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Abstract. Let M be a bridgeless matroid on ground set {1, . . . , n} and
fM : {0, 1}n → {0, 1} be the indicator function of its independent sets. A
folklore fact is that fM is evasive, i.e., D(fM) = n where D(f) denotes
the deterministic decision tree complexity of f. Here we prove query
complexity lower bounds for fM in three stronger query models: (a)
D⊕(fM) = Ω(n), where D⊕(f) denotes the parity decision tree com-
plexity of f ; (b) R(fM) = Ω(n/ log n), where R(f) denotes the bounded
error randomized decision tree complexity of f ; and (c) Q(fM) = Ω(

√
n),

where Q(f) denotes the bounded error quantum query complexity of f.

To prove (a) we propose a method to lower bound the sparsity of
a Boolean function by upper bounding its partition size. Our method
yields a new application of a somewhat surprising result of Gopalan et
al. [11] that connects the sparsity to the granularity of the function.

As another application of our method, we confirm the Log-rank Con-
jecture for XOR functions [27], up to a poly-logarithmic factor, for a fairly
large class of AC0- XOR functions.

To prove (b) and (c) we relate the ear decomposition of matroids to
the critical inputs of appropriate tribe functions and then use the existing
randomized and quantum lower bounds for these functions.

Keywords: (parity, randomized, quantum) decision tree complexity,
matroids, Fourier spectrum, read-once formulae, AC0.

1 Introduction

1.1 Decision Tree Models

The decision tree or querymodel of computing is perhaps one of the simplest mod-
els of computation. Due to its fundamental nature, it has been extensively studied
over last few decades; yet it remains far from being completely understood.
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Fix a Boolean function f : {0, 1}n → {0, 1}. A deterministic decision tree Df

for f takes x = (x1, . . . , xn) as an input and determines the value of f(x1, . . . , xn)
using queries of the form “ is xi = 1? ”. Let C(Df , x) denote the cost of the
computation, that is the number of queries made by Df on input x. The deter-
ministic decision tree complexity of f is defined asD(f) = minDf

maxx C(Df , x).
A bounded error randomized decision tree Rf is a probability distribution over
all deterministic decision trees such that for every input, the expected error of the
algorithm is bounded by some fixed constant less than 1/2. The cost C(Rf , x)
is the highest possible number of queries made by Rf on x, and the bounded
error randomized decision tree complexity of f is R(f) = minRf

maxxC(Rf , x).
A bounded error quantum decision tree Qf is a sequence of unitary operators,
some of which depends on the input string. Broadly speaking, the cost C(Qf , x)
is the number of unitary operators (quantum queries) which depend on x. The
bounded error quantum query complexity of f is Q(f) = minQf

maxx C(Qf , x),
where the minimum is taken over all quantum decision trees computing f . For a
more precise definition we refer the reader to the excellent survey by Buhrman
and de Wolf [8].

A natural theme in the study of decision trees is to understand and exploit the
structure within f in order to prove strong lower bounds on its query complexity.
A classic example is the study of non-trivial monotone graph properties. In the
deterministic case it is known [23] that any such f of n vertex graphs has
complexity Ω(n2), and a famous conjecture [15] asserts that it is evasive, that
is of maximal complexity, D(f) =

(
n
2

)
. In the randomized case the best lower

bound (up to some polylogarithmic factor) is Ω(n4/3), and it is widely believed
that in fact R(f) = Ω(n2). In both models of computation, the structure that
makes the complexity high is monotonicity and symmetry.

In this paper we study the decision tree complexity of another structured
class, called matroidal Boolean functions, which arise from matroids. They form
a subclass of monotone Boolean functions. These are the indicator functions of
the independent sets of matroids. The matroidal Boolean functions inherit the
rich combinatorial structure from matroids. Naturally, one may ask: what effect
does this structure have on the decision tree complexity? It is a folklore fact that
(modulo some degeneracies) such functions are evasive. Our main results in this
paper are query complexity lower bounds for such functions in three stronger
query models, namely: parity decision trees, bounded error randomized decision
trees, and bounded error quantum decision trees. We give here a brief overview
of the relatively less known model of parity decision trees.

A parity decision tree may query “ is
∑

i∈S xi ≡ 1 (mod 2)? ” for an arbitrary
subset S ⊆ [n]. We call such queries parity queries. For a parity decision tree Pf

for f, let C(Pf , x) denote the number of parity queries made by Pf on input x.
The parity decision tree complexity of f is

D⊕(f) = minPf
maxx C(Pf , x).

Note that D⊕(f) ≤ D(f) as “ is xi = 1? ” can be treated as a parity query.
Parity decision trees were introduced by Kushilevitz and Mansour [18] in the

context of learning Boolean functions by estimating their Fourier coefficients.
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The sparsity of a Boolean function f , denoted by ||f̂ ||0, is the number of its
non-zero Fourier coefficients. It turns out that the logarithm of the sparsity is
a lower bound on D⊕(f) [18,24,20]. Thus having a small depth parity decision
tree implies only small number of Fourier coefficients to estimate.

Parity decision trees came into light recently in an entirely different context,
namely in investigations of the communication complexity of XOR functions. Shi
and Zhang [24] and Montanaro and Osborne [20] have observed that the deter-
ministic communication complexity DC(f⊕) of computing f(x⊕y), when x and
y are distributed between the two parties, is upper bounded by D⊕(f). They
have also both conjectured that for some positive constant c, every Boolean
function f satisfies D⊕(f) = O((log ||f̂ ||0)c). Settling this conjecture in affir-
mative would confirm the famous Log-rank Conjecture in the important special
case of XOR functions. Montanaro and Osborne [20] showed that for a monotone

Boolean function D⊕(f) = O((log ||f̂ ||0)2), and conjectured that actually c = 1.

1.2 Our Results and Techniques

In this paper [n] := {1, . . . , n}. Let M be a matroid on ground set [n] and fM
be the indicator function of the independent sets of M. We refer the reader
to Section 2 for relevant definitions. We describe now our lower bounds in the
three computational model. We think that the most interesting case is the parity
decision tree model since it brings together quite a few ideas.

Fourier Spectrum of Matroids Is Dense

Our main technical result is that the Fourier spectrum of matroidal Boolean
functions is dense.

Theorem 1. If M is a bridgeless matroid on ground set [n] then

log ||f̂M||0 = Ω(n).

An immediate corollary of this result is the lower bound on the parity decision
tree complexity.

Corollary 1. If M is a bridgeless matroid on ground set [n] then

D⊕(fM) = Ω(n).

Another corollary of the theorem is that Q∗(f(x ⊕ y)), the quantum commu-
nication complexity of f(x ⊕ y) in the exact computation model with shared
entanglement is maximal. Indeed, Buhrman and de Wolf [7] have shown that,
up to a factor of 2, it is bounded from below by the logarithm of the rank of the
communication matrix f(x⊕ y). Since Shi and Zhang have proven [27] that the

rank of the communication matrix is exactly ||f̂ ||0, the corollary indeed follows
from Theorem 1.

Corollary 2. If M is a bridgeless matroid then Q∗(fM(x⊕ y)) = Ω(n).
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To prove Theorem 1 we bring together various concepts and ideas from several
not obviously related areas. The first part of our proof which relates partition
size to Fourier spectrum is actually valid for any Boolean function. Our main
ingredient is a relation (Proposition 3) stating that a small Euler characteris-
tic implies that the sparsity of the function is high, that is the number of its
non-zero Fourier coefficients is large. To prove this we use a recent result of
Gopalan et. al. [11] (originated in the context of property testing) that crucially
uses the Boolean-ness to connect the sparsity to the granularity - the smallest k
such that all Fourier coefficients are multiple od 1/2k. Our second ingredient is
to show (Lemma 2) that the Euler characteristic can be bounded by the parti-
tion size of the Boolean function. Finally to make this strategy work, we need to
choose an appropriate restriction of the function so that the Euler characteristic
of the restriction is non-zero.

When the rank of the matroid is small, the proof of Theorem 1 is in fact
relatively easy. To conclude the proof when the rank is large we use a powerful
theorem of Björner [4] which bounds the partition size of a matroidal Boolean
function by the number of maximum independent sets.

In fact, the same method can be used to lower bound the sparsity of another
large subclass of (not necessarily monotone) Boolean functions, namely the AC0

functions. Hence for such functions parity queries can be simulated by ordinary
ones only with a polynomial factor loss. The formal statement, analogous to
Theorem 1 is the following:

Theorem 2. If f : {0, 1}n → {0, 1} has a circuit of depth d and size m then

log ||f̂ ||0 = Ω(deg(f)/(logm+ d log d)d−1).

We would like to point out that the upper bound on the partition size for the
class of AC0 functions is highly non-trivial result(cf. [13]), whose proof relies
crucially on the Switching Lemma.

Theorems 2 has an interesting corollary that the Log-rank conjecture holds for
AC0 XOR-functions. Indeed, as we have explained already, whenever D⊕(f) =
O((log ||f̂ ||0)c), the Log-rank conjecture holds for f⊕. Obviously D⊕(f) ≤ D(f),
and its is known [21] that D(f) = deg(f)O(1). Therefore we have

Corollary 3. Let Mf be the communication matrix of f⊕. If f : {0, 1}n →
{0, 1} is in AC0 then

DC(f⊕) ≤ (log rk(Mf ))
O(1).

This means that in exact model [7] quantum and classical communication com-
plexity of AC0- XOR functions are polynomially related.

Randomized and Quantum Query Complexity

We obtain a nearly optimal lower bound on the randomized query complexity
of matroids.

Theorem 3. If M is a bridgeless matroid on ground set [n] then
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R(fM) = Ω(n/ logn).

It is widely conjectured that for every total Boolean function f , the relation
D(f) = O(Q(f)2) holds (Conjecture 1 in [1]). Barnum and Saks (Theorem 2 in
[1]) confirm this conjecture for AND-OR read-once formulae, and we are able to
extend their result to read-once formulae over matroids.

Theorem 4. If f : {0, 1}n → {0, 1} is a read-once formula over matroids then

Q(f) = Ω(
√
n).

Our simple but crucial observation for proving lower bounds for randomized and
quantum query complexity is that for any matroidal Boolean function f, one can
associate, via the ear decomposition of matroids, a tribe function g such that f
matches with g on all critical inputs. The lower bounds then follow from the
partition bound for tribe functions obtained by Jain and Klauck [14] and the
adversary bound for AND-OR read-once formulae by Barnum and Saks [1]. Our
main contribution here is observing that certain lower bound methods for tribe
functions generalize for the larger class of matroidal Boolean functions.

2 Preliminaries

2.1 Matroids and Matroidal Boolean Functions

Definition 1 (Matroid). Let E be a finite set. A collection M ⊆ 2E is called
a matroid if it satisfies the following properties:
(1) (non-emptiness) ∅ ∈ M;
(2) (hereditary property) if A ∈ M and B ⊆ A then B ∈ M;
(3) (augmentation property) if A,B ∈ M and |A| > |B| then there exists x ∈
A\B such that x ∪B ∈ M.

We call E the ground set of M. The members of M are called independent sets
of M. If A /∈ M then A is called dependent with respect to M. A circuit in M is
a minimal dependent set. For A ⊆ E, the rank of A with respect to M is defined
as follows:

rk(A,M) := max{|B| | B ⊆ A and B ∈ M}.
The rank or dimension of M, denoted by rk(M), is defined to be the rank of E
with respect to M.

A matroid M on ground set E can be identified with a Boolean function
fM : {0, 1}|E| → {0, 1} as follows: first identify x ∈ {0, 1}|E| with a subset
S(x) := {e ∈ E | xe = 1} of E; now let fM(x) := 0 ⇐⇒ S(x) ∈ M.

A function f : {0, 1}n → {0, 1} is said to be monotone increasing if:

(∀x, y ∈ {0, 1}n)(x ≤ y =⇒ f(x) ≤ f(y)),

where x ≤ y if for every i ∈ [n] := {1, . . . , n} we have xi ≤ yi. The hereditary
property of M translates to fM being monotone.
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We call a Boolean function f matroidal if there exists a matroid M such that
f ≡ fM. Examples: AND, OR, MAJORITY, ∨k

i=1 ∧�
i=1 xij .

An element e ∈ E is called a bridge in M if e does not belong to any circuit of
M. If e is a bridge in M then the corresponding variable xe of fM is irrelevant,
i.e., the function fM does not depend on the value of xe. Thus, for the purpose
of query complexity, we can delete all the bridges and focus our attention on
bridgeless matroids.

Ear Decomposition of Bridgeless Matroids

Let M be a matroid on ground set E. Let T ⊆ E. The contraction of M by T,
denoted by M/T , is a matroid on the ground set E − T defined as follows:

M/T := {A ⊆ E − T | rk(A ∪ T,M) = |A|+ rk(T,M)}.
Definition 2 (Ear Decomposition [26]). A sequence (C1, . . . , Ck) of circuits
of M is called an ear decomposition of M if:
(1) Li := Ci −

⋃
j<i Cj is non-empty and

(2) Li is a circuit in M/
⋃

j<i Cj .

For i = 1, . . . , k, the sets Li are called lobes. An ear decomposition is complete
if

⋃k
i=1 Li = E. Every bridgeless matroid admits a complete ear decomposi-

tion [10]. We identify complete ear decompositions with their lobe partition

E =
⋃k

i=1 Li. For our randomized and quantum lower bounds we will crucially
use the following proposition

Proposition 1. Let M be a bridgeless matroid on ground set E and let E =⋃k
i=1 Li be a complete ear decomposition of M. Let e1, . . . , ek ∈ E such that

ei ∈ Li and L′
i := Li−{ei}. Then

⋃k
i=1 L

′
i is a maximum independent set of M.

2.2 Read-Once Formulae

Let F be a family of Boolean functions. A read-once formula over F is a Boolean
function represented by a rooted tree whose internal nodes are labeled by mem-
bers of F , and whose leaves are labelled by distinct variables. The inputs to each
function are the outputs of its children.

If F = {∧n,∨n : n ∈ N} then we get the (unbounded fan-in) AND-OR read-

once formulae. Given a complete ear decomposition
⋃k

i=1 Li = E of a matroid,

we associate to it the AND-OR read-once formula g =
∨k

i=1

∧
e∈Li

xe. Such
functions (OR’s of AND’s) are also called tribe functions.

Definition 3 (Critical Inputs of AND-OR Read-once Formulae). An
input is critical for an AND-OR read-once formula if for every AND gate at
most one child evaluates to 0 and for every OR gate at most one child evaluates
to 1.
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2.3 Fourier Spectrum of Boolean Functions

Every Boolean function f : {0, 1}n → {0, 1} can be uniquely represented by a
real multilinear polynomial: f(x1, . . . , xn) =

∑
S⊆[n] βS

∏
i∈S xi. Moreover, the

coefficients βS are integers. The polynomial degree of f is deg(f) := max{|S| |
βS �= 0}. The degree over F2 of f is deg⊕(f) := max{|S| | βS �= 0 mod 2}. The
Euler Characteristic of f is χ(f) :=

∑
x∈{0,1}n(−1)|x|f(x), where |x| denotes the

number of 1’s in x. One can obtain the following expression for β[n] (cf. [2]):

β[n] =
∑

T⊆[n]

(−1)n−|T |f(T ) = (−1)nχ(f). (1)

Fourier Spectrum

Let f± : {−1, 1}n → {−1, 1} be obtained from f as follows: f±(z1, . . . , zn) := 1−
2f(1−z1

2 , . . . , 1−zn
2 ). Let f± : {−1, 1}n → {−1, 1} be represented by the following

polynomial with real coefficients: f±(z1, . . . , zn) =
∑

S⊆[n] f̂(S)
∏

i∈S zi. The

above polynomial is unique and it is called the Fourier expansion of f. The f̂(S)
are called the Fourier coefficients of f. Note that:

f̂([n]) =
(−1)n−1β[n]

2n−1
=

χ(f)

2n−1
. (2)

The sparsity of a Boolean function f is ||f̂ ||0 := |{S | f̂(S) �= 0}|. The granularity
of a Boolean function is the smallest non-negative integer k such that each of its
Fourier coefficients is an integer multiple of 1/2k.

3 Parity Decision Tree Complexity

In this section we prove Theorem 1. The following lemma which lower bounds
the parity decision tree complexity by the sparsity is our starting point.

Lemma 1 (Shi and Zhang [27], Montanaro and Osborne [20]).

D⊕(f) = Ω(log ||f̂ ||0).

The proof distinguishes two cases, according to the size of the rank of the ma-
troid. In the first case, when the rank is small, the only property of matroidal
Boolean functions we use is monotonicity. In the second case, when the rank is
large,we proceed in two distinct steps as explained in the Introduction. Firstly
we show that if the partition size of the function is small then its sparsity is
high, a fact which is valid for any Boolean function. Secondly, in order to upper
bound the partition size, we use partitionability, a strong topological property
of matroids.
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3.1 The Small Rank Case

A Boolean function f is said to be sensitive on ith bit of input x = (x1, . . . , xn)
if f(x1, . . . , xi−1, 1 − xi, xi+1, . . . , xn) �= f(x). The sensitivity of f on input x,
denoted by s(f, x) is the number of sensitive bits of f on x. The sensitivity of a
Boolean function f, denoted by s(f) is maxx s(f, x).

Proposition 2. If M is a matroid of rank r on ground set [n] then

log ||f̂M||0 ≥ n− r.

Proof. It is easy to see that s(fM) ≥ n−r if M is a matroid of rank r on ground

set [n]. In [3]) it is shown that for any Boolean function f we have log ||f̂ ||0 ≥
deg⊕(f). In [20] it is proven that for monotone f we also have deg⊕(f) ≥ s(f).

3.2 The Large Rank Case

Small Euler Characteristic Implies High Sparsity

Theorem 5 (Gopalan et. al., Theorem 12 in [11] ). If the sparsity of a
Boolean function is s then its granularity is at most �log s� − 1.

Proposition 3. If f : {0, 1}n → {0, 1} such that χ(f) �= 0 then

log ||f̂ ||0 = Ω(n− log |χ(f)|).

Proof. If f̂([n]) �= 0 then the granularity of f is Ω(log(1/|f̂([n])|)). From Equa-

tion 2 we know that f̂([n]) = χ(f)/2n−1. Together with Theorem 5 this gives
the desired lower bound on the sparsity.

Euler Characteristic Is Upper Bounded by Partition Size

Definition 4 (Sub-cube Partition). A Boolean sub-cube of the Boolean cube
{0, 1}n is an interval [x, y] := {z | x ≤ z ≤ y}, where x, y ∈ {0, 1}n. The sub-
cube partition size of f, denoted by P (f) is the smallest integer such that f−1(1)
can be partitioned into P (f) disjoint Boolean sub-cubes.

Lemma 2. For any Boolean function f, we have |χ(f)| ≤ P (f).

Proof. First note that no x ∈ f−1(0) contributes to χ(f). Let C be a sub-cube in
the partition of f−1(1) into P (f) parts. We can identify C with a partial Boolean
assignment C that assigns 0 or 1 value to a subset SC ⊆ [n] variables. Note that
this partial Boolean assignment certifies that the value of f is 1 on the entire C,
i.e., on any extension of C. If |SC | < n then:

|{x ∈ C | |x| ≡ 0 (mod 2)}| = |{x ∈ C | |x| ≡ 1 (mod 2)}|.
Therefore, the only C’s that contributes to χ(f) have |SC | = n and hence |C| = 1.
In effect, such a C contributes ±1 to χ(f).
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Upper Bounding the Euler Characteristic of Matroids

Definition 5 (Partitionable Boolean Functions, cf. [16]). A monotone
decreasing Boolean function f is said to be partitionable if for every input A ∈
f−1(1) with maximal number of 1s, we can associate φ(A) ∈ f−1(1) such that
the [φ(A), A] partition f−1(1).

Theorem 6 (Björner [4]). If M is a matroid then ¬fM is partitionable.

Lemma 3. If matroid M has N maximum independent sets then |χ(fM)| ≤ N.

Proof. From Theorem 6 we know that ¬fM is partitionable. Thus for every
maximum independent set A of M one can associate an independent set φ(A) ⊆
A such that [φ(A), A] form a partition of M. Since each [φ(A), A] is a Boolean
sub-cube, we get a sub-cube partition of ¬fM with at most N parts. Now the
lemma follows from Lemma 2 and from the fact that |χ(f)| = |χ(¬f)|.

3.3 Putting Things Together

In order to use Proposition 3 we need to show that the Euler characteristic of
bridgeless matroids is non-zero.

Proposition 4. If M is a bridgeless matroid then we have χ(fM) �= 0.

Proof. We prove by induction on the cardinality of the ground set of bridgeless
matroids that |χ(M)| �= 0. For every matroid M on ground set E and for every
e ∈ E, by definition M − {e} is the matroid whose ground set is E \ {e} and
whose independent sets are those of M not containing e. An element e ∈ E is
called loop if {e} is a circuit in M.

The inductive step distinguishes two cases. If there is a loop e ∈ E then it is
easy to check that |χ(fM)| = |χ(fM−{e})|. If there is a non-loop element e ∈ E
then we denote by Ce the collection of the circuits of M that contain e. Kook
shows that |χ(fM)| satisfies the following recurrence (Theorem 1 in Kook [17]) :

|χ(fM)| =
∑

C∈Ce

|χ(fM/C)|.

Note that the operations contracting a cycle and deleting a loop both preserve
the bridgelessness and reduce the cardinality of the ground set by at least one.

The only base case, under the assumption of bridgelessness, is a matroid on
ground set {e} where {e} is a circuit. It is easy to see that χ �= 0 in this case.

We can now give the proof of Theorem 1.

Proof. Let r be the rank of M and N be the number of maximum independent
sets of M. If n − r ≥ 2n

3 then the lower bound follows from Proposition 2. If
n− r < 2n

3 then:

|χ(f)| ≤ N ≤
(
n

r

)
=

(
n

n− r

)
≤ 2H(1/3)n,
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where |χ(f)| ≤ N follows from Lemma 3, and N ≤ (
n
r

)
follows from the fact

that every maximal independent set of a matroid has the same cardinality. The
last inequality uses the assumption: n−r < 2

3n. The H there denotes the binary
entropy function: H(ε) = −ε log ε − (1 − ε) log(1 − ε). Since H(1/3) < 1, the
theorem follows from Proposition 3 and Proposition 4.

Remark A. Since intersection of two intervals is again an interval, the partition
size of the intersection of two matroid can be upper bounded when the rank of
either of the matroid is small. Hence our proof goes through for the indicator
functions of intersection of two matroids.

Remark B. The tribe function
∨√

n
i=1

∧√
n

j=1 xij shows that Theorem 1 does not

hold by replacing log ||f̂ ||0 with s(f). We do not know if it holds with deg⊕(f).

4 Randomized Query Complexity

Let M be a bridgeless matroid on ground set [n] with a complete ear decompo-
sition [n] = ∪r

i=1Li. First we do some preprocessing. For 0 ≤ t ≤ logn, let

Et :=
⋃

i:2t≤|Li|<2t+1

Li.

Choose an index t0 such that |Et0 | ≥ n/ logn. Let f ′ be a restriction of fM
obtained by fixing the variables outside Et0 as follows: For each Li � Et0 , fix
some ei ∈ Li and set xei = 0, and for e ∈ Li − {ei} set xe = 1. Furthermore for
each Li ⊆ Et0 , fix arbitrarily all but 2t0 variables in Li and set their values to 1.

We re-label the indices so that L1, . . . , Lk ⊆ Et0 and Lk+1, . . . , Lr � Et0 . This
allows us to index the variables of f ′ by xij for i ∈ [k] and j ∈ [�], where � = 2t0

and xij is the jth among the � unrestricted variables in Li. Thus f
′ is a function

on k × � variables where and k × � ≥ n/(2 logn).

g :=

k∨

i=1

�∧

j=1

xij .

Lemma 4. If f is a monotone increasing Boolean function on k × � variables
that matches with g on all the critical inputs then

R(f) = Ω(k × �).

Jain and Klauck prove the above Lemma for the case k = � (Theorem 4 in

[14]). An adaptation of their proof (Appendix ?? ) gives the general case. From
Proposition 1 we have:

Lemma 5. The function f ′ matches with g on all critical inputs.

Theorem 3 is an immediate consequence of Lemma 4 and Lemma 5.
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5 Quantum Query Complexity

Let M be a bridgeless matroid on ground set [n] with a complete ear decompo-
sition [n] = ∪k

i=1Li, and let g be the tribe function associated with it.

Lemma 6 (Barnum and Saks, Theorem 2 in [1]). If f is a Boolean function
on n variables that matches with g on all the critical inputs then: Q(f) = Ω(

√
n).

From Proposition 1 we have:

Lemma 7. The function fM matches with g on all critical inputs.

Theorem 7. If M is a bridgeless matroid on ground set [n] then:

Q(fM) = Ω(
√
n).

Theorem 4 is an extension of the above theorem to read-once formulae over the
family of matroidal Boolean function. Its proof is deferred to Appendix ?? .

An Upper Bound

The following theorem follows along the lines of Theorem 11 in Childs and

Kothari [9] (Appendix ?? ).

Theorem 8. If M is a matroid of rank r on ground set [n] then

Q(fM) = O(
√
rn).
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