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Preface

Theory and Applications of Models of Computation (TAMC) is an interna-
tional conference series with an interdisciplinary character, bringing together
researchers working in different areas of theoretical computer science and math-
ematics. TAMC 2013 was the tenth conference in the series, held during May
20–22 in Hong Kong, China. This year, there were 70 submissions, out of which
31 papers were selected by the Program Committee. There was also a poster ses-
sion for researchers to illustrate and discuss their recent research work. We are
very grateful to the Program Committee for their hard work, and to the authors
who submitted their work for our considerations. The conference had invited
talks by two leading researchers, Sanjeev Arora from Princeton University and
Avi Wigderson from the Institute of Advanced Study.

We would like to thank the Department of Computer Science, The University
of Hong Kong, for organizing the conference, and the “K.C. Wong Education
Foundation” for the Conference Sponsorship Programme for providing financial
support to Chinese scholars to attend this conference.

May 2013 Lap Chi Lau
Luca Trevisan



Invited Talks: Turing Lectures 2013

• Randomness and Pseudorandomness
Avi Wigderson, Institute for Advanced Study
Is the universe inherently deterministic or probabilistic? Perhaps more im-
portantly — can we tell the difference between the two?
Humanity has pondered the meaning and utility of randomness for millen-
nia. There is a remarkable variety of ways in which we utilize perfect coin
tosses to our advantage: in statistics, cryptography, game theory, algorithms,
gambling... Indeed, randomness seems indispensable! Which of these applica-
tions survive if the universe had no randomness in it at all? Which of them
survive if only poor-quality randomness is available, e.g., that arises from
“unpredictable” phenomena like the weather or the stock market?
A computational theory of randomness, developed in the past three decades,
reveals (perhaps counterintuitively) that very little is lost in such determinis-
tic or weakly random worlds – indeed, most application areas above survive!
The main ideas and results of this theory are explained in this talk. A key
notion is pseudorandomness, whose understanding impacts large areas in
mathematics and computer science.

• Towards Provable Bounds for Machine Learning: Three Vignettes
Sanjeev Arora, Princeton University
Many tasks in machine learning (especially unsupervised learning) are prov-
ably intractable: NP-hard or worse. Nevertheless, researchers have developed
heuristic algorithms to solve these tasks in practice. In most cases, there are
no provable guarantees on the performance of these algorithms/heuristics
—neither on their running time, nor on the quality of solutions they return.
Can we change this state of affairs?
This talk suggests that the answer is yes, and cover three recent works as
illustration. (a) A new algorithm for learning topic models. This concerns a
new algorithm for topic models (including the Linear Dirichlet Allocations
of Blei et al. but also works for more general models) that provably works
in theory under some reasonable assumptions and is also up to 50 times
faster than existing software in practice. It relies upon a new procedure for
non-negative matrix factorization. (b) What classifiers are worth learning?
(c) Provable ICA with unknown Gaussian noise.
(Based joint works with Rong Ge, Ravi Kannan, Ankur Moitra, Sushant
Sachdeva.)
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Online Scheduling on a CPU-GPU Cluster�

Lin Chen, Deshi Ye, and Guochuan Zhang

College of Computer Science, Zhejiang University, Hangzhou 310027, China

Abstract. We consider the online scheduling problem in a CPU-GPU
cluster. In this problem there are two sets of processors, the CPU pro-
cessors and GPU processors. Each job has two distinct processing times,
one for the CPU processor and the other for the GPU processor. Once
a job is released, a decision should be made immediately about which
processor it should be assigned to. The goal is to minimize the makespan,
i.e., the largest completion time among all the processors. Such a prob-
lem could be seen as an intermediate model between the scheduling
problem on identical machines and unrelated machines. We provide a
3.85-competitive online algorithm for this problem and show that no
online algorithm exists with competitive ratio strictly less than 2. We
also consider two special cases of this problem, the balanced case where
the number of CPU processors equals to that of GPU processors, and
the one-sided case where there is only one CPU or GPU processor. We
provide a (1 +

√
3)-competitive algorithm for the balanced case, and a

3-competitive algorithm for the one-sided case.

Keywords: Online scheduling, Competitive ratio, CPU-GPU cluster,
Unrelated machine scheduling.

1 Introduction

The fast development of technology makes it possible for a graphics processing
unit (GPU) to handle various of tasks in a more efficient way than the central
processing unit (CPU). For example, tasks like video processing, image analysis
and signal processing are usually processed on GPU. Nevertheless, CPU is still
more suitable for a wide range of tasks, and it is well possible that some task
can only be processed by CPU.

The model of identical machine scheduling fails to capture the difference be-
tween CPU processors and GPU processors, while the model of unrelated ma-
chine scheduling seems to make the problem complicated in an unnecessary way,
indeed, there is even no online algorithm of constant competitive ratio for the
unrelated machine scheduling problem [2]. Thus it is worth investigating the
scheduling problem in a CPU-GPU cluster, i.e., scheduling on two kinds of dif-
ferent machines.

There are a lot of research towards the above mentioned model as well its dif-
ferent variants. Verner et al. [17] studied data stream scheduling problems on the

� Research was supported by in part by NSFC(11071215,11271325).

T-H.H. Chan, L.C. Lau, and L. Trevisan (Eds.): TAMC 2013, LNCS 7876, pp. 1–9, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



2 L. Chen, D. Ye, and G. Zhang

system that contains multiple CPU processors and a single GPU processor. Luk
et al. [16] studied mapping computations on processing elements on a CPU/GPU
machine. Yang et al. [19] address the load balancing problem among multiple
GPU and CPU processors of TianHe-1 by running the Linpack. However, most
of these studies are experimental.

In this paper, we consider online algorithms on the heterogenous CPU/GPU
system and analyze their performances in terms of competitive ratio. Formally
speaking, we consider the scheduling problem where processors (machines) are
divided into two sets, the set G1 consists of all the GPU processors and G2

consists of all CPU processors. The processing time of job j is pj1 on a GPU
processor and pj2 on a CPU processor. In our problem, jobs are released one by
one and once a job is released, the scheduler need to decide immediately which
machine it should be assigned to. The goal is to minimize the makespan (the
largest completion time of machines). Specifically, if |G1| = |G2|, it is called as
the balanced case. If |G1| = 1 or |G2| = 1, it is called as the one-sided case.

Related Work: Our problem is related to the unrelated machine scheduling prob-
lem, where the processing time of job j on machine i is pji. The offline version
of this problem admits an elegant 2-approximation algorithm, which is pro-
posed by Lenstra et al. [14]. Specifically, an FPTAS (Fully Polynomial Time
Approximation Scheme) exists for this problem if the number of machines is a
constant [11]. The online version of unrelated machine scheduling problem ad-
mits an O(logm)-competitive algorithm where m is the number of machines.
The algorithm is proposed by Aspens et al. [1], and it is shown to be the best
possible up to a constant [2].

Another closely related problem is the related machine scheduling problem,
in which each processor i is associated with a speed si, and the processing time
of job j is pj/si where pj is its workload. The offline version of related machine
scheduling problem admits a PTAS [10]. For the online version, the first algo-
rithm of constant competitive ratio is given by Aspens et al. [1]. The current
best online algorithm has a competitive ratio of 3+2

√
2 ≈ 5.828 due to Berman

et al. [3]. A special case of the related machine scheduling problem is similar
to our one-sided case. In this case there are m machines, the speeds of m − 1
machines are all 1, while the remaining machine has a speed larger than 1. Cho
and Sahni [6] prove that the list scheduling algorithm is at most 3 − 4/(m+ 1)
competitive, and this result is further improved to 2.45 by Cheng et al. [5].
Kokash [13] presents an online algorithm of competitive ratio 2, which is shown
to be the optimal online algorithm [15].

Additionally, there is one related problem called scheduling with speedup
resource. In this model, the processors are identical, while there is a renewable
discrete resource which could be utilized to reduce the processing time of jobs.
Indeed, the processing time of job j is pj if it is processed directly, and becomes
p′j , however, if it is processed on a machine with the resource. Xu et al. [18]
give an online algorithm with competitive ratio 1.781 for this problem when the
number of machines is 2 and show that the lower bound is 1.686. A variant of



Online Scheduling on a CPU-GPU Cluster 3

this problem where machines are dedicated is considered by Kellerer et al. [12]
and a 3/2-approximation algorithm is presented for the offline version.

Our Result: We are the first to propose online algorithms for scheduling in a
CPU-GPU cluster and analyze their competitive ratios. The main contribution
is an online algorithm of competitive ratio 3.85 where the numbers of CPU and
GPU processors are both arbitrary inputs. This algorithm is quite sophisticated
and we also present a much more simplified algorithm with competitive ratio
4. We also consider the two special cases of this problem, namely the balanced
model and the one-sided model. We provide a (1 +

√
3)-competitive algorithm

for the balanced model, and a 3-competitive algorithm for the one-sided model.
The paper is organized as follows. We first give the preliminary in Section 2

and then show the lower bounds of this problem in Section 3. We start with
the balanced case and provide a (1 +

√
3)-competitive algorithm as well as a

simple 3-competitive algorithm in Section 4. Then we consider the one-sided
case in Section 5. In Section 6 we study the general case and provide the 3.85-
competitive algorithm.

2 Preliminary

We interpret the problem as a scheduling problem on two kinds of machines, and
let G1 be the set of machines of one kind and G2 be the other. Let m1 = |G1|
and m2 = |G2|. Without loss of generality, we may assume that m1 ≥ m2.
The processing time of job j on every machine of Gi is pji where i = 1, 2. The
load of a machine is the total processing time of jobs allocated to this machine.
The objective is to minimize the makespan, i.e. the maximum load over all the
machines.

Competitive analysis [4] is used in this paper to evaluate online algorithms.
An online algorithm is said to be ρ-competitive if Cmax(A(I)) ≤ ρOPT (I) for
any job list I, where Cmax(A(I)) and OPT (I) are the makespans given by an
online algorithm A and an optimal offline algorithm, respectively. The supremum
value of ρ is defined to be the competitive ratio of an algorithm, i.e., RA =
supI{Cmax(A(I))/OPT (I)}. The competitive ratio measures the difference of
the makespans between an online algorithm and the optimal offline algorithm in
the worst case. Under the worst case study, we may restrict that the completion
time of the last job in the job list achieves the makespan of the online algorithm.

To design an online algorithm, it is natural to consider a greedy method. The
greedy algorithm for the classical identical machine scheduling problem is called
list scheduling (LS) [8]. Once a job is released, the algorithm always assigns it
to the machine with the least load. The competitive ratio of list scheduling is
2 for the classical problem. However, the list scheduling for our model has two
versions, one is to assign a job to the machine with the least load, and the
other is to assign it to a machine such that the completion time of this job is
minimized. It is easy to see that the former version fails to achieve a constant
competitive ratio. Nevertheless, the latter one is also not favorable, as we will
show in Section 3.
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Despite this fact, our algorithms in this paper could be viewed as modified
list scheduling algorithms. Indeed, each of the algorithms is a combination of list
scheduling and a set of selecting rules R, where every selecting rule in R decides
that under a certain condition, whether the current job should be assigned to G1

or G2. Once we decide that a job should be assigned to the group Gi, we schedule
this job onto machines of Gi according to the list scheduling, i.e., we schedule
this job onto the machine with the least load in Gi. We break ties arbitrarily.

We use the notation j → Gi to indicate that job j is assigned to Gi. We write
j → LS(Gi) to indicate that job j is assigned to Gi and scheduled on machines
of Gi according to list scheduling.

3 Lower Bound for Online Algorithms

In this section, we show that the competitive ratio of any online algorithm for
our problem is at least 2 even in the most special case that |G1| = |G2| = 1. We
further show that if we directly apply the list scheduling to our problem, then
the competitive ratio is not a constant.

Theorem 3.1. The competitive ratio of any online algorithm is at least 2.

Proof. We consider the special case that m1 = 1 and m2 = 1. Let A be an
arbitrary online algorithm.

Suppose the processing time of the first job released is 1 on either machine
and this job is assigned by the algorithm A to machine i where i = 1, 2. Then,
the next job is released with processing time of 1 on machine i, and processing
time of 2 on the other machine. Thus, no matter on which machine the new job
is scheduled, the makespan is at least 2. However, the makespan of the optimal
solution is 1 and the theorem follows immediately. ��

Theorem 3.2. The list scheduling algorithm, if applied directly to our problem,
is of competitive ratio Ω(m) even in the special case that m1 = 1 and m2 = m.

Proof. Recall that the list scheduling algorithm always assigns a job to a machine
such that the completion time of this job is minimized, as we have mentioned.

Let ε be a sufficient small positive number. Suppose the following m+ 1 jobs
are released one by one. The processing time of the first job is p11 = 1 on G1

and p12 = 1 + ε on G2. While the processing times of the next m jobs are the
same, which are pj1 = 1

m2 and pj2 = 1 for j = 2, . . . ,m+1. According to the list
scheduling algorithm, the first job is assigned to the one machine in G1, and the
other m jobs are assigned to machines of G2, one for each. Notice that after the
assignment of these m+ 1 jobs, the load of each machine is 1. The next m+ 1
jobs are the same as the first m+1 jobs, and it can be easily seen that they are
scheduled in the same way by the algorithm and the load of each machine is 2.

We continue to releasem−2 additional copies of the firstm+1 jobs and it can
be easily seen that the load of each machine is m by list scheduling. However,
in the optimal solution, we can assign all the jobs such that pj1 = 1/m2 and
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pj2 = 1 to the machine in G1, recall that there are in all m2 such kind of jobs
and the load of this machine is 1. On the other hand, there are m jobs such that
pj1 = 1 and pj2 = 1 + ε, and each of them is assigned to a different machine
of G2. Thus, the makespan of the optimal solution is 1 + ε and the competitive
ratio of list scheduling is Ω(m). ��

4 The Balanced Case

We consider the special case that |G1| = |G2| = m in this section. Notice that
the lower bound of 2 holds even for such a special case.

Consider the following simple algorithm Al1.
Algorithm Al1:
Upon the arrival of job j, it is assigned as below.

– if pj,1 ≤ pj,2, then j → LS(G1).
– if pj,1 > pj,2, then j → LS(G2).

We have the following theorem.

Theorem 4.1. The competitive ratio of algorithm Al1 is 3.

Proof. Let A (B) be the set of jobs scheduled in G1 (G2) according to the
algorithm, and A1 ⊂ A (B1 ⊂ B) be the set of jobs in G1 (G2) in both the
algorithm Al1 and the optimal solution. Let λA (λB) be total processing time
of jobs in A1 (B1). Let vA (vB) be the total processing time of jobs in A \ A1

(B \B1).
Consider the optimal solution and let OPT be its makespan. Notice that the

optimal solution would put jobs of A \A1 in G2 and B \B1 in G1. Furthermore,
for any job of A \A1, its processing time in G1 is no greater than its processing
time in G2, thus we have

OPT ≥ (λB + vA)/m.

Similarly we have OPT ≥ (λA + vB)/m.
Let Cmax(Al1) be the makespan of the solution produced by Al1, then we

have
Cmax ≤ max{(λA + vA)/m, (λB + vB)/m}+ pmax

where pmax is the largest processing time of jobs scheduled due to Al1. Obviously
OPT ≥ pmax. Thus it follows directly that Cmax(Al1) ≤ 3OPT .

It can be easily seen the upper bound 3 is tight. In the worst case, each job
has a similar (or even the same) processing time in both G1 and G2, however,
they are all scheduled in G1 or G2 due to Al1. ��

To give an improved algorithm, we should take into consideration that the load
balancing between machines of G1 and G2. Based on this observation, we have
the following improved algorithm Al2 for 0 < α < 1.

Algorithm Al2:
Once job j is released, it is scheduled according to the following rules.
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– Rule 1: pj,1 ≤ αpj,2, then j → LS(G1)
or pj,1 ≥ 1

αpj,2, then j → LS(G2).
– Rule 2: αpj,2 < pj,1 < 1/αpj,2,

• if L(G1) ≤ L(G2), j → LS(G1)
• if L(G1) > L(G2), j → LS(G2).

Here L(Gi) is the total processing time of jobs scheduled in Gi among job 1 to
job j − 1, i.e., the load of Gi just before job j is released.

We have the following theorem, and the detailed proof is omitted due to space
limited.

Theorem 4.2. The competitive ratio of algorithm Al2 is at most 1+
√
3 ≈ 2.732

by setting α =
√
3− 1.

5 The One-Sided Case

In this case we assume m1 = m and m2 = 1. The algorithm we derive in the
previous section fails to handle this case. Indeed, no matter how one manipulate
the parameter α in Al2, its competitive ratio tends to infinity ifm goes to infinity.
It seems that one need a better idea to keep load balancing between machines
of the two groups, while still take into consideration the extreme jobs whose
processing time on G1 differs greatly with that on G2.

We provide Al3 as follows.
Algorithm Al3:
Once job j is released, it is assigned according to the following rules.

– Rule 1: If pj,1 ≥ L(G2) + pj,2, then j → LS(G2). Otherwise apply Rule 2.
– Rule 2: pj,1/m ≤ pj,2, then j → LS(G1).
– pj,1/m > pj,2, then j → LS(G2).

Here L(G2) is the load of the machine in G2 when j is released. We have the
following theorem, and the detailed proof will be given in the full version of this
paper.

Theorem 5.1. The competitive ratio of algorithm Al3 is at most 3.

6 The General Case

We consider the general case in this section. Using the ideas from the previous
section, we give the following algorithm Al4.

Algorithm Al4:
Once job j is released, it is assigned according to the following rules.

– Rule 1: If pj,1 ≥ Cmin(G2) + pj,2, then j → LS(G2). Otherwise apply
Rule 2.

– Rule 2: pj,1/m1 ≤ pj,2/m2, then j → LS(G1).
– pj,1/m1 > pj,2/m2, then j → LS(G2).
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Here Cmin(G2) is the load of the least loaded machine in G2 when j is released.
We have the following theorem.

Theorem 6.1. The competitive ratio of algorithm Al4 is at most 4.

Proof. We let A (B) be the set of jobs scheduled in G1 (G2), and classify them
into three subsets, namely ΛA, UA, VA (ΛB, UB, VB). All the definitions are the
same as that in the proof of Theorem 5.1. Again, we know UA = ∅.

If UB �= ∅, we consider the job in UB whose completion time is the last among
all the jobs in UB and let it be job j0. Once this job comes, j0 − 1 jobs are
scheduled and we know that pj0,1 ≥ Cmin(G2) + pj0,2 ≥ uB/m2 since j0 is
assigned to G2. Since j0 is scheduled in G1 in the optimal solution, we know
that uB/m2 ≤ OPT .

Meanwhile, the total processing time of jobs in VB is at least m1vB/m2 in
the optimal solution, while the total processing time of jobs in VA is at least
m2vA/m1 in the optimal solution. Thus we have

OPT ≥ λA +m1vB/m2

m1
= λA/m1 + vB/m2,

OPT ≥ λB +m2vA/m1

m2
= λB/m2 + vA/m1.

Again we have

Cmax(Al4) ≤ max{λA + vA
m1

+ pmax(1),
λB + uB + vB

m2
+ pmax(2)}

where pmax(i) is the processing time of the largest job in Gi in the solution
produced by the algorithm.

Consider pmax(1) and let this job be job k. If job k is also scheduled in G1

in the optimal solution then pmax(1) ≤ OPT . Otherwise k is scheduled in G2 in
the optimal solution and OPT ≥ pk,2. Notice job k would have been assigned to
G2 if pk,1 ≥ Cmin(G2) + pk,2 when it is released. This implies that

pk,1 ≤
λB + uB + vB

m2
+ pk,2 ≤

λB + uB + vB
m2

+OPT

which implies that

λA + vA
m1

+ pmax(1) ≤
λA + vA
m1

+
λB + uB + vB

m2
+OPT ≤ 4OPT.

On the other hand, consider pmax(2) and let it be job k′. If this job is also in
G2 in the optimal solution then pmax(2) ≤ OPT . Otherwise k′ is in G1 in the
optimal solution and OPT ≥ pk′,1. If job k

′ is assigned to G2 according to Rule
1, then obviously OPT ≥ pk′,1 ≥ pk′,2. Otherwise k′ is assigned with Rule 2.
Then pk′,1/m1 > pk′,2/m2. Since m1 ≥ m2, we still have OPT ≥ pk′,1 ≥ pk′,2,
thus pmax(2) ≤ OPT always holds.

Thus again we have λB+uB+vB
m2

+ pmax(2) ≤ 4OPT .
So, Cmax(Al4) ≤ 4OPT . ��
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Again introducing parameters into Al4 does not seem to improve the the algo-
rithm in terms of competitive ratio. Nevertheless, recall that by using the idea
of load balancing, we improve Al1 with competitive ratio of 3 to Al2 whose
competitive ratio is 1 +

√
3, and thus we try to use the same idea here.

We have the following modified algorithm Al5.
Algorithm Al5:
Once job j is released,

– Rule 1: If pj,1 ≥ β(Cmin(G2) + pj,2), then j → LS(G2).
– Rule 2: pj,1/m1 ≤ θpj,2/m2, then j → LS(G1).
– pj,1/m1 ≥ λpj,2/m2, then j → LS(G2).
– Rule 3: θpj,2/m2 < pj,1/m1 < λpj,2/m2,

• L3(G1)/m1 ≤ φL3(G2), j → LS(G1).
• L3(G1)/m1 > φL3(G2), j → LS(G2).

Here L3(Gi) is the total processing time of jobs scheduled in Gi due to Rule
3 when job j is released. Notice that it is different from Al2. In Al2, we try to
make load balancing for the whole set of jobs, while in Al5, we only try to make
load balancing for jobs scheduled according to Rule 3.

We have the following theorem with detailed proof in the full version of this
paper.

Theorem 6.2. The competitive ratio of algorithm Al5 is at most 3.85 by setting
λ ≈ 1.69, β ≈ 0.80, θ ≈ 1.04 and φ ≈ 0.64.

Acknowledgement. We thank Huajingling Wu for useful communications.
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Abstract. We are given a set of n jobs and a single processor that can
vary its speed dynamically. Each job Jj is characterized by its process-
ing requirement (work) pj , its release date rj and its deadline dj . We
are also given a budget of energy E and we study the scheduling prob-
lem of maximizing the throughput (i.e. the number of jobs which are
completed on time). We show that the problem can be solved by dy-
namic programming when all the jobs are released at the same time in
O(n4 log n logP ), where P is the sum of the processing requirements of
the jobs. For the more general case of agreeable deadlines, where the
jobs can be ordered such that for every i < j, both ri ≤ rj and di ≤ dj ,
we propose a dynamic programming algorithm solving the problem op-
timally in O(n6 log n logP ). In addition, we consider the weighted case
where every job j is also associated with a weight wj and we are in-
terested in maximizing the weighted throughput. For this case, we prove
that the problem becomes NP-hard in the ordinary sense and we propose
a pseudo-polynomial time algorithm.

1 Introduction

The problem of scheduling n jobs with release dates and deadlines on a single
processor that can vary its speed dynamically with the objective of minimizing
the energy consumption has been first studied in the seminal paper by Yao,
Demers and Shenker [3]. In this paper, we consider the problem of maximizing
the throughput for a given budget of energy. Formally, we are given a set of n
jobs J = {J1, J2, . . . , Jn}, where each job Jj is characterized by its processing
requirement (work) pj , its release date rj and its deadline dj . (For simplicity, we
suppose that the earliest released job is released at t = 0.) We assume that the
jobs have to be executed by a single speed-scalable processor, i.e. a processor
which can vary its speed over time (at a given time, the processor’s speed can
be any non-negative value). The processor can execute at most one job at each
time. We measure the processor’s speed in units of executed work per unit of
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time. If s(t) denotes the speed of the processor at time t, then the total amount
of work executed by the processor during an interval of time [t, t′) is equal to∫ t′

t s(u)du. Moreover, we assume that the processor’s power consumption is a
convex function of its speed. Specifically, at any time t, the power consumption
of the processor is P (t) = s(t)α, where α > 1 is a constant. Since the power
is defined as the rate of change of the energy consumption, the total energy

consumption of the processor during an interval [t, t′) is
∫ t′

t
s(u)αdu. Note that

if the processor runs at a constant speed s during an interval of time [t, t′), then
it executes (t′ − t) · s units of work and it consumes (t′ − t) · sα units of energy.
Each job Jj can start being executed after or at its release date rj . Moreover,
we allow the preemption of jobs, i.e. the execution of a job may be suspended
and continued later from the point of suspension. Given a budget of energy E,
our objective is to find a schedule of maximum throughput whose energy does
not exceed the budget E, where the throughput of a schedule is defined as the
number of jobs which are completed on time, i.e. before their deadline. Observe
that a job is completed on time if it is entirely executed during the interval
[rj , dj). By extending the well-known 3-field notation by Graham et al. [2], this
problem can be denoted as S1|pmtn, rj|

∑
Uj(E). We also consider the weighted

version of the problem where every job j is also associated with a weight wj and
the objective is no more the maximization of the cardinality of the jobs that
are completed on time, but the maximization of the sum of their weights. We
denote this problem as S1|pmtn, rj |

∑
wjUj(E). In what follows, we consider

the problem in the case where either all jobs have a release date equal to 0 and
for an important family of instances, the agreeable instances for which the jobs
can be ordered such that for every i < j, both ri ≤ rj and di ≤ dj .

1.1 Related Works and Our Contribution

Up to the best of our knowledge no work exists for the off-line case of our
problem. On the contrary, some works exist for some online variants of through-
put maximization: the first work that considered throughput maximization and
speed scaling in the online setting has been presented by Chan et al. [9]. They
considered the single processor case with release dates and deadlines and they
assumed that there is an upper bound on the processor’s speed. They are in-
terested in maximizing the throughput and minimizing the energy among all
the schedules of maximum throughput. They presented an algorithm which is
O(1)-competitive with respect to both objectives. In [8] Bansal et al. improved
the results of [9], while in [13], Lam et al. studied the 2-processor environment.
In [11], Chan et al. defined the energy efficiency of a schedule to be the total
amount of work completed in time divided by the total energy usage. Given
an efficiency threshold, they considered the problem of finding a schedule of
maximum throughput. They showed that no deterministic algorithm can have
competitive ratio less than Δ, the ratio of the maximum to the minimum jobs’
processing requirement. However, by decreasing the energy efficiency of the on-
line algorithm the competitive ratio of the problem becomes constant. Finally,



12 E. Angel et al.

in [10], Chan et al. studied the problem of minimizing the energy plus a rejec-
tion penalty. The rejection penalty is a cost incurred for each job which is not
completed on time and each job is associated with a value which is its impor-
tance. The authors proposed an O(1)-competitive algorithm for the case where
the speed is unbounded and they showed that no O(1)-competitive algorithm
exists for the case where the speed is bounded.

The paper is organized as follows: we first present an optimal algorithm for
the case where all the jobs are released at time 0, and then we present another
algorithm for the more general case with agreeable deadlines. The reason of
presenting both these cases is that in the first case we have a complexity of
O(n4 logn logP ) which is better than the one in the second case where the
complexity becomes O(n6 logn logP ). Finally, we consider the weighted case
where we are interested in maximizing the weighted throughput. For this case,
we prove that the problem is NP-hard in the ordinary sense and we propose a
pseudo-polynomial time algorithm.

2 Preliminaries

Given that the processor’s speed can be varied, a reasonable distinction of the
scheduling problems that can be considered is the following:

– FS (Fixed Speed): The processor has a fixed speed which implies directly a
processing time for each job. In this case, the scheduler has to decide which
job must be executed at each time. This is the classical scheduling setting.

– CS (Constant Speed): The processor’s speed is not known in advance but it
can only run at a single speed during the whole time horizon. In this context,
the scheduler has to define a single value of speed at which the processor
will run and the job executed at each time.

– SS (Scalable Speed): The processor’s speed can be varied over the time and,
at each time, the scheduler has to determine not only which job to run, but
the processor’s speed as well.

3 Properties of the Optimal Schedule

Among the schedules of maximum throughput, we try to find the one of minimum
energy consumption. Therefore, if we knew by an oracle the set of jobs J∗,
J∗ ⊆ J , which are completed on time in an optimal solution, we would simply
have to apply an optimal algorithm for S1|pmtn, rj, dj |E for the jobs in J∗ in
order to determine a minimum energy schedule of maximum throughput for our
problem. Based on this observation, we can use in our analysis some properties
of an optimal schedule for S1|pmtn, rj , dj |E.

Let t1, t2, . . . , tk be the time points which correspond to release dates and
deadlines of the jobs so that for each release date and deadline there is a ti
value that corresponds to it. We number the ti values in increasing order, i.e.
t1 < t2 < . . . < tk. The following theorem comes from [3].
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Theorem 1. A feasible schedule for S1|pmtn, rj, dj |E is optimal if and only if
all the following hold:

1. Each job Jj is executed at a constant speed sj.
2. The processor is not idle at any time t such that t ∈ (rj , dj ], for all Jj ∈ J .
3. The processor runs at a constant speed during any interval (ti, ti+1],

for 1 ≤ i ≤ k − 1.
4. A job Jj is executed during any interval (ti, ti+1] (1 ≤ i ≤ k − 1), if it

has been assigned the maximum speed among the speeds of the jobs Jj′ with
(ti, ti+1] ⊆ (rj′ , dj′ ].

Theorem 1 is also satisfied by the optimal schedule of S1|pmtn, rj|
∑
Uj(E) for

the jobs in J∗.

4 Agreeable Deadlines

For the special case of the problem S1|pmtn, rj|
∑
Uj(E) where the deadlines

of the jobs are agreeable we propose an optimal algorithm which is based on
dynamic programming. As mentioned before, among the schedules of maximum
throughput, our algorithm constructs a schedule of minimum energy consump-
tion. Next, we describe our dynamic program and we elaborate on the complexity
of our algorithm.

Initially, we consider the problem 1|pmtn, rj |
∑
Uj which is a classical schedul-

ing problem where we are given a set of jobs J = {J1, J2, . . . , Jn} that have to
be executed by a single processor. Each job Jj is associated with a processing
time pj , a release date rj and a deadline dj . The objective is to find a sched-
ule of maximum throughput. We refer to the problem as FS. This problem is
polynomially-time solvable and the fastest known algorithm for general instances
is in O(n4) [1]. When all the release dates are equal, this problem can be solved
in O(n logn) with Moore’s algorithm [5]. Finally, if the jobs have agreeable dead-
lines, the time complexity is also in O(n log n) using Lawler’s algorithm [7].

Next, we consider another problem which we denote as CS. In this problem we
are given a set of jobs J = {J1, J2, . . . , Jn}, where each job Jj has a processing
requirement pj , a release date rj and a deadline dj , that have to be executed by
a single speed scalable processor. Moreover, we are given a value of throughput
k. The objective is to find the minimum energy schedule which completes at
least k jobs on time so that all jobs that are completed on time are assigned
equal speed and the jobs not completed on time have zero speed. For notational
convenience, we denote the problem S1|pmtn, rj|

∑
Uj(E) as SS.

The inspiration for our dynamic programming for the special case of the SS
where the deadlines are agreeable was the fact that the problem CS can be solved
in polynomial time by repeatedly solving instances of the problem FS. In fact, if
we are given a candidate speed s for the CS problem, we can find a schedule of
maximum throughput w.r.t. to s simply by setting the processing time of each
job Jj equal to

pj

s and applying an optimal algorithm for the FS problem. So,
in order to get an optimal algorithm of the CS problem, it suffices to establish a
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lower and upper bound on the speed of the optimal schedule. A naive choice is
smin = 0 and smax = ∞. Then, it suffices to binary search in [smin, smax] and
find the minimum speed s∗ in which k jobs are completed on time.

Property 1. There exists an optimal solution in which all jobs are scheduled
according to edf (Earliest Deadline First) order and without preemption.

This property comes from the fact that the algorithm of [3] is optimal and that
we have an agreeable instance.

In the following, we assume that the jobs J1, J2, . . . , Jn are sorted according
to the edf order, i.e. d1 ≤ d2 ≤ . . . ≤ dn.

4.1 Special Case When r = 0

For a subset of jobs S ⊆ J , a schedule which involves only the jobs in S will be
called a S-schedule.

Definition 1. Let J(k) = {Jj|j ≤ k} be the set of the first k jobs according to
the edf order. For 1 ≤ u ≤ |J(k)|, we define E(k, u) as the minimum energy
consumption of an S-schedule such that |S| = u and S ⊆ J(k). If such a schedule
does not exist, i.e. when u > |J(k)|, then E(k, u) = +∞.

Definition 2. We define B(t′, t, �) as the minimum energy consumption of an
S-schedule such that |S| = �, S ⊆ {Jj|t′ < dj ≤ t} and such that all these jobs
are scheduled only within the interval [t′, t], and with a constant common speed.
If such a schedule does not exist, then B(t′, t, �) = +∞.

Proposition 1. B(dj , dk, �) can be computed in O(n log n logP ) time, for any
j, k, �, with P =

∑
j pj.

Proof. In order to compute B(dj , dk, �), we consider the set of jobs {Jj′ |dj <
dj′ ≤ dk}. For each job in this set, we modify its release date to dj . Since we
want the minimum energy consumption and there is only one speed, we search
the minimum speed such that there are exactly � jobs scheduled. This minimum
speed can be found by performing a binary search in the interval [0, smax], with
smax = P/(dk−dj). For every speed s, the processing time of a job Jj is tj = pj/s,
and we compute the maximum number m of jobs which can be scheduled using
Moore’s algorithm [5] in O(n log n). If m < � (resp. m > �) the speed s must be
increased (resp. decreased). ��

Proposition 2. One has

E(k, u) = min{E(k − 1, u), B(0, dk, u), min
1≤j<k
1≤�<u

{E(j, �) +B(dj , dk, u− �)}}.

Proof. Let S be an optimal schedule associated with E(k, u). We can assume
that this schedule satisfies the properties of Theorem 1 and Property 1.

If Jk /∈ S, then E(k, u) = E(k − 1, u). If Jk ∈ S, then there are two cases to
consider. The first case is when all the jobs in S are scheduled at the same speed.
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This case is equivalent to the CS problem, and one has E(k, u) = B(0, dk, u).
The second case is when the schedule S has at least two different speeds. Let Cj

be the completion time of job Jj in the schedule S. Let t = minj{Cj | all the jobs
scheduled after Jj (at least one job) are executed with the same speed } = Cj∗ .
Necessarily, job Jj∗ is executed with a different speed. This means that at time
Cj∗ the processor is changing its speed, and using Property 3. of Theorem 1
we can deduce that Cj∗ = dj∗ . Now we consider the subschedule S1 obtained
from S by considering only the tasks executed during the interval [0, dj∗). Let us
assume that there are �∗ tasks in this subschedule. Then, necessarily the energy
consumption of S1 is equal to E(j∗, �∗), otherwise by replacing S1 with a better
subschedule with energy consumption E(j∗, �∗) we could obtain a better schedule
than S. Now we consider the subschedule S2 obtained from S by considering only
the tasks executed from time dj∗ until the end of the schedule. In a similar way,
the energy consumption of S2 is equal to B(dj∗ , dk, u− �∗).

Notice that since the jobs involved in E(j, �) have a deadline smaller or equal
to dj , whereas the jobs involved in B(dj , dk, u− l) have a deadline greater than
dj , those sets of jobs are always distinct, and therefore the schedule associated
with E(j, �) +B(dj , dk, u− �) is always feasible. ��

Theorem 2. The problem S1|pmtn, rj = 0|
∑
Uj(E) can be solved in

O(n4 logn logP ) time.

Proof. We use a dynamic program based on Proposition 2, with E(0, u) = +∞,
∀u > 0. The maximum throughput is equal to max{u|E(n, u) ≤ E}.

The number of values B(dj , dk, �) is O(n3). They can be precomputed with
a total processing time O(n4 logn logP ), using Proposition 1. The number of
values E(k, u) is O(n2), and the complexity to calculate each E(k, u) value is
O(n2) (we have to look for O(n2) values for j, � and we assume that the previ-
ous E(., .) values have already been computed). Thus the overall complexity is
O(n4 logn logP ). ��

4.2 Agreeable Deadlines

Definition 3. We define Ek(t, u) as the minimum energy consumption of an
S-schedule, such that |S| = u, S ⊆ J(k, t) = {Jj |j ≤ k, rj < t} and such that all
these jobs are executed within the interval [rmin, t]. If such a schedule does not
exist, then Ek(t, u) = +∞.

Definition 4. We define A(t′, t, �, j, k) as the minimum energy consumption of
a S-schedule such that |S| = �, S ⊆ {Jj, . . . , Jk}, and such that all these jobs
are scheduled within the interval [t′, t], and with a constant common speed.

Proposition 3. A(t′, t, �, j, k) can be computed in O(n logn logP ) time, for any
t′, t, �, j, k.

Proof. In order to compute A(t′, t, �, j, k), we change the release date of job Jj
to t′ if rj < t′, and the deadline of job Jj to t if dj > t. The set {Jj, . . . Jk} still
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has agreeable deadlines. Then we proceed as in the proof of Proposition 1 using
a binary search over the interval [0, smax], with smax = P/(t− t′). Note that in
this case, we use Lawler’s algorithm in [7]. ��

Proposition 4. One has

Ek(t, u) = min
rmin≤t′≤t,0≤j<k

0≤�≤u

{
Ej(t

′, �) +A(t′, t, u− �, j + 1, k)

}
.

Proof. Let S be an optimal schedule associated with Ek(t, u). We can assume
that this schedule satisfies the properties of Theorem 1 and Property 1.

If Jk /∈ S, then Ek(t, u) = Ek−1(t, u). In that case, t′ = t, j = k− 1 and � = u
in the above expression. If Jk ∈ S, then there are two cases to consider. The first
case is when the optimal schedule S has one speed. In that case t′ = rmin, � = 0,
j = 0 in the above expression. This case is equivalent to the CS problem. The
second case is when the optimal schedule S has at least two speeds. In that case
we proceed as in the Proposition 2, we split the schedule S into two subschedules
S1 and S2 (see the figure below).

ts t′

� jobs u− � jobs

There exists t′ with rmin < t′ < t, such that all the jobs scheduled after
t′ are scheduled with a common speed, and this is the subschedule S2. The
subschedule S1 (resp. S2) has an energy consumption equal to Ej(t

′, �) (resp.
A(t′, t, u− �, j + 1, k)). Notice that we have to guess the value of j and � in the
first subschedule, and the sets of jobs in the second subschedule depend on the
first one. ��

Theorem 3. The problem S1|pmtn, agreeable|
∑
Uj(E) can be solved in

O(n6 logn logP ) time.

Proof. We use a dynamic program based on Proposition 4. Notice that the im-
portant dates are included in the set Θ = {rj|1 ≤ j ≤ n} ∪ {dj |1 ≤ j ≤ n}.
This comes from the Property 1 and Theorem 1, i.e. the changes of speed of the
processor occur only at some release date or some deadline. Therefore we can
always assume that t′, t ∈ Θ. Notice also that |Θ| = O(n).

We define E0(t, 0) = 0 ∀t ∈ Θ, and E0(t, u) = +∞ ∀u > 0, t ∈ Θ. The
maximum throughput is equal to max{u|En(dmax, u) ≤ E}.

The number of values A(t′, t, �, j, k) is O(n5). They can be precomputed with
a total processing time O(n6 logn logP ), using Proposition 3. The number of
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values Ek(t, u) is O(n3). To compute each value, we have to look for the O(n3)
cases (for each value of t′, j, �). In each case, we pick up two values which are
already computed. Thus the Ek(t, u) values are computed in O(n6) time. The
overall complexity is O(n6 logn logP ). ��

4.3 Weighted Version

Next we consider the weighted version of our problem, i.e.
S1|pmtn, rj|

∑
j wjUj(E). In this version a job Jj is defined by its release

date rj , its deadline dj , its amount of work pj and its weight wj . We want to
maximize the total weight of the jobs scheduled. We first show that the problem
is NP-hard even in the case where all the jobs are released at the same time
and have equal deadlines. Then, we present a pseudo-polynomial algorithm for
the case where the deadlines are agreeable.

Theorem 4. The problem S1||
∑

j wjUj(E) is NP hard.

Proof. In order to establish the NP-hardness of S1||
∑

j wjUj(E), we present a
reduction from the Knapsack problem which is known to be NP-hard. In an
instance of the Knapsack problem we are given a set I of n items. Each item
i ∈ I has a value vi and a capacity ci. Moreover, we are given a capacity C,
which is the capacity of the knapsack, and a value V . In the decision version of
the problem we ask whether there exists a subset I ′ ⊆ I of the items of total
value not less than V , i.e.

∑
i∈I′ vi ≥ V , whose capacity does not exceed the

capacity of a knapsack, i.e.
∑

i∈I′ ci ≤ C.
Given an instance of the Knapsack problem, we construct an instance of

S1||
∑

j wjUj(E) as follows. For each item i, 1 ≤ i ≤ n, we introduce a job Ji
with ri = 0, di = 1, wi = vi and pi = ci. Moreover, we set the budget of energy
equal to E = Cα.

We claim that the instance of the Knapsack problem is feasible iff there is
a feasible schedule for S1||

∑
j wjUj(E) of total weighted throughput not less

than V .
Assume that the instance of the Knapsack is feasible. Therefore, there exists

a subset of items I ′ such that
∑

i∈I′ vi ≥ V and
∑

i∈I′ ci ≤ C. Then we can
schedule the jobs in I ′ with constant speed

∑
i∈I′ ci during [0, 1]. Their total

energy consumption of this schedule is no more that Cα since the instance of
the Knapsack is feasible. Moreover, their total weight is no less than V .

For the opposite direction of our claim, assume there is a feasible schedule for
S1||

∑
j wjUj(E) of total weighted throughput not less than V . Let J ′ be the

jobs which are completed on time in this schedule. Clearly, due to the convexity
of the speed-to-power function, the schedule that executes the jobs in J ′ with
constant speed during the whole interval [0, 1] is also feasible. Since the latter
schedule is feasible, we have that

∑
j∈J′ pj ≤ C. Moreover,

∑
j∈J′ wj ≥ V .

Therefore, the items which correspond to the jobs in J ′ form a feasible solution
for the Knapsack. ��
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In this part, we propose a pseudo-polynomial time algorithm based on a dynamic
programming algorithm for the Knapsack problem.

Definition 5. We redefine Ek(t, w) to be the minimum energy consumption of
a S-schedule, with S ⊆ J(k, t) = {Jj |j ≤ k, rj < t}, such that all the jobs in S
are scheduled within the interval [rmin, t] and such that the sum of their weight
is at least w. If such a schedule does not exist, then Ek(t, w) = +∞.

We redefine A(t′, t, w, j, k) to be the minimum energy consumption of a S-
schedule such that S ⊆ {Jj, . . . , Jk}, w(S) ≥ w and such that these jobs are
scheduled within the interval [t′, t], and with a constant common speed.

Proposition 5. A(t′, t, w, j, k) can be computed in O(nW logP ) time, where W
is the sum of weights of the jobs.

Proof. The proof is similar to Proposition 3. In this case, we use Lawler’s
algorithm in [6]. ��

Lemma 1. One has

Ek(t, w) = min
rmin≤t′≤t,0≤j<k

0≤�≤w

{
Ej(t

′, �) +A(t′, t, w − �, j + 1, k)

}
.

Proof. The proof is similar to the Proposition 4. ��

Theorem 5. The problem S1|pmtn, agreeable|
∑

j wjUj(E) can be solved in

O(n5W 2 logP ) time.

Proof. We use a dynamic program based on Proposition 5, with E0(t, 0) = 0
∀t ∈ Θ and E0(t, w) = +∞ ∀w > 0, t ∈ Θ. The maximum weighted throughput
is obtained with max{w|En(dmax, w) ≤ E}. The number of values A(t′, t, �, j, k)
is O(n4W ). They can be precomputed and finally it takes O(n5W 2 logP ) time.
The number of values Ek(t, u) is O(n2W ). To compute each value, we have to
look for the O(n2W ) cases (for each value of t′, j, �). In each case, we pick up
two values which are already computed. Thus the Ek(t, u) values are computed
in O(n4W 2) time. Thus the overall complexity is O(n5W 2 logP ). ��

5 Future Work

While the throughput maximization problem is polynomially-time solvable for
agreeable deadlines its complexity remains open for general instances. This is a
challenging open question for future research.
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Abstract. We consider the problem of minimizing the total flow time of
a set of unit sized jobs in a discrete time model, subject to a temperature
threshold. Each job has its release time and its heat contribution. At each
time step the temperature of the processor is determined by its temper-
ature at the previous time step, the job scheduled at this time step and a
cooling factor. We show a number of lower bound results, including the
case when the heat contributions of jobs are only marginally larger than
a trivial threshold. Then we consider a form of resource augmentation
by giving the online algorithm a higher temperature threshold, and show
that the Hottest First algorithm can be made 1-competitive, while other
common algorithms like Coolest First cannot. We also give some results
in the offline case.

1 Introduction

Motivation. Green computing is not just trendy, but is a necessity. For example,
data centers around the world consume an enormous amount of energy. Very
often, this energy consumption and the associated issue of heat dissipation is
the biggest factor affecting system design from data centers to handheld devices.
Many ways to tackle the issue have been explored. Among them, the design of
energy-efficient algorithms is an active area of research; we refer to [1] for an
introduction.

In this paper we are interested in controlling the temperature of a micropro-
cessor. Temperature is an important issue in processor architecture design: high
temperature affects system reliability and lifespan, but a powerful processor in-
evitably comes with a high energy consumption and hence high temperature.
It was proposed in [6] that, instead of slowing down the processor to control
the temperature, one can use proper scheduling algorithms to help as well. Since
then a number of papers [2,3,6] have worked on this model. We explain the model
below.

The Model. Time is split into discrete time steps. For an integer t, we refer to
the time interval between the time instants t and t + 1 as the time step t. A
total of n jobs arrive. Each job J has a release time rJ , a heat contribution
hJ , and a unit length processing time. All release times are integers. Thus each

T-H.H. Chan, L.C. Lau, and L. Trevisan (Eds.): TAMC 2013, LNCS 7876, pp. 20–31, 2013.
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job fits into one time step. The temperature of a processor changes depending
on the heat contribution of the jobs it executes, and a cooling factor R > 1:
specifically, if at time t the temperature is τt and a job J is executed at this
time step then the temperature at the next time step is given by τt+1 = τt+hJ

R .
This is a discrete approximation of the actual cooling which is a continuous time
process governed by Faraday’s Law, and the unit length jobs represent slices of
processes given to a processor. The initial temperature can be set at 0 without
loss of generality. The temperature can never exceed the temperature threshold
T . This can be set to 1 without loss of generality. A job J is therefore admissible
at time t if τt + hJ ≤ R. This means that any job with hJ > R can never be
admissible; without loss of generality we thus assume all jobs have hJ ≤ R.

One way of quantifying the performance of temperature-aware scheduling al-
gorithms is to optimize some Quality of Service (QoS) measure subject to the
temperature threshold. Arguably the most widely used QoS measure for pro-
cessor scheduling is the flow time (or response time). The flow time of a job J ,
denoted |J |, is defined as the difference between its release time and its comple-
tion time. We can consider the total (or average) flow time of all jobs, or the
maximum flow time. In this paper we focus on the total flow time.

The scheduling algorithm is online, i.e. it is not aware of jobs not yet released.
This is of course a natural way to model jobs arriving at a microprocessor.
We use the standard competitive analysis to analyze the effectiveness of online
algorithms: an online algorithmA is c-competitive if the objective value returned
by A (for a minimization problem) is at most c times that of an offline optimal
algorithm OPT , on all input instances.

There are several common and simple algorithms that can be used in this
temperature model:

– Coolest First (CF): at every time step, schedule the coolest job among all
admissible jobs, breaking ties arbitrarily.

– Hottest First (HF): at every time step, schedule the hottest job among all
admissible jobs, breaking ties arbitrarily.

– FIFO: at every time step, schedule the earliest released job among all ad-
missible jobs, breaking ties arbitrarily.

They all belong to a natural group of algorithms called non-idling algorithms,
i.e. they do not idle when they have an admissible job pending. This is a weaker
notion than that of reasonable algorithms as defined in [6], as reasonable al-
gorithms are non-idling algorithms, but with stricter restrictions on which job
must be scheduled.

Related Work. Without temperature constraints, the flow time problem is well-
studied. It is well known that the SRPT (shortest remaining processing time
first) algorithm is 1-competitive with preemption. Since in our case all jobs
are of unit length, there is no issue of preemption and therefore (if without
temperature) any non-idling algorithm is 1-competitive.

With temperatures, we are not aware of any prior work on flow time, although
there were research on other objective functions. One of them is to maximize
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throughput when each job has a deadline. This was shown to be NP-hard in the
offline case [6], even if all jobs have identical release times and identical deadlines.
It was observed that the same proof showed that minimizing the maximum or
total flow time is NP-hard as well. They further showed that in the online case,
all ‘reasonable’ algorithms are 2-competitive for R = 2 and this is optimal. This
was generalised to all range of R [3], the weighted jobs case [4] and the longer
jobs case [5].

Bampis et al. [2] considered the objective of minimizing the makespan on
m > 1 processors when all jobs are released at time 0. They presented a
generic 2ρ-approximate algorithm using a ρ-approximate algorithm for classical
makespan scheduling as a subroutine, and a lower bound of 4

3 on the approx-
imability. For a single processor the algorithm gives an approximation ratio of
2. They also considered other objectives when there is no temperature thresh-
old: they minimize the maximum temperature or the average temperature of the
schedule instead (subject to a bound on the finishing time of jobs).

Our Contributions. We consider three different cases in this paper:

(1) Bounded job heat: Since the problem is trivial without temperature
constraints, it is tempting to believe that the problem is still tractable when
the jobs are not very hot; we therefore consider limiting the maximum per-
missible heat of a job, hmax. When hmax is allowed to be exactly R then it
can be trivially shown that no algorithm can give a bounded competitive ra-
tio. On the other hand, if hmax ≤ R−1 then it can be easily shown that any
algorithm is 1-competitive (details are in Section 2). Therefore we consider
the case where hmax = R− ε for some 0 < ε < 1. Unfortunately it turns out
that positive results remain rather unlikely. The problem remains NP-hard,
and we show that the competitive ratio approaches infinity as ε approaches
0. We also show that non-idling algorithms have an unbounded competitive
ratio for all ε < 1.

(2) Increased temperature threshold: In view of the above, we instead
give online algorithms a bit more power by allowing them to have a higher
temperature threshold of 1+ε while the offline algorithm still has a threshold
of 1. This can correspond to the case where, for example, new technologies
make the system more resistant to higher temperatures. Note that when
ε ≥ 1

R−1 a 1-competitive upper bound is trivial (see Section 3). In this

model we can give a positive result: HF is 1-competitive if ε ≥ R2+R+1
(R−1)(R+1)2 .

We also show a number of lower bounds as in the bounded job heat case; in
particular we show that CF cannot be even constant competitive given any
non-trivial higher threshold. This is in stark contrast with the throughput
case [6] where CF is optimal but HF can be shown to be not.

For easier illustration, consider the case R = 2: our results show that
HF is 1-competitive whenever ε ≥ 7

9 (any non-idling algorithm is trivially
1-competitive if ε ≥ 1), while there are no 1-competitive algorithms whenever
ε < 1

4 .
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(3) The offline complexity: We show that no polynomial-time algorithms
can have an approximation ratio better than O(

√
n). We also give an ap-

proximation algorithm with approximation ratio 2.618 for the case where all
jobs have release time 0.

All of the results here are for the case of minimizing total flow time. In the full
paper we show some negative results for maximum flow time.

Notations. We denote the offline optimal algorithm by OPT and the online
algorithm being considered by A. They will also denote the schedules of the
algorithms whenever this is possible without confusion. For a set of jobs A or
a schedule A, |A| and |A| denote the total flow time of their jobs. We use τt
and τ ′t to denote the temperatures of A and OPT , respectively, at time t. We
describe jobs that are pending for an algorithm as being stored in a queue. We
denote the queues of A and OPT at a time step t as Qt and Q′

t respectively.
This refers to the time instant when all jobs that are released at t have arrived,
but before any jobs have been scheduled for that time step. The number of jobs
in Qt is denoted as |Qt|. We drop the subscript t if we are referring to the queue
in general and not a particular time step.

Due to space constraints, some proofs are omitted from this extended abstract.

2 Bounded Maximum Job Heat

First we consider the online case and where the heat contribution of any job is
at most R− ε for some 0 < ε < 1. This is the only ε range that gives non-trivial
results. No algorithm can give a bounded competitive ratio when hmax is allowed
to be exactly R. This is because after scheduling any job with a non-zero heat
contribution, any algorithm will have a positive temperature which means that
the algorithm will never be able to schedule a job with heat R, and so that job
will end up with an infinite flow time. If, on the other hand, hmax is restricted
to be at most R− 1 then any job can be scheduled at any time. This is because
the maximum temperature of an algorithm is 1 and if the maximum heat of a
job is R − 1 then after running any job the temperature of any algorithm will

be no higher than 1+(R−1)
R = 1, which means that the temperature threshold

can never be violated and that all jobs are always admissible. It is therefore
equivalent to the case without temperature constraints where any non-idling
algorithm is optimal.

We first note that the problem remains NP-hard even if the heat contributions
are just above R− 1.

Theorem 1. If hmax = R − 1 + δ for any δ > 0, the offline problem remains
NP -hard.



24 M. Birks and S. Fung

2.1 Lower Bounds

Before proceeding we need an observation: if there are two pending jobs and both
are admissible, it is preferable to schedule the hotter one first. This includes the
case when one of them is a zero-heat job (i.e. an idle time step). The reason is
because it leads to a lower resulting temperature than the other way round (see
e.g. [8]), so it cannot harm the subsequent schedule; moreover if one of them is
an idle step then scheduling the real job earlier can only reduce the flow time.

Theorem 2. For any integer k ≥ 2, if hmax = R − ε where ε ≤ R−1
Rk then any

deterministic algorithm is at least k-competitive.

Proof. Fix a deterministic algorithm A. At time 0 release a job J1 with hJ1 =
R − 1 and a job J2 with hJ2 = R−1

Rk−1 . A will eventually start the jobs, and let
the earlier one be started at time t. We analyze the two cases.

Case 1: A starts J1 first. Then τt+1 = R−1
R . At time t+1 we release another job

J3 with hJ3 = R − R−1
Rk . In order to start J3 the temperature of A must be no

higher than R−1
Rk and therefore J3 becomes just admissible at time t+ k. (This

assumes J2 is not scheduled yet; if J2 is scheduled before J3 then the additional
heat contribution will mean J3 can only start even later.) Let u be the time A
starts J3.

Case 1a: u ≥ t+k+1. In this case we gift A by assuming J2 has already been
scheduled with flow time 0 and no heat contribution. Starting at time u+1, we
release a copy of a job J4 with hJ4 = R − 1

Rk−1 every k time steps, for a large

enough number of copies. As 1
Rk−1 >

R−1
Rk , this heat contribution is below hmax.

No other jobs are released. We can assume each J4 job is scheduled as soon as it
becomes admissible because they are all identical and there will never be other
pending jobs.

Observe that for a J4-job to be admissible the temperature must be no higher
than 1

Rk−1 , and that they are always admissible after k − 1 idle steps. We now
show that A indeed needs k − 1 idle steps before being able to schedule each of
these J4-jobs. First, τu+1 > 1− R−1

Rk+1 due to J3 (and J1). After k − 2 idle steps,

τu+k−1 > (1− R−1
Rk+1 )/R

k−2 and it can be easily verified that this is greater than
1

Rk−1 . Therefore after k − 2 idle steps A is still too hot to schedule the first J4
job.

Now consider the rest of the J4 jobs. The first J4 job is scheduled at time
u + k. If we allow only k − 2 idle steps, then τu+2k−1 = (τu+k + hJ4)/R

k−1 =
τu+k−1/R

k + (R − 1
Rk−1 )/R

k−1. This is at least τu+k−1 if and only if τu+k−1 ≤
1

Rk−2 , which is true noting that τu+1 ≤ 1. Since we know J4 is not admissible
at u + k − 1, and τu+2k−1 ≥ τu+k−1, J4 is also not admissible at u + 2k − 1.
The same argument applies to all subsequent J4 jobs and so each J4 job requires
k − 1 idle steps before they can be scheduled.
OPT schedules jobs J2, J3 and J1 at t, t+1 and t+2 respectively. This gives

τ ′t+3 = 1 and thus τ ′u+1 ≤ τ ′t+k+2 = 1
Rk−1 . OPT can therefore schedule each J4

job as soon as it is released, reaching a temperature of exactly 1 afterwards, and
then repeat the same for the next J4 job.
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If in total x copies of J4 are released then |OPT | = x counting only the J4
jobs while |A| ≥ kx. As x can be made arbitrarily large, we can ignore the flow
time of the first three jobs and get a competitive ratio of k.

Case 1b: u = t+k. In this case J2 cannot be scheduled before J3, and τu+1 = 1.
We release a copy of a job J4 with hJ4 = R− 1

Rk−1 every k steps starting at time
u+ 2, for a large enough number of copies. No other jobs are released.

Suppose first that J2 is scheduled before any J4 job. Clearly it is best to
schedule J2 as early as possible, i.e. at time u + 1. Then at time u + k the
temperature is strictly higher than 1

Rk−1 , making J4 jobs inadmissible. Therefore
the first J4 job can be scheduled earliest at u+ k + 1. Similar to case 1a we can
argue that all subsequent J4 jobs also require k− 1 idle steps before they can be
scheduled.

Now suppose J2 is not started before the first J4 job, then the first J4 job
can be (and will be, as it is always better to schedule early) scheduled at u+ k.
Moreover τu+k+1 = 1. Therefore all subsequent J4 jobs follow the same pattern:
if J2 remains unscheduled by A in [u, u+ ik), for some i ≥ 1, then τu+ik = 1

Rk−1 ,
and so the next J4 job will be scheduled at u + ik, giving τu+ik+1 = 1. If J2 is
scheduled in some interval [u+ ik + 1, u+ (i+ 1)k + 1), then the next J4 job is
not admissible until time u + (i + 1)k + 1. From this point onwards there must
again be k−1 idle steps between two J4 jobs. We will show below that J2 cannot
be indefinitely delayed.
OPT schedules in the same way as in Case 1a. If in total x copies of J4 are

released after J2 is scheduled, then |OPT | = x counting only these J4 jobs while
|A| ≥ kx, so again this gives a competitive ratio of k. If J2 gets postponed after
x J4 jobs, then the flow time of J2 in A alone is already at least kx, so no more
J4 jobs need to be released and the argument works as well.

Case 2: A starts J2 first at time t, then starts J1 at time v ≥ t+1. At time v+1

we release a job J3 with hJ3 = R−R−1
Rk . After k−1 idle steps, τv+k >

hJ1

Rk = R−1
Rk .

This means that J3 cannot be started by A until v + k + 1 at the earliest. Let
u be the time A starts J3, u ≥ v + k + 1.

Next we release jobs J4 with hJ4 = R − 1
Rk−1 , starting at time u + 1 and

repeating every k time steps for a large number of copies. At u+1 the situation
of A is the same as in Case 1a, i.e. due to the heat contribution of J3 alone the
first J4 job requires k − 1 idle time steps before it can be scheduled. The same
argument in Case 1a for the subsequent J4 jobs also applies.

Meanwhile OPT will start J2, J3 and J1 at time t, t + 2 and t + 3. As in
Case 1, each J4 job will be scheduled immediately by OPT . Again x can be
made arbitrarily large to give a competitive ratio of k. ��

The above theorem only gives a non-trivial result when ε ≤ R−1
R2 . The next

theorem gives a bound that is not as strong but holds for any ε < 1.

Theorem 3. Any deterministic algorithm is at least 2-competitive when hmax =
R− 1 + δ for any δ > 0.
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2.2 Non-idling Algorithms

We prove a lower bound that gives an unbounded competitive ratio but for
non-idling algorithms. This lower bound holds for all non-trivial values of hmax

(recall that a bound of R − 1 makes every job always admissible.)

Theorem 4. When hmax = R − 1 + δ for any δ > 0, any non-idling algorithm
has a competitive ratio of Ω(n).

We now show a trivial upper bound. Note that for any constant hmax (i.e.
constant k) this bound is tight (by comparing with Theorem 4).

Theorem 5. For any integer k ≥ 1, if hmax = R − ε where ε ≥ 1
Rk , any non-

idling algorithm is O(kn)-competitive.

Proof. First we note that any job with the maximum heat contribution of R− ε
can be scheduled after k idle time steps. Clearly |OPT | ≥ n as the flow time of
each job must be at least 1. Ameanwhile will schedule at least one job every k+1
time steps, with the first job being completed immediately, so |J1| = 1, |Ji| ≤
(i − 1)k + i for i > 1, and |A| =

∑n
i=1 |Ji| ≤ 1 +

∑n
i=2((k + 1)i− k) = O(kn2).

Therefore |A|/|OPT | = O(kn). ��

3 Increased Temperature Threshold

In this section we consider a form of resource augmentation where the tempera-
ture threshold of the online algorithm is increased to 1+ ε for some 0 < ε < 1

R−1
but the temperature threshold of OPT remains at 1. (Note that the maximum
heat contribution of a job is not limited any lower than R, unlike Section 2, as
this is the hottest that OPT can schedule). We limit ε to < 1

R−1 because if a
larger value is allowed then, in a similar way to setting hmax ≤ R− 1 in Section
2, any job is always admissible at any time step and therefore any non-idling
algorithm is trivially 1-competitive.

3.1 Lower Bounds

We can prove the following lower bound on the threshold required to give com-
petitive algorithms. The proof is similar to that of Theorem 2.

Theorem 6. For any integer k ≥ 1, if ε < R−1
Rk+1 then no deterministic algorithm

is better than k-competitive.

3.2 Hottest First Is 1-Competitive

We now show that HF is 1-competitive when given a sufficiently high threshold,

namely ε ≥ R2+R+1
(R−1)(R+1)2 . (Note that this threshold is lower than the threshold

1
R−1 that makes any algorithm 1-competitive.)

First we split all jobs into two classes: any job J with R2

R+1 < hJ(≤ R) is
called an H-job, and every other job is called a C-job. We now show three
lemmas regarding the properties of H- and C-jobs.
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Lemma 1. OPT can never schedule two H-jobs consecutively.

Proof. If two H-jobs J1 and J2 run consecutively, the temperature of OPT

immediately after running the second job is at least
hJ1

R2 +
hJ2

R > R2/(R+1)
R2 +

R2/(R+1)
R = 1, i.e. it exceeds the temperature threshold. The inequality is due to

the minimum heat contribution of H-jobs. ��

Lemma 2. If ε ≥ R2+R+1
(R−1)(R+1)2 , then immediately after scheduling a C-job, A

can always schedule an H-job if some H-job is pending.

Proof. A C-job J1 and an H-job J2 is always able to be scheduled consecutively

by A if (1 + ε+ hJ1)/R
2 + hJ2/R ≤ 1 + ε, and as hJ1 ≤ R2

R+1 and hJ2 ≤ R this

is true if 1+ε+R2/(R+1)
R2 + R

R ≤ 1 + ε, which is equivalent to ε ≥ R2+R+1
(R−1)(R+1)2 . ��

Lemma 3. If ε ≥ 1
R2−1 , a pending C-job is always admissible to A.

Proof. A C-job J is always admissible for A if (1+ ε+hJ)/R ≤ 1+ ε, and as we

have that hJ ≤ R2

R+1 this is true if (1 + ε+ R2

R+1 )/R ≤ 1 + ε, which is equivalent

to ε ≥ 1
R2−1 . ��

We refer to the number of C-jobs scheduled by A and OPT in [0, t) (i.e. time
steps 0, . . . , t− 1) as ct and c

′
t respectively. The number of H-jobs scheduled by

A and OPT in [0, t) will similarly be referred to as ht and h
′
t.

Lemma 4. If ε ≥ 1
R2−1 , and if there exists some time t where A is idle, it must

be that c′t ≤ ct.

Proof. Consider such a time t. A will always schedule an admissible job and by
Lemma 3 all C-jobs are always admissible. Hence, as A idles at t, it must have
scheduled all of the C-jobs released so far, so c′t ≤ ct. ��

Lemma 5. If ε ≥ R2+R+1
(R−1)(R+1)2 , at every time t it must be that h′t ≤ ht.

Proof. We prove this claim by induction on t. First we show two trivial base
cases. Before time 0 neither algorithm will have scheduled any job and so h′0 =
h0 = 0. If OPT has scheduled a hot job J at time 0, then this job must also be
admissible for A, and as A always schedules the hottest job possible either J or
a hotter job will be scheduled by A and so h′1 ≤ h1.

For a general t ≥ 1, we use the induction hypotheses h′t−1 ≤ ht−1 and h′t ≤ ht
to show that h′t+1 ≤ ht+1. Consider the following cases. If OPT schedules a
C-job at t then h′t+1 = h′t ≤ ht ≤ ht+1. If both OPT and A schedule an H-job
at t then h′t+1 = h′t + 1 ≤ ht + 1 = ht+1. The only remaining case to consider
is where OPT schedules an H-job at t but A does not. In this case we know by
induction that h′t−1 ≤ ht−1. By Lemma 1 we know that OPT cannot schedule
an H-job at t− 1, so h′t+1 = h′t−1 +1. Hence, if h′t−1 ≤ ht−1− 1 then it must be
that h′t+1 = h′t−1 + 1 ≤ ht−1 ≤ ht+1.
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Otherwise h′t−1 = ht−1. If A schedules an H-job at t− 1 then ht+1 = ht−1+1
and so h′t+1 = h′t−1 + 1 = ht−1 + 1 = ht+1. Otherwise A did not schedule an
H-job at t−1. However an H-job must be pending at t: as h′t−1 = ht−1 and OPT
schedules an H-job at t, therefore at least ht−1+1 H-jobs have been released up
to and including time t, and as A does not schedule an H-job at t− 1, at least
one H-job is pending at t. A will always schedule a job when one is admissible
though, and we know that A scheduled either a C-job or no job at t − 1 so by
Lemma 2 this H-job or any hotter admissible job will be scheduled by A at t,
contradicting the assumption that it does not. ��

Theorem 7. If ε ≥ R2+R+1
(R−1)(R+1)2 , HF is 1-competitive.

Proof. Note that R2+R+1
(R−1)(R+1)2 > 1

R2−1 whenever R > 1. Thus for any ε ≥
R2+R+1

(R−1)(R+1)2 , Lemmas 4 and 5 both hold.

For |OPT | to be less than |A| there must exist some time s such that |Qs| >
|Q′

s|. Moreover there must also exist some t < s such that |Qt| = |Q′
t|, A idles

at t and OPT does not idle at t. It follows from Lemmas 4 and 5 that if such
a time t were to exist then c′t ≤ ct and h′t ≤ ht. As |Qt| = |Q′

t|, we have that
ct+ht = c′t+h

′
t. Hence the two inequalities must in fact be equalities, i.e. h′t = ht

and c′t = ct. We now show that such a t cannot exist, specifically by showing that
if OPT does not idle at t then A would not idle either. OPT cannot schedule
an H-job at t, because this means h′t+1 = h′t + 1 > ht = ht+1, contradicting
Lemma 5. Suppose OPT schedules a C-job at t. As c′t = ct, if a C-job is pending
for OPT at t, that one must also be pending for A at t. By Lemma 3 we know
that this C-job must be admissible for A and A always schedules a job if one is
admissible, contradicting that A is idle at t. ��

3.3 Non-idling Algorithms

We can show that the more restricted group of non-idling algorithms have
unbounded competitive ratio. The general approach of the proof is similar to
Theorem 4.

Theorem 8. If ε < 1
R2 , any non-idling algorithm is at least Ω(n)-competitive.

Since CF is a non-idling algorithm, Theorem 8 applies, but we can give a stronger
bound that shows it has an unbounded competitive ratio for all non-trivial values
of ε.

Theorem 9. For any fixed ε < 1
R−1 , CF is at least Ω(n)-competitive.

Note that Theorems 7 and 9 together imply that HF performs provably better
than CF: HF is 1-competitive given higher threshold whereas CF can never be
even constant competitive given any non-trivial temperature threshold. This is
perhaps somewhat surprising, given that CF (being a reasonable algorithm) is
optimal in maximizing throughput [3,6]. In contrast, HF is not a reasonable
algorithm, and it can be shown that HF is not optimal for throughput.

Similar results can be proved for augmenting the online algorithm with a
higher cooling factor (i.e. with a more powerful fan) instead of a higher threshold.
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4 The Offline Case

4.1 Inapproximability

Theorem 10. For any ε > 0, there is no polynomial time approximation algo-
rithm for minimizing total flow time with approximation ratio O(n1/2−ε), unless
P=NP.

The idea of the proof is similar to the Ω(
√
n) proof in [7], in that we use very

hot jobs (which require a lot of cooling time before it for it to be scheduled)
to simulate a long job. However, quite intricate technical details are required
(essentially to ensure that the temperatures are high enough so that the very
hot jobs are indeed ‘long’ jobs).

Note that this also implies that no online polynomial-time algorithm can have
competitive ratio better than O(

√
n), unless P = NP. However the proof uses

very hot jobs (unlike in Section 2).

4.2 Identical Release Times

Despite Theorem 10, in the special case of identical release times we can give a
2.618-approximation. The algorithm is similar to the algorithm for minimizing
makespan in [2]. (As in [2] we assume there is at most one job of heatR, otherwise
the second job of heat R will have a flow time of infinity for any schedule).
It works as follows: first it orders all the jobs in non-decreasing order of heat
contribution i.e. hJ1 ≤ hJ2 ≤ . . . ≤ hJn . Next we split the jobs into two sets
depending on their heat contributions. The set C contains all jobs with heat
contributions at most R − 1, i.e. C = {J1, J2, ..., Jc} where c = |C|. All other
jobs are in set H , i.e. H = {Jc+1, Jc+2, ..., Jn}. For simplicity we refer to a job
Ji in C (where i ≤ c) as Ci and a job Jc+i in H (where i ≤ n− c) as Hi. The
algorithm first assigns the hottest job, Hn−c if H �= ∅, to the first time step. For
time steps 2 to c+1 the algorithm then assigns all the C jobs in descending order
i. These jobs will always be admissible as their heat contributions are at most
R − 1. All remaining jobs Ji ∈ H − {Hn−c} are then scheduled in the coolest
first order, where each job of heat contribution hJi is preceded by ki idle time
steps, where ki is defined as follows: for each job Ji with a heat contribution

hJi > R− 1, ki is the largest k such that hJi >
Rk−1
Rk−1 .

We require two propositions from [2] (generalized to all values of R) that
are restated here for completeness. The first proposition ensures the schedule
described above is feasible.

Proposition 1. Any schedule in which every job Ji is executed after at least ki
idle steps is feasible.

Proposition 2. For R ≥ 2, in an optimal schedule, between the execution of two
jobs Jj and Ji (where Jj is before Ji) of heat contributions hJj , hJi > R−1, there
are at least ki−1 steps, which are either idle or execute jobs of heat contributions
at most R− 1.
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Theorem 11. The above algorithm achieves a 2.618-approximation for mini-
mizing total flow time, for R ≥ 2.

Proof. If c ≥ n− 1 then A schedules a job every time step without idling and so
must be optimal, therefore we only need to consider the case where c < n− 1. It
is clear that |A| = |C|+ |H | = |C|+ |H−{Hn−c}|+1. For each job Ci, 1 ≤ i ≤ c,

we have |Ci| = i+ 1. Therefore |C| =
∑c

i=1 |Ci| = c2+3c
2 .

Next we consider each job Hi for 1 ≤ i < n− c: |H1| = 1 + c+ kc+1 + 1 and

|Hi| = |Hi−1|+ kc+i + 1. This gives |Hi| = c+ i+ 1 +
∑i

j=1 kc+j . Thus

|H−{Hn−c}| =
n−c−1∑
i=1

|Hi| =
n2 + n− c2 − 3c− 2

2
+

n−c−1∑
i=1

kc+i((n−c−1)−(i−1))

The total flow time of A is therefore

|A| = 1 +
c2 + 3c

2
+
n2 + n− c2 − 3c− 2

2
+

n−c−1∑
i=1

kc+i(n− c− i) (1)

We now analyze the flow time of OPT by analysing the flow time of a virtual
schedule OPT ∗ that must have a flow time of no more than that of OPT . OPT ∗

schedules the hottest jobHn−c at the first time step. OPT ∗ then assigns each job
Ji in H a virtual processing time of ki, and schedules them according to the order
given by the Shortest Processing Time First rule. In each of these ki processing
steps, the first ki − 1 is idle and the last is where Ji is executed. Finally, OPT

∗

assigns the jobs from C into the earliest possible idle steps in between each of
the jobs from H (or after the last job from H if there are not enough idle steps).
This virtual schedule of OPT ∗ may not be feasible, but by Proposition 2 and
the optimality of the Shortest Processing Time First rule when temperature is
not considered, it must be that |OPT | ≥ |OPT ∗|.

We denote the flow time, in the schedule of OPT ∗, of a job J as |J∗|. Analo-
gous definitions for |C∗|, |H∗| and |OPT ∗| follow naturally. We now analyze this
virtual schedule. It must be that |OPT ∗| = |C∗|+ |H∗

n−c|+ |(H−{Hn−c})∗|, and
that |C∗|+ |H∗

n−c| ≥ |C|+ |Hn−c| = 1+(c2+3c)/2. As for Hi, 1 ≤ i < n− c, we

have |H∗
1 | = 1+kc+1 and |H∗

i | = |H∗
i−1|+kc+i. This gives |H∗

i | = 1+
∑i

j=1 kc+j .
The total flow time for the set H − {Hn−c} is therefore

|(H − {Hn−c})∗| =
n−c−1∑
i=1

|H∗
i | = (n− c− 1) +

n−c−1∑
i=1

kc+i((n− c− 1)− (i − 1))

These can then be combined to bound the flow time for OPT :

|OPT | ≥ |OPT ′| = 1 +
c2 + 3c

2
+ (n− c− 1) +

n−c−1∑
i=1

kc+i(n− c− i) (2)

Combining Equations (1) and (2) gives us the approximation ratio:

|A|
|OPT | ≤

n2 + n+ 2
∑n−c−1

i=1 kc+i(n− c− i)

c2 + c+ 2n+ 2
∑n−c−1

i=1 kc+i(n− c− i)
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As ki ≥ 1 for every Ji ∈ H , it must be that
∑n−c−1

i=1 kc+i(n − c − i) ≥∑n−c−1
i=1 (n− c− i) = (n− c− 1)(n− c)/2. Putting back into the above formula

and simplifying, this gives

|A|
|OPT | ≤

c2 − (2n− 1)c+ 2n2

2c2 − (2n− 2)c+ (n2 + n)
<
c2 − 2nc+ 2n2

2c2 − 2nc+ n2

Let x = c/n, then this ratio is equal to x2−2x+2
2x2−2x+1 . For 0 ≤ x ≤ 1, the maximum

value of this ratio is equal to (3 +
√
5)/2, attained at x = (3 −

√
5)/2. ��

Note that this algorithm is almost like CF (except the first step), but the change
is necessary to obtain a good approximation ratio. Consider the example with
two jobs J1 and J2 with hJ1 = R− 1 and hJ2 = R− ε. CF will schedule J1 first
and requires logR

R−1
Rε idle steps before it can schedule J2, whereas scheduling

J2 first followed immediately by J1 gives a total flow time of 3.
Interestingly the algorithm given in [2] for minimizing makespan (which in

the case of identical release times is equivalent to minimizing the maximum flow
time) is almost equivalent to HF, and it gave a (2 + ε)-approximation.
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Abstract. We revisit the random-access-machine model in which the
input is given on a read-only random-access media, the output is to
be produced to a write-only sequential-access media, and in addition
there is a limited random-access workspace. The length of the input
is N elements, the length of the output is limited by the computation
itself, and the capacity of the workspace is O(S + w) bits, where S is a
parameter specified by the user and w is the number of bits per machine
word. We present a state-of-the-art priority queue—called an adjustable
navigation pile—for this model. Under some reasonable assumptions, our
priority queue supportsminimum and insert in O(1) worst-case time and
extract in O(N/S+lg S) worst-case time, where lgN ≤ S ≤ N/ lgN . We
also show how to use this data structure to simplify the existing optimal
O(N2/S +N lg S)-time sorting algorithm for this model.

1 Introduction

Problem Area. Consider a sequential-access machine (Turing machine) that
has three tapes: input tape, output tape, and work tape. In space-bounded com-
putations the input tape is read-only, the output tape is write-only, and the aim
is to limit the amount of space used in the work tape. In this set-up, the the-
ory of language recognition and function computation requiring O(lgN) bits1

of working space for an input of size N is well established; people talk about
log-space programs [25, Section 3.9.3] and classes of problems that can be solved
in log-space [25, Section 8.5.3]. Also, in this set-up, trade-offs between space and
time have been extensively studied [25, Chapter 10]. Although one would seldom
be forced to rely on a log-space program, it is still interesting to know what can
be accomplished when only a logarithmic number of extra bits are available.

In this paper we reconsider the space-time trade-offs in the random-access
machine. Analogous with the sequential-access machine, we have a read-only
array for input, a write-only array for output, and a limited workspace that
allows random access. Over the years, starting by a seminal paper of Munro and

1 Throughout the paper we use lg x as a shorthand for log2(max {2, x}).
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Paterson [20], the space-time trade-offs have been studied in this model for many
problems including: sorting [4,12,24], selection [11,12], and various geometric
tasks [2,3,7]. The practical motivation for some of the previous work has been
the appearance of special devices, where the size of working space is limited
(e.g. mobile devices) and where writing is expensive (e.g. flash memories).

An algorithm (or a data structure) is said to be memory adjustable if it uses
O(S) bits of working space for a given parameter S. Naturally, we expect to
use at least one word, so Ω(w) is a lower bound for the space usage, w being
the size of the machine word in bits. Sorting is one of the few problems for
which the optimal space-time product has been settled: Beame showed [4] (see
also [25, Theorem 10.13.8]) that Ω(N2) is a lower bound, and Pagter and Rauhe
showed [24] that an O(N2/S+N lgS) running time is achievable for any S when
lgN ≤ S ≤ N/ lgN .

Model of Computation. We assume that the elements being manipulated
are stored in a read-only media. Throughout this paper we use N to denote the
number of elements burned on the read-only media. Observe that N does not
need to be known beforehand. If an algorithm must do some outputting, this is
done on a separate write-only media. When something is printed to this media,
the information cannot be read or rewritten again.

In addition to the input media and the output media, a limited random-access
workspace is available. The data on this workspace is manipulated wordwise
as on the word RAM [14]. We assume that the word size is at least �lgN�
bits and that the processor is able to execute the same arithmetic, logical, and
bitwise operations as those supported by contemporary imperative programming
languages—like C [17]. It is a routine matter [19, Section 7.1.3] to store a bit
vector of size n such that it occupies �n/w� words and any string of at most
w bits can be accessed in O(1) worst-case time. That is, the time complexity
is proportional to the number of the primitive operations plus the number of
element accesses and element comparisons performed in total.

We do not assume the availability of any powerful memory-allocation routines.
The workspace is an infinite array (of words), and the space used by an algorithm
is the prefix of this array. Even though this prefix can have some unused zones,
the length of the whole prefix specifies the space complexity of the algorithm.

Our Results. In our setting the elements lie in a read-only array and the
data structure only constitutes references to these elements. We assume that
each of the elements appears in the data structure at most once, and it is the
user’s responsibility to make sure that this is the case. Also, all operations are
position-based; the position of an element can be specified by a pointer or an
index. Since the positions can be used to distinguish the elements, we implicitly
assume that the elements are distinct. Consider a priority queue Q. Recall that
a priority queue is a data structure that stores a collection of elements and
supports the operations minimum, insert , and extract defined as follows:

Q.minimum(): Return the position of the minimum element in Q.

Q.insert(p): Insert the element at position p of the read-only array into Q.

Q.extract(p): Extract the element at position p of the read-only array from Q.
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Table 1. The performance of adjustable navigation piles (described in this paper)
and their competitors in the read-only random-access model; N is the size of the
read-only input and S is an asymptotic target for the size of workspace in bits where
lgN ≤ S ≤ N/ lgN

Reference Space minimum insert extract

[5] Θ(N lgN) O(1) O(1) O(lgN)
[16] Θ(N) O(1) O(lgN) O(lgN)
[12] Θ(S) O(1) O(N lgN/S + lgS) O(N lgN/S + lgS)
[24] Θ(S) O(N/S2 + lgS) O(N/S + lg S) amortized O(N/S + lg2 S)

[this paper] Θ(S) O(1) O(1) O(N/S + lgS)

In the non-adjustable set-up, any priority queue—like a binary heap [26] or a
queue of binary heaps [5] (that are both in-place data structures)—could be used
to store positions of the elements instead of the elements themselves.

The main result of this paper is a simplification of the memory-adjustable
priority queue by Pagter and Rauhe [24] that is a precursor of all later con-
structions. First, we devise a memory-adjustable priority queue that we call an
adjustable navigation pile. Compared to navigation piles [16], that require Θ(N)
bits, our adjustable variant can achieve the same asymptotic performance with
only Θ(N/ lgN) bits. (Another priority queue that uses Θ(N) bits in addition to
the input array was given in [9].) Second, we use this data structure for sorting.
The algorithm is priority-queue sort like heapsort [26]: Insert the N elements
one by one into a priority queue and extract the minimum from that priority
queue N times. In Table 1 we compare the performance of the new data struc-
ture to some of its competitors. Note that the stated bounds are valid under
some reasonable assumptions that are made explicit in Section 2.

We encourage the reader to compare our solution to that of Pagter and Rauhe
[24]. In the basic setting, Pagter and Rauhe proved that the running time of
their sorting algorithm is O(N2/S + N lg2 S) using O(S) bits of workspace.
Lagging behind the optimal bound for the space-time product by a logarithmic
factor when S = ω(N/ lg2N), they suggested using their memory-adjustable
data structure in Frederickson’s adjustable binary heap [12] to handle subprob-
lems of size N lgN/S using O(lgN) bits for each. In accordance, by combining
the two data structures, the treatment achieves an optimal O(N2/S + N lg S)
running time for sorting, where lgN ≤ S ≤ N/ lgN . In our treatment we avoid
the complication of plugging two data structures together.

Related Models. The basic feature that distinguishes the model of compu-
tation we use from other related models is the capability of having random access
to the input data. In the context of sequential-access machines, the input is on a
tape that only allows single-pass algorithms. The so-called streaming model still
enforces sequential access, but allows multi-pass algorithms (Munro and Pater-
son [20] considered this model). For some problems, the read-only random-access
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model is more powerful than the multi-pass sequential-access model (for example,
for selection the lower bound known for the multi-pass streaming model [6] can
be bypassed in the read-only random-access model [11]).

2 Memory-Adjustable Priority Queues

Assumptions. In this section two memory-adjustable priority queues are de-
scribed. The first structure is a straightforward adaptation of a tournament
tree (also called a selection tree [18, Section 5.4.1]) for read-only data. For a
parameter S, it uses O(S) words of workspace. The second structure is an im-
provement of a navigation pile [16] for which the workspace is O(S + w) bits,
lgN ≤ S ≤ N/ lgN , where N is the size of the read-only input and w is the size
of the machine word in bits. Both data structures can perform minimum and
insert in O(1) worst-case time and extract in O(N/S + lg S) worst-case time.

When describing the data structures, we tactically assume that

1. N is known beforehand.
2. The elements are extracted from the data structure in monotonic fashion.

Accordingly, at any given point of time, we keep a single element as a bound-
ary telling that the elements smaller than or equal to that element have been
extracted from the data structure. We call such an element the latest output,
and say that an element is alive if it is larger than the latest output.

3. The elements are inserted into the data structure sequentially—but still in-
sertions and extractions can be intermixed—in streaming-like fashion start-
ing from the first element stored in the read-only input.

These assumptions are valid when a priority queue is used for sorting. Actually,
in sorting all insertions are executed before extractions; a restriction that is not
mandated by the data structure. At the end of this section, we show how to get
rid of these assumptions. The first assumption is not critical. But, when relaxing
the second assumption, the required size of workspace has to increase by N bits.
In addition, when relaxing the third assumption, the worst-case running time of
insert will become the same as that required by extract .

Tournament Trees. For an integer S, we use S̄ as a shorthand for 2�lgS�.
It suffices that S ≤ N/ lgN ; even if S was larger, the operations would not be
asymptotically faster. The input array is divided into S̄ buckets and a complete
binary tree is built above these buckets. Each leaf of the tree covers a single
bucket and each branch node covers the buckets covered by the leaves in the
subtree rooted at that branch. We call the elements within the buckets covered
by a node the covered range of this node. Note that the covered range of a node
is a sequence of elements stored in consecutive locations of the input array. The
actual data stored at each node is a pointer or an index specifying the position
of the smallest alive element in the covered range of that node.

In its basic form, the data structure is an array of 2S̄ − 1 positions (indices).
To make the connection to our adjustable navigation piles clear, we store the
positions in breadth-first order as in a binary heap [26]. We start the numbering
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Fig. 1. (a) A tournament tree and (b) a navigation pile when N = 16 000 and S̄ = 8.
Only the smallest alive element in each bucket is shown

of the nodes at each level from 0. For the sake of simplicity, we maintain a
header that stores the pointers to the beginning of each level (even though this
information could be calculated). For a node number i, its left child has number
2i at the level below, the right child has number 2i + 1 at the level below, and
the parent has number �i/2� at the level above. When we know the current level
and the number of a node, the information available at the header and these
formulas are enough to get to a neighbouring node in constant time. In Fig. 1(a)
we give an illustration of a tournament tree when N = 16 000 and S̄ = 8.

To support insert efficiently, we partition the data structure into three com-
ponents: the tournament tree, the submersion buffer, and the insertion buffer.
The submersion buffer is the last full bucket that is being integrated with the
tournament tree incrementally. The insertion buffer is the bucket that embraces
all the new elements. Observe that one or both of these buffers can be empty.
The idea is to insert the elements into a buffer and, first when the buffer gets
full, integrate it with the tournament tree. This buffering technique has been
used in other contexts as well (see, for example, [1,8]). The overall minimum
can be in any of the three components. To support minimum in O(1) worst-case
time, we keep track of the position of the overall minimum.

In connection with insert , the next element from the read-only array becomes
part of the insertion buffer. If the new element is smaller than the buffer mini-
mum and/or the overall minimum, the positions of these minima are updated. If
the insertion buffer becomes full, the submersion buffer must have been already
integrated into the tournament tree. At this point, we treat the insertion buffer
as the new submersion buffer and start a bottom-up submersion process updat-
ing the nodes of the tournament tree that cover this bucket. Every branch node
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inherits the position of the smaller of the two elements pointed to via its two
children. As long as the submersion is not finished, each insert is responsible for
continuing a constant amount of the submersion work. Since the work needed
to update this path is O(lg S) = O(N/S), the process terminates before the
insertion buffer is again full. Clearly, insert takes O(1) worst-case time.

In extract , simple calculations are done to determine which bucket covers
the element being extracted. The latest output is first set up to date. Since the
smallest alive element of the present bucket must have been extracted, the bucket
is scanned to find its new minimum. There are three cases depending on whether
the present bucket is one of the buffers or covered by the tournament tree. If the
present bucket is the insertion buffer, it is just enough to update the position
of its minimum. If the present bucket is the submersion buffer, the submersion
process is completed by recomputing the positions in the nodes of the tournament
tree that cover the submersion buffer. Hereafter, the submersion buffer ceases
to exist. If the present bucket is covered by the tournament tree, it is necessary
to redo the comparisons at the branch nodes that cover the present bucket. In
all three cases the position of the overall minimum is updated, if necessary. It
is the scanning of a bucket that makes this operation expensive: The worst-case
running time is O(N/S + lg S), which is O(N/S) when S ≤ N/ lgN .

Navigation Piles. In principle, a navigation pile [16] is a compact represen-
tation of a tournament tree. The main differences are (see Fig. 1(b)):

1. Only the nodes whose heights are larger than 0 have a counterpart. Hence,
the number of nodes in the complete binary tree is S̄ − 1.

2. Any node only stores partial information about the position of the smallest
alive element in the covered range of that node. Here our construction differs
from that used in the navigation piles [16] and their precursors [24].

A branch node of height h ∈
{
1, 2, . . . , lg S̄

}
covers 2h buckets. As in the original

navigation piles, we use h bits to specify in which bucket the smallest alive elem-
ent is. A significant ingredient is the concept of a quantile. (A similar quantile-
thinning technique was used in [24], but not in an optimal way, and later in [10].)
For a branch node of height h, every covered bucket is divided into 2h quantiles,
and another h bits are used to specify in which quantile the smallest alive elem-
ent is. That is, except that the last quantile can possibly be smaller, a quantile
contains

⌈
N/(S̄ · 2h)

⌉
elements. We need 2h bits per node; but if 2h ≥ �lgN�,

we do not use more than �lgN� bits (since this is enough to specify the exact
position of the smallest alive element). To sum up, since there are S̄/2h nodes of
height h and since at each node we store min {2h, �lgN�} bits, the total number
of bits is bounded by

lg S̄∑
h=1

S̄ ·min {2h, �lgN�}
2h

< 4S̄ .

The navigation bits are stored in a bit vector in breadth-first order. As before,
we maintain a header giving the position of the first bit at each level. The
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space needed by the header is O(lg2 S̄) bits. Inside each level the navigation
information is stored compactly side by side, and the nodes are numbered at
each level starting from 0. Since the length of the navigation bits is fixed for all
nodes at the same level, using the height and the number of a node, it is easy to
calculate the positions where the navigation bits of that node are stored.

Let us now illustrate how to access the desired quantile for a branch node in
constant time. Let the number of the branch node be x within its own level, and
assume that its height is h. The first element of the covered range is in position
x · 2h ·

⌈
N/S̄

⌉
. The first h bits of the navigation information gives the desired

bucket; let this bucket index be b, so we have to go b ·
⌈
N/S̄

⌉
positions forward.

The second h bits of the navigation information gives the desired quantile in-
side that bucket; let this quantile index be q, so we have to proceed another
q ·
⌈
N/(S̄ · 2h)

⌉
positions forward before we reach the beginning of the desired

quantile. Obviously, these calculations can be carried out in constant time.
The priority-queue operations can be implemented in a similar way as for a

tournament tree. To facilitate constant-time minimum, we can keep a separate
pointer to the overall minimum (since the root of an adjustable navigation pile
does not necessarily specify a single element). One subtle difference is that, when
we update a path from a node at the bottom level to the root, we have to scan
the elements in the quantiles specified for the sibling nodes of the nodes along
the path. After updating the navigation bits of a node y, we locate its parent
x and its sibling z. The navigation bits at z are used to locate the quantile
that has the minimum element covered by z. This quantile is scanned and the
minimum element is found and compared with the minimum element covered by
y. From the bucket number and the position of the smaller of the two elements,
the navigation bits at x are then calculated and accordingly updated. If the
quantile for x has only one element, the position of this single element can be
stored as such. The key is that for a node of height h, the size of the quantile is⌈
N/(S̄ · 2h)

⌉
, so the total work done in the scans of the quantiles of the siblings

along the path is proportional to
⌈
N/S̄

⌉
as it should be. It follows that the

efficiency of the priority-queue operations is the same as for a tournament tree.
Getting Rid of the Assumptions. So far we have consciously ignored the

fact that the size of the buckets depends on the value of N , and that we might
not know this value beforehand. The standard way of handling this situation is to
rely on global rebuilding [23, Chapter V]. We use an estimate N0 and initially set
N0 = 8. We build two data structures, one for N0 and another for 2N0. The first
structure is used to perform the priority-queue operations, but insertions and
extractions are mirrored in the second structure (if the extracted element exists
there). When the structure for N0 becomes too small, we dismiss the smaller
structure in use, double N0, and in accordance start building a new structure of
size 2N0. We should speed up the construction of the new structure by inserting
up to two alive elements into it at a time, instead of only one. This guarantees
that the new structure will be ready for use before the first one is dismissed.
Even though global rebuilding makes the construction more complicated, the
time and space bounds remain asymptotically the same.
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A possible scenario in applications is when extractions are no more monotonic.
To handle this situation, we have to allocate one bit per array entry, indicating
whether the corresponding element is alive or not. This increases the size of the
workspace significantly if S is much smaller than N .

Since we have random-access capability to the read-only input, it is not ab-
solutely necessary that elements are inserted into the data structure by visiting
the input sequentially. We could insert the elements in arbitrary order. If this is
the case, in connection with each insert we have to fix the information related
to the present bucket as in extract . That is, we have to find the smallest alive
element of the bucket and update the navigation information on the path from
a node at the bottom level to the root. This means that the worst-case cost of
insert becomes the same as that of extract , i.e. O(N/S + lg S).

3 Sorting

Priority-Queue Sort. To sort the given N elements, we create an empty ad-
justable navigation pile, insert the elements into this pile by scanning the read-
only array from beginning to end, and then repeatedly extract the minimum of
the remaining elements from the pile. See the pseudo-code in Fig. 2.

Analysis. From the bounds derived for the priority queue, the asymptotic
performance can be directly deduced: The worst-case running time is O(N2/S+
N lg S) and the size of workspace is O(S + w) bits. It is also easy to count the
number of element comparisons performed during the execution of the algorithm.
When inserting the N elements into the data structure, O(N) element compari-
sons are performed. We can assume that after these insertions, the buffers are
integrated into the main structure. In each extract we have to find the minimum
of a single bucket which requires at most N/S̄ element comparisons. In addition,
we have to update a single path in the complete binary tree. At each level, the
minimum below the current node is already known and we have to scan the quan-
tiles of the sibling nodes. During the path update, we have to perform at most
N/S̄ + lg S̄ element comparisons. We know that S ≤ S̄ ≤ 2S. Hence, the total
number of element comparisons performed is bounded by 2N2/S+N lg S+O(N).

procedure: priority-queue-sort
input: A: read-only array of N elements; S: space target
output: stream of elements produced by the print statements
P ← navigation-pile(A,S)
for x ∈ {0, 1, . . . , N − 1}

P.insert(x)
repeat N times

y ← P.minimum()
P.extract (y)
print(A[y])

Fig. 2. Priority-queue sort in pseudo-code; the position of an element is its index
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4 Concluding Remarks

Summary. In the construction of adjustable navigation piles three techniques
are important: 1) node numbering with implicit links between nodes, 2) bit
packing and unpacking, and 3) quantile thinning. In addition to the connection
to binary heaps [26], we pointed out the strong connection to tournament trees.
We made the conditions explicit for when a succinct implementation of a priority
queue requiring o(N) bits is possible (when extractions are monotonic), so that
algorithm designers would be careful when using the data structure.

Our sorting algorithm for the read-only random-access model is a heapsort
algorithm [26] that uses an adjustable navigation pile instead of a binary heap. In
spite of optimality, one could criticize the model itself since the memory-access
patterns may not always be friendly to contemporary computers; and we are
not allowed to move the elements. Navigation piles are slow [15] for two reasons:
1) The bit-manipulation machinery is heavy and index calculations devour clock
cycles. 2) The cache behaviour is poor because the memory accesses lack locality.
Unfortunately, the situation is not much better for adjustable navigation piles;
the buckets are processed sequentially, but the quantiles lie in different buckets.

Other Data Structures for Read-Only Data. In our experience, very few
data structures can be made memory adjustable as elegantly as priority queues.
A stack is another candidate [3]. For example, a dictionary must maintain a
permutation of a set of size N ; this means that it is difficult to manage with
much less than N �lgN� bits. However, when the goal is to cope with about
N bits, a bit vector extended with rank and select facilities (for a survey, see
e.g. [21]) is a relevant data structure. Two related constructions are the wavelet
stack used in [11] and the wavelet tree introduced in [13] (for a survey, see [22]).
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Abstract. We consider vertex-labeled graphs, where each vertex v is
attached with a label from a set of labels. The vertex-to-label distance
query desires the length of the shortest path from the given vertex to
the set of vertices with the given label. We show how to construct an
oracle for a vertex-labeled planar graph, such that O( 1

ε
n log n) stor-

ing space is needed, and any vertex-to-label query can be answered in
O( 1

ε
log n logΔ) time with stretch 1 + ε. Here, Δ is the hop-diameter

of the given graph. For the case that Δ = O(log n), we construct a dis-
tance oracle that achieves O( 1

ε
log n) query time, without changing space

usage.

1 Introduction

The construction of distance oracles for vertex-labeled graphs was introduced
in [5]. In this paper, we consider this problem for planar graphs. Given a graph
G = (V,E), the edges are undirected and each of them is assigned a non-negative
weight. In addition, each vertex u is assigned a label λ(u), by a labeling function
λ : V → L, where L is a set of labels. Let Vλ denote the set of vertices assigned
label λ. The distance between two nodes v, u ∈ V , denoted by δ(v, u), is the
length of the shortest path between v and u. The distance between a node
u ∈ V and a label λ ∈ L is the distance between u and u’s nearest neighbor with
label λ, i.e. δ(u, λ) = minv∈Vλ

δ(u, v).
In applications, a vertex-to-label query asks for the distance between a node

and a set of points with some common functionality, which is specified by a
vertex label. These queries arise in many real-life scenarios. For example, one
might want to find the restaurant in town that is nearest to their office, or to
find the bus stop of a specific route that is closest to their home. Trivially, people
can calculate in advance and store the answer for each pair of vertex and label.
However, this might take O(|V | × |L|) space, which can be O(n2) in the worst
case.
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The aim of vertex-to-label distance oracle (VLDO) is to pre-calculate and
store information using o(|V | × |L|) space, such that any vertex-to-label query
can be answered efficiently. Approximate VLDO’s answer queries with stretch
greater than one. Specifically, an approximate VLDO with stretch t, denoted
by t-VLDO, returns d(u, λ) as the approximation to δ(u, λ), such that δ(u, λ) ≤
d(u, λ) ≤ t·δ(u, λ). In [5], Hermelin et al. generalized Thorup and Zwick’s scheme
for approximated vertex-to-vertex distance oracle (VVDO) [15] to construct a
(4k−5)-VLDO with query time O(k), storage of sizeO(kn1+ 1

k ) and preprocessing
time O(kmn

1
k ), where n and m denote numbers of vertices and edges of the given

graph, respectively.
In a number of applications, the given graph can be drawn on a plane, and

is thus called a planar graph. It has been shown that for many graph problems,
there exist more efficient algorithms for planar graphs, and hence we are moti-
vated to derive approximate VLDO’s for planar graphs. Note that in the work
by Hermelin et al., the space for storage is O(kn1+ 1

k ), which is O(n2) for k = 1.
As this is as much as the space required by the trivial solution, their construc-
tion makes sense only when k ≥ 2. Then, we can assume that the stretch of
their distance oracle is at least 3. However, in this paper, we consider approxi-
mate VLDOs with stretch arbitrarily close to 1, with the sacrifice of increasing
the query time to polylog(n). Our approximate VLDO requires storage of size
O(n log n), in which the big-O notation hides a parameter inversely proportional
to the stretch.

1.1 Related Work

Vertex-to-Label Distance Oracles. The problem of constructing approxi-
mate VLDOs was formalized and studied by Hermelin et al. in [5]. Besides the
construction that is adapted from Thorup and Zwick’s scheme in [15], they
also constructed (2k − 1)-VLDOs with query time O(k), storage of expected
size O(kn�

1
k ) (where � = |L|) and preprocessing time O(kmn

k
2k−1 ), as well as

(2 · 3k +1)-VLDOs that support label changes in O(kn
1
k logn) time, with query

time O(k) and storage of expected size O(kn1+ 1
k ). In [2], Chechik showed that

Thorup and Zwick’s scheme can also be modified to get (4k − 5)-VLDOs that
support label changes in O(n

1
k log1−

1
k n log logn) time, with query time O(k),

storage of expected size Õ(n1+ 1
k ), and preprocessing time O(kmn

1
k ).

VLDOs have also been studied for special classes of graphs. Tao et al. [12]
have shown how to construct VLDOs for XML trees. For the case that each node
is assigned exactly one label, their construction results in (exact) VLDOs with
query time O(log n), storage of size O(n) and preprocessing time O(n logn).

Vertex-to-Vertex Distance Oracles (VVDOs). In a seminal paper [15],
Thorup and Zwick have introduced a scheme to construct a (2k − 1)-VVDO
with query time O(k), storage of expected size O(kn1+ 1

k ) and preprocessing
time O(kmn

1
k ). Wulff-Nilsen [16] improved the preprocessing time to O(

√
km+

kn
1+ c√

k ) for some universal constant c, which is better than O(kmn
1
k ) except for
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very sparse graphs and small k. For (undirected) planar graphs, in [14] (whose
conference version appeared in 2001), Thorup has shown how to construct a
(1 + ε)-VVDO with query time O(1ε ), and storage of size O(1εn logn). The tech-
nique he designed is for directed graphs and hence the result for undirected
graphs follows. In [7], Klein showed a simplified scheme that achieves the same
properties, but only works for undirected graphs. Recently, Sommer et al. have
derived more compact approximate VVDOs for planar graphs [11] (this paper
also includes an detailed survey of VVDO results for planar graphs), and the
linear-space approximate VVODs for planar, bounded-genus, and minor-Free
Graphs [6].

Exact VVDOs for planar graphs have been studied intensively. In [10], Mozes
and Sommer have shown several constructions and surveyed other results on
exact VVDOs for planar graphs.

Shortest Paths. The construction of distance oracles often harnesses shortest
path algorithms in the preprocessing stage. A shortest path tree of a graph G
with respect to a vertex v is a spanning tree of G rooted at v, such that for any
u in the given graph, the path from v to u in the tree is the shortest path from
v to u in G. Given a vertex v, the single source shortest path problem requires
one to calculate the shortest path tree with respect to v. In undirected graphs,
the single source shortest path tree can be calculated in O(m) time, where m is
the number of the edges in the given graph. Such an algorithm is introduced by
Thorup in [13].

1.2 Simple Solution for Doubling Metrics

If the metric induced by the given graph is doubling, the following procedure
provides a simple solution to return δ(u, λ) with (1 + ε)-stretch.

Preprocessing. Let ε′ = ε
3 . For ε < 1, (1 + ε′)2 < 1 + ε. We first construct a

distance oracle O introduced in [1] that supports 1 + ε′ approximate vertex-to-
vertex queries. Suppose the distance between x and y returned by O is d(x, y).
Then, for each label λ ∈ L, we construct the approximate nearest neighbor
(ANN) data structure introduced in [3] to support (1 + ε′)-ANN queries to the
set of points with label λ, with d being the underlying metric. Note that in the
construction and queries of the ANN data structure, we can use O to answer
queries about distances between points.

Query. Given u ∈ V and λ ∈ L, we find the (1+ ε′)-ANN of u among the nodes
with label λ. Let v be this (1 + ε′)-ANN. Then, we query in O and then return
the approximate distance d(u, v) between u and v.

We show that d(u, v) ≤ (1 + ε)δ(u, λ). Let v′ and v∗ be the vertices with
label λ such that d(u, v′) = d(u, λ) and δ(u, v∗) = δ(u, λ), i.e. v′ and v∗ are the
nearest neighbors of u with label λ under the metric d and δ. Then, we have
d(u, v) ≤ (1 + ε′)d(u, v′) ≤ (1 + ε′)d(u, v∗) ≤ (1 + ε′)2δ(u, v∗) ≤ (1 + ε)δ(u, λ).

Space and Query Time. The data structure supporting ANN queries for λ
can be constructed using O(nλ) space [3], where nλ is the number of nodes
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with label λ. Since any node is allowed to be attached with only one label,
the space used in total is O(n). In addition, the ANN query can be answered
in O(log nλ) = O(log n) time [3]. The vertex-to-vertex distance oracle can be
constructed using O(n) space and answer a query in O(1) time [1].

1.3 Our Contribution

To the best of our knowledge, no construction of (1+ε)-VLDOs for planar graphs
has been shown. Theorem 1 and Theorem 2 are the main results of this paper.
Recall that Δ is used to denote the hop-diameter of a graph.

Theorem 1. Given a planar graph G = (V,E) and a label set L, for any 0 <
ε < 1, there exists a (1 + ε)-VLDO with query time O(1ε logn logΔ), storage of
size O(1εn logn) and preprocessing time O(1εn log

2 n).

Theorem 2. Given a planar graph G = (V,E) with Δ = O(log n) and a label
set L, for any 0 < ε < 1, there exists a (1+ε)-VLDO with query time O(1ε logn),
storage of size O(1εn logn) and preprocessing time O(1εn log

2 n).

In our construction, we first select portals on each separator of the recursive
graph decomposition for each involved vertex, similar to the scheme in [7]. Then
for each label λ ∈ L, we define its portals to be the union of portals for all label-λ
nodes. Given a query of distance between a vertex u ∈ V and a label λ ∈ L, the
query algorithm works to find a portal zu of u and a portal zλ of λ, such that
the shortest path that connects u to Vλ going through zu and zλ, approximates
δ(u, λ) with stretch 1 + ε. In the case of VVDO, after fixing a separator, there
are totally O(ε) portals for the source vertex and the destination vertex. Hence,
by brute force comparisons, the time to find the pair of portals with shortest
bypassing path, is at most a constant which depends only on ε. However, in the
case of VLDO, since the destination is a set of nodes (nodes assigned the given
label), there might be as many as O(n) portals for the destination on a fixed
separator. Hence, the brute force comparison does not work well. However, we
show that in this case, the appropriate pair of portals on a fixed separator can be
found by making use of range minimum queries, in O(1ε logΔ) time. Furthermore,
when Δ = O(log n), we can improve the time to O(1ε ). In our query algorithm,
we consider all of the O(log n) separators involving u one by one, and hence the
total query time is O(1ε logn logΔ) in general case, and O(1ε logn) for the case
that Δ = O(log n).

2 Preliminaries

Lipton Tarjan Separator [9]. Let T be a spanning tree of a planar embedded
triangulated graph G with weights on nodes. Then there is an edge e �∈ T , such
that the strict interior and strict exterior of the simple cycle in T ∪ {e} each
contains weight no more than 2

3 of the total weight.
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Recursive Graph Decomposition [7]. The recursive graph decomposition
(RGD) of a given graph G is a rooted tree, such that each vertex p in RGD
maintains

– a set N(p) of nodes in G, in particular the root of RGD maintains (as a
label) N(p) = V (G), and

– p is a leaf of RGD iff N(p) contains only one node of G. In this case, let
S(p) = N(p);

– if p is not a leaf of RGD, it maintains (as a label) an α-balanced separator
S(p) of G, balanced with respect to the weight assignment in which each
node in N(p) is assigned weight 1 and other nodes are assigned weight 0.

A non-leaf vertex v of the tree has two children p1 and p2, such that

– N(p1) = v ∈ N(p) ∩ ext(S̃(p)), and
– N(p2) = v ∈ N(p) ∩ int(S̃(p)),

where S̃ denotes the cycle corresponding to a separator S and ext(S̃) (int(S̃))
denotes the exterior (interior) part of S̃. For a leaf node p of RGD, N(p) contains
only one node of G. In practice, N(p) may contain a small number of nodes, such
that the distances in the subgraph induced by N(p) for every pair of nodes in
N(p) are pre-calculated and stored in a table support O(1)-time look-up.

By the construction in [7,8], RGD could be calculated in time O(n log n).

Range Minimum Query. The range minimum query problem is to pre-process
an array of length n in O(n) time such that all subsequent queries asking for
the position of a minimal element between two specified indices can be answered
quickly. This can be done with constant query time and storage of linear size [4].

Notations. For label λ ∈ L, let Vλ denote the set of nodes assigned label λ.
The given graph has hop-diameter Δ, if Δ is the minimum number, such that
for any pair of vertices v, u ∈ V , the shortest path between them consists of at
most Δ edges.

3 A (1 + ε)-VLDO with O(1
ε
logn logΔ) Query Time

In this section we introduce an (1 + ε)-VLDO that supports O(1ε log n logΔ)
query time.

3.1 Preprocessing and Query Algorithm

Preprocessing. Given planar graph G = (V,E) and label set L, the shortest
path tree for any node r ∈ V has height at most Δ. As the first step of prepro-
cessing, we fix an arbitrary node r ∈ V and compute the shortest-path tree T
in G rooted at r. Then calculate the RGD based on T . In our oracle, we store
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– an array of size n, in which for each node v ∈ G there is exactly an entry
storing the leaf node p of RGD, such that v ∈ N(p);

– an array records the depth (i.e. hop distance from the root) for each node of
RGD;

– a table T , in which for each pair of v ∈ G and p ∈RGD such that v ∈ N(p),
there is exactly one entry Tv,p. Tv,p stores two sub-tables for the two paths
P ′ and P ′′ forming the separator S(p). In sub-table Tv,p[P ′] (similarly for
Tv,p[P

′′]), it stores a sequence of O(1ε ) portals

z−q, z−q+1, . . . , z0, . . . , zw−1, zw,

where zi’s are nodes on P ′, such that the distance property is satisfied, i.e. for
any node u on P ′, there is a portal z in Tv,p[P

′] such that d(v, z)+d(z, w) ≤
d(v, w). In addition, for each portal zi, we record the distance from zi to r
and denoted it by h(zi).

The above structure is similar to that used in [7] and it needs O(1εn logn)
space. To support the vertex-to-label distance query, we store more information.
– Group Portals for Labels. We store a table T̂ , in which for each pair of
λ ∈ L and p ∈RGD such that Vλ ∩N(p) �= ∅, there is exactly one entry T̂λ,p.
T̂λ,p stores two sub-tables for the two paths P ′ and P ′′ forming the separator
S(p). In sub-table T̂λ,p[P ′] (similarly for T̂λ,p[P ′′]), it stores portals in Tv,p[P ′]
for all v ∈ Vλ ∩ N(p), in the increasing order of the distance between the
portals and r. Since each node v ∈ V is assigned exactly one label from L,
this step dose not change the asymptotic usage of the storage. Since we want
the portals to be sorted on a fixed separator and totally there are O(1εn logn)

portals, this step requires time O(1εn log
2 n).

– Hash. For each node v ∈ V , we build a hash table to support O(1)-time
query of the entry Tv,p of table T . Since the number of nodes p ∈RGD
satisfying v ∈ N(p) is at most O(log n), this step requires O(n log n) space
and time in total. Similarly, for each label λ ∈ L, we build a hash table (in
linear time) to support O(1)-time query of the entry T̂λ,p of table T̂ , without
changing the asymptotic usage of storage.

– To support RMQ. For any T̂λ,p[P
′] (similarly for T̂λ,p[P ′′]), each stored

portal z is associated with
• a node v such that z is a portal of v (if there are several choices of v, we

choose the one with minimum δ(v, z));
• and a number h(z), which is the distance from z to r.

We construct a data structure to support O(1)-time RMQ query on portals
z ∈ T̂λ,p[P

′] according to the value δ(v, z) + h(z), and a data structure to
support O(1)-time RMQ query on portals z ∈ T̂λ,p[P

′] according to the value
δ(v, z)− h(z). By [4], this can be achieved and the storage is asymptotically
the same with the size of T̂ . Since the construction of RMQ needs linear
time, this step requires linear time in all.

Query. Given a node u ∈ G and a label λ ∈ L, do as Algorithm 1.
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Input: u, λ

Initialization: d(u, λ) ← ∞
for Each p ∈RGD s.t. u ∈ N(p) and Tλ has an entry for p do

for Each path P of S(p) do
for Each path portal zu of u on P do

C+ ← {λ’s portals on P that are farther or equal than zu from r}
{z+, v+} ← the portal of some λ labeled node v that achieves
min{δ(v, zv) + h(zv)} over C+, and v
C− ← {λ’s portals on P that are closer or equal than zu from r}
{z−, v−} ← the portal of some λ labeled node v that achieves
min{δ(v, zv)− h(zv)} over C−, and v
d′ ← min{δ(u, zu)+δ(zu, z

+)+δ(v, z+), δ(u, zu)+δ(zu, z
−)+δ(v, z−)}

d(u, λ) ← min{d′, d(u, λ)}
end

end
end
Output: d(u, λ)

Algorithm 1. Query algorithm for approximate vertex-to-label distance

Lemma 1. Given u, λ, let v be the node assigned label λ and satisfying δ(u, v) =
δ(u, λ). There exist a portal zu of u and a portal zv of v on the same path P of some
separator, such that δ(u, zu) + δ(zu, zv) + δ(zv, v) ≤ (1 + ε)δ(u, λ).

Proof. Let pu, pv be the lowest pieces in RGD containing u, v, respectively, i.e. u ∈
N(pu) and v ∈ N(pv). Let puv be the lowest common ancestor (LCA) of pu and pv
in RGD. Then u ∈ N(puv), v ∈ N(puv), and the shortest path from u to v crosses
with S(puv). Denote the crossing point as c. There exists a u’s portal zu, such that
δ(u, zu) + δ(zu, c) ≤ (1 + ε)δ(u, c), and a v’s portal zv, such that δ(v, zv) + δ(zv, c) ≤
(1 + ε)δ(v, c).

Hence δ(u, zu) + δ(zu, zv) + δ(zv, v) ≤ (1 + ε)δ(u, λ).

This lemma implies that the output of Algorithm 1 achieves the (1+ ε)-approximation
to δ(u, λ), since

– if zv is farther than zu from r, then h(zv) + δ(zv, v) ≥ h(z+) + δ(z+, v+)), and
hence

δ(u, zu) + δ(zu, z
+) + δ(v+, z+)

≤ δ(u, zu) + δ(zu, zv) + δ(v, zv)

≤ (1 + ε)δ(u, λ);

– if zv is closer than zu from r, then −h(zv) + δ(zv, v) ≥ −h(z−) + δ(z−, v−)), and
hence

δ(u, zu) + δ(zu, z
−) + δ(v−, z−)

≤ δ(u, zu) + δ(zu, zv) + δ(v, zv)

≤ (1 + ε)δ(u, λ).
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To show the query time O( 1
ε
log n logΔ), we only need to show that v+ (v−) and z+

(z−) can be found in O(logΔ) time. Actually, this can be done by identifying the
range of C+ (C−) of the portals of λ on the specified path, using binary search within
O(logΔ)-time and locating v+ (v−) by RMQ, using O(1) time.

Theorem 1. Given a planar graph G = (V,E) and a label set L, for any 0 < ε < 1,
there exists a (1+ε)-VLDO with query time O( 1

ε
log n logΔ), storage of size O( 1

ε
n log n)

and preprocessing time O( 1
ε
n log2 n).

Remark 1. Note that Theorem 1 applies for cases when 0 < ε < 1. The constraint
ε < 1 is used when we bound the number of portals of a node in V according to some
separator path. However, for ε = 2, to achieve stretch 1 + ε = 3, it is enough for any
node v to have only one portal on a specified path of some separator. In particular,
given node v ∈ V and a path P ′ of the separator stored in node p ∈RGD, we choose
the node closest to v on path P ′ as the portal of v according to P ′. Let zv denote such
node. Then for any node z on path P ′, we have δ(z, zv) ≤ δ(v, zv)+ δ(v, z) ≤ 2δ(v, zv),
and hence δ(v, z) ≤ δ(v, zv)+ δ(zv, z) ≤ 3δ(v, zv). In this case there are at most n log n
portals in total.

Given an undirected planar graph G = (V,E) and a label set L, each vertex v ∈
V is attached with one label in L. Consider the distance oracle that supports the
3-stretch, O(log n logΔ)-query time, using space O(n log n). The space, query time
product (suggested by Sommer [11]) is O(n log2 n logΔ), which is better than the lower
bound of Ω(n

3
2 )×O(1) storage for general graphs.

3.2 O(1) Time to Identify C+ (C−) When Δ = O(logn)

In the case that Δ = O(log n), the time to identify C+ (C−) is O(log log n) by
Theorem 1. We show that this can be improved to O(1).

First, note that when we store the portals for a label λ, it is possible that a node
serves as portal for different nodes. It is obvious that we can only store the one with the
minimum portal-to-node distance. Thus after fixing a label λ, on a path of a separator,
each node serves as at most one portal of λ. Using a word of Δ = O(log n) bits, denoted
by ω, it can be identified whether a node on the path is a portal, i.e. the i-th bit is
1 iff the i-th node on the path is a portal for λ. If the portals on a path for λ are
stored in the increasing order of their positions on the path, its index can be retrieved
by counting how many 1’s there are before the i-th position of ω. Since any operation
on a single word is assumed to cost O(1) time, we achieve the O(1) time method to
identify C+, with

– O(n log n) space to record the position on the path forming separator, for each
portal; and

– O(n log n) space to store ω’s for all labels.

Theorem 2. Given a planar graph G = (V,E) with Δ = O(log n) and a label set L,
for any 0 < ε < 1, there exists a (1 + ε)-VLDO with query time O( 1

ε
log n), storage of

size O( 1
ε
n log n) and preprocessing time O( 1

ε
n log2 n).

3.3 Label Changes

In this section, we consider the cost to update the distance oracle, if a node v changes
its label from λ1 to λ2.
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Since the selection of v’s portals is not affected by the label changes, we only need
to consider the update of table T̂ , hash tables and data structure to support RMQ.

Update of T̂ and RMQ. Note that for λ1, all entries Tλ1,p satisfying v ∈ N(p)
should be updated, by removing v’s portals. The case for λ2 is similar. Since there are
at most O(log n) such p’s, we know that there are O(log n) entries of T̂ that should
be updated. Note that for each sequence of sorting portals in one entry of T̂ , there
is a data structure construct to support RMQ. It has to be updated iff the sequence
changes. Hence there are at most O(log n) data structure for RMQ that should be
updated.

Update of Hash Table. Note that there are two hash tables constructed to support
O(1)-time query of T̂λ1 and T̂λ2 . They need to be updated if there exist p ∈RGD,
such that Vλ1 ∩ N(p) becomes empty after the label change or Vλ2 ∩ N(p) becomes
non-empty after the label change.

Running Time of Update. Even though there are O(log n) entries of T̂ and RMQ
data structures that need to be updated, the running time is O(max{|Vλ1 |, |Vλ2 |} log n),
since the hash tables and RMQ data structure can be constructed in linear time. There-
fore, the time to update the distance oracle can be O(n log n), which is asymptotically
the same with preprocessing time. We left here as a open problem whether we can
improve the update time to o(n log n).
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Abstract. Let P be a set of n points in the plane. The k-nearest neighbor
(k-NN) query problem is to preprocess P into a data structure that quickly reports
k closest points in P for a query point q. This paper addresses a generalization
of the k-NN query problem to a query set Q of points, namely, the group nearest
neighbor problem, in the L1 plane. More precisely, a query is assigned with a
set Q of at most m points and a positive integer k with k ≤ n, and the distance
between a point p and a query set Q is determined as the sum of L1 distances
from p to all q ∈ Q. The maximum number m of query points Q is assumed
to be known in advance and to be at most n; that is, m ≤ n. In this paper, we
propose two methods, one based on the range tree and the other based on the
segment dragging query, obtaining the following complexity bounds: (1) a group
k-NN query can be handled in O(m2 log n + k(log log n + logm)) time after
preprocessing P in O(m2n log2 n) time and space, or (2) a query can be handled
in O(m2 logn + (k +m) log2 n) time after preprocessing P in O(m2n log n)
time using O(m2n) space. We also show that our approach can be applied to the
group k-farthest neighbor query problem.

1 Introduction

The nearest neighbor query problem, also known as the proximity query or closest
point query problem, is one of the fundamental problems in computer science. The
problem is, for a set P of points in a metric space M , to preprocess P such that given
a query point q ∈ M , one can find the closest point of q in P quickly. Many areas in
computer science including computational geometry, databases, machine learning, and
computer vision use the nearest neighbor query as one of the most primitive operations.
The k-nearest neighbor query (shortly, k-NN) problem is a generalization of the nearest
neighbor query problem the goal of which is to find the k closest points of the query in
the data set P .

Various solutions to the nearest neighbor query problem have been proposed. A
straightforward algorithm for this problem is the sequential search. Several tree-based
data structures [5,12,21] have been proposed to increase efficiency. Approximate near-
est neighbor algorithms have also been studied [2,11].

In this paper, we focus on a generalized version of the k-NN query problem, namely,
the group k-nearest neighbor query problem, where a query is associated with a set Q

� This research was supported by NRF grant 2011-0030044 (SRC-GAIA) funded by the gov-
ernment of Korea.
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of more than one query points and a positive integer k, and is to find k closest data
points in P with respect to Q. The distance (or, the closeness) of a data point p ∈ P
with respect to the query set Q is determined to be the sum of distances between p and
each q ∈ Q, that is,

∑
q∈Q dist(p, q). We shall call this quantity the sum-of-distance of

p with respect to Q. The goal is, for a given set P of n data points in the plane, and to
preprocess P into a data structure that efficiently handles group k-NN queries.

To our best knowledge, the group nearest neighbor query problem has been first
studied and coined by Papadias et al. [17]. They proposed a heuristic method in the Eu-
clidean plane and showed several applications of the group k-NN query and the sum-
of-distance function in GIS (Geographic information system), clustering and outlier
detection [17]. Later, Papadias et al. [18] and Li et al. [14] considered a generalization,
and Yiu et al. [24] studied the group nearest neighbor problem in road networks. Re-
cently, Agarwal et al. [1] studied the expected NN-queries, where the location of each
input point and/or query point is specified as a probability density function. Wang and
Zhang [22] improved the result of Agarwal et al. on the expected NN-queries for the
case of an uncertain query point.

A brute-force way handles a group k-NN query in O(nm) time by computing the
sum-of-distances for all data points inO(nm) time and then using a selection algorithm
to find the k closest points in P in O(n) time. It is unlikely that we achieve a o(n)
time algorithm without any preprocessing because of the lower bound for the selection
problem [4]. To avoid Ω(n) query time, especially when k is much smaller than n, we
may consider the following approach: compute the region that has the minimum sum-of-
distance with respect toQ, and then expand this region by increasing the sum-of-distance
value. During the expansion, we report the data points hit by the expanding region until
we have k points reported. In this case, we may not need to consider all the points in P .

On the other hand, in the Euclidean space, this approach seems not easy to use be-
cause of the following reasons.

1. Computing a point that has the minimum sum-of-distance (known as the Fermat-
Weber point [9]) is known to be hard because the equations to compute the point
cannot be solved into closed form for m > 2 [18].

2. In the plane, the region that has the same sum-of-distance value from m points in
the Euclidean space forms an m-ellipse, which is an algebraic curve with very high
degree O(2m) [16].

Our Results. We study the group k-NN query problem in the L1 plane, that is, the
distance of a data point is determined to be the sum of the L1 distances, and present two
efficient algorithms that solve the problem: RNGALGO and SGMTALGO. We assume
that the maximum numberm of query points is known in advance and m ≤ n. In many
applications, this is a reasonable restriction.

– RNGALGO answers a group k-NN query in O(m2 logn + k(log log n + logm))
time after preprocessing P into a data structure in O(m2n log2 n) time and space.

– SGMTALGO answers a group k-NN query inO(m2 logn+(k+m) log2 n) time af-
ter preprocessing P into a data structure in O(m2n logn) time and O(m2n) space.
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Note that both of our query algorithms spend o(n) time to answer a query when k and
m are reasonably smaller than n. Moreover, our approach can easily be used for the
problem in the L∞ metric, and farthest neighbor queries in the same setting.

2 Observations on the Sum-of-Distance Function

In this section we investigate properties of the sum-of-distance function sumdistQ :
R2 → R with respect to a query set Q, defined to be sumdistQ(p) =

∑
q∈Q dist(p, q),

where dist(p, q) is the L1 distance between two points p and q.
We first observe that sumdistQ is a convex function. Note that the L1 distance func-

tion dist is convex and piecewise linear. Since sumdistQ is the sum of those functions,
it is also a convex function; the sum of convex functions is also convex [20]. For any
real number c ∈ R, let AQ(c) := {x ∈ R2 | sumdistQ(p) ≤ c} be the sublevel set of
function sumdistQ. The sublevel set of a convex function is convex by definition [20].
We thus get the following lemma.

Lemma 1. The sum-of-distance function sumdistQ is convex, and therefore its sublevel
set AQ(c) is convex for any c ∈ R.

2.1 The Set of Points Minimizing sumdistQ

Consider the problem of identifying the region of points that minimize the function
sumdistQ. This problem is well known as the Fermat-Weber problem [9], and a result
in the Lp metric was given in 1964 [23]. We present a simple proof for the problem in
the L1 plane in the following.

q1

q2

q3

o

pv p

Fig. 1. The grid constructed from Q = {q1, q2, q3} and two data points pv and p. The point o
minimizes sumdistQ.

For each query point, draw a horizontal line and a vertical line passing through the
point. See Fig. 1. We denote by G(Q) the grid of Q constructed in this way. Let xv be
the median among all the x-coordinates of the query points when |Q| is odd.
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Lemma 2. For any data points p = (x, y) and pv = (xv, y), we have sumdistQ(p) >
sumdistQ(pv), where x �= xv when |Q| is odd.

Proof. See Fig. 1 for an illustration to the proof. Without loss of generality, we assume
that x > xv . Let Q1 denote the set of query points whose x-coordinates are at most xv ,
and Q2 = Q \Q1. So we have |Q1| > |Q2|. For any q ∈ Q1 and q′ ∈ Q2, we have the
followings.

dist(p, q) = dist(pv, q) + |x− xv|, dist(p, q′) ≥ dist(pv, q
′)− |x− xv|.

Because |Q1| > |Q2|, we have

sumdistQ(p) =
∑
q∈Q1

dist(p, q) +
∑

q′∈Q2

dist(p, q′)

≥
∑
q∈Q1

(dist(pv, q) + |x− xv|) +
∑

q′∈Q2

(dist(pv, q
′)− |x− xv|)

> sumdistQ(pv).

Let yv be the median among all the y-coordinates of the query points when |Q| is odd.
Then, the point (xv, yv) minimizes sumdistQ over all points in R2 when |Q| is odd.
When |Q| is even, the median cell of G(Q) is the cell bounded by the two consecutive

g1

Fig. 2. The grid G(Q) (dashed lines), the median cell (gray region) that minimizes function
sumdistQ and the boundary of the sublevel set A(c) that has the same sumdistQ value (solid
line segments)

vertical lines through the query points whose x-coordinates are the medians among all
the x-coordinates of Q, and by the two consecutive horizontal lines through the query
points whose y-coordinates are the medians among all the y-coordinates of Q. See
Fig. 2. The following lemma can be proved in a similar way to Lemma 2.

Lemma 3. When |Q| is odd, only the point (xv, yv) minimizes the function sumdistQ,
and when |Q| is even, the median cell of G(Q) does.
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2.2 Properties of Cells of G(Q)

Let g be any cell of G(Q). Because of the way in which G(Q) is constructed, every
interior point of g has the same number of query points lying to the left of it; the same
claim holds on the query points lying to the right, above, and below of the point. There-
fore we denote byml(g),mr(g),mt(g) andmb(g) the numbers of query points that are
to the left, right, above, and below of any point in g, respectively.

Lemma 4. For an interior point r of any cell g of G(Q), there is a line � passing
through r such that for every point r′ of g∩�, sumdistQ(r

′) = sumdistQ(r). Moreover,
this property holds for any line parallel to �.

Proof. Let r = (x, y) be a interior point of a cell g. For a point r′ = (x + δ, y) in g,
sumdistQ(r

′) = sumdistQ(r) + δ(ml(g) −mr(g)). For a point r′′ = (x, y + δ) in g
sumdistQ(r

′′) = sumdistQ(r) + δ(mb(g)−mt(g)).

Let slp(g) = mr(g)−ml(g)
mb(g)−mt(g)

. For any line � with slope slp(g) passing through r, let r′

be a point in g ∩ �. Then r′ = (x + δx, y + δy) with δy/δx = slp(g).

sumdistQ(r
′) = sumdistQ(r) + δx(ml(g)−mr(g)) + δy(mb(g)−mt(g))

= sumdistQ(r) + δx(ml(g)−mr(g)) + δx · slp(g)(mb(g)−mt(g))

= sumdistQ(r).

By Lemmas 1 and 4, we know that A(c) is a convex polygon for any fixed c, and the
complexity of the polygon is O(m).

Lemma 5. One corner of a cell has the minimum sumdistQ value over all the points
in the cell.

Proof. Assume that some point r of a cell g has smaller sumdistQ value than that of any
corner of g. Let h be the horizontal line passing through r. Then the function sumdistQ
on h ∩ g is either monotonically decreasing or monotonically increasing. Similarly, the
function sumdistQ along the vertical line through r within g is either monotonically
decreasing or monotonically increasing. This means that we can move r to one of the
corners without increasing the sumdistQ value, a contradiction.

Let �+ and �− be the right and the left sides of �, respectively. Then, one of g ∩ �+ and
g ∩ �− contains a corner s that minimizes sumdistQ over g. By Lemma 1, every point
of the side containing s has sumdistQ value at most sumdistQ(r), and every point in
the side not containing s has sumdistQ value at least sumdistQ(r).

3 Algorithm

In this section, we present a query algorithm to compute the k nearest neighbors from
P for a given query Q and k. The basic idea of our algorithm is as follows. Given
a query with Q and k, we first compute the set A(minx∈R2 sumdistQ(x)), and then
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expand A(c) by increasing c. During the expansion, we report each data point in P hit
by A(c) until we report k data points. To do this efficiently, we preprocess P such that
we consider A(c) for only O(k + m2) distinct values of c in the increasing order of
sumdistQ value and report the k nearest neighbors.

(a) (b)

s s

Fig. 3. Two types of events : (a) point event (b) corner event

We construct G(Q) and then compute A(c) setting c to be minx∈R2 sumdistQ(x)
using Lemma 3. If there are more than k data points in A(c), then we report k points
among them. In the general case, we expand A(c) by increasing c. During the expan-
sion, we encounter the following events.

– Point event: A(c) hits a data point (Fig. 3(a)).
– Corner event: A(c) hits a corner of a cell (Fig. 3(b)).

We keep these events in an event queue Q, which is a priority queue indexed by the
sumdistQ value of its associated point. After initializing the event queue, we insert the
events of the cells adjacent to the median cell. We then process events one by one in
the order from Q as follows. For a point event e, we report the data point p associated
with the event. If this point is the k-th point to be reported, we are done. In the other
case, we find the next event in the cell containing p, and then insert it to Q. For a corner
event e, we consider each cell having e as a corner and disjoint in its interior from
A(sumdistQ(e)), and find the next event e′ in each such cell. We also find the next
event in the cell that reports e. We then insert them to Q.

The correctness of our algorithm immediately follows from the convexity of A(c)
and the fact that the events are processed in the increasing order of sumdistQ value.
That is, when we process a point event e, the data point of e has the minimum sumdistQ
value among all unreported data points, so our algorithm correctly reports the k nearest
neighbors in P with respect to Q.

Let us now analyze the complexity of our algorithm. We preprocess P to construct
the orthogonal range counting query structure, which takes O(n log n) time [8]. We
then construct the grid G(Q) in O(m2) time. In the worst case, we need to test all the
cells for emptiness, which takes O(m2 logn) time. Since A(c) is convex, the number
of cells intersected by the boundary of A(c) is O(m) for any fixed c. There can be
O(m2) corner events and k point events until we report k nearest neighbors, so it takes
O((m2 + k) logm) time to insert and delete them from the event queue. The only
remaining part of the algorithm is to process the data points contained in a cell to support
the operation of finding next point events in the cell efficiently. We will describe two
methods for this and analyze their time complexities.
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3.1 Detecting Events in a Cell

We propose two methods to find events in a cell in the increasing order of their
sumdistQ values. There are four corners in a cell, so finding them is easy. To find
events in a cell g, we sweep g by a line with slope slp(g) from the corner with the min-
imum sumdistQ value over all points in the cell g. As aforementioned, the slope slp(g)
is determined by ml(g), mr(g), mt(g) andmb(g). For example, slp(g1) = 1 in Fig. 2.
Since m is given in advance, we know all possible slopes of cells before Q is given.
Let a set of all the possible slopes be S. There are O(m2) slopes in S by Lemma 4. We
preprocess P for all slopes in S as described in the following subsections.

Orthogonal Range Query Based Algorithm. The first algorithm, RNGALGO, is based
on an orthogonal range query structure, namely, the range tree [8]. Rahul et al. [19]
introduced a data structure based on the orthogonal range query structure such that
the first k points from n weighted points in Rd can be reported in sorted order in
O(logd−1 n + k log logn) query time using the data structure. This structure can be
constructed in O(n logd n) time and space in the preprocssing phase.

Consider a slope s ∈ S. For each data point p, we set the weight of p to the y-
intercept value of the line of slope s passing through p. Then we construct the data
structure of Rahul et al. for the weighted data points. We do this for every slope of S
and maintain one data structure of Rahul et al. for each slope. Let R denote the set of
these data structures.

By usingR, we can get the first point event from each cell inO(log n) time, and then
we spend O(log logn) time for finding the next point event in each cell. Therefore, it
takes O(m2 logn + k log logn) time to find k nearest neighbors in O(m2n log2 n)
preprocessing time and space.

Theorem 1. The algorithm RNGALGO reports the k nearest neighbors inO(m2 logn+
k(log logn+logm)) time after preprocessingP into a data structure inO(m2n log2 n)
time and space.

Segment Dragging Query Based Algorithm. The second algorithm, SGMTALGO,
uses the segment dragging query [3,6,15] for preprocessing P with respect to slp(g).
The segment dragging query, informally speaking, is to determine the next point hit by
the given query segment of orientation θ when it is dragged along two tracks. There are
three types of segment dragging queries:(a) dragging by parallel tracks, (b) dragging
out of a corner, and (c) dragging into a corner (See Fig. 4).

Chazelle [6] and Mitchell [15] showed that one can preprocess a set P of n points
into a data structure of size O(n) in O(n logn) time that answers the segment dragging
queries of type (a) and (b) in O(log n) time. Bae et al. [3] proposed a data structure that
answers segment dragging queries of type (c) in O(log2 n) time. Those data structures
require O(n) space and O(n log n) preprocessing time.

We sweep a cell using a segment in three different types (See Fig. 5). From the corner
s with the minimum sumdistQ value, we sweep the cell using a segment dragging of
type (b) ‘dragging out of a corner’ until the segment hits another corner. We then apply
a segment dragging of type (a) ‘dragging by parallel tracks’ from the corner until it hits
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(a) (b) (c)

Fig. 4. Three types of segment dragging : (a) dragging by parallel tracks (b) dragging out of a
corner (c) dragging into a corner

the third corner. Afterwards, we apply a segment dragging of type (c) ‘dragging into a
corner’ until it hits the last corner.

s

(b)
(a)

(c)

Fig. 5. We sweep a cell using a segment in three different types of dragging

If we adopt the segment dragging query structure, we need O(log2 n) time for each
point event. Therefore, it takes O((k+m) log2 n) time in total to report k+O(m) point
events with O(m2n logn) preprocessing time and O(m2n) space if we only consider
the cells containing a data point.

Theorem 2. The algorithm SGMTALGO computes the k nearest neighbors in
O(m2 logn + (k + m) log2 n) time after preprocessing P into a data structure in
O(m2n logn) time using O(m2n) space.

4 Group Farthest Neighbor Queries

The farthest neighbor query problem is also one of the fundamental problems in com-
puter science. The group farthest neighbor (GFN) query problem is a generalization of
the farthest neighbor query problem where more than one query point are given at the
same time, and the distance of a data point is measured with respect to the query points.
The group k-farthest neighbor (k-FN) query problem is an analogue to the group k-NN
query problem.

There have been a few previous works on the k-FN query problem. Cheong et al. [7]
studies the farthest neighbor query problem for a set of points on a convex polytope.
Katoh and Iwano [13] proposed an algorithm for finding k farthest pairs. Gao et al. [10]
presented heuristic algorithms to solve the problem in the Euclidean space.
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We consider the group k-FN query problem in the L1 plane. The basic idea is the
same as done for the group k-NN query problem. For the group k-NN query problem,
we expand A(c) until it hits k data points. In the group k-FN query problem, we sweep
the plane in the opposite direction; we shrinkA(c) from c =∞ until the region contains
only the n− k data points in P .

We preprocess P in the same way as done for the group k-NN query problem. Given
a query with Q and k, we construct G(Q) and then sweep all the unbounded cells
of G(Q) in the descending order of the sumdistQ value. To handle the point and the
corner events, we construct a max-heap structure instead. We can handle each event in
the same way as done for the group k-NN query problem in the previous sections. We
repeat this process until we find the k farthest neighbor points in P . Since the boundary
of A(∞) intersects only with the unbounded cells of G(Q), and we handle the events
in order, the algorithm reports the k farthest neighbors correctly. The running time and
space complexity of this algorithm are the same as those of the algorithms for the group
k-NN query problem.

5 Concluding Remarks

In this paper, we propose two algorithms, RNGALGO and SGMTALGO, to solve the
group nearest neighbor query problem in the L1 plane. Our approach can be easily
extended for the problem in the L∞ metric by rotating all the data points and query
points by π/4. We also show that the group farthest neighbor query problem in the L1

metric can be solved by the similar approach.
As aforementioned, we can solve this problem in O(nm) time in a straightforward

way. Without any preprocessing we cannot avoid Ω(n) time because of the lower

bound for the selection problem [4]. For RNGALGO, if m = o(
√

n
logn ) and k =

o( n
log logn+logm ), then the query time of RNGALGO is o(n). For SGMTALGO, if m =

o(
√

n
log n ) and k = o( n

log2 n
), then the query time of SGMTALGO is o(n).

The algorithm SGMTALGO requires smaller time and space for preprocessing than
the other algorithm RNGALGO, and for the query time RNGALGO outperforms
SGMTALGO.
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Abstract. In this paper we study a problem named graph partitioning
with supply and demand (GPSD), motivated by applications in energy
transmission. The input consists of an undirected graph G with the nodes
partitioned into two sets: suppliers and consumers. Each supply node has
associated a capacity and each consumer node has associated a demand.
The goal is to find a subgraph of G and to partition it into trees, such that
in each tree: (i) there is precisely one supplier and (ii) the total demand
of the consumers is less than or equal to the capacity of the supplier.
Moreover, we want to maximize the demand of all the consumers in such
a partition.

We also study a variation of the GPSD, termed energy delivery (ED).
In this paper we show the following results:

1. A 2k-approximation algorithm for the GPSD problem, where k is
the number of suppliers. This is the first approximation algorithm
proposed for the general case.

2. A 2-approximation for the GPSD in the case of two suppliers implies
a polynomial time algorithm for the famous minimum sum 2-disjoint
paths problem, which is not known if it is in P or NP-hard.

3. The ED problem in the case of two or more suppliers is hard to
approximate within any factor, assuming P 	= NP.

1 Introduction

Motivation. In the recent years, the competition among the electricity providers
has increased rapidly and the companies struggle to improve the market value
of the services provided. Thus, a lot of effort is put into the optimization of the
energy distribution (e.g. lowering the cost of maintenance, construction, deliv-
ery). Since there are a lot of factors which have to be taken into consideration,
such as consumer loads and characteristics of the geographical area, the problem
of finding the optimal distribution system is very complex. Many approaches to
model the power supply network have been presented in the literature using
algorithmic and mathematical techniques (e.g. [1,10,3,12,4,11]).

The distribution network is an important part of the total electrical supply
system since reports show that 80% of customer service interruptions are due
to problems in the distribution network [8]. To improve the service, in many
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countries automation is applied to the distribution networks [8,9]. Due to the
complexity of the problem and the large number of variables involved, restricted
models, which address only some of the challenges of the system, are studied.
In this paper we consider the following two problems, the first one proposed by
Ito et al. [6] and the second one newly introduced in this paper, which are an
attempt to model the power distribution system.

In the first problem, termed graph partitioning with supply and demand
(GPSD) the network is represented as an undirected graph where some of the
nodes are suppliers and the others are consumers. Each supplier and consumer
has associated a capacity and, respectively, a demand. The goal is to provide as
much electricity as possible. In graph theoretic terms, this task is equivalent to
finding a subnetwork (as not all the customers may be satisfied) and to partition
it into trees such that:

1. Each tree has precisely one supply vertex (the others are consumers).
2. The total demand of all the consumers in a tree does not exceed the capacity

of the supplier.

The goal is to provide as much electricity as possible and, thus, the total demand
of the consumers in this subgraph has to be maximized.

The second problem, named energy delivery (ED), is a variation of the GPSD
problem. The input is the same as in the GPSD problem, but the difference is
that a supplier s can power a consumer c even if not all the consumers on the
path from s to c are powered by s (still, those consumers have to be powered
by some other supplier). This is a natural extension of the GPSD problem and
models more precisely the real-life problems (the network defined by a supplier
and the consumers powered by it may not necessarily be a subtree of the general
network). Also, notice that we require that there exists a path from s to c where
all the nodes are powered (without this restriction the problem is simply the
multiple knapsack problem as any supplier can power any consumer).

Related Results. Ito et al. consider first the GPSD problem in the case when
the distribution network is a tree [6]. In the same paper, they show that the de-
cision problem of GPSD (i.e., if there exists a partition such that each consumer
is satisfied) is solvable in polynomial time. They also prove a pseudo-polynomial
time algorithm and a fully polynomial time approximation scheme (FPTAS) for
GPSD on trees. A pseudo-polynomial time algorithm for series-parallel graphs
and partial k-trees (i.e., graphs with bounded treewidth) is given in [7]. Series
parallel graphs are reconsidered in [5] where a PTAS in the case of a network
with exactly one supplier is presented. The GPSD problem is known to be APX-
hard [5] and, thus, it is unlikely that a PTAS for this problem exists.

Our Results. Despite the large amount of attention that GPSD received, ap-
proximation algorithms are known only for restricted classes of graphs (trees,
series-parallel graphs). In this paper we present the first approximation algo-
rithm for GPSD for arbitrary graphs. The approximation factor achieved is 2k,
where k is the number of supply vertices in the graph.
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Then, we show that a (2− ε)-approximation algorithm for the GPSD problem
in the case of two suppliers, implies a polynomial time algorithm for theminimum
sum 2-disjoint paths problem, whose complexity is still unknown.

The third result concerns the newly defined ED problem. We show that ED is
hard to approximate within any factor, unless P = NP. This is surprising since
the ED problem seems easier than the GPSD problem.

The rest of the paper is organized as follows. In Section 2 we formally in-
troduce the three problems and give preliminary definitions. Then, in Section 3
we present the approximation algorithm and the hardness result for GPSD and
in Section 4 the hardness result for the ED problem. Section 5 is reserved for
conclusions and open problems.

2 Preliminaries

In this section we introduce notation and preliminary definitions. First we give
the formal definitions of the two problems studied.

Problem 1 (Graph Partitioning with Supply and Demand). The input consists of
an undirected graph G = (V,E), where V = S ∪D, S ∩D = ∅ (i.e., the vertices
of V are partitioned into two sets S and D) and two functions c : S → R+ and
d : D → R+. The vertices in S are named supply vertices (or suppliers) and the
ones in D are termed demand vertices (or consumers).

The goal of the problem is to find a subgraph of G and partition it into trees
T1 = (V1, E1), T2 = (V2, E2), . . . , Tk = (Vk, Ek), where k = |S| such that:

1. Each tree Ti contains exactly one supply vertex si and
∑

v∈Vi\{si}
d(v) ≤ c(si).

2.
k∑

i=1

∑
v∈Vi\{si}

d(v)

is maximized.

Problem 2 (Energy Delivery). The input of the ED problem is identical to the
input of the GPSD problem. The goal is to find a subset of consumers and to
partition it into k sets S1, S2, . . . , Sk (one for each supplier) such that:

1. For each supplier i and each consumer c in Si, there is a path from i to c
such that each vertex on this path is either powered by i or is powered by
another supplier.

2. ∑
v∈Si

d(v) ≤ c(i), ∀ supplier i

3.
k∑

i=1

∑
v∈Si

d(v)

is maximized.
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We now present the minimum sum 2-disjoint paths problem which we use to
prove the hardness result for the GPSD.

Definition 1 (Minimum sum 2-disjoint paths problem). The input con-
sists of a graph G and two pairs of vertices (s1, t1) and (s2, t2). Find two disjoint
paths from s1 to t1 and s2 to t2 whose total length is minimized.

The complexity of the minimum sum 2-disjoint paths problem is open, although
a similar version in which s1 = s2 and t1 = t2 is in P. We use the subset sum
problem, defined next, to prove the hardness of the ED problem.

Definition 2 (Subset sum). The input consists of a set S = {s1, . . . , sn} of
integers and another integer k. Is there a subset S′ ⊂ S whose elements sum
precisely to k ?

The following theorem and its proof can be found in [2].

Theorem 1. The subset sum problem is NP-complete.

3 Graph Partitioning with Supply and Demand

In this section we present a 2k-approximation algorithm for the GPSD problem.
First, we show a 2-approximation algorithm for the graphs which contain exactly
one supply vertex. Then, we apply this algorithm to general graphs to obtain
the 2k-approximation.

3.1 A 2-Approximation Algorithm for Graphs with One Supply
Vertex

There are several ideas which one can try in order to obtain an approximation
algorithm. We first present some of them and show why they do not lead to a
good solution. Finally, we present the correct algorithm.

Largest Demand First. The first idea is to select nodes greedily as follows:
at each step select the vertex with the largest demand which is adjacent to the
vertices selected so far or to the supply vertex. A similar algorithm leads to
a 2-approximation for the knapsack problem and one might think that it gives
a good approximation in this case also. The problem is that we might have
different branches in the graph (unlike the knapsack where all the elements are
available from the beginning) and the algorithm might go on the wrong branch.
The following counterexample presents this situation.

Counterexample 1. Let G = (V,E) with V = {1, 2, 3, 4}. There are 3 edges in
G: (1, 2), (1, 3), (3, 4). The supply vertex is 1 and has capacity n. The demands
are: d(2) = 2, d(3) = 1, d(4) = n−1. The optimal solution has value n (selecting
nodes 3 and 4). The algorithm presented above selects first vertex 2 (as it has
higher demand) and then vertex 3, thus satisfying a demand of 3.
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Smallest Demand First. To fix the previous algorithm one may try to select
first the nodes with the smallest demand. However, a similar counterexample
can be constructed.

Counterexample 2. Let G = (V,E) with V = {1, 2, 3, 4}. There are 3 edges in
G: (1, 2), (1, 3), (3, 4). The supply vertex is 1 and has capacity n. The demands
are: d(2) = 1, d(3) = 2, d(4) = n−2. The optimal solution has value n (selecting
nodes 3 and 4). The algorithm presented above selects first vertex 2 (as it has
smaller demand) and then vertex 3, thus satisfying a demand of 3.

Using Paths Instead of Single Vertices. We observe that the algorithms
which select only one node at one step do not work as they can be tricked by an
adversary which points them on the wrong direction. Therefore, the next idea
is to select greedily an entire path, rather than a single node. The procedure is
presented in Algorithm 1. In the following, we define the length of the path in
the graph as the sum of the demands of the consumers on the path.

Input: An instance of the GPSD problem with one supply vertex v.

1. Let SP (i) be the shortest path from v to a demand vertex i and let |SP (i)|
be the sum of the demands of its vertices.

2. Cost ← 0, Sol ← ∅ .
3. While there exists a node i with |SP (i)| > 0 and Cost+ |SP (i)| ≤ c(v) do:

(a) Select the node i with the maximum value of |SP (i)| such that
Cost+ |SP (i)| ≤ c(v).

(b) Sol ← Sol ∪ SP (i); Cost ← Cost+ |SP (i)|
(c) Remove from G the nodes in SP (i).
(d) Recompute SP (i) for each node in the new graph.

Output: Sol.

Algorithm 1. Algorithm using shortest paths (unbounded approximation ratio)

Algorithm 1 fails to give a good approximation if the optimal solution consists
of a tree with multiple branches (as the algorithm uses a path and then removes
it from the graph). The following counterexample presents this situation.

Counterexample 3. Consider a star with n branches (i.e., one center vertex
connected with n end-points) where the supply vertex is one of the end-points
and has capacity n. All the other nodes have demand 1. The solution returned by
the algorithm has value 2 (after one round, n−1 endpoints remain disconnected)
while the optimal solution has value n.

Final Algorithm. We modify Algorithm 1 to allow overlapping paths. At step
3(c), instead of removing all the nodes on SP (i) from G, we set their demands
to 0.
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Input: An instance of the GPSD problem with one supply vertex v.

1. Let SP (i) be the shortest path from v to a demand vertex i and let |SP (i)|
be the sum of the demands of its vertices.

2. Cost ← 0, Sol ← ∅.
3. While there exists a node i with |SP (i)| > 0 and Cost+ |SP (i)| ≤ c(v) do:

(a) Select the node i with the maximum value of |SP (i)| such that
Cost+ |SP (i)| ≤ c(v).

(b) Sol ← Sol ∪ SP (i); Cost ← Cost+ |SP (i)|
(c) Set d(x) ← 0 for all x ∈ SP (i).
(d) Recompute SP (i) for each node in the new graph.

Output: Sol.

Algorithm 2. A 2-approximation algorithm for graphs with one supply vertex

Theorem 2. Algorithm 2 is a 2-approximation for the GPSD problem with one
supply vertex.

Proof. If at the end Cost ≥ c(v)/2, then the algorithm is a 2-approximation as
c(v) is an upper bound on the value of the optimal solution.

Now consider the case when the algorithm stops (i.e., there are no nodes that
can be supplied with power) and Cost < c(v)/2. We show that the algorithm has
reached the optimal solution. Assume by contradiction that there exists a vertex
q which is powered in the optimal solution and is not selected by Algorithm 2.
The shortest path from v to q has total demand less than c(v)/2 (and in fact
less than Cost). Otherwise, the path from v to q would have been selected at a
previous step of the algorithm (since it has larger demand than any other path
selected by Algorithm 2). Thus we can add the vertex q to our solution, together
with all the vertices from the path from v to q (contradiction). ��

The approximation factor of Algorithm 2 is asymptotically tight as we show in
the following example.

Example 1. Let G = (V,E) with V = {1, 2, 3, 4}. There are 3 edges in G:
(1, 2), (1, 3), (3, 4). The supply vertex is 1 and has capacity 2n. The demands
are: d(2) = n, d(3) = n, d(4) = 1. The optimal solution has value 2n (selecting
nodes 2 and 3). The algorithm presented above selects the vertices 3 and 4, thus
satisfying a demand of n+ 1.

3.2 An Approximation Algorithm for General Graphs

In this subsection we generalize Algorithm 2 to obtain a 2k-approximation for
the GPSD problem. The idea is to try Algorithm 2 for each supply vertex in
turn and select the best solution.

Theorem 3. Algorithm 3 is a 2k-approximation for the GPSD problem.
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Input: An instance of the GPSD problem with k supply vertices v1, v2, . . . , vk.

1. Sol′ ← ∅,
2. For i = 1 to k do:

(a) Let G′ the graph G with the vertices v1, v2, . . . , vi−1, vi+1, . . . , vk removed.
(b) Apply Algorithm 2 on graph G′ with supply vertex vi and let Sol be the

output.
(c) If the value of Sol is greater than the value of Sol′ then Sol′ ← Sol.

Output: Sol′.

Algorithm 3. A 2k-approximation algorithm for GPSD problem

Proof. Denote by OPT the value of the optimal solution and by |Sol′| the value
of the solution returned by Algorithm 3. Let

OPT =
k∑

i=1

OPTi

where OPTi is the demand satisfied by the i’th supply vertex in an optimal
solution. We know that: |Sol′| ≥ maxki=1 OPTi/2. Thus,

|Sol′| ≥ OPT/2k

and the theorem follows. ��

The approximation algorithm presented above is straightforward and may seem
extremely easy to improve. However, in the next section we give evidence that
an algorithm with a significantly better ratio might be difficult to find.

3.3 Hardness of the GPSD problem

First, we present a couple of natural greedy algorithms which, intuitively, might
lead to a better approximation ratio. Unfortunately, all of them fail to give an
approximation ratio better than 2k (we invite the reader to find counterexamples).

Wrong algorithm 1. Consider an ordering of the suppliers (e.g., sort the sup-
pliers in decreasing order of their capacity). Apply the 2-approximation algo-
rithm on the first supplier, remove all the edges of the solution, then apply the
2-approximation algorithm on the second supplier and so on.

One might be tempted to think that a fixed ordering is the reason for which the
above algorithm fails. However, this is not the case since the following algorithm
fails as well.

Wrong algorithm 2. Consider all the possible orderings of the suppliers. For
each such ordering we apply Algorithm 1 and output the best solution of all
orderings.
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Then, another idea is to generalize the Algorithm 3 from Subsection 3.1.

Wrong algorithm 3. First, let SPi(j) be the shortest path from supplier i to
a demand vertex j and let |SPi(j)| be the sum of the demands of its vertices.
At each step, we select the path SPi(j) with the highest demand (and, of course,
which does not exceed the capacity of supplier i and does not intersect the paths
of the other suppliers).

The problem with all the algorithms above is that, when we select a path from
one of the suppliers, we can block the other suppliers from reaching the con-
sumers they want.

Next, we show a reduction which shows that a (2 − ε)-approximation for the
GPSD problem, implies a polynomial time algorithm for the minimum sum 2-
disjoint paths problem.

Given a graph G with n vertices and two pairs (s1, t1), (s2, t2), we construct
the following instance of the GPSD problem with the same underlying graph.
The two vertices s1 and s2 are suppliers with weights X + a and X + n + b,
respectively, where X is very large and a and b are between 1 and n. All the
other vertices are consumers. Vertex t1 has demand X , vertex t2 has demand
X + n and all the other consumers have demand 1.

The result is stated in the following theorem.

Theorem 4. There exist two disjoint paths between s1 and t1, and s2 and t2,
first of length at most a and the second of length at most b if and only if both
consumers t1 and t2 are powered.

Proof. If we have two disjoint paths between s1 and t1 and s2 and t2, of length
a and, respectively, b, then we can power the two consumers via this path and
thus, the first implication, follows.

We prove the reverse implication. First notice that t2 can be powered only by
s2 since s1 does not have enough energy (since a and b are between 1 and n).
Then, if both t1 and t2 are powered, then there has to exist a path from s1 to
t1 of length at most a and a path from s2 to t2 of length at most b.

If we choose X large enough, then the hardness result follows.

Theorem 5. A polynomial time (2− ε) approximation algorithm for the GPSD
problem implies a polynomial time exact algorithm for the minimum sum 2-
disjoint paths problem.

Intuitively, the hardness of GPSD problem with more suppliers comes from two
directions. First, each supplier has to power as much energy as possible (this
is the difficulty in the one-supplier case). Secondly, the trees generated by the
suppliers must be disjoint and an algorithm has to construct those trees simul-
taneously. Otherwise, if the trees are constructed sequentially, one of the trees,
can “cut” the trees of other suppliers.

In order to understand better the problem, we formulate a relaxed variant
in which all the consumers have unit demand. This variant becomes trivial in
the one supplier case, but, in the case of two suppliers there is not an obvious
polynomial time algorithm. We leave this as an open problem.
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Open problem 1. The input is a graph G = (V,E), two vertices a and b and
two integers A and B. Find two disjoint and connected subsets S1, S2 ⊂ V (if
possible), with |S1| ≥ A and |S2| ≥ B and a ∈ S1 and b ∈ S2.

4 Inapproximability of the ED Problem

In this section we show that the ED problem cannot be approximated within
any factor, even for two suppliers, unless P = NP. We present a reduction from
the subset sum problem.

Given a set of numbers S = {a1, a2, . . . an} and an integer k, we create the
following instance of the ED problem.

– There are n+ 1 consumers and 2 suppliers, A and B.
– The n + 1 consumers v1, ..., vn+1 form a line (i.e. v1 is connected with v2,
v2 with v3 and so on) and have demands a1, a2, . . . , an and respectively C
(where C is very large).

– Supplier A is connected with all the vertices v1 up to vn and has capacity k.
The other supplier, B, has capacity C +

∑n
i=1 an − k and is connected only

to v1.

The hardness is stated in the following theorem.

Theorem 6. The ED problem cannot be approximated within a factor c, for any
c ∈ R+, unless P = NP.

Proof. Since C is very large, the node vn+1 can be powered only by the supplier
B. However, this can happen only if A uses all its capacity (i.e. the nodes powered
by A have total demand precisely k), since the only path from X to vn+1 is
Xv1v2, . . . vnvn+1. In turn, A uses fully its capacity, if and only if there exists
a subset of {a1, . . . , an} which sums to k. Thus, if we can approximate the ED
within any factor c we can see if the node vn+1 is powered and, respectively, we
can solve the subset sum in polynomial time. Therefore, the theorem follows.

5 Conclusions and Open Problems

In this paper we study two problems, namely graph partitioning with supply and
demand (GPSD)and energy delivery (ED), which attempt to model the power
supply network. First, we show a 2k-approximation algorithm for the GPSD
problem. Then, we show that a (2 − ε)- approximation algorithm for GPSD in
the case of two suppliers, implies a polynomial time algorithm for the minimum
sum 2-disjoint paths problem. Finally, we introduce the ED problem and prove
that it cannot be approximated within any factor, unless P = NP.

A natural open problem is to close the gap between the approximation upper
and lower bounds for the GPSD problem. Another open problem is to design
exact or fixed parameter algorithms. As the problems seem hard to solve on
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arbitrary instances, it is interesting to find restricted versions of the problems
which are polynomial time solvable.

It is also intriguing what is the complexity of Problem 1 since at a first glance
it seems very easy to solve in polynomial time. However, at a more careful look,
no simple algorithm seems to work.

Acknowledgements. The author would like to thank the anonymous reviewers
for their useful comments.

References

1. Adams, R.N., Laughton, M.A.: Optimal planning of power networks using mixed-
integer programming. part 1: Static and time-phased network synthesis. Proceed-
ings of the Institution of Electrical Engineers 121(2), 139–147 (1974)

2. Cormen, T.H., Stein, C., Rivest, R.L., Leiserson, C.E.: Introduction to Algorithms,
2nd edn. McGraw-Hill Higher Education (2001)

3. Crawford, D.M., Holt Jr., S.B.: A mathematical optimization technique for locating
and sizing distribution substations, and deriving their optimal service areas. IEEE
Transactions on Power Apparatus and Systems 94(2), 230–235 (1975)

4. El-Kady, M.A.: Computer-aided planning of distribution substation and pri-
mary feeders. IEEE Transactions on Power Apparatus and Systems PAS-103(6),
1183–1189 (1984)

5. Ito, T., Demaine, E.D., Zhou, X., Nishizeki, T.: Approximability of partitioning
graphs with supply and demand. Journal of Discrete Algorithms 6(4), 627–650
(2008)

6. Ito, T., Zhou, X., Nishizeki, T.: Partitioning trees of supply and demand. In: Bose,
P., Morin, P. (eds.) ISAAC 2002. LNCS, vol. 2518, pp. 612–623. Springer, Heidel-
berg (2002)

7. Ito, T., Zhou, X., Nishizeki, T.: Partitioning graphs of supply and demand. In:
ISCAS (1), pp. 160–163 (2005)

8. Teng, J.H., Lu, C.-N.: Feeder-switch relocation for customer interruption cost min-
imization. IEEE Transactions on Power Delivery 17(1), 254–259 (2002)

9. Kersting, W.H., Phillips, W.H., Doyle, R.C.: Distribution feeder reliability studies.
In: Rural Electric Power Conference, pp. B4-1–7 (April 1997)

10. Masud, E.: An interactive procedure for sizing and timing distribution substations
using optimization techniques. IEEE Transactions on Power Apparatus and Sys-
tems PAS-93(5), 1281–1286 (1974)

11. Peponis, G.J., Papadopoulos, M.P.: New dynamic, branch exchange method for
optimal distribution system planning. IEE Proceedings-Generation, Transmission
and Distribution 144(3), 333–339 (1997)

12. Wall, D.L., Thompson, G.L., Northcote-Green, J.E.D.: An optimization model for
planning radial distribution networks. IEEE Transactions on Power Apparatus and
Systems PAS-98(3), 1061–1068 (1979)



Approximation Algorithms for a Combined

Facility Location Buy-at-Bulk Network Design
Problem

Andreas Bley1,�, S. Mehdi Hashemi2, and Mohsen Rezapour1,��

1 Institute for Mathematics, TU Berlin, Straße des 17. Juni 136, 10623 Berlin,
Germany

{bley,rezapour}@math.tu-berlin.de
2 Department of Computer Science, Amirkabir University of Technology, No. 424,

Hafez Ave., Tehran, Iran
hashemi@aut.ac.ir

Abstract. We consider a generalization of the connected facility loca-
tion problem where the clients must be connected to the open facilities
via shared capacitated (tree) networks instead of independent shortest
paths. This problem arises in the planning of fiber optic telecommuni-
cation access networks, for example. Given a set of clients with positive
demands, a set of potential facilities with opening costs, a set of capac-
itated access cable types, and a core cable type of infinite capacity, one
has to decide which facilities to open, how to interconnect them using a
Steiner tree of infinite capacity core cables, and which access cable types
to install on which potential edges such that these edges form a for-
est and the installed capacities suffice to simultaneously route the client
demands to the open facilities via single paths. The objective is to min-
imize the total cost of opening facilities, building the core Steiner tree
among them, and installing the access cables. In this paper, we devise
a constant-factor approximation algorithm for problem instances where
the access cable types obey economies of scale. In the special case where
only multiples of a single cable type can be installed on the access edges,
a variant of our algorithm achieves a performance guarantee of 6.72.

1 Introduction

We study a generalization of the Connected Facility Location (ConFL) problem
where not only direct connections between clients and open facilities, but also
shared access trees connecting multiple clients to an open facility are allowed.
Accordingly, also more realistic capacity and cost structures with flow-dependent
buy-at-bulk costs for the access edges are considered. The resulting Connected
Facility Location with Buy-at-Bulk edge costs (BBConFL) problem captures the
central aspects of both the buy-at-bulk network design problem and the ConFL
problem. In this paper, we study the approximability of the BBConFL problem.
Although both the ConFL and the buy-at-bulk network design problem have
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been well studied in the past, the combination of them has not been considered
in the literature, to the best of our knowledge.

A typical telecommunication network consists of a backbone network with
(almost) unlimited capacity on the links and several local access networks. In
such a network, the traffic originating from the clients is sent through access
networks to gateway or core nodes, which provide routing functionalities and
access to the backbone network. The backbone then provides the connectivity
among the core nodes, which is necessary to route the traffic further towards
its destination. Designing such a network involves selecting the core nodes, con-
necting them with each other, and choosing and dimensioning the links that are
used to route the traffic from the clients to the selected core nodes.

We model this planning problem as the BBConFL problem. We are given an
undirected graph G = (V,E) with nonnegative edge lengths ce ∈ Z≥0, e ∈ E,
obeying the triangle inequality, a set F ⊂ V of potential facilities with opening
costs fi ∈ Z≥0, i ∈ F , and a set of clients D ⊂ V with demands dj ∈ Z>0, j ∈ D.
We are also given K types of access cables that may be used to connect clients
to open facilities. A cable of type i has capacity ui ∈ Z>0 and cost (per unit
length) σi ∈ Z≥0. Core cables, which are used to connect the open facilities, have
a cost (per unit length) of M ∈ Z≥0 and infinite capacity. The task is to find
a subset I ⊆ F of facilities to open, a Steiner tree S ⊆ E connecting the open
facilities, and a forest E′ ⊆ E with a cable installation on its edges, such that
E′ connects each client to exactly one open facility and the installed capacities
suffice to route all clients’ demands to the open facilities. We are allowed to install
multiple copies and types of access cables on each edge of E′. The objective is to
minimize the total cost, where the cost for using edge e in the core Steiner tree
is Mce and the cost for installing a single access cable of type i on edge e is σice.
We also consider the variant with only a single cable type, which we denote by
Single-Cable Connected facility location problem (Single-Cable-ConFL).

The classical ConFL problem is special case of the BBConFL problem with
only one cable type of unit capacity. This problem is well-studied in the litera-
ture. Gupta et al. [10] obtain a 10.66-approximation for this problem, based on
LP rounding. Swamy and Kumar [15] later improved the approximation ratio to
8.55, using a primal-dual algorithm. Using sampling techniques, the guarantee
was later reduced to 4 by Eisenbrand et al. [4], and to 3.19 by Grandoni et al. [7].

The (unsplittable) Single-Sink Buy-at-Bulk problem (u-SSBB) can be viewed
as a special case of the BBConFL problem where the set of interconnected fa-
cilities are given in advance. Several approximation algorithms for u-SSBB have
been proposed in the literature. Using LP rounding techniques, Garg et al. [5]
developed a O(k) approximation, where k is the number of cable types. Hassin
et al. [11] provide a constant factor approximation for the single cable version
of the problem. The first constant factor approximation for the problem with
multiple cable types is due to Guha et al. [9]. Talwar [16] showed that an IP
formulation of this problem has a constant integrality gap and provided a fac-
tor 216 approximation algorithm. Using sampling techniques, the approximation
was reduced to 145.6 by Jothi et al. [12], and later to 40.82 by Grandoni et al. [6].
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If we omit the requirement to connect the open facilities by a core Steiner
tree, then the BBConFL problem reduces to a k-cable facility location problem.
For this problem, Ravi et al. [13] provide an O(k) approximation algorithm.

The rest of the paper is structured as follows. In Section 2, we describe our
constant factor approximation algorithm for BBConFL extending the algorithm
of Guha et al. [9] to incorporate also the selection of facilities to open as well as
the Steiner tree (of infinite capacity) interconnecting them. In Section 3, we study
the single cable version of the problem and present a factor 6.72 approximation
algorithm for this problem.

2 Approximating BBConFL

In this section, we present a constant factor approximation algorithm for the
BBConFL, which uses the ideas of Guha’s algorithm [9] for the single sink buy-
at-bulk network design problem to design the access trees of the solution.

First, we define another problem similar to the BBConFL with slightly differ-
ent cost function, called modified-BBConFL. In this problem, each access cable
has a fixed cost of σi, a flow dependent incremental cost of δi = σi

ui
, and un-

bounded capacity. That is, for using one copy of cable type i on edge e and
transporting D flow unit on e, a cost of (σi +Dδi)ce is incurred.

It is not hard to see that any ρ-approximation to the modified problem gives
a 2ρ-approximation to the corresponding original buy-at-bulk ConFL. Further-
more, we will show later that there exist near optimal solutions of the modified
problem that have a nice tree-like structure with each cable type being installed
in a corresponding layer. We will exploit this special structure in our algorithm
to compute approximate solutions for the modified problem and, thereby, also
approximate solutions for the original buy-at-bulk ConFL.

In the modified-BBConFL, we may assume w.l.o.g. that σ1 < ... < σK and
that δ1 > ... > δK . In addition, we assume that 2σK < M . Note that in our and
many other applications, it is natural to assume that σK << M .

First, we prune the set of cable types such that all cables are considerably
different. As shown in [9], this can be done without increasing the cost of the
optimal solution too much.

Theorem 1. For a predefined constant α ∈ (0, 12 ), we can prune the set of cables
such that, for any i, we have σi+1 >

1
α · σi and δi+1 < α · δi hold and the cost of

the optimal solution increases by at most 1
α .

We observe that, as demand along an edge increases, there are break-points at
which it becomes cheaper to use the next larger cable type. For 1 ≤ i < K, we
define bi such that σi+1 + biδi+1 = 2α(σi + biδi). Intuitively, bi is the demand at
which it becomes considerably cheaper to use a cable type i + 1 rather than a
cable type i. It has been shown in [9] that the break-points and modified cable
cost functions satisfy the following properties.

Lemma 2. For all i, we have ui ≤ bi ≤ ui+1. For any i and D ≥ bi, we have
σi+1 +Dδi+1 ≤ 2 · α(σi +Dδi).
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Let bK = M−σK

δK
be the edge flow at which the cost of using cable type K and

a core link are the same. Suppose we install cable type i whenever the edge
flow is in the range [bi−1, bi], 1 ≤ i ≤ K, where b0 = 0. It can be shown that,
if the edge flow is in the range [bi−1, ui], then considering only the fixed cost
σi (times the edge length) for using cable type i on the edge and ignoring the
flow dependent incremental cost will underestimate the true edge cost only by
a factor 2. Similarly, if the edge flow is in [ui, bi], then considering only the flow
dependent cost δi times the flow and ignoring the fixed cost underestimates the
cost by only a factor 2. This means that any solution can be converted to a
layered solution, loosing at most a factor 2 in cost, where layer i consists of (i)
a Steiner forest using cable type i and carrying a flow of at least bi−1 on each
edge, and (ii) a shortest path forest with each edge carrying a flow of at least
ui. In the following theorem, we define the structural properties of such layered
solutions more formally. As in [9], for sake of simplicity, we assume that there
are extra loop-edges such that property (iii) can be enforced for any solution.

Theorem 3. Modified-BBConFL has a solution with the following properties:

(i) The incoming demand of each open facility is at least bK .
(ii) Cable i+ 1 is used on edge e only if at least bi demand is routed across e.
(iii) All demand which enters a node, except an open facility, using cable i,

leaves that node using cables i or i+ 1.
(iv) The solution’s cost is at most 2( 1

α + 1) times the optimum cost.

Proof. Consider an optimum solution of the modified-BBConFL. Let T ∗ be the
tree connecting the open facilities in the optimum solution. Consider those open
facilities whose incoming demand is less than bK . We can find an unsplittable
flow on the edges of T ∗ sending the aggregated demand from these facilities to
some other open facilities such that the resulting solution obeys property (i)
and the total flow on any edge of the Steiner tree is at most bK . Therefore the
cost of closing these facilities and sending the corresponding demands to some
other open facility using access links can be bounded by the core Steiner tree
cost of the optimal solution, so we close these facilities and reroute demands.
Now identify the set of remaining open facilities to a single sink, and update
the edge length metric appropriately. The resulting solution is now a (possibly
sub-optimal) single-sink network design solution. Results in [9] imply that there
is a near-optimal solution to this single-sink instance which obeys the properties
(ii) and (iii), with a factor ( 2

α + 1) loss in the total access cable cost. Hence,
we can transform our modified-BBConFL solution to a solution which satisfies
properties (ii)–(iv), too. ��

Our algorithm constructs a layered solution with the properties described in
Theorem 3 in a bottom-up fashion, aggregating the client demands repeatedly
and alternating via Steiner trees and via direct assignments (or, equivalently, via
shortest path trees) to values exceeding ui and bi. In phase i, we first aggregate
the (already pre-aggregated) demands of value at least bi−1 to values of at least ui
using cable type i on the edges of an (approximate) Steiner tree connecting these
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demands. Then we further aggregate these aggregates to values of at least (a
constant fraction of) bi solving a corresponding Lower Bounded Facility Location
(LBFL) problem [1,8,14], where all clients may serve as facilities to aggregate
demand (except for the last phase, where only real facilities are eligible). The
LBFL problem is a generalization of the facility location problem where each
open facility is required to serve a certain minimum amount of demand.

Let Di be the set of demand points we have at the i-th stage. InitiallyD1 = D.
Algorithm 1 describes the steps of the algorithm in more detail.

Algorithm 1.
1. Guess a facility r from the optimum solution.
2. For cable type i = 1, 2, ...,K − 1 Do

- Steiner Trees: Construct a ρST -approximate Steiner tree Ti on terminals
Di ∪ {r} for edge costs σi per unit length. Install a cable of type i on
each edge of this tree. Root this tree at r. Transport the demands from
Di upwards along the tree. Walking upwards along this tree, identify edges
whose demand is larger than ui and cut the tree at these edges.

- Consolidate: For every tree in the forest created in the preceding step,
transfer the total demand in the root of tree, which is at least ui, back to
one of its sources using a shortest path of cable type i. Choose this source
with probability proportional to the demand at the source.

- Shortest Path: Solve the LBFL problem with clientsD1, facility opening cost
0 at all nodes, facility lower bound bi, and edge costs δi per unit length. The
solution is a forest of shortest path trees. Then route the current demands
along these trees to their roots, installing cables of type i.

- Consolidate: For every root in the forest created in the preceding step,
transfer the total demand in the root of tree, which is at least bi, back
to one of its sources with probability proportional to the demand at that
source using a shortest path with cables of type i. Let Di+1 be the resulting
demand locations.

3. For cable type K Do
- Construct a ρST -approximate Steiner tree TK on terminals DK ∪ {r} for
edge costs σK per unit length. Install a cable of type K on each edge of this
tree. Root this tree at r. Transport the demands fromDK upwards along the
tree. Walking along this tree, identify edges whose demand is larger than
uK and cut the tree at these edges. For every tree in the created forest,
transfer the total demand in the root of tree back to one of its sources with
probability proportional to the demand at that source via a shortest path,
using cables of type K.

- Solve the LBFL problem with clients D1, facility set F , opening costs fi,
facility lower bound bK , and edge costs δK per unit length. We obtain a
forest of shortest path trees. Then route the current demands along these
trees to their roots, installing cables of type K. Let F ′ be the set of open
facilities.

4. Compute a ρST -approximate Steiner tree Tcore on terminals F ′ ∪ {r} for
edge costs M per unit length. Install the core link on the edges of Tcore.
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To solve LBFL, we employ the bicriteria μρFL-approximation algorithm devised
by Guha et al. [8], which relaxes the lower bound on the minimum demand served
by a facility by a factor β = μ−1

μ+1 . Here ρFL is the best known approximation for
the facility location problem.

It remains to show that the computed solution is an approximate solution. Let
C∗

i , S
∗, and O∗ be the amount paid for cables of type i, for the core Steiner tree,

and for opening facilities in the near-optimal solution, respectively. We define
Ci to be the total cost paid for cables of type i in the returned solution. Let Di

j

be the demand of node j at stage i of the algorithm. Let Ti, Pi and Ni be cost
incurred in the Steiner tree step, the shortest path step, and the consolidation
steps of iteration i, respectively. Also, let T I

i and TF
i denote the incremental and

the fixed cost components of the Steiner tree step at iteration i. Analogously, P I
i

and PF
i denote the incremental and the fixed costs incurred in the shortest path

step. Recall that the set of access cable types has been reduced depending on
the constant parameter α ∈ (0, 12 ). How to choose this parameter appropriately
will be discussed later.

The following Lemma carries over from the single sink buy-at-bulk problem
studied in [9] to our problem in a straightforward way.

Lemma 4.

(i) At the end of each consolidation step, every node has E[Di
j ] = dj.

(ii) E[Ni] ≤ Ti + Pi for each i.

(iii) PF
i ≤ P I

i and T I
i ≤ TF

i for each i.

The following lemma bounds the fixed costs of the cables installed in the Steiner
tree phase i of our algorithm.

Lemma 5. E[TF
i ] ≤ ρST

(∑i−1
j=1

1
β (2α)

i−jC∗
j +

∑K
j=i α

j−iC∗
j + 1

2α
K−iS∗) for

each i.

Proof. We construct a feasible Steiner tree for stage i as follows. Consider the
near-optimum solution, and consider only those nodes which are candidate ter-
minals in stage i of our algorithm. We remove all the cables if the total demand
flowing across it is zero. Otherwise we replace the cable with a cable of type i.
Note that, being in stage i, the expected demand on each cable j < i is at least
βbi. Hence, by Lemma 2, the expected cost of all replacement cables for cables
of type j < i is bounded by 1

β (2α)
i−jC∗

j .
Similarly, the expected cost of the replacement cables for the cables j > i are

bounded by αj−iC∗
j , using the fixed costs scale. Finally, the cost on a core link

used to connect candidate terminals to r is reduced at least by 1
2α

K−iS∗. Alto-
gether, the expected fixed cost of this Steiner tree, which is a possible solution
to the Steiner tree problem in stage i, is bounded by

i−1∑
j=1

1

β
(2α)i−jC∗

j +

K∑
j=i

αj−iC∗
j +

1

2
αK−iS∗ .

As we use a ρST -approximation algorithm to solve this Steiner tree problem in
our algorithm, the claim follows. ��
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In a similar way, we can also bound the incremental costs of the cables installed
in the shortest path phase i of our algorithm.

Lemma 6. E[P I
i ] ≤ μ · ρFL

∑i
j=1 α

i−j · C∗
j for each i.

Proof. Consider the forest defined by the edges with cable types 1 to i in the
near-optimum solution and replace all cables of type less than i by cables of type
i. The cost of replacing all cables of type j < i is bounded by αi−j · C∗

j , using
the incremental costs scale. The resulting tree provides a feasible solution for the
shortest path stage i. As our algorithm applies a bicriteria μ ·ρFL-approximation
algorithm to solve the lower bounded facility location problem in this stage, the
claim follows. ��

The opening costs and the incremental shortest path costs in the final stage of
our algorithm can be bounded as follows.

Lemma 7. E[P I
K + f(F ′)] ≤ μ · ρFL(

∑K
i=1 α

K−i · C∗
i +O∗)

Proof. Now, consider the forest given by all access edges of the near-optimum
solution and replace all cables (of type less than K) by cables of type K. For
each i < K, the incremental cost of the new solution is a fraction αK−i of the
incremental cost of the optimal solution’s cable i portion. The set of facilities
opened in the solution, combined with the cables, constitutes a feasible solution
for the LBFL problem solved in the final stage, and its cost is no more than∑K

i=1 α
K−iC∗

i + O∗. Using the bicriteria μ · ρFL-approximation algorithm, the
claim follows. ��

Finally, the cost of the core Steiner tree have to be bounded.

Lemma 8. E[Tcore] ≤ ρST

(
S∗ + 1

β

∑K
j=1(C

∗
j + Cj)

)
Proof. Let F ∗, T ∗

core and T
∗
access be the set of open facilities, the tree connecting

them, and the forest connecting clients to open facilities in the near-optimum so-
lution, respectively. Let Taccess be the forest connecting clients to open facilities
in the solution returned by the algorithm. We construct a feasible Steiner tree
on F ′ ∪ {r}, whose expected cost is S∗ + 1

β

∑K
j=1(C

∗
j + Cj). In the algorithm’s

solution, each facility l ∈ F ′ serves at least a total demand of βbK . This de-
mand is also served by the set of optimal facilities in the near-optimum solution.
Therefore, at least βbK demand can be routed between each facility l ∈ F ′ and
the facilities of F ∗ along edges of T ∗

access∪Taccess (using the access links). Hence,
we obtain a feasible Steiner tree on F ′ ∪ F ∗, using core links, whose cost is at
most S∗ + 1

β

∑K
j=1(C

∗
j + Cj). ��

Together, Lemmas 4–8 imply our main result.

Theorem 9. Algorithm 1 is a constant factor approximation for BBConFL.
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Proof. By Lemmas 4–6, the total expected cost of access links is bounded by

4

K∑
i=1

[
μρFL

i∑
j=1

αi−jC∗
j + ρST

( K∑
j=i

αj−iC∗
j +

i−1∑
j=1

1

β
(2α)i−jC∗

j +
1

2
αK−iS∗

)]
≤ 4
(μ.ρFL

1− α
+

ρST

1− α
+

ρST

β(1− 2α)

) K∑
i=1

C∗
i +

2 · ρST

1− α
S∗

Additionally, using Lemmas 7 and 8, the total cost of installing core links and
opening facilities is bounded by

μρFLO
∗ + ρSTS

∗ +
ρST

β

( K∑
i=1

C∗
i +

K∑
i=1

Ci

)
.

Altogether, we obtain a bound of

μρFLO
∗ +

[ρST

β
+ 4
(
1 +

ρST

β

)(μρFL + ρST

1− α
+

ρST

β(1− 2α)

)] K∑
i=1

C∗
i

+
[(
1 +

ρST

β

)( 2ρST

1− α

)
+ ρST

]
S∗

for the worst case ratio between the algorithm’s solution and a near optimal
solution, restricted according to Theorem 3, of the modified-BBConFL. With
Theorems 1 and 3, this yields a worst case approximation guarantee of 2

α (
1
α +1)

times the above ratio against an unrestricted optimal solution of the modified-
BBConFL.

Finally, we lose another factor of 2 in the approximation guarantee when
evaluating the approximate solution for the modified-BBConFL with respect to
the original BBConFL problem. For appropriately chosen fixed parameters α,
β, and μ, we nevertheless obtain a constant factor approximation algorithm for
BBConFL. ��

3 Approximating Single-Cable-ConFL

In this section, we consider a simpler version of the problem, where only multiples
of a single cable type can be installed. Let u > 0 be the capacity of the only cable
type available. We may assume that the cost of this cable is one. The algorithm
presented in this paper can easily be adapted for σ > 1.

We obtain an approximation algorithm for this problem by modifying the
algorithmic framework proposed in [7] as shown in Algorithm 2 on the next page.
In this Algorithm, c(v, u) denotes the distance between u and v, and c(v, U) =
minu∈U c(v, u). Again, the algorithm uses a constant parameter α ∈ (0, 1], whose
setting will be discussed later.

One easily verifies that Algorithm 2 computes a feasible solution. Clearly,
T ′ is a Steiner tree connecting the open facilities F ′. The existence of (and a
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Algorithm 2.

1. Guess a facility r from the optimum solution.

Mark each client j ∈ D with probability
α·dj
M·u . Let D

′ be the set of marked clients.
2. Compute a ρST -approximate Steiner tree T1 on terminals D′ ∪ {r}.
3. Define a FL instance with clients D, facilities F , costs c′ij :=

dj
u
c(i, j), j ∈ D and

i ∈ F , and opening costs f ′
i := fi +M · c(i,D′ ∪ {r}), i ∈ F .

Compute a (λF , λC)-bifactor-approximate solution U = (F ′, σ) to this instance,
where σ(j) ∈ F ′ indicates the facility serving j ∈ D in U .

4. Augment T1 with shortest paths from each i ∈ F ′ to T1.
Let T ′ be the augmented tree.
Output F ′ and T ′ as open facilities and core Steiner tree, respectively.

5. Compute a ρST -approximate Steiner tree T2 on terminals D ∪ {r}.
6. // Using the results in [11,13], we now install capacities to route the clients’ de-

mands to open facilities F ′.
- For each j ∈ D with dj > u/2, install �dj/u cables from j to its closest open
facility in F ′.
- Considering only clients with dj ≤ u/2, partition T2 into disjoint subtrees such
that the total demand of each subtree not containing r is in [u/2, u] and the total
demand of the subtree containing r is at most u; see [11].
- Install one cable on each edge contained in any subtree.
- For each subtree not containing r, install one cable from the client closest to an
open facility to this facility.

polynomial time algorithm to find) a partition of the tree T2 into subtrees of
total demand between u/2 and u each, except for the subtree containing r, has
been shown in [11], given that each individual demand is at most u. From that,
it follows immediately that all clients j with dj ≤ u/2 can be routed within their
respective subtree towards the client closest to an open facility and then further
on to this facility without exceeding the capacity u on these edges.

It remains to show that the computed solution is an approximate solution.
Let O′

U and C′
U be the (modified) opening and connection costs of the solu-

tion U of the facility location problem solved in Step 3. Furthermore, let I∗,
S∗, and F ∗ be the set of open facilities, the Steiner tree connecting them, and
the forest connecting the clients to the open facilities in the optimal solution,
respectively. Also let σ∗(j) ∈ I∗ be the facility serving j ∈ D in the optimal
solution. The opening costs, cable installation costs, and core Steiner tree costs
of the algorithm’s solution and of the optimal solution are denoted by O,C, T
and O∗, C∗, T ∗, respectively. Let c(E′) :=

∑
e∈E′ ce for any E′ ⊆ E,

Lemma 10. The cable cost induced in Step 6 is at most c(T2) + 2 · C′
U .

Proof. Using the result in [11], the total flow on any edge of the Steiner tree T2
induced by grouping the demands into disjoint subtrees is at most u. Thus, one
copy of the cable on all edges in T2 is sufficient to accommodate the flow on the
edges of T2, which contributes c(T2) to the total cable installation cost.
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Let C1, C2, ..., CT be the sets of clients in each subtree and for each Ct let
jt ∈ Ct be the client which is closest to an open facility in F ′. The modified
connection costs in U are

C′
U =

∑
t

∑
j∈Ct

dj
u
c(j, σ(j)) +

∑
j∈D:dj>

u
2

dj
u
c(j, σ(j))

≥
∑
t

∑
j∈Ct

dj
u
c(j, σ(j)) +

∑
j∈D:dj>

u
2

1

2
c(j, σ(j)) .

Since the algorithm sends the total demand of Ct via jt, we have

C′
U ≥

∑
t

∑
j∈Ct

dj

u
c(jt, σ(jt)) +

∑
j∈D:dj>

u
2

1

2
c(j, σ(j)) ≥ 1

2
CAC ,

where CAC is the cost of the cables installed by the algorithm between the
subtrees and the closest open facilities and between the large demand clients
and the open facilities. Altogether the total cost of buying cables to route the
traffic is at most c(T2) + 2 · C′

U . ��

Lemma 11. The opening and core connection cost of the computed solution
satisfy O + T ≤ O′

U +M · c(T1).

Proof. Algorithm 2 opens the facilities chosen in the FL solution and connects
these facilities by the tree T ′. Since the modified opening costs f ′ in Step 3
include both the original cost for opening F ′ and the cost for augmenting T1 to
T ′, the sum of the opening cost and core connection cost of the final solution
are at most O′

U +M · c(T1). ��

Lemma 12. The expected cost of T1 is at most ρST

M (T ∗ + αC∗).

Proof. We obtain a feasible Steiner tree on D′ ∪ {r} by joining the optimal
solution’s Steiner tree S∗ and the paths connecting each client in D′ with its
corresponding open facility in I∗ in the optimal solution. The expected cost of
the resulting subgraph is at most∑

e∈S∗
c(e) +

α

M

∑
j∈D

dj
u
· l(j, I∗) ≤ T ∗

M
+

α

M
C∗,

where l(j, I∗) denotes the length of the path connecting j to its open facility in

I∗ using edges of F ∗. The last inequality holds since in
∑

j∈D
dj

u · l(j, I∗) instead
of installing an integral number of cables on every edge, we install multiples of
1
u on every edge, which is a lower bound for C∗. Thus the expected cost of the
ρST -approximate Steiner tree on D′ ∪ {r} is at most ρST

M (T ∗ + αC∗). ��

Lemma 13. The cost of T2 is at most ρST (T
∗ + C∗).

Proof. Clearly S∗ ∪ F ∗ defines a feasible Steiner tree on D ∪ {r}. ��
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Lemma 14. E[O′
U + C′

U ] ≤ λF (O
∗ + αC∗) + λC(C

∗ + 0.807
α T ∗).

Proof. We provide a feasible solution for the facility location problem, whose
expected opening cost is O∗ +αC∗ and whose expected connection cost is C∗ +
0.807
α T ∗. Choose facilities σ∗(D′) ∪ {r}. The expected opening cost is at most

∑
i∈I∗

fi +M · α
M

∑
j∈D

dj
u
· l(j, σ∗(j)) ≤ O∗ + αC∗ .

Now, replace j by several copies of co-located unit-demand clients. In order to
bound the expected connection cost, we apply the core connection game de-
scribed in [4] (see also Lemma 2 in [7]) for ConFL with unit-demand clients,
probability α

M·u (which is the same to mark each client j ∈ D with probability
α·dj

M·u ), core S
∗, mapping σ = σ∗, and w(e) = c(e)

u which yields

E[
∑
j∈D

c′(j, σ∗(D′) ∪ {r})] ≤
∑
j∈D

c′(j, I∗) +
0.807

α
M·u

· w(T
∗)

M

≤
∑
j∈D

dj
u
l(j, I∗) +

0.807
α

M·u
· T ∗

M · u ≤ C∗ +
0.807

α
T ∗ .

��

Theorem 15. For a proper choice of α, Algorithm 2 is an 6.72-approximation
algorithm for Single-Cable-ConFL.

Proof. By Lemmas 10–13, we have

E[O + T + C] ≤ O′
U + 2 · C′

U + ρST (2T
∗ + (α+ 1)C∗) .

Applying Lemma 14, we can bound the first two terms, which yields

E[O + T + C] ≤ ρST (2T
∗+(α+1)C∗) + 2[λF (O

∗+αC∗) + λC(C
∗+

0.807

α
T ∗)]

= (2λF )O
∗ + 2(λC

0.807

α
+ ρST )T

∗ +
(
ρST (α+ 1) + 2(λFα+ λC)

)
C∗ . (1)

Applying Byrka’s (λF , 1+ 2 · e−λF )-bifactor approximation algorithm [2] for the
facility location subproblem and the (currently best known) ln(4)-approximation
algorithm for the Steiner tree problem [3] and setting α = 0.5043 and λF =
2.1488, inequality (1) implies E[O + T + C] ≤ 6.72(O∗ + T ∗ + C∗). ��

For unit demands, one can derive a stronger bound of c(T2) + CU for the cable
installation costs using the techniques proposed in [11] for the single sink network
design problem. Adapting Step 6 of the algorithm and adjusting the parameters
α and λF accordingly, one easily obtains a 4.57-approximation algorithm for the
Single-Cable-ConFL problem with unit demands.
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Abstract. The Lloyd’s algorithm, also known as the k-means algorithm,
is one of the most popular algorithms for solving the k-means clustering
problem in practice. However, it does not give any performance guaran-
tees. This means that there are datasets on which this algorithm can
behave very badly. One reason for poor performance on certain datasets
is bad initialization. The following simple sampling based seeding al-
gorithm tends to fix this problem: pick the first center randomly from
among the given points and then for i ≥ 2, pick a point to be the ith cen-
ter with probability proportional to the squared distance of this point
from the previously chosen centers. This algorithm is more popularly
known as the k-means++ seeding algorithm and is known to exhibit
some nice properties. These have been studied in a number of previous
works [AV07, AJM09, ADK09, BR11]. The algorithm tends to perform
well when the optimal clusters are separated in some sense. This is be-
cause the algorithm gives preference to further away points when picking
centers. Ostrovsky et al.[ORSS06] discuss one such separation condition
on the data. Jaiswal and Garg [JG12] show that if the dataset satisfies
the separation condition of [ORSS06], then the sampling algorithm gives
a constant approximation with probability Ω(1/k). Another separation
condition that is strictly weaker than [ORSS06] is the approximation
stability condition discussed by Balcan et al.[BBG09]. In this work, we
show that the sampling algorithm gives a constant approximation with
probability Ω(1/k) if the dataset satisfies the separation condition of
[BBG09] and the optimal clusters are not too small. We give a negative
result for datasets that have small optimal clusters.

1 Introduction

The k-means clustering problem is defined as follows:

Given n points X = {x1, ..., xn} ∈ Rd, find k points {c1, ..., ck} ∈ Rd

(these are called centers) such that the following objective function is
minimized:

φ{c1,...,ck}(X ) =
∑
x∈X

min
c∈{c1,...,ck}

D(x, c)
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where D(x, c) denotes the square of the Euclidean distance between
points x and c.

Note that the k centers define an implicit clustering of the points in X as all the
points that have the same closest center are in the same cluster. This problem
is known to be an NP-hard problem when k ≥ 2. We can generalize the problem
for any distance measure by defining the distance function D accordingly. Such
generalized version of the problem is known as the k-median problem with respect
to a given distance measure. Here, we will talk about the k-means problem and
then generalize our results for the k-median problem with respect to distance
measures that are metrics in an approximate sense.

As discussed in the abstract, the most popular algorithm for solving the
k-means problem is the Lloyd’s algorithm that can be described as follows: (i)
Pick k centers arbitrarily (ii) consider the implicit clustering induced by these
centers (iii) move the centers to the respective centroids of these induced clusters
and then repeat (ii) and (iii) until the solution does not improve. Even though
this algorithm works extremely well in practice, it does not have any performance
guarantees, the main problem being arbitrary initialization. This means that the
algorithm takes a very long time to converge or the final solution is arbitrarily
bad compared to the optimal. The following simple sampling algorithm that is
more popularly known as the k-means++ seeding algorithm seems to fix the
problem to some extent:

(SampAlg) Pick the first center uniformly at random from X . Choose a
point x ∈ X to be the ith center for i ≥ 2 with probability proportional
to the squared distance of x from the nearest previously chosen centers,

i.e., with probability
minc∈{c1,...,ci−1} D(x,c)

φ{c1,...,ci−1}(X ) .

In this work, we study some properties of this simple sampling algorithm.
First, let us look at the previous works.

Previous Work. The above algorithm, apart from being simple, easy-to-
implement, and quick, exhibits some very nice theoretical properties. Arthur and
Vassilvitskii [AV07] show that SampAlg gives O(log k) approximation in expec-
tation. They also give an example where the algorithm gives solution with ap-
proximation factor Ω(log k) in expectation. Ailon et al. [AJM09] and Aggarwal et
al. [ADK09] show that this algorithm is a constant factor pseudo-approximation
algorithm. This means that SampAlg gives a solution that is within a constant
factor of the optimal (w.r.t. k centers) if it is allowed to output more than k
centers. Brunsch and Röglin [BR11] gave an example where SampAlg gives an
approximation factor of (2/3− ε) log k with probability exponentially small in k
thus closing the open question regarding whether the sampling algorithm gives a
constant approximation with not-too-small probability. Jaiswal and Garg [JG12]
observe that SampAlg behaves well for datasets that satisfy the separation con-

dition Δk−1(X )
Δk(X ) ≥ c, where Δi(X ) denotes the optimal value of the cost for the

i-means problem on data X . They show that under this separation condition, the
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algorithm gives a constant approximation factor with probability Ω(1/k). This
separation condition was discussed by Ostrovsky et al. [ORSS06] who also ob-
serve that SampAlg behaves well under such separation and construct a PTAS
for the k-means problem using a variant of SampAlg in their algorithm. Balcan
et al. discuss a strictly weaker separation condition than [ORSS06]. This separa-
tion condition has gained prominence and a number of followup works has been
done. In this work, we show that SampAlg behaves well even under this weaker
separation property. Next, we discuss our results in more detail.

Our Results. Let us first discuss the [BBG09] separation condition. This is
known as the (1 + α, ε)-approximation stability condition.

Definition 1 ((1+α, ε)-approximation stability). Let α > 0, 1 ≥ ε > 0. Let
X ∈ Rd be a point set and let C∗

1 , ..., C
∗
k denote the optimal k clusters of X with

respect to the k-means objective. X is said to satisfy (1 + α, ε)-approximation
stability if any (1 + α)-approximate clustering C1, ..., Ck is ε-close to C∗

1 , ..., C
∗
k .

ε-closeness means that at most ε fraction of points have to be reassigned in
C1, ..., Ck to be able to match C∗

1 , ..., C
∗
k .

Note that for a fixed value of ε, the larger the value of α the stronger is the sep-
aration between the optimal clusters. Our techniques easily generalize for large
values of α. The above condition captures how stable the optimal clustering is un-
der approximate clustering solutions. This separation condition has been shown
to be strictly weaker than the [ORSS06] separation condition. More specifically,
it has been shown (see Section 6 in [BBG09] and Lemma 5.1 in [ORSS06]) if a

dataset X satisfies the separation condition Δk(X )
Δk−1(X ) ≤ ε, then any near-optimal

k-means solution is ε-close to the optimal k-means solution. They also give an
example that shows that the other direction does not hold.

Main Theorem for k-means The next theorem gives our main result for the k-
means problem. Here the distance measure is square of the Euclidean distance.

Theorem 1 (Main Theorem). Let 0 < ε, α ≤ 1. Let X ∈ Rd be a dataset
that satisfies the (1 + α, ε)-approximation stability and each optimal cluster has
size at least (60εn/α2). Then the sampling algorithm SampAlg gives an 8-
approximation to the k-means objective with probability Ω(1/k).

When α > 1, we get the following result.

Theorem 2 (Main Theorem, large α). Let 0 < ε ≤ 1 and α > 1. Let X ∈ Rd

be a dataset that satisfies the (1+α, ε)-approximation stability and each optimal
cluster has size at least 70εn. Then the sampling algorithm SampAlg gives an
8-approximation to the k-means objective with probability Ω(1/k).

Generalization to k-median w.r.t. Approximate Metrics. The above result can
be generalized for the k-median problem with respect to distance measures that
are approximately metric. This means that the distance measure D satisfies the
following two properties:
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Definition 2 (γ-approximate symmetry). Let 0 < γ ≤ 1. Let X be some
data domain and D be a distance measure with respect to X . D is said to satisfy
the γ-approximate symmetry property if the following holds:

∀x, y ∈ X , γ ·D(y, x) ≤ D(x, y) ≤ (1/γ) ·D(y, x). (1)

Definition 3 (δ-approximate triangle inequality). Let 0 < δ ≤ 1. Let X
be some data domain and D be a distance measure with respect to X . D is said
to satisfy the δ-approximate triangle inequality if the following holds:

∀x, y, z ∈ X , D(x, z) ≤ (1/δ) · (D(x, y) +D(y, z)). (2)

Here is our main theorem for the general k-median problem.

Theorem 3 (k-median). Let 0 < ε, γ, δ, α ≤ 1. Consider the k-median problem
with respect to a distance measure that satisfies γ-symmetry and δ-approximate
triangle inequality. Let X ∈ Rd be a dataset that satisfies the (1 + α, ε)-
approximation stability and each optimal cluster has size at least (20εn/δ2α2).
Then the sampling algorithm SampAlg gives an 8

(γδ)2 -approximation to the k-

median objective with probability Ω(1/k).

When α > 1, we get the following result.

Theorem 4 (k-median, large α). Let 0 < ε, γ, δ ≤ 1 and α > 1. Consider the
k-median problem with respect to a distance measure that satisfies γ-symmetry
and δ-approximate triangle inequality. Let X ∈ Rd be a dataset that satisfies
the (1 + α, ε)-approximation stability and each optimal cluster has size at least
(20εn/δ2). Then the sampling algorithm SampAlg gives an 8

(γδ)2 -approximation

to the k-median objective with probability Ω(1/k).

Negative result for small clusters The above two Theorems show that the sam-
pling algorithm behaves well when the data satisfies the Approximation-stability
property and the optimal clusters are large. This leaves open the question as to
what happens when the clusters are small. The next Theorem shows a negative
result if the clusters are small. We show that if the clusters are small, then in
the worst case, SampAlg gives O(log k) approximation with probability expo-
nentially small in k.

Theorem 5. Let 0 < ε, α ≤ 1. Consider the k-means problem. There exists a
dataset X ∈ Rd such that the following holds:

– X satisfies the (1 + α, ε) approximation stability property, and

– SampAlg achieves an approximation factor of
(
1
2 · log k

)
with probability at

most e−
√
k−o(1).
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2 Proof of Theorems 1 and 2

We follow the framework of Jaiswal and Garg [JG12]. We denote the dataset by
X = {x1, ..., xn} ∈ Rd. Let C∗

1 , ..., C
∗
k denote the optimal k clusters with respect

to the k-means objective function and let c∗1, ..., c
∗
k denote the centroids of these

optimal clusters. We denote the optimal cost with OPT , i.e.,

OPT =
∑
x∈X

min
c∈{c∗1,...,c∗k}

D2(c, x),

where D(., .) denotes the Euclidean distance between any pair of points. For
any point x ∈ X , we denote the distance of this point to the closest center in
{c∗1, ..., c∗k} with w(x) and the distance of this point to the second closest center
with w2(x).

The following Lemma from [BBG09] will be crucial in our analysis.

Lemma 1 (Lemma 4.1 in [BBG09]). If the dataset satisfies (1 + α, ε)-
approximation-stability for the k-means objective, then

(a) If ∀i, |C∗
i | ≥ 2εn, then less than εn points have w2

2(x)− w2(x) ≤ α·OPT
εn .

(b) For any t > 0, at most tεn points have w2(x) ≥ OPT
tεn .

Let c1, ..., ci denote the centers that are chosen by the first i iterations of
SampAlg and let j1, ..., ji denote the indices of the optimal clusters to which
these centers belong, i.e., if cp ∈ C∗

q , then jp = q. Let Ji = {j1}∪ ...∪{ji} and let

J̄i = {1, ..., k}\Ji. So, Ji denotes the clusters that are covered and J̄i denotes the
clusters that are not covered by the end of the ith iteration. An optimal cluster
being covered means that a point has been chosen as a center from the cluster.
Let Xi = ∪j∈JiC

∗
j and let X̄i = ∪j∈J̄i

C∗
j .

Let B1 be the subset of points in X̄i such that for any point x ∈ B1, w
2
2(x)−

w2(x) ≤ α·OPT
εn . Let B2 denote the subset of points in X̄i such that for every

point x ∈ B2, w
2(x) ≥ α2·OPT

6εn . Note that from Lemma 1, we have that |B1| ≤
εn and |B2| ≤ 6εn/α2. Let B = B1 ∪B2 and B̄ = X̄i \B. We have |B| ≤ 7εn/α2.

Lemma 2. Let β = 1−α/2
6+α . For any x ∈ B̄ we have, we have D2(x, ct) ≥

β ·D2(x, c∗jt).

Proof. Let j be the index of the optimal cluster to which x belongs. Note that
w2(x) = D2(x, c∗j ) and w

2
2(x) ≤ D2(x, c∗jt). Figure 1 shows this arrangement. For

any x ∈ B̄, we have:

w2
2(x) − w2(x) ≥ α ·OPT

εn
≥ 6 · w2(x)/α

⇒ w2
2(x) ≥ (1 + 6/α) · w2(x) (3)
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c∗jt

ct

c∗j

x

Fig. 1. x belongs to the uncovered cluster j

We will now argue that D2(x, ct) ≥ β ·D2(x, c∗jt). For the sake of contradiction,

assume that D2(x, ct) < β ·D2(x, c∗jt). Then we observe the following inequalities.

2 ·D2(x, c∗j ) + 2 ·D2(x, ct) ≥ D2(ct, c
∗
j ) (triangle inequality)

⇒ 2 ·D2(x, c∗j ) + 2 ·D2(x, ct) ≥ D2(ct, c
∗
jt) (since D2(ct, c

∗
j ) ≥ D2(ct, c

∗
jt
))

⇒ 2 ·D2(x, c∗j ) + 2 ·D2(x, ct) ≥
1

2
·D2(x, c∗jt)−D2(x, ct) (triangle inequality)

⇒ 3 ·D2(x, ct) ≥
1

2
·D2(x, c∗jt)− 2 ·D2(x, c∗j )

⇒ 3β ·D2(x, c∗jt) >
1

2
·D2(x, c∗jt)− 2 ·D2(x, c∗j )

(using assumption D2(x, ct) < β ·D2(x, c∗jt))

⇒ D2(x, c∗j ) >
(1 − 6β)

4
·D2(x, c∗jt)

⇒ w2(x) >
1

1 + 6/α
· w2

2(x) (since D2(x, c∗jt) ≥ w2
2(x) and β = 1−α/2

6+α )

This contradicts with Equation (3). Hence, we get that for any x ∈ B̄ and any
t ∈ {1, ..., i}, we have D2(x, ct) ≥ β ·D2(x, c∗jt). This proves the Lemma.

Let Wmin = mint∈[k]

(∑
x∈C∗

t ,x∈B̄ w
2
2(x)

)
. Let Ci denote the set of centers

{c1, ..., ci} that are chosen in the first i iterations of SampAlg. Let Xi = ∪t∈JiC
∗
t

and X̄i = X \Xi. So, in some sense, Xi denote the points that are covered by the
algorithm after step i and X̄i are the uncovered points. For any subset of points
Y ∈ X , φCi(Y ) is the cost of the points in Y with respect to the centers Ci, i.e.,
φCi(Y ) =

∑
x∈Y minc∈Ci D

2(x, c). We can now present our next useful lemma
which says that the cost of the uncovered points is significant. Note that this
implies that the probability of a point being picked from an uncovered clusters
in step (i + 1) is significant.

Lemma 3. Let β = 1−α/2
6+α . φ{c1,...,ci}(X̄i) ≥ β · (k − i) ·Wmin.

Proof. This Lemma follows from the definition of Wmin and Lemma 2.
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We will need a few more definitions. The remaining analysis will be on the lines
of a similar analysis in [JG12]. Let Ei denote the event that the set Ji contains i
distinct indices from {1, ..., k}. This means that the first i sampled centers cover
i optimal clusters. The next Lemma is from [AV07] and shows that given that
event Ei happens, the expected cost of points in Xi with respect to Ci is at most
some constant times the optimal cost of Xi with respect to {c∗1, ..., c∗k}.

Lemma 4 (Lemma 3.1 and 3.2 in [AV07]). ∀i,E[φ{c1,...,ci}(Xi)|Ei] ≤ 4 ·
φ{c∗1 ,...,c∗k}(Xi).

The next Lemma (this is Lemma 4 in [JG12]) shows that the probability that
SampAlg returns a good solution depends on the probability of the event Ek,
i.e., the event that all the clusters get covered.

Lemma 5. Pr
[
φ{c1,...,ck}(X ) ≤ 8 · φ{c∗1,...,c∗k}(X )

]
≥ (1/2) · Pr[Ek]

Proof. From the previous Lemma, we know that E[φ{c1,...,ck}(X )|Ek ] ≤ 4 ·
φ{c∗1 ,...,c∗k}(X ). Using Markov, we get that Pr[φ{c1,...,ck}(X ) > 8 · φ{c∗1 ,...,c∗k}
(X )|Ek] ≤ 1/2. Removing the conditioning on Ek, we get the desired Lemma.

We will now argue in the remaining discussion that Pr[Ek] ≥ 1/k. This follows
from the next Lemma that shows that Pr[Ei+1|Ei] ≥ k−i

k−i+1 .

Lemma 6. Pr[Ei+1|Ei] ≥ k−i
k−i+1 .

Proof. Pr[Ei+1 | Ei] is just the conditional probability that the (i+ 1)th center
is chosen from the set X̄i given that the first i centers are chosen from i different
optimal clusters. This probability can be expressed as

Pr[Ei+1 | Ei] = E

[
φ{c1,...,ci}(X̄i)

φ{c1,...,ci}(X )
| Ei

]
(4)

For the sake of contradiction, let us assume that

E

[
φ{c1,...,ci}(X̄i)

φ{c1,...,ci}(X )
| Ei

]
= Pr[Ei+1 | Ei] <

k − i

k − i+ 1
(5)

Applying Jensen’s inequality, we get the following:

1

E
[
φ{c1,...,ci}(X )

φ{c1,...,ci}(X̄i)
| Ei

] ≤ E

[
φ{c1,...,ci}(X̄i)

φ{c1,...,ci}(X )
| Ei

]
<

k − i

k − i+ 1

This gives the following:

1 +
1

k − i
< E

[
φ{c1,...,ci}(X )

φ{c1,...,ci}(X̄i)
| Ei

]
= E

[
φ{c1,...,ci}(Xi) + φ{c1,...,ci}(X̄i)

φ{c1,...,ci}(X̄i)
| Ei

]
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= 1 +E

[
φ{c1,...,ci}(Xi)

φ{c1,...,ci}(X̄i)
| Ei

]
⇒ 1

k − i
≤ E

[
φ{c1,...,ci}(Xi)

β · (k − i) ·Wmin
| Ei

]
(using Lemma 3)

≤
E[φ{c1,...,ci}(Xi) | Ei]

β · (k − i) ·Wmin

≤
4 · φ{c∗1 ,...,c∗k}(X )

β · (k − i) ·Wmin
(using Lemma 4)

⇒ Wmin

OPT
≤ 4

β
= 4 · 6 + α

1− α/2
(6)

The above gives us an upper bound on Wmin. Next, we get a lower bound
on Wmin that contradicts with the above bound. Let j be the index of the
optimal cluster such that

∑
x∈C∗

j ,x∈B̄ w
2
2(x) is minimized. Note that Wmin =∑

x∈C∗
j ,x∈B̄ w

2
2(x). We note that for any x /∈ B1, we havew

2
2(x)−w2(x) ≥ α·OPT

εn .

This gives us the following:

∀x /∈ B1, x ∈ C∗
j , w

2
2(x) ≥

α ·OPT

εn

⇒Wmin =
∑

x∈C∗
j ,x∈B̄

w2
2(x) ≥

α ·OPT

εn
· 52εn
α2

=
52

α
·OPT (7)

The above being true since all clusters are of size at least 60εn
α2 . Note that this

contradicts with equation (6) since α ≤ 1.

This concludes the proof of Theorem 1.

Proof (Proof of Theorem 2). We run through the same proof as discussed above
with the following quantities redefined as follows: Let B1 be the subset of points

in X̄i such that for any point x ∈ B1, w
2
2(x) − w2(x) ≤ α·OPT

εn . Let B2 denote

the subset of points in X̄i such that for every point x ∈ B2, w
2(x) ≥ OPT

6εn . Note
that from Lemma 1, we have that |B1| ≤ εn and |B2| ≤ 6εn. Let B = B1 ∪ B2

and B̄ = X̄i \ B. We have |B| ≤ 7εn. Now, we note that Lemma 3 works for

β = α−1/2
6+α . This changes equation (6) as follows:

Wmin

OPT
≤ 4

β
= 4 · 6 + α

α− 1/2
(8)

Furthermore, equation (7) gets modified to the following:

Wmin =
∑

x∈C∗
j ,x∈B̄

w2
2(x) ≥

α ·OPT

εn
· (56εn) = 56α ·OPT (9)

The above being true since all clusters are of size at least 70εn. Note that this
contradicts with equation (8) since α > 1.
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3 Small Cluster

In the previous section, we saw a positive result on datasets that have large
optimal clusters. In this section, we show that if the dataset have optimal clusters
that are small in size, then SampAlg may have a bad behavior. More formally,
we will prove Theorem 5 in this Section. We will need the following result from
[BR11] for proving this Theorem.

Theorem 6 (Theorem 1 from [BR11]). Let r : N → R be a real function.
If r(k) = δ∗ log k for a fixed real δ∗ ∈ (0, 2/3), then there is a class of instances
on which SampAlg achieves an r(k)-approximation with probability at most
e1−(3/2)δ∗−o(1).

Let XBR denote the dataset on which SampAlg gives an approximation factor

of ((1/3) log k′) with probability at most e−
√
k′−o(1) when solving the k′-means

problem. We will construct another dataset using XBR and show that SampAlg
behaves poorly on this dataset. We will need the following fact from [BR11] for
our analysis:

Fact 1 ([BR11]). OPT (k′,XBR) =
k′(k′−1)

2 .

Consider the dataset X = Xfar ∪ XBR where Xfar has the following properties:

1. XBR ∩ Xfar = φ,
2. |Xfar| = |XBR| ·

(
1
ε − 1

)
.

3. All points in Xfar are located at a point c such that the distance of every

point x ∈ XBR from c is at least 4 ·
√

(1+α)(k−1)(k−2)
2·|Xfar| .

We solve the k-means problem for k = k′+1 on the dataset X that has n = |XBR|
ε

points. Note that the size of the smallest optimal cluster for this dataset is of
size εn/k. We first observe cost of the optimal solution of X .

Lemma 7. OPT (k,X ) = k′(k′ − 1)/2.

Proof. This is simple using the Fact 1.

We now show that X has the (1 + α, ε)-approximation stability property.

Lemma 8. X satisfies the (1 + α, ε)-approximation stability property.

Proof. Consider any (1+α)-approximate solution for the dataset X . Let c1, ..., ck
be the centers with respect to this approximate solution.We have φ{c1,...,ck}(X ) ≤
(1+α) · (k− 1)(k− 2)/2. Consider the center in {c1, ..., ck} that is closest to the
point c. Let this center be cj . Then we note that:

D2(c, cj) ≤
(1 + α)(k − 1)(k − 2)

2 · |Xfar|

Since the distance of every point in XBR from point c is at least 4·
√

(1+α)(k−1)(k−2)
2·|Xfar| ,

we get that all points in Xfar are correctly classified. Furthermore, since the num-
ber of points in XBR is at most ε fraction of total points, we get that the total
number of mis-classified points cannot be more than εn and hence the data X
satisfies the (1 + α, ε) approximation stability property.
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4 Proof of Theorems 3 and 4

Consider the k-median problem with respect to a distance measure D(., .) that
satisfies the γ-symmetry and δ-approximate triangle inequality. The following
Lemma is a generalized version of the Lemma in [BBG09] for any given distance
measure. The proof remains the same as the proof of Lemma 3.1 in [BBG09].

Lemma 9 (Generalization of Lemma 3.1 in [BBG09]). If the dataset sat-
isfies (1 + ε, α)-approximation-stability for the k-median objective, then

(a) If ∀i, |C∗
i | ≥ 2εn, then less than εn points have w2(x)− w(x) ≤ α·OPT

εn .

(b) For any t > 0, at most tεn points have w(x) ≥ OPT
tεn .

where w(x) denotes the distance of the point x to the closest optimal center as per
the distance measure D and w2(x) is the distance to the second closest center.

We now prove a generalized version of Lemma 2 for distance measures that
satisfy γ-symmetry and δ-approximate triangle inequality. We can redefine some
of the previous quantities for this case. Let B1 be the subset of points in X̄i such

that for any point x ∈ B1, w2(x) − w(x) ≤ α·OPT
εn . Let B2 denote the subset

of points in X̄i such that for every point x ∈ B2, w(x) ≥ δ2α2·OPT
εn . Note that

from Lemma 9, we have that |B1| ≤ εn and |B2| ≤ εn
δ2α2 . Let B = B1 ∪ B2 and

we have |B| ≤ 2εn
δ2α2 . Let B̄ = X̄i.

Lemma 10. Let β =
δ2+ 1

α−1

(1+ 1
δ2α

)(1+δ)
. For any x ∈ B̄, we have D(x, ct) ≥ β ·

D(x, c∗jt).

Proof. Consider any point x ∈ B̄. Let x ∈ C∗
j . In other words, j is the index of

the optimal cluster to which x belongs. Note that w(x) = D(x, c∗j ) and w2(x) ≤
D(x, c∗jt). Please refer Figure 1 that shows this arrangement. For any x ∈ B̄, we
have:

w2(x) − w(x) ≥ α ·OPT

εn
≥ 1

δ2α
· w(x)

⇒ w2(x) ≥
(
1 +

1

δ2α

)
· w(x) (10)

We will now argue that D(x, ct) ≥ β · D(x, c∗jt). For the sake of contradiction,
assume that D(x, ct) < β ·D(x, c∗jt). Then we observe the following inequalities.

D(x, ct) +D(x, c∗j ) ≥ δ ·D(ct, c
∗
j )

(δ-approximate triangle inequality)

⇒ D(x, ct) +D(x, c∗j ) ≥ δ ·D(ct, c
∗
jt)

(since D(ct, c
∗
j ) ≥ D(ct, c

∗
jt
))

⇒ D(x, ct) +D(x, c∗j ) ≥ δ · (δ ·D(x, c∗jt)−D(x, ct))

(δ-approximate triangle inequality)
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⇒ (1 + δ) ·D(x, ct) ≥ δ2 ·D(x, c∗jt)−D(x, c∗j )

⇒ (1 + δ) · β ·D(x, c∗jt) > δ2 ·D(x, c∗jt)−D(x, c∗j )
(using assumption D(x, ct) < β ·D(x, c∗jt))

⇒ D(x, c∗j ) > (δ2 − β(1 + δ)) ·D(x, c∗jt)

⇒ w(x) >
1(

1 + 1
δ2α

) · w2(x)

(since D(x, c∗jt) ≥ w2(x) and β =
δ2+ 1

α−1

(1+ 1
δ2α

)(1+δ)
)

This contradicts with Equation (10). Hence, we get that for any x ∈ B̄ and any
t ∈ {1, ..., i}, we have D(x, ct) ≥ β ·D(x, c∗jt). This proves the Lemma.

The rest of the proof remains the same as that for the k-means problem of the
previous section. The main difference that arises due to the generalization is that
instead of using Lemma 4 we will have to use the following generalized version.
This is Lemma 3 in [JG12].

Lemma 11. ∀i,E[φ{c1,...,ci}(Xi)|Ei] ≤ 4
(γδ)2 · φ{c∗1 ,...,c∗k}(Xi).

So the approximation factor changes from 8 to 8/(γδ)2 due to this generalization.
Finally, equation (6) changes as follows:

Wmin

OPT
≤ 4

β
= 4 ·

(1 + 1
δ2α )(1 + δ)

δ2 + 1
α − 1

(11)

Furthermore, equation (7) gets modified to the following:

Wmin =
∑

x∈C∗
j ,x∈B̄

w2
2(x) ≥

α ·OPT

εn
· 18εn
δ2α2

=
18

δ2α
·OPT (12)

The above being true since all clusters are of size at least 20εn
δ2α2 . Note that this

contradicts with equation (11) since α ≤ 1.

Proof (Proof of Theorem 4). We run through the same proof as discussed above
with the following quantities redefined as follows: Let B1 be the subset of points

in X̄i such that for any point x ∈ B1, w
2
2(x)−w2(x) ≤ α·OPT

εn . Let B2 denote the

subset of points in X̄i such that for every point x ∈ B2, w
2(x) ≥ δ2·OPT

εn . Note
that from Lemma 1, we have that |B1| ≤ εn and |B2| ≤ εn/δ2. Let B = B1 ∪B2

and B̄ = X̄i. We have |B| ≤ 2εn/δ2. Now, we note that Lemma 3 works for

β = δ2+α−1
(1+α/δ2)(1+δ) . This changes equation (6) as follows:

Wmin

OPT
≤ 4

β
= 4 · (1 + α/δ2)(1 + δ)

δ2 + α− 1
(13)

Furthermore, equation (7) gets modified to the following:

Wmin =
∑

x∈C∗
j ,x∈B̄

w2
2(x) ≥

α ·OPT

εn
· (18εn/δ2) = 18α

δ2
·OPT (14)
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The above being true since all clusters are of size at least 20εn/δ2. Note that
this contradicts with equation (13) since α > 1.

Acknowledgements. Ragesh Jaiswal would like to thank the anonymous ref-
eree of [JG12] for initiating the questions discussed in this paper.
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Abstract. The paper presents an O∗(1.2312n)-time and polynomial-
space algorithm for the traveling salesman problem in an n-vertex graph
with maximum degree 3. This improves the previous time bound for
this problem. Our algorithm is a simple branch-and-search algorithm.
The only branch rule is designed on a cut-circuit structure of a graph
induced by unprocessed edges. To improve a time bound by a simple
analysis on measure and conquer, we introduce an amortization scheme
over the cut-circuit structure by defining the measure of an instance to
be the sum of not only weights of vertices but also weights of connected
components of the induced graph.
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1 Introduction

The traveling salesman problem (TSP) is one of the most famous and inten-
sively studied problems in computational mathematics. Many algorithmic meth-
ods have been investigated to beat this challenge of finding the shortest route
visiting each member of a collection of n locations and returning to the start-
ing point. The first O∗(2n)-time dynamic programming algorithm for TSP is
back to early 1960s. However, in the last half of a century no one can break
the barrier of 2 in the base of the running time. To make steps toward the
long-standing and major open problem in exact exponential algorithms, TSP in
special classes of graphs, especially degree bounded graphs, has also been inten-
sively studied. Eppstein [5] showed that TSP in degree-3 graphs (a graph with
maximum degree i is called a degree-i graph) can be solved in O∗(1.260n) time
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and polynomial space, and TSP in degree-4 graphs can be solved in O∗(1.890n)
time and polynomial space. Iwama and Nakashima [9] refined Eppstein’s algo-
rithm for degree-3 graphs by showing that the worst case in Eppstein’s algorithm
will not always happen and claimed an improved bound O∗(1.251n). Gebauer [8]
designed an O∗(1.733n)-time exponential-space algorithm for TSP in degree-4
graphs, which is improved to O∗(1.716n) time and polynomial space by Xiao and
Nagamochi [13]. Bjorklund et al. [2] also showed TSP in degree bounded graph
can be solved in O∗((2 − ε)n) time, where ε > 0 depends on the degree bound
only. There is a Monte Carlo algorithm to decide whether a graph is Hamilto-
nian or not in O∗(1.657n) time [1]. For planar TSP and Euclidean TSP, there
are sub-exponential algorithms based on small separators [3].

In this paper, we present an improved deterministic algorithm for TSP in
degree-3 graphs, which runs in O∗(2

3
10n) = O∗(1.2312n) time and polynomial

space. The algorithm is simple and contains only one branch rule that is designed
on a cut-circuit structure of a graph induced by unprocessed edges. We will apply
the measure and conquer method to analyze the running time. Note that our
algorithm for TSP in degree-4 graphs in [13] is obtained by successfully applying
the measure and conquer method to TSP for the first time. However, direct
application of measure and conquer to TSP in degree-3 graphs may only lead to
an O∗(1.260n)-time algorithm. To effectively analyze our algorithm, we use an
amortization scheme over the cut-circuit structures by setting weights to both
vertices and connected components of the induced graph.

Due to the limited space, some proofs of lemmas are not included in the
extended abstract. Readers are referred to [14] for a full version of this paper.

2 Preliminaries

In this paper, a graph G = (V,E) stands for an undirected edge-weighted graph
with maximum degree 3, which possibly has multiple edges, but no self-loops.
For a subset V ′ ⊆ V of vertices and a subset E′ ⊆ E of edges, the subgraphs
induced by V ′ and E′ are denoted by G[V ′] and G[E′] respectively. We also
use cost(E′) to denote the total weight of edges in E′. For any graph G′, the
sets of vertices and edges in G′ are denoted as V (G′) and E(G′) respectively.
Two vertices in a graph are k-edge-connected if there are k-edge-disjoint paths
between them. A graph is k-edge-connected if every pair of vertices in it are
k-edge-connected. Given a graph with an edge weight, the traveling salesman
problem (TSP) is to find a Hamiltonian cycle of minimum total edge weight.

Forced TSP. We introduce the forced traveling salesman problem as follows. An
instance is a pair (G,F ) of a graph G = (V,E) and a subset F ⊆ E of edges,
called forced edges. A Hamiltonian cycle of G is called a tour if it passes though
all the forced edges in F . The objective of the problem is to compute a tour of
minimum weight in the given instance (G,F ). An instance is called infeasible if
no tour exists. A vertex is called forced if there is a forced edge incident on it.
For convenience, we say that the sign of an edge e is 1 if e is a forced edge and
0 if e is an unforced edge. We use sign(e) to denote the sign of e.
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U -graphs and U -components. We consider an instance (G,F ). Let U = E(G)−F
denote the set of unforced edges. A subgraph H of G is called a U -graph if H
is a trivial graph or H is induced by a subset U ′ ⊆ U of unforced edges (i.e.,
H = G[U ′]). A maximal connected U -graph is called a U -component. Note that
each connected component in the graph (V (G), U) is a U -component.

For a vertex subset X (or a subgraph X) of G, let cut(X) denote the set of
edges in E = F ∪ U that join a vertex in X and a vertex not in X , and denote
cutF (X) = cut(X) ∩ F and cutU (X) = cut(X) ∩ U . Edge set cut(X) is also
called a cut of the graph. We say that an edge is incident on X if the edge is
in cut(X). The degree d(v) of a vertex v is defined to be |cut({v})|. We also
denote dF (v) = |cutF ({v})| and dU (v) = |cutU ({v})|. A U -graph H is k-pendent
if |cutU (H)| = k. A U -graph H is called even (resp., odd) if |cutF (H)| is even
(resp., odd). A U -component is 0-pendent.

For simplicity, we may regard a maximal path of forced edges between two
vertices u and v as a single forced edge uv in an instance (G,F ), since we can
assume that dF (v) = 2 always implies d(v) = 2 for any vertex v.

An extension of a 6-cycle is obtained from a 6-cycle v1v2v3v4v5v6 and a 2-
clique ab by joining them with two independent edges avi and bvj (i �= j).
An extension of a 6-cycle always has exactly eight vertices. Fig. 1(a) and (b)
illustrate two examples of extensions of a 6-cycle. A chord of an extension of a
6-cycle is an edge joining two vertices in it but different from the eight edges
v1v2, v2v3, v3v4, v4v5, v5v6, v6v1, avi, bvj and ab. A subgraphH of a U -component
in an instance (G,F ) is k-pendent critical, if it is a 6-cycle or an extension of
a 6-cycle with |cutU (H)| = k and |cutF (H)| = 6 − k (i.e., H has no chord of
unforced/forced edge). A 0-pendent critical U -component is also simply called a
critical graph or critical U -component.

u2
v3=u4

u1

vp vi

v2

ui+1

u3

v1
B1

Bp

B3

B2

Bi

H

(a) (b) (c)

Fig. 1. (a), (b) Extensions of a 6-cycle; (c) A circuit in a 2-edge-connected graph H

Circuits and Blocks. We consider a nontrivial 2-edge-connected U -component H
in an instance (G,F ). A circuit C in H is a maximal sequence e1, e2, . . . , ep of
edges ei = uivi ∈ E(H) (1 ≤ i ≤ p) such that for each ei ∈ C (i �= p), the next
edge ei+1 ∈ C is given by a subgraph Bi of H such that cutU (Bi) = {ei, ei+1}.
Note that cutU (Bp) = {ep, e1}. See Fig. 1(c) for an illustration of a circuit C.
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We say that each subgraph Bi is a block along C and vertices vi and ui+1 are the
endpoints of block Bi. By the maximality of C, we know that any two vertices in
each block Bi are 2-edge-connected in the induced subgraph G[Bi]. It is possible
that a circuit in a 2-edge-connected graphH may contain only one edge e = u1v1.
For this case, vertices u1 and v1 are connected by three edge-disjoint paths in H
and the circuit is called trivial, where the unique block is the U -component H .
Each nontrivial circuit contains at least two blocks, each of which is a 2-pendent
subgraph of H . In our algorithm, we will consider only nontrivial circuits C. A
block Bi is called trivial if |V (Bi)| = 1 and dF (v) = 1 for the only vertex v
in it (v is of degree 3 in G). A block Bi is called reducible if |V (Bi)| = 1 and
dF (v) = 0 for the only vertex v in it (v is of degree 2 in G). A block Bi with
V (Bi) = {vi = ui+1} is either trivial or reducible in a 2-edge-connected graph.

For convenience, we call a maximal sequence P = {e1, e2, . . . , ep} of edges
ei = uiui+1 ∈ E(H) (1 ≤ i ≤ p− 1) a chain if all vertices uj (j = 2, 3, . . . , p− 1)
are forced vertices. In the definition of chains, we allow u1 = up. Observe that
each chain is contained in the same circuit.

We easily observe the following properties on circuits and blocks (e.g., see [10]
and [11]).

Lemma 1. Each edge in a 2-edge-connected U -component H of a degree-3 graph
is contained in exactly one circuit. A partition of E(H) into circuits can be
obtained in polynomial time.

Lemma 2. An instance (G,F ) is infeasible if G is not 2-edge-connected or it
violates the parity condition: (i) every U -component is even; and (ii) the number
of odd blocks along every circuit is even.

On the other hand, a polynomially solvable case is found by Eppstein [5].

Lemma 3. [5] A minimum cost tour of an instance (G,F ) such that every
U -component is trivial or a component of a 4-cycle can be found in polynomial
time.

3 Branch-and-search Algorithms

Our algorithm is a branch-and-search algorithm: we search the solution by itera-
tively branching on the current instance to generate several smaller instances
until the current instance becomes polynomially solvable. In this paradigm,
we will get a search tree whose root and leaves represent an input instance
and polynomially solvable instances, respectively. The size of the search tree
is the exponential part of the running time of the algorithm. For a measure μ
of the instance, let C(μ) denote the maximum number of leaves in the search
tree generated by the algorithm for any instance with measure μ. When we
branch on an instance (G,F ) with k branches such that the i-th branch de-
creases the measure μ of (G,F ) by at least ai, we obtain the following recur-
rence C(μ) ≤ C(μ− a1) +C(μ− a2) + · · ·+C(μ− ak). Solving this recurrence,
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we get C(μ) = [α(a1, a2, . . . , ak)]
μ, where α(a1, a2, . . . , ak) is the largest root of

the function f(x) = 1−
∑k

i=1 x
−ai . We need to find out the worst recurrence in

the algorithm to evaluate the size of the search tree. In this paper, we represent
the above recurrence by a vector (a1; a2; · · · ; ak) of measure decreases, called a
branch vector (cf. [7]). In particular, when ai = ai+1 = · · · = aj for some i ≤ j,
it may be written as (a1; a2; · · ·ai−1; [ai]j−i+1; aj+1; · · · ; ak), and a vector ([a]k)
is simply written as [a]k. When we compare two branch vectors b = (a1; a2)
(a1 ≤ a2) and b′ = (a′1; a

′
2) such that “ai ≤ a′i (i = 1, 2)” or “a′1 = a1 + ε and

a′2 = a2 − ε for some 0 ≤ ε ≤ (a2 − a1)/2,” we only consider branch vector b in
analysis, since a solution α from b is not smaller than that from b′ (cf. [7]). We
say that b covers b′ in this case.

4 Reduction Operations

A reduction operation reduces an instance into a smaller instance without branch-
ing. This section shows our reduction operations designed based on the structures
of edge-cuts with size at most 4 in the graph.

The unique unforced edge incident on a 1-pendent U -graph is eliminable. For
any subgraph H of G with |cut(H)| = 2, we call the unforced edges in cut(H)
reducible. Eliminable edges can be deleted from the graph and reducible edges
need to be included into F .

We also have the following lemmas to deal with edge-cuts of size 3 and 4.

Lemma 4. Let (G,F ) be an instance where G is a graph with maximum degree
3. For any subgraph X with |cut(X)| = 3, we can replace X with a single vertex
x and update the cost on the three edges incident on x preserving the optimality
of the instance.

Similar to Lemma 4, we simplify the following subgraphs X with |cut(X)| = 4.
We consider a subgraph X with |cutF (X)| = 4 and |cutU (X)| = 0. Denote
cut(X) by {y1x1, y2x2, y3x3, y4x4} with xi ∈ V (X) and yi ∈ V − V (X), where
xi �= xj (1 ≤ i < j ≤ 4). We define Ii (i = 1, 2, 3) to be instances of the
problem of finding two disjoint paths P and P ′ of minimum total cost in X such
that all vertices and forced edges in X appear in exactly one of the two paths,
and one of the two paths is from xi to x4 and the other one is from xj1 to xj2
({j1, j2} = {1, 2, 3}− {i}). We say that Ii infeasible if it has no solution.

A subgraph X is 4-cut reducible if |cutF (X)| = 4, |cutU (X)| = 0, and at least
one of the three problems I1, I2 and I3 defined above is infeasible. We have the
following lemma to reduce the 4-cut reducible subgraph.

Lemma 5. Let (G,F ) be an instance where G is a graph with maximum degree
3. A 4-cut reducible subgraph X can be replaced with one of the following sub-
graphs X ′ with four vertices and |cutF (X ′)| = 4 so that the optimality of the
instance is preserved:

(i) four single vertices (i.e., there is no solution to this instance);
(ii) a pair of forced edges; and
(iii) a 4-cycle with four unforced edges.
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Lemma 6. Let X be an induced subgraph of a degree-3 graph G such that X
contains at most eight vertices of degree 3 in G. Then X is 4-cut reducible if
|cutF (X)| = 4, |cutU (X)| = 0, and X contains at most two unforced vertices.

Lemma 4 and Lemma 5 imply a way of simplifying some local structures of an
instance. However, it is not easy to find solutions to problems Ii in the above
two lemmas. In our algorithm, we only do this replacement for X containing no
more than 10 vertices and then the corresponding problems Ii can be solved in
constant time by a brute force search.

We define the operation of 3/4-cut reduction: If there a subgraph X of G with
|V (X)| ≤ 10 such that |cut(X)| = 3 or X is 4-cut reducible, then we simplify
the graph by replacing X with a graph according to Lemma 4 or Lemma 5.
Note that a 3/4-cut can be found in polynomial time if it exists and then this
reduction operation can be implemented in polynomial time.

We can also easily reduce all multiple edges. An instance (G,F ) is called a
reduced instance if G is 2-edge-connected, (G,F ) satisfies the parity condition,
and has none of reducible edges, eliminable edges, multiple edges, 3-cut or 4-
cut reducible subgraphs. Note that a reduced instance has no triangle, otherwise
there would be a 3-cut reducible subgraph. An instance is called 2-edge-connected
if every U -component in it is 2-edge-connected. The initial instance (G,F = ∅)
is assumed to be 2-edge-connected, otherwise it is infeasible by Lemma 2. In
our algorithm, we will always keep instances 2-edge-connected after applying
reduction/branching operations.

5 Algorithms Based on Circuit Procedures

The circuit procedure is one of the most important operations in our algorithm.
The procedure will determinate each edge in a circuit to be included to F or to
be deleted from the graph. It will be widely used as the only branching operation
in our algorithm.

5.1 Circuit Procedure

Processing circuits. Determining an unforced edge means either including it to
F or deleting it from the graph. When an edge is determined, the other edges in
the same circuit containing this edge can also be determined directly by reducing
eliminable edges. We call the series of procedures applied to all edges in a circuit
together as a circuit procedure. Thus, in the circuit procedure, after we start to
process a circuit C either by including an edge e1 ∈ C to F or by deleting e1 from
the graph, the next edge ei+1 of ei becomes an eliminable edge and we continue
to determine ei+1 either by deleting it from the graph if block Bi is odd and
ei = uivi is included to F (or Bi is even and ei is deleted); or by including it
to F otherwise. Circuit procedure is a fundamental operation to build up our
proposed algorithm. Note that a circuit procedure determines only the edges in
the circuit. During the procedure, some unforced edges outside the circuit may
become reducible and so on, but we do not determine them in this execution.
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Lemma 7. Let H be a 2-edge-connected U -component in an instance (G,F )
and C be a circuit in H. Let (G′, F ′) be the resulting instance after applying
circuit procedure on C. Then
(i) each block Bi of C becomes a 2-edge-connected U -component in (G′, F ′); and
(ii) any other U -component H ′ than H in (G,F ) remains unchanged in (G′, F ′).

We call a circuit reducible if it contains at least one reducible edge. We can ap-
ply the circuit procedure on a reducible circuit directly starting by including a
reducible edge to F . In our algorithm, we will deal with reducible edges by pro-
cessing a reducible circuit. When the instance becomes a reduced instance, we
may not be able to reduce the instance directly. Then we search the solution by
“branching on a circuit.” Branching on a circuit C at edge e ∈ C means branch-
ing on the current instance to generate two instances by applying the circuit
procedure to C after including e to F and deleting e from the graph respectively.
Branching on a circuit is the only branching operation used in our algorithm.
However, a naive branch-and-search algorithm using circuit procedures yields
only an O∗(1.260n) time algorithm (see [14] for the details).

5.2 The Algorithm

A block is called a normal block if it is none of trivial, reducible and 2-pendent
critical. A normal block is minimal if no subgraph of it is a normal block along
any circuit. Note that when F is not empty, each U -component has at least one
nontrivial circuit. Our recursive algorithm for forced TSP only consists of the
following two main steps:

1. First apply the reduction rules to a given instance until it becomes a reduced
one; and
2. Then take any U -component H that is neither trivial nor a 4-cycle (if no such
U -component H , then the instance is polynomially solvable by Lemma 3), and
branch on a nontrivial circuit C in H , where C is chosen so that
(1) no normal block appears along C (i.e., C has only trivial and 2-pendent critical
blocks) if this kind of circuits exist; and
(2) a minimal normal block B1 in H appears along C otherwise.

It is easy to see that after applying the reduction rules on a 2-edge-connected in-
stance, the resulting instance remains 2-edge-connected. By this observation and
Lemma 7, we can guarantee that an input instance is always 2-edge-connected.

6 Analysis

We analyze our algorithm by the measure and conquer method [6]. In the mea-
sure and conquer method, a measure μ for instance size should satisfy the mea-
sure condition: (i) when μ ≤ 0 the instance can be solved in polynomial time;
(ii) the measure w will never increase in each operation in the algorithm; and
(iii) the measure will decrease in each of the subinstances generated by applying
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a branching rule. We introduce vertex-weight as follows. For each vertex v, we
set its vertex-weight w(v) to be

w(v) =

⎧⎨⎩w3 = 1 if dU (v) = 3
w3′ if dU (v) = 2 and dF (v) = 1
0 otherwise.

We will determine the best value of w3′ such that the worst recurrence in our
algorithm is best. Let Δ3 = w3 − w3′ . For a subset of vertices (or a subgraph)
X , we also use w(X) to denote the total vertex-weight in X .

6.1 Amortization on Connectivity Structures

By using the above vertex weight setting, we cannot improve the running time
bound of the naive algorithm easily. But we can also decrease the number of U -
components by one in the bottleneck cases. This observation suggests us a new
idea of an amortization scheme over the cut-circuit structure by setting a weight
on each U -component in the graph. We also set a weight (which is possibly
negative, and bounded from above by a constant c ≥ 0) to each U -component.
Let μ be the sum of all vertex weight and U -component weight. We will use μ to
measure the size of the search tree generated by our algorithm. The measure μ
will also satisfy the measure condition. Initially there is only one U -component
and μ < n+c holds, which yields a time bound of O∗(αμ) = O∗(αn+c) = O∗(αn)
for the maximum branch factor α.

A simple idea is to set the same weight to each nontrivial U -component. It is
possible to improve the previous best result by using this simple idea. However,
to get further improvement, in this paper, we set several different component-
weights. Our purpose is to distinguish some “bad” U -components, which will be
characterized as “critical” U -components. Branching on a critical U -component
may lead to a bottleneck recurrence in our algorithm. So we set a different
component-weight to this kind of components to get improvement. For each
U -component H , we set its component-weight c(H) to be

c(H) =

⎧⎪⎪⎨⎪⎪⎩
0 if H is trivial

−4w3′ if H is a 4-cycle
γ if H is a critical U -component
δ otherwise,

where we set c(H) = −4w3′ so that c(H) + w(H) = 0 holds for every 4-cycle
U -component H .

We also require that the vertex-weight and component-weight satisfy the fol-
lowing requirements

2Δ3 ≥ γ ≥ δ ≥ Δ3 ≥
1

2
w3, w3′ ≥

1

5
w3 and γ − δ ≤ w3′ . (1)
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6.2 Decrease of Measure after Reduction Operations

We show that the measure will not increase after applying any reduction opera-
tion in an 2-edge-connected instance. Since an input instance is 2-edge-connected,
there is no eliminable edge. In fact, we always deal with eliminable edges in cir-
cuit procedures. For reducible edges, we deal with them during a process of a
reducible circuit (including the reducible edges to F and dealing with the re-
sulting eliminable edges). We will show that μ never increases after processing a
circuit. The measure μ will not increase after deleting any unforced parallel edge.
The following lemma also shows that reducing a 3/4-cut reducible subgraph does
not increase μ.

Lemma 8. For a given instance,
(i) reducing a 3-cut reducible subgraph does not increase the measure μ; and
(ii) reducing a 4-cut reducible subgraph X decreases the measure μ by w(X) +
c(X).

6.3 Decrease of Measure after Circuit Procedures

Next we consider how much amount of measure decreases by processing a circuit.
We consider that the measure μ becomes zero whenever we find an instance
infeasible by Lemma 2. After processing a circuit C = {ei = uivi | 1 ≤ i ≤ p} in
a U -component H , each block Bi along C becomes a new U -component, which
we denote by B̄i. We define the direct benefit β′(Bi) from Bi to be the decrease
in vertex-weight of the endpoints vi and ui+1 of Bi minus the component-weight
c(B̄i) in the new instance after the circuit procedure. Immediately after the
procedure, the measure μ decreases by w(H) + c(H) −

∑
i(w(B̄i) + c(B̄i)) =

c(H) +
∑

i β
′(Bi). After the circuit procedure, we see that the vertex-weights

of endpoints of each non-reducible and nontrivial block Bi decreases by Δ3 and
Δ3 (or w3 and w3) respectively if Bi is even, and by Δ3 and w3 (or w3 and
Δ3) respectively if Bi is odd. Summarizing these, the direct benefit β′(B) from
a block B is given by

β′(B) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if B is reducible,
w3′ if B is trivial,

w3+Δ3−δ if B is odd and nontrivial,
2w3 − δ if B is even and non-reducible, and cutU (B) is deleted,
2Δ3 − γ if B is 2-pendent critical, and cutU (B) is included in F ,
w(B) if B is a 2-pendent 4-cycle, and cutU (B) is included in F ,

2Δ3 − δ otherwise (i.e., B is even, non-reducible but not
a 2-pendent critical U -graph or a 2-pendent 4-cycle,
and cutU (B) is included to F ).

(2)
By (1) and (2), we have that β′(Bi) ≥ 0 for any type of block Bi, which implies
that the decrease c(H) +

∑
i β

′(Bi) ≥ c(H) ≥ 0 (where H is not a 4-cycle) is in
fact nonnegative, i.e., the measure μ never increases by processing a circuit.
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After processing a circuit C, a reduction operation may be applicable to some
U -components B̄i and we can decrease μ more by reducing them. The indirect
benefit β′′(B) from a block B is defined as the amount of μ decreased by applying
reduction rules on the U -component B̄ after processing the circuit. Since we have
shown that μ never increases by applying reduction rules, we know that β′′(B)
is always nonnegative. The total benefit (benefit, for short) from a block B is
β(B) = β′(B) + β′′(B).

Lemma 9. After processing a circuit C in a 2-edge-connected U -component H
(not necessary being reduced) and applying reduction rules until the instance
becomes a reduced one, the measure μ decreases by c(H) +

∑
i β(Bi), where Bi

are the blocks along circuit C.

The indirect benefit from a block depends on the structure of the block. In our
algorithm, we hope that the indirect benefit is as large as possible. Here we prove
some lower bounds on it for some special cases.

Lemma 10. Let H be a U -component containing no induced triangle and C′ be
a reducible circuit in it such that there is exactly one reducible block along C′.
The measure μ decreases by at least 2Δ3 by processing the reducible circuit C′
and applying reduction rules.

Lemma 11. In the circuit procedure for a circuit C in a reduced instance, the
indirect benefit from a block B along C satisfies

β′′(B) ≥

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

2Δ3 if B is odd and nontrivial, (i)
w(B)− β′(B) if B is a 2-pendent cycle or critical graph,

and cutU (B) is deleted, (ii)
δ if B is even but not reducible or a 2-pendent

cycle, and cutU (B) is deleted, (iii)
0 otherwise. (iv)

6.4 Branch Vectors of Branching on Circuits

In the algorithm, branching on a circuit generates two instances (G1, F1) and
(G2, F2). By Lemma 9, we get branch vector

(c(H) +
∑
i

β1(Bi); c(H) +
∑
i

β2(Bi)),

where βj(B), β′
j(B) and β′′

j (B) denote the functions β(B), β′(B) and β′′(B)
evaluated in (Gj , Fj), j = 1, 2 for clarifying how branch vectors are derived in
the subsequent analysis. We have the following branch vectors for two different
choices of circuits C on which our algorithm branches.

Lemma 12. Assume that a circuit C in a U -componentH (not a 4-cycle) chosen
in Step 2 of the algorithm has only trivial and 2-pendent critical blocks. Then we
can branch on the circuit C with one of three branch vectors
[6w3′ +γ]2, (γ+2w3+6w3′ ; δ+2w3−γ) and (δ+2(2Δ3−γ); δ+2(2w3+4w3′)).
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Lemma 13. Assume that a circuit C in a U -componentH (not a 4-cycle) chosen
in Step 2 of the algorithm has a minimal normal block B1. Then we can branch
on the circuit C with one of eight branch vectors
[4w3 − 2w3′ ]2, (2w3; 6w3 − 2w3′), (4Δ3 − δ; 4w3 + 4Δ3), (4Δ3 − γ; 8w3),
(δ + 6w3 − 2w3′ − 2γ; δ + 6w3 + 4w3′ − γ; δ + 4w3 + 6w3′),
(δ + 4w3 + 2w3′ − γ; δ + 4w3 + 8w3′ ; δ + 2w3 + 4w3′),
(δ + 8w3 − 6w3′ − 3γ; δ + 8w3 + 6w3′ − γ; δ + 4w3 + 4w3′) and
(δ + 6w3 − 2w3′ − 2γ; δ + 6w3 + 10w3′ ; δ + 2w3 + 3w3′).

A quasiconvex program is obtained from (1) and the 13 branch vectors from
Lemma 12 and Lemma 13 in our analysis. There is a general method to solve
quasiconvex programs [4]. We look at branch vectors [6w3′ + γ]2 in Lemma 12,
and [4w3 − 2w3′ ]2 in Lemma 13. Note that min{6w3′ + γ, 4w3 − 2w3′} under
the constraint 2Δ3 ≥ γ gets the maximum value at the time when 6w3′ + γ =
4w3 − 2w3′ and 2Δ3 = γ. We get w3′ = 1

3 and γ = 4
3 . With this setting and

δ ∈ [1.2584, 1.2832], all other branch vectors will not be the bottleneck in our

quasiconvex program. This gives a time bound O∗(αμ) with α = 2
3
10 < 1.2312.

Theorem 1. TSP in an n-vertex graph G with maximum degree 3 can be solved
in O∗(1.2312n) time and polynomial space.

The bottlenecks in the analysis are attained by branch vectors [6w3′ + γ]2 in
Lemma 12, [4w3 − 2w3′ ]2 in Lemma 13 and 2Δ3 ≥ γ in (1).

7 Concluding Remarks

In this paper, we have presented an improved exact algorithm for TSP in degree-
3 graphs. The basic operation in the algorithm is to process the edges in a circuit
by either including an edge in the circuit to the solution or excluding it from the
solution. The algorithm is analyzed by using the measure and conquer method
and an amortization scheme over the cut-circuit structure of graphs, wherein
we introduce not only weights of vertices but also weights of U -components to
define the measure of an instance.

The idea of amortization schemes introducing weights on components may
yield better bounds for other exact algorithms for graph problems if how re-
duction/branching procedures change the system of components is successfully
analyzed.
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Abstract. We consider the non-crossing connectors problem, which is
stated as follows: Given n regions R1, . . . , Rn in the plane and finite
point sets Pi ⊂ Ri for i = 1, . . . , n, are there non-crossing connectors
γi for (Ri, Pi), i.e., arc-connected sets γi with Pi ⊂ γi ⊂ Ri for every
i = 1, . . . , n, such that γi ∩ γj = ∅ for all i 	= j?

We prove that non-crossing connectors do always exist if the regions
form a collection of pseudo-disks, i.e., the boundaries of every pair of
regions intersect at most twice. We provide a simple polynomial-time
algorithm if each region is the convex hull of the corresponding point set,
or if all regions are axis-aligned rectangles. We prove that the general
problem is NP-hard, even if the regions are convex, the boundaries of
every pair of regions intersect at most four times and Pi consists of only
two points on the boundary of Ri for i = 1, . . . , n.

Finally, we prove that the non-crossing connectors problem lies in NP,
i.e., is NP-complete, by a reduction to a non-trivial problem, and that
there indeed are problem instances in which every solution has exponen-
tial complexity, even when all regions are convex pseudo-disks.

1 Introduction

Connecting points in a non-crossing way is one of the most basic algorithmic
problems in discrete mathematics. It has been considered in various settings
with most diverse motivations. For example, connecting vertices in a graph via
vertex-disjoint or edge-disjoint paths is a fundamental problem in graph theory,
the latter being one of Karp’s original NP-complete problems [8]. Both problems
remain NP-complete even when restricted to planar graphs [15]. Besides having
numerous applications, e.g., in network routing and VLSI design, the disjoint
path problem in planar graphs also plays a key-role in various theoretical con-
texts, such as in the seminal work of Robertson and Seymour on the graph minor
project [18].

The homotopic routing problem, sometimes called river routing, is the most
important geometric version of the disjoint path problem. Here a set of points in
the plane have to be connected via non-crossing continuous curves that have the
same homotopy type as a set of given curves, called the sketch. The sketch also
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thors thank Maria Saumell, Stefan Felsner and Irina Mustata for fruitful discussions.

T-H.H. Chan, L.C. Lau, and L. Trevisan (Eds.): TAMC 2013, LNCS 7876, pp. 108–120, 2013.
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prescribes the position of the points as well as some obstacles, and the computed
curves have to be non-crossing and disjoint from the obstacles. For example, in
the field of map schematization one draws highly simplified metro maps or road
networks in such a way that the position of all important points (metro stations,
cities, landmarks, . . . ) is fixed and the curves (metro lines, roads, rivers, . . . ) are
drawn with the same homotopy type as given by geographic data [24]. Another
application of the homotopic routing problem comes from VLSI layout, where
modules (predesigned circuit components) have to be interconnected correctly,
satisfying certain design rules [16,2,19]. If the sketch is already non-crossing,
then homotopic shortest paths can be computed efficiently [4]. Furthermore, the
disjoint path problem in planar graphs can be solved via the homotopic routing
problem in case the end points of all paths lie on a bounded number of faces [17].
We refer to the survey of Schrijver for more on homotopic routing [21].

In most of the above applications the homotopy type is fixed to ensure that
the final curves are “close” to the sketch. However, there is no ad-hoc guarantee
on the distance between a computed curve and the curve in the sketch. In this
paper, we pursue a different approach by demanding that each computed curve
is contained in a prescribed region. Given n finite sets of points and a region for
each point set, the task is to connect all points in each set by a curve completely
contained in the corresponding region, such that no two curves intersect.

This problem, called the non-crossing connectors problem, has been posed
in the field of imprecise points, where one is given a set Pv ⊂ R2 for each
vertex v of a planar graph G and wants to find a plane embedding of G such
that each vertex v lies in its set Pv. Deciding whether such an embedding with
straight edges exists is known to be NP-complete for cycles, even if all Pv are
vertical line segments or all Pv are disks [14]. If the graph is a matching, NP-
completeness has been shown if |Pv| ≤ 3 [1], or Pv is a vertical line segment
of unit length [23]. The latter case remains NP-complete if every edge {u, v} is
allowed to be a monotone curve within the convex hull of Pu ∪ Pv [22]. At the
Eurogiga GraDR Kick-off meeting in Prague July 7–8, 2011 Bettina Speckman
has asked for an efficient algorithm to decide whether pairs of unit cubes can be
connected within their convex hull by non-crossing arbitrary continuous curves.
In this paper we investigate general simply-connected regions for the curves,
under the assumption that the position of points is already fixed.

The non-crossing connectors problem is also closely related to the clustered
planarity problem, c-planarity problem for short [6]. Consider a clustered graph,
i.e., a planar graph G together with a set of subsets of vertices, called clusters.
Any two clusters are either disjoint or one contains the other. The c-planarity
problem asks to embed G in a planar way and identify a simply-connected re-
gion for each cluster containing precisely the vertices of that cluster and whose
boundaries are disjoint. Moreover, every edge shall intersect a region boundary
at most once. The complexity of the c-planarity problem is open, even when
the embedding of G is fixed [3]. In this case it remains to identify the region for
each cluster, or equivalently finding a continuous curve that connects exactly the
vertices of that cluster and is disjoint from the interior of every edge. Moreover,
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these curves shall be non-crossing [7]. This is exactly the non-crossing connectors
problem. Hence the c-planarity problem with fixed embedding, whose complexity
status is open, can be reduced to the non-crossing connectors problem.

A more entertaining motivation for non-crossing connectors can be found in
recreational mathematics. Sam Loyds Cyclopedia of 5000 puzzles, tricks and
conundrums published in 1914 refers to a puzzle of connecting houses to gates
by non-crossing paths. This is nothing else than an instance of the non-crossing
connectors problem. And so is also the recently booming Lab Mice Puzzle game.1

Our Results.We consider the non-crossing connectors problem, that is we want
to connect several point sets via non-crossing continuous curves, each contained
in a corresponding region. W.l.o.g. the curves can be thought of as polylines
with a finite number of bends. Given an N -element point set P , each curves γi
is asked to go through (connect) a fixed subset Pi of P of two or more points.
Any two such curves, called connectors, shall be non-crossing, i.e., have empty
intersection. In particular, w.l.o.g. P is partitioned into subsets P1, . . . , Pn and we
ask for a set of n non-crossing connectors γ1, . . . , γn with Pi ⊂ γi for i = 1, . . . , n.
It is easily seen that the order in which γi visits the points Pi may be fixed
arbitrarily. Indeed, we could embed any planar graph Gi with |Pi| vertices and
curved edges onto Pi, even while prescribing the position of every vertex in Gi.

Non-crossing connectors as described above do always exist. But the situation
gets non-trivial if we fix subsets R1, . . . , Rn in the plane, called regions, and
impose γi ⊂ Ri for every i = 1, . . . , n.

In Section 3 we prove that non-crossing connectors do always exist if the
given regions form a collection of pseudo-disks, i.e., the boundaries of every pair
of regions intersect at most twice. In Section 4 we show that deciding whether or
not non-crossing connectors exist is polynomial time solvable if the regions are
axis-aligned rectangles or every region is the convex hull of the corresponding
point set, while in Section 5 we prove that the problem is NP-complete, even if
the regions are convex, the boundaries of every pair of regions intersect at most
four times, and |Pi| = 2 for every i = 1, . . . , n. We start with some notation in
Section 2 and show that the non-crossing connectors problem is in NP.

Some proofs are omitted or only sketched here. All proofs in full detail can
be found in the forthcoming journal version of the paper, and on arxiv [12].

2 The Non-crossing Connectors Problem

The non-crossing connectors problem is formally defined as follows.

Non-crossing Connectors

Given: Collection R1, . . . , Rn of subsets of the plane and a finite point set
Pi ⊂ Ri, for i = 1, . . . , n with Pi ∩ Pj = ∅ for i �= j.

Question: Is there a collection γ1, . . . , γn of curves, such that Pi ⊂ γi ⊂ Ri for
i = 1, . . . , n and γi ∩ γj = ∅ for i �= j?

1 Both the examples have been pointed out by Marcus Schaefer.
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Throughout this paper we consider simply-connected (hence path-connected)
closed regions which are equal to the closure of their interior only. Then the
boundary of every region Ri is a simple closed curve, denoted by ∂Ri. We as-
sume here and for the rest of the paper that ∂Ri ∩ ∂Rj is a finite point set.
We may think of

⋃n
i=1 ∂Ri as an embedded planar graph G = (V,E) with

vertex set V = {p ∈ R2 | p ∈ ∂Ri ∩ ∂Rj , i �= j} and edge set E = {e ⊂
R2 | e is a connected component of

⋃
∂Ri \V }. A point p ∈ ∂Ri ∩ ∂Rj is either

a crossing point or a touching point, depending on whether the cyclic order of
edges in ∂Ri and ∂Rj around p is alternating or not. We allow points in Pi

to lie on some boundary ∂Rj , although such points can always be moved off
the boundary without affecting the existence of non- crossing connectors. We
say that two regions Ri, Rj are k-intersecting for k ≥ 0 if |∂Ri ∩ ∂Rj | ≤ k
and all these points are crossing points, i.e., w.l.o.g. k is even. A set R1, . . . , Rn

of regions is k-intersecting if this is the case for any two of them. For exam-
ple, R1, . . . , Rn are 0-intersecting if and only if they form a nesting family, i.e.,
Ri ∩Rj ∈ {∅, Ri, Rj} for i �= j.

Regions R1, . . . , Rn are a called a collection of pseudo-disks if they are 2-
intersecting. Two pseudo-disks may also have one touching point. However, this
can be locally modified into two crossing points without affecting the existence of
non-crossing connectors. Pseudo-disks for example include homothetic copies of
a fixed convex point set, but they are not convex in general. A collection of axis-
aligned rectangles is always 4-intersecting, but not necessarily 2-intersecting. Fi-
nally, a family of convex polygons with at most k corners each is 2k-intersecting.

Consider a set of non-crossing connectors to a given set of point sets and
regions, i.e., a particular solution of a particular instance of the non-crossing
connectors problem. Connectors must not cross each other, but we do not bound
the number of intersections between a connector and the region boundaries. One
may ask whether there is always a solution (if any) in which the total number
of such intersections is bounded by a polynomial in the number of crossings
between region boundaries. In particular, if the instance is feasible, is there a
solution whose complexity is polynomial in the size of the input? We answer
this question in the negative even when regions are convex and pseudo-disks and
point sets are of size two only. The idea is based on a construction from [11].

Theorem 1. For every positive integer n, there exists a collection of n+1 convex
pseudo-disks R0, R1, . . . , Rn and pairs of points Pi = {Ai, Bi} ⊂ Ri such that
in every solution to the non-crossing connectors problem the connecting curve
AnBn crosses the boundary of R0 in at least 2n−1 crossing points.

Proof. Figure 1 depicts the example for n = 4. The regions can easily be de-
formed to be convex. We refer to the full paper for a complete proof. ��

Theorem 1 shows that the most natural guess-and-verify-a-solution approach
requires exponential time and fails to prove NP-membership for the non-crossing
connectors problem. However, the problem does belong to NP.

Proposition 1. Non-crossing Connectors is in NP.
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Fig. 1. A schematic illustration of an instance of the non-crossing connectors problem
in which every solution has exponential complexity

Proof. We reduce our problem to Weak Realizability of Abstract Topo-

logical Graphs. Abstract topological graphs (AT-graphs, for short) have been
introduced in [10] as triples (V,E,R) where (V,E) is a graph and R is a set of
pairs of edges of E. The AT-graph (V,E,R) is weakly realizable if (V,E) has a
drawing (not necessarily non-crossing) in the plane such that ef ∈ R whenever
the edges e, f cross in the drawing. Weak Realizability of AT-graphs is
NP-complete. The NP-hardness was shown in [9], and the NP-membership was
shown relatively recently in [20].

We assume the input of the problem is described as a plane graph G (the
boundaries of the regions) with the incidence structure of the points of P to the
faces of the graph. (W.l.o.g. no point in P lies on the boundary of any region.)
We refer to Fig. 2 for an illustrative example.

Fig. 2. From Non-crossing Connectors to Weak Realizability of AT-graphs

Add vertices and edges to G∪P to create a planar vertex 3-connected super-
graph G′′ of G. Such a graph G′′ has a topologically unique non-crossing drawing
in the plane (up to the choice of the outer face and its orientation) which fixes

the location of the points of P inside their regions. To create G̃, for every i, add
connecting edges that connect the points of Pi by a path.

Now define an AT-graph with underlying graph G̃ by allowing the connecting
edges of points Pi to cross anything but other connecting edges and the edges
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resulting from the boundary of Ri. No other edges are allowed to cross, in par-
ticular, no edges of G′′ may cross each other. It is straightforward to see that a
weak realization of this AT-graph is a collection of non-crossing connectors, and
vice versa. Thus the NP-membership follows by the result of Schaefer et al. [20]

and the fact that our construction of G̃ is polynomial. ��

3 Pseudo-disks

In this section we prove that non-crossing connectors do always exist if the given
regions form a collection of pseudo-disks. We begin with an auxiliary lemma.

Lemma 1. Let R,R′ be pseudo-disks, p ∈ ∂R\R′ be a point, and γ ⊂ R ∩ R′

a curve that intersects ∂R exactly twice. Then the connected component of R\γ
not containing p is completely contained in the interior of R′.

Proof. Let C be the connected component of R \ γ not containing p. Let q, r
be the intersections of γ with ∂R. Then ∂R \ {p, q, r} is a set of three disjoint
curves. The curve between p and q as well as between p and r contains a point in
∂R′, since p /∈ R′ and q, r ∈ γ ⊂ R′. Because R,R′ are pseudo-disks the points
from ∂R′ between p and q and between p and r are the only points in ∂R∩ ∂R′

and hence the third curve δ = C ∩ ∂R between q and r is completely contained
in R′. Since the closed curve δ ∪ γ ⊂ R′ is the boundary of C and δ ∩ ∂R′ = ∅,
we conclude that C is completely contained in the interior of R′. ��

Theorem 2. If R1, . . . , Rn is a collection of pseudo-disks, then non-crossing
connectors exist for any finite point sets Pi ⊂ Ri (i = 1, . . . , n) with Pi ∩Pj = ∅
for i �= j.

Proof. The proof is constructive. Let R1, . . . , Rn be a collection of pseudo-disks
and Pi a finite subset of Ri for i = 1, . . . , n. We assume w.l.o.g. that every
∂Ri is a closed polygonal curve of finite complexity. Moreover, we assume that
the regions are labeled from 1, . . . , n, such that for every i = 2, . . . , n the set
∂Ri\(R1∪· · ·∪Ri−1) is non-empty, i.e., contains some point pi. For example, we
may order the regions by non-decreasing x-coordinate of their rightmost point.
Note that rightmost points of pseudo-disks do not coincide. For simplicity we
add pi to Pi for every i = 1, . . . , n (and denote the resulting point set again by
Pi). Clearly, every collection of non-crossing connectors for the new point sets is
good for the original point sets, too.

We start by defining a connector γ1 for (R1, P1) arbitrarily, such that P1 ⊂
γ1 ⊂ R1, γ1 ∩Pi = ∅ for every i ≥ 2, and γ1 is a polyline of finite complexity. To
keep the number of operations in the upcoming construction finite we consider
polylines of finite complexity only. That is, whenever we define a curve we mean
a polyline of finite complexity even if we do not explicitly say so.

For i = 2, . . . , n assume that we have non-crossing connectors γ1, . . . , γi−1,
such that (

⋃
j<i γj) ∩ (

⋃
k≥i Pk) = ∅. We want to define a connector γi for

(Ri, Pi). The set Ri\(
⋃

j<i γj) has finitely many connected components {Ck}k∈K
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with |K| <∞. Every point in Pi is contained in exactly one Ck. Let C0 be the
component containing the additional point pi ∈ Pi. The informal idea is the
following. We reroute some of the existing connectors until Pi is completely
contained in C0. Then, we define a connector γi for (Ri, Pi) arbitrarily, such
that Pi ⊂ γi ⊂ C0, as well as γi ∩ Pj = ∅ for j > i and γi ∩ γj = ∅ for j < i.
The reader may consider Fig. 3 for an illustration of the upcoming operation.
For better readability the parts of connectors are omitted in Fig. 3, which have
an endpoint in the interior of Ri. However, those, as well as the point sets Pj

with j > i, will be circumnavigated by the curve δ.

C0C

piC ′′γ C0C

pi

q

C ′′γ

δ

C0

piC ′′γ

C ∩ Pi

Ri Ri Ri

Fig. 3. Rerouting the curve γ bordering the components C and C′′, such that the
subset of Pi formerly contained in C is contained in C′′ afterwards

Every connector γj for j < i is a simple curve. Thus every connected com-
ponent of Ri \ (

⋃
j<i γj) contains a point from the boundary of Ri, i.e., the

adjacency graph between the components is a tree T on vertex set {Ck}k∈K ,
which we consider to be rooted at C0. Let C �= C0 be a component, such that
C ∩Pi �= ∅ but C′∩Pi = ∅ for every descendant C′ of C in T . Let γ be the curve
in Ri that forms the border between C and its father C′′ in T , i.e., γ intersects
∂Ri only at its endpoints and is a subset of some connector γj∗ for (Rj∗ , Pj∗).
In particular, j∗ < i and hence pi /∈ Rj∗ . Applying Lemma 1 with p = pi we get
that C is contained in the interior of Rj∗ .

Let q /∈ Pj∗ be any interior point of γ and δ be any curve with endpoint
q, such that (Pi ∩ C) ⊂ δ ⊂ (C ∪ {q}) ⊂ Rj∗ , as well as δ ∩ (

⋃
j<i γj) = {q}

and δ ∩ (
⋃

j �=i Pj) = ∅. We reroute γj∗ within a small distance around δ. More
formally, define a simply-connected set D ⊃ δ to be a thickening of the curve δ by
some small ε > 0, such that D is still contained in Rj∗ \(

⋃
j �=i Pj∪

⋃
j<i γj). Note

that D � C if Pi (and hence δ) contains points on the boundary of Ri. However,
we can ensure that D ⊂ Rj∗ since C lies in the interior of Rj∗ . Moreover, we
can choose ε small enough, such that ∂D intersects γ only in two points q1 and
q2, which are ε-close to q.

Next, the part of γ between q1 and q2 is replaced by the part of ∂D between
q1 and q2 that runs through C. This rerouting of γ (and implicitly the connector
γj∗) may (or may not) change the subtree of T rooted at C′′. But it does not
affect any component of Ri \

⋃
j<i γj that is not in this subtree. Moreover, C′′ is

extended by D ∩C, which contains all points in Pi ∩ C. Hence, the so-to-speak
total distance of the points in Pi from C0 in T is decreased. After finitely many
steps we have Pi ⊂ C0 and thus can define the connector γi for (Ri, Pi). ��
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4 Polynomially Decidable Cases

We provide an obviously necessary condition for the existence of non-crossing
connectors for convex regions. We show that this condition is also necessary
when every region is the convex hull of the corresponding point set, as well as
when every region is an axis-aligned rectangle. We conclude that in both cases
the existence of non-crossing connectors can be tested in polynomial time.

Consider two convex regions, a white region W and a black region B, with
non-empty intersectionW ∩B, which we call the center and consider to be gray.
The closure of a connected component of the symmetric differenceWΔB is called
a leaf and colored white if it is a subset of the white region and black otherwise.
Since ∂W ∩ ∂B consists of crossing points only, the leaves appear alternatingly
in black and white around the gray center. We say that a pair of white leaves
and a pair of black leaves form a cross if they appear around the center in the
cyclic order white–black–white–black. Moreover, a cross is called a filled cross if
each of the four leaves contains at least one point from the corresponding set.

Observation 1. Non-crossing connectors do not exist if some pair of regions
contain a filled cross. In other words, the absence of filled crosses is a necessary
condition for the existence of non-crossing connectors.

Note that as long as the union and the intersection of any two regions is simply-
connected, filled crosses are well-defined and Observation 1 holds.

Proposition 2. If every region is the convex hull of the corresponding point set,
i.e., Ri = conv(Pi) for all i = 1, . . . , n, then non-crossing connectors exist if and
only if the regions form a collection of pseudo-disks.

Proof. The “if”-part is Theorem 2.
If the regions do not form a collection of pseudo-disks then some pair of

regions contains a cross. Since the regions are convex polygons, each leaf of such
a cross contains a corner of the corresponding region. From Ri = conv(Pi) for all
i = 1, . . . , n follows that every corner of Ri is an element of Pi, i.e., every cross is
a filled cross. Hence non-crossing connectors do not exist by Observation 1. ��

Next assume that every region is an axis-aligned rectangle. We show that then
the obviously necessary condition in Observation 1 is also sufficient.

Theorem 3. A set of axis-aligned rectangles admits a set of non-crossing con-
nectors if and only if it does not contain a filled cross.

Proof. The “only if”-part is given by Observation 1. We prove the “if”-part by
applying Theorem 2. To this end we consider axis-aligned rectangles R1, . . . , Rn

no two of which form a filled cross. If there is no cross at all, then the rectangles
are pseudo-disks and non-crossing connectors exist by Theorem 2. Assume some
pair of rectangles is a cross, but not a filled cross. W.l.o.g. {R1 = [x11, x

1
2] ×

[y11 , y
1
2 ], R2 = [x21, x

2
2] × [y21 , y

2
2 ]} is a cross where R1 ∩ R2 = [x11, x

1
2] × [y21 , y

2
2 ] is
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inclusion-minimal among all crosses, and the leaf C = [x11, x
1
2] × [y22 , y

1
2 ] ⊂ R1

contains no point from P1. The situation is illustrated in Fig. 4. Figuratively
speaking we chop off C (actually a slight superset C′ of C) from R1 in order to
reduce the total number of crosses of all rectangles. More precisely, choose ε > 0
small enough that C′ := [x11, x

1
2] × [y22 − ε, y12 ] contains no point from P1, and

that the y-coordinate of no corner of a rectangle �= R2 lies between y22 − ε and
y22 . We replace R1 by R̃1 := R1 \ C′.

C ′

R1

R2

y12

y22

y21

y11

x21 x11 x12 x22

y22 − ε

R̃1

R2

y22

y21

y11

x21 x11 x12 x22

y22 − ε�

Fig. 4. Chopping off C′ with C′ ∩ P1 = ∅ from the rectangle R1 to obtain R̃1

From the inclusion-minimality of R1 ∩ R2 follows that every rectangle Rk

crosses R̃1 only if it crosses R1, too. Hence, the total number of crosses has
decreased by at least one and the rectangles R̃1, R2, . . . , Rn contain no filled
cross. Repeating the procedure at most

(
n
2

)
times finally results in a collection of

axis-aligned rectangles, which are subsets of the original rectangles, and contain
no cross at all. By Theorem 2 non-crossing connectors exist for the smaller
rectangles, which are good for the original rectangles, too. ��

Corollary 1. If the regions are n axis-aligned rectangles, or Ri = conv(Pi)
for i = 1, . . . , n, then it can be tested in O(n2) whether or not non-crossing
connectors exist.

Proof. By Proposition 2 and Theorem 3 we check whether some pair of regions
forms a filled cross. If so the answer is ’No’, and if not the answer is ’Yes’. ��

5 NP-Completeness

In this section we prove NP-completeness of the non-crossing connectors prob-
lem. By Proposition 1 the problem is in NP. We prove NP-hardness, even if the
regions and their point sets are very restricted.

Theorem 4. The non-crossing connectors problem is NP-complete, even if the
regions are 4-intersecting convex polygons with at most 8 corners and for every
i = 1, . . . , n the set Pi consists of only two points on the boundary of Ri.
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The proof of Theorem 4 is rather technical and pretty long. Most of its techni-
calities, including the use of zones and segment gadgets, are due to the fact that
we use convex regions only. Dropping convexity but keeping all the other restric-
tions allows for a much shorter and less technical proof. Due to space limitations
we present here only the proof sketch with non-convex, but still 4-intersecting,
regions.

We do a polynomial reduction from Planar 3-SAT, i.e., we are given a
formula ψ in conjunctive normal form where each clause has at most 3 literals,
that is positive or negated variables. Moreover, the formula graph Gψ , namely
the bipartite graph whose vertices are the clauses and variables of ψ, and whose
edges are given by {x, c} with variable x contained in clause c, is planar. It is
known [13] that Planar 3-SAT is NP-complete, even if every variable appears
in at most 3 clauses, i.e., Gψ has maximum degree 3 [5].

Clause Gadget. We define the clause gadget, which consists of 5 regions as
depicted in Fig. 5. For every clause c we define a black regionRc and a blue region
R̄c, which are 4-intersecting. The colors are added just for better readability of
the figures. We color the 2-element point set corresponding to every region in
the same color as the region. Assume c has size 3. We define 3 pairwise disjoint
red regions Rxc, one for each variable x in c, such that the regions appear in
the same clockwise order as the edges {x, c} around c in Gψ . For every pair
{x, c} ∈ E(Gψ) the red region Rxc has one component inside the black region
Rc containing both red points, and one outside Rc containing no red point.

x satisfies cclause gadget y satisfies c

Rxc

RycRzc

z satisfies c

R̄c

Rc

Fig. 5. Clause gadget for clause c consisting of literals x, y, z

If the connector γxc for Rxc is completely contained in Rc, we say that variable
x satisfies clause c. If the clause has size 2, then only two of the red regions are
associated with the variables. Moreover we put the point of the third red region,
which is contained in the blue region R̄c, anywhere outside the black region Rc

instead of inside Rc. Hence this “artificial variable” can not satisfy the clause.
It is not difficult to see that for any non-crossing connectors of a clause gadget

at least one variable satisfies the clause. Moreover, as verified by Fig. 5, non-
crossing connectors do exist as soon as one variable satisfies the clause.

Variable Gadget. We assume w.l.o.g. that every variable x appears in three
clauses, positive in c1 and negated in c2, c3, or vice versa. Now x is associated
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with a red region in the clause gadgets for c1, c2 and c3, each containing a part
outside the corresponding black region. We bring together these three parts
(together with the corresponding black and blue regions) and overlap them as
shown in Fig. 6.

c1

c2 c3
variable gadget

c1

c2 c3
x satisfies c1

c1

c2 c3
x satisfies c2 and c3

Fig. 6. Variable gadget for variable x contained in clauses c1, c2, c3

Note that if γxc1 ⊂ Rc1 , then γxci � Rci , for i = 2, 3. In other words, if
x satisfies c1 then x satisfies neither c2 nor c3. Similarly, if x satisfies c2 or c3
then x does not satisfy c1. Moreover, Fig. 6 shows that non-crossing connectors
do exist as long as x does not satisfy c1 and c2 or c3 at the same time. For
better readability blue regions and black and blue connectors are omitted in both
pictures on the right. These connectors can always run along the corresponding
red connector within a small enough distance.

To prove Theorem 4 for non-convex regions, let ψ be a 3-SAT formula with m
variables and n clauses, and Gψ be planar with maximum degree 3. We define an
instance I of the non-crossing connectors problem as described above, consisting
of at most 3(m+n) 4-intersecting regions. The properties of gadgets mentioned
above imply that ψ is satisfiable if and only if non-crossing connectors exist for
I. A detailed argument is given in the full version of the paper.

6 Conclusion

We have shown that there are instances of the non-crossing connectors problem
in which every solution is exponentially complex in the input size, even if all
regions are convex pseudo-disks, and hence though the non-crossing connectors
always exist in such a case, one cannot hope for a polynomial-time construction.
But we conjecture that whenever non-crossing connectors exist for axis-aligned
rectangles, then there is a solution with polynomially many crossing points be-
tween connectors and region boundaries.
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Abstract. This paper considers minimax regret 1-sink location prob-
lems in dynamic path networks. A dynamic path network consists of an
undirected path with positive edge lengths and constant edge capacity
and the vertex supply which is nonnegative value, called weight, is un-
known but only the interval of weight is known. A particular assignment
of weight to each vertex is called a scenario. Under any scenario, the cost
of a sink is defined as the minimum time to complete evacuation for all
weights (evacuees), and the regret of a sink location x is defined as the
cost of x minus the cost of an optimal sink. Then, the problem is to find
a point as a sink such that the maximum regret for all possible scenarios
is minimized. We present an O(n log2 n) time algorithm for minimax re-
gret 1-sink location problems in dynamic path networks, where n is the
number of vertices in the network.

Keywords: minimax regret, sink location, dynamic flow, path networks,
evacuation problem.

1 Introduction

The Tohoku-Pacific Ocean Earthquake happened in Japan on March 11, 2011,
and many people failed to evacuate and lost their lives due to severe attack
by tsunamis. From the viewpoint of disaster prevention from city planning and
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evacuation planning, it has now become extremely important to establish ef-
fective evacuation planning systems against large scale disasters. In particular,
arrangements of tsunami evacuation buildings in large Japanese cities near the
coast has become an urgent issue. To determine appropriate tsunami evacuation
buildings, we need to consider where evacuation buildings are assigned and how
to partition a large area into small regions so that one evacuation building is
designated in each region. This produces several theoretical issues to be consid-
ered. Among them, this paper focuses on the location problem of the evacuation
building assuming that we fix the region such that all evacuees in the region are
planned to evacuate to this building. In this paper, we consider the simplest case
for which the region consists of a single road.

The evaluation criterion of the building location is the time required to complete
the evacuation. This is a kind of facility location problem which has been studied
by Mamada et al [11] in which the region is modeled as a tree network such that a
nonnegativeweight that represents the number of evacuees at each vertex is known,
andanO(n log2 n) timealgorithmwasproposed tofindanoptimal locationof a sink
(the location of an evacuation building). However, the vertexweight (the number of
evacuees at a vertex) varies depending on the time (e.g., in an office area in a big city
there are many people during the daytime on weekdays while there are much less
people on weekends or during the night time). So, in order to take into account the
uncertainty of the vertex weights, we consider a minimax regret criterion assum-
ing that for each vertex, we only know the interval of the vertex weight. We will
treat such uncertainty in this paper by formulating the problem as the minimax
regret 1-sink location problem in dynamic path networks. A particular realization
(assignment of a weight to each vertex) is called a scenario. The problem can be
understood as a 2-person Stackelberg game as follows. The first player picks a lo-
cation x of a sink and the second player chooses a scenario s that maximizes the
regret which is defined as the cost of x (the minimum time to complete evacuation)
minus the cost of an optimal sink under the scenario s. The objective of the first
player is to choose x that minimizes the regret.

Recently several researchers studied the minimax regret 1-median problem
and efficient algorithms have been proposed [2, 3, 5, 14]. See also [1, 4–7, 10, 13]
for related minimax regret location problems.

In this paper, we propose anO(n log2 n) time algorithm for the minimax regret
1-sink location problem on a path assuming that a path is considered as a network
consisting of a vertex set and an edge set in which an interval of the vertex weight
is associated with each vertex, and the travel time and the capacity are associated
with each edge that represent the time required to traverse the edge and the upper
boundon thenumber of evacuees that can enter the edgeper unit time, respectively.

2 Preliminaries

2.1 Definition

Let P = (V,E) be a path where V = {v0, v1, ..., vn} and E = {e1, e2, ..., en} such
that vi−1 and vi are endpoints of ei for 1 ≤ i ≤ n. Let N = (P, l,W, c, τ) be
a dynamic flow network with the underlying undirected graph being a path P ,
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where l is a function that associates each edge ej with positive length l(ej), W
is also a function that associates each vertex vi ∈ V with an interval of weight
(the number of the evacuees) W (vi) = [wi, wi] with 0 < wi ≤ wi, c is a constant
representing the capacity of each edge: the least upper bound for the number of
the evacuees passing a point in an edge per unit time, and τ is also a constant
representing the time required for traversing the unit distance of each evacuee.
We call such networks with path structures dynamic path networks. Let S denote
the Cartesian product of all W (vi) for 1 ≤ i ≤ n (i.e., a set of scenarios):

S =
∏

1≤i≤n

[wi, wi]. (1)

When a scenario s ∈ S is given, we use the notation wi(s) to denote the weight
of each vertex vi ∈ V under the scenario s.

In the following, suppose that a path P is embedded on a real line and each
vertex vi ∈ V is associated with the line coordinate xi such that xi = x0 +∑

1≤j≤i l(ej) for 1 ≤ i ≤ n. We also use a notation P to denote the set of all
points x such that x0 ≤ x ≤ xn. For a point x ∈ P , we also use a notation
x to denote the line coordinate of the point, and the left side of x (resp. the
right side of x) to denote the part of P consisting of all points t ∈ P such that
t < x (resp. t > x). Suppose that a sink (evacuation center) is located at a point
x ∈ P . Let ΘL(x, s) (resp. ΘR(x, s)) denote the minimum time required for all
evacuees on the left side (resp. the right side ) of x to complete evacuation to x
under a scenario s ∈ S. Note that we assume that the capacity of the entrance
of an evacuation building is infinite, and thus, if we place a sink in a vertex vi,
all evacuees of vi can finish their evacuation in no time. Then, by [9], ΘL(x, s)
and ΘR(x, s) are expressed as follows:

ΘL(x, s) = max
0≤i≤n−1

{
(x− xi)τ +

⌈∑
0≤j≤i wj(s)

c

⌉
− 1

∣∣∣∣∣ x > xi

}
,

ΘR(x, s) = max
1≤i≤n

{
(xi − x)τ +

⌈∑
i≤j≤n wj(s)

c

⌉
− 1

∣∣∣∣∣ x < xi

}
.

For the ease of exposition, we assume that c = 1 (the case of c > 1 can be
treated in essentially the same manner), and also omit the constant part (i.e.,
−1) from these equations in the following discussion. Thus, we redefine ΘL(x, s)
and ΘR(x, s) as

ΘL(x, s) = max
0≤i≤n−1

{
(x − xi)τ +

∑
0≤j≤i

wj(s)

∣∣∣∣ x > xi

}
, (2)

ΘR(x, s) = max
1≤i≤n

{
(xi − x)τ +

∑
i≤j≤n

wj(s)

∣∣∣∣ x < xi

}
. (3)

Additionally, we regard ΘL(x0, s) and ΘR(xn, s) as 0 in the subsequent discus-
sion. Now, under s ∈ S, the minimum time required for the evacuation to x ∈ P
of all evacuees is defined by
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Θ(x, s) = max {ΘL(x, s), ΘR(x, s)} . (4)

Let f i
L(t, s) and f

i
R(t, s) denote functions defined as follows: for 0 ≤ i ≤ n− 1,

f i
L(t, s) = (t− xi)τ +

∑
0≤j≤i

wj(s) (t > xi), (5)

and for 1 ≤ i ≤ n,

f i
R(t, s) = (xi − t)τ +

∑
i≤j≤n

wj(s) (t < xi). (6)

Then, ΘL(t, s) and ΘR(t, s) are expressed as follows:

ΘL(t, s) = max
0≤i≤n−1

{
f i
L(t, s)

∣∣∣ t > xi

}
, (7)

ΘR(t, s) = max
1≤i≤n

{
f i
R(t, s)

∣∣∣ t < xi

}
. (8)

f iL(t, s)

xi

Σ0 0 ≤ ≤ j ≤ ij ≤ i wj(s)

tx0 xn

f 0L(t, s)

Fig. 1. Functions f i
L(t, s) for 0 ≤ i ≤ n− 1

f iR(t, s)

xi

Σi i ≤ ≤ j ≤ nj ≤ n wj(s)

x0 xn
t

f nR(t, s)

Fig. 2. Functions f i
R(t, s) for 1 ≤ i ≤ n

xopt(s)

θ(t, s)

tx0 xn

Fig. 3. A function Θ(t, s)

The function f i
L(t, s) is drawn as a left-open half line with a positive slope

starting from (xi,
∑

0≤j≤i wj(s)) (see Fig. 1) while f i
R(t, s) is drawn as a right-

open half line with a negative slope ending at (xi,
∑

i≤j≤n wj(s)) (see Fig. 2).
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Thus ΘL(t, s) is the upper envelope of these n half lines, and so ΘL(t, s) is a
strictly monotone increasing function of t. Symmetrically, ΘR(t, s) is a strictly
monotone decreasing function of t. Therefore, Θ(t, s) is a unimodal function, so
there is a unique point in P which minimizes Θ(t, s) (see Fig. 3). In the following,
let xopt(s) denote such a point in P : xopt(s) = argminx0≤t≤xn

Θ(t, s). We have
the following propositions.

Proposition 1. Under a scenario s ∈ S, (i) xopt(s) is unique, (ii) for x <
xopt(s), ΘL(x, s) < ΘR(x, s) holds, and (iii) for x > xopt(s), ΘL(x, s) > ΘR(x, s)
holds.

Note that Proposition 1(ii)(iii) implies that Θ(x, s) = ΘR(x, s) holds for x <
xopt(s) and Θ(x, s) = ΘL(x, s) holds for x > xopt(s).

We define the regret for x under s as

R(x, s) = Θ(x, s) −Θ(xopt(s), s). (9)

Moreover, we also define the maximum regret for x as

Rmax(x) = max{R(x, s) | s ∈ S}. (10)

If Rmax(x) = R(x, s∗) for a scenario s∗, we call s∗ the worst case scenario for
x. The goal is to find a point x∗ ∈ P , called the minimax regret sink, which
minimizes Rmax(x) over x ∈ P , i.e., the objective is

minimize {Rmax(x) | x ∈ P}. (11)

2.2 Properties

For a scenario s ∈ S and an integer p such that 0 ≤ p ≤ n, let s+p denote a
scenario such that wp(s

+
p ) = wp and wi(s

+
p ) = wi(s) for i �= p and s−p denote a

scenario such that wp(s
−
p ) = wp and wi(s

−
p ) = wi(s) for i �= p.

By (5), f i
L(t, s) is defined on xi < t ≤ xn for i = 0, 1, . . . , n − 1. Thus, for a

point x such that xi < x ≤ xn, we have f i
L(x, s) ≤ f i

L(x, s
+
p ) and f i

L(x, s
−
p ) ≤

f i
L(x, s). Moreover, by these facts and (7), we also have ΘL(x, s) ≤ ΘL(x, s

+
p )

and ΘL(x, s
−
p ) ≤ ΘL(x, s). Generally we have the following claim.

Claim 1. For a scenario s ∈ S, a point x ∈ P and an integer p such that
x0 ≤ xp ≤ x (resp. x ≤ xp ≤ xn),
(i) ΘL(x, s) ≤ ΘL(x, s

+
p ) (resp. ΘR(x, s) ≤ ΘR(x, s

+
p )) holds, and

(ii) ΘL(x, s
−
p ) ≤ ΘL(x, s) (resp. ΘR(x, s

−
p ) ≤ ΘR(x, s)) holds.

From Claim 1, we obtain the following lemma.

Lemma 1. For a scenario s ∈ S and an integer p such that x0 ≤ xp ≤ xopt(s)
(resp. xopt(s) ≤ xp ≤ xn),
(i) xopt(s

+
p ) ≤ xopt(s) (resp. xopt(s) ≤ xopt(s

+
p )) holds, and

(ii) xopt(s) ≤ xopt(s
−
p ) (resp. xopt(s

−
p ) ≤ xopt(s)) holds.
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Proof. We will prove Lemma 1(i) by contradiction: suppose that xopt(s
+
p ) >

xopt(s) for p such that x0 ≤ xp ≤ xopt(s). Let xmid be the mid point of xopt(s
+
p )

and xopt(s): xmid = (xopt(s
+
p ) + xopt(s))/2. Then, by Proposition 1(ii)(iii), we

have

ΘL(xmid, s
+
p ) < ΘR(xmid, s

+
p ) and ΘR(xmid, s) < ΘL(xmid, s). (12)

Note that by xopt(s) < xmid and the assumption of xp ≤ xopt(s), we have
xp < xmid. Thus, by (8), we also have

ΘR(xmid, s
+
p ) = ΘR(xmid, s). (13)

Thus, by (12) and (13), we obtain ΘL(xmid, s
+
p ) < ΘL(xmid, s) which contradicts

Claim 1(i). Other cases can be similarly treated. ��

Corollary 1. For a scenario s ∈ S and an integer p such that x0 ≤ xp ≤ xopt(s)
(resp. xopt(s) ≤ xp ≤ xn), xp ≤ xopt(s

+
p ) (resp. xopt(s

+
p ) ≤ xp) holds.

Proof. Assume that xp > xopt(s
+
p ) for p such that x0 ≤ xp ≤ xopt(s), then

xopt(s
+
p ) < xopt(s). By Lemma 1(ii), we have xopt(s) ≤ xopt(s

−
p ), and by ap-

plying Lemma 1(ii) with s replaced by s+p , we also have xopt(s
−
p ) ≤ xopt(s

+
p ),

implying xopt(s
+
p ) ≥ xopt(s), contradiction. The other case can also be proved

in the same manner. ��

Lemma 2. For a scenario s ∈ S, a point x ∈ P and an integer p such that
x0 ≤ xp ≤ x (resp. x ≤ xp ≤ xn), suppose that q is a maximum integer such that
ΘL(x, s) = f q

L(x, s) (resp. q is a minimum integer such that ΘR(x, s) = f q
R(x, s)).

Then
(i) let r be a maximum integer such that ΘL(x, s

+
p ) = f r

L(x, s
+
p ) (resp. let r

be a minimum integer such that ΘR(x, s
+
p ) = f r

R(x, s
+
p )), then xq ≤ xr (resp.

xq ≥ xr) holds,
(ii) let r be a maximum integer such that ΘL(x, s

−
p ) = f r

L(x, s
−
p ) (resp. let r

be a minimum integer such that ΘR(x, s
−
p ) = f r

R(x, s
−
p )), then xq ≥ xr (resp.

xq ≤ xr) holds.

Proof. We only prove (i). Suppose otherwise, i.e., xq > xr. Then by the maxi-
mality of r and f r

L(x, s
+
p ),

f q
L(x, s

+
p ) < f r

L(x, s
+
p ) (14)

holds. Also by the maximality of f q
L(x, s),

f q
L(x, s) ≥ f r

L(x, s) (15)

holds. Thus by (14) and (15), we have f q
L(x, s

+
p )−f

q
L(x, s) < f r

L(x, s
+
p )−f r

L(x, s),
namely,

∑
0≤i≤q(wi(s

+
p )− wi(s)) <

∑
0≤i≤r(wi(s

+
p ) − wi(s)), which contradicts

xq > xr. ��
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A scenario s ∈ S is said to be left-dominant (resp. right-dominant) if for some i
with 0 ≤ i ≤ n, wj(s) = wj for 0 ≤ j < i and wj(s) = wj for i ≤ j ≤ n hold
(resp. wj(s) = wj for 0 ≤ j < i and wj(s) = wj for i ≤ j ≤ n hold). Let SL

(resp. SR) denote the set of all left-dominant (resp. right-dominant) scenarios.
SL consists of the following n+ 1 scenarios:

siL = (w0, . . . , wi, wi+1, . . . , wn) for i = 0, 1, . . . , n− 1,

snL = (w0, w1, . . . , wn),
(16)

and SR consists of the following n+ 1 scenarios:

siR = (w0, . . . , wi, wi+1, . . . , wn) for i = 0, 1, . . . , n− 1,

snR = (w0, w1, . . . , wn).
(17)

The following is a key theorem.

Theorem 1. For any point x ∈ P , there exists a worst case scenario for x which
belongs to SL ∪ SR.

Proof. Suppose that s is a worst case scenario for x. We prove that if xopt(s) < x,
R(x, s∗) ≥ R(x, s) holds for some left-dominant scenario s∗ while otherwise,
R(x, s∗) ≥ R(x, s) holds for some right-dominant scenario s∗. We only consider
the case of xopt(s) < x since the other case can be similarly treated. Then, by
Proposition 1, Θ(x, s) = ΘL(x, s) holds: for some integer k such that xk < x,

Θ(x, s) = fk
L(x, s). (18)

We now show that R(x, skL) ≥ R(x, s) holds, i.e., skL is also a worst case scenario
for x. If s is not equal to skL, there exists an integer p such that [Case 1] xk <
xp ≤ xn and wp(s) > wp or [Case 2] x0 ≤ xp ≤ xk and wp(s) < wp. If we can
show that R(x, s−p ) ≥ R(x, s) holds for [Case 1] and R(x, s+p ) ≥ R(x, s) holds

for [Case 2], we will eventually obtain R(x, skL) ≥ R(x, s) by repeatedly applying
the same discussion as long as there exists such an integer p. In the following,
we consider two subcases: (I) xopt(s) < xk and (II) xk ≤ xopt(s). We only give
the proof for Case 1.
[Case 1]: In this case, we consider a scenario s−p . We consider two subcases.

(I) See Fig. 4. By (5), fk
L(x, s

−
p ) = (x−xk)τ +

∑
0≤j≤k wj(s

−
p ), and by xk < xp,∑

0≤j≤k wj(s
−
p ) =

∑
0≤j≤k wj(s) holds, thus we have fk

L(x, s
−
p ) = fk

L(x, s). By

Lemma 1(ii), xopt(s
−
p ) ≤ xopt(s) holds, thus Θ(x, s−p ) = fk

L(x, s
−
p ). By these facts

and (18), we have

Θ(x, s−p ) = Θ(x, s) (19)

By applying Claim 1(ii) with x replaced by xopt(s), we have ΘR(xopt(s), s
−
p ) ≤

ΘR(xopt(s), s). Also, by xopt(s) < xp, we have ΘL(xopt(s), s
−
p ) = ΘL(xopt(s), s)

(by the same reason for fk
L(x, s

−
p ) = fk

L(x, s) above). Thus

Θ(xopt(s), s
−
p ) ≤ Θ(xopt(s), s) (20)
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xxopt(s) xk

θ(x, s)=θ(x, sp
-)

θ(xopt(s), s)

txp

θ(xopt(s), sp
-)

f k
L(t, s)=f k

L(t, sp
-)

Fig. 4. Illustration of Case 1(I)

holds. Also, by the optimality of xopt(s
−
p ) under s

−
p ,

Θ(xopt(s
−
p ), s

−
p ) ≤ Θ(xopt(s), s

−
p ) (21)

holds. Therefore, by (19), (20) and (21), we obtain Θ(x, s−p )−Θ(xopt(s
−
p ), s

−
p ) ≥

Θ(x, s) −Θ(xopt(s), s), i.e., R(x, s
−
p ) ≥ R(x, s).

(II) We will show that (19), (20) and (21) also hold in this subcase. Because of
xk < xp, we have fk

L(x, s
−
p ) = fk

L(x, s) in the same manner as in Case 1(I), thus
(19) holds. In order to show that (20) holds, we consider the following two cases
(a) and (b).
(a) Case of xopt(s) < xp. Then by applying Claim 1(ii) with x replaced by
xopt(s), we have ΘR(xopt(s), s

−
p ) ≤ ΘR(xopt(s), s). Because of xopt(s) < xp, we

also have ΘL(xopt(s), s
−
p ) = ΘL(xopt(s), s), thus (20) holds.

(b) Case of xopt(s) ≥ xp. Then by applying Claim 1(ii) with x replaced by
xopt(s), we have ΘL(xopt(s), s

−
p ) ≤ ΘL(xopt(s), s). Because of xopt(s) ≥ xp, we

also have ΘR(xopt(s), s
−
p ) = ΘR(xopt(s), s), thus (20) holds.

Also, by the optimality of xopt(s
−
p ) under s−p , (21) clearly holds. Therefore we

also obtain R(x, s−p ) ≥ R(x, s) in this subcase. ��

3 Algorithm

We will show an O(n log2 n) time algorithm that computes x∗ which minimizes
a function Rmax(t). By Theorem 1, we have

Rmax(t) = max
s∈SL∪SR

R(t, s). (22)

Thus, we consider 2n+ 2 left and right-dominant scenarios.
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We now show how to efficiently compute Rmax(xi) for i = 0, 1, . . . , n, and
then how to compute Rmax(x

∗). In order to evaluate R(xi, s) for s ∈ SL ∪ SR,
we need to compute Θ(xopt(s), s) in advance. We then explain how we efficiently
evaluate R(xi, s) for all dominant scenarios s and obtain Rmax(xi).

First, we show how to compute Θ(xopt(s
k
L), s

k
L) for k = 0, 1, . . . , n. Com-

puting Θ(xopt(s
k
R), s

k
R) can be done similarly, and thus omitted. In order to

compute Θ(xopt(s
k
L), s

k
L) for a given k, we are required to evaluate ΘL(xi, s

k
L)

and ΘR(xi, s
k
L) for i = 0, 1, . . . , n. We now consider constructing partial per-

sistent priority search trees [8] TL and TR for all left-dominant scenarios. In
the following, we show only how to construct TL, however, TR can be con-
structed similarly. TL consists of a priority search tree T 0

L and path data struc-
tures P 0

L, P
1
L, . . . , P

n
L . We first construct T 0

L which has n+ 1 leaves l0, l1, . . . , ln
corresponding to vertices v0, v1, . . . , vn and internal nodes such that each inter-
nal node v has pointers to left and right children, each leaf li for i = 1, 2, . . . , n
has the value

∑
j∈[1,i](wj − wj), and each node (including each leaf) v has an

interval [imin(v), imax(v)] where imin(v) and imax(v) are the indices of a minimum
and maximum leaves of a subtree rooted at v, the value

max{−xiτ +
∑

j∈[0,i]

wj(s
0
L) | imin(v) ≤ i ≤ imax(v)} (23)

and the corresponding index of the leaf that attains the maximum. Note that
for a leaf li, imin(li) = imax(li) = i holds. By computing values of nodes in
decreasing order of depth, T 0

L can be constructed in O(n) time and O(n) space.
Subsequently, we construct path data structures P k

L for k = 0, 1, . . . , n along the
path in T 0

L from the leaf lk to the root (see Fig. 5) such that each node v on the
path P k

L has the value V k
L (v) defined as

max{−xiτ +
∑

j∈[0,i]

wj(s
k
L) | imin(v) ≤ i ≤ imax(v)}. (24)

Note that the value of (23) can be represented as V 0
L (v), and thus P 0

L can be
constructed in O(log n) time and O(log n) space by using T 0

L. In practice, we con-
struct P k

L for k = 1, 2, . . . , n in the following manner. Suppose that P 0
L, . . . , P

k−1
L

have been constructed. We then follow the path P k
L from the leaf lk to the root

and store V k
L (v) at each node v on P k

L, which takes O(log n) time and O(log n)
space. At the leaf lk, we set the value V k

L (lk) = −xkτ +
∑

j∈[0,k] wj(s
k
L) by com-

puting V 0
L (lk) plus

∑
j∈[1,k](wj − wj) (recall that these values are stored at the

leaf lk in T 0
L). For an internal node v on P k

L , let c
v
l and cvr be the left and right

children of v. If cvr is not on P k
L , we compute its value V k

L (c
v
r) as V 0

L (c
v
r) plus∑

j∈[1,k](wj − wj), and set V k
L (v) as the maximum of V k

L (cvr) and V k
L (c

v
l ). If c

v
l

is not on P k
L , since V

k
L (cvl ) = V k−1

L (cvl ) holds and V
k−1
L (cvl ) is already computed

in the previous step, we only set V k
L (v) as the maximum of V k

L (cvr) and V
k
L (cvl ).

Thus we can construct P 0
L, P

1
L, . . . , P

n
L in O(n log n) time and O(n log n) space.

We have the following claim.
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Claim 2. For all left-dominant scenarios, partial persistent priority search trees
TL and TR can be constructed in O(n log n) time and O(n logn) space.

We now show how to compute ΘL(xi, s
k
L) for some integers i ∈ [1, n] and k ∈

[0, n] by using TL (recall that we assume ΘL(x0, s) = 0 and ΘR(xn, s) = 0 for any
scenario s). By the definition of (5), functions f0

L(t, s
k
L), f

1
L(t, s

k
L), . . . , f

i−1
L (t, skL)

are defined at t = xi while f
i
L(t, s

k
L), f

i+1
L (t, skL), . . . , f

n
L(t, s

k
L) are not, thus we

are required to compute the maximum of V k
L (lj) for j ∈ [0, i − 1], i.e., the

maximum of V k
L (cvl ) for each node v on P i

L. There are two cases [Case 1] i ≤ k
(see Fig. 6) and [Case 2] i > k (see Fig. 7).

Pi
L

 li

cv
r

r

v
cv

l

Fig. 5. Illustration of P i
L

Pi
L

r

Pk
L

 li

 lk

cv
l

v

retrieved
 limax(cv

l)

Fig. 6. Illustration of Case 1

r

retrieved

v

Pk
L

Pi
L

 li

 lk
cv

l

Fig. 7. Illustration of Case 2

[Case 1]: We follow the path P i
L from leaf li to the root. Every time we visit

an internal node v, we examine whether its left child cvl is on P i
L or not. If not,

we get the rightmost leaf imax(c
v
l ) in the subtree rooted at cvl , retrieve the value

V
imax(c

v
l )

L (cvl ) stored in P
imax(c

v
l )

L since V k
L (cvl ) = V

imax(c
v
l )

L (cvl ) holds. We continue
to do this computation and to take the maximum value among those retrieved,
which takes O(log n) time.
[Case 2]: The task we do is similar to Case 1. Every time we visit an internal
node v before P i

L encounters the node on P k
L, we examine whether its left child

cvl is on P i
L or not. If not, we retrieve the value V 0

L (c
v
l ) stored in T 0

L and add∑
j∈[1,k](wj−wj) to the retrieved value since V k

L (cvl ) = V 0
L (c

v
l )+

∑
j∈[1,k](wj−wj)

holds. We continue to do this computation and to take the maximum value
among those retrieved before encountering the node on P k

L , and after that, we
do the same computation as in Case 1, which takes O(log n) time.

Similarly, we can also compute ΘR(xi, s
k
L) in O(log n) time once we have con-

structed TR. We have the following claim.

Claim 3. For any integers i ∈ [0, n] and k ∈ [0, n], Θ(xi, s
k
L) can be computed

in O(log n) time once TL and TR have been constructed.
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By Claim 3, we have the following lemma.

Lemma 3. For any integer k ∈ [0, n], Θ(xopt(s
k
L), s

k
L) can be computed in

O(log2 n) time once TL and TR have been constructed.

Proof. By the unimodality of Θ(t, skL) and Claim 3, we can compute by binary
search in O(log2 n) time

xiL = min{xh | ΘL(xh, s
k
L) ≥ ΘR(xh, s

k
L)}, (25)

xiR = max{xh | ΘR(xh, s
k
L) ≥ ΘL(xh, s

k
L)}. (26)

Note that iL − iR ≤ 1. If iL = iR, then xopt(s
k
L) = xiL holds. Otherwise, let

ΘL(xiL , s
k
L) = fhL

L (xiL , s
k
L) and ΘR(xiR , s

k
L) = fhR

R (xiR , s
k
L) for some integers

hL and hR such that hL ≤ iR and hR ≥ iL. If two line segments fhL

L (t, skL) and

fhR

R (t, skL) intersect at a point whose x-coordinate is at least xiR and at most xiL ,

i.e., if fhL

L (xiR , s
k
L) < fhR

R (xiR , s
k
L) and fhL

L (xiL , s
k
L) > fhR

R (xiL , s
k
L) hold, then

x-coordinate of the intersection point is xopt(s
k
L). If f

hL

L (xiR , s
k
L) ≥ fhR

R (xiR , s
k
L)

holds, then xopt(s
k
L) = xiL holds. If fhL

L (xiL , s
k
L) ≤ fhR

R (xiL , s
k
L) holds, then

xopt(s
k
L) = xiR holds. ��

Note that f i
L(t, s

k
L) (resp. f

i
R(t, s

k
L)) is not defined at t = xi for any i, nevertheless

in the proof of Lemma 3, we use the notation fhL

L (xiR , s
k
L) even for hL = iR (resp.

fhR

R (xiL , s
k
L) even for hR = iL) to represent the value

∑
j∈[0,iR] wj(s

k
L) (resp.∑

j∈[iL,n] wj(s
k
L)). By Lemma 3, we obtain the following lemma and corollary.

Lemma 4. Θ(xopt(s
k
L), s

k
L) for k = 0, 1, . . . , n can be computed in O(n log2 n)

time.

Proof. By Claim 2, we can construct TL and TR in O(n logn) time. By this and
Lemma 3, we can compute Θ(xopt(s

k
L), s

k
L) for k = 0, 1, . . . , n in O(n log n +

n log2 n) = O(n log2 n) time. ��

Corollary 2. Θ(xopt(s
k
L), s

k
L) and Θ(xopt(s

k
R), s

k
R) for k = 0, 1, . . . , n can be

computed in O(n log2 n) time.

Now we turn to the problem of how to compute Rmax(x
∗). For a given in-

teger i ∈ [0, n], since we need to compute ΘL(xi, s
k
L) − Θ(xopt(s

k
L), s

k
L) and

ΘR(xi, s
k
L) − Θ(xopt(s

k
L), s

k
L) in order to evaluate R(xi, s

k
L) for k = 0, 1, . . . , n,

we prepare partial persistent priority search trees T̂L and T̂R in the same manner
as constructing TL and TR. Here T̂L consists of T̂ 0

L and P̂ k
L for k = 0, 1, . . . , n

where T 0
L has n + 1 leaves l0, l1, . . . , ln and internal nodes such that each node

v has the value V 0
L (v) − Θ(xopt(s

0
L), s

0
L) and each leaf li for i = 1, 2, . . . , n has

the value
∑

j∈[1,i](wj − wj) +Θ(xopt(s
i−1
L ), si−1

L )−Θ(xopt(s
i
L), s

i
L), and P̂

k
L for

k = 0, 1, . . . , n is the path in T̂ 0
L from the leaf lk to the root such that each node

v on P̂ k
L has the value V k

L (v)−Θ(xopt(s
k
L), s

k
L). The only difference between T̂L

and TL is the existence of some offset values in T̂ 0
L and P̂ k

L at each node, and the
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same thing can be said for T̂R and TR. Thus, by Claim 2, we can construct T̂L
and T̂R in O(n log n) time and O(n log n) space once we obtain Θ(xopt(s

k
L), s

k
L)

for k = 0, 1, . . . , n. By this and Lemma 4, T̂L and T̂R for all left-dominant sce-
narios are constructed in O(n log2 n) total time, and the same thing can be said
for all right-dominant scenarios. Using these data structures, we can compute
maxs∈SL R(xi, s) and maxs∈SR R(xi, s) in O(n log n), respectively. Thus, we can
also compute Rmax(xi) in O(n log n). By (22), Rmax(t) is an upper envelope of
2n + 2 functions of R(t, skL) and R(t, skR) for k = 0, 1, . . . , n. Since Θ(t, s) and
R(t, s) are unimodal in t by (9), Rmax(t) is clearly unimodal. Therefore, we can
compute x∗ which minimizes Rmax(t) in O(n log2 n) time.

Theorem 2. The minimax regret sink x∗ can be computed in O(n log2 n) time
and O(n log n) space.
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Abstract. Working within the general formalism of a partial combina-
tory algebra (or PCA), we introduce and develop the notion of a step
algebra, which enables us to work with individual computational steps,
even in very general and abstract computational settings. We show that
every partial applicative structure is the closure of a step algebra ob-
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1 Introduction

A key feature of a robust notion of computation is having analogous notions of
efficient computations. More precisely, given a definition of objects that are com-
putable (given unlimited resources such as time, space, or entropy), one would
like corresponding definitions of those that are efficiently computable (given
bounds on such resources).

As the notion of computation has been generalized in many directions, the
related notions of efficiency have not always followed. One important generaliza-
tion of computation is that given by partial combinatory algebras. Here our goal
is to provide one such corresponding notion of a single step of a computation,
by introducing step algebras. Step algebras attempt to describe, using a similar
formalism, what it means to carry out one step of a computation; we believe
that they may be useful in the analysis of efficient computation in this general
context, as well as in other applications, as we will describe.

1.1 Partial Combinatory Algebras

The class of partial combinatory algebras (PCAs) provides a fundamental formu-
lation of one notion of abstract computation. PCAs generalize the combinatorial
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calculi of Schönfinkel [Sch24] and Curry [Cur29], and have connections to re-
alizability, topos theory, and higher-type computation. For an introduction to
PCAs, see van Oosten [vO08] or Longley [Lon95].

PCAs are flexible and general enough to support many of the standard op-
erations and techniques of (generalized) computation, and despite the austerity
of their definition, each PCA will contain a realization of every partial com-
putable function. As has been shown over the years, many of the natural models
of computation are PCAs. For example, partial computable functions relative
to any fixed oracle, partial continuous functions NN → N as in Kleene’s higher-
type computability, nonstandard models of Peano arithmetic, and certain Scott
domains all form PCAs (see, e.g., [vO08, §1.4]), as do the partial α-recursive
functions for a given admissible ordinal α.

Furthermore, by work of van Oosten [vO06], there is a notion of reducibility
between PCAs extending the notion of Turing reducibility arising from ordinary
computation with oracles. Also, by augmenting PCAs with limiting operations,
Akama [Aka04] has shown how they can interpret infinitary λ-calculi.

Realizability was initially used as a tool to study concrete models of intuition-
istic theories. As a result, the use of PCAs has been expanded to give models
of intuitionistic set theory, as in work on realizability toposes (generalizing the
effective topos; see, e.g, [vO08]) and, more recently, in work by Rathjen [Rat06].

In all these facets of computation, PCAs provide a clean and powerful general-
ization of the notion of computation. However, the elements of a PCA represent
an entire computation, and PCAs generally lack a notion of a single step of a
computation. In this paper we aim to provide one such notion.

1.2 Other Approaches to Abstract Algorithmic Computations

One approach, other than PCAs, to abstract algorithmic computation is the
finite algorithmic procedure of H. Friedman [Fri71]; for details and related ap-
proaches, including its relationship to recursion in higher types, see Fenstad
[Fen80, §0.1]. In such procedures, there is a natural notion of a step provided by
the ordered list of instructions.

Another, more abstract, attempt to capture the notion of computational step
is suggested by Moschovakis’ recursors [Mos01]. In this setting, the result of
an abstract computation is the least fixed point of a continuous operator on
a complete lattice. As this least fixed point can be obtained as the supremum
of iteratively applying this continuous operator to the minimal element of the
lattice, one might consider a computational step to be a single application of
this continuous operator.

Still another approach is that of Gurevich’s abstract state machines [Gur00].
Within this formalism, the notion of a single step of an algorithm has also been
an important concept [BDG09].

These and other approaches do provide useful analyses of the notion of a single
computation step. Here our goal is analogous but is in the more general setting of
PCAs, where one is never explicitly handed a list of fine-grained computational
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instructions, and must instead treat each potentially powerful and long (even
nonhalting) subcomputation as a black box.

1.3 Outline of the Extended Abstract

We begin by defining PCAs and recalling their key properties. In the following
section we introduce step algebras, the main notion of this abstract. A PCA
always gives rise to a step algebra (by considering application to be a single
step), but additional hypotheses on a step algebra are needed to ensure that the
closure under repeated application is itself a PCA.

In the most general cases, a step algebra gives us little handle on its closure.
Therefore we consider additional computable operations such as pairing, the use
of registers, and serial application. These operations lead us to conditions under
which a step algebra yields a PCA (by closure under repeated application). On
the other hand, we conjecture that every PCA (up to isomorphism) comes from
a suitable step algebra in this way.

Finally, we briefly discuss potential extensions of this work, including a gen-
eralization of computational complexity to the setting of PCAs, and an analysis
of reversible computations in PCAs.

2 Preliminaries

Before proceeding to step algebras, we briefly recall the definition and key prop-
erties of partial applicative structures and partial combinatory algebras. For
many more details, see [vO08] or [Lon95].

Definition 1. Suppose A is a nonempty set and ◦ : A × A → A is a partial
map. We say that A = (A, ◦) is a partial applicative structure (PAS). We
write PAS to denote the class of partial applicative structures.

This map ◦ is often called application. When the map ◦ is total, we say that
A is a total PAS. When there is no risk of confusion (e.g., from application
in another PAS), we will write ab to denote a ◦ b. Furthermore, we adopt the
standard convention of association to the left, whereby abc denotes (ab)c (but
not a(bc) in general).

Given an infinite set of variables, the set of terms over a PAS A = (A, ◦) is
the least set containing these variables and all elements of A that is closed under
application. For a closed term t (i.e., without variables) and element a ∈ A, we
write t↓a, and say that term t denotes element a, when a is the result of repeated
reduction of subterms of t. We write t↓, and say that t denotes, when there is
some a such that t ↓ a. For closed terms t, s, the expression t = s means that
they denote the same value, and t � s means that if either t or s denotes, then
t = s. This notation extends to non-closed terms (and means the corresponding
expression of closed terms for every substitution instance).
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Definition 2. Let A = (A, ◦) be a PAS. We say that A is combinatorially com-
plete when for every n ∈ N and any term t(x1, . . . , xn+1), there is an element
a ∈ A such that for all a1, . . . , an+1 ∈ A, we have aa1 · · ·an↓ and

aa1 · · ·an+1 � t(a1, . . . , an+1).

A partial combinatory algebra (PCA) is a combinatorially complete PAS.

The following lemma is standard.

Lemma 1. Let A = (A, ◦) be a PAS. Then A is a PCA if and only if there are
elements S,K ∈ A satisfying

• Kab = a,
• Sab↓, and
• Sabc � ac(bc)

for all a, b, c ∈ A.

Using the S and K combinators, many convenient objects or methods can be
obtained in arbitrary PCAs, including pairing and projection operators, all nat-
ural numbers (via Church numerals), and definition by cases. Note that we use
〈 · , · 〉 to denote elements of a cartesian product (and not, as in other texts, for
pairing in a PCA or for lambda abstraction).

Furthermore, by combinatory completeness, in every PCA each (ordinary)
partial computable function corresponds to some element, and a wide range of
computational facts about ordinary partial computable functions translate to
arbitrary PCAs, including a form of lambda abstraction and the existence of
fixed point operators (giving a version of the recursion theorem). However, one
key feature that arbitrary PCAs do not admit is a sort of induction whereby one
is able to iterate over all programs in sequence.

2.1 Examples

For concreteness, we present two of the most canonical examples of PCAs, al-
though PCAs admit many more powerful or exotic models of computation, as
described in the introduction.

Example 1. Kleene’s first model is K1 = (N, ◦) where a ◦ b = ϕa(b), i.e., the
application of the partial computable function with index a to the input natural
number b.

In K1 there is a natural notion of a computational step, provided by, e.g., a
single operation (i.e., overwriting the current cell, making a state transition, and
moving the read/write head) on a Turing machine.

Example 2. Kleene’s second model is K2 = (NN, ◦) where application a ◦ b in-
volves treating the element a of Baire space as (code for) a partial continuous
map NN → NN, applied to b ∈ NN.

While one may typically think of an element of NN as naturally having a step-by-
step representation (e.g., whereby a real is represented as a sequence of nested
intervals), application itself does not admit an obvious decomposition in terms
of steps, and so even here step algebras may provide additional granularity.
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3 Step Algebras

We now proceed to consider a framework for computations where the funda-
mental “steps” are abstract functions. To do so, we define step algebras, the
key notion of this extended abstract. A step algebra is a PAS with certain extra
structure and properties, whose elements are an object paired with a state; as
with PCAs, these elements can be thought of as either data or code. When an
element is treated as code, its state will be irrelevant, but when an element is
treated as data, the state of the data can inform what is done to it.

Specifically, if A = (A×I,�) is a step algebra, then for a,b ∈ A we will think
of a�b as the result of applying code a to data b for one time step. An intuition
that does not translate exactly, but is nonetheless useful, is to imagine the PAS as
a “generalized Turing machine”. In this context, the code for a Turing machine
can be thought of as a function telling the Turing machine how to increment
its state and tape by one time step. The result of running the Turing machine
is then the result of iterating this fixed code. Another (imperfect) analogy is
with lambda calculi, where a single step naturally corresponds with a single
β-reduction.

With this intuition in mind, we will be interested in the operation of “iter-
ating” the application of our functions until they halt. In order to make this
precise, we will need a notion capturing when the result of a single operation
has halted. We will achieve this by requiring one state, ⇓, to be a “halting state”.
In particular, we will require that if an element is in the halting state, then any
code applied to it does not change it.

Definition 3. Suppose A = (A× I,�) is a total PAS such that I has two (dis-
tinct) distinguished elements 0,⇓, and let 〈 · , · 〉 denote elements of the cartesian
product A× I. We say that A is a step algebra when

1. 〈a, i〉� b = 〈a, j〉� b for all a ∈ A, i, j ∈ I, and b ∈ A, and
2. a� 〈b,⇓〉 = 〈b,⇓〉 for all a ∈ A and b ∈ A.

We write Step to denote the class of step algebras.

As with PCAs, in step algebras we will use the convention that when a,b ∈ A,
then ab represents the element a� b, and will associate to the left.

The elements of a step algebra are meant to each describe a single step of a
computation. Under this intuition, an entire (partial) computation arises from
repeated application. Specifically, suppose a = 〈a, 0〉 and b = 〈b, 0〉 are elements
of a step algebra A = (A× I,�). Then the computation describing a applied to
b corresponds to the sequence

b, ab, a(ab), a(a(ab)), . . . ,

where if the sequence ever reaches a halting state (c,⇓), the computation is
deemed to have finished with output c. Note that because of Definition 3.2, at
most one such halting state can ever be reached by repeated application of a
to b. We now make precise this intuition of a partial computation arising from
steps.
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Definition 4. We define the closure map P : Step→ PAS as follows. Suppose
A =

(
A× I,�

)
is a step algebra. Let P(A) be the PAS (A, ◦) such that

a ◦ b = c

if and only if there is a sequence of elements c0, . . . , cm ∈ A satisfying

• 〈b, 0〉 = c0,
• 〈a, 0〉� ci = ci+1 for 0 ≤ i < m, and
• 〈c,⇓〉 = cm.

We now show that in fact every PAS is the closure of some step algebra.

Lemma 2. The map P is surjective. Namely, for every PAS B = (B, ◦) there
is a step algebra A = (B × {0,⇓},�) such that P(A) = B.

Proof. Let � be such that

• 〈a, i〉� 〈b, 0〉 = 〈ab,⇓〉 for all a, b ∈ B such that ab↓ and i ∈ {0,⇓},
• 〈a, i〉� 〈b, 0〉 = 〈b, 0〉 for all a, b ∈ B such that ab↑ and i ∈ {0,⇓}, and
• a� 〈b,⇓〉 = 〈b,⇓〉 for all a ∈ A and b ∈ B.

Note that A is a step algebra, as Definition 3.1 holds because the first and second
points in the definition of� here are independent of i. We haveP(A) = B because
for all a, b ∈ B, if ab↓ then 〈a, 0〉� 〈b, 0〉 = 〈ab,⇓〉, and if ab↑ then 〈a, 0〉 acts as
the constant function on 〈b, 0〉. ��
As we have just seen, every PAS comes from a step algebra where each compu-
tation occurs as a single step. Note that the collection of terms in a PAS can be
made into a PAS itself by repeated reductions that consist of a single application
of elements in the underlying PAS. Associated to such a PAS of terms, there is a
natural step algebra, in which each step corresponds to a single term reduction.

Example 3. Suppose A = (A, ◦) is a PAS. Let A∗ be the collection of closed
terms of A. Suppose the term a contains a leftmost subterm of the form b ◦ c,
for b, c ∈ A. Let a+ be the result of replacing this subterm with the value of b◦ c
in A, if b ◦ c↓, and let a+ be any value not in A otherwise. If a contains no such
subterm, let a+ = a. We define the step algebra (A∗ × {0, 1,⇑,⇓},�∗) by the
following equations, for all a, b ∈ A∗ and i ∈ {0, 1,⇑,⇓}.
• 〈a, i〉�∗ 〈b, 0〉 = 〈(a) ◦ (b), 1〉;
• 〈a, i〉�∗ 〈b, 1〉 = 〈b+, 1〉, when b+ ∈ A∗ and b+ �= b;
• 〈a, i〉�∗ 〈b, 1〉 = 〈b,⇑〉 when b+ �∈ A∗;
• 〈a, i〉�∗ 〈b, 1〉 = 〈b,⇓〉 when b+ = b; and
• 〈a, i〉�∗ 〈b,⇑〉 = 〈b,⇑〉.

Now let (A∗, ◦∗) = P
(
(A∗ × {0, 1,⇑,⇓},�∗)

)
. It is then easily checked that

for any sequences a, b ∈ A∗ and c ∈ A, we have a ◦∗ b = c if and only if (a) ◦ (b)
evaluates to c in A.

We now turn to a context where we are guaranteed to have more concrete tools
at our disposal, with the goal of finding conditions that ensure that the closure
of a step algebra is a PCA.
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4 Complete Step Algebras and PCAs

The notion of a step algebra is rather abstract, and provides relatively little
structure for us to manipulate. We now introduce some basic computational
operations that will ensure that the closure of a step algebra is a PCA. These
are modeled after the standard techniques for programming on a Turing machine
(or other ordinary model of computation), but make use of our abstract notion
of computation for the basic steps.

Specifically, there are four types of operations that we will consider. First,
there is a very abstract notion of “hidden variables”; this allows us to read in
and keep track of two elements, for future use. Second, there is the notion of an
iterative step algebra; given two pieces of code, this provides code that runs the
first until it halts, then runs the second until it halts on the output of the first,
and finally returns the result of the second. We also allow for passing the hidden
variables from the code running the pair to each of the individual pieces of code
it runs. Third, we require code that returns the first hidden variable. Fourth, we
require a pairing operation that allows us to either run the first hidden variable
on the first element of the pair, or run the second hidden variable on the second
element of the pair, or run the first element of the pair on the second.

We will show that the closure of a step algebra having such operations contains
S and K combinators. In particular, by Lemma 1, this will show that having
such operations ensures that the closure is a PCA.

We now introduce the notion of hidden variables; while this definition is quite
general, we will make use of it later in the specific ways we have just sketched.

Definition 5. Suppose A = (A× I,�, v0, v1, r) is such that

• (A× I,�) is a step algebra,
• r : A→ A is total, and
• v0, v1 : A→ A ∪ {∅} are total.

We say A has hidden variables when for all b ∈ A there is a (necessarily
unique) ab ∈ A satisfying

• 〈r(a), 0〉 � 〈b, 0〉 = 〈ab,⇓〉 and
• v1(a

b) = b and v0(a
b) = v1(a).

We will use the notation ab,c to mean the element (ab)c.

The rough idea is to require a stack containing at least two elements (which we
sometimes refer to as the registers). The code r(a) reads in the next element, b,
and returns the code for “a with b pushed on the stack”. In this view, v1(a) is
the element most recently read by the code.

Before proceeding to see how this formalism is used, we make a few observa-
tions. First, we have not required that the states are preserved (although some
step algebras may nonetheless keep track of their state); this is because we will
mainly treat the objects we read in only as code, not data. Second, note that we
have only assumed that the stack has two elements. (Likewise, some step alge-
bras may happen to keep track of the entire stack — e.g., as part of a reversible
computation.)
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Definition 6. Suppose A = (A× I,�, (v0, v1, r), (π0, π1, t)) is such that

• (A× I,�, v0, v1, r) is a step algebra with hidden variables,

• π0, π1 : A×A×A×A× I → I with π0, π1 both total and injective in the last
coordinate (i.e., πi(a0, a1, l0, l1, ·) is injective for each a0, a1, l0, l1 ∈ A), and

• t : A×A→ A is total.

We then say that A is an iterative step algebra if whenever a0, a1, l0, l1, b ∈ A
with π∗

0(·) = π0(a0, a1, l0, l1, ·), π∗
1(·) = π1(a0, a1, l0, l1, ·), and t = t(a0, a1)

l0,l1 ,
we have

• 〈t, 0〉� 〈b, 0〉 = 〈b, π∗
0(0)〉,

• 〈t, 0〉� 〈b, π∗
0(j)〉 = 〈b′, π∗

0(j
′)〉 when 〈al0,l10 , 0〉� 〈b, j〉 = 〈b′, j′〉 and j′ �=⇓,

• 〈t, 0〉� 〈b, π∗
0(j)〉 = 〈b′, π∗

1(0)〉 when 〈al0,l10 , 0〉� 〈b, j〉 = 〈b′,⇓〉,

• 〈t, 0〉 � 〈b, π∗
1(j)〉 = 〈b′, π∗

1(j
′)〉 when 〈al0,l11 , 0〉 � 〈b, j〉 = 〈b′, j′〉 and j′ �=⇓,

and

• 〈t, 0〉� 〈b, π1(j)〉 = 〈b′,⇓〉 when 〈al0,l11 , 0〉� 〈b, j〉 = 〈b′,⇓〉.

Intuitively, a step algebra is iterative when for every pair of code a0 and a1,
there is code such that when it has l0 and l1 as its stack variables and is given
a piece of data in state 0, it first runs a0 with stack values (l0, l1) until it halts,
then resets the state to 0 and runs a1 with stack values (l0, l1) until it halts, and
finally returns the result.

Note that while we have only defined this for pairs of code, the definition
implies that elements can be found which iteratively run sequences of code of
any finite length. We write ta0,...,am for code that first runs a0 (with appropriate
stack values) until it halts, then runs a1 (with the same stack values) until it
halts, and so on.

There are two subtleties worth mentioning about π∗
0 and π∗

1 . First, these take
as input the states of t as well as the code that t is following. This is because we
want it to be possible, in some cases, for π∗

0 , π
∗
1 to keep track of the operations

being performed.
Second, while we have assumed that π∗

0 and π∗
1 are always injective, we have

not assumed that they have disjoint images (even outside of {⇓}). One example
that might be helpful to keep in mind is the case of I = N ∪ {⇓,⇑} where each
element of our step algebra is constant on elements whose state is in {⇓,⇑},
where π∗

0 , π
∗
1 are constant on {⇓,⇑}, and where π∗

i (n) = 2 · n + i + 1. In this
case we can think of the state ⇑ as “diverges”, i.e., a state that if reached will
never halt, and we can think of of the maps πi as using the natural bijections
between even and odd natural numbers to “keep track” of what state we are in
as we apply multiple pieces of code.

We are now able to give the two conditions that guarantee the desired
combinators.
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Definition 7. Suppose A = (A × I,�, (v0, v1, r)) is a step algebra with hidden
variables. We say A that has constant functions when there is some c ∈ A
such that for all x, y ∈ A, we have 〈cx, 0〉 ◦ 〈y, 0〉 = 〈x,⇓〉.

We can think of c as code that simply returns the value in its first register. In
this case, cx is then code that already has x in its first register and that returns
the value in its first register. In particular, we have the following easy lemma.

Lemma 3. Suppose A = (A × I,�, (v0, v1, r)) is an iterative step algebra with
a constant function c. Let (A, ◦) = P

(
(A× I,�)

)
be the closure of A. Then for

all x, y ∈ A, we have (r(c) ◦ x) ◦ y = x.

Proof. The code r(c) first reads x into its first register, and then returns cx,
which itself is code that returns what is in the first register (i.e., x). ��

In particular, if A is an iterative step algebra with a constant function, then the
closure of A has a K combinator.

Definition 8. Suppose A = (A× I,�, (v0, v1, r), ([·, ·], p, p0, p1, p2)) is such that

• (A× I,�, v0, v1, r) is a step algebra with hidden variables,

• [ · , · ] : A×A→ A is total, and

• p, p0, p1, p2 ∈ A.

We then say that A has pairing when for all a0, a1, b0, b1 ∈ A and j ∈ I,

• 〈pa0,a1 , 0〉� 〈b0, 0〉 = 〈[b0, b0],⇓〉,
• 〈pa0,a1

0 , 0〉� 〈[b0, b1], j〉 = 〈[b′, b1], j′〉 when 〈a0, 0〉� 〈b0, j〉 = 〈b′, j′〉,
• 〈pa0,a1

1 , 0〉� 〈[b0, b1], j〉 = 〈[b0, b′], j′〉 when 〈a1, 0〉� 〈b1, j〉 = 〈b′, j′〉,
• 〈pa0,a1

2 , 0〉�〈[b0, b1], j〉 = 〈[b0, b′], j′〉 when 〈b0, 0〉�〈b1, j〉 = 〈b′, j′〉 and j′ �=⇓,
and

• 〈pa0,a1

2 , 0〉� 〈[b0, b1], j〉 = 〈b′, j′〉 when 〈b0, 0〉� 〈b1, j〉 = 〈b′,⇓〉.

We say that A = (A×I,�, (v0, v1, r), (π0, π1, t), ([·, ·], p, p0, p1, p2)) is an iterative
step algebra with pairing when (A × I,�, (v0, v1, r), (π0, π1, t)) is an iterative
step algebra and (A × I,�, (v0, v1, r), ([·, ·], p, p0, p1, p2)) is a step algebra with
pairing. We will sometimes abuse notation and speak of the closure of A to
mean P

(
(A× I,�)

)
.

Intuitively, we say that A has pairing when there is an external pairing function
[ · , · ] along with an element of A that takes an element and pairs it with itself; an
element that applies what is in the first register to the first element of the pair;
an element that applies what is in the second register to an element of the pair;
and an element that applies the first element of the pair to the second element,
returning the answer if it halts.
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Lemma 4. Suppose A =
(
A × I,�, (v0, v1, r), (π0, π1, t), ([ · , · ], p, p0, p1, p2)

)
is

an iterative step algebra with pairing. Then the closure of A has an S combinator.

Proof sketch. Suppose (A, ◦) is the closure of A. Let S2 = tp,p0,p1,p2 and let
S = r(r(S2)). Intuitively, S2 takes an argument d and then runs the following
subroutines in succession:

• Return [d, d].
• Return [v0(S2) ◦ d, d].
• Return [v0(S2) ◦ d, v1(S2) ◦ d].
• Return (v0(S2) ◦ d) ◦ (v1(S2) ◦ d).

But then Sab is code that first reads in a, then reads in b (and moves a to the 0th
register), and then performs the above. Hence S is the desired combinator. ��

Definition 9. Let A = (A × I,�) be a step algebra. We say that A is a com-
plete step algebra when it can be extended to an iterative step algebra with
pairing and with constant functions.

Theorem 1. If A is a complete step algebra, its closure is a PCA.

Proof. This follows immediately from Lemma 1, Lemma 3, and Lemma 4. ��

Conjecture 1. Every PCA is isomorphic to a PCA that arises as the closure of
a complete step algebra (for a suitable notion of isomorphism).

5 Future Work

Here we have begun developing a notion of a single step of a computation, in the
setting of PCAs. Having done so, we can now begin the project of developing
robust notions of efficient computation in this general setting. For example,
we aim to use step algebras to extend a notion of computational complexity
to arbitrary PCAs (e.g., by considering suitably parametrized families of step
algebras).

Many questions also remain about the class of step algebras whose closures
yield the same PCA. In particular, there are many natural options one might
consider within the partition on step algebras induced in this way. For example,
the relationship between a step algebra and the one obtained by uniformly col-
lapsing every n-step sequence into a single element, or those obtained by many
other transformations, remains unexplored.

Finally, we plan to use step algebras to develop a notion of reversible computa-
tion in the general context of PCAs. The fine-grained analysis of computational
steps might be used to ensure that each step is injective (whether by requir-
ing that a complete step algebra keep track of its entire stack, or obtained by
other means). Under an appropriate formulation of reversibility, one might ex-
plore whether, for every PCA, there is an essentially equivalent one in which
computation is fully reversible.
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Abstract. For given sets A, B and Z of natural numbers where the
members of Z are z0, z1, . . . in ascending order, one says that A is selected
from B by Z if A(i) = B(zi) for all i. Furthermore, say that A is selected
from B if A is selected from B by some recursively enumerable set, and
that A is selected from B in n steps iff there are sets E0, E1, . . . , En such
that E0 = A, En = B, and Ei is selected from Ei+1 for each i < n.

The following results on selections are obtained in the present paper.
A set is ω-r.e. if and only if it can be selected from a recursive set in
finitely many steps if and only if it can be selected from a recursive set
in two steps. There is some Martin-Löf random set from which any ω-r.e.
set can be selected in at most two steps, whereas no recursive set can
be selected from a Martin-Löf random set in one step. Moreover, all sets
selected from Chaitin’s Ω in finitely many steps are Martin-Löf random.

1 Introduction

Post [12] introduced various important reducibilities in recursion theory among
which the one-one reducibility is the strictest one; here A is one-one reducible to
B iff there is a one-one recursive function F such that A(x) = B(F (x)) for all x.
In a setting of closed left-r.e. sets, Jain, Stephan and Teutsch [2] investigated
a strengthening of one-one reductions were it is required in addition that F is
strictly increasing or, equivalently, that F is the principal function of an infinite
recursive set. The present paper relaxes the latter notion of reducibility and con-
siders reductions given by principal functions of infinite sets that are recursively
enumerable (r.e., for short).
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Recall that the principal function of an infinite set Z is the strictly increasing
function F such that Z can be written as {F (0), F (1), . . .}. In case for such Z
and F some set A is reduced to some set B in the sense that A(x) = B(F (x)) for
all x, this reduction could also be viewed as retrieving A from the asymmetric
join B where the two “halves” of the join are not coded at the even and odd
positions, respectively, of the join as usual but are coded into the positions that
correspond to members and nonmembers, respectively, of the set Z.

Definition 1. A setA is selected from a setB by a setZ ifZ is infinite and for the
principal function F of Z it holds that A(i) = B(F (i)) for all i. A set A is selected
from a setB,A � B for short, ifA is selected fromB by some r.e. set. Furthermore,
say that A is selected from B in n steps iff there are sets E0, E1, . . . , En such that
E0 = A, En = B and Ei is selected from Ei+1 for each i < n.

The set B has selection rank n, if n is the maximum number such that some
set A can be selected from B in n steps but not in n− 1 steps.

It makes sense to consider selection in several steps as the selection relation is not
transitive: it follows by Theorems 14 and 15 that there is a Martin-Löf random set
from which every recursive set can be selected in two steps but not in one step.

Note that for any infinite set Z, the principal function F of Z depends uniquely
on Z. Furthermore, for a selection ofA from B in n steps as in Definition 1, where
Fm selects Em from Em+1, one can easily see that the function F̃ given by

F̃ (y) = Fn−1(Fn−2(. . . F2(F1(F0(y))) . . .))

satisfies that A(i) = B(F̃ (i)). However, since the selection relation is not tran-

sitive, in general, the range of F̃ is not recursively enumerable and one cannot
use the function F̃ to select A from B in one step.

Early research in algorithmic randomness was formulated in terms of admissi-
ble selection rules. More precisely, given a certain way of selecting a subsequence
from the characteristic sequence of a set, a set is called random iff all of its
subsequences selected this way satisfy the condition in the law of large numbers
that in the limit the frequencies of the symbols 0 and 1 are both equal to 1/2 [6].
Furthermore, van Lambalgen’s Theorem [5] states that if one decomposes a set
A by selecting along a recursive set and its complement into two infinite halves
B0 and B1 then A is Martin-Löf random iff B0 and B1 are Martin-Löf random
relative to each other. From this viewpoint it is natural to ask whether the choice
of the selection along a recursive set can be generalised here to the choice along
an r.e. set and how this is compatible with randomness notions. For notions
whose definition involves the halting problem, in particular for Kurtz random
relative to K, Schnorr random relative to K and Martin-Löf random relative
to K, it can easily be shown that if B has one of these randomness properties
and A is selected from B then A has also the same randomness property and
that in the case of Martin-Löf randomness relative to K, one even gets the full
equivalent of van Lambalgen’s Theorem.

These initial and obvious connections ask for deeper investigation in order
to see how far these correspondences go and thus, one of the central questions
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investigated in this paper is when random sets can be selected from extremely
nonrandom ones and vice versa. Furthermore, the notion of ω-r.e. sets — which
also play an important role in algorithmic randomness — fits well with the no-
tion of selection by r.e. sets and strong connections are found. Hence, the present
work aims at establishing some basic properties of the selection relation and at
clarifying its interplay with other established recursion-theoretic notions like
Martin-Löf randomness, immunity, enumeration-properties and initial segment
complexity.

In the sequel it is shown that a set is ω-r.e. if and only if it can be selected
from an infinite and coinfinite recursive set in two steps. Every recursive set E
has selection rank of at most 2, where the selection rank is 2 if and only if the
set is infinite and coinfinite. Furthermore, the truth-table cylinder of the halting
problem has selection rank 1. Every set selected from Ω in finitely many steps
is Martin-Löf random (but differs from Ω in case at least one of the selections
is nontrivial). There are Martin-Löf random sets which behave differently, for
example, all ω-r.e. sets can be selected from some Martin-Löf random set.

2 Selection and ω-r.e. Sets

Recall that a set A is ω-r.e. iff there is a recursive function f and a sequence of
sets A0, A1, . . . such that the As form a recursive approximation to A where the
number of mind changes is bounded by f , that is,

– the sets As are uniformly recursive, that is, the mapping (x, s) !→ As(x) is a
recursive function of two arguments;

– for all x and all sufficiently large stages s, A(x) = As(x);
– A0 = ∅ and for every x there at most f(x) stages s with As(x) �= As+1(x).

Note that a set A is r.e. if and only if it is ω-r.e. with a bounding function f
as above that satisfies the additional constraint that f(x) = 1 for all x. The r.e.
sets and ω-r.e. sets have been well-studied in recursion theory [6, 9–11, 14].

Our first result is that the ω-r.e. sets are closed downwards under the selection
relation.

Theorem 2. Assume that A is selected from B and B is an ω-r.e. set. Then A
is an ω-r.e. set, too.

Proof. Let the recursive approximation B0, B1, . . . and the recursive function f
witness that B is an ω-r.e. set. Furthermore, let W be an r.e. set selecting A
from B. There is a strictly increasing recursive function g such that its range is
a recursive subset W0 of W . Fix some recursive approximationW0,W1, . . . of W
with W0 ⊆W1 ⊆ . . . and let As be the set selected from Bs by Ws. Then A0 = ∅
because B0 = ∅. Furthermore, it can easily be seen that As(n) �= As+1(n)
requires that there is an x ≤ g(n) with Ws(x) �= Ws+1(x) or Bs(x) �= Bs+1(x).
Since for each such x these two conditions can be true for at most 1 and for at
most f(x) stages s, respectively, the total number of stages s where As(n) �=
As+1(n) holds is at most g(n) + 1 + f(0) + . . . + f(g(n)). Hence A is an ω-r.e.
set. �
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Theorem 3. Let O be the set of odd numbers and A be an ω-r.e. set. Then A
can be selected from O in two steps, that is, there is a set B such that A � B
and B � O.

Proof. Let the recursive approximation A0, A1, . . . and the recursive function f
witness that A is an ω-r.e. set and let h(n) = n2 · (1 + f(0)+ f(1)+ . . .+ f(n)).
It suffices to construct B such that, first, A(n) = B(h(n)), that is, the range of
h selects A from B and, second, the set B is selected from O by some r.e. set W .

Split the natural numbers into consecutive intervals I0, J0, I1, J1, I2, J2, . . .
where the length of In is 1 + f(0) + f(1) + . . . + f(n), and the length of Jn is
h(0) + 1 for n = 0 and is h(n)− h(n− 1) for n ≥ 1. Let W0 be the union of all
Jn and let k0 = 0. During stages s = 0, 1, . . ., one applies the following updates:

1. Let Bs be the set selected by Ws from O;
2. if As(ks) �= Bs(h(ks)) then let Ws+1 = Ws ∪ {max(Iks \ Ws)} else let

Ws+1 = Ws;
3. let ks+1 = min({ks + 1} ∪ {j : As(j) �= As+1(j)}).
Say a stage s is enumerating in case on reaching its second step the condition
of the if-clause is satisfied. First it is shown that for every enumerating stage s,
the set Iks \Ws is nonempty, hence indeed the maximum member of this set
is enumerated into W during stage s. Fix n and consider the enumerations of
members of In into W in step 2. After each such enumeration at some stage s,
any further such enumeration requires that at some stage t > s, one has kt+1 ≤
n < kt, which by step 3 in turn requires that the approximation to A has a
mind change of the form At(j) �= At+1(j) where j ≤ n and s < t. Since for
enumerations of distinct members of In there must be distinct such pairs (j, t),
by choice of f at most 1 + f(0) + f(1) + . . . + f(n) = |In| members of In are
enumerated into W .

Next let z0, z1, . . . be the members of W in ascending order and for all s let
zs0, z

s
1, . . . be the members of Ws in ascending order. By choice of the lengths of

the intervals Jn and since W0 was chosen as the union of these intervals, one
has z0h(n) = maxJn for all n. Furthermore, at most |I0|+ · · ·+ |In| ≤ |Jn| times
at some stage s a number smaller than zsh(n) is enumerated into Ws+1. Hence
for all such stages, one has

zsh(n)−1 = zsh(n) − 1, hence zs+1
h(n) = zsh(n) − 1 and O(zs+1

h(n)) = 1−O(zsh(n)) .

In particular, during each enumerating stage s the value of the previous approx-
imation to B(h(ks)) is flipped from O(zsh(ks)

) to O(zs+1
h(ks)

), and after step 2 of

each stage s, one has As(ks) = Bs+1(h(ks)). By induction on stages one can
then show as an invariant of the construction that during each stage s at the
end of step 2 it holds that

As(j) = Bs+1(h(j)) = O(zs+1
h(j)) for all s and all j ≤ ks .

This concludes the verification of the construction because ks goes to infinity by
step 3 and because the sets As, Bs and Ws converge pointwise to A, B and W ,
respectively. �
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The two preceding theorems give rise to the following corollary.

Corollary 4. For any set A the following assertions are equivalent:

1. A is ω-r.e.;
2. A can be selected from O in two steps;
3. A can be selected from O in finitely many steps.

As a further consequence of Theorem 3, there is a set B that is selected from
a recursive set but has a logarithmic lower bound on the plain Kolmogorov
complexity C(σ) of its initial segments σ = B(0)B(1) . . . B(n), hence, in partic-
ular, the set B is complex [3]. Here the plain Kolmogorov complexity C(σ) of
a string σ is the length of the shortest program p such that U(p) = σ for some
fixed underlying universal machine U , see the textbook of Li and Vitányi [6] for
more details. Note that the bound in Corollary 5 is optimal up to a constant
factor by the proof of Theorem 11 below, which yields as a special case that
every set selected from a recursive set has infinitely many initial segments of at
most logarithmic complexity.

Corollary 5. There is a set B selected from O such that for almost all n it
holds that C(B(0)B(1) . . . B(n)) ≥ 0.5 · log(n).

Proof. Section 3 provides a closer look at Chaitin’s Ω, which is the standard ex-
ample of a Martin-Löf random left-r.e. set. From these properties it is immediate
that for almost all n it holds that C(Ω(0)Ω(1) . . .Ω(n)) > n− 3 logn and that Ω
is ω-r.e. with bounding function f(n) = 2n+1 − 1. Applying the construction in
the proof of Theorem 3 with A equal to Ω, one has 1+f(0)+f(1)+ . . .+f(n) ≤
2n+2, hence h(n) ≤ 3n for almost all n. So one can retrieve Ω(0)Ω(1) . . .Ω(n)
from B(0)B(1) . . . B(3n). The corollary now follows by some elementary
rearrangements. �

Proposition 7 determines the rank of certain sets with rank 0, 1 or 2. The corre-
sponding arguments use again Theorems 3 and 11, together with the following
absorption principle for selections by recursive sets.

Proposition 6. Let A be selected from E by the r.e. set W and let E be selected
from B by the recursive set V . Then A is selected from B.

Proof. Let v0, v1, . . . and w0, w1, . . . be the members of V and W , respectively,
in ascending order. Note that n ∈ A iff wn ∈ E iff vwn ∈ B, hence A is selected
from B by the r.e. set {vw0 , vw1 , . . .}. �

Proposition 7. Exactly the sets ∅ and N have selection rank 0. Every finite and
every cofinite set that differs from ∅ and N has selection rank 1. Every recursive
set that is infinite and coinfinite has selection rank 2.

Proof. The only set that can be selected from the empty set is the empty set
itself, hence the empty set has rank 0; the same argument works for N. Next
consider a finite set B. In case B differs from ∅ and N, some set different from B
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can be selected from A, thus the selection rank of B is at least 1. However, in case
a set A is selected fromB in several steps, then A and all the intermediate sets are
finite and all selecting sets can be taken to be recursive. Then B can be selected
from A in a single step according to Proposition 6, hence the selection rank of A
is at most 1. Again, an almost identical argument works for the symmetric case
of a coinfinite set.

The selection rank of O is at most 2 by Corollary 2, and is at least 2 because
by Theorems 3 and 11 the ω-r.e set Ω can be selected from O in two steps but
not in one step. Given any infinite and coinfinite recursive set B, the set B can
be selected from O by a recursive set and vice versa. By the absorption principle
in Proposition 6, from B and O exactly the same sets can be selected in exactly
the same number of steps, hence B and O share the same selection rank. �

Proposition 8 shows that also nonrecursive sets can have a low selection rank.
The proof of the proposition is based on the fact that every set weakly truth-table
reducible to the halting problem K is also one-one reducible to its truth-table
cylinder by a strictly increasing reduction function; however, due to lack of space,
details are omitted. Recall that by definition A is truth-table reducible to B if
there are recursive functions f and g where f maps pairs of numbers and strings
to bits and the reduction is given by A(x) = f(x,B(0), B(1), . . . , B(g(x))) for
every x. Recall further that by definition a set B is a truth-table cylinder if there
are three recursive functions pad, and, neg such that for all x and y, pad(x) > x,
B(pad(x)) = B(x), B(neg(x)) = 1 − B(x) and B(and(x, y)) = B(x) · B(y).
Furthermore, for any set X , one can choose a truth-table cylinder in the truth-
table degree of X and by appropriately restricting this choice to a specific truth-
table cylinder obtain the truth-table cylinder Xtt of X .

Proposition 8. The truth-table cylinder Ktt of the halting problem has selection
rank 1 and every ω-r.e. set can be selected from it by a recursive set W .

3 Selection and Ω

Chaitin’s Ω is a standard example for a Martin-Löf random set which is in ad-
dition also an ω-r.e. set [1]. It will turn out that Ω has various special properties
and some but not all of them are shared by Martin-Löf random sets in general.
The following gives an overview about Martin-Löf randomness.

Using a characterisation of Schnorr [13], one can say that a set A is Martin-Löf
random [7] iff no r.e. martingale M succeeds on A. In this context, a martin-
gale is a function from binary strings to nonnegative real numbers such that
M(σ) = (M(σ0)+M(σ1))/2. M succeeds on a set A iff the set {M(σ) : σ " A}
has the supremum ∞, where σ " A means that σ(x) = A(x) for all x in the
domain of σ; similarly one can compare strings with respect to ". Furthermore,
M is called r.e. iff {(σ, q) : σ ∈ {0, 1}∗, q ∈ Q,M(σ) > q} is recursively enu-
merable; M is recursive iff the just defined set is recursive. Without loss of
generality, one can take a recursive martingale to be Q-valued and can show
that whenever some recursive martingale succeeds on A then some Q-valued
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recursive martingale succeeds on A where in addition the function σ !→ M(σ)
is a recursive mapping which returns on input σ the canonical representation
(as a pair of numerator and denominator) of M(σ). This also holds relativised
to oracles. Furthermore, one can say that a partial-recursive martingale M suc-
ceeds on A iff for every σ " A, M(σ),M(σ0),M(σ1) are all defined, for every
σ " A the relation M(σ) = (M(σ0) + M(σ1))/2 holds and the supremum of
{M(σ) : σ " A} is ∞. It is known that if a recursive martingale succeeds
on A, then also a partial-recursive martingale succeeds on A; furthermore, if a
partial-recursive martingale succeeds on A then a r.e. martingale succeeds on
A. A further characterisation by Zvonkin and Levin [15] is that A is Martin-Löf
random iff there is no partial-recursive function G compressing A. Here G com-
presses A iff G maps strings to strings, the domain of G is prefix free – that
is whenever G(p) is defined then G(pq) is undefined for all p, q ∈ {0, 1}∗ with
q �= ε – and there are infinitely many n for which there is a p of length at most
n with G(p) = A(0)A(1) . . . A(n). The interested reader is referred to standard
textbooks on algorithmic randomness for more information [6, 9].

In this section, the relations between Ω and � are investigated. First, Theo-
rem 9 shows every set selected from Ω is Martin-Löf random. Second, the next
result shows that one cannot select Ω nontrivially in several steps from itself,
that is, there are no sets E0, E1, . . . , En such that Em � Em+1 via an Wem �= N
for all m < n and E0 = En = Ω.

Note that for this section, for an r.e. set W with recursive enumeration
W0,W1, . . . (that is, the Ws are uniformly recursive, W =

⋃
sWs and W0 ⊆

W1 ⊆ . . .), one defines the convergence module cW (x) is the first stage s ≥ x
such that Ws(y) = W (y) for all y ≤ x. Furthermore, one fixes an approximation
Ω0,Ω1, . . . from the left for Ω, that is, this approximation satisfies the following
three conditions:

– the Ωs are uniformly recursive;
– for all x and almost all s, Ω(x) = Ωs(x);
– whenever Ωs+1 �= Ωs, then the least element x in the symmetric difference

satisfies x ∈ Ωs+1 − Ωs.

Now one defines the convergence module of Ω at x as cΩ(x) = min{s ≥ x : ∀y ≤
x [Ωs(y) = Ω(y)]}. Note that cΩ, due to Ω being Martin-Löf random, grows much
faster than cW for any given r.e. set W ; in particular there is a constant c such
that, for all x > 0, cΩ(x − 1) + c ≥ cW (x). This is used in several of the proofs
below, in particular as martingales working on Ω and currently having the task
to predict Ω(x), can from the already known values Ω(0) . . .Ω(x− 1) figure out
which y ≤ x are in finitely many fixed r.e. sets and therefore reconstruct the
nature of reductions up to x.

Theorem 9 answers an open question by Kjos-Hanssen, Stephan and Teutsch
[4, Question 6.1] on whether a set selected from Ω by an r.e. set is Martin-Löf
random; the corresponding question with respect to selections by co-r.e. sets also
mentioned there is still open.

Theorem 9. If A is selected from Ω in finitely many steps then A is Martin-Löf
random.
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Proof. Assume that there are a number n and sets E0, E1, . . . , En, A = E0,
Ω = En and for all m < n there is an increasing function Fm with x ∈ Em ⇔
F (x) ∈ Em+1 and the range of Fm being an r.e. set. Note that one knows
Fm(0), Fm(1), . . . , Fm(y) at time s iff all elements of the range of Fm below
Fm(y) are enumerated within s time steps (with respect to some given recursive
enumeration of the range of Fm). As the convergence module of Ω dominates the
convergence module of every r.e. set there is a constant c such that one can, for
every x > 0 and every m < n, compute Fm(y) for all y with Fm(y) ≤ x within
time cΩ(x − 1) + c.

Now assume by way of contradiction that A is not Martin-Löf random. Miller
[8] showed that there is an oracle B which is low for Ω and PA-complete; that
is, B satisfies that Ω is Martin-Löf random relative to B and that every partial-
recursive {0, 1}-valued function has a total B-recursive extension. It is known
that every set which is not Martin-Löf random is not recursively random relative
to such an oracle B; hence there is a B-recursive martingale M which succeeds
on A.

Now it is shown thatM can be transformed into a partial B-recursive martin-
gale N succeeding on Ω in contradiction to the choice of B; this N will be defined
inductively and the N(σa) will be defined for all σ " Ω and all a ∈ {0, 1}. This
is done by inductively defining sequences Φ(σ) from σ for some partial-recursive
function Φ and then letting N(σ) = M(Φ(σ)). As a starting point, let Φ(ε) = ε
and hence N(ε) = M(ε). Inductively, Φ(σa) is defined from Φ(σ) and hence
N(σa) from N(σ).

Now for any given σ where Φ(σ) and N(σ) are defined, one does for a = 0, 1
the following: Let s = t + c for the first time t ≥ |σ| with σ " Ωt; if this time
t does not exist then N(σ0) and N(σ1) are undefined. Having s, one computes
approximations Fm,0, Fm,1, . . . to Fm where Fm,s(y) is the y-th element of the
set of strings enumerated into the range of Fm within s steps with respect to
some recursive enumeration. Let

F̃s(y) = Fn−1,s(Fn−2,s(. . . (F1,s(F0,s(y))) . . .))

and F̃ (y) be the limit of F̃s(y). Note that when σ " Ω then F̃s(y) = F̃ (y) for

all y with F̃ (y) ≤ |σ|+ 1 because of the above domination properties; note that

the t there would be cΩ(|σ|). Furthermore, for all y, either F̃s(y) is undefined or

F̃s(y) ≥ F̃ (y).

If there is a y such that F̃s(y) = |σ| then let Φ(σa) = Φ(σ)a else let Φ(σa) =
Φ(σ). Furthermore, N(σa) = M(Φ(σa)).

Now one analyses the behaviour of N on Ω. Note that whenever σa " Ω
and F̃s(y) ∈ dom(σa) then F̃s(y) = F̃ (y) where the s is as above. As a con-

sequence, one has for the maximal y with F̃s(y) ∈ dom(σa) that Φ(σa) =

Ω(F̃ (0))Ω(F̃ (1)) . . .Ω(F̃ (y)) and hence Φ(σa) " A. It follows that N works on Ω
like a delayed version of M on A; in particular as M takes on A arbitrarily large
values, so does N on Ω. This would mean that N succeeds on Ω in contradiction
to the assumption that Ω is Martin-Löf random relative to the oracle B. Thus,
against the assumption, the set A has to be Martin-Löf random. �
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A similar proof (which is omitted due to page constraints) shows the following
result.

Theorem 10. One cannot select Ω nontrivially in several steps from itself, that
is, there are no n > 0 and no sets E0, E1, . . . , En such that Em � Em+1 via an
Wem �= N for all m < n and E0 = En = Ω.

Furthermore, one can also show the following: interchange even and odd positions
by letting Ω̃(2n) = Ω(2n+1) and Ω̃(2n+1) = Ω(2n); the set Ω̃ cannot be selected
from Ω in any number of steps.

4 Selection and Martin-Löf Random Sets in General

After having investigated relations between selection and the special Martin-
Löf random set Ω, the focus is now on relations between selection and Martin-
Löf random sets in general. First, Theorems 11 and 12 exhibit classes of sets
from which no Martin-Löf random set can be selected in one step. Furthermore,
Theorems 14 and 15 assert that there is a Martin-Löf random set from which
one can select all ω-r.e. sets in up to two steps, whereas no recursive set can be
selected from any Martin-Löf random set in one step.

Theorem 11. Assume that B is Turing reducible to a Turing-incomplete r.e.
set. Then no set selected from B is Martin-Löf random.

Proof. Let B be stated as in the theorem. Recall that a sufficient criterion for
a set A to be not Martin-Löf random is that there are infinitely many n such
that the plain Kolmogorov complexity of A(0)A(1) . . . A(n) is bounded propor-
tionally to log(n). Indeed, in the following it is shown that there are a constant
c and infinitely many n such that C(A(0)A(1) . . . A(n)) ≤ 2 · log(n) + c.

Consider any A � B and let W be the r.e. set with A(n) = B(wn) for the
n-th element wn ofW in ascending order. Let b0, b1, b2, . . . be a recursive one-one
enumeration of W and let e0 = 0 and en+1 be the first number d > en such that
ben < bd. Note that the mapping m !→ bem is recursive. Now given any m, let
n be the number with bem = wn, note that m ≤ n. Knowing m and n, one can
compute w0, w1, . . . , wn.

There is a recursive approximation B0, B1, . . . to B such that the convergence
module g of this approximation does not permit to compute the diagonal halt-
ing problem K. In particular there are infinitely many m ∈ K such that m is
enumerated into K at a stage s larger than g(bem) and all wk with k ≤ n satisfy
Bs(wk) = B(wk). Hence, for thesem and the corresponding n, A(0)A(1) . . . A(n)
can be described by m and n using the time s when m is enumerated into K
and the members w0, w1, . . . , wn of W obtained from m,n and conjecturing that
A(k) = Bs(wk) for k = 0, 1, . . . , n. For the right parameters, the s exists and
the corresponding data can be computed and the resulting string is correct. As
one can describe m and n by two numbers of log(n) binary digits (the number
of digits must be the same for permitting to separate out the digits from m
from those for n), C(A(0)A(1) . . . A(n)) ≤ 2 · log(n) + c for some constant c and
infinitely many n. It follows that A is not Martin-Löf random. �
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Theorem 12. Every truth-table degree contains a set B such that no set selected
from B is Martin-Löf random.

Proof. This proof is mainly based on the fact that every truth-table degree
contains a retraceable set; here a set B is retraceable iff there is a partial-recursive
function ψ which returns for every x ∈ B a canonical index of the set {y ≤ x : y ∈
B}; on x /∈ B, ψ can either be undefined or return any information, either wrong
or right. For example, if E is a given set then the set B = {x0, x1, . . .} with x0 = 1
and xn+1 = 2xn+E(n) for all n is a retraceable set of the same truth-table degree
as E. So fix such B and ψ with B being inside the given truth-table degree. The
proof follows now in general the proof of Theorem 11 with the adjustment that
it is shown that for each A � B there are a constant c and infinitely many n
such that the plain Kolmogorov complexity of A(0)A(1) . . . A(n) is bounded by
3 · log(n) + c, which then gives that A is not Martin-Löf random.

Consider any A � B and let W be the r.e. set with A(n) = B(wn) for the
n-th element wn of W in ascending order. Without loss of generality, 0 ∈ A. Let
b0, b1, b2, . . . be a recursive one-one enumeration of W and let e0 = 0 and en+1

be the first number d > en such that ben < bd. Note that the mapping m !→ bem
is recursive. Now given any m, let n be the number with bem = wn, note that
m ≤ n. Knowing m and n, one can compute w0, w1, . . . , wn. Furthermore, let
k be such that wk is the maximal of the w0, w1, w2, . . . , wn with wk ∈ B. Note
that k ≤ n and k exists as 0 ∈ A ∧w0 ∈ B.

Hence, for each n and the corresponding m, k ≤ n, one can compute w0, w1,
. . . , wn from m,n and use ψ(wk) to find out which of these numbers are in B.
Hence A(0)A(1) . . . A(n) can be computed from n,m, k. One can code m,n, k
as 3 binary numbers of log(n) digits each and gets therefore that there are a
constant c and infinitely many n such that C(A(0)A(1) . . . A(n)) ≤ 3 · log(n)+ c.
Hence the set A is not Martin-Löf random. �

If one would start with a hyperimmune set B then every A � B is also hyperim-
mune and therefore not Martin-Löf random. Hence one has the following result
similar to the previous one.

Proposition 13. There are uncountably many sets B such that no set that is
selected from B in one or several steps is Martin-Löf random.

The following result stands in contrast to Theorem 9, which says that one can-
not select any nonrandom set from Ω in arbitrarily many steps. Note that the
resulting set B is like Ω also an ω-r.e. Martin-Löf random set. The lengthy proof
is omitted due to page constraints.

Theorem 14. There is a Martin-Löf random set B such that some set selected
from B is not Martin-Löf random and every ω-r.e. set can be selected from B
in two steps.

Theorem 15 below shows that the above bound of two steps cannot be brought
down to one; indeed, recursive sets can be selected from the above B in exactly
two steps. Note that the proof of Theorem 15 indeed shows that it is not possible
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to select from a Martin-Löf random set any set that obeys certain upper bounds
on the complexity of its initial segments.

Theorem 15. It is not possible to select a recursive set from a Martin-Löf
random set.

Proof.Assume that A � B via an r.e. setW and A is recursive and F is the func-
tion which lists W in ascending order (F is not recursive). So A(x) = B(F (x))
for all x andW = {F (0), F (1), . . .}. Let u0, u1, . . . be an ascending recursive enu-
meration of a recursive subset of W which is selected such that W has at least
3n elements below a given un. Now one shows that there is a partial-recursive
function G with prefix-free domain which compresses B, that is, for which there
are infinitely many p ∈ dom(G) with G(p) being a prefix of B which is longer
than |p|; this would then be an alternative way to prove that B is not Martin-Löf
random.

On input p = 0n10m1b0b1 . . . bmc0c1 . . . ck, G(p) first checks whether k + 1 =
un − d where d is the binary value of b0b1 . . . bm. In the case that this is true,
G(p) enumerates the W until d many elements at places F̃ (0), F̃ (1), . . . , F̃ (d)

have been enumerated into W with F̃ (0) < F̃ (1) < . . . < F̃ (d) = un. If this
is eventually achieved and if d ≥ n, then G outputs a string σ ∈ {0, 1}un+1

which is obtained by letting σ(F̃ (d′)) = A(d′) for all d′ ≤ d and by filling the
remaining missing k + 1 values in σ below the position un according to the
string c0c1 . . . ck. This results in a string of length un which is computed from
a p of length n + 2m + k + 4; by taking m as small as possible, one has that
m ≤ log(d)+1 and n ≤ log(d), thus one has a length bounded by un+3 log(d)−d
which is, for all sufficiently large n and d (as d ≥ n) smaller than un.

One has now to show that one can always choose d, m, b0b1 . . . bm and
c0c1 . . . ck such that the corresponding output G(p) is B(0)B(1) . . . B(un). To
see this, let d be the number of strings in W up to un (which is larger than
n) and m = log(d) and b0b1 . . . bm be the binary representation of d. Further-

more, let k = un − d − 1. One gets that F̃ (d′) = F (d′) for all d′ ≤ d. Now one
chooses c0c1 . . . ck such that the missing positions in σ which are not covered by
F (0), F (1), . . . , F (d) are covered with the corresponding bits of B. Hence one has
that for the so selected p that G(p) equals B(0)B(1) . . . B(un). It is furthermore
easy to verify that the domain of G is prefix-free. �

5 Conclusion

The present paper focussed on the question when a set A is one-one reducible
to B via the principal function of an r.e. set and generalised this notion also
to reductions in several steps, as this reducibility is not transitive. The investi-
gations show that there is a rich relation between this type of reducibility and
ω-r.e. sets and Martin-Löf random sets. Future work might in particular address
the question for which numbers n ∈ {0, 1, 2, . . . ,∞} there are sets A of selection
rank n; for n = 0, 1, 2, examples are given within this paper and all of these
examples are ω-r.e. sets. As the current investigations centered on ω-r.e. sets,
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subsequent research might also aim for more insights concerning the selection
relation among sets that are not ω-r.e. or even not Δ0

2. For example, one might
ask whether every set selected from a strongly random set in finitely many steps
is again strongly random; this closure property holds for 2-randomness and also
for 2-genericity but not for Martin-Löf randomness and also not for 1-genericity.
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Abstract. An additive system to generate a semilinear set is k-bounded
if it can generate any element of the set by repeatedly adding vectors
according to its rules so that pairwise differences between components
in any intermediate vector are bounded by k except for those that have
achieved their final target value. We look at two (equivalent) representa-
tions of semilinear sets as additive systems: one without states (the usual
representation) and the other with states, and investigate their proper-
ties concerning boundedness: decidability questions, hierarchies (in terms
of k), characterizations, etc.

Keywords: semilinear set, generator without states, generator with
states, bounded, multitape NFA, decidable, undecidable.

1 Introduction

Semilinear sets have been extensively investigated because of their connection
to context-free grammars [14] and their many decidable properties that have
found applications in various fields such as complexity and computational theory
[9,13], formal verification [15], and DNA self-assembly [1]. Nevertheless, there are
still interesting problems that remain unresolved, for example, the long-standing
open question of S. Ginsburg [3] of whether or not it is decidable if an arbitrary
semilinear set is a finite union of stratified linear sets. The purpose of this paper
is to examine the “boundedness” properties of additive systems that generate
semilinear sets.

A linear set Q is a subset of Nn (the set of n-dimensional nonnegative integer
vectors) that can be specified by a linear generator (c, V ) as Q = {c+i1v1+ · · ·+
irvr | i1, . . . , ir ∈ N}, where c ∈ Nn is a constant vector and V = {v1, . . . , vr} ⊆
Nn is a finite set of periodic vectors. A process for (c, V ) to generate a vector
v ∈ Q can be described as a sequence of intermediate vectors u0, u1, . . . , uk,
where u0 = c, uk = v, and for 1 ≤ j ≤ k, uj − uj−1 ∈ V . We say that the linear
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generator (c, V ) is k-bounded if any vector v in Q admits a generating process
where each intermediate vector has the property that the difference in any of
its two components neither of which has reached its final value is at most k.
(Actually, this definition is valid for any additive vector generating system.) A
semilinear set Q ⊆ Nn is a finite union of linear sets so that a collection of linear
generators of the linear sets comprising Q is a conventional way to specify Q
and called a generator of Q.

The aim of this paper is to compare the conventional generator with another
automata-like system to generate semilinear sets, which we call a generator with
states. We investigate their properties concerning boundedness: decidability ques-
tions, hierarchies (in terms of k), and characterizations in terms of synchronized
multitape NFAs (which has been recently studied in [2,10,11,12,16]). We show
that for any k ≥ 1, every k-bounded generator with states can be converted into
an equivalent (k − 1)-bounded one (Proposition 2). Thus, the hierarchy among
bounded generators with states with respect to k collapses. This is in marked con-
trast with the existence of an infinite hierarchy among bounded generatorswithout
states (Theorem 3). As for the decidability problems, we first show that it is de-
cidable whether a given generator with states is k-bounded for a given k ≥ 0, and
then show the decidability of the problem of determining the existence of such k
(Lemma 1).We also show that it is decidable whether a given semilinear set can be
generated by a k-bounded (stateless, i.e., conventional) generator for some k ≥ 0.
This is a corollary of our characterization result that a unary n-tuple language L
is accepted by a 0-synchronized n-tape NFA if and only if there exists a k ≥ 0
such that the semilinear set Q(L) = {(i1, i2, . . . , in) | (ai1 , . . . , ain) ∈ L} can be
generated by a k-bounded stateless generator (Corollary 3).

Our motivation for studying bounded semilinear sets is that if we know that
a semilinear set is bounded, then it can be defined in a simple way in terms
of a synchronized multitape NFA, which in turn can be reduced to an ordi-
nary one-tape NFA (as we will see later). Hence decision questions concerning
bounded semilinear sets (e.g., disjointness, containment, equivalence, etc.) and
their analysis can be reduced to similar questions concerning finite automata.

The paper is organized as follows. After the preliminary section (Sect. 2),
we introduce the notion of bounded generator in Sect. 3. We prove the main
characterization results in Sect. 4. In Sect. 5, we show that if a linear set Q admits
one stateless unbounded linear generator, then all stateless linear generators of
Q are also unbounded. We conjecture that this generalizes to semilinear sets.
Sect. 6 is an appendix.

2 Preliminaries

For the set N of natural numbers and n ≥ 1, Nn denotes the set of (n-dimensional
nonnegative integer) vectors including the zero vector 0 = (0, 0, . . . , 0). For a
vector v = (i1, . . . , in) ∈ Nn, v[j] denotes its j-th component, that is, v[j] = ij .
A set of vectors Q ⊆ Nn is called a linear set if there is a vector c ∈ Nn (constant
vector) and a finite (possibly-empty) set V = {v1, . . . , vr} ⊆ Nn \ {0} of nonzero
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Fig. 1. A generator with states that simulates the vector generation process by a
(stateless) generator G = {(c1, V1), . . . , (cm, Vm)}

vectors (periodic vectors) such that Q = {c+ i1v1 + · · ·+ irvr | i1, . . . , ir ∈ N}.
We denote Q also as c + V ∗. We call the pair (c, V ) a linear generator of Q. A
set of vectors is called a semilinear set if it is a finite union of linear sets. The
set of linear generators of linear sets comprising Q is called a generator of Q.

Let Σ be an alphabet, and Σ∗ be the set of words over Σ. For w ∈ Σ∗,
let |w| be the number of letters (symbols) in w. For an n-letter alphabet Σ =
{a1, a2, . . . , an}, the Parikh map of a word w ∈ Σ∗, denoted by ψ(w), is the
vector (|w|a1 , . . . , |w|an), where |w|ai denotes the number of occurrences of the
letter ai in w. The Parikh map (or image) of a language L ⊆ Σ∗ is defined as
ψ(L) = {ψ(w) | w ∈ L}.

A language L ⊆ Σ∗ is bounded if it is a subset of w∗
1 · · ·w∗

n for some nonempty
words w1, . . . , wn ∈ Σ∗. If all of w1, . . . , wn are pairwise-distinct letters, then L is
especially called letter-bounded. A bounded language L ⊆ w∗

1 · · ·w∗
n is semilinear

if the set Q(L) = {(i1, . . . , in) | wi1
1 · · ·win

n ∈ L} is a semilinear set.
Basic knowledge of nondeterministic finite automata (NFA) is assumed (see

[5] for them). A (one-way) multitape NFA is, as the term indicates, an NFA
equipped with multiple input tapes each of which has its own (one-way) read-
only head. We assume that input tapes of a multitape NFA have right end
markers, though they are not indispensable (see Sect. 6). For k ≥ 0, a multitape
machine M (with a right end marker on each tape) is k-synchronized if, for any
word it accepts, there exists an accepting computation during which the distance
between any pair of heads that have not reached the end marker is at most k.

3 Bounded Generators

A standard representation of a semilinear set Q is by a generator G = {(c1, V1),
. . . , (cm, Vm)}, where (c1, V1), . . . , (cm, Vm) are linear generators. We call this a
generator without states or stateless generator in contrast to another automata-
like representation we will propose shortly.

Definition 1. A generator G of a semilinear set Q is k-bounded if for every n-
tuple (x1, . . . , xn) in Q, there exists a linear generator (ci, Vi) ∈ G and periodic
vectors vi1 , . . . , vir ∈ Vi such that the following holds:
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s0 s1 s2

(1, 0)

(1, 0)

(0, 1)

(0, 1)
s′0

s′1

s′2

(1, 1)

(1, 1) (1, 0)

(1, 1) (0, 1)

Fig. 2. Examples of generators with states for the semilinear set Q = {(i, j) | i, j ≥ 1},
where double circles indicate accepting states. The left generator is 0-bounded whereas
the right one is not k-bounded for any k ≥ 0.

1. (x1, . . . , xn) = ci + vi1 + · · ·+ vir .
2. For 1 ≤ j < r, if ci+ vi1 + · · ·+ vij = (y1, . . . , yn), then every 1 ≤ p < q ≤ n

such that yp �= xp and yq �= xq satisfies |yp − yq| ≤ k.

Thus, every n-tuple in Q can be obtained by adding to ci (1 ≤ i ≤ m) periodic
vectors in Vi one after another in such a way that after each vector addition, the
resulting n-tuple has the property that the difference of any of its two compo-
nents neither of which has reached its final value is at most k. This property is
not trivial as seen in the following example.

Example 1. The linear generator ((0, 0), {(0, 1), (1, 0), (1, 1)}) generates a linear
set Q1 = {(i, j) | i, j ≥ 1} and actually it is 0-bounded; a tuple (i, j) with
1 ≤ i ≤ j can be generated as (i, j) = (0, 0)+(1, 1)+· · ·+(1, 1)+(0, 1)+· · ·+(0, 1),
where (1, 1) occurs i times and (0, 1) occurs j − i times; and an analogous way
to sum periodic vectors works for the other case when 0 ≤ j ≤ i. Similarly,
Q2 = {(i, i) | i ≥ 0} can be generated by a 0-bounded linear generator. In
contrast, as for Q3 = {(i, 2i) | i ≥ 0}, even k-bounded generator (not-necessarily
linear) does not exist for any k. This will be rigorously shown in Example 2.

We will show the relationships between the boundedness of generators of n-
dimensional semilinear sets and the head-synchronization of n-tape NFAs over
unary inputs a∗1×· · ·×a∗n (a1, . . . , an are letters which do not have to be pairwise
distinct). For this purpose, we generalize the specification of generators by adding
the notion of state transition. A generator with states is specified by a 5-tuple
Gs = (S, T, 0, s0, F ), where S is a finite set of states, the zero vector 0 = (0, ..., 0)
is the starting vector, s0 ∈ S is the initial state, F ⊆ S is the set of final or
accepting states, and T is a finite set of transitions of the form: s → (s′, v),
where s, s′ ∈ S are states and v is a vector in Nn. The set generated by Gs

consists of the vectors in Nn that can be obtained from 0 by adding the assigned
vector every time a transition occurs until a final state is reached. We denote
the set by Q(Gs). Two generators with states are illustrated in Fig. 2, which are
for the same semilinear set Q = {(i, j) | i, j ≥ 1}. The generator with states is a
variant of vector addition system with states (VASS) [6].
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As illustrated in Fig. 1, the vector generation process by a (stateless) generator
G = {(c1, V1), . . . , (cm, Vm)} can be simulated by a generator with m+1 states.
The converse is also true; in fact, introducing the notion of states does not
expand the class of generable vector sets.

Proposition 1. The class of the sets of vectors that can be generated by a gen-
erator with states is equal to the class of semilinear sets.

Proof. It is sufficient to show that the set of vectors that can be generated by
a generator Gs with states is semilinear. We construct an n-tape NFA which,
when given an n-tuple (ai11 , . . . , a

in
n ), simulates Gs and checks if the input can

be generated by Gs. (Note that M can only move a head at most one cell to the
right at each step, but by using more states, M can simulate a vector addition
by Gs in a finite number of steps.) When Gs accepts, M moves all its heads to
the right and accepts if they are all on the end marker. It follows from [4] that
the set Q = {(i1, ..., in) | (ai11 , ..., ainn ) ∈ L(M)} is semilinear. ��

Given a generator Gs with states, interpreting the vector v assigned to a state
transition as moving the i-th head to the right by v[i] enables us to regard Gs

as an n-tape NFA that accepts {(ai11 , . . . , ainn ) | (i1, . . . , in) ∈ Q(Gs)}, and the
converse interpretation is also valid (note that the guessing power of a multitape
NFA eliminates the need for end markers, see Sect. 6). If the NFA thus inter-
preted is k-synchronized, then any vector v in Q(Gs) admits a generation process
by Gs in such a manner that for any intermediate vector u and 1 ≤ i, j ≤ n
with u[i] < v[i] and u[j] < v[j], the inequality |u[i] − u[j]| ≤ k holds. We call
this property the k-boundedness of generator with states. For instance, the left
generator in Fig. 2 is 0-bounded, while the right one is not k-bounded for any
k ≥ 0. This definition of bounded generators is consistent with the one given
in Definition 1 (as shown in Fig. 1, a stateless generator can be regarded as a
generator with states).

It is known that any k-synchronized n-tape NFA admits an equivalent
0-synchronized one [11]. Hence, we have:

Proposition 2. For any k-bounded generator with states, there exists a
0-bounded generator with states that generates the same semilinear set.

In Example 1, we claimed that there does not exist k ≥ 0 such that the set
{(i, 2i) | i ≥ 0} could be generated by a k-bounded (stateless) generator. Here,
we prove this claim, even for generator with states.

Example 2. For the sake of contradiction, suppose that the semilinear set Q =
{(i, 2i) | i ≥ 0} has a k-bounded generator Gs with p states for some k ≥ 0.
Proposition 2 enables us to assume that Gs is 0-bounded. Consider the tuple
(p, 2p) in Q. Then Gs would generate a tuple (p+ k, 2p+ k) for some k ≥ 1 but
this is not in Q.

In contrast to Proposition 2, we will see later (Theorem 3) that there exists an
infinite hierarchy of semilinear sets with respect to the degree k of boundedness
for stateless generators.
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Lemma 1. Given a generator Gs with states,

1. it is decidable whether Gs is k-bounded for a given k ≥ 0;
2. it is decidable whether Gs is k-bounded for some k ≥ 0.

Proof. As mentioned above, Gs can be considered as an n-tape NFA M and Gs

is k-bounded if and only if M is k-synchronized.
We construct another n-tape NFA M ′ that simulates M and makes sure that

during the simulation, the separation between any pair of heads that have not
reached the end marker is at most k; otherwise M ′ rejects. It follows that Gs

is k-bounded if and only if L(M) = L(M ′). The first decidability holds because
equivalence of n-tape NFAs over bounded inputs is decidable [8].

As for the second decidability, it suffices to decide whether M ′ is k-
synchronized for some k ≥ 0, and this is known to be decidable [2]. (The result
in [2] was for n = 2, but can be generalized for an arbitrary n.) ��

In this proof, we can see that an exhaustive search brings us an integer k ≥ 0
such that Gs is k-bounded, if such k exists, and a k-synchronized n-tape NFA
M ′ that accepts the language {(ai11 , . . . , ainn ) | (i1, . . . , in) ∈ Q(Gs)}. Recall that
M ′ can be effectively converted into an equivalent 0-synchronized n-tape NFA.
Thus, the next result holds.

Theorem 1. For k ≥ 0, a k-bounded generator Gs with states can be effectively
converted into a 0-synchronized n-tape NFA that accepts L = {(ai11 , . . . , ainn ) |
(i1, · · · , in) ∈ Q(Gs)}.

4 Boundedness of Stateless Generators
and Head-Synchronization of Multitape NFAs

The conversion of Theorem 1 trivially works for any k-bounded stateless gener-
ator. Interestingly, the following converse is also true.

Theorem 2. If a language L ⊆ a∗1 × · · · × a∗n is accepted by a 0-synchronized
n-tape NFA M , we can effectively compute k ≥ 0 and a k-bounded (stateless)
generator for the semilinear set Q(L) = {(i1, . . . , in) | (ai11 , . . . , ainn ) ∈ L}.

The proof of this theorem requires some preliminary notions and lemmas. First
of all, as pointed out in [12], we can regard a 0-synchronized n-tape NFA as an
NFA that works on one tape over an extended alphabet Π of n-track symbols,
which is defined as:

Π =

⎧⎪⎨⎪⎩
⎡⎢⎣a1...
an

⎤⎥⎦ ∣∣∣∣∣ a1, . . . , an ∈ Σ ∪ {�}

⎫⎪⎬⎪⎭ ,

where � �∈ Σ is the special letter for the blank symbol. Track symbols are distin-
guished from tuples of letters by square brackets, and for the space sake, written
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as t = [a1, . . . , an]
T ; the superscript T will be omitted unless confusion arises. For

an index 1 ≤ i ≤ n, t[i] denotes the letter on the i-th track of t, that is, ai.
We endow Π with the partial order ", which is defined as: for track symbols

t1, t2 ∈ Π , t1 " t2 if t1[i] = � implies t2[i] = � for all 1 ≤ i ≤ n. For example,
[�, b, c] is smaller than [�,�, c] according to this order but incomparable with
[a,�, c]. An n-track word t1t2 · · · tm is left-aligned if t1 " t2 " · · · " tm holds. In-
formally speaking, on a left-aligned track word, once we find � on a track, then to
its right we will find nothing but �’s. The left-aligned n-track word t1t2 · · · tm can
be converted into the n-tuple (h(t1[1]t2[1] · · · tm[1]), . . . , h(t1[n]t2[n] · · · tm[n])) of
words overΣ using the homomorphism h : Σ∪{�} → Σ to erase�. For instance,
[a, b, c][�, b, c][�,�, c] is thus converted into (h(a��), h(bb�), h(ccc)), which is
(a, bb, ccc). By reversing this process, we can retrieve the original left-aligned n-
track word from the resulting n-tuple of words. This one-to-one correspondence
makes possible to assume that 0-synchronized n-tape NFAs, being regarded as
a 1-tape NFA over track symbols, accept only left-aligned inputs.

Powers of t are left-aligned. This is because t " t (reflexiveness) holds for
any track symbol t ∈ Π as " is a partial order. The m-th power of t ∈ Π
corresponds to the n-tuple (t[1]m, t[2]m, . . . , t[n]m). The next lemma should be
straightforward.

Lemma 2. Let t be an n-track symbol and m ≥ 0. Then for any 1 ≤ j ≤ n,

|tm[j]| =
{
0 if t[j] = �,

m otherwise.

First, we show a property of a linear set that corresponds to a given unary
n-track language L, that is, L ⊆ t∗ for some track symbol t ∈ Π .

Lemma 3. Let L be a language over one n-track symbol t = [a1, . . . , an] ∈ Π.
If a linear generator (c, V ) generates {(i1, . . . , in) | [ai11 , . . . , ainn ] ∈ L}, then for
any vectors v1, v2 ∈ {c} ∪ V and 1 ≤ i, j ≤ n,

1. v1[i] �= 0 if and only if v2[i] �= 0.
2. if v1[i], v1[j] �= 0, then v1[i] = v1[j];

Proof. Let us begin with the proof for 1. For the sake of contradiction, suppose
that there were a periodic vector v and 1 ≤ i ≤ n such that either

a). c[i] = 0 but v[i] �= 0, or
b). c[i] �= 0 but v[i] = 0.

The word [a
c[1]
1 , . . . , a

c[n]
1 ] belongs to L, and in the case a), its i-th component

is the empty word. Then there are two subcases to be examined depending on
whether c is the zero vector or not. We consider only the subcase when it is not,
and see the subcase lead us to a contradiction; the other case can be proved
also contradictory by comparing two periodic vectors instead. So, if c[i] = 0

but c is not zero, then the word (a
c[1]
1 , . . . , a

c[n]
1 ) in L is not the 0-th power of
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t; nevertheless its i-th component is the empty word. This means that the i-
th component of the track symbol t is the empty word, and as a result, so is

the i-th component of all track words in L. Since [a
c[1]+v[1]
1 , . . . , a

c[n]+v[n]
n ] ∈ L,

c[i] + v[i] = 0, but this contradicts v[i] �= 0. Thus, if c[i] = 0, then v[i] = 0.

In the case b), all the words in L that correspond to c+{v}∗ have ac[i]1 as their
i-th component. Lemma 2 implies that nonzero components of these words are

all of length |ac[i]1 |. This means that this linear set is finite, and hence, v would
be the zero vector.

As for the property 2, since L contains the word [a
c[1]
1 , . . . , a

c[n]
n ] and L is

unary, if neither a
c[i]
i nor a

c[j]
j is the empty word, then c[i] = c[j] (Lemma 2).

For a periodic vector v, the property 1 gives c[i], c[j] �= 0, and hence, c[i] = c[j]
as just proved. We can use Lemma 2 to derive c[i]+ v[i] = c[j]+ v[j]. Combining
these two equations together results in v[i] = v[j]. ��

Corollary 1. For a language L over one track symbol t = [a1, . . . , an] ∈ Π, any
linear generator that generates {(i1, . . . , in) | [ai11 , . . . , ainn ] ∈ L} is 0-bounded.

The closure property of the set of 0-bounded semilinear sets under finite union
strengthens this corollary further as follows.

Corollary 2. For a language L over one track symbol t = [a1, . . . , an] ∈
Π, any generator G = {(c1, V1), . . . , (cm, Vm)} that generates {(i1, . . . , in) |
[ai11 , . . . , a

in
n ] ∈ L} is 0-bounded.

Lemma 4. Let L be a language accepted by an n-track 1-tape NFA over one
symbol. Then the set Q(L) = {(i1, . . . , in) | [ai11 , . . . , ainn ] ∈ L} is a 0-bounded
semilinear set.

Proof. The semilinearity of Q(L) follows from a result in [4], and then the above
argument gives its 0-boundedness. ��

Now we are ready to prove Theorem 2.

Proof of Theorem 2. SinceM is 0-synchronized, we regard it rather as an n-track 1-
tape NFA. We also assume thatM is free from any state from which no accepting
state is reachable. LetM = (Π,S, s0, δ, F ), where S is a set of states, s0 ∈ S is an
initial state, δ is the transition function, and F is the set of final states.

For some m ≥ 0, let t1, t2, . . . , tm ∈ Π be distinct track symbols with t1 "
t2 " · · · " tm. That is to say, t1 = [a1, . . . , an], and ti+1 contains at least one
more tracks with � than ti. Thus, m ≤ n. Needless to say, there are only finite
number of such choices of t1, . . . , tm from Π since Σ is finite. Due to the closure
property of the set of 0-bounded generators under finite union, it suffices to show
a way to compute k ≥ 0 and a k-bounded generator for Q(L(M) ∩ t+1 · · · t+m).

Let L1 = L ∩ t+1 · · · t+m. In the acceptance computation for L1, the finite-state
control of M traverses from its sub-NFA over t1 to its another sub-NFA over t2,
and so forth. Formally, for a track symbol t ∈ Π , the sub-NFA ofM over t consists
of all t-transitions ofM and all vertices ofM associated with them, and we denote
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it by M(t). Moreover, for states p, q ∈ S, by M(t)[p, q], we denote the sub-NFA
that can be obtained fromM(t) by appointing p, q as initial state and final state,
respectively. For any word w ∈ L1, there exist states s1, s2, . . . , sm−1 ∈ S and a
final state sf ∈ F such that an acceptance computation ofM for w goes through
M(t1)[s0, s1],M(t2)[s1, s2], . . . ,M(tm)[sm−1, sf ]. Each of these m sub-NFAs ac-
cepts a unary track language so that any of their generators are 0-bounded due to
Lemma 4 and they can be effectively computed [8].

Now we have generators (collections of linear generators) for each of the m
unary languages. For each 1 ≤ i ≤ m, from the corresponding collection we
choose a linear generator (ci, Vi). Then from them we construct a linear generator
(c, V ), where c =

∑
1≤i≤m ci and V =

⋃
1≤i≤m Vi. We claim that this linear

generator is k-bounded for k = max{|c[i] − c[j]| | 1 ≤ i, j ≤ n, c[i], c[j] �= 0}.
By definition, any vector u in the set c + V ∗ admits vectors vi1 , . . . , vir some
of whose are firstly taken from V1, then taken from V2, and so on such that
c+ vi1 + · · · + vir = u. The offset created by the constant vector c, which is at
most k, is not enlarged as long as these vectors are added in the order because
of the properties mentioned in Lemma 3 and t1 " t2 " · · · " tm. As such, a
bounded linear generator is constructed for each choice of linear generators from
the m generators. Taking their union yields a generator for Q(L(M)∩ t+1 · · · t+m),
and the resulting generator is bounded by the maximum bound degree of the
summands (linear generators). ��
Having proved Theorem 2, now we combine it with Theorems 1 as:

Corollary 3. A language L ⊆ a∗1×· · ·×a∗n is accepted by a 0-synchronized n-tape
NFAM if and only if the semilinear set Q(L) = {(i1, . . . , in) | (ai11 , . . . , ainn ) ∈ L}
can be generated by a k-bounded (stateless) generator for some k ≥ 0.

It can be shown that it is decidable whether the language accepted by an n-tape
NFA over a∗1 × · · · × a∗n is accepted by a 0-synchronized NFA or not. Thus, the
next corollary holds.

Corollary 4. It is decidable whether, for a given semilinear set Q, there exists
a k-bounded (stateless) generator for some k ≥ 0.

Corollary 3 also strengthens Proposition 2 as follows.

Corollary 5. For a semilinear set Q, the following statements are equivalent:

1. Q can be generated by a k-bounded generator with states for some k ≥ 0;
2. Q can be generated by a 0-bounded generator with states;
3. Q can be generated by a k′-bounded (stateless) generator for some k′ ≥ 0;

As we will be convinced of by Theorem 3, the integer k′ in the third statement of
this corollary cannot be replaced by 0. That is, there exists a hierarchy of (state-
less) generators with respect to the degree of boundedness, as compared with
the collapse of corresponding hierarchy among generators with states (Proposi-
tion 2). This signifies structures more complex than the one shown in Fig. 1. Let
us denote by Qk the class of k-bounded semilinear sets.
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Theorem 3. For k ≥ 0, Qk+1 properly contains Qk.

Proof. We prove that the semilinear set {(k+ i, i) | i ≥ 0} can be generated by a
k-bounded (stateless) generator but for any r < k, there is no r-bounded (state-
less) generator for that. Clearly, a linear generator ((k, 0), {(1, 1)}) generates the
set and k-bounded.

Suppose the set could be generated by an r-bounded generator G for some
r < k. Consider the tuple x = (k + n, n), where n is greater than the largest
of the two components in all constant vectors in the linear generators of G. By
assumption, x can be generated by an r-bounded generation, where r < s. Let c
be the constant vector used in such a generation. Since c[1], c[2] < n, at least one
periodic vector v is used in the generation. In fact, since |c[1]− c[2]| ≤ r < k, at
least one periodic vector v with v[1] > v[2] is used in such a generation. It follows
that (c[1], c[2])+j(v[1], v[2]) = (c[1]+jv[1], c[2]+jv[2]) would be in the semilinear
set for all j. But then, except for a finite number of j’s, (c[1]+ jv[1], c[2]+ jv[2])
are not of the form (k + i, i), which is not possible. ��

5 Boundedness of a Semilinear Set

In Fig. 2, we illustrated two generators with states that generate the same semilin-
ear set, but one ofwhich is 0-bounded and the other is not k-bounded for any k ≥ 0.
We conjecture that such a phenomenon cannot happen for (stateless) generators.

Conjecture 1. If a semilinear set Q is generated by a (stateless) generator that
is not k-bounded for any k, then every (stateless) generator of Q would not be
k-bounded for any k, either.

If this conjecture is true, then the boundedness becomes a property of semilin-
ear set as long as stateless generators are concerned. We conclude this paper
by proving that Conjecture 1 is true for linear sets by providing one sufficient
condition for a semilinear set to satisfy the conjectured property (Lemma 5) and
observing that any linear set satisfies the condition.

Lemma 5. Let Q be a semilinear set that admits two generators G1 = {(c1, V1),
. . . , (cm, Vm)} and G2 = {(d1, U1), . . . , (dn, Un)} such that, for any 1 ≤ i ≤ m,
there exists 1 ≤ ji ≤ n satisfying:

1. ci ∈ dji + U∗
ji ;

2. Vi ⊆ U∗
ji .

If G1 is k-bounded, then G2 is k′-bounded for some k′ ≥ 0.

Proof. Since G1 is k-bounded, any element in Q admits a k-bounded derivation
ci+ v1 + v2+ · · ·+ v�, where � ≥ 0 and v1, . . . , v� ∈ Vi. Due to the first property,
ci can be written as ci = dji + x1 + x2 + · · ·+ xs, where x1, x2, . . . , xs ∈ Uji . We
replace the constant vector ci in the above derivation with this sum, and obtain
the derivation (dji + x1 + x2 + · · ·+ xs) + v1 + v2 + · · ·+ v�. Some of the newly-
introduced intermediate products dji , dji +x1, . . . , dji +x1+x2+ · · ·+xs−1 may



166 O.H. Ibarra and S. Seki

not be k-bounded, but it should be clear the existence of an integer k′ ≥ k such
that they are k′-bounded. We can replace v1, v2, . . . , v� likewise, but using the
second property instead, one by one while preserving the bounded property. ��

When Q is linear, we show in Lemma 6 below that any of its generators satisfy
the two properties stated in Lemma 5.

Lemma 6. If a linear set has two linear generators (c1, V1) and (c2, V2), then
c1 = c2, V1 ⊆ V ∗

2 , and V2 ⊆ V ∗
1 hold.

Proof. Suppose c1 �= c2. Then either c1 ⊆ c2 + V +
2 or c2 ⊆ c1 + V +

1 must hold.
It suffices to consider the former. Then c2 is smaller than c1 with respect to the
components comparison. Thus, c2 � c1 + V ∗

1 , but this contradicts that the two
generators specify the same linear set.

Let c = c1 = c2. We have c+V ∗
1 = c+V ∗

2 . If V1 ⊆ V ∗
2 did not hold, then there

would exist a vector v1 ∈ V1 such that v1 �∈ V ∗
2 , and hence, c + v1 �∈ c + V ∗

2 , a
contradiction. In the same manner, we can prove V2 ⊆ V ∗

1 . ��

Corollary 6. If a linear set Q is generated by a k-bounded generator G = (c, V )
for some k ≥ 0, then for any other linear generator G′ for Q, there is an integer
k′ ≥ 0 such that G′ = (c′, V ′) is k′-bounded.

In other words, if a linear set admits one unbounded linear generator, then all
of its linear generators are also unbounded.

6 Appendix

An n-tape NFA without end markers accepts if it enters an accepting state after
it has scanned all the tapes.

Proposition 3. The following two statements hold:

1. If M is an n-tape NFA without end markers, we can construct an n-tape
NFA M ′ with end markers such that L(M ′) = L(M). Moreover, M ′ is k-
synchronized if and only if M is k synchronized (k ≥ 0).

2. If M is an n-tape NFA with end markers, we can construct an n-tape NFA
M ′ without end markers such that L(M ′) = L(M). Moreover, M ′ is k-
synchronized if and only if M is k-synchronized (k ≥ 0).

Proof. The first statement is obvious. Given M , we construct M ′ that faithfully
simulates M . When M enters an accepting state, M ′ moves all the tape heads
to the right and accepts if they are all on the end marker.

For the second statement, let M be an n-tape NFA with end markers. We
describe the construction of an n-tape NFA M ′ without end markers that simu-
lates M . Let H be a set of head indices to specify which heads have reached the
end marker according to M ′s guesses, being initialized empty. H will be stored
in the finite control of M ′ and will be updated during the computation.

(**) M ′ nondeterministically guesses to execute (1) or (2) below.
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1. M ′ guesses that after the next move, some but not all heads of M will reach
the end marker. In this caseM ′ simulates the move ofM and also updates H
to include the indices of the heads that would reach the end marker after the
move according to the guess. In subsequent simulations of the moves ofM ,M ′

assumes that the heads inH are on the end marker.M ′ then proceeds to (**).
2. M ′ guesses that after the next move, all the remaining heads of M not in H

will reach the end marker. In this case M ′ simulates in one move the next
move of M and the moves that follow when all heads are on the endmarker,
and accepts if M accepts.

Clearly, L(M ′) = L(M), and M ′ is k-synchronized if and only if so is M . ��
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Abstract. The Church-Turing thesis states that any sufficiently power-
ful computational model which captures the notion of algorithm is com-
putationally equivalent to the Turing machine. This equivalence usually
holds both at a computability level and at a computational complexity
level modulo polynomial reductions. However, the situation is less clear
in what concerns models of computation using real numbers, and no
analog of the Church-Turing thesis exists for this case. Recently it was
shown that some models of computation with real numbers were equiv-
alent from a computability perspective. In particular it was shown that
Shannon’s General Purpose Analog Computer (GPAC) is equivalent to
Computable Analysis. However, little is known about what happens at a
computational complexity level. In this paper we shed some light on the
connections between this two models, from a computational complexity
level, by showing that, modulo polynomial reductions, computations of
Turing machines can be simulated by GPACs, without the need of using
more (space) resources than those used in the original Turing computa-
tion, as long as we are talking about bounded computations. In other
words, computations done by the GPAC are as space-efficient as compu-
tations done in the context of Computable Analysis.

1 Introduction

The Church-Turing thesis is a cornerstone statement in theoretical computer sci-
ence, stating that any (discrete time, digital) sufficiently powerful computational
model which captures the notion of algorithm is computationally equivalent to
the Turing machine (see e.g. [19], [23]). It also relates various aspects of models
in a very surprising and strong way.

The Church-Turing thesis, although not formally a theorem, follows from
many equivalence results for discrete models and is considered to be valid by
the scientific community [19]. When considering non-discrete time or non-digital
models, the situation is far from being so clear. In particular, when considering
models working over real numbers, several models are clearly not equivalent [9].

However, a question of interest is whether physically realistic models of com-
putation over the real numbers are equivalent, or can be related. Some of the
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results of non-equivalence involve models, like the BSS model [5], [4], which are
claimed not to be physically realistic [9] (although they certainly are interesting
from an algebraic perspective), or models that depend critically of computations
which use exact numbers to obtain super-Turing power, e.g. [1], [3].

Realistic models of computation over the reals clearly include the General
Purpose Analog Computer (GPAC) [21], an analog continuous-time model of
computation and Computable Analysis (see e.g. [24]). The GPAC is a mathe-
matical model introduced by Claude Shannon of an earlier analog computer,
the Differential Analyzer. The first general-purpose Differential Analyzer is gen-
erally attributed to Vannevar Bush [10]. Differential Analyzers have been used
intensively up to the 1950’s as computational machines to solve various problems
from ballistic to aircraft design, before the era of the digital computer [18].

Computable analysis, based on Turing machines, can be considered as today’s
most used model for talking about computability and complexity over reals. In
this approach, real numbers are encoded as sequences of discrete quantities and
a discrete model is used to compute over these sequences. More details can be
found in the books [20], [17], [24]. As this model is based on classical (digital and
discrete time) models like Turing machines, which are considered to be realistic
models of today’s computers, one can consider that Computable Analysis is a
realistic model (or, more correctly, a theory) of computation.

Understanding whether there could exist something similar to a Church-
Turing thesis models of computation involving real numbers, or whether analog
models of computation could be more powerful than today’s classical models
of computation motivated us to try to relate GPAC computable functions to
functions computable in the sense of computable analysis.

The paper [6] was a first step towards the objective of obtaining a version of
the Church-Turing thesis for physically feasible models over the real numbers.
This paper proves that, from a computability perspective, Computable Analysis
and the GPAC are equivalent: GPAC computable functions are computable and,
conversely, functions computable by Turing machines or in the computable anal-
ysis sense can be computed by GPACs. However this is about computability, and
not computational complexity. This proves that one cannot solve more problems
using the GPAC than those we can solve using discrete-based approaches such
as Computable Analysis. But this leaves open the question whether one could
solve some problems faster using analog models of computations (see e.g. what
happens for quantum models of computations. . . ). In other words, the question
of whether the above models are equivalent at a computational complexity level
remained open. Part of the difficulty stems from finding an appropriate notion
of complexity (see e.g. [22], [2]) for analog models of computations.

In the present paper we study both the GPAC and Computable Analysis at a
complexity level. In particular, we introduce measures for space complexity and
show that, using these measures, both models are equivalent, even at a com-
putational complexity level, as long as we consider time-bounded simulations.
Since we already have shown in our previous paper [7] that Turing machines can
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simulate efficiently GPACs, this paper is a big step towards showing the converse
direction: GPACs can simulate Turing machines in an efficient manner.

More concretely we show that computations of Turing machines can be simu-
lated in polynomial space by GPACs as long as we use bounded (but arbitrary)
time. We firmly believe that this construction can be used as a building brick to
show the more general result that the computations of Turing machines can be
simulated in polynomial space by GPACs, removing the hypothesis of arbitrary
but fixed time. This latter construction would probably be much more involved,
and we intend to focus on it in the near future since this result would show that
computations done by the GPAC and in the context of Computable Analysis
are equivalent modulo polynomial space reductions.

We believe that these results open the way for some sort of more general
Church-Turing thesis, which applies not only to discrete-based models of com-
putation but also to physically realistic models of computation, and which holds
both at a computability and computational complexity (modulo polynomial re-
ductions) level.

Incidently, these kind of results can also be the first step towards a well-
founded complexity theory for analog models of computations and for continuous
dynamical systems.

Notice that it has been observed in several papers that, since continuous time
systems might undergo arbitrary space and time contractions, Turing machines,
as well as even accelerating Turing machines1 [14], [13], [12] or even oracle Tur-
ing machines, can actually be simulated in an arbitrary short time by ordinary
differential equations in an arbitrary short time or space. This is sometimes also
called Zeno’s phenomenon: an infinite number of discrete transitions may hap-
pen in a finite time: see e.g. [8]. Such constructions or facts have been deep
obstacles to various attempts to build a well founded complexity theory for ana-
log models of computations: see [8] for discussions. One way to interpret our
results is then the following: all these time and space phenomena, or Zeno’s phe-
nomena do not hold (or, at least, they do not hold in a problematic manner)
for ordinary differential equations corresponding to GPACs, that is to say for
realistic models, for carefully chosen measures of complexity. Moreover, these
measures of complexity relate naturally to standard computational complexity
measures involving discrete models of computation

2 Preliminaries

2.1 Notation

Throughout the paper we will use the following notation:

‖(x1, . . . , xn)‖ = max
1�i�n

|xi| ‖(x1, . . . , xn)‖2 =
√
|x1|2 + · · ·+ |xn|2

πi(x1, . . . , xk) = xi int(x) = �x� frac(x) = x− �x�
1 Similar possibilities of simulating accelerating Turing machines through quantum
mechanics are discussed in [11].
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intn(x) = min(n, int(x)) fracn(x) = x− intn(x)

f [n] =

{
id if n = 0

f [n−1] otherwise

sgn(x) =

⎧⎪⎨⎪⎩
−1 if x < 0

0 if x = 0

1 if x > 0

R∗ = R \ {0}

2.2 Computational Complexity Measures for the GPAC

It is known [16] that a function is generable by a GPAC iff it is a component
of the solution a polynomial initial-value problem. In other words, a function
f : I → R is GPAC-generable iff it belongs to following class.

Definition 1. Let I ⊆ R be an open interval and f : I → R. We say that
f ∈ GPAC(I) if there exists d ∈ N, a vector of polynomials p, t0 ∈ I and
y0 ∈ Rd such that for all t ∈ I one has f(t) = y1(t), where y : I → R is the
unique solution over I of {

ẏ = p(y)
y(t0)= y0

(1)

Next we introduce a subclass of GPAC generable functions which allow us to
talk about space complexity. The idea is that a function f generated by a GPAC
belongs to the class GSPACE (I, g) if f can be generated by a GPAC in I and
does not grow faster that g. Since the value of f in physical implementations
of the GPAC correspond to some physical quantity (e.g. electric tension), lim-
iting the growth of f corresponds to effectively limiting the size of resources
(i.e. magnitude of signals) needed to compute f by a GPAC.

Definition 2. Let I ⊆ R be an open interval and f, g : I → R be functions. The
function f belongs to the class GSPACE (I, g) if there exist d ∈ N, a vector of
polynomials p, t0 ∈ I and y0 ∈ Rd such that for all t ∈ I one has f(t) = y1(t)
and ‖y(t)‖ � g(t), where y : I → R is the unique solution over I of (1).
More generally, a function f : I → Rd belongs to f ∈ GSPACE (I, g) if all its
components are also in the same class.

We can generalize the complexity class GSPACE to multidimensional open sets
I defined over Rd. The idea is to reduce it to the one-dimensional case defined
above through the introduction of a subset J ⊆ R and of a map g : J → I.

Definition 3. Let I ⊆ Rd be an open set and f, sf : I → R be functions.
Then f ∈ GSPACE (I, sf ) if for any open interval J ⊆ R and any func-
tion (g : J → Rd ∈ GSPACE (J, sg) such that g(J) ⊆ I, one has f ◦ g ∈
GSPACE (J,max(sg, sf ◦ sg)) .
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The following closure results can be proved (proofs are omitted for reasons of
space).

Lemma 1. Let I, J ⊆ Rd be open sets, and (f : I → Rn) and (g : J → Rm)
be functions which belong to GSPACE (I, sf ) and GSPACE (J, sg), respectively.
Then:

– f + g, f − g ∈ GSPACE (I ∩ J, sf + sg) if n = m.
– fg ∈ GSPACE (I ∩ J,max(sf , sg, sfsg)) if n = m.
– f ◦ g ∈ GSPACE (J,max(sg, sf ◦ sg)) if m = d and g(J) ⊆ I.

2.3 Main Result

Our main result states that any Turing machine can be simulated by a GPAC
using a space bounded by a polynomial, where T and S are respectively the time
and the space used by the Turing machine.

If one prefers, (formal statement in Theorem 3):

Theorem 1. Let M be a Turing Machine. Then there is a GPAC-generable
function fM and a polynomial p with the following properties:

1. Let S, T be arbitrary positive integers. Then fM(S, T, [e], n) gives the con-
figuration of M on input e at step n, as long as n ≤ T and M uses space
bounded by S.

2. fM(S, T, [e], t) is bounded by p(T + S) as long as 0 ≤ t ≤ n.

The first condition of the theorem states that the GPAC simulates TMs on
bounded space and time, while the second condition states that amount of re-
sources used by the GPAC computation is polynomial on the amount of resources
used by original Turing computation.

3 The Construction

3.1 Helper Functions

Our simulation will be performed on a real domain and may be subject to (small)
errors. Thus, to simulate a Turing machine over a large number of steps, we need
tools which allow us to keep errors under control. In this section we present func-
tions which are specially designed to fulfill this objective. We call these functions
helper functions. Notice that since functions generated by GPACs are analytic,
all helper functions are required to be analytic. As a building block for creating
more complex functions, it will be useful to obtain analytic approximations of
the functions int(x) and frac(x). Notice that we are only concerned about non-
negative numbers so there is no need to discuss the definition of these functions
on negative numbers.

Definition 4. For any x, y, λ ∈ R define ξ(x, y, λ) = tanh(xyλ).
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Lemma 2. For any x ∈ R and λ > 0, y � 1,

| sgn(x) − ξ(x, y, λ)| < 1

Furthermore if |x| � λ−1 then

| sgn(x)− ξ(x, y, λ)| < e−y

and ξ ∈ GSPACE
(
R3, 1

)
.

Definition 5. For any x, y, λ ∈ R, define

σ1(x, y, λ) =
1 + ξ(x − 1, y, λ)

2

Corollary 1. For any x ∈ R and y > 0, λ > 2,

| int1(x) − σ1(x, y, λ)| � 1/2

Furthermore if |1− x| � λ−1 then

| int1(x) − σ1(x, y, λ)| < e−y

and σ1 ∈ GSPACE
(
R3, 1

)
.

Definition 6. For any p ∈ N, x, y, λ ∈ R, define

σp(x, y, λ) =

k−1∑
i=0

σ1(x− i, y + ln p, λ)

Lemma 3. For any p ∈ N, x ∈ R and y > 0, λ > 2,

| intp(x) − σp(x, y, λ)| � 1/2 + e−y

Furthermore if x < 1− λ−1 or x > p+ λ−1 or d(x,N) > λ−1 then

| intp(x) − σp(x, y, λ)| < e−y

and σp ∈ GSPACE
(
R3, p

)
.

Finally, we build a square wave like function which we be useful later on.

Definition 7. For any t ∈ R, and λ > 0, define θ(t, λ) = e−λ(1−sin(2πt))2

Lemma 4. For any λ > 0, θ(·, λ) is a positive and 1-periodic function bounded
by 1, furthermore

∀t ∈ [1/2, 1], |θ(t, λ)| � e−λ

2∫ 1
2

0

θ(t, λ)dt � (eλ)−
1
4

π

and θ ∈ GSPACE
(
R× R∗

+, (t, λ) !→ max(1, λ)
)
.
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3.2 Polynomial Interpolation

In order to implement the transition function of the Turing Machine, we will
use polynomial interpolation techniques (Lagrange interpolation). But since our
simulation may have to deal with some amount of error in inputs, we have to
investigate how this error propagates through the interpolating polynomial.

Definition 8 (Lagrange polynomial). Let d ∈ N and f : G→ R where G is
a finite subset of Rd, we define

Lf(x) =
∑
x̄∈G

f(x̄)

d∏
i=1

∏
y∈G
y �=x̄

xi − yi
x̄i − yi

Lemma 5. Let n ∈ N, x, y ∈ Rn, K > 0 be such that ‖x‖, ‖y‖ � K, then∣∣∣∣∣
n∏

i=1

xi −
n∏

i=1

yi

∣∣∣∣∣ � Kn−1
n∑

i=1

|xi − yi|

3.3 Turing Machines — Assumptions

LetM = (Q,Σ, b, δ, q0, F ) be a Turing Machine which will be fixed for the whole
simulation. Without loss of generality we assume that:

– When the machine reaches a final state, it stays in this state
– Q = {0, . . . ,m−1} are the states of the machines; q0 ∈ Q is the initial state;
F ⊆ Q are the accepting states

– Σ = {0, . . . , k − 2} is the alphabet and b = 0 is the blank symbol.
– δ : Q × Σ → Q × Σ × {L,R} is the transition function, and we identify
{L,R} with {0, 1} (L = 0 and R = 1). The components of δ are denoted
by δ1, δ2, δ3. That is δ(q, σ) = (δ1(q, σ), δ2(q, σ), δ3(q, σ)) where δ1 is the new
state, δ2 the new symbol and δ3 the head move direction.

Notice that the alphabet of the Turing machine has k − 1 symbols. This will be
important for lemma 6. Consider a configuration c = (x, σ, y, q) of the machine.
We can encode it as a triple of integers as done in [15] (e.g. if x0, x1, . . . are the
digits of x in base k, encode x as the number x0 + x1k+ x2k

2 + · · ·+ xnk
n), but

this encoding is not suitable for our needs. We define the rational encoding [c]
of c as follows.

Definition 9. Let c = (x, s, y, q) be a configuration of M, we define the rational
encoding [c] of c as [c] = (0.x, s, 0.y, q) where:

0.x = x0k
−1+x1k

−2+· · ·+xnk−n−1 ∈ Q if x = x0+x1k+· · ·+xnkn ∈ N

The following lemma explains the consequences on the rational encoding of con-
figurations of the assumptions we made for M.

Lemma 6. Let c be a reachable configuration of M and [c] = (0.x, σ, 0.y, q),
then 0.x ∈ [0, k−1

k ] and similarly for 0.y.
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3.4 Simulation of Turing Machines — Step 1: Capturing
the Transition Function

The first step towards a simulation of a Turing Machine M using a GPAC is to
simulate the transition function ofM with a GPAC-computable function stepM.
The next step is to iterate the function stepM with a GPAC. Instead of consid-
ering configurations c of the machine, we will consider its rational configurations
[c] and use the helper functions defined previously. Theoretically, because [c] is
rational, we just need that the simulation works over rationals. But, in practice,
because errors are allowed on inputs, the function stepM has to simulate the
transition function of M in a manner which tolerates small errors on the input.
We recall that δ is the transition function of the M and we write δi the ith

component of δ.

Definition 10. We define:

stepM :

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

R4 −→ R4⎛⎜⎜⎝
x
s
y
q

⎞⎟⎟⎠ !−→

⎛⎜⎜⎜⎜⎝
choose

[
frac(kx),

x+Lδ2
(q,s)

k

]
choose [int(kx), int(ky)]

choose
[
y+Lδ2

(q,s)

k , frac(ky)
]

Lδ1(q, s)

⎞⎟⎟⎟⎟⎠
where choose[a, b] = (1−Lδ3(q, s))a+Lδ3(q, s)b and Lδi is given by definition 8.

The function stepM simulates the transition function of the Turing Machine M,
as shown in the following result.

Lemma 7. Let c0, c1, . . . be the sequence of configurations of M starting from
c0. Then

∀n ∈ N, [cn] = stepM
[n]([c0])

Now we want to extend the function stepM to work not only on rationals encod-
ings of configurations but also on reals close to configurations, in a way which
tolerates small errors on the input. That is we want to build a robust approxi-
mation of stepM. We also have some results on int(·) and frac(·). However, we
need to pay attention to the case of nearly empty tapes. This can be done by a
shifting x by a small amount (1/(2k)) before computing the interger/fractional
part. Then lemma 6 and lemma 2 ensure that the result is correct.

Definition 11. Define:

stepM(τ, λ) :

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

R4 −→ R4⎛⎜⎜⎝
x
s
y
q

⎞⎟⎟⎠ !−→

⎛⎜⎜⎜⎜⎝
choose

[
frac(kx),

x+Lδ2
(q,s)

k , q, s
]

choose
[
int(kx), int(ky), q, s

]
choose

[
y+Lδ2

(q,s)

k , frac(ky), q, s
]

Lδ1(q, s)

⎞⎟⎟⎟⎟⎠
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where

choose[a, b, q, s] = (1− Lδ3(q, s))a+ Lδ3(q, s)b

int(x) = σk

(
x+

1

2k
, τ, λ

)
frac(x) = x− int(x)

We now show that stepM is a robust version of stepM. We first begin with a
lemma about function choose.

Lemma 8. There exists A3 > 0 and B3 > 0 such that ∀q, q̄, s, s̄, a, b, ā, b̄ ∈ R, if∥∥(ā, b̄)∥∥ �M and q ∈ Q, s ∈ Σ and ‖(q, s)− (q̄, s̄)‖ � 1

then∣∣choose[a, b, q, s]− choose[ā, b̄, q̄, s̄]
∣∣ � ∥∥(a, b)− (ā, b̄)

∥∥ + 2MA3‖(q, s)− (q̄, s̄)‖

Furthermore, choose is computable in polynomial space by a GPAC.

Lemma 9. There exists a, b, c, d, e > 0 such that for any τ, λ > 0, any valid
rational configuration c = (x, s, y, q) ∈ R4 and any c̄ = (x̄, s̄, ȳ, q̄) ∈ R4, if

‖(x, y)− (x̄, ȳ)‖ � 1

2k2
− 1

kλ
and ‖(q, s)− (q̄, s̄)‖ � 1

then, for p ∈ {1, 3}

| stepM(c)p − stepM(τ, λ)(c̄)p| � k‖(x, y)− (x̄, ȳ)‖ + a‖(q, s)− (q̄, s̄)‖ + b
| stepM(c)2 − stepM(τ, λ)(c̄)2| � c‖(q, s)− (q̄, s̄)‖ + d
| stepM(c)4 − stepM(τ, λ)(c̄)4| � e‖(q, s)− (q̄, s̄)‖

Furthermore, stepM is computable in polynomial space by a GPAC.

We summarize the previous lemma into the following simpler form.

Corollary 2. For any τ, λ > 0, any valid rational configuration c = (x, s, y, q) ∈
R4 and any c̄ = (x̄, s̄, ȳ, q̄) ∈ R4, if

‖(x, y)− (x̄, ȳ)‖ � 1

2k2
− 1

kλ
and ‖(q, s)− (q̄, s̄)‖ � 1

then ∥∥stepM(c)− stepM(τ, λ)(c̄)
∥∥ � O(1)(e−τ + ‖c− c̄‖)

Furthermore,

stepM ∈ GSPACE
(
(R∗

+)
2 × [−1, 1]× [−m,m]× [−1, 1]× [−k, k], O(1)

)
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3.5 Simulation of Turing Machines — Step 2: Iterating Functions
with Differential Equations

We will use a special kind of differential equations to perform the iteration of
a map with differential equations. In essence, it relies on the following core
differential equation

ẋ(t) = Aφ(t)(g − x(t)) (Reach)

We will see that with proper assumptions, the solution converges very quickly
to the goal g. However, (Reach) is a simplistic idealization of the system so we
need to consider a perturbed equation where the goal is not a constant anymore
and the derivative is subject to small errors

ẋ(t) = Aφ(t)(ḡ(t)− x(t)) + E(t) (ReachPerturbed)

We will again see that, with proper assumptions, the solution converges quickly
to the goal within a small error. Finally we will see how to build a differential
equation which iterates a map within a small error.

We first focus on (Reach) and then (ReachPerturbed) to show that they be-
have as expected. In this section we assume φ is a positive C1 function.

Lemma 10. Let x be a solution of (Reach), let T, λ > 0 and assume A �
λ∫ T

0
φ(u)du

then |x(T )− g| � |g − x(0)|e−λ.

Lemma 11. Let T, λ > 0 and let x be the solution of (ReachPerturbed) with
initial condition x(0) = x0. Assume |ḡ(t) − g| � η, A � λ∫ T

0
φ(u)du

and E(t) = 0

for t ∈ [0, T ]. Then

|x(T )− g| � η(1 + e−λ) + |x0 − g|e−λ

We can now define a system that simulates the iteration of a function using a
system based on (ReachPerturbed). It work as described in [15]. There are two
variables for simulating each component fi, i = 1, . . . , n, of the function f to
be iterated. There will be periods in which the function is iterated one time. In
half of the period, half (n) of the variables will stay (nearly) constant and close
to values α1, . . . , αn, while the other remaining n variables update their value
to fi(α1, . . . , αn), for i = 1, . . . , n. In the other half period, the second subset of
variables is then kept constant, and now it is the first subset of variables which
is updated to fi(α1, . . . , αn), for i = 1, . . . , n.

Definition 12. Let d ∈ N, F : Rd → Rd, λ � 1, μ � 0 and u0 ∈ Rd, we define{
z(0)= u0
u(0)= u0

{
żi(t)= Aθ(t, B)(Fi(u(t))− zi(t))
u̇i(t)= Aθ(t − 1/2, B)(zi(t)− ui(t))

(Iterate)

where A = 10(λ+ μ)2 and B = 4(λ+ μ).
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Theorem 2. Let d ∈ N, F : Rd → Rd, λ � 1, μ � 0, u0, c0 ∈ Rd. Assume z, u
are solutions to (Iterate) and let ΔF and M � 1 be such that

∀k ∈ N, ∀ε > 0, ∀x ∈]− ε, ε[d,
∥∥∥F [k+1](c0)− F

(
F [k](c0) + x

)∥∥∥ � ΔF (ε)

∀t � 0, ‖u(t)‖, ‖z(t)‖, ‖F (u(t))‖ �M = eμ

and consider {
ε0 = ‖u0 − c0‖
εk+1= (1 + 3e−λ)ΔF (εk + 2e−λ) + 5e−λ

Then
∀k ∈ N,

∥∥∥u(k)− F [k](c0)
∥∥∥ � εk

Furthermore, if F ∈ GSPACE
(
[−M,M ]d, sF

)
for sF : [−M,M ] → R then

((λ, μ, t, u0) !→ u(t)) is computable in polynomial space by a GPAC.

3.6 Simulation of Turing Machines — Step 3: Putting All Pieces
Together

In this section, we will use results of both section 3.3 and section 3.5 to simulate
Turing Machines with differential equations. Indeed, in section 3.3 we showed
that we could simulate a Turing Machine by iterating a robust real map, and in
section 3.5 we showed how to efficiently iterate a robust map with differential
equations. Now we just have to put these results together.

Theorem 3. Let M be a Turing Machine as in section 3.3, then there are
functions sf : I → R4 and fM ∈ GSPACE

(
R4, sf

)
such that for any sequence

c0, c1, . . . , of configurations of M starting with input e:

∀S, T ∈ R∗
+, ∀n � T, ‖[cn]− fM(S, T, n, e)‖ � e−S

and
∀S, T ∈ R∗

+, ∀n � T, sf(S, T, n, e) = O(poly(S, T ))
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Abstract. In the study of random access machines (RAMs) it has been
shown that the availability of an extra input integer, having no special
properties other than being sufficiently large, is enough to reduce the
computational complexity of some problems. However, this has only been
shown so far for specific problems. We provide a characterization of the
power of such extra inputs for general problems.

To do so, we first correct a classical result by Simon and Szegedy
(1992) as well as one by Simon (1981). In the former we show mistakes
in the proof and correct these by an entirely new construction, with
no great change to the results. In the latter, the original proof direction
stands with only minor modifications, but the new results are far stronger
than those of Simon (1981).

In both cases, the new constructions provide the theoretical tools re-
quired to characterize the power of arbitrary large numbers.

Keywords: integer RAM, complexity, arbitrary large number.

1 Introduction

The Turing machine (TM), first introduced in [1], is undoubtedly the most fa-
miliar computational model. However, for algorithm analysis it often fails to
adequately represent real-life complexities, for which reason the random access
machine (RAM), closely resembling the intuitive notion of an idealized computer,
has become the common choice in algorithm design. Ben-Amram and Galil [2]
write “The RAM is intended to model what we are used to in conventional
programming, idealized in order to be better accessible for theoretical study.”

Here, “what we are used to in conventional programming” refers, among other
things, to the ability to manipulate high-level objects by basic commands. How-
ever, this ability comes with some unexpected side effects. For example, one can
consider a RAM that takes as an extra input an integer that has no special prop-
erty other than being “large enough”. Contrary to intuition, it has been shown
that such arbitrary large numbers (ALNs) can lower problem time complexi-
ties. For example, [3] shows that the availability of ALNs lowers the arithmetic
time complexity1 of calculating 22

x

from Θ(x) to Θ(
√
x). However, all previous

1 Arithmetic complexity is the computational complexity of a problem under the
RAM[+, ,×,÷] model, which is defined later on in this section.

T-H.H. Chan, L.C. Lau, and L. Trevisan (Eds.): TAMC 2013, LNCS 7876, pp. 181–192, 2013.
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attempts to characterize the contribution of ALNs dealt with problem-specific
methods of exploiting such inputs, whereas the present work gives, for the first
time, a broad characterization of the scenarios in which arbitrary numbers do
and those in which they do not increase computational power.

In order to present our results, we first redefine, briefly, the RAM model. (See
[4] for a more formal introduction.)

Computations on RAMs are described by programs. RAM programs are sets
of commands, each given a label. Without loss of generality, labels are taken
to be consecutive integers. The bulk of RAM commands belong to one of two
types. One type is an assignment. It is described by a triplet containing a k-ary
operator, k operands and a target. The other type is a comparison. It is given
two operands and a comparison operator, and is equipped with labels to proceed
to if the comparison is evaluated as either true or false. Other command-types
include unconditional jumps and execution halt commands.

The execution model for RAM programs is as follows. The RAM is considered
to have access to an infinite set of registers, each marked by a non-negative
integer. The input to the program is given as the initial state of the first registers.
The rest of the registers are initialized to 0. Program execution begins with the
command labeled 1 and proceeds sequentially, except in comparisons (where
execution proceeds according to the result of the comparison) and in jumps.
When executing assignments, the k-ary operator is evaluated based on the values
of the k operands and the result is placed in the target register. The output of
the program is the state of the first registers at program termination.

In order to discuss the computational power of RAMs, we consider only RAMs
that are comparable in their input and output types to TMs. Namely, these will
be the RAMs whose inputs and outputs both lie entirely in their first register.
We compare these to TMs working on one-sided-infinite tapes over a binary
alphabet, where “0” doubles as the blank. A RAM will be considered equivalent
to a TM if, given as an input an integer whose binary encoding is the initial
state of the TM’s tape, the RAM halts with a non-zero output value if and only
if the TM accepts on the input.

Furthermore, we assume, following e.g. [5], that all explicit constants used as
operands in RAM programs belong to the set {0, 1}. This assumption does not
make a material difference to the results, but it simplifies the presentation.

In this paper we deal with RAMs that use non-negative integers as their reg-
ister contents. This is by far the most common choice. A RAM will be indicated
by RAM[op], where op is the set of basic operations supported by the RAM.
These basic operations are assumed to execute in a single unit of time. We use
the syntax f(n)-RAM[op] to denote the set of problems solvable in f(n) time
by a RAM[op], where n is the bit-length of the input. Replacing “RAM[op]” by
“TM” indicates that the computational model used is a Turing machine.

Note that because registers only store non-negative integers, such operations
as subtraction cannot be supported without tweaking. The customary solu-
tion is to replace subtraction by “natural subtraction”, denoted “ ” and de-

fined by a b
def
= max(a − b, 0). We note that if the comparison operator “≤”
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(testing whether the first operand is less than or equal to the second operand) is
not supported by the RAM directly, the comparison “a ≤ b” can be simulated by
the equivalent equality test “a b = 0”. Testing for equality is always assumed
to be supported.

By the same token, regular bitwise negation is not allowed, and ¬a is tweaked
to mean that the bits of a are negated only up to and including its most signifi-
cant “1” bit.

Operands to each operation can be explicit integer constants, the contents
of explicitly named registers or the contents of registers whose numbers are
specified by other registers. This last mode, which can also be used to define the
target register, is known as “indirect addressing”. In [6] it is proved that for the
RAMs considered here indirect addressing has no effect. We therefore assume
throughout that it is unavailable to the RAMs.

The following are two classical results regarding RAMs. Operations appearing
in brackets within the operation list are optional, in the sense that the theorem
holds both when the operation is part of op and when it is not.

Theorem 1 ([7]). PTIME-RAM[+, [ ], [×],←, [→],Bool] = PSPACE

and

Theorem 2 ([8]). PTIME-RAM[+, , /,←,Bool;≤] = ER, where ER is the set
of problems solvable by Turing machines in

22
. .

.
2}

n (1)

time, where n is the length of the input.

Here, “/” indicates exact division, which is the same as integer division (denoted
“÷”) but is only defined when the two operands divide exactly. The operations
“←” and “→” indicate left shift (a← b = a×2b) and right shift (a→ b = a÷2b),
respectively, and Bool is shorthand for the set of all bitwise Boolean functions.

In this paper, we show that while Theorem 1 is correct, its original proof
is not. Theorem 2, on the other hand, despite being a classic result and one
sometimes quoted verbatim (see, e.g., [9]), is, in fact, erroneous.

We re-prove the former here, and replace the latter by a stronger result, for
the introduction of which we first require several definitions.

Definition 1 (Expansion Limit). Let M = Mop(t, inp) be the largest number
that can appear in any register of a RAM[op] working on inp as its input, during
the course of its first t execution steps.

We define ELop(f(n)) to be the maximum of Mop(f(n), inp) over all values
of inp for which len(inp) ≤ n. This is the maximum number that can appear in
any register of a RAM[op] that was initialized by an input of length at most n,
after f(n) execution steps.

The subscript ‘op’ may be omitted if understood from the context.
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As a slight abuse of notation, we use EL(t) to be the maximum of Mop(t, inp)
over all inp of length at most n, when n is understood from the context and t is
independent of n. (The following definition exemplifies this.)

Definition 2 (RAM-Constructability). A set of operations op is RAM-
constructable if the following two conditions are satisfied: (1) there exists a RAM
program that, given inp and t as its inputs, with n being the length of inp, returns
in O(t) time a value no smaller than ELop(t), and (2) each operation in op is
computable in EL(O(l)) space on a Turing machine, where l is the total length
of all operands and of the result.

Our results are as follows.

Theorem 3. For a RAM-constructable op ⊇ {+, /,←,Bool} and any function
f(n),

O(f(n))-RAM[op] = ELop(O(f(n)))-TM

= N-ELop(O(f(n)))-TM (2)

= ELop(O(f(n)))-SPACE-TM

= N-ELop(O(f(n)))-SPACE-TM ,

where the new notations refer to nondeterministic Turing machines, to space-
bounded Turing machines and to nondeterministic space-bounded Turing ma-
chines, respectively.

Among other things, this result implies for polynomial-time RAMs that their
computational power is far greater than ER, as was previously believed.

The theoretical tools built for proving Theorem 3 and re-proving Theorem 1
then allow us to present the following new results regarding the power of arbi-
trary large numbers.

Theorem 4. PTIME-ARAM[+, [ ], [×],←, [→],Bool] = PSPACE.

Theorem 5. Any recursively enumerable (r.e.) set can be recognized in O(1)
time by an ARAM[+, /,←,Bool].

Here, “ARAM” is the RAM model assisted by an arbitrary large number. For-
mally, we say that a set S is computable by an ARAM[op] in f(n) time if there
exists a Boolean function g(inp, x), computable in f(n) time on a RAM[op], such
that inp ∈ S implies g(inp, x) �= 0 for almost all x (all but a finite number of x)
whereas inp �∈ S implies g(inp, x) = 0 for almost all x. Here, n conventionally
denotes the bit length of the input, but other metrics are also applicable.

We see, therefore, that the availability of arbitrary numbers has no effect
on the computational power of a RAM without division. However, for a RAM
equipped with integer division, the boost in power is considerable, to the extent
that any problem solvable by a Turing machine in any amount of time or space
can be solved by an ARAM in O(1) time.
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2 Models without Division

2.1 Errata on [7]

We begin with a definition.

Definition 3 (Straight Line Program). A Straight Line Program (SLP),
denoted SLP[op], is a list of tuples, s2, . . . , sn, where each si is composed of an
operator, sopi ∈ op, and k integers, s1i , . . . , s

k
i , all in the range 0 ≤ sji < i, where

k is the number of operands taken by sopi . This list is to be interpreted as a set
of computations, whose targets are v0, . . . , vn, which are calculated as follows:
v0 = 0, v1 = 1, and for each i > 1, vi is the result of evaluating the operator sopi
on the inputs vs1i , . . . , vski . The output of an SLP is the value of vn.

A technique first formulated in a general form in [10] allows results on SLPs to be
generalized to RAMs. Schönhage’s theorem, as worded for the special case that
interests us, is that if there exists a Turing machine, running on a polynomial-
sized tape and in finite time, that takes an SLP[op] as input and halts in an
accepting state if and only if vn is nonzero, then there also exists a TM running
on a polynomial-sized tape that simulates a RAM[op]. This technique is used
both in [7] and in our new proof.

The proof of [7] follows this scheme, and attempts to create such a Turing
machine. In doing so, this TM stores monomial-based representations of certain
powers of two. These are referred to by the paper as “monomials” but are, for
our purposes, integers.

The main error in [7] begins with the definition of a relation, called “vicinity”,
between monomials, which is formulated as follows.

We define an equivalence relation called vicinity between monomials.
Let M1 and M2 be two monomials. Let B be a given parameter. If

M1/M2 < 22
B

[. . .], then M1 is in the vicinity of M2. The symmetric
and transitive closure of this relation gives us the full vicinity relation.
As it is an equivalence relation, we can talk about two monomials being
in the same vicinity (in the same equivalence class).

It is unclear from the text whether the authors’ original intention was to define
this relation in a universal sense, as it applies to the set of all monomials (essen-
tially, the set of all powers of two), or whether it is only defined over the set of
monomials actually used by any given program. If the former is correct, any two
monomials are necessarily in the same vicinity, because one can bridge the gap
between them by monomials that are only a single order of magnitude apart. If
the latter is correct, it is less clear what the final result is. The paper does not
argue any claim that would characterize the symmetric and transitive closure in
this case.

However, the paper does implicitly assume throughout that the vicinity re-

lation, as originally defined (in the M1/M2 < 22
B

sense) is its own symmetric
and transitive closure. This is used in the analysis by assuming for any Mi and
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Mj which are in the same vicinity (in the equivalence relation sense) that they

also satisfy 2−(2B) < Mi/Mj < 22
B

, i.e. they are in the same vicinity also in the
restrictive sense.

Unfortunately, this claim is untrue. It is quite possible to construct an SLP
that violates this assumption, and because the assumption is central to the entire
algorithm, the proof does not hold.

We therefore provide here an alternate algorithm, significantly different from
the original, that bypasses the entire “vicinity” issue.

2.2 Our New Construction

Our proof adapts techniques from two previous papers: [11] (which uses lazy
evaluation to perform computations on operands that are too long to fit into a
polynomial-sized tape) and [12] (which stores operands in a hierarchical format
that notes only the positions of “interesting bits”, these being bit positions whose
values are different than those of the less significant bit directly preceding them).
The former method is able to handle multiplication but not bit shifting and the
latter the reverse. We prove Theorem 1 using a sequence of lemmas.

Lemma 1. In an SLP[+, ,×,←,→,Bool], the number of interesting bits in
the output vn grows at most exponentially with n. There exists a Turing machine
working in polynomial space that takes such an SLP as its input, and that outputs
an exponential-sized set of descriptions of bit positions, where bit positions are
described as functions of v0, . . . , vn−1, such that the set is a superset of the
interesting bit positions of vn.

The fact that the number of interesting bits grows only exponentially given this
operation set was noted in [7]. Our proof follows the reasoning of the original
paper.

Proof. Consider, for simplicity, the instruction set op = {+,×,←}. Suppose
that we were to change the meaning of the operator “←”, so that, instead of
calculating a ← b = a × 2b, its result would be a ← b = aX, where X is
a formal parameter, and a new formal parameter is generated every time the
“←” operator is used. The end result of the calculation will now no longer be
an integer but rather a polynomial in the formal parameters. The following are
some observations regarding this polynomial.

1. The number of formal parameters is at most n, the length of the SLP.
2. The power of each formal parameter is at most 2n−k, where k is the step

number in which the parameter was defined. (This exponent is at most dou-
bled at each step in the SLP. Doubling may happen, for example, if the
parameter is multiplied by itself.)

3. The sum of all multiplicative coefficients in the polynomial is at most 22
n−2

.
(During multiplication, the sum of the product polynomial’s coefficients is
the product of the sums of the operands’ coefficients. As such, this value can
at most square itself at each operation. The maximal value it can attain at
step 2 is 2.)
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If we were to take each formal variable, X , that was created at an “a ← b”
operation, and substitute in it the value 2b (a substitution that [7] refers to
as the “standard evaluation”), then the value of the polynomial will equal the
value of the SLP’s output. We claim that if p is an interesting bit position, then
there is some product of formal variables appearing as a monomial in the result
polynomial such that its standard evaluation is 2x, and p ≥ x ≥ p− 2n.

The claim is clearly true for n = 0 and n = 1. For n > 1, we will make the
stronger claim p ≥ x ≥ p−2n−2−2. To prove this, note that any monomial whose
standard evaluation is greater than 2p cannot influence the value of bit p and
cannot make it “interesting”. On the other hand, if all remaining monomials are
smaller than p− 2n−2− 2, the total value that they carry within the polynomial
is smaller than 2p−2n−2−2 times the sum of their coefficients, hence smaller than
2p−2. Bits p− 1 and p, however, are both zero. Therefore, p is not an interesting
bit.

We proved the claim for the restricted operation set {+,×,←}. Adding logical
AND (“∧”) and logical OR (“∨”) can clearly not change the fact that bits
p − 1 and p are both zero, nor can it make the polynomial coefficients larger
than 22

n−2

.
Incorporating “ ” and “¬” into the operation set has a more interesting effect:

the values of bit p− 1 and p can both become “1”. This will still not make bit
p interesting, but it does require a small change in the argument. Instead of
considering polynomials whose coefficients are between 0 and 22

n−2

, we can now
consider polynomials whose coefficients are between −22

n−2

and 22
n−2

. This
changes the original argument only slightly, in that we now need to argue that
in taking the product over two polynomials the sum of the absolute values of
the coefficients of the product is no greater than the product of the sums of the
absolute values of the coefficients of the operands.

Similarly, adding “→” into consideration, we no longer consider only formal
variables of the form a ← b = aX but also a → b = �aY �, where the standard
evaluation of Y is 2−b and �·� is treated as a bitwise Boolean operation (in the
sense that, conceptually, it zeroes all bit positions that are “to the right of the
decimal point” in the product).

We can therefore index the set of interesting bits by use of a tuple, as follows.
If i1, . . . , ik are the set of steps for which sopij ∈ {←,→}, the tuple will contain

one number between −2n−ij and 2n−ij for each 1 ≤ j ≤ k, to indicate the
exponent of the formal parameter added at step ij, and an additional k + 1’th
element, between 0 and 2n to indicate a bit offset from this bit position.

Though this tuple may contain many non-interesting bits, or may describe
a single bit position by many names, it is a description of a super-set of the
interesting bits in polynomial space. ��

We refer to the set of bit positions thus described as the potentially-interesting
bits, or po-bits, of the SLP.

Lemma 2. Let O be an Oracle that takes an S ∈ SLP[+, ,×,←,→,Bool] as
input and outputs the descriptions of all its po-bits in order, from least-significant
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to most-significant, without repetitions. There exists a TM working in polynomial
space but with access to O that takes as inputs an S ′ ∈ SLP[+, ,×,←,→,Bool]
and the description of a po-bit position, i, of S ′, and that outputs the i’th bit of
the output of S ′.

Proof. Given a way to iterate over the po-bits in order, the standard algorithms
for most operations required work as expected. For example, addition can be
performed bit-by-bit if the bits of the operands are not stored, but are, rather,
calculated recursively whenever they are needed. The depth of the recursion
required in this case is at most n.

The fact that iterating only over the po-bits, instead of over all bit positions,
makes no difference to the results is exemplified in Fig. 1.

po-bits non-po-bits po-bits
1 1 1 1 1 1 1 1 1 1

+
1 0 0 1 1 1 1 1 1 0 1 1

1 1 1 1 1 1 1 1 0 1

1 1 0 1 1 1 1 1 1 0 0 0

Fig. 1. An example of summing two numbers

As can be seen, not only are the non-po-bits all equal to the last po-bit
preceding them, in addition, the carry bit going over from the last po-bit to the
first non-po-bit is the same as the carry bit carried over from the last non-po-bit
to the first po-bit. Because of this, the sequential carry bits across non-po-bits
(depicted in light blue in Fig. 1) can be replaced by a single non-contiguous carry
operation (the thick red arrow).

This logic works just as well for subtraction and Boolean operations. The
only operation acting differently is multiplication. Implementing multiplication
directly leads to incorrect results. Instead, we re-encode the operand bits in a
way that reflects our original observation, that the operands can be taken to be
polynomials with small coefficients in absolute value, though these coefficients
may not necessarily be nonnegative.

The new encoding is as follows: going from least significant bit to most sig-
nificant bit, a “0” bit is encoded as a 1 if preceded by a “1” and as 0, otherwise.
A “1” bit is encoded as a 0 if preceded by a “1” and as −1, otherwise. It is
easy to see that a number, A, encoded in regular binary notation but including
a leading zero by a {0, 1} sequence, a0, . . . , ak, denoting coefficients of a power

series A =
∑k

i=0 ai2
i, does not change its value if the ai are switched for the bi

that are the result of the re-encoding procedure described. The main difference
is that now the value of all non-po-bits is 0.

Proving that multiplication works correctly after re-encoding is done by ob-
serving its base cases and bilinear properties. The carry in the calculation is
exponential in size, so can be stored using a polynomial number of bits. ��
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Lemma 3. Let Q be an Oracle that takes an S ∈ SLP[+, ,×,←,→,Bool] and
two po-bit positions of S and determines which position is the more significant.
Given access to Q, Oracle O, described in Lemma 2, can be implemented as a
polynomial space Turing machine.

Proof. Given an Oracle able to compare between indices, the ability to enumerate
over the indices in an arbitrary order allows creation of an ordered enumeration.
Essentially, we begin by choosing the smallest value, then continue sequentially
by choosing, at each iteration, the smallest value that is still greater than the
current value. This value is found by iterating over all index values in an arbitrary
order and trying each in turn. ��

Lemma 4. Oracle Q, described in Lemma 3, can be implemented as a polyno-
mial space Turing machine.

Proof. Recall that an index position is an affine function of the coefficients of the
formal variables introduced, in their standard evaluations. To determine which
of two indices is larger, we subtract these, again reaching an affine function of
the same form. The coefficients themselves are small, and can be stored directly.
Determining whether the subtraction result is negative or not is a problem of the
same kind as was solved earlier: subtraction, multiplication and addition need
to be calculated over variables; in this case the variables are the coefficients,
instead of the original formal variables.

However, there is a distinct difference in working with coefficients, in that they,
themselves, are calculable as polynomials over formal variables. The calculation
can, therefore, be transformed into addition, multiplication and subtraction, once
again over the original formal variables.

Although it may seem as though this conclusion returns us to the original
problem, it does not. Consider, among all formal variables, the one defined last.
This variable cannot appear in the exponentiation coefficients of any of the new
polynomials. Therefore, the new equation is of the same type as the old equation
but with at least one formal parameter less. Repeating the process over at most
n recursion steps (a polynomial number) allows us to compare any two indices
for their sizes. ��

Proof (of Theorem 1). The equality P-RAM[+,←,Bool] = PSPACE was al-
ready shown in [12]. Hence, we only need to prove P-RAM[+, ,×,←,→,Bool] ⊆
PSPACE. This is done, as per Schönhage’s method [10], by simulating a poly-
nomial time SLP[+, ,×,←,→,Bool] on a polynomial space Turing machine.

Lemmas 1–4, jointly, demonstrate that this can be done. ��

We remark that Theorem 1 is a striking result, in that right shifting is part of
the SLP being simulated, and right shifting is a special case of integer division.
Compare this with the power of exact division, described in Theorem 3, which
is also a special case of integer division.
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2.3 Incorporating Arbitrary Numbers

The framework described in Section 2.1 can readily incorporate simulation of
arbitrary large number computation. We use it now, to prove Theorem 4.

Proof (of Theorem 4). Having proved Theorem 1, what remains to be shown is

PTIME-ARAM[+, ,×,←,→,Bool] ⊆ PSPACE . (3)

As in the proof of Theorem 1, it is enough to show that an SLP that is able to
handle all operations can be simulated in PSPACE.

We begin by noting that because the PTIME-ARAM must work properly for
all but a finite range of numbers as its ALN input, it is enough to show one
infinite family of numbers that can be simulated properly. We choose X = 2ω,
for any sufficiently large ω. In the simulation, we treat this X as a new formal
variable, as was done with outputs of “a← b” operations.

Lemmas 1–3 continue to hold in this new model. They rely on the ability to
compare between two indices, which, in the previous model, was guaranteed by
Lemma 4. The technique by which Lemma 4 was previously proved was to show
that comparison of two indices is tantamount to evaluating the sign of an affine
combination of the exponents associated with a list of formal variables, when us-
ing their standard evaluation. This was performed recursively. The recursion was
guaranteed to terminate, because at each step the new affine combination must
omit at least one formal variable, namely the last one to be defined. Ultimately,
the sign to be evaluated is of a scalar, and this can be performed directly.

When adding the new formal variable X = 2ω, the same recursion continues
to hold, but the terminating condition must be changed. Instead of evaluating
the sign of a scalar, we must evaluate the sign of a formal expression of the form
aω+b. For a sufficiently large ω (which we assume ω to be), the sign is the result
of lexicographic evaluation. ��

3 Models with Division

Our proof of Theorem 3 resembles that of [8] in that it uses Simon’s ingenious

argument that, for any given n, the value
∑2n−1

i=0 i × 2ni can be calculated in
O(1)-time by considering geometric series summation techniques. The result is
an integer that includes, in windows of length n bits, every possible bit-string
of length n. The simulating RAM acts by verifying whether any of these bit-
strings is a valid tableau for an accepting computation by the simulated TM.
This verification is performed using bitwise Boolean operations, in parallel over
all options.

Instead of reiterating the entire proof, we give here the most salient differences
between the two arguments, these being the places where our argument corrects
errors in Simon’s original proof. These are as follows.
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1. Simon does not show how a TM can simulate an arbitrary RAM in ER-
time, making his result a lower-bound only. Indeed, this is, in general, im-
possible to do. On the other hand, given ELop(O(f(n))) tape, a TM can
simulate a RAM by storing uncompressed address-value pairs for every
non-zero register. The equivalence between the various TMs in Theorem 3
is given by Savitch’s Theorem [13], as well as by the well-known relation
TIME(n) ⊆ SPACE(n) ⊆ TIME(EXP(n)), so the RAM can be simulated
equally well by a time-bounded TM.

2. Simon uses what he calls “oblivious Turing machines” (which are different
than those of [14]) in a way that simultaneously limits the TM’s tape size and
maximum execution time (only the latter condition being considered in the
proof), and, moreover, are defined in a way that is non-uniform, in the sense
that adding more tape may require a different TM, with potentially more
states, a fact not accounted for in the proof. This is corrected by working
with non-oblivious, deterministic Turing machines, bounded by a tape of size
s. Let c be the number of bits required to store the state of the TM’s finite
control, then

tape-contents+ state× 2s+c+head-pos−1 + 22(s+c−1)+head-pos (4)

is a 3(s+c−1)-bit number encoding the complete instantaneous description of
the TM in a way that allows advancing the TM solely by Boolean operations
and bit shifting by offsets dependent only on s and c. This allows verification
of an entire tableau, and, indeed, the entire set of all possible tableaus,
simultaneously in O(1) time, when given s, or any number at least as large
as s, as input. The complexity of the RAM’s execution time is due to the
ELop(O(f(n))) steps required to reach any number that is as large as s.

3. Most importantly, Simon underestimates the length needed for the tableau,
taking it to be the value of the input. TMs are notorious for using up far
more tape than the value of their inputs (see [15]). By contrast, our proof
uses the fact that a tape bounded TM has only a finite number of possible
instantaneous descriptions, so can only progress a bounded number of steps
before either halting or entering an infinite loop. By simulating 23(s+c−1)

steps of the TM’s execution, we are guaranteed to determine its halting
state.

Ultimately, Theorem 3 proves that the power of a RAM[op], where op is RAM-
constructable and includes {+, /,←,Bool}, is limited only by the maximal size
of values that it can produce (relating to the maximal tableau size that it can
generate and check). Considering this, the proof of Theorem 5 becomes a trivial
corollary: instead of generating a number as large as s by ELop(O(f(n))) RAM
operations, it is possible to assign to s the value of the ALN. Following this single
instruction, simulating the TM’s entire execution is done as before, in O(1) time.

We have shown, therefore, that while arbitrary numbers have no effect on
computational power without division, with division they provide Turing com-
pleteness in O(1) computational resources.
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Abstract. In the past, parallel algorithms were developed, for the most
part, under the assumption that the number of processors is Θ(n) (where
n is the size of the input) and that if in practice the actual number was
smaller, this could be resolved using Brent’s Lemma to simulate the
highly parallel solution on a lower-degree parallel architecture. In this
paper, however, we argue that design and implementation issues of algo-
rithms and architectures are significantly different—both in theory and
in practice—between computational models with high and low degrees
of parallelism. We report an observed gap in the behavior of a parallel
architecture depending on the number of processors. This gap appears
repeatedly in both empirical cases, when studying practical aspects of
architecture design and program implementation as well as in theoretical
instances when studying the behaviour of various parallel algorithms. It
separates the performance, design and analysis of systems with a sub-
linear number of processors and systems with linearly many processors.
More specifically we observe that systems with either logarithmically
many cores or with O(nα) cores (with α < 1) exhibit a qualitatively
different behavior than a system with a linear number of cores on the
size of the input, i.e., Θ(n). The evidence we present suggests the exis-
tence of a sharp theoretical gap between the classes of problems that can
be efficiently parallelized with o(n) processors and with Θ(n) processors
unless P = NC.

1 Introduction

There is a vast experience in the study and development of algorithms for the
PRAM architecture. In this case, the standard assumption (though often un-
stated) was that the number of processors p was linear on the size of the input,
i.e., p = Θ(n) (see, e.g., [18] for a thorough discussion). Indeed, the definition of
the class NC, which is often equated with the class of problems that can be effi-
ciently parallelized on a PRAM, allows for up to polynomially many processors.
Hence, algorithms were designed to handle the case when p = Θ(n) or p = Θ(nk)
for k ≥ 1 and if the actual number of processors available was lower, this could
readily be handled by Brent’s Lemma using a suitable scheduler [11,6]. A fruitful
theory was developed under these assumptions, and papers in which p = o(n)
were relatively rare.
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Table 1. Optimal performance for each case according to processor count (0 < α < 1)

Processor count Θ(n) Θ(nα) Θ(log n)

Merge sort X X �
Master theorem
-Case 1 X � �
-Case 2 X � �
-Case 3 X X X

Amdahl’s law X � (if α ≤ 1/2) �
Collision X � (if α ≤ 1/2) �
Buffering X � �
Network size X � (if α � 1/2) �
TM simulation X X �

In this paper we analyze and report on the influence of the assumed number
of processors on several aspects of the performance of various types of parallel ar-
chitectures. Because of its current prevalence, we focus especially on multi-core
architectures, which actually feature a relatively small number of processors,
and hence advantages that can be identified for parallel systems with a small
number of processor count can lead to benefits in parallel computation in these
architectures. However, we also report on aspects of parallel computation that
are relevant in general in other architectures, such as memory collisions, com-
munication in distributed architectures, and network sizes, as well as in more
theoretical aspects like complexity classes and simulations of other models. Our
observations suggest the existence of fundamental differences in the qualities
of parallel systems with sublinear and linear number of processors, and that
exploiting the advantages of the former can lead to more practical and concep-
tually simpler designs of both parallel architectures and algorithms, ultimately
increasing their adoption and reducing development costs.

2 Overview of Arguments

In this section we briefly list the arguments in favour of considering a limited
degree of parallelism. We emphasize that we did not start from the outset with
this goal, but rather we sought to develop algorithms and tools (both practical
and theoretical) for current multi-core architectures. The observations within are
derived from both theoretical investigations and practical experiences in which
time and time again we found that there seems to be a qualitative difference
between a model with O(log(n)) processors and one with Θ(n) processors, with,
surprisingly, the advantage being for the weaker, i.e., O(log(n)) model. Table 1
shows a summary of our observations for the considered processor counts. There
is strong evidence of a sublinear cliff, beyond which development and implemen-
tation of efficient PRAM algorithms for many problems is substantially harder
if not completely impossible, unless P = NC. In several instances among the evi-
dence observed, the phenomenon had been observed earlier by others [18,20,14].
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We now list our arguments briefly, before we expand on each of them individually
in the next section.

1. The number of cores in current multi-core processors is nearly a constant,
but first, if it is truly a constant, there is not much we can say about parallel
speedups, and second, it seems to be steadily though slowly growing.

2. In analogous fashion to the word-RAM, the number of bits in a word could
be an arbitrary w but really it is most likely Θ(log n), since it is also an
index into memory, and memory is usually polynomial on n.

3. The probability of collision on a memory access is only acceptably low for
up to O(

√
n) processors.

4. The number of interconnects on a CPU network is prohibitively large for a
large number of processors.

5. Serialization at the network end is too costly, i.e., if more than two processors
want to talk to a single processor at the same time, this processor has to
listen to them serially.

6. There are natural logn and nε barriers in the complexity of designing
algorithms.

7. Efficient cache performance requires bounded number of processors in terms
of cache sizes, which are always assumed to be below n, and often as well in
terms of the ratio of shared and private cache sizes, which is well below 100.

8. We define the class of problems which can be sped up using a logarithmic
number of processors and show that it contains ENC and EP [20] and,
furthermore, this containment is strict.

9. For Turing machines we can automatically increase performance when simu-
lating with a parallel computer using random access memories, with natural
constraints limiting the speedup to a Θ(log n) factor.

10. Amdahl’s law suggests that programs can only noticeably benefit from par-
allelism if the number of processors is proportional to the relative difference
between the execution time of the serial and parallel portions of a program.

3 Exposition

In this section we briefly expand on each of the points above. We aim to keep each
argument as short as possible, since the entirety of the case is more important
than any individual point.

3.1 Limited Parallelism

In principle, it is possible to build a computer with an arbitrary degree of
parallelism. In practice, PRAMs algorithms and architectures focused on Θ(n)-
processor architectures, while relying on Brent’s Lemma for cases when the num-
ber of processors was below that. In contrast, multi-core processors have aimed
for a much smaller number of cores. In principle, this number could be modeled
as a constant. However, this is unrealistic as the number of cores continues to
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grow—albeit slowly—with desktop computers having transitioned over the last
decade from single core to dual core to quad core and presently eight cores and
sixteen cores already shipping at the higher end of the spectrum. Additionally,
it has been observed that generally speaking larger inputs justify larger invest-
ments in RAM and CPU capacity, so a function of n is much more reflective of
real life constraints. This suggests that the number of cores is a function which
grows slowly on the input size n, since there is a high processor cost. Let P(n)
denote this function. Natural candidates for P(n) are Θ(log n) and Θ(nα) for
α < 1, though there are other possibilities. Over the next subsections we shall
consider various candidates for P(n).

3.2 Natural Constraints

The ability to index memory using a computer word as an address in a program’s
virtual memory suggests that the size of the word is w = Ω(logM), where M is
the memory size, though this does not necessarily need to be the case1. Memory
itself is usually a polynomial function of the input size, i.e., M = Θ(nk) for
some k ≥ 1, with k = 1 being a common value. Substituting M = Θ(nk) in
w = Ω(logM) gives w = Ω(logn). This is assumed in the word-RAM model,
in order for algorithms to be able to refer to any input element. A common
assumption in word-RAM papers is actually w ≈ logn, which enables constant-
time lookup-table implementations of some functions on words while keeping
table sizes sublinear (see, e.g., [21]), and restricts the size of pointers in succinct
data structures that could otherwise increase their space usage (see, e.g., [10]).

Hence, the word size, which in the early days of computing was treated as a
constant, namely 4 or 8 bits, became better understood as in fact proportional
to the logarithm of the input size, that is Θ(log n). Similarly, in modern multi-
core computers, the number of processors has remained relatively bounded (in
contrast to commercial PRAMs or GPUs which support anywhere from hundreds
to thousands of processors). This relatively slow growth (at least as compared to
most other usually exponential growing performance hardware indices) on the
number of processors can thus be best modeled as logn in similar fashion to the
word size.

3.3 Write Conflicts

We now analyze memory contention between threads as a function of the num-
ber of processors, when write memory accesses are assumed to be distributed
uniformly at random among memory cells.

Consider a multi-threaded server application receiving requests from several
clients simultaneously. Assume that these requests are served by parallel threads

1 In practice, there have been architectures in which the memory size was strictly
greater than 2w . Currently, in the Intel architecture the size w places a limit on
the largest addressable space, but this has not always been the case (e.g., the 8088
processor).



On the Sublinear Processor Gap for Parallel Architectures 197

running on p processors that share the system’s memory. Such an application is
likely to have several portions of the computation accessing shared data such as
database tables, buffers, and other shared data structures. Write access to shared
data involves synchronization to avoid race conditions, usually implemented by
synchronization primitives such as barriers and locks. In general, regardless of
how synchronization is implemented, a simultaneous memory access to the same
memory cell involves an overhead, either due to serialization or data invalidation.
Let us call a simultaneous access by a pair of threads a collision. We define a
collision in terms of pairs of threads. Thus, a simultaneous access to the same
memory cell by t threads is counted as

(
t
2

)
collisions.

We are interested in analyzing the influence of the number of processors on
the number of collisions during a period of computation. The uncertainty added
by the timing of client requests suggests that write access to shared memory can
be modeled as a random process with a certain probability of collision. A crude
but reasonable approximation is to model the memory accesses of each process
as uniformly distributed over memory cells at each step.

We investigate the expected number of collisions for p threads accessing m
memory cells, uniformly at random at each timestep of a period of service time.
Clearly, the smaller the number of processors the lower the probability of colli-
sion. The question is for what value of p as a function of m does this probability
become negligible. Note that in general the size of the memory is usually mod-
eled as a growing function of a program’s input size, with m = O(nk) being a
common assumption. Thus, it is reasonable to analyze the number of collisions
as m grows.

This reduces to a balls-and-bins scenario (see, e.g., [16]). Let us first consider
the total number of overall collisions in one step. Let C be a random variable
denoting this number. The probability that two memory accesses are to the same
cell is 1/m. Since there are

(
p
2

)
pairs of memory accesses, the expected number

of collisions in one step is E[C] = p(p−1)
2m . As m grows, this expression tends to

0 if p = o(
√
m), tends to infinity if p = ω(

√
m), and it converges to a positive

constant for p = Θ(
√
m).

Now we consider an alternative expression for memory access conflicts, namely
the number of cells involved in collisions at each step. Thus, if three or more ac-
cesses are to the same cell, the event counts as one conflict. Let X be a random
variable denoting the number of memory cells which suffer a collision when there
are p simultaneous memory accesses. The probability of a memory cell not be-
ing accessed is (1 − 1/m)p, and thus the expected number of accessed cells is
m −m(1 − 1/m)p. Then, for p accesses the expected number of cells for which
there is more than one access is E[X ] = p − m + m (1− 1/m)

p
. Assume that

p = mα with α ≤ 1. The expression above is then E[X ] ≈ mα −m+me−mα−1

.

Using the Taylor expansion of e−mα−1

we obtain E[X ] ≈ m2(α−1)

2 .

Again, when m tends to infinity, the above tends to 0, 1/2, or diverges if α is
less, equal, or greater than 1/2, and thus the threshold again is for p = Θ(

√
m).

Suppose that every instruction takes unit time if there is no collision and s ≥
1 units of time otherwise. The expected number of collisions per processor per
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step is (p−1)
2m , and thus the expected slowdown in performance due to collisions

is s(p−1)
2m , which is negligible for p = o(m/s).

3.4 Processor Communication Network

Traditionally, parallel computers use either shared memory or a processor com-
munication network (or both) to exchange information between the various pro-
cessing units. The advantage of shared memory is that no additional hardware
is required for it; the disadvantages are issues of synchronization and mem-
ory contention. Hence, a widely explored alternative is the use of an ad-hoc
processor communication network connecting the processors. In general, from
the perspective of performance, a full communication network is the preferable
network architecture. However, when the number of processors is assumed to
be very large this is unfeasible. For example, for the case of Θ(n)-processors
of many commercial PRAM implementations, the number of interconnects re-
quired would have been Θ(n2) which is prohibitive. Thus there was extensive
study of alternative network topologies which reduced the complexity of the net-
work while attempting to minimize the penalty in performance derived from the
smaller network.

We observe now that full processor communication network becomes a realis-
tic possibility if the number of processors is O(log n) or even possibly O(nα) for
some α ) 1/2. For example, for a modest (by present standards) input size of
n = 227 = 134, 217, 728, even n1/2 processors would require an impossible num-

ber of interconnects on the full graph (
(√

n
2

)
≈ 6.7 × 107). A complete network

of logn = 27 processors, on the other hand, would require 351 interconnects,
which are well within the realm of current architectures.

3.5 Buffer Overflow

Aside from issues of network topology, in practice it is natural to assume that
each processor in a communication network can handle at most a small constant
number of messages at once. If more than a constant number of processors
send messages to a single processor, said messages would queue at the receiving
end for further processing. In this section we consider a natural communication
model in which in each instruction cycle a processor may send a message to
at most one other processor. In practice, depending on the specific application
the probability of collision may range anywhere from zero for the execution
of independent threads to one for, say, a master processor serializing requests
to some shared lock. As a compromise, we model again this process as if the
processors chose their destination uniformly at random. Let p be the number
of processors; then the maximum number of collisions observed at the most
loaded buffer is (ln p/ ln ln p)(1+ o(1)) with high probability [22]. For input sizes
n > 222, buffer handling with p = n can introduce delays of about twice as many
instruction cycles than with p = logn, with the difference growing unboundedly
(albeit slowly) for larger input sizes.
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3.6 Divide-and-Conquer Algorithms

Consider a divide-and-conquer algorithm whose time complexity can be written
as T (n) = aT (n/b) + f(n). The master theorem yields the time bounds for a
sequential execution of such an algorithm. A parallel version of this theorem
can be obtained by analyzing the parallel time Tp(n) of an execution in which
recursive calls are executed in parallel and scheduled with the scheduler in [14]
or work stealing [12] with a bounded number of processors [14]:

Tp(n) =

⎧⎪⎪⎨⎪⎪⎩
O(T (n)/p), if f(n) = O(nlogb(a)−ε) and p = O(nε) (Case 1)
O(T (n)/p), if f(n) = Θ(nlogb a) and p = O(log n) (Case 2)
Θ(f(n)), if f(n) = Ω(nlogb(a)+ε) and

af(n/b) ≤ cf(n), for some c < 1 (Case 3)

(1)

Optimal speedups are achieved in Cases 1 and 2 only for p = O(nε) for ε > 0, and
p = O(log n), respectively. In Case 3, the time is dominated by the sequential
divide and conquer time f(n) at the top of the recursion [14].

We note that it is possible to obtain optimal speedups with larger numbers
of processors for many divide-and-conquer algorithms. However, this invariably
requires parallelizing the divide and combine phases of the algorithm, as oth-
erwise the sequential time f(n) of the divide and combine phases dominates
the parallel time. In fact, if an optimal parallel algorithm for the divide and
combination phases is known, then all cases above yield optimal speedup, and
the bounds of the processors can be relaxed. Then the parallel time in Case 3

becomes Tp(n) = Θ(f(n)/p) [14]. Now Case 1 requires p = O
(

nlogb a

logn

)
, Case 2

requires p = O
(
nlogb a

)
, while Case 3 requires p = O(f(n)/ logn).

The result for a small number of processors in (1) shows that for a system with
a small number of processors the implementation of parallel divide-and-conquer
algorithms that achieve the full speedup offered by the architecture is simple
and can be implemented without the unnecessary complexity of implementing
specific parallel algorithms for the divide and combine phases of the algorithms.

When considering cache performance of divide-and-conquer algorithms, a
bounded number of processors can also be advantageous. Blelloch et al. [7]
show that the class of hierarchical divide-and-conquer algorithms —algorithms
in which the divide and combine phases can also be implemented as divide-and-
conquer algorithms— can be parallelized to obtain optimal speedups and good
cache performance when scheduled with a Controlled-PDF scheduler. While a
Brent’s Lemma type of implementation of some of the algorithms in [7] can
achieve optimal speedups for a large number of processors (e.g., matrix addi-
tion and cache oblivious matrix multiplication algorithms can both be sped up
optimally up to n2 processors) [7], the optimal speedup and cache performance
bounds under the Controlled-PDF scheduler is only achieved for a much smaller
number of processors, bounded by the ratio between shared and private cache
sizes, and even smaller in some cases, as we shall see in the next section.
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3.7 Cache Imposed Bounds

Cache contention is a key factor in the efficiency of multi-core systems. Various
multi-core cache models have been studied which focus on algorithms and sched-
ulers with provable cache performance. Many of the results involving shared and
private caches performance require bounds on the number of processors related
to the size of the input and/or to the relative sizes of private and shared caches.

The Parallel External Memory (PEM) model [3] models p processors, each
with a private cache of sizeM , partitioned in blocks of sizeB. A sorting algorithm
given in this model is asymptotically optimal for the I/O bounds for at most
p ≤ n/B2 processors, and it is actually proven that p ≤ n/(B logB) is an upper
bound for optimal processor utilization for any sorting algorithm in the PEM
model [3]. This algorithm is used in further results in the model for graph and
geometry problems [4,1,2]. Thus the assumption that p ≤ n/B2 is carried on
to these results as well, some of which actually require p ≤ n/(B log n) and

even p ≤ n/(B2 logB log(t) n), where log(t) n denotes the composition of t log
functions, and t is a constant.

Shared cache performance is studied in [8], which compares the number of
cache misses of a multi-threaded computation running on a system with p pro-
cessors and shared cache of size C2 to those of a sequential computation with
a private cache of size C1. It is shown that under the PDF-scheduler [9], the
parallel number of misses is at most the sequential one if Cp ≥ C1 + pd, where d
is the critical path of the computation. This implies that p ≤ (Cp−C1)/d, which
is less than n (as otherwise all the input would fit in the cache) and is usually
sublinear, as d is rarely constant and is Ω(log n) for many algorithms. Thus, for
many algorithms the bound on the parallel misses holds for p = O(n/ logn).

As mentioned in Sect. 3.6, Blelloch et al. [7] study hierarchical divide-and-
conquer algorithms in a multi-core cache model of p processors with private L1

caches of size C1 and a shared L2 cache of size C2. An assumption of the model
is that p ≤ C2

C1
) n, since the input size is assumed not to fit in L2. It is

shown that under a Controlled-PDF scheduler, parallel implementations achieve
optimal speedup and cache complexity within constant factors of the sequen-
tial cache complexity for a class of hierarchical divide-and-conquer algorithms.
Optimality for some algorithms, such as Strassen’s matrix multiplication and

associative matrix inversion even require p ≤ (C2/C1)
1

1+ε [7]. This multi-core
model with the same p ≤ C2

C1
assumption has been used to design cache efficient

dynamic programming algorithms [13]. Although the time complexity of the ob-
tained algorithms allows a large number of processors for optimal speedups, the
efficiency in cache performance restricts the level of parallelism.

Observe that presently the ratio between L2 shared cache and private L1

cache is in the order of 4 to 100 depending on the specific processor architecture.

3.8 The Class E(p(n))

The class NC can be defined as the class of problems which can be solved in
polylogarithmic time using polynomially many processors. It is believed that
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NC �= P and hence that there are known problems which do not admit a solution
in time O(logk n), for some k ≥ 1. In our case we are interested in the study of
problems which can be sped up using O(log n) or O(nα) processors for α < 1.
Kruskal et al. [20] introduced the classes ENC and EP which encode the classes
of problems that allow optimal speed up (up to constant factors) using polynomi-
ally many processors on a CRCW PRAM. The class ENC has polylogarithmic
running time, while the class EP has polynomial running time. They also define
the related classes SNC, ANC, SP , and AP , which are analogous to ENC
and EP in terms of the required running times but allow for some inefficiency.
In general, one could introduce the class C(p(n), S(n)) as the class of problems
that allow a speedup of S(n) with p(n) processors. Thus, following the notation
in [20] we define the class E(p(n)) = C(p(n), p(n)), which is the class of problems
that can be solved using O(p(n)) processors in time O(T (n)/p(n)) where T (n)
is the running time of the best sequential solution to the problem. In this work
we are particularly interested in the classes E(logn) and E(nα) for α < 1. For
consistency in the class comparisons, we assume a CRCW PRAM as in [20],
though these classes can be defined for other PRAM types (EREW,CREW), as
well as for asynchronous models (such as multi-cores).

The class ENC is a sharpening of the well known class NC. Recall that the
class NC requires maximal speedup down to polylogarithmic time even at the
cost of a polynomial amount of inefficiency (i.e., the ratio between parallel and
sequential work). In contrast, ENC requires the same speedup but bounds the
inefficiency to a constant factor. The class E(log n) bounds the inefficiency to a
constant which implies a speed up of Θ(log n) on the sequential solution to the
problem. By Brent’s Lemma we can show that E(log n) includes the problems
in classes ENC and EP . Since we investigate problems that are most worth
parallelizing, we restrict this inclusion to problems with at least sequential linear
time2.

Theorem 1. Let Π be a problem with sequential time t(n) = Ω(n). Then, (1)
Π ∈ ENC ⇒ Π ∈ E(logn) and (2) Π ∈ EP ⇒ Π ∈ E(logn).

The reverse is not the case, i.e., not all problems that are in E(log n) are in ENC,
unless P = NC: there are known P -complete problems which allow optimal
speedup using a polynomial number of processors [17], and thus they are in
EP (and hence in E(log n)). If any such problem is in ENC, this would imply
P = NC. We conjecture that the same is the case for E(log n) and EP . This gives
a theoretical separation between the problems that can be sped up optimally
using polynomially many processors and those that can be sped up using a
logarithmic number of processors.

Similarly, E(nα) bounds the inefficiency to a constant which implies a speed
up of O(nα) on the sequential solution to the problem. We show that E(nα) in-
cludes most problems (with at least linear time sequential complexity) in ENC.
For the same reasons described above, not all problems in E(nα) are in ENC,
for any α < 1.

2 Proofs are omitted due to space constraints.
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Theorem 2. Let Π be a problem with sequential time t(n) = Ω(n). Then,
Π ∈ ENC ⇒ Π ∈ E(nα).

3.9 Parallelism in Turing Machine Simulations

In Sect. 3.2 we argued that there are natural constraints in the amount of inher-
ent parallelism of computing models. In this section we extend these arguments
to show the limitations of the speedup that can be obtained from the Four Rus-
sians technique [5] when used for Turing machine (TM) simulations [19,15]. Here
we briefly outline a simulation of a TM by a multi-core computer that is similar
to those in [19,15] and argue about its limitations based on realistic assumptions
about the number of processors as well as word and memory sizes.

Let M be a single-tape deterministic TM that performs T (n) steps on an in-
put of length n (and hence it always halts). Assume thatM ’s alphabet is binary.
The idea is to treat contiguous blocks of b bits of M ’s tape as a word in RAM.
By precomputing M ’s resulting configuration after b steps when starting with
each possible block, we can then simulate b steps of M at a time by successively
looking up the next configuration of M . Since in b steps M can only alter the
contents of b cells, for a given position within the tape we need only to consider
the content of 2b+1 cells around the position. A block configuration consists of
this (2b+ 1)-bit string representing the contents of M ’s tape around some posi-
tion plus d bits to specify the state. Thus, each configuration uses 2b+1+d≤ kb
bits, where k is a constant. For each possible configuration c, we store in A[c]
the resulting configuration when running M starting from c for b steps, plus
information about how many positions the head moved, and in which direction.
There are at most 2kb starting configurations. Since all entries in A can be com-
puted independently in parallel, preprocessing takes g(n) = 2kbb/p steps using
p processors. The simulation proceeds by successively looking up configurations
and updating M ’s tape (with one processor) until an accepting or rejecting con-
figuration is reached. The total time is then Tp(n) = T (n)/b+ 2kbb/p.

There are natural restrictions that limit the speedup that can be achieved
with the above technique: the word size, the size of table A, and the efficiency
in terms of processor use. The number of configurations is 2kb and hence A
requires that many words of memory. This implies that, for a memory of size
nr, for some r, b ≤ (r/k) logn = O(log n). Moreover, in order to be able to
access entries of A in constant time using block configurations as addresses,
we require bk ≤ w, where w is the word size, which is consistent with the
common assumption w = Θ(log n) (see Sect. 3.2). Furthermore, assume that
in order to enable larger speedups we allow b = ω(logn) and allow a table of
superpolynomial size. Then, in order for the simulation time to dominate over
preprocessing we require 2kbb/p = O(T (n)/b), and thus p ≥ nω(1)/T (n), which
would be prohibitive for any polynomial time T (n).

The parallelism exploited by this approach is both in terms of the parallel
computation of the table A and in terms of the ability to manipulate various
bits simultaneously to perform a constant time table lookup (which, as we argue
above, can only be exploited up to the manipulation of Θ(log n) bits). The use of
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various processors is only for the precomputation phase, which is embarrassingly
parallel. Thus, in principle, we could benefit from the use of a polynomial number
of processors. However, the maximum speedup factor that the approach can
lead to is the size of the block b. Hence, for optimal processor utilization, the
maximum number of processors that we can use is p = b. In this case we have
that total time is Tp(n) = O(T (n)/p + 2kpp/p). For the simulation time to
dominate, we then require 2kp = O(T (n)/p), and thus p = O(log T (n)). For any
polynomial time TM, this implies p = O(log n). We note that these arguments
do not preclude the existence of other approaches that could result in optimal
simulation times without the restrictions described above.

3.10 Amdahl’s Law

Consider a program whose execution has a serial part that cannot be parallelized
(unless P = NC) represented by S(n) and a fully parallelizable part denoted by
P (n) then the parallel time with p processors is Tp(n) = S(n) +P (n)/p and the
speedup is represented by T1(n)/Tp(n) = (S(n) + P (n))(S(n) + P (n)/p).

Observe now that for p = Θ(n) we get that the parallel program is noticeably
faster only if S(n) = O(P (n)/n). For p = Θ(nα) we get that the parallel program
is noticeably faster only if S(n) = O(P (n)/nα). Lastly, for p = Θ(log n) we get
that the parallel program is noticeable faster if S(n) = O(P (n)/ log n). Observe
that most practical algorithms on large data sets run in time O(n log n) or less,
with the sequential part often corresponding to I/O operations, i.e., reading
the input. This means that the likeliest value for which one can obtain optimal
speedup corresponds to p = P (n)/S(n) which is often (though not always) logn.

4 Conclusions

We presented a list of theoretical arguments and practical evidence as to the
existence of a qualitative difference between the classes of problems that can
be sped up with a sublinear number of processors and those that can be sped
up with polynomially many processors. We also showed that in various specific
instances even though there are optimal algorithms for either case, it is con-
ceptually and practically much simpler to design an algorithm for a sublinear
number of processors. The benefits of a low processor count extend to issues
of processor communication, buffering, memory access, and cache bounds. We
introduced classes that describe the problems that allow for optimal speed up,
up to a constant factors, for logarithmic and sublinear number of processors
and show that they contain a strictly larger class of problems that the PRAM
equivalents introduced by Kruskal et al. in 1990 [20], unless NC = P.

The discontinuities identified in behaviour and performance of parallel sys-
tems for logarithmic and sublinear number of processors make these particu-
lar processor count functions theoretically interesting, practically relevant, and
worth of further exploration.

Acknowledgments. We would like to thank Daniel Remenik for helpful discussions.
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On Efficient Constructions of Short Lists

Containing Mostly Ramsey Graphs

Marius Zimand�

Department of Computer and Information Sciences, Towson University, Baltimore,
MD, USA

Abstract. One of the earliest and best-known application of the prob-
abilistic method is the proof of existence of a 2 log n-Ramsey graph, i.e.,
a graph with n nodes that contains no clique or independent set of size
2 log n. The explicit construction of such a graph is a major open prob-
lem. We show that a reasonable hardness assumption implies that in
polynomial time one can construct a list containing polylog(n) graphs
such that most of them are 2 log n-Ramsey.

1 Introduction

A k-Ramsey graph is a graph G that has no clique of size k and no independent
set of size k. It is known that for all sufficiently large n, there exists a 2 logn-
Ramsey graph with n vertices. The proof is nonconstructive, but of course such
a graph can be built in exponential time by exhaustive search. A major line of
research is dedicated to constructing a k-Ramsey graph having n vertices with
k as small as possible and in time that is bounded by a small function in n, for
example in polynomial time, or in quasi-polynomial time, DTIME[2polylog(n)].
Till recently, the best polynomial-time construction of a k-Ramsey graph with n

vertices has been the one by Frankl and Wilson [FW81], for k = 2Õ(
√
log n). Using

deep results from additive combinatorics and the theory of randomness extrac-
tors and dispersers, Barak, Rao, Shaltiel and Wigderson [BRSW06] improved

this to k = 2(logn)o(1) . Notice that this is still far off from k = 2 logn.
As usual when dealing with very difficult problems, it is natural to consider

easier versions. In this case, one would like to see if it is possible to efficiently
construct a small list of n-vertices graphs with the guarantee that one of them
is 2 logn-Ramsey. The following positive results hold.

Theorem 1. There exists a quasipolynomial-time algorithm that on input 1n

returns a list with 2O(log3 n) graphs with n vertices, and most of them are 2 logn-
Ramsey. In fact, since in quasipolynomial time one can check whether a graph is
2 logn-Ramsey, the algorithm can be modified to return one graph that is 2 logn-
Ramsey.
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Theorem 2. Under a reasonable hardness assumption H, there exists a con-
stant c and a polynomial-time algorithm that on input 1n returns a list with
logc n graphs with n vertices, and most of them (say, 90%) are 2 logn-Ramsey.

The proofs of these two results use basic off-the-shelf derandomization tech-
niques. The proof (one of them) of Theorem 1 notices that the probabilistic
argument that shows the existence of 2 logn-Ramsey graphs only needs a distri-
bution on the set of n-vertices graphs that is 2 log2 n-wise independent. There
exist such distributions whose support have the following properties: (a) the size

is 2O(log3 n) and (b) it can be indexed by strings of size O(log3 n). Therefore if
we make an exhaustive search among these indeces, we obtain the result.

Theorem 2 uses a pseudo-random generator g that can fool NP-predicates.
The assumption H , which states that there exists a function in E that, for some
ε > 0, requires circuits with SAT gates of size 2εn, implies the existence of
such pseudo-random generators. Then going back to the previous proof, it can
be observed that the property that an index corresponds to a graph that is not
2 logn-Ramsey is an NP predicate. Since most indeces correspond to graphs that
are 2 logn-Ramsey, it follows that for most seeds s, g(s) is also 2 logn-Ramsey.
Therefore, it suffices to make an exhaustive search among all possible seeds. Since
a seed has length O(log |index|) = O(log log3 n), the result follows. We state and
prove Theorem 2 with 90% of the graphs in the list being 2 logn-Ramsey, but
the fraction of 2 logn-Ramsey graphs in the list can be shown to be at least
1−O(1/ logn).

Theorem 2 can be strengthened to produce a list of concise representations
of graphs. A string t is a concise representation of a graph G = (V,E) with
V = {1, . . . , n} if there is an algorithm A running in time poly(log n) such that
for every u ∈ V, v ∈ V , A(t, u, v) = 1 if (u, v) ∈ E and A(t, u, v) = 0 if (u, v) �∈ E.
With basically the same proof as that of Theorem 2 one can show the following
result.

Theorem 3. Under a reasonable hardness assumption H, there exists a con-
stant c and an algorithm running in time poly(log n) that on input n (written
in binary notation) returns a list t1, . . . , tlogc n, and most elements of the list are
concise representations of 2 logn-Ramsey graphs.

Theorem 1 is folklore. It appears implicitly in the paper of M. Naor [Nao92].
Theorem 2 may also be known, but we are not aware of any published state-
ment of it. Fortnow in the Computational Complexity blog [For06] and San-
thanam [San12] mention a weaker version of Theorem 2, in which the same
hardness assumption is used but the size of the list is polynomial instead of
polylogarithmic. This motivated us to write this note.

Theorem 2 is also related to a question of Moore and Russell [MR12]. From
an improved version of Theorem 1 (see our note after the proof of Theorem 1),
they note that 2 logn-Ramsey graphs can be build using O(log2 n) random bits,
and they ask if such a construction can be done with o(log2 n) random bits.
Theorem 2 shows that under a plausible assumption, one needs only O(log logn)
random bits for the constuction.
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Section 4 contains some additional remarks. First we analyze the implication
of Theorem 2 when plugged in a construction of M. Naor [Nao92] that builds a k-
Ramsey graph from a list of graphs, most of which are k′-Ramsey graphs, which is
exactly what Theorem 2 delivers. We notice that the parameters obtained in this
way are inferior to the result of Barak et al. [BRSW06]. Secondly, we consider the
problem of explicit lower bounds for the van der Waerden Theorem, a problem
which is related to the explicit construction of Ramsey graphs. We notice that
the hardness assumption which derandomizes BPP implies lower bounds for
the van der Waerden Theorem that match the non-constructive lower bounds
obtained via the Lovasz Local Lemma. The original proof of the Lovasz Local
Lemma does not seem to yield this result. Instead we use a proof of Gasarch
and Haeupler [GH11], based on the methods of Moser [Mos09] and Moser and
Tardos [MT10].

2 The Hardness Assumption

The hardness assumption needed in theorem 2 is that there exists a function
f computable in E (where E =

⋃
c DTIME[2cn]) that, for some ε > 0, cannot

be computed by circuits of size 2εn that also have SAT gates (in addition to
the standard logical gates). More formally let us denote by CSAT

f (n) the size of
the smallest circuit with SAT gates that computes the function f for inputs of
length n.

Assumption H : There exists a function f in E such that, for some ε > 0, for
every n, CSAT

f (n) > 2εn.

Klivans and van Melkebeek [KvM02], generalizing the work of Nisan and
Wigderson [NW94] and Impagliazzo and Wigderson [IW97], have shown that,
under assumption H , for every k, there is a constant c and a pseudo-random
generator g : {0, 1}c logn → {0, 1}n, computable in time polynomial in n, that
fools all nk-size circuits with SAT gates. Formally, for every circuit C with SAT
gates of size nk,

|Probs∈{0,1}c log n [C(g(s)) = 1]− Probz∈{0,1}n[C(z) = 1]| < 1/nk.

We note that assumption H is realistic. Miltersen [Mil01] has shown that it
is implied by the following natural assumption, involving uniform complexity
classes: for every ε > 0, there is a function f ∈ E that cannot be computed in
space 2εn for infinitely many lengths n.

3 Proofs

Proof of Theorem 1.

Let us first review the probabilistic argument showing the existence of 2 logn-
Ramsey graphs. A graph G with n vertices can be represented by a string of
length

(
n
2

)
. If we take at random such a graph and fix a subset of k vertices,
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the probability that the set forms a clique or an independent set is 2−(
k
2)+1. The

probability that this holds for some k-subset is bounded by(
n
k

)
· 2−(

k
2)+1 ≤ ( enk )k · 2−(

k
2)+1

= 2k log en
k −(k2)+1.

For k = 2 logn, the above expression goes to 0. Thus, for n large enough, the
probability that a graph G is 2 logn-Ramsey is ≥ 0.99.

The key observation is that this argument remains valid if we take a distribu-
tion that is 2 log2 n-wise independent. Thus, we can take a polynomial p(X) of
degree 2 log2 n over the field GF[2q], where q = log

(
n
2

)
. To the polynomial p we

associate the string p̃ = p(a1)1 . . . p(a(n2)
)1, where a1, . . . , a(n2)

are the elements of

the field and (p(a))1 is the first bit of p(a). When p is random, this yields a distri-
bution over strings of length

(
n
2

)
that is 2 log2 n-wise independent. Observe that a

polynomial p is given by a string of length n = (2 log2 n+1) log
(
n
2

)
= O(log3 n).

It follows that
Probp∈{0,1}n[p̃ is 2 logn-Ramsey] ≥ 0.99.

In quasipolynomial time we can enumerate the graphs p̃, and 99% of them are
2 logn-Ramsey.

Note. By using an almost k-wise independent distribution (see [NN93],

[AGHR92]), one can reduce the size of the list to 2O(log2 n).

Proof of Theorem 2 and of Theorem 3.

Let p, p̃, n be as in the proof of Theorem 1. Thus:

– p ∈ {0, 1}n represents a polynomial,

– p̃ is built from the values taken by p at all the elements of the underlying
field, and represents a graph with n vertices,

– n = O(log3 n).

Let us call a string p good if p̃ is a 2 logn-Ramsey graph.
Checking that a string p is not good is an NP predicate. Indeed, p is not

good iff ∃(i1, . . . , i2 logn) ∈ [n]2 log n [ vertices i1, . . . , i2 logn in p̃ form a clique or
an independent set]. The ∃ is over a string of length polynomial in |p| and the
property in the right parentheses can be checked by computing O(log2 n) values
of the polynomial p, which can be done in time polynomial in |p|.

Assumption H implies that there exists a pseudo-random generator
g : {0, 1}c log n → {0, 1}n, computable in time polynomial in n, that fools
all NP predicates, and, in particular, also the one above. Since 99% of the
p are good, it follows that for 90% of the seeds s ∈ {0, 1}c logn, g(s) is good,

i.e., for 90% of s, g̃(s) is 2 logn-Ramsey. Note that from a seed s we can

compute g(s) and next g̃(s) in time polynomial in n. If we do this for every seed
s ∈ {0, 1}c logn, we obtain a list with nc = O(log3c n) graphs of which at least
90% are 2 logn-Ramsey graphs.



On Efficient Constructions of Short Lists Containing Mostly Ramsey Graphs 209

Theorem 3 is obtained by observing that {g(s) | s ∈ {0, 1}c logn} is a list
that can be computed in poly(logn) time, and most of its elements are concise
representations of 2 logn-Ramsey graphs.

4 Additional Remarks

4.1 Constructing a Single Ramsey Graph from a List of Graphs
of Which the Majority Are Ramsey Graphs

M. Naor [Nao92] has shown how to construct a Ramsey graph from a list of
m graphs such that all the graphs in the list, except at most αm of them,
are k-Ramsey. We analyze what parameters are obtained, if we apply Naor’s
construction to the list of graphs in Theorem 2.

The main idea of Naor’s construction is to use the product of two graphs
G1 = (V1, E1) and G2 = (V2, E2), which is the graph whose set of vertices is
V1×V2 and edges defined as follows: there is an edge between (u1, u2) and (v1, v2)
if and only if (u1, v1) ∈ E1 or (u1 = v1) and (u2, v2) ∈ E2. Then, one can observe
that if G1 is k1-Ramsey and G2 is k2-Ramsey, the product graph, G1 × G2 is
k1k2-Ramsey. Extending to the product of multiple graphsG1, G2, . . . , Gm where
each Gi is ki-Ramsey, we obtain that the product graph is k1k2 . . . km-Ramsey.

If we apply this construction to a list ofm graphsG1, G2, . . . , Gm, each having
n vertices and such that Probi[Gi is not k-Ramsey] ≤ α, we obtain that the
product of G1, G2, . . . , Gm is a graph G with N = nm vertices that is t-Ramsey
for t = nαmk(1−α)m. For α ≤ 1/ logn, we have t ≤ (2k)m. The list produced
in Theorem 2 has m = logc n, k = 2 logn, and one can show that α ≤ 1/ logn.
The product graph G has N = 2log

c n logn vertices and is t-Ramsey for t ≤
2log

c n·log logn+O(1) < 2(logN)1−β

, for some positive constant β.
Thus, under assumption H , there is a positive constant β and a polynomial

time algorithm that on input 1N constructs a graph with N vertices that is

2(logN)1−β

-Ramsey. Note that this is inferior to the parameters achieved by the
unconditional construction of Barak, Rao, Shaltiel and Wigderson [BRSW06].

4.2 Constructive Lower Bounds for the van der Waerden Theorem

Van der Waerden Theorem is another classical result in Ramsey theory. It states
that for every c and k there exists a number n such that for any coloring of
{1, . . . , n} with c colors, there exists k elements in arithmetic progression (k-
AP) that have the same color. Let W (c, k) be the smallest such n. One question
is to find a constructive lower bound for W (c, k). To simplify the discussion, let
us focus on W (2, k).

In other words, the problem that we want to solve is the following:

For any k, we want to find a value of n = n(k) as large as possible and a
2-coloring of {1, . . . , n} such that no k-AP is monochromatic. Furthermore, we
want the 2-coloring to be computable in time polynomial in n.
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Gasarch and Haeupler [GH11] have studied this problem. They present a prob-

abilistic polynomial time construction for n = 2k−1

ek −1 (i.e., the 2-coloring is ob-

tained by a probabilistic algorithm running in 2O(k) time) and a (deterministic)

polynomial time construction for n = 2(k−1)(1−ε)

4k (i.e., the 2-coloring is obtained

in deterministic 2O(k/ε) time). Their constructions are based on the constructive
version of the Lovasz Local Lemma due to Moser [Mos09] and Moser and Tar-
dos [MT10]. The probabilistic algorithm of Gasarch and Haeupler is “BPP-like”,
in the sense that it succeeds with probability 2/3 and the correctness of the 2-
coloring produced by it can be checked in polynomial time. It follows that it can
be derandomized under the hardness assumption that derandomizes BPP, using
the Impagliazzo-Wigderson pseudo-random generator [IW97]. It is interesting to
remark that the new proof by Moser and Tardos of the Local Lovasz Lemma is
essential here, because the success probability guaranteed by the classical proof
is too small to be used in combination with the Impagliazzo-Wigderson pseudo-
random generator.

We proceed with the details.
We use the following hardness assumption H ′ (weaker than assumption H),

which is the one used to derandomize BPP [IW97].

Assumption H ′: There exists a function f in E such that, for some ε > 0, for
every n, Cf (n) > 2εn.

Impagliazzo andWigderson [IW97] have shown that, under assumptionH ′, for
every k, there is a constant c and a pseudo-random generator g : {0, 1}c logn →
{0, 1}n that fools all nk-size circuits and that is computable in time polynomial
in n.

Proposition 1. Assume assumption H ′. For every k, let n = n(k) = 2k−1

ek −
1. There exists a polynomial-time algorithm that on input 1n 2-colors the set
{1, . . . , n} such that no k-AP is monochromatic.

Proof. The algorithm of Gasarch and Haeupler [GH11], on input 1n, uses a ran-
dom string z of size |z| = nc, for some constant c, and, with probability at least
2/3, succeeds to 2-color the set {1, . . . , n} such that no k-AP is monochromatic.
Let us call a string z to be good for n if the Gasarch-Haeupler algorithm on input
1n and randomness z, produces a 2-coloring with no monochromatic k-APs. Note
that there exists a polynomial-time algorithm A that checks if a string z is good
or not, because the Gasarch-Haeupler algorithm runs in polynomial time and the
number of k-APs inside {1, . . . , n} is bounded by n2/k. Using assumptionH ′ and
invoking the result of Impagliazzo and Wigderson [IW97], we derive that there
exists a constant d and a pseudo-random generator g : {0, 1}d logn → {0, 1}nc

such that

Probs∈{0,1}d log n [A(g(s)) = good for n] ≥ 2/3− 1/10 > 0.

Therefore if we try all possible seeds s of length d logn, we will find one s such
that g(s) induces the Gasarch-Haeupler algorithm to 2-color the set {1, . . . , n}
such that no k-AP is monochromatic.
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Abstract. We study the convergence of Solomonoff’s universal mixture
on individual Martin-Löf random sequences. A new result is presented
extending the work of Hutter and Muchnik (2004) by showing that there
does not exist a universal mixture that converges on all Martin-Löf ran-
dom sequences.

Keywords: Solomonoff induction, Kolmogorov complexity, theory of
computation.

1 Introduction

Sequence prediction is the task of predicting symbol αn having seen α1:n−1 =
α1 · · ·αn−1. Solomonoff approached this problem by taking a Bayesian mixture
over all lower semicomputable semimeasures where complex semimeasures were
assigned lower prior probability than simple ones.1 He then showed that, with
probability one, the predictive mixture converges (fast) to the truth for any
computable measure [9]. Solomonoff induction arguably solves the sequence pre-
diction problem and has numerous attractive properties, both technical [9, 2, 5]
and philosophical [8]. There is, however, some hidden unpleasantness, which we
explore in this paper.

Martin-Löf randomness is the usual characterisation of the randomness of
individual sequences [6]. A sequence is Martin-Löf random if it passes all effective
tests, such as the laws of large numbers and the iterated logarithm. Intuitively,
a sequence is Martin-Löf random with respect to measure μ if it satisfies all
the properties one would expect of an infinite sequence sampled from μ. It has
previously been conjectured that the set of Martin-Löf random sequences is
precisely, or contained within, the set on which the Bayesian mixture converges.

This question has seen a number of attempts with a partial negative solution
and a more detailed history of the problem by Hutter and Muchnik [3]. They
showed that there exists a universal lower semicomputable semimeasure M and
Martin-Löf random sequence α (with respect to the Lebesgue measure λ) for
which M(αn|α<n) �→ λ(αn|α<n). The α used in their proof is computable from

1 Actually, Solomonoff mixed over proper measures. The use of semimeasures was
introduced later by Levin to ensure that the mixture itself was lower semicomputable
[14].
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the halting problem, which presumably inspired the work in [7] where it is shown
that if α is 2-random, then every universal lower semicomputable semimeasure
converges on α. It is worth remarking that there are known semimeasures that
do converge on all Martin-Löf random sequences, some of which are even lower
semicomputable. Unfortunately, however, convergence rates for these semimea-
sures are unknown. For a detailed discussion see [3].

While Hutter and Muchnik showed that there exists a universal lower semi-
computable semimeasure and Martin-Löf random sequence on which it fails to
converge, the question of whether or not this failure occurs for all such semimea-
sures has remained open. We prove that for every universal lower semicom-
putable Bayesian mixture there exists a Martin-Löf random sequence on which
it fails to converge. This result is interesting for a few reasons. The choice of
universal mixture is akin to choosing an optimal universal Turing machine when
computing Kolmogorov complexity. In both cases, asymptotic results are rarely
dependent on this choice and so it is useful to confirm this trend here. On the
other hand, if the result had been positive then the existence of a universal
mixture that did converge on all Martin-Löf random strings would be a nice
property that might justify the choice of one universal mixture over another.

2 Notation

Overviews of algorithmic information theory can be found in [5, 1].

General. The natural, rational and real numbers are denoted by N, Q and
R. Logarithms are taken with base 2. A real θ ∈ (0, 1) has entropy H(θ) :=
−θ log θ− (1− θ) log(1− θ). The indicator function is [[expr]], which takes value
1 if expr is true and 0 otherwise. For sets A and B we write A − B for their
difference and |A| for the size of A. The natural density of A ⊆ N is d(A) :=
limn→∞ |{a ∈ A : a ≤ n}| /n. and d̄(A) := lim supn→∞ |{a ∈ A : a ≤ n}| /n. We
use ∨ and ∧ for logical or and and respectively.

Strings. A finite binary string x is a finite sequence x1x2x3 · · ·xn with xi ∈
B := {0, 1}. Its length is �(x). An infinite binary string ω is an infinite sequence
ω1ω2ω3 · · · . The empty string of length zero is denoted by ε. The sets Bn, B∗ and
B∞ are the sets of all strings of length n, all finite strings and all infinite strings
respectively. Substrings of x ∈ B∗ ∪B∞ are denoted by xs:t := xsxs+1 · · ·xt−1xt
where s, t ∈ N and s ≤ t. If s > t, then xs:t := ε. A useful shorthand is
x<t := x1:t−1. Let x, y ∈ B∗, then #x(y) is the number of (possibly overlapping
and wrapping around) occurrences of x in y and xy is their concatenation. For
example, #010(1010) = 2. If �(y) ≥ �(x) and x1:�(x) = y1:�(x), then we write
x + y and say x is a prefix of y. Otherwise we write x �+ y. A string ω ∈ B∞ is
normal if ∀x ∈ B∗, limn→∞ #x(ω1:n)/n = 2−�(x).

Measures and Semimeasures. A semimeasure is a function μ : B∗ → [0, 1]
satisfying μ(ε) ≤ 1 and μ(x) ≥ μ(x0) + μ(x1) for all x ∈ B∗. It is a measure
if both inequalities are replaced by equalities. A function μ : B∗ → R is lower
semicomputable if the set {(x, r) : r < μ(x), r ∈ Q, x ∈ B∗} is recursively enu-
merable. In this case there exists a recursively enumerable sequence μ1, μ2, · · ·
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of computable functions approximating μ from below. For b ∈ B and x ∈ B∗,
μ(b|x) := μ(xb)/μ(x) is the μ-probability that x is followed by b. The Lebesgue
measure is λ(x) := 2−�(x).

Complexity. A Turing machine T is a recursively enumerable set of pairs of
binary strings T :=

{
(p1, x1), (p2, x2), · · ·

}
where pk is the program for xk. It is

a prefix machine if the set of programs is prefix free, pk �+ pj for all j �= k. T is
a monotone machine if pk + pj =⇒ xk + xj ∨ xj + xk. For prefix machine T
the prefix complexity with respect to T is a function KT : B∗ → N defined by

KT (x) := min
p
{�(p) : (p, x) ∈ T }

If T is a monotone machine, then the monotone complexity with respect to T is
defined by

KmT (x) := min
p
{�(p) : (p, y) ∈ T ∧ x + y}

There exists an additively optimal prefix machine U such that for all prefix
machines T there exists a constant cT with KU (x) < KT (x) + cT . In identical
fashion there exists an additively optimal monotone machine. As is usual in
algorithmic information theory, we fix a pair of additively optimal prefix and
monotone machines and write K(x) := KU (x) and Km(x) := KmU (x). The
choice of reference machine is irrelevant for this work.

A lower semicomputable semimeasure M is universal if for every lower semi-
computable semimeasure μ there exists a constant cμ > 0 such that ∀x,M(x) >
cμμ(x). Zvonkin and Levin [14] showed that the set of all lower semicomputable
semimeasures is recursively enumerable (possibly with repetition). Let ν1, ν2, · · ·
be such an enumeration and w : N→ [0, 1] be a lower semicomputable sequence
satisfying

∑
i∈N

wi ≤ 1, which we view as a prior on the lower semicomputable
semimeasures. Then the universal mixture is defined by

M(x) :=
∑
i∈N

wiνi(x). (1)

There are, of course, many possible enumerations and priors, and hence there
are many universal mixtures. This paper aims to prove certain inconsistency
results about all universal mixtures, regardless of the choice of prior. Defining
wi(x) := wiνi(x)/M(x) and substituting into Eq. 1 leads to

M(b|x) =
∑
i∈N

wi(x)νi(b|x). (2)

There exist universal lower semicomputable semimeasures that are not repre-
sentable as universal mixtures, but we do not consider these here [13].

Martin-Löf Randomness. Let μ be a computable measure and M a universal
lower semicomputable semimeasure. An infinite binary string ω is μ-Martin-Löf
random (μ-random) if and only if there exists a c > 0 such that

μ(ω<n)/M(ω<n) > c, ∀n ∈ N. (3)



On Martin-Löf Convergence of Solomonoff’s Mixture 215

Observe that the definition does not depend on the choice of universal lower
semicomputable semimeasure since for any two universal lower semicomputable
semimeasures M and M ′ there exists a constant c > 0 such that cM ′(x) >
M(x) > M ′(x)/c, ∀x [5]. We write Rμ ⊂ B∞ for the set of μ-random strings.

Lemma 1. The following hold:

1. If ω ∈ B∞ is λ-random, then it is normal.
2. If x ∈ B∗ with �(x) = n and θ := #1(x)/n, then Km(x) < nH(θ)+ 1

2 log n+c
for some c > 0 independent of x and n.

3. Let A,B ⊆ N and φn := [[n ∈ A]]. If d(A) = 0 and d̄(B) > 0, then
(a) d̄(B −A) > 0.
(b) limn→∞Km(φ1:n)/n = 0.

Proof. Part 1 is well known [5, §2.6]. For part 2 we use the KT-estimator, which
is defined by

μ(x) :=

∫ 1

0

1

π
√
(1− θ)θ

θ#1(x)(1− θ)#0(x)dθ.

Because μ is a measure and is finitely computable using a recursive formula [12],
we can apply Theorem 4.5.4 in [5] to show that there exists a constant cμ > 0
such that

Km(x) < − logμ(x) + cμ ≤
1

2
logn+ 1 + log θ#1(x)(1− θ)#0(x) + cμ

=
1

2
logn+ 1 + nH(θ) + cμ,

where we used the redundancy bound for the KT-estimator [12] and the defini-
tion of H(θ). Part 3a is immediate from the definition of the natural density. For
3b, let θn := #1(φ1:n)/n and note that d(A) = 0 implies that limn→∞ θn = 0
and so limn→∞H(θn) = 0. Finally apply part 2 to complete the proof. �

3 Almost Sure Convergence

Before Martin-Löf convergence is considered we present a version of the cele-
brated theorem of Solomonoff with which we will contrast our results [10].

Theorem 2 (Solomonoff, 1978). If M is a universal lower semicomputable
semimeasure and α is sampled from computable measure μ, then

lim
n→∞

∑
b∈B

(M(b|α<n)− μ(b|α<n))
2
= 0, w.μ.p.1.

A subtle point is that convergence in Theorem 2 holds both off-sequence
and on-sequence. A weaker (on-sequence only) statement would be that
limn→∞ (M(αn|α<n)− μ(αn|α<n))

2 = 0, w.μ.p.1. Unfortunately, both results
only hold with probability 1 while we are primarily interested in convergence on
individual sequences.
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4 Martin-Löf Convergence

We now ask whether there exists a universal mixture such that M(αn|α<n) →
μ(αn|α<n) for all μ-random α. Two new theorems are presented, the first
is subsumed by the second, but admits an easy proof and serves as a nice
warm-up.

Theorem 3. Let M be a universal mixture. Then there exists a λ-random α
such that limn→∞

∑
b∈B (M(b|α<n)− 1/2)2 �= 0.

Proof. We use the same λ-random string α as Hutter and Muchnik [3], which
is defined inductively by αn := [[M(α<n0) > 2−n]]. Define ν : B∗ → [0, 1] by

ν(x) := M(x)[[∀n ≤ �(x) : xn = 0 ∨M(x<n0) > 2−n]].

It is straightforward to check that ν is both lower semicomputable and a
semimeasure. Therefore there exists a j ∈ N such that ν = νj in the enumeration
of all lower semicomputable semimeasures used by M . By the definition of ν we
have that ν(α1:n) = M(α1:n) for all n. Furthermore,

αn = 0 =⇒ M(α<n0) ≤ 2−n =⇒ ν(α<n1) = 0 =⇒ ν(1|α<n) = 0,

where we used the definitions of α, ν and the conditional probability respectively.
Therefore if αn = 0, then

M(0|α<n) +M(1|α<n)
(a)
=
∑

i∈N
wi(α<n) (νi(0|α<n) + νi(1|α<n))

(b)

≤
∑

i∈N
wi(α<n)− wj(1−M(0|α<n))

(c)
= 1− wj(1−M(0|α<n)

(d)

≤ 1− wjM(1|α<n), (4)

where (a) follows directly from Eq. 2. (b) follows by extracting wj(α<n) from the
sum and using the facts that νj(0|α<n)+νj(1|α<n) =M(0|α<n) and νi(0|α<n)+
νi(1|α<n) ≤ 1 for all i. (c) follows from the fact that

∑
i∈N

wi(x) = 1. For (d) we
note that M is a semimeasure, which implies that 1 −M(0|α<n) ≥ M(1|α<n).
Because α is λ-random, it must contain infinitely many zeros by part 1 of Lemma
1 and the definition of a normal string. Let ni be the position of the ith 0 in α
and k ∈ N be such that νk = λ. Therefore there exists a c > 0 such that

M(1|α<ni)
(a)
=
∑
i∈N

wi(α<n)ν(1|α<ni)
(b)

≥ wk(α<n)λ(1|α<ni)
(c)
> c,

where (a) is the same as Eq. 2 and (b) follows by extracting the contribution of
the Lebesgue measure λ. (c) follows by recalling that λ(1|α<ni) = 1/2 and the
fact that α is λ-random combined with Eq. 3. Then by Eq. 4,

lim inf
i→∞

M(0|α<ni) +M(1|α<ni) ≤ 1− wjc < 1.



On Martin-Löf Convergence of Solomonoff’s Mixture 217

Therefore limn→∞M(0|α<n)+M(1|α<n) �= 1 and so limn→∞
∑

b∈B(M(b|α<n)−
1/2)2 �= 0, as required. �
Coincidentally, the proof of Theorem 3 demonstrates the existence random se-
quences on which M fails to converge to a proper measure. This is interesting
as it is a straightforward corollary of Theorem 2 that M converges to a measure
with μ-probability one with respect to any computable measure μ.

We now present the on-sequence version of Theorem 3, which uses the same
α for a counter-example, but turns out to be significantly harder to prove.

Theorem 4. Let M be a universal mixture. Then there exists a λ-random α
such that limn→∞M(αn|α<n) �= 1/2.

Initially we follow the proof in [3] by constructing a lower semicomputable
semimeasure ν that dominates M on α infinitely often, but where ν(0|α<n) = 1
if αn = 0.

Definition 5. Let Mt be a sequence of computable functions approximating M
from below and define αt ∈ B∞ similarly to α by αt

n := [[Mt(α
t
<n0) > 2−n]]. Now

define νt : B∗ → [0, 1] by

νt(x) :=

⎧⎪⎨⎪⎩
2−t if �(x) = t ∧ x < αt

1:t

νt(x0) + νt(x1) if �(x) < t

0 otherwise,

where x < αt
1:t is decided by lexicographical order.
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1
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1
8

1
8
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4

1
8

1
8

1
8

1
8

1
8 0

0

0 0

000 001 010 011 100 101 110 111

Fig. 1. ν3 if α3
1:3 = 101

It is shown in [3] that limt→∞ αt = α and 2−n ≡ λ(α1:n) > M(α1:n). Addi-
tionally, ν := limt→∞ νt exists and is a lower semicomputable semimeasure with
ν(x) = ν(x0)+ ν(x1) and ν(α1:n) < 2−n. Hutter and Muchnik then argued that
if αn:n+1 = 01, then ν(αn|α<n) = 1 and ν(α<n) ≥ M(α<n)/2. They then set
M ′ := γM +(1− γ)ν for suitable γ and so poisoned convergence of either M or
M ′. Here we diverge from their work and consider ν when predicting ones. For
the remainder of this article α and ν refer to those defined above.
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Lemma 6. The following hold:

1. If αn:n+1 = 10 then ν(1|α<n) ∈ (0, 1/3).
2. If αn = 1 then ν(1|α<n) ∈ (0, 1/2).

Proof. For part one,

ν(1|α<n)
(a)
=

ν(α<n1)

ν(α<n)

(b)
=

ν(α<n10) + ν(α<n11)

ν(α<n0) + ν(α<n10) + ν(α<n11)

(c)
=

ν(α<n10)

ν(α<n0) + ν(α<n10)

(d)
=

ν(α<n10)

2−n + ν(α<n10)

(e)
<

2−n−1

2−n + 2−n−1
=

1

3
.

(a) is the definition of the conditional measure. (b) follows because ν(x) =
ν(x0) + ν(x1). (c) and (d) are true, since αn:n+1 = 10 and so α<n11 > α1:n+1

and α<n0 < α1:n, which imply that ν(α<n11) = 0 and ν(α<n0) = 2−n. (e)
follows from algebra and because ν(α1:n) < 2−n for all n. For the second part
we use the same reasoning to obtain

ν(1|α<n) =
ν(α<n1)

ν(α<n0) + ν(α<n1)
=

ν(α<n1)

2−n + ν(α<n1)
<

1

2
,

as required. �

Lemma 7. Let ni be the position of the ith 1 in α and j ∈ N be such that
ν = νj in the enumeration of all lower semicomputable semimeasures used by
M . If limn→∞M(αn|α<n) = 1

2 , then the function M̄(x) := M(x) − wjν(x)/2
satisfies the following properties:

1. M̄ is a universal mixture.
2. lim infi→∞ M̄(1|α<ni) ≥ 1

2 .
3. There exists γ ∈ (0, 1) such that for all sufficiently large n with αn:n+1 = 10,

M̄(1|α<n) >
1

2γ2 .

Proof. The first part is trivial. For the third part, let wk be the prior weight
that M assigns to itself, n be such that αn:n+1 = 10 and εn := 1

2 −
M(α<n1)
M(α<n)

.
Then

M̄(1|α<n)
(a)
=

M(α<n1)− wjν(α<n1)/2

M(α<n)− wjν(α<n)/2

(b)
>

M(α<n1)− wjν(α<n)/6

M(α<n)− wjν(α<n)/2

(c)
=

1

2
+
wjν(α<n)− 12M(α<n)εn

12M̄(α<n)

(d)
>

1

2
+
wj

24
− wkεn,

(a) is the definition of M̄ and conditional probability. (b) follows from part 1 of
Lemma 6. In (c) we substituted εn. (d) by substituting inequalities ν(α<n) ≥
ν(α<n0) = 2−n > M(α<n)/2 > M̄(α<n)/2 and M̄(α<n) > wkM(α<n). Since
εn → 0 for sufficiently large n with αn:n+1 = 10, we have M̄(1|α<n) > 1/2 +
wj/48 = 1

2γ2 where γ2 := 1
1+wj/24

∈ (0, 1). For the second part

M̄(1|α<ni) =
M(α<ni1)− wjν(α<ni1)/2

M(α<ni)− wjν(α<ni)/2

(a)
>

M(α<ni1)− wjν(α<ni)/4

M(α<ni)− wjν(α<ni)/2

=
1

2
− M(α<ni)εni

M̄(α<ni)
≥ 1

2
− wkεni ,
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where (a) follows from part 2 of Lemma 6. Taking the limit as i→∞ completes
the result. �
To prove the main theorem we construct a pair of infinite binary sequences χ and
ψ such that α1:n is computable from χ1:n and ψ1:n. This implies thatKm(α1:n) <
Km(χ1:n) +K(ψ1:n) +O(1), which holds because you can construct a program
for α1:n using the concatenation of a prefix program for ψ1:n and a monotone
program for χ1:n. Finally we assume thatM converges on-sequence to λ on α and
show that this implies lim infn→∞Km(χ1:n)/n < 1 and limn→∞K(ψ1:n)/n = 0.
But α is λ-random, so limn→∞Km(α1:n)/n = 1, which leads to a contradiction.

Proof of Theorem 4. Let α be as in the proof of Theorem 3. Define {mi} and
{ni} inductively by

m1 := min {m : αm = 1}
ni := min {n ≥ mi : αn+1 = 0}
mi := min {m > ni−1 : αm = 1} ,

which are chosen so that αmi−1:ni+1 = 01ni−mi+10. Since α is λ-random, by
part 1 of Lemma 1, d({ni : i ∈ N}) > 0. Furthermore, M̄ is universal so by Eq.
3 there exists an ε > 0 such that 1 ≥ 2niM̄(α1:ni) > ε for all i. Let γ be as in
the proof of Lemma 7. Therefore we can choose a c ∈ Q such that:

1. d̄
(
A :=

{
i : c < 2niM̄(α1:ni) ≤ c/γ

})
) > 0.

2. d
(
B :=

{
i : 2niM̄(α1:ni) > c/γ

})
) = 0.

Define F ⊂ N by

F :=
{
i : ∃j ∈ {mi, · · · , ni − 1} such that 2jM̄(α1:j) > c

}
− B.

Now define indicators χ and ψ by

χn := [[αn = 1 ∨ ∃i : (n = ni + 1 ∧ i ∈ A− F )]]

ψn := [[∃i : n = mi ∧ i ∈ F ∪B]].

Let Mt and M̄t be computable approximations of M and M̄ from below respec-
tively and m(x) := max {m ≤ �(x) : xm−1 = 0 ∨m = 1}. Then

αn =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if χn = 0

1 if χn = 1 ∧ ψm(α<n1) = 1

1 if χn = 1 ∧ ∃t :Mt(α<n0) > 2−n

0 if χn = 1 ∧ ∃t : 2n−1M̄t(α<n) > c.

The equation above is computable given χ1:n, ψ1:n and α<n by the following
argument.
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1. The first two cases are straightforward since m(α<n1) is computable.
2. If neither the first nor second case match, then by the definitions of χ and ψ

exactly one of the 3rd or 4th cases must hold. Therefore the conditions can
be computed in parallel for increasing t until one completes.

Since α1:n is λ-random and can be computed from ψ1:n and χ1:n using the
equation above, there exist constants c1, c2 > 0 such that Km(χ1:n)+K(ψ1:n)+
c2 > Km(α1:n) > n− c1, where the second inequality follows from [5, Example
4.5.3]. We now work by contradiction and show that if limn→∞M(αn|α<n) =

1
2

then Km(χ1:n) +K(ψ1:n) is smaller than n− c1 − c2 for sufficiently large n.
We start by showing that d(F ) = 0. By Lemma 7, for each k ∈ N there exists

anNk such that if i > Nk, then M̄(αni |α<ni) > 1/(2γ2) and M̄(1|α<n) > γ1/k/2
whenever αn = 1 and n ≥ mi. Suppose Nk < i /∈ B and j ∈ {mi, · · · , ni − 1}
with �i := ni −mi + 1 ≤ k, then

2jM̄(α1:j)
(a)
= 2j

M̄(α1:ni)

M̄(1|α<ni)

ni−1∏
n=j+1

1

M̄(1|α<n)

(b)
< γ22niM̄(α1:ni)γ

−(ni−j−1)/k
(c)

≤ cγ1−(ni−j−1)/k
(d)

≤ c,

where (a) follows from the definition of the conditional measure. (b) follows from
the inequalities M̄(1|α<ni) > 1/(2γ2) and M̄(1|α<n) > γ1/k/2. (c) is true by
the assumption that i /∈ B, which implies that 2niM̄(α1:ni) ≤ c/γ. Finally (d)
follows because ni − j − 1 ≤ ni −mi + 1 ≤ k. Therefore i /∈ F and

1

I

I∑
i=1

[[i ∈ F ]]
(a)

≤ 1

I

I∑
i=1

(
[[�i ≤ k]][[i ∈ F ]] + [[�i > k]]

)
(b)

≤ Nk

I +
1

I

I∑
i=1

[[�i > k]]
(c)
=

Nk

I + 1−
k∑

κ=1

1

I

I∑
i=1

[[�i = κ]].

(a) and (c) follow by algebra. (b) because if i > Nk and �i ≤ k, then i /∈ F .
Now �i is the length of a contiguous block of 1’s surrounded by zeros. Since α is
λ-random, by Lemma 1 the asymptotic proportion of such contiguous blocks of
length κ is 2−κ by the following argument.

lim
I→∞

1

I

I∑
i=1

[[�i = κ]]
(a)
= lim

I→∞
1

I#01κ0(α1:nI+1)

(b)
= lim

I→∞
(nI + 1)

#10(α1:nI+1)
· #01κ0(α1:nI+1)

(nI + 1)

(c)
= 2−κ,

where (a) and (b) follow from the definitions of the intervals and (c) fol-
lows the definition of normal numbers and from part 1 of Lemma 1. There-
fore 1

I
∑I

i=1[[�i > k]] < 21−k for sufficiently large I. Sending k → ∞ gives

d(F ) := limI→∞
∑I

i=1[[i ∈ F ]]/I = 0. It follows from d(B) = d(F ) = 0
and Lemma 1 that d(B ∪ F ) = 0 and limn→∞Km(ψ1:n)/n = 0. Since
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|Km(x) − K(x)| < O(log �(x)) for all x [5, §4.5.5], limn→∞K(ψ1:n)/n = 0 as
well. Let θn := #1(χ1:n)/n. By Lemma 1 we have that d̄(A−F ) > 0. Therefore
there exists a 0 < c3 ∈ Q such that lim supn→∞ θn >

1
2 + c3, where we also used

the fact that αn = 1 =⇒ χn = 1 and d̄({ni : i ∈ N}) > 0. If θn >
1
2 +c3 then by

Lemma 1 there exists a c4 > 0 such that Km(χ1:n) < nH
(
1
2 + c3

)
+ 1

2 logn+ c4.
Therefore for all ε > 0 there exists an arbitrarily large n such that

n− c1 < Km(α1:n) < Km(χ1:n) +K(ψ1:n) + c2

< εn+ nH

(
1

2
+ c3

)
+

1

2
logn+ c2 + c4.

This is a contradiction since H
(
1
2 + c3

)
< 1. Therefore limn→∞M(αn|α<n) �= 1

2
as required. �

5 Summary

We have shown that for every universal mixture there exists an infinite λ-random
sequence on which it fails to converge.

Open Problems. There are a number of natural questions remaining. Suppose
M is a universal lower semi-computable semimeasure and define CM and C by

CM :=

{
ω : lim

t→∞M(ωn|ω<n) =
1

2

}
and C :=

⋂
M

CM

where the intersection is taken over all universal lower semi-computable semimea-
sures. What is the nature of CM and C? It follows from [3] that there exists an
M such that Rλ �⊆ CM , which implies that Rλ �⊆ C. In [7] it is shown that the
2-random reals are a subset of C. In this work we showed that for all universal
mixtures Rλ �⊆ CM . Obvious open questions are:

1. Does there exists a universal lower semi-computable semimeasure (not a mix-
ture) such that Rλ ⊆ CM? An example of a non-trivial universal enumerable
semimeasure that is not (essentially) a mixture may also be of interest.

2. As above, but where Rλ is replaced with a different class of random reals
somewhere on the hierachy between Martin-Löf random and 2-random reals,
such as the weak 2-random reals.

Unfortunately, an elegant characterisation of CM and C seems unlikely because
there exists an α ∈ C that is not λ-random. See Proposition 8 in the appendix,
which is adapted from Theorem 7 in [3]. Note that it is known that there exists a
lower semicomputable semimeasureW that converges on all λ-random sequences,
but W is not universal [4].
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A Convergence on Non-random Sequences

Proposition 8. There exists an α ∈ B∞ such that

1. α is not λ-random.
2. For all universal lower semi-computable semimeasures M

lim
t→∞

∑
b∈B

(
M(b|α<t)−

1

2

)2

= 0.

Proof. Define computable measure ν inductively by

μ(1|x) := 1

2
+

1

2
√
1 + �(x)

For universal lower semi-computable semimeasureM define the set of μ-random
sequences on which M converges to μ by

AM :=

{
ω : lim

t→∞

∑
b∈B

(M(b|ω<t)− μ(1|ω<t))
2 = 0 ∧ ω is μ-random

}
.

Now μ(AM ) = 1 by Theorem 2 and the well-known fact that μ(Rμ) = 1 for all
computable measures μ. Therefore since there are only countably many universal
lower semi-computable semimeasures, we have μ (A :=

⋂
M AM ) = 1. Let α ∈ A,

which is μ-random. Then

∞∑
t=1

∑
b∈B

(√
μ(b|α<t)−

√
λ(b|α<t)

)2
≥

∞∑
t=1

(√
1

2
+

1

2
√
t
−
√

1

2

)2

=∞.

Therefore α is not λ-random by Theorem 3 of [11]. Finally by the definition
of α ∈ A and μ we have that for all universal lower semi-computable semimea-
sures M

lim
t→∞

∑
b∈B

(
M(b|α<t)−

1

2

)2

= lim
t→∞

∑
b∈B

(M(b|α<t)− μ(b|α<t))
2 = 0

as required. �
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Abstract. For a Boolean function f, let D(f) denote its deterministic
decision tree complexity, i.e., minimum number of (adaptive) queries
required in worst case in order to determine f. In a classic paper, Rivest
and Vuillemin [18] show that any non-constant monotone property P :

{0, 1}(n2) → {0, 1} of n-vertex graphs has D(P) = Ω(n2).

We extend their result to 3-uniform hypergraphs. In particular, we

show that any non-constant monotone property P : {0, 1}(n3) → {0, 1}
of n-vertex 3-uniform hypergraphs has D(P) = Ω(n3).

Our proof combines the combinatorial approach of Rivest and
Vuillemin with the topological approach of Kahn, Saks, and Sturtevant.
Interestingly, our proof makes use of Vinogradov’s Theorem (weak Gold-
bach Conjecture), inspired by its recent use by Babai et. al. [1] in the
context of the topological approach. Our work leaves the generalization
to k-uniform hypergraphs as an intriguing open question.

1 Introduction

The decision tree model aka query model [3], perhaps due to its simplicity and
fundamental nature, has been extensively studied over decades; yet there remain
some outstanding open questions about it.

Fix a Boolean function f : {0, 1}n → {0, 1}. A deterministic decision tree Df

for f takes x = (x1, . . . , xn) as an input and determines the value of f(x1, . . . , xn)
using queries of the form “ is xi = 1? ”. Let C(Df , x) denote the cost of the com-
putation, that is the number of queries made byDf on input x. The deterministic
decision tree complexity of f is defined as D(f) = minDf

maxxC(Df , x).
The function f is called evasive if D(f) = n, i.e., one must query all the

variables in worst case in order to determine the value of the function.

� Research at the Centre for Quantum Technologies is funded by the Singapore Min-
istry of Education and the National Research Foundation.

�� Part of this work was done while the author was visiting the Centre for Quantum
Techologies, National University of Singapore. This work was supported in part by
the National Natural Science Foundation of China Grant 61170062, 61222202.

T-H.H. Chan, L.C. Lau, and L. Trevisan (Eds.): TAMC 2013, LNCS 7876, pp. 224–235, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Any Monotone Property of 3-Uniform Hypergraphs Is Weakly Evasive 225

1.1 The Anderaa-Rosenberg-Karp Conjecture

A Boolean fuction f is said to be monotone (increasing) if for any x ≤ y we
have f(x) ≤ f(y), where x ≤ y iff for all i : xi ≤ yi. A property of n-vertex

graphs is a Boolean function P : {0, 1}(
n
2) → {0, 1} whose variables are identified

with the
(
n
2

)
potential edges of n-vertex graphs and the function P is invariant

under relabeling of the vertices. P(G) = 0 means that the graph G satisfies the
property. A natural theme in the study of decision tree complexity is to exploit
the structure within f to prove strong lower bounds on its query complexity.
A classic example is the following conjecture attributed to Anderaa, Rosenberg,
and Karp, asserting the evasiveness of monotone graph properties:

Conjecture 1 (ARK Conjecture). (cf. [8]) Every non-trivial monotone graph
property is evasive.

Some natural examples of monotone graph properties are: connectedness,
planarity, 3-colorability, containment of a fixed subgraph etc.

Since its origin around 1975, the ARK Conjecture has caught the imagination
of generations of researchers resulting in beautiful mathematical ideas; yet - to
this date - remains unsolved. A major breakthrough on ARK Conjecture was
obtained by Kahn, Saks, and Sturvevant [8] via their novel topological approach.
They settled the conjecture when the number of vertices of the graphs is a power
of prime number. The topological approach subsequently turned out useful for
solving some other variants and special cases of the conjecture. For example:
Yao confirms the variant of the conjecture for monotone properties of bipartite
graphs [24]. More recently, building on Chakraborty, Khot, and Shi’s work [4],
Babai et. al. [1] show that under some well-known conjectures in number theory,
forbidden subgraph property - containment of a fixed subgraph in the graph - is
evasive.

1.2 The Evasiveness Conjecture

The key feature of monotone graph properties is that they are sufficiently sym-
metric. In particular, they are transitive Boolean functions, i.e., there is a group
acting transitively on the set of variables under which the function remains
invariant. A natural question was raised: how much symmetry is necessary in or-
der to guarantee the evasiveness? The following generalization (cf. [12]) of ARK
Conjecture asserts that only transitivity suffices.

Conjecture 2 (Evasiveness Conjecture (EC)). If f is a non-trivial monotone
transitive Boolean function, then f is evasive.

Rivest and Vuillemin [18] confirm the above conjecture when the number of
variables is a power of prime number. The general case remains widely open.
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1.3 The Weak Evasiveness Conjecture

Recently Kulkarni [7] proposes to investigate the following:

Conjecture 3 (Weak Evasiveness Conjecture). If {fn} is a sequence of non-trivial
monotone transitive Boolean functions then for every ε > 0

D(fn) ≥ n1−ε.

The best known lower bound in this context is D(f) ≥ R(f) ≥ n2/3, which
follows from the work of O’Donnell et. al. [17]. It turns out that [7] the above
conjecture is equivalent to the EC! Furthermore: the Rivest and Vuillemin [18]
result, which settles the ARK conjecture up to a constant factor, in fact confirms
the Weak-EC for graph properties.

Theorem 1 (Rivest and Vuillemin). If P : {0, 1}(
n
2) → {0, 1} is a non-trivial

monotone property of graphs on n vertices then D(P) = Ω(n2).

It is interesting to note that the proof of equivalence in Kulkarni [7] does not
hold between ARK and Weak-ARK. Hence: even though Weak-ARK is settled,
the ARK is still wide open.

1.4 Our Results on the Weak EC

In this paper we prove an analogue of Rivest and Vuillemin’s result (Theorem 1)
for 3-uniform hypergraphs. A property of 3-uniform hypergraphs on n vertices

is a Boolean function P : {0, 1}(
n
3) → {0, 1} whose variables are labeled by the(

n
3

)
potential edges of n-vertex 3-uniform hypergraphs and P is invariant under

relabeling of the vertices.

Theorem 2. If P : {0, 1}(
n
3) → {0, 1} is a non-trivial monotone property of

3-uniform hypergraphs on n vertices, then

D(P) = Ω(n3).

Our proof technique can be briefly described as follows: First we combine the
combinatorial approach of Rivest and Vuillemin with the topological approach
of Kahn, Saks, and Sturtevant to prove the result when n = 3k. Then we use
the 3k case to prove the result for arbitrary n via an interesting application of
the famous Vinogradov’s Theorem that asserts that every odd integer can be
expressed as sum of three prime numbers.

Interestingly, we do not yet know how to generalize our proof technique to
k-uniform hypergraphs. But in this context we are able to prove a partial result
on 4-uniform hypergraphs.

Theorem 3. Let P : {0, 1}n×n×n×n → {0, 1} be a 4-uniform 4-partite hyper-
graph property of 4n-vertex hypergraphs. If P is non-trivial and monotone, then

D(P) = Ω(n4).
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The organisation of this paper is as follows. Section 2 contains the preliminaries.
Section 3 contains the proof of n = 3k case. Section 4 uses 3k case to prove the
general case, in particular it contains the proof of Theorem 2. Section 5 contains
some partial results for 4-uniform hypergraphs. Section 6 contains conclusion
and open ends.

2 Preliminaries

In this paper [n] denotes the set {1, . . . , n}.

2.1 Rivest-Vuillemin: Combinatorial Approach

In a beautiful paper, Rivest and Vuillemin show that the ARK Conjecture holds
up to a constant factor, i.e., any non-trivial monotone graph property is weakly
evasive. As an intermediate step [18] show the following:

Theorem 4 (Rivest-Vuillemin). If n is a power of a prime number and f :
{0, 1}n → {0, 1} is any function invariant under a transitive permutation group
such that f(0, . . . , 0) �= f(1, . . . , 1), then D(f) = n.

In this paper we prove the weak-evasiveness of monotone properties of 3-uniform
hyper-graphs, which extends the result of Rivest and Vuillemin for graph prop-
erties. Our proof is inspired by the one by Rivest and Vuillemin. Interestingly
we use, in addition to the combinatorial approach of Rivest and Vuillemin, the
powerful topological approach of Kahn, Saks, and Sturtevant combined with a
deep theorem in number theory.

2.2 Kahn-Saks-Sturtevant: Topological Approach

In a seminal paper, Kahn, Saks, and Sturtevant [8] introduce a novel topological
approach to settle the ARK Conjecture when the number of vertices of graphs is
a power of a prime number. Their crucial observation was that non-evasiveness
of monotone properties has a strong topological consequence, namely the corre-
sponding simplicial complex is contractible to a point. Further they exploit this
topological consequence via Oliver’s Fixed Point Theorem [16] under the actions
of certain special type of groups.

We say that a group Γ satisfies Olivers Condition if there exist (not nec-
essarily distinct) primes p, q such that Γ has a (not necessarily proper) chain of
subgroups Γ2 	 Γ1 	 Γ such that Γ2 is a p-group, Γ1/Γ2 is cyclic, and Γ/Γ1 is
a q-group, where p-group means a group whose order is a power of a prime p.

Theorem 5 (Kahn-Saks-Sturtevant). If Γ satisfies Oliver’s Condition and
acts transitively on the set S of variables, then for any non-trivial monotone
Γ -invariant function f : {0, 1}S → {0, 1}, we have: D(f) = |S|.
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Kahn, Saks, and Sturtevant made the assumption that the number of vertices
of the graph - n is a prime power and used the following group that satisfies
Oliver’s Condition:

AFF (n) := AGL(1, n),

the group of affine transformations x !→ ax + b over the field Fn of order n;
a ∈ Fn − {0}, b ∈ Fn. The two key properties of this group are that it is a
cyclic extension of a p-group, i.e., it satisfies Oliver’s Condition; moreover it acts
doubly transitively on [n], i.e., any (i, j) can be mapped to any (i′, j′) for i �= j
and i′ �= j′.

In this paper, we make use of the AFF (n), as well as another group-theoretic
construction called wreath product. We recall the definition, and refer the readers
to [19, Section 1.6] detailed discussion. For a finite set S, let Sym(S) be the
symmetric group on S. Let G ≤ Sym(S) and H ≤ Sym(T ). The wreath product
G -H is a permutation group acting on S×T , defined as follows. The base group
of the wreath product is the direct product GT , that is |T | copies of G. For t ∈ T ,
the Gt independently acts on the corresponding copy S × {t}. Specifically, for
(ω, δ) ∈ S × T , and f ∈ GT , (s, t)f = (sf(t), t). G -H also contains a subgroup
H∗ isomorphic to H , acting only on the second component of S×T . That is for
h ∈ H , (s, t)h = (s, th). G -H is the group generated by GS and H∗.

2.3 Prime-Partition via Vinogradov’s Theorem

The Goldbach Conjecture asserts that every even integer can be written as the
sum of two primes. Vinogradov’s Theorem [23] says that every sufficiently large
odd integer m is the sum of three primes m = p1 + p2 + p3. We use here Hasel-
groves version [5] of Vinogradov’s theorem which states that we can require the
primes to be roughly equal: pi ∼ m/3. This can be combined with the Prime
Number Theorem to conclude that every sufficiently large even integer m is a
sum of four roughly equal primes.

This fact was first used by Babai et. al. [1] to construct the group actions
satisfying Oliver’s Condition in order to show that any monotone property of
sparse graphs is evasive.

3 3-Uniform Hypergraphs: n = 3k

We prove the following theorem in this section.

Theorem 6. Let n = 3k, and P be 3-uniform hypergraph property of n-vertex
hypergraphs. If P is non-trivial and monotone, then D(P) = Ω(n3).

Proof. Our proof strategy is inspired by the one by Rivest and Vuillemin’s proof
that non-trivial and monotone graph properties of graphs with n = 2k vertices
are weakly evasive. The basic strategy is to set up a family of graphs G0 ⊂
G1 ⊂ . . . ⊂ Gk, among which there are two adjacent graphs G� and G�+1

such that G� satisfies P whereas G�+1 does not. Now we start with the smaller
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graph G� and gradually add edges to it under the assumption that D(P) is
not Ω(n3) and conclude that even after adding these edges the property P is
satisfied. Eventually, after adding sufficiently many edges this would lead to a
contradiction as we would be able to conclude that G�+1 satisfies the property.

Rivest and Vuillemin choose G� to be the disjoint union of 2n−� cliques on
2� vertices. Further they use Theorem 4 to add the edges to finally lead to
a contradiction. Similar to Rivest and Vuillemin, we start our proof by using
Theorem 4 to add certain type of edges. However, while handling the 3-uniform
hypergraph properties, we face more complications. The natural choice of Gi to
be disjoint union of hyper-cliques seems to fail and Theorem 4 seems inadequate
in dealing with all types of edges. We overcome this obstacle by suitably changing
the family of graphs and by making use of the topological approach of Kahn,
Saks, and Sturtevant (Theorem 5) to deal with the other type of edges.

3.1 Our Choice of the Graph Family: Cliques with Spikes

To prove the theorem we consider the following family of hypergraphs on n
vertices. For j ∈ {0, 1, . . . , k}, let Gj be the hypergraph defined as follows: firstly
Gj contains a disjoint union of 3k−j copies of cliques on 3j vertices. Then if an
edge {u, v, w} satisfies that u, v are in the one clique while w is in another one,
it is also included in Gj . We call such edges spikes.

As G0 is the empty hypergraph, and Gk is the complete hypergraph, we see
that G0 satisfies P while Gk does not as P is non-trivial. This suggests that
there exists � ∈ {0, 1, . . . , k − 1} such that G� satisfies the property while G�+1

does not as P is monotone.
Now collect the cliques in G� into three groups V1 ∪ V2 ∪ V3, each group

containing 3k−�−1 cliques. We then consider the property P1 induced by P after
fixing the values at the edges {{u, v, w} | u, v, w ∈ Vi, or {u, v, w} ∈ G�} as in
G�. Note that P1 is a non-trivial property, because P is monotone and the graph
G�+1 is contained in the graph G�

⋃
E where E denotes the edges corresponding

to the domain of P1.

3.2 Two Types of Edges

The edges not fixed in P1 are of two types:

Type 1 T1 = {{v1, v2, v3} | vi ∈ Vi, i ∈ [3]}.
Type 2 T2 = {{u, v, w} | u, v ∈ Vi, w ∈ Vj , i �= j}. Note that v, w cannot come

from the same clique otherwise it would have been fixed.

Before going on we define two group actions on V1. Firstly, H1 = Z3� - Z3k−1−�

acts on V1, where 3k−1−� copies of Z3� act independently on the 3k−1−� cliques,
and Z3k−1−� permutes among the cliques. Secondly, we define the group action
of H2 = Z3� - AFF (3k−1−�) on V1 similarly to H1. That is, 3k−1−� copies of
Z3� act independently on the 3k−1−� cliques, and AFF (3k−1−�) acts on the
cliques in doubly-transitive way. Recall that for a vector space V , AFF (V ) is
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V1 V2 V3

Type 1

Type 2

spike

Fig. 1. An illustration of the spike (green), and Type 1 (red) and Type 2 (blue) edges

the affine group on V . H1 and H2 are both subgroups of the automorphism
group of induced subgraph of G� on V1. Then note that H1 is a 3-group, and
H2 is transitive on {{u, v} | u and v are from different cliques}. Finally, it can
be verified that H2 belongs to the group class as in Theorem 5.

Table 1. Groups used to handle Type 1 and Type 2 edges

Type 1 (Z3� � Z3k−1−� )× (Z3� � Z3k−1−� )× (Z3� � Z3k−1−� )

Type 2 (Z3� �AFF (3k−1−�))× (Z3� � Z3k−1−� )

3.3 Adding Type 1 Edges

Now we consider the property P2 induced by P1 by setting Type 2 edges to be
absent. Note that the number of Type 1 edges is 33(k−1), thus a prime power.
Let H1 ×H1 ×H1 act on V1 × V2 × V3 in a natural way: each copy of H1 acts
on vertices of Vi independently. It is seen that this action preserves the fixed
subgraph, and P2 is invariant under this action. If after adding all Type 1 edges
P2 would not be satisfied, then by the Rivest-Vuillemin theorem, P2 is evasive.
That is D(P) ≥ D(P2) = 33(k−1) = Ω(n3) and we would be done.

3.4 Adding Type 2 Edges

Let P3 be the property induced by P1 by setting Type 1 edges to be present.
The discussion from last paragraph suggests that P3 is a non-trivial property,
and note that P3 only has Type 2 edges left unfixed. For i, j ∈ [3], i �= j, let
T2(i, j) = {{u, v, w} | u, v ∈ Vi, w ∈ Vj}. Let P4 be the property induced by P3

by setting edges in T2 \ T2(1, 2) to be absent. Note that |T2(1, 2)| = Ω(n3).
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(Oliver’s Condition Holds) Consider the group H = H2 ×H1 acting on V1 × V2
in a natural way. It is verified that H preserves the structure of the fixed graph,
and P3 is invariant under H . It is easy to check that H belongs to the group
class described in Theorem 5. This allows us to apply Theorem 5 (the Kahn,
Saks and Sturtevant Theorem) to conclude that either P4 is trivial; if not then
its query complexity is Ω(n3) and we would be done.

(Orbits are large) Here we use a key property of the action of H, namely that
the orbit of any edge is of large size: Ω(n3). Thus we can add edges in T2(1, 2)
to get another restriction P5. Then we use the same group as above for V2 × V3
to add edges in T2(2, 3).

3.5 Deriving a Contradiction

Continuing this way we can keep adding T2(i, j) edges while maintaining that
the hyper-graph still satisfies the property. But then we would get G�+1 as a
subgraph which by our choice of �, does not satisfy the property. Contradiction!

4 3-Uniform Hypergraphs: General n

In this section we prove the main theorem. Theorem 1.5, restated. If P :

{0, 1}(
n
3) → {0, 1} is a non-trivial monotone property of 3-uniform hypergraphs

on n vertices, then D(P) = Ω(n3).

Proof. The natural way of extending Rivest and Vuillemin’s argument for 3-
uniform hyper graphs for arbitrary n leads to analysis of several types of edges.
We do not know an easy way to handle this via combinatorial approach. We
can use the topological approach together with an interesting theorem about
partitioning an integer into prime numbers to patch up the 3k case to
arbitrary n.

4.1 Prime-Partition of n via Vinogradov’s Theorem

We distinguish two cases: (Case 1) n is even and (Case 2) n is odd. Let us
consider Case 1: n is even. The other case can be handled in a similar fashion.
Let k be the largest power of 3 that does not exceed n. Since n is odd, we can
write (using the above mentioned Hasegrove’s Version of Vinogradov’s Theorem)
n = p1 + p2 + p3 + 3k−1, where pis are prime numbers and pi ∼ pj . Moreoever:
note that by our choice of k we can assume: pi ≤ 3k.

4.2 Patching Up 3k Case to General n

We partition [n] into parts of size p1, p2, p3 and 3k−1 as described in the previous
section. Let P be a non-trivial monotone property of 3-uniform hyper-graphs on
n vertices. Theorem 6 allows us to conclude that either (a) D(P) = Ω(n3) or
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(b) any 3k vertex (hyper) clique satisfies P . In Case (a) we are done. So let
us assume that we are in Case (b). Since p1 ≤ 3k and since P is monotone,
we may assume that the clique on p1 vertices satisfies the property. Now we
assume that the clique on p1 vertices is present and restrict our attention to the
induced property P2 of 3-uniform hypergraphs on p2+ p3+3k−1 vertices. Again
using the fact that p2 ≤ 3k we can assume that the clique on p2 vertices is also
present in addition to the clique on p1 vertices. Now we move our attention to
the induced property P2 on p3 + 3k−1 vertex graphs. In one more step, we can
move our attention to the induced property P3 on 3k−1 graphs which assumes
that the cliques on the p1, p2, and p3 vertices are present. Finally, with the use of
Theorem 6, we can conclude that the clique on the 3k−1 vertices is also present;
if not then we could already conclude D(P) = Ω(n3).

4.3 Two Types of Edges

Now we have a restriction P ′ of our original property P in which the cliques on
p1, p2, p3 and 3k−1 vertices are present. We partition the absent edges into two
types:

Type A the three endpoints of the edges belong to different cliques;
Type B two of the three endpoints belong to one clique and the remaining

endpoint belongs to a different clique.

p1 p2 p3 3k−1

Type A

Type B

Type A

Type B

Fig. 2. An illustration of Type A (red) and Type B (blue) edges

4.4 Adding Type A Edges

Firstly: we conclude that all Type A edges must also be present; if not then
D(P) = Ω(n3). For this we use the following two types of groups: Zp1×Zp2×Zp3

and Zpi × Zpj × Z3k−1 .
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Table 2. Groups used to handle Type A and Type B edges

Type A Zp1 × Zp2 × Zp3 , and Zpi × Zpj × Z3k−1

Type B AFF (pi)× Zpj , and AFF (pi)× Z3k−1 , and AFF (3k−1)× Zpi

4.5 Adding Type B Edges

Secondly: after adding all Type A edges we can conclude that all Type B edges
must also be present; if not then D(P) = Ω(n3). For this we use the following
three types of groups:AFF (pi)×Zpj and AFF (pi)×Z3k−1 and AFF (3k−1)×Zpi .

(Oliver’s Condition Holds) It is easy to check that all the groups that we use
are the right ones for using the topological approach, i.e., they are “q-group
extension of cyclic extension of p-groups,” i.e., they satisfy Oliver’s Condition.

(Orbits are large) A crucial property that we used in our proof is that the orbit
of any edge under any of our group actions is large: Ω(n3).

4.6 Deriving a Contradiction

After adding both Type A and Type B edges to the cliques on the p1, p2, p3 and
3k−1 vertices, we can conclude that the clique on n vertices must satisfy P ; this
contradicts with our initial assumption that P is non-trivial.

This completes the proof of Theorem 2.

5 4-Uniform 4-Partite Hypergraphs

In this section we prove the weak evasiveness for properties of 4-uniform 4-partite
hypergraphs. Theorem 1.6, restated. Let P : {0, 1}n×n×n×n → {0, 1} be a
4-uniform 4-partite hypergraph property of 4n-vertex hypergraphs. If P is non-
trivial and monotone, then D(P) = Ω(n4).
Proof: If n is prime, the result directly follows from Theorem 4.

In the case when n is not prime, let p be a prime number such that p < n < 2p.
Let V = V1 ∪ V2 ∪ V3 ∪ V4, |Vi| = n be the vertex set. The strategy is again by
contrapositive: assumeD(P) is not of Ω(n4). Then we shall start from the empty
graph, and then add the edges with different types while keeping the value of
the property not change. Finally we will get that the complete graph satisfies
the property, which contradicts to the condition of being a non-trivial property.

Let G0 be the empty graph; thus f(G0) = 0. Let Vi = Ai ∪Bi, where Ai is a
vertex set of size p (i = 1, 2, 3, 4), and Bi = Vi \Ai.

5.1 Adding Edges in A1 × A2 × A3 × A4

Consider a restriction P1 of P where all the variables outside A1×A2×A3×A4

are set to be 0. P1 is a monotone transitive invariant function with p4 variables,
by Theorem 4 P1 is trivial, otherwise D(P1) = p4 = Ω(n4). Let G1 be the graph
with edges A1 ×A2 ×A3 ×A4, thus f(G1) = 0.
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5.2 Adding Edges in B1 × A2 × A3 × A4

We will add all the edges in B1 ×A2 ×A3 ×A4 to G1, resulting in a graph G2

with edges V1 × A2 × A3 × A4. Before doing that we consider a graph G′
1 with

edges B1 × A2 × A3 × A4. Since p > n − p, from the monotone and symmetry
condition, we have f(G′

1) ≤ f(G1) = 0. Consider a restriction P2 of P where all
the edges in G′

1 are set to 1 and all the edges outside V1 × A2 × A3 × A4 are
set to 0. It is clear that P2 is a monotone transitive invariant function with p4

variables, thus from Theorem 4 P2 is a constant, otherwise D(P2) = p4 = Ω(n4).
Hence we get f(G2) = 0.

5.3 Adding Edges in V1 × B2 × A3 × A4

Similar to the previous step, we first use the monotone and symmetry condition
to “delete” some edges fromG2. LetG

′
2 be the graph with edges V1×B2×A3×A4.

From the monotone and symmetry condition, f(G′
2) ≤ f(G2) = 0. Consider the

restriction P3 of P where all the edges in G′
2 are set to 1 and all the edges outside

V1×V2×A3×A4 are set to 0. It is easy to see that P3 can be further partitioned
into two properties isomorphism to P1 and P2, respectively. By repeating the
steps in Section 5.1 and 5.2 we conclude that P3 is trivial, otherwise D(P3) =
Ω(n4). Hence f(G3) = 0, where G3 is the graph with edges V1 × V2 ×A3 ×A4.

Adding Edges in V1 × V2 × B3 × A4 and V1 × V2 × V3 × B4

These two steps are similar to the previous step, and we omit them here. After
doing these steps, we get that the value of the complete graph is also 0, which
contradicts the non-trivial condition. 


Remark 1. We note that the proof strategy for Theorem 1.6 can be extended to
show that any k-uniform k-partite hypergraph property is weakly evasive, when
k is a constant. On the other hand, we do not know how to prove the weak
evasiveness for 4-uniform hypergraph properties.

6 Conclusion

In this paper we are able to confirm a special case of the Weak-EC. In particular,
we have shown that any non-trivial monotone property of 3-uniform hypergraphs
is weakly evasive. It is interesting to see how far can one generalize our results.

Question 1. Is any non-trivial monotone property of k-uniform hypergraphs
weakly evasive?
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Abstract. Scaffold filling is a new combinatorial optimization problem
in genome sequencing and can improve the accuracy of the sequencing
results. The two-sided Scaffold Filling to Maximize the Number of String
Adjacencies(SF-MNSA) problem can be described as: given two incom-
plete gene sequences A and B, respectively fill the missing genes into
A and B such that the number of adjacencies between the resulting se-
quences A′ and B′ is maximized. The two-sided scaffold filling problem is
NP-complete for genomes with duplicated genes and there is no effective
approximation algorithm. In this paper, we propose a new version prob-
lem that symbol # is added to each end of each input sequence for any
instance of two-sided SF-MNSA problem and design a polynomial algo-
rithm for one special case of this new version problem. For any instance,
we present a better lower bound of the optimal solution and devise a
factor-1.5 approximation algorithm by exploiting greedy strategy.

1 Introduction

In the process of biological sequencing, a gene fragment or genome is generally
sequenced and assembled many times. Finally, we often obtain more than one
incomplete sequence (scaffolds or contigs). The accuracy of final sequence will
affect the results of biological analysis. Therefore, it is important that using
scaffold filling technology improves the accuracy of final gene sequence.

Muñoz et al. first investigate the one-sided permutation scaffold filling prob-
lem, and propose an exact algorithm to minimize the genome rearrangement
(DCJ) distance [10]. Subsequently, Jiang et al. solve the two-sided permuta-
tion scaffolding filling problem under the DCJ distance in polynomial time [8].
When genomes contain some duplicated genes, the scenario is completely differ-
ent. There are three general criteria (or distance) to measure the similarity of
genomes: the exemplar genomic distance [11], the minimum common string par-
tition (MCSP) distance [3] and the maximum number of string adjacencies [1,9].
Unfortunately, unless P=NP, there does not exist any polynomial time approxi-
mation (regardless of the factor) algorithm for computing the exemplar genomic
distance even when each gene is allowed to repeat three times [5,4] or even two
times [2,7]. The MCSP problem is NP-complete even if each gene repeats at
most two times [6]. Jiang et al. prove the SF-MNSA problem for genomes with

T-H.H. Chan, L.C. Lau, and L. Trevisan (Eds.): TAMC 2013, LNCS 7876, pp. 236–247, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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gene repetitions is also NP-complete and design a 1.33-approximation algorithm
for one-sided problem [9]. But we find the approximation algorithm should be
for the one-sided SF-MNSA with symbol # problem. So far, there is no effective
algorithm for two-sided sequence scaffold filling problem.

In this paper, we propose a new version of the two-sided SF-MNSA problem
and design a polynomial algorithm for the special instance of this new version
problem. For any instance, an approximation algorithm with 1.5-factor is de-
vised, by analyzing the two-sided characteristic and using greedy method.

2 Preliminaries

At first, we review some necessary definitions [9]. Throughout this paper, all
genes and genomes are unsigned. Given a gene set Σ, a string P is called per-
mutation if each element in Σ appears exactly once in P . We use c(P) to denote
the set of elements in permutation P . A string S is called sequence if some genes
appear more than once in S, and c(S) denotes genes of S, which is a multiset
of elements in Σ. For example, Σ = {a, b, c, d}, S = abcdacd, c(S) = {a, a, b,
c, c, d, d}. A scaffold (with gene repetitions) is an incomplete sequence, typi-
cally obtained by some sequencing and assembling process. A substring with m
genes is called an m-substring, and a 2-substring is also called a pair. As the
genes are unsigned, the relative order of the two genes of a pair does not matter,
i.e., the pair xy is equal to the pair yx. Given a scaffold A=a1a2a3 · · · an, let
PA = {a1a2, a2a3, . . . , an−1an} be the set of pairs in A.

Definition 1. Given two scaffolds A=a1a2 · · · an and B=b1b2 · · · bm, if aiai+1

= bjbj+1 (or aiai+1=bj+1bj), where aiai+1 ∈ PA and bjbj+1 ∈ PB , aiai+1 and
bjbj+1 are matched to each other. In a maximum matching of pairs in PA and
PB, a matched pair is called an adjacency, and an unmatched pair is called a
breakpoint in A and B respectively.

It follows from the definition that scaffolds A and B contain the same set of adja-
cencies but distinct breakpoints. The maximum matched pairs in B (or equally,
in A) form the adjacency set between A and B, denoted as a(A,B). We use
bA(A,B) and bB(A,B) to denote the set of breakpoints in A and B respectively.
A gene is called a bp-gene, if it appears in a breakpoint. Each maximal sub-
string W of A (or B) is called a bp-string, if each pair in it is a breakpoint.
The leftmost and rightmost genes of a bp-string W are called the end-genes
of W , the other genes in W are called the mid-genes of W . For example, we
have scaffold A = abcedaba, B = cbabda, PA = {ab, bc, ce, ed, da, ab, ba}, PB =
{cb, ba, ab, bd, da}, then matched pairs are (ab, ba), (bc, cb), (da, da), (ab, ab). For
the scaffold A, ab, bc, da, ab are adjacency and the set of A’s breakpoints bA(A,B)
= {ce, ed, ba}, string ced and ba are bp-string. For the scaffold B, cb, ba, ab, da
are adjacency and bB(A,B) = {bd}, string bd is a bp-string.

For a scaffold A and a missing genes multiset X , let A′ be a resulting scaffold
after filling all the genes in X into A, then A′ = A +X . The process is called
Scaffold Filling. We use ”+” to denote the scaffold filling operation.
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Definition 2. Scaffold Filling to Maximize the Number of (String) Adjacencies
(SF-MNSA).
Input: two scaffolds A and B over a gene set Σ and two multi-sets of elements
X and Y , where X = c(B)− c(A) �= ∅ and Y = c(A)− c(B) �= ∅.
Question: Find A′ ∈ A+X and B′ ∈ B+Y such that |a(A′, B′)| is maximized.

Given two scaffolds A=a1a2 · · ·an and B=b1b2 · · · bm, as we can see, each gene
except the four ending ones is involved in two adjacencies or two breakpoints or
one adjacency and one breakpoint. To get rid of this imbalance, we add ’#’ to
both ends of A and B, The problem of this version is called two-sided SF-MNSA
with symbol #. For the new version problem, it is ensured that one gene insertion
can generate at least one new adjacency (see the proof of Lemma 1). The fact
is needed by the approximation algorithm.

We list a few basic properties of this problem. Note that A andB are sequences
that have been added symbol # and all propositions, lemmas, theorems are for
any instance of SF-MNSA with symbol # problem in the following paper.

Proposition 1. If a gene appears the same times in both input sequences, then
the gene constitutes no breakpoint in one input sequence when it constitutes no
breakpoint in another input sequence.

Proof. let A,B be input sequences and a appear n times in A and B respectively.
Let a constitute no breakpoint in A, then a’s form in A be #· · ·u1av1 · · ·u2av2
· · ·uiavi · · ·w1A1z1 · · ·w2A2z2 · · ·wjAjzj · · · #, where A1, A2, . . . , Aj are gene
string composed of more than one gene a and the numbers of gene a are |A1| =
k1, |A2| = k2, · · · , |Aj | = kj . Then the number of all gene a is n = i+ k1 + k2 +
· · ·+ kj . Because gene a constitutes no breakpoint in A, a maximum matching
about gene a between A and B is shown in the Figure1. Gene a’s number in
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B u1a

av1

av1

...

...

uia

uia

avi

avi
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w2a
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aa
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...
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az2

...
wja

wja
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...

...
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azj

azj

Adjacency 
corresponding 
relationship

Range of number of 
gene a needed in B

i N0 2i k1 N1 2k1-2 k2 N2 2k2-2 ... kj Nj 2kj-2

Fig. 1. Adjacency matching and range of a’s number in B

B that constitutes all adjacencies must satisfy: i + k1 + k2 + · · · + kj ≤ N0 +
N1 + N2 + · · · + Nj ≤ 2i + 2k1 − 2 + 2k2 − 2 + · · · + 2kj − 2, Then, n ≤
N0 + N1 + N2 + · · · + Nj ≤ 2(n − j), i.e., a’s number in B that constitutes
adjacency is at least n. However, there exist only n gene a’s in B. So, all n gene
a’s constitute adjacencies. Therefore, gene a constitutes no breakpoint in B when
it constitutes no breakpoint in A. The proof is similar that gene a constitutes
no breakpoint in A when it constitutes no breakpoint in B. ��

Proposition 2. Each bp-gene in A appears in either Y or some breakpoint in
B. And each bp-gene in B appears in either X or some breakpoint in A.
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Proof. Let gene a be a bp-gene in A. Assume that the proposition is not true,
i.e. gene a appears in neither Y nor any breakpoint in B. So, gene a’s number
in A is same with in B and all gene a’s constitute adjacencies in B. According
to Proposition 1, all gene a’s constitute adjacencies in A. This contradicts with
that gene a is a bp-gene in A. The case that each bp-gene in B appears in either
X or some breakpoints in A can be similarly proved. ��

We know that each breakpoint contains two genes. All breakpoints in each input
sequence can be divided into three sets according to Proposition 2. For two
bp-genes of the breakpoint in A, we have
BP1(A): one appears in Y , the other appears in some breakpoint in B.
BP2(A): both genes appear in Y .
BP3(A): both genes appear in breakpoints in B.

For two bp-genes of the breakpoint in B, we have
BP1(B): one appears in X , the other appears in some breakpoint in A.
BP2(B): both genes appear in X .
BP3(B): both genes appear in breakpoints in A.

3 A Polynomial Time Algorithm for the Special Case

In this section, we present a polynomial time algorithm for a special case of the
two-sided SF-MNSA problem with symbol #. The proof about the correctness
of the algorithm is in the Appendix.

The special case is that there are no breakpoint in BP1(A) and BP1(B).
For two strings s1 and s2, if the right end-gene r(s1) of s1 is the same as the
left end-gene �(s2) of s2, we use s1 !" s2 to represent the string obtained by
first concatenating s1 with s2 and then delete one copy of r(s1) and �(s2). For
example, s1 = acbd, s2 = decb, then s1 !" s2 = abcdecb. If BP1(A) = ∅ and
BP1(B) = ∅, we have the algorithm:

Algorithm 1
Input: sequence A,B, with X,Y and set of breakpoints BP2(A), BP2(B)
Output: A′, B′

1. Compute sets of bp-strings according to BP2(A), BP2(B): BSA, BSB .
2. WHILE(BSA �= ∅){
2.1 Call the function BPS(BP, S) to compute a string S that is composed
of bp-strings in BSA, where BP = BSA. Then, let AS = S.
2.2 Replace some gene identical to �(AS) in B by string AS to obtain B′.
Update BSA.}

3. WHILE(BSB �= ∅){
3.1 Call the function BPS(BP, S) to compute a string S that is composed
of bp-strings in BSB, where BP = BSB. Then, let BS = S.
3.2 Replace some gene identical to �(BS) in A by string BS to obtain A′.
Update BSB.}

4. Return A′, B′.
Function BPS(BP, S)
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1 Choose any bp-string of BP , say sj . Let S = sj = xj,1 · · ·xj,uj .
2 WHILE(�(S) �= r(S))
2.1 Find a bp-string si or si = xi,1 · · ·xi,ui in BP that si is si”s reversal.
Update S ← S !" si or S ← S !" si.
2.2 WLOG, let S = s1 !" s2 !" · · · !" si. Compare r(S) with �(sj) for
j = i, i− 1, · · · . If r(S) = �(sk), then update S ← sk !" sk+1 · · · !" si.
2.3 Update the set BP .

3 return S.

When the instance is not satisfied with the special condition, i.e., BP1(A) �= ∅
or BP1(B) �= ∅, we design an approximation algorithm for this problem.

4 A 1.5-Approximation Algorithm

In this section, we firstly prove some premises for our algorithm. Next, we present
an approximation algorithm and prove the approximation factor is 1.5.

4.1 Premises

When symbol # is added to the two-sided SF-MNSA problem, we have

Lemma 1. There exists a polynomial time algorithm that all missing genes can
be inserted to obtain at least |X |+|Y | new adjacencies, the number of breakpoints
doesn’t increase, and each insertion of an m-substring can generate at least m
new adjacencies.

Proof. For all breakpoints in A or B, we process all breakpoints of BP1(A) or
BP1(B) at first. Let aiaj be any breakpoint of BP1(A), where ai belongs to
Y and aj belongs to some breakpoint (akaj) in B. So, ai can be inserted into
breakpoint akaj to generate at least one adjacency aiaj and keep the number of
breakpoints in B. After all breakpoints of BP1(A) and BP1(B) are eliminated,
left breakpoints belonging to BP2(•) or BP3(•) and left missing genes can be
inserted in A or B to obtain new adjacencies with generating no breakpoint
according to Algorithm 1. Each insertion of an m-substring can generate at
least m new adjacencies and keep the number of breakpoints not to increase. ��

Obviously, inserting a 1-substring will generate at most two adjacencies, and
inserting an m-substring will generate at most m+1 adjacencies. Therefore, we
will have two types of inserted strings.

1. Type-1: a string of k missing genes x1x2 · · ·xk are inserted between yiyi+1 in
A or B to obtain k+1 adjacencies(i.e., yix1, x1x2, . . . , xk−1xk, xkyi+1), where
yiyi+1 is a breakpoint. In this case, x1x2 · · ·xk is called a k-Type-1 string.

2. Type-2: a string of l missing genes z1z2 · · · zl are inserted between yjyj+1 in
A or B to obtain l adjacencies(i.e., yjz1 or zlyj+1, z1z2, . . . , zl−1zl), where
yjyj+1 is a breakpoint; or a string of l missing genes z1z2 · · · zl are inserted
between yjyj+1 in A or B to obtain l+1 adjacencies(i.e., yjz1, z1z2, . . . ,
zl−1zl, zlyj+1), where yjyj+1 is an adjacency.
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It is easy to know that there may exist some original adjacencies in two input
sequences. For the original adjacencies and new adjacencies, we have

Theorem 1. Let the optimal solution value be OPT , let k0 be the number of
original adjacencies, and let k be the number of new adjacencies generated by
inserting missing genes to the input sequences, then OPT = k0 + k.

Proof. Let A′ ∈ A + X and B′ ∈ B + Y be the final scaffolds in the optimal
solution after inserting all missing genes. Compared to A, all genes belonging to
X appear as substrings in A′. Let x1x2 . . . xl be a string inserted between yiyi+1

in A′, then either yix1 or xlyi+1 or both are adjacencies. Otherwise, we could
delete this string from A′ (number of adjacencies decreases by at most l-1), re-
insert it following the algorithm in Lemma 1(number of adjacencies increases by
at least l), and obtain one more adjacency. Thus, each substring in A′ composed
of genes ofX is either Type-1 or Type-2. Similarly, each substring inB′ composed
of genes of Y is either Type-1 or Type-2. According to the definitions of Type-1
and Type-2, OPT = k0 + k. ��

Therefore, in our algorithm we only need to consider how to insert genes into
the input sequences to produce as many as possible new adjacencies.

4.2 A Better Lower Bound

At first, we analyze the characteristic of two-sided SF-MNSA with symbol #
problem. We find that final sequence A′ = A + X = (A − Y ) + (X + Y ) and
B′ = B + Y = (B −X) + (X + Y ), i.e. respectively inserting genes of X and
Y into sequence A and B can be seen as restrictively inserting genes of X + Y
into A − Y and B − X . Restrictive insertion means that we need to keep the
original position of every gene of Y and X in sequence A and B when we insert
X + Y into A − Y and B − X . For example: A =#14z2#, B =#1xy234#,
X = {x, y, 3}, Y = {z}, X + Y = {x, y, z, 3}, A− Y =#142#, B −X =#124#.
We restrictively insert genes of X + Y to A− Y to obtain A′ =#1xy43z2# and
keep the original position of z. We restrictively insert genes of X+Y to B−X to
obtain B′ =#1xy2z34# and the positions of x,y,3 are changeless. The number
of new adjacency between A′′ and B′′ is 5. Next, we’ll consider the feasibility of
the transformation.

Lemma 2. Let anew(A+X,B+Y ) be the number of new adjacencies generated
by respectively inserting genes of X and Y into sequence A and B, and let
anew((A− Y ) + (X + Y ), (B −X) + (X + Y )) be the number of new adjacencies
generated by restrictively inserting genes of X + Y into A− Y and B −X, then

anew(A+X,B + Y ) = anew((A− Y ) + (X + Y ), (B −X) + (X + Y )) (1)

Proof. To prove anew(A + X,B + Y ) = anew((A − Y ) + (X + Y ), (B − X) +
(X + Y )), which is equivalent to prove genes of Y (orX) in sequence A(orB) do
not generate any original adjacency. Suppose that genes of Y (orX) in sequence
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A(orB) generate original adjacencies, these genes should not be in Y (orX). It
is contradict with the definition of Y(or X). Because restrictive insertion keeps
the original locations of these genes, Lemma 2 is proven. ��

After inserting X + Y into A − Y and B − X , we find genes of X + Y can
constitute two kinds of gene substrings in final sequences.

Class-1: gene substrings composed of genes only belonging to X or only be-
longing to Y , e.g. gene substring xy in the example above.

Class-2: gene substrings composed of genes belonging to X and genes belong-
ing to Y , e.g. gene substring z3.

Furthermore, every kind of gene substring can also be classified into two kinds
of type (Type-1 and Type-2). In order to describe the relationship between the
number of every kind of gene substring and the optimal solution value, we need
parameters a little more:
k0: the number of original adjacencies between A and B.
k1: the number of genes of X . k2: the number of genes of Y .
bi: the number of i-Type-1, Class-1 substrings in X , and let p be the maxi-

mum length of this kind of substrings.
E1: the number of genes belonging to Type-2, Class-1 substrings in X .
di: the number of i-Type-1, Class-1 substrings in Y , and let q be the maxi-

mum length of this kind of substrings.
E2: the number of genes belonging to Type-2, Class-1 substrings in Y .
Ci: the number of i-Type-1, Class-2 substrings in X + Y , and let r be the

maximum length of this kind of substrings. Let S1 be the number of genes con-
stituting this kind of substrings in X and S2 be the number of genes constituting
this kind of substrings in Y .
F : the total number of genes belonging to Type-2, Class-2 substrings inX+Y .

Let T1 be the number of genes constituting this kind of substrings in X and T2
be the number of genes constituting this kind of substrings in Y .

We need to compute the value of anew((A−Y )+(X+Y ), (B−X)+(X+Y )).
Obviously, it is obtained by computing the number of adjacencies generated by
genes of all kinds of substrings in X + Y .

Lemma 3. Let OPT be the optimal solution value of any instance, then

OPT − k0 = k1 + b1 + b2 + · · ·+ bp + k2 + d1 + d2 + · · ·+ dq

+C2 + C3 + · · ·+ Cr ≤
3

2
(k1 + k2 +

1

3
b1 +

1

3
d1).

(2)

Proof. According to above definitions, we have the total number of genes in X
k1 =

∑p
i=1(i× bi) + E1 + S1 + T1 =⇒

∑p
i=2 bi ≤ 1

2 (k1 − S1 − b1).
Obviously, k1 = b1 + 2b2 + · · · + pbp + E1 + S1 + T1 ≥ b1 + 2(b2 + · · · + bp) +
E1 + S1 + T1 =⇒

∑p
i=2 bi ≤ 1

2 (k1 − S1 − b1 − E1 − T1) ≤ 1
2 (k1 − S1 − b1).

Similarly, the total number of genes in Y is k2.
k2 =

∑q
i=1(i× di) + E2 + S2 + T2 =⇒

∑q
i=2 di ≤ 1

2 (k2 − S2 − d1).
Moreover, the number of genes of Class-2, i-Type-1 substrings is

2C2 + 3C3 + · · ·+ rCr = S1 + S2 =⇒
∑r

i=2 Ci ≤ 1
2 (S1 + S2).
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Obviously, F = T1 + T2. So, by the Theorem 1, we have
OPT = k0 + anew(A+X,B+ Y ) = k0 + anew((A− Y ) + (X + Y ), (B−X)+

(X+Y )) = k0+
∑p

i=1(i+1)×bi+E1+
∑q

i=1(i+1)×di+E2+
∑r

i=1(i+1)×Ci+F .
=⇒ OPT − k0 =

∑p
i=1(i × bi) +

∑p
i=1 bi + E1 +

∑q
i=1(i× di) +

∑q
i=1 di + E2

+
∑r

i=1(i × Ci) +
∑r

i=1 Ci + T1 + T2
= k1 + b1 + b2 + · · ·+ bp + k2 + d1 + d2 + · · ·+ dq
+C2 + C3 + C4 + · · ·+ Cr ≤ 3

2 (k1 + k2 +
1
3 b1 +

1
3d1). ��

Lemma 3 shows that if the number of 1-Type-1 substrings from the approxima-
tion algorithm isn’t less than 1

3 (b1 + d1), the approximation factor is 3
2 .

4.3 Description of the Algorithm

In this section, we present the main idea of our algorithm, which uses the greedy
strategy. According to previous analysis, we should insert at least 1

3 (b1 + d1)
1-Type-1 substrings. Because we will only analyze the number of 1-Type-1 sub-
string and each 1-Type-1 substring contains only one gene which belongs to
either X or Y , we can still insert genes of X into sequence A and insert genes
of Y into sequence B. The main steps of the algorithm are as follows.

Algorithm 2:
Input: sequence A,B, with X,Y and set of breakpoints bA(A,B),bB(A,B)
Output: A+X, B+Y
1. For each gene of X ,we scan sequence A from left to right to find a breakpoint

and we can insert the gene into the breakpoint to generate 2 adjacencies. we
insert the remaining missing genes of X into A in arbitrary fashion, provided
that each inserted missing gene generates one adjacency.

2. For each gene of Y , we scan sequence B from left to right to find a breakpoint
and we can insert the gene into the breakpoint to generate 2 adjacencies. we
insert the remaining missing genes of Y into B in arbitrary fashion, provided
that each inserted missing gene generates one adjacency.

For example, A=#2x43z5#, B=#24y3w5#, X = {y, w}, Y = {x, z}. At first
step, we insert gene y of X into breakpoint 43 in A. Gene y is a 1-Type-1
substring. The remaining missing gene w is inserted into breakpoint 3z. Gene w
is a Type-2 substring. At second step, we insert gene x of Y into breakpoint 24
in B. Gene x is a 1-Type-1 substring. The remaining missing gene z is inserted
into breakpoint w5. Gene z is a Type-2 substring.

4.4 Proof of the Approximation Factor

Here we prove that the algorithm must be able to find at least 1
3 (b1 + d1) 1-

Type-1 substrings and prove the approximation factor of our algorithm is 3/2.

Lemma 4. Let b1,d1 denote the number of Class-1,1-Type-1 substrings inserted
in sequence A,B of some optimal solution, b′1,d

′
1 denote the number of Class-

1,1-Type-1 substrings inserted in sequence A,B obtained by our algorithm. Then
b′1 + d′1 ≥ 1

2 (b1 + d1).
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Proof. Adjacencies at two locations are affected by insertion of a gene x at most,
one is at x’s location to have been inserted in and the other is at x’s location
should be in the OPT solution. So, every 1-Type-1 substring obtained by our
algorithm can destroy at most two Type-1 substrings of some optimal solution.
Cases of substrings which are destroyed by a 1-Type-1 substring are described
in the following Table 1, where b′1js and d′1js denote the number of 1-Type-1
substrings of each case j for sequence A and B.

Table 1. Cases of substrings destroyed by a 1-Type-1 substring in A or B

number of 1-Type-1 one substring another substring
substrings destroyed destroyed

b′11 or d′11 1-Type-1 1-Type-1
b′12 or d′12 1-Type-1 i-Type-1,i > 1 or none
b′13 or d′13 i-Type-1,i > 1 k-Type-1,k > 1

Let b′0, d
′
0 be the number of 1-Type-1 substrings consistent with optimal so-

lution obtained by our algorithm in final sequence A′, B′. Because other cases
except in the Table 1. may exist when 1-Type-1 substrings are inserted according
to our algorithm, we have b′1 ≥ b′0 + b′11 + b′12 + b′13, d

′
1 ≥ d′0 + d′11 + d′12 + d′13.

It is not difficult to understand that the number of 1-Type-1 substrings of the
optimal solution should not larger than the sum of the number of 1-Type-1
substrings consistent with optimal solution obtained by our algorithm and the
number of 1-type-1 substrings destroyed by our algorithm, i.e. b1 ≤ 2b′11+b

′
12+b

′
0,

d1 ≤ 2d′11+d
′
12+d

′
0. Then b1+d1 ≤ 2(b′11+d

′
11)+b

′
12+d

′
12+b

′
0+d

′
0 ≤ 2(b′1+d

′
1).

The Lemma 4 is proven. ��

Theorem 2. The two-sided SF-MNSA with symbol # problem admits a poly-
nomial time factor-1.5 approximation.

Proof. Following the approximation algorithm and Lemmas 2 − 4, we have the
approximation solution value APP , which satisfies the following inequalities.
APP − k0 = k1 + k2 + b′1 + d′1 ≥ k1 + k2 +

1
2 (b1 + d1) ≥ k1 + k2 +

1
3 (b1 + d1)

≥ 2
3 (OPT − k0).

Hence OPT
APP ≤ 1.5, and the theorem is proven. ��

5 Concluding Remarks

In this paper, we conduct a further research on the two-sided SF-MNSA problem
and we propose a new version of this problem. Some propositions of this version
problem are presented at first. We design a polynomial algorithm for the special
instance of this new version problem. For any instance, we apply greedy method
to design an approximation algorithm with factor 1.5. One interesting open
problem is whether one can improve the 1.5 factor further, another problem is
to find new approximation algorithm for the problem without symbol #.
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Appendix

Proof of Algorithm 1:
Now, we prove the algorithm is feasible and the solution is optimal if BP1(A) = ∅
and BP1(B) = ∅. At first, we prove Algorithm 1 is feasible. Because the symbol
# must not be missing gene, it appears in neither X nor Y . According to the
definition of the set BP2(A) and BP2(B),we have

Lemma 5. If BP1(A) = ∅ and BP1(B) = ∅, then any gene which appears in
set BP2(A)( resp. BP2(B)) must not be symbol # and appears at least once in
Y ( resp. X).

Lemma 6. If BP1(A) = ∅ and BP1(B) = ∅, the number of occurrence that
end-gene of bp-string in BSA ( resp. BSB) appears at endpoints of bp-strings in
BSA ( resp. BSB) is even.

Proof. Let gene a be an end-gene of any bp-string in BSA and gene b be an end-
gene of any bp-string in BSB. Assume that the lemma is not true, i.e., the num-
ber of occurrence that a (resp. b) appears at the endpoints of bp-strings in BSA

(resp. BSB) is odd. At first, gene a and b are not symbol # according to Lemma
5. Let the form of a in A be #· · · e1aX1af1 · · · e2aX2af2 · · · eiaXiafi · · · k1aY1b1
· · · k2aY2b2 · · · kjaYjbj · · ·u1av1 · · ·u2av2 · · ·ucavc · · ·w1A1z1 · · ·w2A2z2 · · ·wdAd

zd · · · #, whereA1, A2, . . . , Ad are strings that are composed of gene a and |A1| =
k1, |A2| = k2, . . . , |Ad| = kd, strings like aXa, aY b are bp-strings composed of
breakpoints in BP2(A) and strings like uav, wAz are adjacency strings. Accord-
ing to above assumption, the number of gene a that is end-gene of breakpoint
string in BSA is 2i+j and j is odd. The maximal matching about gene a in A and
B are (e1a, e1a), (af1, af1), . . . , (eia, eia), (afi, afi), (k1a, k1a), . . . , (kja, kja), (u1
a, u1a), (av1, av1), . . . , (uca, uca), (avc, avc), (w1a, w1a), (aa, aa), . . . , (aa, aa), (a
z1, az1), . . . , (wda, wda), (aa, aa), . . . , (aa, aa), (azd, azd). We can prove a must
not appear in BP2(B) and BP3(B). If a appears in BP2(B) or BP3(B), the
breakpoint including a in BP2(A) would have a common gene a with the break-
point including a in BP2(B) or BP3(B) and the breakpoint including a in
BP2(A) should belongs to BP1(A). But BP1(A) = ∅. So, a must not appear
in BP2(B) or BP3(B). Moreover, BP1(B) = ∅. Then, a constitutes no break-
point in B. The form of gene a inB is like uav or wAz. The number of adjacencies
about gene a whose form is one element is gene a and the other element is not
gene a must be even in B. But the number of adjacencies about gene a in the
maximal matching like that form is odd because j is odd. This is a contradiction.
The fact about gene b is similarly proved. Therefore, lemma 6 is proven. ��

Lemma 7. If BP1(A) = ∅ and BP1(B) = ∅, then mid-genes x1, x2, . . . , xn of
any bp-string ax1x2 · · ·xnb in BSB satisfy x1, x2, . . . , xn ∈ X and mid-genes
y1, y2, . . . , ym of any bp-string cy1y2 · · · ymd in BSA satisfy y1, y2, . . . , ym ∈ Y .

Proof. Assume that the lemma is not true, i.e., at least one of x1, x2, . . . , xn does
not belong to X , let it be xi and at least one of y1, y2, . . . , ym dose not belong
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to Y , let it be yj. Because xi does not belong to X and xi only constitutes
adjacency in A and its number of occurrence in B is same as in A. According
to Proposition 1, xi constitutes no breakpoint in B. This is a contradiction with
that xi is a bp-gene in BSB. The proof about yj is similar. ��

Lemma 8. If BP1(A) = ∅ and BP1(B) = ∅, then any end-gene of bp-string in
BSA( resp. BSB) appears at least once in B ( resp. A).

Proof. Let gene a (resp. b) be any end-gene of bp-string in BSA (resp. BSB).
Assume that the lemma is not true, i.e., gene a does not appear in B and
gene b does not appear in A. Let the form of gene a in A be the one as in
the proof of Lemma 6. Let the number of adjacencies about a in A be N1,
N1 = 2i+ j+2c+2d+N(a) = 2(i+c+d)+N(a)+ j, where N(a) is the number
of adjacencies about all string aa · · · a. Because a is an end-gene of bp-string,
i and j are not zero at same time. So, N1 �= 0. According to the assumption,
a constitutes no adjacency in B because it doesn’t appear in B. So, we have
N1 = 0 contradicting with N1 �= 0. The proof about b is same as a’s. ��

In the Algorithm 1, main task is computing string AS and BS. According to
Lemma 6, end-gene of bp-string in BSA(resp. BSB) appears at the endpoints of
bp-strings in BSA(resp. BSB) for even times. So, string AS and BS must can
be found by the Algorithm 1. Lemma 7 ensures that the mid-genes of bp-strings
merged to string AS(BS) can be inserted in B(A) and be deleted from Y (X).
Because Lemma 5 only ensures that the end-gens of bp-strings appears once in
the set of missing genes, step 2.1-2 in function BPS(•) are needed to delete
repeated end-genes. Lemma 8 ensures that step 2.2 and 3.2 can run. Because
string AS or BS is composed of breakpoints, it is inserted in some adjacency
in input sequences not to generate any breakpoint but new adjacencies. The
number of new adjacencies is |AS|+ |BS| − 2. Finally, all missing genes can be
inserted in input sequence not to generate any breakpoint. The total number of
new adjacencies is |X |+ |Y |. The Algorithm 1 is feasible.

Next, we will prove that the solution computed by Algorithm 1 is optimal. Ob-
viously, we have the number of breakpoints |bA+X(A+X,B+Y )| = |bB+Y (A+
X,B+Y )|. And, |a(A+X,B+Y )| is maximum value when |bA+X(A+X,B+Y )|
and |bB+Y (A+X,B + Y )| are minimum value. If min|bA+X(A+X,B +X)| =
|BP3(A)| or min|bB+Y (A+X,B+X)| = |BP3(B)|, then the solution is optimal
because the breakpoints in set BP3(A) or BP3(B) are unchanging in the algo-
rithm. Assume thatmin|bA+X(A+X,B+Y )| < |BP3(A)| , i.e., there is another
algorithm that at least one breakpoint in set BP3(A) can been eliminated. This
is impossible because genes of set BP3(A) do not appear in Y but appear in
breakpoints of B. Any breakpoint in BP3(A) can not be eliminated because the
breakpoint will not belong to BP3(A) if the breakpoint is eliminated by inserting
some gene. Similarly, any breakpoint in BP3(B) can not be eliminated too. So
the solution obtained by Algorithm 1 is optimal solution and the solution value
|a(A + X,B + Y )| = k0 + |X | + |Y | is optimal, where k0 is the number of the
original adjacencies between A and B.
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Abstract. In this paper, we investigate a relationship between en-
ergy and size of a threshold circuit processing a simple task, called
Pn
LR, that was introduced in a context of pattern recognition. For-

mally, Pn
LR : {0, 1}n × {0, 1}n → {0, 1} is defined as follows: For ev-

ery x = (x1, x2, . . . , xn) ∈ {0, 1}n and y = (y1, y2, . . . , yn) ∈ {0, 1}n,
Pn
LR(x,y) = 1 if there exists a pair of indices i and j such that i < j and

xi = yj = 1; and Pn
LR(x,y) = 0 otherwise. We prove that Pn

LR can be

computed by a threshold circuit of energy e and size s = O
(
e · n2/(e−1)

)
for any integer e, 3 ≤ e ≤ 2 log2 n + 1. Our result implies that one can
construct an energy-efficient circuit computing Pn

LR if it is allowable to
use large size. Moreover, we focus on an extreme case where a thresh-
old circuit has energy e = 1, and show that Pn

LR can be computed by a
threshold circuit of energy e = 1 and size s = �n/2, while Pn

LR cannot be
computed by any threshold circuit of energy e = 1 and size s ≤ �n/2−1.

1 Introduction

Neurons communicate with each other by “firing” (i.e., emitting an electrical
signal) for information processing, and a circuit consisting of neurons is often
modelled by a combinatorial logic circuit, called a threshold circuit. Motivated
by a biological fact that a neuron consumes substantially more energy to fire
than not to fire [1–3], Uchizawa, Douglas and Maass proposed a complexity
measure, called energy complexity, for threshold circuits, and initiate a study for
the following question: what computational tasks can or cannot be computed by
reasonably small threshold circuits with small energy complexity? Formally, the
energy e of a threshold circuit C is defined as the maximum number of gates
outputting “1” in C, where the maximum is taken over all inputs to C [4]. In
previous research, it is shown that there exists a tradeoff between the energy
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and size (i.e., the number of gates) of a threshold circuit computing the Parity
function; more formally, it is proved that the Parity function of n variables is
computable by a threshold circuit of energy e and size

s = O
(
e · n

1
(e−1)

)
(1)

for every integer e ≥ 2 [5], while any threshold circuit C of energy e ≥ 2 com-
puting the Parity function of n variables has size s = Ω

(
e · n1/e

)
[6]. The result

implies that the energy complexity has an interesting relationship with the major
complexity measure, the size, of threshold circuits computing the Parity func-
tion. However, the Parity function is a typical arithmetic function, and hence it
was not clear if such a tradeoff holds for other computational tasks, especially,
that arise in a context of biological information processing.

In this paper, we consider a Boolean function, called Pn
LR, which Legen-

strin and Maass introduced to model a simple task for a pattern recognition
on 1-dimensional array [7]. Suppose there are two types of local feature de-
tectors x = (x1, x2, . . . , xn) ∈ {0, 1}n and y = (y1, y2, . . . , yn) ∈ {0, 1}n,
where each of x1, x2, . . . , xn represents a detector for one feature, while each
of y1, y2, . . . , yn does a detector for the other feature: We have xi = 1 (yj = 1,
respectively) if a detector on the i-th (j-th) position is activated. Then the func-
tion Pn

LR : {0, 1}n × {0, 1}n → {0, 1} is defined as follows: For every pair of
x = (x1, x2, . . . , xn) ∈ {0, 1}n and y = (y1, y2, . . . , yn) ∈ {0, 1}n, Pn

LR(x,y) = 1
if there exists a pair of indices i and j such that 1 ≤ i < j ≤ n and xi = yj = 1;
and Pn

LR(x,y) = 0 otherwise. Intuitively, Pn
LR models a task for determining a

relative position between the two features. Legenstrin and Maass study threshold
circuits computing Pn

LR, and show that

(a) Pn
LR is computable by a threshold circuit of size O(log n), and

(b) the size of the circuit given in (a) is asymptotically optimal, that is, any
threshold circuit computing Pn

LR has size Ω(log n).

(In fact, they also show that their circuit design has advantage for total wire
length in certain VLSI models.)

Following the tradeoff result for the Parity function described above, we inves-
tigate a relationship between the energy and size of a threshold circuit computing
Pn
LR. We then show that, as in the case for the Parity function, one can construct

an energy-efficient circuit computing Pn
LR if it is allowable to use large size: we

prove that Pn
LR can be computed by a threshold circuit of energy e and size

s = O
(
e · n

2
(e−1)

)
(2)

for any integer e, 3 ≤ e ≤ 2 log2 n+1. Our result clearly implies that there exists
a threshold circuit C of small energy e if C is allowed to have a large size s (e.g.,
e = 3 and s = O(n)), while there exists a threshold circuit C of small size s if C
is allowed to use large energy e (e.g., s = O(log2 n) and e = O(log2 n)). It worth
mentioning that Eq. (2) has a quite similar form to the one (i.e., Eq. (1)) for the
Parity function.
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Moreover, we consider an extreme case where a threshold circuit has energy
e = 1. In this case, we provide an exact value of size of an optimal threshold
circuit: we prove that Pn

LR can be computed by a threshold circuit of energy
e = 1 and size

s =
⌈n
2

⌉
,

while Pn
LR cannot be computed by any threshold circuit of energy e = 1 and size

s ≤
⌈n
2

⌉
− 1.

The rest of this paper is organized as follows. In Section 2, we define some terms
on threshold circuits and Pn

LR functions. In Section 3, we give the construction
of energy-efficient threshold circuits for arbitrary energy e ≥ 3. In Section 4,
we give the upper and lower bounds for threshold circuits of energy e = 1. In
Section 5, we conclude with some remarks.

2 Preliminaries

A threshold circuit is a combinatorial circuit of threshold gates. A threshold cir-
cuit C is expressed by a directed acyclic graph; let n be the number of input vari-
ables to C, then each node of in-degree 0 in C corresponds to one of the n input
variables x1, x2, · · · , xn, and the other nodes correspond to threshold gates. We
define size s(C), simply denoted by s, of a threshold circuit C as the number of
threshold gates in C. Let g1, g2, . . . , gs be the gates in C. One may assume with-
out loss of generality that g1, g2, . . . , gs are topologically ordered with respects to
the underlying graph of C. Let i be an integer such that 1 ≤ i ≤ s. For each gate
gi, we denote by wi,1, wi,2, . . . , wi,li the weights and by ti the threshold of the
gate gi, respectively, where the weights and the threshold are real numbers and
li is the fan-in of the gate gi. Let zi(x) = (zi,1(x), zi,2(x), · · · , zi,li(x)) ∈ {0, 1}li
be an input to gi for a circuit input x, where each zi,j(x), 1 ≤ j ≤ li, is either
a value of an input variable or an output of a gate gi′ , i

′ < i. While the out-
put gi(zi(x)) of gi is determined by zi(x), we simply denote gi(zi(x)) by gi[x].
When an input zi(x) is given to the threshold gate gi for a circuit input x, the
output gi[x] of the gate is defined as

gi[x] = sign

⎛⎝ li∑
j=1

wi,jzi,j(x)− ti

⎞⎠ ,

where sign(z) = 1 if z ≥ 0 and sign(z) = 0 if z < 0. For every input x ∈ {0, 1}n,
the output C(x) of C is denoted by gs[x]. The gates gs is called top gate of C.
Let f : {0, 1}n → {0, 1} be a Boolean function of n inputs. A threshold circuit
C computes a Boolean function f if C(x) = f(x) for every input x ∈ {0, 1}n.
We define the energy e(C) of C as
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e(C) = max
x∈{0,1}n

s(C)∑
i=1

gi[x].

For any positive integer n, we define Pn
LR as follows: Let N = {1, 2, . . . , n}.

For a pair of x = (x1, x2, . . . , xn) ∈ {0, 1}n and y = (y1, y2, . . . , yn) ∈ {0, 1}n,
Pn
LR(x,y) = 1 if there exists a pair of indices i and j such that 1 ≤ i < j ≤ n

and xi = yj = 1; and Pn
LR(x,y) = 0 otherwise. More formally,

Pn
LR(x,y) =

{
1 if l(x) < r(y);
0 otherwise.

where

l(x) =

{
n if x = (0, 0, . . . , 0);
min{i ∈ N | xi = 1} otherwise

and

r(y) =

{
0 if y = (0, 0, . . . , 0);
max{i ∈ N | yi = 1} otherwise.

3 Energy-Efficient Circuits of Bounded Size

In this section, we give a construction of energy-efficient threshold circuits com-
puting Pn

LR. The following theorem gives an upper bound on the size of threshold
circuits computing Pn

LR with energy e for any e ≥ 3.

Theorem 1. Let n be a positive integer. Then, there is a threshold circuit C
computing Pn

LR such that C has energy e ≥ 3 and size

s =

⌊
e− 1

2

⌋ ⌈
(n+ 1)

1
�(e−1)/2�

⌉
+

⌈
e− 1

2

⌉⌈
(n+ 1)

1
	(e−1)/2


⌉
+ 1 = O

(
e · n 2

e−1

)
.

Proof. Let n and e be integers where n ≥ 1 and e ≥ 3. We prove Theorem 1 by
constructing the desired circuit C. To simplify our proof, we only consider the
case where e is odd; the proof for the other case is similar. Since e is odd, we
have ⌊

e− 1

2

⌋
=

⌈
e− 1

2

⌉
=
e− 1

2
.

Thus, it suffices to construct a threshold circuit C of energy

e = 2α+ 1 (3)

and size

s = 2αβ + 1 (4)
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where

α =
e− 1

2
and β =

⌈
(n+ 1)

2
e−1

⌉
.

Note that

βα − 1 =
⌈
(n+ 1)

2
e−1

⌉ e−1
2 − 1

≥ (n+ 1)
2

e−1
e−1
2 − 1

= n.

For each j, 0 ≤ j ≤ α − 1, we define hj : {0, 1, . . . , βα − 1} → {0, 1, . . . , β − 1}
as a function mapping an integer p to the j-th figure of p in notation system of
base β, that is,

hj(p) ≡
⌊
p/βj

⌋
( mod β )

for every p ∈ {0, 1, . . . , βα − 1}. Note that

α−1∑
j=0

hj(p) · βj = p.

Below we construct αβ threshold gates to represent h1(l(x)), h2(l(x)),. . .,
hα−1(l(x)). For each pair of j and k, 0 ≤ j ≤ α − 1 and 0 ≤ k ≤ β − 1, a
threshold gate gxj,k has a threshold

txj,k =

{
0 if k = hj(n);
1 otherwise

(5)

and receives x1, x2, . . . , xn as its input, where for each i, 1 ≤ i ≤ n, the weight
wx

i,j,k for xi is given as

wx
i,j,k =

{
2n−i if k = hj(i);
−2n−i otherwise.

Then the following claim holds.

Claim 1. For each pair of j and k, 0 ≤ j ≤ α− 1 and 0 ≤ k ≤ β − 1,

gxj,k[x] =

{
1 if k = hj(l(x));
0 otherwise.

(6)

We omit the proof of claim due to the page limitation. Thus, gj,k[x] = 1 if and
only if the j-th figure of l(x) is k in notation system of base β.

Similarly, we construct another set of αβ gates to represent
h1(r(y)), h2(r(y)), . . . , hα−1(r(y)). For each pair of j and k, 0 ≤ j ≤ α − 1 and
0 ≤ k ≤ β − 1, a threshold gate gyj,k has a threshold

tyj,k =

{
0 if k = hj(0) (i.e., k = 0);
1 otherwise
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and receives y1, y2, . . . , yn as its input, where for each i, 1 ≤ i ≤ n, the weight
for yi is given as

wy
i,j,k =

{
2i if k = hj(i);
−2i otherwise.

Similarly to Claim 1 above, the following claim holds

Claim 2. For each pair of j and k, 0 ≤ j ≤ α− 1 and 0 ≤ k ≤ β − 1,

gyj,k[y] =

{
1 if hj(r(y)) = k;
0 otherwise.

We omit the proof of the claim; the proof is similar to the one for Claim 1.
Thus, gyj,k[y] = 1 if and only if the j-th figure of r(y) is k in notation system of
base β.

Finally, we construct the top gate g to compare l(x) and r(y) (see Fig. 1):
For each pair of j and k, 0 ≤ j ≤ α− 1 and 0 ≤ k ≤ β − 1, g receives an output
of gxj,k with weight

wx
j,k = −k · βj

and receives an output of gyj,k with weight

wy
j,k = k · βj ;

and g has threshold one. Consequently, the output of g is given as follows:

Fig. 1. The top gate g of C

g[x,y] = sign

⎛⎝α−1∑
j=0

β−1∑
k=0

wx
j,k · gxj,k[x] +

α−1∑
j=0

β−1∑
k=0

wy
j,k · g

y
j,k[y]− 1

⎞⎠ . (7)

Then C clearly computes Pn
LR: Consider the value in the sign function of Eq. (7),

then the two claims imply that

α−1∑
j=0

β−1∑
k=0

wx
j,k · gxj,k[x] = −l(x) and

α−1∑
j=0

β−1∑
k=0

wy
j,k · g

y
j,k[y] = r(y);
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hence we have

g[x,y] = sign (−l(x) + r(y)− 1) =

{
1 if l(x) < r(y);
0 otherwise.

We now verify Eqs. (3) and (4). For each j, 0 ≤ j ≤ α−1, gxj,k[x] = 1 if k = l(x)
and gxj,k[x] = 0 otherwise; and hence only one of gxj,1, g

x
j,2, . . . , g

x
j,β−1 outputs one.

Similarly, for each j, 0 ≤ j ≤ α− 1, only one of gyj,0, g
y
j,1, . . . , g

y
j,β−1 outputs one.

Since the top gate g may output one, the energy of C is 2α+1, and hence Eq. (3)
holds. Clearly, C consists of 2αβ + 1 gates; gxj,k and gyj,k and for 0 ≤ j ≤ α − 1
and 0 ≤ k ≤ β − 1 together with the top gate g. Thus, Eq. (4) holds. ��

4 Circuits of Energy One

In this section, we consider the extreme case where a threshold circuit has energy
e = 1. In the following theorem, we prove by construction that a linear number
of gates are sufficient to compute Pn

LR for a threshold circuit of energy e = 1.

Theorem 2. Let n be a positive integer. Then, there is a threshold circuit C
computing Pn

LR such that C has energy e = 1 and size

s =
⌈n
2

⌉
.

Before proving Theorem 2, we introduce some terms. For a Boolean vari-
able a, we denote by ¬a the negation of a. For each i, 1 ≤ i ≤ n, we de-
fine a Boolean function fi : {0, 1}n × {0, 1}n → {0, 1} as follows: For every
x = (x1, x2, . . . , xn) ∈ {0, 1}n and y = (y1, y2, . . . , yn) ∈ {0, 1}n,

fi(x,y) =

⎧⎨⎩ y2 ∨ y3 ∨ . . . ∨ yn if i = 1;
x1 ∨ . . . ∨ xi−1 ∨ yi+1 ∨ . . . ∨ yn if i = 2, 3, . . . , n− 1;
x1 ∨ x2 ∨ . . . ∨ xn−1 if i = n.

(8)

The following lemma plays an important role in our proof of Theorem 2.

Lemma 1. Let n be a positive integer. Then, for every pair of x ∈ {0, 1}n and
y ∈ {0, 1}n,

Pn
LR(x,y) =

∧
i∈N

fi(x,y). (9)

We omit the proof of Lemma 1 due to the page limitation.
Using Lemma 1, we prove Theorem 2 as follows.

Proof of Theorem 2. We prove Theorem 2 by constructing a threshold circuit
C of energy e = 1 and size s = �n/2�. In this proof, we consider only the case
where n is even, since the proof is similar for the other case. Lemma 1 implies
that it suffices to construct C that computes

∧
i∈N fi(x,y).
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For each k, 1 ≤ k ≤ n/2, we define αk as

αk(x,y) = f2k−1(x,y) ∧ f2k(x,y). (10)

We also recursively define β1, β2, . . . .βn/2 as:

βk(x,y)=

⎧⎪⎪⎨⎪⎪⎩
¬α1(x,y) if k = 1;

¬αk(x,y) ∧ ¬
(∨k−1

j=1 βj(x,y)
)

if 2 ≤ k ≤ n/2− 1;

αn/2(x,y) ∧ ¬
(∨(n/2)−1

j=1 βj(x,y)
)

if k = n/2.

(11)

Clearly, at most one of β1, β2, . . . , βn/2, has the value one as follows: Let k∗,
1 ≤ k∗ ≤ n/2, be the minimum index satisfying βk∗(x,y) = 1, then Eq. (11)
implies that βk(x,y) = 0 for every k, k∗ + 1 ≤ k ≤ n/2.

Below we will show that, for every x ∈ {0, 1}n and y ∈ {0, 1}n,

βn/2(x,y) = Pn
LR(x,y). (12)

After the proof for Eq. (12), we use n/2 gates g1, g2, . . . , gn/2 to obtain the
threshold circuit C so that for each gate gk, 1 ≤ k ≤ n/2, computes βk, which
clearly complete the proof.

[Proof of Eq. (12)]
First, we consider the case where βn/2(x,y) = 1. In this case, Eq. (11) implies

that

αn/2(x,y) = 1 (13)

and

βj(x,y) = 0 (14)

for each j, 1 ≤ j ≤ n/2− 1. By Eq. (14), for each k, 1 ≤ k ≤ n/2− 1,

αk(x,y) = 1. (15)

Equations (10), (13) and (15) imply that, for each k, 1 ≤ k ≤ n, fk(x,y) = 1.
Thus, by Eq. (9), Pn

LR(x,y) = 1.
Next, we consider the case where βn/2(x,y) = 0. In this case, Eq. (11) im-

plies that αn/2(x,y) = 0 or βj∗(x,y) = 1 for some j∗, 1 ≤ j∗ ≤ n/2 − 1.
If αn/2(x,y) = 0, then fn−1(x,y) or fn(x,y) is 0, and if βj∗(x,y) = 1 then
f2j∗−1(x,y) = 0 or f2j∗(x,y) = 0. Thus by Eq. (9), Pn

LR(x,y) = 0.

[Construction of C] We construct the gates g1, g2, . . . , gn/2 so that gk computes
βk for each k, 1 ≤ k ≤ n/2, that is, gk[x,y] = βk(x,y).

We first prove

g1[x,y] = β1(x,y). (16)
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Fig. 2. (a) The gate g1, (b) the gate gk, 2 ≤ k ≤ (n/2) − 1, and (c) the gate gn/2

The gate g1 has a threshold −1 and receives input from x1 and y2 with weights
−1 and from y3, y4, . . . , yn with weights −2, that is,

g1[x,y] = sign

(
− (x1 + y2)− 2

(
n∑

i=3

yi

)
+ 1

)
.

(See Fig. 2 (a).) By the construction, g1 outputs 0 if either x1 = y2 = 1 or at
least one of y3, y4, . . . yn is 1, and otherwise, g1 outputs 1, that is,

g1[x,y] = ¬ ((x1 ∧ y2) ∨ y3 ∨ y4 ∨ . . . ∨ yn) . (17)

On the other hand, Eq. (11) implies that

β1(x,y) = ¬α1(x,y) = ¬ ((y2 ∨ y3 ∨ . . . ∨ yn) ∧ (x1 ∨ y3 ∨ y4 ∨ . . . ∨ yn)) .

Since a ∨ (a ∧ b) = a for any pair of Boolean variables a and b, we have

β1(x,y) = ¬ ((x1 ∧ y2) ∨ y3 ∨ y4 ∨ . . . ∨ yn) . (18)

Thus Eqs. (17) and (18) imply that g1 compute β1 and hence Eq. (16) holds.
Let k, 2 ≤ k ≤ n/2 − 1 be an arbitrary integer. We construct the gate gk as

follows. The gate gk has a threshold −1 and receive inputs from x2k−1 and y2k
with weights −1, from x1, x2, . . . , x2k−2 and y2k+1, y2k+2, . . . , yn with weights
−2 and from g1, g2, . . . , gk−1 with weights −2n, that is,

gk[x,y]

= sign

(
− (x2k−1 + y2k)− 2

(
2k−2∑
i=1

xi +

n∑
i=2k+1

yi

)
− 2n

(
k−1∑
i=1

gi[x,y]

)
+ 1

)
.
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(See Fig. 2 (b).) Then, gk outputs 0 if and only if at least one of the following
three conditions holds:

(1) x2k−1 = y2k = 1;
(2) at least one of x1, x2, . . . , x2k−2, y2k+1, y2k+2, . . . yn is 1;
(3) at least one of g1[x,y], g2[x,y], . . . , gk−1[x,y] is 1.

In other words, we have

gk[x,y] = ¬
(
(x2k−1 ∧ y2k) ∨

2k−2∨
i=1

xi ∨
n∨

i=2k+1

yi ∨
k−1∨
i=1

gi[x,y]

)
. (19)

We now prove gk[x,y] = βk(x,y) and hence by Eq. (19) it suffices to prove

βk(x,y) = ¬
(
(x2k−1 ∧ y2k) ∨

2k−2∨
i=1

xi ∨
n∨

i=2k+1

yi ∨
k−1∨
i=1

gi[x,y]

)
. (20)

by an induction on k. We start from the case of k = 2 as the basis.
[Basis: k = 2]

Equations (11) and (16) implies that

β2(x,y) = ¬α2(x,y) ∧ ¬β1(x,y)

= ¬
(((

2∨
i=1

xi ∨
n∨

i=4

yi

)
∧
(

3∨
i=1

xi ∨
n∨

i=5

yi

))
∨β1[x,y]

)

= ¬
(
(x3 ∧ y4) ∨

2∨
i=1

xi ∨
n∨

i=5

yi ∨ g1[x,y]
)
.

[Inductive Step: k ≥ 3]
Equation (11) implies that

βk(x,y)=¬
(
αk(x,y) ∨

k−1∨
i=1

βi(x,y)

)

=¬
(((

2k−2∨
i=1

xi∨
n∨

i=2k

yi

)
∧
(
2k−1∨
i=1

xi∨
n∨

i=2k+1

yi

))
∨

k−1∨
i=1

βi(x,y)

)
. (21)

By the induction hypothesis, for each i ≤ k − 1, we have

gi[x,y] = βi(x,y).

Thus, from Eq. (21) we have

βk(x,y) = ¬
(
(x2k−1 ∧ y2k) ∨

2k−2∨
i=1

xi ∨
n∨

i=2k+1

yi ∨
k−1∨
i=1

gi[x,y]

)
. (22)

Thus by Eq. (22), Eq. (20) holds true.
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Finally, we construct gn/2. The gate gn/2 has a threshold 2 and receives inputs
from xn−1 and yn with weights 1 from x1, x2, . . . , xn−2 with weights 2, and from
g1, g2, . . . , gn/2−1 with weights −2n, that is,

gn/2[x,y] = sign

⎛⎝(xn−1 + yn) + 2

(
n−2∑
i=1

xi

)
− 2n

⎛⎝(n/2)−1∑
i=1

gi[x,y]

⎞⎠− 2

⎞⎠ .

(See Fig. 2 (c).) By the construction, gn/2 outputs 1 if and only if all of
g1[x,y], g2[x,y], . . . , g(n/2)−1[x,y] are 0s. and at least one of the following two
conditions holds:

(1) xn−1 = yn = 1;
(2) at least one of x1, x2, . . . , x(n/2)−2 is 1.

In other words, we have

gn/2[x,y] =

(
(xn−1 ∧ yn) ∨

n−2∨
i=1

xi

)
∧ ¬

⎛⎝(n/2)−1∨
i=1

gi[x,y]

⎞⎠ . (23)

On the other hand, Eq. (11) implies that

βn/2(x,y) = αn/2(x,y) ∧ ¬

⎛⎝(n/2)−1∨
i=1

βi(x,y)

⎞⎠
=

((
n−2∨
i=1

xi ∨ yn

)
∧
(

n−1∨
i=1

xi

))
∧ ¬

⎛⎝(n/2)−1∨
i=1

βi(x,y)

⎞⎠ . (24)

Since βi(x,y) = gi[x,y] for each i ≤ (n/2)− 1, we have from Eq. (24)

βn/2(x,y) =

(
(xn−1 ∧ yn) ∨

n−2∨
i=1

xi

)
∧ ¬

⎛⎝(n/2)−1∨
i=1

gi[x,y]

⎞⎠ . (25)

Equations (23) and (25) imply that gk compute βk. ��

The following theorem implies that the size of C given in Theorem 2 is optimal,
that is, Pn

LR cannot be computed by any threshold circuit of energy e = 1 and
size s ≤ �n/2� − 1.

Theorem 3. Let n be a positive integer. Let C be any threshold circuit comput-
ing Pn

LR with energy e = 1. Then, C has size

s ≥
⌈n
2

⌉
.

We omit the proof of Theorem 3 due to the page limitation.
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5 Conclusions

In this paper, we design energy-efficient threshold circuits computing Pn
LR func-

tions. We also give an optimal circuit for energy e = 1. Our upper bound

s = O
(
e · n

2
(e−1)

)
.

for e ≥ 3 has a quite similar form to the one for the Parity function given in [5],
that is,

s = O
(
e · n

1
(e−1)

)
.

However, unlike the case for the Parity function, the tightness of our bound for
e ≥ 3 remains open.
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Abstract. The Minimum Rooted Triplet Inconsistency (MinRTI)
problem represents a key computational task in the construction of phy-
logenetic trees. Inspired by Aho et al’s seminal paper and Bryant’s thesis,
we describe an edge-labelled multigraph problem, Minimum Dissolving

Graph (MinDG) and show that it is equivalent to MinRTI. We prove
that on an n-vertex graph, for every ε > 0, MinDG is hard to approx-

imate within a factor in O(2log
1−ε n), even on trees formed by multi-

edges. Via a further reduction, this result applies to MinRTI, resolving
the open question of whether there is a sub-linear approximation factor
for MinRTI. In addition, we provide polynomial-time algorithms that
return optimal solutions when the input multigraph is restricted to a
multi-edge path or a simple tree.

1 Introduction

One of the central tasks of computational evolutionary biology is to construct
phylogenetic trees. These represent the evolutionary history of a given set of
species. Often the goal is to construct trees for a huge set of species, such as
in The Tree of Life web project [1]. Direct construction of the trees from DNA
evidence is possible using sequence based methods, but is prohibitively expensive
for large numbers of species [2]. An alternative approach is to construct a set
of smaller phylogenetic trees from sequence data, and then apply a supertree
method to infer a larger tree from that set. The smallest possible informative
trees are either triplets, rooted binary trees on three labels, or quartets, unrooted
ternary trees on four labels.

In many cases, due to experimental errors, or because the trees represent the
evolution of different genes, a collection of input trees might not lead to a con-
sistent structure. Hence, the supertree approach aims to merge the information
represented by the maximum possible set of (consistent) input trees into a large
phylogenetic tree. Over the last decade, quartet methods have received promi-
nent attention [3–7]. Triplet methods have certain interesting properties which
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make them typically computationally cheaper. A given set of triplets is com-
patible if they have no contradictory structures: there is a single phylogenetic
tree that extends them all (defined formally in Section 2). Aho et al. presented
a polynomial-time algorithm to find such a tree [8]. For quartets, however, the
compatibility problem is NP-complete [9]. In addition there is often no informa-
tion to identify the root of the input trees, which can make determination of the
root particularly problematic [7].

In this paper, we focus on the Minimum Rooted Triplet Inconsistency

problem (MinRTI). Given a set of triplets T over n items, MinRTI seeks the
smallest subset of triplets to delete from T to leave a compatible remaining set.
The problem is known to be NP-hard [10–12] and not approximable within a
factor in O(log n) [13]. Moreover, for dense instances of MinRTI, in which there
is at least one rooted triplet for every subset of T of cardinality three, there
are fixed-parameter algorithms [14]. The MinRTI problem has a dual, with the
same optimum solutions, called Maximum Rooted Triplet Consistency

(MaxRTC). Table 1 summarizes the complexity and approximability results.
Based on techniques similar to semidefinite programming for the Max Cut

problem, Snir and Rao introduced heuristics for MaxRTC and the quartet ver-
sion [6, 7]. Byrka et al.’s survey paper has an extensive list of references [13]. In
addition, the authors propose the following open problems (we answer the sec-
ond one in the negative): (1) Does MaxRTC have an approximation algorithm
whose ratio is significantly less than 3? (2) Is there a polylogarithmic approxi-
mation algorithm for MinRTI? (3) Is there a constant-ratio approximation for
dense inputs?

1.1 New Results

In this paper, inspired by Aho et al. [8] and Bryant [10], we describe an edge-
labelled multigraph problem, Minimum Dissolving Graph (MinDG). It asks
for the smallest set of edges whose deletion leaves a multigraph that has a self-
dissolving property. In Section 3, we show thatMinDG is equivalent toMinRTI.
Then, in Section 4, we consider the approximability of the MinDG problem,
and hence of MinRTI. When the input consists of an arbitrary simple graph, we
provide an L-reduction from the Target Set Selection problem. This result
implies that MinDG (and hence MinRTI) cannot be approximated within a

ratio O(2log
1−ε n), for every fixed ε > 0, unless NP is in DTIME(npolylog(n)). On

the positive side, in Section 5 we give a polynomial time algorithm for MinDG

when the input graph is restricted to a simple tree, and likewise in Section 6 for
paths in multigraphs. A reduction fromMinDG to a directed version of Target
Set Selection, alluded to in Section 5, will appear in the full version of this
paper.

1.2 Related Topics

The idea of deleting a subset from a given family of relations, to obtain a consis-
tent subfamily is not new. In the area of constrained clustering, we are given a
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Table 1. Summary of previous approximation results for MaxRTC and MinRTI.
*We show here that, assuming NP is not in DTIME(npolylog(n)), MinRTI admits no

polynomial-time algorithm whose approximation factor is in O(2log
1−ε n), for fixed

ε > 0.

Negative results Positive results

General APX-hard [15] (3− 2
n−2

)-approx [13]

MaxRTC: Dense NP-hard [16] PTAS [17]
Minimally Dense NP-hard [13] PTAS [17]
Consistent P [8] Exact Solution [8]

General Inapprox. c·ln n [13] * (n− 2)-approx [13, 18]
MinRTI: Dense NP-hard [16] (n− 2)-approx [13, 18]

Minimally Dense NP-hard [13] (n− 2)-approx [13, 18]
Consistent P [8] Exact Solution [8]

set of pairwise recommendations of the form: “Items x and y should be clustered
together,” or “Items x and y should be in distinct clusters” [19]. In particular the
Min Disagreements variant of Correlation Clustering [20] seeks a clustering
that is inconsistent with the smallest such set of such constraints. The task of
deleting some constraints to leave a consistent family, one that admits a clean
clustering, is known as the Cluster Editing problem.

Related to constrained clustering are ranking problems. Specifically, we are
given a set of pairwise relations of the form “x should be ranked higher than y”
and asked to produce an ordering of the items that is consistent with as many of
the relations as possible. It is convenient to view this as a graph problem, with
the ranking relation represented as directed edge from x to y. If the relations are
indeed consistent, this problem is merely topological sorting. In general, it is the
same as Feedback Arc Set problem, which has been studied in particular on
tournament graphs [21].

In some sense, MinRTI is from the same family of problems, but the relations
are on triples of items and impose constraints on a hierarchical structure.

2 Definitions

A phylogenetic tree is a rooted, unordered tree, which in this paper we assume
is a binary tree. Each leaf has a single, unique label. In MinRTI, we are given
a set of triplets T over a size-n universe of possible leaf labels X .

Definition 1. A triplet t = (x, y | z) and a binary tree T , whose leaves are
labelled with items from X , are consistent if the lowest common ancestor of x
and y in T is a proper descendant of x and z (and that of y and z). A family of
triplets T is compatible if there exists a leaf-labelled binary tree consistent with
every triplet in T .
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Given an input set of triplets T , MinRTI asks for the smallest subset of T ,
whose deletion leaves it compatible.

Consider a multigraph G(T ) on X whose edges are undirected and labelled
with elements from X . An edge e between x and y with label z is written as
(x, y | z). A sequence of vertices x1, . . . , xk is a path if each pair xi, xi+1, i < k,
is adjacent (shares some edge). In such a multigraph, a tree is therefore a set of
vertices between every pair of which there is at most one path.

A multigraph G dissolves if there is a sequence of steps of the following form
that leads to a graph with no edges remaining:

If there is no path in the graph between x and z, or equivalently between
y and z, then remove the edge (x, y | z).

Definition 2. The MinDG problem asks for the smallest set of edges whose
deletion leaves a graph that dissolves.

Note the distinction between removing an edge, for no cost, during the dissolving
process, and deleting an edge, at cost, in order to leave a graph that dissolves.
In Corollary 1 below, we show that MinRTI and MinDG are essentially the
same problem. In Section 2.5.1 of his PhD thesis, Bryant explores a similar
characterization of compatible triplet sets [10].

3 Multigraph Representation

We now prove the equivalence between MinRTI and MinDG.

Definition 3. Instances G(T ) of MinDG and T of MinRTI, on the same
space X , correspond whenever there is an edge (x, y | z) in G(T ) if and only if
there is a triplet (x, y | z) in T .

Lemma 1 (Multigraph equivalence). A set of triplets T is compatible if and
only if the corresponding multigraph G(T ) dissolves.

Proof. Only if This is a proof by induction, over the size of the set X .
Base case. If X has just three elements, then T is compatible if and only if it

has at most one triplet. Likewise, the graph G on three vertices dissolves if and
only if there is at most one edge.

Induction step. If T is compatible, then there is a binary tree T in which the
left subtree has leaves XL, the right subtree XR, and for every triplet (x, y | z),
either (1) x, y, z are in the same subtree, and (x, y | z) is consistent with that
subtree, or (2) x, y are in the same subtree, but different from z (the triplet
(x, y | z) is thus consistent with the tree T , and is ignored when considering the
subtrees).

If x and y were to be split, the triplet would not be consistent with T .
Translating to G(T ): Consider partitioning the vertices into subsets XL and

XR. Since there is no triplet with x and y in different subtrees, there is no edge
across the partition, so it is a cut in G(T ). Therefore, we can focus on the induced
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subgraphs on each of XL and XR: in particular, each edge (x, y | z) with z on
a different side of the partition from x, y can be removed, and ignored in each
subgraph. The resulting two induced subgraphs correspond triplets belonging to
each of the subtrees of T and subsequent edge removals in each subgraph are
independent, so we have completed the inductive step.

If Now suppose G(T ) dissolves. As the algorithm proceeds, each edge
(x, y | z) falls into one of three categories: removed, as previously described;
doomed, not yet removed, but with z disconnected from x and from y, the edge
is eligible for removal; unmarked, not yet doomed, nor removed.

All edges are initially unmarked, and edges may only may be removed once
they are doomed. At the beginning of the process, and as subsequent edges
are removed, the graph splits into two components. If there are more than two
components at the beginning, we consider repeatedly splitting the graph into
two components in some arbitrary order before the edge removal begins. As
the graph splits, this will cause some unmarked edges to become doomed. We
construct two subtrees corresponding to this split: each doomed edge represents
a triplet that is immediately satisfied by the split in the tree. Since eventually all
edges are removed, each must have been doomed, and therefore at some stage
each triplet must have been satisfied. The triplets T are therefore compatible.

Corollary 1. The optimal solutions to MinRTI and MinDG are equivalent and
have equal optimal values.

3.1 Weighted Edges

Though by default we assume G(T ) has unit-weight edges, in some MinDG

instances the edges may have weights. Nevertheless, there is a reduction from an
instance of the edge-weighted version to the standard version, that is polynomial
in size and time if the edge weights are polynomial in n. Refer to the example in
Figure 1. We replace each edge (x, y | z) of weight w, with w (unit-weight) edges
(x, y | z1),(x, y | z2),. . . ,(x, y | zw). We then add w vertices zxy1 , zxy2 , . . . , zxyw , and
corresponding edges (z, zxy1 | x),(z, zxy2 | x) ,. . . ,(z, zxyw | x).

If the original graph dissolves without (x, y | z) being deleted (in advance),
then somehow x, y become disconnected from z: the same happens in the new
graph. The (x, y | zxy· ) and (z, zxy· | x) edges can thus be removed. A similar
argument follows assuming that none of the (x, y | zxy· ) and (z, zxy· | x) edges
are deleted in advance.

On the other hand, if the original graph requires (x, y | z) to be deleted, then
in the new graph we can delete the equivalent parallel (x, y | zxy· edges at the
same cost. In the new graph, a solution might delete some of the (x, y | zxy· )
edges and some of the (z, zxy· | x) edges. However, for each i, at least one of
(x, y | zxyi ) and (z, zxyi | x) would need to be deleted to effect a removal of all
the edges between x and y, so the cost is still w. Note that if the remainder of
the graph has dissolved then the (z, zxy· | x) edges will too.
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x

z

y

z (weight w)

(a) Weighted edge

z
zxy2

zxy1

zxyw

x

y

zxy1 , . . . , zxyw
x

x

x

(b) Unweighted edges

Fig. 1. The reduction from a weighted-edge graph to a unit-edge-cost graph. The
dashed lines between x and z, and between y and z, indicate that x and z might be
connected: similarly between y and z.

4 MinRTI Is Label Cover-hard

To show that MinDG, and hence MinRTI, is hard, we refer to another problem
about a ‘process’ in a graph. The Target Set Selection problem asks ques-
tions about the spread of influence in graphs. Formally, we are given a connected
undirected graph H , with a threshold function t : V → {0, 1, . . . , n− 1} on the
vertices. Each vertex is initially inactive. We choose a target set to be active
initially and then the following step is repeated until no more changes occur:

If at least t(v) neighbours of some inactive vertex v are active, then v
becomes active.

In an n-vertex graph, there can be at most n − 1 executions of this step. The
related optimization problem, Target Set Selection, is: What is the smallest
set of vertices that need to be active initially to ensure that all vertices are active
at the end of the procedure?

Chen studied the problem in significant detail [22]. In particular, he showed
that for a graph in which t(v) = 2 for every vertex, Target Set Selection

cannot be approximated within a ratio O(2log
1−ε n), for every fixed ε > 0, unless

NP is in DTIME(npolylog(n)). That is, this threshold-2 version of Target Set

Selection (TSS-2) is Label Cover-hard [23].
We show that TSS-2 reduces to a special case of MinRTI, proving Label

Cover-hardness for the general problem. This almost closes the gap between
the hardness result and the best approximation known for general MinRTI [13].

Reduction. Let H stand for the TSS-2 instance; we first show how to construct
an instance G of MinDG, and then that this is an L-reduction.

Graph G has a central vertex r. For each vertex v ∈ H , there is a an edge
(xv, yv | r) in G of cost 1. Between yv and r we construct a mechanism to
mimic the activation threshold of TSS-2. Let d(v) be v’s degree in graph H and

let D(v) =
(
d(v)
2

)
. Build D(v) − 1 intermediate nodes av1, a

v
2, . . . , a

x
D(v)−1, and
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define av0 to be yv and avD(v) to be r. Match the pairs of neighbours of v in H ,

with the adjacent pairs of vertices in av0, . . . , a
v
D(v). That is, each pair (u, u′) of

neighbours of v in H is assigned some (avi , a
v
i+1), so G has edges (avi , a

v
i+1 | xu)

and (avi , a
v
i+1 | xu′), each of weight n. Since the maximum cost of an edge is n,

this reduction is polynomial in size and time. An example of this reduction is
shown in Figure 2. We now map a solution ΣG for MinDG back to a solution
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Fig. 2. An example of the reduction from TSS-2 to MinDG. In the MinDG instance,
thick edges have weight n, while thin edges have weight 1.

for TSS-2. If ΣG contains an edge of cost n, which we regard as a nonsense
solution, then set all vertices in H to be active initially. Otherwise, for each edge
(xv, yv | r) that is deleted (is in ΣG), set v to be active initially.

Claim. Excluding nonsense solutions toMinDG, solutions to TSS-2 andMinDG

have identical costs.

Proof. Consider a solution ΣH to TSS-2. For each v that is initially active, we
delete (xv, yv | r). This of course disconnects xv from the rest of the graph, and
so all edges marked xv can be removed. A vertex u in H is active whenever two of
its neighbours are active. Similarly, a vertex xu in G becomes disconnected from
the rest of the graph whenever two of its ‘H-neighbours’ are disconnected from
r, since the edges on the path from r to xu are labeled with the possible pairs
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of ‘H-neighbours’ of u. Therefore a solution ΣH to TSS-2 leads to a solution of
MinDG of the same cost.

Likewise, if the set of cost-1 edge deletions in ΣG leads to the graph dissolving,
the sequence of disconnections of the x-vertices in G is matched by the activation
of corresponding vertices in H .

Lemma 2. The (previous) reduction from TSS-2 to MinDG is approximation-
preserving.

Proof. The requirements for an L-reduction are that OPT(G) ≤ αOPT(H) for
some fixed constant α, and that for some fixed β, for every solution ΣG to
MinDG, the correspondingΣH solution to TSS-2 satisfies cost(ΣG)−OPT(G) ≥
β[cost(ΣH)−OPT(H)].

The optimum solution to G has the same cost as the optimum solution to H ,
so the α constant is 1. Except for nonsense solutions, all corresponding solution
costs, ΣH and ΣG, are equal. Since nonsense solutions cost at least n, and the
cost of a solution to TSS-2 is at most n, the β constant is also 1.

The graph generated by the reduction from TSS-2 is a weighted multi-edge
tree. Since our conversion from weighted multi-edges to unit-cost multi-edges in
Section 3.1 preserves acyclicity, we reach the following conclusion.

Corollary 2. On multi-edge trees, MinDG is Label Cover-hard.

4.1 Simple Graph Case

The remainder of this paper examines the tractability of MinDG on special
classes of graphs. So far, we have shown that for a general multigraph, MinDG

is Label Cover-hard.
Via a straightforward reduction, an example of which is in Figure 3, we now

extend this hardness result to simple graphs. Each multi-edge between two nodes
can be converted into a gadget of single edges connecting those two nodes, while
maintaining essentially the same dissolving behaviour. The reduction is polyno-
mial in the size of the input: if the original graph has m edges, the resultant
graph will have a total of n+2m nodes and 3m edges. To replace the multi-edge
{(x, y | z1), . . . , (x, y | zk)}, we add vertices u1, . . . , uk, v1, . . . , vk and, for all
i ≤ k, edges (x, ui | y), (ui, vi | zi) and (vi, y | x).

Whenever at least one of the zi-labelled edges is still present, x and y are
still ‘adjacent’. Once the original graph has dissolved, x and y are completely
disconnected, and so the auxiliary edges, (x, ui | y) and (vi, y | x), can be
removed.

Lemma 3. On simple graphs, MinDG is in general Label Cover-hard.

5 On Simple Trees, MinDG Is in P

We now turn to some tractable special cases of MinDG. Assuming that G(T )
is a simple tree, we show that MinDG is solved in polynomial time. The key



268 A. Chester, R. Dondi, and A. Wirth

x y

z1, z2, z3

(a) Multi-Graph

x u2 v2

u1 v1

u3 v3

y

y

y

y

x

x

x

z1

z2

z3

(b) Simple graph

Fig. 3. An example of the reduction from a multi-graph to a simple graph. Each multi-
edge on the left is turned into an equivalently-connected structure of simple edges on
the right.

idea is that in a simple tree, there is a unique path between every edge and the
node it is labelled with. Given an instance of MinDG, G = (V,E), we construct
a dependency graph H = (V ′, E′), a directed instance of TSS, in the following
manner. For every (labelled) edge e = (x, y | z) ∈ E, create a node ve ∈ V ′.
Now, for every e ∈ E, for every e′ ∈ E which lies on the path between node z
and edge e = (x, y | z), add to E′ an arc from ve′ to ve. Since each edge e is
connected to its label z via a unique path, the removal of some edge e′ along
that path disconnects e from z and thus enables the removal of e.

The graph H is a directed instance of TSS, in which the threshold for each
node is one. A node ve in H is active whenever the edge e has been removed (or
deleted initially) from G. The optimal starting active set in H , representing the
optimal MinDG solution in G, is trivial: activate a single node in each source
strongly connected component (SCC) of H .

Since we search the graph for each edge in G, construction ofH requires O(n2)
time; the size of H can in fact be quadratic in n. Kosaraju’s algorithm [24], for
instance, finds the source SCCs in time proportional to the size of H , so overall
the running time is in O(n2).

6 On Multi-edge Paths, MinDG Is in P

Our solution for simple trees fails in the multi-edge path case, because we are
no longer guaranteed to partition the graph by removing a single edge. Instead,
we present here a dynamic programming solution. We find optimal solutions for
subpaths of the original path, assuming they are isolated from the rest of the
graph. For subpaths of length one, the cost is zero. For every larger subpath P , we
consider the cost of each possible initial cut, and combine that with costs of the
remaining subpaths of P , now isolated. By working in increasing subpath length
order, the dynamic program will succeed. We need to record the position of the
optimal cut for each subpath in a second matrix, so we can reconstruct the set
of edges that constitutes the solution. This process is formalized in Algorithm 1,
and Algorithm 2 details the process of reconstructing the set of deleted edges.
Assuming the nodes have been enumerated 1, 2, . . . , n, each Mi,j contains the
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minimum cost for the section from i to j, and eachKi,j likewise holds the position
of the optimal cut.

The function cost(k, i, �) is defined as the number of edges between k and
k + 1 whose labels are in the range i, . . . , i + �. This definition ensures that the
algorithm is correct. Every solution to MinDG must cause some first cut in the
graph. Until this happens, the graph remains connected, therefore an optimal
solution need only delete edges between a single pair of adjacent nodes. Once
this first cut has occurred, the two subpaths behave independently, as captured
by the cost() function. Since an optimal solution is formed from a first cut and
optimal solutions on subpaths, the dynamic program is correct. The number of

Algorithm 1. MinDG-MultiPath(G(T ))

1: label the nodes along the path 1, . . . , n
2: construct n× n matrices, M and K
3: initialize the diagonal above the main diagonal of M to 0
4: for � = 2 to n− 1 do
5: for i = 1 to n− � do
6: Mi,i+� ← mini≤k<i+�(cost(k, i, �) +Mi,k +Mk+1,i+�)
7: Ki,i+� ← argmini≤k<i+�(cost(k, i, �) +Mi,k +Mk+1,i+�)
8: end for
9: end for
10: return DeletedEdges(G,K, 1, n)

Algorithm 2. DeletedEdges(G,K, i, j)

1: k ← Ki,j

2: Σ ← edges (k, k + 1 | z), where i ≤ z ≤ j.
3: unite Σ with DeletedEdges(G,K, i, k) and DeletedEdges(G,K, k + 1, j)
4: return Σ

entries in M is quadratic in n, and for each entry, to evaluate the cost function,
we inspect O(m) simple edges. To reconstruct the solution, we only revisit n− 1
entries in K, each with O(m) worst-case cost, so we can safely ignore the time
taken by Algorithm 2 in our asymptotic analysis. Hence the overall running time
is in O(mn2) ⊆ O(n4). The space requirement is quadratic, since we only need
to store an (integer) cost and position for each subpath. Of course, a similar
dynamic program could work on arbitrary multigraphs. Unfortunately, even on
a multi-edge tree, the number of subproblems is exponential in n.

7 Wrapping Up

The principal result in this paper is the resolution of the approximability of
MinRTI: it is essentially linear in n. In obtaining the hardness reduction, we
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extended Aho et al’s and Bryant’s graph interpretations of the rooted tree consis-
tency problem [8, 10]. In the full version of this paper, by describing a reduction
from MinDG to a directed version of TSS, we will tighten the nexus between
these problems.

As summarized in Table 2, our positive results focus on specific families of
(multi-edge) graphs. An interpretation of special cases in terms of the triplet

Table 2. Summary of results for MinDG as a function of graph type

Path Tree Graph

Simple O(n2)-time O(n2)-time Label Cover-hard
Multi-Edge O(n4)-time Label Cover-hard Label Cover-hard

formulation might be more natural, but the Dissolving Graph formulation is
highly effective for proofs.

A related question is determining the tractability of MinDG on multi-edge
trees with constant degree. Graphs of constant multi-edge degree representMin-

RTI inputs in which each item (species) is deemed to be similar to at most a
constant number of other items.

Finally, the other open problem we would like to explore was introduced by
Byrka et al. [13]. Is there a constant-factor approximation algorithm for the
dense case of MinRTI?

Acknowledgement. Anthony Wirth thanks the University of Milano-Bicocca
for hosting him in July 2011.
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Abstract. We study the obnoxious facility game with service range on
a path where each facility is undesirable and has service radius r. In this
game there are a number of agents on a path. Each agent tries to be far
away from all facilities, but still to be served by a facility. Namely, the dis-
tance between an agent and her nearest facility is at most r. The utility
of an agent is thus defined as this distance. In a deterministic or random-
ized mechanism, based on the addresses reported by the selfish agents,
the locations or the location distributions of facilities are determined.
The aim of the mechanisms is to maximize the obnoxious social welfare,
the total utilities of all agents. The objective of each agent is to maxi-
mize her own utility and she may lie if, by doing so, more benefit can be
obtained. We are interested in mechanisms without money to decide the
facility locations so that the obnoxious social welfare is maximized and
all agents are enforced to report their true locations (strategy-proofness
or group strategy-proofness).

In this paper, we give the first attempt for this game on a path
to design a group strategy-proof deterministic and randomized mech-
anism when the service radius 1

2
≤ r ≤ 1 by assuming that the path

length is one. Depending on the value r, we provide different mechanisms
with provable approximation ratios. Lower bounds on any deterministic
strategy-proof mechanism are also presented.

Keywords: Algorithmic mechanism design, obnoxious facility location,
social choice, service range.

1 Introduction

We study the obnoxious facility game with a service range that models the fol-
lowing problem in economics. The local government plans to build one or more
garbage dumps to serve the local community in a city, represented by a metric
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space. Due to the limited service ability, each garbage dump can only serve the
residents within its service scope. The government should decide the most ap-
propriate locations to install these garbage dumps based on the home addresses
reported by the residents. The utility of each resident is her distance from the
nearest garbage dump if she stays in one facility’s service scope. Otherwise this
resident cannot be served at all and her utility is minus infinity. Since the garbage
dump is not enjoyable, every resident wants to be as far from such a facility as
possible. But on the other hand the garbage dumps are necessary for the local
community, each resident must be stay in at least one garbage dump’s service
scope in order to get the corresponding service. In our setting the locations of
the residents are private information. Residents may report wrong locations to
improve their utilities. The core of this game for the government is to design a
mechanism (algorithm), that maps the reported home addresses of residents to a
set of locations where the facilities will be open, to fulfill the purposes. The goals
of the government are twofold: enforcing all residents to report their true home
addresses and maximizing the total utilities of all residents, which is called the
obnoxious social welfare. In this paper we are interested in the mechanism de-
sign without money, a topic extensively investigated in economics theory, game
theory and public choice theory. From the algorithmic perspective, we would
like our mechanisms to be approximately optimal with respect to the obnoxious
social welfare, where approximation is defined in the usual sense by looking at
the worst case ratio between the social welfare of the optimal solution and the
social welfare of the mechanism’s solution. Meanwhile, we also want our mecha-
nisms to provide a stronger guarantee by showing group strategy-proofness, that
is whenever a coalition of agents lies, at least one of the members of the coalition
does not gain from the lies.

1.1 Previous Results

The previous work was mainly about the classical facility game without service
range, in which each agent (resident) wants to stay as close to a facility as possi-
ble. There are two optimization targets being concerned: the social cost and the
maximum cost. For the social cost Procaccia and Tennenholtz [11] studied the
facility game when all agents are on a line. If only one facility should be located,
it is trivial that there exists an optimal group strategy-proof mechanism. For the
2-facility game on a line, they gave an upper bound of n− 2 and a lower bound
of 1.5 for deterministic strategy-proof mechanisms. Later, Lu et al. [9] obtained
an upper bound of n

2 and a lower bound of 1.045 for randomized strategy-proof
mechanisms. Recently, Lu et al. [8] improved the lower bound for deterministic
strategy-proof mechanisms to n−1

2 and designed a 4-approximation randomized
mechanism in general metric spaces. For the 1-facility game on a circle, it fol-
lows directly from the results of Schummer and Vohra [12] that no determin-
istic strategy-proof mechanism can obtain an approximation ratio better that
Ω(n). But Alon et al.[1] showed a simple randomized mechanism which is group
strategy-proof and gave a (2 − 2

n )-approximation ratio. For the 1-facility game
with maximum cost, Procaccia and Tennenholtz [11] considered the case that
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the network is a line and gave the group strategy-proof deterministic and ran-
domized mechanisms that yielded approximation ratios of 2 and 3

2 , respectively.
And they also provided the matching strategy-proof lower bounds for the deter-
ministic and randomized mechanisms. When the network is a circle, Alon et al.
[2] designed a novel “hybrid” strategy-proof randomized mechanism with a tight
approximation ratio of 3

2 . They also showed that no randomized strategy-proof
mechanism can provide an approximation ratio better than 2 − o(1) even when
the network is a tree. For the game to locate more than two facilities, Fotakis and
Tzamos [5] considered a variant of the game where an authority can impose on
some agents the facilities where they will be served. With this restriction, they
proposed a strategy-proof randomized Mechanism whose approximation ratio is
linear on the number of facilities. Recently, Escoffier et al. [4] studied a special
facility game in which there are n − 1 facilities should be located for n agents
in a general metric space and in a tree. They provided lower and upper bounds
on the approximation ratio of deterministic and randomized mechanisms for the
social cost and the maximum cost respectively.

Recently, we first proposed the obnoxious facility game in which each facil-
ity is not desirable any more and gave several mechanisms on path, tree, cir-
cle and general networks [3]. Specially, for a path, a 3-approximation group
strategy-proof deterministic mechanism and a group strategy-proof random-
ized mechanism with tight approximation ratio of 3

2 were given. For a circle
or a tree, two group strategy-proof deterministic mechanisms that provide the
approximation ratio of 3, respectively, were shown. Finally, for a general net-
work, a 4-approximation group strategy-proof deterministic mechanism and a
2-approximation group strategy-proof randomized mechanism were derived. Sim-
ilar to the work of Moulin [10] who characterized all strategy-proof mechanisms
for the classical facility game on a path, Han et al. [7] and Ibara et al. [6] char-
acterized all strategy-proof mechanisms for the obnoxious facility game on path
independently. They pointed out that there is no strategy-proof mechanisms
such that the number of candidates is more than two. In particular, by using the
complete characterization, Han [7] provided the matching lower bound of 3 for
deterministic group strategy-proof mechanisms when all agents are on a path,
tree or circle which showed that the deterministic mechanisms in [3] are the best
possible.

1.2 Our Contribution

In this paper we extend the work in [3] by considering the obnoxious facility
game with a service radius r on a path. We normalize the path as an interval
[0, 1] and focus on the case that 1

2 ≤ r ≤ 1. It is obvious that this model is the
same as the previous one in [3] if r = 1 in which one facility suffices. Due to
the bounded service range, this game becomes more complicated. First, we need
to build more than one facilities in some situations since each facility’s service
scope may not cover the whole interval. Then, the agent set must be partitioned
reasonably corresponding to the facility locations. Second, we know that if there
is no restriction of service radius, one of two endpoints of the interval must be an
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optimal facility location. But now such a nice property does not hold at all once
the service range exists. Thus it is difficult for us to evaluate the approximation
ratios of mechanisms by applying appropriate upper bound of the social welfare
of an optimal solution.

In the next section we introduce some useful notations and some results perti-
nent to the non-selfish version of this problem. By dealing with different service
radius, we give both group strategy-proof deterministic and randomized mech-
anisms in Sections 3 and 4. For 1

2 ≤ r < 3
4 and 3

4 ≤ r ≤ 1, the approximation

ratio of the deterministic mechanism is 8r − 1 and
r+ 1

2

r− 1
2

, respectively, while the

approximation ratio of the randomized mechanism is 4r and r
r− 1

2

, respectively.

Meanwhile, we propose lower bounds of the deterministic strategy-proof mech-
anisms in Section 3, that is 4r − 1 if 1

2 ≤ r < 3
4 ,

1
2r−1 if 3

4 ≤ r < 5
6 and 3r − 1

when 5
6 ≤ r < 1, respectively.

2 Preliminaries

In this section we introduce useful notations and related results pertinent to the
obnoxious facility problem on a path with service range in which the locations
of all agents are public.

Let N = {1, 2, · · · , n} be the set of agents. All of the agents are located on a
path P . For the sake of simplicity, assume that the left endpoint of the path is
zero and the right endpoint of the path is one. We regard the path as an interval
I = [0, 1]. The distance between any two points x, y ∈ I is d(x, y) = |x−y|. Thus
for all x ∈ I, d(x, x) = 0. The location reported by agent i is xi ∈ I. Denote
x = (x1, x2, · · · , xn) to be a location profile.

In the obnoxious facility game with service radius r, a deterministic mecha-
nism outputs a facility set based on a given location profile and thus is a function
f : In → Ip. Assuming the output of f to be f(x) = Y = {y1, · · · , yp} where
yj , j = 1, 2, · · · , p, is the location of the jth facility, the utility of agent i is her
distance to the facility set Y , i.e., d(xi, Y ) = min1≤j≤p d(xi, yj) if this distance
is no more than r. Otherwise her utility is minus infinity. Thus

u(xi, f(x)) =

{
d(xi, Y ) if d(xi, Y ) ≤ r,
−∞ otherwise .

A randomized mechanism is a function f : In → Δ(Ip), where Δ(Ip) is the set
of distributions over Ip. The utility of agent i ∈ N is now her expected utility
over such a distribution.

Given a location profile x, a feasible facility set Y ⊆ [0, 1] is defined that for
any agent’s location xi, d(xi, Y ) ≤ r, and we define the objective function of
feasible facility set Y as follows,

Fx(Y ) =

n∑
i=1

d(xi, Y ).
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Denote OPT(x) to be the optimal one, that is OPT(x) = maxY Fx(Y ). The
obnoxious social welfare of a mechanism f on a location profile x is defined as
the total utility of n agents

SW (f,x) =

n∑
i=1

u(xi, f(x)).

In the randomized case, this obnoxious social welfare is an expected value. For the
obnoxious facility game with service radius r, we are interested in the strategy-
proof mechanisms that also do well respect to maximize the obnoxious social
welfare. We say a mechanism f has an approximation ratio γ, if for all profile
x ∈ In,

OPT(x) ≤ γSW (f,x).

Let x−i = (x1, · · · , xi−1, xi+1, · · · , xn) be the location profile without agent i.
For an agent set S ⊆ N , we denote xS and x−S to be the location profiles of
agents in and outside S, respectively. Thus we have three equivalent notations:
x = 〈xi,x−i〉 = 〈xS ,x−S〉. For simplicity, we write f(xi, x−i) = f(〈xi,x−i〉)
and f(xS ,x−S) = f(〈xS ,x−S〉). In the following we formulate the definitions of
strategy-proofness and the group strategy-proofness.

Definition 1. A mechanism for the obnoxious facility game with service range
is strategy-proof if no agent can benefit from misreporting her location. Formally,
given agent i, profile x = 〈xi, x−i〉 ∈ In, and a misreported location x′i ∈ I, it
holds that

u(xi, f(xi,x−i)) ≥ u(xi, f(x
′
i,x−i)).

Definition 2. A mechanism for the obnoxious facility game with service range
is group strategy-proof if for any group of agents, at least one of them cannot
benefit if they misreport simultaneously. Formally, given a non-empty set S ⊆ N ,
profile x = 〈xS ,x−S〉 ∈ In, and the misreported location x′

S ∈ I |S|, there exists
i ∈ S, satisfying

u(xi, f(xS ,x−S)) ≥ u(xi, f(x
′
S ,x−S)).

In this paper we focus on the obnoxious facility game on interval [0, 1] with
service radius 1

2 ≤ r ≤ 1. Beforehand we should show the characterizations of
the optimal solutions for the obnoxious facility problem on paths with service
range in which the locations of all agents are public.

Proposition 1. For the obnoxious facility problem on interval [0, 1] with service
radius 1

2 ≤ r ≤ 1, there is an optimal solution containing at most two facilities.

Thus in the rest of the paper we only consider an optimal solution containing at
most two facilities.
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Proposition 2. Suppose {y∗1 , y∗2} is an optimal solution for a location profile x.
Then we have

– if 0 ≤ y∗1 ≤ y∗2 < 1− r, then {y∗2} is optimal;
– if r < y∗1 ≤ y∗2 ≤ 1, then {y∗1} is optimal;
– if y∗1 or y∗2 ∈ [1− r, r], then {y∗1} or {y∗2} is optimal.

Proof. Here we only discuss the first case. The proofs for other cases are similar.

Since {y∗1 , y∗2} is feasible for the location profile, any agent with xi ∈ (
y∗
1+y∗

2

2 , 1]
should be served by the facility at y∗2 and d(xi, y

∗
2) ≤ r. On the other hand,

because 0 ≤ y∗1 ≤ y∗2 < 1− r, it is obvious that d(xi, y
∗
2) ≤ r if xi ∈ [0,

y∗
1+y∗

2

2 ] ⊆
[0, 1− r]. Thus, we know that d(xi, y

∗
2) ≤ r, i = 1, 2, · · · , n. So the facility at y∗2

can serve all of the agents on [0, 1] and {y∗2} is a feasible solution. Thus

Fx(y
∗
1 , y

∗
2) =

∑
xi∈[0,

y∗1+y∗2
2

]

d(x, y∗
1) +

∑
xi∈(

y∗1+y∗2
2

,1]

d(xi, y
∗
2) ≤

∑
xi∈[0,1]

d(xi, y
∗
2) = Fx(y

∗
2)

The inequality comes from the fact that for any agent in [0,
y∗
1+y∗

2
2

], d(xi, y
∗
1) ≤ d(xi, y

∗
2).

Therefore solution {y∗
2} is optimal too. ��

Furthermore we arrive at the following theorem.

Theorem 1. For the obnoxious facility problem on interval [0, 1] with service
radius 1

2 ≤ r ≤ 1, if there are two distinct facilities in an optimal solution at y∗1
and y∗2 with y∗1 < y∗2, then y∗1 ∈ [0, 1− r) and y∗2 ∈ (r, 1].

3 Deterministic Mechanisms

In this section we propose a group strategy-proof deterministic mechanism for
the obnoxious facility game on interval [0, 1] with service radius 1

2 ≤ r ≤ 1 and
explore the upper and lower bounds of the approximation ratio.

Mechanism 1. Given a location profile x on interval [0, 1]. Let n1, n2, n3 and n4

be the number of the agents on [0, 14 ], (
1
4 ,

1
2 ], (

1
2 ,

3
4 ) and [ 34 , 1], respectively.

– For 1
2 ≤ r < 3

4 ,
if n1+n4 ≥ n2+n3 then return f(x) = { 1

2}; otherwise return f(x) = {0, 1},
i.e., pick two facilities at y1 = 0 and y2 = 1, respectively.

– For 3
4 ≤ r ≤ 1,

if n1+n2 ≥ n3+n4 then return f(x) = {r}; otherwise return f(x) = {1−r}.

Note that when 1
2 ≤ r < 3

4 , it is possible to build two facilities. It is an obvious
difference between the obnoxious facility game with and without service range.
The following theorem shows that Mechanism 1 is group strategy-proof.

Theorem 2. Mechanism 1 is group strategy-proof.
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Proof. It is easy to check that the outputs { 1
2} and {0, 1} of Mechanism 1 are

both feasible for any agent location profile x on [0, 1]. In order to prove the
group strategy-proofness of Mechanism 1, let S ⊆ N be a coalition. We must
demonstrate that the agents in S cannot all gain strictly by lying. Suppose that
any agent in S misreports her location from xi to x

′
i. Let n

′
1, n

′
2, n

′
3 and n

′
4 be the

numbers of agents on [0, 14 ], (
1
4 ,

1
2 ], (

1
2 ,

3
4 ) and [ 34 , 1] after deviating, respectively.

Denote the new profile to be x′. Following we discuss two cases depending on
service radius r.

For 1
2 ≤ r < 3

4 , w.l.o.g., we assume that n1+n4 ≥ n2+n3. Hence Mechanism 1
outputs the facility location f(x) = { 1

2}. By Mechanism 1, if n′
1 +n′

4 ≥ n′
2 +n′

3,
then f(x′) = f(x) = { 1

2} and u(xi, f(x
′)) = u(xi, f(x)) for any agent i. But

if n′
1 + n′

4 < n′
2 + n′

3, then f(x) = {0, 1}. Under this case, we find that at
least one agent with xi ∈ [0, 14 ] ∪ [ 34 , 1] lies to x′i ∈ (14 ,

3
4 ). It is obvious that

d(xi, {0, 1}) ≤ 1
4 ≤ d(xi,

1
2 ), i.e. u(xi, f(x

′)) ≤ u(xi, f(x)). For 3
4 ≤ r ≤ 1,

suppose that n1+n2 ≥ n3+n4 without loss of generality. So the facility location
f(x) = {r} is returned by Mechanism 1. Obviously if n′

1 + n′
2 ≥ n′

3 + n′
4, then

f(x′) = f(x) = {r} and u(xi, f(x
′)) = u(xi, f(x)) for any agent i. But if n′

1 +
n′
2 < n′

3 + n′
4 then we have f(x′) = {1 − r} by Mechanism 1. In this instance,

there must be at least one agent in [0, 12 ] lying her location to x′i ∈ (12 , 1]. And
it is easy to know that

u(xi, f(x
′)) = d(1− r, xi) ≤ d(1− r,

1

2
) + d(

1

2
, xi)

= d(r,
1

2
) + d(

1

2
, xi) = d(r, xi) = u(xi, f(x)).

The inequality comes from the triangle inequality directly. ��

The following theorem provides the approximation ratio of Mechanism 1.

Theorem 3. The approximation ratio of Mechanism 1 is

γ(r) =

{
8r − 1 if 1

2 ≤ r < 3
4 ,

r+ 1
2

r− 1
2

if 3
4 ≤ r ≤ 1.

(1)

The proof for the approximation ratio of Mechanism 1 is a little complicated.
The main idea is following. Let the optimal solution be {y∗1 , y∗2} with y∗1 ≤ y∗2 . We
should discuss different cases which are obtained by distinguishing all possible
locations of y∗1 and y∗2 and by the nice properties shown in Proposition 1, 2 and
Theorem 1. For each case, we compute the ratio between the social welfare of the
optimal solution and the social welfare of the mechanism’s solution under the
worst instance and obtain the final result shown in Theorem 3. Specifically, when
the service radius 1

2 ≤ r < 3
4 , there are five distinct cases should be discussed:

i) y∗1 = y∗2 = y∗ ∈ [0, 14 ]; ii) y
∗
1 = y∗2 = y∗ ∈ [ 14 ,

1
2 ]; iii) y

∗
1 ∈ [0, 14 ] and y

∗
2 ∈ [ 12 ,

3
4 ];

iv) y∗1 ∈ [0, 14 ] and y∗2 ∈ [ 34 , 1]; v) y
∗
1 ∈ [ 14 ,

1
2 ] and y∗2 ∈ [ 12 ,

3
4 ]. When the service

radius 3
4 ≤ r ≤ 1, there are three different cases: i) y∗1 = y∗2 = y∗ ∈ [0, 12 ]; ii)

y∗1 = y∗2 = y∗ ∈ [ 12 , 1] and iii) y∗1 ∈ [0, 1− r), y∗2 ∈ (r, 1].
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It is clear to check that the approximation ratio shown in (1) is tight for
Mechanism 1. When 1

2 ≤ r < 3
4 , we consider an instance that there are n

2
agents at 1

2 and n
2 agents at 3

4 . Under this case, OPT(x) = (2r − 1
4 )

n
2 where

an optimal solution is y∗ = 3
4 − r ∈ [0, 14 ]. And by Mechanism 1, the output is

1
2 . Thus the obnoxious social welfare SW (f,x) = 1

8n = 1
(8r−1)OPT(x). When

3
4 ≤ r ≤ 1, another instance is studied that there are n

2 agents at 1
2 and n

2
agents at r. Obviously the optimal solution is y∗ = 0 and OPT(x) = (r +
1
2 )

n
2 . But the output of Mechanism 1 is f(x) = r with obnoxious social welfare

SW (f,x) = (r− 1
2 )

n
2 =

r− 1
2

r+ 1
2

OPT(x). We also note that the approximation ratio

γ of Mechanism 1 monotonously increases on service radius r when 1
2 ≤ r < 3

4
and decreases when 3

4 ≤ r ≤ 1. And γ reaches its maximum value 5 when
r = 3

4 and its minimum value 3 when r = 1
2 or 1. This result just matches the

approximation ratio 3 of Mechanism 1 in [3] in which there is no restriction of
service range.

In order to explore the lower bound of any deterministic strategy-proof mech-
anism, the following proposition is necessary to be stated.

Proposition 3. Given a profile x, facility locations y1 and y2 (y1 ≤ y2) are
returned by a deterministic mechanism f for the obnoxious facility game with
bounded service radius r on a path. If yi, i = 1 or 2, satisfies d(yi, xj) ≤ r for any
j ∈ {1, 2, · · · , n}, then the obnoxious social welfare SW (f,x) ≤

∑n
j=1 d(yi, xj).

Recall that the approximation ratio of deterministic strategy-proof mechanisms
is at least 3 for the setting without bounded service range [7]. It is obvious that
if r = 1, then this case is equivalent to that without the service range which
implies the lower bound of the approximation ratio is 3 if r = 1. So in the
following, we first try our best to compute the lower bounds of approximation
ratio for any strategy-proof deterministic mechanism if 1

2 ≤ r < 1. Similar to
the upper bound of approximation ratio shown in (1), the lower bounds depend
on the value of r are proposed in Theorem 4.

Theorem 4. In the obnoxious facility game on [0, 1] with bounded service radius
1
2 ≤ r < 1, any strategy-proof deterministic mechanism f has approximation
ratio of at least

γ(r) ≥

⎧⎨⎩
4r − 1 if 1

2 ≤ r < 3
4 ,

1
2r−1 if 3

4 ≤ r < 5
6 ,

3r − 1 if 5
6 ≤ r < 1.

(2)

for the obnoxious social welfare.

In order to prove Theorem 4, we should construct different instances based on
the value of the service radius r. For each instance if only one agent misreports
her location, one possible facility location can be determined by the strategy-
proofness. Furthermore, we can compute the upper bound of the obnoxious social
welfare by Proposition 3 and obtain the lower bound of the approximation ratios
shown in (2).



280 Y. Cheng et al.

4 Randomized Mechanisms

In this section we propose a randomized mechanism for the obnoxious facility
game with service radius 1

2 ≤ r ≤ 1 on a path and explore its group strategy-
proofness and approximation ratio.

Mechanism 2. Given a location profile x on interval [0, 1]. Let n1, n2, n3 and n4

be the number of the agents on [0, 14 ], (
1
4 ,

1
2 ], (

1
2 ,

3
4 ) and [ 34 , 1] respectively.

When 3
4 ≤ r ≤ 1,

– if n1 + n2 > n3 + n4, then return f(x) = {1 − r} and f(x) = {r} with
probability 2

5 and 3
5 , respectively.

– if n1 + n2 = n3 + n4, then return f(x) = {1 − r} and f(x) = {r} with
probability 1

2 , respectively.
– if n1 + n2 < n3 + n4, then return f(x) = {1 − r} and f(x) = {r} with

probability 3
5 and 2

5 , respectively.

When 1
2 ≤ r < 3

4 , then return f(x) = { 1
2} and f(x) = {0, 1} with probability 1

2
respectively.

The following theorem shows that Mechanism 2 is group strategy-proof and
provides the approximation ratio.

Theorem 5. Mechanism 2 is a group strategy-proof mechanism for the obnox-
ious facility game with service radius 1

2 ≤ r ≤ 1 and its approximation ratio
is

γ(r) =

{
4r if 1

2 ≤ r < 3
4 ,

r
r− 1

2

if 3
4 ≤ r ≤ 1. (3)

The proof for the group strategy-proofness of Mechanism 2 is similar to Theorem
2. For the approximation ratio, the key of the proof is how to upper bound the
social welfare of OPT(x) appropriately. Specifically, when 3

4 ≤ r ≤ 1, OPT(x) ≤
r(n1 +n2)+

1
2 (n3+n4) if n1+n2 ≥ n3+n4; Otherwise OPT(x) ≤ 1

2 (n1+n2)+
r(n3 + n4). When 1

2 ≤ r < 3
4 , we use the upper bound OPT(x) ≤ rn.

5 Concluding Remarks

This paper is the first one to study the obnoxious facility game with service
range on an interval which has much more real significance. Our goal is to de-
sign deterministic and randomized group strategy-proof mechanisms with small
approximation ratios and explore the lower bound of approximation ratio for any
strategy-proof mechanism. There are a lot of interesting open problems. One of
them is a truly intriguing gap between our deterministic upper bound shown in
(1) and the lower bound shown in (2). Moreover it is not clear about the result of
the lower bound on the approximation ratio for any strategy-proof randomized
mechanism.
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The other one is to study the obnoxious facility game problem when the service
radius 0 < r < 1

2 . Note that we need as more facilities to serve all the agents
as r is smaller. Hence much more cases should be discussed and such a problem
becomes more complicated. We strive to find a general rule corresponding to the
value of r.
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Abstract. A self-pairing e(P,P ) is a special bilinear pairing where both
points are equal. Self-pairings are used in some cryptographic schemes
and protocols, such as ZSS shorter signatures and so on. In this paper,
We first generalize a result in [28] to any elliptic curve with more simpler
final exponentiation. Then we present a new self-pairing on ordinary el-
liptic curves with short loop length in Miller’s algorithm. We also provide
examples of self-pairing friendly elliptic curves which are of interest for
efficient pairing implementations. Finally, we present explicit formulae
for Miller’s algorithm to compute self-pairing on ordinary elliptic curves
with embedding degree one.

Keywords: Elliptic curve, Self-pairing, Tate pairing, Weil pairing,
Pairing based cryptography.

1 Introduction

Pairing-based cryptographic applications have received much attention and were
developed rapidly. In order to make these applications practical, pairing com-
putations need to be efficiently carried out. It leads to fast developments of
algorithmic foundations of pairings. For this purpose, several efficient pairings
such as Weil pairing [3,4,18], Tate pairing [3,4,8,15], Ate pairing [11], twisted Ate
pairing [16], optimal pairing [24], self-pairing [29], and pairing lattices [12] etc.,
have been proposed. Many efficient techniques which speed up pairing com-
putations have been presented, such as shortening the loop length in Miller’s
algorithm ([7,11,12,15,16,28]), or speeding up the basic doubling and addition
steps in Miller’s algorithm ([1,2,6]), etc.. Some surveys of pairing computations
can be found in [3,4,9].

Some pairings with specific properties are often required in cryptographic ap-
plications. A self-pairing e(P, P ) is a special bilinear pairing where both points
are equal. Self-pairings are used in some cryptographic schemes and protocols,
such as short signatures [25,26], ID-based Chameleon hashing schemes [27], and
on-line/off-line signature schemes [25], etc.. There are only a few studies for com-
puting self-pairings [19,29]. It is well known that for the Weil pairing e(P, P ) = 1
for any P . For cryptographic applications, we need to let the latter P map to
another independent point for keeping non-degeneracy. Note that the distortion
map exists only on supersingular curves and ordinary curves with embedding

T-H.H. Chan, L.C. Lau, and L. Trevisan (Eds.): TAMC 2013, LNCS 7876, pp. 282–293, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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degree one ([14,23]). To implement self-pairing based protocols in practice, it is
necessary to match curves which admit self-pairing with an efficient pairing com-
putation algorithm. In this paper, we only consider the self-pairing computation
on ordinary curves with embedding degree one.

It was proposed in [28] a super-optimal pairing based automorphism with
great efficiency on two families of elliptic curves y2 = x3+a and y2 = x3+ax. In
this paper, we first generalize the result in [28] to any elliptic curves with more
simpler final exponentiation. Then we present a new self-pairing on ordinary
curves with embedding degree one. It has more shorter loop length in Miller’s
algorithm than in [29]. Finally, We apply the new self-pairing to two families of
elliptic curves and give the explicit self-paring computation algorithms.

The paper is organized as follows. In Section 2, we provide some background
and notations used through this paper. In Section 3, we present a new self-
pairing on ordinary elliptic curves with embedding degree one. In Section 4, we
apply the new self-pairing to two examples. We draw our conclusion in Section
5. In this paper, the cost of a field inversion, a multiplication, and a squaring
are denoted by I, M , and S respectively.

2 Preliminaries

A brief background on pairings is given in this section.

2.1 Tate and Weil Pairing

Let Fq be a finite field with q = pm elements, where p > 3 is a prime, and E
an elliptic curve defined over Fq with neutral element denoted by O. Let r be
a large prime divisor of the group order #E(Fq) with gcd(r, q) = 1. Let k > 0
denote the embedding degree with respect to r, that is, k is the smallest integer
such that r | qk − 1. For technical reasons we assume that r2 does not divide
qk − 1. We denote by E[r] the r-torsion group of E.

Let t ∈ Fq(E) be a fixed local parameter at infinity O. We say that f ∈ Fqk(E)
is monic [12] if ft−v(O) = 1, where v is the order of f at O. In other words
this says that the Laurent series expansion of f in terms of t is of the form
f = tv + O(tv+1). We will consider monic functions f throughout the paper
without further mentioning.

For any point P ∈ E(Fq)[n], let fi,P denote a rational function on E with
divisor div(fi,P ) = i(P )− (iP )− (i− 1)(O), and let DP be a degree zero divisor
which is linearly equivalent to (P ) − (O), then div(fi,P ) = rDP . Assume that
μr is the set of r-th roots of unit in Fqk . The reduced Tate pairing [8] is defined
as follows:

Tr : E(Fq)[r] × E(Fqk)→ μr, Tr(P,Q) = fr,P (Q)(q
k−1)/r.

Note that fr,P (Q)a(q
k−1)/r = far,P (Q)(q

k−1)/r for any integer a. The rational
function fr,P can be computed in polynomial time by using Miller’s algorithm
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([17,18]). Let r = (rl−1, · · · , r1, r0)2 be the binary representation of r, where
rl−1 = 1. Let lR,P and vR be the rational functions with divisors div(lR,P ) =
(R)+ (P )+ (R+P )− 3(O) and div(vR) = (R)+ (−R)− 2(O), respectively. The
Miller’s algorithm ([17,18]) for computation fr,P (Q) is as follows:

Algorithm 1. Miller’s algorithm

Input: r =
∑l−1

i=0 ri2
i, where ri ∈ {0, 1}. P,Q ∈ E.

Output: fr(Q)

1: f ← 1, R ← P
2: for i = l − 2 down to 0 do
3: f ← f2 · lR,R(Q)

v2R(Q)
, R ← [2]R

4: if ri = 1 then
5: f ← f · lR,P (Q)

vR+P (Q)
, R ← R + P

6: end if
7: end for
8: return f

Suppose that P,Q ∈ E[r] and P �= Q. Then the Weil pairing [18] is

er : E[r]× E[r] → μr, er(P,Q) = (−1)rfr,P (Q)/fr,Q(P ).

Since r is an odd prime we always have (−1)r = −1. For k | #Aut(E) and s ≡ q
mod r, the Weil pairing with ate reduction ([12]) with respect to s is given by

es : E[r]× E[r] → μr, es(P,Q) = wfs,P (Q)/fs,Q(P )

for some suitable k-th root of unity w ∈ Fq.

2.2 Weil Pairing with Automorphism

In [12], an extended Weil pairing with an automorphism is presented. Let s be
a primitive n-th root of unity modulo r with n | lcm(k, #Aut(E)). Let u = sq−d

mod r be some primitive e-th root of unity modulo r with e | gcd(n, #Aut(E))
and d ≥ 0. Define v = s−1qd = u−1 mod r. Let πq be the Frobenius endo-
morphism, i.e. πq : E → E : (x, y) !→ (xq, yq). If k > 1, then E(Fqk)[r] =
Z/rZ × Z/rZ and there exists a basis P,Q of E(Fqk)[r] satisfying πq(P ) = P
and πq(Q) = qQ. Since the natural map Aut(E) → Aut(E[r]) is injective, there
must exist α ∈ Aut(E) of order e with α(Q) = uQ and α(P ) = vP . We define
G1 = 〈P 〉 and G2 = 〈Q〉. Suppose n | #Aut(E), then there is an n-th root of
unity w ∈ Fq such that

es : G1 ×G2 → μr,

(P,Q) !→
e−1∏
j=0

(−wfs,P (αj(Q))/fs,αj(Q)(P ))v
j
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defines a bilinear pairing. Since w is an n-th root of unity of Fq, one can define
the powered pairing with final exponentiation θ(n), where θ(n) = n if n is even
and θ(n) = 2n if n is odd. That is

eθ(n)s = (

e−1∏
j=0

(fs,P (α
j(Q))/fs,αj(Q)(P ))v

j

)θ(n)

also defines a bilinear pairing. The pairing es and e
θ(n)
s are non-degenerate if

and only if sn �≡ 1 mod r2 holds. Note that when r is an odd composite number
such that gcd(r, q) = 1, the above conclusion is also correct by the proof in [12].

Let p be a large prime. Consider elliptic curves E1 : y2 = x3+B, where p ≡ 1
mod 3, and E2 : y2 = x3 + Ax, where p ≡ 1 mod 4 over Fp. In [28], Zhao etc.
proposed a super-optimal omega pairing for above families of elliptic curves with
nontrivial automorphisms. Let φ be a nontrivial automorphism over E1 or E2.
For the points P,Q ∈ E[r], suppose that φ(P ) = λP , then the function ω(P,Q) =
(fλ,P (Q)/fλ,Q(P ))p−1 defines a non-degenerate bilinear pairing. Actually, we can
extend the omega pairing to any elliptic curve with nontrivial automorphisms.

2.3 Self Pairing

In practical implementations, the self-pairing e(P, P ) can be designed by Type
1 pairings ([9]), i.e., it can be constructed on supersingular elliptic curves with
even embedding degrees. Let E be the supersingular curves with distortion map
φ over the ground field Fq as given in Table 1 of [29], and let r be a large prime
dividing the order of E(Fq). The embedding degree with respect to r is equal to
k. Take P ∈ Ker(πq − [1])∩E[r], the self-pairing based on the Weil pairing can
be given by

es(P, P ) = fr,P (φ(P ))4(q
k/2−1).

Since the distortion maps also exist for ordinary elliptic curves with embedding
degree one, a new self-pairing was proposed in [29] on ordinary curves. Koblitz
and Menezes first gave the concrete construction of ordinary curves with em-
bedding degree one and analyzed the efficiency of pairing computations on these
curves ([14]). Assume that the prime p = A2 + 1. The equation of the elliptic
curve E5 over Fp is defined by E5 : y2 = x3 + ax, where a = −1 or a = −4 re-
sponse to A ≡ 0 mod 4 orA ≡ 2 mod 4. The order of E5(Fp) is #E5(Fp) = p−1.
the map φ : (x, y) → (−x,Ay) is a distortion map on E5. Let P ∈ E5(Fp) have
prime order r, the self-pairing in [29] is defined as es(P, P ) = fr,P (φ(P ))4.

3 Self Pairing Functions of Lower Degrees

The next theorem extends Theorems 1 and 2 in [28].

Theorem 1. Let E be an ordinary elliptic curve over a finite field Fq, r a
prime factor of E(Fq) with r | q − 1, and let n be the order of λ modulo r
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with n | #Aut(E). Let ϕ ∈ Aut(E) and G1 and G2 be two eigenspaces of ϕ on
E[r] such that ϕ(Q) = λQ for any Q ∈ G2 and ϕ(P ) = λ−1P for any P ∈ G1.
Set θ(n) = n if n is even, and θ(n) = 2n if n is odd. Then

êλ : G1 ×G2 → μr, (P,Q) !→ (fλ,P (Q)/fλ,Q(P ))θ(n)

defines a bilinear pairing. The pairing êλ is non-degenerate if and only if sn �≡ 1
mod r2 holds.

Proof. Let κ ≡ λ−1 mod r and eλ =
n−1∏
j=0

(
fλ,P (ϕj(Q))
fλ,ϕj (Q)(P )

)κjθ(n)

. Then eλ is a

bilinear pairing from Section 2.2. Let ψ be the dual isogeny of ϕ, then ψ(P ) = λP
for any P ∈ G1 and ψ(Q) = λ−1Q for any Q ∈ G2. Since

div(fλ,λQ ◦ ϕ) = ϕ∗(div(fλ,λQ)) = ϕ∗(λ(λQ)− (λ2Q)− (λ− 1)(O))
= λ(Q)− (λQ)− (λ − 1)(O) = div(fλ,Q),

we have

fλ,λQ(λQ)θ(n) = fλ,Q(Q)θ(n) and fλ,λQ(λ
−1P )θ(n) = fλ,Q(P )θ(n).

Similarly,

fλ,λP (λP )θ(n) = fλ,P (P )θ(n) and fλ,λP (λ
−1Q)θ(n) = fλ,P (Q)θ(n).

Moreover, since all rational functions in this paper are assumed to be chosen as
monic functions, fλ,P ((λ − 1)O) = 1. Thus

(
fλ,P (λQ)fλ,P (Q)−λ

)θ(n)
=
(
fλ,P (λQ)fλ,P (Q)−λfλ,P ((λ − 1)O)

)θ(n)
=(fλ,P (−div(fλ,Q)))θ(n)=(fλ,Q(−div(fλ,P )))θ(n)=

(
fλ,Q(λP )fλ,Q(P )−λ

)θ(n)
.

That is,
(

fλ,P (λQ)
fλ,Q(λP )

)θ(n)
=
(

fλ,P (Q)
fλ,Q(P )

)λθ(n)
. Therefore,

(
fλ,P (λ

jQ)

fλ,Q(λjP )

)θ(n)

=

(
fλ,λP (λ

j−1Q)

fλ,Q(λjP )

)θ(n)

=

(
fλ,λP (Q)

fλ,Q(λP )

)λj−1θ(n)

=

(
fλ,P (λQ)

fλ,Q(λP )

)λj−1θ(n)

=

(
fλ,P (Q)

fλ,Q(P )

)λjθ(n)

.

Hence, one gets

eλ=
n−1∏
j=0

(
fλ,P (λ

jQ)

fλ,λjQ(P )

)κjθ(n)

=
n−1∏
j=0

(
fλ,P (Q)

fλ,Q(P )

)(λκ)jθ(n)

=

(
fλ,P (Q)

fλ,Q(P )

)θ(n)
n−1∑
j=0

(λκ)j

.
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Note that λκ ≡ 1 mod r, we have
n−1∑
j=0

(λκ)j ≡ n mod r. FromWeil’s reciprocity

law, we know that(
fλ,P (Q)

fλ,Q(P )

)rθ(n)

=

(
fλ,P (div(fr,Q))

fλ,Q(div(fr,P ))

)θ(n)

=

(
fr,Q(div(fλ,P ))

fr,P (div(fλ,Q))

)θ(n)

=

(
fr,Q(P )λfr,P (λQ)

fr,P (Q)λfr,Q(λP )

)θ(n)

= 1.

Therefore,

eλ(P,Q)(n
−1 mod r) =

(
fλ,P (Q)

fλ,Q(P )

)θ(n)

= êλ.

Thus êλ defines a bilinear pairing. From Section 2.2, the pairing êλ is non-
degenerate if and only if sn �≡ 1 mod r2 holds.

From the above theorem, taking Q = φ(P ) with φ a distortion map, we get the
following theorem.

Theorem 2. Using the same notations as in Theorem 1, and let φ be a dis-
tortion map on an ordinary elliptic curve E. Then the self-pairing based on the
automorphism ϕ can be given by

eself (P, P ) � ês(P, φ(P )) = (fλ,P (φ(P ))/fλ,φ(P )(P ))θ(n).

4 Applications

4.1 Self-pairing on y2 = x3 + ax

Let p = A2 + 1 be a prime. Let E5 : y2 = x3 + ax be an elliptic curve defined
over Fp, where a = −1 if A ≡ 0 mod 4, or a = −4 if A ≡ 2 mod 4. Note that
E5 is an ordinary elliptic curve and φ : (x, y) → (−x,Ay) is a distortion map
on E5. Furthermore, #Aut(E) = 4 ([21]). Assume that σ ∈ Fp is an element of
order 4. Let the automorphism ϕ be given by (x, y) → (−x, σy). Let P ∈ E5(Fp)
has prime order r, and λ be the root of equation x2 + 1 = 0 mod r such that
ϕ(P ) = λ−1P . Then the order of λ modulo r is 4. The self-pairing based on the
automorphism ϕ is

eself (P, P ) = (fλ,P (φ(P ))/fλ,φ(P )(P ))4

by Theorem 2. Note that the self-pairing in [29] is (fr,P (φ(P ))/fr,φ(P )(P ))4.
Hence, the proposed self-pairing has more shorter loop length in Miller’s
algorithm.

In Miller’s algorithm, fλ,P (φ(P ) and fλ,φ(P )(P ) are computed simultaneously
in each iteration step, and do only one final quotient fλ,P (φ(P ))/fλ,φ(P )(P ).
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Noting that Q ∈ {P, φ(P )} ⊂ E(Fp), the self-pairing can be combined with
windowing methods by replacing the computation in step (5) in Miller’s algo-
rithm by

f ← f · fc,P (Q) · lR,cP (Q)

vR+cP (Q)
, R← R + [c]P,

where the currentwindow in the binary representation ofn corresponds to the value
c. The Miller function fc,P is defined via div(fc,P ) = c(P )− ([c]P )− (c− 1)(O).

In [5], a variant of Miller’s algorithm which gives rise to a generically faster
algorithm for any pairing friendly curve was given. We can apply this variant of
Miller’s algorithm to self-pairing computation. In implementations, the variant
algorithm saves between 10% in running time in comparison with the usual
version of Miller’s algorithm.

4.2 Self-pairing on y2 = x3 + b

Let both r ≡ 2 mod 3 and p = r2 + r + 1 be prime, thus p ≡ 1 mod 3.
Choose β ∈ Fp such that the polynomial X6 − β is irreducible in Fp[X ]. Set
b = β or b = β5, then Eb : y2 = x3 + b is an ordinary elliptic curve over Fp,
Eb(Fp) = Z/rZ × Z/rZ and #Eb(Fp) = r2. Moreover, #Aut(E) = 6. The map
φ : (x, y) → (rx, y) is a distortion map on Eb(Fp). Here is a curve with 256-bits
security level:

r = 2512 + 436711, Eb/Fp : y2 = x3 + 29.

The more details can be found in [13].
Let P ∈ Eb(Fp) has prime order r, and ρ be an element of order 3 in Fp.

Set automorphism ϕ be given by (x, y) → (ρx, y). Assume that λ is a root of
x2 + x + 1 = 0 mod r such that ϕ(P ) = λ−1P . Then the order of λ modulo r
is 3. The self-pairing based on the automorphism ϕ is

eself (P, P ) = (fλ,P (φ(P ))/fλ,φ(P )(P ))6

by Theorem 2.

Doubling Step. For P, T ∈ Eb(Fp), let lP,T denote the line through P and T ,
and let vP+T denote the line through P + T and −(R + T ). In the case of the
doubling step of the self-pairings, after initially setting T = P, f1 = f2 = 1, for
each bit of λ we do

f1 ← f2
1
lT,T (φ(P ))
v2T (φ(P )) ,

f2 ← f2
2
lφ(T ),φ(T )(P )

vφ(2T )(P ) ,

T ← 2T.

Let λT be the slope of the tangent line through the point T , then the slope of the
tangent line through the point φ(T ) is r2λT . Note that r3 = 1 and r2 = −r− 1,
it follows that

lT,T (φ(P )) = (yP − yT )− λT (rxP − xT ),
lφ(T ),φ(T )(P ) = (yP − yT )− r2λT (xP − rxT )

= (yP − yT )− λT (−rxP − xP − xT ),
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and
v2T (φ(P )) = rxP − x2T ,

r2vφ(T ),φ(T )(P ) = r2(xP − rx2T ) = −rxP − xP − x2T .

For each bit of λ, we do f1 ← f2
1 · lT,T (φ(P )) · vφ(T ),φ(T )(P ) and f2 ← f2

2 ·
lφ(T ),φ(T )(P ) · v2T (φ(P )). Since r3 = 1 mod p and the final power equals 6, we
can replace vφ(T ),φ(T )(P ) by r2vφ(T ),φ(T )(P ) in the whole computation. More-
over, we can cache R1 = rxP . The formulas for the doubling steps in affine
coordinates will be given by

λ =
3x2

T

2yT
; x2T = λ2 − 2xT ; y2T = λ(xT − x2T )− yT ;

t1 = (yP − yT )− λT (R1 − xT ), t2 = (yP − yT )− λT (−R1 − xP − xT ),
v1 = R1 − x2T , v2 = −R1 − xP − x2T , f1 ← f2

1 · t1 · v2; f2 ← f2
2 · t2 · v1;

The total cost of the operation for the doubling step in affine coordinates is
1I + 4S + 8M .

Now we consider the operations for the doubling steps in Jacobian coordinates.
In Jacobian projective coordinates, the equation of Eb is Y 2 = X3 + bZ6. A
point is represented as (X1, Y1, Z1) which Z1 �= 0 corresponds to the affine point
(x1, y1) with x1 = X1/Z

2
1 and y1 = Y1/Z

3
1 . To obtain the full speed of pairings

on Weierstrass curves it is useful to represent a point by (X1, Y1, Z1,W1, γ1)
with W1 = Z2

1 and γ1 = R1W1. Throughout the loop of Miller’s algorithm,
the line function is always evaluated at the point P or φ(P ). It is therefore
customary to represent this point P = (xP , yP ) in affine coordinates. Let T =
(XT , YT , ZT ,WT ) and N = 2T = (XN , YN , ZN ,WN ). In each bit of λ, the
function evaluated in Jacobian coordinates is updated by

f1 ← f2
1 · (yPWTZN − 2Y 2

T − 3X2
T (R1WT −XT )) · (R1WN +WN +XN),

f2 ← f2
2 · (yPWTZN − 2Y 2

T − 3X2
T (−R1WT −WT −XT )) · (R1WN −XN ).

Note that we can cache R1WT in the last step. The following formulae compute
a doubling step in 10M + 9S.

A = X2
T ; B = Y 2

T ; C = B2; D = 2((XT +B)2 −A− C); E = 3A; G = E2;
XN = G− 2D; YN = E · (D −XN )− 8C; ZN = (YT + ZT )

2 −B −WT ;
WN = Z2

N ; t1 = yP ·WT · ZN − 2B; t2 = E · (R1WT −XT );
t3 = E · (R1WT +WT +XT ); H = R1 ·WN ; v1 = H +WN +XN ;
v2 = H −XN ; f1 ← f2

1 · (t1 − t2) · v1; f2 ← f2
2 · (t1 + t3) · v2.

Addition Step. Assume that T + P = (xT+P , yT+P ). We obtain φ(T + P ) =
(rxT+P , yT+P ). In the case of the addition step of the self-pairings, after initially
setting T = P, f1 = f2 = 1, for each bit of r we do

f1 ← f1
lT,P (φ(P ))
vT+P (φ(P )) ,

f2 ← f2
lφ(T ),φ(P )(P )

vφ(T+P)(P ) ,

T ← T + P.
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Let λT,P be the slope of the line through the points T and P , then the slope of
the line through the points φ(T ) and φ(P ) is λT,P /r. It follows that

lT,P (φ(P )) = (yP − yP )− λT,P (rxP − xP ) = (1− r)xP λT,P ,
lφ(T ),φ(P )(P ) = (yP − yP )− (λT,P /r)(xP − rxP ) = −(1− r)xP λT,P /r.

Note that we can ignore −1/r due to the final power 6. Therefore, in the addition
step, for each bit of r, we only need do update

f1 ← f1 · vφ(T+P )(P ),
f2 ← f2 · vT+P (φ(P )).

The formulas for the addition step in affine coordinates will be given by

λ = yT−yP

xT−xP
; xT+P = λ2 − xP − xT ; yT+P = λ(xP − xT+P )− yP ;

v1 = r2(xP − rxT+P ) = −R1 − xP − xT+P ; v2 = R1 − xT+P ;
f1 ← f1 · v1; f2 ← f2 · v2;

The total cost of the operations for the addition step in affine coordinates is
1I + 1S + 4M .

Now we consider the operations for the addition step in Jacobian coordinates.
Let T = (XT , YT , ZT ,WT ) and N = T + P = (XN , YN , ZN ,WN ). In each bit of
λ, the function evaluated in Jacobian coordinates is updated by

f1 ← f2
1 · (yPWTZN − 2Y 2

T − 3X2
T (R1WT −XT )) · (R1WN +WN +XN),

f2 ← f2
2 · (yPWTZN − 2Y 2

T − 3X2
T (−R1WT −WT −XT )) · (R1WN −XN ).

Note that we can catch A = y2P and R1 = rxP . The following formulae compute
an addition step in 9M + 5S.

A = y2P ; B = xP ·WT ; D = ((yP + ZT )
2 −A−WT ) ·WT ; H = B −XT ;

I = H2;E := 4I; J = H ·E;L = (D − 2YT );V = XT ·E;XN = L2 − J − 2V ;
YN = L · (V −XN )− 2YT · J ; ZN = (ZT +H)2 −WT − I; WN = Z2

N ;
U = R1 ·WN ; v1 = U +WN −XN ; v2 = U −XN ; f1 ← f1 · v1; f2 ← f2 · v2.

Pairing Algorithm Using Addition Chain. Throughout the loop of Miller’s
algorithm, the line function is always evaluated at the point P or φ(P ). Since Q ∈
{P, φ(P )} ⊂ E(Fp), the self-pairing can be combined with windowing methods.
Furthermore, the addition step is faster than the doubling step in self-pairing
computation on y2 = x3 + b, thus we can develop the following self-pairing
computation algorithm based on addition chain.

Herbaut et al. in [10] proposed a fast and secure point multiplication algo-
rithm based on a particular kind of addition chains (Euclidean addition chains)
involving only additions no doubling.

A star addition chain is an addition chain which satisfies: ∀i, wi = (i − 1, j)
for some j with 0 ≤ j ≤ i−1. That is to say that for all i we have vi = vi−1+vj .
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In this case we can omit i− 1 and just write wi = j. A special addition chain is
a star addition chain with w = (w3, · · · , ws) ∈ {0, 1}s−2 satisfying :

v0 = 1, v1 = 2, v2 = 3,

vi = vi−1 ⇒ vi+1 = vi +

{
vi−1 if wi+1 = 0,
vj if wi+1 = 1.

In order to lighten the notations, we will abusively denote n = (w3, w4, · · · , ws).
For example, we can represent 31 to (1, 0, 0, 1, 1, 0), or (1, 2→ 1+2 = 3→ 2+3 =
5→ 3+ 5 = 8 → 5 + 8 = 13→ 5+ 13 = 18→ 13+ 18 = 31. That is, the special
addition chain of 31 is (3, 5, 8, 13, 18, 31). Given two points P,Q on an elliptic
curve E, an integer n and let n = (w3, · · · , ws) be the special addition chain
computing n, it is easy to deduce the following algorithm to compute fn,P (Q).

Algorithm 2. Addition chain algorithm

Input: P,Q ∈ E and n = (w3, · · · , ws)
Output: [n]P ∈ E and fn,P (Q)

1: (U1, U2, U3) ← (P, [2]P, [3]P )
2: (F1, F2, F3) ← (f1,P (Q), f2,P (Q), f3,P (Q))
3: for i = 3 up to s do
4: if wi = 0 then
5: U1 ← U2, F1 ← F2

6: end if
7: U2 ← U3, F2 ← F3

8: F3 ← F1 · F2 · lU1,U2
vU1+U2

(Q), U3 ← U1 + U2

9: end for
10: return U3

Using the algorithm in [10] to compute U1 + U2 cost 5M + 2S, updating the
functions f1 and f2 needs 1S + 3M . Hence, computing the self-pairing by using
the addition chain algorithm costs 8M + 3S in each step. But it is an open
problem to find minimal special addition chains for any integer, but it showed
in [10] a way to find small chains by looking for them in a clever range.

5 Conclusion

In this paper, we first generalize the result in [28] to any elliptic curve with
more simpler final exponentiation. Then we present a new self-pairing on ordi-
nary elliptic curves with short loop length in Miller’s algorithm. We also provide
examples of self-pairing friendly elliptic curves which are of interest for efficient
pairing implementations. Finally, we present explicit formulae for Miller’s algo-
rithm to compute self-pairing on ordinary elliptic curves with embedding degree
one. For the elliptic curve y2 = x3 + b, we can apply the special addition chain
to compute the self-pairing efficiently.



292 H. Wu and R. Feng

Acknowledgment. Thanks to the referee for his/her suggestions on this paper.
Hongfeng Wu’s research was supported by National Natural Science Foun-

dation of China (No. 11101002 and No. 11271129) and Beijing Natural Science
Foundation (No. 1132009). Rongquan Feng’s research was supported by Na-
tional Natural Science Foundation of China (No. 10990011 and No. 61170264)
and the research fund for the Doctoral Program of Higher Education of China
(No. 20100001110007).

References

1. Aranha, D.F., Karabina, K., Longa, P., Gebotys, C.H., López, J.: Faster Explicit
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Abstract. Steganography is one of the information-hiding techniques.
By encoding secret messages to other documents which are mean-
ingful, parties can send the secret messages without any suspicion.
Recently, Lískiewicz, Reischuk, and Wölfel [TAMC 2011] proposed a
grey-box model for the channel setting. This model formalizes a more
realistic situation that everyone knows partial information of communi-
cation. They constructed some schemes of grey-box steganography in the
symmetric-key setting. In this paper, we apply their idea of the grey-box
model to the public-key setting, and then construct a scheme of grey-box
public-key steganography via a standard public-key encryption scheme.
We show that our proposed scheme is steganographically secure if the un-
derlying public-key encryption scheme satisfies indistinguishability from
random bits.

Keywords: provable security, public-key cryptography, steganography.

1 Introduction

1.1 Background

Steganography is one of the information-hiding techniques which can be repre-
sentative solutions of the Prisoners’ Problem formalized by Simmons [14]. The
Prisoners’ Problem is as follows. Two prisoners want to take into consultation
secretly to escape from the jail. However, they must communicate through a
public channel, and then their conversation is always watched by a warden. If
the prisoners send a letter which looks meaningless such a standard ciphertext,
the warden may feel suspicious. He may isolate them so that they cannot com-
municate anymore if the worst. Thus, the prisoners should communicate secretly
through a public channel without being suspected by the warden.

A lot of solutions have been proposed for this hard problem, and steganog-
raphy can be one of them as mentioned before. Intuitively, the sender trans-
forms some real messages like standard encryption, and generates something
meaningful documents different from original messages. We call these by stego-
texts. On the other hand, the standard documents which are not associated with
steganography are called by covertexts. Since stegotexts seem meaningful as well
as covertexts, the warden monitoring the communication channel does not feel
suspicious. Only the valid receiver can get hidden messages from the stegotexts.

T-H.H. Chan, L.C. Lau, and L. Trevisan (Eds.): TAMC 2013, LNCS 7876, pp. 294–305, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Then the sender and the receiver can complete secret communication without
any suspicion.

While the standard cryptography hides the contents of messages by encoding
to ciphertexts, the purpose of steganography is to hide the presence of messages
hidden in stegotexts. By the characteristic property of steganography, there are
many applications such as copyright protection of digital contents, confidential
communication, and multimedia database systems (see e.g. [1]).

On steganography, there are several settings for communication channels. Re-
cently, in TAMC 2011, an interesting setting called by grey-box steganography
was proposed by Lískiewicz, Reischuk, and Wölfel [11]. They modeled a more
realistic situation that all the parties are allowed to know partial information of
communication.

1.2 Related Work

Public-key Steganography. Some formal models of steganography were intro-
duced as surveyed in e.g. [1]. For example, there are several models of symmetric-
key steganography such as [13,3,8]. In the symmetric-key setting, only the parties
priorly sharing some secrets can use the protocols. Namely, any pair of parties
needs to share some secrets so that anyone except them cannot detect the se-
crets. In contrast, public-key steganography allows all parties to communicate
steganographically without priorly sharing secrets.

Public-key steganography was first formalized by von Ahn and Hopper [15].
They defined a security notion for public-key steganography, which is stegano-
graphic security against the chosen-hiddentext attack (SS-CHA-security). This
corresponds to the security of public-key encryption called by indistinguishabil-
ity against the chosen-plaintext attack (IND-CPA-security). They constructed a
scheme of public-key steganography. Their general construction makes use of a
public-key encryption scheme. They also defined a security notion for public-
key encryption in order to prove SS-CHA-security on their scheme. It is in-
distinguishability from random bits under the chosen-plaintext attack (IND$-
CPA-security). Furthermore, they proposed some public-key encryption schemes
satisfying IND$-CPA-security under the RSA assumption and the decisional
Diffie-Hellman assumption.

Backes and Cachin [2] defined a new security notion for public-key steganogra-
phy which is stronger than that of von Ahn and Hopper [15]. It is steganographic
security against the adaptive chosen-covertext attack (SS-CCA-security) which
seems to be the most general type of security on public-key steganography since
this corresponds to indistinguishability against the chosen-ciphertext attack
(IND-CCA-security) in the field of standard public-key cryptography. They
also defined another security notion called by steganographic security against
the replayable adaptive chosen-covertext attack (SS-RCCA-security), which
is a relaxed notion of SS-CCA-security. They showed that SS-RCCA-secure
schemes can be constructed from RCCA-secure [4] public-key encryption
schemes with pseudorandom ciphertexts. Hopper [7] proposed a construction of
SS-CCA-secure schemes. This construction relies on the existence of public-key
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encryption schemes satisfying indistinguishability from random bits under the
chosen-ciphertext attack (IND$-CCA-security). He also proposed the encryption
scheme by modifying that of Kurosawa and Desmedt [10] which is the modi-
fication of the original Cramer-Shoup scheme [5], and showed that his scheme
satisfies IND$-CCA-security under the decisional Diffie-Hellman assumption.

Communication Channels and the Grey-Box Model. In most of the pre-
vious works of steganography such as [15,2,7,12,9,6,8], it is assumed that all
the parties have nothing about covertext distributions, and then access to the
corresponding oracles to get documents or its information. Namely, an adver-
sary can obtain information of covertext distributions only by sampling from the
oracles. This setting can be called by the black-box steganography since the ora-
cles behave as black-box. With regard to the black-box steganography, there are
some negative results. For example, Lysyanskaya and Meyerovich [12] showed
the difficulty of sampling based on the full history and the insecurity of sam-
pling with restricted-length histories. Hundt, Lískiewicz, and Wölfel [9] gave the
construction of sampling oracles with an intractable problem.

In contrast, Lískiewicz, Reischuk, andWölfel [11] proposed other formalization
called by the grey-box steganography. Intuitively, the grey-box channel allows all
the parties to know partial information of communication. Partial information
means topics, habits, and so on. Since often the topic of communication has been
naturally determined when the parties are decided, the grey-box model can be
considered as a more realistic setting. They proposed some concrete channel
models which belong to the grey-box setting, one of which is a monomial chan-
nel. They gave the efficient construction of monomial channels so that they can
overcome the exponential sampling complexity caused in the black-box steganog-
raphy. Based on these, they constructed some schemes of grey-box steganography
in the symmetric-key setting.

1.3 Our Contribution

As mentioned before, the schemes of [11] belong to the symmetric-key setting
which needs some priorly sharing secrets. In this paper, we extend their idea
of the grey-box model to the public-key setting, and then construct a scheme
of grey-box public-key steganography with respect to monomial channels. The
idea of our construction basically follows that of [11]. Concretely, we modify
some transformation procedures used to construct the scheme of [11] in order
to apply to the public-key setting. Then we construct a scheme of grey-box
public-key steganography by composing the modified procedures and a public-
key encryption scheme. After that, we show that our proposed scheme of grey-box
public-key steganography satisfies SS-CHA-security if the underlying public-key
encryption scheme satisfies IND$-CPA-security.

Here, we would like to emphasize the technical advantage of our scheme. With
regard to the scheme of symmetric-key grey-box steganography in [11], the secret
key plays a very useful role to analyze the security and the reliability which is
similar to the standard correctness property. Then if we just simply apply their
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idea to the public-key setting in which there is no priorly sharing secrets, it
can cause an unavoidable problem that we cannot make use of such analyses
directly. However, we propose new procedures for our construction by modifying
their ones, and then we can achieve more simply analyses.

2 Preliminaries

Notation. We say that a function μ : N→ R+ is negligible in λ if for any c > 0,
there exists λ0 such that μ(λ) < 1

λc for any λ > λ0. We denote the uniform
distribution on a set {0, 1}δ by Uδ. For a probability distribution D over some
domain D, we denote by x← D the action of drawing a sample x according to
the distribution D. For an algorithm A, we denote by y ← A(x) the event that
the algorithm A with an input x returns y as its output.

2.1 Public-Key Encryption

We first define a public-key encryption scheme.

Definition 1 (Public-Key Encryption). A public-key encryption scheme
E = (Gen,Enc,Dec) is a tuple of three algorithms.

– Gen is a key generation algorithm. On input a security parameter 1λ, Gen
returns a pair of (pk, sk). pk and sk are public and secret keys, respectively.
We write this as (pk, sk)← Gen(1λ).

– Enc is an encryption algorithm. On input a public key pk and a message m,
Enc returns a ciphertext c. We write this as c← Enc(pk,m).

– Dec is a decryption algorithm. On input a secret key sk and a ciphertext
c, Dec returns either a message m or a symbol ⊥ which indicates that the
ciphertext c is invalid. We write this as m/⊥ ← Dec(sk, c).

We require the correctness property as follows. For any pair of keys (pk, sk) ←
Gen(1λ), any message m, and any ciphertext c ← Enc(pk,m), it holds that
Pr[m← Dec(sk, c)] = 1.

Second, we review the property of public-key encryption proposed by von Ahn
and Hopper [15]. It is indistinguishability from random bits under the chosen-
plaintext attack. Let E = (Gen,Enc,Dec) be a public-key encryption scheme and
λ a security parameter. We denote by f a function which implies the length of
the ciphertexts of E . Hence we define a distinguishing game under the chosen-
plaintext attack against E by an adversary A and a challenger. We consider the
experiments Expi

CPA for i ∈ {0, 1} as described below.

Expi
CPA(1λ)

1. (pk, sk)← Gen(1λ).
2. A is given pk.
3. A can make a challenge query adaptively. Specifically, A passes a

message m∗ to the challenger. The challenger passes c∗i to A as its
response.
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4. A outputs a bit γ.
5. Return γ.

We define c∗i for i ∈ {0, 1} as follows.

– c∗0: The challenger computes c∗0 ← Enc(pk,m).
– c∗1: The challenger samples c∗1 ← Uf .

We define A’s advantage against E by

Advind$-cpa
E,A (λ) := |Pr[Exp0

CPA,A(1
λ) = 1]− Pr[Exp1

CPA,A(1
λ) = 1]| .

Definition 2 (IND$-CPA). We say that E is indistinguishable from random
bits under the chosen-plaintext attack (IND$-CPA-secure) if for any probabilistic

polynomial-time adversary A, Advind$-cpa
E,A (λ) is negligible in λ.

In [15], von Ahn and Hopper constructed IND$-CPA-secure public-key encryption
schemes, which are based on the RSA assumption and the decisional Diffie-
Hellman assumption.

2.2 Channels

In this section, we first formalize the communication channels in order to review
some definitions of public-key steganography.

Intuitively, the communication between the parties follows the distribution re-
lied on the previous communications. For defining this notion, we follow previous
works [15,2,7,12,9,6,8,11] on steganography.

We formalize the communication between two parties by a channel. Let Σ =
{0, 1}σ be a set of documents, we denote that Σ∗ = Σ × Σ × · · · . We define
a channel C = {CH|H ∈ Σ∗}, which is a family of probability distributions on
a set of documents Σ, indexed by sequences H ∈ Σ∗. We call the index H
by history. For an integer j, we define the distribution CjH := CH × C(H||d1) ×
C(H||d1||d2) × · · · × C(H||d1||d2||...||dj−1), where d1 ← CH, d2 ← C(H||d1), . . . , dj−1 ←
C(H||d1||d2||...||dj−2). A history H = (d1||d2|| . . . ||dj) is legal with respect to C if
for all i, it holds that Pr[di ← C(d1||d2||...||di−1)|d1 ← Cε, d2 ← Cd1 , · · · , di−1 ←
C(d1||d2||...||di−2)] > 0 where ε is an empty string.

In the grey-box model proposed by [11], we assume that parties have partial
knowledge of channels. In order to formalize this situation, we make use of the
notion of concept classes, and define a channel family F as a subset of C so that
all the channels in F satisfy some common features. We explain this notion by
showing an example as follows.

Monomial Covertext Channel [11]. A monomial can be one of the exam-
ple of concept classes. We represent a monomial over {0, 1}σ by a vector
H = (h1,h2, . . . ,hσ) ∈ {0, 1,×}σ where × is a special symbol called by a free
variable. Then we define H as the subset of {0, 1}σ such that H includes all the
elements satisfying the following conditions:
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– if hi is 0, then i-th component is also 0.
– if hi is 1, then i-th component is also 1.
– if hi is ×, then i-th component is either 0 or 1.

If σ = 5 and H = “0 × 1 × 1” then H means {00101, 00111, 01101, 01111} for
example. Namely, the monomial representation of H indicates common features
of all elements in the set H. In the case of the monomial channel, F consists of
some distributions on H.

We denote a channel oracle according to a channel C with a history H by
EXC(H). In the grey-box model, there exist two types of queries. We give the
details in the case of the monomial channel as follows.

– Sampling a document s according to CH (denoted by s← EXC(H)).
– Learning a monomial H according to CH (denoted by H := EXC(H)).

Note that the learning query corresponds to knowing partial information.
Lískiewicz et al. [11] gave the construction of the monomial channels, and pro-
posed concrete schemes of steganography in these models.

2.3 Public-Key Steganography

Now we review the definition of public-key steganography and its security notion
formalized by von Ahn and Hopper [15].

Definition 3 (Public-Key Steganography). A scheme of public-key
steganography S = (SGen, SEnc, SDec) is a tuple of three algorithms.

– SGen is a key generation algorithm. On input a security parameter 1λ, SGen
returns a pair of (pk, sk). pk and sk are public and secret keys, respectively.
We write this as (pk, sk)← SGen(1λ).

– SEnc is a steganographic encoding algorithm. On input a public key pk, a
message m, and a history H, SEnc returns a sequence of some documents
(s1, s2, . . . , sl) from the support of ClH. We write this as (s1, s2, . . . , sl) ←
SEnc(pk,m,H). We call (s1, s2, . . . , sl) by a stegotext, and often simply
write s.

– SDec is a steganographic decoding algorithm. On input a secret key sk, a
stegotext s = (s1, s2, . . . , sl), and a history H, SDec returns either a message
m or a symbol ⊥ which indicates that the stegotext is invalid. We write this
as m/⊥ ← SDec(sk, s,H).

We require the correctness property as follows. For any pair of keys
(pk, sk) ← SGen(1λ), any message-history pair (m,H), and any stegotext
s ← SEnc(pk,m,H), there is a negligible function μ(λ) such that Pr[m ←
SDec(sk, s,H)] ≥ 1−μ(λ). We note that this notion in the symmetric-key setting
was formalized as reliability in [11].

Next, we review the security property of public-key steganography called by
steganographic security against the chosen hiddentext attack (SS-CHA-security),
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which is formalized by von Ahn and Hopper [15]. Let S = (SGen, SEnc, SDec) be
a scheme of public-key steganography, λ a security parameter, and C a channel.
We denote by f∗ a function which implies the length of the stegotexts of S. Hence
we define a distinguishing game under the chosen hiddentext attack against S
by an adversary W and a challenger. We consider the experiments Expi

CHA for
i ∈ {0, 1} as described below.

Expi
CHA(1λ)

1. (pk, sk)← SGen(1λ).
2. W is given pk.
3. W can make a challenge query adaptively. Specifically, W produces

a message m∗ and a history H∗, and passes them to the challenger.
The challenger passes s∗i to W as its response.

4. W outputs a bit γ.
5. Return γ.

We define s∗i for i ∈ {0, 1} as follows.

– s∗0: The challenger computes s∗0 ← SEnc(pk,m∗,H∗).
– s∗1: The challenger samples s∗1 ← Cf

∗
H∗ .

W can also make a query to the channel oracle adaptively in the above exper-
iments. In the grey-box model, W produces a history H as a sampling query
or a learning query. Then W receives a document s where s ← EXC(H) as the
response for the sampling query, or a monomial H where H := EXC(H) as that
for the learning query in the case of the monomial channel, for example.

We define W ’s advantage against S with respect to C by

Advss-cha
S,C,W (λ) := |Pr[Exp0

CHA,C,W (1λ) = 1]− Pr[Exp1
CHA,C,W (1λ) = 1]|.

Definition 4 (SS-CHA). We say that S is steganographically secure under the
chosen-hiddentext attack with respect to C (SS-CHA-secure) if for any probabilis-
tic polynomial-time adversary W , Advss-cha

S,C,W (λ) is negligible in λ.

3 Our Scheme

In this section, we propose a construction for a scheme of grey-box public-key
steganography. As mentioned before, our construction basically follows the idea
of Lískiewicz et al. [11].

3.1 Related Algorithms

We review the algorithms proposed by Lískiewicz et al. [11] for constructing a
scheme of grey-box steganography in the symmetric-key setting with respect to
monomial channels. Let b be the length of target messages and σ the length
of monomials such that σ = bt where t is some constant. For a monomial
H = (h1,h2, . . . ,hσ) ∈ {0, 1,×}σ, a permutation π on a set Π = {1, 2, . . . , σ},
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and 1 ≤ j ≤ b, we define Iπ(j) := {π(t(j − 1) + 1), π(t(j − 1) + 2), . . . , π(tj)}
as the subsets of Π , and FVπ(j) the indices in Iπ(j) which belong to free vari-
ables with respect to H (i.e. hi = × for all i ∈ FVπ(j)). Thus, the algorithms
Monomial-modify and Document-decode are as follows.

Algorithm Monomial-modify(M, s,H,K)
denote a target message M = (m1,m2, . . . ,mb) ∈ {0, 1}b
denote a candidate document s = (s1, s2, . . . , sbt) ∈ {0, 1}bt
denote H = (h1,h2, . . . ,hbt) ∈ {0, 1,×}bt
let π be a permutation specified by a private key K
for 1 ≤ j ≤ b

if [mj �=
⊕

k∈Iπ(j)
sk and FVπ(j) �= ∅]

then saj := 1− saj (where aj := minFVπ(j))
end
return s = (s1, s2, . . . , sbt).

Algorithm Document-decode(s,K)
denote s = (s1, s2, . . . , sbt) ∈ {0, 1}bt
let π be a permutation specified by a private key K
for 1 ≤ j ≤ b

mj :=
⊕

k∈Iπ(j)
sk

end
return M = (m1,m2, . . . ,mb).

Intuitively, Monomial-modify embeds a target messageM to a candidate doc-
ument s in a ratio of 1-bit to t-bits. For a bit mi from M , it computes a parity
of some t-bits of s. If the parity does not match with mi, then it flips one bit
somewhere in the t-bits. Document-decode recovers the target message M
from s via XOR-operation.

Lískiewicz et al. [11] constructed a scheme of grey-box steganography in the
symmetric-key setting by composing the above algorithms, a symmetric-key en-
cryption scheme, and a pseudorandom permutation.

3.2 Our Construction

Now, we construct a scheme of grey-box public-key steganography with re-
spect to monomial channels. Let E = (Gen,Enc,Dec) be a public-key encryp-
tion scheme and λ a security parameter. Thus, our proposed scheme S =
(SGen, SEnc, SDec) is as follows.

Algorithm SGen(1λ)
(pk, sk)← Gen(1λ)
return (pk, sk).

Algorithm SEnc(pk,m,H)
c← Enc(pk,m)
denote c = (c1, c2, . . . , c�) where each ci ∈ {0, 1}b
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for 1 ≤ i ≤ �
s̃← EXC(H) where s̃ = (s̃1, s̃2, . . . , s̃bt) ∈ {0, 1}bt
H := EXC(H) where H = (h1,h2, . . . ,hbt) ∈ {0, 1,×}bt
si ←Monomial-modify’(ci, s̃,H)
H := H||si

end
return s = (s1, s2, . . . , s�).

Algorithm SDec(sk, s,H)
denote s = (s1, s2, . . . , s�) where each si ∈ {0, 1}bt
for 1 ≤ i ≤ �

H := EXC(H) where H = (h1,h2, . . . ,hbt) ∈ {0, 1,×}bt
(S[1], S[2], . . . , S[b])← Index-divide(b, t,H)
denote si = (s̃1, s̃2, . . . , s̃bt) where each s̃j ∈ {0, 1}
for 1 ≤ j ≤ b

cj :=
⊕

k∈S[j] s̃k
end
let ci := (c1, c2, . . . , cb)
H := H||si

end
let c := (c1, c2, . . . , c�)
m← Dec(sk, c)
return m.

We give an intuitive explanation for the above algorithms. SGen works in the
same way as Gen of E . Given a message m, SEnc produces a vector of stegotexts
s which follows the past history H with accessing to the channel oracle EXC(H).
SEnc samples s̃ as a candidate stegotext at first, then adjusts each bit accord-
ing to the subroutine algorithm Monomial-modify’ so that the result s is a
correct stegotext of the message m. SDec recovers a message m from a vector of
stegotexts s. Namely, SDec works as an invert algorithm of SEnc.

The subroutine algorithms are as follows.

Algorithm Monomial-modify’(c, s,H)
denote c = (c1, c2, . . . , cb) where each ci ∈ {0, 1}
denote s = (s1, s2, . . . , sbt) where each si ∈ {0, 1}
denote H = (h1,h2, . . . ,hbt) where each hi ∈ {0, 1,×}
(S[1], S[2], . . . , S[b])← Index-divide(b, t,H)
for 1 ≤ j ≤ b

let aj be the minimum index in S[j] such that haj = ×
if mj �=

⊕
k∈S[j] sk then saj := 1− saj

end
return (s1, s2, . . . , sbt).

Algorithm Index-divide(b, t,H)
let S := {1, 2, . . . , bt}
let FVH := {ai ∈ S | hai = ×}
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denote FVH = {a1, a2, . . . , a|FVH|} such that ai < aj if i < j
assume that |FVH| ≥ b, then
let FV b

H := {a1, a2, . . . , ab | ai ∈ FVH}
by picking from FVH in the ascending order

let FV b
H := {āi | āi ∈ S\FV b

H}
denote FV b

H = {ā1, ā2, . . . , ā|FV b
H|} such that āi < āj if i < j

for 1 ≤ j ≤ b
let S[j] := φ as an empty set
put S[j]← aj from FV b

H

put S[j]← ā(j−1)(t−1)+1, ā(j−1)(t−1)+2, . . . , āj(t−1) from FV b
H

end
return (S[1], S[2], . . . , S[b]).

Monomial-modify’ is a modified algorithm of the original Monomial-
modify. The basic idea is similar to that of [11]. Their construction decides
where t-bits are computed the parity by a pseudorandom permutation. In con-
trast, we make use of the subroutine algorithm Index-divide for this purpose.
Index-divide(b, t,H) generates b sets, each of which contains at least one value
which belongs to free variables with respect to H. From this construction, it is
clear that our scheme satisfies the correctness even if |FVH| ≥ b for all H.

4 Security Proofs

In this section, we give the security proof of our scheme.

Theorem 1. Suppose that for every H, CH is the uniform distribution on each
domain. Then our proposed scheme is SS-CHA-secure if the underlying public-key
encryption scheme is IND$-CPA-secure.

Proof. Let S be our proposed scheme described in Section 3.2, and W an adver-
sary attacking SS-CHA-security against S. We consider the experiments Expi

for i ∈ {0, 1, 2} as described below.

Expi(1λ)
1. (pk, sk)← SGen(1λ).
2. W is given pk.
3. W can make a challenge query adaptively. Specifically, W produces

a message m∗ and a history H∗, and passes them to the challenger.
The challenger passes s∗i to W as its response.

4. W outputs a bit γ.
5. Return γ.

We define s∗i for i ∈ {0, 1, 2} as follows.

– s∗0: The challenger computes s∗0 ← SEnc(pk,m∗,H∗).
– s∗1: The challenger computes s∗1 ← REnc(pk,m∗,H∗) where REnc is defined

as follows.
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Algorithm REnc(pk,m,H)
c← Ub�

denote c = (c1, c2, . . . , c�) where each ci ∈ {0, 1}b
for 1 ≤ i ≤ �

s̃← EXC(H) where s̃ = (s̃1, s̃2, . . . , s̃bt) ∈ {0, 1}bt
H := EXC(H) where H = (h1,h2, . . . ,hbt) ∈ {0, 1,×}bt
si ←Monomial-modify’(ci, s̃,H)
H := H||si

end
return s = (s1, s2, . . . , s�).

– s∗2: The challenger samples s∗2 ← Cf
∗

H∗ .

Then the SS-CHA-advantage of W is denoted by

Advss-cha
S,C,W (λ) = |Pr[Exp0

C,W (1λ) = 1]− Pr[Exp2
C,W (1λ) = 1]|.

Now, we give two claims. From these claims and the triangle inequality, we can
obtain the claimed result in Theorem 1.

Claim 1. It holds that for any W , there exists an adversary A such that

|Pr[Exp0
C,W (1λ) = 1]− Pr[Exp1

C,W (1λ) = 1]| ≤ Advind$-cpa
E,A (λ).

Claim 2. It holds that for any W ,

|Pr[Exp1
C,W (1λ) = 1]− Pr[Exp2

C,W (1λ) = 1]| = 0.

We give the proofs of these claims, and the details are given in the full version.

Proof. (Claim 1, Sketch) The difference of Exp0(1λ) and Exp1(1λ) is only how
to compute c. In Exp0(1λ), c is the ciphertext of m according to pk. On the
other hand, c is chosen randomly in Exp1(1λ). Hence, if the underlying public-
key encryption scheme satisfies IND$-CPA-security, then the value∣∣Pr[Exp0

C,W (1λ) = 1]− Pr[Exp1
C,W (1λ) = 1]

∣∣
is negligibly small. ��

Proof. (Claim 2, Sketch) In order to prove this claim, it is sufficient to show that
for all s′, H, and H,

Pr[Monomial-modify’(c, s,H) = s′] = Pr[s′ ← EXC(H)]

where c ← Ub� and s ← EXC(H). If the above equation holds, the distribution
of s∗1 and that of s∗2 are identical and then Claim 2 immediately holds.

The strategy is as follows. We denote s′ = (s′1, . . . , s′bt) where each s
′
i ∈ {0, 1}.

Then we estimate the probability Pr[s′i = 0] of the left side and that of the right
side, and show that they are identical for all i. ��

We complete the proof of Theorem 1. ��
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Abstract. A ranking r-constraint satisfaction problem (ranking
r-CSP for short) consists of a ground set of vertices V , an arity r � 2,
a parameter k ∈ N and a constraint system c, where c is a function
which maps rankings (i.e. orderings) of r-sized sets S ⊆ V to {0, 1} [16].
The objective is to decide if there exists a ranking σ of the vertices
satisfying all but at most k constraints (i.e.

∑
S⊆V,|S|=r c(σ(S)) � k).

Famous ranking r-CSPs include Feedback Arc Set in Tournaments

and Dense Betweenness [4,15]. In this paper, we prove that so-called
lr-simply characterized ranking r-CSPs admit linear vertex-kernels when-
ever they admit constant-factor approximation algorithms. This im-
plies that r-Dense Betweenness and r-Dense Transitive Feedback

Arc Set [15], two natural generalizations of the previously mentioned
problems, admit linear vertex-kernels. Both cases were left opened by
Karpinksi and Schudy [16]. We also consider another generalization of
Feedback Arc Set in Tournaments for constraints of arity r � 3,
that does not fit the aforementioned framework. Based on techniques
from [11], we obtain a 5-approximation and then provide a linear vertex-
kernel. As a main consequence of our result, we obtain the first constant-
factor approximation algorithm for a particular case of the so-called
Dense Rooted Triplet Inconsistency problem [9].

1 Introduction

Parameterized complexity is a powerful theoretical framework to cope with NP-
Hard problems. The aim is to identify some parameter k independent from the
instance size n, which captures the exponential growth of the complexity to
solve the problem at hand. A parameterized problem is said to be fixed param-
eter tractable whenever it can be solved in f(k) · nO(1) time, where f is any
computable function [12,18]. In this paper, we focus on kernelization. A ker-
nelization algorithm (or kernel for short) for a parameterized problem Π is a
polynomial-time algorithm that given an instance (I, k) of Π outputs an equiva-
lent instance (I ′, k′) of Π such that |I ′| � g(k) and k′ � k. The function g is said
to be the size of the kernel, and Π admits a polynomial kernel whenever g is a
polynomial. A well-known result states that a (decidable) parameterized prob-
lem is fixed parameter tractable if and only if it admits a kernel [18]. Observe

T-H.H. Chan, L.C. Lau, and L. Trevisan (Eds.): TAMC 2013, LNCS 7876, pp. 306–318, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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that this result provides kernels of super-polynomial size. Recently, several re-
sults gave evidence that some parameterized problems do not admit polynomial
kernels (under complexity-theoretic assumptions [7,8]).

We mainly study ranking r-CSPs from the kernelization viewpoint. In a
ranking r-CSP, a ground set of vertices V , an arity r � 2 and a set of constraints
defined on r-sized subsets S ⊆ V are given. Here, a constraint corresponds
to some allowed rankings on S. The aim of such problems is to find a linear
ranking on V that minimizes the number of constraints ranked in a non allowed
manner. We study the decision version of such problems, where the instance
comes together with some parameter k ∈ N and the aim is to decide if there
exists a ranking satisfying all but at most k constraints. We consider such
problems on dense instances, where every set of r vertices is a constraint. For
instance, Feedback Arc Set in Tournaments

1 fits this framework with
r = 2, any arc uv being satisfied by a ranking σ iff u <σ v. Such problems can
be equivalenty stated in terms of editing problems: can we edit at most k con-
straints to obtain an instance that admits a ranking satisfying all its constraints?

Related Results. While a lot of kernelization results are known for graph
editing problems [6,17,20,21], fewer results exist regarding directed graph
and hypergraph editing problems. An example of polynomial kernel for a
directed graph editing problem is the quadratic vertex-kernel for Transitivity

Editing [22]. Regarding dense ranking r-CSPs, Feedback Arc Set in

Tournaments and Dense Betweenness are NP-Complete [2,3,10] but
fixed parameter tractable [4,15], and both admit a linear vertex-kernel [5,19].
Recently, Karpinski and Schudy [16] showed PTASs and subexponential
parameterized algorithms for (weakly)-fragile ranking r-CSPs. A constraint is
(weakly-)fragile if whenever it is satisfied by one ranking then making one single
move (resp. making one of the following moves: swapping the first two vertices,
the last two vertices or making a cyclic move) makes it unsatisfied.

Our Results. We introduce so-called lr-simply characterized ranking r-CSPs,
and prove that such problems admit linear vertex-kernels whenever they admit
constant-factor approximation algorithms (Section 3). Surprisingly, our kernels
mainly use a modification of the classical sunflower reduction rule, which usually
provides polynomial kernels [4,6,13]. This result implies linear vertex-kernels for
r-Dense Betweenness and r-Dense Transitive Feedback Arc Set, two
natural generalizations of Feedback Arc Set in Tournaments and Dense

Betweenness [16]. Both cases were left opened by Karpinski and Schudy [16].
Finally, we introduce a different generalization of Feedback Arc Set in Tour-

naments for constraints of arity r � 3, which allows more freedom on the sat-
isfiability of a constraint. We mainly focus on the case r = 3. We first state that
the problem is NP -Complete in this case. Next, based on ideas used for Feed-
back Arc Set in Tournaments [11], we prove that the general case admits a
5-approximation algorithm, and then obtain a linear vertex-kernel (Section 4.3).

1 A tournament is an arbitrary orientation of the complete (undirected) graph.
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This result implies a 5-approximation for a particular case of Dense Rooted

Triplet Inconsistency [9]. Notice that finding a constant-factor approxima-
tion algorithm for the general case is a well-known open problem [14,19].

2 Preliminaries

Following notations from [16], a ranking r-CSP consists of a ground set of vertices
V , an arity r � 2, a parameter k ∈ N and a constraint system c, where c
is a function which maps rankings (i.e. orderings) of r-sized sets S ⊆ V to
{0, 1}. In a slight abuse of notation, we refer to a set of vertices S ⊆ V , |S| =
r, as a constraint (when we are actually referring to c applied to rankings of
S). A constraint S is non-trivial whenever there exists a ranking σ such that
c(σ(S)) = 1. In the following, we always mean non-trivial constraints when
speaking of constraints. A constraint S is satisfied by a ranking σ whenever
c(σ(S)) = 0, in which case S is said to be consistent w.r.t. σ (we forget the
mention w.r.t. σ whenever the context is clear). Otherwise, we say that S is
inconsistent. Similarly, a ranking σ is consistent with the constraint system c if
it does not contain any inconsistent constraint, and inconsistent otherwise. The
objective of a ranking r-CSP is to find a ranking of the vertices with at most
k inconsistent constraints. We consider dense instances, where every subset of
r vertices of V is a constraint. Moreover, we assume that a constraint S can
be represented by a subset sel(S) ⊆ S of selected vertices, that determine the
conditions that a ranking must verify in order to satisfy S.

Let R = (V, c) be an instance of any ranking r-CSP. Given a set of vertices
V ′ ⊆ V , we define the instance induced by V ′ (and denote it R[V ′]) as the
constraint system c restricted to r-sized subsets of V ′. A set of vertices C ⊆ V
is a conflict if there does not exist any ranking consistent with the instance
induced by C. We mainly study the following problems.

r-Dense Betweenness (r-BIT) [16]:
Input: A set of vertices V , an arity r � 3 and a constraint system c,
where a constraint S = {s1, . . . , sr} contains two selected vertices si and
sj, 1 � i < j � r, and is satisfied by a ranking σ (i.e. c(σ(S)) = 0) iff
si <σ sl <σ sj or sj <σ sl <σ si holds for 1 � l � r, l �= {i, j}.
Parameter: k.
Output: A ranking σ of V that satisfies all but at most k constraints.

r-Dense Feedback Arc Set (r-DFAS):
Input: A set of vertices V , an arity r � 3 and a constraint system c,
where a constraint S contains one selected vertex s and is satisfied by a
ranking σ (i.e. c(σ(S)) = 0) iff u <σ s for any u ∈ S \ {s}.
Parameter: k.
Output: A ranking σ of V that satisfies all but at most k constraints.
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An equivalent formulation of these problems is the following: is it possible to
edit at most k constraints so that there exists a ranking consistent with the new
constraint system? By editing a constraint, we mean that we modify its set of
selected vertices (observe in particular that we do not modify V ).

We also consider another generalization of the Feedback Arc Set in

Tournaments problem, namely r-Dense Transitive Feedback Arc Set

(r-DTFAS) [16], where a constraint S corresponds to an acyclic tournament
and is satisfied by a ranking σ if and only if σ is the transitive ranking of
the corresponding tournament (recall that a tournament is acyclic if and only
if it admits a transitive ranking σ, i.e. a ranking satisfying u <σ v for any arc uv).

Ordered Instances. In the following, we consider instances whose vertices are
ordered under some fixed ranking σ (i.e. instances of the form Rσ = (V, c, σ)).
Given any constraint S = {s1, . . . , sr}, with si <σ si+1 for 1 � i < r, span(S)
denotes the set of vertices {v ∈ V : s1 �σ v �σ sr}. A constraint S is unconsec-
utive if |span(S)| > r, and consecutive otherwise. Given V ′ ⊆ V , Rσ[V

′] denotes
the instance R[V ′] ordered under σ. Finally, given a ranking σ over V and an
inconsistent constraint S, we say that we edit S w.r.t. σ whenever we edit its
selected vertices so that it becomes consistent w.r.t. σ.

3 Simple Characterization and Sunflower

We now describe the general framework of our kernelization algorithms, using a
modification of the sunflower rule together with the notion of simple character-
ization. We first define the notion of sunflower, which has been widely used to
obtain polynomial kernels for modification problems [1,4,6,13]. An editing set is
a set of constraints F such that one can obtain a consistent instance by editing
constraints in F .

Definition 1 (Sunflower). A sunflower S is a set of conflicts {C1, . . . , Cm}
pairwise intersecting in exactly one constraint S, called the center of S.

Lemma 1 (Folklore). Let R = (V, c) be an instance of any ranking r-CSP,
and S be the center of a sunflower S = {C1, . . . , Cm}, m > k. Any editing set of
size at most k has to edit S.

Observe that the sunflower rule cannot be applied directly on ranking r-CSPs,
r � 3, since it may be the case that there exist several ways to edit the center of
a given sunflower. In order to deal with this, we introduce the notion of simple
characterization for ranking r-CSPs. Roughly speaking, a ranking r-CSP is lr-
simply characterized if for any ordered instance, any set of lr vertices which
involve exactly one inconsistent constraint is a conflict.

Definition 2 (Simple characterization). Let Π be a ranking r-CSP, Rσ =
(V, c, σ) be any ordered instance of Π, and lr ∈ N. The ranking r-CSP Π is lr-
simply characterized iff any lr-sized set C ⊆ V such that Rσ[C] contains exactly
one inconsistent constraint is a conflict.
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Definition 3 (Simple sunflower). Let Rσ = (V, c, σ) be an ordered instance
of a ranking r-CSP. A sunflower S = {C1, . . . , Cm} of Rσ is simple if its center
is the only inconsistent constraint in Rσ[Ci], 1 � i � m.

Rule 1. Let Π be a lr-simply characterized ranking r-CSP. Let Rσ = (V, c, σ) be
an ordered instance of Π and S = {C1, . . . , Cm}, m > k, be a simple sunflower
of center S. Edit S w.r.t. σ and decrease k by 1.

Lemma 2. Rule 1 is sound.

Proof. Let F be any editing set of size at most k: by Lemma 1, F must contain
S. Since |F| � k and m > k, there exists 1 � i � m such that S is the only
constraint edited by F in R[Ci]. Assume that S was not edited w.r.t. σ: since
no other constraint has been edited in R[Ci], Rσ[Ci] still contains exactly one
inconsistent constraint (namely S). Since Π is lr-simply characterized, it follows
that Ci defines a conflict, contradicting the fact that F is an editing set. ��
The main problem that remains is to compute such a sunflower in polynomial
time. The following result will allow us to do so, providing that V contains
sufficiently many vertices (w.r.t. parameter k).

Lemma 3. Let Π be a lr-simply characterized ranking r-CSP, and Rσ =
(V, c, σ) be an ordered instance of Π with at most p � 1 inconsistent constraints.
If |V | > p(lr − r) + (lr − r) · (k + 1) + r, then there exists a simple sunflower
{C1, . . . , Cm}, m > k, that can be found in polynomial time.

Proof. Let S be any inconsistent constraint of Rσ. Since Rσ contains at most p
inconsistent constraints, there are at most p disjoint sets Pi, 1 � i � p, such that
|Pi| = lr − r and Rσ[S ∪ Pi] contains more than one inconsistent constraint. It
follows that there exist at least m � k+1 disjoint sets {S1, . . . , Sm} of size lr−r
such that: (i) Ci = S ∪ Si contains lr vertices and (ii) Rσ[Ci] contains exactly
one inconsistent constraint, 1 � i � m. Since Π is lr-simply characterized, Ci

defines a conflict for every 1 � i � m. It follows that {C1, . . . , Cm} is a simple
sunflower of center S. ��
Theorem 1. Let Π be a lr-simply characterized ranking r-CSP that admits a
q-factor approximation algorithm for some constant q > 0. Then Π admits a
kernel with at most k[(q + 1) · (lr − r)] + lr vertices.

Proof. Let R = (V, c) be an instance of Π . We start by computing a ranking σ
containing p inconsistent constraints using the q-factor approximation algorithm.
Observe that we can assume that p > k, since otherwise we simply return a small
trivial Yes-instance. Similarly, we can assume that p � qk, since otherwise we
return a small trivial No-instance. We now consider Rσ = (V, c, σ) and assume
that |V | > p(lr−r)+(lr−r) ·(k+1)+r: by Lemma 3, it follows that there exists
a simple sunflower that can be found in polynomial time, and hence Rule 1 can
be applied. Since conditions of Lemma 3 still hold after an application of Rule 1,
repeating this process on Rσ implies that every inconsistent constraint must be
edited. Hence, since p > k, we return a small trivial No-instance in such a case.
This means that |V | � qk(lr − r) + (lr − r) · (k+1)+ r, implying the result. ��
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4 Simple Characterization of Several Ranking r-CSPs

4.1 3-Dense Betweenness (BIT)

As a first consequence of Theorem 1, we improve the size of the linear vertex-
kernel for BIT from 5k [19] to (2+ε)k+4 for any ε > 0. The result directly follows
from the fact that BIT admits a PTAS [16] and is 4-simply characterized [19].

Corollary 1. Dense Betweenness admits a kernel with at most (2 + ε)k+ 4
vertices.

4.2 r-Dense Betweenness (r � 4)

We now consider the r-BIT problem with constraints of arity r � 4. The main
difference with the case r = 3 lies in the fact that there is no longer a unique
way to rank the vertices in order to satisfy all constraints. In particular, this
means that the problem is not (r + 1)-simply characterized.

Compatible Constraints. However, one can prove that r-BIT is 2r-simply
characterized. To see this, we need the following definition.

Definition 4 (Compatible constraint). Given an ordered instance Rσ =
(V, c, σ) of r-Dense Betweenness, an inconsistent constraint S =
{s1, . . . , sr}, si <σ si+1, 1 � i < r, is right- (resp. left-)compatible whenever
sel(S) = {s1, sl}, 2 < l < r (resp. sel(S) = {sl, sr}, 1 < l < r − 1).

Any constraint that does not satisfy Definition 4 is called right- (resp.
left-)incompatible. The intuition behind Definition 4 is the following: for any
vertex u lying after (resp. before) S in σ such that S is the only inconsistent
constraint in Rσ[S∪{u}], the set S∪{u} does not define a conflict (see Figure 1).

srsls1 srs1slu u

S S

Fig. 1. Illustration of the notion of left-compatible constraints (only S is inconsistent).
By definition, s1 is not selected in any constraint, and u and sr are selected in every
constraint but S. Hence swapping s1 and sl yields a consistent ranking for S ∪ {u}.

A particular consequence of Definition 4 is that the problem is not (r + 1)-
simply characterized. Indeed, for instance, any ordered instance on r+1 vertices
whose only inconsistent constraint S = {s1, . . . , sr} is right-compatible does not
define a conflict.

The following result comes from definition of compatible constraints.

Observation 2. Any right- (resp. left-)compatible constraint is left- (resp.
right-)incompatible.
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Lemma 4. The r-BIT problem is 2r-simply characterized.

Proof. We use the following result.

Claim 3. Let Rσ = (V, c, σ) be an ordered instance of r-BIT, and C =
{s1, . . . , sr+1} be a set of r + 1 vertices s.t. si <σ si+1, 1 � i � r. Assume
that Rσ[C] contains exactly one inconsistent constraint S. If one of the follow-
ing holds:

(i) S is unconsecutive or,
(ii) S is neither right- nor left-compatible, i.e. S = {s1, . . . , sr} and sel(S) �=

{s1, sl}, 2 < l < r or S = {s2, . . . , sr+1} and sel(S) �= {sl, sr+1}, 2 < l < r.

then C is a conflict.

Let Rσ = (V, c, σ) be an ordered instance of r-BIT and C = {s1, . . . , s2r} be
a set of 2r vertices such that si <σ si+1 for 1 � i < 2r. Assume that Rσ[C]
contains exactly one inconsistent constraint S. We need to prove that C is a
conflict. By Claim 3, the result holds if S is neither right- nor left-compatible.
So we assume that S is right-compatible (the case left-compatible is similar).
By Claim 3 we can also assume that the vertices of S are consecutive and are
the first of the ranking, since otherwise C is a conflict and we are done (recall
that S is left-incompatible by Observation 2). In other words we may assume
that S = {s1, . . . , sr} and sel(S) = {s1, sl} for 2 < l < r. Since S is the
only inconsistent constraint in Rσ[C], the constraints S2 = {sl, . . . , sr, . . . , sl+r}
and S3 = {s1, . . . , sl, sr, . . . , sl+r} (with |S3| = r) have as selected vertices
sel(S2) = {sl, sl+r} and sel(S3) = {s1, sl+r}, respectively. In order to be con-
sistent with S and S2, any ranking ρ must rank sr between {s1, sl+r} and sl,
which is inconsistent with the last constraint (which forces sr to be between s1
and sl+r). ��

Corollary 2. r-BIT admits a kernel with at most (2 + ε)rk + 2r vertices.

4.3 r-Dense Transitive Feedback Arc Set (r-DTFAS)

Karpinski and Schudy [16] considered a particular generalization of the Feed-

back Arc Set in Tournaments problem, where every constraint S corre-
sponds to an acyclic tournament. We show that the r-DTFAS problem admits
a linear vertex-kernel as a particular case of fragile ranking r-CSP, a notion
introduced in [16]. We say that a ranking r-CSP is strongly-fragile whenever a
constraint is satisfied by one particular ranking and no other.

Lemma 5. Let Π be any strongly-fragile ranking r-CSP, r � 3. Then Π is
(r + 1)-simply characterized.

Proof. Let R = (V, c) be any instance ofΠ , σ be any ranking of V and C be a set
of r+1 vertices such that Rσ[C] contains exactly one inconsistent constraint S.
We need to prove that C is a conflict. Assume for a contradiction that this is not
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the case, i.e. that there exists a ranking ρ consistent with R[C]. In particular,
there exist two vertices u, v ∈ S that are such that u <σ v and v <ρ u. Let
S′ �= S be any constraint of R[C] such that {u, v} ⊂ S′ (observe that S′ is well-
defined since r � 3). Since S′ was consistent in σ and since Π is strongly-fragile,
S′ is inconsistent in ρ: a contradiction. ��

Corollary 3. Any strongly-fragile ranking r-CSP admits a kernel with at most
(2 + ε)k + (r + 1) vertices.

4.4 r-Dense Feedback Arc Set (r-DFAS)

As mentioned previously, the r-DTFAS problem deals with constraints that are
given by a transitive tournament and are thus satisfied by one particular ranking
and no other. To allow more freedom on the satisfiability of a constraint, we
consider a different generalization of this problem, namely r-DFAS. Recall that
in this problem, any constraint S contains a selected vertex s and is satisfied by
a ranking σ iff u <σ s for any u ∈ S \ {s}.

We mainly consider the 3-DFAS problem, which turns out to be equivalent
to a particular case of Dense Rooted Triplet Inconsistency [9], where one
is given a set of vertices V , a dense collection R of rooted binary trees on three
vertices and an integer k ∈ N, and seeks a rooted binary caterpillar tree2 defined
over V containing all but at most k trees from R. We thus have the following.

Observation 4. The 3-DFAS problem is NP -Complete.

Notice however that the results presented stand for the general case. Now, ob-
serve that r-DFAS is not (weakly-)fragile: swapping the first two vertices of any
consistent ranking yields a consistent ranking. Hence, we cannot directly apply
the PTASs from [16].

Approximation Algorithm. We show that the results needed to obtain a
5-approximation for Feedback Arc Set in Tournaments [11] can be gener-
alized to the r-Dense Feedback Arc Set problem.

Definition 5 (In-degree). Let R = (V, c) be an instance of r-DFAS, and
v ∈ V . The in-degree In(v) of v is the number of constraints where v is selected.

Algorithm [Inc-Degree] Order the vertices of R according to their increasing
in-degrees.

Theorem 5. Inc-Degree is a 5-approximation for r-DFAS.

We prove Theorem 5 by proving a series of Lemmata. For the sake of simplicity,
we let V = {1, . . . , n} in the remaining of this Section.

2 A binary caterpillar tree is a rooted binary tree in which every internal node has at
least one child that is a leaf.
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Definition 6 (Left constraint). Let Rσ = (V, c, σ) be an ordered instance of
r-DFAS. For any vertex v ∈ V , a left constraint S = {s1, . . . , v, . . . sr} is a
constraint containing v and vertices before v only (i.e. si �σ v, 1 � i � r).

Given an ordered instance Rσ = (V, c, σ) of r-DFAS, we let Lσ(v) be the set of
left constraints containing v, and lσ(v) = |Lσ(v)|. Moreover, we define Bσ as the
set of inconsistent constraints of Rσ, and let bσ = |Bσ|. To obtain the algorithm,
we need to define a distance function K(ρ, γ) between two rankings ρ and γ.
Roughly speaking, K(ρ, γ) gives the number of constraints which are consistent
in exactly one out of the two rankings, and thus generalizes the Kendall-Tau
distance between two rankings [11]. Formally, we obtain:

K(ρ, γ) =
∑

S⊆V,|S|=r

1(c(ρ(S))=1∧c(γ(S))=0)∨(c(ρ(S))=0∧c(γ(S))=1)

where 1 denotes the indicative function. Observe that a constraint S consistent
in one out of the two rankings satisfies c(γ(S)) = 0 and c(ρ(S)) = 1 or vice
versa. The first result gives a bound on the differences between the number of
left constraints containing vertices and their in-degree in terms of bρ.

Lemma 6. Let ρ : V → V be any ranking. The following holds:

2 · bρ �
∑
v∈V

|lρ(v) − In(v)|

In the following, we denote by σA the ranking returned by Inc-Degree, and
by σO the ranking returned by any optimal solution. The following Lemma
states that the ranking minimizing the differences between the number of left
constraints containing vertices and their in-degree is σA.

Lemma 7. Let ρ : V → V be any ranking. The following holds:∑
v∈V

|lρ(v) − In(v)| �
∑
v∈V

|lσA(v)− In(v)|

Lemma 8. Let ρ, γ : V → V be two rankings. The following holds:∑
v∈V

|lρ(v)− lγ(v)| � |bρ − bγ |

We are now ready to prove the main result of this section :

Proof (of Theorem 5). By the previous Lemmata, we have the following :

4bσO �
∑

v∈V |lσO (v)− In(v)|+
∑

v∈V |lσO (v) − In(v)| (Lemma 6)
�
∑

v∈V |lσO (v)− In(v)|+
∑

v∈V |lσA(v)− In(v)| (Lemma 7)
=
∑

v∈V (|lσO (v)− In(v)|+ |lσA(v) − In(v)|)
�
∑

v∈V |lσO (v)− lσA(v)|
� bσA − bσO (Lemma 8)

Hence we have bσA � 5bσO , which implies the result. ��
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Corollary 4. Inc-Degree is a 5-approximation for Dense Rooted Triplet

Inconsistency restricted to binary caterpillar trees.

To the best of our knowledge, this constitutes the first constant-factor approx-
imation algorithm regarding the Dense Rooted Triplet Inconsistency

problem. We would like to mention that finding a constant-factor approximation
for the general case constitutes an important open problem [9,19].

Kernelization Algorithm. In order to obtain our kernelization algorithm, we
need to study the topology of conflicts that contain exactly one inconsistent
constraint. As we shall see, the configuration for r-Dense Feedback Arc Set

is slightly different than the ones previously observed. In particular, the problem
is not lr-simply characterized. However, the addition of a new reduction rule will
allow us to conclude as in the other cases.

Lemma 9. Let Rσ = (V, c, σ) be an ordered instance of r-DFAS, and C =
{s1, . . . , sr+1} be a set of r+1 vertices such that si <σ si+1 for every 1 � i � r.
Assume that Rσ[C] contains exactly one inconsistent constraint S. Then C is a
conflict if and only if S is unconsecutive or S = {s2, . . . , sr+1}.

Corollary 5. There does not exist lr ∈ N such that r-DFAS is lr-simply
characterized.

Proof. Let R = (V, c) be an instance of r-DFAS and q ∈ N, q > r. Let C =
{s1, . . . , sq} be any set of vertices ordered under some ranking σ such that si <σ

si+1 for 1 � i < q. Assume that S = {s1, . . . , sr} is the only inconsistent
constraint of Rσ[C]. By Lemma 9, we know that C is not a conflict, implying
that r-DFAS is not q-simply characterized. ��

We need the following rule, which will imply that the last vertex of any ordered
instance of r-DFAS belongs to (at least) one inconsistent constraint.

Rule 2. Let v be any vertex which is selected in every constraint containing it.
Remove v from V and modify the constraint system c consequently.

Lemma 10. Rule 2 is sound and can be applied in polynomial time.

Proof. First, observe that any editing set of size at most k for the original in-
stance will yield an editing set for the reduced one. In the other direction, assume
that Rv = (V \ {v}, c′) admits an editing set F of size at most k, and let σ be
the consistent ranking obtained after editing the constraints of F . Since adding
v to the end of σ does not introduce any inconsistent constraint, F is also an
editing set for the original instance. ��

Notice that a given instance can contain at most one such vertex. We thus
iteratively apply Rule 2 until no vertex selected in every constraint containing
it remains.
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Given any constraint S of an ordered instance Rσ = (V, c, σ) of r-DFAS,
span−(S) denotes the set containing span(S) and all vertices lying before S in
σ. Observe that by Lemma 9, any set C ⊆ V of r + 1 vertices such that Rσ[C]
contains exactly one inconsistent constraint S is a conflict iff C ⊆ span−(S). In
the following, such a conflict will be called simple. We use this observation to
refine the notion of simple sunflower in this case.

Definition 7 (Simple sunflower). Let Rσ = (V, c, σ) be an ordered instance
of r-DFAS. A sunflower S = {C1, . . . , Cm} of center S is simple if (i) S is the
only inconsistent constraint in Rσ[Ci] and (ii) Ci is a simple conflict, 1 � i � r.

Observe that in any simple sunflower of center S, ∪m
i=1Ci ⊆ span−(S) holds.

Rule 3. Let Rσ = (V, c, σ) be an ordered instance of r-DFAS and S =
{C1, . . . , Cm}, m > k, be a simple sunflower of center S. Edit S w.r.t. σ and
decrease k by 1.

Lemma 11. Rule 3 is sound.

Proof. Let F be any editing set of size at most k: by Lemma 1, F must contain S.
Since |F| � k, there exists 1 � i � m such that S is the only constraint edited by
F in Rσ[Ci]. Assume that S was not edited w.r.t. σ: since no other constraint has
been edited in Rσ[Ci], Rσ[Ci] still contains exactly one inconsistent constraint
(namely S). Observe now that, by definition of a simple conflict, Ci ⊆ span−(S)
holds. Hence Lemma 9 implies that Ci is a conflict, contradicting the fact that
F is an editing set. ��
Lemma 12. Let Rσ = (V, c, σ) be an ordered instance of r-DFAS with at
most p � 1 inconsistent constraints, and S be an inconsistent constraint s.t.
|span−(S)| > p+k+r. Then S is the center of a simple sunflower {C1, . . . , Cm},
m > k.

Theorem 6. r-DFAS admits a kernel with at most 6k + r vertices.

Proof. Let R = (V, c) be an instance of r-DFAS reduced under Rule 2. We start
by running the constant-factor approximation (Theorem 5) on R, obtaining a
ranking σ = v1 . . . vn of V with at most p inconsistent constraints. Notice that
we may assume p > k and p � 5k, since otherwise we return a small trivial
Yes- (resp. No-)instance. Assume now that |V | > p + k + r, and let S be any
inconsistent constraint containing vn (thus span−(S) = V ). Recall that S is
well-defined since R is reduced under Rule 2. By Lemma 11, it follows that S is
the center of a simple sunflower {C1, . . . , Cm}, m > k. We thus apply Rule 3 and
edit S w.r.t. σ. We now apply Rule 2 and repeat this process until we either do
not find a large enough simple sunflower or k < 0. In the former case, Lemma 11
implies that |V | � p+ k + r � 6k+ r, while in the latter case we return a small
trivial No-instance. ��
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Abstract. hierarchical clustering is an important problem with
wide applications. In this paper, we approach the problem with a for-
mulation based on weighted graphs and introduce new algorithmic tech-
niques. Our new formulation and techniques lead to new kernelization
algorithms and parameterized algorithms for the problem, which signif-
icantly improve previous algorithms for the problem.

1 Introduction

Many human activities can be described as a model of data collection and data
analysis. The second stage is discovering knowledge in data, in which one of the
most common tasks is to classify a large set of objects based on the collected
information. This is called the clustering problem, and has incarnation in many
disciplines, including biology, archaeology, geology, geography, business manage-
ment, and social sciences [8,12,14,15].

In this paper, we are focused on the hierarchical clustering problem, which is to
recursively classify a given data set into a tree structure in which leaves represent
the objects and inner nodes represent clusters of various granularity degrees.
We start with some definitions. For an integer n ≥ 1, let [n] = {1, 2, . . . , n}.
An n × n symmetric matrix D is a distance M -matrix if Dii = 0 for all i
and 1 ≤ Dij ≤ M + 1 for i �= j. A distance M -matrix D is an ultrametric
M -matrix if it satisfies the ultrametric property: for any three i, j, k in [n],
Dij ≤ max{Dik, Djk}. An M -hierarchical clustering C of a set X of n objects,
which can be simply given as X = [n], is a rooted tree with the objects of X as
leaves at level 0, the root at level M + 1, and a path of length exactly M + 1
from the root to any leaf. If we define a distance function dC for the objects in
X based on C such that for any two x and y in X , dC(x, y) is the height of the
subtree rooted at the lowest common ancestor of x and y, then the distance on
the objects of X forms an ultrametric M -matrix DC [2]. It is also known that
every ultrametric M -matrix induces an M -hierarchical clustering [2].

If the distance function dC is precise, then it is easy to construct the hierar-
chical clustering C [11]. Unfortunately, there are seldom, if any, data collection
methods that can exclude possibilities of errors. As a consequence, the distance
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matrix D formed by the distance function in general is not ultrametric, i.e., it
contains inconsistent information. An important task in hierarchical clustering
is to “correct” the errors and achieve data consistency. Formally, the hierarchical
clustering problem we are concerned with is defined as follows:

M -hierarchical clustering

Given (D, k), whereD is a distanceM -matrix and k is an integer (i.e., the
parameter), is there an ultrametricM -matrixD′ such that the difference
d(D,D′) is bounded by k?

Here d(D,D′) is defined as d(D,D′) =
∑

1≤i<j≤n |Dij −D′
ij |.

The problem is NP-complete [13]. Polynomial-time approximation algorithms
for the problem have been studied [2,3,17]. On the negative side, the problem is
known to be APX-hard [1].

The special case M = 1 of the problem, in the name of cluster editing

which remains NP-hard [16], also has independent interest and applications.
In fact, the algorithmic results mentioned above for general M -hierarchical

clustering [2,3,17] are generalizations of algorithms on cluster editing.
In practice, the ratio of errors is often low, i.e., the parameter k in the problem

instance can be small, so we may achieve data consistency with a relatively small
amount of correction. This observation has motivated the study of parameter-
ized algorithms for the problem, which are algorithms running in time f(k)nO(1)

for a function f . Thus, for small parameter values k, such algorithms may solve
the problem effectively. A closely related approach is to study kernelization al-
gorithms for the problem, which, on an instance (D, k), produces in polynomial
time an instance (D′, k′) such that k′ ≤ k, that the kernel size |D′| is small, and
that (D, k) is a yes-instance if and only if (D′, k′) is a yes-instance. Here the
kernel size |D′| is defined to be the cardinality of the object set on which the
distance matrix D′ is given. Many parameterized algorithms (e.g., [5]) and ker-
nelization algorithms (e.g., [6,9]) for the cluster editing problem have been
developed. Guo et al. [10] studied the M -hierarchical clustering problem,
and proposed an O∗(3k)-time parameterized algorithm for the problem1, and an
O(Mn5)-time kernelization algorithm with a kernel size bounded by (2M +4)k.
These are currently the best results for M -hierarchical clustering.

Based on an edge-cut technique, which is much simpler than the critical cliques
technique used in previous work [7,9], we recently proposed a kernelization algo-
rithm for weighted cluster editing [6]. In this paper, we show that this tech-
nique can also be applied to hierarchical clustering to achieve significant
improvements. Most importantly and a bit surprisingly, our kernelization algo-
rithm based on the technique yields a kernel of size 2k for the M -hierarchical

clustering problem, which is independent of the value M . The main results of
this paper are summarized as follows:

Theorem 1. For the M -hierarchical clustering problem, there exist an
O∗(1.82k)-time parameterized algorithm, and an O(Mn2)-time kernelization al-
gorithm that produces a kernel of size bounded by 2k.

1 Following the convention, we are using O∗(f(k)) to denote a bound f(k)nO(1).
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2 Cutting Lemmas and Hierarchical Clustering

An ultrametric matrix Du satisfies Du
ij ≤ max{Du

ik, D
u
jk} for all i, j, k. Two

observations on an ultrametic matrix Du are: (1) if Du
ij �= Du

jk, then Du
ik =

max{Du
ij , D

u
jk}, and (2) if Du

ij = Du
jk then Du

ik ≤ Du
ij .

For two matrices D and S of the same size, denote by D + S the pairwise
element addition of the matrices.2. A matrix S is a solution to a distance matrix
D if D + S is ultrametric. The cost of the solution S is defined as c(S) =∑

1≤i<j≤n |Sij |. For a distance matrix D, denote by c∗(D) the minimum solution
cost over all solutions to D.

When M = 1,M -hierarchical clustering degenerates to cluster edit-

ing, which can be formulated as a graph-theoretical problem that asks for the
minimum number of edge additions/deletions to transform a given graph into a
disjoint union of cliques [7,9]. The advantage of this formulation is that many
powerful graph theory techniques, such as modular decompositions and edge
cuts, become useful and applicable in solving the problem. In the following, we
introduce a graph-theoretical formulation for general M -hierarchical clus-

tering, and show how powerful graph theory techniques can be applied.
Let D be an n × n distance M -matrix on the object set X = [n]. For each

positive integer t, 1 ≤ t ≤ M , the graph Gt
D = (X,Et

D) for level t is defined
such that Et

D = {(u, v) : u, v ∈ X,Duv ≤ t}.

Proposition 1. Let D be a distance M -matrix. Then each of the M graphs Gt
D

defined as above is a disjoint union of cliques if and only if D is ultrametric.

Thus, a solution to M -hierarchical clustering corresponds to M solutions,
each to a graph Gt

D considered as an instance of cluster editing. Based on
this observation, Guo et al. [10] applied the 2k kernel for unweighted cluster

editing [7] to obtain a kernel of size O(Mk) forM -hierarchical clustering.
The drawback of this formulation is that in the graph Gt

D, the object distances
{1, 2, . . . t} are indistinguishable, which can directly introduce a multiplicative
error upto t − 1. In order to improve this formulation, we consider a weighted
version of the graph Gt

D so that the values of different distances are respected.
Formally, for each t ∈ [M ], we define a weight function πt

D on the pairs of vertices
in the graph Gt

D, as follows: for each pair u, v in X :

πt
D(uv) =

{
t+ 1−Duv if Duv ≤ t,

Duv − t if Duv > t.

The two cases here correspond to edges and anti-edges in the graph Gt
D, re-

spectively. The weight function πt
D always gives a positive integer in [M ]. As an

example, in the graph GM
D , for each object pair of distance d ≤M , an edge with

2 In this paper we directly use matrices as the base of our operations, instead of the
n(n − 1)/2 vectors used in previous research. This will make our discussion easier.
Observe that when counting the cost, we count only the upper-triangle of the matrix.
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weight M +1− d is created; while for an object pair of distance M +1, no edge
is created and the weight of the pair is (M + 1)−M = 1.

The graph Gt
D will be called the t-perspective graph. A t-clique is a clique in

the t-perspective graph Gt
D. To t-split two disjoint subsets X1 and X2 of objects

in X in Gt
D is to increase the distance to at least t+ 1 for objects between X1

and X2 – for each pair u ∈ X1 and v ∈ X2 such that Duv ≤ t, set Duv = t+ 1.
Similarly, to t-merge a subset X ′ of objects inX in Gt

D is to decrease the distance
between each pair of objects in X ′ to at most t – if Duv > t for u, v ∈ X ′, then
set Duv = t. In the following, we will be focused on the M -perspective graph.

Now we are ready to generalize the cutting lemmas in [6] to hierarchical

clustering. For an n×nmatrix F , and a pair of index subsets I, J ⊆ [n], denote
by F |I,J the submatrix of F determined by the row index I and the column
index J . We write F |I as a shorthand for F |I,I . By definition, for an ultrametric
matrix D′, the submatrix D′|I for any index subset I is also ultrametric. For a
distance matrix D, the submatrix D|I for any index subset I can be regarded
as an instance of hierarchical clustering (where the cost c∗(D|I) is defined
naturally). Moreover, a solution S to the distance matrix D restricted to the
index subset I is a solution to D|I , though the optimality may not transfer.

Lemma 1. Let D be a distance M -matrix for the object set X = [n], let P =
{X1, X2, . . . , Xp} be a partition of X, and let EP be the set of edges in GM

D whose
two ends belong to two different parts in P. Then

∑p
i=1 c

∗(D|Xi) ≤ c∗(D) ≤
πM
D (EP) +

∑p
i=1 c

∗(D|Xi ).

Proof. Let S be an optimal solution to D. As noted above, for 1 ≤ i ≤ p, S|Xi is
a solution to the submatrix D|Xi , which implies that c∗(D|Xi) ≤ c(S|Xi). Thus,∑p

i=1 c
∗(D|Xi) ≤

∑p
i=1 c(S|Xi) ≤ c(S) = c∗(D).

For the second inequality, suppose that we increase all inter-part distance to
M + 1, that is, to M -split all parts in P by removing all edges in EP in the
graph GM

D , then apply an optimal solution S′
i to each submatrix D|Xi . Then we

will obviously end up with a solution S′ to the matrix D, whose cost is

πM
D (EP) +

p∑
i=1

c(S′
i) = πM

D (EP ) +
p∑

i=1

c∗(D|Vi),

which is no less than c∗(D). This concludes the lemma. ��

If there is a partition such that all inter-part pairs have distance M + 1, then
πM
D (EP) = 0 and Lemma 1 gives

Corollary 1. Let D be a distance M -matrix for the object set X = [n], and let
P = {X1, X2, . . . , Xp} be a partition of X. If Duv = M + 1 for each pair u and
v that belong to different parts of P, then c∗(D) =

∑p
i=1 c

∗(D|Xi).

When p = 2, i.e. the partition is P = {Y, Y }, where Y is a subset of X and
Y = X \ Y , the edge set EP becomes the cut 〈Y, Y 〉 (i.e., the set of edges with
exactly one end in Y ), whose weight will be denoted by γMD (Y ). Lemma 1 gives
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Corollary 2. For any subset Y of X, we have c∗(D|Y ) + c∗(D|Y ) ≤ c∗(D) ≤
c∗(D|Y ) + c∗(D|Y ) + γMD (Y ).

This suggests the following lower bound for γMD (Y ).

Lemma 2. . Let S be an optimal solution to a distance M -matrix D for the
object set X = [n]. For any subset Y of X, c(S|Y,Y ) ≤ γMD (Y ).

Proof. The solution S can be divided into three disjoint parts: S|Y , S|Y , and
S|Y,Y . By Corollary 2 (note c∗(D) = c(S)),

c(S) = c(S|Y ) + c(S|Y ) + c(S|Y,Y ) ≤ c∗(D|Y ) + c∗(D|Y ) + γMD (Y ). (1)

Since S|Y is a solution to the submatrix D|Y and S|Y is a solution to the sub-
matrix D|Y , we have c(S|Y ) ≥ c∗(D|Y ) and c(S|Y ) ≥ c∗(D|Y ), which combined
with (1) gives immediately c(S|Y,Y ) ≤ γMD (Y ). ��

For a distance M -matrix D, it is intuitive that the objective ultrametric M -
matrix should have its largest element bounded by M +1. This intuition can be
formally proved in the following lemma, which also verifies the validity of the
definition of the M -hierarchical clustering problem.

Lemma 3. Let D be a distance M -matrix, and let S′ be an optimal solution to
D. Then the matrix D′ = D + S′ is an ultrametric M -matrix (i.e., the largest
element in the matrix D′ has a value bounded by M + 1).

Proof. We prove the lemma by contradiction that d′ = max1≤i<j≤n{D′
ij} >

M + 1 ≥ max1≤i<j≤n{Dij}. Consider the following matrix S′′:

S′′
ij =

{
S′
ij if D′

ij < d′,
S′
ij − 1 if D′

ij = d′.

Since d′ > max1≤i<j≤n{Dij}, if D′
ij = d′ then S′

ij > 0. Thus, c(S′′) < c(S′).
Applying solutions S′ and S′′ toD, we get two different matricesD′ and D′′ =

D + S′′. By the above construction, for all t < d′ − 1, the t-perspective graphs
for D′ and D′′ are the same, which are unions of disjoint cliques. For t = d′ − 1,
the t-perspective graph Gt

D′′ for D′′ is a single clique. Thus, by Proposition 1,
D′′ is ultrametric, so S′′ is a solution to D. However, this contradicts the facts
that c(S′′) < c(S′) and that S′ is an optimal solution to D. ��

Without loss of generality, we will always assume in the rest of this paper that
a distance M -matrix has at least one element of value M + 1.

3 A Kernel of Size 2k

To better understand our kernelization algorithm, we start with one that pro-
duces a kernel of size 4k, and discuss the difficulty for improving it. The second
part is devoted to overcoming the difficulty and achieving the kernel of size 2k.



324 Y. Cao and J. Chen

Warming up: a kernel of size 4k

Fix a distance M -matrix D for X = [n]. For an object v in X , devote by
Nv = {u : Duv < M + 1} the closed neighborhood of v in the graph GM

D .
A simple but important fact about a solution S of cost bounded by k to the

distance M -matrix D is that at most 2k different objects in X have some of
their distances to other objects changed. As a consequence, if we are also able
to bound the number of objects that are not affected by S, we get a kernel. For
such an unaffected object v, the v-th row of S consists of only 0’s. Thus, in the
ultrametric matrix D′ = D+S, for any two objects u and w in X , where u ∈ Nv,
the distance D′

uw must satisfy (note Dvu = D′
vu and Dvw = D′

vw):

D′
uw

{
≤ max(Dvu, Dvw) ≤M if u,w ∈ Nv;

= max(Dvu, Dvw) = M + 1 if u ∈ Nv, w �∈ Nv.
(2)

This is a necessary (but not sufficient) condition for a solution S to avoid v. If
(2) is not satisfied by D, then D|Nv must be modified by S. To measure the cost
of the modification, we introduce a number of functions, as follows:

δ(v) = |{(u,w) : u,w ∈ Nv, u < w and Duw = M + 1}|,
γ(v) =

∑
u∈Nv,w �∈Nv

(M + 1−Duw) (i.e., γ(v) = γMD (Nv)),

ρ(v) = 2δ(v) + γ(v).

We say that the neighborhood Nv is reducible if ρ(v) < |Nv|.
We describe two reduction rules on a reducible neighborhood Nv. The first

given in the following lemma claims that Nv can be put into a single M -clique.

Lemma 4. For an object v with Nv reducible, there is an optimal solution S∗

to D such that the maximum distance in (D + S∗)|Nv is bounded by M .

Lemma 4 gives the rule for our first reduction rule immediately:

Rule 1. For an object v in X such that Nv is reducible, replace every element
M + 1 in the submatrix D|Nv by M , and decrease the parameter k by δ(v).

After Rule 1, we have δ(v) = 0 and ρ(v) = γ(v). Now consider D|Nv,Nv
.

Rule 2. On a reducible Nv on which Rule 1 has been applied, for each object
x �∈ Nv with

∑
u∈Nv

(M + 1−Dxu) ≤ |Nv|/2, M -split x from Nv.

Lemma 5. Rule 2 is safe.

After Rules 1-2, the neighborhood Nv has a very simple structure: there is at
most one “pendent” object in Nv that is still attached to Nv, as shown by the
following lemma.

Lemma 6. For a reducible Nv on which Rules 1-2 have been applied, there is
at most one object x �∈ Nv such that D|Nv,x have values not equal to M + 1.
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Proof. By the condition of Rule 2, any object x in Nv that still has distance
smaller than M + 1 to some objects in Nv after the application of Rule 2 must
satisfy

∑
u∈Nv

(M + 1 − Dxu) > |Nv|/2. To prove the lemma, suppose on the
contrary that there are two such objects x and y. Then we have

γ(v) = γMD (Nv) ≥
∑
u∈Nv

(M + 1−Dxu) +
∑
u∈Nv

(M + 1−Dyu) > |Nv|.

This contradicts that Nv is reducible and ρ(v) = 2δ(v) + γ(v) < |Nv|. ��

Now we are ready to describe our kernelization algorithm.

The Kernelization Algorithm. For each object v for which the set Nv is reducible

1. decrease value M + 1 in D|Nv to M and decrease k accordingly;
2. for each element x �∈ Nv such that

∑
u∈Nv

(M + 1 −Dxu) ≤ |Nv|/2, set all
values in D|Nv,x to M + 1 and decrease k accordingly.

Note that there is only one condition tested by the algorithm, which is checked
only once and is independent of the parameter k.

This kernelization algorithm is applied iteratively, starting from the highest
level M . In each run, we take each object set obtained in the splitting in the
previous run and apply the kernelization algorithm, until there is no object set
on which the kernelization algorithm is applicable. Therefore, the kernel consists
of a set of object sets, each forms an independent instance of hierarchical
clustering. To analyze the size of the final kernel, we count the relation be-
tween the object sets and the minimum number of modifications required to
make the distance matrix ultrametric. Because our counting does not depend on
the value of M , this ratio holds for all subsets that form independent instances
of hierarchical clustering, and therefore for the entire object set X .

Lemma 7. Let (D, k) be an instance of M -hierarchical clustering on
which the kernelization algorithm is not applicable. If the size of D is larger
than 4k, then there is no solution to D of cost bounded by k.

Proof. Let matrix S be an optimal solution to the distance M -matrix D. For
each pair v, w ∈ X , we divide the cost |Svw| into two halves and distribute them
evenly to v and w. By this procedure, each object v gets a “cost” cost(v) =
1
2

∑
u∈X\{v} |Suv|. The total cost of S is equal to

∑
v∈X cost(v). We count the

cost on each object, and pay special attention to objects with cost 0.
For two objects u, v with Duv = M + 1, if there exists another object x such

that Dux ≤ M and Dvx ≤ M , then at most one of the objects u and v can
has cost 0: to make u, v, x satisfy the ultrametric property, at least one of the
distances Duv, Dux, Dvx must be changed. Let ZS = {v1, v2, . . . , vr} be the set
of objects with cost 0. For two objects vi, vj ∈ ZS , either Dvivj = M + 1 and
every other object has distanceM +1 to at least one of vi, vj ; or Dvivj ≤M and
any other object has distance M + 1 to vi if and only if it has distance M + 1
to vj . As a result, the two neighborhoods Nvi and Nvj in GM

D are either the
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same (when Dvivj ≤ M) or disjoint (when Dvivj = M + 1). Thus, without loss
of generality, we can assume that all neighborhoods in {Nv1 , Nv2 , . . . , Nvr} are
pairwise disjoint. Let NS = Nv1 ∪Nv2 ∪ · · · ∪Nvr .

Since column D|X,vi for vi ∈ ZS is unchanged by the solution S, S must
decrease the distance M + 1 between any pair of objects in Nvi to M , and
increase the distance between objects in Nvi and Nvi toM+1. These operations
have cost δ(vi) + γ(vi). Accordingly, the total cost on the objects in Nvi is
δ(vi) + γ(vi)/2 = ρ(vi)/2. If Nvi is not reducible, then ρ(vi)/2 ≥ |Nvi |/2. On
the other hand, if Nvi is reducible, then by Lemma 6, there can be at most
one object x ∈ Nvi that has distance bounded by M to some objects in Nvi .
According to Rule 2, in this case ρ(vi) ≥ γ(vi) > |Nvi |/2. Thus, the cost ρ(vi)/2
is always strictly larger than |Nvi |/4. From this analysis, we get

∑
v∈NS

cost(v) =

r∑
i=1

∑
v∈Nvi

cost(v) ≥
r∑

i=1

|Nvi |/4 = |NS |/4. (3)

On the other hand, each object w �∈ NS bears a cost at least 1/2. Thus∑
w∈X\NS

cost(w) ≥ |X \NS |/2. (4)

Combining (3) and (4) shows that the cost of the optimal solution S to D is∑
v∈X

cost(v) =
∑
v∈NS

cost(v) +
∑

v∈X\NS

cost(v) ≥ |NS |/4 + |X \NS |/2 ≥ |X |/4.

Thus, if |X | > 4k, then the distanceM -matrix D has no solution of cost ≤ k. ��

Destination: a kernel of size 2k

The main trouble to further improve the kernel size 4k given above is that for
a reducible Nv, conflicts in Nv are only settled at level M , while conflicts may
still occur at lower levels. Our idea for tackling this trouble is: if the cost to fix
Nv at lower levels is large enough, we then use it in the counting to complement
the deficiency; otherwise we will find another rule to reduce Nv.

We first consider the case where no pendent object x �∈ Nv (as described
in Lemma 6) exists for Nv. In this case, Nv has been completely resolved in
the perspective graph for level M , and we can treat D|Nv as an independent
instance for the (M − 1)-hierarchical clustering problem, and continue to
apply the Kernelization Algorithm (note that the Kernelization Algorithm does
not depend on the value of the parameter k).

The case where the pendent object x �∈ Nv exists for Nv is more involved.
After previous steps, the M -clique in the final solution is contained in Nv ∪{x}.
Thus, the (M−1)-clique containing v is a subset of Nv∪{x}. Since Dvx = M+1,
NM−1

v ⊆ Nv, where N
M−1
v is the neighborhood of the object v in the (M − 1)-

perspective graph GM−1
D . If NM−1

v is reducible in the M − 1 level, we can apply
again the Kernelization Algorithm. We can continue this procedure until
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• we meet the first t such that N t
v is not reducible;

• we meet the first t such that N t
v gets isolated; or

• we hit the ground when t = 1.

In the first situation, we stop. In the second situation, we apply the Kernelization
Algorithm to N t

v as an independent instance. Thus, we only need to deal with
the last situation, for which there is a pendent object xt for N t

v at each level
t. At level t = 1, let N1 ⊂ N1

v be the objects with distance 1 to x1, and let
N2 ⊂ N1

v be the objects with distance 2 to x1. Obviously, N1
v = N1 ∪N2.

Rule 3. Let v be an object such that N t
v is reducible and Rules 1-2 have been

applied for all levels t. Pick any subset N12 ⊆ N1 with |N12| = |N2|, and remove
N ′ = N12 ∪N2. For levels t ≥ 2, increase total distance from xt to N t

v −N ′ by
2|N2| − 2|{u ∈ N12 : Duxt ≤ t}|, by arbitrarily choosing objects from N t

v − N ′

and increasing their distances to xt to no more than t+ 1.

We first verify the validity for Rule 3. Since x1 survives Rule 2, more objects in
N1

v have distance 1 to x1 than those with distance 2, i.e., |N1| ≥ |N2|, which
shows the existence of the subsetN12. For an upper level 2 ≤ t ≤M , the required
increments in distance between xt and N t

v −N ′ is

(|N12|+ |N2| − |{u ∈ N12 : Duxt ≤ t}|)− |{u ∈ N12 : Duxt ≤ t}|,

where the first parenthesis constitutes a set of objects with distance ≥ t+ 1 to
xt. This condition is always satisfied, since xt survived Rule 2.

Lemma 8. Rule 3 is safe.

Now we are ready to show that the Kernelization Algorithm has a kernel of size
2k. In the second situation, we treatN t

v as an independent instance and apply the
Kernelization Algorithm. Since M is finite, we will eventually reach an instance
at a lower level on which the second situation no longer holds, where the instance
either is already internally ultrametric, or contains no reducible objects anymore.
For the latter case, the internal cost is at least twice the number of objects in
it, and we can use it to make up the deficiency in upper-level counting. For
the former case, we use the following reduction rule that is almost the same as
Rule 3, whose safeness follows from a similar argument as that for Rule 3.

Rule 4. Let v be an object such that N t
v is reducible and Rules 1-2 have been

applied for all levels t ≥ T . If NT
v gets separated and D|NT

v
is ultrametric, then

remove NT
v , and from level t = T to level M , increase total distance from xt to

N t
v−NT

v by 2|NT
v |, by arbitrarily choosing an object from N t

v−NT
v and increasing

its distance to xt to no more than t+ 1.

Summarizing the above discussions, we conclude with a kernel bound for the
Kernelization Algorithm, which was claimed in the second part of Theorem 1.

Theorem 2. Let (D, k) be an instance of the M -hierarchical clustering

problem on which the Kernelization Algorithm has been applied. If the size of
the distance M -matrix D is larger than 2k, then no solution to the distance
M -matrix D has its cost bounded by k.
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4 An Improved Parameterized Algorithm

Inspired by the formulation and usage of perspective graphs in the last sec-
tion, one might want to solve the M -hierarchical clustering problem in a
level-by-level way, by picking an algorithm for the cluster editing problem,
applying the algorithm to the M -perspective graph GM

D , then applying the algo-
rithm to the resulting instances at level M − 1, and so on. However, this greedy
approach does not always work: it can be shown that the set of the operations
in an optimal solution to the perspective graph at a higher level for cluster

editing may not be a subset of the set of the operations in any optimal solution
to the original instance for M -hierarchical clustering.

On the other hand, this negative result does offer some useful information: it
indicates that if we want to use an algorithm for cluster editing, we cannot
use it as a black-box – we must know its internal mechanism.

The hierarchical clustering problem, for which the cluster editing

problem is a special case, can be resolved by the following breaking conflict-
triangle process: to convert a distance matrix D into an ultrametric matrix,
for any three indices i, j, k, if Dij , Dik, and Djk do not satisfy the ultrametric
property, then at least one of them must change its value. It naturally suggests
a 3-way branching search process for an optimal solution to D, which leads to
an O∗(3k)-time algorithm for the problem. For cluster editing, there have
been several improved results, following the basic outline of breaking conflict-
triangles. With the help of more careful branching steps and more complicated
analysis techniques, the current best algorithm for cluster editing takes time
O∗(1.62k) [5]. On the other hand, there has been no non-trivial parameterized
algorithm for the general M -hierarchical clustering problem.

Instead of adapting a single particular algorithm for the cluster editing

problem to solve the M -hierarchical clustering problem, we go one step
further. We show that any parameterized algorithm for the cluster editing

problem, provided it is based on branching on breaking conflict-triangles, can
be adapted to solve the M -hierarchical clustering problem, with the same
time complexity as far as the exponential part is concerned. Indeed, what we
show is a meta algorithm, which takes as an input, in addition to an instance
IH = (D, k) of the M -hierarchical clustering problem, an algorithm for
the cluster editing problem, and returns an optimal solution to IH .

The algorithm Meta-HC given in Figure 1 shows how a meta algorithm is
implemented that adapts an algorithm for cluster editing to solve hierar-

chical clustering. We give some explanations on the algorithm.
In step 6 of the algorithm, we decrease each element value M + 1 to M and

mark the value forbidden. This step simplifies the presentation of the algorithm.
In particular, after each iterative run, we do not break the instance into smaller
subinstances and solve them separately. Instead, we still treat it as a single
instance. Note that if there is no conflict-triangle at levelM , then the edges with
distance M +1 partition the objects with no conflict-triangles. Thus, decreasing
them uniformly by 1 at levelM −1 will not create new conflict-triangles. On the
other hand, in step 3 of the algorithm when we call the algorithm A for cluster
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Algorithm Meta-HC(D, k,A)
input: a distance matrix D, an integer k, an algorithm A for cluster editing

output: an ultrametic matrix D′ such that d(D,D′) ≤ k if such D′ exists

1 M = max1≤i<j≤n{Dij} − 1;
2 construct the M -perspective graph GM

D and the weight function πM ;
3 for each solution S returned by A(GM

D , πM , k) do
4 if (M == 1) then return D + S;
5 D = D + S, k = k − c(S);
6 for each Dij = M + 1 do Dij = M and mark it as “forbidden”;
7 call Meta-HC(D, k,A).

Fig. 1. The Meta-Algorithm

editing, the tags of “forbidden” will be discarded. Thus, the distance of an edge
that gets decreased in a turn can be further decreased later. On the other hand,
by the procedure, no repeated increment on a single edge can happen.

Now we are ready to present the main result of this section:

Theorem 3. Let A be an algorithm for the weighted cluster editing problem,
such that it breaks conflict-triangles by all possible ways and uses branching to
count the time complexity. Then there is an algorithm A′ for the hierarchical

clustering problem whose time complexity is O∗(MT (n)), where T (n) is the
time complexity of the algorithm A.

Proof. We show that for a given instance (D, k) of the hierarchical clus-

tering problem, if there are solutions to D with cost bounded by k, then the
algorithm Meta-HC will always find one.

By Proposition 1, a solution to D must break all conflict-triangles in all per-
spective graphs. Since the algorithm A tries all possible ways to achieve this,
one of the branches must apply a correct operation. Also note that no conflict-
triangles can be created at a higher level when the algorithm is working on a
lower level. In the iterative way, conflict-triangles at all levels are broken.

We need to ensure that we never make counteracting operations on any edge
e, by decreasing its distance in a run then increasing it in a later run, or the
inverse. In the t-th run, if the distance of e is increased, then it gets a new value
t + 1, and marked “forbidden” forever. On the other hand, if the distance of e
is decreased in the run, then its value becomes t, marked as “forbidden”, and
keeps stable in this run. Therefore, in later runs (t− 1-th or lower), it can only
be further decreased, but never increased.

Now consider the time complexity of the algorithm. The extra operations
introduce a factor of a low degree polynomial function to the complexity, which
can be ignored under the notation O∗. The dominating part is the M calls to
the algorithm A. Thus, the algorithm Meta-HC runs in time O∗(MT (n)). ��
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To use Theorem 3, we notice that the algorithm proposed by Böcker, Briesemeis-
ter, and Bui [5] runs in time O∗(1.82k) and satisfies the conditions of Theorem 3.
This gives immediately the following theorem, which was claimed in the first part
of Theorem 1.

Theorem 4. There is an O∗(1.82k)-time parameterized algorithm for the
M -hierarchical clustering problem.
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Abstract. Motivated by challenges related to domination, connectivity,
and information propagation in social and other networks, we initiate
the study of the Vector Connectivity problem. This problem takes
as input a graph G and an integer kv for every vertex v of G, and the
objective is to find a vertex subset S of minimum cardinality such that
every vertex v either belongs to S, or is connected to at least kv vertices
of S by disjoint paths. If we require each path to be of length exactly 1,
we get the well-known Vector Domination problem, which is a gen-
eralization of the famous Dominating Set problem and several of its
variants. Consequently, our problem becomes NP-hard if an upper bound
on the length of the disjoint paths is also supplied as input. Due to the
hardness of these domination variants even on restricted graph classes,
like split graphs, Vector Connectivity seems to be a natural prob-
lem to study for drawing the boundaries of tractability for this type of
problems. We show that Vector Connectivity can actually be solved
in polynomial time on split graphs, in addition to cographs and trees.
We also show that the problem can be approximated in polynomial time
within a factor of lnn+ 2 on all graphs.

1 Introduction and Motivation

Connectivity between parts of a graph via disjoint paths is one of the best
studied subjects in graph theory and graph algorithms, where Network Flow

and Disjoint Paths and many of their variants are among the most well-known
problems. In this paper, we introduce, motivate, and study a natural network
problem, which we call Vector Connectivity. Given a graph G = (V,E) and
a vector k indexed by the vertices of G, such that k = (kv : v ∈ V ) and kv
is between 0 and the degree of v for each vertex v ∈ V , the task of Vector

Connectivity is to find a set S ⊆ V of minimum cardinality that satisfies the
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following: every vertex v of G is either in S or is connected to at least kv vertices
of S via paths that pairwise intersect in no other vertex than v.

In Vector Connectivity there is no restriction on the lengths of the in-
volved disjoint paths. If each path is restricted to be of length exactly 1, we get
the well-known Vector Domination problem; this problem was introduced by
Harant et al. [10] as a generalization of the classical problems Dominating Set

and Vertex Cover. The Dominating Set problem and its variants have been
studied extensively, as they naturally appear in a wide variety of theoretical and
practical applications. This has led to a vast amount of papers and several books
on domination, e.g., [11,12]. Dominating Set and henceVector Domination

are also among the toughest NP-hard problems as they remain NP-hard on var-
ious classes of graphs, such as planar graphs of maximum degree 3, bipartite
graphs, and most interesting for our study: split graphs [6,12]. The popularity
and the difficulty of these domination problems, the connection betweenVector

Domination and Vector Connectivity, and the question whether allowing
paths of unbounded length rather than direct edges or bounded-length paths
can result in tractability, are among the motivations for studying the Vector

Connectivity problem.
Chleb́ık and Chleb́ıková [1] showed that Dominating Set, and consequently

Vector Domination, cannot be approximated in polynomial time within a fac-
tor of (1− ε) lnn for any constant ε > 0 unless NP ⊆ DTIME(nO(log logn)), even
when restricted to the class of bipartite graphs or split graphs. On the positive
side, Cicalese et al. [3] presented a greedy algorithm for Vector Domination

with approximation factor ln(2Δ) + 1, where Δ denotes the maximum degree
of the input graph. Moreover, they showed that the problem can be solved in
polynomial time on trees and cographs. If one asks for disjoint paths of bounded
length rather than direct edges, it is not known in general whether the problem
can be approximated within a factor of O(log n). This gives another motiva-
tion to study the unbounded-length paths case, which is exactly the Vector

Connectivity problem.
In this paper, we show that Vector Connectivity can be approximated

within a factor of lnn+ 2 in polynomial time on general graphs, which we find
interesting due to the known and unknown approximation results mentioned
above. Furthermore, we show that Vector Connectivity can be solved in
polynomial time on split graphs, cographs, and trees. We find in particular the
tractability result on split graphs surprising, as it is in contrast with the afore-
mentioned NP-hardness and inapproximability results for the Dominating Set

problem on split graphs. Furthermore, these intractability results imply that if
paths are required to be of length at most an input bound then the problem re-
mains NP-hard on split graphs. However, split graphs do not have any induced
paths of length 4 or more. Hence our positive result on split graphs implies that
the bounded-length path version of Vector Connectivity, which is a general-
ization of Vector Domination, is solvable in polynomial time on split graphs
if the bound is at least 3.
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Note that the classes of split graphs, cographs, and trees are all subclasses of
perfect graphs, but they are not contained in each other. They form some of the
most studied graph classes on which many algorithms have been given, and they
play the main role in several books, e.g., in the monograph on perfect graphs by
Golumbic [7], and in the monograph by Mahadev and Peled [14] on threshold
graphs, which form a subclass of both split graphs and cographs.

Before we proceed to the technical part presenting and proving our results, we
end this section by mentioning another motivation, which comes from informa-
tion propagation in social networks. One famous problem of this type is Target
Set Selection (see, e.g., [2,13,15]), where every vertex v has a threshold tv
such that v gets activated if at least tv of its neighbors are activated, and the
task is to select a minimum cardinality vertex subset that results in the acti-
vation of all vertices eventually. The practical application behind this problem
is the desire by manufacturers to give away their products to a selected small
group of people, based on the scenario that every potential customer will decide
to buy the product if he or she has enough friends who possess the product.
Another possible scenario can be that every potential customer will decide to
buy the product only if he or she has enough independent ways to learn about
the product. Vector Connectivity fits into this scenario if we assume that
information spreads freely along the paths of the network.

2 Definitions and Notation

Unless otherwise stated, we work with undirected simple graphs G = (V,E),
where V is the set of vertices, E is the set of edges, and |V | is denoted by n.
We use standard graph terminology. In particular, the degree of a vertex v in G
is denoted by dG(v), the maximum degree of a vertex in G is denoted by Δ(G),
and V (G) refers to the vertex set of G. For a given rooted tree T , we write Tv
to denote the subtree rooted at vertex v, including vertex v.

Given a graph G = (V,E), a set S ⊆ V and a vertex v ∈ V \ S, a v–S fan
of order k is a collection of k paths P1, . . . , Pk such that (1) every Pi is a path
connecting v to a vertex of S, and (2) the paths are pairwise vertex-disjoint
except at v, i.e., for all 1 ≤ i < j ≤ k, it holds that V (Pi) ∩ V (Pj) = {v}. Given
an integer-valued vector k = (kv : v ∈ V ) with kv ∈ {0, 1, . . . , dG(v)} for every
v ∈ V , a vector connectivity set for (G,k) is a set S ⊆ V such that there exists
a v–S fan of order kv for every v ∈ V \S. We say that kv is the requirement of
vertex v. The minimum size of a vector connectivity set for (G,k) is denoted by
κ(G,k).

The Vector Connectivity problem is the problem of finding a vector con-
nectivity set of minimum size, and can be formally stated as follows:

Vector Connectivity

Input: A graph G = (V,E) and a vector k = (kv : v ∈ V ) ∈ ZV
+

with kv ∈ {0, 1, . . . , dG(v)} for all v ∈ V .
Task: Find a vector connectivity set for (G,k) of size κ(G,k).
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For every v ∈ V and every set S ⊆ V \ {v}, we say that v is k-connected to S
if there is a v–S fan of order k in G. Hence, given an instance (G,k) of Vector

Connectivity, a set S ⊆ V is a vector connectivity set for (G,k) if and only
if every v ∈ V \ S is kv-connected to S. For a subset A ⊆ V , we write k|A to
denote the sub-vector of k indexed by elements of A, and 1A denotes the all-one
vector indexed by elements of A. We let σ(v,A) to denote the maximum order
of a v–A fan in G. In other words, σ(v,A) = max{s | v is s-connected to A}.
Let B ⊆ A, let A be a v–A fan and let B be a v–B fan. We say that A contains
B if the collection of paths in B is a subcollection of the paths in A.

A set of vertices in a graph is a clique if they are all pairwise adjacent, and it
is an independent set if no two of them are adjacent. A graph is a split graph if
its vertex set can be partitioned into a clique C and an independent set I, where
(C, I) is called a split partition of G. Split graphs can be recognized and a split
partition can be computed in linear time [9].

For two vertex-disjoint graphs G1 and G2, G1⊕G2 denotes the disjoint union
of G1 and G2, i.e., G1 ⊕G2 = (V (G1) ∪ V (G2), E(G1) ∪ E(G2)), and G1 ⊗G2

denotes the join of G1 and G1, i.e., the graph obtained by adding to G1⊕G2 all
edges of the form {uv | u ∈ V (G1) , v ∈ V (G2)}. The class of cographs is defined
recursively through the following operations: a single vertex is a cograph; if G1

and G2 are vertex-disjoint cographs, then G1 ⊕ G2 is a cograph; if G1 and G2

are vertex-disjoint cographs, then G1⊗G2 is a cograph. Cographs, split graphs,
and trees are not related to each other inclusion-wise.

A well-known characterization of cographs is via cotrees. A cotree T of a
cograph G is a rooted tree with two types of interior nodes, ⊕-nodes and ⊗-
nodes, that has the following property: there is a bijection between the vertices
of G and the leaves of T such that two vertices u and v are adjacent in G if and
only if the lowest common ancestor of the leaves u and v in T is a ⊗-node. In
particular, every node t of T corresponds to an induced subgraph of G, which
is the disjoint union or the join of the subgraphs of G corresponding to the
children of t. A graph is a cograph if and only if it has a cotree [4]. Cographs can
be recognized and a cotree can be generated in linear time [5,8]. For our purposes,
it is convenient to use the binary version of a cotree, which is commonly used
for algorithms on cographs: the recursive definition of cographs implies that we
can assume the cotree to be binary. We will call this a nice cotree. Clearly, given
a cotree of a cograph, a nice cotree can be obtained in linear time.

3 A Polynomial-Time Approximation Algorithm

In this section, we show that Vector Connectivity can be approximated in
polynomial time by a factor of lnn + 2 on all graphs. We will achieve this by
showing that Vector Connectivity can be recast as a particular case of the
well-known Minimum Submodular Cover problem, which will allow us to
apply a classical approximation result due to Wolsey [17].

First, we recall some definitions and results about submodular functions, hy-
pergraphs and matroids that we will use in our proofs (see, e.g., [16]). Given a
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finite set U , a function g : 2U → Z+ is submodular if for every X,Y ⊆ U with
X ⊆ Y and every x ∈ U \Y , we have that g(Y ∪{x})−g(Y ) ≤ g(X∪{x})−g(X).
An instance of the (unweighted) Minimum Submodular Cover problem con-
sists of a set U and an integer-valued, non-decreasing, submodular function
g : 2U → Z+. The objective is to pick a set S ⊆ U of minimum cardinality
such that g(S) = g(U).

A hypergraph is a pair H = (U, E) where U is a finite set of vertices and E is
a set of subsets of U , called hyperedges. A matroid is a hypergraph M = (U,F)
such that F is nonempty and closed under taking subsets, and its elements,
called independent sets, satisfy the following “exchange property”: for every two
independent sets A and B such that |A| < |B|, there exists an element ofB whose
addition to A results in a larger independent set. Given a matroid M = (U,F),
the rank function of M is the function that assigns to every subset S of U the
maximum size of an independent set contained in S. The rank function of every
matroid is submodular (see, e.g., [16]). A gammoid is a hypergraph Γ = (U, E)
derived from a triple (D,S, T ) where D = (V,A) is a digraph and S, T ⊆ V , such
that U = S and a subset S′ of S forms a hyperedge if and only if there exist
|S′| vertex-disjoint directed paths in D connecting S′ to a subset of T . Every
gammoid is a matroid (see, e.g., [16]).

For any instance (G = (V,E),k) of Vector Connectivity, we define a
function f : 2V −→ Z+ as follows:

f(X) =
∑

v∈V fv(X) , where X ⊆ V , and

fv(X) =

{
min{σ(v,X), kv} if v �∈ X ;

kv if v ∈ X .

(1)

Observe that a set S ⊆ V satisfies f(S) = f(V ) if and only if S is a vector con-
nectivity set for (G,k). Consequently, Lemma 1 below immediately implies that
Vector Connectivity is a special case of Minimum Submodular Cover.

Lemma 1. Let (G = (V,E),k) be an instance of Vector Connectivity.
Then the function f : 2V −→ Z+, given by (1), satisfies the following properties:

(i) f(∅) = 0;
(ii) f is integer-valued, i.e., f(X) ∈ Z+ for every X ⊆ V ;
(iii) f is non-decreasing, i.e., f(X) ≤ f(Y ) whenever X ⊆ Y ⊆ V ;
(iv) f is submodular.

Proof. It is easy to verify that properties (i)–(iii) hold. In order to show that f
is submodular, it suffices to show that all the functions fv(·) are submodular,
that is, that for all X ⊆ Y ⊆ V and for all w ∈ V \ Y ,

fv(Y ∪ {w})− fv(Y ) ≤ fv(X ∪ {w})− fv(X) . (2)

Suppose first that fv(Y ) = kv. Then fv(Y ∪ {w}) = kv and the left-hand side of
inequality (2) is equal to 0. Hence inequality (2) holds since fv is non-decreasing.
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Now suppose that fv(Y ) < kv, which implies that fv(Y ) = σ(v, Y ). If fv(X ∪
{w}) = kv, then fv(Y ∪ {w}) = kv and inequality (2) holds due to the fact
that fv is non-decreasing. In what follows, we assume that fv(X ∪ {w}) < kv,
which implies that fv(X ∪ {w}) = σ(v,X ∪ {w}), and also that v �= w. Since
σ(v, Y ∪{w}) ≤ σ(v, Y )+1 ≤ kv, we have, by the definition of fv(·) and using the
fact that v �∈ Y ∪{w}, the equality fv(Y ∪{w}) = σ(v, Y ∪{w}). Since fv is non-
decreasing, fv(Y ) < kv implies that fv(X) < kv, and hence fv(X) = σ(v,X).
Inequality (2) then simplifies to

σ(v, Y ∪ {w})− σ(v, Y ) ≤ σ(v,X ∪ {w})− σ(v,X) . (3)

Hence, in order to prove Lemma 1, it suffices to show that inequality (3) holds
for any fixed vertex v ∈ V , i.e., that the function gv : 2V \{v} −→ Z+, defined by
gv(W ) = σ(v,W ) for all W ⊆ V \ {v}, is submodular. Consider the gammoid
Γ derived from the triple (D,V \ {v}, NG(v)) where D is the digraph obtained
from G by replacing each edge with a pair of oppositely directed arcs. Since Γ is
a gammoid, it is a matroid. It follows directly from the definition that function
gv is equal to the rank function of Γ . Therefore, the function gv is submodular,
which completes the proof of Lemma 1. ��
Theorem 1. Vector Connectivity can be approximated within a factor of
lnn+ 2 in polynomial time.

Proof. Let (G = (V,E),k) be an instance of Vector Connectivity with
|V | = n. From the definition of the function f , given by (1), it follows that a
set S ⊆ V satisfies f(S) = f(V ) if and only if S is a vector connectivity set
for (G,k). Hence, an optimal solution to the Vector Connectivity problem
is provided by a minimum size subset S ⊆ V such that f(S) = f(V ), i.e., by
an optimal solution for Minimum Submodular Cover. An approximation to
such a set S can be found in the following way.

Let A denote the natural greedy strategy which starts with S = ∅ and itera-
tively adds to S the element v ∈ V \S such that f(S ∪{v})− f(S) is maximum,
until f(S) = f(V ) is achieved. The maximum order of a v–S fan can be computed
in polynomial time using an easy reduction to the well-known Maximum Flow

problem, and thus the function f is polynomially computable. Therefore, the
greedy strategy can be implemented in polynomial time. Moreover, Wolsey [17]
proved that if f satisfies the four properties listed in Lemma 1, then algorithm
A is an H(τ)-approximation algorithm for Minimum Submodular Cover,

and consequently for Vector Connectivity, where H(j) =
∑j

i=1
1
i denotes

the j-th harmonic number, and τ = maxy∈V f({y}) − f(∅). For every y ∈ V ,
we have

f({y}) =
∑

v∈V \{y}
fv({y}) + fy({y}) ≤ n− 1 + ky ≤ n+Δ(G) .

Since f(∅) = 0, this implies τ ≤ n+Δ(G). Hence, algorithmA is anH(n+Δ(G))-
approximation algorithm for Vector Connectivity. Since H(n) ≤ lnn + 1
for n ≥ 1, we can further bound the approximation ratio ρ of A from above as
follows:
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ρ ≤ H(n+Δ(G)) ≤ ln(n+Δ(G)) + 1 ≤ ln(2n) + 1 = lnn+ ln 2 + 1 ≤ lnn+ 2 ,

yielding the desired result. ��

4 A Polynomial-Time Algorithm for Split Graphs

Recall that the Vector Domination problem on split graphs is both NP-
hard and hard to approximate within a factor of (1 − ε) lnn for any constant
ε > 0. In this section, we give a polynomial-time algorithm to solve the Vector

Connectivity problem on split graphs. Our algorithm is based on the following
lemma.

Lemma 2. Let (G,k) be an instance of Vector Connectivity, where G is
a split graph. Let S be any set of vertices in G such that ku ≥ kv for every
pair of vertices u ∈ S and v ∈ V (G) \ S. Then there exists a v–S fan of order
min{kv, |S|} for every v ∈ V (G) \ S.

Proof. Let (C, I) be a split partition of G = (V,E), and for convenience let
SI = S ∩ I and SC = S ∩ C. We will call the vertices of V \ S free vertices.
Let v be a free vertex of G. We first show that every vertex u ∈ SI has at least
kv − |SC | free neighbors. To see this, let u ∈ SI . It is obvious that u has at least
dG(u)− |SC | free neighbors. Since u ∈ S and v ∈ V \ S, we have that kv ≤ ku.
This, together with the assumption that kv ≤ dG(v) for every v ∈ V , implies
that u has at least dG(u)− |SC | ≥ ku − |SC | ≥ kv − |SC | free neighbors.

Suppose that v is a vertex of C. Every vertex of SC is a neighbor of v, and
thus v is min{kv, |SC |}-connected to SC . If kv ≤ |SC | then the lemma follows,
so assume that kv > |SC |. Recall that every vertex u ∈ SI has at least kv − |SC |
free vertices in its neighborhood. Let S′ ⊆ SI be any subset of SI such that
|S′| = min{kv−|SC |, |SI |}. Let G′ be the bipartite subgraph of G obtained from
the subgraph of G induced by S′∪(NG(S

′)\SC) by deleting all edges of the form
{xy | x, y ∈ NG(S

′)}. Since |S′′| ≤ |NG′(S′′)| for every subset S′′ ⊆ S′, Hall’s
Theorem implies that there is a matching M in G′ that saturates S′. Let Y be
the set of endpoints of M that are not in S′. Then Y ⊆ C, and it is possible
that v ∈ Y . Since both v and all the vertices of Y belong to the clique C, v
can reach at least |S′| = min{kv − |SC |, |SI |} vertices of SI via disjoint paths
that do not contain vertices of SC , using the edges of M . Consequently, v is
min{kv, |S|}-connected to S, and the lemma follows.

Suppose now that v is a vertex of I. Since kv ≤ dG(v), v is min{kv, |SC |}-
connected to SC . Let PC be a v–SC fan of order min{kv, |SC |} that is of smallest
total path length. In particular, every path in PC is of length 1 or 2. If kv ≤ |SC |
then the lemma follows, so assume that kv > |SC |. In this case, exactly |SC |
neighbors of v are used by the paths in PC . However, v has at least dG(v)−|SC | ≥
kv−|SC | additional neighbors that are free vertices in C. Furthermore, we already
proved that every u ∈ SI has at least kv−|SC | free vertices in its neighborhood.
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Each such vertex is either a neighbor of v or a neighbor of a neighbor of v. Thus
v can reach at least min{kv − |SC |, |SI |} vertices of SI via disjoint paths that
intersect each other and the paths of PC only in vertex v. This shows that v is
min{kv, |S|}-connected to S, and the lemma follows. ��
Lemma 2 implies that we can sort the vertices of G by their k-values in non-
increasing order, and greedily pick vertices from the start of the sorted list to
be in S until we have a vector connectivity set. This is formalized in the proof
of the following theorem.

Theorem 2. Vector Connectivity can be solved in polynomial time on split
graphs. ��

5 A Polynomial-Time Algorithm for Cographs

In this section we show that Vector Connectivity can be solved in polyno-
mial time on cographs. We will in fact solve the following more general variant
of Vector Connectivity. For a graph G = (V,E), an integer-valued vector
k = (kv : v ∈ V ), and an integer �, we say that a set S ⊆ V is a vector con-
nectivity set for (G,k, �) if S is a vector connectivity set for (G,k) such that
v ∈ S whenever kv ≥ �. Let us denote by κ(G,k, �) the minimum size of a
vector connectivity set for (G,k, �). Since S = V is a vector connectivity set
for (G,k, �), the above parameter is well defined and satisfies κ(G,k, �) ≤ |V |.
Clearly, the following relation holds, and hence solving the described variant
indeed also solves Vector Connectivity.

Lemma 3. κ(G,k) = κ(G,k,maxv∈V kv + 1).

In order to simplify the presentation of our algorithm, we assume in this section
that in the input to the Vector Connectivity problem and its variant men-
tioned above, requirements kv are allowed to be negative. If kv < 0, no condition
is imposed on vertex v, and it can be treated the same as if kv = 0.

The first lemma below is an easy observation.

Lemma 4. Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs such that V1 ∩
V2 = ∅, and let G = G1 ⊕G2. Then it holds that

κ(G,k, �) = κ(G1,k|V (G1), �) + κ(G2,k|V (G2), �) .

Lemma 5. Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs such that V1 ∩
V2 = ∅, and let G = G1 ⊗ G2. Let n1 = |V1| and n2 = |V2|, and let F =
{0, 1, . . . , n1} × {0, 1, . . . , n2}. For every integer �, it holds that

κ(G,k, �) = min
(i,j)∈F

f(i, j)

with

f(i, j) = max
{
κ
(
G1,k

1ij , �ij1

)
, i
}
+max

{
κ
(
G2,k

2ij , �ij2

)
, j
}
,

where

– k1ij = k|V1 −min{i+ j, n2} · 1V1 ,
– k2ij = k|V2 −min{i+ j, n1} · 1V2 ,
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– �ij1 = min{�, i+ j + 1} −min{i+ j, n2} ,
– �ij2 = min{�, i+ j + 1} −min{i+ j, n1} .

��

Theorem 3. Vector Connectivity can be solved in polynomial time on
cographs.

Proof. Consider the input (G = (V,E),k) to the Vector Connectivity

problem, where G is a cograph and n = |V |. By Lemma 3, computing the
value of κ(G,k) is equivalent to computing the value of κ(G,k,K) with K =
maxv∈V kv+1. We compute this value as follows. First, we compute a nice cotree
T of G. We traverse T bottom up, processing a node only after all its children
have been processed. When processing a node t of T , we compute all O(n2)
values of

κ(H,k|V (H) − i · 1V (H), �) , i ∈ {0, 1, . . . , n}, � ∈ {0, 1, . . . ,K} ,

where H is the induced subgraph of G corresponding to the subtree Tt. For
every leaf of the cotree, corresponding to a single vertex v of G, each of the
O(n2) values can be computed in O(1) time as follows:

κ(({v}, ∅), kv − i, �) =

{
0 if kv − i ≤ min{�− 1, 0} ,
1 otherwise.

Depending on whether an internal node t is a ⊕-node or a ⊗-node, we can use
Lemma 4 or Lemma 5 to compute each of the O(n2) values of κ(H,k|V (H) − i ·
1V (H), �) in time O(n2). Hence, each internal node of the modified cotree can be
processed in time O(n4), yielding an overall time complexity of O(n5), since a
cotree has O(n) nodes.

A minimum vector connectivity set can also be computed in the stated time.
In addition to the values of κ(H,k|V (H)− i ·1V (H), �) at each node of the cotree,
we need to store also a minimum vector connectivity set achieving each of these
values. These sets can be computed recursively as follows. For an internal node
t with corresponding subgraph H , let H1 and H2 denote the subgraphs of G
corresponding to the two children of t in T .

• If H corresponds to a leaf of T , then V (H) = {v} for some v ∈ V , and a
minimum vector connectivity set for (H, kv − i, �) is either empty or {v},
depending on whether kv − i ≤ min{�− 1, 0} or not.

• If H = H1 ⊕ H2, then a minimum vector connectivity set for
(H,k|V (H) − i · 1V (H), �) is given by the union of minimum vector connec-
tivity sets for (H1,k|V (H1) − i · 1V (H), �) and (H2,k|V (H2) − i · 1V (H), �).

• If H = H1⊗H2, then a minimum vector connectivity set S for (H,k|V (H)−
i · 1V (H), �) can be computed in O(n2) time: first compute a pair (I, J)
minimizing the function f defined in Lemma 5 (with H , H1, H2 in place
of G, G1, G2, respectively), and then take the union of minimum vector
connectivity sets S′

1 and S′
2 for (H1,k

1IJ , �IJ1 ) and (H2,k
2IJ , �IJ2 ), together

with some extra vertices if necessary so that |S ∩ V (H1)| ≥ I and |S ∩
V (H2)| ≥ J .
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Finally, let us remark that all the instances (H,k′, �) for which κ(H,k′, �) must
be evaluated in order to compute the value of κ(G,k) = κ(G,k,maxv∈V kv +1)
satisfy the property that for all v ∈ V (H), either k′v ≤ dH(v) or k′v ≥ �. This
can be proved by induction on the distance of a node t representing H from the
root of the cotree T , and assures that the values of κ(H,k′, �) are well defined
for such instances. This completes the proof of Theorem 3. ��

6 A Polynomial-Time Algorithm for Trees

We have seen that Vector Connectivity is solvable in polynomial time on
cographs and split graphs. These two graph classes do not contain graphs with
long induced paths. In particular, cographs are equivalent to graphs that do not
have induced paths of length 3 or more [5], and it is easy to observe that split
graphs do not contain induced paths of length 4 or more. In this section, we give
a polynomial-time algorithm to solve the Vector Connectivity problem on
trees, a graph class that allows the existence of arbitrarily long induced paths.

Theorem 4. Vector Connectivity can be solved in polynomial time on
trees.

Proof. Let (T,k) be an instance of Vector Connectivity, where T = (V,E)
is a tree. We assume that T has at least two vertices and is rooted at an arbi-
trary vertex r. Since the requirements of the vertices do not change during the
execution of the algorithm, we will simply speak of a vector connectivity set for
Tv instead of a vector connectivity set for (Tv,k|V (Tv)), for every v ∈ V .

The idea of the algorithm is to construct a vector connectivity set for T of
minimum size, starting from the leaves of T and processing a vertex only after
all its children have been processed. At any step of the algorithm, let S ⊆ V be
the set of vertices that have thus far been chosen to belong to the solution. For
any vertex v of T , we define Sv = S ∩ V (Tv). When processing a vertex v, the
algorithm computes the values f(v), n(v) and r(v), which are defined as follows.
For every vertex v ∈ V , f(v) = 1 if the subtree Tv contains at least one vertex
of S; otherwise f(v) = 0. The value r(v) denotes the number of children w of
v for which f(w) = 1. Note that if f(w) = 1 for a child w of vertex v, then v
is 1-connected but not 2-connected to Sw, regardless of how many vertices Sw

contains. Furthermore, v is 1-connected to S\V (Tv) if S contains a vertex outside
Tv. We let n(v) denote whether or not a vertex in Tv “needs” an additional path
to a vertex outside of Tv, indicated by 1 or 0, for every v ∈ V . More precisely,
n(v) = 0 if for every vertex w ∈ V (Tv), there is a w–Sv fan of order kw in Tv,
i.e., every vertex w of Tv, including v itself, is kw-connected to Sv and hence
also to S. On the other hand, n(v) = 1 if there is a vertex w ∈ V (Tv) such that
there is a w–Sv fan of order kw − 1 but no w–Sv fan of order kw in Tv.

We now describe the algorithm in detail. Initially, we set S = ∅. Let v ∈ V
be a leaf of T . We set r(v) = 0. If kv = 0, then we set f(v) = 0 and n(v) = 0. If
kv = 1, then we set f(v) = 0 and n(v) = 1.
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Next, let v be a vertex that is not a leaf and not the root, and assume that
the children of v have all been processed. For every child w of v, if n(w) = 1
and v has a child w′ �= w such that f(w′) = 1, then we set n(w) = 0. We then
compute r(v) by adding up the f -values of all the children of v. If kv ≤ r(v),
then we set n(v) = 1 if v has a child w with n(w) = 1, and we set n(v) = 0
otherwise. If kv = r(v) + 1, then we set n(v) = 1. If kv ≥ r(v) + 2, then we add
v to S and set n(v) = 0. In each of the above cases, we set f(v) = 1 if r(v) ≥ 1
or if v is added to S, and we set f(v) = 0 otherwise.

Finally, let v be the root of T . We set n(v) = 0. If kv ≤ r(v), then we perform
the following check: if v has a child w such that n(w) = 1 and f(w′) = 0 for
every other child w′ �= w of v, then we add v to S. If kv ≥ r(v) + 1, then we add
v to S. The algorithm outputs the set S and terminates as soon as the root has
been processed.

The correctness of the algorithm can be shown by observing that for every
v ∈ V , the following three statements are true immediately after v is processed,
where p denotes the parent of v in T .

(i) If n(v) = 0, then Sv is a vector connectivity set for Tv.

(ii) If n(v) = 1, then Sv ∪ {p} is a vector connectivity set for the subtree of T
induced by V (Tv) ∪ {p};

(iii) There is no vector connectivity set S′ for T such that |S′ ∩ V (Tv)| < |Sv|.

Since these statements hold for the root of T , the set S constructed by the
algorithm is a vector connectivity set for T of minimum size. The observation
that all steps of the algorithm can be performed in polynomial time completes
the proof of Theorem 4. ��

7 Concluding Remarks

In this paper, we initiated the study of the Vector Connectivity prob-
lem, which opens a research path with many interesting questions. The most
prominent of these questions is of course the computational complexity of Vec-

tor Connectivity on general input graphs. Could it be that the problem is
polynomial-time solvable on all graphs, or is its tractability heavily dependent
on either the absence of long induced paths or on a tree-like structure of the
input graph? On which other graph classes is Vector Connectivity solvable
in polynomial time? Does Vector Connectivity admit a polynomial-time
constant-factor approximation algorithm on general graphs?

Another interesting variant of the problem can be obtained by allowing the
requirement kv of each vertex v to be arbitrarily large, in which case a ver-
tex v with kv > dG(v) is forced to be in every vector connectivity set. Is it
perhaps easier to prove this variant to be NP-hard in general? Note that the
algorithms given in this paper, except the algorithm for split graphs, work in
polynomial time also for this variant. Is this variant polynomial-time solvable on
split graphs?
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Abstract. In a recent paper [Paths, trees and matchings under disjunc-
tive constraints, Darmann et. al., Discr. Appl. Math., 2011] the authors
add to a graph G a set of conflicts, i.e. pairs of edges of G that cannot be
both in a subgraph of G. They proved hardness results on the problem of
constructing minimum spanning trees and maximum matchings contain-
ing no conflicts. A forbidden transition is a particular conflict in which
the two edges of the conflict must be incident. We consider in this paper
graphs with forbidden transitions. We prove that the construction of a
minimum spanning tree without forbidden transitions is still N P-Hard,
even if the graph is a complete graph. We also consider the problem of
constructing a maximum tree without forbidden transitions and prove
that it cannot be approximated better than n1/2−ε for all ε > 0 even if
the graph is a star. We strengthen in this way the results of Darmann
et al. concerning the minimum spanning tree problem. We also describe
sufficient conditions on forbidden transitions (conflicts) to ensure the ex-
istence of a spanning tree in complete graphs. One of these conditions
uses graphic sequences.

1 Introduction

In some practical situations, classical graphs are not complex enough to model
all the constraints. For example, a city map can be modelled by a graph where
streets are edges. However a car cannot always follow any route on this map. In
some points it can be forbidden to turn left or right for example. This means
that some paths in the graph are not valid. In the graph of a city with such
restrictions, finding a spanning tree containing no restriction would be useful to
ensure the connectivity between any pair of locations. The cars could travel on
this tree submitted to no forbidden transitions. In this paper we investigate this
kind of problem from a pure theoretical point of view.

In the following paragraphs we give the main definitions, notations and con-
cepts that will be used throughout the paper. We also give some bibliographical
references on related results.
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Specific Notions and Notations. In this paper, we only consider undirected,
unweighted and simple graphs. We refer to [2] for definitions and undefined
notations. The vertex set of a graph G is denoted by VG and its edge set by EG.
An edge between u and v in a graph G is denoted by uv. A tree is an acyclic
connected graph and a star is a tree with a distinguished vertex adjacent to the
other vertices. A complete graph (resp. star) with n vertices is denoted by Kn

(resp. Sn). A path (or a cycle) of G is Hamiltonian if it contains all the vertices
of G exactly once (all paths and cycles are elementary here).

If G is a graph, a conflict is a pair {e1, e2} of edges of G. A conflict {e1, e2} is
called a forbidden transition if e1 and e2 are incident. In a forbidden transition
{uv, vw}, the vertex v is called its centre and the vertices u and w its extremities.
We denote by (G, C) (resp. (G,F)) a graph G with a set of conflicts C (resp.
with a set of forbidden transitions F). (We use the notation C to denote conflicts
and F for forbidden transitions.) A spanning tree T in (G, C) is a spanning tree
in G without conflicts, i.e., for any e, e′ of T , {e, e′} /∈ C (similarly for the other
subgraph notions).

The spanning tree problem without conflicts (STWC) is, given (G, C), con-
structs a spanning tree T in (G, C), if one exists, otherwise say NO. We define
similarly the spanning tree problem without forbidden transitions (STWFT).
Similarly, the Hamiltonian path (or cycle) problem without forbidden transitions
is denoted by HPWFT (or HCWFT). The problem of constructing a tree with-
out forbidden transitions of maximum size will be denoted by MTWFT.

Works Involving Forbidden Transitions. Graphs with forbidden transitions
have already been investigated and several problems known to be polynomial in
graphs have been shown to be intractable in graphs with forbidden transitions.
For instance it is proved in [10] that knowing whether there exists a path between
two nodes avoiding forbidden transitions is N P-complete and a line between
tractable and intractable cases have been identified. The problem of finding two-
factors1 is considered in [4] and a dichotomy between tractable and intractable
instances is also given. In a very recent paper [7] we propose an exact exponential
time algorithm that checks the existence of paths without forbidden transitions
between two vertices; we also generalise the notion of cut in such graphs.

It is worth noticing that the N P-hardness of the connectedness of two ver-
tices in graphs with forbidden transitions does not imply the N P-hardness of
STWFT. Indeed, a classical result in graph theory (see [2]) states that a graph
is connected if and only if it contains a spanning tree. Unfortunately, this is not
the case anymore if we take into account F and STWFT. The simplest proof of
this fact is the following. Consider a complete graph Kn with n ≥ 3 where each
possible transition is forbidden. Each pair of vertices is connected by a path with
one edge, i.e. without forbidden transitions, but any spanning tree contains at
least two edges (since n ≥ 3) thus a forbidden transition.

Works Involving Conflicts. Since forbidden transitions are special cases of
conflicts, the N P-hard problems considered in [4,10] remains N P-hard in

1 A subgraph such that for any vertex its in-degree and its out-degree is exactly one.
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graphs with conflicts. But notice that dichotomy theorems in [4,10] are no longer
valid when dealing with conflicts. Some tractable cases of the path problem have
been investigated in [8]. Another set of problems have been considered in the
literature. For example authors of [9] considered the problem of constructing
a scheduling such that two conflicting tasks cannot be executed on the same
machine or packing problems under the condition that two conflicting items
cannot be packed together. In [3] the authors proved that STWC is N P-
complete. They proved also similar results for the maximum matching problem.

Summary. We prove in Section 2 that STWFT is N P-complete and char-
acterise (in)tractable cases. Hence our result is stronger since we prove the hard-
ness for a more restrictive type of conflicts. We go further by proving the hardness
even in complete graphs with forbidden transitions. We also show that HPWFT

and HCWFT are also N P-complete in complete graphs with forbidden tran-
sitions. We furthermore prove that MTWFT cannot be approximated, even in
stars with forbidden transitions. In Section 3.1 we adapt and use a result on graph-
ical sequences to give a sufficient condition to ensure an always YES instance for
STWFT in polynomial time when restricting instances to (Kn,F). In Section 3.2,
we prove that STWFT is polynomial in (Kn,F) where each vertex is in a bounded
number of forbidden transitions. We also prove that if each edge is involved in at
most one conflict, then there always exist an Hamiltonian path in (Kn, C). Finally,
in Section 3.3 we describe a polynomial time process to transform any instance
(G, C) into an instance (Gf , Cf ) containing less edges and conflicts and ensuring
that (G, C) is a YES instance for STWC iff (Gf , Cf) is.

2 Hardness Results

2.1 N P-Hardness of STWFT, HPWFT and HCWFT

If (G, C) is a graph with conflicts, we can associate with it a conflict graph that
has as edge set C and as vertex set edges involved in C. A 2-ladder is a disjoint
union of edges and a 3-ladder is a disjoint union of paths with 3 vertices. We
recall the following from [3].

Theorem 1 ([3]). STWC is N P-complete, even if conflict graphs are 3-
ladders. However, STWC is polynomial in (G, C) with 2-ladder conflict graphs.

A slight modification of the proof of Theorem 1 gives the following result for
forbidden transitions. Its proof is given for completeness.

Theorem 2. STWFT is N P-complete, even in bipartite graphs with 3-ladders
as conflict graphs. STWFT is polynomial in (G,F) with 2-ladder conflict graphs.

Proof. The second statement follows directly from Theorem 1.
As in the proof of the N P-completeness of STWC, we will reduce the

(3,B2)-SAT to STWFT with 3-ladders as forbidden transitions. We recall that
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a (3,B2)-SAT instance is a 3-SAT instance such that each variable occurs exactly
four times, twice positive and twice negated.

Let I be an instance of the (3,B2)-SAT with m clauses C1, . . . , Cm and n
variables X1, . . . , Xn. We let (G,F) with

VG := {r} ∪ {cj | Cj is a clause} ∪ {xi, xi, ri, si | Xi is a variable},
EG := {rri, rixi, rixi, xisi, xisi | i ∈ {1, . . . , n}}∪

{xicj | Xi occurs positively in Cj} ∪ {xicj | Xi occurs negatively in Cj}.

G is bipartite (colour “black” the vertices: c1, . . . , cm, r1, . . . , rn, s1, . . . , sn which
are independent and “white” the other also independent remaining vertices). The
structure of the graph G is the same as in [3] but the conflicts we define are now
forbidden transitions.

F :=
⋃

i∈{1,...,n}
{{cjxi, xisi}, {ckxi, xisi} | cjxi ∈ EG and ckxi ∈ EG}∪

⋃
i∈{1,...,n}

{{cjxi, xisi}, {ckxi, xisi} | cjxi ∈ EG and ckxi ∈ EG}

One easily checks that the conflict graph of F is a 3-ladder. We now prove that
I is satisfiable iff there exists a spanning tree of (G,F).

Assume I is satisfiable. Then there is a mapping δ : {X1, . . . , Xn} → {0, 1}
such that each clause is satisfied and for each clause there is a variable Xi such
that δ(Xi) allows to satisfy it. Let T be the graph formed with the following
edges:⋃

i∈{1,...,n}
{rri, rixi, rixi} ∪

⋃
i∈{1,...,n}

{sixi | δ(Xi) = 1} ∪

⋃
i∈{1,...,n}

{sixi | δ(Xi) = 0} ∪

⋃
i∈{1,...,n}

{xicj, xick | δ(Xi) = 1 and Xi occurs positively in Cj and in Ck} ∪

⋃
i∈{1,...,n}

{xicj, xick | δ(Xi) = 0 and Xi occurs negatively in Cj and in Ck}

One checks that T spans G, is acyclic, is connected and does not contain a
forbidden transition. Therefore, T is a spanning tree of (G,F).

Assume now that (G,F) has a spanning tree T without forbidden transitions.
For each i ∈ {1, . . . , n} for which exactly one the edges xisi or xisi is in ET , we
do the following assignment δ : {X1, . . . , Xn} → {0, 1}

δ(Xi) :=

{
1 if xisi ∈ ET

0 if xisi ∈ ET .

The other variables Xi receive arbitrary assignments. We claim that the assign-
ment δ satisfies the instance I. Let us consider any clause Cj . There exists some
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i ∈ {1, . . . , n} such that xicj ∈ ET or xicj ∈ ET . If xicj ∈ ET , then xisi /∈ ET

and therefore xisi ∈ ET . By the definition of δ, we have δ(Xi) = 1 and then
Cj is satisfied by δ(Xi). Similarly, if xicj ∈ ET , we have xisi /∈ ET and then
xisi ∈ ET . Again, by the definition of δ, we have δ(Xi) = 0, so Cj is satisfied by

δ(Xi). We conclude that I is satisfied by δ. ��

If we take as parameter the number of conflicts a vertex (an edge) is involved
in graphs with forbidden transitions, Theorem 2 gives a sharp line between
tractable and intractable cases. We leave open the question for a dichotomy
between tractable and intractable cases with respect to conflict graphs as done
in [4,10]. In the following, we show that when restricting to complete graphs, the
N P-completeness of STWFT remains true. For any (G,F) such that G has
n ≥ 3 vertices, construct the complete graph Kn with the same set of vertices
than G (and with all possible edges) and F(G) := F ∪ {{e, f} | e ∈ EKn \ EG,
f ∈ EKn , e �= f and e and f incident in Kn}.

Lemma 1. T is a spanning tree of (G,F) iff T is a spanning tree of (Kn,F(G)).

Proof. It is clear that any spanning tree of (G,F) is also a spanning tree of
(Kn,F(G)). Conversely, assume now that T is a spanning tree without forbidden
transitions of (Kn,F(G)). Since n ≥ 3, T does not contain any “non-edge” of
G, otherwise T would contain a forbidden transition. Therefore, T is a spanning
tree without forbidden transitions of (G,F). ��

From Theorem 2 and Lemma 1, we can prove the following.

Theorem 3. STWFT is N P-complete in complete graphs with forbidden
transitions.

It is well-known that Kn contains many Hamiltonian paths or cycles that can be
computed in polynomial time (if n ≥ 3). This is not the case in complete graphs
with forbidden transitions.

Theorem 4. HPWFT and HCWFT are N P-complete in complete graphs
with forbidden transitions.

Proof. We reduce the Hamiltonian path (or cycle) problem to HPWFT (or
HCWFT). Let G be an n-vertex graph without forbidden transitions with n ≥ 3
and let (Kn,F(G)) be the complete graph with forbidden transition associated
with it (see definition of F(G) before Lemma 1). One can easily show that
G contains an Hamiltonian path (or cycle) if and only if (Kn,F(G)) contains
an Hamiltonian path (or cycle) containing no forbidden transitions. But the
problem of determining whether a graph G contains an Hamiltonian path or
cycle is N P-complete (see [5]). ��
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2.2 Inapproximability of MTWFT

The previous results show that constructing a spanning tree without forbidden
transitions is a hard problem.We investigate here the optimisation version. Given
(G,F), we denote by α(G,F) the maximum size of a tree in (G,F). Notice that
if (G,F) is a YES instance for STWFT, then α(G,F) = |V |.

Theorem 5. Let (G,F) and let n be the number of vertices of G. Then α(G,F)
cannot be approximated with a ratio better than n1/2−ε for all ε > 0 even if G is
a star.

Proof. We will reduce the maximum clique problem to MTWFT in stars. Let
G be a graph with n vertices. Construct the star G′ with vertex set VG∪{r} and
edge set {ru | u ∈ VG} (r is a new vertex), and let F := {{ru, rv} | uv /∈ EG}.
We claim that T is a tree of size k in (G′,F) if and only if T \ r induces a clique
of size k − 1 in G.

Let T be a tree of size k in (G′,F). Hence, T is a star Sk with distinguished
vertex r and k−1 other vertices from VG. As T contains no forbidden transitions,
for all u and all v in T \ r, we have uv ∈ EG. Therefore, T \ r induces a clique
of size k − 1 in G.

Conversely, let C := {u1, . . . , uk} be a clique of size k in G. Then in G′ none
of the edges ru1, . . . , ruk is involved in a pair in F . Therefore, C ∪ {r} induces
a tree of size k + 1 in (G′,F).

Now, using the fact that one cannot construct a clique of maximum size in an
n-vertex graph with a better approximation ratio than n1/2−ε for all ε > 0 (see
[1]) we get the desired result. ��

3 Constructive Results in Complete Graphs

From proof of Theorem 2, we deduce the N P-completeness of STWFT even
if the number of forbidden transitions an edge or vertex is involved is bounded.
However, the reduction in the proof of Theorem 3 does not preserve this property.
We will see in this Section 3.2 that bounding the number of conflicts an edge or
vertex is involved implies a polynomial time algorithm for STWFT in complete
graphs. We will also provide some other sufficient conditions.

3.1 A Sufficient Condition to Contain a STWFT

For (Kn,F), we will construct a graph G with the same set of n vertices and
containing only the edges of G that are not in any forbidden transitions of F .
If G is connected, then we are done since we can just take any spanning tree
of G, and it will be of course a spanning tree of (Kn,F). So, we will assume
that G is not connected and let us denote by C1, . . . , Ck its k > 1 connected
components and ni the number of vertices of Ci. In the following we will also use
Ci to denote the set of the ni vertices of the component Ci. Some components
are not necessarily complete graphs and some of them may be composed of only
one vertex.
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We call Edge Between Components, noted EBC, an edge having its two ex-
tremities in two different components. The general idea is the following. If it
is possible to connect the k components of G using EBC, in a “meta-tree” of
components, in such a way that each vertex of each component is incident to at
most one such EBC, then (Kn,F) contains a spanning tree. Indeed, this “meta-
tree” is a tree of the k components, it is connected and cycle-free. Inside each
component, it is sufficient to take any spanning tree. These k trees connected by
these EBC form a spanning tree T of (Kn,F) (T is connected and is cycle-free).
Indeed, T contains no forbidden transitions because, by construction, edges of
components are part of no forbidden transitions and EBC are pairwise non inci-
dent by construction. In Theorem 7 we give a sufficient condition under which it
is possible to do this construction. Before going further, we need some notions,
definitions and preliminary results.

A sequence n1, . . . , nk of positive integers (ni ≥ 1) is a SDT (Sequence of
Degrees Tree) if there exists a tree T of k vertices denoted by u1, . . . , uk such
that dT (ui) ≤ ni. We will use the following theorem.

Theorem 6 ([6]). Let n1, . . . , nk be a sequence of positive integers, k ≥ 2. There

exists a tree with k vertices having degrees n1, . . . , nk if and only if
∑k

i=1 ni =
2k − 2.

We underline the fact that the proof of Theorem 6 in [6] describes a polynomial
time algorithm to construct the tree from the sequence.

Lemma 2. The sequence of positive integers n1, . . . , nk, k ≥ 2, is a SDT if and
only if

∑k
i=1 ni ≥ 2k − 2.

Proof. We suppose first that
∑k

i=1 ni ≥ 2k − 2 and we show that n1, . . . , nk is
a SDT. We decrease the value of some ni (keeping them strictly positive) to
obtain a sum equal to 2k − 2. This operation can easily be done in polynomial
time. Then we can apply Theorem 6 on this new sequence. In the corresponding
tree T the degrees are less than n1, . . . , nk and hence this sequence is a SDT.

Let us show now that if n1, . . . , nk is a SDT, then
∑k

i=1 ni ≥ 2k − 2. As
n1, . . . , nk is a SDT, there exists a tree T whose k vertices u1, . . . , uk are such
that dT (ui) ≤ ni (for i = 1, . . . , k). But, it is well-known that in any graph, the
sum of degrees of vertices is equal to two times the number of edges and in a
tree the number of edges is equal to the number of vertices minus 1. This gives
here

∑k
i=1 dT (ui) = 2(k − 1) and we get the expected inequality. ��

Theorem 7. Let (Kn,F) and let n1, . . . , nk be the number of vertices of the k
connected components induced by the n vertices of Kn and all the edges that are
not in any forbidden transitions. If

∑k
i=1 ni ≥ 2k − 2, then (Kn,F) contains a

spanning tree that can be constructed in polynomial time.

Proof. If
∑k

i=1 ni ≥ 2k − 2, then by Lemma 2 there exists a tree TC with k
vertices u1, . . . , uk such that dTC (ui) ≤ ni. Now, replace each vertex ui by the
connected component Ci having ni vertices. For each edge of TC , between Ci
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and Cj choose a vertex u in Ci and a vertex v in Cj and connect them by an
EBC (this EBC exists since G is a complete graph). These two vertices u and v
will not be used in any other connections between components. The number of
vertices in each component is sufficient to ensure that property. Now construct in
each component Ci any tree spanning its ni vertices. The whole graph composed
of these k trees plus the selected EBC forms a spanning tree of (Kn,F). Note
that, as the proofs of Theorem 6 and Lemma 2 are constructive and polynomial,
there is a polynomial time algorithm to construct it. ��

3.2 Other Sufficient Conditions for a Polynomial Testing

In this section we study the case where each vertex is the extremity of a limited
number of forbidden transitions. We have shown in Theorem 4 that deciding
whether (Kn,F) contains an Hamiltonian Path is N P-complete. We first notice
that when each edge is in at most one conflict, it is possible to construct one
(recall that in [3] the authors proved a polynomial testing for STWC in such
graphs).

Theorem 8. Let (Kn, C) be such that the conflict graph associated with C is a
2-ladder. Then (Kn, C) contains an Hamiltonian path and it can be constructed
in polynomial time.

Proof. We construct the Hamiltonian path in (Kn, C) step by step, by adding
one by one the vertices and keeping the property that the chosen vertices form
a path in (Kn, C). We begin with any two vertices of Kn. Suppose now that we
have constructed a path in (Kn, C) with p ≥ 2 vertices, denoted by H . We denote
by a and b the two extremities of H and a′ (resp. b′) the unique neighbour of a
(resp. b) in H . Consider a vertex c outside H .

Case 1. If one of {a′a, ac} or {b′b, bc} is not a conflict, then we can add c as
a new extremity (by adding the edge ac or bc) of H that becomes a path with
p+ 1 vertices in (Kn, C).
Case 2. In the other cases, this means that {a′a, ab} is not a conflict (otherwise
the edge a′a would be involved into 2 conflicts) and similarly for {ab, bc}. One
can construct a path H ′ composed in this order of: b′, . . . , a′, a, b, c which is a
path with p+ 1 vertices in (Kn, C).

We can therefore conclude that (Kn, C) contains an Hamiltonian path. Since at
each step the construction can be done in polynomial time, an Hamiltonian path
can be constructed in polynomial time. ��

We now look at the case where each vertex is in a limited number of forbidden
transitions.

Fact 1. Let (Kn,F) be given. We suppose that each vertex is the extremity of
at most k forbidden transitions and that n ≥ k + 1. If (Kn,F) contains a tree
T with k + 1 vertices, then one can extend it to a spanning tree of (Kn,F) in
polynomial time.
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Proof. If n = k + 1 then T is already a spanning tree of (Kn,F). If n > k + 1,
consider a vertex u of Kn outside T . As u is the extremity of at most k forbidden
transitions and as T contains k + 1 vertices, T contains a vertex v which is
the centre of no forbidden transitions of extremity u. One can complete T by
connecting u to v. This induces no forbidden transitions in this new tree that
now has k+2 vertices. We do the same process with this new tree containing k+2
vertices, etc. At each step one can connect any vertex outside the current tree to
this tree by adding no forbidden transitions. One can continue until obtaining a
spanning tree. If the initial T is given, then completing it into a spanning tree
can be done in polynomial time. ��

Fact 2. Let k be a fixed positive integer. There is a polynomial time algorithm
that constructs in (G,F) a tree with k+1 vertices if and only if there exists one.

Proof. We apply here a brute force method: Generate all the subsets with k+1
vertices; Each subset induces a graph with k+1 vertices; Test in each such graph
all the possible spanning trees. When one such tree without forbidden transitions
is found, stop and return it. If none is found, this means that there is no such
tree (since the process is exhaustive).

Generating all the subsets with k + 1 vertices can be done in O(nk+1). We
generate all the trees with k + 1 vertices in such induced subgraphs. There are
at most (k+1)k−1 trees (this is a well-known result, see [2]). Each such tree can
be generated and tested in polynomial time. But, as k is a constant, (k + 1)k−1

is also a constant. The whole process is a polynomial time algorithm able to
construct a required tree if and only if there exists one. ��

Theorem 9. Let k be a fixed positive integer. Let (Kn,F) be given. If each ver-
tex of Kn is the extremity of at most k forbidden transitions, then in polynomial
time one can decide whether there exists a spanning tree in (Kn,F) and, in this
case, construct one in polynomial time.

Proof. If Kn contains at most k + 1 vertices, then the technique used in the
proof of Fact 2 shows that one can determine and construct in polynomial time
a spanning tree in (Kn,F) if and only if there exists one. Let us consider now
the case where Kn contains more than k + 1 vertices.

Suppose that the algorithm in the proof of Fact 2 constructs a tree T . Thanks
to Fact 1 one can extend it into a spanning tree of (Kn,F). Both operations are
done in polynomial time.

Suppose now the opposite, that is the algorithm in Fact 2 constructs no tree.
In this case, (Kn,F) contains no spanning tree. Indeed, if it contains one, T ,
then one can easily extract from T a tree on k + 1 vertices, without forbidden
transitions. This is in contradiction with Fact 2. ��

We notice that it is challenging to reduce the time complexity of the procedure
in Fact 2 from O(nk+1) to O(f(k) · nc) for some constant c not depending in
k and n. One just notices that a naive local search from a given vertex that
maximises at each step the number of neighbours of the current vertex will not
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work since one can reduce the problem of finding a maximum clique in a graph
to a such local search.

Theorem 10. Let k be a fixed positive integer and let (Kn,F) be given. If each
vertex of Kn is the extremity of at most k forbidden transitions and if n ≥ 2k+1,
then (Kn,F) necessarily contains a spanning tree that can be constructed in
polynomial time.

Proof. The global idea is the following: First construct a tree T without forbid-
den transitions on k + 1 vertices in polynomial time and then use Fact 1 with
this tree T to extend it and finish the proof.

If u is a vertex of Kn we denote by Ext(u) the set of vertices of Kn which are
centres of a forbidden transition having u as an extremity. Hence, by hypothesis,
for all u, |Ext(u)| ≤ k.

Let us construct T by selecting first its vertices. Take any vertex u1. Take any
vertex u2 �= u1 which is not in Ext(u1) : u2 �∈ Ext(u1) ∪ {u1}, etc., take ui+1

a vertex not already taken and not in Ext(ui) ; ui+1 �∈ Ext(ui) ∪ {u1, . . . , ui},
etc. until obtaining a vertex uk+1. One can always choose at each step a new
vertex ui+1 because ui+1 is any vertex outside the set Ext(ui)∪{u1, . . . , ui} but
|{u1, . . . , ui}| ≤ k and |Ext(ui)| ≤ k; as n ≥ 2k+1, ui+1 can always be selected.

The tree T is then the path u1, u2, . . . , uk+1 spanning the selected vertices.
The only transitions in T are of the form {ui−1ui, uiui+1}. But such a transi-
tion is not forbidden since ui+1 was selected outside Ext(ui) (if the transition
{ui−1ui, uiui+1} is forbidden, this means that ui+1 would have been the extrem-
ity of a forbidden transition with centre ui, which is not the case by construction).

The path/tree T contains no forbidden transitions and has k + 1 vertices.
This tree T always exists and can be constructed in polynomial time. We end
the construction of the spanning tree by using the polynomial time constructing
process of Fact 1 while T is given here. ��

3.3 Simplification of (G, C)
We describe a process to simplify an instance (G, C) (if it is possible) by sup-
pressing edges and conflicts to obtain a new (reduced) instance (Gf , Cf ) in which
there is a spanning tree if and only if there is a spanning tree in (G, C). (Gf , Cf)
is constructed iteratively, step by step. Let G0 = G and C0 = C. For each i, we
let Hi be the subgraph of Gi composed of all the vertices of G and only edges
that are not involved in a conflict in Ci and let Si be the set of edges of Gi

that are in a conflict of Ci and whose two extremities are in the same connected
component of Hi. The shape of the algorithm is in Fig. 1.

As at each step some edges are removed, the algorithm terminates and is
polynomial. We denote by (Gf , Cf) its final result. The graph Gf contains all
the vertices of the initial graph G and a subset of its edges. Moreover Cf ⊆ C.

Theorem 11. (G, C) contains a spanning tree if and only if (Gf , Cf ) contains
a spanning tree.
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i = 1;

while (Si−1 	= ∅) do
let Gi be obtained from Gi−1 by deleting edges in Si−1;

let Ci be obtained from Ci−1 by removing conflicts involving at least an edge inSi−1;

i = i+ 1;

endwhile

return (Gi−1, Ci−1);

Fig. 1. Simplification of (G, C)

Proof. If (Gf , Cf ) contains a spanning tree T , then T is also a spanning tree of
(G, C). Indeed, T covers all the vertices of G and it contains no conflicts of C.
Otherwise, assume that two edges e and e′ T are in conflict in C. As {e, e′} /∈ Cf ,
this means that the conflict was eliminated during the construction of (Gf , Cf).
However the algorithm removes a conflict only if one of its edges is removed.
Hence e and e′ cannot be both in Gf ; Contradiction.

Consider now a spanning tree T of (G, C). This tree T covers all the vertices of
G. Let us denote by C1, . . . , Ck the k connected components of Gf in which all
the edges that are in at least one conflict of Cf are removed. Let uv be any edge
of T that has its two extremities into two different such connected components.
Let us show that the edge uv is in Gf . If not, this means that it was removed
at some step in the construction of (Gf , Cf ), say step i and the two vertices u
and v are in a same connected component of Hi since the algorithm deletes an
edge involved in a conflict only if its two extremities are in a same connected
component ofHi. However, the algorithm guarantees that an edge in a connected
component of Hi will be always kept in the remaining steps j > i. So the edge
uv is an edge in Gf .

Let IC be the set of edges of T that are in Gf and have their two extremities
between two connected components C1, . . . , Ck. Consider now the graph G′ com-
posed of all the vertices of G and of all the edges of IC and all the edges of the
connected components C1, . . . , Ck. This graph is clearly connected. Moreover, it
contains no conflicts of Cf . Indeed, let us consider any pair e and e′ of edges of G′.

Case 1. There exist Ci and Cj such that e ∈ Ci and e′ ∈ Cj (we may have
i = j). By construction this means that they are not involved in a conflict of Cf .
Case 2. e and e′ are both in IC . As IC is a set of edges of a tree without conflicts
in C, edges e and e′ do not form a conflict in Cf ⊆ C.
Case 3. One edge, say e, is in a connected component and the other one, e′, is
in IC . As e is in a connected component, by construction it is not involved in a
conflict of Cf .

It is then easy to construct any spanning tree of G′ (with a BFS for example)
that is a spanning tree in (Gf , Cf ). ��
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If (G, C) is given, let G(C) be the graph containing all the vertices of G but only
the edges that are not involved in a conflict of C.

Corollary 1. If Gf (Cf ) is connected, then (G, C) contains a spanning tree.

It is easy to give instances (G, C) in which G(C) is not connected while Gf (Cf ) is
connected and thus contains a trivial solution (any spanning tree). This simplifi-
cation process leads to transform some instances that seem to be too complicated
to solve but that are in fact trivial.
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Momège, Benjamin 343

Nagamochi, Hiroshi 96
Ni, Guanqun 121
Ning, Li 42

Pal, Arindam 84
Perez, Anthony 306
Popa, Alexandru 62
Pouly, Amaury 169

Qiao, Youming 224

Rezapour, Mohsen 72

Salinger, Alejandro 193
Seki, Shinnosuke 156
Son, Wanbin 52
Stephan, Frank 144
Su, Bing 121
Sun, Xiaoming 224
Suzuki, Akira 248

Takebe, Hirotoshi 294
Tanaka, Keisuke 294
Teutsch, Jason 144

Uchizawa, Kei 248
Ueckerdt, Torsten 108



356 Author Index

van ’t Hof, Pim 331

Wang, Wei 144
Wirth, Anthony 260
Wu, Hongfeng 282

Xiao, Mingyu 96
Xu, Yinfeng 121

Yang, Yue 144
Ye, Deshi 1
Yu, Wei 272

Zhang, Guochuan 1, 272
Zhou, Xiao 248
Zhu, Daming 236
Zimand, Marius 205


	Cover
	Title
	Preface
	Organization
	Table of Contents
	Online Scheduling on a CPU-GPU Cluster
	Introduction
	Preliminary
	Lower Bound for Online Algorithms
	The Balanced Case
	The One-Sided Case
	The General Case
	References

	Throughput Maximization for Speed-Scalingwith Agreeable Deadlines
	Introduction
	Related Works and Our Contribution

	Preliminaries
	Properties of the Optimal Schedule
	Agreeable Deadlines
	Special Case When r=0
	Agreeable Deadlines
	Weighted Version

	Future Work
	References

	Temperature Aware Online Algorithmsfor Minimizing Flow Time
	Introduction
	Bounded Maximum Job Heat
	Lower Bounds
	Non-idling Algorithms

	Increased Temperature Threshold
	Lower Bounds
	Hottest First Is 1-Competitive
	Non-idling Algorithms

	The Offline Case
	Inapproximability
	Identical Release Times

	References

	Priority Queues and Sorting for Read-Only Data
	Introduction
	Memory-Adjustable Priority Queues
	Sorting
	Concluding Remarks
	References

	(1 +E)-Distance Oracles for Vertex-Labeled Planar Graphs
	Introduction
	Related Work
	Simple Solution for Doubling Metrics
	Our Contribution

	Preliminaries
	A (1+)-VLDO with O(1lognlog) Query Time
	Preprocessing and Query Algorithm
	O(1) Time to Identify C+ (C-) When = O(logn)
	Label Changes

	References

	Group Nearest Neighbor Queries in the L1 Plane
	Introduction
	Observations on the Sum-of-Distance Function
	The Set of Points Minimizing sumdistQ
	Properties of Cells of G(Q)

	Algorithm
	Detecting Events in a Cell

	Group Farthest Neighbor Queries
	Concluding Remarks
	References

	Modelling the Power SupplyNetwork – Hardness and Approximation
	Introduction
	Preliminaries
	Graph Partitioning with Supply and Demand
	A 2-Approximation Algorithm for Graphs with One Supply Vertex
	An Approximation Algorithm for General Graphs
	Hardness of the GPSD problem

	Inapproximability of the ED Problem
	Conclusions and Open Problems
	References

	Approximation Algorithms for a Combined Facility Location Buy-at-Bulk Network DesignProblem
	Introduction
	Approximating BBConFL
	Approximating Single-Cable-ConFL
	References

	k-means++ under Approximation Stability
	Introduction
	Proof of Theorems 1 and 2
	Small Cluster
	Proof of Theorems 3 and 4
	References

	An Exact Algorithm for TSP in Degree-3 Graphs via Circuit Procedure and Amortizationon Connectivity Structure
	Introduction
	Preliminaries
	Branch-and-search Algorithms
	Reduction Operations
	Algorithms Based on Circuit Procedures
	Circuit Procedure
	The Algorithm

	Analysis
	Amortization on Connectivity Structures
	Decrease of Measure after Reduction Operations
	Decrease of Measure after Circuit Procedures
	Branch Vectors of Branching on Circuits

	Concluding Remarks
	References

	Non-crossing Connectors in the Plane
	Introduction
	The Non-crossing Connectors Problem
	Pseudo-disks
	Polynomially Decidable Cases
	NP-Completeness
	Conclusion
	References

	Minimax Regret 1-Sink Location Problemsin Dynamic Path Networks
	Introduction
	Preliminaries
	Definition
	Properties

	Algorithm
	References

	A Notion of a Computational Stepfor Partial Combinatory Algebras
	Introduction
	Partial Combinatory Algebras
	Other Approaches to Abstract Algorithmic Computations
	Outline of the Extended Abstract

	Preliminaries
	Examples

	Step Algebras
	Complete Step Algebras and PCAs
	Future Work
	References

	Selection by Recursively Enumerable Sets
	Introduction
	Selection and -r.e. Sets
	Selection and 
	Selection and Martin-Löf Random Sets in General
	Conclusion
	References

	On the Boundedness Property of Semilinear Sets
	Introduction
	Preliminaries
	Bounded Generators
	Boundedness of Stateless Generatorsand Head-Synchronization of Multitape NFAs
	Boundedness of a Semilinear Set
	Appendix
	References

	Turing Machines Can Be Efficiently Simulatedby the General Purpose Analog Computer
	Introduction
	Preliminaries
	Notation
	Computational Complexity Measures for the GPAC
	Main Result

	The Construction
	Helper Functions
	Polynomial Interpolation
	Turing Machines — Assumptions
	Simulation of Turing Machines — Step 1: Capturingthe Transition Function
	Simulation of Turing Machines — Step 2: Iterating Functions with Differential Equations
	Simulation of Turing Machines — Step 3: Putting All Pieces Together

	References

	Computing with and without Arbitrary LargeNumbers
	Introduction
	Models without Division
	Errata on Simon:RAMwvarious
	Our New Construction
	Incorporating Arbitrary Numbers

	Models with Division
	References

	On the Sublinear Processor Gapfor Parallel Architectures
	Introduction
	Overview of Arguments
	Exposition
	Limited Parallelism
	Natural Constraints
	Write Conflicts
	Processor Communication Network
	Buffer Overflow
	Divide-and-Conquer Algorithms
	Cache Imposed Bounds
	The Class E(p(n))
	Parallelism in Turing Machine Simulations
	Amdahl's Law

	Conclusions
	References

	On Efficient Constructions of Short ListsContaining Mostly Ramsey Graphs
	Introduction
	The Hardness Assumption
	Proofs
	Additional Remarks
	Constructing a Single Ramsey Graph from a List of Graphsof Which the Majority Are Ramsey Graphs
	Constructive Lower Bounds for the van der Waerden Theorem

	References

	On Martin-L¨of Convergence of Solomonoff’sMixture
	Introduction
	Notation
	Almost Sure Convergence
	Martin-Löf Convergence
	Summary
	References

	Any Monotone Property of 3-UniformHypergraphs Is Weakly Evasive
	Introduction
	The Anderaa-Rosenberg-Karp Conjecture
	The Evasiveness Conjecture
	The Weak Evasiveness Conjecture
	Our Results on the Weak EC

	Preliminaries
	Rivest-Vuillemin: Combinatorial Approach
	Kahn-Saks-Sturtevant: Topological Approach
	Prime-Partition via Vinogradov's Theorem

	3-Uniform Hypergraphs: n=3k
	Our Choice of the Graph Family: Cliques with Spikes
	Two Types of Edges
	Adding Type 1 Edges
	Adding Type 2 Edges
	Deriving a Contradiction

	3-Uniform Hypergraphs: General n
	Prime-Partition of n via Vinogradov's Theorem
	Patching Up 3k Case to General n
	Two Types of Edges
	Adding Type A Edges
	Adding Type B Edges
	Deriving a Contradiction

	4-Uniform 4-Partite Hypergraphs
	Adding Edges in A1A2A3A4
	Adding Edges in B1A2A3A4
	Adding Edges in V1B2A3A4

	Conclusion
	References

	The Algorithm for the Two-Sided ScaffoldFilling Problem
	Introduction
	Preliminaries
	A Polynomial Time Algorithm for the Special Case
	A 1.5-Approximation Algorithm
	Premises
	A Better Lower Bound
	Description of the Algorithm
	Proof of the Approximation Factor

	Concluding Remarks
	References

	Energy-Efficient Threshold Circuits DetectingGlobal Pattern in 1-Dimentional Arrays
	Introduction
	Preliminaries
	Energy-Efficient Circuits of Bounded Size
	Circuits of Energy One
	Conclusions
	References

	Resolving Rooted Triplet Inconsistencyby Dissolving Multigraphs
	Introduction
	New Results
	Related Topics

	Definitions
	Multigraph Representation
	Weighted Edges

	MinRTI Is Label Cover-hard
	Simple Graph Case

	On Simple Trees, MinDG Is in P
	On Multi-edge Paths, MinDG Is in P
	Wrapping Up
	References

	Obnoxious Facility Game with a BoundedService Range
	Introduction
	Previous Results
	Our Contribution

	Preliminaries
	Deterministic Mechanisms
	Randomized Mechanisms
	 Concluding Remarks
	References

	Efficient Self-pairing on Ordinary Elliptic Curves
	Introduction
	Preliminaries
	Tate and Weil Pairing
	Weil Pairing with Automorphism
	Self Pairing

	Self Pairing Functions of Lower Degrees
	Applications
	Self-pairing on y2=x3+ax
	Self-pairing on y2=x3+b

	Conclusion
	References

	Grey-Box Public-Key Steganography
	Introduction
	Background
	Related Work
	Our Contribution

	Preliminaries
	Public-Key Encryption
	Channels
	Public-Key Steganography

	Our Scheme
	Related Algorithms
	Our Construction

	Security Proofs
	References

	Linear Vertex-kernels for Several DenseRanking r-Constraint Satisfaction Problems
	Introduction
	Preliminaries
	Simple Characterization and Sunflower
	Simple Characterization of Several Ranking r-CSPs
	3-Dense Betweenness (BIT)
	r-Dense Betweenness (r 4)
	r-Dense Transitive Feedback Arc Set (r-DTFAS)
	r-Dense Feedback Arc Set (r-DFAS)

	References

	On Parameterized and Kernelization Algorithmsfor the Hierarchical Clustering Problem
	Introduction
	Cutting Lemmas and Hierarchical Clustering
	A Kernel of Size 2k
	An Improved Parameterized Algorithm
	References

	Vector Connectivity in Graphs
	Introduction and Motivation
	Definitions and Notation
	A Polynomial-Time Approximation Algorithm
	A Polynomial-Time Algorithm for Split Graphs
	A Polynomial-Time Algorithm for Cographs
	A Polynomial-Time Algorithm for Trees
	Concluding Remarks
	References

	Trees in Graphs with Conflict Edgesor Forbidden Transitions
	Introduction
	Hardness Results
	NP-Hardness of STWFT, HPWFT and HCWFT
	Inapproximability of MTWFT

	Constructive Results in Complete Graphs
	A Sufficient Condition to Contain a STWFT
	Other Sufficient Conditions for a Polynomial Testing
	Simplification of (G,C)

	References

	Author Index



