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Abstract. The Lloyd’s algorithm, also known as the k-means algorithm,
is one of the most popular algorithms for solving the k-means clustering
problem in practice. However, it does not give any performance guaran-
tees. This means that there are datasets on which this algorithm can
behave very badly. One reason for poor performance on certain datasets
is bad initialization. The following simple sampling based seeding al-
gorithm tends to fix this problem: pick the first center randomly from
among the given points and then for i ≥ 2, pick a point to be the ith cen-
ter with probability proportional to the squared distance of this point
from the previously chosen centers. This algorithm is more popularly
known as the k-means++ seeding algorithm and is known to exhibit
some nice properties. These have been studied in a number of previous
works [AV07, AJM09, ADK09, BR11]. The algorithm tends to perform
well when the optimal clusters are separated in some sense. This is be-
cause the algorithm gives preference to further away points when picking
centers. Ostrovsky et al.[ORSS06] discuss one such separation condition
on the data. Jaiswal and Garg [JG12] show that if the dataset satisfies
the separation condition of [ORSS06], then the sampling algorithm gives
a constant approximation with probability Ω(1/k). Another separation
condition that is strictly weaker than [ORSS06] is the approximation
stability condition discussed by Balcan et al.[BBG09]. In this work, we
show that the sampling algorithm gives a constant approximation with
probability Ω(1/k) if the dataset satisfies the separation condition of
[BBG09] and the optimal clusters are not too small. We give a negative
result for datasets that have small optimal clusters.

1 Introduction

The k-means clustering problem is defined as follows:

Given n points X = {x1, ..., xn} ∈ R
d, find k points {c1, ..., ck} ∈ R

d

(these are called centers) such that the following objective function is
minimized:

φ{c1,...,ck}(X ) =
∑

x∈X
min

c∈{c1,...,ck}
D(x, c)
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where D(x, c) denotes the square of the Euclidean distance between
points x and c.

Note that the k centers define an implicit clustering of the points in X as all the
points that have the same closest center are in the same cluster. This problem
is known to be an NP-hard problem when k ≥ 2. We can generalize the problem
for any distance measure by defining the distance function D accordingly. Such
generalized version of the problem is known as the k-median problem with respect
to a given distance measure. Here, we will talk about the k-means problem and
then generalize our results for the k-median problem with respect to distance
measures that are metrics in an approximate sense.

As discussed in the abstract, the most popular algorithm for solving the
k-means problem is the Lloyd’s algorithm that can be described as follows: (i)
Pick k centers arbitrarily (ii) consider the implicit clustering induced by these
centers (iii) move the centers to the respective centroids of these induced clusters
and then repeat (ii) and (iii) until the solution does not improve. Even though
this algorithm works extremely well in practice, it does not have any performance
guarantees, the main problem being arbitrary initialization. This means that the
algorithm takes a very long time to converge or the final solution is arbitrarily
bad compared to the optimal. The following simple sampling algorithm that is
more popularly known as the k-means++ seeding algorithm seems to fix the
problem to some extent:

(SampAlg) Pick the first center uniformly at random from X . Choose a
point x ∈ X to be the ith center for i ≥ 2 with probability proportional
to the squared distance of x from the nearest previously chosen centers,

i.e., with probability
minc∈{c1,...,ci−1} D(x,c)

φ{c1,...,ci−1}(X ) .

In this work, we study some properties of this simple sampling algorithm.
First, let us look at the previous works.

Previous Work. The above algorithm, apart from being simple, easy-to-
implement, and quick, exhibits some very nice theoretical properties. Arthur and
Vassilvitskii [AV07] show that SampAlg gives O(log k) approximation in expec-
tation. They also give an example where the algorithm gives solution with ap-
proximation factor Ω(log k) in expectation. Ailon et al. [AJM09] and Aggarwal et
al. [ADK09] show that this algorithm is a constant factor pseudo-approximation
algorithm. This means that SampAlg gives a solution that is within a constant
factor of the optimal (w.r.t. k centers) if it is allowed to output more than k
centers. Brunsch and Röglin [BR11] gave an example where SampAlg gives an
approximation factor of (2/3− ε) log k with probability exponentially small in k
thus closing the open question regarding whether the sampling algorithm gives a
constant approximation with not-too-small probability. Jaiswal and Garg [JG12]
observe that SampAlg behaves well for datasets that satisfy the separation con-

dition Δk−1(X )
Δk(X ) ≥ c, where Δi(X ) denotes the optimal value of the cost for the

i-means problem on data X . They show that under this separation condition, the
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algorithm gives a constant approximation factor with probability Ω(1/k). This
separation condition was discussed by Ostrovsky et al. [ORSS06] who also ob-
serve that SampAlg behaves well under such separation and construct a PTAS
for the k-means problem using a variant of SampAlg in their algorithm. Balcan
et al. discuss a strictly weaker separation condition than [ORSS06]. This separa-
tion condition has gained prominence and a number of followup works has been
done. In this work, we show that SampAlg behaves well even under this weaker
separation property. Next, we discuss our results in more detail.

Our Results. Let us first discuss the [BBG09] separation condition. This is
known as the (1 + α, ε)-approximation stability condition.

Definition 1 ((1+α, ε)-approximation stability). Let α > 0, 1 ≥ ε > 0. Let
X ∈ R

d be a point set and let C∗
1 , ..., C

∗
k denote the optimal k clusters of X with

respect to the k-means objective. X is said to satisfy (1 + α, ε)-approximation
stability if any (1 + α)-approximate clustering C1, ..., Ck is ε-close to C∗

1 , ..., C
∗
k .

ε-closeness means that at most ε fraction of points have to be reassigned in
C1, ..., Ck to be able to match C∗

1 , ..., C
∗
k .

Note that for a fixed value of ε, the larger the value of α the stronger is the sep-
aration between the optimal clusters. Our techniques easily generalize for large
values of α. The above condition captures how stable the optimal clustering is un-
der approximate clustering solutions. This separation condition has been shown
to be strictly weaker than the [ORSS06] separation condition. More specifically,
it has been shown (see Section 6 in [BBG09] and Lemma 5.1 in [ORSS06]) if a

dataset X satisfies the separation condition Δk(X )
Δk−1(X ) ≤ ε, then any near-optimal

k-means solution is ε-close to the optimal k-means solution. They also give an
example that shows that the other direction does not hold.

Main Theorem for k-means The next theorem gives our main result for the k-
means problem. Here the distance measure is square of the Euclidean distance.

Theorem 1 (Main Theorem). Let 0 < ε, α ≤ 1. Let X ∈ R
d be a dataset

that satisfies the (1 + α, ε)-approximation stability and each optimal cluster has
size at least (60εn/α2). Then the sampling algorithm SampAlg gives an 8-
approximation to the k-means objective with probability Ω(1/k).

When α > 1, we get the following result.

Theorem 2 (Main Theorem, large α). Let 0 < ε ≤ 1 and α > 1. Let X ∈ R
d

be a dataset that satisfies the (1+α, ε)-approximation stability and each optimal
cluster has size at least 70εn. Then the sampling algorithm SampAlg gives an
8-approximation to the k-means objective with probability Ω(1/k).

Generalization to k-median w.r.t. Approximate Metrics. The above result can
be generalized for the k-median problem with respect to distance measures that
are approximately metric. This means that the distance measure D satisfies the
following two properties:
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Definition 2 (γ-approximate symmetry). Let 0 < γ ≤ 1. Let X be some
data domain and D be a distance measure with respect to X . D is said to satisfy
the γ-approximate symmetry property if the following holds:

∀x, y ∈ X , γ ·D(y, x) ≤ D(x, y) ≤ (1/γ) ·D(y, x). (1)

Definition 3 (δ-approximate triangle inequality). Let 0 < δ ≤ 1. Let X
be some data domain and D be a distance measure with respect to X . D is said
to satisfy the δ-approximate triangle inequality if the following holds:

∀x, y, z ∈ X , D(x, z) ≤ (1/δ) · (D(x, y) +D(y, z)). (2)

Here is our main theorem for the general k-median problem.

Theorem 3 (k-median). Let 0 < ε, γ, δ, α ≤ 1. Consider the k-median problem
with respect to a distance measure that satisfies γ-symmetry and δ-approximate
triangle inequality. Let X ∈ R

d be a dataset that satisfies the (1 + α, ε)-
approximation stability and each optimal cluster has size at least (20εn/δ2α2).
Then the sampling algorithm SampAlg gives an 8

(γδ)2 -approximation to the k-

median objective with probability Ω(1/k).

When α > 1, we get the following result.

Theorem 4 (k-median, large α). Let 0 < ε, γ, δ ≤ 1 and α > 1. Consider the
k-median problem with respect to a distance measure that satisfies γ-symmetry
and δ-approximate triangle inequality. Let X ∈ R

d be a dataset that satisfies
the (1 + α, ε)-approximation stability and each optimal cluster has size at least
(20εn/δ2). Then the sampling algorithm SampAlg gives an 8

(γδ)2 -approximation

to the k-median objective with probability Ω(1/k).

Negative result for small clusters The above two Theorems show that the sam-
pling algorithm behaves well when the data satisfies the Approximation-stability
property and the optimal clusters are large. This leaves open the question as to
what happens when the clusters are small. The next Theorem shows a negative
result if the clusters are small. We show that if the clusters are small, then in
the worst case, SampAlg gives O(log k) approximation with probability expo-
nentially small in k.

Theorem 5. Let 0 < ε, α ≤ 1. Consider the k-means problem. There exists a
dataset X ∈ R

d such that the following holds:

– X satisfies the (1 + α, ε) approximation stability property, and

– SampAlg achieves an approximation factor of
(
1
2 · log k) with probability at

most e−
√
k−o(1).
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2 Proof of Theorems 1 and 2

We follow the framework of Jaiswal and Garg [JG12]. We denote the dataset by
X = {x1, ..., xn} ∈ R

d. Let C∗
1 , ..., C

∗
k denote the optimal k clusters with respect

to the k-means objective function and let c∗1, ..., c
∗
k denote the centroids of these

optimal clusters. We denote the optimal cost with OPT , i.e.,

OPT =
∑

x∈X
min

c∈{c∗1,...,c∗k}
D2(c, x),

where D(., .) denotes the Euclidean distance between any pair of points. For
any point x ∈ X , we denote the distance of this point to the closest center in
{c∗1, ..., c∗k} with w(x) and the distance of this point to the second closest center
with w2(x).

The following Lemma from [BBG09] will be crucial in our analysis.

Lemma 1 (Lemma 4.1 in [BBG09]). If the dataset satisfies (1 + α, ε)-
approximation-stability for the k-means objective, then

(a) If ∀i, |C∗
i | ≥ 2εn, then less than εn points have w2

2(x)− w2(x) ≤ α·OPT
εn .

(b) For any t > 0, at most tεn points have w2(x) ≥ OPT
tεn .

Let c1, ..., ci denote the centers that are chosen by the first i iterations of
SampAlg and let j1, ..., ji denote the indices of the optimal clusters to which
these centers belong, i.e., if cp ∈ C∗

q , then jp = q. Let Ji = {j1}∪ ...∪{ji} and let

J̄i = {1, ..., k}\Ji. So, Ji denotes the clusters that are covered and J̄i denotes the
clusters that are not covered by the end of the ith iteration. An optimal cluster
being covered means that a point has been chosen as a center from the cluster.
Let Xi = ∪j∈JiC

∗
j and let X̄i = ∪j∈J̄i

C∗
j .

Let B1 be the subset of points in X̄i such that for any point x ∈ B1, w
2
2(x)−

w2(x) ≤ α·OPT
εn . Let B2 denote the subset of points in X̄i such that for every

point x ∈ B2, w
2(x) ≥ α2·OPT

6εn . Note that from Lemma 1, we have that |B1| ≤
εn and |B2| ≤ 6εn/α2. Let B = B1 ∪B2 and B̄ = X̄i \B. We have |B| ≤ 7εn/α2.

Lemma 2. Let β = 1−α/2
6+α . For any x ∈ B̄ we have, we have D2(x, ct) ≥

β ·D2(x, c∗jt).

Proof. Let j be the index of the optimal cluster to which x belongs. Note that
w2(x) = D2(x, c∗j ) and w2

2(x) ≤ D2(x, c∗jt). Figure 1 shows this arrangement. For

any x ∈ B̄, we have:

w2
2(x) − w2(x) ≥ α ·OPT

εn
≥ 6 · w2(x)/α

⇒ w2
2(x) ≥ (1 + 6/α) · w2(x) (3)
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c∗jt

ct

c∗j

x

Fig. 1. x belongs to the uncovered cluster j

We will now argue that D2(x, ct) ≥ β ·D2(x, c∗jt). For the sake of contradiction,

assume that D2(x, ct) < β ·D2(x, c∗jt). Then we observe the following inequalities.

2 ·D2(x, c∗j ) + 2 ·D2(x, ct) ≥ D2(ct, c
∗
j ) (triangle inequality)

⇒ 2 ·D2(x, c∗j ) + 2 ·D2(x, ct) ≥ D2(ct, c
∗
jt) (since D2(ct, c

∗
j ) ≥ D2(ct, c

∗
jt
))

⇒ 2 ·D2(x, c∗j ) + 2 ·D2(x, ct) ≥ 1

2
·D2(x, c∗jt)−D2(x, ct) (triangle inequality)

⇒ 3 ·D2(x, ct) ≥ 1

2
·D2(x, c∗jt)− 2 ·D2(x, c∗j )

⇒ 3β ·D2(x, c∗jt) >
1

2
·D2(x, c∗jt)− 2 ·D2(x, c∗j )

(using assumption D2(x, ct) < β ·D2(x, c∗jt))

⇒ D2(x, c∗j ) >
(1 − 6β)

4
·D2(x, c∗jt)

⇒ w2(x) >
1

1 + 6/α
· w2

2(x) (since D2(x, c∗jt) ≥ w2
2(x) and β = 1−α/2

6+α )

This contradicts with Equation (3). Hence, we get that for any x ∈ B̄ and any
t ∈ {1, ..., i}, we have D2(x, ct) ≥ β ·D2(x, c∗jt). This proves the Lemma.

Let Wmin = mint∈[k]

(∑
x∈C∗

t ,x∈B̄ w2
2(x)

)
. Let Ci denote the set of centers

{c1, ..., ci} that are chosen in the first i iterations of SampAlg. Let Xi = ∪t∈JiC
∗
t

and X̄i = X \Xi. So, in some sense, Xi denote the points that are covered by the
algorithm after step i and X̄i are the uncovered points. For any subset of points
Y ∈ X , φCi(Y ) is the cost of the points in Y with respect to the centers Ci, i.e.,
φCi(Y ) =

∑
x∈Y minc∈Ci D

2(x, c). We can now present our next useful lemma
which says that the cost of the uncovered points is significant. Note that this
implies that the probability of a point being picked from an uncovered clusters
in step (i + 1) is significant.

Lemma 3. Let β = 1−α/2
6+α . φ{c1,...,ci}(X̄i) ≥ β · (k − i) ·Wmin.

Proof. This Lemma follows from the definition of Wmin and Lemma 2.
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We will need a few more definitions. The remaining analysis will be on the lines
of a similar analysis in [JG12]. Let Ei denote the event that the set Ji contains i
distinct indices from {1, ..., k}. This means that the first i sampled centers cover
i optimal clusters. The next Lemma is from [AV07] and shows that given that
event Ei happens, the expected cost of points in Xi with respect to Ci is at most
some constant times the optimal cost of Xi with respect to {c∗1, ..., c∗k}.
Lemma 4 (Lemma 3.1 and 3.2 in [AV07]). ∀i,E[φ{c1,...,ci}(Xi)|Ei] ≤ 4 ·
φ{c∗1 ,...,c∗k}(Xi).

The next Lemma (this is Lemma 4 in [JG12]) shows that the probability that
SampAlg returns a good solution depends on the probability of the event Ek,
i.e., the event that all the clusters get covered.

Lemma 5. Pr
[
φ{c1,...,ck}(X ) ≤ 8 · φ{c∗1,...,c∗k}(X )

]
≥ (1/2) · Pr[Ek]

Proof. From the previous Lemma, we know that E[φ{c1,...,ck}(X )|Ek ] ≤ 4 ·
φ{c∗1 ,...,c∗k}(X ). Using Markov, we get that Pr[φ{c1,...,ck}(X ) > 8 · φ{c∗1 ,...,c∗k}
(X )|Ek] ≤ 1/2. Removing the conditioning on Ek, we get the desired Lemma.

We will now argue in the remaining discussion that Pr[Ek] ≥ 1/k. This follows
from the next Lemma that shows that Pr[Ei+1|Ei] ≥ k−i

k−i+1 .

Lemma 6. Pr[Ei+1|Ei] ≥ k−i
k−i+1 .

Proof. Pr[Ei+1 | Ei] is just the conditional probability that the (i+ 1)th center
is chosen from the set X̄i given that the first i centers are chosen from i different
optimal clusters. This probability can be expressed as

Pr[Ei+1 | Ei] = E

[
φ{c1,...,ci}(X̄i)

φ{c1,...,ci}(X )
| Ei

]
(4)

For the sake of contradiction, let us assume that

E

[
φ{c1,...,ci}(X̄i)

φ{c1,...,ci}(X )
| Ei

]
= Pr[Ei+1 | Ei] <

k − i

k − i+ 1
(5)

Applying Jensen’s inequality, we get the following:

1

E
[
φ{c1,...,ci}(X )

φ{c1,...,ci}(X̄i)
| Ei

] ≤ E

[
φ{c1,...,ci}(X̄i)

φ{c1,...,ci}(X )
| Ei

]
<

k − i

k − i+ 1

This gives the following:

1 +
1

k − i
< E

[
φ{c1,...,ci}(X )

φ{c1,...,ci}(X̄i)
| Ei

]

= E

[
φ{c1,...,ci}(Xi) + φ{c1,...,ci}(X̄i)

φ{c1,...,ci}(X̄i)
| Ei

]
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= 1 +E

[
φ{c1,...,ci}(Xi)

φ{c1,...,ci}(X̄i)
| Ei

]

⇒ 1

k − i
≤ E

[
φ{c1,...,ci}(Xi)

β · (k − i) ·Wmin
| Ei

]
(using Lemma 3)

≤ E[φ{c1,...,ci}(Xi) | Ei]

β · (k − i) ·Wmin

≤ 4 · φ{c∗1 ,...,c∗k}(X )

β · (k − i) ·Wmin
(using Lemma 4)

⇒ Wmin

OPT
≤ 4

β
= 4 · 6 + α

1− α/2
(6)

The above gives us an upper bound on Wmin. Next, we get a lower bound
on Wmin that contradicts with the above bound. Let j be the index of the
optimal cluster such that

∑
x∈C∗

j ,x∈B̄ w2
2(x) is minimized. Note that Wmin =

∑
x∈C∗

j ,x∈B̄ w2
2(x). We note that for any x /∈ B1, we havew

2
2(x)−w2(x) ≥ α·OPT

εn .

This gives us the following:

∀x /∈ B1, x ∈ C∗
j , w

2
2(x) ≥

α ·OPT

εn

⇒ Wmin =
∑

x∈C∗
j ,x∈B̄

w2
2(x) ≥

α ·OPT

εn
· 52εn

α2
=

52

α
·OPT (7)

The above being true since all clusters are of size at least 60εn
α2 . Note that this

contradicts with equation (6) since α ≤ 1.

This concludes the proof of Theorem 1.

Proof (Proof of Theorem 2). We run through the same proof as discussed above
with the following quantities redefined as follows: Let B1 be the subset of points

in X̄i such that for any point x ∈ B1, w
2
2(x) − w2(x) ≤ α·OPT

εn . Let B2 denote

the subset of points in X̄i such that for every point x ∈ B2, w
2(x) ≥ OPT

6εn . Note
that from Lemma 1, we have that |B1| ≤ εn and |B2| ≤ 6εn. Let B = B1 ∪ B2

and B̄ = X̄i \ B. We have |B| ≤ 7εn. Now, we note that Lemma 3 works for

β = α−1/2
6+α . This changes equation (6) as follows:

Wmin

OPT
≤ 4

β
= 4 · 6 + α

α− 1/2
(8)

Furthermore, equation (7) gets modified to the following:

Wmin =
∑

x∈C∗
j ,x∈B̄

w2
2(x) ≥

α ·OPT

εn
· (56εn) = 56α ·OPT (9)

The above being true since all clusters are of size at least 70εn. Note that this
contradicts with equation (8) since α > 1.
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3 Small Cluster

In the previous section, we saw a positive result on datasets that have large
optimal clusters. In this section, we show that if the dataset have optimal clusters
that are small in size, then SampAlg may have a bad behavior. More formally,
we will prove Theorem 5 in this Section. We will need the following result from
[BR11] for proving this Theorem.

Theorem 6 (Theorem 1 from [BR11]). Let r : N → R be a real function.
If r(k) = δ∗ log k for a fixed real δ∗ ∈ (0, 2/3), then there is a class of instances
on which SampAlg achieves an r(k)-approximation with probability at most
e1−(3/2)δ∗−o(1).

Let XBR denote the dataset on which SampAlg gives an approximation factor

of ((1/3) log k′) with probability at most e−
√
k′−o(1) when solving the k′-means

problem. We will construct another dataset using XBR and show that SampAlg
behaves poorly on this dataset. We will need the following fact from [BR11] for
our analysis:

Fact 1 ([BR11]). OPT (k′,XBR) =
k′(k′−1)

2 .

Consider the dataset X = Xfar ∪ XBR where Xfar has the following properties:

1. XBR ∩ Xfar = φ,
2. |Xfar| = |XBR| ·

(
1
ε − 1

)
.

3. All points in Xfar are located at a point c such that the distance of every

point x ∈ XBR from c is at least 4 ·
√

(1+α)(k−1)(k−2)
2·|Xfar| .

We solve the k-means problem for k = k′+1 on the dataset X that has n = |XBR|
ε

points. Note that the size of the smallest optimal cluster for this dataset is of
size εn/k. We first observe cost of the optimal solution of X .

Lemma 7. OPT (k,X ) = k′(k′ − 1)/2.

Proof. This is simple using the Fact 1.

We now show that X has the (1 + α, ε)-approximation stability property.

Lemma 8. X satisfies the (1 + α, ε)-approximation stability property.

Proof. Consider any (1+α)-approximate solution for the dataset X . Let c1, ..., ck
be the centers with respect to this approximate solution.We have φ{c1,...,ck}(X ) ≤
(1+α) · (k− 1)(k− 2)/2. Consider the center in {c1, ..., ck} that is closest to the
point c. Let this center be cj . Then we note that:

D2(c, cj) ≤ (1 + α)(k − 1)(k − 2)

2 · |Xfar|
Since the distance of every point in XBR from point c is at least 4·

√
(1+α)(k−1)(k−2)

2·|Xfar| ,

we get that all points in Xfar are correctly classified. Furthermore, since the num-
ber of points in XBR is at most ε fraction of total points, we get that the total
number of mis-classified points cannot be more than εn and hence the data X
satisfies the (1 + α, ε) approximation stability property.
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4 Proof of Theorems 3 and 4

Consider the k-median problem with respect to a distance measure D(., .) that
satisfies the γ-symmetry and δ-approximate triangle inequality. The following
Lemma is a generalized version of the Lemma in [BBG09] for any given distance
measure. The proof remains the same as the proof of Lemma 3.1 in [BBG09].

Lemma 9 (Generalization of Lemma 3.1 in [BBG09]). If the dataset sat-
isfies (1 + ε, α)-approximation-stability for the k-median objective, then

(a) If ∀i, |C∗
i | ≥ 2εn, then less than εn points have w2(x)− w(x) ≤ α·OPT

εn .

(b) For any t > 0, at most tεn points have w(x) ≥ OPT
tεn .

where w(x) denotes the distance of the point x to the closest optimal center as per
the distance measure D and w2(x) is the distance to the second closest center.

We now prove a generalized version of Lemma 2 for distance measures that
satisfy γ-symmetry and δ-approximate triangle inequality. We can redefine some
of the previous quantities for this case. Let B1 be the subset of points in X̄i such

that for any point x ∈ B1, w2(x) − w(x) ≤ α·OPT
εn . Let B2 denote the subset

of points in X̄i such that for every point x ∈ B2, w(x) ≥ δ2α2·OPT
εn . Note that

from Lemma 9, we have that |B1| ≤ εn and |B2| ≤ εn
δ2α2 . Let B = B1 ∪ B2 and

we have |B| ≤ 2εn
δ2α2 . Let B̄ = X̄i.

Lemma 10. Let β =
δ2+ 1

α−1

(1+ 1
δ2α

)(1+δ)
. For any x ∈ B̄, we have D(x, ct) ≥ β ·

D(x, c∗jt).

Proof. Consider any point x ∈ B̄. Let x ∈ C∗
j . In other words, j is the index of

the optimal cluster to which x belongs. Note that w(x) = D(x, c∗j ) and w2(x) ≤
D(x, c∗jt). Please refer Figure 1 that shows this arrangement. For any x ∈ B̄, we
have:

w2(x) − w(x) ≥ α ·OPT

εn
≥ 1

δ2α
· w(x)

⇒ w2(x) ≥
(
1 +

1

δ2α

)
· w(x) (10)

We will now argue that D(x, ct) ≥ β · D(x, c∗jt). For the sake of contradiction,
assume that D(x, ct) < β ·D(x, c∗jt). Then we observe the following inequalities.

D(x, ct) +D(x, c∗j ) ≥ δ ·D(ct, c
∗
j )

(δ-approximate triangle inequality)

⇒ D(x, ct) +D(x, c∗j ) ≥ δ ·D(ct, c
∗
jt)

(since D(ct, c
∗
j ) ≥ D(ct, c

∗
jt
))

⇒ D(x, ct) +D(x, c∗j ) ≥ δ · (δ ·D(x, c∗jt)−D(x, ct))

(δ-approximate triangle inequality)
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⇒ (1 + δ) ·D(x, ct) ≥ δ2 ·D(x, c∗jt)−D(x, c∗j )

⇒ (1 + δ) · β ·D(x, c∗jt) > δ2 ·D(x, c∗jt)−D(x, c∗j )
(using assumption D(x, ct) < β ·D(x, c∗jt))

⇒ D(x, c∗j ) > (δ2 − β(1 + δ)) ·D(x, c∗jt)

⇒ w(x) >
1(

1 + 1
δ2α

) · w2(x)

(since D(x, c∗jt) ≥ w2(x) and β =
δ2+ 1

α−1

(1+ 1
δ2α

)(1+δ)
)

This contradicts with Equation (10). Hence, we get that for any x ∈ B̄ and any
t ∈ {1, ..., i}, we have D(x, ct) ≥ β ·D(x, c∗jt). This proves the Lemma.

The rest of the proof remains the same as that for the k-means problem of the
previous section. The main difference that arises due to the generalization is that
instead of using Lemma 4 we will have to use the following generalized version.
This is Lemma 3 in [JG12].

Lemma 11. ∀i,E[φ{c1,...,ci}(Xi)|Ei] ≤ 4
(γδ)2 · φ{c∗1 ,...,c∗k}(Xi).

So the approximation factor changes from 8 to 8/(γδ)2 due to this generalization.
Finally, equation (6) changes as follows:

Wmin

OPT
≤ 4

β
= 4 · (1 +

1
δ2α )(1 + δ)

δ2 + 1
α − 1

(11)

Furthermore, equation (7) gets modified to the following:

Wmin =
∑

x∈C∗
j ,x∈B̄

w2
2(x) ≥

α ·OPT

εn
· 18εn
δ2α2

=
18

δ2α
·OPT (12)

The above being true since all clusters are of size at least 20εn
δ2α2 . Note that this

contradicts with equation (11) since α ≤ 1.

Proof (Proof of Theorem 4). We run through the same proof as discussed above
with the following quantities redefined as follows: Let B1 be the subset of points

in X̄i such that for any point x ∈ B1, w
2
2(x)−w2(x) ≤ α·OPT

εn . Let B2 denote the

subset of points in X̄i such that for every point x ∈ B2, w
2(x) ≥ δ2·OPT

εn . Note
that from Lemma 1, we have that |B1| ≤ εn and |B2| ≤ εn/δ2. Let B = B1 ∪B2

and B̄ = X̄i. We have |B| ≤ 2εn/δ2. Now, we note that Lemma 3 works for

β = δ2+α−1
(1+α/δ2)(1+δ) . This changes equation (6) as follows:

Wmin

OPT
≤ 4

β
= 4 · (1 + α/δ2)(1 + δ)

δ2 + α− 1
(13)

Furthermore, equation (7) gets modified to the following:

Wmin =
∑

x∈C∗
j ,x∈B̄

w2
2(x) ≥

α ·OPT

εn
· (18εn/δ2) = 18α

δ2
·OPT (14)
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The above being true since all clusters are of size at least 20εn/δ2. Note that
this contradicts with equation (13) since α > 1.

Acknowledgements. Ragesh Jaiswal would like to thank the anonymous ref-
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