
Throughput Maximization for Speed-Scaling

with Agreeable Deadlines�

Eric Angel1, Evripidis Bampis2, Vincent Chau1, and Dimitrios Letsios1

1 IBISC ; Université d’Évry, Évry, France
{Eric.Angel,Vincent.Chau,Dimitris.Letsios}@ibisc.univ-evry.fr

2 LIP6 ; Université Pierre et Marie Curie; Paris, France
Evripidis.Bampis@lip6.fr

Abstract. We are given a set of n jobs and a single processor that can
vary its speed dynamically. Each job Jj is characterized by its process-
ing requirement (work) pj , its release date rj and its deadline dj . We
are also given a budget of energy E and we study the scheduling prob-
lem of maximizing the throughput (i.e. the number of jobs which are
completed on time). We show that the problem can be solved by dy-
namic programming when all the jobs are released at the same time in
O(n4 log n logP), where P is the sum of the processing requirements of
the jobs. For the more general case of agreeable deadlines, where the
jobs can be ordered such that for every i < j, both ri ≤ rj and di ≤ dj ,
we propose a dynamic programming algorithm solving the problem op-
timally in O(n6 log n logP). In addition, we consider the weighted case
where every job j is also associated with a weight wj and we are in-
terested in maximizing the weighted throughput. For this case, we prove
that the problem becomes NP-hard in the ordinary sense and we propose
a pseudo-polynomial time algorithm.

1 Introduction

The problem of scheduling n jobs with release dates and deadlines on a single
processor that can vary its speed dynamically with the objective of minimizing
the energy consumption has been first studied in the seminal paper by Yao,
Demers and Shenker [3]. In this paper, we consider the problem of maximizing
the throughput for a given budget of energy. Formally, we are given a set of n
jobs J = {J1, J2, . . . , Jn}, where each job Jj is characterized by its processing
requirement (work) pj , its release date rj and its deadline dj . (For simplicity, we
suppose that the earliest released job is released at t = 0.) We assume that the
jobs have to be executed by a single speed-scalable processor, i.e. a processor
which can vary its speed over time (at a given time, the processor’s speed can
be any non-negative value). The processor can execute at most one job at each
time. We measure the processor’s speed in units of executed work per unit of

� This work has been supported by the ANR project TODO (09-EMER-010), by
PHC CAI YUANPEI (27927VE) and by the ALGONOW project of the THALES
program.

T-H.H. Chan, L.C. Lau, and L. Trevisan (Eds.): TAMC 2013, LNCS 7876, pp. 10–19, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Throughput Maximization for Speed-Scaling with Agreeable Deadlines 11

time. If s(t) denotes the speed of the processor at time t, then the total amount
of work executed by the processor during an interval of time [t, t′) is equal to
∫ t′

t s(u)du. Moreover, we assume that the processor’s power consumption is a
convex function of its speed. Specifically, at any time t, the power consumption
of the processor is P (t) = s(t)α, where α > 1 is a constant. Since the power
is defined as the rate of change of the energy consumption, the total energy

consumption of the processor during an interval [t, t′) is
∫ t′

t
s(u)αdu. Note that

if the processor runs at a constant speed s during an interval of time [t, t′), then
it executes (t′ − t) · s units of work and it consumes (t′ − t) · sα units of energy.
Each job Jj can start being executed after or at its release date rj . Moreover,
we allow the preemption of jobs, i.e. the execution of a job may be suspended
and continued later from the point of suspension. Given a budget of energy E,
our objective is to find a schedule of maximum throughput whose energy does
not exceed the budget E, where the throughput of a schedule is defined as the
number of jobs which are completed on time, i.e. before their deadline. Observe
that a job is completed on time if it is entirely executed during the interval
[rj , dj). By extending the well-known 3-field notation by Graham et al. [2], this
problem can be denoted as S1|pmtn, rj|

∑
Uj(E). We also consider the weighted

version of the problem where every job j is also associated with a weight wj and
the objective is no more the maximization of the cardinality of the jobs that
are completed on time, but the maximization of the sum of their weights. We
denote this problem as S1|pmtn, rj |

∑
wjUj(E). In what follows, we consider

the problem in the case where either all jobs have a release date equal to 0 and
for an important family of instances, the agreeable instances for which the jobs
can be ordered such that for every i < j, both ri ≤ rj and di ≤ dj .

1.1 Related Works and Our Contribution

Up to the best of our knowledge no work exists for the off-line case of our
problem. On the contrary, some works exist for some online variants of through-
put maximization: the first work that considered throughput maximization and
speed scaling in the online setting has been presented by Chan et al. [9]. They
considered the single processor case with release dates and deadlines and they
assumed that there is an upper bound on the processor’s speed. They are in-
terested in maximizing the throughput and minimizing the energy among all
the schedules of maximum throughput. They presented an algorithm which is
O(1)-competitive with respect to both objectives. In [8] Bansal et al. improved
the results of [9], while in [13], Lam et al. studied the 2-processor environment.
In [11], Chan et al. defined the energy efficiency of a schedule to be the total
amount of work completed in time divided by the total energy usage. Given
an efficiency threshold, they considered the problem of finding a schedule of
maximum throughput. They showed that no deterministic algorithm can have
competitive ratio less than Δ, the ratio of the maximum to the minimum jobs’
processing requirement. However, by decreasing the energy efficiency of the on-
line algorithm the competitive ratio of the problem becomes constant. Finally,

12 E. Angel et al.

in [10], Chan et al. studied the problem of minimizing the energy plus a rejec-
tion penalty. The rejection penalty is a cost incurred for each job which is not
completed on time and each job is associated with a value which is its impor-
tance. The authors proposed an O(1)-competitive algorithm for the case where
the speed is unbounded and they showed that no O(1)-competitive algorithm
exists for the case where the speed is bounded.

The paper is organized as follows: we first present an optimal algorithm for
the case where all the jobs are released at time 0, and then we present another
algorithm for the more general case with agreeable deadlines. The reason of
presenting both these cases is that in the first case we have a complexity of
O(n4 logn logP) which is better than the one in the second case where the
complexity becomes O(n6 logn logP). Finally, we consider the weighted case
where we are interested in maximizing the weighted throughput. For this case,
we prove that the problem is NP-hard in the ordinary sense and we propose a
pseudo-polynomial time algorithm.

2 Preliminaries

Given that the processor’s speed can be varied, a reasonable distinction of the
scheduling problems that can be considered is the following:

– FS (Fixed Speed): The processor has a fixed speed which implies directly a
processing time for each job. In this case, the scheduler has to decide which
job must be executed at each time. This is the classical scheduling setting.

– CS (Constant Speed): The processor’s speed is not known in advance but it
can only run at a single speed during the whole time horizon. In this context,
the scheduler has to define a single value of speed at which the processor
will run and the job executed at each time.

– SS (Scalable Speed): The processor’s speed can be varied over the time and,
at each time, the scheduler has to determine not only which job to run, but
the processor’s speed as well.

3 Properties of the Optimal Schedule

Among the schedules of maximum throughput, we try to find the one of minimum
energy consumption. Therefore, if we knew by an oracle the set of jobs J∗,
J∗ ⊆ J , which are completed on time in an optimal solution, we would simply
have to apply an optimal algorithm for S1|pmtn, rj, dj |E for the jobs in J∗ in
order to determine a minimum energy schedule of maximum throughput for our
problem. Based on this observation, we can use in our analysis some properties
of an optimal schedule for S1|pmtn, rj , dj |E.

Let t1, t2, . . . , tk be the time points which correspond to release dates and
deadlines of the jobs so that for each release date and deadline there is a ti
value that corresponds to it. We number the ti values in increasing order, i.e.
t1 < t2 < . . . < tk. The following theorem comes from [3].

Throughput Maximization for Speed-Scaling with Agreeable Deadlines 13

Theorem 1. A feasible schedule for S1|pmtn, rj, dj |E is optimal if and only if
all the following hold:

1. Each job Jj is executed at a constant speed sj.
2. The processor is not idle at any time t such that t ∈ (rj , dj], for all Jj ∈ J .
3. The processor runs at a constant speed during any interval (ti, ti+1],

for 1 ≤ i ≤ k − 1.
4. A job Jj is executed during any interval (ti, ti+1] (1 ≤ i ≤ k − 1), if it

has been assigned the maximum speed among the speeds of the jobs Jj′ with
(ti, ti+1] ⊆ (rj′ , dj′].

Theorem 1 is also satisfied by the optimal schedule of S1|pmtn, rj|
∑

Uj(E) for
the jobs in J∗.

4 Agreeable Deadlines

For the special case of the problem S1|pmtn, rj|
∑

Uj(E) where the deadlines
of the jobs are agreeable we propose an optimal algorithm which is based on
dynamic programming. As mentioned before, among the schedules of maximum
throughput, our algorithm constructs a schedule of minimum energy consump-
tion. Next, we describe our dynamic program and we elaborate on the complexity
of our algorithm.

Initially, we consider the problem 1|pmtn, rj |
∑

Uj which is a classical schedul-
ing problem where we are given a set of jobs J = {J1, J2, . . . , Jn} that have to
be executed by a single processor. Each job Jj is associated with a processing
time pj , a release date rj and a deadline dj . The objective is to find a sched-
ule of maximum throughput. We refer to the problem as FS. This problem is
polynomially-time solvable and the fastest known algorithm for general instances
is in O(n4) [1]. When all the release dates are equal, this problem can be solved
in O(n logn) with Moore’s algorithm [5]. Finally, if the jobs have agreeable dead-
lines, the time complexity is also in O(n log n) using Lawler’s algorithm [7].

Next, we consider another problem which we denote as CS. In this problem we
are given a set of jobs J = {J1, J2, . . . , Jn}, where each job Jj has a processing
requirement pj , a release date rj and a deadline dj , that have to be executed by
a single speed scalable processor. Moreover, we are given a value of throughput
k. The objective is to find the minimum energy schedule which completes at
least k jobs on time so that all jobs that are completed on time are assigned
equal speed and the jobs not completed on time have zero speed. For notational
convenience, we denote the problem S1|pmtn, rj|

∑
Uj(E) as SS.

The inspiration for our dynamic programming for the special case of the SS
where the deadlines are agreeable was the fact that the problem CS can be solved
in polynomial time by repeatedly solving instances of the problem FS. In fact, if
we are given a candidate speed s for the CS problem, we can find a schedule of
maximum throughput w.r.t. to s simply by setting the processing time of each
job Jj equal to

pj

s and applying an optimal algorithm for the FS problem. So,
in order to get an optimal algorithm of the CS problem, it suffices to establish a

14 E. Angel et al.

lower and upper bound on the speed of the optimal schedule. A naive choice is
smin = 0 and smax = ∞. Then, it suffices to binary search in [smin, smax] and
find the minimum speed s∗ in which k jobs are completed on time.

Property 1. There exists an optimal solution in which all jobs are scheduled
according to edf (Earliest Deadline First) order and without preemption.

This property comes from the fact that the algorithm of [3] is optimal and that
we have an agreeable instance.

In the following, we assume that the jobs J1, J2, . . . , Jn are sorted according
to the edf order, i.e. d1 ≤ d2 ≤ . . . ≤ dn.

4.1 Special Case When r = 0

For a subset of jobs S ⊆ J , a schedule which involves only the jobs in S will be
called a S-schedule.

Definition 1. Let J(k) = {Jj|j ≤ k} be the set of the first k jobs according to
the edf order. For 1 ≤ u ≤ |J(k)|, we define E(k, u) as the minimum energy
consumption of an S-schedule such that |S| = u and S ⊆ J(k). If such a schedule
does not exist, i.e. when u > |J(k)|, then E(k, u) = +∞.

Definition 2. We define B(t′, t, �) as the minimum energy consumption of an
S-schedule such that |S| = �, S ⊆ {Jj|t′ < dj ≤ t} and such that all these jobs
are scheduled only within the interval [t′, t], and with a constant common speed.
If such a schedule does not exist, then B(t′, t, �) = +∞.

Proposition 1. B(dj , dk, �) can be computed in O(n log n logP) time, for any
j, k, �, with P =

∑
j pj.

Proof. In order to compute B(dj , dk, �), we consider the set of jobs {Jj′ |dj <
dj′ ≤ dk}. For each job in this set, we modify its release date to dj . Since we
want the minimum energy consumption and there is only one speed, we search
the minimum speed such that there are exactly � jobs scheduled. This minimum
speed can be found by performing a binary search in the interval [0, smax], with
smax = P/(dk−dj). For every speed s, the processing time of a job Jj is tj = pj/s,
and we compute the maximum number m of jobs which can be scheduled using
Moore’s algorithm [5] in O(n log n). If m < � (resp. m > �) the speed s must be
increased (resp. decreased). ��
Proposition 2. One has

E(k, u) = min{E(k − 1, u), B(0, dk, u), min
1≤j<k
1≤�<u

{E(j, �) +B(dj , dk, u− �)}}.

Proof. Let S be an optimal schedule associated with E(k, u). We can assume
that this schedule satisfies the properties of Theorem 1 and Property 1.

If Jk /∈ S, then E(k, u) = E(k − 1, u). If Jk ∈ S, then there are two cases to
consider. The first case is when all the jobs in S are scheduled at the same speed.

Throughput Maximization for Speed-Scaling with Agreeable Deadlines 15

This case is equivalent to the CS problem, and one has E(k, u) = B(0, dk, u).
The second case is when the schedule S has at least two different speeds. Let Cj

be the completion time of job Jj in the schedule S. Let t = minj{Cj | all the jobs
scheduled after Jj (at least one job) are executed with the same speed } = Cj∗ .
Necessarily, job Jj∗ is executed with a different speed. This means that at time
Cj∗ the processor is changing its speed, and using Property 3. of Theorem 1
we can deduce that Cj∗ = dj∗ . Now we consider the subschedule S1 obtained
from S by considering only the tasks executed during the interval [0, dj∗). Let us
assume that there are �∗ tasks in this subschedule. Then, necessarily the energy
consumption of S1 is equal to E(j∗, �∗), otherwise by replacing S1 with a better
subschedule with energy consumption E(j∗, �∗) we could obtain a better schedule
than S. Now we consider the subschedule S2 obtained from S by considering only
the tasks executed from time dj∗ until the end of the schedule. In a similar way,
the energy consumption of S2 is equal to B(dj∗ , dk, u− �∗).

Notice that since the jobs involved in E(j, �) have a deadline smaller or equal
to dj , whereas the jobs involved in B(dj , dk, u− l) have a deadline greater than
dj , those sets of jobs are always distinct, and therefore the schedule associated
with E(j, �) +B(dj , dk, u− �) is always feasible. ��
Theorem 2. The problem S1|pmtn, rj = 0|∑Uj(E) can be solved in
O(n4 logn logP) time.

Proof. We use a dynamic program based on Proposition 2, with E(0, u) = +∞,
∀u > 0. The maximum throughput is equal to max{u|E(n, u) ≤ E}.

The number of values B(dj , dk, �) is O(n3). They can be precomputed with
a total processing time O(n4 logn logP), using Proposition 1. The number of
values E(k, u) is O(n2), and the complexity to calculate each E(k, u) value is
O(n2) (we have to look for O(n2) values for j, � and we assume that the previ-
ous E(., .) values have already been computed). Thus the overall complexity is
O(n4 logn logP). ��

4.2 Agreeable Deadlines

Definition 3. We define Ek(t, u) as the minimum energy consumption of an
S-schedule, such that |S| = u, S ⊆ J(k, t) = {Jj |j ≤ k, rj < t} and such that all
these jobs are executed within the interval [rmin, t]. If such a schedule does not
exist, then Ek(t, u) = +∞.

Definition 4. We define A(t′, t, �, j, k) as the minimum energy consumption of
a S-schedule such that |S| = �, S ⊆ {Jj, . . . , Jk}, and such that all these jobs
are scheduled within the interval [t′, t], and with a constant common speed.

Proposition 3. A(t′, t, �, j, k) can be computed in O(n logn logP) time, for any
t′, t, �, j, k.

Proof. In order to compute A(t′, t, �, j, k), we change the release date of job Jj
to t′ if rj < t′, and the deadline of job Jj to t if dj > t. The set {Jj, . . . Jk} still

16 E. Angel et al.

has agreeable deadlines. Then we proceed as in the proof of Proposition 1 using
a binary search over the interval [0, smax], with smax = P/(t− t′). Note that in
this case, we use Lawler’s algorithm in [7]. ��
Proposition 4. One has

Ek(t, u) = min
rmin≤t′≤t,0≤j<k

0≤�≤u

{

Ej(t
′, �) +A(t′, t, u− �, j + 1, k)

}

.

Proof. Let S be an optimal schedule associated with Ek(t, u). We can assume
that this schedule satisfies the properties of Theorem 1 and Property 1.

If Jk /∈ S, then Ek(t, u) = Ek−1(t, u). In that case, t′ = t, j = k− 1 and � = u
in the above expression. If Jk ∈ S, then there are two cases to consider. The first
case is when the optimal schedule S has one speed. In that case t′ = rmin, � = 0,
j = 0 in the above expression. This case is equivalent to the CS problem. The
second case is when the optimal schedule S has at least two speeds. In that case
we proceed as in the Proposition 2, we split the schedule S into two subschedules
S1 and S2 (see the figure below).

ts t′

� jobs u− � jobs

There exists t′ with rmin < t′ < t, such that all the jobs scheduled after
t′ are scheduled with a common speed, and this is the subschedule S2. The
subschedule S1 (resp. S2) has an energy consumption equal to Ej(t

′, �) (resp.
A(t′, t, u− �, j + 1, k)). Notice that we have to guess the value of j and � in the
first subschedule, and the sets of jobs in the second subschedule depend on the
first one. ��
Theorem 3. The problem S1|pmtn, agreeable|∑Uj(E) can be solved in
O(n6 logn logP) time.

Proof. We use a dynamic program based on Proposition 4. Notice that the im-
portant dates are included in the set Θ = {rj|1 ≤ j ≤ n} ∪ {dj |1 ≤ j ≤ n}.
This comes from the Property 1 and Theorem 1, i.e. the changes of speed of the
processor occur only at some release date or some deadline. Therefore we can
always assume that t′, t ∈ Θ. Notice also that |Θ| = O(n).

We define E0(t, 0) = 0 ∀t ∈ Θ, and E0(t, u) = +∞ ∀u > 0, t ∈ Θ. The
maximum throughput is equal to max{u|En(dmax, u) ≤ E}.

The number of values A(t′, t, �, j, k) is O(n5). They can be precomputed with
a total processing time O(n6 logn logP), using Proposition 3. The number of

Throughput Maximization for Speed-Scaling with Agreeable Deadlines 17

values Ek(t, u) is O(n3). To compute each value, we have to look for the O(n3)
cases (for each value of t′, j, �). In each case, we pick up two values which are
already computed. Thus the Ek(t, u) values are computed in O(n6) time. The
overall complexity is O(n6 logn logP). ��

4.3 Weighted Version

Next we consider the weighted version of our problem, i.e.
S1|pmtn, rj|

∑
j wjUj(E). In this version a job Jj is defined by its release

date rj , its deadline dj , its amount of work pj and its weight wj . We want to
maximize the total weight of the jobs scheduled. We first show that the problem
is NP-hard even in the case where all the jobs are released at the same time
and have equal deadlines. Then, we present a pseudo-polynomial algorithm for
the case where the deadlines are agreeable.

Theorem 4. The problem S1||∑j wjUj(E) is NP hard.

Proof. In order to establish the NP-hardness of S1||∑j wjUj(E), we present a
reduction from the Knapsack problem which is known to be NP-hard. In an
instance of the Knapsack problem we are given a set I of n items. Each item
i ∈ I has a value vi and a capacity ci. Moreover, we are given a capacity C,
which is the capacity of the knapsack, and a value V . In the decision version of
the problem we ask whether there exists a subset I ′ ⊆ I of the items of total
value not less than V , i.e.

∑
i∈I′ vi ≥ V , whose capacity does not exceed the

capacity of a knapsack, i.e.
∑

i∈I′ ci ≤ C.
Given an instance of the Knapsack problem, we construct an instance of

S1||∑j wjUj(E) as follows. For each item i, 1 ≤ i ≤ n, we introduce a job Ji
with ri = 0, di = 1, wi = vi and pi = ci. Moreover, we set the budget of energy
equal to E = Cα.

We claim that the instance of the Knapsack problem is feasible iff there is
a feasible schedule for S1||∑j wjUj(E) of total weighted throughput not less
than V .

Assume that the instance of the Knapsack is feasible. Therefore, there exists
a subset of items I ′ such that

∑
i∈I′ vi ≥ V and

∑
i∈I′ ci ≤ C. Then we can

schedule the jobs in I ′ with constant speed
∑

i∈I′ ci during [0, 1]. Their total
energy consumption of this schedule is no more that Cα since the instance of
the Knapsack is feasible. Moreover, their total weight is no less than V .

For the opposite direction of our claim, assume there is a feasible schedule for
S1||∑j wjUj(E) of total weighted throughput not less than V . Let J ′ be the
jobs which are completed on time in this schedule. Clearly, due to the convexity
of the speed-to-power function, the schedule that executes the jobs in J ′ with
constant speed during the whole interval [0, 1] is also feasible. Since the latter
schedule is feasible, we have that

∑
j∈J′ pj ≤ C. Moreover,

∑
j∈J′ wj ≥ V .

Therefore, the items which correspond to the jobs in J ′ form a feasible solution
for the Knapsack. ��

18 E. Angel et al.

In this part, we propose a pseudo-polynomial time algorithm based on a dynamic
programming algorithm for the Knapsack problem.

Definition 5. We redefine Ek(t, w) to be the minimum energy consumption of
a S-schedule, with S ⊆ J(k, t) = {Jj |j ≤ k, rj < t}, such that all the jobs in S
are scheduled within the interval [rmin, t] and such that the sum of their weight
is at least w. If such a schedule does not exist, then Ek(t, w) = +∞.

We redefine A(t′, t, w, j, k) to be the minimum energy consumption of a S-
schedule such that S ⊆ {Jj, . . . , Jk}, w(S) ≥ w and such that these jobs are
scheduled within the interval [t′, t], and with a constant common speed.

Proposition 5. A(t′, t, w, j, k) can be computed in O(nW logP) time, where W
is the sum of weights of the jobs.

Proof. The proof is similar to Proposition 3. In this case, we use Lawler’s
algorithm in [6]. ��
Lemma 1. One has

Ek(t, w) = min
rmin≤t′≤t,0≤j<k

0≤�≤w

{

Ej(t
′, �) +A(t′, t, w − �, j + 1, k)

}

.

Proof. The proof is similar to the Proposition 4. ��
Theorem 5. The problem S1|pmtn, agreeable|∑j wjUj(E) can be solved in

O(n5W 2 logP) time.

Proof. We use a dynamic program based on Proposition 5, with E0(t, 0) = 0
∀t ∈ Θ and E0(t, w) = +∞ ∀w > 0, t ∈ Θ. The maximum weighted throughput
is obtained with max{w|En(dmax, w) ≤ E}. The number of values A(t′, t, �, j, k)
is O(n4W). They can be precomputed and finally it takes O(n5W 2 logP) time.
The number of values Ek(t, u) is O(n2W). To compute each value, we have to
look for the O(n2W) cases (for each value of t′, j, �). In each case, we pick up
two values which are already computed. Thus the Ek(t, u) values are computed
in O(n4W 2) time. Thus the overall complexity is O(n5W 2 logP). ��

5 Future Work

While the throughput maximization problem is polynomially-time solvable for
agreeable deadlines its complexity remains open for general instances. This is a
challenging open question for future research.

References

1. Baptiste, P.: An O(n4) algorithm for preemptive scheduling of a single machine
to minimize the number of late jobs. Operations Research Letters 24(4), 175–180
(1999)

Throughput Maximization for Speed-Scaling with Agreeable Deadlines 19

2. Graham, R.L., Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G.: Optimization
and Approximation in Deterministic Sequencing and Scheduling: A Survey. Annals
of Operations Research 5, 287–326 (1979)

3. Yao, F.F., Demers, A.J., Shenker, S.: A Scheduling Model for Reduced CPU En-
ergy. In: Symposium on Foundations of Computer Science (FOCS), pp. 374–382
(1995)

4. Kise, H., Ibaraki, T., Mine, H.: A Solvable Case of the One-Machine Scheduling
Problem with Ready and Due Times. Operations Research Letters 26(4), 121–126
(1978)

5. Moore, J.M.: An n job, one machine sequencing algorithm for minimizing the
number of late jobs. Management Science 15, 102–109 (1968)

6. Lawler, E.L.: A dynamic programming algorithm for preemptive scheduling of a
single machine to minimize the number of late jobs. Annals of Operations Re-
search 26, 125–133 (1990)

7. Lawler, E.L.: Knapsack-like scheduling problems, the Moore-Hodgson algorithm
and the ‘tower of sets’ property. Mathematical and Computer Modeling, 91–106
(1994)

8. Bansal, N., Chan, H.-L., Lam, T.-W., Lee, L.-K.: Scheduling for Speed Bounded
Processors. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125,
pp. 409–420. Springer, Heidelberg (2008)

9. Chan, H.-L., Chan, W.-T., Lam, T.W., Lee, L.-K., Mak, K.-S., Wong, P.W.H.:
Energy Efficient Online Deadline Scheduling. In: SODA 2007, pp. 795–804 (2007);
ACM Transactions on Algorithms

10. Chan, H.-L., Lam, T.-W., Li, R.: Tradeoff between Energy and Throughput for
Online Deadline Scheduling. In: Jansen, K., Solis-Oba, R. (eds.) WAOA 2010.
LNCS, vol. 6534, pp. 59–70. Springer, Heidelberg (2011)

11. Chan, J.W.-T., Lam, T.-W., Mak, K.-S., Wong, P.W.H.: Online Deadline Schedul-
ing with Bounded Energy Efficiency. In: Cai, J.-Y., Cooper, S.B., Zhu, H. (eds.)
TAMC 2007. LNCS, vol. 4484, pp. 416–427. Springer, Heidelberg (2007)

12. Li, M.: Approximation Algorithms for Variable Voltage Processors: Min Energy,
Max Throughput and Online Heuristics. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.)
ISAAC 2009. LNCS, vol. 5878, pp. 372–382. Springer, Heidelberg (2009)

13. Lam, T.-W., Lee, L.-K., To, I.K.K., Wong, P.W.H.: Energy Efficient Deadline
Scheduling in Two Processor Systems. In: Tokuyama, T. (ed.) ISAAC 2007. LNCS,
vol. 4835, pp. 476–487. Springer, Heidelberg (2007)

	Throughput Maximization for Speed-Scaling
with Agreeable Deadlines
	Introduction
	Related Works and Our Contribution

	Preliminaries
	Properties of the Optimal Schedule
	Agreeable Deadlines
	Special Case When r=0
	Agreeable Deadlines
	Weighted Version

	Future Work
	References

