
Exponential Complexity of Satisfiability Testing

for Linear-Size Boolean Formulas

Evgeny Dantsin and Alexander Wolpert

Department of Computer Science, Roosevelt University
430 S. Michigan Av., Chicago, IL 60605, USA

{edantsin,awolpert}@roosevelt.edu

Abstract. The exponential complexity of the satisfiability problem for a
given class of Boolean circuits is defined to be the infimum of constants α
such that the problem can be solved in time poly(m) 2αn, where m is the
circuit size and n is the number of input variables [IP01]. We consider
satisfiability of linear Boolean formula over the full binary basis and we
show that the corresponding exponential complexities are “interwoven”
with those of k-CNF SAT in the following sense. For any constant c,
let fc be the exponential complexity of the satisfiability problem for
Boolean formulas of size at most cn. Similarly, let sk be the exponential
complexity of k-CNF SAT. We prove that for any c, there exists a k such
that fc ≤ sk. Since the Sparsification Lemma [IPZ01] implies that for
any k, there exists a c such that sk ≤ fc, we have supc{fc} = supk{sk}.
(In fact, we prove this equality for a larger class of linear-size circuits that
includes Boolean formulas.) Our work is partly motivated by two recent
results. The first one is about a similar “interweaving” between linear-
size circuits of constant depth and k-CNFs [SS12]. The second one is that
satisfiability of linear-size Boolean formulas can be tested exponentially
faster than in O(2n) time [San10, ST12].

1 Introduction

Assuming P �= NP, it is still unknown how to classify NP-complete problems
by their complexity. For example, is it possible to test satisfiability of 3-CNFs in
subexponential time? The conjecture known as the Exponential Time Hypothesis
(ETH) states that it is not possible [IP01]. Or, is it possible to test satisfiability
of Boolean circuits exponentially faster than using the trivial enumeration of all
assignments? Questions like these seem far away from being resolved, even though
this line of research has produced useful insights, see surveys in [DH09, PP10].

Exponential Complexity. A natural approach to the complexity classification of
problems in NP is to use the notion of exponential complexity [IP01, CP09].
In this paper, we restrict ourselves to Boolean satisfiability problems. Let C
be a class of circuits and let C SAT be the satisfiability problem for circuits
of C. The exponential complexity of C SAT is the infimum of constants α such
that there is an algorithm that solves this problem in time poly(m) 2αn, where

P.G. Spirakis and M. Serna (Eds.): CIAC 2013, LNCS 7878, pp. 110–121, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Exponential Complexity of Satisfiability Testing 111

m is the circuit size and n is the number of input variables, see Section 2 for
details. Many deep and interesting results on exponential complexity and related
questions are relevant to this paper, but due to the space limit, we mention here
only few of them, namely known results on the exponential complexity for k-
CNFs, linear-size circuits of constant depth, and linear-size Boolean formulas.
To describe these results, we use the following notation (throughout the paper,
n denotes the number of variables in a circuit):

– sk is the exponential complexity of the satisfiability problem for k-CNFs;
s∞ = supk{sk};

– rdc is the exponential complexity of the satisfiability problem for circuits of
depth at most d and size at most cn; rd∞ = supc{rdc};

– fc is the exponential complexity of the satisfiability problem for Boolean
formulas of size at most cn over the full binary basis; f∞ = supc{fc}.

In these terms, ETH is the conjecture that s3 > 0. Impagliazzo and Paturi
[IP01] proved that if ETH is true then the sequence {sk} increases infinitely
often. Using the sparsification technique, it was shown that sk remains the same
if the class of k-CNFs is restricted to k-CNFs of linear size [IPZ01]. Known upper
bounds on sk have the form 1 − c/k, where c is a constant [DH09], and it is a
challenging open question whether s∞ = 1 or s∞ < 1. The Strong Exponential
Time Hypothesis (SETH) states that s∞ = 1 [IP01, CIP09].

An upper bound on rdc was obtained in [CIP09]: this bound is strictly less than
1. How do {sk} and {rdc} relate? Santhanam and Srinivasan [SS12] answered this
question by showing that {rdc} is “interwoven” with {sk}: for any numbers c and
d, there is an integer k such that rdc ≤ sk and, similarly, in the converse direction.
Therefore, rd∞ = s∞ for any d.

How important is a constant limit on the circuit depth in such “interweav-
ing”? For example, how about Boolean formulas, a natural class of circuits of
non-constant depth? Santhanam [San10], Seto and Tamaki [ST12] showed that
satisfiability of linear-size Boolean formulas over the full binary basis can be
tested exponentially faster than in O(2n) time: fc < 1 for any constant c. This
result suggests that we could expect fc to be “interwoven” with {sk}. In this
paper, we prove this conjecture.

Our Results. It follows from the Sparsification Lemma [IPZ01] that for any
positive integer k, there is a number c such that sk ≤ fc. We prove the “converse”:
for any number c, there is an integer k such that fc ≤ sk. Therefore, f∞ = s∞.
In fact, our main result is stronger in the following two aspects.

First, instead of {fc}, we consider an analogous sequence of the exponential
complexities for linear-size circuits of a more general type than Boolean formulas,
see Section 4 for the definition of such circuits. Loosely speaking, a circuit of
this type has two properties: (1) all gates have bounded fan-in and (2) each
subcircuit has a bounded number of “border gates”, i.e., gates that have wires
to the “residual part” of the circuit. Any Boolean formula is a circuit of this
type. Another special case is the class of circuits whose underlying graphs have
bounded minimum vertex separation numbers [BFT09].

112 E. Dantsin and A. Wolpert

Second, we relate circuit satisfiability to k-CNF satisfiability using reductions
that preserve satisfying assignments. More exactly, for any ε > 0, a circuit φ
with n variables is transformed in polynomial time into a k-CNF F such that

– F has the same variables as φ plus at most εn additional variables;
– if an assignment satisfies F then its restriction to the variables of φ satisfies
φ; if an assignment satisfies φ, then it has a unique extension to the variables
of F that satisfies F .

Thus, taking all assignments to the additional variables, φ can be transformed
into an equivalent disjunction of subexponentially many k-CNFs. That is, any
Boolean function computed by a Boolean formula can be computed by a dis-
junction of subexponentially many k-CNFs.

Note that the equality f∞ = s∞ gives an equivalent statement for SETH:
f∞ = 1, see [CDL+12] for some other equivalent statements.

Organization of the Paper. The basic definitions and notation are given in Sec-
tion 2. Section 3 describes how we reduce circuits to k-CNFs. The reducibility
uses the extension rule (well known in proof complexity). Section 4 is about
graphs underlying circuits for which we prove an “interweaving” with k-CNFs.
In Section 5, we state and prove the main results.

2 Basic Definitions and Notation

Circuit Satisfiability. By a circuit we mean a single-output Boolean circuit in
its most general version [Vol99] where, in particular, every input is labeled with
either a variable or a truth value, but such a labeling is not necessarily one-to-
one: distinct inputs may be labeled with the same variable. When talking about
circuits, it will sometimes be convenient for us to use graph-theoretic terms
instead of terms standard for circuits: for example, vertices and edges instead of
nodes and wires, in-degree and out-degree instead of fan-in and fan-out, etc.

The number of nodes in a circuit φ is denoted by |φ|. The set of variables
labeling the inputs of φ is denoted by var(φ). Let A be an assignment of truth
values to the variables of φ, i.e., a mapping from var(φ) to {0, 1}. The value of
φ on A is defined in the standard way [Vol99] and is denoted by φ(A). A circuit
φ is called satisfiable if there is an assignment A such that φ(A) = 1.

Let C be a set of circuits. The satisfiability problem for C is the problem of
determining whether a circuit from C is satisfiable or not. We write C SAT to
denote the language consisting of all satisfiable circuits from C.

Exponential Complexity. Let C be a class of circuits. Following Impagliazzo and
Paturi [IP01] (see also [CP09] for details), we define the exponential complexity
of C SAT to be the infimum of constants α such that C SAT can be decided by a
two-sided error randomized algorithm in time poly(|φ|) 2αn with probability of
error < 1

3 :

exp-com(C SAT) = inf{α | C SAT ∈ BPTIME(poly(|φ|) 2αn)}.

Exponential Complexity of Satisfiability Testing 113

Note that the polynomial poly(|φ|) in this definition may depend on α.
The fact that the definition above uses randomized algorithms, not determin-

istic ones, is not so important for this paper. All of our results remain valid
if the exponential complexity of C SAT is defined as a similar measure where
randomized algorithms are replaced by deterministic algorithms:

exp-com(C SAT) = inf{α | C SAT ∈ DTIME(poly(|φ|) 2αn)}.

Boolean Formulas and CNFs. A Boolean formula is a circuit in which every gate
has fan-in at most 2 and fan-out at most 1. Gates with fan-in 2 may be labeled
with arbitrary binary Boolean functions. A literal is either a single-gate circuit
or a two-gate circuit (where the output is labeled with the negation). A clause
is either a literal or a circuit obtained from literals by adding wires from their
outputs to a new output gate labeled with the disjunction of the corresponding
arity. A conjunctive normal form (a CNF for short) is either a clause or a circuit
obtained from clauses by adding wires from their outputs to a new output gate
labeled with the conjunction of the corresponding arity. A CNF is called a k-CNF
if every disjunction in its labeling has arity at most k.

3 Extension Rule for Circuits

In this section, we define circuit transformations based on the extension rule.
This rule was introduced by Tseitin [Tse68] who used it to attain an exponen-
tial speed-up for the length of resolution proofs in propositional logic. A more
general form of the rule is well known in proof complexity in connection with
extended Frege systems, where the rule is used to abbreviate long formulas, see
e.g. [Pud98]. In this general form, the extension rule allows using formulas of
the form z ↔ F in a proof, where F is any formula and z is a new propositional
variable that appears neither in the previous part of the proof nor in the formula
to be proved.

3.1 Induced Circuits

Let φ be a circuit and G = (V,E) be its underlying directed graph. Each vertex
u ∈ V determines the directed graph Gu = (Vu, Eu) where

Vu = {u} ∪ {w ∈ V | there is a path from w to u in G};
Eu = {(v, w) ∈ E | both v and w are in Vu}.

This graph Gu is called the subgraph induced by u. A vertex v ∈ Vu is said to be
a border vertex of Gu if v has an outgoing edge incoming to a vertex outside Gu,
i.e., there is an edge (v, w) ∈ E where w ∈ V −Vu. The set of all border vertices
of Gu is called the border of Gu and is denoted by β(Gu). All other vertices in
Gu are called internal.

The above terminology and notation are extended to circuits in a natural
way: given φ and u, the subcircuit induced by u is the circuit whose underlying

114 E. Dantsin and A. Wolpert

graph is Gu and whose labeling is the same as in φ, i.e., for every vertex in Vu,
its label in φu is the same as its label in φ. Note that the labeling for φu is
defined correctly since for every vertex in Vu, its in-degree in Gu is the same
as its in-degree in G (but its out-degrees in Gu and G may be different). The
border of Gu is also referred as the border of φu and it is denoted by β(φu).

We want to “decompose” φ into two circuits: φu and a “residual” circuit
obtained from φ by “contraction” of φu into a single vertex. This “residual”
circuit and its underlying graph are denoted by φ�φu and G�Gu respectively.
They are defined as follows:

– G � Gu is obtained from G = (V,E) by removing all internal vertices of
Gu = (Vu, Eu) and removing all edges incident on these internal vertices.
Thus, every vertex in G � Gu is either a vertex from V − Vu or a border
vertex of Gu.

– If a vertex belongs to V − Vu, its label in φ� φu is the same as in φ.
– If a vertex belongs to the border of Gu, it has in-degree 0 in G�Gu. To label

such border vertices, we use new variables, not occurring in φ. Namely, let
β(Gu) = {v1, . . . , vb}. We introduce b new variables z1, . . . , zb and we label
each vertex vi with zi.

In this labeling of v1, . . . , vb, each variable zi “replaces” the subcircuit φvi in-
duced by vi in φ. To emphasize this fact, we denote the circuit φ� φu using the
standard notation for substitutions in formulas:

φ[z1/φv1 , . . . , zb/φvb]. (1)

It will be convenient for us to use either of the two notations: φ � φu, which
specifies the circuit up to names of new variables, or φ[z1/φv1 , . . . , zb/φvb], which
specifies it completely.

3.2 Circuit Transformations

The extension rule is typically used to transform a formula F into an “equivalent”
(in a special sense) formula (z ↔ S) ∧ F [z/S] where S is a subformula of F .
Here, we generalize this operation for circuits.

We begin with notation for composition of circuits, namely for circuits made
up from other circuits using the Boolean functions ↔ (equivalence) and ∧m

(m-ary conjunction). Given a circuit φ and a variable z not occurring in φ, the
circuit denoted by (z ↔ φ) is obtained from φ by adding two new vertices and
two new edges: a vertex v labeled with z, a vertex w labeled with the Boolean
function ↔, an edge from v to w, and an edge from the single output of φ to
w. Thus, w is the output of the resulting circuit z ↔ φ. Similarly, given circuits
φ1, . . . , φm, the circuit denoted by φ1 ∧ . . . ∧ φm is obtained by adding one new
vertex and m new edges. The new vertex v is labeled with ∧m. The m new edges
go from the outputs of φ1, . . . , φm to v.

Let φ be a circuit and u be a vertex in φ. Consider the subcircuit φu induced
by u, its underlying graph Gu, and the border of Gu. Let β(Gu) = {v1, . . . , vb}

Exponential Complexity of Satisfiability Testing 115

and let z1, . . . , zb be new variables not occurring in φ. We transform φ into the
circuit

(z1 ↔ φv1) ∧ . . . ∧ (zb ↔ φvb) ∧ φ[z1/φv1 , . . . , zb/φvb] (2)

and we write φ
u	→ ψ∧φ′ to denote this transformation, where ψ denotes the con-

junction of the equivalences and φ′ denotes the last conjunctive term in (2). The
following simple lemma expresses the fact that such transformations preserve
satisfiability.

Lemma 1. Suppose that φ
u	→ ψ ∧ φ′. Then φ is satisfiable if and only if ψ ∧ φ′

is satisfiable. Moreover,

– if an assignment satisfies ψ ∧ φ′, then its restriction to var (φ) satisfies φ;
– if an assignment satisfies φ, then it has a unique extension to var (ψ ∧ φ′)

that satisfies ψ ∧ φ′.
Proof. It easily follows from the definition of φ[z1/φv1 , . . . , zb/φvb] that any sat-
isfying assignment for (2) restricted to var(φ) satisfies φ. Conversely, any satis-
fying assignment A for φ can be extended to a satisfying assignment for circuit
(2) by assigning values φv1(A), . . . , φvb(A) to the variables z1, . . . , zb. Any other
extension of A falsifies some of the equivalences in (2). ��

3.3 Transformation Sequences

Our purpose is to transform a circuit into a conjunction of “small” circuits. A
natural strategy is to apply successive transformations φ

u	→ ψ ∧ φ′ where u is
chosen so that φu is a “small” subcircuit. That is, choose a vertex u1 in φ such
that φu1 is “small”, then choose a vertex u2 that induces a “small” subcircuit
in φ� φu1 , and so on. Below, we describe this approach in more precise terms.

Consider a circuit φ, a vertex u in φ, and the induced subcircuit φu. We call
φu a (b, s)-subcircuit if |β(φu)| ≤ b and |φu| ≤ s. A transformation φ

u	→ ψ ∧ φ′
is called a (b, s)-transformation if φu is a (b, s)-subcircuit.

Let u1, . . . , ul be a sequence of vertices in φ. We call it a (b, s)-transformation
sequence for φ if there exist sequences {φi}li=0 and {ψi}li=1 of circuits such that

– φ0 is the circuit φ;
– for i = 1, . . . , l,

• ui is a vertex in φi−1;

• there is (b, s)-transformation φi−1
ui	→ ψi ∧ φi;

– φl has at most s vertices.

Lemma 2. If a circuit φ has a (b, s)-transformation sequence σ of length l, then
there is a circuit χ such that

– χ is a conjunction χ1 ∧ . . . ∧ χt, where t ≤ bl+ 1;
– each circuit χi has at most s+ 2 vertices;
– var (φ) ⊆ var (χ) and |var (χ)| ≤ |var (φ)|+ bl;

116 E. Dantsin and A. Wolpert

– φ is satisfiable if and only if χ is satisfiable.

There is a polynomial-time algorithm that takes as input φ, σ and outputs a
circuit χ that has the above properties.

Proof. The required algorithm takes φ, σ as input and constructs the sequence

φ0
u1	→ ψ1 ∧ φ1, φ1

u2	→ ψ2 ∧ φ2, . . . , φl−1
ul	→ ψl ∧ φl

of (b, s)-transformations, where each ψi is a conjunction of bi equivalences of the
form (z ↔ φv). The number of such equivalences in the conjunction is equal
to the number of vertices in the border of φi in φi−1. We denote this number

by bi and we write t to denote
∑l

i=1 bi + 1. Next, the algorithm constructs the
resulting circuit χ as the t-ary conjunction of circuits χ1, . . . , χt where the first
t − 1 circuits χ1, . . . , χt−1 are equivalences of the form (z ↔ φv) and the last
circuit χt is φl. Clearly, the algorithm constructs χ in polynomial time. We show
that χ has the claimed properties.

By the definition of (b, s)-transformations, bi ≤ b for i = 1, . . . , l. Hence, we
have t ≤ bl + 1. Also, by the same definition, each circuit φv in an equivalence
(z ↔ φv) has at most s vertices. Therefore, the equivalence itself has at most s+2
vertices. Since the last circuit χt has at most s vertices, each circuit χi has at
most s+2 vertices. The number of new variables in χ is equal to the number of the
equivalences,

∑l
i=1 bi, which is at most bl. The remaining property (satisfiability

preservation) is easily proved using Lemma 1 and induction on l. ��
Corollary 1. If a circuit φ has a (b, s)-transformation sequence σ of length l,
then there is a k-CNF F such that

– k ≤ s+ 2;
– the number of clauses is at most (bl + 1)2k;
– var (φ) ⊆ var (χ) and |var (χ)| ≤ |var (φ)|+ bl;
– φ is satisfiable if and only if F is satisfiable.

There is a polynomial-time algorithm that takes as input φ, σ and outputs a
k-CNF F that has the above properties.

Proof. The circuit χ1 ∧ . . . ∧ χt from Lemma 2 is transformed into a k-CNF F
with the claimed properties as follows. Each circuit χi has at most s+ 2 inputs
and, therefore, it represents a Boolean function of at most s+ 2 variables. Any
such function can be computed by a k-CNF Fi where k ≤ s+2 and the number
of clauses is not greater than 2k. The k-CNF F is the conjunction F1 ∧ . . .∧Ft.

��
Remark 1. According to the property of preserving satisfiability in Corollary 1,
φ is satisfiable if and only if F is satisfiable. This equivalence is sufficient for
the use of the corollary in Section 5. However, it is not difficult to see that a
stronger form of this equivalence holds: each satisfying assignment for φ has a
unique extension to var (F) that satisfies F , and for each satisfying assignment
for F , its restriction to var (φ) satisfies φ (cf. Lemma 1). The same applies to φ
and χ in Lemma 2.

Exponential Complexity of Satisfiability Testing 117

4 Graphs with (b, s)-Transformation Sequences

The notion of a (b, s)-transformation sequence is defined in terms of circuits
(Section 3.3), but it is easy to see that, in fact, such sequences are determined
by underlying graphs, independently of their labeling. Here is an equivalent
definition in terms of graphs. Let φ be a circuit and G = (V,E) be its underlying
graph. Let σ be a sequence of vertices u1, . . . , ul in V . This sequence is a (b, s)-
transformation sequence for φ if and only if there exist sequences {Gi}li=0 and
{Hi}li=1 of graphs such that

– G0 is the graph G;
– for i = 1, . . . , l,

• ui is a vertex in Gi−1 and Hi is the subgraph of Gi−1 induced by ui;
• Hi has at most s vertices and the border of Hi in Gi−1 consists of at
most b vertices;

• Gi is Gi−1 �Hi;
– Gl has at most s vertices.

Since σ is a (b, s)-transformation sequence for any circuit whose underlying graph
is G, we refer to σ as a (b, s)-transformation sequence for G. In this section, we
describe a class of graphs for which (b, s)-transformation sequences can be found
in polynomial time.

The maximum in-degree in a graph G is denoted by max -in(G). The following
lemma relates the maximum in-degree of graphs to sizes of induced subgraphs.
Given a graph, does it have an induced subgraph with an “arbitrary” (in a
reasonable sense) number of vertices?

Lemma 3. Let G = (V,E) be a graph with max-in(G) ≤ b. For any integer t in
the interval b < t ≤ |V |, there is a vertex u ∈ V such that the number of vertices
of the induced subgraph Gu = (Vu, Eu) is between t and b(t− 1) + 1:

t ≤ |Vu| ≤ b(t− 1) + 1. (3)

Proof. Induction on the depth of G. The basis step (the depth is 0, i.e., G is a
single-vertex graph) is trivial. In the inductive step (the depth is positive), we
select a vertex v that has two properties:

– v has non-zero in-degree;
– the subgraph Gv induced by v has at least t vertices.

Such a vertex exists, for example the sink of G has the above properties. Let
d be the in-degree of v and let v1, . . . , vd be all in-neighbors of v. Consider the
subgraphs Gv1 , . . . , Gvd induced by v1, . . . , vd respectively and select an index k
such that Gvk has the maximum number of vertices among all these subgraphs.
Let m be this maximum, the number of vertices in Gvk .

There are only two options: either t ≤ m or t > m. If t ≤ m, then the subgraph
Gvk has a required vertex u. This follows from the inductive assumption (the
depth of Gvk is less than the depth of G) and the fact that t does not exceed

118 E. Dantsin and A. Wolpert

the number of vertices in Gvk . If t > m, then the vertex v can be taken as the
vertex u required in the claim. Indeed, we have

t ≤ the number of vertices of Gv ≤ dm+ 1 ≤ d(t− 1) + 1 ≤ b(t− 1) + 1

and, thus, inequality (3) holds. ��

For a graph G = (V,E), the maximum border size of G is defined to be the
maximum of |β(Gu)| over all u ∈ V , i.e., the maximum border size of all induced
subgraphs of G. We denote it by max -border (G).

Lemma 4. For any graph G = (V,E) with at least two vertices and for any
numbers b and s such that

max-in(G) ≤ b, max-border (G) ≤ b, 1 + b2 < s ≤ |V | (4)

there exists a (b, s)-transformation sequence σ for G whose length is at most

b |V |
s− b2 − 1

. (5)

There is a polynomial-time algorithm that takes as input G and numbers b, s
satisfying all inequalities (4), and it outputs a (b, s)-transformation sequence σ
for G with upper bound (5) on its length.

Proof. To construct a sequence σ and the corresponding sequences {Gi}li=0 and
{Hi}li=1 of graphs (defined in the beginning of this section), we make l steps.
At step i, we transform Gi−1 into Gi by “cutting off” an induced subgraph Hi

from Gi−1. A key point is that Lemma 3 can be used to find Hi such that the
number of vertices of Hi is bounded from below and from above: this number
lies between some t and s, where s given in the input and a value for t will
be chosen later. Thus, on one hand, each subgraph Hi has at most s vertices,
which is required for σ. On the other hand, when “cutting off” Hi, the number
of vertices of Gi−1 reduces by at least t − b. Hence, the total number of steps
is at most �|V |/(t − b)�. It is clear that given t, this construction of σ takes
polynomial time.

It remains to choose a value for t. By Lemma 3, for any t such that b < t ≤
|V |, there is an induced subgraph with the number of vertices between t and
b(t− 1) + 1. Therefore, an integer t must be chosen so as to satisfy

1 ≤ b < t and b(t− 1) + 1 ≤ s.

We choose t = �(s− 1)/b�, which guarantees that the second inequality above is
satisfied for any b ≥ 1 and s ≥ 1. Then the first constraint holds if b < (s− 1)/b.
Thus, σ can be constructed for any b and s satisfying (4).

The length of σ is the number l of “cutting off” steps. Bound (5) on l follows
from the fact that the number of steps does not exceed |V |/(t− b). ��

Exponential Complexity of Satisfiability Testing 119

5 Exponential Complexity

In this section, we compare the exponential complexity of the satisfiability prob-
lems for certain classes of circuits. We begin with a definition of a suitable
reducibility.

Let C1 and C2 be classes of circuits. Let C1 SAT and C2 SAT be the languages
consisting of satisfiable circuits from C1 and C2 respectively. We say that C1 SAT
is polynomial-time reducible to C2 SAT with an arbitrarily small increase in the
number of variables if for every ε > 0, there is a polynomial-time Karp reduction
from C1 SAT to C2 SAT with the following additional property: for any circuit φ
with n variables, Rε maps φ into a circuit with at most n+ εn variables:

|var(Rε(φ))| ≤ n+ εn.

Lemma 5. If C1 SAT is polynomial-time reducible to C2 SAT with an arbitrarily
small increase in the number of variables, then

exp-com(C1 SAT) ≤ exp-com(C2 SAT).

Proof. Suppose that C1 SAT is polynomial-time reducible to C2 SAT with an
arbitrarily small increase in the number of variables. Also, suppose that there is
an algorithm that solves C1 SAT in time poly(|φ|) 2αn. Then the composition of
this algorithm and the reduction gives an algorithm that solves C2 SAT in time
poly(|φ|) 2α(1+ε)n. Taking ε→ 0, we obtain the claim. ��

We consider the satisfiability problems for the following classes of circuits:

– k-CNFs. For any k ∈ N, the set of all k-CNFs is denoted by k-CNF. To
denote the exponential complexity of k-CNF SAT, we use the same notation
as in [IP01]:

sk = exp-com(k-CNF SAT) and s∞ = sup
k
{sk}.

– Linear-Size Boolean Formulas. For any number c > 0, let FORMULAc de-
note the set of all Boolean formulas φ such that the number of vertices of φ is
at most cn where n = |var(φ)|. Recall that we consider Boolean formulas over
the full basis (Section 2). The exponential complexity of FORMULAc SAT is
denoted using the following notation:

fc = exp-com(FORMULAc SAT) and f∞ = sup
c
{fc}.

– Linear-Size Circuits with Bounded fan-in and Bounded Border
Size. For any numbers b ≥ 1 and c > 0, let CIRCUITb,c denote the set of all
circuits φ such that
• any node in φ has fan-in at most b;
• the maximum border size of the graph underlying φ is at most b;
• |φ| ≤ cn where n = |var (φ)|.

120 E. Dantsin and A. Wolpert

The exponential complexity of CIRCUITb,c SAT is denoted using the following
notation:

rb,c = exp-com(CIRCUITb,c SAT) and rb,∞ = sup
c
{rb,c}.

Theorem 1. For any b ≥ 1, c > 0, there is an integer k such that rb,c ≤ sk.

Proof. Let b ≥ 1, c > 0, ε > 0 be fixed. We show that there is a polynomial-time
algorithm that takes as input a circuit φ ∈ CIRCUITb,c with n variables and
outputs a k-CNF F such that

– |var (F)| ≤ n+ εn for sufficiently large n;
– φ is satisfiable if and only if F is satisfiable.

By Lemma 5, the existence of such an algorithm implies rb,c ≤ sk.

Take s = �1 + b2 + b2c
ε �. By Lemma 4, if n ≥ s, it takes polynomial time to

construct a (b, s)-transformation sequence of length l for the graph underlying
φ such that

l ≤ b|φ|
s− b2 − 1

≤ bcn

s− b2 − 1
≤ εn

b
. (6)

Next, by Corollary 1, it takes polynomial time to transform φ into a k-CNF F
with k ≤ s + 2 and |var(F)| ≤ n+ bl such that φ is satisfiable if and only if F
is satisfiable. Using inequality (6), we have |var (F)| ≤ n+ εn. ��
Theorem 2. For any integer k ≥ 1, there is a number c such that sk ≤ fc.

Proof. It follows from the Sparsification Lemma [IPZ01] that satisfiability of
k-CNFs has the same exponential complexity as satisfiability of linear-size k-
CNFs. Since there is a trivial polynomial-time transformation of a k-CNF F
with n variables and with |F | ≤ cn into an equivalent Boolean formula φ with
the same variables and with |φ| ≤ c′n, the claim holds. ��
Theorem 3. For any b ≥ 2 and c > 0, we have fc ≤ rb,c.

Proof. For any Boolean formula φ, the maximum fan-in is at most 2 and the max-
imum border size of the underlying graph is at most 1. Therefore, any Boolean
formula φ with |φ| ≤ cn is a circuit in CIRCUIT2,c. ��
Theorem 4. For any b ≥ 2, we have s∞ = f∞ = rb,∞.

Proof. Theorem 1 implies rb,∞ ≤ s∞, Theorem 2 implies s∞ ≤ f∞, and Theo-
rem 3 implies f∞ ≤ rb,∞. ��

References

[BFT09] Bodlaender, H.L., Fellows, M.R., Thilikos, D.M.: Derivation of algorithms
for cutwidth and related graph layout parameters. Journal of Computer
and System Sciences 75(4), 231–244 (2009)

Exponential Complexity of Satisfiability Testing 121

[CDL+12] Cygan, M., Dell, H., Lokshtanov, D., Marx, D., Nederlof, J., Okamoto, Y.,
Paturi, R., Saurabh, S., Wahlström, M.: On problems as hard as CNF-Sat.
In: Proceedings of the 27th Annual IEEE Conference on Computational
Complexity, CCC 2012, pp. 74–84. IEEE Computer Society (2012)

[CIP09] Calabro, C., Impagliazzo, R., Paturi, R.: The complexity of satisfiability of
small depth circuits. In: Chen, J., Fomin, F.V. (eds.) IWPEC 2009. LNCS,
vol. 5917, pp. 75–85. Springer, Heidelberg (2009)

[CP09] Calabro, C., Paturi, R.: k-SAT is no harder than Decision-Unique-k-SAT.
In: Frid, A., Morozov, A., Rybalchenko, A.,Wagner, K.W. (eds.) CSR 2009.
LNCS, vol. 5675, pp. 59–70. Springer, Heidelberg (2009)

[DH09] Dantsin, E., Hirsch, E.A.: Worst-case upper bounds. In: Handbook of Sat-
isfiability, ch.12, pp. 403–424. IOS Press (2009)

[IP01] Impagliazzo, R., Paturi, R.: On the complexity of k-SAT. Journal of Com-
puter and System Sciences 62(2), 367–375 (2001)

[IPZ01] Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly ex-
ponential complexity. Journal of Computer and System Sciences 63(4),
512–530 (2001)

[PP10] Paturi, R., Pudlák, P.: On the complexity of circuit satisfiability. In: Pro-
ceedings of the 42nd Annual ACM Symposium on Theory of Computing,
STOC 2010, pp. 241–250. ACM (2010)

[Pud98] Pudlák, P.: The length of proofs. In: Buss, S.R. (ed.) Handbook of Proof
Theory, pp. 547–637. Elsevier (1998)

[San10] Santhanam, R.: Fighting perebor: New and improved algorithms for for-
mula and QBF satisfiability. In: Proceedings of the 51st Annual IEEE Sym-
posium on Foundations of Computer Science, FOCS 2010, pp. 183–192
(2010)

[SS12] Santhanam, R., Srinivasan, S.: On the Limits of Sparsification. In: Czumaj,
A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012, Part I.
LNCS, vol. 7391, pp. 774–785. Springer, Heidelberg (2012)

[ST12] Seto, K., Tamaki, S.: A satisfiability algorithm and average-case hardness
for formulas over the full binary basis. In: Proceedings of the 27th Annual
IEEE Conference on Computational Complexity, CCC 2012, pp. 107–116.
IEEE Computer Society (2012)

[Tse68] Tseitin, G.S.: On the complexity of derivation in propositional calculus.
In: Slisenko, A.O. (ed.) Studies in Constructive Mathematics and Math-
ematical Logic, Part II, pp. 115–125 (1968) (in Russian); Reprinted in:
Siekmann, J., Wrightson, G. (eds.): Automation of Reasoning 2: Classical
Papers on Computational Logic 1967-1970, pp. 466–483. Springer (1983)

[Vol99] Vollmer, H.: Introduction to Circuit Complexity: A Uniform Approach.
Springer (1999)

	Exponential Complexity of Satisfiability Testing
for Linear-Size Boolean Formulas
	1 Introduction
	2 Basic Definitions and Notation
	3 Extension Rule for Circuits
	3.1 Induced Circuits
	3.2 Circuit Transformations
	3.3 Transformation Sequences

	4 Graphs with (b,s)-Transformation Sequences

	5 Exponential Complexity
	References

