
Computing with and without Arbitrary Large

Numbers

Michael Brand

Faculty of IT, Monash University
Clayton, VIC 3800, Australia

michael.brand@alumni.weizmann.ac.il

Abstract. In the study of random access machines (RAMs) it has been
shown that the availability of an extra input integer, having no special
properties other than being sufficiently large, is enough to reduce the
computational complexity of some problems. However, this has only been
shown so far for specific problems. We provide a characterization of the
power of such extra inputs for general problems.

To do so, we first correct a classical result by Simon and Szegedy
(1992) as well as one by Simon (1981). In the former we show mistakes
in the proof and correct these by an entirely new construction, with
no great change to the results. In the latter, the original proof direction
stands with only minor modifications, but the new results are far stronger
than those of Simon (1981).

In both cases, the new constructions provide the theoretical tools re-
quired to characterize the power of arbitrary large numbers.

Keywords: integer RAM, complexity, arbitrary large number.

1 Introduction

The Turing machine (TM), first introduced in [1], is undoubtedly the most fa-
miliar computational model. However, for algorithm analysis it often fails to
adequately represent real-life complexities, for which reason the random access
machine (RAM), closely resembling the intuitive notion of an idealized computer,
has become the common choice in algorithm design. Ben-Amram and Galil [2]
write “The RAM is intended to model what we are used to in conventional
programming, idealized in order to be better accessible for theoretical study.”

Here, “what we are used to in conventional programming” refers, among other
things, to the ability to manipulate high-level objects by basic commands. How-
ever, this ability comes with some unexpected side effects. For example, one can
consider a RAM that takes as an extra input an integer that has no special prop-
erty other than being “large enough”. Contrary to intuition, it has been shown
that such arbitrary large numbers (ALNs) can lower problem time complexi-
ties. For example, [3] shows that the availability of ALNs lowers the arithmetic
time complexity1 of calculating 22

x

from Θ(x) to Θ(
√
x). However, all previous

1 Arithmetic complexity is the computational complexity of a problem under the
RAM[+, ,×,÷] model, which is defined later on in this section.

T-H.H. Chan, L.C. Lau, and L. Trevisan (Eds.): TAMC 2013, LNCS 7876, pp. 181–192, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

182 M. Brand

attempts to characterize the contribution of ALNs dealt with problem-specific
methods of exploiting such inputs, whereas the present work gives, for the first
time, a broad characterization of the scenarios in which arbitrary numbers do
and those in which they do not increase computational power.

In order to present our results, we first redefine, briefly, the RAM model. (See
[4] for a more formal introduction.)

Computations on RAMs are described by programs. RAM programs are sets
of commands, each given a label. Without loss of generality, labels are taken
to be consecutive integers. The bulk of RAM commands belong to one of two
types. One type is an assignment. It is described by a triplet containing a k-ary
operator, k operands and a target. The other type is a comparison. It is given
two operands and a comparison operator, and is equipped with labels to proceed
to if the comparison is evaluated as either true or false. Other command-types
include unconditional jumps and execution halt commands.

The execution model for RAM programs is as follows. The RAM is considered
to have access to an infinite set of registers, each marked by a non-negative
integer. The input to the program is given as the initial state of the first registers.
The rest of the registers are initialized to 0. Program execution begins with the
command labeled 1 and proceeds sequentially, except in comparisons (where
execution proceeds according to the result of the comparison) and in jumps.
When executing assignments, the k-ary operator is evaluated based on the values
of the k operands and the result is placed in the target register. The output of
the program is the state of the first registers at program termination.

In order to discuss the computational power of RAMs, we consider only RAMs
that are comparable in their input and output types to TMs. Namely, these will
be the RAMs whose inputs and outputs both lie entirely in their first register.
We compare these to TMs working on one-sided-infinite tapes over a binary
alphabet, where “0” doubles as the blank. A RAM will be considered equivalent
to a TM if, given as an input an integer whose binary encoding is the initial
state of the TM’s tape, the RAM halts with a non-zero output value if and only
if the TM accepts on the input.

Furthermore, we assume, following e.g. [5], that all explicit constants used as
operands in RAM programs belong to the set {0, 1}. This assumption does not
make a material difference to the results, but it simplifies the presentation.

In this paper we deal with RAMs that use non-negative integers as their reg-
ister contents. This is by far the most common choice. A RAM will be indicated
by RAM[op], where op is the set of basic operations supported by the RAM.
These basic operations are assumed to execute in a single unit of time. We use
the syntax f(n)-RAM[op] to denote the set of problems solvable in f(n) time
by a RAM[op], where n is the bit-length of the input. Replacing “RAM[op]” by
“TM” indicates that the computational model used is a Turing machine.

Note that because registers only store non-negative integers, such operations
as subtraction cannot be supported without tweaking. The customary solu-
tion is to replace subtraction by “natural subtraction”, denoted “ ” and de-

fined by a b
def
= max(a − b, 0). We note that if the comparison operator “≤”

Computing with and without Arbitrary Large Numbers 183

(testing whether the first operand is less than or equal to the second operand) is
not supported by the RAM directly, the comparison “a ≤ b” can be simulated by
the equivalent equality test “a b = 0”. Testing for equality is always assumed
to be supported.

By the same token, regular bitwise negation is not allowed, and ¬a is tweaked
to mean that the bits of a are negated only up to and including its most signifi-
cant “1” bit.

Operands to each operation can be explicit integer constants, the contents
of explicitly named registers or the contents of registers whose numbers are
specified by other registers. This last mode, which can also be used to define the
target register, is known as “indirect addressing”. In [6] it is proved that for the
RAMs considered here indirect addressing has no effect. We therefore assume
throughout that it is unavailable to the RAMs.

The following are two classical results regarding RAMs. Operations appearing
in brackets within the operation list are optional, in the sense that the theorem
holds both when the operation is part of op and when it is not.

Theorem 1 ([7]). PTIME-RAM[+, [], [×],←, [→],Bool] = PSPACE

and

Theorem 2 ([8]). PTIME-RAM[+, , /,←,Bool;≤] = ER, where ER is the set
of problems solvable by Turing machines in

22
. .

.
2}

n (1)

time, where n is the length of the input.

Here, “/” indicates exact division, which is the same as integer division (denoted
“÷”) but is only defined when the two operands divide exactly. The operations
“←” and “→” indicate left shift (a← b = a×2b) and right shift (a→ b = a÷2b),
respectively, and Bool is shorthand for the set of all bitwise Boolean functions.

In this paper, we show that while Theorem 1 is correct, its original proof
is not. Theorem 2, on the other hand, despite being a classic result and one
sometimes quoted verbatim (see, e.g., [9]), is, in fact, erroneous.

We re-prove the former here, and replace the latter by a stronger result, for
the introduction of which we first require several definitions.

Definition 1 (Expansion Limit). Let M = Mop(t, inp) be the largest number
that can appear in any register of a RAM[op] working on inp as its input, during
the course of its first t execution steps.

We define ELop(f(n)) to be the maximum of Mop(f(n), inp) over all values
of inp for which len(inp) ≤ n. This is the maximum number that can appear in
any register of a RAM[op] that was initialized by an input of length at most n,
after f(n) execution steps.

The subscript ‘op’ may be omitted if understood from the context.

184 M. Brand

As a slight abuse of notation, we use EL(t) to be the maximum of Mop(t, inp)
over all inp of length at most n, when n is understood from the context and t is
independent of n. (The following definition exemplifies this.)

Definition 2 (RAM-Constructability). A set of operations op is RAM-
constructable if the following two conditions are satisfied: (1) there exists a RAM
program that, given inp and t as its inputs, with n being the length of inp, returns
in O(t) time a value no smaller than ELop(t), and (2) each operation in op is
computable in EL(O(l)) space on a Turing machine, where l is the total length
of all operands and of the result.

Our results are as follows.

Theorem 3. For a RAM-constructable op ⊇ {+, /,←,Bool} and any function
f(n),

O(f(n))-RAM[op] = ELop(O(f(n)))-TM

= N-ELop(O(f(n)))-TM (2)

= ELop(O(f(n)))-SPACE-TM

= N-ELop(O(f(n)))-SPACE-TM ,

where the new notations refer to nondeterministic Turing machines, to space-
bounded Turing machines and to nondeterministic space-bounded Turing ma-
chines, respectively.

Among other things, this result implies for polynomial-time RAMs that their
computational power is far greater than ER, as was previously believed.

The theoretical tools built for proving Theorem 3 and re-proving Theorem 1
then allow us to present the following new results regarding the power of arbi-
trary large numbers.

Theorem 4. PTIME-ARAM[+, [], [×],←, [→],Bool] = PSPACE.

Theorem 5. Any recursively enumerable (r.e.) set can be recognized in O(1)
time by an ARAM[+, /,←,Bool].

Here, “ARAM” is the RAM model assisted by an arbitrary large number. For-
mally, we say that a set S is computable by an ARAM[op] in f(n) time if there
exists a Boolean function g(inp, x), computable in f(n) time on a RAM[op], such
that inp ∈ S implies g(inp, x) �= 0 for almost all x (all but a finite number of x)
whereas inp �∈ S implies g(inp, x) = 0 for almost all x. Here, n conventionally
denotes the bit length of the input, but other metrics are also applicable.

We see, therefore, that the availability of arbitrary numbers has no effect
on the computational power of a RAM without division. However, for a RAM
equipped with integer division, the boost in power is considerable, to the extent
that any problem solvable by a Turing machine in any amount of time or space
can be solved by an ARAM in O(1) time.

Computing with and without Arbitrary Large Numbers 185

2 Models without Division

2.1 Errata on [7]

We begin with a definition.

Definition 3 (Straight Line Program). A Straight Line Program (SLP),
denoted SLP[op], is a list of tuples, s2, . . . , sn, where each si is composed of an
operator, sopi ∈ op, and k integers, s1i , . . . , s

k
i , all in the range 0 ≤ sji < i, where

k is the number of operands taken by sopi . This list is to be interpreted as a set
of computations, whose targets are v0, . . . , vn, which are calculated as follows:
v0 = 0, v1 = 1, and for each i > 1, vi is the result of evaluating the operator sopi
on the inputs vs1i , . . . , vski . The output of an SLP is the value of vn.

A technique first formulated in a general form in [10] allows results on SLPs to be
generalized to RAMs. Schönhage’s theorem, as worded for the special case that
interests us, is that if there exists a Turing machine, running on a polynomial-
sized tape and in finite time, that takes an SLP[op] as input and halts in an
accepting state if and only if vn is nonzero, then there also exists a TM running
on a polynomial-sized tape that simulates a RAM[op]. This technique is used
both in [7] and in our new proof.

The proof of [7] follows this scheme, and attempts to create such a Turing
machine. In doing so, this TM stores monomial-based representations of certain
powers of two. These are referred to by the paper as “monomials” but are, for
our purposes, integers.

The main error in [7] begins with the definition of a relation, called “vicinity”,
between monomials, which is formulated as follows.

We define an equivalence relation called vicinity between monomials.
Let M1 and M2 be two monomials. Let B be a given parameter. If

M1/M2 < 22
B

[. . .], then M1 is in the vicinity of M2. The symmetric
and transitive closure of this relation gives us the full vicinity relation.
As it is an equivalence relation, we can talk about two monomials being
in the same vicinity (in the same equivalence class).

It is unclear from the text whether the authors’ original intention was to define
this relation in a universal sense, as it applies to the set of all monomials (essen-
tially, the set of all powers of two), or whether it is only defined over the set of
monomials actually used by any given program. If the former is correct, any two
monomials are necessarily in the same vicinity, because one can bridge the gap
between them by monomials that are only a single order of magnitude apart. If
the latter is correct, it is less clear what the final result is. The paper does not
argue any claim that would characterize the symmetric and transitive closure in
this case.

However, the paper does implicitly assume throughout that the vicinity re-

lation, as originally defined (in the M1/M2 < 22
B

sense) is its own symmetric
and transitive closure. This is used in the analysis by assuming for any Mi and

186 M. Brand

Mj which are in the same vicinity (in the equivalence relation sense) that they

also satisfy 2−(2B) < Mi/Mj < 22
B

, i.e. they are in the same vicinity also in the
restrictive sense.

Unfortunately, this claim is untrue. It is quite possible to construct an SLP
that violates this assumption, and because the assumption is central to the entire
algorithm, the proof does not hold.

We therefore provide here an alternate algorithm, significantly different from
the original, that bypasses the entire “vicinity” issue.

2.2 Our New Construction

Our proof adapts techniques from two previous papers: [11] (which uses lazy
evaluation to perform computations on operands that are too long to fit into a
polynomial-sized tape) and [12] (which stores operands in a hierarchical format
that notes only the positions of “interesting bits”, these being bit positions whose
values are different than those of the less significant bit directly preceding them).
The former method is able to handle multiplication but not bit shifting and the
latter the reverse. We prove Theorem 1 using a sequence of lemmas.

Lemma 1. In an SLP[+, ,×,←,→,Bool], the number of interesting bits in
the output vn grows at most exponentially with n. There exists a Turing machine
working in polynomial space that takes such an SLP as its input, and that outputs
an exponential-sized set of descriptions of bit positions, where bit positions are
described as functions of v0, . . . , vn−1, such that the set is a superset of the
interesting bit positions of vn.

The fact that the number of interesting bits grows only exponentially given this
operation set was noted in [7]. Our proof follows the reasoning of the original
paper.

Proof. Consider, for simplicity, the instruction set op = {+,×,←}. Suppose
that we were to change the meaning of the operator “←”, so that, instead of
calculating a ← b = a × 2b, its result would be a ← b = aX, where X is
a formal parameter, and a new formal parameter is generated every time the
“←” operator is used. The end result of the calculation will now no longer be
an integer but rather a polynomial in the formal parameters. The following are
some observations regarding this polynomial.

1. The number of formal parameters is at most n, the length of the SLP.
2. The power of each formal parameter is at most 2n−k, where k is the step

number in which the parameter was defined. (This exponent is at most dou-
bled at each step in the SLP. Doubling may happen, for example, if the
parameter is multiplied by itself.)

3. The sum of all multiplicative coefficients in the polynomial is at most 22
n−2

.
(During multiplication, the sum of the product polynomial’s coefficients is
the product of the sums of the operands’ coefficients. As such, this value can
at most square itself at each operation. The maximal value it can attain at
step 2 is 2.)

Computing with and without Arbitrary Large Numbers 187

If we were to take each formal variable, X , that was created at an “a ← b”
operation, and substitute in it the value 2b (a substitution that [7] refers to
as the “standard evaluation”), then the value of the polynomial will equal the
value of the SLP’s output. We claim that if p is an interesting bit position, then
there is some product of formal variables appearing as a monomial in the result
polynomial such that its standard evaluation is 2x, and p ≥ x ≥ p− 2n.

The claim is clearly true for n = 0 and n = 1. For n > 1, we will make the
stronger claim p ≥ x ≥ p−2n−2−2. To prove this, note that any monomial whose
standard evaluation is greater than 2p cannot influence the value of bit p and
cannot make it “interesting”. On the other hand, if all remaining monomials are
smaller than p− 2n−2− 2, the total value that they carry within the polynomial
is smaller than 2p−2n−2−2 times the sum of their coefficients, hence smaller than
2p−2. Bits p− 1 and p, however, are both zero. Therefore, p is not an interesting
bit.

We proved the claim for the restricted operation set {+,×,←}. Adding logical
AND (“∧”) and logical OR (“∨”) can clearly not change the fact that bits
p − 1 and p are both zero, nor can it make the polynomial coefficients larger
than 22

n−2

.
Incorporating “ ” and “¬” into the operation set has a more interesting effect:

the values of bit p− 1 and p can both become “1”. This will still not make bit
p interesting, but it does require a small change in the argument. Instead of
considering polynomials whose coefficients are between 0 and 22

n−2

, we can now
consider polynomials whose coefficients are between −22n−2

and 22
n−2

. This
changes the original argument only slightly, in that we now need to argue that
in taking the product over two polynomials the sum of the absolute values of
the coefficients of the product is no greater than the product of the sums of the
absolute values of the coefficients of the operands.

Similarly, adding “→” into consideration, we no longer consider only formal
variables of the form a ← b = aX but also a → b = �aY , where the standard
evaluation of Y is 2−b and �· is treated as a bitwise Boolean operation (in the
sense that, conceptually, it zeroes all bit positions that are “to the right of the
decimal point” in the product).

We can therefore index the set of interesting bits by use of a tuple, as follows.
If i1, . . . , ik are the set of steps for which sopij ∈ {←,→}, the tuple will contain

one number between −2n−ij and 2n−ij for each 1 ≤ j ≤ k, to indicate the
exponent of the formal parameter added at step ij, and an additional k + 1’th
element, between 0 and 2n to indicate a bit offset from this bit position.

Though this tuple may contain many non-interesting bits, or may describe
a single bit position by many names, it is a description of a super-set of the
interesting bits in polynomial space. ��

We refer to the set of bit positions thus described as the potentially-interesting
bits, or po-bits, of the SLP.

Lemma 2. Let O be an Oracle that takes an S ∈ SLP[+, ,×,←,→,Bool] as
input and outputs the descriptions of all its po-bits in order, from least-significant

188 M. Brand

to most-significant, without repetitions. There exists a TM working in polynomial
space but with access to O that takes as inputs an S ′ ∈ SLP[+, ,×,←,→,Bool]
and the description of a po-bit position, i, of S ′, and that outputs the i’th bit of
the output of S ′.

Proof. Given a way to iterate over the po-bits in order, the standard algorithms
for most operations required work as expected. For example, addition can be
performed bit-by-bit if the bits of the operands are not stored, but are, rather,
calculated recursively whenever they are needed. The depth of the recursion
required in this case is at most n.

The fact that iterating only over the po-bits, instead of over all bit positions,
makes no difference to the results is exemplified in Fig. 1.

po-bits non-po-bits po-bits
1 1 1 1 1 1 1 1 1 1

+
1 0 0 1 1 1 1 1 1 0 1 1

1 1 1 1 1 1 1 1 0 1

1 1 0 1 1 1 1 1 1 0 0 0

Fig. 1. An example of summing two numbers

As can be seen, not only are the non-po-bits all equal to the last po-bit
preceding them, in addition, the carry bit going over from the last po-bit to the
first non-po-bit is the same as the carry bit carried over from the last non-po-bit
to the first po-bit. Because of this, the sequential carry bits across non-po-bits
(depicted in light blue in Fig. 1) can be replaced by a single non-contiguous carry
operation (the thick red arrow).

This logic works just as well for subtraction and Boolean operations. The
only operation acting differently is multiplication. Implementing multiplication
directly leads to incorrect results. Instead, we re-encode the operand bits in a
way that reflects our original observation, that the operands can be taken to be
polynomials with small coefficients in absolute value, though these coefficients
may not necessarily be nonnegative.

The new encoding is as follows: going from least significant bit to most sig-
nificant bit, a “0” bit is encoded as a 1 if preceded by a “1” and as 0, otherwise.
A “1” bit is encoded as a 0 if preceded by a “1” and as −1, otherwise. It is
easy to see that a number, A, encoded in regular binary notation but including
a leading zero by a {0, 1} sequence, a0, . . . , ak, denoting coefficients of a power

series A =
∑k

i=0 ai2
i, does not change its value if the ai are switched for the bi

that are the result of the re-encoding procedure described. The main difference
is that now the value of all non-po-bits is 0.

Proving that multiplication works correctly after re-encoding is done by ob-
serving its base cases and bilinear properties. The carry in the calculation is
exponential in size, so can be stored using a polynomial number of bits. ��

Computing with and without Arbitrary Large Numbers 189

Lemma 3. Let Q be an Oracle that takes an S ∈ SLP[+, ,×,←,→,Bool] and
two po-bit positions of S and determines which position is the more significant.
Given access to Q, Oracle O, described in Lemma 2, can be implemented as a
polynomial space Turing machine.

Proof. Given an Oracle able to compare between indices, the ability to enumerate
over the indices in an arbitrary order allows creation of an ordered enumeration.
Essentially, we begin by choosing the smallest value, then continue sequentially
by choosing, at each iteration, the smallest value that is still greater than the
current value. This value is found by iterating over all index values in an arbitrary
order and trying each in turn. ��

Lemma 4. Oracle Q, described in Lemma 3, can be implemented as a polyno-
mial space Turing machine.

Proof. Recall that an index position is an affine function of the coefficients of the
formal variables introduced, in their standard evaluations. To determine which
of two indices is larger, we subtract these, again reaching an affine function of
the same form. The coefficients themselves are small, and can be stored directly.
Determining whether the subtraction result is negative or not is a problem of the
same kind as was solved earlier: subtraction, multiplication and addition need
to be calculated over variables; in this case the variables are the coefficients,
instead of the original formal variables.

However, there is a distinct difference in working with coefficients, in that they,
themselves, are calculable as polynomials over formal variables. The calculation
can, therefore, be transformed into addition, multiplication and subtraction, once
again over the original formal variables.

Although it may seem as though this conclusion returns us to the original
problem, it does not. Consider, among all formal variables, the one defined last.
This variable cannot appear in the exponentiation coefficients of any of the new
polynomials. Therefore, the new equation is of the same type as the old equation
but with at least one formal parameter less. Repeating the process over at most
n recursion steps (a polynomial number) allows us to compare any two indices
for their sizes. ��

Proof (of Theorem 1). The equality P-RAM[+,←,Bool] = PSPACE was al-
ready shown in [12]. Hence, we only need to prove P-RAM[+, ,×,←,→,Bool] ⊆
PSPACE. This is done, as per Schönhage’s method [10], by simulating a poly-
nomial time SLP[+, ,×,←,→,Bool] on a polynomial space Turing machine.

Lemmas 1–4, jointly, demonstrate that this can be done. ��

We remark that Theorem 1 is a striking result, in that right shifting is part of
the SLP being simulated, and right shifting is a special case of integer division.
Compare this with the power of exact division, described in Theorem 3, which
is also a special case of integer division.

190 M. Brand

2.3 Incorporating Arbitrary Numbers

The framework described in Section 2.1 can readily incorporate simulation of
arbitrary large number computation. We use it now, to prove Theorem 4.

Proof (of Theorem 4). Having proved Theorem 1, what remains to be shown is

PTIME-ARAM[+, ,×,←,→,Bool] ⊆ PSPACE . (3)

As in the proof of Theorem 1, it is enough to show that an SLP that is able to
handle all operations can be simulated in PSPACE.

We begin by noting that because the PTIME-ARAM must work properly for
all but a finite range of numbers as its ALN input, it is enough to show one
infinite family of numbers that can be simulated properly. We choose X = 2ω,
for any sufficiently large ω. In the simulation, we treat this X as a new formal
variable, as was done with outputs of “a← b” operations.

Lemmas 1–3 continue to hold in this new model. They rely on the ability to
compare between two indices, which, in the previous model, was guaranteed by
Lemma 4. The technique by which Lemma 4 was previously proved was to show
that comparison of two indices is tantamount to evaluating the sign of an affine
combination of the exponents associated with a list of formal variables, when us-
ing their standard evaluation. This was performed recursively. The recursion was
guaranteed to terminate, because at each step the new affine combination must
omit at least one formal variable, namely the last one to be defined. Ultimately,
the sign to be evaluated is of a scalar, and this can be performed directly.

When adding the new formal variable X = 2ω, the same recursion continues
to hold, but the terminating condition must be changed. Instead of evaluating
the sign of a scalar, we must evaluate the sign of a formal expression of the form
aω+b. For a sufficiently large ω (which we assume ω to be), the sign is the result
of lexicographic evaluation. ��

3 Models with Division

Our proof of Theorem 3 resembles that of [8] in that it uses Simon’s ingenious

argument that, for any given n, the value
∑2n−1

i=0 i × 2ni can be calculated in
O(1)-time by considering geometric series summation techniques. The result is
an integer that includes, in windows of length n bits, every possible bit-string
of length n. The simulating RAM acts by verifying whether any of these bit-
strings is a valid tableau for an accepting computation by the simulated TM.
This verification is performed using bitwise Boolean operations, in parallel over
all options.

Instead of reiterating the entire proof, we give here the most salient differences
between the two arguments, these being the places where our argument corrects
errors in Simon’s original proof. These are as follows.

Computing with and without Arbitrary Large Numbers 191

1. Simon does not show how a TM can simulate an arbitrary RAM in ER-
time, making his result a lower-bound only. Indeed, this is, in general, im-
possible to do. On the other hand, given ELop(O(f(n))) tape, a TM can
simulate a RAM by storing uncompressed address-value pairs for every
non-zero register. The equivalence between the various TMs in Theorem 3
is given by Savitch’s Theorem [13], as well as by the well-known relation
TIME(n) ⊆ SPACE(n) ⊆ TIME(EXP(n)), so the RAM can be simulated
equally well by a time-bounded TM.

2. Simon uses what he calls “oblivious Turing machines” (which are different
than those of [14]) in a way that simultaneously limits the TM’s tape size and
maximum execution time (only the latter condition being considered in the
proof), and, moreover, are defined in a way that is non-uniform, in the sense
that adding more tape may require a different TM, with potentially more
states, a fact not accounted for in the proof. This is corrected by working
with non-oblivious, deterministic Turing machines, bounded by a tape of size
s. Let c be the number of bits required to store the state of the TM’s finite
control, then

tape-contents+ state× 2s+c+head-pos−1 + 22(s+c−1)+head-pos (4)

is a 3(s+c−1)-bit number encoding the complete instantaneous description of
the TM in a way that allows advancing the TM solely by Boolean operations
and bit shifting by offsets dependent only on s and c. This allows verification
of an entire tableau, and, indeed, the entire set of all possible tableaus,
simultaneously in O(1) time, when given s, or any number at least as large
as s, as input. The complexity of the RAM’s execution time is due to the
ELop(O(f(n))) steps required to reach any number that is as large as s.

3. Most importantly, Simon underestimates the length needed for the tableau,
taking it to be the value of the input. TMs are notorious for using up far
more tape than the value of their inputs (see [15]). By contrast, our proof
uses the fact that a tape bounded TM has only a finite number of possible
instantaneous descriptions, so can only progress a bounded number of steps
before either halting or entering an infinite loop. By simulating 23(s+c−1)

steps of the TM’s execution, we are guaranteed to determine its halting
state.

Ultimately, Theorem 3 proves that the power of a RAM[op], where op is RAM-
constructable and includes {+, /,←,Bool}, is limited only by the maximal size
of values that it can produce (relating to the maximal tableau size that it can
generate and check). Considering this, the proof of Theorem 5 becomes a trivial
corollary: instead of generating a number as large as s by ELop(O(f(n))) RAM
operations, it is possible to assign to s the value of the ALN. Following this single
instruction, simulating the TM’s entire execution is done as before, in O(1) time.

We have shown, therefore, that while arbitrary numbers have no effect on
computational power without division, with division they provide Turing com-
pleteness in O(1) computational resources.

192 M. Brand

References

1. Turing, A.M.: On computable numbers, with an application to the Entschei-
dungsproblem. Proc. London Math. Soc. 42, 230–265 (1936)

2. Ben-Amram, A.M., Galil, Z.: On the power of the shift instruction. Inf. Com-
put. 117, 19–36 (1995)

3. Bshouty, N.H., Mansour, Y., Schieber, B., Tiwari, P.: Fast exponentiation using
the truncation operation. Comput. Complexity 2(3), 244–255 (1992)

4. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer
Algorithms. Addison-Wesley Publishing Co., Reading (1975); Second printing,
Addison-Wesley Series in Computer Science and Information Processing

5. Mansour, Y., Schieber, B., Tiwari, P.: Lower bounds for computations with the
floor operation. SIAM J. Comput. 20(2), 315–327 (1991)

6. Brand, M.: Does indirect addressing matter? Acta Inform. 49(7-8), 485–491 (2012)
7. Simon, J., Szegedy, M.: On the complexity of RAM with various operation sets.

In: Proceedings of the Twenty-Fourth Annual ACM Symposium on Theory of
Computing, STOC 1992, pp. 624–631. ACM, New York (1992)

8. Simon, J.: Division in idealized unit cost RAMs. J. Comput. System Sci. 22(3),
421–441 (1981); Special issue dedicated to Michael Machtey

9. Trahan, J.L., Loui, M.C., Ramachandran, V.: Multiplication, division, and shift
instructions in parallel random-access machines. Theor. Comp. Sci. 100(1), 1–44
(1992)

10. Schönhage, A.: On the power of random access machines. In: Maurer, H.A. (ed.)
ICALP 1979. LNCS, vol. 71, pp. 520–529. Springer, Heidelberg (1979)

11. Hartmanis, J., Simon, J.: On the power of multiplication in random access ma-
chines. In: 15th Annual Symposium on Switching and Automata Theory, pp. 13–23.
IEEE Comput. Soc., Long Beach (1974)

12. Simon, J.: On feasible numbers (preliminary version). In: Conference Record of the
Ninth Annual ACM Symposium on Theory of Computing (Boulder, Colo., 1977),
pp. 195–207. Assoc. Comput. Mach., New York (1977)

13. Savitch, W.J.: Relationships between nondeterministic and deterministic tape com-
plexities. J. Comput. System Sci. 4, 177–192 (1970)

14. Pippenger, N., Fischer, M.J.: Relations among complexity measures. J. Assoc.
Comput. Mach. 26(2), 361–381 (1979)

15. Radó, T.: On non-computable functions. Bell System Tech. J. 41, 877–884 (1962)

	Computing with and without Arbitrary LargeNumbers
	Introduction
	Models without Division
	Errata on Simon:RAMwvarious
	Our New Construction
	Incorporating Arbitrary Numbers

	Models with Division
	References

