the 11"™ UIO quickly increase (Figure 4). The UIO that
minimizes the residuals on components 2 and 3 indicates which actuator is the
faulty one. The faulty actuator is automatically detected and isolated (Figure 5).
The amplitude of the fault is estimated (Figure 6) then pre-compensated by the

reconfiguration of the reference input.

Detection observer
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Fig. 3 Output of the detection observer
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4.2 Influence of the Tuning of the SMOs

In order to highlight the interest of using different tunings for the detection and the
reconstruction observers, the previous example is run again twice. The difference
of tuning between the detection and the reconstruction observers lies in the scalar
parameter M from equation 22. Let M, be the parameter for the detection observer
and My, the parameter for the reconstruction observer.

In the tuning presented above, the mixed tuning, the parameter My is equal to
ten times the parameter Mp since the dynamics of the detection are chosen to be
slow while fast dynamics are required to estimate the fault quickly. The tuning
where the detection and the reconstruction observers both have slow dynamics is
referred as case 1 in the table below while the tuning where both have fast dynam-
ics is referred as case 2.

Table 2 SMOs parameter M tuning

Mp Mg
Case 1: slow tuning M, M,
Case 2: fast tuning 10 M; 10 M;
Mixed tuning M, 10M,

Since the detection observer is the same for the case 1 and the mixed tuning,
the detection happens at the same date. However, in case 1, the fault estimation
converges much slower to the actual fault (Figure 7) because of the slow dynamics
of the reconstruction observer. As a result, the input command can not be recon-
figured efficiently.

For the case 2, the fault estimation is as fast as with the mixed tuning since the
reconstruction observers are the same. Unfortunately, the detection time is longer
than with the mixed tuning, by 2.3 s on this example. Indeed, once the fault has
appeared, the residuals of the detection observer do not grow as fast as with the

—— Mixed tuning

-~ Slow tuning
Fast tuning

- - —Actual fault

[N]

100 150
Time [s]

Fig. 7 Fault estimation for the three tunings
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Fig. 8 Output of the detection observer for the fast tuning (case 2)

mixed tuning. As a result, it takes more time to cross the threshold of the cusum
test making the isolation process triggered later. Furthermore, since the final val-
ues of the residuals are smaller, it becomes harder to detect small faults (Figure 8
compared to Figure 3) and the missed fault rate would be higher.

The tuning of the cusum test could be adapted to the fast tuning of the detection
observer, but there is a risk that the residuals disturbed by the model errors would
trigger the detection observer, especially in the first seconds of flight, resulting in
an increased false alarm rate.

In the end, the use of two SMOs, one with slow dynamics dedicated to the de-
tection, and one with fast dynamics dedicated to the fault estimation makes it pos-
sible to circumvent the usually required trade-off between the two tunings.

4.3 Performance Evaluation

In order to evaluate the efficiency of the method and its robustness to model er-
rors, some performance indices should be defined. The fault isolation time indi-
cates the performance of the method while the missed fault rate and the false
alarm rate allow the evaluation of its robustness.

The fault isolation time is the difference between the moment the isolation is
definitively done (the actuator indicator remains constant until the end of the sce-
nario) and the moment the fault occurs.

The false alarm rate is the number of times a fault is detected while all the ac-
tuators are still healthy divided by the total number of scenarios.

The missed fault rate is the number of time a fault was not detected at the end
of the scenario divided by the total number of scenarios.

To compute these indices, Monte-Carlo simulation tests have been carried out.
For each simulation run, parameters of the model such as the position of the center
of mass, the mass, the inertia, and the direction of the thrusters are altered. The
value of the fault, the time of its appearance, and the index of the faulty actuator
are randomly chosen.
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All the model alterations follow a uniform distribution with bounds as de-
scribed in Table 3.

Table 3 Summary table of the altered parameters of the satellite and their distribution

Parameter Unit Lower bound — Upper bound
Mass [kg] -10; +10
Inertia (by axis) [kg.m?] -10; +10
Center of mass (by axis) [m] -0.02; +0.02
Thruster direction (by actuator) [°] -0.2; +0.2

All the fault parameters follow a uniform distribution with bounds as described
in Table 4. For each scenario, after the occurrence time, a bias appears on the
faulty actuator until the end of the simulation.

Table 4 Summary table of the fault parameters

Parameter Unit  Lower bound — Upper bound
Value [N] -30; 430
Actuator - 1;12
Occurrence time [s] 0; 100

A number of 1000 MC simulation tests have been carried out. The false alarm
rate and the missed fault rate can be directly computed. It appears that the appro-
priate tuning of the method allows avoiding false alarms since the false alarm rate
is equal to zero. On the other hand, 49 faults were not detected among the 1000
scenarios. This means that we have a missed fault rate of 4.9%.

It might be possible to get a lower missed fault rate with different tuning of the
cusum test but it could lead to a higher false alarm rate. It should however be
noted that the values of the non-detected faults are small and have thus a very
small effect on the system dynamics.

Figure 9 presents the detection time for the different fault values met in the
1000 scenarios. It clearly appears that the detection time depends on the value of
the fault: the more the fault is important, the faster it is isolated. The smallest
faults — less than 1.5N — are not detected.

Figure 10 shows the required delay for the fault isolation once it is detected. It
appears that 50 % of the faults are isolated less than 0.2s after detection, and that
88 % are isolated within the second that follows the detection. In some cases -
small fault, high model errors - the isolation time can be more important, however,
the isolation is always achieved in the end.
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5 Conclusion

This paper has described a method to detect, isolate and compensate an actuator
fault in a satellite system. The main challenge is to detect as soon as possible the
fault and to reconstruct it rapidly among all the possible thrusters. The proposed
method differs from the usual solutions by the use of two observers, one for detec-
tion, and one for reconstruction. The detection and the reconstruction observers
use the same kind of sliding mode observer but with different tunings. The isola-
tion of the faulty actuator is performed with a bank of UIO that is triggered by the
detection observer. Each of the UIO residuals are described in a specific frame
bound to the dedicated actuator in order to get more "readable" residuals for an
easier isolation. Once a fault is isolated and reconstructed, the input command is
reconfigured in order to pre-compensate the disturbances due to the fault.

The proposed method allows to successfully detect and isolate faults in
most cases. Only the smallest faults are not detected but such faults lead to small
disturbances, so the integrity of the system is not threatened. An optimal tuning
thanks to a minimax optimization could allow to reduce the missed fault
alarm without deteriorating the false alarm rate, taking into account the sources of
uncertainty [5].

References

1. Alwi, H., Edwards, C., Marcos, A.: FDI for a Mars orbiting satellite based on a sliding
mode observer scheme. In: Proc. of the IEEE Conference on Control and Fault-
Tolerant Systems, Nice, France, pp. 143-148 (2010)

2. Basseville, M., Nikiforov, V.: Detection of Abrupt Changes: Theory and Application.
Prentice-Hall, Englewood Cliffs (1993)

3. Edwards, C., Spurgeon, S.K., Patton, R.J.: Sliding mode observers for fault detection
and isolation. Automatica 36(4), 541-553 (2000)

4. Jian, T., Khorasani, K., Tafazoli, S.: Parameter estimation-based fault detection, isola-
tion and recovery for nonlinear satellite models. IEEE Transactions on Control System
Technology 16(4), 799-808 (2008)



214 A. Abauzit and J. Marzat

5. Marzat, J., Walter, E., Damongeot, F., Piet-Lahanier, H.: Robust automatic tuning of
diag-nosis methods via an efficient use of costly simulations. In: Proc. of the 16th
IFAC Symposium on System Identification, Brussels, Belgium, pp. 398—403 (2012)

6. Patton, R.J., Uppal, F.J., Simani, S., Polle, B.: Robust FDI applied to thruster faults of
a satellite system. Control Engineering Practice 18(9), 1093-1109 (2009)

7. Sidi, M.J.: Spacecraft dynamics and control: a practical engineering approach. Cam-
bridge University Press (1997)

8. Talebi, H.A., Khorasani, K., Tafazoli, S.: A recurrent neural-network-based sensor and
actuator fault detection and isolation for nonlinear systems with application to the sa-
tellite’s attitude control subsystem. IEEE Transactions on Neural Networks 20(1), 45—
60 (2009)

9. Theilliol, D., Join, C., Zhang, Y.: Actuator Fault Tolerant Control Design Based on a
Reconfigurable Reference Input. Journal of Applied Mathematics and computer
Science 18(4), 553-560 (2008)

10. Varga, A.: Monitoring actuator failures for a large transport aircraft — the nominal
case. In: Proc. of the 7th IFAC Symposium on Fault Detection, Supervision and Safety
of Technical Processes, Barcelona, Spain, pp. 627-632 (2009)

11. Wie, B.: Space Vehicle Dynamics and Control, Reston, Virginia. AIAA Educational
Series (1997)

12. Williamson, W.R., Speyer, J.L., Dang, V.T., Sharp, J.: Fault Detection and Isolation
for Deep Space Satellites. Journal of Guidance, Control and Dynamics 32(5), 1570—
1584 (2009)

13. Zhang, Y., Jiang, J.: Bibliographical review on reconfigurable fault-tolerant control
systems. Annual Reviews in Control 32(2), 229-252 (2008)



A Spherical Coordinate Parametrization
for an In-Orbit Bearings-Only Navigation Filter
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Abstract. In-orbit rendezvous is a key enabling technology for many space mis-
sions. Implementing it employing only bearing measurements would simplify the
relative navigation hardware currently required, increasing robustness and reliabil-
ity by reducing complexity, launch mass and cost. The problem of bearings-only
navigation has been studied intensively by the Naval and Military communities.
Several authors have proposed that a polar or spherical coordinate parametrization
of the underlying dynamics produces a more robust navigation filter due to the in-
herent de-coupling of the observable and un-observable states. Nevertheless, the
complexity of this problem increases significantly when the underlying dynamics
follow those of relative orbital motion. This paper develops a spherical coordinate
parametrization of the linearized relative orbital motion equations for elliptical or-
bits and uses an approximation of these equations for circular orbits to develop an
Extended Kalman Filter (EKF) for bearings-only navigation. The resulting filter is
compared to its equivalent based on the well known Hill Equations in cartesian co-
ordinates via a Monte Carlo analysis for a given reference trajectory. Simulations
show that a spherical coordinate based EKF can perform better than its cartesian
coordinate counterpart in terms of long-term stability tracking of the reference tra-
jectory, with little additional computational effort.
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1 Introduction

In-orbit rendezvous is a key enabling technology for many space missions. Without
a technology allowing a chaser spacecraft to reach a target with high accuracy and
low collision risk, we could never achieve missions such as in-orbit assembly of
large structures (ISS); planetary exploration and return (Apollo and Mars Sample
Return); in-orbit servicing, refuelling and inspection (ATV, DEOS) and Active de-
orbiting (OTV).

While this topic has been widely researched and there exists significant heritage,
it currently requires complex and/or bulky hardware to measure the relative range
between the chaser spacecraft and the target [1]]. This is especially the case with
un-cooperative targets at long distances, as the power requirements and complex-
ity of the range sensors increases exponentially without dedicated hardware on the
target [2]. There have been may efforts to simplify the required hardware for ren-
dezvous [1]]. Nevertheless, most solutions only work at short ranges of less than a
few kilometres, such as those involving visual cameras using stereo vision (triangu-
lation along a well-known baseline) or estimation of the range from the relative size
of the target.

For these reasons there is a strong motivation to develop algorithms to perform
in-orbit rendezvous without requiring a direct measurement of the range between
the chaser and the target. Bearing measurements to an un-cooperative target are
easier to obtain, especially at long range, without the need of heavy or complex
hardware, for example by using a single optical camera to measure Line of Sight
to the target. Therefore, this would not only enable rendezvous missions with low
launch mass and cost, but would also provide a back-up strategy for contingency
cases in missions employing more advance sensors.

The problem of bearings-only navigation has been studied intensively by the
Naval and Military communities with applications to ship navigation and mis-
sile guidance assuming a constantly moving and non-maneuvering target [313]]. In
particular, there have been several studies claiming that using a polar or spheri-
cal coordinate parametrization of the equations of motion to construct an EKF for
bearings-only navigation naturally decouples the un-observable states (range) from
the observable ones (angles). This prevents covariance matrix ill-conditioning and
filter instability, resulting in a more robust and unbiased filter [67].

Nonetheless, the assumptions employed in the Naval and Military literature do
not apply to the in-orbit problem due to the complexity of orbital dynamics. Only
a few authors have treated the in-orbit bearings-only navigation problem [1]] and to
the authors’ knowledge, none have attempted to test the potential advantages of a
spherical coordinate parametrization for a bearings-only navigation filter for in-orbit
rendezvous. This paper tackles this specific problem and for this purpose develops a
spherical coordinate parametrization for the equations of linearized relative orbital
motion for eccentric and circular orbits. The latter are equivalent to the well known
Hill Equations.



A Spherical Coordinate Parametrization 217

2 Spherical Relative Motion Equations

In order to derive the equations of relative motion in Spherical coordinates, the
definition of the relative position vector in spherical coordinates (see Appendix) is
used in conjunction with the vectorial equation of relative motion (I8)) derived in the
Appendix. Solving for the desired accelerations in Spherical coordinates 7, 8 and ¢,
the final expressions for the Spherical Equations of Relative Motion emerge and are
shown in Equations[Ilto[3l These equations are valid for elliptical orbits.
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Here ¢; = cos(i) and s; = sin(i) for i = ¢ or 6 are used to 31mp11fy the notation.

Substituting the assumptions of constant orbital rate @ = \/ u/r} into Equations ]
to[3] yields the Equations for Relative Motion in Spherical Coordinates for Circular
Orbits, shown in Equations [ to[6l These are equivalent to the Hill Equations cited
in many references including [2]], also shown in the Appendix.
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3 Validation of the Spherical Equations

In order to validate the equations of relative motion for circular orbits in Spherical
coordinates, a comparison of equations M to [6] with the Hill Equations (see Ap-
pendix) was performed via numerical simulations. Various test orbits were propa-
gated from a known initial condition using both sets of equations. The the result-
ing trajectories were then compared to verify the equivalence of the equations. The
propagation were carried out using the MATLAB® ODE45 solver. In addition, for
some test cases the trajectories were validated using the linearized solution to the
Hill Equations, the Clohessy-Wiltshire (CW) equations [2]]. Table[Tlists the trajecto-
ries tested as well as the resulting position and velocity errors between the Spherical
and Cartesian trajectories, over the whole simulation period. The errors for all the
trajectories tested were within numerical integration errors in the order of 1 x 107°
meters. An example of the validation trajectories, corresponding to the last row of
Table[dl is shown in Figure[Iland the corresponding errors in Figure 2l
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Table 1 Spherical relative motion equations validation results

Test Description (Compared with)

Arbitrary IC (CW)

Arbitrary IC (Hill)

Different Altitude (CW)

Release at Z-Direction (CW)

Release at Y-Direction (CW)

Initial Velocity on X-Direction (CW)
Initial Velocity Out of Plane (CW)

Forced Motion with Accelerations™ (Hill)

IC [m & m/s]
x“=[xyzxyz")

[100 10 150 0.01 0.1 0.2]
[100 10 150 0.01 0.1 0.2]
[0 0150 0.2617994 0 0]
[00150000]
[0100000]
[e000.0100]
[0e*000.10]

[1000 10 15 0.01 0.01 0.02] 3.84e-05

J. Grzymisch et al.

[[x(r) =x*(2) |
Pos [m] Vel [m/s]

8.00e-08
7.23e-08
2.31e-08
7.32e-08
3.31e-10
7.01e-09
9.51e-10

4.77e-11
3.86e-11
1.26e-11
8.04e-11
1.78e-09
6.07e-12
3.57e-10
3.37e-08

*Note: € =2.22¢-16 is used to avoid the numerical singularity at r = [OOO}T m

**Constant acceleration used throughout the simulation: a = [123]7 m/s?

4 In-Orbit Bearings-Only Navigation Filters

Two discrete Extended Kalman filters were formulated according to [8], using the
Cartesian and Spherical equations of motion. The propagation step within the filters
was implemented using a fourth order Runge-Kutta (RK4) integration of the state

equations, shown below.

The state vectors for the navigation filters in Cartesian x° and Spherical x* coor-
dinates are defined as in Equations 23] and 24] respectively. The state equations for
each filter, f°(x) and f*(x*), were formulated from the relative motion equations
for circular orbits in Cartesian (I820) and Spherical @) coordinates respectively.
These are shown in Equations[7] and [§|below.
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Fig. 1 Validation Example Trajectory for the Spherical Relative Motion Equations

Finally, the angles-only measurement equations for each filter were developed from
the geometric relations in Figure[IQl These are shown in Equation 0] and [IQ] for the

Cartesian and Spherical filters respectively.
arctan(y/x)
c Cc\ __
he(x‘) = arCSin(z/\/x2+y2+zz) 9)
b (x°) = m (10)
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Fig. 2 Validation Errors for the Example Trajectory

4.1 Filter Stability Measure

Even though the stability of Extended Kalman Filters can not be guaranteed, EKFs
are attractive since their performance is near-optimal when the estimation errors are
small and the non-linearities are tightly cone bounded [9]]. Several references includ-
ing [9]] suggest that the performance of an EKF depends heavily on the coordinate
system used to formulate the filter. In order to aid in the selection of a suitable co-
ordinate system, Weiss and Moore [9]] provide a “stability measure” test based on a
bound on the decay rate of a Lyapunov function. According to this test, the larger
the value of the “stability measure” uy in Equation [[1] the more stable the system
will be over the range of state estimates. Here, R is the noise covariance matrix for
the measurements.

s =h"R~"h— [Hyx —h]" R~ [Hyx — h] (11
Jh
where Hj = (x)
oxT xox;

Applying this stability measure to both the cartesian and spherical systems by sub-
stituting the corresponding measurement equations from[8land[IQlinto Equation[I1]
we obtain the following measures for each system, shown in equations[12]and [13

H =0 (12)
2 92
s _ (B’ TRflhs _ ¢ 1
uy = (%) Ry Ro (13)
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Since u; > 0 for any real value of h®, the stability measure test proposes that the
spherical coordinate formulation is a better candidate for an EKF than its cartesian
counterpart. Note that this is not in any way a guarantee of stability of the EKF. It
is only an indicator that in the linear case, or when the filter is operating near the
linearization set-point, the rate of decay of “energy” in the system for the spherical
filter formulation would be positive and larger than the cartesian one. Therefore, this
supports the results of the simulations that are presented in the next Section.

5 Navigation Filter Simulations

A Simulink® simulation was prepared where both the Cartesian and the Spherical
filters were used to estimate a trajectory propagated using the Hill equations. The
simulation model is shown in Figure3l

Numerical Propagation | y .
Bearings Sensor | Y

ol Vode i ™

Hill Equations Spherical
Navigation Filter .
> > x
—> . — X

Cartesian
Navigation Filter .
Maneuvers => X

m

Fig. 3 Simulation Block Diagram for Navigation Filters Comparison

The parameters and tunings used to initialize the simulations of the navigation
filters are summarized in Table 2l It is important to note that the same tunings and
initialization parameters were used for both filters by converting the cartesian quan-
tities into spherical ones, as explained in the Appendix.

5.1 Observability of the Bearings-Only Problem

The problem of estimating position and velocity from only angle measurements
is known to have reduced observability depending on the relative motion between
the satellites [[10]]. In addition, the range along the LOS direction is known to be not
observable in the bearings-only problem, unless a maneuver is executed in a suitable
direction [10].

In order to illustrate this point as well as to validate the functionality of the fil-
ters, a ‘noiseless’ simulation was performed. All sensor noises and un-modelled
disturbances in Table [2| were set to zero. The reference trajectory was gener-
ated by propagating the following initial condition for the position and velocity
Xo = [xyzxyz]" =[10000510.20.1 —2]". As it can be seen on Figure @ and [5]
both filters can track the reference trajectory fairly well.
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Table 2 Filter Comparison Simulation Parameters

Parameter Description Simulator Value Units
Environment

Orbital Period (T') 90 min 54000 [s]
Fly-around IC (x§) [xyziyz] [10000 5100 -2] [m & m/s]
Unmodelled Acceleration 100m/rev 30 ([100/T2 100/T2 100/T2]/3)? [m/s]
Time Step (7) 10 sec 10 [s]
Sensor

Measurement Noise 1 mrad/axis 30 ([1e-3 1&:—3]/3)2 [rad]
Measurement Bias None [0 0] [rad]
Filters

Spread of Initial Errors StDev 1o [300 30 300 0.03 0.3 0.3]/3 [m & m/s]
Initial Covariance 300m, 0.3 m/s 36 diag(([300 300 300 0.3 0.3 0.3]/3)*) [m & m/s]
Sensor Noise Covariance 1 mrad/axis 30 diag(([1e~3 1e731/3)?) [rad]
Plant Noise Covariance 100 m/rev 30 diag(([0 00 100 100 1001/3T)?)/T; [m & m/s]
Orbital Rate (@) 2n/T 0.0012 [rad/s]
Time Step (T) 10 sec 10 [s]

The filter covariance is also shown in Figure [l for some points along the trajec-
tory. These ellipses, which are the filter’s estimate of its own errors, correspond to
the 30 values from the error covariance matrices, scaled by a factor of 3 for easy
visualization. The covariances are very similar for both filters since they employ the
same tunning of their Plant and Sensor noise covariance matrices. Finally, it can be
seen that the uncertainty is always greater in the LOS direction to the target at [0,0],
as there is no observability in this direction when no maneuvers are performed.

5.2 Filter Comparison Monte Carlo

One hundred Monte Carlo Simulations were run in order to test the performance of
the filters over a range of different initialization errors employing noisy measure-
ments and subject to disturbances in the reference trajectory. In order to provide a
high dynamic relative motion that aids filter convergence, the relative initial condi-
tions were chosen to yield a ‘football’ or ‘fly-around’ periodic trajectory. Table Plin
section [3l summarizes all the parameters used to initialize the Monte Carlo.

In addition, a maneuver was performed mid way through the simulation in or-
der to show how the filters gain observability in the range direction. This im-
pulsive maneuver was executed after two orbits via an acceleration pulse a,,,, =
[00.005 — O.OOS]T lasting 10 seconds, resulting in a total delta-V of 0.1 m/s in the
y and —z directions. Figure[@]shows the resulting trajectory estimates by both filters,
along with the reference trajectories for each of the Monte Carlo simulations. Note
the trajectory change due to the maneuver after two orbits.
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Fig. 4 Filter Comparison Trajectory

Statistical dispersions were computed from the trajectory errors of each simu-
lation in order to evaluate the 16 performance of each filter. These are shown in
Figure[7lalong with their percentage of the range to the target. This last measure is
very useful in spacecraft rendezvous since, as a rule of thumb, a relative position
estimate of around 1% of the range is required to achieve impulsive rendezvous [2]].

Finally, the run-time of each filter was analyzed during the Monte Carlo simula-
tions. On a 1.8 GHz computer, the cartesian filter demanded on average 8.3 x 10~#
seconds per call (propagation + update), while the spherical one demanded 9.1 x
10~* seconds per call. That is only about a 10% increase in average CPU run time
for the spherical filter.
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Fig. 5 Filter Comparison Velocities

5.3 Filter Comparison Results

The Monte Carlo analysis shows that for the reference trajectory chosen, the spheri-
cal filter statistically outperforms the cartesian one. This can be seen in the resulting
navigation dispersions shown in Figure [7l Note that both solutions slowly diverge
due to the inherent reduced observability of the bearings-only navigation problem.
However, when a maneuver is performed in a suitable direction [[10], it provides the
necessary observability to reduce the estimated error in the LOS direction. Both fil-
ters take advantage of this and reduce their total estimation uncertainties when the
maneuver is performed.

In any case, the spherical filter tracks the reference trajectory with superiority
when no maneuvers are performed, diverging at a much slower rate. Conceptually,
this is due to the fact that in contrast to the cartesian filter, the spherical filter sep-
arates the observable (angles) and un-observable (range) states. Essentially, it only
needs to estimate the range and range-rate, as the other four states are directly the
measurements and their derivatives. On the other hand, the cartesian filter needs
to estimate all six states (position and velocities) from measurements that are non-
linearly related to its states, resulting in lower performance. Mathematically, this is
readily explained by noting where the filters employ key linearizations of the un-
derlying equations. The Extended Kalman filter relies on a linearization of the mea-
surement equation in order to calculate the Kalman Gain that is used to apply the
measurement update. In contrast to the spherical filter where this equation is already
linear, the measurement equation in the cartesian filter is highly non-linear (Refer
to Equations[@and [TQ)). Thus, the linearization required in the cartesian filter results
in a slightly less accurate measurement update. In addition, the linearized measure-
ment equation is also used in the update of the filter covariance matrix, introducing
further inaccuracies. Therefore, even though both filters rely on a linearized state
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Fig. 6 Monte Carlo Trajectories

transition matrix to propagate their covariance matrix, the cartesian filter also re-
lies on a linearized measurement equation. This introduces additional inaccuracies
compared to the the spherical filter, where the measurement equation is already lin-
ear. Hence, decoupling the observable and un-observable states results in a simple
measurement equation which reduces the linearization inaccuracies in the filter.

Several other simulations on top of the Monte-Carlo analysis were performed
during the characterization of the spherical filter implementation, which are not
shown here due to space constraints. Nevertheless, the general observation was that
the Spherical filter implementation was found to be more robust than the Cartesian
one in terms of changes to its tunning parameters as well as changes to the measure-
ment update frequency.
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Finally, as mentioned in section the increase in performance from the spher-
ical filter only comes with a small increase of about a 10% in CPU run-time.

6 Conclusions
In this paper, the linearized equations of relative orbital motion were derived in

spherical coordinates and a new in-orbit bearings-only navigation filter was imple-
mented using these equations.
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This work shows that a spherical coordinate based filter can perform better for
the bearings-only in-orbit navigation problem than a traditional Cartesian imple-
mentation. A more in depth characterization of the robustness of the spherical filter
implementation with respect to different measurement errors, update frequencies
and and filter tunings is required. Nevertheless, these results show the potential ad-
vantages in performance and robustness that can result from the use of a coordinate
system parameterization that acquires the measurements as its own states. This re-
sults in simple measurement equations, essentially shifting the non-linearities inside
the EKF from the measurement update, where linearizations are heavily relied upon,
to the propagation, where the full state equations can be partly employed. This was
shown in the construction of the spherical filter.

Even though this filter implementation implies more development effort due to
the complex and longer equations required to model the relative motion dynamics,
there is little additional on-line computational effort required to perform the actual
trajectory estimation. This makes the spherical filter a very interesting robust alter-
native for an on-board implementation.
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Appendix
In-Orbit Relative Motion Background

A generic derivation of the in-orbit relative motion equations is presented here. A
more detailed derivation, but focused on the Cartesian coordinate parametrization
of the equations, can be found in [2]] and [11]].

Relative Motion in the Inertial Frame

Consider the general scenario of two point mass spacecraft subject to the effects of
a central Spherical gravity field and other external accelerations. Their geometry is
defined in Figure[§] where the spacecraft are denominated as a Target and a Chaser
with position vectors r; and r. respectively. In inertial space, the relative acceleration
is directly the second time derivative of the relative position vector .

The motion of each of these spacecraft can be described by Newton’s Second Law
F; = m¥;, where F; must include all external forces for each vehicle. Considering
only the influence of a central gravity force given by Newton’s law of Gravitation
as well as control thrust accelerations from the chaser vehicle a.; = F.\ /m,, the
linearized differential equation for relative motion in the inertial frame is:
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Fig. 8 Definition of the

24
chaser, target and relative A
position vectors in the iner- S
tial frame et

po e (14)
dl‘,’ ri=r;

where the jacobian of fg (r;) comes from the linearization by Taylor expansion of
the gravitational force of the chaser around the target location, which expressed with
respect to a generic vector r; = [x; y; zi]T is as follows:

2
3x; 1 v 3xiz

2 2 2
df ( ) i 2ri Ti
g T — Ju“ 3)63)1,' 3}2’,‘ -1 3y§zi (15)
dr; ri3 T T Ji
3%z 3vizi 3% 1
7 7 7
where r; = \/x? +y? + 72

Relative Motion in the Local Orbital Frame

The Local Orbital Frame (F°), fixed to the orbital motion of the target spacecraft,
is centered at the target position r; and rotates with respect to the inertial frame at
a rate @ equal to the instantaneous orbital rate of the target, as depicted in Figure
Here, the z-axis always points towards the center of the orbit; the y-axis is in the
opposite direction of the angular momentum and the x-axis completes the triad.

Fig. 9 Definition of the
local orbital frame (Slo)
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In order to obtain the equations of relative motion in the §° frame, Equation 4]
can be expressed in this frame by using the second derivative of the relative position
vector r in the rotating frame:

dfg (1‘,‘)

o420 x i+ o xr+ox oxr’— rl? =al° (16)

ext
dl‘, r; :rgo

In addition, from the definition of the ' frame, the following assumptions apply to
Equation

0 0
-l o0 |, o=|-0|, h=rfo ad k=H" (17
—Iy 0 h2

where the constant % is the orbital momentum for the planar orbital motion of the
target spacecraft and the constant & is defined as done in [[I1] in order to remove the
orbital radius r; from the equations.

The Hill Equations

The Hill equations, shown below, can be obtained by substituting into Equation [T6]
the assumptions related to a cartesian position vector r = [x y z]7 along with the
assumptions for circular orbits described in Section 21

i=a+20z (18)
j=a,—a’y (19)
F=3z0°—2%0+a; (20)

Definition of the Spherical Coordinates

In the §° frame, we can define the relative position vector in terms of the Spherical
coordinates r, 8 and ¢ as shown in Figure[T0l

Fig. 10 Definition of the
Relative Position Vector n
in terms of the Spherical

Coordinates in the §*° frame
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The relative position vector in terms of these Spherical coordinates is:

X rcyCo
= |y| = |repse (1)
Z IS¢

where ¢; = cos(i) and s; = sin(i) for i = ¢ or 6 is used to simplify the notation.
It is also useful to express the external accelerations a’%, in terms of the spherical

. lo __ T
variables al, = larag ag)

CoCH  CpSe ¢
ai‘;,:CscTai‘;h where Cse=| —s¢9 c¢cg O (22)
—CpSp —S¢pSe Cop

Coordinate Transformations

In order to compare the Spherical coordinate results with the Cartesian ones, the
following coordinate transformations were defined. These were used to compute the
equivalent initial conditions in Spherical coordinates as well as to translate the re-
sulting trajectories to Cartesian coordinates. Each position-velocity vector expressed
in Cartesian x{ or Spherical coordinates x!, can be transformed back and forth be-
tween the coordinate systems by using the relationships in Equations 23] and P4l
These relations were obtained from the geometric definitions of Figure [10 as well
as their time derivatives.

rcyCo
CySe
I’Sq)
Fepco — r9c¢se — ¢3r09s¢
rcysg — (brsq)se + récq)ce
sy + Qreg

(23)

IS S A A

Va2 4y 22
arctan(?)
arcsin <z/ VX242 + z2)
_ xx+yy+zz
=F(xj) = VAP 422 (24)
xXy—Xxy
x24y?

b4 27)‘:zx+z'y27y'zy

5 3
_ .z 21324 -2)2
i \/1 24242 (x +y“+z ) |

Note that the singularity arising when x and y are zero in the calculation of 6 and
0 can be resolved by using the aran2 function. The velocities 7, 6 and ¢ are then
solved for using the expressions in Equation[23

S . NS D
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The covariance matrices can be transformed back and forth between the coordi-
nate systems via a similarity transformation [12]]. For example, to convert a Carte-
sian covariance matrix P§ into a spherical one P7, the transformation is as follows:

dF.(x9)

Pi =M, PiM!.  where M, = e

€ —xC
X —Xi

where the matrix M, is the Jacobian of the transformation function Fs. in Equa-
tion 24] with respect to the cartesian coordinates X = [xy z Xy Z], evaluated at the
corresponding position-velocity point x{ where the covariance matrix is sampled.
The inverse transformation is constructed in a similar way, using the transformation
function F, in Equation 23]

Finally, the accelerations can be transformed back and forth betwen the cartesian
lax ay a;] and spherical [ar ag a¢] representations via the simple rotation matrix
defined in Equation 22
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A New Substitution Based Recursive B-Splines
Method for Aerodynamic Model Identification

Liguo Sun, Coen de Visser, and Qiping Chu

Abstract. A new substitution based (SB) recursive identification method, using mul-
tivariate simplex B-splines (MVSBs), has been developed for the purpose of reduc-
ing the computational time in updating the spline B-coefficients. Once the struc-
ture selected, the recursive identification problem using the MVSBs turns to be a
constrained recursive identification problem. In the proposed approach, the con-
strained identification problem is converted into an unconstrained problem through
a transformation using the orthonormal bases of the kernel space associated with
the constraint equations. The main advantage of this algorithm is that the required
computational time is greatly reduced due to the fact that the scale of the identi-
fication problem, as well as the scale of the global covariance matrix, is reduced
by the transformation. For validation purpose, the SB-RMVSBs algorithm has been
applied to approximate a wind tunnel data set of the F-16 fighter aircraft. Compared
with the batch MVSBs method and the equality constrained recursive least squares
(ECRLS) MVSBs method, the computational load of the proposed SB-RMVSBs
method is much lower than that of the batch type method while it is comparable to
that of the ECRLS-MVSBs method. Moreover, the higher the continuity order is,
the less computational time the SB-RMVSBs method requires compared with the
ECRLS-MVSBs method.

1 Introduction

The control performance of a model-based automatic control system, like for ex-
ample the adaptive nonlinear dynamic inversion (ANDI) flight control system [4, 7]
and the module based adaptive backstepping flight control system [7]], heavily re-
lies on the accuracy of the object model that is identified in real-time. Recently, de
Visser et al. [[L1]] proposed a novel batch type identification method using multivari-
ate simplex B-splines. Comparing with the ordinary polynomial basis (OPB) based

Liguo Sun - Coen de Visser - Qiping Chu
Delft University of Technology, Delft, The Netherlands, 2600GB
e-mail: {L.sun, c.c.devisser,g.p.chu}@tudelft.nl
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method, this simplex spline basis (SSB) based method can provide a relatively more
stable basis and enjoys a higher approximation power owing to the fact that mul-
tiple local modules are identified instead of identifying a single overall model[10].
Another main merit of the multivariate simplex B-splines (MVSBs) is that they are
capable of using the scattered dataset as training data. This is a property that the
multivariate sensor product splines method does not have [[11].

Later, de Visser and Chu et al. [12] developed an equality constrained recur-
sive least squares (ECRLS) based MVSBs identification method after combining
the linear regression formulation of the spline bases from with the recursive
least squares identification method from [[13]. The recursive identification method
presented in [13] can convert a constrained identification problem into a free-of-
constraint identification problem . In this recursive identification method, the con-
strained recursive identification process is circumvented by merely injecting the
equality constraint information into the general least square solution calculated us-
ing an initial training data collection.

However, in order to enable the real-time aerodynamic model identification, it is
still necessary to reduce the computational load of the recursive MVSBs method.
This paper is aimed at providing a more effective recursive identification method
than the ECRLS-MVSBs method developed in [12]. The new method should enjoy
amuch lower computational load than the batch MV SBs, and have a lower computa-
tional load than the ECRLS-MVSBs method. In this paper, a new substitution based
multivariate simplex B-splines (SB-MVSBs) method is developed. The kernel-space
bases based transformation can greatly cut down the computational time required by
the SB-MVSBs method.

This paper is structured as follows. The preliminaries on the multivariate sim-
plex B-splines are introduced in section 2. The SB-MVSBs method is developed
in section 3. In section 4, the proposed SB-RMVSBs method is applied to a wind
tunnel data set of the F-16 fighter aircraft, and the selection of the spline function
structure is investigated. Subsequently, the proposed method is compared with both
the batch method and the ECRLS-MVSBs method in section 5. Finally, this paper
is concluded by section 6.

2 Preliminaries on Multivariate Simplex B-Splines
The basic principles for simplex splines are briefly introduced in this section. With-
out this introduction, the formulation of the SB-MVSBs method will be incomplete.

2.1 Simplex and Barycentric Coordinates

Let ¢ be an n-simplex formed by the convex hull of its n 4+ 1 non-degenerate ver-
tices (vo,V1,-..,vu) C R™. The normalized barycentric coordinates of some evalua-
tion point x € R" with respect to simplex ¢ are defined as

b(x) := (bo,b1,....b,) E R xcR" (1)
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which follows from the following implicit relation:
n n
XZZbivi, Zb,‘ZI (2)
i=0 i=0

2.2 Triangulations of Simplices

The approximation power of the multivariate simplex spline is partly determined by
the structure of the triangulation. A triangulation .7 is a special partitioning of a
domain into a set of J non-overlapping simplices:

J
T =Jn,unt;e{@,i} Vi,1,€ T 3)

i=1

with the edge simplex 7 a k-simplex with 0 <k< n — 1. High quality triangulations
can be obtained using constrained Delaunay triangulation (CDT) methods, such as
the 2-dimensional CDT method presented by Shewchuk [8]].

2.3 Basis Functions of the Simplex B-splines

According to [3] and [[IT], the Bernstein basis polynomial BZ (b(x)) of degree d in
terms of the barycentric coordinates b(x) = (bg,by,...,b,) from Eq. @) is defined

as:
d! Ko 7 K -
Bd(b(X)) = Ko!K1!-~-xn!b00b11"'b,'f X et
: 0 X &t

where k = (Ko, K1, ..., K,) € N**! is a multi-index with the following properties:
K!'= Ko!k)!...K,! and |K| = Ko + K] + ... + K. In Eq. @) we use the notation b* =
by’by"...bk". Given that || = d, the total number of valid permutations of the multi-
index K is:

“)

d+n)!
nld!
In [2], it was proved that any polynomial p (b) of degree d on a simplex ¢ can

therefore be written as a linear combination of d basis polynomials in what is known
as the B-form as follows:

=t (5)

P (b(x) := {gwcwﬁ(b(x)) xes o

with ¢! the B-coefficients which uniquely determines p’(b(x)), where the super-
script ’¢” indicates that p is defined on the simplex ’#’. The total number of basis
function terms is equal to d, which is the total number of valid permutations of k.
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2.4 Vector Formulations of the B-Form

As introduced in [12], the vector formulation, according to Eq. (@), for a B-form
polynomial p(b(x)) in barycentric R"*! has the following expression:

P(x) = {g?(b(X)) ¢ z ;; 7 (7)

with b(x) the barycentric coordinates of the Cartesian x. The row vector B¢ (h(x))
in Eq. @ is constructed from individual basis polynomials which are sorted
lexicographically[12].

The simplex B-spline function s/ (b(x)) of degree d and continuity order m, de-
fined on a triangulation consisting of J simplices, is defined as follows:

s (x) =B (b(x))-¢ €R, ©)

with BY(b(x)) the global vector of basis polynomials which has the following full
expression:

BY (b(x)) = B, (b(x)) B (b(x)) - B (b(x))] € RV ©)

Note that according to Eq. () we have BZ, (b(x)) = 0 for all evaluation locations

x that are located outside of the triangle ¢;. This results in that B? is a sparse row
vector.
The global vector of B-coefficients ¢ in Eq. (§) has the following formulation:

T A
c:—= [CMT P c RJdx1 (10)

with each ¢/ a per-simplex vector of lexicographically sorted B-coefficients.
For a single observation on y we have:

f=BYb(x))c+e (11)

with € the residue. Then, for all the N observations, we have the following well-
known formulation:

f=X(b(x))e+ & € RV¥! (12)

with X(b(x)) € RV d 4 collection matrix of the row vector BY from Eq. @, and
£ =g, &,...ex)" the residue vector. For writing convenience, X (b(x)) will be writ-
ten as X in the remainder of this paper.
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2.5 Global Continuity Constraints

The formulation for the continuity conditions from [1]] and [3]] is used:

fi
C
(

ti m
KOsy Kn—1,m) 2 c(/Ko,...,Kn,1,0)+’yBy (V)’ O<m<r (13)

[v|=m

with v the Bernstein coordinates of the vertex which only belongs to the i/ simplex,
Y= (y,7,-., %) a multi-index independent of «, | (ko,..., K,—1,m) + 7| =d. t;, t;
denote the i-th and j-th simplices separately.

Eventually, the following equality constraints should be maintained during the
calculation of the global B-coefficient vector c:

Hc¢=0 (14)

with H € R(E R)x(J-d) the smoothness matrix [11]], R is the number of continuity
conditions per edge. E is the number of edges in the specified triangulation. If all the
simplices’ surfaces connect smoothly on the edges within the whole triangulation,
we call the simplex splines globally continuous. Global continuity is determined by

Eq. (13) and Eq. (14).

2.6 Spline Function Space and a Polynomial Function Space
In this paper, we use a new type of definition of polynomial function space:
Py(n) :={px(x) : pr|x € P, Vx € R" and Yk < d} (15)

with x the input vector, Py the space of polynomials of degree k.
We use the following definition of the spline space, which is a modified form of
the definition given by Lai et al. in [3]:

Si(n) ={s7 (x) e C": s} |x € Py, Vx € R"} (16)

with P; the space of polynomials of degree d, and n the dimension of function
inputs.

Note that, the former represents the ordinary polynomial function bases with the
order up to d. For example, if we select x = [x, y|”, then Py (2) := ¢| + cox+ ¢4y +
c3x2 4 cexy + csy* with x and y two elements of x.

3 Transformation Based Recursive Identification Method
The kernel space information of the equality constraint matrix H, formulated in

Eq. (I4), has been utilized to transform the constrained recursive identification
problem into a free-of-constraint recursive identification problem.
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3.1 Transformation of Constraints

Once the triangulation and the spline function structure are chosen, the equality
constraints have the property that they are time invariant and known a priori. In this
case, a straightforward substitution method can be applied to remove the constraints
in each recursion step.
Following from Eq. (8), the original constrained recursive identification problem
has the following expression:
f=B-c+e (17)

st.H-¢c=0 (18)

Assume that the singular value decomposition (SVD) result of H is as follows:

H,.n = Voen |:02r><r 0 0r><(m7r) :| U;nrxm (19)
(n—r)xr Y(n—r)x(m—r)

where Y = diag (6] y e O'r) is the diagonal vector of all singular values , o7 >
.- >0,>0 and ristherank of H. V=1V, Vz] is an n;, order orthogonal
matrix, V; is an n by r matrix. U = [Ul UQH is a myj,-order orthogonal matrix,
U, is an m by r matrix. Because ¢ € null (H), one feasible general solution for the
homogeneous equation Eq. (I8) is:

c=Uyy (20)

where the column vectors of U, form an orthonormal basis of null (H) Bl.yisa
column vector which needs to be calculated (identified) later, and its length is m — r.
The feasibility of the above mentioned conversion will be proved later in theorem 1.
By introducing this general solution into Eq. (I7), we get the following forma-

tion:
f=BUy+e (21)

with Uy a basis for null (H). Since Eq. (ZI)) only represents an unconstrained iden-
tification problem, a regular recursive least squares identification method becomes
capable to solve it. In order to obtain the final unknown parameters (B-coefficients),
we only need to substitute the identified vector y into Eq. (20). The computational
flow chart is concluded as follows.

Algorithm 1

step.1 determine the triangulation .7, calculate the smoothness matrix H, and carry
out the SVD according to Eq. (T9) to get U,.

step.2 calculate the spline basis vector according to Eq. (9).

step.3 identify the unknown vector y contained by Eq. (ZI) using regular recursive
least squares method.

step.4 reconstruct the B-coefficient vector ¢ from the vector y using Eq. 20). Re-
turn to step.2 if a new data is available.
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Theorem 1: Optimal Approximation
Given y the unique and optimal least square estimation vector of problem Eq. (1)),
¢ = U,y is the optimal least squares solution of the constrained problem Eq. (I7).

Proof
Given U, derived from Eq. (IT9), columns of matrix U, constitute orthonormal bases
for the kernel space of H. Therefore, we have HU; = 0. Hence, we can get HU, -
y = 0. Because ¢ = U,y as shown in Eq. 20), we can get H- ¢ = 0. The equality
constraints H - ¢ = 0 are satisfied during parameter estimation.

Because Eq. (T7) and Eq. (2I) hold, we have

f—X.c=£&=Ff—XUy (22)

We define the cost function of the least square problem as C(¢) = min&” &, where
c

¢ is the vector to estimate. As y is the optimal and unique least square solution of
problem 21l we assume that it leads to a minimum residual vector &, so the mini-
mum cost function value can be written as C (y) = & dT &4. Because the two problems
described by Eq. (I7) Eq. (I8) and Eq. (ZI) are identical systems in view of the
output approximation, we can get the following result: C (¢) = C(y) = &, from

Eq. @2). O

3.2 Remarks

Note that, according to Eq. (2, the proposed recursive identification method has
cut down the scale of the original identification problem by multiplying the regres-
sion data matrix by U, from the right hand side.

There exist some similarities between the SB-MVSBs method and the orthogo-
nal least squares based identification method presented in [9]. In theory, the singular
value decomposition allows to reduce the structure of the aerodynamic model. By
keeping all (non-zero) singular values, the SB-MVSBs method has removed the de-
pendent columns in the data matrix. However, it is not reasonable to cut out the
smallest singular values and further reduce the scale of the model because the con-
straints are originally added to the unknown parameters rather than to the regression
data matrix.

4 Validation Using Wind Tunnel Data of the F-16 Fighter
Aircraft

4.1 F-16 Aerodynamic Model Structure

According to the F-16 aerodynamic wind tunnel data presented in [6], the following
structure is a good option for X-direction aerodynamic force (moment) coefficient:
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Fx (a,ﬁﬁe,&ef, ?f)zfl (a’ﬁ’6€)+f2 (O(,ﬁ) ’ 6[€f

g g (23)
a)- o) -9
+f3 () v + fa () v Oef

Note that the engine thrust is assumed to be constant and its related term is removed
from Eq. 23). According to Eq. 23), once the ¢, V and &, are fixed, we can
derive the following linear regression formulation for a three dimensional MVSBs
function.

S(x)=B-c¢ (24)

where B is the B-form spline vector calculated using Eq. (9).

According to de Visser [13]], the global continuity matrix H for the three dimen-
sional MV SBs function should be calculated using Eq. (13)).

In the simulation, an aerodynamic model of the F-16 aircraft was identified us-
ing simulated flight test data generated with a nonlinear F-16 simulator based on a
NASA wind tunnel dataset [6]]. The training inputs of the simulated flight test dataset
were obtained by generating 20,000 uniformly distributed inputs within their own
valid regions. The inputs of the test dataset containing 4331 points are produced
by the grids determined by o and 3. The system output were calculated through
the high resolution interpolation from the wind tunnel data provided by [6] with
Oef = 1°,V =600 f1/s,q = 0.1rad /s, ¢ = 11.32m. Moreover, the model outputs
of the aerodynamic model is contaminated artificially by adding a white noise with
a magnitude of 1% (relative to its maximum and minimum value).

4.2 Cross Validation Results in Determining the Structure

In the numerical simulation, we have chosen the MV SBs function to have only one
three dimensional sub-function. The notation S’ (n) from Sec. 2has been used, and
the overall spline function becomes the following expression:

S(x) = 87 (n), where n = 3, while d, m are kept undetermined. The partitioning
vector of & is [—20 10 40]. The partitioning vector of  is [—25 25]. The partition-
ing vector of &, is [—20 20]. In order to enhance the approximation ability of this
algorithm, all the inputs are normalized into the closed range of [0 1]. In order to
select a suitable structure for the spline model of C,, (i.e. the nondimensional pitch
moment coefficient), the effects of the structural parameters (i.e. d and m) will be
investigated. To demonstrate the approximation power of the SB-MVSBs method,
we compared it with the batch MVSBs method.

Fig.[[lshows the root mean squared errors (RMSE) of the fitting outputs (C,,) us-
ing the ordinary polynomial basis (OPB) based recursive least squares identification
method.

Fig. and Fig. show the RMSE of the training data set using the batch
MVSBs method and the proposed SB-MVSBs method respectively. Comparing
these two figures, it has been found that the SB-MVSBs method enjoys the same
level of approximation power as that of the batch MVSBs.



A New Substitution Based Recursive B-Splines Method

polynomial function P (3)
1.4
—O— trais
O test
—L.5
——1.6
=
£
&£-17
=]
&
S
~-18
1.9
-2
1 2 3 4 5 6

Fig. 1 Different selection of d for Py(3), Cin

batch training of S'd" (3) substitution training of S:;’ (3)

Py(3)
—&—51(3)
%}Sg(})

#Sg(s)

3 1 2 3 4 5
d

d
(a) batch MVSBs training. (b) SB-MVSBs training.

Fig. 2 Different combination of m and d for §7'(3), 712, Ciy

batch test of Sg’ (3) substitution test of Sg’ (3)

—1.5
Pa3)
——5,1(3)
—O— 58(3)

(a) batch MVSBs test.

(b) SB-MVSBs test.

Fig. 3 Different combination of m and d for % (3), 12, C

Fig. and Fig. show the RMSE of the testing data set based on the B-
coefficients identified using the batch MVSBs method and the SB-MVSBs method
respectively. As can be seen from these two figures, the approximation power of
the batch MVSBs method and the SB-MVSBs method are very close. Moreover,
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compared with the results shown in Fig.[I] Fig.Blindicate that both the batch MVSBs
method and the SB-MVSBs method enjoy a higher approximation power than the
OPB based recursive identification method.

5 Comparison with the ECRLS-MVSBs and the Batch MVSBs

5.1 Computational Complexity

The computational complexity of the substitution based MVSBs (SB-MVSBs)
method is split into two parts. Firstly, according to Eq. (1), the multiplication
between the B vector and the U, matrix needs m - (m—r) with r the rank of
the continuity matrix, and m the length of the B-coefficient vector ¢. Similar to
the ECRLS method, the computational complexity for the pure regression pro-

cess using the recursive least squares is & (3 (m— r)z). By summing them up, we

can get the total computational complexity of the SB-MVSBs method: C (m,r) =
(m —r)- (4m — 3r) = 31> — Tmr +4m?. The computational complexity in time of the
batch MVSBs method, the ECRLS-MVSBs method and the SB-MVSBs method are
tabulated in Table[Tl

Given m, function C (m, r) monotonously increases as r < m. Therefore the mini-

mum computational complexity of the SB-MVSBs method is 4m> when r = 0, while

its highest limit is 0. Tn addition, C(m, r) = 32 holds when r = (")

Table 1 Computational Complexity (CC) in time

Methods batch MVSBs ECRLS-MVSBs SB-MVSBs
CcC o (m?) 0 (3m?) (m—r)-(4m—73r)

5.2 Computational Time Comparison with the ECRLS-MVSBs

In order to reveal the influence of the continuity order m on the computational com-
plexity in time, a numerical experiment is performed with different selection for
the continuity order m. In the remainder of this paper, we will always choose the
MVSBs function to have only one three dimensional sub-function in all of the

Table 2 Computational time for 20k data of Cy,, 712, B-coefficient number 1008, Sg’ (3)

condition S5'3) 23 si3) S2(3) Si3) S¢(3)
ECRLS 104.5092 105.5291 105.0324 106.2780 106.2854 106.6970
SB-MVSBs(operated) 101.7709 33.2808 13.4270 5.3797 42410  3.7263
SB-MVSBs(normal) 139.4835 67.7009 24.0644 7.9068 6.0565  5.6464
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numerical experiments. The simulation results are listed in Table 2l In Table
"operated’ means that the BU, multiplication shown in Eq. 21)) is executed in ad-
vance in a batch manner. According to Table 2] the SB-MVSBs method require
less computational time than the ECRLS-MVSBs method, and this advantage will
become more apparent with the increase of the continuity order m.

5.3 Evaluation Results on the Approximation Power

The OPB based recursive identification method, the batch MVSBs method and the
SB-MVSBs recursive identification method are utilized to fit the same training data
set of C, respectively. The models identified using these three different methods re-
spectively are validated using the testing data that are located on the mesh grids. The
validation surfaces of C are shown in Fig.[d Apparently, the SB-MVSBs method
enjoys an equal fitting accuracy to that of the batch MVSBs method while having a
higher approximation power than the OPB based recursive identification method.

The OPB based recursive identification method, the batch MVSBs and the SB-
MVSBs recursive identification methods are utilized to fit the same training data
set of C,,. The models identified using three different methods are validated using
the same testing data set as that mentioned previously. The validation surfaces of
C,, are plotted in Fig. 5l We can get a similar conclusion as that drawn from last
experiment that the SB-MVSBs method has the same fitting power as the batch
MVSBs method while having a higher approximation power than the OPB based
recursive identification method.

vind tunnel data surface, C, validation surface, C,, batch splines, S3(3)

(a) Original wind tunnel data surface. (b) batch spline function surface.

validation surface, C,, substitution splines, s:(a] validation surface, C,, polynomial function P, (3)

(c) substitution spline function surface. (d) Polynomial fitting surface.

Fig. 4 Validation surface of Cy (8, = 2°), T2
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Wind tunnel data surface, C, validation surface ,C, . batch splines, S3(3)

(a) Original wind tunnel data surface. (b) batch spline function surface.

validation surface ,C,, substitution splines, S3(3) validation surface, C, . polynomial function Pg(3)

20 30,

(c) substitution spline function surface. (d) Polynomial fitting surface.

Fig. 5 Validation surface of Cy, (6, =2°), J12

6 Conclusions

A new substitution based recursive MVSBs method is proposed for the online
aerodynamic model identification. In view of the equality constraints contained
by the MVSBs, a SVD based transformation is empoyed to convert an originally
constrained recursive identification problem into a free-of-constraint identification
problem. The proposed recursive model identification method namely SB-MVSBs
method was applied to approximate a series of two wind tunnel data sets of F-
16 aircraft, and were compared with the batch MVSBs method and the ECRLS-
MVSBs method. The numerical simulation results show that the proposed SB-
MVSBs method requires less computational time than the batch MVSBs method
and the ECRLS-MVSBs method. In addition, the computational time required by
the SB-MVSBs decreases with the increase of the continuity order m. The reduction
of the computational time is caused by the fact that the kernel space bases based
transformation has cut down the scale of the original spline basis based model.
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Spacecraft Fault Detection and Isolation System
Design Using Decentralized Analytical
Redundancy

Saurabh Indra and Louise Travé-Massuyes

Abstract. Fault detection and isolation (FDI) functionality constitutes a critical ele-
ment of spacecraft fault protection system capabilities. The FDI schemes currently
implemented on board operational spacecraft suffer from a lack of systematic design
methods. This leads to issues of decreased robustness. While model based diagno-
sis techniques can resolve a number of these issues, their operational applicability
to spacecraft has been limited, largely due to an unfavourable net value proposi-
tion. This paper presents an approach integrating analytical redundancy based di-
agnosis into a conventional spacecraft FPS architecture. The approach centers on a
novel decentralized diagnosis architecture based on analytical redundancy relations.
A systematic procedure for designing such decentralized model based diagnosers
for spacecraft is discussed, with a focus on the attitude and orbit control system.
Analytical redundancy relation based error monitors and activation rules relying on
the corresponding fault signatures are derived during the design phase. A compari-
son with the diagnosis functionality as currently implemented in the Cassini attitude
and articulation control system fault protection is presented in terms of the design &
development effort. It is demonstrated that the presented diagnoser design approach
addresses several issues with the conventional methods, while having reasonable
additional costs

1 Introduction

The space missions of the future envisage autonomous spacecraft operation in chal-
lenging environments. Robust and capable fault protection is an enabling technology
for such missions. Fault protection is a mix of hardware and software mechanisms
aiming to increase the robustness of space systems. The elements of a fault protec-
tion system which detect and (possibly) isolate faults constitute the diagnoser.
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Traditionally, fault diagnosis onboard spacecraft has relied on rule based tech-
niques. Most of the fault monitors utilized rely on simple mappings from observed
symptoms to probable diagnosis, with other techniques being used on a case to case
basis. Certain key variables of the system are monitored, and a fault is signalled
when the variable is out of the expected nominal range. Activation rules respond to
subsets of the error monitor outputs and diagnose the cause of anomalous behaviour
at the component or functional level. This reliance on symptoms instead of an under-
lying model of behavior leads to opacity of structure and behavior. The possibility
of different symptoms triggered by the same underlying fault, different priorities
among faults, mission modes and other system wide considerations have to be taken
into account. Such considerations lead to a patchwork of monitors, activation rules
and the parameter sets associated with them.

With increasing ambitions for space missions and the associated rise in space
system complexity, scaling up such rule based diagnosers is proving difficult. The
core issue is the lack of transparency in requirements, design, structure and resulting
behavior as discussed by Rasmussen [1]].

In contrast to rule based methods, the basic principle of model based diagnosis
(MBD) is to use a model of the system with sensed observations during operation to
detect and isolate faults. Basing diagnosis decisions on a system model can address
some of the crucial scalability and structural transparency issues associated with rule
based diagnosers. It would seem then, that utilizing model based techniques could
lead to more effective fault protection systems. However the actual use of MBD
techniques has been constrained due to the high associated costs and risks relative
to the benefits provided.

There are two main streams of MBD, originating from different communities.
While the DX or consistency based approach originates from work in the com-
puter science and artificial intelligence areas, the FDI stream is rooted in systems
and control theory. The two streams emphasize different diagnosis functionalities.
Livingstone and Livingstone 2, flown as experiments onboard the Deep Space 1
and Earth Observor 1 spacecraft are examples of diagnosers based on the DX ap-
proach to MBD. However, there has not been significant mission pull for adoption
of such consistency based techniques for fault diagnosis onboard operational space-
craft since then. The unfavourable net value proposition for the DX stream of MBD
is discussed in Kurien & Moreno [2]].

Analytical redundancy based MBD is a technique utilizing the FDI approach.
Using observers to model nominal and faulty system dynamics is one way to realize
analytical redundancy. An early theoretical survey of these techniques and their util-
ity for aerospace systems can be found in Patton [3]] and there are various examples
of operational systems [4]].

The second route to implementing analytical redundancy is based on analyti-
cal redundancy relations (ARRs). This technique is based on using sensing and
structural redundancies in a system to compile consistency checks known as ARRs
offline. These ARRs are then evaluated online as residual generators using sensed
quantities from the system. We utilize as starting point in our work an ARR based
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approach to diagnosis based on an algorithm discussed in Krysander et al. [3]], and
extended in Krysander et al [6]].

The underlying concepts, assumptions and approaches of the DX and FDI streams
have recently been compared and proved to be equivalent under certain conditions
Cordier et al. [7]]. However the emphasis in diagnosis functionality and conditions
for their optimal usage are different.

One of the most complex and capable FPS operational in space was developed
for the Cassini spacecraft and can be considered illustrative of the state of practice
of conventional design for interplanetary probes. This FPS is used both to illustrate
the challenges involved in FPS design, implementation and operation and to assess
the value of applying our decentralized diagnosis architecture. The driving system
level FP considerations for the Cassini spacecraft are discussed in Slonsky [8]].

Our diagnosis approach is based on ARRs and is therefore relevant for continuous
state systems modelled for example with a system of differential-algebric equations
or as state space models. The behavior of the attitude and orbit control system is
usually modeled in such frameworks. Therefore we concentrate in particular on the
subsystem level FP monitoring the attitude and articulation control system of the
Cassini as discussed in Brown et al [9].

Instead of utilizing a patchwork of different techniques for the design of fault
monitors for different fault types as discussed in Lee [[10] and Macala [11]], the pre-
sented integrated design method utilizes a structural model of the ADCS to derive
ARR based fault monitors. The fault signatures associated with these monitors are
also derived during the design phase. The approach is based on a novel decentralized
ARR based diagnosis architecture. The hierarchically scalable nature of the archi-
tecture allows systematic design and analysis of fault monitors for different moni-
toring levels. The architecture thus addresses some of the structural and behavioral
transparency issues as discussed in Rasmussen [[1]] and Slonski [8]]. Additionally, the
net value proposition of the ARR based diagnosers is demonstrated to be positive
compared to the conventional approaches.

The paper is structured as follows. The issues with conventional FPS design are
described in section [2] utilizing the fault protection of the attitude and articulation
control system of the Cassini as a case study. Section[3] starts with an discussion of
the ARR based approach to diagnosis followed by a description of the decentralized
diagnosis architecture. A comparison between this architecture and the conventional
diagnosis techniques used for the Cassini is then provided in section @l The paper
concludes with a discussion of the contribution and perspective for future work in
section

2 Fault Protection Systems

Mechanisms and strategies implemented for increased robustness constitute fault
protection. The scope and sophistication of onboard FP functionality is determined
by mission specific considerations such as the autonomy level required onboard,
communication possibilities with the ground segment etc.
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Most spacecraft implement standard FP functions which respond to system level
effects. Safe mode responses configure the spacecraft to a power positive, thermally
safe state. The safe mode(s) also ensures the availability of a robust link with the
ground segment, so that the ground segment has access to housekeeping telemetry.
Other examples of standard FP strategies are the command-loss and under-voltage
responses. Besides these standard system level responses, subsystem level FP is also
implemented depending upon the complexity of the spacecraft and mission require-
ments. The Cassini FP aims to ensure robustness of the mission to all probable single
point failures. We focus on the subsystem level fault protection of the attitude and
articulation control system (AACS) in the following discussion.

The conventional monitor-response architecture forms the basis of the AACS
fault protection system. This structure is illustrated in the figure [l Error monitors
and activation rules make up the diagnosis elements, while response scripts and
the repair manager implement the reconfiguration functionality. Monitors compare
sensed values of quantities to expected values and output a health status. Activation
rules use subsets of monitor outputs together with the hardware configuration and
activity goals to diagnose the likely fault(s).

alert messages to CDS
Response ——

[Output script
activators

lcolours a a repair manager states
Slifey HEiEE Response and activators

monitors rules scripts

_J

current subsystem current subsystem
configuration and configuration and
activation rules activation rules

Repair

Manager
performance g

goals

AACS
commands

AACS
commands

Other AACS Flight Software A
. Command
Algorlthms handler

Fig. 1 The structure of the Cassini attitude and articulation control subsystem level fault
protection

It is interesting to study the techniques used to implement fault monitors for the
different components and control loops of the AACS as illustrated in figure[2l The
wide range of underlying diagnosis techniques for these fault monitors can be seen.
Component level monitoring is provided by thresholds on individual quantities such
as reaction wheel currents. Monitoring at the control loop level is implemented using
the control error and its derivative by monitors known as state-space fault monitors.
The functioning of the loop is classified as acceptable if the control error is below a
specified threshold. If the error is reasonably small and decreasing, the functioning
is tolerable. Large errors which are not decreasing indicate faulty functioning of the
control loop. These monitors are a simple form of model based diagnosis as there
is a system model encapsulated in the controller trying to minimize the loop error.
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Fig. 2 Different techniques utilized for the Cassini AACS FPS

Such monitors run piggyback on the model for control instead of a diagnostic model
developed seperately, avoiding additional costs.

The thruster leackage detection monitor is required to detect a leak on one of the
eight primary thrusters. Such a leak will cause fuel wastage due to the compensat-
ing control which will be triggered. Such leaks need to be detected even while the
spacecraft is executing a maneuver. A state space monitor could not be designed
as there is no one quantity in the control loop which could signal such a fault dur-
ing a maneuver. So a model based approach, relying on monitoring deviations from
the expected dynamics of the spacecraft was used instead. The resulting thruster
leackage monitors are analogous to analytical redundancy relations.

We identify now the issues with the conventional FPS structure and development
techniques. The basic problem is the application of various diagnosis techniques
and associated analysis methods depending on the detection requirements on a case
to case basis. The techniques utilized for the Cassini AACS fault monitors range
from rule to model based methods as discussed earlier and seen in figure 2l While
the various forms of analysis required for each of the techniques add to the develop-
ment effort, the resulting structure of the diagnosis elements suffers from a lack of
architectural pattern. The lack of an integrated architecture complicates the task of
setting parameters and working out activation rules. This effort is shifted to a large
extent to an ad hoc one based on simulation. With increasing system complexity
such an approach does not scale well, leading to opacity of diagnoser structure and
behaviour, the possibilty of emergent behavior, and consequently lower robustness.
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These issues are summarized briefly below:

e Absence of architectural pattern: A bottoms up approach of fitting techniques to
requirements & problems on a case to case basis.
Lack of explicit models explaining what caused a monitor to be triggered.
Distribution of state and behavioral information among complex parameter sets:
Thresholds, persistence counters, disable/enable flags, timers etc.

Many of these issues are connected to the special situation of fault protection ’sys-
tems’ as compared to functional subsystems like AOCS and power etc. Fault pro-
tection functionality for a system is a set of capabilities spread over the functional
subsystems. However, it is also necessary to view FP capability as constituting a vir-
tual subsystem in its own right, because the interactions among capabilities built into
seperate subsystems should be worked out as early as possible, and sound systems
engineering practices followed during development and testing.

The decentralized architecture developed in this thesis can serve to address a few
of these challenges, and this attempt is described in the following sections with the
decentralized architecture itself and then with its application to the Cassini FPS.

3 Decentralized Diagnosis with Analytical Redundancy
Relations

In order to describe the proposed decentralized diagnosis architecture based on
ARRs, we introduce first the basic notions associated with the structural approach to
ARRs. Given the emphasis of this paper, and the space constraints, both this intro-
duction and the following description of the decentralized architecture are developed
in an intutive rather than formal fashion. The reader can look to the references for
formal description of the concepts involved.

3.1 The Structural Approach to Analytical Redundancy Relations

Analytical redundancy relations rely on using redundancies in the system to compile
consistency checks known as residual generators offline. The particular approach to
ARR based diagnosis utilized here is based on designing residual generators based
on structural redundancies in the system. These residual generators serve as con-
sistency checks, using sensed quantites from the system to check whether monitored
sections of the system are functioning normally. A residual generator takes as input
the values of certain observed variables and, in an ideal case i.e without unmod-
eled behavior, noise or disturbances, gives a non-zero output when the behaviour
is inconsistent with the model. A detailed description of the structural approach to
ARRSs can be found in [12]].

The process of deriving ARRs begins with a model of the system in the form of
a system description as seen in figure Bl The system description consists of a set of
equations involving a set of variables. The set of variables is partitioned into a set of
known (or observed) variables denoted as Z and a set of unknown (or unobserved)
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variables denoted as X. We refer in the following discussion to the vector of known
variables as z and the vector of unknown variables as x. The system description
or model, denoted as M(z,x) or M, is then a set of equations relating the known
variables z and the unknown variables x. The class of models considered here are
differential-algebric equation systems. Therefore the equations m;(z,x) C M(z,x),
i =1,...,n, are differential or algebraic equations in z and x. For the model of
figure B {x;,x2,x3} is the set of unobserved variables, while {u,y} is the set of
observed variables. Obtaining ARRs for a model involves the elimination of unob-
served variables to arrive at a consistency check which can be evaluated based on
the sensed quantities.

The structure of a system is a representation of which variables are involved
in the equations which make up the model of the system. Such a structural ab-
straction facilitates deriving redundancies while disregarding the actual analytical
expressions of the equations making up the system model. Ignoring the analytical
expressions enables the consideration of nonlinear systems, and the use of efficient
algorithms while deriving possible redundancies. However, the results obtained with
such a structural representation are best case scenarios. Causality considerations
and the algebraic and differential loops in the DAE system ultimately determine
which of the theoretically possible structural redundancies can in fact be exploited
for the derivation of residual generators. A variable elimination technique and pro-
cedure must then be utilized to derive residual generators involving only observed
variables.

A bipartite graph can be used to represent the structure of the system and deduce
possible paths for variable substitution. To define a bipartite graph representation of
the structure of a system let us denote the sets of vertices as 4 and ¥, representing
the set of constraints and the set of variables respectively. A vertex ¢; € € is con-
nected by an edge to the vertex v; € ¥ if and only if the constraint ¢; involves the
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Fig. 3 Structural Modeling of a System
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variable v;. Referring to the system model M(z,x) introduced above, the equations
m;(z,x) € M(z,x), i = 1,...,n constitute the set of constraints (C). The set of vari-
ables 7" is composed of the sensed and unsensed variables ¥ = ZUX. However for
the purpose of finding substitution paths, it is interesting to consider the bipartite
graph between the model equations and the unobserved variables - i.e. 7 = X.

It can be shown that ARRs correspond structurally to so called complete match-
ings between X and % on the bipartite graph G(M UX UZ, /), or equivalently on
G(MUX,A), where A C o7 and A is a set of arcs such that a(i, j) € A if and only
if variable x; is involved in relation m;. A complete matching between X and M,
provides a structural path to eliminate the unobserved variables and arrive at a con-
sistency check. A complete matching is denoted as .# (X, M), or simply .# in case
there is no ambiguity.

Equivalently, ARRs correspond to minimal structurally over determined
(MSO) sets, which are sets of equations of the system with one more equation than
unknowns Krysander et al [3]]. Unobserved variables can be eliminated, and then the
redundant equation used to check for consistency as seen in figure [dl While com-
plete matchings on bipartite graphs provide an intutive, graphical view of structural
redundancies, the biadjacency matrix and MSO sets approach is used to implement
efficient algorithms.

f |_f:—__| fa £ £ ®
g o x
OXO, fa @

Fig. 4 The presence of redundancy in a structural sense: A Minimal Structurally Overdeter-
mined (MSO) Set and a Complete Matching

Redundant
relation

The number of MSO sets increases exponentially with the degree of structural
redundancy present in the system. Rather than deriving all possible MSO sets, the
idea of minimal test equation support (MTES), was introduced in Krysander et al.
[6] to limit the derived structural redundancies to those responsive to a set of inter-
esting faults. Corresponding to each MTES the corresponding fault sensitivity can
also be derived using the algorithm presented.

The (centralized) diagnosis scheme based on analytical redundancy relations can
be seen in figure 8l The structural model of the system serves as input to the diag-
noser design phase. An MSO or minimal test equation support (MTES) signifies the
theoretical presence of a structural redundancy which could be used to develop a
consistency check for a part of the system. The corresponding minimal test support
(MTS) represents the faults which can be detected with this consistency check. In
this way the MTS sets characterize the maximum possible fault isolability. Whether
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a residual generator can be analytically derived depends upon the causality restric-
tions on the equations in the set and the presence of algebraic and differential loops.
We use in our work the residual generator derivation method proposed in Svard et
al [13]]. This method relies on deriving a computational sequence to successively
solve for the unknown variables involved in an equation set. One redundant equa-
tion together with the developed computational sequence constitutes a sequential
residual generator. After offline design, the diagnoser is implemented as a residual
generator bank.

Redundanciesin the
system model

Structural R Calculating
Model including it \ MTES 1 ana!ytlcal Diagnoser
information about g residual
influence of faults f(;(l;:lt:f)llzg generators design
sub i i
models LM selection f
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Fig. 5 Diagnosis with Analytical Redundancy Relations

3.2 The Decentralized Diagnosis Architecture

Having discussed briefly the basic notions of the structural approach to ARR based
diagnosis, we present intutively here the decentralized diagnosis architecture. In
this architecture, local diagnosers rely on models of their subsystems to arrive at
local diagnosis. Ambiguities might arise as faults propogate between subsystems. A
supervisor at the higher level serves to resolve ambiguities and provide diagnosis at
a higher resolution than that possible with purely local information. The architecture
is hierarchically scalable as can be seen in figure[@l This means that the supervisor
of one level can function as the local diagnoser for the next higher level.

As discussed earlier, the structural approach to deriving analytical redundancy
relations can be viewed as one of finding complete matchings on the bipartite graph
representation of the structure.

The following model is used to illustrate the notions. It is composed of six equa-
tions r|_g relating the unobserved variables X = {x,x,x3,x4,xs } and the observed
variables Z = {u,v,w}.

r X :fx%+X3+u (D
rz:xz:xﬁ 2)
r3 X :3~x%+v 3)
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Fig. 6 Illustration of the basic diagnoser structure
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Fig. 7 Divison of a system model into subsystems
r4iy = X4+X5 4)
rs X3 :x%ers (®)]
re 1 W = X5 (6)

The biadjacency matrix and bipartite graph representations of the structure of this
model can be seen in figure[8]

To introduce the notions behind the decentralized architecture intutively, consider
the system is divided into two subsystems as in figure[7l While the variables x1,x,
are local to subsystem 1 and the variable x5 local to subsystem 2, the variables x3,x4
are shared between the two subsystems. The set of variables is therefore divided
into local and shared variables.

A complete matching for the global system can be seen in figure [8] both on the
bipartite graph and the biadjacency matrix. The use of the complete matching to
eliminate all unknown variables is also illustrated with a series of matchings and
substitutions. The relation rg is used as the redundant relation to serve as the con-
sistency check. Also observe that the sensed variables u,v,y,w are only considered
implicitly in the structural representations.

Now consider the situation when we try to use the structural representation of the
subsystems as available to the local diagnosers working on the two subsystems as
seen in figure[0 The concepts of local complete matchings and shared relations have



Spacecraft Fault Detection and Isolation System Design 257

X1 > .
PRV _® Matching
r——-H X T
r1X)| XY Substitution
ra &
rs IRy
re WX
ra ra rs3 ra rs re ARR
X1 X2 X3 X4 X5

Fig. 8 Structural derivation of a redundancy relation at the global level
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Fig. 9 Structural derivation of decentralized local and hierarchical redundancy relations

been formalized in Indra et al. [14] and Indra et al. [I5]]. From the perspective of a
local diagnoser, while local complete matchings involve only unknown variables
local to subsystems and sensed variables, relations involving shared variables can
not be evaluated at that level. Such so called hierarchical relations are sent to the
relevant supervisory level, by all local diagnosers. The supervisory layer attempts
to eliminate the unknown variables at its level using these hierarchical relations
and arrive at a consistency check if possible. It has been shown in Chanthery et al.
[16]], that such a decentralized diagnoser is equivalent from the point of view of
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diagnosability to a centralized diagnoser even if the choice of local matchings differ
from the ones used in the global case. This has been demonstrated by showing that
the same set of ARRs will be available in both the decentralized and centralized
diagnosers from a structural perspective.

4 Application to the Cassini Attitude Control System:
A Qualitative Comparison

We present in this section a qualitative comparison between the conventional and
ARR based diagnosers in terms of the design and development effort. The applica-
tion of decentralized ARR based diagnosis to the Cassini AACS is used to facilitate
this comparison.

The community developing a class of techniques usually tends to take a relatively
narrow view encompassing only the quantitative technical benefits of the methods.
However, the decision of whether to use a novel technique for an actual spacecraft
and mission is determined by a much broader costs, benefit and risk analysis. It is
these net value considerations which often serve as bottlenecks in the adoption of
new techniques such as MBD.

The challenge of comparing design and development methods in terms of their
net value arises from the subjective nature of the considerations involved. However
some traction can be obtained by structuring the discussion around the key factors
which influence the effort involved in diagnoser design and verification and valida-
tion. Therefore the following discussion will be structured around the following two
factors :

e The models used for diagnoser design
e The diagnoser design process

4.1 Models Used for Diagnoser Design

Attempting to unravel the influences and factors involved in the design procedure,
we proceed by first discussing the inputs to the process - the models used for diag-
noser design.

A model is typically a set of instructions, equations or constraints which encap-
sulate knowledge about the expected behavior of a system. Models are abstractions
of reality, with a limited range of validity. Expected behavior is always modeled at
a certain level of granuality, and in a certain framework.

However in a more general sense, any knowledge about the expected behavior of
a system can be considered an implicit model of the system. A diagnosis results from
reasoning about the expected behavior of a system in the form of a model. However
as a model is always an approximate description of the behavior of a system, it has
to be made to fit and then validated with real data. The tunable parameters allow the
model to be adjusted to fit data from the actual system. A critical distinction there-
fore needs to be made between the model structure and the model parameters. To
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account for the unmodeled dynamics, i.e. behavior not accounted for by the model,
thresholds are used. This is the case for example with noise and disturbances.

So the distinction between model based diagnosis techniques and conventional
rule based methods does not lie in the presence of a model, but rather in the utiliza-
tion of explicit models with sophisticated structures. Traditional rule based diagno-
sis techniques such as thresholding and state-space monitors use very simple model
structures, and then rely on model parameters and thresholds to achieve satisfactory
response to actual behaviour.

Modeling is always performed for a certain purpose, which dictates the aspects
which need to be modeled, and also the required granuality. Different models are
required for example for simulation and for controller design. Given the consider-
able effort involved in modeling, keeping modeling costs down is a driving factor
when considering the use of new techniques. The conventional error monitor based
approach uses the expected behavior of the error signal encapsulated in the ’state-
space’ representation as a simple model as seen in figure The qualitative status
- expected/unacceptable/tolerable of the control loop is determined based on the be-
havior of the error signal and its derivative. A fault on any of the components in the
control loop can affect the error signal, and consequently the monitors.

expected
A

urg"acceptable
g { %
4 Opinion

tolerable
unacceptable

Fig. 10 Regions on the ’State Space’ plane model the behaviour of the error signal - in effect
modeling effort is the setting of the parameters

What about the models used for diagnoser design with the decentralized ARR
based approach presented in this thesis ? The structural model utilized contains in-
formation about the constraints and variables involved in the system. An example
of such a structural model can be seen in figure [[1l While these models are more
sophisticated than the simple ’state-space’ models, the information encapsulated in
them is conceptually the same as that contained in control and simulation models
of the AOCS as seen in the constraints and variables of table [Il While control and
simulation models include the actual analytical expressions of the constraints, struc-
tural models represent the same information at a more abstract level. It is possible in
principle to extract structural information from the control and simulation models -
which are created during the normal engineering process.
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Fig. 11 An example of the structural models used for deriving analytical redundancy rela-
tions - the model structure plays a much greater role

Table 1 Example of constraints and variables of the structural model

Constraints and Variables Subsystem Description

Ceontrol/C1 ACS Control algorithm

Crw1/C> ACS Reaction wheel motor dynamics

Crw2/Cs ACS Reaction wheel flywheel dynamics

Crw3/C3 ACS Reaction wheel angular momentum integration
Ciyn/Cs DYN (ADS) Satellite dynamic equations of motion

Ck;n /Co DYN (ADS) Satellite kinematic equations of motion
Crs/C11 ADS Rate sensors

Cvs/Cro ADS Vector sensors

Cest1/Cr2 ADS State estimation with vector sensor alone

Ty /%1 ACS Derivative of flywheel angular momentum

hy /x3 ACS Flywheel angular momentum

Wy /X2 ACS Flywheel angular speed

Ton/x4 ACS Magnetic torque

Lref /21 ACS Reference value of state vector

Te/2 ACS Reaction wheel control torques

Ow/z3 ACS Sensed value of reaction wheel flywheel angular speed

In conclusion, how do the two approaches compare in terms of the model used
for diagnoser design ? The model structure in the case of the ARR based approach
is more sophisticated, but contains the same information as control and simulation
models. In the case of the conventional error monitor based approach, the model
structure is very simple, being defined as regions on a plane. Much more of the
behavioral information is contained rather in the model parameters - for example
the parameters delimiting the regions considered 'normal’, "tolerable’ or *unaccept-
able’. This is a good example of ”behavioral information being spread over param-
eter sets” as described by Rasmussen [[]].
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4.2 Diagnoser Design Process

Having discussed the input to the diagnoser design process, we consider now the
design procedure itself. What constitutes diagnoser design ? We define the design
process here as the derivation of the structure of the monitors which constitute the
diagnoser and then the setting of the diagnoser parameters to achieve optimal di-
agnosis. An optimal diagnosis for a given diagnoser would achieve the best pos-
sible performance in terms of the considered quantitative metrics. Some examples
of these quantitative metrics are detection time performance, false alarm rates and
missed detection rates.

A simulation of the system, with realistic noise and disturbance models is used to
tune the diagnoser, with the injection of realistic faults. The faults to be considered
would result from engineering analysis such as FMECA and FTA.

How do the two approaches compare ? We contrast first the derivation of the
structure of the diagnoser, and then the setting of the parameters.

In the case of the ARR based diagnoser, the structural model is utilized as input
to an algorithm which identifies the monitorable structural redundancies present
in the system, with the possiblity of focusing on a set of interesting faults. Then
an automatic derivation of the analytical expressions of the residual generators is
possible utilizing for example the algorithm proposed in Svard & Nyberg [13].

In contrast, as the structure of the conventional error monitors is the same for
the different components in the loop and various faults, the diagnoser design effort
for these monitors consists largely not in the derivation of monitor structure but in
parameter tuning which is discussed below. The thruster leackage monitors of the
Cassini AACS fault protection are conceptually the same as ARRs. But they were
used only because conventional error monitors were not able to satisfy requirements
and their derivation was not an automated process.

In the diagnoser derivation phase therefore, the possibility of systematic, inte-
grated design with the decentralized ARR based method provides a significant im-
provement over the conventional design approach as utilized for the Cassini AACS
FPS which consists of a patchwork of techniques.

And how about diagnoser parameter settings ? The setting of diagnoser parame-
ters aims to optimize (and trade off between) FDI performance and robustness for a
given diagnoser structure. Thresholds, counters and flags are examples of diagnostic
system parameters. The effort involved in tuning the diagnostic system is strongly
related to the clarity of the physical relation between the parameters to tune and the
underlying properties of the system.

The first difference is in terms of the degree and nature of the role of diagnoser
parameters. The extent of the role of diagnoser parameters is inversly proportional
to the sophistication of the model structure utilized for diagnoser design. Due to the
very simple model structure utilized in the conventional design approach, fitting the
diagnoser behavior to data from the system relies to a large degree on the model
parameters. The use of an explicit and relatively sophisticated model in ARR based
approaches implies less reliance on parameters.
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The second contrast is caused by the fact that the fault sensitivities of the residual
generators in the ARR based diagnoser are structurally decoupled and computed
in the design phase. The different techniques utilized in the conventional approach
could lead to a fault propogating and triggering monitors at different levels and loca-
tions. Studies such as FMECA provide a guide to work out the activation rules in this
case, followed by simulation runs with fault injection. Therefore, in the decentral-
ized ARR based approach considerable design effort is shifted from the simulation
to the design phase with the activation rules automatically derivable from the fault
sensitivities of the ARR based fault monitors. We can conclude that the presented
approach leads to diagnosers which are much more transparent and therefore easier
to tune compared to the conventional methods.

5 Conclusion

The conventional techniques used to design the diagnosis elements of spacecraft
fault protection systems suffer from various issues, severely restricting the scala-
bility of such methods as space systems increase in complexity. These issues are
illustrated using the example of the fault protection functionality of the Cassini atti-
tude and articulation control subsystem. We then present a decentralized analytical
redundancy relation based diagnosis architecture which can address some of them.
The application of this architecture is contrasted to the diagnosis elements of the
conventional Cassini FPS. The comparison is in terms of qualitative metrics such
as diagnoser design effort and system structure. Discussing such qualitative factors
is essential as it is ultimately these issues which have restricted the application of
model based diagnosis techniques for space systems previously. The benefits of the
proposed approach are demonstrated. The decentralized diagnoser enables the de-
ployment of varying levels of diagnosability, which is not possible with a monolithic
ARR based diagnoser. In future work we are focusing on possibilities related to op-
timizing the decentralized diagnoser structure and splitting such decentralized ARR
based diagnosers between the space and ground segments.
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Flight Test Oriented Autopilot Design
for Improved Aerodynamic Parameter
Identification

Matthias Krings, Karsten Henning, and Frank Thielecke

Abstract. In order to reduce development costs and time, model-based design is
widely introduced in the industry leading to a strong need for verified high-fidelity
simulation models. An inevitable, but challenging process step to obtain such sim-
ulation models for GNC-applications is the aerodynamic parameter identification
on the basis of real flight test data. The identification process requires distinct ex-
citation maneuvers in order to constrain the design space to a subset of model pa-
rameters reducing the complexity of the identification problem and the correlation
within the overall parameter set. Typically, manually flown excitation maneuvers
are not exact and fully reproducible concerning the requirements and therefore the
amount of rejected data points is significant. In case of remotely piloted aircraft sys-
tems, the decoupling of the aircraft and the ground pilot in charge leads to an even
less sensitive maneuver control, a further reduced disturbance suppression and even
greater difficulties in meeting the initialization requirements. This scenario calls for
an automation of aerodynamic parameter identification related flight tests. A practi-
cal approach to a flight test oriented autopilot for improved aerodynamic parameter
identification is proposed within this paper. The requirements for identification ex-
citation maneuvers and the corresponding design of the autopilot are emphasized
and flight test results are presented.

1 Introduction

Increasing automation of aircraft systems introduces a wide variety of complex is-
sues regarding novel system concepts and technologies of prospective aircraft. In or-
der to reduce development costs and time of such technologies, model-based design
is widely introduced in the industry leading to a strong need for verified high-fidelity
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simulation models. Especially the development of advanced flight control and en-
velope protection schemes [1}, 2] as well as the development of methods for system
diagnosis and monitoring, e.g. loads observer for structural loads analysis and mon-
itoring 3} [4, [3] [6]], call for qualified flight mechanical models for evaluation and
validation at an early design stage.

Although there is a strong trend towards numerical determination of model pa-
rameters, e.g. CAD, CFD, etc., system identification on the basis of real test data is
still inevitable, even though it is only for validation of numerical findings. Due to
the well known structure of flight mechanical simulation models the identification is
often narrowed to the aerodynamic parameters, but can be extended to an identifica-
tion of mass properties and actuator dynamics. Nevertheless, the effort of identifying
the plant properties disproportionally increases with the number of parameters to be
considered and with the data quality required. Therefore, distinct excitation maneu-
vers are required in order to constrain the design space to a subset of parameters
reducing the complexity of the identification problem and the correlation within the
overall parameter set [[7,[8]].

In the context of an identification of the aircraft’s aerodynamic properties, the
definition of these maneuvers shall aim on a separation of longitudinal and lateral
motion, on a specific magnitude and timing of the command inputs and on an ini-
tialization at a predefined point within the flight envelope. Typically, these manually
flown excitation maneuvers are not exact and fully reproducible concerning these
requirements and therefore the amount of rejected data points is significant [3] [6].
This problem is further exacerbated by identifying the acrodynamic parameters of a
remotely piloted aircraft system. The decoupling of the aircraft and the ground pilot
in charge leads to a less sensitive maneuver control, a reduced disturbance suppres-
sion and difficulties in meeting the initialization requirements. This scenario calls
for an automation of aerodynamic parameter identification related flight tests.

A practical approach to a flight test oriented autopilot for improved aerodynamic
parameter identification is therefore suggested within this paper, which is organized
as follows. First, a general description of the system identification process and a
specification of common maneuvers for identification of aerodynamic parameters
are given in Section 2] followed by the flight test oriented autopilot in Section[3] In
Section E] an application example and related flight test results are presented.

2 System Identification and Maneuvers

System identification represents a process of determining a model structure and
related model parameter of a dynamic system with known system excitation and
response. This general approach is depicted in Fig. [l and is denoted as Quad-M
process [[7]. Herein, the four elements: maneuver design, measurement accuracy,
method and model definition are the key enablers to identification results with high
quality and reliability.

Among other a gray box approach is chosen defining a physically motivated
model structure of the flight dynamics. The classical representation, which can be
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Fig. 1 General process flow (Quad-M process acc. to Ref. [[7])

found in Ref. [9], comprises the 6DOF equation of motion and a polynomial rep-
resentation of the aerodynamic properties. Actuator dynamics might be also taken
into account. The unknown model parameters are quantified by comparison of the
model and the measured aircraft system response. This procedure, widely known as
the output error method, is described in detail in several Ref. [3} 16} [7].

While the mass properties and the actuator dynamics are identified within labora-
tory test, e.g. weighing, the aerodynamic derivatives are determined on the basis of
flight tests. During these flight tests the designated aircraft is excited by well-defined
input signal sequences, which form the basis for an efficient, unambiguous solution
of the identification problem. Therefore, the input signal sequences are subject to
certain conditions, in particular [, |6]]:

the cause variables of the aerodynamic model shall be excited,

the excitation shall allow an identification of the parameters without correlation,
the maneuvers shall be initialized based on a steady straight symmetric flight,
the data basis shall contain at least one set of measurements for identification as
well as one for validation and

e the maneuvers shall be repeated with variable excitation magnitude and initial
flight condition in order to capture nonlinearities due to viscosity effects.

One might optimize the input signal sequences on the basis of the estimation error
criterion used within the identification process [[7,[10} [1 1]. However, the optimality
of these input sequence heavily depends on the fidelity of the model and thus, in
an early phase of the identification process, these excitation maneuvers are quite
often not suitable [12]]. Considering small and/or slow aircraft the circularity prob-
lem in defining optimal input sequences might be hard to resolve. Due to the low
Reynolds numbers the preliminary numerical findings from classical CFD methods
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are relatively poor and hence, the initial model might be inappropriate to break the
circularity problem. Therefore, the input design technique must be robust to un-
known errors in the a priori model. Here, a practical approach is suggested, which
comprises the well-known multistep input sequences with a low number of design
parameters and a good traceability of aircraft’s response.

In order to identify the full parameter set of the longitudinal and lateral aerody-
namics and the co