
Linear Time Distributed Swap Edge Algorithms�

Ajoy K. Datta1, Lawrence L. Larmore1, Linda Pagli2, and Giuseppe Prencipe2

1 Dept. of Comp. Sc., Univ. of Nevada
{ajoy.datta,lawrence.larmore}@unlv.edu

2 Dipartimento di Informatica, Università di Pisa
{pagli,prencipe}@di.unipi.it

Abstract. In this paper, we consider the all best swap edges problem in
a distributed environment. We are given a 2-edge connected positively
weighted networkX, where all communication is routed through a rooted
spanning tree T of X. If one tree edge e = {x, y} fails, the communica-
tion network will be disconnected. However, since X is 2-edge connected,
communication can be restored by replacing e by non-tree edge e′, called
a swap edge of e, whose ends lie in different components of T − e. Of
all possible swap edges of e, we would like to choose the best, as defined
by the application. The all best swap edges problem is to identify the
best swap edge for every tree edge, so that in case of any edge failure,
the best swap edge can be activated quickly. There are solutions to this
problem for a number of cases in the literature. A major concern for
all these solutions is to minimize the number of messages. However, es-
pecially in fault-transient environments, time is a crucial factor. In this
paper we present a novel technique that addresses this problem from a
time perspective; in fact, we present a distributed solution that works in
linear time with respect to the height h of T for a number of different
criteria, while retaining the optimal number of messages. To the best of
our knowledge, all previous solutions solve the problem in O(h2) time in
the cases we consider.

1 Introduction and Preliminaries

For a communication network, low cost and high reliability can be conflicting
goals. For example, a spanning tree of a network could have minimum cost, but
will not survive even a single link failure. We consider the problem of restoring
connectivity when one link of a spanning tree fails.

One recent technique, particularly efficient in case of transient faults, consists
in pre-computing a replacement spanning tree for each possible link or node
failure, by computing the best replacement edge (or edges) which reconnects
the tree. A number of studies have been done for this problem, both for the
sequential [1–6] and distributed [7–10] models of computation, for different types
of spanning trees and failures.

� This work has been partially supported byMIUR of Italy under projects ARS techno-
media and AlgoDEEP prot. 2008TFBWL4.

P.G. Spirakis and M. Serna (Eds.): CIAC 2013, LNCS 7878, pp. 122–133, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Linear Time Distributed Swap Edge Algorithms 123

In this paper, we consider the all best swap edges problem in the distributed
setting. We are given a positively weighted 2-edge connected network X of pro-
cesses, where w(x, y) denotes the weight of any edge {x, y} of X , together with
a spanning tree T of X , rooted at a process r. Suppose that all communica-
tion between processes is routed through T . If one tree edge e = {x, p(x)} fails
(where p(x) denotes the parent of x in T ) we say that x is the point of failure.
Since X is 2-edge connected, communication can be restored by replacing e by
an edge e′ of X whose ends lie in different components of T − e. We call such
an edge e′ a swap edge of x (or a swap edge of e), and we define SwapEdges(x)
(or SwapEdges(e)) to be the set of all swap edges of x (refer to the example
depicted in Figure 1.(b) and (c)). Of all possible swap edges of x, we would like
to choose the best, as defined by the application. The all best swap edges problem
is to identify the best swap edge for every tree edge, so that in case of any edge
failure, the best replacement edge can be activated quickly.

Notation. Given T a spanning tree of X , we refer to an edge of T as a tree edge,
and any other edge of X as a cross edge (see also Figure 1.(a)).

If x �= r is a process, we denote the set of children of x by Chldrn(x), and
the subtree of T rooted at x by Tx; the level of a process x is defined to be the
hop-distance from x to r. We write x ≤ y or y ≥ x to indicate that x is an
ancestor of y, i.e., y ∈ Tx, and x < y or y > x if x is a proper ancestor of y.

If S is any subgraph of X , we let pathS(x, y) denote the shortest (least weight)
path through S from x to y, and let WS(x, y) denote the weighted length of
pathS(x, y). (We write simply path(x, y) and W (x, y) if S is understood.)

We will denote by T ∗ the augmented tree, whose nodes consist of all processes
of T , together with a node for each directed cross edge of T , which we call an
augmentation node of T ∗. (See Figure 1.(d).) In particular, if {y, y′} is a cross
edge in T , we will denote by [y, y′] and [y′, y] its corresponding nodes in T ∗;
the parent of [y, y′] is y. For any process x, define T ∗

x to be the subtree of the
augmented tree rooted at x; in particular, T ∗

x consists of Tx together with all
the augmentation nodes [y, y′] such that y ∈ Tx.

Related Work and Our Contribution. In [2, 9], several different criteria for defin-
ing the “best” swap edge for a tree edge e have been considered. In each case,
the best swap edge for e is that swap edge e′ for which some penalty function
F is minimized. We consider three penalty functions in this paper. In each case,
let T ′ = T − e+ e′ be the spanning tree of X obtained by deleting e and adding
e′, where e = {x, p(x)} is a tree edge, y ∈ Tx, and e′ = {y, y′} a swap edge for e.

1. Fwght(x, y, y
′) = w(e′), the weight of the swap edge. Note that if T is a

minimum spanning tree of X and e′ is that swap edge for e such that w(e′)
is minimum, then T ′ = T − e + e′ is a minimum spanning tree of X − e.

2. Fdist(x, y, y
′) = WT ′(r, x), the distance from the root to the point of failure

in T ′.
3. Fmax(x, y, y

′) = max {WT ′(r, u) : u ∈ Tx}, the maximum distance, in T ′,
from the root to any process in Tx.



124 A.K. Datta et al.

p(y)

r

x

z

z’

u

u’

v

w

w’

v’

p(x)

y

(a)

p(x)

r

x

z

z’

u

u’

v

w

w’

v’

(b)

p(y)

r

z

z’

u

u’

v

w

w’

y

v’

(c)

w’

r

x

z’

u

u’

v

w

v’

p(x)

y

p(y)
z

[w,w’]

[z’,z]

[z,z’]

[w’,w]

[u’,u]

[u,u’]

[v’,v]

[v,v’]

(d)

Fig. 1. (a) An example of a network X and its spanning tree T : Tree edges are bold,
cross edges are dotted. (b) Failure at x. {u, u′}, {v, v′}, and {w,w′} are the swap edges
of x. (c) Failure at y. {v, v′}, {w,w′}, and {z, z′} are the swap edges of y. (d) The
augmented tree of T ; the augmentation nodes are double circled.

If F is any of the above penalty functions, we define F (x, y, y′) = ∞ for any
{y, y′} which is not a swap edge of x. The output of the problem is thenMF (x) =
min {F (x, y, y′) : (y, y′) ∈ T ∗

x}.
In [7], Flocchini et al. give an algorithm for solving the Fdist version of all

best swap edge problem. In [9], Flocchini et al. give a general algorithm for the
all best swap edges problem, and then give specific versions of the technique for
the Fmax version. In [8], the Fwght version is solved both for the failure of a link
and for the failure of a node and all its incident links.

All the above mentioned distributed solutions have the same general form, and
have message complexity O(n∗), with n∗ the number of edges of the transitive
closure of Tr \{r}. The time complexity of each is O(h2), where h is the height of
T . In particular, each of those solutions consists of two waves for each level � of T ,
with 1 ≤ � ≤ h: A broadcast wave followed by a convergecast wave. In particular,
the general schema of previous solutions consists of two nested loops, where the
outer loop is indexed by �, and for each �, the inner loop computes MF (x) for all
x at level � using two waves; a top-down wave that computes F (x, y, y′) for all
(y, y′) ∈ T ∗

x , and a bottom-up wave that computesMF (x). Each wave takes O(h)
time in the worst case, hence the overall strategy leads to a final cost in time of
O(h2). This is mainly due to the fact that the waves needs to be executed one
after the other. In this paper we present a novel technique that finds a solution
in linear time, for each of the penalty functions listed above. In particular, our
strategy distributes the information and the computation among processes so
that the waves can be pipelined. This reduces the final time of the execution to
O(h), using the same number of messages as the previous solutions.

As a final remark, we note that in [2], Gfeller et al. study the problem of
finding the optimal swap edges of a minimum spanning tree having minimum
diameter: They provide a distributed algorithm that already works in linear
time. The general technique presented here can be also adapted to this case.



Linear Time Distributed Swap Edge Algorithms 125

The paper is organized as follows. The overall structure of our paradigm is
given in Section 2. The various phases are described in Sections 3, 4, and 5. Due
to space constraints, some of the proofs are given in the appendix.

2 The Linear Time Solution

In this section, we present the strategy that allows to devise O(h)-time dis-
tributed algorithms to solve the five versions of the all best swap edges prob-
lem introduced in the previous section. We call these algorithms LINEARdist,
LINEARwght, LINEARmax, respectively. Each can be considered to be a ver-
sion of a general algorithm, which we call LINEAR, whose structure is given
as Algorithm 1. LINEAR is structured in phases; the actual number of phases
depends on the specific version of the problem. However, in all cases, the number
of phases is at least three: a preprocessing phase, a ranking phase, and an opti-
mization phase. In the last optimization phase, a piece of information, denoted
by up package(y, �), is computed in a convergecast wave. The content of this
package is different for each of the versions of the problem (details in Section 5).

Algorithm 1. LINEAR

1: Preprocessing Phase
2: Ranking Phase
3: If LINEARmax Then Additional Critical Level Phase(s)
4: Optimization Phase

Each of the phases of LINEAR uses at most O(δx) space for each x, where δx

is the degree of x. The space complexity of LINEAR is thus O(δx) for each x.
Our linear time algorithms make use of the concept of critical level. Infor-

mally, a critical level function is a function that can be computed top-down,
which enables another function – whose computation would otherwise require
independent top-down followed by bottom-up waves for all processes – to be
computed in a single bottom-up wave for each process, thus allowing the waves
to be pipelined. In particular, for each of the versions of the best swap edge
problem we consider, one or more critical levels are computed, depending on the
specific penalty function. Due to space constraints, all the proofs will be omitted.

The Role of Critical Levels. A critical level function is a function Λ on the aug-
mentation nodes of T ∗ such that 0 ≤ Λ(y, y′) ≤ y.level , and which aids in the
computation of F (x, y, y′) for any x ≤ y. More specifically, the computation of
F (x, y, y′) contains a branch which depends on the comparison between x.level
and Λ(y, y′). For example, the function rank , defined in Section 4, has the prop-
erty that F (x, y, y′) = ∞ if and only if rank(y, y′) ≥ x.level , where F is any one
of the penalty functions defined above.



126 A.K. Datta et al.

3 Preprocessing Phase

In the preprocessing phase, which takes O(h) time, each process x computes and
retains a set of variables, some of which are the same as in [7, 9]. All the variables
listed below are needed for LINEARmax, but only level , index , and depth are
needed for LINEARwght and LINEARdist.

1. x.level , the level of x, which is the hop-distance from r to x.
2. x.index = (x.pre index , x.post index ), the index of x, where x.pre index is

the index of x in the pre-order visit of T , and x.post index is the index of x
in the reverse postorder of T (see Figure 2(a)).

3. x.depth = W (r, x), the depth of x.
4. x.height = max {W (x, u) : u ∈ Tx}, the height of x.
5. x.best child , the best child of x, defined to be the process y ∈ Chldrn(x) such

that w(x, y) + y.height > w(x, z) + z.height for any other child z of x. Note
that, since we use a strict inequality in this definition, a process can have at
most one best child. If Chldrn(x) = ∅, or if there is more than one choice of
y for which w(x, y) + y.height is maximum, best child (x) is undefined.

6. x.eta, for x �= r, the largest weight of any path in Tp(x) − Tx from p(x);
that is, x.eta = max {w(p(x), y) + y.height : y �= x and y ∈ Chldrn(p(x))}.
If x is the only child of its parent, then x.eta defaults to 0.

7. x.secondary height , the length of the longest path which does not contain
x.best child from x to any leaf of Tx. In the case that x.best child is undefined,
let x.secondary height = x.height .

Note that all of the above variables can be computed with a constant number of
broadcast and convergecast waves, in O(h) total time.

4 Ranking Phase

The ranking phase is the same for all versions of the best swap edge problem.
In this phase, we compute the rank of every cross edge {y, y′}, defined to be the
level of the nearest common ancestor of y and y′ in T . This value is stored by
both y and y′. Ranks are used to distinguish swap edges of x from other cross
edges in T ∗

x .

Remark 1.
(a) A process x is an ancestor of y if and only if x.index ≤ y.index .
(b) If [y, y′] ∈ T ∗

x , then {y, y′} ∈ SwapEdges(x) if and only if x.index �≤ y′.index .

From the previous remark, it follows that:

Remark 2. Let x �= r be a process and e′ = {z, z′} a cross edge, where z ∈ Tx.
Then, e′ is a swap edge for x if and only if rank(z, z′) < x.level .

The ranking phase is given as Algorithm 2. In particular, there is a main loop
that cycles over the levels of the tree in increasing order. The phase consists of



Linear Time Distributed Swap Edge Algorithms 127

(1,1)

(8,2)

(9,5)

(11,9)

(12,10)

(13,7)

(14,8)

(15,3)

(16,4)
(4,15)

(5,16)

(3,12)

(2,11)

(6,13)

(7,14)

(10,6)

(a)

0

2

4

5

3

1

444

5

0

0

0

0

1

1
1

2

3

3

32
3

0

0
2

13

2

1

(b)

Fig. 2. (a) Processes are labeled with their indices. A process x is an ancestor of y if
and only if x.index ≤ y.index . (b) Levels of processes and ranks of cross edges.

Algorithm 2. Ranking Phase: Rank of every Cross Edge of T is Computed

1: For 0 ≤ � ≤ h in increasing order Do %Wave �%
2: For all y such that y.level ≥ � in top-down order Do
3: If y.level = � Then ancestor index (y, �)← y.index
4: Else ancestor index (y, �)← ancestor index (p(y), �)
5: For all cross edges {y, y′} Do
6: If y′.index �≥ ancestor index(y, �) Then rank(y, y′)← �

a top-down wave for each 0 ≤ � ≤ h, denoted by Wave �. For each �, the inner
loop computes, for each process y whose level is greater than or equal to �, the
value ancestor index (y, �), which is x.index where x is the ancestor of y at level
�. Then, for each [y, y′] ∈ T ∗

x , the value � is assigned to rank(y, y′) if y′ �∈ Tx,
i.e., y′.index �≥ ancestor index (y.�) (refer to Remark 1).

The inner loop is executed as a top-down wave; hence the waves can be
pipelined, so that the total time of the ranking phase is O(h).

Lemma 1. If rank(y, y′) = �, then, for all �′ ≤ �, the computed value of
rank(y, y′) will be set to �′ during Wave �′ of Algorithm 2 and thus the final
computed value of rank(y, y′) will be �.

5 Optimization Phase

The optimization phase is implemented as a bottom-up wave for each level �.
(Refer to Algorithm 1.) In this phase, all best swap edges are computed. In
particular, the phase consists of an outer loop, indexed by decreasing values of
1 ≤ � ≤ h, where each iteration consists of an inner loop which computes MF (x)
for all x at level �. For each x such that x.level = �, the inner loop consists of



128 A.K. Datta et al.

a convergecast wave, which computes a set of variables we call up package(y, �)
for each y ∈ Tx; each process y is able to compute up package(y, �) by using the
information computed and stored at y during the earlier phases, as well as the
contents of up package(z, �) received from all z ∈ Chldrn(y). The final value of
MF (x) is then computed using up package(x, �). To save space, each up-package
is deleted as soon as it is no longer needed. The convergecast waves can be
pipelined, and thus the entire optimization phase can be executed in O(h) time.

The specific content of up package(y, �) depends on the specific version of
LINEAR that is solved.

5.1 LINEARwght and LINEARdist

For each � ≥ 1 and each y ∈ T at level ≥ �, let x be the unique ancestor of
y at level �, and let e = {x, p(x)}. We define Swap N (y, �) to be the set of all
neighbors y′ of y such that {y, y′} is a swap edge for e. In order to compute this
set, the test established by Remark 2 is used.

For both LINEARwght and LINEARdist, up package(y, �) consists of just the
value sbtree min(y, �), defined as follows. If x is the unique ancestor of y at level
�, then

1. In LINEARwght: sbtree min(y, �) = min{w(z, z′)}, such that (z, z′) ∈ T ∗
y ∩

SwapEdges(x).
2. In LINEARdist: sbtree min(y, �) = min{W (x, z) + w(z, z′) + z′.depth}, such

that (z, z′) ∈ T ∗
y ∩ SwapEdges(x).

At the end of the iteration for �, the value of MF (x) is set to sbtree min(x, �)
for all x at level �.

The pseudo-code of the optimization phase, for the functions Fwght and Fdist

is given as Algorithm 3 and 4, respectively. In both cases, the waves of the
optimization phase are pipelined, permitting the total time complexity of the
phase to be O(h).

Concerning the number of messages of both LINEARwght and LINEARdist,
note that the information sent along the tree either in the ranking phase or in
the optimization phase, is composed of messages of constant size. In the ranking
phase, the information consists of node indices, and in the optimization phase of
“subtree minimum” values. Thus, the communication complexity, corresponding
to the transitive closure of the tree edges, is O(n∗) (limited by O(n2)) in both
cases.

5.2 LINEARmax

If S ⊆ X is connected and x ∈ S, define radius(S, x) = max {WS(x, s) : s ∈ S},
the radius of S based at s. Note that, we can write Fmax(x, y, y

′) = max{WT ′(r, u)
: u ∈ Tx} = radius(Tx, y) + w(y, y′) + y′.depth if {y, y′} ∈ SwapEdges(x). Thus,
in the case of LINEARmax we face with the problem of computing radius(Tx, y):
This computation is handled by an additional phase before the actual optimiza-
tion phase. In this phase, we compute a variable called critical level (y), for all
y ∈ Tx.



Linear Time Distributed Swap Edge Algorithms 129

Algorithm 3. Algorithm LINEARwght

1: Preprocessing phase
2: Ranking phase
3: For all 1 ≤ � ≤ h Do %Optimization Phase%
4: For all y such that y.level ≥ � in bottom-up order Do
5: Swap N (y, �)← {y′ : {y′, y} is a cross edge and rank(y, y′) < �}
6: sbtree min(y, �)← min

{
w(y, y′) : y′ ∈ Swap N (y, �)
min {sbtree min(z, �) : z ∈ Chldrn(y)}

7: For all x such that x.level = � Do
8: MF (x) = sbtree min(x, �)

Algorithm 4. Algorithm LINEARdist

1: Preprocessing phase
2: Ranking phase
3: For all 1 ≤ � ≤ h Do %Optimization Phase%
4: For all y such that y.level ≥ � in bottom-up order Do
5: Swap N (y, �)← {y′ : {y′, y} is a cross edge and rank(y, y′) < �}
6: sbtree min(y, �)← min

{
w(y, y′) + depth(y′) : y′ ∈ Swap N (y, �)
min {w(y, z) + sbtree min(z, �) : z ∈ Chldrn(y)}

7: For all x such that x.level = � Do
8: MF (x) = sbtree min(x, �)

Additional Critical Level Phase. For y ∈ Tx, define μ(y, x) to be the weight of
the longest path in Tx from y to any node of Tx − Ty. We let μ(x, x) = 0 by
default. It follows from these definitions that

radius(Tx, y) = max

{
y.height
μ(y, x)

(1)

Since we want LINEAR to use only constant space per process, y can hold
only O(δy) values; hence, it could not be possible for y to store all the values
{μ(y, x) : x ≤ y}. We tackle this problem by executing in LINEARmax an extra
phase before the optimization phase (called critical level phase in Algorithm 1).
In particular, as the convergecast wave moves up the tree, we compute the critical
level of y, that determines not the actual value of radius(Tx, y), but rather which
of the two choices given in Equation (1) is larger, together with enough additional
information to calculate the actual value of MF (x) when the wave reaches x.

We now explain critical levels in greater detail. Let

critical level (y) = min {x.level : y ∈ Tx and radius(Tx, y) = y.height}.

Note that critical level (y) = min {x.level : y ∈ Tx and μ(y, x) ≤ y.height}.
Lemma 2. For any processes x′ ≤ x ≤ y, μ(y, x′) ≥ μ(y, x).

Corollary 1. If y ∈ Tx, then radius(Tx, y) = y.height if and only if x.level ≥
critical level(y).



130 A.K. Datta et al.

Critical levels are calculated by Algorithm 5. Recall, from Section 3, that y.eta,
for y �= r, is the largest weight of any path in Tp(y) − Ty from p(y); this value is
computed during the preprocessing phase. Note that, once again, the waves of
the inner loop of Algorithm 5 can be pipelined, so that the total time required
for this phase is again O(h).

Algorithm 5. Critical Level Phase

1: For 0 ≤ � ≤ h in decreasing order Do %Wave �%
2: For all x such that x.level = � concurrently Do
3: μ(x, x)← 0
4: For all y ∈ Tx − x in top down order Do

5: μ(y, x)← max

{
μ(p(y), x) + w(y, p(y))
y.eta

6: If μ(y, x) ≤ y.height Then critical level(y)← �

Optimization Phase. Before introducing the optimization phase, we need to
introduce the notion of Spine, which is strictly related to the notion of critical
level. (Refer also to Figure 3.)

Definition 1 (Spine). Given any process x, we define the Spine of x:

Spine(x) = {y ∈ Tx : radius(Tx, y) = y.height}.

We extend this definition to a specific level � as follows: Spine(�) =
⋃{Spine(x) :

x.level = �}.
We will denote by Others(x) the nodes in Tx that are not in Spine(x) (i.e.,
Others(x) = Tx − Spine(x)), and by Others(�) =

⋃ {Others(x) : x.level = �}.
Furthermore, we define the base process of x, denoted by base(x), as the process
in Spine(x) of greatest level; again, given a specific level �, we let Base(�) =
{base(x) : x.level = �}. We define the tail process of x as tail(x) = best child
(base(x)) (note that tail(x) might be not defined), and Tail (�) = {tail (x) : x.level}
= �. Finally, we let Fan(x) = Ttail (x) and Fan(�) =

⋃ {Fan(x) : x.level = �};
if tail(x) is undefined, we let Fan(x) = ∅. We now give few properties of
Spine(x).

Lemma 3. For any process x
(a) x ∈ Spine(x).
(b) If y ∈ Spine(x) and y �= x, then p(y) ∈ Spine(x) and y = best child (p(y)).
(c) Spine(x) is a chain.

For any s ∈ S, where S is connected, let longest path(S, s) denote the simple
path of weight radius(S, s) in S starting at s. In the next lemma, we give a
characterization of longest path(Tx, y).



Linear Time Distributed Swap Edge Algorithms 131

3
3

3
4

5

3

35

5 4

5
4

4

3

base(x)

tail(x)

x

Fig. 3. Def. 1: Black (single circled) nodes are in Spine(x), while the light gray nodes
are in Others(x); base(x), tail(x) are also shown; nodes in Fan(x) are double circled

Lemma 4. Let y ∈ Tx, and let u be the process of minimum level on longest path
(Tx, y). Then, the following properties hold:
(a) u ∈ Spine(x).
(b) If y ∈ Fan(x), then longest path(Tx, y) = path(y, u) +
secondary down path(u), where “+” denotes concatenation of paths.
(c) If y /∈ Fan(x), then longest path(Tx, y) = path(y, u) + longest path(Tu, u),

Let F� be the forest given by the union of all Tx, where x.level = �. Thus,
radius(F�, y) = radius(Tx, y) if x.level = � and y ∈ Tx. The critical level of a
process y enables y to determine whether it lies in Others(�) for any given �, as
shown by the following lemma.

Lemma 5. y ∈ Spine(�) if and only if critical level(y) ≤ � ≤ y.level .

Corollary 2. Given any y such that � ≤ y.level , the following properties hold:
(a) y ∈ Others(�) if and only if critical level (y) > �.
(b) y ∈ Spine(�) if and only if critical level (y) ≤ �.
(c) y ∈ Base(�) if and only if y ∈ Spine(�), and either best child (y) ∈ Others(�),
or best child (y) is undefined.
(d) y ∈ Tail (�) if and only if p(y) ∈ Base(�) and y = best child(p(y)).

Corollary 2 is used during the optimization phase of LINEARmax to determine
the content of up package(y, �) (See Algorithms 1 and 6). In particular, the
optimization phase proceeds bottom-up in the tree, with two nested loops. Let

local cost(y, �) = min {w(y, y′) + depth(y′) : y′ ∈ Swap N (y, �)},
where Swap N (y, �) is as defined in Section 5.1.



132 A.K. Datta et al.

Algorithm 6. Algorithm LINEARmax

1: Preprocessing phase

2: Ranking phase

3: Critical Level Phase (Algorithm 5)

4: For all 1 ≤ � ≤ h Do %Optimization Phase%
5: For all y such that y.level ≥ � in bottom-up order Do

6: Swap N(y, �)← {
y′ :

{
y′, y

}
is a cross edge and rank(y, y′) < �

}

7: local cost(y, �) = min
{
w(y, y′) + depth(y′) : y′ ∈ Swap N (y, �)

}

8: If y ∈ Others(�) Then

9: min up cost(y, �)← min

{
local cost(y, �)

min {min up cost(z, �) + w(y, z) : z ∈ Chldrn(y)}
10: Else %y ∈ Spine(�)%

11: min normal cost(y, �)← min

{
local cost(y, �)

min {min up cost(z, �) + w(y, z) : z ∈ Normal Chldrn(y)}
12: If best child(y) is defined Then

13: z ← best child(y)

14: If z ∈ Spine(�) Then

15: min fan cost(y, �)← min fan cost(z, �) + w(z, y)

16: Else

17: min fan cost(y, �)← min up cost(z, �) + w(z, y)

18: sbtree min(y, �)← min

⎧
⎪⎨

⎪⎩

min normal cost(y, �) + y.height

min fan cost(y, �) + secondary height(y)

sbtree min(z, �)

19: Else %y = base(x), and tail(x) undefined%
20: min fan cost(y, �)←∞
21: sbtree min(y, �)← min normal cost(y, �) + y.height

22: For all x such that x.level = � Do

23: MF (x) = sbtree min(x, �)

If y ∈ Others(�), then radius(F�, y) is not computed going down in the tree;
hence, the only information that needs to be propagated (that is, the content of
up package(y, �)) ismin up cost(y, �) = min {local cost(z, �) +W (y, z) : z ∈ Ty},
i.e., the minimum value of W (path(y, z)) + w(z, z′) + depth(z′) over all z ∈ Ty

such that {z, z′} ∈ SwapEdges(x).
If y ∈ Spine(�), first the value of min normal cost(y, �) is computed: It is

equal to min{local cost(z, �)+W (y, z)}, such that z ∈ Ty and z /∈ Tbest child (y)
.

Then, the algorithm branches according to whether best child(y) is defined or
not. If z = best child (y) is defined, then Ty∩Fan(�) �= ∅; in this case we compute
min fan cost(y, �) = min {local cost(z, �) +W (y, z) : z ∈ Ty ∩ Fan(�)}, i.e., the
min value of W (path(y, z))+w(z, z′)+depth(z′) over all {z, z′} ∈ SwapEdges(x)
such that z ∈ Ty ∩Fan(�) (note that the algorithm computes min fan cost(y, �)
differently, according to whether z ∈ Spine(�) or not). Finally, the actual cost
of the swap edge is computed: sbtree min(y, �), which is the minimum value
of radius(Ty, z) + w(z, z′) + depth(z′) over all {z, z′} ∈ SwapEdges(x) such
that z ∈ Ty (this is the value that is propagated in up package(y, �)). By
Lemma 4, sbtree min(y, �) is the minimum between the value of sbtree min(z, �)
obtained from z, min normal cost(y, �) + y.height , and min fan cost(y, �) +
secondary height(y). If z = best child (y) is not defined, then Ty ∩ Fan(�) = ∅.



Linear Time Distributed Swap Edge Algorithms 133

In this case, min fan cost(y, �) is set to ∞, and sbtree min(y, �) is set to
min normal cost(y, �) +y.height .

When the �th wave terminates, it is possible to compute the best swap edge
for x: MF (x) = sbtree min(x, �) for all x such that x.level = �. Again, as in
the previous cases, the waves are executed in pipeline, and thus the overall time
complexity is O(h). Also, in this case, it is not difficult to see that the number
of messages used by Algorithm 6 is the same as for the quadratic time versions,
i.e., O(n∗).

Theorem 1. The overall time complexity for LINEAR is O(h).

References

1. Bilò, D., Gualà, L., Proietti, G.: Finding best swap edges minimizing the routing
cost of a spanning tree. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS,
vol. 6281, pp. 138–149. Springer, Heidelberg (2010)

2. Gfeller, B., Santoro, N., Widmayer, P.: A distributed algorithm for finding all best
swap edges of a minimum diameter spanning tree. IEEE Trans. on Dependable
and Secure Comp. 8(1), 1–12 (2011)

3. Nardelli, E., Proietti, G., Widmayer, P.: Swapping a failing edge of a single source
shortest paths tree is good and fast. Algorithmica 35(1), 56–74 (2003)

4. Nardelli, E., Proietti, G., Widmayer, P.: Nearly linear time minimum spanning tree
maintenance for transient node failures. Algorithmica 40(1), 119–132 (2004)

5. Salvo, A.D., Proietti, G.: Swapping a failing edge of a shortest paths tree by min-
imizing the stretch factor. Theoretical Computer Science 383(1), 23–33 (2007)

6. Das, S., Gfeller, B., Widmayer, P.: Computing best swaps in optimal tree spanners.
In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369,
pp. 716–727. Springer, Heidelberg (2008)

7. Flocchini, P., Enriques, A.M., Pagli, L., Prencipe, G., Santoro, N.: Point-of-failure
shortest-path rerouting: Computing the optimal swap edges distributively. IEICE
Transactions 89-D(2), 700–708 (2006)

8. Flocchini, P., Pagli, A.M.E.L., Prencipe, G., Santoro, N.: Distributed minu-
mum spanning tree maintenance for transient node failures. IEEE Trans. on
Comp. 61(3), 408–414 (2012)

9. Flocchini, P., Pagli, L., Prencipe, G., Santoro, N., Widmayer, P.: Computing all the
best swap edges distributively. J. Parallel Distrib. Comput. 68(7), 976–983 (2008)

10. Pagli, L., Prencipe, G.: Brief annoucement: Distributed swap edges computation
for minimum routing cost spanning trees. In: Abdelzaher, T., Raynal, M., Santoro,
N. (eds.) OPODIS 2009. LNCS, vol. 5923, pp. 365–371. Springer, Heidelberg (2009)


	Linear Time Distributed Swap Edge Algorithms
	1 Introduction and Preliminaries
	2 The Linear Time Solution
	3 Preprocessing Phase
	4 Ranking Phase
	5 Optimization Phase
	5.1 LINEARwght and LINEARdist
	5.2 LINEARmax

	References




