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Preface

This volume contains the papers presented at the 8th International Conference
on Algorithms and Complexity (CIAC 2013), which took place at the School
of Mathematics and Statistics, Universitat Politècnica de Catalunya, Barcelona,
during May 22–24, 2013. This series of conferences present research contributions
in the theory and applications of algorithms and computational complexity.

The volume contains, in alphabetical order by first author, 31 accepted pa-
pers, selected by the Program Committee from 75 submissions received.

We thank all the authors who submitted papers, the members of the Program
Committee, and the external reviewers. We gratefully acknowledge support from
Universitat Politècnica de Catalunya, its Department of Software, the ALBCOM
Research group, and the EATCS.

We would also like to thank Carme Àlvarez, Amalia Duch, and Maria Blesa
for their help in the organization tasks.

March 2013 Paul Spirakis
Maria Serna
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Approximation Algorithms for Disjoint st-Paths

with Minimum Activation Cost

Hasna Mohsen Alqahtani and Thomas Erlebach

Department of Computer Science, University of Leicester, Leicester, UK
{hmha1,t.erlebach}@leicester.ac.uk

Abstract. In network activation problems we are given a directed or
undirected graph G = (V,E) with a family {fuv (xu, xv) : (u, v) ∈ E} of
monotone non-decreasing activation functions from D2 to {0, 1}, where
D is a constant-size domain. The goal is to find activation values xv for
all v ∈ V of minimum total cost

∑
v∈V xv such that the activated set of

edges satisfies some connectivity requirements. Network activation prob-
lems generalize several problems studied in the network literature such as
power optimization problems. We devise an approximation algorithm for
the fundamental problem of finding the Minimum Activation Cost Pair
of Node-Disjoint st-Paths (MA2NDP). The algorithm achieves approxi-
mation ratio 1.5 for both directed and undirected graphs. We show that a
ρ-approximation algorithm for MA2NDP with fixed activation values for
s and t yields a ρ-approximation algorithm for the Minimum Activation
Cost Pair of Edge-Disjoint st-Paths (MA2EDP) problem. We also study
the MA2NDP and MA2EDP problems for the special case |D| = 2.

1 Introduction

In this paper we consider network activation problems. In these problems we are
given an activation network, which is a directed or undirected graph G = (V,E)
together with a family {fuv (xu, xv) : (u, v) ∈ E} of monotone non-decreasing
activation functions from D2 to {0, 1}, where D is a constant-size domain. The
activation of an edge depends on the chosen values from the domain D at its
endpoints. We say that an edge (u, v) ∈ E is activated for chosen values xu and
xv if fuv(xu, xv) = 1. An activation function is called monotone non-decreasing
if for every (u, v) ∈ E we have that fuv (xu, xv) = 1 implies fuv (yu, yv) = 1 for
any yu ≥ xu, yv ≥ xv. The goal is to determine activation values xv ∈ D for all
v ∈ V so that the total activation cost

∑
v∈V xv is minimized and the activated

set of edges satisfies some connectivity requirements. Network activation prob-
lems were introduced by Panigrahi [11]. They generalize several known problems
in wireless network design, e.g., minimum broadcast tree, installation cost opti-
mization, and power optimization. For further applications and motivation for
network activation problems we refer to [11,9].

We assume in the remainder of the paper that G is a directed graph. For the
problems under consideration, the case of undirected graphs can be modelled

P.G. Spirakis and M. Serna (Eds.): CIAC 2013, LNCS 7878, pp. 1–12, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



2 H.M. Alqahtani and T. Erlebach

by replacing each undirected edge {u, v} by two directed edges (u, v) and (v, u)
with the same activation function, i.e., fuv(xu, xv) = fvu(xv, xu).

As D is a constant-size domain, we assume that the activation functions are
specified by lookup tables. For each edge (u, v) ∈ E we can then compute in
polynomial time the minimum cost cuv = xuv

u +xuv
v , where xuv

u is the activation
value on u and xuv

v the activation value on v such that fuv(x
uv
u , xuv

v ) = 1 and
xuv
u + xuv

v is minimized.

Related Work. The core objective of most network activation problems is to ac-
tivate a network of minimum activation cost satisfying certain given connectivity
requirements. The simplest connectivity requirement is to find an st-path for a
specified pair of nodes s and t. Other examples of fundamental connectivity re-
quirements are: spanning tree, k edge-disjoint st-paths, k node-disjoint st-paths,
etc. Traditionally, these problems have been studied in a network model where
each edge (or node) has a fixed cost.

In recent years, considerable work has been done on various network activa-
tion problems such as Minimum Steiner Activation Network (MSAN), Minimum
Spanning Activation Tree (MSpAT), and Minimum Activation Flow (MAF).
The problem of activating a network with k edge/node-disjoint paths between
every pair of nodes is called Minimum Edge/Node-connected Activation Network
(MEAN/MNAN). Panigrahi [11] gives an exact polynomial-time algorithm to
solve the Minimum Activation st-Path (MAP) problem. However, he observes
that the MAF problem (activating k edge-disjoint st-paths with minimum ac-
tivation cost) is at least as hard as the �-densest subgraph problem. As shown
in [11], it is NP-hard to approximate MSpAT within a factor of o(log n). The
MSpAT problem is a special case of the MSAN, MEAN and MNAN problems.
Therefore, it is also NP-hard to approximate these problems within o(log n).
Panigrahi presents O(log n)-approximation algorithms for MSpAT, and also for
MEAN and MNAN in the case of k = 2. Nutov [9] establishes a connection be-
tween network activation problems and edge-cost network design problems and
shows that there exists a 2-approximation algorithm for the Minimum Activation
Cost k Node-Disjoint st-Paths (MAkNDP) problem and a 2k-approximation al-
gorithm for the Minimum Activation Cost k Edge-Disjoint st-Paths (MAkEDP)
problem.

Other relevant work has addressed power optimization [2,7,8]. In power opti-
mization problems, each edge (u, v) ∈ E has a threshold power requirement θuv.
In the undirected case, edge (u, v) is activated for chosen values xu and xv if
each of these values is at least θuv. In the directed case, edge (u, v) is activated
if xu ≥ θuv.

Power optimization is a special case of network activation problems. As men-
tioned in [11], in the power optimization setting the MEAN and MNAN problems
have 4-approximation and 11/3-approximation algorithms, respectively, and it
is known that the MSpAT problem is APX-hard. By a simple reduction to the
shortest st-path problem, the Minimum Power st-Path problem is solvable in
polynomial time for both directed and undirected networks [7]. Another prob-
lem that has been studied in the literature is finding the Minimum Power k



Approximation Algorithms for Disjoint st-Paths with Min Activation Cost 3

Edge-Disjoint st-Paths (MPkEDP). [6] shows that for both the directed and
undirected variants, the MPkEDP problem is unlikely to admit even a polyloga-
rithmic approximation algorithm. In contrast, the problem of finding Minimum
Power k Node-Disjoint st-Paths in directed graphs can be solved in polynomial
time [6,12].

The problem of finding node/edge disjoint st-paths with minimum cost in a
network with edge costs is a well studied problem in graph theory. Polynomial-
time algorithms have been known for decades [1,13,14]. These algorithms do not
address the problem in the network activation setting, however. In this paper,
we study the minimum activation cost pair of node/edge-disjoint st-paths prob-
lem. To the best of our knowledge, it is not yet known whether these problems
are NP-hard. A ρ-approximation algorithm for a network activation problem is
an algorithm that runs in polynomial time and always outputs a solution whose
activation cost is at most ρ times the optimal activation cost for the given in-
stance.

Our Results. We give a 1.5-approximation algorithm for the MA2NDP problem.
We also show that a ρ-approximation algorithm for the MA2NDP problem with
fixed activation values of s and t implies a ρ-approximation algorithm for the
MA2EDP problem. For the case where the domain D has size 2 and all edges
of the network have the same activation function, we prove that the MAkNDP
problem is polynomial-time solvable for four of five cases of the activation func-
tion, and that the MAkEDP problem is NP-hard.

We employ ideas and techniques from the theory of network flows in order to
establish approximation algorithms for our problems. The idea of the MA2NDP
algorithm is to first guess the optimal activation values for the nodes s and t by
enumeration. For each choice of activation values for s and t, we construct an
edge-cost network from G. We then use ideas similar to Suurballe’s algorithm
[13], with modifications in the construction of the residual graph, to find the two
node-disjoint st-paths. For the connection between the MA2NDP and MA2EDP
problems, we design an approximation algorithm for the MA2EDP problem by
using a ρ-approximation algorithm for the MA2NDP problem for every pair of
nodes in the graph and then iteratively combining disjoint paths to/from an
intermediate node into edge-disjoint paths with common nodes. We prove that
this algorithm has approximation ratio ρ. For the special case where the do-
main D has size 2 and all edges have the same activation function, we show
the NP-hardness of the MAkEDP problem by giving a reduction from the deci-
sion version of the maximum balanced complete bipartite subgraph (MaxBCBS)
problem [4].

The remainder of the paper is organized as follows. We start by presenting
our algorithm for the MA2NDP problem in Section 2. In Section 3, we establish
the connection between the MA2NDP and MA2EDP problems and obtain a 1.5-
approximation algorithm for MA2EDP. We then discuss the problem of finding
k node/edge-disjoint st-paths with minimum activation cost in the case where
|D| = 2 in Section 4. Finally, we conclude with a short section on future work
and open questions. Some proofs are omitted due to space constraints.
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2 Minimum Activation Cost Node-Disjoint st-Paths

The minimum activation k node-disjoint st-paths (MAkNDP) problem can be
stated as follows: Given an activation networkG = (V,E) and source-destination
pair s, t ∈ V , find activation values xv for all v ∈ V such that k node-disjoint st-
paths P st = {P1, P2, . . . , Pk} are activated and the total activation cost

∑
v∈V xv

is minimized. [9] gave a 2-approximation algorithm for the MAkNDP problem.
In this section we consider the special case k = 2 and give a 1.5-approximation
algorithm for the MA2NDP problem.

Let FMA2NDP denote the variant of the MA2NDP problem where values
d ∈ D and d′ ∈ D are specified as activation values of s and t, respectively, and
do not count towards the objective value. In other words, only solutions with
xs = d and xt = d′ are considered feasible for FMA2NDP, and the activation
cost of a solution is

∑
v∈V \{s,t} xv.

The MA2NDP algorithm takes as input an activation network G = (V,E)
and a source-destination pair, s, t ∈ V . Its output is a set of activation values xv

for all v ∈ V that activate a pair of node-disjoint st-paths, P st = {P1, P2}. The
algorithm enumerates all pairs d, d′ ∈ D. For each choice of d and d′, it solves the
FMA2NDP problem with the values d and d′ chosen as the activation values of s
and t, respectively. Let C(s, d, t, d′) represent the activation cost of the solution
for d, d′. In the end, the algorithm outputs the solution of minimum activation
cost among the feasible solutions obtained for all pairs of values d, d′ ∈ D, i.e.,
the solution of activation cost minxs,xt∈D{C(s, xs, t, xt)}.

The algorithm for the FMA2NDP problem with xs = d and xt = d′ is as
follows. For ease of presentation, we assume here that D = {0, 1, 2, . . . , |D| − 1}.
(The extension to arbitrary domains of constant size is straightforward.) We
let C(s, d, t, d′) represent the total activation cost of the pair of node-disjoint
activation paths P st that the algorithm finds, or ∞ if such paths do not exist.

Step 1: Construct from G an edge-weighted graph Ḡ with two nodes sd, td′ and
2|D| nodes {vin0 , vout0 , vin1 , vout1 , ...., vin|D|−1, v

out
|D|−1} for every v ∈ V \{s, t}. The

edges of Ḡ are:
– For a ∈ D and v ∈ V \ {s, t}, add a directed edge (vina , vouta ) with cost 0.
– For each (u, v) ∈ E and a, b ∈ D where u, v /∈ {s, t} and fuv (a, b) = 1,

add a directed edge (uout
a , vinb ) with cost b.

– For each (s, v) ∈ E and b ∈ D where v �= t and fsv (d, b) = 1, add a
directed edge (sd, v

in
b ) with cost b.

– For each (v, t) ∈ E and a ∈ D where v �= s and fvt (a, d
′) = 1, add a

directed edge (vouta , td′) with cost 0.
– If (s, t) ∈ E and fst (d, d

′) = 1, add a directed edge (sd, td′) with cost 0.
Step 2: Run Dijkstra’s algorithm on Ḡ to compute a shortest path P from sd to

td′ . Let C(P ) be the edge-cost of P . If Ḡ has no such path, set C(s, d, t, d′) =
∞ and skip Steps 3–5.

Step 3: Construct the residual network ḠP induced by P :
– For each v ∈ V \ {s, t} with (vina , vouta ) ∈ P for some a, add a directed

edge (voutā , vinā ) with cost 0 for all ā ∈ D with ā ≥ a.
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– For each v ∈ V \ {s, t} such that (vina , vouta ) /∈ P for all a ∈ D, add
(vina , vouta ) for all a ∈ D with cost 0.

– For each (u, v) ∈ E with (uout
a , vinb ) ∈ P for some a, b ∈ D, add a directed

edge (vin
b̄
, uout

ā ) with cost ā− a for all ā, b̄ ∈ D where ā ≥ a and b̄ ≥ b.

– For each (u, v) ∈ E with (uout
a , vinb ) /∈ P for all a, b ∈ D where v is used

in P with activation value b̄ (i.e., vin
b̄
∈ P ), add edges (uout

a′ , vinb′ ) with

cost b′ − b̄ for all a′ ∈ D, b′ ≥ b̄ such that fuv(a
′, b′) = 1 .

– For each (u, v) ∈ E with (uout
a , vinb ) /∈ P for all a, b ∈ D where v is not

used in P , add edges (uout
a′ , vinb′ ) with cost b′ for all a′, b′ ∈ D such that

fuv(a
′, b′) = 1.

– For each v ∈ V \ {t} with (s, v) ∈ E and (sd, v
in
b ) /∈ P for all b ∈ D, add

edges (s, vinb′ ) with cost b′ for all b′ ∈ D such that fsv(d, b
′) = 1.

– For each v ∈ V \ {s} with (v, t) ∈ E and (voutb , td′) /∈ P for all b ∈ D,
add edges (voutb′ , td′) with cost 0 for all b′ ∈ D such that fvt(b

′, d′) = 1.
– If (s, t) ∈ E and fst (d, d

′) = 1 and (sd, td′) /∈ P , add a directed edge
(sd, td′) with cost 0.

Step 4: Run Dijkstra’s algorithm on the residual network ḠP to identify a
shortest path P ′ from sd to td′ . Let C′(P ′) represent the edge-cost of P ′. If
no such path P ′ exists, set C(s, d, t, d′) =∞ and skip Step 5.

Step 5: Decompose P and P ′ into two node-disjoint paths, by removing from
P ∪P ′ the edge set which consists of the edges of P whose reverse edge is in
P ′, and vice versa. Let P1 and P2 be the corresponding node-disjoint paths
in G, and let C(s, d, t, d′) be the activation cost of P st = {P1, P2}. Return
C(s, d, t, d′) and P st.

Note that the auxiliary graph Ḡ constructed in Step 1 has the property that
any path Q from sd to td′ in Ḡ with edge cost C(Q) corresponds to an activated
path Q′ in G from s to t with activation cost d + C(Q) + d′, and vice versa. If
the path Q uses an edge with head vina , this corresponds to activating node v
with activation value xv = a (and the cost of the edge ‘pays’ for this activation
value). The shortest path constructed in Step 2 thus corresponds to a minimum
activation cost st-path, under the constraint that xs = d and xt = d′.

Let an instance of the FMA2NDP problem be given by a graph G = (V,E)
with designated nodes s, t ∈ V , a family F of activation functions from D2 to
{0, 1}, and values d, d′ ∈ D. Let P st = {P1, P2} be the paths found by the
FMA2NDP algorithm and let POPT = {POPT

1 , POPT
2 } be an optimum solution

for this instance. We define CALG(Q) as the activation cost of a path Q in G in
the solution generated by the algorithm and COPT (Q) as the activation cost of
a path Q in the optimum solution. The edge cost of a path Q in Ḡ is denoted
by C(Q), and the edge cost of a path Q in ḠP is denoted by C′(Q).

Lemma 1. For any xs, xt ∈ D for which there are two node-disjoint st-paths,
let ḠP be the residual network of Ḡ imposed by P (Step 3). Then there exists a
path P ′ ∈ ḠP from sd to td′ with edge-cost C′(P ′) such that:

C′(P ′) ≤ COPT (P
OPT
1 \ {s, t}) + COPT (P

OPT
2 \ {s, t}) (1)
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Proof. Let G̃ ⊂ G be the network generated by edges that belong to POPT and
the path in G that corresponds to P . Let G̃P be the (standard) residual net-
work of G̃ imposed by P . There exists a path P ∗ from s to t in G̃P . We have
COPT (P

∗) =
∑

v∈P∗ xv, where xv is the activation value of v in the optimal solu-
tion. Clearly, COPT (P

∗) is at most the total cost of the optimal solution POPT .
Consequently, COPT (P

∗)−(d+d′) ≤ COPT (P
OPT
1 \{s, t})+COPT (P

OPT
2 \{s, t}).

We want to prove that there is a path corresponding to P ∗ in ḠP with edge
cost at most COPT (P

∗)− d− d′. To prove this, one can show that for each edge
(u, v) of P ∗ there exists a corresponding edge in ḠP whose cost is bounded by
the activation value of v in POPT . As the algorithm computes a path P ′ with
minimum edge cost in ḠP , we get that C

′(P ′) ≤
∑

v∈P∗\{s,t} xv = COPT (P
∗)−

(d+ d′). 	


Theorem 1. The algorithm computes a 1.5-approximation for the FMA2NDP
problem.

Proof. Since P is an st-path of minimum activation cost, we get that the acti-
vation cost of its intermediate nodes, which is equal to its edge cost C(P ), is
bounded by

C (P ) ≤ min{COPT

(
POPT
1 \ {s, t}

)
, COPT

(
POPT
2 \ {s, t}

)
}

≤
COPT

(
POPT
1 \ {s, t}

)
+ COPT

(
POPT
2 \ {s, t}

)
2

(2)

From Step 5 in the algorithm we notice that:

CALG(P1 \ {s, t}) + CALG(P2 \ {s, t}) ≤ C(P ) + C′(P ′) (3)

From Lemma 1, (2) and (3) we get that the solution computed by the algorithm
has objective value at most 1.5 times the optimal objective value. 	


As our MA2NDP algorithm enumerates all possibilities for the activation val-
ues of s and t and outputs the solution of minimum activation cost among all
computed solutions, Theorem 1 implies the following corollary.

Corollary 1. There is a 1.5-approximation algorithm for MA2NDP.

3 Minimum Activation Cost Edge-Disjoint st-Paths

The minimum activation cost k edge-disjoint st-paths problem (MAkEDP) can
be stated as follows: Given an activation network G = (V,E) and a source-
destination pair s, t ∈ V , find activation values xv for all v ∈ V that activate
a set of k edge-disjoint st-paths P st = {P1, P2, . . . , Pk} such that the total cost∑

v∈V xv is minimized. We consider the problem for k = 2, i.e., MA2EDP.
We observe that a pair of edge-disjoint st-paths can be viewed as the con-

catenation of pairs of node-disjoint paths between consecutive common nodes of
the pair of edge-disjoint paths (see Fig. 1). This connection was used by Srinivas
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and Modiano [12] to derive a polynomial-time optimal algorithm for the special
case of MA2EDP that arises in the power optimization setting. We generalize
this method to the network activation setting and obtain the following theorem
that connects the FMA2NDP and MA2EDP problems.

Theorem 2. If there exist a ρ-approximation algorithm for FMA2NDP, then
there exists a ρ-approximation algorithm for MA2EDP.

The proof of this theorem is based on showing that the following MA2EDP
algorithm computes a pair of edge-disjoint paths of activation cost at most ρ
times the optimal activation cost. The MA2EDP algorithm takes as input an
activation network G = (V,E) and a source-destination pair, s, t ∈ V . Its output
is a pair of edge-disjoint activated st-paths, P st = {P1, P2}. The algorithm
executes a ρ-approximation algorithm for FMA2NDP for each pair of nodes in
G with specified activation values for that pair of nodes, and then iteratively
combines disjoint paths to/from an intermediate node to obtain edge-disjoint
paths. The MA2EDP algorithm can be specified via the following two steps:

Step 1: For every pair of nodes u, u′ ∈ V and every pair of activation val-
ues d, d′ ∈ D, the algorithm runs the ρ-approximation algorithm for the
FMA2NDP problem with source u, activated with xu = d, and destination
u′, activated with xu′ = d′. This produces a pair of node-disjoint activation
paths for each pair of nodes u, u′ ∈ V and specified activation values xu, xu′ .
Let P (u,xu,u

′,xu′) denote this pair of node-disjoint paths (and the correspond-
ing activation values of all nodes) and C(u, xu, u

′, xu′ ) its activation cost (or
∞, if such a pair of node-disjoint paths does not exist).

Step 2:

for each node w ∈ V :
for each xw ∈ D, each pair of nodes u, u′ ∈ V and each pair xu, xu′ ∈ D:

Combine the pairs of edge-disjoint paths P (u,xu,w,xw) and P (w,xw,u′,xu′)

into a pair of edge-disjoint paths Q(u,xu,u
′,xu′) from u to u′ and update

the cost C(u, xu, u
′, xu′) via:

C(u, xu, u
′, xu′) =

min{C(u, xu, u
′, xu′ ), C(u, xu, w, xw) + C(w, xw , u

′, xu′)− xw}

If the cost C(u, xu, u
′, xu′ ) changes by this update, set P (u,xu,u

′,xu′) to
Q(u,xu,u

′,xu′).

The final output is the activation cost minxs,xt∈D{C(s, xs, t, xt)} and the corre-
sponding pair of edge-disjoint st-paths P (s,xs,t,xt).

To show that the MA2EDP algorithm actually finds a pair of edge-disjoint
paths of activation cost at most C(s, xs, t, xt), we have the following lemma.

Lemma 2. Consider any time in the execution of the algorithm. Assume that
at that time we have C(u, xu, u

′, xu′) = T <∞. Then P (u,xu,u
′,xu′) contains two

edge-disjoint uu′-paths with activation cost at most T such that u has activation
value at least xu and u′ has activation value at least xu′ .
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•
v1

•
vn

•
t

•
s

. . . . . .

Fig. 1. A pair of edge-disjoint paths viewed as the concatenation of pairs of node-
disjoint paths

Proof (of Theorem 2). Let an instance of the MA2EDP problem be given by G =
(V,E), s, t ∈ V and a family F of activation functions. Let V = {v1, v2, . . . , vn},
where the nodes are numbered in the order in which they are processed by the
outer for-loop in Step 2. Define Ck(u, xu, v, xv) as the value of C(u, xu, v, xv) after
k ∈ {0, ..., n} iterations of the outer for-loop in Step 2 and COPT

k (u, xu, v, xv)
to be the optimal activation cost for two edge-disjoint paths from u, activated
with xu, to v, activated with xv, for which the only intermediate nodes that
are common between the paths are among {v1, . . . , vk}. Let C̄k(u, xu, v, xv) =
Ck(u, xu, v, xv)−xu−xv and C̄OPT

k (u, xu, v, xv) = COPT
k (u, xu, v, xv)−xu−xv.

By induction, we will prove that for all u, v ∈ V and xu, xv ∈ D after k iterations
the following holds:

C̄k(u, xu, v, xv) ≤ ρ C̄OPT
k (u, xu, v, xv) (4)

Induction Base: If k = 0 (there is no common intermediate node), (4) holds as
before the first iteration the algorithm uses a ρ-approximation for FMA2NDP.
Induction Step: Assume that the statement (4) holds for the case where all
common nodes between the two paths are among {v1, v2, ..., vk−1}. This means
that for all u, v ∈ V , xu, xv ∈ D after k − 1 iterations of the algorithm, we have
C̄k−1(u, xu, v, xv) ≤ ρ C̄OPT

k−1 (u, xu, v, xv).
Now consider the k-th iteration, where vk is considered as additional interme-

diate node for two edge-disjoint paths from u, activated with at least xu, to v,
activated with at least xv:

If the optimum solution for the two edge-disjoint uv-paths with common nodes
among {v1, . . . , vk} uses only nodes among {v1, v2, .., vk−1} as common nodes,
by induction hypothesis, (4) holds as C̄k(u, xu, v, xv) ≤ C̄k−1(u, xu, v, xv).

If the optimum solution for the two edge-disjoint uv-paths with common nodes
among {v1, . . . , vk} uses the node vk with activation value xvk as common node,
then we have:

C̄k(u, xu, v, xv) ≤ C̄k−1(u, xu, vk, xvk) + C̄k−1(vk, xvk , v, xv) + xvk

≤ ρ C̄OPT
k−1 (u, xu, vk, xvk) + ρ C̄OPT

k−1 (vk, xvk , v, xv) + xvk

≤ ρ
(
C̄OPT

k−1 (u, xu, vk, xvk) + C̄OPT
k−1 (vk, xvk , v, xv) + xvk

)
= ρ C̄OPT

k (u, xu, v, xv) .

This completes the proof of the theorem. 	
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From Theorem 1 and Theorem 2, we obtain the following corollary.

Corollary 2. The MA2EDP algorithm computes a 1.5-approximate solution for
the MA2EDP problem.

We remark that for the special case of power optimization, [6,12] gave an ex-
act polynomial-time algorithm for the MAkNDP problem in directed graphs.
Theorem 2 thus implies that there is an exact polynomial-time algorithm for the
directed MA2EDP problem for power optimization, as was already shown in [12].
Nutov [8] shows that for arbitrary k there exists a k-approximation algorithm
for the directed case of the MAkEDP problem.

4 Activation Networks with |D| = 2

In this section, we restrict the domain D to have size 2. This case is interesting
from a theoretical point of view because it is the smallest non-trivial case for
the size of the domain. From a practical point of view, this case corresponds to
a simple setting where nodes have just two different activation states, e.g., low
power and high power. LetD = {a, b} with a < b. Note that the cost of a solution
that activates B nodes with activation value b and |V |−B nodes with activation
value a is a|V | + B(b − a). This means that minimizing the activation cost is
equivalent to minimizing the number of nodes that have activation value b. In
the rest of this section, we assume that all edges of the activation network have
the same activation function f : D2 → {0, 1}.

4.1 Polynomial Cases of MAkNDP and MA2EDP

The following are all the different possibilities for a monotone non-decreasing
activation function f with domain D = {a, b}:

1. f(a, a) = 1
2. f(a, a) = f(a, b) = f(b, a) = 0, f(b, b) = 1
3. f(a, a) = f(a, b) = 0, f(b, a) = f(b, b) = 1
4. f(a, a) = f(b, a) = 0, f(a, b) = f(b, b) = 1
5. f(a, a) = 0, f(a, b) = f(b, a) = f(b, b) = 1

The problem MAkNDP for activation function 1 is trivial as either the solution
that activates all nodes with activation value a is optimal, or there is no feasible
solution. For activation functions 2-4, we observe that the problem of minimizing
the activation cost of node-disjoint paths from s to t is equivalent to the problem
of minimizing the number of nodes used by the paths: For activation function 2,
all nodes on all paths must be activated with value b. For activation functions 3,
all nodes on all paths except node tmust be activated with value b. For activation
function 4, all nodes on all paths except node smust be activated with value b. To
calculate the optimal solution in these cases, we first give unit cost to all edges of
the graph, compute k node-disjoint paths of minimum edge-cost using a known
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polynomial-time algorithm for the minimum cost k-flow problem (with unit edge
and node capacities), and finally activate the resulting network. Therefore, the
MAkNDP problem with activation functions 1-4 can be solved in polynomial
time for any k.

The problem with activation function 5 is polynomial-time solvable for k = 2.
Assume that the minimum number of internal nodes (nodes excluding s, t) used
by two node-disjoint paths from s to t is M ≥ 1. We activate s with value b, and
every other node on each of the two paths. If M is odd, one of the two paths
must have an odd number o of internal nodes, the other an even number e of
internal nodes, M = o+ e. In total we activate 1 + (o+ 1)/2+ e/2 = M/2+ 1.5
nodes with value b, and this is optimal and independent of o, e. If M is even,
there are two cases: If the two paths both have odd numbers of internal nodes,
say o1 and o2, we activate 2 + (o1 − 1)/2 + (o2 − 1)/2 = M/2 + 1 nodes with
value b. If the two paths both have even numbers of internal nodes, say e1 and
e2, we activate 1+ e1/2+ e2/2 = M/2+ 1 nodes with value b. In both cases the
optimal number of nodes activated with value b depends only on M . Thus, the
MA2NDP problem for activation function 5 can also be solved by minimizing
the number of nodes used by the two paths.

Note that minimizing the number of nodes used by the paths is not sufficient
for activation function 5 and k = 3. If the three node-disjoint paths have 3, 1
and 1 internal nodes, respectively, the number of nodes that must be activated
with value b is 3. If the three node-disjoint paths have 2, 2 and 1 internal nodes,
respectively, the number of nodes that must be activated with value b is 4. In
both cases the total number of nodes used by the three paths is the same, but
only one of the two cases yields a solution with optimal activation cost.

For all five activation functions, it is easy to see that FMA2NDP is also
polynomial-time solvable, and hence MA2EDP can be solved optimally in poly-
nomial time by application of Theorem 2.

4.2 Hardness of MAkEDP

Panigrahi [11] showed that the MAkEDP problem is NP-hard since it general-
izes the Node-Weighted k-Flow (NWkF) problem which is known to be NP-hard
[10]. Nutov [10] proved the inapproximability of the NWkF problem by a reduc-
tion from the bipartite densest �-subgraph problem to unit weight NWkF, and
Panigrahi [11] observed that this inapproximability result can be adapted to
MAkEDP as well. The reduction described in [10] uses parallel edges. Here,
we use a similar approach that avoids parallel edges and establishes that the
MAkEDP problem is NP-hard even in the case where |D| = 2, all edges have
the same activation function, and there are no parallel edges. This is in contrast
to the polynomial-time solvability of MAkNDP when |D| = 2 for activation func-
tions 1–4 and arbitrary k. We show the hardness of the MAkEDP problem by
giving a reduction from the decision version of the maximum balanced complete
bipartite subgraph problem, which is NP-hard (Problem GT24 in [5]).
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Fig. 2. A reduction of MaxBCBS (g=3)

Maximum Balanced Complete Bipartite Subgraph (MaxBCBS). Given a bipartite
graph G = (V1 ∪ V2, E), find a maximum balanced complete bipartite subgraph
(i.e. with the maximum number of nodes). Here, a balanced complete bipartite
subgraph H is a complete bipartite subgraph such that |H ∩ V1| = |H ∩ V2|.

In the decision version of MaxBCBS, we are additionally given a parameter g
and the question is to decide whether G contains a balanced complete bipartite
subgraph with 2g nodes (and g2 edges).

The Reduction. Let a bipartite instance of the decision version of MaxBCBS be
given by G = (V1∪V2, E) and parameter g. We construct an instance Ḡ = (V̄ , Ē)
of MAkEDP as follows: We add to G as new nodes a source s and a target t.
For each v ∈ V1 ∪ V2 we add g new nodes {vi : 1 ≤ i ≤ g}. For each v ∈ V1, we
add the edges {svi : 1 ≤ i ≤ g} ∪ {viv : 1 ≤ i ≤ g}. For each v ∈ V2, we add
the edges {vvi : 1 ≤ i ≤ g} ∪ {vit : 1 ≤ i ≤ g}. The domain is D = {0, 1}, and
for all uv ∈ Ē, let fuv(1, 1) = 1 and fuv(0, 0) = fuv(1, 0) = fuv(0, 1) = 0. See
Fig. 2. The reduction can be used for both directed and undirected graphs. We
can show the following lemma and theorem.

Lemma 3. There exists a balanced complete bipartite subgraph Kg,g with 2g
nodes in G if and only if there exist k = g2 edge-disjoint paths in Ḡ of activation
cost 2g2 + 2g + 2.

Theorem 3. The MAkEDP problem is NP-hard even for activation networks
where the domain D is {0, 1} and all edges uv ∈ E have the same activation
function f : D2 → {0, 1}.

5 Conclusion

We have investigated the problem of finding disjoint st-paths of minimum activa-
tion cost in a given activation network. We gave a 1.5-approximation algorithm
for the MA2NDP problem and showed that a ρ-approximation algorithm for the
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FMA2NDP problem (MA2NDP with fixed activation values of s and t) can be
used to obtain a ρ-approximation algorithm for the MA2EDP problem. For the
restricted version of activation networks with |D| = 2 and a single activation
function for all edges, we showed that MAkNDP can be solved in polynomial-
time for arbitrary k (for k = 2 in one of the cases for the activation function).
In addition, we showed that this restricted version of the MAkEDP problem is
NP-hard.

The main open problem is to determine whether the MA2NDP problem is NP-
hard. Our results show that a polynomial-time optimal algorithm for MA2NDP
would imply a polynomial-time optimal algorithm for MA2EDP. It would also
be interesting to study the case of domain size 2 in a setting where different
edges can have different activation functions.
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Abstract. The propositional planning problem is a notoriously diffi-
cult computational problem. Downey et al. (1999) initiated the param-
eterized analysis of planning (with plan length as the parameter) and
Bäckström et al. (2012) picked up this line of research and provided
an extensive parameterized analysis under various restrictions, leaving
open only one stubborn case. We continue this work and provide a full
classification. In particular, we show that the case when actions have no
preconditions and at most e postconditions is fixed-parameter tractable if
e ≤ 2 and W[1]-complete otherwise. We show fixed-parameter tractabil-
ity by a reduction to a variant of the Steiner Tree problem; this problem
has been shown fixed-parameter tractable by Guo et al. (2007). If a
problem is fixed-parameter tractable, then it admits a polynomial-time
self-reduction to instances whose input size is bounded by a function
of the parameter, called the kernel. For some problems, this function is
even polynomial which has desirable computational implications. Recent
research in parameterized complexity has focused on classifying fixed-
parameter tractable problems on whether they admit polynomial kernels
or not. We revisit all the previously obtained restrictions of planning
that are fixed-parameter tractable and show that none of them admits a
polynomial kernel unless the polynomial hierarchy collapses to its third
level.

1 Introduction

The propositional planning problem has been the subject of intensive study in
knowledge representation, artificial intelligence and control theory and is relevant
for a large number of industrial applications [13]. The problem involves deciding
whether an initial state—an n-vector over some set D–can be transformed into
a goal state via the application of operators each consisting of preconditions and
post-conditions (or effects) stating the conditions that need to hold before the
operator can be applied and which conditions will hold after the application of
the operator, respectively. It is known that deciding whether an instance has
a solution is Pspace-complete, and it remains at least NP-hard under various
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restrictions [6,3]. In view of this intrinsic difficulty of the problem, it is natural
to study it within the framework of Parameterized Complexity which offers the
more relaxed notion of fixed-parameter tractability (FPT). A problem is fixed-
parameter tractable if it can be solved in time f(k)nO(1) where f is an arbitrary
function of the parameter and n is the input size. Indeed, already in a 1999
paper, Downey, Fellows and Stege [8] initiated the parameterized analysis of
propositional planning, taking the minimum number of steps from the initial
state to the goal state (i.e., the length of the solution plan) as the parameter;
this is also the parameter used throughout this paper. More recently, Bäckström
et al. [1] picked up this line of research and provided an extensive analysis of
planning under various syntactical restrictions, in particular the syntactical re-
strictions considered by Bylander [6] and by Bäckström and Nebel [3], leaving
open only one stubborn class of problems where operators have no preconditions
but may involve up to e postconditions (effects).

New Contributions

We provide a full parameterized complexity analysis of propositional planning
without preconditions. In particular, we show the following dichotomy:

(1) Propositional planning where operators have no preconditions but may have
up to e postconditions is fixed-parameter tractable for e ≤ 2 and W[1]-com-
plete for e > 2.

W[1] is a parameterized complexity class of problems that are believed to be not
fixed-parameter tractable. Indeed, the fixed-parameter tractability of a W[1]-
complete problem implies that the Exponential Time Hypothesis fails [7,11]. We
establish the hardness part of the dichotomy (1) by a reduction from a variant
of the k-Clique problem. The case e = 2 is known to be NP-hard [6]. Its
difficulty comes from the fact that possibly one of the two postconditions might
set a variable to its desired value, but the other postcondition might change a
variable from a desired value to an undesired one. This can cause a chain of
operators so that finally all variables have their desired value. We show that
this behaviour can be modelled by means of a certain problem on Steiner trees
in directed graphs, which was recently shown to be fixed-parameter tractable
by Guo, Niedermeier and Suchy [15]. We would like to point out that this case
(0 preconditions, 2 postconditions) is the only fixed-parameter tractable case
among the NP-hard cases in Bylander’s system of restrictions (see Table 1).

Our second set of results is concerned with bounds on problem kernels for plan-
ning problems. It is known that a decidable problem is fixed-parameter tractable
if and only if it admits a polynomial-time self-reduction where the size of the
resulting instance is bounded by a function f of the parameter [10,14,12]. The
function f is called the kernel size. By providing upper and lower bounds on the
kernel size, one can rigorously establish the potential of polynomial-time prepro-
cessing for the problem at hand. Some NP-hard combinatorial problems such as



Parameterized Complexity and Kernel Bounds for Hard Planning Problems 15

Table 1. Complexity of Bounded Planning, restricting the number of preconditions
(p) and effects (e). The problems in FPT do not admit polynomial kernels. Results
marked with * are obtained in this paper. All other parameterized results are from [1]
and all classical results are from [6].

e = 1 e = 2 fixed e > 2 arbitrary e

p = 0 in P in FPT∗ W[1]-C∗ W[2]-C
in P NP-C NP-C NP-C

p = 1 W[1]-C W[1]-C W[1]-C W[2]-C
NP-H NP-H NP-H Pspace-C

fixed p > 1 W[1]-C W[1]-C W[1]-C W[2]-C
NP-H Pspace-C Pspace-C Pspace-C

arbitrary p W[1]-C W[1]-C W[1]-C W[2]-C
Pspace-C Pspace-C Pspace-C Pspace-C

k-Vertex Cover admit polynomially sized kernels, for others such as k-Path
an exponential kernel is the best one can hope for [4]. We examine all planning
problems that we have previously been shown to be fixed-parameter tractable
on whether they admit polynomial kernels. Our results are negative throughout.
In particular, it is unlikely that the FPT part in the above dichotomy (1) can
be improved to a polynomial kernel:

(2) Propositional planning where operators have no preconditions but may have
up to 2 postconditions does not admit a polynomial kernel unless co-NP ⊆
NP/poly.

Recall that by Yap’s Theorem [17] co-NP ⊆ NP/poly implies the (unlikely)
collapse of the Polynomial Hierarchy to its third level. We establish the ker-
nel lower bound by means of the technique of OR-compositions [4]. We also
consider the “PUBS” fragments of planning as introduced by Bäckström and
Klein [2]. These fragments arise under combinations of syntactical properties
(postunique (P), unary (U), Boolean (B), and single-valued (S); definitions are
provided in Section 3).

(3) None of the fixed-parameter tractable but NP-hard PUBS restrictions of
propositional planning admits a polynomial kernel, unless co-NP ⊆ NP/poly.

According to the PUBS lattice (see Figure 1), only the two maximal restrictions
PUB and PBS need to be considered. Moreover, we observe from previous
results that a polynomial kernel for restriction PBS implies one for restriction
PUB. Hence this leaves restriction PUB as the only one for which we need to
show a super-polynomial kernel bound. We establish the latter, as above, by
using OR-compositions.

The full proofs of statements marked with � are omitted due to space restric-
tions and can be found at http://arxiv.org/abs/1211.0479.

http://arxiv.org/abs/1211.0479
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Fig. 1. Complexity of Bounded Planning for the restrictions P, U, B and S illus-
trated as a lattice defined by all possible combinations of these restrictions [1]. As
shown in this paper, PUS and PUBS are the only restrictions that admit a polynomial
kernel, unless the Polynomial Hierarchy collapses.

2 Parameterized Complexity

We define the basic notions of Parameterized Complexity and refer to other
sources [9,11] for an in-depth treatment. A parameterized problem is a set of
pairs 〈I, k〉, the instances, where I is the main part and k the parameter. The
parameter is usually a non-negative integer. A parameterized problem is fixed-
parameter tractable (FPT) if there exists an algorithm that solves any instance
〈I, k〉 of size n in time f(k)nc where f is an arbitrary computable function and c
is a constant independent of both n and k. FPT is the class of all fixed-parameter
tractable decision problems.

Parameterized complexity offers a completeness theory, similar to the theory
of NP-completeness, that allows the accumulation of strong theoretical evidence
that some parameterized problems are not fixed-parameter tractable. This the-
ory is based on a hierarchy of complexity classes FPT ⊆ W[1] ⊆ W[2] ⊆ · · ·
where all inclusions are believed to be strict. An fpt-reduction from a parame-
terized problem P to a parameterized problemQ if is a mapping R from instances
of P to instances of Q such that (i) 〈I, k〉 is a Yes-instance of P if and only if
〈I′, k′〉 = R(I, k) is a Yes-instance of Q, (ii) there is a computable function g
such that k′ ≤ g(k), and (iii) there is a computable function f and a constant c
such that R can be computed in time O(f(k) · nc), where n denotes the size of
〈I, k〉.

A kernelization [11] for a parameterized problem P is an algorithm that takes
an instance 〈I, k〉 of P and maps it in time polynomial in |I| + k to an instance
〈I′, k′〉 of P such that 〈I, k〉 is a Yes-instance if and only if 〈I′, k′〉 is a Yes-
instance and |I′| is bounded by some function f of k. The output I′ is called
a kernel. We say P has a polynomial kernel if f is a polynomial. Every fixed-
parameter tractable problem admits a kernel, but not necessarily a polynomial
kernel.
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AnOR-composition algorithm for a parameterized problem P maps t instances
〈I1, k〉, . . . , 〈It, k〉 of P to one instance 〈I′, k′〉 of P such that the algorithm runs in
time polynomial in

∑
1≤i≤t |Ii|+k, the parameter k′ is bounded by a polynomial

in the parameter k, and 〈I′, k′〉 is a Yes-instance if and only if there is an
1 ≤ i ≤ t such that 〈Ii, k〉 is a Yes-instance.

Proposition 1 (Bodlaender, et al. [4]). If a parameterized problem P has
an OR-composition algorithm, then it has no polynomial kernel unless co-NP ⊆
NP/poly.

A polynomial parameter reduction from a parameterized problem P to a param-
eterized problem Q is an fpt-reduction R from P to Q such that (i) R can be
computed in polynomial time (polynomial in |I|+ k), and (ii) there is a polyno-
mial p such that k′ ≤ p(k) for every instance 〈I, k〉 of P with 〈I′, k′〉 = R(〈I, k〉).
The unparameterized version P̃ of a parameterized problem P has the same
YES and NO-instances as P , except that the parameter k is given in unary 1k.

Proposition 2 (Bodlaender, Thomasse, and Yeo [5]). Let P and Q be two
parameterized problems such that there is a polynomial parameter reduction from
P to Q, and assume that P̃ is NP-complete and Q̃ is in NP. Then, if Q has a
polynomial kernel also P has a polynomial kernel.

3 Planning Framework

We will now introduce the SAS+ formalism for specifying propositional planning
problems [3]. We note that the propositional Strips language can be treated as
the special case of SAS+ satisfying restriction B (which will be defined below).
More precisely, this corresponds to the variant of Strips that allows negative
preconditions; this formalism is often referred to as Psn.

Let V = {v1, . . . , vn} be a finite set of variables over a finite domain D.
Implicitly define D+ = D∪{u}, where u is a special value (the undefined value)
not present in D. Then Dn is the set of total states and (D+)n is the set of
partial states over V and D, where Dn ⊆ (D+)n. The value of a variable v in a
state s ∈ (D+)n is denoted s[v]. A SAS+ instance is a tuple P = 〈V,D,A, I,G〉
where V is a set of variables, D is a domain, A is a set of actions, I ∈ Dn is the
initial state and G ∈ (D+)n is the goal. Each action a ∈ A has a precondition
pre(a) ∈ (D+)n and an effect eff(a) ∈ (D+)n. We will frequently use the
convention that a variable has value u in a precondition/effect unless a value is
explicitly specified. Let a ∈ A and let s ∈ Dn. Then a is valid in s if for all
v ∈ V , either pre(a)[v] = s[v] or pre(a)[v] = u. Furthermore, the result of a in s
is a state t ∈ Dn defined such that for all v ∈ V , t[v] = eff(a)[v] if eff(a)[v] �= u
and t[v] = s[v] otherwise.

Let s0, s� ∈ Dn and let ω = 〈a1, . . . , a�〉 be a sequence of actions. Then ω
is a plan from s0 to s� if either (i) ω = 〈〉 and � = 0 or (ii) there are states
s1, . . . , s�−1 ∈ Dn such that for all i, where 1 ≤ i ≤ �, ai is valid in si−1 and si
is the result of ai in si−1. A state s ∈ Dn is a goal state if for all v ∈ V , either
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G[v] = s[v] or G[v] = u. An action sequence ω is a plan for P if it is a plan
from I to some goal state s ∈ Dn. We will study the following problem:

Bounded Planning

Instance: A tuple 〈P, k〉 where P is a SAS+ instance and k is a positive
integer.
Parameter: The integer k.
Question: Does P have a plan of length at most k?

We will consider the following four syntactical restrictions, originally defined by
Bäckström and Klein [2].

P (postunique): For each v ∈ V and each x ∈ D there is at most one
a ∈ A such that eff(a)[v] = x.

U (unary): For each a ∈ A, eff(a)[v] �= u for exactly one v ∈ V .
B (Boolean): |D| = 2.
S (single-valued): For all a, b ∈ A and all v ∈ V , if pre(a)[v] �= u,

pre(b)[v] �= u and eff(a)[v] = eff(b)[v] = u, then pre(a)[v] = pre(b)[v].

For any set R of such restrictions we write R-Bounded Planning to denote the
restriction of Bounded Planning to only instances satisfying the restrictions
in R. Additionally we will consider restrictions on the number of preconditions
and effects as previously considered in [6]. For two non-negative integers p and
e we write (p, e)-Bounded Planning to denote the restriction of Bounded

Planning to only instances where every action has at most p preconditions and
at most e effects. Table 1 and Figure 1 summarize results from [6,3,1] combined
with the results presented in this paper.

4 Parameterized Complexity of (0, e)-Bounded Planning

In this section we completely characterize the parameterized complexity of
Bounded Planning for planning instances without preconditions. It is
known [1] that Bounded Planning without preconditions is contained in the
parameterized complexity class W[1]. Here we show that (0, e)-Bounded Plan-

ning is also W[1]-hard for every e > 2 but it becomes fixed-parameter tractable
if e ≤ 2. Because (0, 1)-Bounded Planning is trivially solvable in polynomial
time this completely characterized the parameterized complexity of Bounded

Planning without preconditions.

4.1 Hardness Results

Theorem 1. (0, 3)-Bounded Planning is W[1]-hard.

Proof. We devise a parameterized reduction from the following problem, which
is W[1]-complete [16].
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Multicolored Clique

Instance: A k-partite graph G = (V,E) with partition V1, . . . , Vk such
that |Vi| = |Vj | = n for 1 ≤ i < j ≤ k.
Parameter: The integer k.
Question: Are there vertices v1, . . . , vk such that vi ∈ Vi for 1 ≤
i ≤ k and {vi, vj} ∈ E for 1 ≤ i < j ≤ k? (The graph K =
({v1, . . . , vk}, { {vi, vj} : 1 ≤ i < j ≤ k }) is a k-clique of G.)

Let I = (G, k) be an instance of this problem with partition V1, . . . , Vk, |V1| =
· · · = |Vk| = n and parameter k. We construct a (0, 3)-Bounded Planning

instance I′ = (P′, k′) with P′ = 〈V ′, D′, A′, I ′, G′〉 such that I is a Yes-instance
if and only if so is I′.

We set V ′ = V (G) ∪ { pi,j : 1 ≤ i < j ≤ k }, D′ = {0, 1}, I ′ = 〈0, . . . , 0〉,
G′[pi,j ] = 1 for every 1 ≤ i < j ≤ k and G′[v] = 0 for every v ∈ V (G).
Furthermore, the set A′ contains the following actions:

– For every v ∈ V (G) one action av with eff(av)[v] = 0;
– For every e = {vi, vj} ∈ E(G) with vi ∈ Vi and vj ∈ Vj one action ae with

eff(ae)[vi] = 1, eff(ae)[vj ] = 1, and eff(ae)[pi,j ] = 1.

Clearly, every action in A′ has no precondition and at most 3 effects.
The theorem will follow after we have shown the that G contains a k-clique

if and only if P has a plan of length at most k′ =
(
k
2

)
+ k. Suppose that

G contains a k-clique with vertices v1, . . . , vk and edges e1, . . . , ek′′ , k′′ =
(
k
2

)
.

Then ω′ = 〈ae1 , . . . , aek′′ , av1 , . . . , avk〉 is a plan of length k′ for P′. For the
reverse direction suppose that ω′ is a plan of length at most k′ for P′. Because
I ′[pi,j ] = 0 �= G′[pi,j ] = 1 the plan ω′ has to contain at least one action ae where
e is an edge between a vertex in Vi and a vertex in Vj for every 1 ≤ i < j ≤ k.
Because eff(ae={vi,vj})[vi] = 1 �= G[vi] = 0 and eff(ae={vi,vj})[vj ] = 1 �= G[vj ] =
0 for every such edge e it follows that ω′ has to contain at least one action
av with v ∈ Vi for every 1 ≤ i ≤ k. Because k′ =

(
k
2

)
+ k it follows that ω′

contains exactly
(
k
2

)
actions of the form ae for some edge e ∈ E(G) and exactly

k actions of the form av for some vertex v ∈ V (G). It follows that the graph
K = ({ v : av ∈ ω }, { e : ae ∈ ω }) is a k-clique of G. 	


4.2 Fixed-Parameter Tractability

Before we show that (0, 2)-Bounded Planning is fixed-parameter tractable
we need to introduce some notions and prove some simple properties of (0, 2)-
Bounded Planning. Let P = 〈V,D,A, I,G〉 be an instance of Bounded

Planning. We say an action a ∈ A has an effect on some variable v ∈ V if
eff(a)[v] �= u, we call this effect good if furthermore eff(a)[v] = G[v] or G[v] = u
and we call the effect bad otherwise. We say an action a ∈ A is good if it has only
good effects, bad if it has only bad effects, and mixed if it has at least one good
and at least one bad effect. Note that if a valid plan contains a bad action then
this action can always be removed without changing the validity of the plan.
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Consequently, we only need to consider good and mixed actions. Furthermore,
we denote by B(V ) the set of variables v ∈ V with G[v] �= u and I[v] �= G[v].

The next lemma shows that we do not need to consider good actions with
more than 1 effect for (0, 2)-Bounded Planning.

Lemma 1 (�). Let I = 〈P, k〉 be an instance of (0, 2)-Bounded Planning.
Then I can be fpt-reduced to an instance I′ = 〈P′, k′〉 of (0, 2)-Bounded Plan-

ning where k′ = k(k + 3) + 1 and no good action of I′ effects more than one
variable.

Theorem 2. (0, 2)-Bounded Planning is fixed-parameter tractable.

Proof. We show fixed-parameter tractability of (0, 2)-Bounded Planning by
reducing it to the following fixed-parameter tractable problem [15].

Directed Steiner Tree

Instance: A set of nodes N , a weight function w : N×N → (N∪{∞}),
a root node s ∈ N , a set T ⊆ N of terminals , and a weight bound p.
Parameter: pM = p

min{w(u,v) : u,v∈N } .
Question: Is there a set of arcs E ⊆ N ×N of weight w(E) ≤ p (where
w(E) =

∑
e∈E w(e)) such that in the digraph D = (N,E) for every

t ∈ T there is a directed path from s to t? We will call the digraph D a
directed Steiner Tree (DST) of weight w(E).

Let I = 〈P, k〉 where P = 〈V,D,A, I,G〉 be an instance of (0, 2)-Bounded

Planning. Because of Lemma 1 we can assume that A contains no good actions
with two effects. We construct an instance I′ = 〈N,w, s, T, p〉 of Directed

Steiner Tree where pM = k such that I is a Yes-instance if and only if I′ is
a Yes-instance. Because pM = k this shows that (0, 2)-Bounded Planning is
fixed-parameter tractable.

We are now ready to define the instance I′. The node set N consists of the
root vertex s and one node for every variable in V . The weight function w is ∞
for all but the following arcs: (i) For every good action a ∈ A the arc from s
to the unique variable v ∈ V that is effected by a gets weight 1. (ii) For every
mixed action a ∈ A with some good effect on some variable vg ∈ V and some
bad effect on some variable vb ∈ V , the arc from vb to vg gets weight 1.

We identify the root s from the instance I with the node s, we let T be the
set B(V ), and pM = p = k.

Claim 1 (�). P has a plan of length at most k if and only if I′ has a DST of
weight at most pM = p = k.

The theorem follows. 	


5 Kernel Lower Bounds

Since (0, 2)-Bounded Planning is fixed-parameter tractable by Theorem 2 it
admits a kernel. Next we provide strong theoretical evidence that the problem
does not admit a polynomial kernel. The proof of Theorem 3 is based on an
OR-composition algorithm and Proposition 1.
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Theorem 3 (�). (0, 2)-Bounded Planning has no polynomial kernel unless
co-NP ⊆ NP/poly.

In previous work [1] we have classified the parameterized complexity of the
“PUBS” fragments of Bounded Planning. It turned out that the problems fall
into four categories (see Figure 1): (i) polynomial-time solvable, (ii) NP-hard
but fixed-parameter tractable, (iii) W[1]-complete, and (iv) W[2]-complete.
The aim of this section is to further refine this classification with respect to
kernelization. The problems in category (i) trivially admit a kernel of constant
size, whereas the problems in categories (iii) and (iv) do not admit a kernel at all
(polynomial or not), unless W[1] = FPT or W[2] = FPT, respectively. Hence it
remains to consider the six problems in category (ii), each of them could either
admit a polynomial kernel or not. We show that none of them does.

According to our classification [1], the problems in category (ii) are exactly
the problems R-Bounded Planning, for R ⊆ {P,U,B, S}, such that P ∈ R
and {P,U, S} �⊆ R.

Theorem 4. None of the problems R-Bounded Planning for R ⊆
{P,U,B, S} such that P ∈ R and {P,U, S} �⊆ R (i.e., the problems in cate-
gory (ii)) admits a polynomial kernel unless co-NP ⊆ NP/poly.

The remainder of this section is devoted to establish Theorem 4. The rela-
tionship between the problems as indicated in Figure 1 greatly simplifies the
proof. Instead of considering all six problems separately, we can focus on the
two most restricted problems {P,U,B}-Bounded Planning and {P,B, S}-
Bounded Planning. If any other problem in category (ii) would have a poly-
nomial kernel, then at least one of these two problems would have one. This
follows by Proposition 2 and the following facts:

1. The unparameterized versions of all the problems in category (ii) are NP-
complete. This holds since the corresponding classical problems are strongly
NP-hard, hence the problems remain NP-hard when k is encoded in unary
(as shown by Bäckström and Nebel [3]);

2. IfR1 ⊆ R2 then the identity function gives a polynomial parameter reduction
from R2-Bounded Planning to R1-Bounded Planning.

Furthermore, the following result of Bäckström and Nebel [3, Theorem 4.16] even
provides a polynomial parameter reduction from {P,U,B}-Bounded Planning

to {P,B, S}-Bounded Planning. Consequently, {P,U,B}-Bounded Plan-

ning remains the only problem for which we need to establish a superpolynomial
kernel lower bound.

Proposition 3 (Bäckström and Nebel [3]). Let I = 〈P, k〉 be an instance of
{P,U,B}-Bounded Planning. Then I can be transformed in polynomial time
into an equivalent instance I′ = 〈P′, k′〉 of {P,B, S}-Bounded Planning such
that k = k′.

Hence, in order to complete the proof of Theorem 4 it only remains to establish
the next lemma.
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Lemma 2. {P,U,B}-Bounded Planning has no polynomial kernel unless
co-NP ⊆ NP/poly.

Proof. Because of Proposition 1, it suffices to devise an OR-composition algo-
rithm for {P,U,B}-Bounded Planning. Suppose we are given t instances
I1 = 〈P1, k〉, . . . , It = 〈Pt, k〉 of {P,U,B}-Bounded Planning where Pi =
〈Vi, Di, Ai, Ii, Gi〉 for every 1 ≤ i ≤ t. It has been shown in [1, Theorem 5]
that {P,U,B}-Bounded Planning can be solved in time O∗(S(k)) (where

S(k) = 2 · 2(k+2)2 · (k + 2)(k+1)2 and the O∗ notation suppresses polynomial
factors). It follows that {P,U,B}-Bounded Planning can be solved in poly-
nomial time with respect to

∑
1≤i≤t |Ii|+ k if t > S(k). Hence, if t > S(k) this

gives us an OR-composition algorithm as follows. We first run the algorithm
for {P,U,B}-Bounded Planning on each of the t instances. If one of these t
instances is a Yes-instance then we output this instance. If not then we output
any of the t instances. This shows that {P,U,B}-Bounded Planning has an
OR-composition algorithm for the case that t > S(k). Hence, in the following
we can assume that t ≤ S(k).

Given I1, . . . , It we will construct an instance I = 〈P, k′〉 of {P,U,B}-
Bounded Planning as follows. For the construction of I we need the following
auxiliary gadget, which will be used to calculate the logical “OR” of two binary
variables. The construction of the gadget uses ideas from [3, Theorem 4.15].
Assume that v1 and v2 are two binary variables. The gadget OR2(v1, v2, o) con-
sists of the five binary variables o1, o2, o, i1, and i2. Furthermore, OR2(v1, v2, o)
contains the following actions:

– the action ao with pre(ao)[o1] = pre(ao)[o2] = 1 and eff(ao)[o] = 1;
– the action ao1 with pre(ao1)[i1] = 1, pre(ao1)[i2] = 0 and eff(ao1)[o1] = 1;
– the action ao2 with pre(ao2)[i1] = 0, pre(ao2)[i2] = 1 and eff(ao2)[o2] = 1;
– the action ai1 with eff(ai1)[i1] = 1;
– the action ai2 with eff(ai2)[i2] = 1;
– the action av1 with pre(av1)[v1] = 1 and eff(av1)[i1] = 0;
– the action av2 with pre(av2)[v2] = 1 and eff(av2)[i2] = 0;

We now show that OR2(v1, v2, o) can indeed be used to compute the logical
“OR” of the variables v1 and v2. We need the following claim.

Claim 2 (�). Let P(OR2(v1, v2, o)) be a {P,U,B}-Bounded Planning in-
stance that consists of the two binary variables v1 and v2, and the variables
and actions of the gadget OR2(v1, v2, o). Furthermore, let the initial state
of P(OR2(v1, v2, o)) be any initial state that sets all variables of the gadget
OR2(v1, v2, o) to 0 but assigns the variables v1 and v2 arbitrarily, and let the
goal state of P(OR2(v1, v2, o)) be defined by G[o] = 1. Then P(OR2(v1, v2, o))
has a plan if and only if its initial state sets at least one of the variables v1 or
v2 to 1. Furthermore, if there is such a plan then its length is 6.

We continue by showing how we can use the gadget OR2(v1, v2, o) to con-
struct a gadget OR(v1, . . . , vr, o) such that there is a sequence of actions of
OR(v1, . . . , vr, o) that sets the variable o to 1 if and only if at least one of the
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external variables v1, . . . , vr are initially set to 1. Furthermore, if there is such a
sequence of actions then its length is at most 6�log r�. Let T be a rooted binary
tree with root s that has r leaves l1, . . . , lr and is of smallest possible height.
For every node t ∈ V (T ) we make a copy of our binary OR-gadget such that the
copy of a leave node li is the gadget OR2(v2i−1, v2i, oli) and the copy of an inner
node t ∈ V (T ) with children t1 and t2 is the gadget OR2(ot1 , ot2 , ot) (clearly
this needs to be adapted if r is odd or an inner node has only one child). For
the root node with children t1 and t2 the gadget becomes OR2(ot1 , ot2 , o). This
completes the construction of the gadget OR(v1, . . . , vr, o). Using Claim 2 it is
easy to verify that the gadget OR(v1, . . . , vr, o) can indeed be used to compute
the logical “OR” or the variables v1, . . . , vr.

We are now ready to construct the instance I. I contains all the variables
and actions from every instance I1, . . . , It and of the gadget OR(v1, . . . , vt, o).
Additionally, I contains the binary variables v1, . . . , vt and the actions a1, . . . , at
with pre(ai) = Gi and eff(ai)[vi] = 1. Furthermore, the initial state I of I is
defined as I[v] = Ii[v] if v is a variable of Ii and I[v] = 0, otherwise. The goal
state of I is defined by G[o] = 1 and we set k′ = k + 6�log t�. Clearly, I can be
constructed from I1, . . . , It in polynomial time and I is a Yes-instance if and only
if at least one of the instances I1, . . . , It is a Yes-instance. Furthermore, because
k′ = k + 6�log t� ≤ k + 6�logS(k)� = k + 6�1 + (k + 2)2 + (k + 1)2 · log(k + 2)�,
the parameter k′ is polynomial bounded by the parameter k. This concludes the
proof of the lemma. 	


6 Conclusion

We have studied the parameterized complexity of Bounded Planning with
respect to the parameter plan length. In particular, we have shown that (0, e)-
Bounded Planning is fixed-parameter tractable for e ≤ 2 and W[1]-complete
for e > 2. Together with our previous results [1] this completes the full classifica-
tion of planning in Bylander’s system of restrictions (see Table 1). Interestingly,
(0, 2)-Bounded Planning turns out to be the only nontrivial fixed-parameter
tractable case (where the unparameterized version is NP-hard).

We have also provided a full classification of kernel sizes for (0, 2)-Bounded

Planning and all the fixed-parameter tractable fragments of Bounded Plan-

ning in the “PUBS” framework. It turns out that none of the nontrivial problems
(where the unparameterizedversion is NP-hard) admits a polynomial kernel unless
the Polynomial Hierarchy collapses. This implies an interesting dichotomy con-
cerning the kernel size: we only have constant-size and superpolynomial kernels—
polynomially bounded kernels that are not of constant size are absent.
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Abstract. We introduce Colored Resource Allocation Games as a new
model for selfish routing and wavelength assignment in multifiber
all-optical networks. Colored Resource Allocation Games are a gener-
alization of congestion and bottleneck games where players have their
strategies in multiple copies (colors). We focus on two main subclasses of
these games depending on the player cost: in Colored Congestion Games
the player cost is the sum of latencies of the resources allocated to the
player, while in Colored Bottleneck Games the player cost is the maxi-
mum of these latencies. We investigate the pure price of anarchy for three
different social cost functions and prove tight bounds for each separate
case. We first consider a social cost function which is particularly mean-
ingful in the setting of multifiber all-optical networks, where it captures
the objective of fiber cost minimization. Additionally, we consider the
two usual social cost functions (maximum and average player cost) and
obtain improved bounds that could not have been derived using earlier
results for the standard models for congestion and bottleneck games.

1 Introduction

Potential games are a widely used tool for modeling network optimization prob-
lems under a non-cooperative perspective. Initially studied in [1] with the in-
troduction of congestion games and further extended in [2] in a more general
framework, they have been successfully applied to describe selfish routing in
communication networks (e.g. [3]). The advent of optical networks as the tech-
nology of choice for surface communication has introduced new aspects of net-
works that are not sufficiently captured by the models proposed so far. In this
work, we propose a class of potential games which are more suitable for modeling
selfish routing and wavelength assignment in multifiber optical networks.
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In optical networks, it is highly desirable that all communication should be
carried out transparently, that is, each signal should remain on the same wave-
length from source to destination. The need for efficient access to the optical
bandwidth has given rise to the study of several optimization problems in the
past years. The most well-studied among them is the problem of assigning a
path and a color (wavelength) to each communication request in such a way
that paths of the same color are edge-disjoint and the number of colors used is
minimized. Nonetheless, it has become clear that the number of wavelengths in
commercially available fibers is rather limited—and will probably remain such in
the foreseeable future. Therefore, the use of multiple fibers has become inevitable
in large scale networks. In the context of multifiber optical networks several op-
timization problems have been defined and studied, the objective usually being
to minimize either the maximum fiber multiplicity per edge or the sum of these
maximum multiplicities over all edges of the graph.

1.1 Contribution

We introduce Colored Resource Allocation Games, a class of games that can
model non-cooperative versions of routing and wavelength assignment problems
in multifiber all-optical networks. They can be viewed as an extension of con-
gestion games where each player has his strategies in multiple copies (colors).
When restricted to (optical) network games, facilities correspond to edges of
the network and colors to wavelengths. The number of players using an edge
in the same color represents a lower bound on the number of fibers needed to
implement the corresponding physical link. Having this motivation in mind, we
consider the case in which each player’s cost is equal to the maximum edge con-
gestion encountered on her path (max player cost), as well as the case in which
each player’s cost is equal to the sum of edge congestions encountered on her
path (sum player cost). For our purposes of using Colored Resource Allocation
games to model resource allocation in optical networks, it makes sense to restrict
our study to the class of identity latency functions.

We use the price of anarchy (PoA) introduced in [4] as a measure of the
deterioration of the quality of solutions caused by the lack of coordination. We
estimate the price of anarchy of our games under three different social cost
functions. The first one (SCfib) is specially designed for the setting of multifiber
all-optical networks: it is equal to the sum over all facilities of the maximum
color congestion on each facility. Note that in the optical network setting this
function represents the total fiber cost needed to accommodate all players; hence,
it captures the objective of a well-studied optimization problem ([5–8]). The
other two social cost functions are standard in the literature (see e.g. [9]): the
first (SCmax) is equal to the maximum player cost and the second (SCsum) is
equal to the sum of player costs (equivalently, the average player cost).

Let us also note that the SCmax function under the max player cost captures
the objective of another well known problem, namely minimizing the maximum
fiber multiplicity over all edges of the network [7, 10, 11]. In addition, note that
our model admits a number of different interpretations as discussed in [12].
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Table 1. The pure price of anarchy of Colored Bottleneck Games (max player cost)
under different social costs. Results for classical bottleneck games are shown in the
right column.

Colored Bottleneck Games Bottleneck Games

SCfib(A) =
∑
f∈F

max
a∈[W ]

nf,a(A) |EA|
|EOPT|

⌈
N
W

⌉
—

SCmax(A) = max
i∈[N]

Ci(A) Θ
(

N
W

)
Θ(N) [13]

SCsum(A) =
∑
i∈[N]

Ci(A) Θ
(

N
W

)
Θ(N) [13]

Table 2. The pure price of anarchy of Colored Congestion Games (sum player cost)
under different social costs. Results for classical congestion games are shown in the
right column.

Colored Congestion Games Congestion Games

SCfib(A) =
∑
f∈F

max
a∈[W ]

nf,a(A) Θ
(√

W |F |
)

—

SCmax(A) = max
i∈[N]

Ci(A) Θ

(√
N
W

)
Θ
(√

N
)
[9]

SCsum(A) =
∑
i∈[N]

Ci(A) 5
2

5
2
[9]

Our main contribution is the derivation of tight bounds on the price of anar-
chy for Colored Resource Allocation Games. These bounds are summarized in
Tables 1 and 2. It can be shown that the bounds for Colored Congestion Games
remain tight even for network games.

Observe that known bounds for classical congestion and bottleneck games can
be obtained from our results by simply setting W = 1. On the other hand, one
might notice that our games can be casted as classical congestion or bottleneck
games with W |F | facilities. However we are able to derive better upper bounds
for most cases by exploiting the special structure of the players’ strategies.

1.2 Related Work

One of the most important solution concepts in the theory of non-cooperative
games is the Nash equilibrium [14], a stable state of the game in which no
player has incentive to change strategy unilaterally. A fundamental question in
this theory concerns the existence of pure Nash equilibria. For congestion and
bottleneck games [1, 2, 15] it has been shown with the use of potential functions
that they converge to a pure Nash equilibrium.
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In [16] Roughgarden introduces a canonical framework for studying the price
of anarchy; in particular he identifies the following canonical sufficient condition,
which he calls the “smoothness condition”:

n∑
i=1

Ci(A
∗
i , A−i) ≤ λSC(A∗) + μSC(A) .

The key idea is that, by showing that a game is (λ, μ)-smooth, i.e. that it satisfies
the condition above for some choice of λ andμ, we immediately get an upper bound
of λ

1−μ on the price of anarchy of the game. Hence, bounding the price of anarchy
reduces to the problem of identifying λ and μ which minimize the aforementioned
quantity, and for which the game is (λ, μ)-smooth. From the games and welfare
functions that we analyze only colored congestion games from the perpsective of
SCsum are smooth, a property implied by the existing analysis of Christodoulou
et al [9] and which we show remains tight even in our setting. On the contrary,
our other two social cost functions and our bottleneck game analysis do not seem
to admit a similar smoothness argument, and therefore a different approach is
required in order to upper bound the price of anarchy for these settings.

Bottleneck games have been studied in [13, 15, 17, 18]. In [13] the authors
study atomic routing games on networks, where each player chooses a path to
route her traffic from an origin to a destination node, with the objective of
minimizing the maximum congestion on any edge of her path. They show that
these games always possess at least one optimal pure Nash equilibrium (hence
the price of stability is equal to 1) and that the price of anarchy of the game is
determined by topological properties of the network. A further generalization is
the model of Banner and Orda [15], where they introduce the notion of bottleneck
games. In this model they allow arbitrary latency functions on the edges and
consider both splittable and unsplittable flows. They show existence, convergence
and non-uniqueness of equilibria and they prove that the price of anarchy for
these games is exponential in the users’ demand.

Since bottleneck games traditionally have price of anarchy that is rather high
(proportional to the size of the network in many cases), in [19] the authors
study bottleneck games when the utility functions of the players are exponential
functions of their congestion, and they show that for this class of exponential
bottleneck games the price of anarchy is in fact logarithmic. Finally [20] investi-
gate the computational problem of finding a pure Nash equilibrium in bottleneck
games, as well as the performance of some natural (de-centralized) improvement
dynamics for finding pure Nash equilibria.

Selfish path coloring in single fiber all-optical networks has been studied
in [21–24]. Bilò and Moscardelli [21] consider the convergence to Nash equi-
libria of selfish routing and path coloring games. Bilò et al. [22] consider several
information levels of local knowledge that players may have and give bounds for
the price of anarchy in chains, rings and trees. The existence of Nash equilibria
and the complexity of recognizing and computing a Nash equilibrium for selfish
routing and path coloring games under several payment functions are considered
by Georgakopoulos et al. [23]. In [24] upper and lower bounds for the price of
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anarchy of selfish path coloring with and without routing are presented under
functions that charge a player only according to her own strategy.

Selfish path multicoloring games are introduced in [12] where it is proved that
the pure price of anarchy is bounded by the number of available colors and by the
length of the longest path; constant bounds for the price of anarchy in specific
topologies are also provided. In those games, in contrast to the ones studied
here, routing is given in advance and players choose only colors.

2 Model Definition

We use the notation [X ] for the set {1, . . . , X}, where X is a positive natural
number.

Definition 1 (Colored Resource Allocation Games). A Colored Resource
Allocation Game is defined as a tuple 〈F,N,W, {Ei}i∈[N ]〉 such that:

1. F is a set of facilities fi.
2. [W ] is a set of colors.
3. [N ] is a set of players.
4. Ei is a set of possible facility combinations for player i such that:

a. ∀ i ∈ [N ] : Ei ⊆ 2F ,
b. Si = Ei × [W ] is the set of possible strategies of player i, and
c. Ai = (Ei, ai) ∈ Si is the notation of a strategy for player i, where Ei ∈ Ei

denotes the set of facilities and ai ∈ [W ] denotes the color chosen by the
player.

5. A = (A1, . . . , AN ) is a strategy profile for the game.
6. For a strategy profile A, ∀f ∈ F , ∀c ∈ [W ], nf,c(A) is the number of players

that use facility f in color c in strategy profile A.

Depending on the player cost function we define two subclasses of Colored Re-
source Allocation Games:

– Colored Bottleneck Games (CBG), where the player cost is

Ci(A) = max
e∈Ei

ne,ai(A) .

– Colored Congestion Games (CCG), where the player cost is

Ci(A) =
∑
e∈Ei

ne,ai(A) .

For each of the above variations we will consider three different social cost func-
tions:

– SCfib(A) =
∑

f∈F maxc∈[W ] nf,c(A).
– SCmax(A) = maxi∈[N ]Ci(A).
– SCsum(A) =

∑
i∈[N ] Ci(A). Note that, in the case of CCG games, the sum

social cost can also be expressed as SCsum(A) =
∑

f∈F

∑
c∈[W ] n

2
f,c(A).
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From the definition of pure Nash equilibrium we can derive the following two
facts that hold in Colored Congestion and Bottleneck Games respectively:

Fact 1. For a pure Nash equilibrium A of a CCG game it holds:

∀E′
i ∈ Ei, ∀c′ ∈ [W ] : Ci(A) ≤

∑
e∈E′

i

(ne,c′(A) + 1) . (1)

Fact 2. For a pure Nash equilibrium A of a CBG game it holds:

∀E′
i ∈ Ei, ∀c′ ∈ [W ] : Ci(A) ≤ max

e∈E′
i

(ne,c′(A) + 1) . (2)

Equivalently:

∀Ei ∈ Ei, ∀c ∈ [W ], ∃e ∈ Ei : Ci(A) ≤ ne,c(A) + 1 . (3)

In the rest of the paper, we will only deal with pure Nash equilibria and we will
refer to them simply as Nash equilibria.

3 Colored Bottleneck Games

By a standard lexicographic argument, one can show that every CBG game has
at least one pure Nash equilibrium and that the price of stability [25] is 1.

3.1 Price of Anarchy for Social Cost SCfib

Definition 2. We define ES to be the set of facilities used by at least one player
in the strategy profile S = (A1, . . . , AN ), i.e., ES = E1 ∪ . . . ∪ EN .

Theorem 1. The price of anarchy of any CBG game with social cost SCfib is

at most |EA|
|EOPT|

⌈
N
W

⌉
, where A is a worst-case Nash equilibrium and OPT is an

optimal strategy profile.

Proof. We exclude from the sum over the facilities, those facilities that are not
used by any player since they do not contribute to the social cost. Thus we focus
on facilities with maxc ne,c > 0. Let A be a worst-case Nash equilibrium and let
cmax(e) denote the color with the maximum multiplicity at facility e. Let Pi be a
player that uses the facility copy (e, cmax(e)). Since Ci(A) = maxe∈Ei ne,ai(A) it
must hold that ne,cmax(e)(A) ≤ Ci(A). In fact, we can state the following general
property:

∀e ∈ F, ∃i ∈ [N ] : ne,cmax(e) ≤ Ci(A) . (4)

Suppose that there exists a player with cost
⌈
N
W

⌉
+ 1 or more. From Fact 2, at

least
⌈
N
W

⌉
players must play each of the other colors. By a simple calculation,

this implies that there are at least N + 1 players in the game, a contradiction.
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We conclude that each player’s cost is at most
⌈
N
W

⌉
, thus Ci(A) ≤

⌈
N
W

⌉
. More-

over, it is easy to see that SCfib(OPT) ≥ |EOPT|. From the above we can con-
clude:

SCfib(A)

SCfib(OPT)
≤ |EA|
|EOPT|

⌈
N

W

⌉
. (5)

	


Theorem 2. There exists a class of CBG games with social cost SCfib with

PoA = |EA|
|EOPT|

⌈
N
W

⌉
.

Proof. Consider a game in which each player i has the following strategy set:
Ei = {{fi}, {f1, . . . , fM}}, where M ≥ N ≥ W . In the worst-case Nash equilib-
rium A, all players will play the second strategy leading to SCfib(A) = M

⌈
N
W

⌉
=

|EA|
⌈
N
W

⌉
. On the other hand in the optimal outcome all players will play the

first strategy leading to SCfib(OPT) = N = |EOPT|. Thus the price of anarchy

for this instance is PoA = |EA|
|EOPT|

⌈
N
W

⌉
. 	


3.2 Price of Anarchy for Social Cost SCmax

Theorem 3. The price of anarchy of any CBG game with social cost SCmax is
at most

⌈
N
W

⌉
.

Proof. It is easy to see that SCmax(OPT) ≥ 1. We established in the proof
of Theorem 1 that the maximum player cost in a Nash equilibrium is

⌈
N
W

⌉
.

Therefore, for any worst-case Nash equilibrium A, SCmax(A) ≤
⌈
N
W

⌉
. 	


Theorem 4. There exists a class of CBG games with social cost SCmax with
PoA =

⌈
N
W

⌉
.

Proof. Consider the following class of CBG games. We have N players and N
facilities. Each player Pi has two possible strategies: Ei = {{fi}, {f1, . . . , fN}}.
In a worst-case Nash equilibrium, all players choose the second strategy and
they are equally divided in the W colors. This leads to player cost

⌈
N
W

⌉
for each

player and thus to a social cost
⌈
N
W

⌉
. In the optimal strategy profile, all players

would choose their first strategy leading to player and social cost equal to 1.
Thus the price of anarchy for this instance is

⌈
N
W

⌉
. 	


3.3 Price of Anarchy for Social Cost SCsum

Theorem 5. The price of anarchy of any CBG game with social cost SCsum is
at most

⌈
N
W

⌉
.

Proof. As before, we know that the maximum player cost in a Nash equilibrium is⌈
N
W

⌉
, therefore the social cost is at most N ·

⌈
N
W

⌉
. Moreover, SCsum(OPT) ≥ N .

Thus the price of anarchy is bounded by
⌈
N
W

⌉
. 	


The instance used in the previous section can also be used here to prove that
the above inequality is tight for a class of CBG games.
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4 Colored Congestion Games

4.1 Price of Anarchy for Social Cost SCfib

Theorem 6. The price of anarchy of any CCG game with social cost SCfib is

at most O
(√

W |F |
)
.

Proof. We denote by ne(S) the vector [ne,c1(S), . . . , ne,cW (S)]. We can rewrite

the social cost as SCfib(S) =
∑

e∈F maxc∈[W ] ne,c(S) =
∑

e∈F ‖ne(S)‖∞. From
norm inequalities, we have:

‖ne(S)‖2√
W

≤ ‖ne(S)‖∞ ≤ ‖ne(S)‖2 , (6)

hence:

SCfib(S) =
∑
e∈F

‖ne(S)‖∞ ≤
∑
e∈F

√∑
c

n2
e,c(S) ≤

√
|F |

√∑
e∈F

∑
c

n2
e,c(S) , (7)

where the last inequality is a manifestation of the norm inequality ‖x‖1 ≤√
n‖x‖2, where x is a vector of dimension n. Now, from the first inequality

of (6) we have:

SCfib(S) ≥
1√
W

∑
e∈F

√∑
c

n2
e,c(S) ≥

1√
W

√∑
e∈F

∑
c

n2
e,c(S) . (8)

Combining (8) and (7), we get:

1√
W

√
SCsum(S) ≤ SCfib(S) ≤

√
|F |

√
SCsum(S) . (9)

From [9] we know that the price of anarchy with social cost SCsum(S) is at
most 5/2. Let A be a worst-case Nash equilibrium under social cost SCfib and
let OPT be an optimal strategy profile. From (9) we know that SCfib(A) ≤√
|F |

√
SCsum(A) and SCfib(OPT) ≥ 1√

W

√
SCsum(OPT). Thus:

PoA =
SCfib(A)

SCfib(OPT)
≤

√
W |F |

√
SCsum(A)

SCsum(OPT)
≤

√
W |F |

√
5

2
. (10)

	

Theorem 7. There exists a class of CCG games with social cost SCfib with
PoA =

√
W |F |.

Proof. Consider a colored congestion game with N players, |F | = N facilities
and W = N colors. Each player has as strategies the singleton sets consisting of
one facility: Ei = {{f1}, {f2}, . . . , {fN}}.

The above instance has a worst-case equilibrium with social cost N when
all players choose a different facility in an arbitrary color. On the other hand
in the optimum strategy profile players fill all colors of the necessary facilities.
This needs N

W facilities with maximum capacity over their colors 1. Thus the

optimum social cost is N
W leading to a PoA =

√
W |F |. 	
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4.2 Price of Anarchy for Social Cost SCmax

Theorem 8. The price of anarchy of any CCG game with social cost SCmax is

at most O
(√

N
W

)
.

Proof. Let A be a Nash equilibrium and let OPT be an optimal strategy profile.
Without loss of generality, we assume that player 1 is a maximum cost player:
SCmax(A) = C1(A). Thus, we need to bound C1(A) with respect to the optimum
social cost SCmax(OPT) = max

j∈[N ]
Cj(OPT).

Since A is a Nash equilibrium, no player benefits from changing either her
color or her choice of facilities. We denote by OPT1 = (E�

1 , a
�
1) the strategy of

player P1 in OPT. Since A is a Nash equilibrium it must hold:

∀c ∈ [W ] : C1(A) ≤
∑
e∈E�

1

(ne,c(A) + 1) ≤
∑
e∈E�

1

ne,c(A) + C1(OPT) . (11)

The second inequality holds since any strategy profile cannot lead to a cost for
a player that is less than the size of her facility combination.

Let I ⊂ [N ] be the set of players that, in A, use some facility e ∈ E�
1 . The

sum of their costs is:

∑
i∈I

Ci(A) ≥
∑
e∈E�

1

∑
c∈[W ]

n2
e,c(A) ≥

(
∑

e∈E�
1

∑
c∈[W ] ne,c(A))

2

|E�
1 |W

≥

(W minc∈[W ]

∑
e∈E�

1
ne,c(A))

2

|E�
1 |W

≥
W (minc∈[W ]

∑
e∈E�

1
ne,c(A))

2

|E�
1 |

.

(12)

The first inequality holds since a player in I might use facilities (e, c) not in E�
1

and the second inequality holds from the Cauchy-Schwarz inequality. Denoting
by cmin the color argminc∈[W ]

∑
e∈E�

1
ne,c(A), we have:

⎛⎝∑
e∈E�

1

ne,cmin(A)

⎞⎠2

≤ |E
�
1 |

W

∑
i∈I

Ci(A) . (13)

We know from [9] that: ∑
i∈[N ]

Ci(A) ≤
5

2

∑
i∈[N ]

Ci(OPT) . (14)

Combining the above two inequalities we have:⎛⎝∑
e∈E�

1

ne,cmin(A)

⎞⎠2

≤ |E
�
1 |

W

∑
i∈I

Ci(A) ≤
|E�

1 |
W

∑
i∈[N ]

Ci(A) ≤
5

2

|E�
1 |

W

∑
i∈[N ]

Ci(OPT)

(15)
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Fig. 1. A worst-case instance that proves the asymptotic tightness of the upper bound
on the price of anarchy of CCG games with social cost SCmax, depicted as a network
game. A dashed line represents a path of length k connecting its two endpoints.

Combining with (11) for cmin, we get

C1(A) ≤ C1(OPT) +

√√√√5

2

|E�
1 |

W

∑
i∈[N ]

Ci(OPT) . (16)

Since |E�
1 | ≤ C1(OPT) and Ci(OPT) ≤ SCmax(OPT) for any i ∈ [N ], we get

C1(A) ≤
(
1 +

√
5

2

N

W

)
SCmax(OPT) . (17)

	


Theorem 9. There exists a class of CCG games with social cost SCmax with

PoA = Θ

(√
N

W

)
.

Proof. Given integers k > 1 and W > 0, we will describe the lower bound
instance as a network game. The set of colors is [W ]. The network consists of
a path of k + 1 nodes n0, . . . , nk. In addition, each pair of neighboring nodes
ni, ni+1 is connected by k− 1 edge-disjoint paths of length k. Figure 1 provides
an illustration.

In this network, W major players want to send traffic from n0 to nk. For
every i, 0 ≤ i ≤ k−1, there are (k−1)W minor players that want to send traffic
from node ni to node ni+1. In the worst-case equilibrium A all players choose
the short central edge, leading to social cost SCmax(A) = k2. In the optimum
the minor players are equally divided on the dashed-line paths and the major
players choose the central edge. This leads to SCmax(OPT) = k, and the price
of anarchy is therefore:

PoA = k = Θ

(√
N

W

)
. (18)
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4.3 Price of Anarchy for Social Cost SCsum

The price of anarchy of CCG games with social cost SCsum is upper-bounded
by 5/2, as proved in [9]. For the lower bound, we use a slight modification
of the instance described in [9]. We have NW players and 2N facilities. The
facilities are separated into two groups: {h1, . . . , hN} and {g1, . . . , gN}. Players
are divided into N groups of W players. Each group i has strategies {hi, gi} and
{gi+1, hi−1, hi+1}. The optimal allocation is for all players in the i-th group to
select their first strategy and be equally divided in the W colors, leading to
SCsum(OPT) = 2NW . In the worst-case Nash equilibrium, players choose their
second strategy and are equally divided in the W colors, leading to SCsum(A) =
5NW . Thus, the price of anarchy of this instance is 5/2 and the upper bound
remains tight in our model as well.

5 Discussion

In this paper we introduced Colored Resource Allocation Games, a class of
games which generalize both congestion and bottleneck games. The main feature
of these games is that players have their strategies in multiple copies (colors).
Therefore, these games can serve as a framework to describe routing and wave-
length assignment games in multifiber all-optical networks. Although we could
cast such games as classical congestion games, it turns out that the proliferation
of resources together with the structure imposed on the players’ strategies allows
us to prove better upper bounds.

Regarding open questions, it would be interesting to consider more general
latency functions. This would make sense both in the case where fiber pricing is
not linear in the number of fibers, and also in the case where the network operator
seeks to determine an appropriate pricing policy so as to reduce the price of
anarchy. Another interesting direction is to examine which network topologies
result in better system behavior.
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Abstract. In this paper we are concerned with the basic problem of
string pattern matching: preprocess one or multiple fixed strings over
alphabet σ so as to be able to efficiently search for all occurrences of the
string(s) in a given text T of length n. In our model, we assume that text
and patterns are tightly packed so that any single character occupies log σ
bits and thus any sequence of k consecutive characters in the text or the
pattern occupies exactly k log σ bits. We first show a data structure that
requires O(m) words of space (more precisely O(m logm) bits of space)
where m is the total size of the patterns and answers to search queries
in average-optimal O(n/y) time where y is the length of the shortest
pattern (y = m in case of a single pattern). This first data structure,
while optimal in time, still requires O(m logm) bits of space, which might
be too much considering that the patterns occupy only m log σ bits of
space. We then show that our data structure can be compressed to only
use O(m log σ) bits of space while achieving query time O(n(logσ m)ε/y),
with ε any constant such that 0 < ε < 1. We finally show two other
direct applications: average optimal pattern matching with worst-case
guarantees and average optimal pattern matching with k differences.
In the meantime we also show a slightly improved worst-case efficient
multiple pattern matching algorithm.

1 Introduction

The string matching problem consists of finding all occurrences of a given pattern
p = p1p2 . . . pm in a large text T = t1t2 . . . tn, both sequences of characters
from a finite character set Σ of size σ = |Σ|. This problem is fundamental in
computer science and has a wide range of applications in text retrieval, symbol
manipulation, computational biology, and network security.

This problem has been deeply studied and since the 70’s there exist algorithms
like the Morris-Pratt algorithm (MP) [27] or the well-known Knuth-Morris-Pratt
(KMP -a variation of MP) [24] that are average and worst case time O(n+m),
that is, linear in the size of the text and that of the pattern. This problem has
been further investigated and a time average lower bound in Ω(n logσ(m)/m)
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(assuming equiprobability and independence of letters) has been proved by A.C.
Yao in [33]. Since this seminal work, many average optimal algorithms have
been proposed, from both a theoretical point of view, like the Backward Dawg
Matching (BDM) [15], than from a practical point of view, like the Backward
Nondeterministic Dawg Matching (BNDM) [29]. Worst case linear and average
optimal algorithms also appeared, mainly by combining a forward algorithm like
KMP with a backward search algorithm similar to BDM or BNDM. The Double-
Forward [2] is however an exception to this general approach since it combines
two forward algorithms sharing a unique data structure. It is the simplest algo-
rithm reaching these optimal complexities published so far.

A natural extension to the string matching problem is to search for all oc-
currences of multiple strings instead of a single one. We extend the notation m
to be the total size of the patterns. In a similar way to the single pattern case,
there exist O(n + m) linear time algorithms, the most famous being the Aho-
Corasick algorithm [1], and also average optimal algorithms like Multi-BDM [29]
and Dawg-Match [14].

The optimal results and algorithms we mentioned above are valid in classical
models. In this paper we are concerned with the single and multiple string pat-
tern matching problem in the RAM model with word length ω = Ω(log(n+m)),
assuming that text and patterns are tightly packed so that any single character
occupies log σ bits and thus any sequence of k consecutive characters in the text
or the pattern occupies exactly k log σ bits.

The single and multiple string matching problems have already been studied in
this model both from a worst case and average point of view. For the worst case
bound, the main studies are from Fredriksson [18], Bille [9] and Belazzougui [3,4].
Those studies made some progress on both single and multiple string matching
problems. Very recently Benkiki et al. [8] obtained the optimal O(n log σ

ω + occ)
query time for the single string case, however their result requires the availability of
non-standard instructions. Eventually Breslauer et al. [10] obtained an algorithm
with the unconditional optimal O(n log σ

ω + occ) query time for the single string
matching problem. The optimal worst-case bound for the multiple string variant
is still an open problem despite the progress made in the recent studies.

This paper however mainly focuses on average optimal string matching. This
question has already been considered by Fredriksson also in [18] where he pre-
sented a general speed-up framework based on the notion of super-alphabet and
on the use of tabulation (four russian technique). The single string matching
algorithm obtained using these techniques is optimal on average, but at the cost
of a huge memory requirement. Precisely, the algorithm is O(n/y) where y is the
length of the shortest pattern (y = m in case of a single pattern) while requiring
O(σm) space.

In this paper we first explain a data structure that requires only O(m) words
of space and answers to queries in average optimal O(n/y). However, our first
data structure, while leading to optimal query times, still requires O(m logm)
bits of space which might be still too much considering that the patterns oc-
cupy only m log σ bits of space. We then show that our data structure can be
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compressed to only require O(m log σ) bits of space while achieving query time
O(n(logσ m)ε/y). We eventually show two other direct applications: average op-
timal pattern matching with worst case guarantees and average optimal string
pattern matching with k differences. In the meantime we also show improved
solutions for worst-case efficient multiple pattern matching algorithm (which we
use for the average-optimal pattern matching with worst-case guarantees).

Model and Assumptions. In this paper, we assume a standard word RAM
model with word length ω = Ω(log n) (where n is the size of the input) with
all standard operations (including multiplication and addition) supported in
constant time. We assume that the text and the patterns are from the same
alphabet σ. In our bounds we often refer to three different kinds of time measures:

1. Worst-case time of an algorithm refers to a deterministic time that holds
regardless of the input and of the random choices made by the algorithm.

2. Randomized or randomized expected time of an algorithm measures the av-
erage time of the algorithm over all possible random choices of the algorithm
regardless of the input (it holds for any chosen input).

3. Expected or average time of an algorithm measures the average time of the
algorithm considering a probability model on the input. In our case the input
is either a text or a pattern and the probability model simply assumes that
the positions of the input are all independent and of the same probability
1/σ.

We quantify the space either in bits or in words. To translate between words and
bits, the space is simply multiplied by a factor logn. This is justified, since the
model only assumes that ω = Ω(logn) and thus allows the case ω = Θ(log n).
Note also that even if ω � logn, we can still simulate any algorithm designed
to use words of size Θ(log n) instead of ω with only a constant-factor slowdown.

2 The Basic Algorithm

We first consider the single string matching problem and we state the following
result.

Theorem 1. Given a pattern (string) p of length m over an alphabet of size σ,
we can build a data structure of size O(m logm) bits so that we can report all
the occ occurrences of the pattern p in any packed text T of length n in expected
time O(n/m). The construction of the data structure takes O(m) randomized
expected time (in which case the data structure occupies m logm + O(m) bits
only) and O(m log logm) time in the worst-case.

Proof. We first present the randomized construction. We use a window of size
m characters. We build a minimal perfect hash function f [21] on the set Ft

of factors of the pattern of length t = 3 logσ m characters. This hash function
occupies O(|Ft|) bits of space and can be evaluated in O(1) time. Before building
this minimal perfect hash function we first extract the factors in the following
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way: we traverse the pattern p and then at each iteration i extract in O(1) time
the characters si = p[i..i + t − 1] of the pattern (note that si is actually just
a bitvector of 3 logn bits) and add the pair (si, i) at the end of a temporary
array M initially empty. Then, we just sort this array (using radix-sort) in time
O(m) where the pairs are ordered according to their first component (the si
component). Then we store a table T [1..m]. For every s ∈ Ft occurring at position
j in p (that is we have s = p[j..t − 1]), we set T [f(s)] = j. Thus the hash
function f can be used in conjunction with the table T in order to get at least
the position of one occurrence of every substring of p of length t. Note that the
space occupancy of f is O(m − t) = O(m) bits while the space occupancy of T
is (m− t) logm ≤ m logm bits. Note also the hash function f can be evaluated
in O(1) time as it operates on strings of length t = 3 logσ m characters, which
is O(logm) = O(w) bits. Next, the matching of p in a text T follows the usual
strategy used in the other average optimal string matching algorithms. That is,
we use a window (a window is defined by just a pointer to the text plus an integer
defining the size of the window in number of characters) of size 2m− t (except
at the last step where the window could be of smaller size). Before starting the
first iteration, the window is placed at the beginning of the text (that is, take
w = T [1..2m− t]). Then at each iteration i starting from i = 1 do the following:

1. Consider the substring q = w[m− t+ 1..m].
2. Compute j = T [f(q)] and compare q with the substring p[j..j + t− 1].
3. In case the two substrings match, do an intensive search for p in the window

using any string matching method that runs in reasonable time.
4. Check whether i(m − t + 1) + m ≥ n in which case the search is finished,

otherwise continue with the next step.
5. Finally shift the window by m − t + 1 positions by setting w = T [i(m −

t+ 1) + 1..(i + 1)(m− t+ 1) +m] (or w = T [i(m− t+ 1) + 1..n] whenever
(i+1)(m−t+1)+m > n), increment i and go to step 1 of the next iteration.

It is easy to check that the algorithm above runs in expected time O(n/m)
time assuming that the characters are generated independently uniformly at
random. The query time follows from the fact that we are doing O(n/(m− t+
1)) = O(n/m) iterations and at each iteration the only non-constant step is the
intensive search, which costs O(m2) (assuming the most naive search algorithm)
but takes place only with probability at most O(m/σ3 logσ m) = (1/m2) and thus
only contributes O(1) to the cost of search.

We now describe the deterministic construction. Instead of storing a perfect
hash function on all factors of lengths t = 3 logσ m characters, mapping them
to interval [1..m] and then storing their corresponding pointers in the table T ,
we instead store all those factors using the deterministic dictionary of [30]. This
dictionary occupies linear space and can be constructed in time O(n log logn)
when built on a set of n keys of lengths O(log n) bits each. In our case, we have
Θ(m) keys of length t = 3 logσ m characters, which is 3 logm bits and thus the
construction of [30] takes O(m log logm) worst-case time. Note that the space
occupancy of this construction is also linear O(m logm) bits of space and the
query time is constant.
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What remains is to show how to combine the two data structures. The combi-
nation consists only in first trying to build the randomized data structure fixing
some maximal amount of time cm for a suitably chosen c. Then if the construc-
tion fails to terminate in that time, we build the deterministic data structure.
Note, however that the deterministic construction will be very far from practical
both from the space and time point of view. 	


This result improves upon Fredriksson’s result since the memory our algorithm
requires is only O(m) words of space or O(m logm) bits. Using the same ap-
proach we extend our result to optimally solve in average the multiple string
matching problem.

Theorem 2. Given a set of patterns (strings) S of total lengths m over an in-
teger alphabet of size σ where the shortest pattern is of length y ≥ 4 logσ m, we
can build a data structure of size O(m logm) bits so that we can report the oc-
currences of any of the patterns in S in any packed text T of length n in expected
time O(n/y). The construction of the data structure takes O(m) randomized ex-
pected time (in which case the data structure occupies m logm+O(m) bits only)
and O(m log logm) time in the worst-case (in which case the data structures
occupies O(m logm) bits of space).

Proof. The algorithm is almost the same as that of theorem 1 except for the
following points:

1. The window size is now 2y − t where y is the length of the shortest pattern
in the set of patterns and t = 3 logσ m.

2. We index all the substrings of length t = 3 logσ m of all of the patterns. That
is, the function f will store all factors of the strings.

3. The intensive search looks for all of the patterns in the window. The time
for this intensive search is O(ym) = O(m2).

4. The window is advanced by y − t+ 1 characters at each iteration.

The query time can be easily bounded by the same analysis used in theorem 1.
That is, at each iteration the only non-constant time step is the intensive search
that takes O(ym) = O(m2) time, but is triggered only with probability O(1/m2)
and thus contributes a O(1) cost. The probability O(1/m2) is deduced from the
fact that any string of length 3 logσ m generated at random has a probability
O(1/σ3 logσ m) = O(1/m3) of colliding with any substring of one of the patterns
and thus, the probability of colliding with any substring of any of the patterns is
O(1/m2). Note that the window is advanced by t′ = y− t+1 = y− 3 logσ m+1
at each iteration. Since y ≥ 4 logσ m, we deduce that t′ ≥ y/4. Thus we have
about 4n/y iteration where at iteration an expected O(1) time is spent which
gives a total of O(n/y) time. 	


3 Succinct Representation

The space required by the representation used in the two previous theorems is
O(m logm) (only m logm + O(m) bits for a randomized construction).
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This space usage is not succinct in the sense that it is larger than the space
used by the pattern(s), which is m log σ bits only. In the context of single string
matching, this is probably not a problem as m is small enough to fit entirely in
memory. However in the case of multiple string matching, the cumulative size of
the patterns may exceed the available memory (or at least do not fit into fastest
levels of memory). In the last decade many efforts have been devoted to reduce
the space required by the full text indexing data structures that allow us to
answer efficiently (with a small sacrifice in query time) to queries asking for all
the occurrences of a pattern in a text, but in which the text is fixed and the pat-
terns are given as queries. Note that this is the converse of our case, in which the
text is given as a query and the pattern(s) is/are fixed. In this section we show
that the first two theorems can also be modified to obtain a different space/time
trade-off between the space used by the data structure and the time required to
match the text. Our solution makes use of results from succinct full-text index-
ing. our solution makes use of results from succinct full-text indexing literature,
namely the compressed text index of [19] built using the space-efficient methods
described in [22,23]. In [19] the following lemma was shown:

Lemma 1. There exists a succinct full text index which can be built on a text
T of length m (or a collection of texts of total length m) over an alphabet of size
σ such that:

1. The full text index occupies space O(m log σ) bits and;
2. It can return for any string p the range of suffixes (a range [i..j] in the suffix

array) of T prefixed by p in time O(|p|/ logσ m+ (logσ m)ε).

The construction of the data structure takes either O(m log σ) randomized time
or O(m logm) deterministic time and uses O(m logm) bits of space during the
construction.

The construction algorithm in [19] uses O(m logm) bits of temporary space
during the construction though the constructed index occupies only O(m log σ)
bits of space. In our case we strive to reduce the peak consumption during both
construction and matching phases and thus need to use a construction algorithm
that uses space comparable to the constructed index. This is achieved by the
following result:

Lemma 2 ([22,23]). Given a text T of length n (or a collection of texts of total
length m) over an alphabet of size σ, the indexes of [19] can be constructed in
worst-case time O(m logm) using temporary space O(m log σ) bits of space (in
addition to the final space of the index).

The result about our succinct representation for average-optimal string matching
is summarized by the following theorem:

Theorem 3. Given a set of patterns (strings) S of total lengths m over an
integer alphabet of size σ where the shortest pattern is of length y ≥ 4 logσ m, we
can build a data structure of size O(m log σ) bits so that we can report all of the
occurrences of any of the patterns in time O(n(logσ m)ε/y) for any ε ∈ (0, 1).
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The index can be built in worst-case time O(m logm) using O(m log σ) bits of
temporary space.

Proof. For achieving the improved space bounds we will incorporate lemma
1 into the first step of the algorithm, which was to find whether the string
q = w[m− t+ 1..m] matches some substring of some text. The hash data struc-
ture used for that purpose in theorem 2 occupies space O(m logm). The reason
for needing that much space was because of the table T which stores m point-
ers of logm bits each. We now show an alternative way to match the strings
using a compressed index. For that, we simply index the pattern(s) using the
index of lemma 1. Then, checking if q exists takes O(t/ logσ m + (logσ m)ε) =
O((logσ m)ε) time. The space used by the index is O(m log σ) bits. Building the
index (using lemma 2) takes O(m logm) time and uses at most O(m log σ) bits
of temporary space. 	


The main advantage of theorem 3 over the first two theorems is that the peak
memory use during the preprocessing or the matching phases never exceeds
O(m log σ) bits of space (against Θ(m logm) bits of peak memory use in the two
first theorems). The drawback is that the construction and matching phases are
slightly slower than those of theorems 2 and 1.

Corollary 1. Given a pattern p of length m over an integer alphabet of size σ,
we can build in time O(m logm) a data structure of size O(m log σ) bits so that
we can report all the occ occurrences of p in any packed text T of length n in
expected time O( n

m (logσ m)ε) for any ε ∈ (0, 1). The peak memory usage during
the construction or matching phases is O(m log σ) bits.

Note that this corollary still improves when compared with the standard algo-
rithm which examines the pattern and the text character by character and has
query time O( n

m logσ m), slower than our corollary by a factor (logσ m)1−ε.

4 Worst-Case Guarantees

The optimal average time algorithm we presented above runs in worst case time
O( n

m + occ). However, in many real life uses of string matching, one does not
know any property of the data source. Thus, even if on average the algorithm is
optimal, it is cautious to bound its worst case time to avoid a bad instance to
block the software. We thus extend our approach to guarantee a worst case time
bound at least as worst as the fastest forward algorithm designed for (multiple)
string(s) matching when text and patterns are tightly packed. For this sake we
adapt the approach used in the Double-Forward algorithm [2] to packed strings.

The idea is simple. We consider the same approach used for proving Theorem
1. We hash the last 3 logσ m characters of the current search window through the
minimal perfect hashing function we built on all 3 logσ m characters long factor
of the pattern. If the hash test fails, we shift the search window to the right just
after the first character of the 3 logσ m last characters we tested. This situation is
shown in figure 1. Note that this step is the same as in the proof of Theorem 1.
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B

test using hashing

Search window

New search window

Safe shift

Text

fail

Fig. 1. Hash test fail case. The search window is shifted after the first of the 3 logσ m
characters tested.

The algorithm changes if the test passes. Assume that at some point we began
a forward scan of the text using the algorithm of [4] that stopped in a position
A in the text after having read a prefix u of the current search window. Figure 2
illustrates this case. We simply continue this forward search from A′, passing the
end of the current search window and reading characters until the longest suffix
of the text (read by blocks of characters) that matches a prefix u′ of the pattern
is small enough. We then repeat the global search scheme from this new window.

u

Search window

BA

Accepted by the hashing functionText

A

Read by blocks from the end of the previous forward scan

A’ B

New window

u

u’

Fig. 2. Hash test success case. The forward search stopped in A′ is continued until
passing the end of the initial window until point A′.

It is obvious that this new algorithm remains optimal on average. As a forward
algorithm, we use the very recent algorithm of Breslauer et al. [10]. The algorithm
achieves preprocessing time O(m/ logσ m+ω) and optimal worst-case query time
O(n log σ

ω ). We thus get the following result:

Theorem 4. Given a pattern p of length m characters over an integer al-
phabet of size σ, we can build in randomized O(m + ω) time and worst-case
O(m log logm+ ω) time a data structure of size O(m logm) bits so that we can
report all of the occ occurrences of p in any packed text T of length n in expected
time O(n/m) and worst-case time O(n log σ

ω + occ).

4.1 Multiple String Matching

We extend the previous algorithm to match a set of strings. We use as a for-
ward algorithm an improved version of the multiple string algorithm searching
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described in [3,4], whose original version runs in O(n( log d+log y+log logm
y + log σ

ω )+

occ) time using a linear-space data structure that can be built in O(m logm)
time. We first prove the following (slightly) improved result based on [3,4]:

Theorem 5. Given a set of d patterns (strings) S of total length m characters
over an integer alphabet of size σ where the shortest pattern is of length y, we
can build in worst case time O(m logm) a data structure of size O(m logm+ω)
bits so that we can report all of the occ occurrences of any of the patterns in S

in any packed text T of length n in worst-case time O(n(
log d

log log d+log y+log logm

y +
log σ
ω ) + occ). The data structure uses temporary space O(m logm+ ω2).

Proof. To get the improved result we first notice that the text matching phase
in the multiple string matching algorithm of [4] proceeds in Θ(n/y) iterations,
at each iteration reading y consecutive characters and spending O(log d+log y+
log logm+ y log σ

ω ) time, where the two terms log d and log y are due to :

1. The use of a string B-tree, which is a data structure used for longest suf-
fix matching. The string B-tree stores a set S′ of O(dy) strings (actually
O(dy) pointers to text substrings of length y) and answers to a longest suffix
matching query for a query string of length y in time O(y log σ

ω + log(dy)).
2. The use of a two dimensional rectangle stabbing data structure of

Chazelle [13]. This data structures stores up to m′ = O(dy) rectangles using
O(m′) = O(dy) space and answers to rectangle stabbing queries that ask
to report all the rectangles that contain a given query point. The original
query time was O(logm′ + occ) where occ is the number of reported rectan-
gles. However this query time was later improved to O( logm′

log log n′ + occ) [34].

To get our improved query time, we will use an alternative data structure for
longest suffix matching. We use a compacted trie built on the set S′. The com-
pacted trie will use O(dy) pointers of O(log(dy)) = O(logm) bits. The compacted
trie can be built in time O(m logm) and uses space O(m logm) bits. In order to
accelerate the traversal of the trie we will use super-characters built from every
ω

log σ consecutive characters. The compacted trie will be built on the original set
of strings considered as strings over the super-alphabet. This is done by grouping
every sequence of ω

log σ characters into a single one (strings whose length is not
multiple of ω

log σ are padded with special characters before grouping). Then a
node of the trie will have children labeled with characters from the new alpha-
bet. Note that each character of the new alphabet occupies O(ω) bits. In order
to be able to determine which child to follow, we need to build a dictionary on
the set of labels of each node. However this would occupy in total O(mω) bits
of space. In order to reduce the space, we will group all the distinct labels of
all the nodes in the trie, and build a perfect hash function that maps all the
distinct labels to a range of size mO(1) (we call the resulting labels reduced la-
bels). The resulting function occupies O(ω) bits of space . A deterministic perfect
hash function occupying constant space can be built in deterministic O(m logm)
time [20] or randomized O(m) time using universal hashing [11]. Then for each
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node we build a local deterministic dictionary that associates a pointer to the
child corresponding to each reduced label (we call it child dictionary). As each
reduced label is the range mO(1) means that it can be described using O(logm)
bits. Thus the total space occupied by all child dictionaries will be O(m logm)
bits. The compacted trie above is able to to return the length of the longest
suffix matching up to lengths multiple of ω

log σ (old alphabet ) characters.
In order to terminate the longest suffix matching query up to additional ω

log σ−
1 characters, we will for each node build a z-fast trie [5,7] on all child labels.
The z-fast trie will be built on the set of labels of the children of each node.
A z-fast trie supports longest suffix matching queries in time O(log |p|) on a
pattern p. It uses a linear number of pointers to the original strings (see [7]).
The probabilistic z-fast trie presented in [5,7], can be made deterministic by
building a deterministic perfect hash function on the path labelling each node
in the z-fast trie using [20]. The paths are of length at most ω bits, we can reuse
the same strategy above to map the labelling paths to O(logm) bits.

In order to further reduce the used space we partition our initial set of strings
into groups of ω strings and store only the first string of each group in the struc-
ture above (we call it sampled trie), but in addition for each node of the sampled
trie store a pointer to the corresponding node in the original non-sampled trie.
Then we build the same above trie structure on each group of ω (call them group
tries). This ensures that building the above structure on each group requires just
O(ω2) bits of space. That way the total space is bounded by O(ω2 + m logm)
bits of space. Finally a query will first start in the sampled trie, then follow a
pointer to the non-sampled trie to match at most one additional character. This
isolates a range that spans at most two groups which can then be searched using
the local group tries. 	


We can now replace the log d + log y term with the addition of the query
times of the alternative longest suffix matching data structure and the improved
query time for the rectangle stabbing problem to obtain a total query time

O(
log(dy)

log log(dy)
+log y+log logm

y + occ) = O(
log d

log log d+log y+log logm

y + occ).
Now back to the average-optimal multiple string matching algorithm. As the

size of the search window in the algorithm is y, the size of the smallest string
searched, the complexities we obtain on average depend on y instead of m. And
we get:

Theorem 6. Given a set of d patterns (strings) S of total length m characters
over an integer alphabet of size σ where the shortest pattern is of length y ≥
4 logσ m, we can build in worst case time O(m logm) a data structure of size
O(m logm) bits so that we can report all of the occ occurrences of any of the
patterns in S in any packed text T of length n in expected time O(n/y) and in

worst case time O(n(
log d

log log d+log y+log logm

y + log σ
ω ) + occ).
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5 Approximate String Matching

Approximate string matching considering edit distance is to find all positions
in a text where at least one string of the set of patterns matches the text up
to k errors. The approximate string matching problem can be efficiently solved
for relatively small k (in regard to the length of the strings) using exact string
matching as a filter. This approach is also used in [18]. The idea is the following.
Assume a string to match the text up to k errors. If this string is first divided
into k + 1 pieces, one of these pieces must exactly match the text. Thus, the
approach is to split the string patterns in k + 1 pieces and search for all those
pieces simultaneously in the text using the multiple string matching algorithm
of Theorem 2. If the pieces are of the same length, m/(k + 1), the average time
required to search all pieces is O(n/(m/k + 1)) = O((k + 1)n/m) = O(kn/m).

If one of those pieces matches, then a complete match of the corresponding
strings is checked using a classical O(km) algorithm.

Considering a probability model in which all positions are independent and of
the same probability 1/σ, a rough upper bound of the number of verifications is
O(nk(1/σ)(m/k)). For k < m/ logσ m, the time of the multiple string matching
algorithm dominates and the average time remains O(kn/m).
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Abstract. The goal of tracking the origin of short, distinctive phrases
(memes) that propagate through the web in reaction to current events has
been formalized as DAG Partitioning: given a directed acyclic graph,
delete edges of minimum weight such that each resulting connected com-
ponent of the underlying undirected graph contains only one sink. Moti-
vated by NP-hardness and hardness of approximation results, we consider
the parameterized complexity of this problem. We show that it can be
solved in O(2k ·n2) time, where k is the number of edge deletions, proving
fixed-parameter tractability for parameter k. We then show that unless
the Exponential Time Hypothesis (ETH) fails, this cannot be improved
to 2o(k) ·nO(1); further, DAG Partitioning does not have a polynomial
kernel unless NP ⊆ coNP/poly. Finally, given a tree decomposition of

width w, we show how to solve DAG Partitioning in 2O(w2) · n time,
improving a known algorithm for the parameter pathwidth.

1 Introduction

The motivation of our problem comes from a data mining application. Leskovec
et al. [6] want to track how short phrases (typically, parts of quotations) show
up on different news sites, sometimes in mutated form. For this, they collected
from 90 million articles phrases of at least four words that occur at least ten
times. They then created a directed graph with the phrases as vertices and draw
an arc from phrase p to phrase q if p is shorter than q and either p has small
edit distance from q (with words as tokens) or there is an overlap of at least 10
consecutive words. Thus, an arc (p, q) indicates that p might originate from q.

� Supported by DFG project DAPA (NI 369/12-1).
�� Supported by DFG project PAWS (NI 369/10-1).

��� Supported by DAAD.
† Supported by DFG project PABI (NI 369/7-2).
‡ A major part of this work was done while with the TU Berlin, supported by the
DFG project AREG (NI 369/9).

P.G. Spirakis and M. Serna (Eds.): CIAC 2013, LNCS 7878, pp. 49–60, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



50 R. van Bevern et al.

Since all arcs are from shorter to longer phrases, the graph is a directed acyclic
graph (DAG). The arcs are weighted according to the edit distance and the
frequency of q. A vertex with no outgoing arc is called a sink. If a phrase is
connected to more than one sink, its ultimate origin is ambiguous. To resolve
this, Leskovec et al. [6] introduce the following problem.

DAG Partitioning [6]

Input: A directed acyclic graph D = (V,A) with positive integer edge
weights ω : A→ N and a positive integer k ∈ N.

Output: Is there a set A′ ⊆ A,
∑

a∈A′ ω(a) ≤ k, such that each con-
nected component in D′ = (V,A \A′) has exactly one sink?

While the work of Leskovec et al. [6] had a large impact (for example, it was
featured in the New York Times), there are few studies on the computational
complexity of DAG Partitioning so far. Leskovec et al. [6] show that DAG

Partitioning is NP-hard. Alamdari and Mehrabian [1] show that moreover it
is hard to approximate in the sense that if P �= NP, then for any fixed ε > 0,
there is no (n1−ε)-approximation, even if the input graph is restricted to have
unit weight arcs, maximum outdegree three, and two sinks.

In this paper, we consider the parameterized complexity of DAG Partition-

ing. (We assume familiarity with parameterized analysis and concepts such as
problem kernels (see e. g. [4, 7])). Probably the most natural parameter is the max-
imumweight k of the deleted edges; edges get deleted to correct errors and ambigu-
ity, and we can expect that for sensible inputs only few edges need to be deleted.

Unweighted DAG Partitioning is similar to the well-known Multiway

Cut problem: given an undirected graph and a subset of the vertices called
the terminals, delete a minimum number k of edges such that each terminal
is separated from all others. DAG Partitioning in a connected graph can
be considered as a Multiway Cut problem with the sinks as terminals and
the additional constraint that not all edges going out from a vertex may be
deleted, since this creates a new sink. Xiao [8] gives a fixed-parameter algo-
rithm for solving Multiway Cut in O(2k · nO(1)) time. We show that a sim-
ple branching algorithm solves DAG Partitioning in the same running time
(Theorem 3). We also give a matching lower bound: unless the Exponential Time
Hypothesis (ETH) fails, DAG Partitioning cannot be solved in O(2o(k) ·nO(1))
time (Corollary 1). We then give another lower bound for this parameter by
showing that DAG Partitioning does not have a polynomial kernel unless
NP ⊆ coNP/poly (Theorem 5).

An alternative parameterization considers the structure of the underlying
undirected graph of the input. Alamdari and Mehrabian [1] show that if this

graph has pathwidth φ, DAG Partitioning can be solved in 2O(φ2) · n time,
and thus DAG Partitioning is fixed-parameter tractable with respect to path-
width. They ask if DAG Partitioning is also fixed-parameter tractable with
respect to the parameter treewidth. We answer this question positively by giving
an algorithm based on dynamic programming that given a tree decomposition
of width w solves DAG Partitioning in O(2O(w2) · n) time (Theorem 7).

Due to space constraints, we defer some proofs to a journal version.
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2 Notation and Basic Observation

All graphs in this paper are finite and simple. We consider directed graphs D =
(V,A) with vertex set V and arc set A ⊆ V ×V , as well as undirected graphs G =
(V,E) with vertex set V and edge set E ⊆ {{u, v} | u, v ∈ V }. For a (directed or
undirected) graph G, we denote by G \ E′ the subgraph obtained by removing
from it the arcs or edges in E′. We denote by G[V ′] the subgraph of G induced
by the vertex set V ′ ⊆ V . The set of out-neighbors and in-neighbors of a vertex
v in a directed graph is N+(v) = {u : (v, u) ∈ A} and N−(v) = {u : (u, v) ∈ A},
respectively. Moreover, for a set of arcs B and a vertex v we let NB(v) := {u |
(u, v) ∈ B or (v, u) ∈ B} and NB[v] := NB(v) ∪ {v}. The out-degree, the in-
degree, and the degree of a vertex v ∈ V are d+(v) = |N+(v)|, d−(v) = |N−(v)|,
and d(v) = d+(v) + d−(v), respectively. A vertex is a sink if d+(v) = 0 and
isolated if d(v) = 0. We say that u can reach v (v is reachable from u) in D
if there is an oriented path from u to v in D. In particular, u is always reach-
able from u. Furthermore, we use connected component as an abbreviation for
weakly connected component, that is, a connected component in the underlying
undirected graph. The diameter of D is the maximum length of a shortest path
between two different vertices in the underlying undirected graph of D.

The following easy to prove structural result about minimal DAG Partition-

ing solutions is fundamental to our work.

Lemma 1. Any minimal solution for DAG Partitioning has exactly the same
sinks as the input.

Proof. Clearly, no sink can be destroyed. It remains to show that no new sinks
are created. Let D = (V,A) be a DAG and A′ ⊆ A a minimal set such that D′ =
(V,A \ A′) has exactly one sink in each connected component. Suppose for a
contradiction that there is a vertex t that is a sink in D′ but not in D. Then
there exists an arc (t, v) ∈ A for some v ∈ V . Let Cv and Ct be the connected
components in D′ containing v and t respectively and let tv be the sink in Cv.
Then, for A′′ := A′ \ {(t, v)}, Cv ∪Ct is one connected component in (V,A \A′′)
having one sink tv. Thus, A

′′ is also a solution with A′′ � A′, a contradiction. 	


3 Classical Complexity

Since DAG Partitioning is shown to be NP-hard in general, we determine
whether relevant special cases are efficiently solvable. Alamdari and Mehra-
bian [1] already showed that DAG Partitioning is NP-hard even if the input
graph has two sinks. We complement these negative results by showing that
the problem remains NP-hard even if the diameter or the maximum degree is a
constant.

Theorem 1. DAG Partitioning is solvable in polynomial time on graphs of
diameter one, but NP-complete on graphs of diameter two.

Theorem 1 can be proven by reducing from general DAG Partitioning and by
adding a gadget that ensures diameter two.
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Theorem 2. DAG Partitioning is solvable in linear time if D has maximum
degree two, but NP-complete on graphs of maximum degree three.

Proof. Any graph of maximum degree two consists of cycles or paths. Thus,
the underlying graph has treewidth at most two and we can therefore solve the
problem in linear time using Theorem 7.

We prove the NP-hardness on graphs of maximum degree three. To this end,
we use the reduction from Multiway Cut to DAG Partitioning by Leskovec
et al. [6]. In the instances produced by this reduction, we then replace vertices
of degree greater than three by equivalent structures of maximum degree three.

Multiway Cut

Input: An undirected graph G = (V,E), a weight function w : E → N,
a set of terminals T ⊆ V , and an integer k.

Output: Is there a subset E′ ⊆ E with
∑

e∈E′ w(e) ≤ k such that the
removal of E′ from G disconnects each terminals from all the others?

We first recall the reduction from Multiway Cut to DAG Partitioning. Let
I = (G = (V,E), w, T, k) be an instance of Multiway Cut. Since Multi-

way Cut remains NP-hard for three terminals and unit weights [3], we may
assume that w(e) = 1 for all e ∈ E and |T | = 3. We now construct the in-
stance I ′ = (D = (V ′, E′), k′) of DAG Partitioning from I as follows. Add
three vertices r1, r2, r3 forming the set V1, a vertex v′ for each vertex v ∈ V
forming the set V2, and a vertex e{u,v} for every edge {u, v} ∈ E forming the
set V3. Now, for each terminal ti ∈ T insert the arc (t′i, ri) in E′. For each ver-
tex v ∈ V \T , add the arcs (v′, ri) for i = 1, 2, 3. Finally, for every edge {u, v} ∈ E
insert the arcs (e{u,v}, u′) and (e{u,v}, v′). Set k′ = k + 2(n− 3). We claim that
I is a yes-instance if and only if I ′ is a yes-instance.

Suppose that there is a solution S ⊆ E of size at most k for I. Then the
following yields a solution of size at most k′ for I ′: If a vertex v ∈ V belongs
to the same component as terminal ti, then remove every arc (v′, rj) with j �= i.
Furthermore, for each edge {u, v} ∈ S remove one of the two arcs (e{u,v}, u′)
and (e{u,v}, v′). One can easily check that we end up with a valid solution for I ′.
Conversely, suppose that we are given a minimal solution of size at most k′ for I ′.
Notice that one has to remove at least two of the three outgoing arcs of each ver-
tex v′ ∈ V2 and that we cannot discard all three because, contrary to Lemma 1,
this would create a new sink. Thus, we can define the following valid solution
for I: remove an edge {u, v} ∈ E if and only if one of the arcs (e{u,v}, u′) and
(e{u,v}, v′) is deleted. Again the correctness can easily be verified.

It remains now to modify the instance I ′ to get a new instance I ′′ of maximum
degree three. For each vertex v ∈ V ′ with |N−(v)| = |{w1, . . . , wd−(v)}| ≥ 2, do
the following: For j = 2, . . . , d−(v) remove the arc (wj , v) and add the vertex w′

j

together with the arc (wj , w
′
j). Moreover, add the arcs (w1, w

′
2), (wd−(v), v),

and (w′
j , w

′
j+1) for each j = 2, . . . , d−(v) − 1. Now, every vertex has maximum

degree four. Notice that, by Lemma 1, among the arcs introduced so far, only
the arcs (wj , w

′
j) can be deleted, as otherwise we would create new sinks. The

correspondence between deleting the arc (wj , w
′
j) in the modified instance and
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Fig. 1. Construction of the “tree structure” for a vertex v′ ∈ V2

deleting the arc (wj , v) in I ′ is easy to see. Thus the modified instance is so
far equivalent to I. Notice also that the vertices in I ′′ that have degree larger
than three are exactly the degree-four vertices in V2. In order to decrease the
degree of these vertices, we carry out the following modifications. For each ver-
tex v′ ∈ V2, with N+(v′) = {u1, u2, u3}, remove (v′, u1) and (v′, u2), add a new
vertex v′′, and insert the three arcs (v′, v′′), (v′′, u1), and (v′′, u2) (see Figure 1).
This concludes the construction of I ′′ and we now prove the correctness. Let
Tv′ be the subgraph induced by {v′, v′′, u1, u2, u3} where v′ ∈ V2. It is enough
to show that exactly two arcs from Tv′ have to be removed in such a way that
there remains only one path from v′ to exactly one of the ui. Indeed, we have to
remove at least two arcs: otherwise, two sinks will belong to the same connected
component. Next, due to Lemma 1, it is not possible to remove more than two
arcs from Tv′ . Moreover, using again Lemma 1, the two discarded arcs leave a
single path from v′ to exactly one of the ui. This completes the proof. 	


4 Parameterized Complexity: Bounded Solution Size

In this section, we investigate the influence of the parameter solution size k on
the complexity of DAG Partitioning. To this end, notice that in Lemma 1 we
proved that any minimal solution does not create new sinks. Hence, the task is
to separate at minimum cost the existing sinks by deleting arcs without creating
new ones. Note that this is very similar to the Multiway Cut problem: In Mul-

tiway Cut the task is to separate at minimum cost the given terminals. Mul-

tiway Cut was shown by Xiao [8] to be solvable in O(2k min(n2/3,m1/2)nm)
time. However, the algorithm relies on minimum cuts and is rather complicated.
In contrast, by giving a simple search tree algorithm running in O(2k · n2) time
for DAG Partitioning, we show that the additional constraint to not create
new sinks makes the problem arguably simpler.

Our search tree algorithm exploits the fact that no new sinks are created in
the following way: Assume that there is a vertex v with only one outgoing arc
pointing to a vertex u. Then, for any minimal solution, u and v are in the same
connected component. This leads to the following data reduction rule, which
enables us to provide the search tree algorithm. It is illustrated in Figure 2.
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Fig. 2. Exemplary DAG Partitioning instance. Reduction Rule 1 transforms the in-
stance into an equivalent instance: All paths from any vertex to c′ can be disconnected
with the same costs as before. In every solution with costs less than 100, amust be in the
same component as a′ and b must be in the same component as b′. Let S = {a′, b′, c′} be
the sinks. Furthermore, d is a sink in D[V \S] which must be disconnected from all but
one sink. However, since a is adjacent to d removing the cheapest arc (d, a′) does not
lead to a solution, because a′ and c′ would remain in the same component. In contrast,
by removing (a, c′), (b, c′) and (d, c′) one obtains the unique solution, which has cost 6.

Reduction Rule 1. Let v ∈ V be a vertex with outdegree one and u its unique
out-neighbor. Then for each arc (w, v) ∈ A, add an arc (w, u) with the same
weight. If there already is an arc (w, u) in A, then increase the weight of (w, u)
by ω(w, v). Finally, delete v.

The correctness of this rule follows from the discussion above. Clearly, to a
vertex v ∈ V , it can be applied in O(n) time. Thus, in O(n2) time, the input
graph can be reduced until no further reduction by Reduction Rule 1 is possible.
Thereafter, each vertex has at least two outgoing arcs and, thus, there is a vertex
that has at least two sinks as out-neighbors. Exactly this fact we exploit for a
search tree algorithm, yielding the following theorem:

Theorem 3. DAG Partitioning can be solved in O(2k · n2) time.

Proof. Since each connected component can be treated independently, we assume
without loss of generality that the input graph D is connected. Moreover, we
assume that Reduction Rule 1 is not applicable to D.

Let S be the set of sinks in D. If all vertices are sinks, then D has only one
vertex and we are done. Otherwise, let r be a sink in D[V \S] (such a sink exists,
since any subgraph of an acyclic graph is acyclic). Then the d arcs going out of r
all end in sinks, that is, r is directly connected to d sinks. Since Reduction Rule 1
is not applicable, d > 1, and at most one of the d arcs may remain. We recursively
branch into d cases, each corresponding to the deletion of d − 1 arcs. In each
branch, k is decreased by d − 1 and the recursion stops as soon as it reaches 0.
Thus, we have a branching vector (see e. g. [7]) of (d− 1, d− 1, . . . , d− 1︸ ︷︷ ︸

d

), which

yields a branching number not worse than 2, since 2d−1 ≥ d for every d ≥
2. Therefore, the size of the search tree is bounded by O(2k). Fully executing
Reduction Rule 1 and finding r can all be done in O(n2) time. 	


Limits of Kernelization and Parameterized Algorithms. In the remain-
der of this section we investigate the theoretical limits of kernelization and pa-
rameterized algorithms with respect to the parameter k. Specifically, we show
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that unless the exponential time hypothesis (ETH) fails, DAG Partitioning

cannot be solved in subexponential time, that is, the running time stated in
Theorem 3 cannot be improved to 2o(k)poly(n). Moreover, by applying a frame-
work developed by Bodlaender et al. [2] we prove that DAG Partitioning,
unless NP ⊆ coNP/poly, does not admit a polynomial kernel with respect to k.

Towards both results, we first recall the Karp reduction (a polynomial-time
computable many-to-one reduction) from 3-SAT intoDAG Partitioning given
by Alamdari and Mehrabian [1]. The 3-SAT problem is, given a formula F
in conjunctive normal form with at most three literals per clause, to decide
whether F admits a satisfying assignment.

Lemma 2 ([1, Sect. 2]). There is a Karp reduction from 3-SAT to DAG

Partitioning.

Proof. We briefly recall the construction given by Alamdari and Mehrabian [1].
Let ϕ be an instance of 3-SAT with the variables x1, . . . , xn and the clauses

C1, . . . Cm. We construct an instance (D,ω, k) with k := 4n + 2m for DAG

Partitioning that is a yes-instance if and only if ϕ is satisfiable. Therein, the
weight function ω will assign only two different weights to the arcs: A normal arc
has weight one and a heavy arc has weight k + 1 and thus cannot be contained
in any solution.

Construction: We start constructing the DAG D by adding the special ver-
tices f, f ′, t and t′ together with the heavy arcs (f, f ′) and (t, t′). The vertices f ′

and t′ will be the only sinks in D. For each variable xi, introduce the ver-
tices xt

i, x
f
i , xi and xi together with the heavy arcs (t, xt

i) and (f, xf
i ) and the nor-

mal arcs (xt
i, xi), (x

t
i, xi), (x

f
i , xi), (x

f
i , xi), (xi, f

′), (xi, f
′), (xi, t

′), and (xi, t
′).

For each clause C, add a vertex C together with the arc (t′, C). Finally, for each
clause C and each variable xi, if the positive (or negative) literal of xi appears
in C, then add the arc (C, xi) ((C, xi), resp.). This completes the construction
of D.

Correctness: One can prove that (D,ω, k) is a yes-instance for DAG Parti-

tioning if and only if ϕ is satisfiable.

Limits of Parameterized Algorithms. The Exponential Time Hypothesis (ETH)
was introduced by Impagliazzo et al. [5] and states that 3-SAT cannot be solved
in 2o(n)poly(n) time, where n denotes the number of variables.

Corollary 1. Unless the ETH fails, DAG Partitioning cannot be solved in
2o(k)poly(n) time.

Proof. The reduction provided in the proof of Lemma 2 reduces an instance of 3-
SAT consisting of a formula with n variables to an equivalent instance (D,ω, k)
of DAG Partitioning with k = 4n + 2m. In order to prove Corollary 1, it
remains to show that we can upper-bound k by a linear function in n. Fortunately,
this is done by the so-called Sparsification Lemma [5], which allows us to assume
that the number of clauses in the 3-SAT instance that we reduce from is linearly
bounded in the number of variables. 	
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Limits of Problem Kernelization. We first recall the basic concepts and the main
theorem of the framework introduced by Bodlaender et al. [2].

Theorem 4 ([2, Corollary 10]). If some set L ⊆ Σ∗ is NP-hard under Karp
reductions and L cross-composes into the parameterized problem Q ⊆ Σ∗ × N,
then there is no polynomial-size kernel for Q unless NP ⊆ coNP/poly.

Here, a problem L cross-composes into a parameterized problem Q if there is a
polynomial-time algorithm that transform the instances I1, . . . , Is of Q into an
instance (I, k) for L such that k is bounded by a polynomial in maxsi=1 |Ij |+log s
and (I, k) ∈ L if and only if there is an instance Ij ∈ Q, where 1 ≤ j ≤ s.
Furthermore, it is allowed to assume that the input instances I1, . . . , Is belong
to the same equivalence class of a polynomial equivalence relation R ⊆ Σ∗×Σ∗,
that is, an equivalence relation such that it can be decided in polynomial time
whether two inputs are equivalent and each set S ⊆ Σ∗ is partitioned into at
most maxx∈S(|x|)O(1) equivalence classes.

In the following we show that 3-SAT cross-composes into DAG Partition-

ing parameterized by k. In particular, we show how the reduction introduced in
Lemma 2 can be extended to a cross-composition.

Lemma 3. 3-SAT cross-composes to DAG Partitioning parameterized by k.

Proof. Let ϕ1, . . . , ϕs be instances of 3-SAT. We assume that each of them has n
variables and m clauses. This is obviously a polynomial equivalence relation.
Moreover, we assume that s is a power of two, as otherwise we can take multiple
copies of one of the instances. We construct a DAG D = (V,A) that forms
together with an arc-weight function ω and k := 4n+ 2m+ 4 log s an instance
of DAG Partitioning that is a yes-instance if and only if ϕi is satisfiable for
at least one 1 ≤ i ≤ s.

Construction: For each instance ϕi let Di be the DAG constructed as in the
proof of Lemma 2. Note that (Di, k

′) with k′ := 4n + 2m is a yes-instance if
and only if ϕi is satisfiable. To distinguish them between multiple instances,
we denote the special vertices f, f ′, t, and t′ in Di by fi, f

′
i , ti, and t′i. For all

1 ≤ i ≤ s, we add Di to D and we identify the vertices f1, f2, . . . , ft to a
vertex f and, analogously, we identify the vertices f ′

1, f
′
2, . . . , f

′
t to a vertex f ′.

Furthermore, we add the vertices t, t′, and t′′ together with the heavy arcs (t, t′′)
and (t, t′) to D. As in the proof of Lemma 2, a heavy arc has weight k + 1 and
thus cannot be contained in any solution. All other arcs, called normal, have
weight one.

Add a balanced binary tree O with root in t′′ and the leaves t1, . . . , ts formed
by normal arcs which are directed from the root to the leaves. For each vertex
in O, except for t′′, add a normal arc from f . Moreover, add a balanced binary
tree I with root t′ and the leaves t′1, . . . , t

′
s formed by normal arcs that are

directed from the leaves to the root. For each vertex in I, except for t′, add a
normal arc to f ′. This completes the construction of D.

Correctness: One can prove that (D,ω, k) is a yes-instance if and only if ϕi is
satisfiable for at least one 1 ≤ i ≤ s. 	
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Lemma 3 and Theorem 4 therefore yield:

Theorem 5. DAG Partitioning does not have a polynomial-size kernel with
respect to k, unless NP ⊆ coNP/poly.

We note that Theorem 5 can be strengthened to graphs of constant diameter or
unweighted graphs.

5 Partitioning DAGs of Bounded Treewidth

In the meme tracking application, edges always go from longer to shorter phrases
by omitting or modifying words. It is thus plausible that the number of phrases
of some length on a path between two phrases is bounded. Thus, the underlying
graphs are tree-like and in particular have bounded treewidth. In this section,
we investigate the computational complexity of DAG Partitioning measured
in terms of distance to “tree-like” graphs. Specifically, we show that if the input
graph is indeed a tree with uniform edge weights, then we can solve the instance
in linear time by data reduction rules (see Theorem 6). Afterwards, we prove
that this can be extended to weighted graphs of constant treewidth and, actually,
we show that DAG Partitioning is fixed-parameter tractable with respect to
treewidth. This improves the algorithm for pathwidth given by Alamdari and
Mehrabian [1], as the treewidth of a graph is at most its pathwidth.

Warm-Up: Partitioning Trees

Theorem 6. DAG Partitioning is solvable in linear time if the underlying
undirected graph is a tree with uniform edge weights.

To prove Theorem 6, we employ data reduction on the tree’s leaves. Note that
Reduction Rule 1 removes all leaves of a tree that have outdegree one and leaves
that are the only out-neighbor of their parent. In this case, Reduction Rule 1
can be realized by merely deleting such leaves. In cases where Reduction Rule 1
is not applicable to any leaves, we apply the following data reduction rule:

Reduction Rule 2. Let v ∈ V be a leaf with in-degree one and in-neighbor w.
If w has more than one out-neighbor, then delete v and decrement k by one.

We can now prove that as long as the tree has leaves, one of Reduction Rule 1
and Reduction Rule 2 applies, thus proving Theorem 6.

Partitioning DAGs of Bounded Treewidth. We note without proof that
DAG Partitioning can be characterized in terms of monadic second-order
logic (MSO), hence it is FPT with respect to treewidth (see e. g. [7]). However,
the running time bound that this approach yields is far from practical. Therefore,
we give an explicit dynamic programming algorithm.

Theorem 7. Given a tree decomposition of the underlying undirected graph of
width w, DAG Partitioning can be solved in O(2O(w2) · n) time. Hence, it is
fixed-parameter tractable with respect to treewidth.
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Suppose we are given D = (V,A), ω, k and a tree decomposition (T, β) for the
underlying undirected graph of D of width w. Namely, T is a tree and β is a
mapping that assigns to every node x in V (T ) a set Vx = β(x) ⊆ V called a bag
(for more details on treewidth see e. g. [7]). We assume without loss of generality,
that the given tree decomposition is nice and is rooted in a vertex r with an
empty bag. For a node x of V (T ), we denote by Ux the union of Vy over all y
descendant of x, AV

x denotes A(D[Vx]), and AU
x denotes A(D[Ux]).

Furthermore, for a DAG G we define the transitive closure with respect to
the reachability as Reach∗(G) := (V (G), A(G) ∪ {(u, v) | u, v ∈ V (G), u �=
v, and there is an oriented path from u to v in G}).

Solution Patterns. Our algorithm is based on leaf to root dynamic programming.
The behavior of a partial solution is described by a structure which we call a pat-
tern. Let x be a node of T and Vx its bag. Let P be a DAG with V (P ) consisting
of Vx and at most |Vx| additional vertices such that each vertex in V (P )\Vx is a
non-isolated sink. Let Q be a partition of V (P ) into at most |Vx| sets Q1, . . . , Qq,
such that each connected component of P is within one set of Q and each Qi

contains at most one vertex of V (P )\Vx. Let R be a subgraph of P [Vx]. We call
(P,Q, R) a pattern for x. In the next paragraphs, we give an account of how the
pattern (P,Q, R) describes a partial solution.

Intuitively, the DAG P stores the vertices of a bag and the sinks these vertices
can reach in the graph modified by the partial solution. The partition Q refers
to a possible partition of the vertices of the graph such that each part is a
connected component and each connected component contains exactly one sink.
Finally, the graph R is the intersection of the partial solution with Vx.

Formally, a pattern describes a partial solution as follows. Let A′ ⊆ AU
x be a

set of arcs such that no connected component of Dx(A
′) = D[Ux] \ A′ contains

two different sinks in Ux \Vx and every sink in a connected component of Dx(A
′)

which contains a vertex of Vx can be reached from some vertex of Vx in Dx(A
′).

A sink in Ux\Vx is called interesting in Dx(A
′) if it is reachable from at least one

vertex of Vx. Let Px(A
′) be the DAG on Vx∪V ′, where V ′ is the set of interesting

sinks in Dx(A
′) such that there is an arc (u, v) in Px(A

′) if the vertex u can reach
the vertex v in the DAG Dx(A

′). Let Qx(A
′) be the partition of Vx ∪ V ′ such

that the vertices u and v are in the same set of Qx(A
′) if and only if they are

in the same connected component of Dx(A
′). Finally, by Rx(A

′) we denote the
DAG D[Vx] \A′.

Let (P,Q, R) be a pattern for x. We say that A′ satisfies the pattern (P,Q, R)
at x if no connected component of Dx(A

′) contains two different sinks in Ux \Vx,
every sink in a connected component of Dx(A

′) which contains a vertex of Vx

can be reached from some vertex of Vx in Dx(A
′), P = Px(A

′) (there is an
isomorphism between P and Px(A

′) which is identical on Vx, to be precise), Q is
a coarsening of Qx(A

′), and R = Rx(A
′). Formally, Q is a coarsening of Qx(A

′)
if for each set Q ∈ Qx(A

′) there exists a set Q′ ∈ Q such that Q ⊆ Q′. Note, that
some coarsenings of Qx(A

′) may not form a valid pattern together with Px(A
′)

and Rx(A
′).
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For each node x of V (T ) we have a single table Tabx indexed by all possible
patterns for x. The entry Tabx(P,Q, R) stores the minimum weight of a set A′

that satisfies the pattern (P,Q, R) at x. If no set satisfies the pattern, we store∞.
As the root has an empty bag, Tabr has exactly one entry containing the min-
imum weight of set A′ such that in Dr(A

′) = D \ A′ no connected component
contains two sinks. Obviously, such a set forms a solution for D. Hence, once the
tables are correctly filled, to decide the instance (D,ω, k), it is enough to test
whether the only entry of Tabr is at most k.

The Algorithm. Now we show how to fill the tables. First we initialize all the
tables by ∞. By updating the entry Tabx(P,Q, R) with m we mean setting
Tabx(P,Q, R) := m if m < Tabx(P,Q, R). For a leaf node x we try all possible
subsets A′ ⊆ AU

x = AV
x , and for each of them and for each coarseningQ ofQx(A

′)
we update Tabx(Px(A

′),Q, Rx(A
′)) with ω(A′). Note that in this case, as there

are no vertices in Px(A
′) \ Vx, every coarsening of Qx(A

′) forms a valid pattern
together with Px(A

′) and Rx(A
′). In the following we assume that by the time

we start the computation for a certain node of T , the computations for all its
children are already finished.

Consider now the case, where x is a forget node with a child y, and assume
that v ∈ Vy \Vx. For each pattern (P,Q, R) for y we distinguish several cases. In
each of them we set R′ = R\{v}. If v is isolated in P and there is a set {v} in Q
(case (i)), then we let P ′ = P \ {v}, Q′ be a partition of V (P ′) obtained from Q
by removing the set {v}, and update Tabx(P

′,Q′, R′) with Taby(P,Q, R). If v is
a non-isolated sink and v ∈ Qi ∈ Q such that Qi ⊆ Vy (case (ii)), then we update
Tabx(P,Q, R′) with Taby(P,Q, R) (P ′ = P,Q′ = Q in this case). If v is not a
sink in P and there is no sink in V (P )\Vy such that v is its only in-neighbor (case
(iii)), then let P ′ = P \ {v} and Q′ be a partition of V (P ′), obtained from Q by
removing v from the set it is in, and update Tabx(P

′,Q′, R′) with Taby(P,Q, R).
If there is a sink u ∈ V (P ) \ Vy such that v is its only in-neighbor and {u, v} is
a set of Q (case (iv)), then let P ′ = P \ {u, v} and Q′ be a partition of V (P ′),
obtained from Q by removing the set {u, v}, and update Tabx(P

′,Q′, R′) with
Taby(P,Q, R). We don’t do anything for the patterns (P,Q, R) which do not
satisfy any of the above conditions.

Next, consider the case, where x is an introduce node with a child y, and
assume that v ∈ Vx\Vy and B is the set of arcs of AV

x incident to v. For each B′ ⊆
B and for each pattern (P,Q, R) for y such that there is a Qi in Q with NB′(v) ⊆
Qi we let R

′ = (Vx, A(R)∪B′), D′ = (V (P )∪{v}, A(P )∪B′), P ′ = Reach∗(D′)
and we distinguish two cases. If B′ = ∅, then for every Qi ∈ Q we let Q′

be obtained from Q by adding v to the set Qi and update Tabx(P
′,Q′, R′)

with Taby(P,Q, R) + ω(B). Additionally, for Q′ obtained from Q by adding
the set {v} we also update Tabx(P

′,Q′, R′) with Taby(P,Q, R) + ω(B). If B′

is non-empty, then let Qi be the set of Q with NB′(v) ⊆ Qi and let Q′ be
obtained from Q by adding v to the set Qi. We update Tabx(P

′,Q′, R′) with
Taby(P,Q, R) + ω(B)− ω(B′).

Finally, consider the case thatx is a join nodewith children y and z. For eachpair
of patterns (Py ,Qy, R) for y and (Pz ,Qz, R) for z such that Qy and Qz partition
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the vertices of Vy = Vz = Vx in the same way we do the following. Let D′ be the
DAG obtained from the disjoint union of Py and Pz by identifying the vertices in
Vx and P ′ = Reach∗(D′). Let Q′ be a partition of V (P ′) such that it partitions
Vx in the same way as Qy and Qz and for each u ∈ V (P ′) \ Vx add u to a set Qi

which contain a vertex v with (v, u) being an arc of P ′. It is not hard to see, that
there is always exactly one such set Qi, as there are no arcs between different sets
in Py and Pz . If some setQ ∈ Q′ contains more than one vertex of V (P ′)\Vx, then
continue with a different pair of patterns. Otherwise, we update Tabx(P

′,Q′, R)
with Taby(Py ,Qy, R) + Tabz(Pz ,Qz, R)− ω(AV

x ) + ω(A(R)).

6 Outlook

We have presented two parameterized algorithms for DAG Partitioning, one
with parameter solution size k and one with parameter treewidth w. In partic-
ular the algorithm for the parameter k seems suitable for implementation; in
combination with data reduction, this might allow to solve optimally instances
for which so far only heuristics are employed [6].

On the theoretical side, one open question is whether we can use the Strong
Exponential Time Hypothesis (SETH) to show that there is no O((2−ε)kpoly(n))
time algorithm for DAG Partitioning. Another question is whether there is
an algorithm solving the problem in O(2O(w logw) · n) or even O(2O(w) · n) time,

where w is the treewidth, as the O(2O(w2) ·n) running time of our algorithm still
seems to limit its practical relevance.
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Abstract. Cryptographic applications, such as hashing, block ciphers
and stream ciphers, make use of functions which are simple by some
criteria (such as circuit implementations), yet hard to invert almost ev-
erywhere. A necessary condition for the latter property is to be “suffi-
ciently distant” from linear, and cryptographers have proposed several
measures for this distance. In this paper, we show that four common
measures, nonlinearity, algebraic degree, annihilator immunity, and mul-
tiplicative complexity, are incomparable in the sense that for each pair
of measures, μ1, μ2, there exist functions f1, f2 with μ1(f1) > μ1(f2)
but μ2(f1) < μ2(f2). We also present new connections between two of
these measures. Additionally, we give a lower bound on the multiplicative
complexity of collision-free functions.

1 Preliminaries

For a vector x ∈ Fn
2 its Hamming weight is the number of non-zero entries in x.

For n ∈ N its Hamming weight, HN(n) is defined as the Hamming weight of the
binary representation of n. We let Bn = {f : Fn

2 → F2} be the set of Boolean
predicates on n variables.

A Boolean function f : Fn
2 → F2 can be uniquely represented by its algebraic

normal form also known as its Zhegalkin polynomial [30]:

f(x1, . . . , xn) =
⊕

S⊆{1,2,...,n}
αS

∏
i∈S

xi

where αs ∈ {0, 1} for all S and we define
∏

i∈∅ xi to be 1. If αS = 0 for |S| > 1,
we say that f is affine. An affine function f is linear if α∅ = 0 or equivalently
if f(0) = 0. The function f is symmetric if αS = αS′ whenever |S| = |S′|, that
is f only depends on the Hamming weight of the input. The kth elementary
symmetric Boolean function, denoted Σn

k , is defined as the sum of all terms
where |S| = k.
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For two functions f, g ∈ Bn the distance d between f and g is defined as the
number of inputs where the functions differ, that is

d(f, g) = |{x ∈ Fn
2 |f(x) �= g(x)}| .

For the rest of this paper, unless otherwise stated, n denotes the number of input
variables. We let log denote the logarithm base 2 and ln the natural logarithm.

2 Introduction

Cryptographic applications, such as hashing, block ciphers and stream ciphers,
make use of functions which are simple by some criteria (such as circuit imple-
mentations) yet hard to invert almost everywhere. A necessary condition for the
latter to hold is that the tools of algebra – and in particular linear algebra –
be somehow not applicable to the problem of saying something about x given
f(x). Towards this goal, cryptographers have proposed several measures for the
distance to linearity for Boolean functions. In this paper we consider four such
measures. We compare and contrast them, both in general and in relation to spe-
cific Boolean functions. Additionally, we propose a procedure to find collisions
when the multiplicative complexity is low.

The nonlinearity of a function is the Hamming distance to the closest affine
function. The nonlinearity of a function on n bits is between 0 and 2n−1 −
�2n/2−1� [26,6]. Affine functions have nonlinearity 0. Unfortunately, this intro-
duces an overloading of the word “nonlinearity” since it also refers to the more
general concept of distance to linear. The meaning will be clear from context.

Functions with nonlinearity 2n−1 − 2n/2−1 exist if and only if n is even.
These functions are called bent, and several constructions for bent functions
exist (see [26,21,14] or the survey by Carlet [6]). For odd n, the situation is
a bit more complicated; for any bent function f on n − 1 variables, the func-
tion g(x1, . . . , xn) = f(x1, . . . , xn−1) will have nonlinearity 2n−1 − 2(n−1)/2. It
is known that for odd n ≥ 9, this is suboptimal [17]. Despite this, no infinite
family achieving higher nonlinearity is known. For a Boolean function f , there
is a tight connection between the nonlinearity of f and its Fourier coefficients.
More precisely the nonlinearity is determined by the largest Fourier coefficient,
and for bent functions all the Fourier coefficients have the same magnitude. A
general treatment on Fourier analysis, can be found in [24].

The algebraic degree (which we from now on will refer to as just the degree)
of a function is the degree of its Zhegalkin polynomial, that is the largest |S|
such that αS = 1. We note that Carlet [5] has compared nonlinearity and degree
to two other measures which we do not consider here, algebraic thickness and
nonnormality.

The annihilator immunity (also known as algebraic immunity1) of a function f
is the minimum degree of a non-zero function g such that fg = 0 or (f+1)g = 0.

1 In this paper we use the term “annihilator immunity” rather than “algebraic immu-
nity”, see the remark in [11].
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We denote this measure by AI(f). The function g is called an annihilator. It
is known that 0 ≤ AI(f) ≤

⌈
n
2

⌉
for all functions [8,10]. Specific functions are

known which achieve the upper bound [11].
The multiplicative complexity of a function f , denoted c∧(f), is the smallest

number of AND gates necessary and sufficient to compute the function using a
circuit over the basis (XOR,AND,1) (i.e. using arithmetic over GF (2)). Clearly,
the multiplicative complexity of f is at least 0 with equality if and only if f is
affine. For even n, the multiplicative complexity is at most 2

n
2 +1 − n

2 − 2, and
for odd n at most 3

2
√
2
2n/2+1− n+3

2 [3,22] (see also [16]). Despite this, no specific
predicate has been proven to have multiplicative complexity larger than n− 1.2

Nonlinearity, degree and multiplicative complexity all capture an intuitive
notion of the degree of “nonlinearity” of Boolean functions. Annihilator immunity
is also related to nonlinearity, albeit less obviously.

In [6], it is shown that algebraic degree, annihilator immunity, and nonlinearity
are affine invariants. That is, if L : {0, 1}n → {0, 1}n is an invertible linear
mapping, applying L to the input variables first does not change the value of
any of these measures. It is easy to see that multiplicative complexity is also an
affine invariant, since L and L−1 can be computed using only XOR gates.

Ideally, a measure of nonlinearity should be invariant with respect to addition
of affine functions and embedding into a higher dimensional space (e.g. consider-
ing f(x1, x2) = x1x2 as a function of three variables). The four measures studied
here have these properties with two exceptions.

– Adding an affine function l to f can cause the annihilator immunity to vary
by up to 1. That is AI(f)− 1 ≤ AI(f + l) ≤ AI(f) + 1 [7];

– Embedding a function f : {0, 1}n → {0, 1} in {0, 1}n+1 doubles its nonlin-
earity. Thus, if one wants to consider nonlinearity of functions embedded
in larger spaces, it might be more natural to redefine nonlinearity using a
normalized metric instead of the Hamming distance metric. In this paper,
we will not use embeddings.

There is a substantial body of knowledge which relates nonlinearity, annihilator
immunity, and algebraic degree to cryptographic properties. However, the anal-
ogous question with respect to multiplicative complexity remains little studied.
Among the few published results is [9], in which Courtois et al. show (heuristi-
cally) that functions with low multiplicative complexity are less resistant against
algebraic attacks. Here we present evidence that low multiplicative complexity
in hash functions can make them prone to second preimage or collision attacks.

Multiplicative complexity also turns out to be important in cryptographic
protocols. Several techniques for secure multi-party computation yield protocols
with communication complexity proportional to the multiplicative complexity
2 We have experimentally verified that all predicates on four bits have multiplicative

complexity at most three. This is somewhat surprising, as circuit realization of
random functions (e.g. x1x2x3x4 + x1x2x3 + x2x3x4 + x1x3x4 + x1x3 + x2x4 +
x1x4) would appear to need more than three AND gates. We conjecture that some
predicate on five bits will turn out to have multiplicative complexity five.
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of the function being evaluated (see, for example, [15,18,23]). Several flavors
of one-prover non-interactive cryptographically secure proofs (of knowledge of
x given f(x)) have length proportional to the multiplicative complexity of the
underlying function f (see, for example, [1]).

In this paper we show that very low nonlinearity implies low multiplicative
complexity and vice-versa. We also show an upper bound on nonlinearity for
functions with very low multiplicative complexity.

For nonlinearity, annihilator immunity, and algebraic degree, there exist sym-
metric Boolean functions achieving the maximal value among all Boolean func-
tions. However, the only symmetric functions which achieve maximum nonlinear-
ity are the quadratic functions, which have low algebraic degree. In [4] Canteaut
and Videau have characterized the symmetric functions with almost optimal non-
linearity. In this paper we analyze the multiplicative complexity and annihilator
immunity of these functions.

3 Relations between Nonlinearity Measures

In general, random Boolean functions are highly nonlinear with respect to all
these measures:

– In [13], Didier shows that the annihilator immunity of almost every Boolean
function is (1− o(1))n/2.

– In [25], Rodier shows that the nonlinearity of almost every function is at
least 2n−1 − 2n/2−1

√
2n ln 2, which is close to maximum.

– In [5], Carlet observes that almost every function has degree at least n− 1.
– In [3], Boyar et al. show that almost every Boolean function has multiplica-

tive complexity at least 2n/2 −O(n).

If a function f has algebraic degree d, the multiplicative complexity is at least
d− 1 [28]. This is a very weak bound for most functions. However this technique
easily yields lower bounds of n − 1 for many functions on n variables, and no
larger lower bounds are known for concrete functions

Additionally, it has been shown that low nonlinearity implies low annihila-
tor immunity [10]. Still, there are functions optimal with respect to annihilator
immunity that have nonlinearity much worse than that of bent functions. An
example of this is the majority function, see [11]. Bent functions have degree at
most n

2 ([26,6]). Since f ⊕ 1 is an annihilator for f , the annihilator immunity of
a function is at most its degree.

4 Incomparability

In this section we show that our four measures are incomparable in the sense
that for each pair of measures, μ1, μ2, there exist functions f1, f2 with μ1(f1) >
μ1(f2), but μ2(f1) < μ2(f2). To show this we look at four functions:

Σn
2 : For even n, the function Σn

2 is bent [26]. For odd n it has nonlinearity
2n−1 − 2(n−1)/2, which is maximum among the symmetric functions on an odd
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number of variables [20]. But being a quadratic function, both the algebraic
degree and the annihilator immunity are 2 which is almost as bad as for linear
functions. The multiplicative complexity is �n/2�, which is the smallest possible
multiplicative complexity for nonlinear symmetric functions [3].

MAJn, which is 1 if and only if at least n/2 of the n inputs are 1: In [2]
it is shown that when n = 2r + 1, the multiplicative complexity is at least
n − 2. In [11] it is shown that MAJn has annihilator immunity

⌈
n
2

⌉
; they also

show that it has nonlinearity 2n−1−
(n−1

�n2 �
)
, which by Stirling’s approximation is

2n−1 − (1 + o(1))
√

2
π

2n−1√
n−1

.
FMAJn, defined as:

FMAJn(x1, . . . , xn) = MAJ�logn(x1, . . . , x�log n)⊕ x�log n+1 ⊕ . . .⊕ xn.

The degree of FMAJn is equal to the degree of MAJ�log n which is at least
�logn

2 , so the multiplicative complexity is at least �log n
2 − 1. Also its multi-

plicative complexity is equal to that of MAJ�logn, which is at most �log(n)� −
HN(�logn�) + �log(�logn�+ 1)� [2]. The annihilator immunity of FMAJn is at
least

⌈
logn
2

⌉
−1, since MAJ�log n has annihilator immunity

⌈
logn
2

⌉
, and FMAJn

is just MAJ�logn plus a linear function. This can change the annihilator immu-
nity by at most 1 [7].

Σn
n : The nonlinearity of Σn

n is 1 because it has Hamming distance 1 to the zero
function. It has annihilator immunity 1 (x1 ⊕ 1 is an annihilator), its algebraic
degree is n, and its multiplicative complexity is n− 1.
Incomparability Examples: From the observations above it can be seen that Σn

2

has higher nonlinearity thanMAJn but smaller degree, annihilator immunity, and
multiplicative complexity. FMAJn has higher degree and annihilator immunity
than Σn

2 but lower multiplicative complexity. Σn
n has larger degree than FMAJn

but smaller annihilator immunity. These examples are shown in Table 1.

Table 1. Incomparability examples. For every pair (f1, f2) f1 scores higher in the
measure for the row and f2 scores higher in the measure for the column.

NL MC deg AI
NL - (Σn

2 ,MAJn) (Σn
2 ,MAJn) (Σn

2 ,MAJn)
MC - - (Σn

2 , FMAJn) (Σ
n
2 , FMAJn)

deg - - - (Σn
n , FMAJn)

Remark: These separations are fairly extreme except with respect to multiplica-
tive complexity, where the values are small compared to those for random func-
tions. This is due to the fact that currently no specific function has been proven
to have multiplicative complexity larger than n−1. If larger bounds were proven,
one could have more extreme separations: Suppose f : {0, 1}n−1 → {0, 1} has
large multiplicative complexity, degree, nonlinearity and annihilator immunity,
and let g(x1, . . . , xn) = f(x1, . . . , xn−1) · xn. Then clearly g has high degree,
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nonlinearity and multiplicative complexity, but annihilator immunity 1, since
multiplying by xn+1 gives the zero function. This is also an example where the
annihilator immunity fails to capture the intuitive notion of nonlinearity.

5 Relationship between Nonlinearity and Multiplicative
Complexity

In this section we will show that, despite being incomparable measures, the
multiplicative complexity and nonlinearity are somehow related. We first show
that if a function has low nonlinearity, this gives a bound on the multiplicative
complexity. Conversely we show that if the multiplicative complexity is n−a

2 , the
nonlinearity is at most 2n−1− 2n/2−a/2−1, and this nonlinearity can be achieved
by a function with this number of AND gates.

We will use the following theorem due to Lupanov [19] (see Lemma 1.2 in
[16]). Given a Boolean matrix A, a decomposition is a set of Boolean matrices
B1, . . . , Bk each having rank 1, satisfying A = B1+B2+ . . .+Bk where addition
is over the reals. For each Bi its weight is defined as the number of non-zero
rows plus the number of non-zero columns. The weight of a decomposition is the
sum of the weights of the Bi’s.

Theorem 1 (Lupanov). Every Boolean p × q matrix admits a decomposition
of weight

(1 + o(1))
pq

log p
.

Theorem 2. A function f ∈ Bn with nonlinearity s > 1 has multiplicative
complexity at most min{s(n− 1), (2 + o(1)) sn

log s}.

Proof. Let L be an affine function with minimum distance to f . Let

ε(x) = f(x)⊕ L(x).

Note that ε takes the value 1 s times. Let ε−1(1) be the preimage of 1 under ε.
Suppose ε−1(1) = {z(1), . . . , z(s)} where each z(i) is an n-bit vector. Let Mi(x) =∏n

j=1(xj ⊕ z
(i)
j ⊕ 1) be the minterm associated to z(i), that is the polynomial

that is 1 only on z(i). By definition

ε(x) =

s⊕
i=1

Mi(x) =

s⊕
i=1

n∏
j=1

(xj ⊕ z
(i)
j ⊕ 1)

Adding the minterms together can be done using only XOR gates and gives
exactly the function ε. We will give two constructions for the minterms. Using
the one with fewest AND gates proves the result.

The first construction simply computes each of the s minterms directly using
n−1 AND gates for each. For the second construction, define the s×2n matrix A
where columns 1, 2, . . . , n correspond to x1, x2, . . . , xn and columns n+1, . . . , 2n
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correspond to (1⊕ x1), . . . , (1⊕ xn), and row i corresponds to minterm Mi. Let
Aij = 1 if and only if the literal corresponding to column j is a factor in the
minterm Mi. Now consider the rectangular decomposition guaranteed to exist
by Theorem 1. For each Bi, all non-zero columns are equal. AND together the
literals corresponding to these variables. Call the result Qi. Now each row can
be seen as a logical AND of Qi’s. AND these together for every row to obtain
the s results. The number of AND gates used is at most the weight of the
decomposition, that is at most (1 + o(1)) 2sn

log s AND gates. 	


Lemma 1. Let f have multiplicative complexity M = n−a
2 , for a ≥ 0. Then

there exists an invertible linear mapping L : {0, 1}n → {0, 1}n, a Boolean predi-
cate g ∈ BD for D ≤ 2M , and a set T ⊆ {1, 2, . . . , n} such that for t = L(x), f
can be written as

f(x1, . . . , xn) = g(t1, . . . , tD)⊕
⊕
j∈T

tj

Proof. Let M = c∧(f) = n−a
2 for a ≥ 0. Consider an XOR-AND circuit C with

M AND gates computing f , and let A1, . . . , AM be a topological ordering of the
AND gates. Let the inputs to A1 be I1, I2 and inputs to A2 be I3, I4, etc. so AM

has inputs I2M−1, I2M , 2M = n − a. Now the value of f , the output of C, can
be written as a sum of some of the AND gate outputs and some of the inputs to
the circuit:

f =
⊕

i∈Zout

Ai ⊕
⊕

i∈Xout

xi,

for appropriate choices of Zout and Xout. Similarly for Ij :

Ij =
⊕
i∈Zj

Ai ⊕
⊕
i∈Xj

xi.

Define g as g =
⊕

i∈Zout
Ai. Since Xj is a subset of {0, 1}n, it can be thought

of as a vector yj in the vector space {0, 1}n where the ith coordinate is 1 if and
only if i ∈ Xj .

Clearly the dimension D of Y = span(y1, . . . y2M ) is at most 2M . Let
{yj1 , . . . yjD} be a basis of Y . There exists some invertible linear mapping
L : {0, 1}n → {0, 1}n with L(x1, . . . , xn) = (t1, . . . , tn) having tj = yij for
1 ≤ j ≤ D. That is, g depends on just t1, . . . tD, and each xj is a sum of tl’s,
hence f can be written as a function of t1, . . . , tn as

f = g(t1, . . . , tD)⊕
⊕
j∈T

tj 	


Corollary 1. If a function f ∈ Bn has multiplicative complexity M = n−a
2 for

a ≥ 0, it has nonlinearity at most 2n−1 − 2n/2−a/2−1, and this nonlinearity is
achievable.
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Proof. Since nonlinearity is an affine invariant, we can use Lemma 1 and look
at the nonlinearity of

f = g(t1, . . . , t2M )⊕
⊕

j∈Tout

tj

Now the best affine approximation of g agrees on at least 22M−1 +2M−1 inputs.
Replacing g with its best affine approximation, we see that the nonlinearity of
f is at most 2n−2M (22M−1− 2M−1)2n−1− 2n/2−a/2−1. Furthermore, if g is bent
this nonlinearity is met with equality. 	


Remark: This shows that Σn
2 is optimal with respect to nonlinearity among

functions having multiplicative complexity �n/2�.

6 Low Multiplicative Complexity and One-Wayness

If a function f has multiplicative complexity μ, then it can be inverted (i.e. a
preimage can be found) in at most 2μ evaluations of f . To do this, consider a
circuit C for f with μ AND gates. Suppose y has a non-empty preimage under
f . Guessing the Boolean value of one input for each AND gate results in a linear
system of equations, L. Solve L to obtain a candidate input x and test whether
f(x) = y. This finds a preimage of y after at most 2μ iterations. Thus, one-way
functions, if they exist, have superlogarithmic multiplicative complexity.

The one-wayness requirements of hash functions include the much stronger
requirement of collision resistance: it must be infeasible to find two inputs that
map to the same output. We next observe that collision resistance of a function
f with n inputs and m < n outputs requires f to have multiplicative complexity
at least n−m.

Xa

⊕e

⊕P

b

∧ c

⊕ d

⊕Q

a

e

⊕P

c

d

⊕Q

Fig. 1. The circuit to the right is the circuit obtained when X in the left circuits is
restricted to the value 0. Notice that only the gates P,Q remain nonredundant.

Let C be a circuit for f . Without loss of generality, we can assume the circuit
contains no negations and that we seek two distinct inputs which map to 0.3

3 Negations can be “pushed” to the outputs of the circuit without changing the number
of AND gates. Once at the outputs, for purposes of finding a collision, negations
can be simply removed.
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Since there are no negations in the circuit, one such input is 0. We next show
how to obtain a second preimage of 0.

Pick a topologically minimal AND gate and set one of its inputs to 0. This
generates one homogeneous linear equation on the inputs to f and allows us
to remove the AND gate from the circuit (see Figure 1). Repeating this until no
AND gates are left yields a homogeneous system S with at most μ equations,
plus a circuit C′ which computes a homogeneous linear system with m equations.
The system of equations has 2n−m−μ distinct solutions. Thus, if m + μ < n,
then standard linear algebra yields non-zero solutions. These are second preim-
ages of 0.

We re-state this as a theorem below. The idea of using hyperplane restrictions
to eliminate AND gates has been used before, however with different purposes,
see e.g. [2,12].

Theorem 3. Collision resistance of a function f from n to m bits requires that
f have multiplicative complexity at least n−m.

It is worth noting that the bound from Theorem 3 does not take into account
the position of the AND gates in the circuit. It is possible that fewer linear
equations can be used to remove all AND gates. We have tried this on the
reduced-round challenges issued by the Keccak designers (Keccak is the winner of
the SHA-3 competition, see http://keccak.noekeon.org/crunchy_contest.
html). These challenges are described in the notation Keccak[r, c, nr] where r is
the rate, c the capacity, and nr the number of rounds. For the collision challenges,
the number of outputs is set to 160. Each round of Keccak uses r+c AND gates.
However, in the last round of Keccak the number of AND gates that affect the
output bits is equal to the number of outputs.

We consider circuits for Keccak with only one block (r bits) of input.
The circuit for Keccak[r=1440, c=160, nr=1] contains 160 AND gates, yet
96 linear equations will remove them all. Keccak[r=1440, c=160, nr=2] con-
tains 1760 AND gates, yet 1056 linear equations removes them all. Thus,
finding collisions is easy, because 1440 is greater than 160 + 1056 (in the
one-round case, because 1440 > 160 + 96). These two collision challenges
were first solved by Morawiecki (using SAT solvers, see http://keccak.
noekeon.org/crunchy_mails/coll-r2-w1600-20110729.txt) and, more re-
cently, by Duc et al. (see http://keccak.noekeon.org/crunchy_mails/
coll-r1r2-w1600-20110802.txt). Our reduction technique easily solves both
of these challenges, and yields a large number of multicollisions.

Dinur et al. are able to obtain collisions for Keccak[r=1440, c=160, nr=4] i.e.
for four rounds of Keccak (see http://keccak.noekeon.org/crunchy_mails/
coll-r3r4-w1600-20111124.txt). The technique of Theorem 3 cannot linearize
the Keccak circuit for more than two rounds. How to leverage our methods to
solve three or more rounds is work in progress.

http://keccak.noekeon.org/crunchy_contest.html
http://keccak.noekeon.org/crunchy_contest.html
http://keccak.noekeon.org/crunchy_mails/coll-r2-w1600-20110729.txt
http://keccak.noekeon.org/crunchy_mails/coll-r2-w1600-20110729.txt
http://keccak.noekeon.org/crunchy_mails/ coll-r1r2-w1600-20110802.txt
http://keccak.noekeon.org/crunchy_mails/ coll-r1r2-w1600-20110802.txt
http://keccak.noekeon.org/crunchy_mails/coll-r3r4-w1600-20111124.txt
http://keccak.noekeon.org/crunchy_mails/coll-r3r4-w1600-20111124.txt
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7 Some Symmetric Boolean Functions with High
Nonlinearity

When designing Boolean functions for cryptographic applications, we seek func-
tions with high nonlinearity, simple structure, high annihilator immunity, and
high algebraic degree. Bent functions have high nonlinearity. Symmetric func-
tions have simple structure. However, the multiplicative complexity of a sym-
metric function on n variables is never larger than n+ 3

√
n [3]. The symmetric

functions with highest nonlinearity are quadratic ([27] and [20]). But these func-
tions have low algebraic degree, low annihilator immunity, and multiplicative
complexity only

⌊
n
2

⌋
.

For n ≥ 3, let Fn =
⊕n

k=3 Σ
n
k and Gn = Σn

2 ⊕Σn
n . It is known that there are

exactly 8 symmetric functions with nonlinearity exactly 1 less than the largest
achievable value. These are Fn ⊕ λ and Gn ⊕ λ, where λ ∈ {0, 1, Σn

1 , Σ
n
1 + 1}

[4]. These functions have many of the criteria sought after for cryptographic
functions: they are symmetric, have optimal degree, and almost optimal nonlin-
earity. We have exactly calculated or tightly bound the multiplicative complexity
of these functions. Precise values are important for applications in secure multi-
party computations.

Lemma 2. (Proofs omitted due to space constraints)
1. c∧(Gn) = n− 1.
2. c∧(Fn) ≥ n− 1 for n > 6 and exactly n− 1 for 3 ≤ n ≤ 6.
3. c∧(Fn) ≤ n−HN(n) + �log(n+ 1)� − 1.

It turns out that these eight functions have very low annihilator immunity. We
consider the variants of Fn functions first and then the variants of Gn.

Lemma 3. The function f = a⊕ bΣn
1 ⊕

⊕n
i=3 Σ

n
i has annihilator immunity at

most 2.

Proof. Let f̃ = bΣn
1 ⊕

⊕n
i=3 Σ

n
i , and let h = 1⊕ (1⊕ b)Σn

1 ⊕Σn
2 be the algebraic

complement of f̃ , [29]. Notice that

f̃ ⊕ h =
n⊕

i=1

Σn
i ⊕ 1 = (1⊕ x1)(1⊕ x2) . . . (1⊕ xn)

which is 1 if and only if x = 0. That is for x �= 0, f̃ = h, so 1 ⊕ h clearly
annihilates f̃ on all non-zero inputs. Since f̃(0) = 0, h is an annihilator of f̃
with degree 2, so depending on a, h is an annihilator of f . 	

Lemma 4. The function f = a⊕ bΣn

1 ⊕Σn
2 ⊕Σn

n has annihilator immunity at
most 2.

Proof. Let 1 denote the all 1 input vector. For some fixed choice of a, and b,
depending on n, either (a ⊕ bΣn

1 ⊕ Σn
2 )(1) = 1 or (a ⊕ bΣn

1 ⊕ Σn
2 )(1) = 0. In

the first case, the function h = 1 ⊕ a ⊕ bΣn
1 ⊕ Σn

2 is an annihilator of f , and
otherwise h = a⊕ bΣn

1 ⊕Σn
2 is an annihilator of f ⊕ 1. And again, clearly there

is no annihilator of degree less than 2. 	
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8 Conclusion

Four nonlinearity concepts are considered and compared, and new relations be-
tween them are presented. The four concepts are shown to be distinct; none is
subsumed by any of the others.

We are currently extending the ideas present here for cryptanalyzing func-
tions with low multiplicative complexity. It will be interesting to see if using the
topology of the circuit for the cryptographic function will lead to useful heuris-
tics for cryptanalytic attacks, especially for variants of hash function with few
rounds.
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Abstract. Bus graphs are being used for the visualization of hyper-
edges, for example in VLSI design. Formally, they are specified by bipar-
tite graphs G = (B∪V,E) of bus vertices B realized by single horizontal
and vertical segments, and point vertices V that are connected orthog-
onally to the bus segments without any bend. The decision whether a
bipartite graph admits a bus realization is NP-complete. In this paper
we show that in contrast the question whether a plane bipartite graph
admits a planar bus realization can be answered in polynomial time.

We first identify three necessary conditions on the partition B =
BV ∪ BH of the bus vertices, here BV denotes the vertical and BH

the horizontal buses. We provide a test whether good partition, i.e., a
partition obeying these conditions, exist. The test is based on the com-
putation of maximum matching on some auxiliary graph. Given a good
partition we can construct a non-crossing realization of the bus graph on
an O(n)×O(n) grid in linear time.

1 Introduction

A classical topic in the area of graph visualization is orthogonal graph drawing;
related surveys can be found in [3,11,18]. In this drawing model each edge consists
of a series of subsequent horizontal or vertical line segments. Applications can be
found in e.g. VLSI design, cf. [17,12]. In this application it may also be necessary
to model hypergraphs. For example power buses on VLSI chips are often modeled
as hyperedges, as well as LANs in computer network visualization. Bus graphs
- as being defined later - and their generalizations are a possible approach to
model hyperedges. A bus-style representation might also be used when facing
the visualization of highly interconnected parts of a given graph. So, cliques can
be represented in a compact and comprehensive way using a bus-style model.

The bus graph approach is very much related to the classical topic of recti-
linear Steiner trees, where trees are being used to connect subsets of the ver-
tices [8,10]. Related are also works on rectangular drawings, rectangular duals
and visibility graphs. The latter graphs are highly related to bus graphs, be-
cause connections in bus graphs enforce visibility constraints in realizations.

� Our Research is partially supported by EuroGIGA project GraDR 10-EuroGIGA-
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Fig. 1. An example of a plane bus graph with a planar realization

Corresponding key concepts and surveys can be found in [9,15,16] and in chap-
ter 6 of [14]. We will use some of the methods that have been developed in this
area.

We are considering the bus graph model introduced by Ada et al. [1] A bus
graph is a bipartite graph G = (B ∪ V,E), where E ⊆ V ×B and deg(v) ≤ 4 for
all v ∈ V . We call vertices in B bus vertices and vertices in V connector vertices.
A plane bus graph is a planar bus graph together with a planar embedding. A
realization of a bus graph is a drawing D, where bus vertices are represented as
horizontal or vertical line segments (bus segments), connector vertices are drawn
as points, and the edges are horizontal or vertical segments (connections), i.e.
segments connecting perpendicular a point with a bus segment. To distinguish
between bus vertices and edges in a realization, the bus segments are drawn with
bold lines, see Figure 1. A planar realization is a realization without crossings.
We always assume to have a connected bus graph, since components can be
considered separately.

In [1] a relation of bus graphs to hypergraphs is mentioned: the bipartite
adjacency matrix of a bipartite graph can be read as incidence matrix of a
hypergraph and vice versa, if vertices are contained in at most four hyperedges.
Ada et al. [1] considered the problem to decide, if a bus graph has a realization
and showed the NP-completeness. In this paper we consider the problem to
decide if a plane bus graph has a planar realization. We show that this question
in contrast to the previous result can be decided in polynomial time.

The bus segments will be drawn either vertically or horizontally. So we assign
a labeling to the bus vertices that determines if they will be realized either
vertically or horizontally. This labeling ensures a planar realization, if it obeys
some properties. The paper is structured as follows: In Section 2 we provide
necessary properties for the labeling. After that in Section 3 we give a polynomial
time algorithm that tests whether a given maximal plane bus graph admits a
labeling with these properties, which we call a good partition. If it exists, the
algorithm also returns a good partition. In Section 4 we modify the approach
so that it also works in cases where the bus graph is not maximal. In Section 5
we show how to actually produce a realization of a plane bus graph with a good
partition. The approach is based on techniques from [2] and [6].
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2 Preliminaries

In this paper we consider plane bus graphs G = (V ∪B,E), i.e., planar bus graphs
together with a fixed planar embedding. A diamond in a plane bus graph is a
cycle z = (b, v, b′, v′) of length four with bus vertices b, b′ and connector vertices
v, v′ such that both v, v′ have a third bus neighbour in the bounded region
defined by z. A planar realization of a plane bus graph G = (V ∪B,E), induces
labels H or V for the bus vertices where H indicates that a bus is represented
by a horizontal segment in the realization, while V indicates that the bus is
represented by a vertical segment. Let Π = (BV , BH) denote the partition of
B according to the label of the bus vertices. We observe three properties of a
partition Π = (BV , BH) corresponding to a planar realization:

(P1) Every connector vertex of degree ≥ 3 has neighbors in both classes.
(P2) A connector vertex v of degree 4 has cyclically alternating neighbors in

both classes.
(P3) A diamond has both bus vertices b, b′ in the same partition class.

The first two properties are obvious from the nature of a realization. The third
property is shown in the following lemma.

Lemma 1. Let G be a plane bus graph that has a realization inducing the par-
tition (BV , BH) of the set of buses B. For any diamond z = (b, v, b′, v′) the two
bus vertices b and b′ belong to the same class.

Proof. Suppose by contradiction that b ∈ BH and b′ ∈ BV . The interior of z in
the planar bus realization is a polygon with six corners. Four of the corners are
at contacts of connector edges and buses and two corners are at the connector
vertices. Some of these corners may degenerate so that the polygon actually only
has four corners. We account for four corners of size π/2 each, where the edges
meet the buses. The other two corners are at v and v′. Since b is horizontal and
b′ vertical the angles at v and v′ have to be either π/2 or 3π/2. Because v and v′

have an additional bus neighbor in the interior the angle at each of v and v′ is
at least π. Hence, both these angles are of size 3π/2. The sum of interior angles
is at least 4 · π/2+ 2 · 3π/2 = 5π. A six-gon, however, has a sum of angles of 4π.
The contradiction shows that b and b′ belong to the same class of the partition
B = BV ∪BH . 	


Note that the outer cycle of G is a diamond when the outer face of G has
cardinality 4.

A partition Π = (BV , BH) of the buses of a plane bus graph G is called a
good partition if it obeys properties (P1), (P2), and (P3).

Let Δ = Δ(G) denote the degree of a plane bus graph G which is defined as
the maximum degree among the connector vertices of G.

In the next section we consider maximal plane bus graphs and test efficiently,
if they admit a good partition. The test is constructive, i.e., if the answer is yes,
then a good partition is constructed.
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3 Maximal Plane Bus Graphs

A maximal plane bus graph G is a plane bipartite bus graph, where all its faces
have cardinality 4. Let G = (V ∪ B,E) be a maximal plane bus graph. We
assume, that G has no connector vertices of degree 1 or 2, since they have no
influence on the existence of a good partition.

In this section we first assume Δ = 3 for G and give an algorithm to test G
if it admits a good partition and if so the algorithm returns a good partition.
After that we allow Δ = 4 and reduce this case with a simple modification to
the case Δ = 3.

Let G = (V ∪B,E) be a plane maximal bus graph with Δ = 3. The connector
graph CG = (VC , EC) of G consists of all the connector vertices VC = V and
edges (v, v′) ∈ EC , if v and v′ are both incident to the same face of the plane em-
bedding of G. The connector graph is helpful because it allows the translation of
the problem of finding a good partition for G to the problem of finding an appro-
priate perfect matching in CG, summarized in Proposition 1 and Proposition 2
and illustrated in Figure 2.

G CG

H

V

H

H
H

V
V

V

Fig. 2. A maximal plane bus graph, the connector graph with a matching and its good
partition, and a corresponding bus representation

The first property (P1) of a good partition Π of G requires that every con-
nector vertex v has two adjacent bus vertices in one partition class and one in
the other. If b and b′ are neighbors of v in G with the same label, then there
is a connector vertex v′ sharing a face with v, b, and b′, since every face has
cardinality 4. When looking at v′ the two neighbors b and b′ are again the two in
a common partition class. Hence, property (P1) of a good partition of G induces
a perfect matching on CG.

Conversely a perfect matching M of CG induces a labeling of the bus vertices.
Removing the matching edges from CG leaves a 2-regular graph, i.e., a disjoint
collection of cycles. The regions defined by this collection of cycles can be 2-
colored with colors V and H such that each cycle has regions of different colors
on its sides. Let BV be the set of bus vertices in faces colored with V , and BH be
the set of bus vertices in faces colored with H . This yields a partition satisfying
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(P1) because every connector vertex is on a cycle and has a bus neighbour in
each of the two faces bounded by the cycle.

Since Δ = 3, the second property (P2) is void.
Consider a diamond z = (b, v, b′, v′) in G. Each of v, v′, has exactly one edge

e, e′, in CG, that corresponds to a face of the outside of z. Since (P3) forces
equal labels for b, b′, the faces represented by e, e′ have equally labeled incident
bus vertices (b, b′) and thus e, e′ must be in a matching of CG. We define the set
Ed of edges forced by diamonds as the set of edges consisting of the two outside
edges e, e′ in CG for each diamond z of G. We have thus shown that a perfect
matching M induced by a good partition contains Ed.

Conversely, if Ed is contained in a perfect matching M of CG, then the bus
vertices b, b′ of each diamond are in the same partition class and thus G has
a partition, that satisfies property (P3). The findings are summarized in the
following proposition.

Proposition 1. Let G be a maximal plane bus graph with Δ = 3 and CG its
connector graph and Ed the set of edges of CG forced by diamonds. Then G
admits a good partition, iff CG has a perfect matching M , with Ed ⊆M .

Now we allow Δ = 4 for a maximal plane bus graph G. To transform G into a
plane bus graph G′ with Δ = 3, we split every connector vertex v of degree 4 into
two connector vertices v′, v′′, both of degree 3 in the following way: let b1, b2, b3, b4
be the adjacent bus vertices of v in consecutive cyclic order around v. Remove v
and its incident edges and connect the new introduced vertices v′, v′′ with edges
(b1, v

′), (b2, v′), (b3, v′), (b3, v′′), (b4, v′′), (b1, v′′). The connector graph CG is
obtained from CG′ by contracting the edges (v′, v′′) corresponding to the pairs
v′, v′′ that have been obtained by splitting a vertex of degree 4. Define the set
Es of edges forced by splits of CG′ as the set of these edges (v′, v′′).

If G has a partition satisfying property (P2), then we have to ensure alter-
nating labels for the neighbours of v in G. This forces (v′, v′′) ∈ Es to be a
matching edge in CG′ . Conversely if (v′, v′′) ∈ Es is a matching edge, then the
common neighbours b1, b3 have the same label. Since v′, v′′ have both degree 3
and two of their neighbours have equal label, the third neighbour (for each of
v′, v′′) has a different label, i.e. b2 and b4 have both different label compared to
the label of b1, b3, hence, v obeys property (P2). So in total a partition Π of
G satisfies property (P2), iff the edges Es are contained in a matching of CG′ .
For notational simplicity we denote the connector graph CG′ of the transformed
graph G′ by CG. An example for a maximal plane bus graph with its connector
graph showing the edges of Ed ∪Es is shown in Figure 3.

Proposition 2. Let G be a maximal plane bus graph with Δ = 4 and CG its
connector graph and Ed, Es the edges of CG that are forced by diamonds and
splits. The graph G admits a good partition, iff CG has a perfect matching M ,
with (Ed ∪ Es) ⊆M .

Proof. The proof almost follows from Proposition 1 and the above considera-
tions. Splitting connector vertices of degree 4, however, may separate diamonds.
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We claim that this is no problem. Let v be split into v′, v′′ as above. Any dia-
mond containing v has a cycle z with bus vertices b1 and b3. Condition (P3) for
this diamond requires that b1 and b3 belong to the same class of a good partition.
This requirement, however, is already implied by condition (P2) for the original
connector vertex v. That is, separated diamonds do not impose additional con-
ditions on the matching. 	


Es

Ed

Fig. 3. A maximal plane bus graph and its connector graph with the modifications,
where the dotted edges are forced and the fat edges complete the perfect matching

Theorem 1. Let G be a maximal plane bus graph. A good partition for G can
be computed in O(n3/2) time, if it exists.

Proof. By Proposition 2 it suffices to test the connector graph CG for a perfect
matching M that contains (Ed ∪Es). The extraction of the connector graph CG

from G requires linear time. The set Es can be computed while constructing CG.
To identify diamonds we consider the dual DG of the connector graph CG. The
vertices of DG are the bus vertices of G and edges correspond to faces of G′.
Diamonds of G′ corresponds to a double edge of DG the only exception is the
diamond bounding the outer face. Double edges of DG can be found and sorted
so that the set Ed can be constructed in O(n polylog(n)) time. To force Ed ∪Es

we simply delete all vertices incident to these edges from the graph. If a vertex is
incident to two edges from the set, then there is no matching. For constructing
a maximum matching of a graph there exist several O(

√
nm) algorithms. For

planar graphs this yields the claimed O(n3/2) complexity.1

Given the perfect matching the corresponding good partition can again be
computed in linear time. 	


4 Non Maximal Plane Bus Graphs

In this section we consider a plane bus graph G, that is not necessarily maximal.
In a first preprocessing step we remove all bus vertices and connector vertices

1 In [13] a slightly faster randomized algorithm for planar graphs has been proposed.
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with degree 1, as well as their incident edge. These objects can easily be inte-
grated in a realization of the remaining graph.

In the following we describe how to extend G to a maximal plane bus graph
G+ containingG as induced subgraph such that G+ has a good partition iffG has
a good partition (Lemma 2). The graph G+ will be called the quadrangulation
of G.

Let f be a face with cardinality 2k in G and let b1, . . . , bk be the bus vertices
of f in clockwise order. To quadrangulate f we first place a new bus vertex b∗f in
the inside. The bus vertex b∗f is then connected to the boundary of f by adding
a triangular structure for every consecutive pair bi, bi+1 of bus vertices including
the pair bk, b1. The triangular structure for bi, bi+1 consists of another new bus
vertex ci and three connector vertices v1i , v

2
i , v

3
i such that N(v1i ) = {bi, ci, bi+1},

N(v2i ) = {bi+1, ci, b
∗
f}, and N(v1i ) = {b∗f , ci, bi}. Figure 4 shows an example.

c1

c3

b4

b3

b5

c4

c5

b∗f

c2

b2

b1

Fig. 4. New vertices and edges added to quadrangulate a face f with cardinality 10

The graph G+ is obtained from G by quadrangulation every face f with
cardinality > 4 including, if necessary, the outer face. The following properties
of the quadrangulation G+ of G are obvious:

• G+ is planar and has O(n) vertices.

• All diamonds of G+ are diamonds of G.2

In addition we have the following important lemma:

Lemma 2. Let G be a plane bus graph and G+ be its quadrangulation. Then G
has a good partition, iff G+ has a good partition.

2 Note that the outer face of G+ has cardinality 4 if the outer face of G has cardinality
> 4 this is an additional diamond of G+. We ignore this diamond and the condition
imposed by it on good partitions of G+.
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Proof. The three defining properties (P1), (P2), and (P3) are stable under taking
induced subgraphs. Hence, a good partition of G+ immediately yields a good
partition of G.

Now assume that G has a good partition. We aim for a partition of the bus
vertices of G+ that extends the given partition of the bus vertices of G. Since all
bus vertices of degree 4 and all diamonds of G+ already belong to G we don’t
have to care of (P2), and (P3). The following rules define the labels for the new
bus vertices such that (P1) is fulfilled for all new connector vertices:

• Label all central bus vertices b∗f with V .

• If bi and bi+1 are both labeled H , then the label of ci is defined to be V .
Otherwise the label ci is H .

It is straightforward to check that this yields a good partition of G+.
If vertices have been added to the outer face f∗ in the quadrangulation process,

then we can choose the outer face of G+ such that it contains b∗f∗ and both bus
vertices of the (new) outer face are labelled V . This change in the outer face
does not affect the plane embedding of G. These considerations imply that when
looking for a good partition of G+ we may disregard the condition implied by
the diamond defined by the outer face if the outer face of G had cardinality > 4,
c.f. footnote 2. 	


Theorem 2. Let G be a plane bus graph. A good partition for G can be computed
in O(n3/2) time, if it exists.

Proof. By Lemma 2 it suffices to test if the quadrangulation G+ of G has a good
partition. Hence we first compute G+ in linear time. Since G+ is a maximal plane
bus graph we can use the algorithm from Theorem 1 to check whether G+ has
a good partition. The running time is O(n3/2) and the algorithm returns a good
partition if it exists. 	


5 Planar Realizations

In the last two sections we analyzed the complexity of testing and computing a
good partition. In this section we assume the existence of a good partition for a
plane bus graph G and give a polynomial time algorithm to construct a planar
realization for G.

Theorem 3. Let G be a plane bus graph admitting a good partition. Then G
has a planar realization on an O(n) × O(n) grid. If the good partition is given
the realization can be computed in O(n) time.

Let G be a plane bus graph admitting a good partition. Again we start with
some simplifications. First we recursively remove all connector and bus vertices
of degree 1 and all connector vertices of degree 2.

Let G+ be the quadrangulation of G. The assumption about the existence of a
good partition of G together with Lemma 2 imply that G+ has a good partition
which can by Theorem 1 be computed efficiently.
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Given the good partition of G+ we split all connector vertices of degree 4
into two connector vertices of degree 3. For simplicity we continue denoting the
resulting graph G+.

The reduced bus graph R+ = (B+, ER) of G
+ is the graph on the bus vertices

of G+ with edges (b, b′), iff b, b′ are incident to a common face and have different
labels. Diamonds with different labeled bus vertices are the only substructure
that would create double edges in R+ but diamonds have identically labeled
bus vertices in a good partition. Hence, there are no double edges in R+. From
the three faces incident to a connector vertex exactly two contribute an edge to
R+. It follows that R+ is a quadrangulation, i.e., all faces have cardinality 4.
Another approach to derive this is by observing that the edges of the matching
M of Proposition 2 are in bijection with the faces of R+.

Let Q be a quadrangulation, we call the color classes of the bipartition white
and black and name the two black vertices on the outer face s and t. A separating
decomposition of Q is an orientation and coloring of the edges of Q with colors
red and blue such that:

• All edges incident to s are ingoing red and all edges incident to t are ingoing
blue.

• Every vertex v �= s, t is incident to a non-empty interval of red edges and a
non-empty interval of blue edges. If v is white, then, in clockwise order, the
first edge in the interval of a color is outgoing and all the other edges of the
interval are incoming. If v is black, the outgoing edge is the last one in its
color in clockwise order (see Figure 5).

Fig. 5. Edge orientations and colors at white and black vertices

Separating decompositions have been studied in [2], [6], and [5]. In particular it
is known that every plane quadrangulation admits a separating decomposition.
To us separating decompositions are of interest because of their connection with
segment contact representations of the underlying quadrangulation. A proof of
the following lemma can be found in [4].

Lemma 3. A separation decomposition of Q can be used to construct a segment
contact representation of Q with vertical and horizontal segments, such that edges
v → w of the separating decomposition correspond to a contact of the segments
Sv and Sw where an endpoint of Sv is in the interior of Sw.

An illustration for the lemma is given in Figure 6.
Identify the two classes V and H of the bipartition of the reduced bus graph

R+ with black and white. Construct a separating decomposition of R+ and a
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s

s t

tt
s

Fig. 6. A quadrangulation Q, a separating decomposition of Q and a corresponding
segment contact representation of Q

corresponding segment contact representation. Later the following observation
will be important:

(�) The rectangles in the segment contact representation correspond bijectively
to the faces of R+. Moreover, vertex b is incident to face f in R+ iff segment
Sb contributes a side of the rectangle Rf corresponding to f .

From the segment contact representation of R+ we obtain a representation of
the bus graph G+ in two steps. First clip the endpoints of all segments of the
representation so that a disjoint collection of segments remains. These segments
serve as the bus segments for the representation of the bus graph G+. It remains
to insert the connector vertices and the edges of G+ into the picture. To this
end recall that each connector vertex belongs to a unique face of R+ and each
face of R+ contains exactly two connector vertices. The two connector vertices
contained in a face f can easily be accommodated in the rectangle Rf , because
of (�). Figure 7 shows the picture.

Fig. 7. A face f of R+ with its two connector vertices and the placement of the two
vertices in Rf

At this point we have a representation of the plane bus graph G+. It remains
to transform this into a representation of the original input graph G. These are
the steps that have to be done:

• Merge pairs of connector vertices that have been created by splitting a con-
nector vertex of degree 4.

• Delete all bus and connector vertices from the representation that have been
introduced to make the bus graph maximal.
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• Insert all connector and bus vertices of degree 1 and all connector vertices of
degree 2 that had been deleted in the reverse order of the deletion.

This yields a representation of the input graph G.
To complete the proof of Theorem 3 it remains to argue about the complexity.

Let G = (V ∪ B,E) be the input bus graph with n = |V | + |B|. Simple esti-
mates on the basis of Euler’s formula show that in going from G to G+ at most
14|B| new vertices have been introduced, hence, G+ has n+ ∈ O(n) vertices.
The reduced bus graph R+ can be computed from the plane G+ in O(n+). A
separating decomposition of R+ can also be computed in linear time, details can
be found in the PhD thesis of É. Fusy [7]. The segment contact representation
of R+ associated to the separation decomposition is computable in linear time
with standard techniques, c.f. [3] or [4]. The number of grid lines needed for the
segment contact representation of R+ is bounded by the number of bus vertices
of R+, i.e., the size of the grid is O(n) × O(n). The clipping of endpoints in-
creases the number of grid lines by a factor of 3 and the insertion of connector
vertices may require an additional grid line for each vertex. The same holds for
the reinsertion of vertices of degree 1 and 2. All these steps can be done in linear
time and keep the size of the grid in O(n) ×O(n).

6 Conclusion and Future Work

We have considered the class of plane bus graphs, that admit a planar realiza-
tion and have characterized this class by the existence of a good partition of
bus vertices. To test for the existence of a good partition we gave an O(n3/2)
algorithm based on planar matching. Given a good partition the representation
can be computed in linear time.

It would be interesting to extend the approach from plane to planar bus
graphs. The problem here is that the connector graphs of different plane embed-
dings of a planar graph differ.

It is also open to characterize the class of graphs that admit realizations, where
connections are allowed to cross apart from the knowledge, that the decision is
NP-complete. Another generalization would be to allow connections to cross bus
segments or bus segments to cross each other.
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Abstract. We study the 2-D and 3-D dynamic bin packing problem, in
which items arrive and depart at arbitrary times. The 1-D problem was
first studied by Coffman, Garey, and Johnson motivated by the dynamic
storage problem. Bar-Noy et al. have studied packing of unit fraction
items (i.e., items with length 1/k for some integer k ≥ 1), motivated by
the window scheduling problem. In this paper, we extend the study of
2-D and 3-D dynamic bin packing problem to unit fractions items. The
objective is to pack the items into unit-sized bins such that the maximum
number of bins ever used over all time is minimized. We give a scheme
that divides the items into classes and show that applying the First-Fit
algorithm to each class is 6.7850- and 21.6108-competitive for 2-D and
3-D, respectively, unit fraction items. This is in contrast to the 7.4842
and 22.4842 competitive ratios for 2-D and 3-D, respectively, that would
be obtained using only existing results for unit fraction items.

1 Introduction

Bin packing is a classical combinatorial optimization problem that has been
studied since the early 70’s and different variants continue to attract researchers’
attention (see [7,10,12]). It is well known that the problem is NP-hard [14]. The
problem was first studied in one dimension (1-D), and has been extended to
multiple dimensions (d -D, where d ≥ 1). In d-D packing, the bins have lengths
all equal to 1, while items are of lengths in (0, 1] in each dimension. The objective
of the problem is to pack the items into a minimum number of unit-sized bins
such that the items do not overlap and do not exceed the boundary of the bin.
The items are oriented and cannot be rotated.

Extensive work (see [7,10,12]) has been done in the offline and online settings.
In the offline setting, all the items and their sizes are known in advance. In the
online setting, items arrive at unpredictable time and the size is only known
when the item arrives. The performance of an online algorithm is measured
using competitive analysis [3]. Consider any online algorithm A with an input
I. Let OPT (I) and A(I) be the maximum number of bins used by the optimal
offline algorithm and A, respectively. Algorithm A is said to be c-competitive if
there exists a constant b such that A(I) ≤ c ·OPT (I) + b for all I.
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In some real applications, item size is not represented by arbitrary real num-
bers in (0, 1]. Bar-Noy et al. [2] initiated the study of the unit fraction bin packing
problem, a restricted version where all sizes of items are of the form 1

k , for some
integer k. The problem was motivated by the window scheduling problem [1,2].
Another related problem is for power fraction items, where sizes are of the form
1
2k , for some integer k. Bin packing with other restricted form of item sizes in-
cludes divisible item sizes [8] (where each possible item size can be divided by the
next smaller item size) and discrete item sizes [6] (where possible item sizes are
{1/k, 2/k, · · · , j/k} for some 1 ≤ j ≤ k). For d-D packing, items of restricted
form have been considered, e.g., [16] considered strip packing ( [19]) of items
with one of the dimensions having discrete sizes and [17] considered bin packing
of items where the lengths of each dimension are at most 1/m, for some integer
m. The study of these problems is motivated by applications in job scheduling.
As far as we know, unit or power fraction items have not been considered in
multi-dimensional packing.

Dynamic Bin Packing. Earlier work concentrated on “static” bin packing,
where items do not depart. In potential applications, like warehouse storage, a
more realistic setting is the dynamic model, where items arrive and depart dy-
namically. This natural generalization, known as dynamic bin packing problem,
was introduced by Coffman, Garey, and Johnson [9]. The items arrive over time,
reside for some period of time, and may depart at arbitrary times. Each item
must be packed to a bin from its arrival to its departure. Again, migration to
another bin is not allowed, yet rearrangement of items within a bin is allowed.
The objective is to minimize the maximum number of bins used over all time. In
the offline setting, the sizes, and arrival and departure times of items are known
in advance, while in the online setting the sizes and arrival times of items are
only known when items arrive, and the departure times are known only when
items depart.

Previous Work. The dynamic bin packing problem was first studied in 1-D for
general size items by Coffman, Garey and Johnson [9], showing that the First-
Fit (FF) algorithm has a competitive ratio lying between 2.75 and 2.897, and
a modified First-Fit algorithm is 2.788-competitive. They gave a formula of the
competitive ratio of FF when the item size is at most 1

k . When k = 2 and 3,
the ratios are 1.7877 and 1.459, respectively. They also gave a lower bound of
2.388 for any deterministic online algorithm, which was improved to 2.5 [5] and
then to 2.666 [21]. For unit fraction items, Chan et al. [4] obtained a competitive
ratio of 2.4942, which was recently improved by Han et al. to 2.4842 [15], while
the lower bound was proven to be 2.428 [4]. Multi-dimensional dynamic bin
packing of general size items has been studied by Epstein and Levy [13], who
showed that the competitive ratios are 8.5754, 35.346 and 2 · 3.5d for 2-D, 3-D
and d-D, respectively. The ratios are then improved to 7.788, 22.788, and 3d,
correspondingly [20]. For 2-D and 3-D general size items, the lower bounds are
3.70301 and 4.85383 [13], respectively. In this case, the lower bounds apply even
to unit fraction items.
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Table 1. Competitive ratios for general size, unit fraction, and power fraction items.
Results obtained in this paper are marked with “[*]”.

1-D 2-D 3-D

General size 2.788 [9] 7.788 [20] 22.788 [20]

Unit fraction 2.4842 [15] 6.7850 [*] 21.6108 [*]

Power fraction 2.4842 [15] 6.2455 [*] 20.0783 [*]

Our Contribution. In this paper, we extend the study of 2-D and 3-D online
dynamic bin packing problem to unit and power fraction items. We observe that
using the 1-D results on unit fraction items [15], the competitive ratio of 7.788
for 2-D [20] naturally becomes 7.4842, while the competitive ratio of 22.788 for
3-D [20] becomes 22.4842. An immediate question arising is whether we can
have an even smaller competitive ratio. We answer the questions affirmatively
as follows (see Table 1 for a summary).

– For 2-D, we obtain competitive ratios of 6.7850 and 6.2455 for unit and
power fraction items, respectively; and

– For 3-D, we obtain competitive ratios of 21.6108 and 20.0783 for unit and
power fraction items, respectively.

We adopt the typical approach of dividing items into classes and analyzing each
class individually. We propose several natural classes and define different packing
schemes based on the classes1. In particular, we show that two schemes lead to
better results. We show that one scheme is better than the other for unit fraction
items, and vice versa for power fraction items. Our approach gives a systematic
way to explore different combinations of classes. One observation we have made
is that dividing 2-D items into three classes gives comparable results but dividing
into four classes would lead to much higher competitive ratios.

As an attempt to justify the approach of classifying items, we show that,
when classification is not used, the performance of the family of any-fit algo-
rithms is unbounded for 2-D general size items. This is in contrast to the case
of 1-D packing, where the First-Fit algorithm (without classification) is O(1)-
competitive [9].

2 Preliminaries

Notations and Definitions.We consider the online dynamic bin packing prob-
lem, in which 2-D and 3-D items must be packed into 2-D and 3-D unit-sized
bins, respectively, without overflowing. The items arrive over time, reside for
some period of time, and may depart at arbitrary times. Each item must be
packed into a bin from its arrival to its departure. Migration to another bin is
not allowed and the items are oriented and cannot be rotated. Yet, repacking

1 The proposed classes are not necessarily disjoint while a packing scheme is a collec-
tion of disjoint classes that cover all types of items.
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Table 2. Types of unit fraction items considered

T(1, 1) T(1, 1
2
) T( 1

2
, 1) T( 1

2
, 1
2
) T(1,≤ 1

3
) T( 1

2
,≤ 1

3
) T(≤ 1

3
,≤1)

Table 3. The 2-D results of [20] for unit-fraction items

Scheme in [20]

Classes Types of items Competitive ratios

Class A T(≤ 1
3
,≤1) 3 [20]

Class B T( 1
2
, 1),T( 1

2
, 1
2
),T( 1

2
,≤ 1

3
) 2 [20]

Class C T(1, 1),T(1, 1
2
),T(1,≤ 1

3
) 2.4842 [15]

Overall All items 7.4842

of items within the same bin is permitted2. The load refers to the total area or
volume of a set of 2-D or 3-D items, respectively. The objective of the problem
is to minimize the total number of bins used over all time. For both 2-D and
3-D, we consider two types of input: unit fraction and power fraction items.

A general size item is an item such that the length in each dimension is in
(0, 1]. A unit fraction (UF) item is an item with lengths of the form 1

k , where
k ≥ 1 is an integer. A power fraction (PF) item has lengths of the form 1

2k
,

where k ≥ 0 is an integer.
A packing is said to be feasible if all items do not overlap and the packing in

each bin does not exceed the boundary of the bin; otherwise, the packing is said
to overflow and is infeasible.

Some of the algorithms discussed in this paper repack existing items (and
possibly include a new item) in a bin to check if the new item can be packed into
this bin. If the repacking is infeasible, it is understood that we would restore the
packing to the original configuration.

For 2-D items, we use the notation T(w, h) to refer to the type of items with
width w and height h. We use ‘∗’ to mean that the length can take any value
at most 1, e.g., T(∗, ∗) refers to all items. The parameters w (and h) may take
an expression ≤ x meaning that the width is at most x. For example, T(12 ,≤

1
2 )

refers to the items with width 1
2 and height at most 1

2 . In the following discussion,
we divide the items into seven disjoint types as showed in Table 2.

The bin assignment algorithm that we use for all types of 2-D and 3-D unit
and power fraction items is the First-Fit (FF) algorithm. When a new item
arrives, if there are occupied bins in which the item can be repacked, FF assigns
the new item to the bin which has been occupied for the longest time.

Remark on Existing Result on Unit Fraction Items. Using this notation,
the algorithm in [20] effectively classifies unit fraction items into the classes as
shown in Table 3. Items in the same class are packed separately, independent of

2 If rearrangement within a bin is not allowed, one can show that there is no constant
competitive deterministic online algorithm.
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other classes. The overall competitive ratio is the sum of the competitive ratios
of all classes. By the result in [15], the competitive ratio for Class C reduces from
2.788 [9] to 2.4842 [15] and the overall competitive ratio immediately reduces
from 7.778 to 7.4842.

Corollary 1. The 2-D packing algorithm in [20] is 7.4842-competitive for UF
items.

Remarks on Using Classification of Items. To motivate our usage of clas-
sification of items, let us first consider algorithms that do not use classification.
In the full paper, we show that the family of any-fit algorithms is unbounded
for 2-D general size items (Lemma 1). When a new item R arrives, if there are
occupied bins in which R can be packed (allowing repacking for existing items),
the algorithms assign R to one of these bins as follows: First-Fit (FF) assigns R
to the bin which has been occupied for the longest time; Best-Fit (BF) assigns R
to the heaviest loaded bin with ties broken arbitrarily; Worst-Fit (WF) assigns
R to the lightest loaded bin with ties broken arbitrarily; Any-Fit (AF) assigns
R to any of the bins arbitrarily.

Lemma 1. The competitive ratio of the any-fit family of algorithms (First-Fit,
Best-Fit, Worst-Fit, and Any-Fit) for the online dynamic bin packing problem
of 2-D general size items with no classification of items is unbounded.

When the items are unit fraction and no classification is used, we can show that
FF is not c-competitive for any c < 5.4375, BF is not c-competitive for any
c < 9, and WF is not c-competitive for any c < 5.75. The results hold even for
power fraction items. These results are in contrast to the lower bound of 3.70301
of unit fraction items for any algorithm [13].

Repacking. To determine if an item can be packed into an existing bin, we will
need some repacking. Here we make some simple observations about the load
of items if repacking is not feasible. We first note the following lemma which is
implied by Theorem 1.1 in [18].

Lemma 2 ([18]). Given a bin with width u and height v, if all items have width
at most u

2 and height at most v, then any set of these items with total area at
most uv

2 can fit into the same bin by using Steinberg’s algorithm.

The implication of Lemma 2 is that if packing a new item of width w ≤ u
2 and

height h into a bin results in infeasible packing, then the total load of the existing
items is at least uv

2 − wh.

Lemma 3. Consider packing of two types of items T(12 ,≤ h) and T(1, ∗), for
some 0 < h < 1. If we have an item of type T(1, h′) that cannot be packed to an
existing bin, then the current load of the bin is at least 1− h

2 − h′.

Proof. We first pack all items with width 1, including the new type T(1, h′)
item, one by one on top of the previous one. For the remaining space, we divide
it into two equal halves each with width 1

2 . We then try to pack the T(12 ,≤ h)
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1
2

1
2

< h

(a)

x1 x6 x5 x4 x3

(b)

Fig. 1. (a) Infeasible repacking of existing items of types T(1,≤ 1
3
) and T( 1

2
,≤ 1

3
) and

a new item of type T(1, ∗). The empty space has width 1
2
and height less than h. (b)

Illustration of the proof of Lemma 8. In each set of bins, the shaded items are the item
types that do not appear in subsequent bins. For example, items of type T( 1

2
,≤ 1

3
) in

the first x1 bins do not appear in the subsequent bins.

Table 4. Values of β 〈x, y〉 for 3 ≤ x ≤ 6 and 3 ≤ y ≤ 6

β 〈x, y〉 y = 3 4 5 6

x = 3 1 1 1 1

4 3
4

5
6
= 1

3
+ 1

4
+ 1

4
5
6

11
12

= 2
3
+ 1

4

5 7
10

= 1
4
+ 1

4
+ 1

5
47
60

= 1
3
+ 1

4
+ 1

5
5
6

17
20

= 1
4
+ 3

5

6 7
10

23
30

= 1
6
+ 3

5
49
60

= 1
4
+ 1

6
+ 2

5
17
20

items into one compartment until it overflows, and then continue packing into
the other compartment. The space left in the second compartment has a height
less than h, otherwise, the overflow item can be packed there (see Figure 1(a)).
As a result, the total load of items is at least 1 − h

2 . Since the new item has a

load of h′, the total load of existing items is at least 1− h
2 − h′ as claimed. 	


In the case of 1-D packing, Chan et al. [4] have defined the following notion. Let
x and y be positive integers. Suppose that a 1-D bin is already packed with some
items whose sizes are chosen from the set {1, 12 , . . . ,

1
x}. They defined the notion

of the minimum load of such a bin that an additional item of size 1
y cannot

fit into the bin. We modify this notion such that the set in concern becomes
{ 13 ,

1
4 , . . . ,

1
x}. We define β 〈x, y〉 to be the minimum load of this bin containing

items with length at least 1
x and at most 1

3 such that an item of size 1
y cannot

be packed into this bin. Precisely,

β 〈x, y〉 = min
3≤j≤x and nj≥0

{n3

3
+

n4

4
+ . . .+

nx

x
| n3

3
+

n4

4
+ . . .+

nx

x
> 1− 1

y
}.

Table 4 shows the values of this function for 3 ≤ x ≤ 6 and 3 ≤ y ≤ 6.
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Table 5. Classifications of 2-D unit fraction items and their competitive ratios

Classes Types of items Competitive ratios

Class 1 T(≤ 1
3
,≤1) 2.8258

Class 2 T(1,≤ 1
3
), T( 1

2
,≤ 1

3
) 1.7804

Class 3 T(1, 1), T(1, 1
2
), T( 1

2
, 1), T( 1

2
, 1
2
) 2.25

Class 4 T(1, 1
2
), T(1,≤ 1

3
), T( 1

2
, 1
2
), T( 1

2
,≤ 1

3
) 2.4593

Class 5 T(1, 1), T( 1
2
, 1) 1.5

3 Classification of 2-D Unit Fraction Items

Following the idea in [20], we also divide the type of items into classes. In Table 5,
we list the different classes we considered in this paper. We propose two packing
schemes, each of which makes use of a subset of the classes that are disjoint.
The competitive ratio of a packing scheme is the sum of the competitive ratio
we can achieve for each of the classes in the scheme. In this section, we focus on
individual classes and in the next section, we discuss the two packing schemes.
For each class, we use FF (First-Fit) to determine which bin to assign an item.
For each bin, we check if the new item can be packed together with the existing
items in the bin; this is done by some repacking procedures and the repacking
is different for different classes.

Class 5: T(1, 1),T(1
2
, 1)

This is a simple case and we skip the details.

Lemma 4. FF is 1.5-competitive for UF items of types T(1, 1) and T(12 , 1).

Class 3: T(1, 1),T(1, 1
2
),T(1

2
, 1),T(1

2
, 1
2
)

We now consider Class 3 for which both the width and height are at least 1
2 .

Lemma 5. FF is 2.25-competitive for UF items of types T(1, 1),T(1, 1
2 ),T(

1
2 , 1),

T(12 ,
1
2 ).

Proof. Suppose the maximum load at any time is n. Then OPT uses at least
n bins. Let x1 be the last bin that FF ever packs a T(12 ,

1
2 )-item, x1 + x2 for

T(1, 12 ) and T(12 , 1), and x1 + x2 + x3 for T(1, 1). When FF packs a T(12 ,
1
2 )-

item to bin-x1, all the x1 − 1 before that must have a load of 1. Therefore,
(x1 − 1)+ 1

4 ≤ n. When FF packs a T(1, 1
2 ) or T(

1
2 , 1)-item to bin-(x1 + x2), all

the bins before that must have a load of 1
2 . Hence,

x1+x2

2 ≤ n. When FF packs
a T(1, 1)-item to bin-(x1 + x2 + x3), the first x1 bins must have a load of at
least 1

4 , the next x2 bins must have a load of at least 1
2 , and the last x3 − 1 bins

must have a load of 1. Therefore, x1

4 + x2

2 + (x3 − 1) + 1 ≤ n. The maximum
value of x1 + x2 + x3 is obtained by setting x1 = x2 = n and x3 = n

4 . Then,
x1 + x2 + x3 = 2.25n ≤ 2.25OPT . 	
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Class 2: T(1,≤1
3
),T(1

2
,≤1

3
)

We now consider items whose width is at least 1
2 and height is at most 1

3 . For this
class, the repack when a new item arrives is done according to the description
in the proof of Lemma 3. We are going to show that FF is 1.7804-competitive
for Class 2.

Suppose the maximum load at any time is n. Let x1 be the last bin that FF
ever packs a T(12 ,≤

1
3 )-item. Using the analysis in [9] for 1-D items with size at

most 1
3 , one can show that x1 ≤ 1.4590n.

Lemma 6 ([9]). Suppose we are packing UF items of types T(1,≤1
3 ),T(

1
2 ,≤

1
3 )

and the maximum load over time is n. We have x1 ≤ 1.4590n, where x1 is the
last bin that FF ever packs a T(12 ,≤

1
3 )-item.

Lemma 6 implies that FF only packs items of T(1,≤1
3 ) in bin-y for y > 1.459n.

The following lemma further asserts that the height of these items is at least 1
6 .

Lemma 7. Suppose we are packing UF items of types T(1,≤1
3 ),T(

1
2 ,≤

1
3 ) and

the maximum load over time is n. Any item that is packed by FF to bin-y, for
y > 1.459n, must be of type T(1, h), where 1

6 ≤ h ≤ 1
3 .

Proof. Suppose on the contrary that FF packs a T(1,≤ 1
7 )-item in bin-y for

y > 1.459n. This means that packing the item in any of the first 1.459n bins
results in an infeasible packing. By Lemma 3, with h = 1

3 and h′ = 1
7 , the load

of each of the first 1.459n bins is at least 1 − 1
6 −

1
7 = 0.69. Then the total is

at least 1.459n× 0.69 > 1.0067n, contradicting that the maximum load at any
time is n. Therefore, the lemma follows. 	

Lemma 8. FF is 1.7804-competitive for UF items of types T(1,≤1

3 ), T(
1
2 ,≤

1
3 ).

Proof. Figure 1(b) gives an illustration. Let (x1 + x6), (x1 +x6 + x5), (x1 +x6 +
x5 + x4), and (x1 + x6 + x5 + x4 + x3) be the last bin that FF ever packs a
T(1, 16 )-, T(1,

1
5 )-, T(1,

1
4 )-, and T(1, 1

3 )- item, respectively. When FF packs a
T(1, 16 )-item to bin-(x1+x6), the load of the first x1 is at least 1− 1

6 −
1
6 = 2

3 , by
Lemma 3. By Lemma 7, only type T(1, k)-item, for 1

6 ≤ k ≤ 1
3 , could be packed

in the x6 bins. These items all have width 1 and thus can be considered as 1-D
case. Therefore, when we cannot pack a T(1, 16 )-item, the current load must be
at least β 〈6, 6〉. Then we have x1(

2
3 ) + x6 β 〈6, 6〉 ≤ n. Similarly, we have

1. x1(
2
3 ) + x6 β 〈6, 6〉 ≤ n,

2. x1(1− 1
6 −

1
5 ) + x6 β 〈6, 5〉+ x5 β 〈5, 5〉 ≤ n,

3. x1(1− 1
6 −

1
4 ) + x6 β 〈6, 4〉+ x5 β 〈5, 4〉+ x4 β 〈4, 4〉 ≤ n,

4. x1(1− 1
6 −

1
3 ) + x6 β 〈6, 3〉+ x5 β 〈5, 3〉+ x4 β 〈4, 3〉+ x3 β 〈3, 3〉 ≤ n.

We note that for each inequality, the coefficients are increasing, e.g., for (1),
we have 2

3 ≤ β 〈6, 6〉 = 17
20 , by Table 4. Therefore, the maximum value of x1 +

x6 + x5 + x4 + x3 is obtained by setting the maximum possible value of x6

satisfying (1), and then the maximum possible value of x5 satisfying (2), and so
on. Using Table 4, we compute the corresponding values as 1.4590n, 0.0322n,
0.0597n, 0.0931n and 0.1365n, respectively. As a result, x1+x6+x5+x4+x3 ≤
1.7804n ≤ 1.7804OPT . 	
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Table 6. Competitive ratios for 2-D unit fraction items

2DDynamicPackUFS1

Classes Types of items Competitive ratios

Class 1 T(≤ 1
3
,≤1) 2.8258

Class 4 T(1, 1
2
), T(1,≤ 1

3
), T( 1

2
, 1
2
), T( 1

2
,≤ 1

3
) 2.4593

Class 5 T(1, 1), T( 1
2
, 1) 1.5

Overall All of the above 6.7850

Class 1: T(≤1
3
,≤1)

Items of type T(≤ 1
3 ,≤1) are further divided into three subtypes: T(≤ 1

3 ,≤
1
3 ),

T(≤ 1
3 ,

1
2 ), and T(≤ 1

3 , 1). We describe how to repack these items and leave the
analysis in the full paper.

1. When the new item is T(≤1
3 ,≤

1
3 ), we use Steinberg’s algorithm [18] to repack

the new and existing items. Note that the item width satisfies the criteria of
Lemma 2.

2. When the new item is T(≤ 1
3 ,

1
2 ) or T(≤

1
3 , 1) and the bin contains T(≤ 1

3 ,≤
1
3 )-

item, we divide the bin into two compartments, one with width 1
3 and the

other 2
3 and both with height 1. We reserve the small compartment for the

new item and try to repack the existing items in the large compartment
using Steinberg’s algorithm. This idea originates from [20].

3. When the new item is T(≤1
3 ,

1
2 ) or T(≤1

3 , 1) and the bin does not contain
T(≤ 1

3 ,≤
1
3 )-item, we use the repacking method as in Lemma 3 but with

the width becoming the height and vice versa. Note that this implies that
Lemma 8 applies for these items.

Lemma 9. FF is 2.8258-competitive for UF items of type T(≤ 1
3 ,≤1).

Class 4: T(1, 1
2
),T(1,≤1

3
),T(1

2
, 1
2
),T(1

2
,≤1

3
)

The analysis of Class 4 follows a similar framework as in Class 2. We state the
result (Lemma 10) and leave the proof in the full paper.

Lemma 10. FF is 2.4593-competitive for UF items of types T(1, 1
2 ), T(1,≤

1
3 ),

T(12 ,
1
2 ), T(

1
2 ,≤

1
3 ).

4 Packing of 2-D Unit Fraction Items

Our algorithm, named as 2DDynamicPackUF, classifies items into classes and
then pack items in each class independent of other classes. In each class, FF is
used to pack the items as described in Section 3. In this section, we present two
schemes and show their competitive ratios.

Table 6 shows the classification and associated competitive ratios for 2D-
DynamicPackUFS1. This scheme contains Classes 1, 4, and 5, covering all items.
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Table 7. Competitive ratios for 2-D power fraction items. Marked with [*] are the
competitive ratios that are reduced as compared to unit fraction items.

2DDynamicPackPF

Class Types of items Competitive ratios

Class 1 T(≤ 1
4
,≤1) 2.4995 [*]

Class 2 T(1,≤ 1
4
), T( 1

2
,≤ 1

4
) 1.496025 [*]

Class 3 T(1, 1), T(1, 1
2
), T( 1

2
, 1), T( 1

2
, 1
2
) 2.25

Overall All items 6.2455

Theorem 1. 2DDynamicPackUFS1 is 6.7850-competitive for 2-D UF items.

Scheme 2DDynamicPackUFS2 has a higher competitive ratio than Scheme 2D-
DynamicPackUFS1, nevertheless, Scheme 2DDynamicPackUFS2 has a smaller
competitive ratio for power fraction items to be discussed in the next section.
2DDynamicPackUFS2 contains Classes 1, 2, and 3, covering all items.

Lemma 11. 2DDynamicPackUFS2 is 6.8561-competitive for 2-D UF items.

5 Adaptations to Other Scenarios

In this section we extend our results to other scenarios.

2-D Power Fraction Items. Table 7 shows a scheme based on 2DDynamic-
PackUFS2 for unit fraction items and the competitive ratio is reduced to 6.2455.

Theorem 2. 2DDynamicPackPF is 6.2455-competitive for 2-D PF items.

3-D Unit and Power Fraction Items. The algorithm in [20] effectively classi-
fies the unit fraction items as shown in Table 8(a). The overall competitive ratio

Table 8. (a) Competitive ratios for 3-D UF items. [*] This result uses Theorem 1. [**]
This result uses Lemma 9. (b) Competitive ratios for 3-D PF items. [*] This result uses
Theorem 2. [**] This result uses the competitive ratio of Class 1 2-D PF items.

(a)

3DDynamicPackUF [20]

Classes Types of items
Competitive

ratios

Class 1 T(> 1
2
, ∗, ∗) 6.7850 [*]

Class 2 T(≤ 1
2
, > 1

2
, ∗) 4.8258 [**]

Class 3 T(≤ 1
2
, ( 1

3
, 1
2
], ∗) 4

Class 4 T(≤ 1
2
,≤ 1

3
, ∗) 6

Overall All items 21.6108

(b)

3DDynamicPackPF

Classes Types of items
Competitive

ratios

Class 1 T(> 1
2
, ∗, ∗) 6.2455 [*]

Class 2 T(≤ 1
2
, > 1

2
, ∗) 4.4995 [**]

Class 3 T(≤ 1
2
, ( 1

4
, 1
2
], ∗) 4

Class 4 T(≤ 1
2
,≤ 1

4
, ∗) 5.334

Overall All items 20.0783
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reduces from 22.788 to 21.6108. For power fraction items we slightly modify the
classification for 3-D items, such that boundary values of 1

3 are replaced by 1
4 .

Table 8(b) details this classification. The overall competitive ratio reduces to
20.0783. We state the following theorem and leave the proof in the full paper.

Theorem 3. (1) Algorithm 3DDynamicPackUF is 21.6108-competitive for UF
items and (2) algorithm 3DDynamicPackPF is 20.0783-competitive for PF items.

6 Conclusion

We have extended the study of 2-D and 3-D dynamic bin packing problem to
unit and power fraction items. We have improved the competitive ratios that
would be obtained using only existing results for unit fraction items from 7.4842
to 6.7850 for 2-D, and from 22.4842 to 21.6108 for 3-D. For power fraction items,
the competitive ratios are further reduced to 6.2455 and 20.0783 for 2-D and 3-
D, respectively. Our approach is to divide items into classes and analyzing each
class individually. We have proposed several classes and defined different packing
schemes based on the classes. This approach gives a systematic way to explore
different combinations of classes.

An open problem is to further improve the competitive ratios for various
types of items. The gap between the upper and lower bounds could also be
reduced by improving the lower bounds. Another problem is to consider multi-
dimensional bin packing. For d-dimensional static and dynamic bin packing, for
d ≥ 2, the competitive ratio grows exponentially with d. Yet there is no matching
lower bound that also grows exponentially with d. It is believed that this is the
case [11] and any such lower bound would be of great interest.

Another direction is to consider the packing of unit fraction and power frac-
tion squares, where all sides of an item are the same length. We note that the
competitive ratio for the packing of 2-D unit fraction square items would reduce
to 3.9654 compared to the competitive ratio of 2-D general size square items of
4.2154 [13]. For 3-D unit fraction squares, this would reduce to 5.24537 compared
to 5.37037 for 3-D general size squares [13].
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Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I.
LNCS, vol. 5125, pp. 234–245. Springer, Heidelberg (2008)

17. Miyazawa, F., Wakabayashi, Y.: Two- and three-dimensional parametric packing.
Computers & Operations Research 34(9), 2589–2603 (2007)

18. Steinberg, A.: A strip-packing algorithm with absolute performance bound 2. SIAM
J. Comput. 26(2), 401–409 (1997)

19. van Stee, R.: Combinatorial algorithms for packing and scheduling problems. Ha-
bilitation thesis, Universität Karlsruhe (June 2008),
http://www.mpi-inf.mpg.de/~vanstee/habil.pdf (accessed November 2012)

20. Wong, P.W.H., Yung, F.C.C.: Competitive multi-dimensional dynamic bin packing
via L-shape bin packing. In: Bampis, E., Jansen, K. (eds.) WAOA 2009. LNCS,
vol. 5893, pp. 242–254. Springer, Heidelberg (2010)

21. Wong, P.W.H., Yung, F.C.C., Burcea, M.: An 8/3 lower bound for online dynamic
bin packing. In: Chao, K.-M., Hsu, T.-S., Lee, D.-T. (eds.) ISAAC 2012. LNCS,
vol. 7676, pp. 44–53. Springer, Heidelberg (2012)

http://www.mpi-inf.mpg.de/~vanstee/habil.pdf


A Greedy Approximation Algorithm

for Minimum-Gap Scheduling

Marek Chrobak1,�, Uriel Feige2, Mohammad Taghi Hajiaghayi3,��,
Sanjeev Khanna4, Fei Li5,���, and Seffi Naor6

1 Department of Computer Science, Univ. of California at Riverside, USA
2 Department of Computer Science and Applied Mathematics,

The Weizmann Institute, Israel
3 Computer Science Department, Univ. of Maryland, College Park, USA

4 Department of Computer and Information Science, Univ. of Pennsylvania,
Philadelphia, USA

5 Department of Computer Science, George Mason University, USA
6 Computer Science Department, Technion, Israel

Abstract. We consider scheduling of unit-length jobs with release times
and deadlines to minimize the number of gaps in the schedule. The best
algorithm for this problem runs in time O(n4) and requires O(n3) mem-
ory.We present a simple greedy algorithm that approximates the optimum
solution within a factor of 2 and show that our analysis is tight. Our algo-
rithm runs in time O(n2 log n) and needs only O(n) memory. In fact, the
running time is O(ng∗ log n), where g∗ is the minimum number of gaps.

1 Introduction

Research on approximation algorithms up to date has focussed mostly on opti-
mization problems that are NP-hard. From the purely practical point of view,
however, there is little difference between exponential and high-degree polyno-
mial running times. Memory requirements could also be a critical factor, because
high-degree polynomial algorithms typically involve computing entries in a high-
dimensional table via dynamic programming. An algorithm requiring O(n4) or
more memory would be impractical even for relatively modest values of n be-
cause when the main memory fills up, disk paging will considerably slow down
the (already slow) execution. With this in mind, for such problems it is natural
to ask whether there are faster algorithms that use little memory and produce
near-optimal solutions. This direction of research is not entirely new. For ex-
ample, in recent years, approximate streaming algorithms have been extensively
studied for problems that are polynomially solvable, but where massive amounts
of data need to be processed in nearly linear time.
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In this paper we focus on the problem of minimum-gap job scheduling, where
the objective is to schedule a collection of unit-length jobs with given release
times and deadlines, in such a way that the number of gaps (idle intervals) in
the schedule is minimized. This scheduling paradigm was originally proposed, in
a somewhat more general form, by Irani and Pruhs [7]. The first polynomial-time
algorithm for this problem, with running time O(n7), was given by Baptiste [3].
This was subsequently improved by Baptiste et al. [4], who gave an algorithm
with running time O(n4) and space complexity O(n3). All these algorithms are
based on dynamic programming.

Our Results. We give a simple, greedy algorithm for minimum-gap scheduling
of unit-length jobs that computes a near-optimal solution. Our algorithm runs in
time O(n2 logn), uses only O(n) space, and it approximates the optimum within
a factor of 2. More precisely, if the optimal schedule has g∗ gaps, our algorithm
will find a schedule with at most 2g∗ − 1 gaps (assuming g∗ ≥ 1). The running
time can in fact be expressed as O(ng∗ logn); thus, since g∗ ≤ n, the algorithm
is considerably faster if the optimum is small. (To be fair, so is the algorithm in
[3], whose running time can be reduced to O(n3g∗).) The idea of the algorithm
is to add gaps one by one, at each step adding the longest gap for which there
exists a feasible schedule. Our analysis is based on new structural properties of
schedules with gaps, that may be of independent interest.

Related Work. Prior to the paper by Baptiste [3], Chretienne [5] studied ver-
sions of scheduling where only schedules without gaps are allowed. The algorithm
in [3] can be extended to handle jobs of arbitrary length, with preemptions,
although then the time complexity increases to O(n5). Working in another di-
rection, Demaine et al. [6] showed that for p processors the gap minimization
problem can be solved in time O(n7p5) if jobs have unit lengths.

The generalization of minimum-gap scheduling proposed by Irani and Pruhs [7]
is concerned with computing minimum-energy schedules in the model where the
processor uses energy at constant rate when processing jobs, but it can be turned
off during the idle periods with some additive energy penalty representing an
overhead for turning the power back on. If this penalty is at most 1 then the
problem is equivalent to minimizing the number of gaps. The algorithms from
[3] can be extended to this power-down model without increasing their running
times. Note that our approximation ratio is even better if we express it in terms
of the energy function: since both the optimum and the algorithm pay n for job
processing, the ratio can be bounded by 1 + g∗/(n + g∗). Thus the ratio is at
most 1.5, and it is only 1 + o(1) if g∗ = o(n).

The power-down model from [7] can be generalized further to include the
speed-scaling capability. The reader is referred to surveys in [1,7], for more in-
formation on the models involving speed-scaling.

2 Preliminaries

We assume that the time axis is partitioned into unit-length time slots numbered
0, 1, .... By J we will denote the instance, consisting of a set of unit-length jobs
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numbered 1, 2, ..., n, each job j with a given release time rj and deadline dj , both
integers. Without loss of generality, rj ≤ dj for each j. By a standard exchange
argument, we can also assume that all release times are distinct and that all
deadlines are distinct. By rmin = minj rj and dmax = maxj dj we denote the
earliest release time and the latest deadline, respectively.

A (feasible) schedule S of J is a function that assigns jobs to time slots such
that each job j is assigned to a slot t ∈ [rj , dj ] and different jobs are assigned
to different slots. If j is assigned by S to a slot t then we say that j is scheduled
in S at time t. If S schedules a job at time t then we say that slot t is busy;
otherwise we call it idle. The support of a schedule S, denoted Supp(S), is the
set of all busy slots in S. An inclusion-maximal interval consisting of busy slots
is called a block. A block starting at rmin or ending at dmax is called exterior and
all other blocks are called interior. Any inclusion-maximal interval of idle slots
between rmin and dmax is called a gap. Note that if there are idle slots between
rmin and the first job then they also form a gap and there is no left exterior
block, and a similar property holds for the idle slots right before dmax. To avoid
this, we will assume that jobs 1 and n are tight jobs with r1 = d1 = rmin and
rn = dn = dmax, so these jobs must be scheduled at rmin and dmax, respectively,
and each schedule must have both exterior blocks. We can modify any instance
to have this property by adding two such jobs to it, without changing the number
of gaps in the optimum solution.

Throughout the paper we assume that the given instance J is feasible, that
is, it has a schedule. Feasibility can be checked by running the greedy earliest-
deadline-first algorithm (EDF): process the time slots from left to right and at
each step schedule the earliest-deadline pending job, if there is any. Then J is
feasible if and only if no job misses its deadline in EDF. Also, since a schedule
can be thought of as a bipartite matching between jobs and time slots, by a
simple adaptation of Hall’s theorem we obtain that J is feasible if and only if
for any time interval [t, u] we have |Load(t, u)| ≤ u − t + 1, where Load(t, u) =
{j : t ≤ rj ≤ dj ≤ u} is the set of jobs that must be scheduled in [t, u].

Scheduling with Forbidden Slots. We consider a more general model where
some slots in [rmin, dmax] are designated as forbidden, namely no job is allowed
to be scheduled in them. A schedule of J that does not schedule any jobs in a
set Z of forbidden slots is said to obey Z. A set Z of forbidden slots will be called
viable if there is a schedule that obeys Z. Formally, we can think of a schedule
with forbidden slots as a pair (S, Y ), where Y is a set of forbidden slots and S
is a schedule that obeys Y . However, we will avoid this formalism as the set Y
of forbidden slots associated with S will be always understood from context.

All definitions and properties above extend naturally to scheduling with for-
bidden slots. Now for any schedule S we have three types of slots: busy, idle and
forbidden. The support is now defined as the set of slots that are either busy or
forbidden, and a block is a maximal interval consisting of slots in the support.
The support uniquely determines our objective function (the number of gaps),
and thus we will be mainly interested in the support of the schedules we consider,
rather than in the exact mapping from jobs to slots. The criterion for feasibility
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generalizes naturally to scheduling with forbidden slots, as follows: a forbidden
set Z is viable if and only if |Load(t, u)| ≤ |[t, u]− Z|, holds for all t ≤ u, where
[t, u]− Z is the set of non-forbidden slots between t and u (inclusive).

3 Transfer Paths

Let Q be a feasible schedule. Consider a sequence t = (t0, t1, ..., tk) of different
time slots such that t0, ..., tk−1 are busy and tk is idle in Q. Let ja be the
job scheduled by Q in slot ta, for a = 0, ..., k − 1. We will say that t is a
transfer path for Q (or simply a transfer path if Q is understood from context)
if ta+1 ∈ [rja , dja ] for all a = 0, ..., k − 1. Given such a transfer path t, the shift
operation along t moves each ja from slot ta to slot ta+1. For technical reasons
we allow k = 0 in the definition of transfer paths, in which case t0 itself is idle,
t = (t0), and no jobs will be moved by the shift.

Note that if Z = {t0} is a forbidden set that consists of only one slot t0,
then the shift operation will convert Q into a new schedule that obeys Z. To
generalized this idea to arbitrary forbidden sets, we prove the lemma below.

Lemma 1. Let Q be a feasible schedule. Then a set Z of forbidden slots is viable
if and only if there are |Z| disjoint transfer paths in Q starting in Z.

Proof. (⇐) This implication is simple: For each x ∈ Z perform the shift oper-
ation along the path starting in x, as defined before the lemma. The resulting
schedule Q′ is feasible and it does not schedule any jobs in Z, so Z is viable.

(⇒) Let S be an arbitrary schedule that obeys Z. Consider a bipartite graph
G whose vertex set consists of jobs and time slots, with job j connected to slot
t if t ∈ [rj , dj ]. Then both Q and S can be thought of as perfect matchings in
G, in the sense that all jobs are matched to some slots. In S, all jobs will be
matched to non-forbidden slots. There is a set of disjoint alternating paths in
G (that alternate between the edges of Q and S) connecting slots that are not
matched in S to those that are not matched in Q. Slots that are not matched in
both schedules form trivial paths, that consist of just one vertex.

Consider a slot x that is not matched in S. In other words, x is either idle or
forbidden in schedule S. The alternating path in G starting at x, expressed as a
list of vertices, has the form: x = t0− j0− t1− j1− ...− jk−1− tk, where, for each
a = 0, ..., k− 1, ja is the job scheduled at ta in Q and at ta+1 in S, and tk is idle
in Q. Therefore this path defines uniquely a transfer path t = (t0, t1, ..., tk) for
slot x of Q. Note that if t0 is idle in Q then this path is trivial – it ends at t0.
This way we obtain |Z| disjoint transfer paths for all slots x ∈ Z, as claimed. �

Any set P of transfer paths that satisfies Lemma 1 will be called a Z-transfer
multi-path for Q. We will omit the attributes Z and/or Q if they are understood
from context. By performing the shifts along the paths in P we can convert Q
into a new schedule S that obeys Z. For brevity, we will write S = Shift(Q,P).

Next, we would like to show that Q has a Z-transfer multi-path with a regular
structure, where each path proceeds in one direction (either left or right) and
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where different paths do not “cross” (in the sense formalized below). This prop-
erty is generally not true, but we show that in such a case Q can be replaced by
a schedule with the same support that satisfies these properties.

To formalize the above intuition we need a fewmore definitions. If t = (t0, ..., tk)
is a transfer path then any pair of slots (ta, ta+1) in t is called a hop of t. The length
of hop (ta, ta+1) is |ta − ta+1|. The hop length of t is the sum of the lengths of its

hops, that is
∑k−1

a=0 |ta − ta+1|. A hop (ta, ta+1) of t is leftward if ta > ta+1 and
rightward otherwise. We say that t is leftward (resp.rightward) if all its hops are
leftward (resp. rightward). A path that is either leftward or rightwardwill be called
straight. Trivial transfer paths are considered both leftward and rightward.

For two non-trivial transfer paths t = (t0, ..., tk) and u = (u0, ..., ul), we
say that t and u cross if there are indices a, b for which one of the following
four-conditions holds: ta < ub+1 < ta+1 < ub or ub < ta+1 < ub+1 < ta, or
ta+1 < ub < ta < ub+1, or ub+1 < ta < ub < ta+1. If such a, b exist, we will also
refer to the pair of hops (ta, ta+1) and (ub, ub+1) as a crossing. One can think
of the first two cases as “inward” crossings, with the two hops directed towards
each other, and the last two cases as “outward” crossings.

Lemma 2. Let Q be a feasible schedule and let Z be a viable forbidden set.
Then there is a schedule Q′ such that (i) Supp(Q′) = Supp(Q), and (ii) Q′ has
a Z-transfer multi-path P in which all paths in P are straight and do not cross.

Proof. We only show here how to remove crossings. (The complete proof will
appear in the full paper.) Consider now two paths in R that cross, t = (t0, ..., tk)
and u = (u0, ..., ul). We can assume that the hops that cross are (ta, ta+1) and
(ub, ub+1), where ta < ta+1. We have two cases. If ta < ub+1 < ta+1 < ub, then we
replace t and u in R by paths (t0, ..., ta, ub+1, ..., ul) and (u0, ..., ub, ta+1, ..., tk).
(See Figure 1 for illustration.) It is easy to check that these two paths are indeed
correct transfer paths starting at t0 and u0 and ending at ul and tk, respectively.
The second case is when ub+1 < ta < ub < ta+1. In this case we also need to
modify the schedule by swapping the jobs in slots ta and ub. Then we replace t
and u in R by (t0, ..., ta, ub+1, ..., ul) and (u0, ..., ub, ta+1, ..., tk).

t0 t3 t2t1 u0u1u2u3

h a g b f  d e c

h a g b f  d e c

Fig. 1. Removing path crossings in the proof of Lemma 2

Each of the operations above reduces the total hop length of R; thus, after a
sufficient number of repetitions we must obtain a set R of transfer paths without
crossings. Also, these operations do not change the support of the schedule. Let
Q′ be the schedule Q after the steps above and let P be the final set R of the
transfer paths. Then Q′ and P satisfy the properties in the lemma. �
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Note that even if P satisfies Lemma 2, it is still possible that opposite-oriented
paths traverse over the same slots. If this happens, however, then one of the
paths must be completely “covered” by a hop of the other path.

Corollary 1. Assume that P is a Z-transfer multi-path for Q that satisfies
Lemma 2, and let t = (t0, ..., tk) and u = (u0, ..., ul) be two paths in P, where t is
leftward and u is rightward. If there are any indices a, b such that ta+1 < ub < ta
then ta+1 < u0 < ul < ta, that is the whole path u is between ta+1 and ta. An
analogous statement holds if t is rightward and u is leftward.

4 The Greedy Algorithm

Our greedy algorithm LVG (for Longest-Viable-Gap) is simple: at each step it
creates a maximum-length gap that can be feasibly added to the schedule. More
formally, we describe this algorithm using the terminology of forbidden slots.

Algorithm LVG: Initialize Z0 = ∅. The algorithm works in stages. In stage
s = 1, 2, ..., we do this: If Zs−1 is an inclusion-maximal forbidden set that is
viable for J then schedule J in the set [rmin, dmax] − Zs−1 of time slots and
output the computed schedule SLVG. (The forbidden regions then become the
gaps of SLVG.) Otherwise, find the longest interval Xs ⊆ [rmin, dmax] − Zs−1 for
which Zs−1 ∪Xs is viable and add Xs to Zs−1, that is Zs←Zs−1 ∪Xs.

After each stage the set Zs of forbidden slots is a disjoint union of the forbid-
den intervals added at stages 1, 2, ..., s. In fact, any two consecutive forbidden
intervals in Zs must be separated by at least one busy time slot.

In this section we show that the number of gaps in schedule SLVG is within a
factor of two from the optimum. More specifically, we show that the number of
gaps is at most 2g∗ − 1, where g∗ is the minimum number of gaps. (We assume
that g∗ ≥ 1, since for g∗ = 0 SLVG will not contain any gaps.)

Proof Outline. In our proof, we start with an optimal schedule Q0, namely the
one with g∗ gaps, and we gradually modify it by introducing forbidden regions
computed by Algorithm LVG. The resulting schedule, as it evolves, will be called
the reference schedule and denoted Qs. The construction of Qs will ensure that
it obeys Zs, that the blocks of Qs−1 will be contained in blocks of Qs, and that
each block of Qs contains some block of Qs−1. As a result, each gap in the
reference schedule shrinks over time and will eventually disappear.

The idea of the analysis is to charge forbidden regions either to the blocks or
to the gaps of Q0. We show that there are two types of forbidden regions, called
oriented and disoriented, that each interior block of Q0 can intersect at most
one disoriented region, and that introducing each oriented region causes at least
one gap in the reference schedule to disappear. Further, each disoriented region
intersects a block of Q0. As a result, the total number of forbidden regions is at
most the number of interior blocks plus the number of gaps in Q0, which add
up to 2g∗ − 1.
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Construction of Reference Schedules. Let m be the number of stages of
Algorithm LVG and Z = Zm. For the rest of the proof we fix a Z-transfer multi-
path P for Q0 that satisfies Lemma 2, that is all paths in P are straight and
they do not cross. For any s, define Ps to be the set of those paths in P that
start in the slots of Zs. In particular, we have P = Pm.

To formalize the desired relation between consecutive reference schedules, we
introduce another definition. Consider two schedules Q, Q′, where Q obeys a
forbidden set Y and Q′ obeys a forbidden region Y ′ such that Y ⊆ Y ′. We will
say that Q′ is an augmentation of Q if (a1) Supp(Q) ⊆ Supp(Q′), and (a2) each
block of Q′ contains a block of Q. Recall that, by definition, forbidden slots are
included in the support. Immediately from the above definition we obtain that
if Q′ is an augmentation of Q then the number of gaps in Q′ does not exceed
the number of gaps in Q.

Our objective is now to convert each Ps into another Zs-transfer multi-path
P̂s such that if we take Qs = Shift(Q0, P̂s) then each Qs will satisfy Lemma 2

and will be an augmentation of Qs−1. For each path t = (t0, ..., tk) ∈ Ps, P̂s will
contain a truncation of t, defined as a path t̂ = (t0, ..., ta, τ), for some index a
and slot τ ∈ (ta, ta+1].

We now describe the truncation process, an iterative procedure that constructs
the reference schedules. The construction runs parallel to the algorithm. Fix some
arbitrary stage s, suppose that we already have computed P̂s−1 and Qs−1, and

now we show how to construct P̂s and Qs. We first introduce some concepts and
properties:

– R is a set of transfer paths, R ⊆ Ps. It is initialized to Ps−1 and at the end
of the stage we will have R = Ps. The cardinality of R is non-decreasing,
but not the set R itself; that is, some paths may get removed from R and
replaced by other paths. Naturally, R is a Y -transfer multi-path for Q0,
where Y is the set of starting slots of the paths in R. Y will be initially
equal to Zs−1 and at the end of the stage it will become Zs. Since Y is
implicitly defined by R, we will not specify how it is updated.

– An any iteration, for each path t ∈ R we maintain its truncation t̂. Let
R̂ =

{
t̂ : t ∈ R

}
. At each step R̂ is a Y -transfer multi-path for Q0, for Y

defined above. Initially R̂ = P̂s−1 and when the stage ends we set P̂s = R̂.
– W is a schedule initialized to Qs−1. We will maintain the invariant that W

obeys Y and W = Shift(Q0, R̂). At the end of the stage we will set Qs = W .

Consider now some step of this process. If R = Ps, we take Qs = W , P̂s = R̂,
and we are done. Otherwise, choose arbitrarily a path t = (t0, ..., tk) ∈ Ps −R.
Without loss of generality, assume that t is rightward. We now have two cases.

(t1) If there is an idle slot τ in W with t0 < τ ≤ tk, then choose τ to be such a
slot that is nearest to t0. Let a be the largest index for which ta < τ . Then
do this: add t to R, set t̂ = (t0, ..., ta, τ), and modify W by performing the
shift along t̂ (so τ will now become a busy slot in W ).
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(t2) If no such idle slot exists, it means that there is some path u ∈ R whose
current truncation û ends at τ ′ = tk. In this case, we do this: modify W by
undoing the shift along û (that is, by shifting backwards), remove u from
R, add t to R, and modify W by performing the shift along t.

Note that any path t may enter and leave R several times, and each time t is
truncated the endpoint τ of t̂ gets farther and farther from t0. It is possible that
the process will terminate with t̂ �= t. However, if at some step case (t2) applied
to t, then this truncation step is trivial, in the sense that after the step we have
t̂ = t, and from now on t will never be removed from R. These observations
imply that the truncation process always ends.

Lemma 3. Fix some stage s ≥ 1. Then (i) Qs is an augmentation of Qs−1. (ii)
|Supp(Qs)−Supp(Qs−1)| = |Xs|. (iii) Furthermore, denoting by ξ0 the number of
idle slots of Qs−1 in Xs, we can write |Xs| = ξ−+ξ0+ξ+, such that Supp(Qs)−
Supp(Qs−1) consists of the ξ0 idle slots in Xs (which become forbidden in Qs),
the ξ− nearest idle slots of Qs−1 to the left of Xs, and the ξ+ nearest idle slots
of Qs−1 to the right of Xs (which become busy in Qs).

Proof. At the beginning of stage s we have W = Qs−1. During the process, we
never change a status of a slot from busy or forbidden to idle. Specifically, in steps
(t1), for non-trivial paths the first slot t0 of t was busy and will become forbidden
and the last slot τ was idle and will become busy. For trivial paths, t0 = tk was
idle and will become forbidden. In steps (t2), if t is non-trivial then t0 was busy
and will become forbidden, while tk was and stays busy. If t is trivial, the status
of t0 = tk will change from busy to forbidden. In regard to path u, observe that
u must be non-trivial, since otherwise û could not end at tk. So undoing the
shift along û will cause u0 to change from forbidden to busy. This shows that a
busy or forbidden slot never becomes idle, so Supp(Qs−1) ⊆ Supp(Qs).

New busy slots are only added in steps (t1), in which case τ is either in Xs,
or is a nearest idle slot to Xs, in the sense that all slots between τ and Xs are
in the support of W . This implies that Qs is an augmentation of Qs−1.

To justify (i) and (ii), note that the slots in Xs − Supp(Qs−1) will become
forbidden in Qs and that for each slot x ∈ Xs ∩ Supp(Qs−1) there will be a step
of type (t1) in stage s of the truncation process when we will chose a non-trivial
path t starting at t0 = x, so in this step a new busy slot will be created. This
implies (ii), and together with (i) it also implies (iii). �

Using Lemma 3, we can make the relation between Qs−1 and Qs more spe-
cific. Let h be the number of gaps in Qs−1 and let C0, ..., Ch be the blocks of
Qs−1 ordered from left to right. Thus C0 and Ch are exterior blocks and all
other are interior blocks. Then, for some indices a ≤ b, the blocks of Qs are
C0, ..., Ca−1, D,Cb+1, ..., Ch, where the new block D contains Xs as well as all
blocks Ca, ..., Cb. As a result of adding Xs, in stage s the b − a gaps of Qs−1

between Ca and Cb disappear from the reference schedule. For b = a, no gap
disappears and Ca ⊂ D. In this case adding Xs causes Ca to expand.
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Two Types of Regions. We now define two types of forbidden regions, as we
mentioned earlier. Consider some forbidden region Xp. If all paths of P starting
at Xp are leftward (resp. rightward) then we say that Xp is left-oriented (resp.
right-oriented). A region Xp that is either left-oriented or right-oriented will
be called oriented, and if it is neither, it will be called disoriented. Recall that
trivial paths (consisting only of the start vertex) are considered both leftward
and rightward. An oriented region may contain a number of trivial paths, but
all non-trivial paths starting in this region must have the same orientation. A
disoriented region must contain starting slots of at least one non-trivial leftward
path and one non-trivial rightward path.

Charging Disoriented Regions. Let B0, ..., Bg∗ be the blocks of Q0, ordered
from left to right. The lemma below establishes some relations between disori-
ented forbidden regions Xs and the blocks and gaps of Q0.

Lemma 4. (i) If Bq is an exterior block then Bq does not intersect any disori-
ented forbidden regions. (ii) If Bq is an interior block then Bq intersects at most
one disoriented forbidden region. (iii) If Xs is a disoriented forbidden region then
Xs intersects at least one block of Q0.

Proof. Suppose Bq is the leftmost block, that is q = 0, and let x ∈ B0 ∩Xs. If
t ∈ P starts at x and is non-trivial then t cannot be leftward, because t ends
in an idle slot and there are no idle slots to the left of x. So all paths from P
starting in B0 ∩Xs are rightward. Thus Xs is right-oriented, proving (i).

Now we prove part (ii). Fix some interior block Bq and, towards contradiction,
suppose that there are two disoriented forbidden regions that intersect Bq, say
Xs and Xs′ , where Xs is before Xs′ . Then there are two non-trivial transfer
paths in P , a rightward path t = (t0, ..., tk) starting in Xs ∩ Bq and a leftward
path u = (u0, ..., ul) starting in Xs′ ∩Bq. Both paths must end in idle slots of Q0

that are not in Z and there are no such slots in Bq ∪Xs ∪Xs′ . Therefore t ends
to the right of Xs′ and u ends to the left of Xs. Thus we have ul < t0 < u0 < tk,
which means that paths t and u cross, contradicting Lemma 2.

Part (iii) follows from the definition of disoriented regions, since if Xs were
contained in a gap then all transfer paths starting in Xs would be trivial. �

Charging Oriented Regions. This is the most nuanced part of our analysis.
We want to show that when an oriented forbidden region is added, at least one
gap in the reference schedule disappears. The general idea is that if Xs is left-
oriented and G is the nearest gap to the left of Xs, then by the maximality of
Xs we have |Xs| ≥ |G|. So when we process the leftward paths starting in Xs,
the truncation process will eventually fill G. As it turns out, this is not actually
true as stated, because these paths may end before G and their processing may
activate other paths, that might be rightward. Nevertheless, using Lemma 2, we
show that either G or the gap H to the right of Xs will be filled.

Lemma 5. If Xs = [fXs , lXs ] is an oriented region then at least one gap of
Qs−1 disappears in Qs.
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Proof. By symmetry, we can assume that Xs is left-oriented, so all paths in
Ps−Ps−1 are leftward. If Xs contains a gap of Qs−1, then this gap will disappear
when stage s ends. Note also that Xs cannot be strictly contained in a gap of
Qs−1, since otherwise we could increase Xs, contradicting the algorithm. Thus
for the rest of the proof we can assume thatXs has a non-empty intersection with
exactly one block B = [fB, lB] of Qs−1. If B is an exterior block then Lemma 3
immediately implies that the gap adjacent to B will disappear, because Xs is at
least as long as this gap. Therefore we can assume that B is an interior block.
Denote by G and H , respectively, the gaps immediately to the left and to the
right of B. Summarizing, we have Xs ⊂ G∪B ∪H and all sets G−Xs, B ∩Xs,
H − Xs are not empty. We will show that at least one of the gaps G, H will
disappear in Qs. The proof is by contradiction; we assume that both G and
H have some idle slots after stage s and show that this assumption leads to a
contradiction with Lemma 2, which P was assumed to satisfy.

We first give the proof for the case when Xs ⊆ B. From the algorithm, |Xs| ≥
max(|G|, |H |). This inequality, the assumption that G and H do not disappear
in Qs, and Lemma 3 imply together that both gaps shrink; in particular, the
rightmost slot of G and the leftmost slot of H become busy in Qs.

At any step of the truncation process (including previous stages), when some
path t = (t0, ..., tk) ∈ R is truncated to t̂ = (t0, ..., ta, τ), all slots between t0
and τ are either forbidden or busy, so all these slots are in the same block of W .
Thus, in stage s, the assumption that G and H do not disappear in Qs implies
that at all steps the paths in Ps −R start in B.

Let u be the path whose truncation û ends in fB − 1 right after stage s. No
transfer path can start in the slots immediately to the left of fB − 1 because
they were idle in Q0. Together with the previous paragraph, this implies that u
must be leftward. We can now choose a sequence u1, ...,up = u of transfer paths
from Ps such that u1 is a leftward path starting in Xs (so u1 was in Ps − R
when stage s started) and, for i = 1, ..., p− 1, ui+1 is the path replaced by ui in
R at some step of type (t2). Similarly, define v to be the rightward path whose
truncation ends in the leftmost slot of H and v1, ...,vq = v be the similarly
defined sequence for v. Our goal is to show that there are paths ui and vj that
cross, which would give us a contradiction.

The following simple observation follows directly from the definition of the
truncation process. Note that it holds even if t is trivial.

Observation 1: Suppose that at some iteration of type (t2) in the truncation
process we choose a path t = (t0, ..., tk) and it replaces a path t′ = (t′0, ..., t

′
l) in

R (because t̂
′
ended at tk). Then min(t′0, t′l) < tk < max(t′0, t′l).

Let ug be the leftward path among u1, ...,up whose start point ug
0 is rightmost.

Note that ug exists, because up is a candidate for ug. Similarly, let vh be the
rightward path among v1, ...,vq whose start point vh0 is leftmost.

Claim 1: We have (i) ug
0 ≥ fXs and (ii) the leftward paths in

{
u1, ...,up

}
cover

the interval [fB, u
g
0], in the following sense: for each z ∈ [fB, u

g
0] there is a leftward

path ui = (ui
0, ..., u

i
ki
) such that ui

ki
≤ z ≤ ui

0.
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Part (i) holds because u1 is leftward and u1
0 ≥ fXs . Property (ii) then follows

by applying Observation 1 iteratively to show that the leftward paths among
ug, ...,up cover the interval [fB, u

g
0]. More specifically, for i = g, ..., p−1, we have

that the endpoint ui
ki

of ui is between ui+1
0 and ui+1

ki+1
, the start and endpoints

of ui+1. As i increases, ui
ki

may move left or right, but it satisfies the invariant

that the interval [ui
ki
, ug

0] is covered by the leftward paths among ug, ...,ui, and

the last value of ui
ki
, namely up

kp
, is before fB. This implies Claim 1.

Claim 2: We have (i) vh0 < fXs and (ii) the rightward paths in
{
v1, ...,vq

}
cover the interval [vh0 , lB], that is for each z ∈ [vh0 , lB] there is a rightward path
vj = (vj0, ..., v

j
lj
) such that vj0 ≤ z ≤ vjlj .

The argument is similar to that in Claim 1. We show that if ve is the first non-
trivial rightward path among v1, ...,vq then ve0 < fXs . This ve exists because
vq is a candidate. The key fact is that e �= 1, because Xs is left-oriented. We
have two cases. If e = 2 then v2 is a rightward path whose truncation after stage
s − 1 ended in τ ∈ Xs, and in stage s it was replaced in R by the trivial path
v1 = (τ) in a step of type (t2). Then v2

0 < fXs and (i) holds. If e > 2 then v2 is
a non-trivial leftward path, so v2l2 < fXs . Then (i) follows from Observation 1,
by applying it iteratively to paths v2, ...,ve, all of which except ve are leftward.

We now focus on vh0 . The two claims above imply that vh0 < ug
0. Since the

paths u1, ...,up cover [fB, u
g
0] and vh0 ∈ [fB, u

g
0], there is a leftward path ui

such that ui
a+1 < vh0 < ui

a, for some index a. Since the rightward paths among
v1, ...,vq cover the interval [vh0 , lB] and ui

a ∈ [vh0 , lB], there is a rightward path
vj such that vjb < ui

a < vjb+1, for some index b. By these inequalities and our

choice of vh, we have ui
a+1 < vh0 ≤ vj0 ≤ vjb < ui

a < vjb+1. This means that ui

and vj cross, giving us a contradiction.
We have thus completed the proof when Xs ⊆ B. We now extend it to the

general case, when Xs may overlap G or H or both. Recall that both G−Xs and
H −Xs are not empty. All we need to do is to show that the idle slots adjacent
to Xs ∪B will become busy in Qs, since then we can choose paths u, v and the
corresponding sequences as before, and the construction above applies.

Suppose that Xs∩G �= ∅. We claim that the slot lXs−1, namely the slot of G
adjacent to Xs, must become busy in Qs. Indeed, if this slot remained idle in Qs

then Xs ∪{lXs − 1} would be a viable forbidden region in stage s, contradicting
the maximality of Xs. By the same argument, if Xs ∩H �= ∅ then the slot of H
adjacent to Xs will become busy in Qs. This immediately takes care of the case
when Xs overlaps both G and H .

It remains to examine the case when Xs overlaps only one of G, H . By sym-
metry, we can assume that Xs ∩G �= ∅ but Xs ∩H = ∅. If lB + 1, the slot of H
adjacent to B, is not busy in Qs, Lemma 3 implies that the nearest |Xs∩B| idle
slots to the left of Xs will become busy. By the choice of Xs we have |Xs| ≥ |G|,
so |Xs ∩ B| ≥ |G − Xs|. Therefore G will disappear in Qs, contradicting our
assumption that it did not. �
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Putting everything together now, Lemma 4 implies that the number of disori-
ented forbidden regions among X1, ..., Xm is at most g∗ − 1, the number of
interior blocks in Q0. Lemma 5, in turn, implies that the number of oriented
forbidden regions among X1, ..., Xm is at most g∗, the number of gaps in Q0.
Thus m ≤ 2g∗ − 1. This gives us the main result of this paper.

Theorem 1. Suppose that the minimum number of gaps in a schedule of J is
g∗ ≥ 1. Then the schedule computed by Algorithm LVG has at most 2g∗− 1 gaps.

Lower Bound Example. In the full paper we show that for any k ≥ 2 there is
an instance Jk on which Algorithm LVG finds a schedule with 2k− 1 gaps, while
the optimum schedule has g∗ = k gaps. Thus our analysis is tight.

Implementation. In the full paper we show that Algorithm LVG can be im-
plemented in time O(ng∗ logn) and memory O(n), where g∗ is the optimum
number of gaps. The idea is this: At each step we remove the forbidden regions
from the timeline, maintaining the invariant that all release times are different
and that all deadlines are different. This can be done in time O(n log n) per step.
With this invariant, the maximum forbidden region has the form [ri + 1, dj − 1]
for some jobs i, j. We then show how to find such i, j in linear time. Since we
have O(g∗) steps, the overall running time will be O(ng∗ logn).

5 Final Comments

Among the remaining open questions, the most intriguing one being whether it
is possible to efficiently approximate the optimum solution within a factor of
1 + ε, for arbitrary ε > 0. Ideally, such an algorithm should run in near-linear
time. We hope that our results in Section 2, that elucidate the structure of the
set of transfer paths, will be helpful in making progress in this direction.

Our 2-approximation result for Algorithm LVG remains valid for scheduling
jobs with arbitrary processing times when preemptions are allowed, because then
a job with processing time p can be thought of as p identical unit-length jobs. For
this case, although Algorithm LVG can be still easily implemented in polynomial
time, we do not have an implementation that would significantly improve on the
O(n5) running time from [4].
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Abstract. The exponential complexity of the satisfiability problem for a
given class of Boolean circuits is defined to be the infimum of constants α
such that the problem can be solved in time poly(m) 2αn, where m is the
circuit size and n is the number of input variables [IP01]. We consider
satisfiability of linear Boolean formula over the full binary basis and we
show that the corresponding exponential complexities are “interwoven”
with those of k-CNF SAT in the following sense. For any constant c,
let fc be the exponential complexity of the satisfiability problem for
Boolean formulas of size at most cn. Similarly, let sk be the exponential
complexity of k-CNF SAT. We prove that for any c, there exists a k such
that fc ≤ sk. Since the Sparsification Lemma [IPZ01] implies that for
any k, there exists a c such that sk ≤ fc, we have supc{fc} = supk{sk}.
(In fact, we prove this equality for a larger class of linear-size circuits that
includes Boolean formulas.) Our work is partly motivated by two recent
results. The first one is about a similar “interweaving” between linear-
size circuits of constant depth and k-CNFs [SS12]. The second one is that
satisfiability of linear-size Boolean formulas can be tested exponentially
faster than in O(2n) time [San10, ST12].

1 Introduction

Assuming P �= NP, it is still unknown how to classify NP-complete problems
by their complexity. For example, is it possible to test satisfiability of 3-CNFs in
subexponential time? The conjecture known as the Exponential Time Hypothesis
(ETH) states that it is not possible [IP01]. Or, is it possible to test satisfiability
of Boolean circuits exponentially faster than using the trivial enumeration of all
assignments? Questions like these seem far away from being resolved, even though
this line of research has produced useful insights, see surveys in [DH09, PP10].

Exponential Complexity. A natural approach to the complexity classification of
problems in NP is to use the notion of exponential complexity [IP01, CP09].
In this paper, we restrict ourselves to Boolean satisfiability problems. Let C
be a class of circuits and let C SAT be the satisfiability problem for circuits
of C. The exponential complexity of C SAT is the infimum of constants α such
that there is an algorithm that solves this problem in time poly(m) 2αn, where

P.G. Spirakis and M. Serna (Eds.): CIAC 2013, LNCS 7878, pp. 110–121, 2013.
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m is the circuit size and n is the number of input variables, see Section 2 for
details. Many deep and interesting results on exponential complexity and related
questions are relevant to this paper, but due to the space limit, we mention here
only few of them, namely known results on the exponential complexity for k-
CNFs, linear-size circuits of constant depth, and linear-size Boolean formulas.
To describe these results, we use the following notation (throughout the paper,
n denotes the number of variables in a circuit):

– sk is the exponential complexity of the satisfiability problem for k-CNFs;
s∞ = supk{sk};

– rdc is the exponential complexity of the satisfiability problem for circuits of
depth at most d and size at most cn; rd∞ = supc{rdc};

– fc is the exponential complexity of the satisfiability problem for Boolean
formulas of size at most cn over the full binary basis; f∞ = supc{fc}.

In these terms, ETH is the conjecture that s3 > 0. Impagliazzo and Paturi
[IP01] proved that if ETH is true then the sequence {sk} increases infinitely
often. Using the sparsification technique, it was shown that sk remains the same
if the class of k-CNFs is restricted to k-CNFs of linear size [IPZ01]. Known upper
bounds on sk have the form 1 − c/k, where c is a constant [DH09], and it is a
challenging open question whether s∞ = 1 or s∞ < 1. The Strong Exponential
Time Hypothesis (SETH) states that s∞ = 1 [IP01, CIP09].

An upper bound on rdc was obtained in [CIP09]: this bound is strictly less than
1. How do {sk} and {rdc} relate? Santhanam and Srinivasan [SS12] answered this
question by showing that {rdc} is “interwoven” with {sk}: for any numbers c and
d, there is an integer k such that rdc ≤ sk and, similarly, in the converse direction.
Therefore, rd∞ = s∞ for any d.

How important is a constant limit on the circuit depth in such “interweav-
ing”? For example, how about Boolean formulas, a natural class of circuits of
non-constant depth? Santhanam [San10], Seto and Tamaki [ST12] showed that
satisfiability of linear-size Boolean formulas over the full binary basis can be
tested exponentially faster than in O(2n) time: fc < 1 for any constant c. This
result suggests that we could expect fc to be “interwoven” with {sk}. In this
paper, we prove this conjecture.

Our Results. It follows from the Sparsification Lemma [IPZ01] that for any
positive integer k, there is a number c such that sk ≤ fc. We prove the “converse”:
for any number c, there is an integer k such that fc ≤ sk. Therefore, f∞ = s∞.
In fact, our main result is stronger in the following two aspects.

First, instead of {fc}, we consider an analogous sequence of the exponential
complexities for linear-size circuits of a more general type than Boolean formulas,
see Section 4 for the definition of such circuits. Loosely speaking, a circuit of
this type has two properties: (1) all gates have bounded fan-in and (2) each
subcircuit has a bounded number of “border gates”, i.e., gates that have wires
to the “residual part” of the circuit. Any Boolean formula is a circuit of this
type. Another special case is the class of circuits whose underlying graphs have
bounded minimum vertex separation numbers [BFT09].
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Second, we relate circuit satisfiability to k-CNF satisfiability using reductions
that preserve satisfying assignments. More exactly, for any ε > 0, a circuit φ
with n variables is transformed in polynomial time into a k-CNF F such that

– F has the same variables as φ plus at most εn additional variables;
– if an assignment satisfies F then its restriction to the variables of φ satisfies

φ; if an assignment satisfies φ, then it has a unique extension to the variables
of F that satisfies F .

Thus, taking all assignments to the additional variables, φ can be transformed
into an equivalent disjunction of subexponentially many k-CNFs. That is, any
Boolean function computed by a Boolean formula can be computed by a dis-
junction of subexponentially many k-CNFs.

Note that the equality f∞ = s∞ gives an equivalent statement for SETH:
f∞ = 1, see [CDL+12] for some other equivalent statements.

Organization of the Paper. The basic definitions and notation are given in Sec-
tion 2. Section 3 describes how we reduce circuits to k-CNFs. The reducibility
uses the extension rule (well known in proof complexity). Section 4 is about
graphs underlying circuits for which we prove an “interweaving” with k-CNFs.
In Section 5, we state and prove the main results.

2 Basic Definitions and Notation

Circuit Satisfiability. By a circuit we mean a single-output Boolean circuit in
its most general version [Vol99] where, in particular, every input is labeled with
either a variable or a truth value, but such a labeling is not necessarily one-to-
one: distinct inputs may be labeled with the same variable. When talking about
circuits, it will sometimes be convenient for us to use graph-theoretic terms
instead of terms standard for circuits: for example, vertices and edges instead of
nodes and wires, in-degree and out-degree instead of fan-in and fan-out, etc.

The number of nodes in a circuit φ is denoted by |φ|. The set of variables
labeling the inputs of φ is denoted by var(φ). Let A be an assignment of truth
values to the variables of φ, i.e., a mapping from var(φ) to {0, 1}. The value of
φ on A is defined in the standard way [Vol99] and is denoted by φ(A). A circuit
φ is called satisfiable if there is an assignment A such that φ(A) = 1.

Let C be a set of circuits. The satisfiability problem for C is the problem of
determining whether a circuit from C is satisfiable or not. We write C SAT to
denote the language consisting of all satisfiable circuits from C.

Exponential Complexity. Let C be a class of circuits. Following Impagliazzo and
Paturi [IP01] (see also [CP09] for details), we define the exponential complexity
of C SAT to be the infimum of constants α such that C SAT can be decided by a
two-sided error randomized algorithm in time poly(|φ|) 2αn with probability of
error < 1

3 :

exp-com(C SAT) = inf{α | C SAT ∈ BPTIME(poly(|φ|) 2αn)}.
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Note that the polynomial poly(|φ|) in this definition may depend on α.
The fact that the definition above uses randomized algorithms, not determin-

istic ones, is not so important for this paper. All of our results remain valid
if the exponential complexity of C SAT is defined as a similar measure where
randomized algorithms are replaced by deterministic algorithms:

exp-com(C SAT) = inf{α | C SAT ∈ DTIME(poly(|φ|) 2αn)}.

Boolean Formulas and CNFs. A Boolean formula is a circuit in which every gate
has fan-in at most 2 and fan-out at most 1. Gates with fan-in 2 may be labeled
with arbitrary binary Boolean functions. A literal is either a single-gate circuit
or a two-gate circuit (where the output is labeled with the negation). A clause
is either a literal or a circuit obtained from literals by adding wires from their
outputs to a new output gate labeled with the disjunction of the corresponding
arity. A conjunctive normal form (a CNF for short) is either a clause or a circuit
obtained from clauses by adding wires from their outputs to a new output gate
labeled with the conjunction of the corresponding arity. A CNF is called a k-CNF
if every disjunction in its labeling has arity at most k.

3 Extension Rule for Circuits

In this section, we define circuit transformations based on the extension rule.
This rule was introduced by Tseitin [Tse68] who used it to attain an exponen-
tial speed-up for the length of resolution proofs in propositional logic. A more
general form of the rule is well known in proof complexity in connection with
extended Frege systems, where the rule is used to abbreviate long formulas, see
e.g. [Pud98]. In this general form, the extension rule allows using formulas of
the form z ↔ F in a proof, where F is any formula and z is a new propositional
variable that appears neither in the previous part of the proof nor in the formula
to be proved.

3.1 Induced Circuits

Let φ be a circuit and G = (V,E) be its underlying directed graph. Each vertex
u ∈ V determines the directed graph Gu = (Vu, Eu) where

Vu = {u} ∪ {w ∈ V | there is a path from w to u in G};
Eu = {(v, w) ∈ E | both v and w are in Vu}.

This graph Gu is called the subgraph induced by u. A vertex v ∈ Vu is said to be
a border vertex of Gu if v has an outgoing edge incoming to a vertex outside Gu,
i.e., there is an edge (v, w) ∈ E where w ∈ V −Vu. The set of all border vertices
of Gu is called the border of Gu and is denoted by β(Gu). All other vertices in
Gu are called internal.

The above terminology and notation are extended to circuits in a natural
way: given φ and u, the subcircuit induced by u is the circuit whose underlying
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graph is Gu and whose labeling is the same as in φ, i.e., for every vertex in Vu,
its label in φu is the same as its label in φ. Note that the labeling for φu is
defined correctly since for every vertex in Vu, its in-degree in Gu is the same
as its in-degree in G (but its out-degrees in Gu and G may be different). The
border of Gu is also referred as the border of φu and it is denoted by β(φu).

We want to “decompose” φ into two circuits: φu and a “residual” circuit
obtained from φ by “contraction” of φu into a single vertex. This “residual”
circuit and its underlying graph are denoted by φ!φu and G!Gu respectively.
They are defined as follows:

– G ! Gu is obtained from G = (V,E) by removing all internal vertices of
Gu = (Vu, Eu) and removing all edges incident on these internal vertices.
Thus, every vertex in G ! Gu is either a vertex from V − Vu or a border
vertex of Gu.

– If a vertex belongs to V − Vu, its label in φ! φu is the same as in φ.
– If a vertex belongs to the border of Gu, it has in-degree 0 in G!Gu. To label

such border vertices, we use new variables, not occurring in φ. Namely, let
β(Gu) = {v1, . . . , vb}. We introduce b new variables z1, . . . , zb and we label
each vertex vi with zi.

In this labeling of v1, . . . , vb, each variable zi “replaces” the subcircuit φvi in-
duced by vi in φ. To emphasize this fact, we denote the circuit φ! φu using the
standard notation for substitutions in formulas:

φ[z1/φv1 , . . . , zb/φvb ]. (1)

It will be convenient for us to use either of the two notations: φ ! φu, which
specifies the circuit up to names of new variables, or φ[z1/φv1 , . . . , zb/φvb ], which
specifies it completely.

3.2 Circuit Transformations

The extension rule is typically used to transform a formula F into an “equivalent”
(in a special sense) formula (z ↔ S) ∧ F [z/S] where S is a subformula of F .
Here, we generalize this operation for circuits.

We begin with notation for composition of circuits, namely for circuits made
up from other circuits using the Boolean functions ↔ (equivalence) and ∧m
(m-ary conjunction). Given a circuit φ and a variable z not occurring in φ, the
circuit denoted by (z ↔ φ) is obtained from φ by adding two new vertices and
two new edges: a vertex v labeled with z, a vertex w labeled with the Boolean
function ↔, an edge from v to w, and an edge from the single output of φ to
w. Thus, w is the output of the resulting circuit z ↔ φ. Similarly, given circuits
φ1, . . . , φm, the circuit denoted by φ1 ∧ . . . ∧ φm is obtained by adding one new
vertex and m new edges. The new vertex v is labeled with ∧m. The m new edges
go from the outputs of φ1, . . . , φm to v.

Let φ be a circuit and u be a vertex in φ. Consider the subcircuit φu induced
by u, its underlying graph Gu, and the border of Gu. Let β(Gu) = {v1, . . . , vb}
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and let z1, . . . , zb be new variables not occurring in φ. We transform φ into the
circuit

(z1 ↔ φv1 ) ∧ . . . ∧ (zb ↔ φvb ) ∧ φ[z1/φv1 , . . . , zb/φvb ] (2)

and we write φ
u"→ ψ∧φ′ to denote this transformation, where ψ denotes the con-

junction of the equivalences and φ′ denotes the last conjunctive term in (2). The
following simple lemma expresses the fact that such transformations preserve
satisfiability.

Lemma 1. Suppose that φ
u"→ ψ ∧ φ′. Then φ is satisfiable if and only if ψ ∧ φ′

is satisfiable. Moreover,

– if an assignment satisfies ψ ∧ φ′, then its restriction to var (φ) satisfies φ;
– if an assignment satisfies φ, then it has a unique extension to var (ψ ∧ φ′)

that satisfies ψ ∧ φ′.

Proof. It easily follows from the definition of φ[z1/φv1 , . . . , zb/φvb ] that any sat-
isfying assignment for (2) restricted to var(φ) satisfies φ. Conversely, any satis-
fying assignment A for φ can be extended to a satisfying assignment for circuit
(2) by assigning values φv1(A), . . . , φvb(A) to the variables z1, . . . , zb. Any other
extension of A falsifies some of the equivalences in (2). 	


3.3 Transformation Sequences

Our purpose is to transform a circuit into a conjunction of “small” circuits. A
natural strategy is to apply successive transformations φ

u"→ ψ ∧ φ′ where u is
chosen so that φu is a “small” subcircuit. That is, choose a vertex u1 in φ such
that φu1 is “small”, then choose a vertex u2 that induces a “small” subcircuit
in φ! φu1 , and so on. Below, we describe this approach in more precise terms.

Consider a circuit φ, a vertex u in φ, and the induced subcircuit φu. We call
φu a (b, s)-subcircuit if |β(φu)| ≤ b and |φu| ≤ s. A transformation φ

u"→ ψ ∧ φ′

is called a (b, s)-transformation if φu is a (b, s)-subcircuit.
Let u1, . . . , ul be a sequence of vertices in φ. We call it a (b, s)-transformation

sequence for φ if there exist sequences {φi}li=0 and {ψi}li=1 of circuits such that

– φ0 is the circuit φ;
– for i = 1, . . . , l,
• ui is a vertex in φi−1;

• there is (b, s)-transformation φi−1
ui"→ ψi ∧ φi;

– φl has at most s vertices.

Lemma 2. If a circuit φ has a (b, s)-transformation sequence σ of length l, then
there is a circuit χ such that

– χ is a conjunction χ1 ∧ . . . ∧ χt, where t ≤ bl+ 1;
– each circuit χi has at most s+ 2 vertices;
– var (φ) ⊆ var (χ) and |var (χ)| ≤ |var (φ)|+ bl;
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– φ is satisfiable if and only if χ is satisfiable.

There is a polynomial-time algorithm that takes as input φ, σ and outputs a
circuit χ that has the above properties.

Proof. The required algorithm takes φ, σ as input and constructs the sequence

φ0
u1"→ ψ1 ∧ φ1, φ1

u2"→ ψ2 ∧ φ2, . . . , φl−1
ul"→ ψl ∧ φl

of (b, s)-transformations, where each ψi is a conjunction of bi equivalences of the
form (z ↔ φv). The number of such equivalences in the conjunction is equal
to the number of vertices in the border of φi in φi−1. We denote this number

by bi and we write t to denote
∑l

i=1 bi + 1. Next, the algorithm constructs the
resulting circuit χ as the t-ary conjunction of circuits χ1, . . . , χt where the first
t − 1 circuits χ1, . . . , χt−1 are equivalences of the form (z ↔ φv) and the last
circuit χt is φl. Clearly, the algorithm constructs χ in polynomial time. We show
that χ has the claimed properties.

By the definition of (b, s)-transformations, bi ≤ b for i = 1, . . . , l. Hence, we
have t ≤ bl + 1. Also, by the same definition, each circuit φv in an equivalence
(z ↔ φv) has at most s vertices. Therefore, the equivalence itself has at most s+2
vertices. Since the last circuit χt has at most s vertices, each circuit χi has at
most s+2 vertices. The number of new variables in χ is equal to the number of the
equivalences,

∑l
i=1 bi, which is at most bl. The remaining property (satisfiability

preservation) is easily proved using Lemma 1 and induction on l. 	


Corollary 1. If a circuit φ has a (b, s)-transformation sequence σ of length l,
then there is a k-CNF F such that

– k ≤ s+ 2;
– the number of clauses is at most (bl + 1)2k;
– var (φ) ⊆ var (χ) and |var (χ)| ≤ |var (φ)|+ bl;
– φ is satisfiable if and only if F is satisfiable.

There is a polynomial-time algorithm that takes as input φ, σ and outputs a
k-CNF F that has the above properties.

Proof. The circuit χ1 ∧ . . . ∧ χt from Lemma 2 is transformed into a k-CNF F
with the claimed properties as follows. Each circuit χi has at most s+ 2 inputs
and, therefore, it represents a Boolean function of at most s+ 2 variables. Any
such function can be computed by a k-CNF Fi where k ≤ s+2 and the number
of clauses is not greater than 2k. The k-CNF F is the conjunction F1 ∧ . . .∧Ft.

	


Remark 1. According to the property of preserving satisfiability in Corollary 1,
φ is satisfiable if and only if F is satisfiable. This equivalence is sufficient for
the use of the corollary in Section 5. However, it is not difficult to see that a
stronger form of this equivalence holds: each satisfying assignment for φ has a
unique extension to var (F ) that satisfies F , and for each satisfying assignment
for F , its restriction to var (φ) satisfies φ (cf. Lemma 1). The same applies to φ
and χ in Lemma 2.
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4 Graphs with (b, s)-Transformation Sequences

The notion of a (b, s)-transformation sequence is defined in terms of circuits
(Section 3.3), but it is easy to see that, in fact, such sequences are determined
by underlying graphs, independently of their labeling. Here is an equivalent
definition in terms of graphs. Let φ be a circuit and G = (V,E) be its underlying
graph. Let σ be a sequence of vertices u1, . . . , ul in V . This sequence is a (b, s)-
transformation sequence for φ if and only if there exist sequences {Gi}li=0 and
{Hi}li=1 of graphs such that

– G0 is the graph G;
– for i = 1, . . . , l,
• ui is a vertex in Gi−1 and Hi is the subgraph of Gi−1 induced by ui;
• Hi has at most s vertices and the border of Hi in Gi−1 consists of at
most b vertices;
• Gi is Gi−1 !Hi;

– Gl has at most s vertices.

Since σ is a (b, s)-transformation sequence for any circuit whose underlying graph
is G, we refer to σ as a (b, s)-transformation sequence for G. In this section, we
describe a class of graphs for which (b, s)-transformation sequences can be found
in polynomial time.

The maximum in-degree in a graph G is denoted by max -in(G). The following
lemma relates the maximum in-degree of graphs to sizes of induced subgraphs.
Given a graph, does it have an induced subgraph with an “arbitrary” (in a
reasonable sense) number of vertices?

Lemma 3. Let G = (V,E) be a graph with max-in(G) ≤ b. For any integer t in
the interval b < t ≤ |V |, there is a vertex u ∈ V such that the number of vertices
of the induced subgraph Gu = (Vu, Eu) is between t and b(t− 1) + 1:

t ≤ |Vu| ≤ b(t− 1) + 1. (3)

Proof. Induction on the depth of G. The basis step (the depth is 0, i.e., G is a
single-vertex graph) is trivial. In the inductive step (the depth is positive), we
select a vertex v that has two properties:

– v has non-zero in-degree;
– the subgraph Gv induced by v has at least t vertices.

Such a vertex exists, for example the sink of G has the above properties. Let
d be the in-degree of v and let v1, . . . , vd be all in-neighbors of v. Consider the
subgraphs Gv1 , . . . , Gvd induced by v1, . . . , vd respectively and select an index k
such that Gvk has the maximum number of vertices among all these subgraphs.
Let m be this maximum, the number of vertices in Gvk .

There are only two options: either t ≤ m or t > m. If t ≤ m, then the subgraph
Gvk has a required vertex u. This follows from the inductive assumption (the
depth of Gvk is less than the depth of G) and the fact that t does not exceed
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the number of vertices in Gvk . If t > m, then the vertex v can be taken as the
vertex u required in the claim. Indeed, we have

t ≤ the number of vertices of Gv ≤ dm+ 1 ≤ d(t− 1) + 1 ≤ b(t− 1) + 1

and, thus, inequality (3) holds. 	


For a graph G = (V,E), the maximum border size of G is defined to be the
maximum of |β(Gu)| over all u ∈ V , i.e., the maximum border size of all induced
subgraphs of G. We denote it by max -border (G).

Lemma 4. For any graph G = (V,E) with at least two vertices and for any
numbers b and s such that

max-in(G) ≤ b, max-border (G) ≤ b, 1 + b2 < s ≤ |V | (4)

there exists a (b, s)-transformation sequence σ for G whose length is at most

b |V |
s− b2 − 1

. (5)

There is a polynomial-time algorithm that takes as input G and numbers b, s
satisfying all inequalities (4), and it outputs a (b, s)-transformation sequence σ
for G with upper bound (5) on its length.

Proof. To construct a sequence σ and the corresponding sequences {Gi}li=0 and
{Hi}li=1 of graphs (defined in the beginning of this section), we make l steps.
At step i, we transform Gi−1 into Gi by “cutting off” an induced subgraph Hi

from Gi−1. A key point is that Lemma 3 can be used to find Hi such that the
number of vertices of Hi is bounded from below and from above: this number
lies between some t and s, where s given in the input and a value for t will
be chosen later. Thus, on one hand, each subgraph Hi has at most s vertices,
which is required for σ. On the other hand, when “cutting off” Hi, the number
of vertices of Gi−1 reduces by at least t − b. Hence, the total number of steps
is at most �|V |/(t − b)�. It is clear that given t, this construction of σ takes
polynomial time.

It remains to choose a value for t. By Lemma 3, for any t such that b < t ≤
|V |, there is an induced subgraph with the number of vertices between t and
b(t− 1) + 1. Therefore, an integer t must be chosen so as to satisfy

1 ≤ b < t and b(t− 1) + 1 ≤ s.

We choose t = �(s− 1)/b�, which guarantees that the second inequality above is
satisfied for any b ≥ 1 and s ≥ 1. Then the first constraint holds if b < (s− 1)/b.
Thus, σ can be constructed for any b and s satisfying (4).

The length of σ is the number l of “cutting off” steps. Bound (5) on l follows
from the fact that the number of steps does not exceed |V |/(t− b). 	
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5 Exponential Complexity

In this section, we compare the exponential complexity of the satisfiability prob-
lems for certain classes of circuits. We begin with a definition of a suitable
reducibility.

Let C1 and C2 be classes of circuits. Let C1 SAT and C2 SAT be the languages
consisting of satisfiable circuits from C1 and C2 respectively. We say that C1 SAT
is polynomial-time reducible to C2 SAT with an arbitrarily small increase in the
number of variables if for every ε > 0, there is a polynomial-time Karp reduction
from C1 SAT to C2 SAT with the following additional property: for any circuit φ
with n variables, Rε maps φ into a circuit with at most n+ εn variables:

|var(Rε(φ))| ≤ n+ εn.

Lemma 5. If C1 SAT is polynomial-time reducible to C2 SAT with an arbitrarily
small increase in the number of variables, then

exp-com(C1 SAT) ≤ exp-com(C2 SAT).

Proof. Suppose that C1 SAT is polynomial-time reducible to C2 SAT with an
arbitrarily small increase in the number of variables. Also, suppose that there is
an algorithm that solves C1 SAT in time poly(|φ|) 2αn. Then the composition of
this algorithm and the reduction gives an algorithm that solves C2 SAT in time
poly(|φ|) 2α(1+ε)n. Taking ε→ 0, we obtain the claim. 	


We consider the satisfiability problems for the following classes of circuits:

– k-CNFs. For any k ∈ N, the set of all k-CNFs is denoted by k-CNF. To
denote the exponential complexity of k-CNF SAT, we use the same notation
as in [IP01]:

sk = exp-com(k-CNF SAT) and s∞ = sup
k
{sk}.

– Linear-Size Boolean Formulas. For any number c > 0, let FORMULAc de-
note the set of all Boolean formulas φ such that the number of vertices of φ is
at most cn where n = |var(φ)|. Recall that we consider Boolean formulas over
the full basis (Section 2). The exponential complexity of FORMULAc SAT is
denoted using the following notation:

fc = exp-com(FORMULAc SAT) and f∞ = sup
c
{fc}.

– Linear-Size Circuits with Bounded fan-in and Bounded Border
Size. For any numbers b ≥ 1 and c > 0, let CIRCUITb,c denote the set of all
circuits φ such that
• any node in φ has fan-in at most b;
• the maximum border size of the graph underlying φ is at most b;
• |φ| ≤ cn where n = |var (φ)|.
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The exponential complexity of CIRCUITb,c SAT is denoted using the following
notation:

rb,c = exp-com(CIRCUITb,c SAT) and rb,∞ = sup
c
{rb,c}.

Theorem 1. For any b ≥ 1, c > 0, there is an integer k such that rb,c ≤ sk.

Proof. Let b ≥ 1, c > 0, ε > 0 be fixed. We show that there is a polynomial-time
algorithm that takes as input a circuit φ ∈ CIRCUITb,c with n variables and
outputs a k-CNF F such that

– |var (F )| ≤ n+ εn for sufficiently large n;
– φ is satisfiable if and only if F is satisfiable.

By Lemma 5, the existence of such an algorithm implies rb,c ≤ sk.

Take s = �1 + b2 + b2c
ε �. By Lemma 4, if n ≥ s, it takes polynomial time to

construct a (b, s)-transformation sequence of length l for the graph underlying
φ such that

l ≤ b|φ|
s− b2 − 1

≤ bcn

s− b2 − 1
≤ εn

b
. (6)

Next, by Corollary 1, it takes polynomial time to transform φ into a k-CNF F
with k ≤ s + 2 and |var(F )| ≤ n+ bl such that φ is satisfiable if and only if F
is satisfiable. Using inequality (6), we have |var (F )| ≤ n+ εn. 	


Theorem 2. For any integer k ≥ 1, there is a number c such that sk ≤ fc.

Proof. It follows from the Sparsification Lemma [IPZ01] that satisfiability of
k-CNFs has the same exponential complexity as satisfiability of linear-size k-
CNFs. Since there is a trivial polynomial-time transformation of a k-CNF F
with n variables and with |F | ≤ cn into an equivalent Boolean formula φ with
the same variables and with |φ| ≤ c′n, the claim holds. 	


Theorem 3. For any b ≥ 2 and c > 0, we have fc ≤ rb,c.

Proof. For any Boolean formula φ, the maximum fan-in is at most 2 and the max-
imum border size of the underlying graph is at most 1. Therefore, any Boolean
formula φ with |φ| ≤ cn is a circuit in CIRCUIT2,c. 	


Theorem 4. For any b ≥ 2, we have s∞ = f∞ = rb,∞.

Proof. Theorem 1 implies rb,∞ ≤ s∞, Theorem 2 implies s∞ ≤ f∞, and Theo-
rem 3 implies f∞ ≤ rb,∞. 	
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Abstract. In this paper, we consider the all best swap edges problem in
a distributed environment. We are given a 2-edge connected positively
weighted networkX, where all communication is routed through a rooted
spanning tree T of X. If one tree edge e = {x, y} fails, the communica-
tion network will be disconnected. However, since X is 2-edge connected,
communication can be restored by replacing e by non-tree edge e′, called
a swap edge of e, whose ends lie in different components of T − e. Of
all possible swap edges of e, we would like to choose the best, as defined
by the application. The all best swap edges problem is to identify the
best swap edge for every tree edge, so that in case of any edge failure,
the best swap edge can be activated quickly. There are solutions to this
problem for a number of cases in the literature. A major concern for
all these solutions is to minimize the number of messages. However, es-
pecially in fault-transient environments, time is a crucial factor. In this
paper we present a novel technique that addresses this problem from a
time perspective; in fact, we present a distributed solution that works in
linear time with respect to the height h of T for a number of different
criteria, while retaining the optimal number of messages. To the best of
our knowledge, all previous solutions solve the problem in O(h2) time in
the cases we consider.

1 Introduction and Preliminaries

For a communication network, low cost and high reliability can be conflicting
goals. For example, a spanning tree of a network could have minimum cost, but
will not survive even a single link failure. We consider the problem of restoring
connectivity when one link of a spanning tree fails.

One recent technique, particularly efficient in case of transient faults, consists
in pre-computing a replacement spanning tree for each possible link or node
failure, by computing the best replacement edge (or edges) which reconnects
the tree. A number of studies have been done for this problem, both for the
sequential [1–6] and distributed [7–10] models of computation, for different types
of spanning trees and failures.
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In this paper, we consider the all best swap edges problem in the distributed
setting. We are given a positively weighted 2-edge connected network X of pro-
cesses, where w(x, y) denotes the weight of any edge {x, y} of X , together with
a spanning tree T of X , rooted at a process r. Suppose that all communica-
tion between processes is routed through T . If one tree edge e = {x, p(x)} fails
(where p(x) denotes the parent of x in T ) we say that x is the point of failure.
Since X is 2-edge connected, communication can be restored by replacing e by
an edge e′ of X whose ends lie in different components of T − e. We call such
an edge e′ a swap edge of x (or a swap edge of e), and we define SwapEdges(x)
(or SwapEdges(e)) to be the set of all swap edges of x (refer to the example
depicted in Figure 1.(b) and (c)). Of all possible swap edges of x, we would like
to choose the best, as defined by the application. The all best swap edges problem
is to identify the best swap edge for every tree edge, so that in case of any edge
failure, the best replacement edge can be activated quickly.

Notation. Given T a spanning tree of X , we refer to an edge of T as a tree edge,
and any other edge of X as a cross edge (see also Figure 1.(a)).

If x �= r is a process, we denote the set of children of x by Chldrn(x), and
the subtree of T rooted at x by Tx; the level of a process x is defined to be the
hop-distance from x to r. We write x ≤ y or y ≥ x to indicate that x is an
ancestor of y, i.e., y ∈ Tx, and x < y or y > x if x is a proper ancestor of y.

If S is any subgraph of X , we let pathS(x, y) denote the shortest (least weight)
path through S from x to y, and let WS(x, y) denote the weighted length of
pathS(x, y). (We write simply path(x, y) and W (x, y) if S is understood.)

We will denote by T ∗ the augmented tree, whose nodes consist of all processes
of T , together with a node for each directed cross edge of T , which we call an
augmentation node of T ∗. (See Figure 1.(d).) In particular, if {y, y′} is a cross
edge in T , we will denote by [y, y′] and [y′, y] its corresponding nodes in T ∗;
the parent of [y, y′] is y. For any process x, define T ∗

x to be the subtree of the
augmented tree rooted at x; in particular, T ∗

x consists of Tx together with all
the augmentation nodes [y, y′] such that y ∈ Tx.

Related Work and Our Contribution. In [2, 9], several different criteria for defin-
ing the “best” swap edge for a tree edge e have been considered. In each case,
the best swap edge for e is that swap edge e′ for which some penalty function
F is minimized. We consider three penalty functions in this paper. In each case,
let T ′ = T − e+ e′ be the spanning tree of X obtained by deleting e and adding
e′, where e = {x, p(x)} is a tree edge, y ∈ Tx, and e′ = {y, y′} a swap edge for e.

1. Fwght(x, y, y
′) = w(e′), the weight of the swap edge. Note that if T is a

minimum spanning tree of X and e′ is that swap edge for e such that w(e′)
is minimum, then T ′ = T − e + e′ is a minimum spanning tree of X − e.

2. Fdist(x, y, y
′) = WT ′(r, x), the distance from the root to the point of failure

in T ′.
3. Fmax(x, y, y

′) = max {WT ′(r, u) : u ∈ Tx}, the maximum distance, in T ′,
from the root to any process in Tx.
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Fig. 1. (a) An example of a network X and its spanning tree T : Tree edges are bold,
cross edges are dotted. (b) Failure at x. {u, u′}, {v, v′}, and {w,w′} are the swap edges
of x. (c) Failure at y. {v, v′}, {w,w′}, and {z, z′} are the swap edges of y. (d) The
augmented tree of T ; the augmentation nodes are double circled.

If F is any of the above penalty functions, we define F (x, y, y′) = ∞ for any
{y, y′} which is not a swap edge of x. The output of the problem is then MF (x) =
min {F (x, y, y′) : (y, y′) ∈ T ∗

x}.
In [7], Flocchini et al. give an algorithm for solving the Fdist version of all

best swap edge problem. In [9], Flocchini et al. give a general algorithm for the
all best swap edges problem, and then give specific versions of the technique for
the Fmax version. In [8], the Fwght version is solved both for the failure of a link
and for the failure of a node and all its incident links.

All the above mentioned distributed solutions have the same general form, and
have message complexity O(n∗), with n∗ the number of edges of the transitive
closure of Tr \{r}. The time complexity of each is O(h2), where h is the height of
T . In particular, each of those solutions consists of two waves for each level � of T ,
with 1 ≤ � ≤ h: A broadcast wave followed by a convergecast wave. In particular,
the general schema of previous solutions consists of two nested loops, where the
outer loop is indexed by �, and for each �, the inner loop computes MF (x) for all
x at level � using two waves; a top-down wave that computes F (x, y, y′) for all
(y, y′) ∈ T ∗

x , and a bottom-up wave that computesMF (x). Each wave takes O(h)
time in the worst case, hence the overall strategy leads to a final cost in time of
O(h2). This is mainly due to the fact that the waves needs to be executed one
after the other. In this paper we present a novel technique that finds a solution
in linear time, for each of the penalty functions listed above. In particular, our
strategy distributes the information and the computation among processes so
that the waves can be pipelined. This reduces the final time of the execution to
O(h), using the same number of messages as the previous solutions.

As a final remark, we note that in [2], Gfeller et al. study the problem of
finding the optimal swap edges of a minimum spanning tree having minimum
diameter: They provide a distributed algorithm that already works in linear
time. The general technique presented here can be also adapted to this case.
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The paper is organized as follows. The overall structure of our paradigm is
given in Section 2. The various phases are described in Sections 3, 4, and 5. Due
to space constraints, some of the proofs are given in the appendix.

2 The Linear Time Solution

In this section, we present the strategy that allows to devise O(h)-time dis-
tributed algorithms to solve the five versions of the all best swap edges prob-
lem introduced in the previous section. We call these algorithms LINEARdist,
LINEARwght, LINEARmax, respectively. Each can be considered to be a ver-
sion of a general algorithm, which we call LINEAR, whose structure is given
as Algorithm 1. LINEAR is structured in phases; the actual number of phases
depends on the specific version of the problem. However, in all cases, the number
of phases is at least three: a preprocessing phase, a ranking phase, and an opti-
mization phase. In the last optimization phase, a piece of information, denoted
by up package(y, �), is computed in a convergecast wave. The content of this
package is different for each of the versions of the problem (details in Section 5).

Algorithm 1. LINEAR

1: Preprocessing Phase
2: Ranking Phase
3: If LINEARmax Then Additional Critical Level Phase(s)
4: Optimization Phase

Each of the phases of LINEAR uses at most O(δx) space for each x, where δx

is the degree of x. The space complexity of LINEAR is thus O(δx) for each x.
Our linear time algorithms make use of the concept of critical level. Infor-

mally, a critical level function is a function that can be computed top-down,
which enables another function – whose computation would otherwise require
independent top-down followed by bottom-up waves for all processes – to be
computed in a single bottom-up wave for each process, thus allowing the waves
to be pipelined. In particular, for each of the versions of the best swap edge
problem we consider, one or more critical levels are computed, depending on the
specific penalty function. Due to space constraints, all the proofs will be omitted.

The Role of Critical Levels. A critical level function is a function Λ on the aug-
mentation nodes of T ∗ such that 0 ≤ Λ(y, y′) ≤ y.level , and which aids in the
computation of F (x, y, y′) for any x ≤ y. More specifically, the computation of
F (x, y, y′) contains a branch which depends on the comparison between x.level
and Λ(y, y′). For example, the function rank , defined in Section 4, has the prop-
erty that F (x, y, y′) =∞ if and only if rank(y, y′) ≥ x.level , where F is any one
of the penalty functions defined above.
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3 Preprocessing Phase

In the preprocessing phase, which takes O(h) time, each process x computes and
retains a set of variables, some of which are the same as in [7, 9]. All the variables
listed below are needed for LINEARmax, but only level , index , and depth are
needed for LINEARwght and LINEARdist.

1. x.level , the level of x, which is the hop-distance from r to x.
2. x.index = (x.pre index , x.post index ), the index of x, where x.pre index is

the index of x in the pre-order visit of T , and x.post index is the index of x
in the reverse postorder of T (see Figure 2(a)).

3. x.depth = W (r, x), the depth of x.
4. x.height = max {W (x, u) : u ∈ Tx}, the height of x.
5. x.best child , the best child of x, defined to be the process y ∈ Chldrn(x) such

that w(x, y) + y.height > w(x, z) + z.height for any other child z of x. Note
that, since we use a strict inequality in this definition, a process can have at
most one best child. If Chldrn(x) = ∅, or if there is more than one choice of
y for which w(x, y) + y.height is maximum, best child (x) is undefined.

6. x.eta, for x �= r, the largest weight of any path in Tp(x) − Tx from p(x);
that is, x.eta = max {w(p(x), y) + y.height : y �= x and y ∈ Chldrn(p(x))}.
If x is the only child of its parent, then x.eta defaults to 0.

7. x.secondary height , the length of the longest path which does not contain
x.best child from x to any leaf of Tx. In the case that x.best child is undefined,
let x.secondary height = x.height .

Note that all of the above variables can be computed with a constant number of
broadcast and convergecast waves, in O(h) total time.

4 Ranking Phase

The ranking phase is the same for all versions of the best swap edge problem.
In this phase, we compute the rank of every cross edge {y, y′}, defined to be the
level of the nearest common ancestor of y and y′ in T . This value is stored by
both y and y′. Ranks are used to distinguish swap edges of x from other cross
edges in T ∗

x .

Remark 1.
(a) A process x is an ancestor of y if and only if x.index ≤ y.index .
(b) If [y, y′] ∈ T ∗

x , then {y, y′} ∈ SwapEdges(x) if and only if x.index �≤ y′.index .

From the previous remark, it follows that:

Remark 2. Let x �= r be a process and e′ = {z, z′} a cross edge, where z ∈ Tx.
Then, e′ is a swap edge for x if and only if rank(z, z′) < x.level .

The ranking phase is given as Algorithm 2. In particular, there is a main loop
that cycles over the levels of the tree in increasing order. The phase consists of
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Fig. 2. (a) Processes are labeled with their indices. A process x is an ancestor of y if
and only if x.index ≤ y.index . (b) Levels of processes and ranks of cross edges.

Algorithm 2. Ranking Phase: Rank of every Cross Edge of T is Computed

1: For 0 ≤ 	 ≤ h in increasing order Do %Wave 	%
2: For all y such that y.level ≥ 	 in top-down order Do
3: If y.level = 	 Then ancestor index (y, 	) ← y.index
4: Else ancestor index (y, 	) ← ancestor index (p(y), 	)
5: For all cross edges {y, y′} Do
6: If y′.index �≥ ancestor index(y, 	) Then rank(y, y′) ← 	

a top-down wave for each 0 ≤ � ≤ h, denoted by Wave �. For each �, the inner
loop computes, for each process y whose level is greater than or equal to �, the
value ancestor index (y, �), which is x.index where x is the ancestor of y at level
�. Then, for each [y, y′] ∈ T ∗

x , the value � is assigned to rank(y, y′) if y′ �∈ Tx,
i.e., y′.index �≥ ancestor index (y.�) (refer to Remark 1).

The inner loop is executed as a top-down wave; hence the waves can be
pipelined, so that the total time of the ranking phase is O(h).

Lemma 1. If rank(y, y′) = �, then, for all �′ ≤ �, the computed value of
rank(y, y′) will be set to �′ during Wave �′ of Algorithm 2 and thus the final
computed value of rank(y, y′) will be �.

5 Optimization Phase

The optimization phase is implemented as a bottom-up wave for each level �.
(Refer to Algorithm 1.) In this phase, all best swap edges are computed. In
particular, the phase consists of an outer loop, indexed by decreasing values of
1 ≤ � ≤ h, where each iteration consists of an inner loop which computes MF (x)
for all x at level �. For each x such that x.level = �, the inner loop consists of
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a convergecast wave, which computes a set of variables we call up package(y, �)
for each y ∈ Tx; each process y is able to compute up package(y, �) by using the
information computed and stored at y during the earlier phases, as well as the
contents of up package(z, �) received from all z ∈ Chldrn(y). The final value of
MF (x) is then computed using up package(x, �). To save space, each up-package
is deleted as soon as it is no longer needed. The convergecast waves can be
pipelined, and thus the entire optimization phase can be executed in O(h) time.

The specific content of up package(y, �) depends on the specific version of
LINEAR that is solved.

5.1 LINEARwght and LINEARdist

For each � ≥ 1 and each y ∈ T at level ≥ �, let x be the unique ancestor of
y at level �, and let e = {x, p(x)}. We define Swap N (y, �) to be the set of all
neighbors y′ of y such that {y, y′} is a swap edge for e. In order to compute this
set, the test established by Remark 2 is used.

For both LINEARwght and LINEARdist, up package(y, �) consists of just the
value sbtree min(y, �), defined as follows. If x is the unique ancestor of y at level
�, then

1. In LINEARwght: sbtree min(y, �) = min{w(z, z′)}, such that (z, z′) ∈ T ∗
y ∩

SwapEdges(x).
2. In LINEARdist: sbtree min(y, �) = min{W (x, z) + w(z, z′) + z′.depth}, such

that (z, z′) ∈ T ∗
y ∩ SwapEdges(x).

At the end of the iteration for �, the value of MF (x) is set to sbtree min(x, �)
for all x at level �.

The pseudo-code of the optimization phase, for the functions Fwght and Fdist

is given as Algorithm 3 and 4, respectively. In both cases, the waves of the
optimization phase are pipelined, permitting the total time complexity of the
phase to be O(h).

Concerning the number of messages of both LINEARwght and LINEARdist,
note that the information sent along the tree either in the ranking phase or in
the optimization phase, is composed of messages of constant size. In the ranking
phase, the information consists of node indices, and in the optimization phase of
“subtree minimum” values. Thus, the communication complexity, corresponding
to the transitive closure of the tree edges, is O(n∗) (limited by O(n2)) in both
cases.

5.2 LINEARmax

If S ⊆ X is connected and x ∈ S, define radius(S, x) = max {WS(x, s) : s ∈ S},
the radius of S based at s. Note that, we can write Fmax(x, y, y

′) = max{WT ′(r, u)
: u ∈ Tx} = radius(Tx, y) + w(y, y′) + y′.depth if {y, y′} ∈ SwapEdges(x). Thus,
in the case of LINEARmax we face with the problem of computing radius(Tx, y):
This computation is handled by an additional phase before the actual optimiza-
tion phase. In this phase, we compute a variable called critical level (y), for all
y ∈ Tx.
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Algorithm 3. Algorithm LINEARwght

1: Preprocessing phase
2: Ranking phase
3: For all 1 ≤ 	 ≤ h Do %Optimization Phase%
4: For all y such that y.level ≥ 	 in bottom-up order Do
5: Swap N (y, 	) ← {y′ : {y′, y} is a cross edge and rank(y, y′) < 	}

6: sbtree min(y, 	) ← min

{
w(y, y′) : y′ ∈ Swap N (y, 	)
min {sbtree min(z, 	) : z ∈ Chldrn(y)}

7: For all x such that x.level = 	 Do
8: MF (x) = sbtree min(x, 	)

Algorithm 4. Algorithm LINEARdist

1: Preprocessing phase
2: Ranking phase
3: For all 1 ≤ 	 ≤ h Do %Optimization Phase%
4: For all y such that y.level ≥ 	 in bottom-up order Do
5: Swap N (y, 	) ← {y′ : {y′, y} is a cross edge and rank(y, y′) < 	}

6: sbtree min(y, 	) ← min

{
w(y, y′) + depth(y′) : y′ ∈ Swap N (y, 	)
min {w(y, z) + sbtree min(z, 	) : z ∈ Chldrn(y)}

7: For all x such that x.level = 	 Do
8: MF (x) = sbtree min(x, 	)

Additional Critical Level Phase. For y ∈ Tx, define μ(y, x) to be the weight of
the longest path in Tx from y to any node of Tx − Ty. We let μ(x, x) = 0 by
default. It follows from these definitions that

radius(Tx, y) = max

{
y.height
μ(y, x)

(1)

Since we want LINEAR to use only constant space per process, y can hold
only O(δy) values; hence, it could not be possible for y to store all the values
{μ(y, x) : x ≤ y}. We tackle this problem by executing in LINEARmax an extra
phase before the optimization phase (called critical level phase in Algorithm 1).
In particular, as the convergecast wave moves up the tree, we compute the critical
level of y, that determines not the actual value of radius(Tx, y), but rather which
of the two choices given in Equation (1) is larger, together with enough additional
information to calculate the actual value of MF (x) when the wave reaches x.

We now explain critical levels in greater detail. Let

critical level (y) = min {x.level : y ∈ Tx and radius(Tx, y) = y.height}.

Note that critical level (y) = min {x.level : y ∈ Tx and μ(y, x) ≤ y.height}.

Lemma 2. For any processes x′ ≤ x ≤ y, μ(y, x′) ≥ μ(y, x).

Corollary 1. If y ∈ Tx, then radius(Tx, y) = y.height if and only if x.level ≥
critical level(y).
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Critical levels are calculated by Algorithm 5. Recall, from Section 3, that y.eta,
for y �= r, is the largest weight of any path in Tp(y) − Ty from p(y); this value is
computed during the preprocessing phase. Note that, once again, the waves of
the inner loop of Algorithm 5 can be pipelined, so that the total time required
for this phase is again O(h).

Algorithm 5. Critical Level Phase

1: For 0 ≤ 	 ≤ h in decreasing order Do %Wave 	%
2: For all x such that x.level = 	 concurrently Do
3: μ(x, x) ← 0
4: For all y ∈ Tx − x in top down order Do

5: μ(y, x) ← max

{
μ(p(y), x) + w(y, p(y))
y.eta

6: If μ(y, x) ≤ y.height Then critical level(y) ← 	

Optimization Phase. Before introducing the optimization phase, we need to
introduce the notion of Spine, which is strictly related to the notion of critical
level. (Refer also to Figure 3.)

Definition 1 (Spine). Given any process x, we define the Spine of x:

Spine(x) = {y ∈ Tx : radius(Tx, y) = y.height}.

We extend this definition to a specific level � as follows: Spine(�) =
⋃
{Spine(x) :

x.level = �}.

We will denote by Others(x) the nodes in Tx that are not in Spine(x) (i.e.,
Others(x) = Tx − Spine(x)), and by Others(�) =

⋃
{Others(x) : x.level = �}.

Furthermore, we define the base process of x, denoted by base(x), as the process
in Spine(x) of greatest level; again, given a specific level �, we let Base(�) =
{base(x) : x.level = �}. We define the tail process of x as tail(x) = best child
(base(x)) (note that tail(x) might be not defined), and Tail (�) = {tail (x) : x.level}
= �. Finally, we let Fan(x) = Ttail (x) and Fan(�) =

⋃
{Fan(x) : x.level = �};

if tail(x) is undefined, we let Fan(x) = ∅. We now give few properties of
Spine(x).

Lemma 3. For any process x
(a) x ∈ Spine(x).
(b) If y ∈ Spine(x) and y �= x, then p(y) ∈ Spine(x) and y = best child (p(y)).
(c) Spine(x) is a chain.

For any s ∈ S, where S is connected, let longest path(S, s) denote the simple
path of weight radius(S, s) in S starting at s. In the next lemma, we give a
characterization of longest path(Tx, y).
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Fig. 3. Def. 1: Black (single circled) nodes are in Spine(x), while the light gray nodes
are in Others(x); base(x), tail(x) are also shown; nodes in Fan(x) are double circled

Lemma 4. Let y ∈ Tx, and let u be the process of minimum level on longest path
(Tx, y). Then, the following properties hold:
(a) u ∈ Spine(x).
(b) If y ∈ Fan(x), then longest path(Tx, y) = path(y, u) +
secondary down path(u), where “+” denotes concatenation of paths.
(c) If y /∈ Fan(x), then longest path(Tx, y) = path(y, u) + longest path(Tu, u),

Let F� be the forest given by the union of all Tx, where x.level = �. Thus,
radius(F�, y) = radius(Tx, y) if x.level = � and y ∈ Tx. The critical level of a
process y enables y to determine whether it lies in Others(�) for any given �, as
shown by the following lemma.

Lemma 5. y ∈ Spine(�) if and only if critical level(y) ≤ � ≤ y.level .

Corollary 2. Given any y such that � ≤ y.level , the following properties hold:
(a) y ∈ Others(�) if and only if critical level (y) > �.
(b) y ∈ Spine(�) if and only if critical level (y) ≤ �.
(c) y ∈ Base(�) if and only if y ∈ Spine(�), and either best child (y) ∈ Others(�),
or best child (y) is undefined.
(d) y ∈ Tail (�) if and only if p(y) ∈ Base(�) and y = best child(p(y)).

Corollary 2 is used during the optimization phase of LINEARmax to determine
the content of up package(y, �) (See Algorithms 1 and 6). In particular, the
optimization phase proceeds bottom-up in the tree, with two nested loops. Let

local cost(y, �) = min {w(y, y′) + depth(y′) : y′ ∈ Swap N (y, �)},

where Swap N (y, �) is as defined in Section 5.1.
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Algorithm 6. Algorithm LINEARmax

1: Preprocessing phase

2: Ranking phase

3: Critical Level Phase (Algorithm 5)

4: For all 1 ≤ � ≤ h Do %Optimization Phase%
5: For all y such that y.level ≥ � in bottom-up order Do

6: Swap N(y, �) ← {
y′ :

{
y′, y

}
is a cross edge and rank(y, y′) < �

}
7: local cost(y, �) = min

{
w(y, y′) + depth(y′) : y′ ∈ Swap N (y, �)

}
8: If y ∈ Others(�) Then

9: min up cost(y, �) ← min

{
local cost(y, �)

min {min up cost(z, �) + w(y, z) : z ∈ Chldrn(y)}
10: Else %y ∈ Spine(�)%

11: min normal cost(y, �) ← min

{
local cost(y, �)

min {min up cost(z, �) + w(y, z) : z ∈ Normal Chldrn(y)}
12: If best child(y) is defined Then

13: z ← best child(y)

14: If z ∈ Spine(�) Then

15: min fan cost(y, �) ← min fan cost(z, �) + w(z, y)

16: Else

17: min fan cost(y, �) ← min up cost(z, �) + w(z, y)

18: sbtree min(y, �) ← min

⎧⎪⎨
⎪⎩

min normal cost(y, �) + y.height

min fan cost(y, �) + secondary height(y)

sbtree min(z, �)

19: Else %y = base(x), and tail(x) undefined%
20: min fan cost(y, �) ← ∞
21: sbtree min(y, �) ← min normal cost(y, �) + y.height

22: For all x such that x.level = � Do

23: MF (x) = sbtree min(x, �)

If y ∈ Others(�), then radius(F�, y) is not computed going down in the tree;
hence, the only information that needs to be propagated (that is, the content of
up package(y, �)) ismin up cost(y, �) = min {local cost(z, �) +W (y, z) : z ∈ Ty},
i.e., the minimum value of W (path(y, z)) + w(z, z′) + depth(z′) over all z ∈ Ty

such that {z, z′} ∈ SwapEdges(x).
If y ∈ Spine(�), first the value of min normal cost(y, �) is computed: It is

equal to min{local cost(z, �)+W (y, z)}, such that z ∈ Ty and z /∈ Tbest child (y)
.

Then, the algorithm branches according to whether best child(y) is defined or
not. If z = best child (y) is defined, then Ty∩Fan(�) �= ∅; in this case we compute
min fan cost(y, �) = min {local cost(z, �) +W (y, z) : z ∈ Ty ∩ Fan(�)}, i.e., the
min value of W (path(y, z))+w(z, z′)+depth(z′) over all {z, z′} ∈ SwapEdges(x)
such that z ∈ Ty ∩Fan(�) (note that the algorithm computes min fan cost(y, �)
differently, according to whether z ∈ Spine(�) or not). Finally, the actual cost
of the swap edge is computed: sbtree min(y, �), which is the minimum value
of radius(Ty, z) + w(z, z′) + depth(z′) over all {z, z′} ∈ SwapEdges(x) such
that z ∈ Ty (this is the value that is propagated in up package(y, �)). By
Lemma 4, sbtree min(y, �) is the minimum between the value of sbtree min(z, �)
obtained from z, min normal cost(y, �) + y.height , and min fan cost(y, �) +
secondary height(y). If z = best child (y) is not defined, then Ty ∩ Fan(�) = ∅.
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In this case, min fan cost(y, �) is set to ∞, and sbtree min(y, �) is set to
min normal cost(y, �) +y.height .

When the �th wave terminates, it is possible to compute the best swap edge
for x: MF (x) = sbtree min(x, �) for all x such that x.level = �. Again, as in
the previous cases, the waves are executed in pipeline, and thus the overall time
complexity is O(h). Also, in this case, it is not difficult to see that the number
of messages used by Algorithm 6 is the same as for the quadratic time versions,
i.e., O(n∗).

Theorem 1. The overall time complexity for LINEAR is O(h).
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Abstract. Motivated by the organization of distributed service systems,
we study models for throughput scheduling in a decentralized setting. In
throughput scheduling, a set of jobs j with values wj , processing times
pij on machine i, release dates rj and deadlines dj , is to be processed
non-preemptively on a set of unrelated machines. The goal is to maximize
the total value of jobs scheduled within their time window [rj , dj ]. While
approximation algorithms with different performance guarantees exist for
this and related models, we are interested in the situation where subsets
of machines are governed by selfish players. We give a universal result
that bounds the price of decentralization: Any local α-approximation
algorithm, α ≥ 1, yields Nash equilibria that are at most a factor (α+1)
away from the global optimum, and this bound is tight. For identical
machines, we improve this bound to α

√
e/( α

√
e− 1) ≈ (α + 1/2), which

is shown to be tight, too. The latter result is obtained by considering
subgame perfect equilibria of a corresponding sequential game. We also
address some variations of the problem.

1 Model and Notation

We consider a non-preemptive scheduling problem with unrelated machines, to
which we refer as decentralized throughput scheduling problem throughout the
paper. The input of an instance I ∈ I consists of a set of jobs J , a set of
machinesM, and a set of players N . Each job j ∈ J comes with a release time
rj , a deadline dj , a nonnegative value wj and a processing time pij if scheduled
on machine i ∈M. Machines can process only one job at a time. Job j is feasibly
scheduled (on any of the machines) if its processing starts no earlier than rj and
finishes no later than dj . For any set of jobs S ⊆ J , we let w(S) =

∑
j∈S wj be

the total value. Each player n ∈ N controls a subset of machines Mn ⊆M and
aims to maximize the total value of jobs that can be feasibly scheduled on its
set of machines Mn. Here Mn, n ∈ N , is a partition of the set of machinesM.

In this paper we are interested in equilibrium allocations, which we define as
an allocation in which none of the players n can improve the total value of jobs
that can be feasibly scheduled on its set of machines Mn by removing some of its
jobs and adding some of the yet unscheduled jobs. Here we make the assumption
that a player cannot make a claim on jobs that are scheduled on machines of
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other players. An equilibrium allocation is a (pure) Nash equilibrium (NE) in a
strategic form game where player n’s strategies are all subsets of jobs Sn ⊆ J .
If jobs Sn can be feasibly scheduled on machines Mn, then player n’s valuation
for Sn is w(Sn) =

∑
j∈Sn

wj , and we let w(Sn) = −∞ otherwise. Furthermore,
the utility of player n is −∞ whenever Sn is not disjoint with the sets chosen
by all other players. This way, in any strategy profile (Sn)n∈N that is at Nash
equilibrium, the sets Sn, n ∈ N , are pairwise disjoint.

Our main focus will be the analysis of the price of decentralization, better
known as the price of anarchy (PoA) [11], lower bounding the quality of any
Nash equilibrium relative to the quality of a globally optimal allocation, OPT .
Here OPT is an allocation maximizing the weighted sum of feasibly scheduled
jobs over all players. More specifically, we are interested in the ratio

PoA = sup
I∈I

sup
NE∈NE(I)

w(OPT )

w(NE)
, (1)

where NE(I) denotes the set of all Nash equilibria of instance I. Note that OPT
is a Nash equilibrium too, hence the price of stability, as proposed in [1], equals 1.

In general, the question whether a strategy profile (Sn)n∈N is a Nash equi-
librium describes an NP-hard optimization problem for each player, even if each
player controls a single machine only [14]. Therefore, we also consider a relaxed
equilibrium condition: We say an allocation is an α-approximate Nash equilib-
rium (α-NE) if none of the players n can improve the total value of jobs that
can be feasibly scheduled on its set of machines Mn by a factor larger than α by
removing some of its jobs and adding some of the yet unscheduled jobs. By the
existence of constant factor approximation algorithms for (centralized) through-
put scheduling, e.g. [3,4], the players are thus equipped with polynomial time
algorithms to reach an α-NE in polynomial time, for certain constant values α.

As an interesting variant of the model described thus far, we also propose
to analyze the price of anarchy for subgame perfect equilibria of an extensive
form game as introduced by Selten [12,17]. Here, we make the assumption that
players select their subsets of jobs sequentially in an arbitrary but fixed order.
In that situation, the n-th player is presented the set of yet unscheduled jobs
J −

⋃
i<n Si, from which he may select a subset Sn once, and is not allowed to

revoke this decision later. For the special case where all machines are identical,
the resulting subgame perfect equilibria of the extensive form game are provably
better than Nash equilibria of the strategic game.

2 Motivation, Related Work and Contribution

Our motivation to study this problem is to analyze the performance of decen-
tralized service systems, where jobs are posted, e.g. on a portal, and service
providers can select these on a take-it-or-leave-it basis. The problem can be seen
as a stylized version of coordination problems that appear in several application
domains. We give three examples: (1) When operating microgrids for decentral-
ized energy production and consumption, the goal is to consume locally produced
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energy as much as possible. Here, jobs can be defined as the operation of ap-
pliances (e.g. operating a washing machine), bounded by a time window and
attached with a certain $-value. Machines, on the other side, are local energy
producers like PV-panels or micro CHPs [2,15]. (2) In cloud computing, service
providers such as Amazon and Google provide an infrastructure service, that
is, provide a virtual machine with a specific service level for a certain period of
time. The aim of a federated cloud computing environment, e.g. [6], is to “co-
ordinate load distribution among different cloud-based data centers in order to
determine optimal location for hosting application services ”. (3) In private car
sharing portals like Tamyca or Autonetzer [19], clients post car rental requests
for a certain time period, and the price they are willing to pay. Car owners in the
vicinity can select requests and rent their car(s). Stripping off the online nature
from these applications exactly yields the type of problems we address.

The underlying non-strategic optimization problem is sometimes referred to
as throughput scheduling. See for example [3], and follow-up papers, e.g. [4]. In
the 3-field notation of [9], the problem reads R|rj |

∑
wjUj, where R denotes the

unrelated machine model, rj specifies that there are release dates, and the objec-
tive is to minimize the total weight of late jobs. In terms of the optimal objective
value this is equivalent to the maximization objective considered here, yet it is
standard to revert to the maximization version for the purpose of approximation.
Indeed, approximation algorithms for several versions of the maximization prob-
lem have been discussed in the literature, e.g., with or without weights, identical
or unrelated machines, most notably [3,4]. Special cases that are of particular
interest are the single machine case with unit weights and zero release dates,
solved in polynomial time by the Moore-Hodgson algorithm [16], and the case
with identical machines and unit processing times, which can be cast and solved
as an assignment problem [5]. To the best of our knowledge, the decentralized
version that we propose here has not been addressed before.

Our contribution lies in the informal claim that the price of decentralization
is very moderate: If local decisions of all players are approximately optimal with
performance guarantee α, then any equilibrium allocation is not worse than an
(α+1)-fraction of the global optimum. We improve this to ≈ (α+1/2) when all
machines are identical, and when we consider only subgame perfect equilibria
of a corresponding extensive form game. Along the way, we also obtain some
additional insights.

3 A First Encounter

Example 1. There are two playersN = {1, 2}, each controlling exactly one of two
related machinesM = {1, 2}, with machine speeds s1 = 1, s2 = 2

3 , respectively
1.

There are two jobs J = {1, 2} with processing times p1 = p2 = 1, deadlines
d1 = 1, d2 = 3

2 and values w1 = w2 = 1. Release dates are r1 = r2 = 0. �

In this example, when job 1 is allocated to machine 1 and job 2 to machine
2, both jobs can meet their respective deadlines. This is obviously an optimal

1 This is a special case of the unrelated machine model by letting pij = pj/si.
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allocation. However when job 2 is allocated to machine 1, only one job can be
scheduled before its deadline. See also Figure 1. Note that both allocations are

s1 = 1

p2 = 1, d2 = 1 1
2

s2 = 2
3

NEOPT

s1 = 1

p2 = 1, d2 = 1 1
2

p1 = 1, d1 = 1

s2 = 2
3

Fig. 1. Optimal solution and Nash equilibrium in the case of related machines

a Nash equilibrium. Now w(OPT )/w(NE) = 2/1 = 2 for the second allocation,
and we see from this simple example that

PoA ≥ 2

in (1), even for the case of related machines, unit weights, unit processing times
and zero release dates. The strategic form game for Example 1 with both Nash
equilibria in boldface is shown in Figure 2. A corresponding extensive form game

player 2
∅ {1} {2} {1,2}

player 1

∅ 0,0 0,−∞ 0, 1 0,−∞
{1} 1,0 −∞,−∞ 1, 1 −∞,−∞
{2} 1,0 1,−∞ −∞,−∞ −∞,−∞
{1,2} −∞, 0 −∞,−∞ −∞,−∞ −∞,−∞

Fig. 2. Strategic form game for Example 1 with Nash equilibria

where players select their jobs sequentially, player 1 first, and suppressing the
solutions for the trivially inferior strategies {1, 2}, is shown in Figure 3. Note
that each subgame perfect equilibrium of this extensive form game yields an
allocation that corresponds to a Nash equilibrium of the strategic form game.
Yet the extensive form game has generally more Nash equilibria (here, 3) due to
richer strategy spaces of players.

4 Bounds for Approximate Equilibrium Allocations

The players problem to decide if a strategy is at equilibrium is polynomially
solvable only for special cases. For instance when jobs have unit values and zero
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{1} {2}∅

player 1

player 2

{1} {2}∅

−∞,−∞1, 0

{1} {2}∅ {1} {2}∅

0, 0 0, 10,−∞ 1,−∞1,01,1 −∞,−∞

Fig. 3. Extensive form game for Example 1 with subgame perfect equilibria

release dates, and when each player controls exactly one machine, the Moore-
Hodgson algorithm [16] maximizes the total number of early jobs. But when
players control more than one machine, the players problem is NP-complete as
generalization of the makespan minimization problem on parallel machines [8].
When the machines Mn of a player n are identical, and jobs have unit processing
times, the players’ problem can be cast and solved as an assignment problem
[5]. In most other cases, the players’ problem is NP-complete. For example, for
a player that controls a single machine, when jobs have zero release dates, but
arbitrary processing times and weights, the problem is (weakly) NP-hard [13,10].
Adding nontrivial release dates makes the problem strongly NP-hard [14].

Therefore, we consider a relaxed equilibrium concept, assuming that play-
ers strategies are only approximately optimal. This leads to the concept of α-
approximate equilibria, which has lately been discussed also in the literature on
computing Nash equilibria, for instance in the context of congestion games [18].
Approximate Nash equilibria can also be defined by allowing additive deviations
instead of relative deviations, e.g. [7], but given that there exist constant-factor
approximation algorithms for throughput scheduling, e.g. [3,4], it appears more
reasonable to work with relative bounds here. We say the allocation is an α-
approximate Nash equilibrium, or α-NE, if no player n can improve the total
value of its jobs by a factor larger than α. That said, we obtain the following.

Theorem 1. The decentralized throughput scheduling problem has PoA = α+ 1,
assuming that equilibrium allocations are α-approximate Nash equilibria. The
lower bound PoA ≥ α+ 1 even holds for the special case of unit values wj , unit
processing times pj, related machines and zero release dates.

Proof. First we prove PoA ≤ α + 1. Take any instance with optimal solution
OPT and Nash equilibrium NE2, and let NEn and OPT n, n ∈ N , be the jobs
allocated to player n in NE and OPT , respectively. For any S ⊆ J , let S = J \S
be the complement of S in J .

Since all jobs in NE are available, and all jobs in OPT n can be feasibly be
scheduled by player n, by the definition of α-approximate Nash equilibrium, we
have for all n, αw(NEn) ≥ w(OPT n ∩ NE). Now we get, by using linearity of
the objective function across players,

2 In a slight abuse of notation, we use OPT and NE to also denote the set of feasibly
scheduled jobs in the respective solutions.
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s1 = 1

di = p+ ε

di = p, i = 1 . . . p

s2 = 1
p+ε

s... =
1

p+ε

sq+1 = 1
p+ε

OPT

s1 = 1

α−NE

i = p+ 1 . . . p+ q

s2 = 1
p+ε

s... =
1

p+ε

sq+1 = 1
p+ε

Fig. 4. Optimal solution and α-NE in case of related machines

(α+ 1)w(NE) ≥ αw(NE) + w(OPT ∩NE)

=
∑

n
αw(NEn) + w(OPT ∩NE)

≥
∑

n
w(OPT n ∩NE) + w(OPT ∩NE)

= w(OPT ) .

To prove PoA ≥ α+ 1 we give a tight example.

Example 2. Consider an instance with unit processing times pj = 1, unit values
wj = 1, related machines, and zero release dates. Assume w.l.o.g. that α = p/q,
p ≥ q, and assume players deploy an α-approximation each. There are q + 1
players N , each controlling one of q + 1 machines M = {1, . . . , q + 1} with
machine speeds s1 = 1 and s2 = s3 = · · · = sq+1 = 1/(p+ ε) for some 0 < ε < 1.
There are p + q jobs J = {1, . . . , p + q}. Jobs J1 = {1, . . . , p} have deadline p.
Jobs J2 = {p+ 1, . . . , p+ q} have deadline p+ ε. �

Here, machine 1 can schedule at most p jobs. Machines 2, . . . , q+1 can schedule
no jobs from J1 and only one job from J2 each. In OPT all p+q jobs are feasibly
scheduled: jobs J1 on Machine 1 and each of machines 2, . . . , q + 1 has one job
from J2. Now consider the α-approximate Nash equilibrium where only q jobs
are scheduled: Machine 1 schedules all q jobs from J2, and machines 2, . . . , q+1
schedule no job. This is indeed an α-approximate Nash equilibrium, as machine
1 can schedule at most p = αq jobs, and since all jobs from J2 are scheduled on
machine 1, machines 2, . . . , q + 1 cannot improve from their 0 jobs either. See
Figure 4 for an illustration. We conclude that PoA ≥ (p+ q)/q = α+ 1. 	


Note that α = 1 in the special case where the players can verify if a solution is a
Nash equilibrium; in that case PoA = 2. Also note that the given upper bound
is universal in the sense that it is independent of how the (α-approximate) Nash
equilibrium is obtained. It is conceivable that specific algorithms can yield a
better bound for the price of anarchy. However, the existence of more complicated
counter-examples for specific algorithms is not unlikely either, and we did not
take the effort to find them.
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5 Subgame Perfect Equilibria

We here propose3 to analyze the extensive form game in which the players select
their subsets of jobs sequentially, and are not allowed to revoke their decisions
later. Following Selten [17], an equilibrium of an extensive form game is called
(α-approximate) subgame perfect if it induces a (α-approximate) Nash equi-
librium in every subgame. The following example shows that indeed, not all
(α-approximate) Nash equilibria are (α-approximate) subgame perfect.

Example 3. There are n players each controlling one of n identical machines
M = {1, . . . , n}, and 2n−1 jobs J = {1, . . . , 2n−1}with unit weights. Jobs J1 =
{1, . . . , n} have processing time 1/n and deadline 1. Jobs J2 = {n+1, . . . , 2n−1}
have processing time 1 and deadline 1. �

In OPT , machine 1 schedules jobs J1 and machines 2, . . . , n schedule jobs J2.
Consider Nash equilibrium NE where each machine schedules one job from J1.
Note that NE is indeed an equilibrium: no machine can schedule more than one
job without exchanging jobs with another machine. See Figure 5 for an illus-
tration. For this instance w(OPT )/w(NE) = 2n−1

n → 2 for n → ∞. This Nash

pi =
1
n , di = 1, i = 1 . . . n
NE

pi =
1
n , di = 1, i = 1 . . . n

pi = 1, di = 1, i = n+ 1 . . . 2n− 1

OPT

Fig. 5. An optimal solution and a Nash equilibrium in case of identical machines

equilibrium is not subgame perfect, however. In any subgame perfect equilib-
rium, the first player would necessarily schedule all jobs from J1 on his machine.

This example also shows that the identical machine model does not allow an
improvement of the result of Theorem 1. Although non-subgame perfect equi-
libria might seem unrealistic, the equilibrium obtained in this example is quite
reasonable: In a round robin assignment, each player chooses to schedule the
most flexible available job(s) first.

Remark: It is not hard to see that each subgame perfect equilibrium of the
sequential game proposed here corresponds to an outcome equivalent Nash equi-

3 Note added in proof: The idea to analyze subgame perfect equilibria of extensive
form games rather than Nash equilibria of strategic form games has been proposed
also by Paes Leme, R., Syrgkanis, V., Tardos, É. in: The Curse of Simultaneity,
Proceedings ICTS, pp. 60–67, ACM (2012).
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librium of the (non-sequential) strategic form game that we studied in Section 4.
In that sense, our move to subgame perfect equilibria indeed makes sense from
the perspective of worst case analysis.

6 Identical Machines

In this section we improve our previous results for the special case of identical
machines when considering (α-approximate) subgame perfect equilibria of an
extensive form game in which players select their jobs sequentially in any order.

6.1 Identical Machines: Lower Bound

We give a lower bound on the price of anarchy for subgame perfect equilibria.

Theorem 2. PoA ≥ α
√
e/( α
√
e− 1) for identical machines, even in the restricted

model where we only consider α-approximate subgame perfect equilibria, and for
unit processing times, unit weights, and zero release dates.

Proof. We give a corresponding example.

Example 4. There are n players controlling one of n identical machines M =
{1, . . . , n}. There are n2 jobs J = {1, . . . , n2} with unit processing times and
unit weights. Jobs have deadlines δ ∈ {1, . . . , n} and for each deadline, there are
n jobs with this deadline, that is, for all δ, dj = δ for j = 1+ (δ − 1)n, . . . , δn.�

We refer to jobs as δ-jobs, δ = 1, . . . , n. In Figure 6 we see an instance and
solution for n = 5 and α = 2 (that is, machines use a 2-approximation).

For each of the jobs, the number displayed on it corresponds to its deadline.
In OPT , every machine schedules n jobs with different deadlines, ordered by
increasing deadline. Therefore w(OPT ) = n2. We construct an α-approximate
subgame perfect equilibrium, say S, as follows. For every machine i = 1, . . . , n
in this order, we find the maximum number of jobs that can be scheduled, say
oi, and let Si be the �oi/α� jobs with the largest deadlines (which are the most
flexible jobs). For example, for n = 5 and α = 2, w(S) = 3 + 3 + 2 + 2 + 2 = 12
as can be seen in Figure 6. We bound w(S) in the following way. In S, denote
by rδ(i) the fraction of δ-jobs on machine i, relative to the total number of
jobs on machine i. Let rδ =

∑
i rδ(i). In our example, r4 = 0 + 1

3 + 1 + 1 + 0.
Observe that

∑
δ rδ = n for any allocation. In S, any machine scheduling a δ-

job, does not schedule any job with deadline (δ+2) or larger, hence it schedules
at most �(δ + 1)/α� ≤ (δ + 1 + α)/α jobs. Therefore, each job with deadline δ
contributes at least α/(δ + 1 + α) to rδ. For any δ for which all n δ-jobs are
allocated in S, we get rδ ≥ nα/(δ + 1 + α).

Now, for some δ′ ≥ 0, by construction of the allocation we have that all n
δ-jobs with δ = n − δ′, . . . , n are fully scheduled, as well as a fraction of the
(n− (δ′ + 1))-jobs. We get

n ≥
n∑

δ=n−δ′
rδ ≥

n∑
δ=n−δ′

nα

δ + 1 + α
≥

∫ n

δ=n−δ′

nα

δ + 1 + α
dδ . (2)
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OPT α−NE
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2

2
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3
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4

4

4

4

4 4

4

3 3

5

5

5

5

5 5 5

55

Fig. 6. Optimal solution and 2-approximate subgame perfect equilibrium in case of
identical machines. Numbers denote job deadlines.

Because the last term is upper bounded by n, we can derive an upper bound
on δ′. In fact, basic calculus shows that

δ′ >
(n+ 1 + α)( α

√
e− 1)

α
√
e

⇒
∫ n

δ=n−δ′

nα

δ + 1 + α
dδ > n ,

which together with (2) yields that δ′ ≤ (n+1+α)( α
√
e−1)

α
√
e

. Because only δ-jobs

with δ ≥ n− (δ′ + 1) are scheduled, we conclude that

w(S) ≤ (δ′ + 1)n ≤
(n+ 1 + α+

α
√
e

α
√
e−1

)( α
√
e− 1)

α
√
e

· n .

We see that

w(OPT )

w(S)
≥ n α

√
e

(n+ 1 + α+
α
√
e

α
√
e−1

)( α
√
e− 1)

→
α
√
e

α
√
e− 1

for n→∞ ,

and the claim follows. 	


Note that the lower bound construction assumes that players choose the most
flexible jobs first, which seems reasonable. The bound also holds for the case
with unit processing times, where we may assume that the players use optimal
strategies [5], that is α = 1. For that case, the result shows that the price of
anarchy can be as high as e/(e− 1) ≈ 1.58.

6.2 Identical Machines: Upper Bound

To derive a matching upper bound for identical machines, when considering only
subgame perfect equilibria, we use a proof idea from Bar-Noy et al. [3] in their
analysis of k-GREEDY, but need a nontrivial generalization to make it work for
the case where players control multiple machines.
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Assume there are n players and m identical machines, and each player i con-
trolsmi machines. Denote by Si the set of jobs selected by player i, and S =

⋃
i Si

the total set of jobs scheduled in an α-approximate subgame perfect equilibrium.
The following lemma lower bounds the total weight collected by i.

Lemma 1. We have for all players i

w(Si) ≥
mi

mα
w
(
OPT

(
J \

⋃
j<i

Sj

))
.

where OPT (W ) denotes an optimal solution for any given set of jobs W and m
machines.

Proof. Let W := J \
⋃

j<i Sj . Let OPT i denote the maximum weight set of jobs
that can be scheduled by player i. Observe that w(OPT i) ≥ (mi/m)OPT (W ).
This follows because player i could potentially select the jobs scheduled on the
mi most valuable machines from OPT (W ), as all machines are identical. Now,
by definition w(Si) ≥ w(OPT i)/α ≥ miw(OPT (W ))/(mα). Here, the first in-
equality holds because we assume an α-approximate Nash equilibrium, and in
particular no player will choose a subset of jobs that is not disjoint from the
subsets selected earlier. 	


We are now ready to prove the following.

Theorem 3. PoA ≤ α
√
e/( α
√
e− 1) for identical machines and α-approximate

subgame perfect equilibria.

Proof. Due to space limitations, we skip some technicalities of the proof, but
give the main idea here. Let γ := mα, and recall that w(OPT ) = w(OPT (J ))
denotes the value of the optimal solution. We use Lemma 1, to get

w(Si) ≥
mi

γ
w
(
OPT

(
J \

⋃
j<i

Sj

))
≥ mi

γ

(
w(OPT )−

∑
j<i

w(Sj)
)
,

where the latter inequality holds because w(OPT )−
∑

j<i w(Sj) represents the

value of a feasible solution for the jobs J \
⋃

j<i Sj . Add
∑i−1

j=1 w(Sj) to both
sides to get

i∑
j=1

w(Sj) ≥
miw(OPT )

γ
+

γ −mi

γ

i−1∑
j=1

w(Sj) . (3)

We prove by induction on i that

i∑
j=1

w(Sj) ≥
γm′

i − (γ − 1)m
′
i

γm′
i

w(OPT ) ,

where m′
i =

∑i
j=1 mj . When i = 1, we can show by induction on m1 that

w(S1) ≥ γm1−(γ−1)m1

γm1
w(OPT ). Assume the claim holds for i − 1. Applying the

induction hypothesis to (3) we get
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i∑
j=1

w(Sj) ≥
miw(OPT )

γ
+

γ −mi

γ
· γ

m′
i−1 − (γ − 1)m

′
i−1

γm′
i−1

w(OPT ) .

This can be used to prove the inductive claim, using basic but careful calculus.
Hence we get for i = n (see also [3, Thm 3.3])

w(S) =
n∑

j=1

w(Sj) ≥
γm − (γ − 1)m

γm
w(OPT ) .

We get

PoA ≤ γm

γm − (γ − 1)m
=

(mα)m

(mα)m − (mα− 1)m
≤

α
√
e

α
√
e− 1

, (4)

where the the last inequality follows because the right hand side is exactly the
limit for m → ∞, and the series bm = (mα)m/((mα)m − (mα− 1)m) is mono-
tone in m, with b1 = α ≤ α

√
e/( α
√
e− 1). 	


Theorems 2 and 3 yield PoA = α
√
e/( α
√
e− 1) when considering only α-

approximate subgame perfect equilibria. Basic calculus shows that

α+
1

2
≤ α
√
e/( α
√
e− 1) ≤ α+

1

e− 1

for α ≥ 1. Also, for α → ∞ this value approaches α + 1
2 . Note that for α =

1,PoA = e/(e− 1) ≈ 1.58.

Concluding Remarks

We briefly mention some more results for the the case α = 1, that is, the case of
Nash equilibrium allocations. Due to space limitations, any details are deferred
to a full version of this paper.

First, we can show that the bound PoA =
√
e/(
√
e − 1) for identical machines

with unit processing times, unit weights and zero release dates holds without
requiring that the Nash equilibria are subgame perfect. Next, we can generalize
our results to a setting where bundle costs are not additive: When w(J) �=∑

j∈J wj , but if we know that that
∑

j∈J wj/β ≤ w(J) ≤ β
∑

j∈J wj for all

J ⊆ J and for some parameter β ≥ 1, then we can show that PoA = β4 + β2.
(Note that β4 + β2 = 2 for β = 1.) Also, when we allow players to afterwards
trade one single job, or even a set of jobs (for money), we can show that this
does not improve the PoA substantially.

The most challenging next step from an application viewpoint is to consider
online settings. When the goal is (constant) competitive ratios for online-time
models, however, we will most probably need to revert to preemptive scheduling
models.

Acknowledgements. Thanks to Johann Hurink for some helpful discussions
on the context, and Rudolf Müller and Frits Spieksma for very helpful remarks.
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Abstract. We consider a natural variation of the concept of stabbing a
segment by a simple polygon: a segment is stabbed by a simple polygon P
if at least one of its two endpoints is contained in P . A segment set S
is stabbed by P if every segment of S is stabbed by P . We show that
if S is a set of pairwise disjoint segments, the problem of computing
the minimum perimeter polygon stabbing S can be solved in polynomial
time. We also prove that for general segments the problem is NP-hard.
Further, an adaptation of our polynomial-time algorithm solves an open
problem posed by Löffler and van Kreveld [Algorithmica 56(2), 236–269
(2010)] about finding a maximum perimeter convex hull for a set of
imprecise points modeled as line segments.

1 Introduction

Let S be a set of n straight line segments (segments for short) in the plane.
The problem of stabbing S with different types of stabbers (in the computer
science literature) or transversals (in the mathematics literature) has been widely
studied during the last two decades.

Rappaport [14] considered the case in which the stabber is a simple polygon.
Specifically, he studied the following problem: a simple polygon P is a polygon
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transversal of S, if we have P ∩ s �= ∅ for all s ∈ S; that is, every segment in S
has at least one point in P . A simple polygon P is a minimum polygon transversal
of S if P is a polygon transversal of S and all other transversal polygons have
equal or larger perimeter. Rappaport observed that such a polygon always exists,
is convex, and may not be unique. He gave an O(3mn + n logn) time algorithm
for computing one, wherem is the number of different segment directions. Several
approximation algorithms are known [6,8], but determining if the general problem
can be solved in polynomial time is still an intriguing open problem.

Arkin et al. [2] considered a similar problem: S is stabbable if there exists
a convex polygon whose boundary C intersects every segment in S; the closed
convex chain C is then called a (convex) transversal or stabber of S. Note that in
this variation there is not always a solution. Arkin et al. [2] proved that deciding
whether S is stabbable is NP-hard.

In this paper we also consider the problem of stabbing the set S by a simple
polygon, but with a different criterion that is between the two criteria above.
More concretely, we use the following definition:

Definition 1. A segment s ∈ S is stabbed by a simple polygon P if at least one
of the two endpoints of s is contained in P. The set S is stabbed by P if every
segment of S is stabbed by P.

With this definition we study the Minimum Perimeter Stabbing Polygon

(MPSP) problem, defined as finding a simple polygon P of minimum perimeter
that stabs a given set S of segments. The MPSP problem is radically different
from the two problems above, those studied by Rappaport [14] and Arkin et
al. [2], because for the MPSP only the endpoints of the segments play a role
in the solution. Indeed, an alternative way to describe the input to the MPSP
problem is by saying that the input are pairs of points instead of segments.
However, as we will show in this paper, the segments play an important role in
establishing the difficulty of the problem, hence we stick to the original definition.

Moreover, the difference with the problem of Rappaport [14] is that in his
definition P can have both endpoints of a segment of s ∈ S not in P (provided
that the interior of s is stabbed by P), whereas we force one of the endpoints
to be in P . One of the common properties of both problems is that the optimal
solution is a convex polygon and that it always exists (the convex hull of S is
always a stabbing polygon).

On the other hand, a difference with the definition used by Arkin et al. is
that in the MPSP problem a segment of S can be fully contained in P , with
both endpoints in the interior of P , while this is not allowed in the problem
studied by Arkin et al. Therefore, we can say that our problem is between the
two mentioned ones.

Related Work. Prior to the paper by Rappaport [14], Meijer and Rappa-
port [12] solved the same problem for a set of n parallel segments in optimal
Θ(n log n) time. Mukhopadhyay et al. [13] considered a similar problem in which
the segments are all vertical, and proposed an O(n log n) time algorithm to find a
minimum-area convex polygon transversal of S. For parallel segments, Goodrich
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and Snoeyink [7] gave an O(n logn) time algorithm that decides whether a con-
vex transversal exists.

Several similar problems have been considered in the context of data impreci-
sion by Löffler and van Kreveld [10,11]. Their input is a set of imprecise points,
where each point is specified by a region in which the point may lie. The output
is the smallest and the largest possible convex hulls, measured by perimeter and
by area. Among the results obtained in [10], we cite those where regions are seg-
ments. For maximum-area convex hulls, the problem can be solved in O(n3) time
if the segments are parallel, or when they are pairwise disjoint with endpoints
in convex position. The problem is NP-hard for general segments.

The minimum-perimeter and minimum-area convex hulls problems for paral-
lel segments coincide with the problems studied by Meijer and Rappaport [12]
and Mukhopadhyay et al. [13], respectively. Notice also that the setting we con-
sider is in fact a constrained version of the problems studied by Löffler and van
Kreveld [10], in which each imprecise point is specified by a pair of points.

Pairs of points are also the input to the problems studied by Arkin et al. [1],
who studied the 1-center and 2-center problems for pairs of points. In the former
problem, the goal is to find a disk of smallest radius containing at least one point
from each pair. The latter one aims at finding two disks of smallest size such that
each pair has one point in each disk. Arkin et al. [1] presented algorithms for
these problems that run in O(n2polylog n) and O(n3 log2 n) time, respectively.

In a more general setting, Daescu et al. [4] studied the complexity of the
problem of given a k-colored point set, finding a convex polygon of minimum
perimeter containing at least one point from each color. Note that the MPSP

problem is the special case in which 2n points are colored with n colors and each
color is used twice. They proved that their problem is NP-hard if k is part of
the input of the problem.

Our Results. We show in Section 2 that if S is a set of pairwise disjoint seg-
ments, the MPSP problem for S can be solved in polynomial time. We then
show how the algorithm can be adapted to solve the following maximization
problem: Select exactly one point on each segment in S such that the perimeter
(or area) of the convex hull of the selected points is maximized. This problem
was stated as open [10], and is also the solution to the maximization variant of
the transversal problem [10]. In Section 3 we show that for general segments the
MPSP problem is NP-hard. We complement the NP-hardness by showing that
the MPSP problem is Fixed Parameter Tractable (FPT).

Note throughout the paper that optimization on the perimeter requires com-
paring sums of radicals (specifically, the sum of Euclidean distances). It is not
known whether this problem is in NP [3], and therefore the NP-hardness result
does not imply NP-completeness for the decision version of the problem. For the
same reason, we assume the real RAM as the underlying computational model in
our algorithms. Since our algorithms are combinatorial and only the cost func-
tion depends on the geometry of the problem instance, the methods in Section 2
are also applicable for optimizing the area (which is in NP).

Due to lack of space, several proofs have been deferred to the full version [5].
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2 Solving the Problem for Pairwise Disjoint Segments

In this section we show that if the segments in S are pairwise disjoint, then the
MPSP problem can be solved in polynomial time. Given any two points p and q
in the plane, let pq denote the segment joining p and q. For any simple polygon P
let ∂P denote the boundary of P . Consider all possible bitangents of S, i.e., let
B be the set of all segments not contained in S spanned by two endpoints of
segments in S. Note that the elements of B might cross each other and might also
cross the segments in S. A polygon C∗ with minimum perimeter that contains
at least one endpoint of every segment of S is spanned by endpoints of segments
in S, and its edges are elements of B.

Arkin et al. [2] describe a dynamic programming approach to decide whether a
set of pairwise disjoint segments admits a convex transversal (the vertices of the
transversing polygon are restricted to a given set of candidate points). They use
constant-size polygonal chains that separate subproblems and are not crossed by
segments; therefore the subproblems are independent. We adapt their approach
to produce an algorithm for the MPSP problem. The main difference (apart
from the fact that no candidate points are needed) is that segments actually can
cross the separating chains. However, we show below that they can be handled
in a way that leads to polynomial running time. Afterwards, we discuss how to
adapt this approach for the maximization variation.

Triangulating a Combination of Segments and a Polygon. The following
way of triangulating a combination of segments and a polygon is crucial for the
algorithm, and motivates the structure of the subproblems used in the dynamic
programming algorithm.

Let Q be a simple polygon and let Sc be a set of pairwise disjoint segments
of which each crosses ∂Q exactly once. Note that throughout this section we
distinguish between a segment intersecting (having a point in common) and
crossing (having an interior point in common with) another segment or set.
Let X be the interior of Q and let X ′ denote the set we get after removing the
1-dimensional domains of Sc from X , i.e., X ′ = X \

⋃
s∈Sc

s. Then X ′ is an open
region whose closure is Q. Note that the vertices of X ′ are the union of: (i) the
vertices of Q, (ii) the endpoints of edges in Sc that are in the interior of Q, and
(iii) the points where elements of Sc cross ∂Q. Further, note that X ′ might not
be connected if there is a segment of Sc that has one endpoint on ∂Q and the
other one outside Q (e.g., the longest segment in Fig. 1, left).

We now triangulate X ′ (i.e., partition it into triangles that are spanned only
by vertices of X ′, see Fig. 1). The triangulation T of X ′ behaves like the trian-
gulation of a collection of simple polygons (imagine the 1-dimensional parts not
in X ′ where the segments of Sc enter Q, i.e., X \X ′, to be slightly “split”, as in
Fig. 1, center). Note that the vertices of T are exactly the vertices of X ′. Each
edge in T that is not part of ∂Q or part of a segment in Sc partitions X

′ into two
sets (note that each set need not be connected). We call such edges chords (gray
edges in Fig. 1, right). Chords are the equivalent of diagonals of simple polygons
(interior edges that subdivide the polygon into two smaller polygons). Further,
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Q

Fig. 1. Left: an optimal polygon Q, only the solid edges are in Sc. Center: schematic
view of X ′ as a collection of simple polygons. Right: a triangulation of X ′, gray edges
are chords. The segments fully contained in the polygon (shown dashed) are ignored
by the triangulation.

X ′ might also be separated by an edge that is part of a segment in Sc (like the
longest edge in Fig. 1). We call such a segment a separating segment. Keep in
mind that there are chords that have one or both of their endpoints not on the
endpoint of a segment or at a vertex of Q, but at the crossing of a segment with
∂Q. In any case, a chord or a separating segment defines a polygonal path from
one point on an edge of Q to another point on an edge of Q. Following [2], we
will use these polygonal paths of at most three edges, called bridges, to define
our subproblems to obtain a solution when taking the MPSP C∗ as Q. One
may think of the approach being similar to the classic dynamic programming
algorithm for minimum weight triangulations of simple polygons (see, e.g., [9]),
but with a major difference: we do not know the boundary of the triangulated
region beforehand.

Subproblems. Every subproblem is defined by an ordered pair (a, b) of directed
bitangents of B and a polygonal chain β of at most three edges, the bridge, which
connects a and b. When evaluating a subproblem (a, b, β), we assume that a and b
are edges of C∗ and that C∗ equals Q in the discussion above (for some choice
of Sc to be defined later). Therefore, the bridge β is part of a triangulation of X ′

and separates X ′; β is either a part of a separating segment or consists of a
chord (called the chord of β) and at most two parts of segments of Sc. See Fig. 2
for examples of bridges. Note that a bridge might have a chord that is not a
bitangent of B (like the second from the left in Fig. 2). Further, note that a
bridge can only be crossed by a segment through the chord, since the segments
are pairwise disjoint by definition.

Let the directed bitangents be a = a1a2 and b = b1b2. Given a directed
bitangent a = a1a2 we write a for the directed bitangent a2a1. W.l.o.g. let a1
and b1 be on the x-axis and a2 and b2 be above it. Also, let b be to the left of
the directed line through a1 and a2. See Fig. 3 for an illustration.
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Fig. 2. Examples of bridges. The two bitangents defining the subproblem are shown
dashed, chords are dash-dotted, and segments from Sc are shown solid.
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Fig. 3. Examples of subproblems. Rightmost: example for the initial pair.

Solution of a Subproblem. We define the solution of a subproblem as follows.
Let C∗

a,b,β be a polygon of minimum perimeter that: (i) contains a and b as two
of its boundary edges, (ii) contains at least one endpoint of each segment in S,
and (iii) contains both endpoints of every segment of S that properly crosses the
chord of β. The importance of the third condition will become clear later.

Let Ca,b,β be the polygonal chain on ∂C∗
a,b,β starting at a1, counterclockwise

traversing ∂C∗
a,b,β and ending at b1. Note that Ca,b,β is an open polygonal chain,

as opposed to C∗
a,b,β , which is a simple polygon.

The solution of a subproblem (a, b, β) is Ca,b,β , and its cost is the length of
that chain. The base case occurs when a2 = b2, and has cost equal to the sum
of the lengths of a and b. Note throughout the construction that this is the only
way a and b can intersect. In general, a and b form a quadrilateral a2a1b1b2. If
the quadrilateral is not convex, we discard the subproblem (i.e., we assign it a
cost of +∞). The general case where it is convex is discussed next.

Outline of the Algorithm. From now on we assume that a and b define a
convex quadrilateral. The outline of the algorithm is as follows. We guess a pair
x, y ∈ B such that y2y1x1x2 are four consecutive vertices of C∗. Hence, after
O(|S|4) guesses we have found x and y such that ∂C∗ = Cx,y,β0 ∪ y1x1 with
β0 = x1y1. Suppose we are given the solution Q = C∗. Let X ′ be defined as
above, and let Sc be the set of segments in S that cross Cx,y,β0 (which does not
include the ones that cross β0). Let Δ0 be the triangle of a triangulation T of
X ′ that has β0 = y1x1 as one side. The subproblem (x, y, β0) will be solved by
guessing the third endpoint of Δ0 and the edge c of Cx,y,β0 that is incident to
Δ0 or that is crossed by a segment whose endpoint is incident to Δ0. In the most
general case, this gives two new subproblems (x, c, β1) and (c, y, β2), where each
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of β1 and β2 contains one side of Δ0 that is not part of β0 (we will consider the
other cases in detail below). See Fig. 3, right.

Let â be the ray through a2 starting at a1. Let b̂ be defined analogously. For
every subproblem (a, b, β), only a part of the elements of S is relevant. Consider
the (possibly unbounded) maximal region to the left of a and to the right of b
(recall that a and b are directed). The bridge β disconnects that region into two
parts. The subproblem region Ra,b,β is the part “above” β (i.e., the part adjacent

to â \ a and b̂ \ b; the bridge might not be x-monotone).
The subproblem region is marked gray in Fig. 3. Only the segments that have

at least one endpoint in Ra,b,β are relevant for finding Ca,b,β . We distinguish
between three different types of such segments: (1) Segments that are entirely
inside Ra,b,β are complete. (2) Segments that share more than one point with
Ra,b,β but are not complete are cut. (3) A segment with infinitely many points
on the bridge is neither cut nor complete. We say that a point is inside Ca,b,β

when it is contained in the closure of the region bounded by Ca,b,β and β.
If there is a segment that is entirely to the right of a or to the left of b, then the

choice of a and b cannot give a solution and such a subproblem is assigned +∞
as cost. We also do this if a segment intersected by â or b̂ does not have an
endpoint inside the subproblem region.

Note that if a segment in a valid subproblem intersects â or b̂, then we know
which of its endpoints must be inside Ca,b,β , while we do not know that for the
cut segments that intersect the chord of the bridge. However, we will choose our
subproblems in a way such that all endpoints of cut segments in the subproblem
region will be inside Ca,b,β ; the reason for that will become clear in the proof of
Lemma 3, but the reader should keep this in mind as an essential part of the
method. For complete segments, we need to decide which endpoint to select.

Lemma 1. Given a subproblem instance (a, b, β), let t be the chord of β, or its
only edge if β is a single edge (which may be a chord itself, or part of a separating
segment). Let X be the region bounded by Ca,b,β ∪ β, and let X ′ = X \

⋃
s∈Sc

s,
for Sc the set of segments of S that are crossed by chain Ca,b,β. Then either t is
an edge of Ca,b,β, or there exists a triangle Δ such that:

1. The interior of Δ is completely contained in X ′.
2. The edge t is an edge of Δ.
3. The apex of Δ (i.e., the vertex not on t) is either (i) an endpoint of a segment

in Sc inside X, (ii) an endpoint of a segment in S that is a vertex of Ca,b,β,
or (iii) an intersection point between a segment in Sc and Ca,b,β.

Proof. Arbitrarily triangulateX ′. If t is not on the boundary, then the triangleΔ
incident to t inside the subproblem region fulfills the properties. See Fig. 4. 	


Lemma 2. Let Δ be the triangle of Lemma 1. Any segment of S that has a
non-empty intersection with the interior of Δ either has both its endpoints inside
Ca,b,β or crosses t; in the latter case the endpoint that is inside Ra,b,β is also
inside Ca,b,β.
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ab
t

Fig. 4. Illustration of Lemma 1. Left: four possibilities for Δ shown in gray. Ca,b,β is
dash-dotted, with the defining bitangents dashed. Right: a triangulation of X ′.

Proof. This follows from the properties of Δ in Lemma 1: A segment intersecting
the interior of Δ is not part of Sc but has a non-empty intersection with X .
Therefore, either both of its endpoints are inside Ca,b,β , or it enters X via t and
therefore has its relevant endpoint inside Ca,b,β by definition. See Fig. 4. 	


Getting Smaller Subproblems. Let A be the set of points that are either
endpoints of S or crossing points of a segment and a bitangent (recall that
no segment of S is an element of B). Hence, A contains all the points that
are possible apices for a triangle Δ of Lemma 1. Note that one may construct
subproblems where every possible apex of Δ is an endpoint of a segment in Sc,
as well as subproblems where every possible apex is on a point where a segment
crosses Ca,b,β. Further, note that |A| ∈ O(|S|3) since |B| = 4

(|S|
2

)
.

Consider again the subproblem (a, b, β). As in Lemma 1, let t be the chord of β
if a chord exists, or let t otherwise be the only edge of β. Let aβ be the intersection
point of a with the bridge β; bβ is defined analogously. For each subproblem
(a, b, β) that is not a base case (i.e., a2 �= b2), one of the following cases applies,
allowing to get one or two smaller subproblems. During the execution of the
algorithm we will consider both cases.

Case 1: t is an Edge of the Solution, i.e., an Edge of Ca,b,β. This happens
when t is a chord that does not intersect the interior of the quadrilateral defined
by a and b. This case is only valid if no segment crosses t, as we require all the
endpoints in Ra,b,β of segments crossing t to be inside Ca,b,β . In that case we get
at most two new subproblems (a, t, β1) and (t, b, β2), where β1 is the edge aβt1
and β2 is the edge t2bβ. However, note that one of (a, t) or (t, b) (or both) might
intersect at a2 or b2, respectively, and therefore form a base case.

Case 2: t is Not an Edge of the Solution.Then there is a triangle adjacent to t
as in Lemma 1.Wewill guess the apex of the triangle. For every point d inA∩Ra,b,β

consider the triangleΔd that d forms with t. We only consider d ifΔd is completely
inside Ra,b,β, and where the interior ofΔd does not intersect any segment that in-
tersects a or b. It follows from Lemma 1 that one of the triangles tested leads to a
subdivision of the optimal solution. We get the following two subcases, see Fig. 5.

Case 2.1: d is a Point Where a Bitangent and a Segment Cross. Let c be
the bitangent that contains d. If c equals a or b, then we get one new subproblem
(a, b, β′), with β′ containing a side of Δd as a chord (Fig. 5a). Otherwise, we get
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Fig. 5. Case 2. The new bridges are dotted. (a)-(b) Case 2.1. (c)-(d) Case 2.2.

two new subproblems, (a, c, β1) and (c, b, β2), where β1 and β2 both contain a
side of Δd (Fig. 5b).

Case 2.2: d is an Endpoint of a Segment. Let s be the segment that has
d as its endpoint. Choose a point x where s intersects some bitangent c. Then,
for every possible choice of x (which implies the choices of c), we get two new
subproblems (a, c, β1) and (c, b, β2), as in the previous case; note that for both
new bridges, x = d is possible. The degenerate case where c equals a or b can be
handled as in the previous case. See Fig. 5c-d.

Lemma 3. Given any valid subproblem (a, b, β), there is a pair of subproblems
among the ones above such that the union of their solutions is equal to Ca,b,β.

Proof. Consider the edge t of Lemma 1. If t is a chord and part of Ca,b,β , then it
will be considered in Case 1. Otherwise, consider the triangle Δ inside Ca,b,β . All
segments that are intersected by the interior ofΔ are either completely contained
in Ca,b,β or enter through t (if it is a chord) and therefore have their relevant
endpoint inside Ca,b,β (cf. Lemma 2). Hence, when the choice of Δd coincides
with Δ, the two subproblems can be combined into Ca,b,β ; the only segments
that are part of both subproblems intersect the interior of Δ, and we know that
both endpoints will have to be inside the chain that results from the combination
of the solutions of the subproblems. Since all possibilities of Δd are checked, the
subproblem combination of minimum cost is guaranteed to be Ca,b,β. 	


This last lemma now implies that we actually find the optimal solution. Note
that it is easy to construct a pair of bitangents and a bridge (a, b, β) that is
part of the optimal solution but for which Ca,b,β is not part of C∗. However, as
mentioned in the outline of the algorithm, we choose the initial problem (x, y, β0)
in a way that ∂C∗ = Cx,y,β0 ∪ β0. All segments crossing β0 = x1y1 need to have
their endpoint above β0 inside the solution, and the algorithm actually produces
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a triangulation of X ′ when taking C∗ as Q and Sc being the segments that cross
∂C∗ but do not cross β0.

Recall that we initialize the algorithm using a brute-force approach: that
is, we consider all O(|S|4) possible choices for two defining bitangents and a
bridge a1b1. Every subproblem contains less edges of the complete graph on all
endpoints of S, and for every subproblem we need polynomial time. The number
of subproblems can be bounded by the choices for c and d. Therefore, dynamic
programming can be applied to obtain a polynomial-time algorithm.1

Theorem 1. Given a set S of pairwise disjoint segments, a Minimum Perime-
ter Stabbing Polygon (MPSP)—i.e. a minimum perimeter polygon containing at
least one endpoint of each segment in S—can be computed in polynomial time.

Maximization for Pairwise Disjoint Segments. Our previous algorithm
relies on the fact that the result has minimum perimeter: this automatically
prevents two endpoints of the same segment from being vertices of the result-
ing polygon. However, making the algorithm slightly more sophisticated, we can
solve in polynomial time a maximization version of the problem, stated open by
Löffler and van Kreveld [10]: select exactly one point on each segment in S such
that the perimeter (or area) of the convex hull of the selected points is maximized.
This result is based on the fact that for the maximum area or perimeter transver-
sal, one needs to consider only the endpoints of the segments [10, Lemmata 1
and 8]. The proof can be found in the full version [5].

Theorem 2. There exists a polynomial-time algorithm that selects exactly one
point on each segment in S such that the perimeter (or area) of the convex hull
of the selected points is maximized over all possible selections.

3 Hardness of the General Version

In this section we prove that the MPSP problem is NP-hard by reducing 3-SAT
to it. Our reduction is similar to the ones used in [2,4,10].

Theorem 3. The MPSP problem is NP-hard.

Proof (Sketch). We only present here the main construction, the rest of the
proof is given in the full version [5]. Let a 3-SAT instance consist of n variables
x1, . . . , xn and m clauses C1, . . . , Cm. We reduce this instance to the following
one of the MPSP problem. We draw a circle and place variable gadgets in the
left semicircle, clause gadgets in the right semicircle, and segment connectors
joining variable gadgets with clause gadgets. See Fig. 6a.

For each variable xi, i ∈ [1..n], we put points Ti and Fi on the circle and place
three segments: segment TiFi, and two zero-length segments ai and bi, so that

1 A straightforward analysis of the running time results in O(|S|9), which probably
can be improved. In any case, it is worth stressing that our main contribution is
that the problem can be solved in polynomial time, more than the running time
itself.
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Fig. 6. (a) Overview of the reduction from 3-SAT. Variable gadgets (b) are to the left
and clause gadgets (c) to the right.

TiFi is parallel to the line containing both ai and bi. Refer to Fig. 6b. Further-
more, trapezoids with vertices ai, Ti, Fi, bi, for all i ∈ [1..n], are congruent. Let
Pv := |aiTi|+ |Tibi| = |aiFi|+ |Fibi| and P ′

v := |aiTi|+ |TiFi|+ |Fibi| (where |pq|
denotes the length of the segment pq).

For each clause Cj , j ∈ [1..m], we first place two zero-length segments cj
and dj . We select the three points pj,1, pj,2, and pj,3, dividing evenly the smallest
arc of the circle joining cj and dj into four arcs, and then we place three other
segments: pj,1pj,2, pj,2pj,3, and pj,3pj,1. See Fig. 6c. The convex pentagons with
vertices dj , cj , pj,1, pj,2, pj,3, for all j ∈ [1..m], are congruent. Let Pc := |cjpj,1|+
|pj,1pj,2|+|pj,2dj | = |cjpj,1|+|pj,1pj,3|+|pj,3dj | = |cjpj,2|+|pj,2pj,3|+|pj,3dj | and
P ′
c := |cjpj,1|+|pj,1pj,2|+|pj,2pj,3|+|pj,3dj |. We further ensure thatm(P ′

c−Pc) <
P ′
v − Pv. This condition will be necessary in the problem reduction.
For each clause Cj , j ∈ [1..m], we add segments called connectors as follows.

Let xi be the variable involved in the first literal of Cj . If xi appears in positive
form then we add the segment Tipj,1. Otherwise the segment Fipj,1 is added. We
proceed analogously with the variable in the second literal and point pj,2, and
with the variable in the third literal and point pj,3.

Consider the set of segments added at variable gadgets, clause gadgets, and
connectors as an instance of the MPSP problem. Observe that any optimal
polygon Popt for this instance satisfies the following conditions:

(a) Popt contains as vertices points ai and bi for all variables xi, i ∈ [1..n], and
points cj and dj for all clauses Cj , j ∈ [1..m].

(b) For each variable xi, i ∈ [1..n], Popt contains exactly one of Ti and Fi as
vertex between ai and bi.

(c) In the clause gadget of each clause Cj , j ∈ [1..m], if the selected endpoint of
at least one connector is not in the gadget as a vertex of Popt, then exactly
two points among pj,1, pj,2, and pj,3 are vertices of Popt. Otherwise, all three
are vertices of Popt.

In the full version [5], we show that any polygon satisfying conditions (a)-(c)
induces a valid variable assignment that satisfies the formula if and only if the
polygon has minimum perimeter. Further, we give an exact construction for the
segment endpoints of the gadgets. 	




New Results on Stabbing Segments with a Polygon 157

Observe that the same reduction with minor modifications applies for the case
of minimizing the area of the output polygon. Moreover, our proof shows that
the problem remains NP-hard even if the endpoints of all the segments are in
convex position. On the other hand, the

√
2-approximation algorithm of Daescu

et al. [4] gives the same approximation ratio for our MPSP problem.
It is worth mentioning that the MPSP problem is FPT on the number k

of segments that intersect other segments. Namely, let S′ ⊆ S be the set of
segments of S that do not intersect any segment of S. Consider the 2k instances
of the MPSP problem such that each consists of the elements of S′ joint with
exactly one endpoint (i.e., a segment of length zero) of each element of S \S′. All
these instances can be solved in O(2kP (n)) time, for the polynomial time P (n)
of Theorem 1, since each instance consists of pairwise disjoint segments. The
optimal solution for S is among the O(2k) solutions found for those instances.
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1 Institut für Mathematik, Technische Universität Berlin, Germany
{disser,klimm}@math.tu-berlin.de

2 Combinatorics and Optimization Department, University of Waterloo, Canada
andreas.feldmann@uwaterloo.ca

3 Institute of Theoretical Computer Science, ETH Zurich, Switzerland
matus.mihalak@inf.ethz.ch

Abstract. In this paper we show that the price of stability of Shapley
network design games on undirected graphs with k players is at most
k3(k+1)/2−k2

1+k3(k+1)/2−k2 Hk =
(
1−Θ(1/k4)

)
Hk, where Hk denotes the k-th har-

monic number. This improves on the known upper bound of Hk, which
is also valid for directed graphs but for these, in contrast, is tight. Hence,
we give the first non-trivial upper bound on the price of stability for
undirected Shapley network design games that is valid for an arbitrary
number of players. Our bound is proved by analyzing the price of sta-
bility restricted to Nash equilibria that minimize the potential function
of the game. We also present a game with k = 3 players in which such
a restricted price of stability is 1.634. This shows that the analysis of
Bilò and Bove (Journal of Interconnection Networks, Volume 12, 2011)
is tight. In addition, we give an example for three players that improves
the lower bound on the (unrestricted) price of stability to 1.571.

Keywords: undirected Shapley network design game, price of stability,
potential-optimal price of stability, potential-optimal price of anarchy.

1 Introduction

Infrastructure networks are the lifelines of our civilization. Through generations a
tremendous effort has been undertaken to cover the earth’s surface with irrigation
canal systems, sewage lines, road networks, railways, and – more recently – data
networks. Some of these infrastructures are initiated and planned by a central
authority that designs the network and decides on its topology and dimension.
Many networks, however, arise as an outcome of actions of selfish individuals who
are motivated by their own connectivity requirements rather than by optimizing
the overall network design. A prominent example of the latter phenomenon is the
rise of the Internet. In order to quantify the efficiency of networks, it is crucial
to understand the processes that govern their formation. Anshelevich et al. [1]
proposed a particularly elegant model for such processes, which is now known
as the Shapley network design game or the network design game with fair cost
allocation (for an overview of other models for network formation, see [2]).

P.G. Spirakis and M. Serna (Eds.): CIAC 2013, LNCS 7878, pp. 158–169, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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The Shapley network design game is played by k players 1, 2, . . . , k on a graph
G = (V,E) with positive edge-costs ce ∈ N. Each player i has associated with
it a source-target pair si, ti ∈ V of vertices that she needs to connect with a
simple path in G. The choice of such a path is called a strategy of the player,
and a collection consisting of one strategy for each player is called a strategy
profile. The cost ce of every edge e is shared equally among the players using
it. Each player i aims at choosing a path of smallest possible (individual) cost
to herself. This cost is defined as the sum of the cost shares for player i along
the path. Players are selfish in that they only care about their own costs. In
particular, they do not care about the social cost, defined as the sum of all
players’ individual costs and denoted by cost(P ) for a strategy profile P .

A Nash equilibrium of a Shapley network design game is a strategy profile in
which no player i can switch to an si-ti path that yields her a smaller individual
cost. To quantify the effect of the selfish behavior, it is natural to compare the
social cost of a Nash equilibrium of the game with the smallest social cost among
all possible strategy profiles [1,2]. Several quantifications of selfish behavior have
been studied, based on whether we restrict ourselves to a specific set of Nash
equilibria, and whether we compare the worst or best such equilibrium in terms of
social cost. In this paper, we adopt the notion of the price of stability, introduced
by Anshelevich et al. [1]. Denoting by N the set of all Nash equilibria and by O
a strategy profile that minimizes the social cost of a game, the price of stability
of the game is defined as the ratio minN∈N cost(N)/cost(O).

Anshelevich et al. [1] observed that Shapley network design games always have
a Nash equilibrium by showing that they belong to the class of congestion games.
For these games, the existence of a Nash equilibrium is always guaranteed, as
shown by Rosenthal [3]. Rosenthal’s existence proof relies on a potential function
argument. That is, he showed that there exists a function Φ that maps strategy
profiles to real numbers and has the property that if any one player changes her
strategy unilaterally, then the value of Φ changes by the exact same value as the
cost of the player. This observation, together with the finiteness of the space of all
strategy profiles, implies the existence of a Nash equilibrium. In particular, any
potential minimum, i.e., a strategy profile that globally minimizes the potential
function, is a Nash equilibrium. The potential function of a game is unique up to
an additive constant (see Monderer and Shapley [4]). Using the special form of
the potential function for Shapley network design games, Anshelevich et al. [1]

showed that the price of stability of any game is at most Hk =
∑k

i=1
1
i , the k-th

harmonic number (which is of order log k). This upper bound is tight for games
played on directed graphs. That is, there are Shapley network design games on
directed graphs [1] for which the price of stability is arbitrarily close to Hk.

The situation is different for undirected Shapley network design games, i.e.,
games played on undirected graphs. As the same potential arguments remain
valid, the price of stability of any game is still at most Hk. Yet, the largest
known price of stability (asymptotically) is a constant, more precisely 348/155 ≈
2.245 (see Bilò et al. [5]). This leaves the question of the worst-possible price
of stability in undirected Shapley network design games with k players wide
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open. Remarkably, the largest known price of stability, as provided by Bilò et
al., does not come from a simple example, but from a complicated construction.
Previously known worst-case games had a price of stability of 4/3 ≈ 1.333 [1],
12/7 ≈ 1.714 [6], and 42/23 ≈ 1.8261 [7]. Despite numerous attempts [8,1,5,6,7,9]
to narrow the gap of the bounds on the price of stability, there has been little
progress in terms of numerical results. It is generally believed that the price
of stability is smaller than Hk, and we confirm this belief in this paper. For
small values of k some smaller upper bounds are known. For k = 2 players, the
price of stability is at most 4/3 < H2 = 3/2 and this is tight [1,7]. Bilò and
Bove [8] analyzed the case of k = 3 players and showed that the price of stability
of any such game is at most 1.634 < H3 = 1.833̄. For this case, however, a
considerable gap remains, as the worst example known has a price of stability of
74/48 ≈ 1.542 [7]. Thus, already for k = 3 players, the exact worst-case price of
stability is unknown.

For several special cases, one can derive better upper bounds on the price of
stability. If all players share the same terminal then the price of stability is at
most O(log k/ log log k) [9]. If in addition every vertex is the source of at least
one player, then the price of stability further degrades to O(log log k) [6].

Many of the mentioned upper bounds are not only valid for the best Nash
equilibrium of a game, but also for a very specific one – the potential mini-
mum. Potential minima have desirable stability properties. For example, they
are reached by certain learning dynamics for players that do not always play
rationally (see Blume [10]). This motivates to explicitly study the ratio between
the cost of a potential minimum and that of a profile minimizing the social cost –
a social optimum. To stress the described stability properties of potential minima,
Asadpour and Saberi [11] called this ratio the inefficiency ratio of stable equi-
libria. Kawase and Makino [12] called the very same ratio the potential-optimal
price of anarchy. They also define the potential-optimal price of stability of a
game in the obvious way as the ratio between the cost of a best potential mini-
mum and that of a social optimum. They prove that the potential-optimal price
of anarchy of undirected Shapley network design games is at most O(

√
log k) for

the special case where all players share the same terminal node, and where every
vertex is the source of at least one player. They give a construction of a game
with potential-optimal price of anarchy Ω(

√
log log k).

Our Contribution

Our main result shows that the price of stability in undirected Shapley network

design games is at most k3(k+1)/2−k2

1+k3(k+1)/2−k2 Hk = (1−Θ(1/k4))Hk. Thus, we provide

the first general upper bound that shows that the price of stability for k players
is strictly smaller than Hk. To prove this upper bound, we generalize the tech-
niques of Christodoulou et al. [7] to any number of players. In short, similar to
Christodoulou et al., we obtain a set of inequalities relating the cost of any Nash
equilibrium to the cost of a social optimum. We then combine these in a non-
trivial way to obtain the claimed upper bound, additionally assuming that the
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Nash equilibrium has a smaller potential than the social optimum. Interestingly,
the resulting upper bound is tight for the case of k = 2 players.

As an additional contribution, we provide an example of a game with k = 3
players in which the potential-optimal price of stability is 1.634. Thus, we show
that the upper bound on the potential-optimal price of anarchy given by Bilò
and Bove [8] is tight. This result implies that for three players the upper bound
on the price of stability cannot be further improved via potential-minimizers.
This is in contrast to the directed case, for which a simple inequality relates the
cost of the potential minimum to that of a social optimum, giving a tight bound
on the price of stability. We believe that this observation provides an insight as
to why the undirected case is much harder to tackle than the directed one.

We note that in our tight example for the potential-optimal price of stabil-
ity/anarchy, the social optimum is also a Nash equilibrium, and thus the example
provides no new lower bounds on the price of stability. Our third contribution
however is a new lower bound on the price of stability. We provide an example
of a game with three players and price of stability 1.571, which improves on the
previous best lower bound of 74/48 ≈ 1.542 [7].

2 Problem Definition and Preliminaries

Let G = (V,E) be an undirected graph with a positive cost ce > 0 for every edge
e ∈ E. The Shapley network design game is a strategic game of k players. Every
player i ∈ {1, . . . , k} has a dedicated pair of vertices si, ti ∈ V , that we call her
source and target, respectively. The strategy space of player i is the collection Pi

of all paths Pi ⊆ E between si and ti. Every such path Pi is called a strategy. A
strategy profile P is a tuple (P1, . . . , Pk) of k strategies, Pi ∈ Pi. Given a strategy
profile P , we say that player i plays strategy Pi in P . The cost to player i in
a strategy profile P = (P1, . . . , Pk) is costi(P ) =

∑
e∈Pi

ce
ke
, where ke denotes

the number of paths Pi in P such that e ∈ Pi. That is, ke is the number of
players that use edge e. The goal of every player is to minimize her cost. A Nash
equilibrium is a strategy profile N = (N1, . . . ,Nk), Ni ∈ Pi, such that no player i
can improve her cost by playing a different strategy. That is, for every i and every
N′

i ∈ Pi, it holds that costi(N) ≤ costi(N
′
i , N−i), where (N

′
i , N−i) is a shorthand

for (N1, . . . ,Ni−1,N
′
i,Ni+1, . . . ,Nk). With a slight abuse of terminology we will

identify the game played on the graph G with the graph itself and we write N (G)
to denote the set of Nash equilibria of G.

Observe that the edges of any strategy profile P induce a graph (V,∪iPi),
which we call the underlying network. We denote the edge set of this graph
by E(P ). The social cost, or simply the cost of a strategy profile P , denoted
as cost(P ), is the sum of the players’ individual costs. Observe that the social
cost is equal to the total cost of the edges in the played strategies, i.e., cost(P ) =∑k

i=1 costi(P ) =
∑

e∈E(P ) ce.
A strategy profile that minimizes the social cost is called the social optimum.

The price of stability of a game G, denoted by PoS(G), is defined as the cost of
the best Nash equilibrium of G divided by the cost of a social optimum O(G)
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of G. That is, PoS(G) = minN∈N (G) cost(N)/cost(O(G)). The price of anarchy
of G, PoA(G) for short, is obtained by replacing min by max in this definition.

A Shapley network design game is a potential game [1,3]. That is, there is a
function Φ : P1× . . .×Pk → R such that, for every strategy profile P , whenever
any player i changes her strategy from Pi to P ′

i , then costi(P )−costi(P
′
i , P−i) =

Φ(P )− Φ(P ′
i , P−i). Rosenthal’s (exact) potential function has the form Φ(P ) =∑

e∈E(P )

∑ke

i=1
ce
i =

∑
e∈E(P ) Hke · ce, where Hj denotes the j-th Harmonic

number
∑j

i=1
1
i . The potential function is unique up to an additive constant [4].

Motivated by the particular stability properties of potential minima, Kawase
and Makino [12] introduced two notions to quantify the inefficiency of poten-
tial minimizers. For a game G let F(G) denote the set of potential minimiz-
ers of G, i.e., strategy profiles of G that minimize the potential function of G.
The potential-optimal price of stability of G is then defined as POPoS(G) =
minN∈F(G) cost(N)/cost(O(G)) and the potential-optimal price of anarchy is de-
fined as POPoA(G) = maxN∈F(G) cost(N)/cost(O(G)). Since F(G) ⊆ N (G),
clearly, for any game G, PoS(G) ≤ POPoS(G) ≤ POPoA(G) ≤ PoA(G).

For a fixed number of players k ≥ 2, we are interested to bound the worst-case
price of stability of games with k players. For a formal definition, let G(k) denote
the set of all games with k players. The price of stability of undirected Shapley
network design games with k players is defined as PoS(k) = supG∈G(k) PoS(G).
POPoS(k) and POPoA(k) are defined analogously.

Using Rosenthal’s potential function Φ, we can bound the potential-optimal
price of anarchy (and, thus, the price of stability) from above by Hk as fol-
lows (cf. [1]). Let O be a social optimum. For a potential minimum N, we have
Φ(N) ≤ Φ(O). Using this together with cost(N) ≤ Φ(N) and Φ(O) ≤ Hk ·cost(O)
we obtain cost(N) ≤ Hk · cost(O), as claimed.

We define Ni and Oi, for i ∈ {1, . . . , k}, to be the sets of edges of N and O
that are used by exactly i players, respectively. Thus, E(N) =

⋃k
i=1 N

i and
E(O) =

⋃k
i=1 O

i. For a set of edges M ⊆ E, we will denote by |M | the to-
tal cost of the edges in M , i.e., |M | =

∑
e∈M ce. This allows us to express

the value of the potential function for N and O by Φ(N) =
∑k

j=1 Hj |Nj | and
Φ(O) =

∑k
j=1 Hj |Oj |, respectively.

3 A General Upper Bound

In this section we derive an upper bound on the price of stability of any undi-
rected Shapley network design game. The main idea to show our upper bound
follows that of Christodoulou et al. [7], which they used for deriving an upper
bound of 33/20 = 1.65 for the case of k = 3 players. By the definition of Nash
equilibria, no player can change her chosen si-ti path in such a profile and
thereby improve her cost. We will consider a specific change of strategy for each
player, which gives us an inequality that relates the costs of the edges used in
the Nash equilibrium to those used in the social optimum. We then combine this
inequality in a non-trivial way with another that is gained from the fact that
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we consider a potential minimum. This allows us to obtain an upper bound of
k3(k+1)/2−k2

1+k3(k+1)/2−k2 Hk = (1− Θ(1/k4))Hk on the price of stability.
Consider a Nash equilibrium N and a social optimum O of a given Shapley

network design game with k players. In undirected graphs, if Ok is non-empty any
player i can use paths in the underlying network of the optimum O to connect
its terminals to the source and the target of another player j. By additionally
using the path of player j in the Nash equilibrium N, we obtain a valid strategy
for player i. This is the specific alternative strategy of player i which we use to
relate the cost of the Nash equilibrium to the social optimum.

We will additionally use the following observation about the structure of social
optima. Observe that any social optimum O forms a forest (because from any
cycle we could remove an edge and thereby decrease the cost). If Ok is non-
empty, i.e., some edges are shared among all players in the optimum, the edges
of E(O) \ Ok form two trees such that every player has one terminal in each
of the trees. Let O+ denote the edge set of the larger tree, and O− denote the
edge set of the smaller one (measured in terms of the social cost). We have
O+ ∪ O− = E(O) \ Ok and, by the definition, |O+| ≥ |O−|. Every tree has a
closed walk that visits every vertex at least once and every edge exactly twice
(for example, a depth-first traversal). We consider such a walk in the tree given
by the edges in O+, and use it to order the players. Without loss of generality,
if Ok �= ∅, the players are numbered such that there is a closed walk in O+ that
visits the terminals in the order given by the players’ numbers, while using each
edge exactly twice. We say that the players are in major-tree order.

Consider the edges of a Nash equilibrium which are not used by all k players.
The following lemma bounds the cost of these edges with respect to the cost of
a social optimum.

Lemma 1. Given a game G, let N = (N1, . . . ,Nk) be a Nash equilibrium and
O = (O1, . . . ,Ok) a social optimum with Ok �= ∅. Then,

k−1∑
j=1

|Nj | ≤ (k2(k + 1)/2− k)

k−1∑
j=1

|Oj |.

Proof. For every player i, we construct an si-ti path Pi (cf. Figure 1) with the
property that every edge on Pi is either in Ni+1 or not in Ok. In the following
we understand indices modulo k, i.e. k + 1 ≡ 1 and 0 ≡ k. Let u, v be the first
and last vertex on Oi that are also on Oi+1. These vertices are well defined as
Ok is non-empty, and thus Oi ∩Oi+1 is non-empty. Assume that u lies before v
on Oi+1 (otherwise, exchange si+1 and ti+1 in the following). Let Pi be the path
from si to ti that first follows Oi until u, then Oi+1 (backwards) from u to si+1,
then Ni+1 from si+1 to ti+1, then Oi+1 (backwards) from ti+1 to v, and finally
Oi from v to ti. In case Pi contains cycles, we skip them to obtain a simple
path. It is easy to verify that every edge on Pi either lies on Ni+1 or is not in
Oi ∩Oi+1. Thus, Pi has the desired property. In the following, let Qi denote the
set of edges of Pi that are also contained in E(O).
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si ti

Q
+
i u v Q

−

i

si+1 ti+1

Oi

Oi+1

Oi

Oi+1

Oi ∩ Oi+1

Ni+1

Fig. 1. Constructing the path Pi with Oi, Oi+1, Ni+1 (dashed line), and Qi (continuous
lines). Note that Oi ∩Oi+1 (dotted line) is not part of Pi.

Since N is a Nash equilibrium, player i cannot improve her cost by choos-
ing path Pi. Therefore, costi(N) ≤ costi(Pi,N−i). If ke is the number of play-
ers using edge e in N, this inequality amounts to

∑
e∈Ni

ce
ke
≤

∑
e∈Pi∩Ni

ce
ke

+∑
e∈Pi\Ni

ce
ke+1 . By the properties of Pi, the right-hand side of this inequality can

be upper bounded by
∑

e∈Qi
ce +

∑
e∈Ni+1∩Ni

ce
ke

+
∑

e∈Ni+1\Ni

ce
ke+1 . By shifting

all terms not depending on Qi to the left-hand side of the resulting inequality,
we get ∑

e∈Ni\Ni+1

ce
ke
−

∑
e∈Ni+1\Ni

ce
ke + 1

≤
∑
e∈Qi

ce. (1)

Similar to the path Pi we can define a path P̂i with respect to player i− 1. That
is, P̂i uses the edges of Oi, Oi−1, and Ni−1 to connect si to ti and does not

contain any edges from Oi ∩ Oi−1. Let Q̂i denote the set of edges of P̂i also

contained in E(O). Using the same arguments as above on P̂i we can derive an

analogous inequality as (1) for edges in Ni, Ni−1, and Q̂i. Adding this inequality
to (1) and then summing over all i gives

k∑
i=1

⎛⎝ ∑
e∈Ni\Ni+1

ce
ke
−

∑
e∈Ni+1\Ni

ce
ke + 1

+
∑

e∈Ni\Ni−1

ce
ke
−

∑
e∈Ni−1\Ni

ce
ke + 1

⎞⎠
≤

k∑
i=1

⎛⎝∑
e∈Qi

ce +
∑
e∈Q̂i

ce

⎞⎠ . (2)

We bound the left-hand side and the right-hand side of (2) separately, starting
with the left-hand side. Since indices are modulo k, we may shift the index in the
second and the fourth sum on the left-hand side. This lets us combine the first
and the fourth sum to

∑
e∈Ni\Ni+1

ce
ke
−
∑

e∈Ni\Ni+1

ce
ke+1 =

∑
e∈Ni\Ni+1

ce
ke(ke+1) ,

and analogously the second and the third sum to
∑

e∈Ni\Ni−1

ce
ke(ke+1) , to obtain

k∑
i=1

∑
e∈Ni\Ni+1

ce
ke(ke + 1)

+
k∑

i=1

∑
e∈Ni\Ni−1

ce
ke(ke + 1)

.
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Each of the two resulting sums counts each edge in E(N)\Nk at least once. This
is because for any edge e used by at least one player but not all of them, there is
a pair of players with consecutive indices (modulo k) such that e is used in N by
one of the players but not the other. Thus, we can lower bound the above term by

2
∑

e∈E(N)\Nk

ce
ke(ke + 1)

=
k−1∑
j=1

2

j(j + 1)
|Nj | ≥ 2

k(k − 1)

k−1∑
j=1

|Nj |,

which gives a lower-bound on the left-hand side of Inequality (2).
The right-hand side of Inequality (2) can be bounded by exploiting the major-

tree order of the players. We first only bound the sum depending on Qi. We
denote the two parts of Qi that lie in the larger and smaller parts of E(O) \Ok

by Q+
i = Qi ∩O+ and Q−

i = Qi ∩O−, respectively. Note that, by construction
of Pi, there are no edges of Ok in Qi. Thus, we get

k∑
i=1

∑
e∈Qi

ce =

k∑
i=1

⎛⎝ ∑
e∈Q+

i

ce +
∑
e∈Q−

i

ce

⎞⎠ .

By the defining property of the major-tree order, each edge in O+ is counted
exactly twice in the above sum, while each edge of O− is counted at most k
times. At the same time, the weight of the edges in O− amounts to at most half
the total weight of E(O) \Ok. Hence,

k∑
i=1

⎛⎝ ∑
e∈Q+

i

ce +
∑
e∈Q−

i

ce

⎞⎠ ≤ 2
∑
e∈O+

ce + k
∑
e∈O−

ce = 2
∑

e∈E(O)\Ok

ce + (k − 2)
∑
e∈O−

ce

≤ (k/2 + 1)
∑

e∈E(O)\Ok

ce .

Analogously, we can derive a corresponding bound for the sum depending on
Q̂i. Since the sum over all costs of edges in E(O) \Ok is exactly

∑k−1
i=1 |O

j |, we
can bound the right-hand side of Inequality (2) by (k + 2)

∑k−1
i=1 |O

j |. Together
the two derived bounds for the left-hand side and the right-hand side of Inequal-
ity (2) give the claimed inequality. 	


The following lemma encapsulates some technical calculations that allows to
derive an upper bound on the price of stability using Lemma 1.

Lemma 2. For a game G with social optimum O, let N be a Nash equilibrium
with Φ(N) ≤ Φ(O) and let β > 0 be such that

∑k−1
j=1 |N

j | ≤ β
∑k−1

j=1 |O
j |. Then,

k∑
j=1

|Nj | ≤ βk

1 + βk
Hk ·

k∑
j=1

|Oj |.
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Proof. We take 1 < α < Hk and compute

k∑
j=1

|Nj | ≤ α|Nk|+
k−1∑
j=1

|Nj | = α

Hk
·

k∑
j=1

Hj |Nj |+
k−1∑
j=1

(
1− α

Hj

Hk

)
|Nj |

≤ α

Hk
·

k∑
j=1

Hj |Nj |+
k−1∑
j=1

(
1− α

Hk

)
|Nj |.

Using that Φ(N) ≤ Φ(O) and the condition of the lemma, we introduce β to get

k∑
j=1

|Nj | ≤ α

Hk
·

k∑
j=1

Hj |Oj |+
(
1− α

Hk

)
· β

k−1∑
j=1

|Oj |

= α|Ok|+
k−1∑
j=1

[
α
Hj

Hk
+ β

(
1− α

Hk

)]
|Oj |

≤ α|Ok|+
k−1∑
j=1

[
α
Hk−1

Hk
+ β

(
1− α

Hk

)]
|Oj |. (3)

For α = βk
1+βkHk we have

α
Hk−1

Hk
+ β

(
1− α

Hk

)
=

βk

1 + βk
Hk−1 + β

(
1− βk

1 + βk

)
=

βk

1 + βk

(
Hk −

1

k

)
+

β

1 + βk
= α. (4)

From (3) and (4) it follows that

k∑
j=1

|Nj | ≤ α|Ok|+ α

k−1∑
j=1

|Oj | = βk

1 + βk
Hk

k∑
j=1

|Oj |,

which concludes the proof. 	

The above lemmas can be put together in order to show the following theorem.

Theorem 3. The potential-optimal price of anarchy POPoA(k) for Shapley net-

work design games with k ≥ 2 players is at most k3(k+1)/2−k2

1+k3(k+1)/2−k2 Hk.

Proof. Let N be a potential minimum. If Ok �= ∅, we may combine Lemma 1 and

Lemma 2 to obtain cost(N)
cost(O) ≤

k3(k+1)/2−k2

1+k3(k+1)/2−k2 Hk. If, on the other hand, Ok = ∅,
then obviously also |Ok| = 0. We show that then cost(N) ≤ Hk−1cost(O) (which
has been observed before for k = 3, e.g., by Christodoulou et al. [7]). We can
express the potential functions of N and O using Nj and Oj and use the fact
that Φ(N) ≤ Φ(O) to obtain

k∑
j=1

|Nj | ≤
k∑

j=1

Hj |Nj | ≤
k∑

j=1

Hj |Oj | =
k−1∑
j=1

Hj |Oj | ≤ Hk−1

k∑
j=1

|Oj |.
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Hence, in this case we get cost(N)
cost(O) ≤ Hk−1, which is lower than the first bound.

	


We obtain the following corollary. Note that the bound is tight for k = 2.

Corollary 4. The price of stability PoS(k) for Shapley network design game

with k ≥ 2 players is at most k3(k+1)/2−k2

1+k3(k+1)/2−k2Hk.

4 Three-Player Games

The upper bound of k3(k+1)/2−k2

1+k3(k+1)/2−k2 Hk on the price of stability presented in the

previous section is valid for an arbitrary number of players. For the special case
of k = 3 players, it evaluates to 165/92 ≈ 1.793. For this case, however, better
bounds are known. Bilò and Bove proved that the price of stability does not ex-
ceed 286/175 ≈ 1.634. For the proof of their result they combine inequalities that
are valid for any potential minimum of the game. Thus, their proof implies that
also the potential-optimal price of anarchy (and thus the potential-optimal price
of stability) is at most 286/175. As the main result of this section, we will show
that this result is tight. That is, there is a three-player game such that the cost
of the best potential minimum is 286/175 times the cost of the social optimum.

Theorem 5. For three players, the potential-optimal price of stability and the
potential-optimal price of anarchy are POPoA(3)=POPoS(3)=286/175≈1.634.

Proof. The upper bound of 286/175 on the potential-optimal price of anarchy
was proved by Bilò and Bove [8, Theorem 3.1]. They derive the bound for the
potential-optimal price of anarchy, but only explicitly state the implied bound
for the (regular) price of stability.

Consider the three player game in Figure 2(a), and let ε > 0 be sufficiently
small. The potential-optimal price of stability of this example approaches 286/175
when ε tends to 0, which establishes tightness of the upper bound. It also shows
that the potential-optimal price of stability and the potential-optimal price of
anarchy coincide for the class of games with three players.

Obviously, any strategy profile in the example has to use at least three edges to
connect all terminal pairs. The three cheapest edges already connect all terminal
pairs and thus constitute the social optimum O of cost 700 + 3ε. It is easy to
verify that the underlying networks of Nash equilibria in the example do not
contain cycles, since at least one edge of each cycle would be abandoned by
all players. Hence, all Nash equilibria in the example use exactly three edges.
We show that the unique potential minimum N uses the three edges not used
in O (note that O itself is a Nash equilibrium). This profile has both a potential-
function value and cost equal to 396+2 ·374 = 1144, since every edge is used by
one player only. In contrast, the social optimum has a potential-function value
of 2H2 · (209 + ε) + H3 · (282 + ε) > 1144. If the edge {t2, s3} is used in a
Nash equilibrium, the other two edges have to be used by at least two players
each. For profiles other than O, this gives a potential function value of at least
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Fig. 2. (a) A three-player game with POPoS and POPoA approaching 286/175 ≈ 1.634
for ε → 0. (b) A three-player game with PoS = 1769/1126 ≈ 1.571.

H2 ·(209+ε+374)+(282+ε)> 1156. If the edges with cost 396 and (282+ε) are
both unused, all three players use an edge of cost 374 and the resulting potential
value is eitherH3·374+H2·(209+ε)+(209+ε)> 1208 orH2·374+374+(209+ε)>
1144. Equilibria that use one edge each of costs (209+ε), 374, 396 have a potential
function value of H2 · 396+ 374+ (209+ ε)> 1177. And finally, the profile using
both cheap edges together with the one of cost 396 has a potential of H3 · 396+
2 · (209+ ε) > 1144. We conclude that the potential minimum is as claimed. For
ε tending to 0, the ratio between the cost of N and O approaches 286/175. 	


Our result in particular implies that it is impossible to push the upper bound
on the price of stability for three-player Shapley network design games on undi-
rected networks below 286/175 by using inequalities that are only valid for global
minima of the potential function. Note that the example in Figure 2(a) has a
price of stability of 1, since its social optimum is itself a Nash equilibrium.

So far, the best lower bound on the price of stability for three-player games
was 74/48 ≈ 1.542 [7]. We can slightly improve this bound by presenting a game
with three players whose price of stability is 1769/1126 ≈ 1.571. Consider the
network with 5 vertices shown in Figure 2(b). By exhaustive enumeration of
all strategy profiles, one can verify that only the strategy profile in which each
player i uses the edge (si, ti) is a Nash equilibrium. The social optimum uses
all other edges and has a cost of 1126, while the unique Nash equilibrium has a
cost of 1769. This establishes the claimed lower bound on the price of stability
in undirected Shapley network design games with three players.

5 Conclusions

We gave an upper bound for the price of stability for an arbitrary number of
players k in undirected graphs. Our bound is smaller than Hk for every k and
tight for two players. For three players, we showed that the upper bound of
286/175 ≈ 1.634 by Bilò and Bove [8] is tight for both the potential-optimal price
of stability and anarchy. We also improved the lower bound to 1769/1126≈ 1.571
for the price of stability in this case.
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Asymptotically, a wide gap remains between the upper bound of the price
of stability that is of order log k, and the best known lower bound construc-
tion by Bilò et al. [5] that approaches the constant 348/155 ≈ 2.245. It is un-
clear where the correct answer lies within this gap, in particular since bounds of
O(log k/ log log k) [9] and O(log log k) [6] emerge for restrictions of the problem.
Our bound approaches Hk for a growing number of players k. It would already
be interesting to know whether the price of stability is asymptotically below
Hk−c or Hk/c for some (or even any) positive constant c ∈ N.
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Abstract. We consider several variations of the problems of covering a
set of barriers (modeled as line segments) using sensors that can detect
any intruder crossing any of the barriers. Sensors are initially located in
the plane and they can relocate to the barriers. We assume that each
sensor can detect any intruder in a circular area centered at the sensor.
Given a set of barriers and a set of sensors located in the plane, we study
three problems: the feasibility of barrier coverage, the problem of min-
imizing the largest relocation distance of a sensor (MinMax), and the
problem of minimizing the sum of relocation distances of sensors (Min-
Sum). When sensors are permitted to move to arbitrary positions on the
barrier, the problems are shown to be NP-complete. We also study the
case when sensors use perpendicular movement to one of the barriers. We
show that when the barriers are parallel, both the MinMax and MinSum
problems can be solved in polynomial time. In contrast, we show that
even the feasibility problem is NP-complete if two perpendicular barri-
ers are to be covered, even if the sensors are located at integer positions,
and have only two possible sensing ranges. On the other hand, we give
an O(n3/2) algorithm for a natural special case of this last problem.

1 Introduction

The protection of a region by sensors against intruders is an important appli-
cation of sensor networks that has been previously studied in several papers.
Each sensor is typically considered to be able to sense an intruder in a circular
region around the sensor. Previous work on region protection using sensors can
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be classified into two major classes. In the first body of work, called area cover-
age, the monitoring of an entire region is studied [7, 9], and the presence of an
intruder can be detected by a sensor anywhere in the region, either immediately
after an appearance of an intruder, or within a fixed time delay. In the second
body of work, called barrier coverage, a region is assumed to be protected by
monitoring its perimeter called barrier [1, 2, 4, 5, 8], and an intruder is detected
when crossing the barrier. Clearly, the second approach is less costly in terms of
the number of sensors required, and it is sufficient in many applications.

There are two different approaches to barrier coverage in the literature. In the
first approach, a barrier is considered to be a narrow strip of fixed width. Sensors
are dispersed randomly on the barrier, and the probability of barrier coverage is
studied based on the density of dispersal. Since random dispersal may leave gaps
in the coverage, Yan et al. [11] propose using several rounds of random dispersal
for complete barrier coverage. In the second approach, several papers assume
that sensors, once dispersed, are mobile, and can be instructed to relocate from
the initial position to a final position on the barrier in order to achieve complete
coverage [4, 5]. Clearly, when a sufficient number of sensors is used, this approach
always guarantees complete coverage of the barrier. The problem therefore is
assigning final positions to the sensors in order to minimize some aspect of the
relocation cost. The variations studied so far include minimizing the maximum
relocation distance (MinMax), the sum of relocation distances (MinSum), or
minimizing the number of sensors that relocate (MinNum).

Most of the previous work is set in the one-dimensional setting: the barriers
are assumed to be one or more line segments that are part of a line L, and
furthermore, the sensors are initially located on the same line L. In [4] it was
shown that there is an O(n2) algorithm for the MinMax problem in the case
when the sensor ranges are identical. The authors also showed that the problem
becomes NP-complete if there are two barriers. A polynomial time algorithm
for the MinMax problem is given in [3] for arbitrary sensor ranges for the case
of a single barrier, and an improved algorithm is given for the case when all
sensor ranges are identical. In [5], it was shown that the MinSum problem is NP-
complete when arbitrary sensor ranges are allowed, and an O(n2) algorithm is
given when all sensing ranges are the same. Similarly as in the MinSum problem,
the MinNum problem is NP-complete when arbitrary sensor ranges are allowed,
and an O(n2) algorithm is given when all sensing ranges are the same [10].

In this paper we consider the algorithmic complexity of several natural gener-
alizations of the barrier coverage problem with sensors of arbitrary ranges. We
generalize the work in [3, 4, 5, 10] in two significant ways. First, we assume that
the initial positions of sensors are points in the two-dimensional plane and are
not necessarily collinear. This assumption is justified since in many situations a
dispersal of sensors on the barrier might not be practical. Second, we consider
multiple barriers that are parallel or perpendicular to each other. This gener-
alization is motivated by barrier coverage of the perimeter of an area. We use
standard cost measures such as Euclidean or rectilinear distance between initial
and final positions of sensors.
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1.1 Preliminaries and Notation

Throughout the paper, we assume that we are given a set of sensors S =
{s1, s2, . . . , sn} located in the plane in positions p1, p2, . . . , pn, where pi = (xi, yi)
for some real values xi, yi. The sensing ranges of the sensors are r1, r2, . . . , rn, re-
spectively. A sensor si can detect any intruder in the closed circular area around
pi of radius ri. We assume that sensor si is mobile and thus can relocate itself
from its initial location pi to another specified location p′i. A barrier b is a closed
line segment in the plane. Given a set of barriers B ={b1, b2, . . . , bk} , and a set of
sensors S in positions p1, p2, . . . , pn in the plane, of sensing ranges r1, r2, . . . , rn,
the barrier coverage problem is to determine for each si its final position p′i on
one of the barriers, so that all barriers are covered by the sensing ranges of the
sensors. We call such an assignment of final positions a covering assignment.
Figure 1 shows an example of a barrier coverage problem and a possible cover-
ing assignment. Sometimes we are also interested in optimizing some measure of
the movement of sensors involved to achieve coverage.

p′4p′2

p′3

p′1

(a)

p1b1

b2 p3

p2

p4

b1

b2

(b)

Fig. 1. (a) A given barrier coverage problem (b) a possible covering assignment

We are interested in the algorithmic complexity of three problems:

Feasibility Problem: Given a set of sensors S located in the plane at positions
p1, p2, . . . , pn, and a set of barriersB, determine if there exists a valid covering
assignment, i.e. determine whether there exist final positions p′1, p

′
2, . . . , p

′
n

on the barriers such that all barriers in B are covered.
MinMax Problem: Given a set of sensors S located in the plane at positions

p1, p2, . . . , pn, and a set of barriers B, find final positions p′1, p
′
2, . . . , p

′
n on

the barriers so that all barriers in B are covered and max1≤i≤n{d(pi, p′i)} is
minimized.

MinSum Problem: Given a set of sensors S located in the plane at positions
p1, p2, . . . , pn, and a set of barriers B, find final positions p′1, p′2, . . . , p′n on the
barriers so that all barriers in B are covered, and

∑n
i=1 d(pi, p

′
i) is minimized.

1.2 Our Results

Our results are summarized in Table 1. Throughout the paper, we consider the
barrier coverage problem with sensors of arbitrary ranges, initially located at
arbitrary locations in the plane. In Section 2, we assume that sensors can move
to arbitrary positions on any of the barriers. While feasibility is trivial in the case
of one barrier, it is straightforward to show that it is NP-complete for even two
barriers. The NP-completeness of the MinSum problem for one barrier follows
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trivially from the result in [5]. In this paper, we show that the MinMax problem
is NP-complete even for a single barrier. We show that this holds both when the
cost measure is Euclidean distance and when it is rectilinear distance.

In light of these hardness results, in the rest of the paper, we consider a
more restricted but natural movement. We assume that once a sensor has been
ordered to relocate to a particular barrier, it moves to the closest point on the
line containing the barrier. We call this perpendicular movement 1. Section 3
considers the case of one barrier and perpendicular movement, while Section 4
considers the case of perpendicular movement and multiple parallel barriers. We
show that all three of our problems are solvable in polynomial time. Finally,
in Section 5, we consider the case of perpendicular movement and two barriers
perpendicular to each other. We show that even the feasibility problem is NP-
complete in this case. The NP-completeness result holds even in the case when
the given positions of the sensors have integer values and the sensing ranges
of sensors are limited to two different sensing ranges. In contrast, we give an
O(n1.5) algorithm for finding a covering assignment for a natural restriction
of the problem that includes the case when all sensors are located in integer
positions and the sensing ranges of all sensors are of diameter 1.

Table 1. Summary of our results

Barriers Movement Feasibility MinMax MinSum

1 barrier Arbitrary final positions O(n) NPC NPC [5]
2 barriers Arbitrary final positions NPC NPC NPC
1 barrier Perpendicular O(n) O(n log n) O(n2)

k parallel barriers Perpendicular O(kn) O(knk+1) O(knk+1)
2 perpendicular barriers Perpendicular NPC NPC NPC

2 Arbitrary Final Positions

In this section, we assume that sensors are allowed to relocate to any final posi-
tions on the barrier(s). We consider first the case of a single barrier b. Without
loss of generality, we assume that b is located on the x-axis between (0, 0) and
(L, 0) for some L. The feasibility of barrier coverage in this case is simply a
matter of checking if Σn

i=12ri ≥ L. For the MinSum problem, it was shown in [5]
that even if the initial positions of sensors are on the line containing the barrier,
the problem is NP-complete; therefore the more general version of the problem
studied here is clearly NP-complete. Recently, it was shown in [3] that if the
initial positions of sensors are on the line containing the barrier, the MinMax
problem is solvable in polynomial time. The complexity of the MinMax problem
for general initial positions in the plane has not yet been studied and thus we
proceed to study the complexity of the MinMax problem when initial positions
of sensors can be anywhere on the plane, and the final positions can be anywhere
on the barrier. See Figure 2 for an example of the initial placement of sensors.

1 Note that it is possible for a sensor that is not located on the barrier to cover part
of the barrier. However, we require final positions of sensors to be on the barrier.
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Theorem 1. Let S = {s1, s2, . . . , sn} be a set of sensors of ranges r1, r2, . . . , rn
initially located in the plane at positions p1, p2, . . . , pn. Let the barrier b be a line
segment between (0, 0) and (L, 0). Given an integer k, the problem of determining
if there is a covering assignment such that the maximum relocation distance
(Euclidean/rectilinear) of the sensors is at most k is NP-complete.

Proof. The problem is trivially in NP; we give here a reduction from the 3-
partition problem. We are given a multiset A = {a1 ≥ a2 ≥ · · · ≥ an} of n = 3m
positive integers such that B/4 < ai < B/2 for 1 ≤ i ≤ n and

∑n
i=1 ai = mB for

some B. The problem is to decide whether A can be partitioned into m triples
T1, T2, . . . , Tm such that the sum of the numbers in each triple is equal to B. We
create an instance of the barrier coverage problem as follows: Let L = mB+m−1
so that the barrier b is a line segment from (0, 0) to (L, 0), and let k = L + 1.
Create a sensor si of radius ai/2 for every 1 ≤ i ≤ 3m positioned at −ai/2. In
addition, create m− 1 sensors s3m+1, s3m+2, . . . , s4m−1 of range 1/2 located at
positions (B+1/2, k), (2B+3/2, k), (3B+5/2, k), . . . , ((m−1)B+(2m−3)/2, k).
See Figure 2 for an example. Since L =

∑n
i=1 2ri, all sensors must move to

the barrier. It is easy to verify that there is a partition of S into m triples
T1, T2, . . . , Tm, the sum of each triple being B, if and only if there is a solution
to the movement of the sensors such that the three sensors corresponding to
triple Ti are moved to fill the ith gap in the barrier b and all moves are at most
of length k. 	


L
. . .

0

B B B B. . .

k = L + 1

s3m+1 s4m−1

p1 p2
p3ms1

s2

Fig. 2. Reduction from 3-partition to the MinMax problem

It is easy to see that when there are two barriers to be covered, even feasibility of
coverage is NP-complete. This can be shown by reducing the Partition problem
to an appropriate 2-barrier coverage problem, as in [4]. It follows that k-barrier
coverage is also NP-complete.

3 Perpendicular Movement: One Barrier

In this section, we assume that all sensors use only perpendicular movement.
Without loss of generality, let the barrier b be the line segment between (0, 0) and
(L, 0) and let the set of n sensors s1, s2, . . . , sn be initially located at positions
p1, p2, . . . , pn respectively, where pi = (xi, yi) and x1 − r1 ≤ x2 − r2 ≤ · · · ≤
xn−rn. For simplicity we assume all points of interest (sensor locations, left/right
endpoints of sensor ranges and barriers) are distinct. Since the y-coordinate of
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all points on the barrier are the same, we sometimes represent the barrier or
a segment of the barrier by an interval of x-coordinates. For technical reasons,
we denote the segment of the barrier between the points (i, 0) and (j, 0) by the
half-open interval [i, j). Similarly, we consider the interval on the barrier that a
sensor can cover to be a half-open interval.

We first show a necessary and sufficient condition on the sensors for the barrier
to be covered. We say that the sensor s at position p = (x, y) is a candidate
sensor for q = (x′, 0) on the barrier if x − r ≤ x′ < x + r. Alternatively we
say s potentially covers the point q. Clearly, the barrier b can be covered only if
every point on the barrier has a candidate sensor. Conversely, if every point has
a candidate sensor, the problem can be solved in linear time by simply moving
all sensor nodes down to the barrier.

We give a dynamic programming formulation for the MinSum problem. We
denote the set of sensors {si, si+1, . . . , sn} by Si. If the barrier is an empty
interval, then the cost is 0. If no sensor is a candidate for the left endpoint of the
barrier, or if the sensor set is empty while the barrier is a non-empty interval,
then clearly the problem is infeasible and the cost is infinity. If not, observe that
the optimal solution to the MinSum problem either involves moving sensor s1 to
the barrier or it doesn’t. In the first case, the cost of the optimal solution is the
sum of |y1|, the cost of moving the first sensor to the barrier, and the optimal
cost of the subproblem of covering the interval [x1 + r1, L) with the remaining
sensors S2 = S − {s1}. In the second case, the optimal solution is the optimal
cost of covering the original interval [0, L) with S2. The recursive formulation is
given below:

cost(Si, [a, L)) =

⎧⎪⎪⎨⎪⎪⎩
0 if L < a
∞ if xi − ri > a or (Si = ∅ and L > a)

min

{
|yi|+ cost(Si+1, [xi + ri, L)),
cost(Si+1, [a, L))

otherwise

Observe that a subproblem is always defined by a set Si and a left endpoint to the
barrier which is given by the rightmost x-coordinate covered by a sensor. Thus
the number of possible subproblems is O(n2), and it takes constant time to com-
pute cost(Si, [a, L)) given the solutions to the sub-problems. Using either a tab-
ular method or memoization, the problem can be solved in quadratic time. The
same dynamic programming formulation works for minimizing the maximum
movement, except that in the case when the i-th sensor moves to the barrier in
the optimal solution, the cost is the maximum of |yi| and cost(Si+1, [xi + ri, L))
instead of their sum. A better approach is to check the feasibility of covering the
barrier with the subset of sensors at distance at most d from the barrier in O(n)
time and find the minimum value of d using binary search on the set of distances
of all sensors to the barrier. This yields an O(n log n) algorithm for MinMax.

Theorem 2. Let s1, s2, . . . , sn be n sensors initially located in the plane at po-
sitions p1, p2, . . . , pn respectively, and let b be a barrier between (0, 0) and (L, 0).
The MinSum problem using only perpendicular movement can be solved in O(n2)
time, and the MinMax problem can be solved in O(n) time.
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4 Perpendicular Movement: Multiple Parallel Barriers

In this section, we study the problem of covering multiple parallel barriers. We
assume that sensors can relocate to any of the barriers, but will use perpendicular
movement. Without loss of generality, we assume all barriers are parallel to the
x-axis. Since there are k barriers, there are k points on barriers with the same
x-coordinate. We therefore speak of sensors being candidates for x-coordinates:
a sensor s in position p = (x, y) with sensing range r is a candidate sensor for
x-coordinate x′ if x − r ≤ x′ < x + r. Clearly, such a sensor is a candidate for
a point q on a border with x-coordinate x′. We say an interval I = [a, b) of
x-coordinates is k-coverable if every x-coordinate in the interval has k candidate
sensors; such an interval of x-coordinates can exist on multiple barriers.

For simplicity, we explain the case of two barriers; the results for the feasibility
and MinSum problems generalize to k barriers. Assume without loss of generality
that the two barriers to be covered are b1 between (0, 0) and (L, 0) and b2 between
(0,W ) and (L,W ) and the set of n sensors s1, s2, . . . , sn to be initially located
at positions p1, p2, . . . , pn respectively, and is ordered by the xi − ri values as
in Section 3. Sensors may only move in a vertical direction. We assume that
the sensing radii of sensors are smaller than half the distance W between the
two barriers, and thus it is impossible for a sensor to simultaneously cover two
barriers. See Figure 3 for an example of such a problem.

p1
(0, 0) (L, 0)

s1 p2

p3
p4

p5

p6

s2

s3
s4

s5

s6

(0,W ) (L,W )

p7s7
p8

p9

s8

s9

Fig. 3. An example of a barrier coverage problem with two parallel barriers

We first show a necessary and sufficient condition on the sensors for the two
barriers to be covered. Clearly, since the sensing radius of every sensors is smaller
than half of the distance between the two barriers, the barrier coverage problem
for the two parallel barriers b1 and b2 above is solvable by a set of sensors S only
if the interval [0, L) is 2-coverable by S. We proceed to show that 2-coverability
is also a sufficient condition, and give a O(n) algorithm for finding a covering
assignment for two parallel barriers. To simplify the proof of the main theorem,
we first prove a lemma that considers a slightly more general version of the two
parallel barrier problem.

Lemma 1. Let s1, s2, . . . , sn be sensors located at positions p1, p2, . . . , pn respec-
tively where pi = (xi, yi) and x1 − r1 ≤ x2 − r2 ≤ · · ·xn − rn. Let b1 between
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(0, 0) and (L, 0) and b2 between (P,W ) and (Q,W ), where 0 ≤ P < L ≤ Q, be
two parallel barriers to be covered. If intervals [0, P ) and [L,Q) are 1-coverable,
and interval [P,L) is 2-coverable, then a covering assignment that uses only
perpendicular movement of the sensors can be obtained in O(n) time.

Proof. Omitted due to lack of space. 	


The above lemma establishes that complete coverage of two parallel barriers b1
between (0, 0) and (L, 0) and b2 between (0,W ) and (L,W ) can be achieved
if and only if the interval of x-coordinates [0, L] is 2-covered, and a covering
assignment can be found in linear time. It is easy to see that the lemma can
be generalized for k barriers to show that the feasibility problem can be solved
in O(kn) time. We proceed to study the problem of minimizing the sum of
movements required to perform barrier coverage.

The dynamic programming formulation given in Section 3 can be generalized
for the case of two barriers. The key difference is that in an optimal solution,
sensor si may be used to cover a part of barrier b1 or barrier b2 or neither.
Let xcost(Si, [a1, L), [a2, L)) denote the cost of covering the interval [a1, L) of
the barrier b1 and the interval [a2, L) of the second barrier with the sensor set
Si = {si, si+1, . . . , sn}. The optimal cost is given by the formulation below:

xcost(Si, [a1, L), [a2, L)) =

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

cost(Si, [a2, L)) if L < a1
cost(Si, [a1, L)) if L < a2
∞ if xi − ri > min{a1, a2} or (Si = ∅ and L > min{a1, a2})

min

⎧⎨⎩ |yi|+ xcost(Si+1, [xi + ri, L), [a2, L)),
|W − yi|+ xcost(Si+1, [a1, L), [xi + ri, L)),
xcost(Si+1, [a1, L), [a2, L))

otherwise

It is not hard to see that the formulation can be generalized to k barriers; a sensor
si maymove to any of the k barrierswith the corresponding cost being added to the
solution. Observe that a subproblem is now given by a set Si, and a left endpoint
to each of the barriers. The total number of subproblems is O(nk+1) and the time
needed to compute the cost of a problemgiven the costs of the subproblems isO(k).
Thus, the time needed to solve the problem is O(knk+1).

Theorem 3. Let s1, s2, . . . , sn be n sensors initially located in the plane at po-
sitions p1, p2, . . . , pn respectively where pi = (xi, yi) and x1 − r1 ≤ x2 − r2 ≤
· · ·xn − rn. The MinSum problem for k parallel barriers using only perpendicu-
lar movement can be solved in O(knk+1) time.

Clearly a very similar formulation as above can be used to solve the MinMax
problem in O(knk+1) time as well. However, the approach used for a single
barrier can be generalized for two barriers, as shown in the theorem below:

Theorem 4. Let s1, s2, . . . , sn be n sensors initially located in the plane at po-
sitions p1, p2, . . . , pn respectively, and let b1 between (0, 0) and (L, 0) and b2
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between (0,W ) and (L,W ) be the two parallel barriers to be covered. The Min-
Max problem for the 2 parallel barriers using only perpendicular movement can
be solved in O(n log n) time.

Proof. Omitted due to lack of space. 	


5 Perpendicular Movement: Two Perpendicular Barriers

In this section, we consider the problem of covering two perpendicular barriers.
Once again, we assume that sensors can relocate to either of the two barriers, but
will use perpendicular movement. In contrast to the case of parallel barriers, we
show here that even the feasibility problem in this case is NP-complete. Figure
4 illustrates an example of such a problem. For simplicity we assume that b1
is a segment on the x-axis between (0, 0), (L1, 0) and b2 is a segment on the
y-axis between (0, 0), (0, L2). Since the sensors can only employ perpendicular
movement, the only possible final positions on the barriers for a sensor si in
position pi = (xi, yi) are p′i = (0, yi) or p

′
i = (xi, 0).

We first show that the feasibility problem for this case is NP-complete by
giving a reduction from the monotone 3-SAT problem [6]. Recall that a Boolean
3-CNF formula f = c1 ∧ c2 ∧ ...∧ cm of m clauses is called monotone if and only
if every clause ci in f either contains only unnegated literals or only negated
literals. In order to obtain a reduction into a barrier coverage problem with two
perpendicular barriers, we first put a monotone 3-SAT formula in a special form
as shown in the lemma below.

Lemma 2. Let f = f1 ∧ f2 be a monotone 3-CNF Boolean formula with n
clauses where f1 and f2 only contain unnegated and negated literals respectively,
and every literal appears in at most m clauses. Then f can be transformed into
a monotone formula f ′ = f ′

1 ∧ f ′
2 such that f ′

1 and f ′
2 have only unnegated and

negated literals respectively, and f ′ has the following properties:

1. f and f ′ are equisatisfiable, i.e. f ′ is satisfiable if and only if f is satisfiable.
2. All clauses are of size two or three.

3. Clauses of size two contain exactly one variable from f and one new variable.
4. Clauses of size three contain only new variables.
5. Each new literal appears exactly once: either in a clause of size two or in a

clause of size three.
6. Each xi appears exactly in m clauses of f ′

1, and exactly in m clauses of f ′
2.

7. f ′ contains at most 4n+mn clauses.
8. The clauses in f ′

1 (respectively f ′
2) can be ordered so that all clauses contain-

ing the literal xi (xi) appear before clauses containing the literal xj (respec-
tively xj) for i < j, and all clauses of size three are placed last.

Proof. Omitted due to lack of space. 	


We give an example that illustrates the reduction and the ordering specified in
Property 7.
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Example 1: Consider 3-CNF formula

f = (x1 ∨x3 ∨x4)∧ (x2 ∨x3 ∨x4)∧ (x1 ∨x2 ∨x3)∧ (x1 ∨x2 ∨x4)∧ (x2 ∨x3 ∨x4)

An equisatisfiable formula f ′ satisfying the properties of Lemma 2 is:

f ′ = (x1 ∨ x1,1) ∧ (x1 ∨ x1,3) ∧ (x1 ∨ y1,1) ∧ (x2 ∨ x2,2) ∧ (x2 ∨ x2,3)

∧ (x2 ∨ y2,1) ∧ (x3 ∨ x3,1) ∧ (x3 ∨ x3,2) ∧ (x3 ∨ x3,3) ∧ (x4 ∨ x4,1)

∧ (x4 ∨ x4,2) ∧ (x4 ∨ y4,1) ∧ (x1,4 ∨ x2,4 ∨ x4,4) ∧ (x2,5 ∨ x3,5 ∨ x4,5)

∧ (x1 ∨ x1,4) ∧ (x1 ∨ z1,1) ∧ (x1 ∨ z1,2) ∧ (x2 ∨ x2,4) ∧ (x2 ∨ x2,5) ∧ (x2 ∨ z2,1)

∧ (x3 ∨ x3,5) ∧ (x3 ∨ z3,1) ∧ (x3 ∨ z3,2) ∧ (x4 ∨ x4,4) ∧ (x4 ∨ x4,5) ∧ (x4 ∨ z4,1)

∧ (x1,1 ∨ x3,1 ∨ x4,1) ∧ (x2,2 ∨ x3,2 ∨ x4,2) ∧ (x1,3 ∨ x2,3 ∨ x3,3)

Theorem 5. Let s1, s2, . . . , sn be n sensors initially located in the plane at po-
sitions p1, p2, . . . , pn respectively, and let b1 between (0, 0) and (L1, 0) and b2
between (0, 0) and (0, L2) be the two perpendicular barriers to be covered. Then
the problem of finding a covering assignment using perpendicular movement for
the two barriers is NP-complete.

Proof. It is easy to see that any given covering assignment can be verified in
polynomial time. Given a monotone 3-SAT formula f , we use the construction
described in Lemma 2 to obtain a formula f ′ = f ′

1 ∧ f ′
2 satisfying the properties

stated in Lemma 2 with clauses ordered as described in Property 7. Let f1
have i1 clauses, and f2 have i2 clauses, and assume the clauses in each are
numbered from 1, . . . , i1 and 1, . . . , i2 respectively. We create an instance P of
the barrier coverage problem with two barriers b1, the line segment between
(0, 0) and (2i1, 0) and b2, the line segment between (0, 0), and (0, 2i2).

For each variable xi of the original formula f we have a sensor si of sensing
range m located in position pi = ((2i − 1)m, (2i − 1)m), i.e., on the diagonal.
Figure 4 illustrates the instance of barrier coverage corresponding to the 3-SAT
formula from Example 5 above. Each of the variables xi,j , yi,j, zi,j is represented
by a sensor of sensing range 1, denoted si,j , s

′
i,j , and s′′i,j respectively, and is

placed in such a manner that the sensors corresponding to variables associated
with the same si collectively cover the same parts of the two barriers as covered
by sensor si. Furthermore, sensors corresponding to variables that appear in the
same clause of size three cover exactly the same segment of a barrier. A sensor
corresponding to a new variable xi,j that occurs in the pth clause in f ′

1 and in
the qth clause in f ′

2 is placed in position (2p− 1, 2q− 1). For example the sensor
s1,3 corresponding to the variable x1,3 appears in the second clause of f ′

1 and
the fifteenth clause of f ′

2, and hence is placed at position (3, 29). Similarly, the
sensor s2,4 corresponding to the variable x2,4 appears in the thirteenth clause of
f ′
1 and the fourth clause of f ′

2, and hence is placed at position (25, 7). A sensor
corresponding to variable yi,j which occurs in the �th clause in f ′

1 is placed in
position (2�−1,−1) and sensor corresponding to variable zi,j which occurs in the
�th clause of f ′

2 is placed in position (−1, 2�−1). Observe that in this assignment
of positions to sensors, for any i, there is a one-to-one correspondence between
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Fig. 4. Barrier coverage instance corresponding to Example 1

the line segments of length 2 in b1 and b2 and clauses in f ′
1 and f ′

2 respectively.
In particular, the sensors that potentially cover the line segment from (2i− 2, 0)
to (2i, 0) on the barrier b1 correspond to variables in clause i of f ′

1. Similarly, the
sensors that potentially cover the line segment from (0, 2i− 2) to (0, 2i) on the
barrier b2 correspond to variables in clause i of f ′

2. It is easy to verify that f ′ is
satisfiable iff for the corresponding instance P there exists a covering assignment
assuming perpendicular movement. 	


Since any instance of monotone 3-SAT problem can be transformed into one in
which no literal occurs more than 4 times, it follows from the proof that the
problem is NP-complete even when the sensors are in integer positions and the
diameter of sensors are limited to two different sizes 1 and m ≥ 4. It is also clear
from the proof that the perpendicularity of the barriers is not critical. The key
issue is that the order of intervals covered by the sensors in one barrier has no
relationship to those covered in the other barrier. In the case of parallel barriers,
this property does not hold. The exact characterization of barriers for which a
polytime algorithm is possible remains an open question.

We now turn our attention to restricted versions of barrier coverage of two
perpendicular barriers where a polytime algorithm is possible. For S a set of
sensors, and barriers b1, b2, we call (S, b1, b2) a non-overlapping arrangement if
for any two sensors si, sj ∈ S, the intervals that are potentially covered by s1
and s2 on the barrier b1 (and b2) are either the same or disjoint. This would be
the case, for example, if all sensor ranges are of the same diameter equal to 1 and
the sensors are in integer positions. We show below that for a non-overlapping
arrangement, the problem of finding a covering assignment is polynomial.
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Theorem 6. Let S = {s1, s2, . . . , sn} be a set of n sensors initially located in the
plane at positions p1, p2, . . . , pn and let b1 and b2 be two perpendicular barriers to
be covered. If (S, b1, b2) form a non-overlapping arrangement, then there exists
an O(n1.5) algorithm that finds a covering assignment, using only perpendicular
movement or reports that none exists.

Proof. Omitted due to lack of space. 	


6 Conclusions

It is known that the MinMax barrier coverage problem when the sensors are ini-
tially located on the line containing the barrier is solvable in polynomial time [3].
In contrast, our results show that the same problem becomes NP-complete when
sensors of arbitrary ranges are initially located in the plane and are allowed to
move to any final positions on the barrier. It remains open whether this problem
is polynomial in the case when there is a fixed number of possible sensor ranges.
If sensors are restricted to use perpendicular movement, the feasibility, MinMax,
and MinSum problems are all polytime solvable for the case of k parallel bar-
riers. However, when the barriers are not parallel, even the feasibility problem
is NP-complete, even when sensor ranges are restricted to two distinct values.
It would be therefore interesting to study approximation algorithms for Min-
Max and MinSum for this case. Characterizing the problems for which barrier
coverage is achievable in polytime remains an open question.

References

[1] Balister, P., Bollobas, B., Sarkar, A., Kumar, S.: Reliable density estimates for cov-
erage and connectivity in thin strips of finite length. In: Proceedings of MobiCom
2007, pp. 75–86 (2007)

[2] Bhattacharya, B., Burmester, M., Hu, Y., Kranakis, E., Shi, Q., Wiese, A.: Opti-
mal movement of mobile sensors for barrier coverage of a planar region. Theoretical
Computer Science 410(52), 5515–5528 (2009)

[3] Chen, D.Z., Gu, Y., Li, J., Wang, H.: Algorithms on minimizing the maximum
sensor movement for barrier coverage of a linear domain. In: Fomin, F.V., Kaski,
P. (eds.) SWAT 2012. LNCS, vol. 7357, pp. 177–188. Springer, Heidelberg (2012)

[4] Czyzowicz, J., Kranakis, E., Krizanc, D., Lambadaris, I., Narayanan, L.,
Opatrny, J., Stacho, L., Urrutia, J., Yazdani, M.: On minimizing the maximum
sensor movement for barrier coverage of a line segment. In: Ruiz, P.M., Garcia-
Luna-Aceves, J.J. (eds.) ADHOC-NOW 2009. LNCS, vol. 5793, pp. 194–212.
Springer, Heidelberg (2009)

[5] Czyzowicz, J., Kranakis, E., Krizanc, D., Lambadaris, I., Narayanan, L., Opa-
trny, J., Stacho, L., Urrutia, J., Yazdani, M.: On minimizing the sum of sensor
movements for barrier coverage of a line segment. In: Nikolaidis, I., Wu, K. (eds.)
ADHOC-NOW 2010. LNCS, vol. 6288, pp. 29–42. Springer, Heidelberg (2010)

[6] Gold, E.M.: Complexity of automaton identification from given data. Information
and Control 37(3), 302–320 (1987)



182 S. Dobrev et al.

[7] Huang, C.F., Tseng, Y.C.: The coverage problem in a wireless sensor network. In:
Proceedings of WSNA, pp. 115–121 (2003)

[8] Kumar, S., Lai, T.H., Arora, A.: Barrier coverage with wireless sensors. In: Pro-
ceedings of MobiCom 2005, pp. 284–298 (2005)

[9] Meguerdichian, S., Koushanfar, F., Potkonjak, M., Srivastava, M.B.: Coverage
problems in wireless ad-hoc sensor networks. In: Proceedings of INFOCOM 2001,
vol. 3, pp. 1380–1387 (2001)

[10] Mehrandish, M., Narayanan, L., Opatrny, J.: Minimizing the number of sensors
moved on line barriers. In: Proceedings of IEEE WCNC 2011, pp. 1464–1469
(2011)

[11] Yan, G., Qiao, D.: Multi-round sensor deployment for guaranteed barrier coverage.
In: Proceedings of IEEE INFOCOM 2010, pp. 2462–2470 (2010)



Succinct Permanent Is NEXP-Hard

with Many Hard Instances�

(Extended Abstract)

Shlomi Dolev1, Nova Fandina1, and Dan Gutfreund2

1 Department of Computer Science
Ben Gurion University of the Negev, Israel

2 IBM Research, Tel Aviv, Israel
{dolev,fandina}@cs.bgu.ac.il, danny.gutfreund@gmail.com

Abstract. The main motivation of this work is to study the average
case hardness of the problems which belong to high complexity classes.
In more detail, we are interested in provable hard problems which have
a big set of hard instances. Moreover, we consider efficient generators
of these hard instances of the problems. Our investigation has possible
applications in cryptography. As a first step, we consider computational
problems from the NEXP class.

We extend techniques presented in [7] in order to develop efficient
generation of hard instances of exponentially hard problems. Particu-
larly, for any given polynomial time (deterministic/probabilistic) heuris-
tic claiming to solve NEXP hard problem our procedure finds instances
on which the heuristic errs. Then we present techniques for generating
hard instances for (super polynomial but) sub exponential time heuris-
tics.

As a concrete example the Succinct Permanent mod p problem is
chosen. First, we prove the NEXP hardness of this problem (via ran-
domized polynomial time reduction). Next, for any given polynomial
time heuristic we construct hard instance. Finally, an efficient technique
which expands one hard instance to exponential set (in the number of
additional bits added to the found instance) of hard instances of the
Succinct Permanent mod p problem is provided.

1 Introduction

Computationally hard problems play important role in the theory of computer
science. The main implications of such problems are in modern cryptography,
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where the hardness of the problem is necessary in order to build secure cryp-
tographic primitives. Yet for the most of the current cryptographic schemes
the worst case hardness does not suffice, rather the hardness on the average of
the problem is employed in construction. In addition, some of these schemes
require the possibility to explicitly (and efficiently) construct hard instances of
the problem. For example, the implementation of the Merkle’s Puzzles technique
[10] may use the instances of such problems as puzzles. Moreover, the current
state of complexity theory does not enable to prove the hardness of the problems
which are usually used in cryptography.

Thus, the main aim of this work is to investigate computational problems
which are provably hard (against deterministic/probabilistic polynomial time
solvers), and to develop technique for efficient generation of hard instances of
these problems. Since the central motivation comes from cryptography, we focus
our attention on providing specific problems of desired type which are appro-
priate for practical tasks. As a first step towards achieving general results we
propose to study a concrete problem. Particularly, the succinct permanent mod-
ulo a prime problem is chosen to be considered through the paper.

The scheme of succinct representation of graphs (or matrices) was proposed
by Galperin and Wigderson [6]. The authors suggest to represent graph with the
short boolean circuit which computes the neighborhood relation of any two given
vertices. Further, authors consider and analyze various computational problems
assuming the succinctly represented instances. The general result was stated and
proved by Papadimitriou and Yannakakis [12].

Theorem 1. Let A be some computational problem on graphs. Then if 3SAT
can be reduced via reduction-projection to A, then Succ−A problem is NEXP
time hard.

The permanent is a candidate for a problem with a big fraction of hard instances.
The reason is the random self-reducibility property of the permanent problem:
solutions of a small random set of instances solve the given instance [9]. Namely,
assuming the hardness of the permanent on the worst (randomized) case implies
the hardness of the permanent on the average case.

Therefore, according to the above arguments, we investigate the permanent
problem assuming that instances are given in succinct representation.

Related Work. There are many results showing an equivalence of the worst
case and average case hardness for problems of high complexity classes, basically
PSPACE and above [8,3,15,14]. The most recent work on this line of research
is by Trevisan and Vadhan [15]. The authors show that if BPP �= EXP , then
EXP has problems which cannot be solved by any BPP algorithm on even
(1/2 + 1/poly(n)) fraction of the inputs. Meaning that these problems are hard
for all efficient algorithms with respect to uniform distribution over the inputs.
These hard on average problems are obtained by encoding (using error correcting
schemes in the style used in probabilistically checkable proofs) the entire truth
table of another hard in the worst case problem, which we call the source problem.
Thus, roughly speaking, ensuring the identification of the value of a certain bit
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in the encoded truth table requires knowledge of the solutions of all instances
of the source problem. And hence, every instance (bit in the encoded truth
table) is as hard to compute as the worst case instance of the source problem.
Therefore, revealing any bit in the encoded truth table has similar hardness,
implying hardness on the average case over the chosen indices.

Unfortunately, these languages may have the following property. After invest-
ing an exponential effort on solving some instance of the truth table encoding
language, one have, in some sense, the information about solutions of all the
instances of the source problem. Thus, it may happen, that there is an efficient
way to compute the solutions of all instances (of the same length) of the new
encoded bits, using the solution of the truth table encoding language, and the
information regarding solutions of the instances of the source problem (similar
to the idea of the rolling hash function).

This property of the reduction can be a drawback when using it in crypto-
graphic applications. In other words, if many instances of the problem are used
(perhaps as part of cryptographic primitives), one may invest time to solve some
small set of the encoded bit instances, and thus to nullify the hardness of all
other encoded bit instances at once.

For example, it may turn out that it is impossible to use the obtained hard
on average bits as puzzles in the Merkle’s puzzle scheme. In this scheme, two
parties, Alice and Bob, wish to establish a shared secret key. The only way Alice
and Bob can communicate is by using a public insecure channel. The proposed
protocol in [10] is based on the concept of puzzles. A puzzle is the cryptogram
that is meant to be broken. When it is broken (or solved), the information that
was “en-puzzled” is revealed.

In one of the variants of the Merkle’s scheme in order to agree on the secret
key, Alice creates n pairs of puzzles (namely, 2n puzzles totally). We denote one
pair of puzzles by 〈PI , PS〉. Alice sends all the pairs to Bob over the insecure
channel. Then Alice and Bob each randomly choose and solve O(

√
n) pairs of the

puzzles. They both invest the required amount of time to solve these puzzles.
The size of the puzzles should be tuned to the capabilities of Alice and Bob
and to a reasonable time that is needed to establish a key versus the required
security parameter. After Alice and Bob finish the work, they send each other
the solutions of the first puzzle in each pair of puzzles — the solutions of PI . By
the birthday paradox they both have, with high probability, at least one common
pair of puzzles selection. Therefore, they have sent each other at least one the
same string of bits which denotes the solution of the PI part of the commonly
selected puzzle. Now, Alice and Bob have the same secret key. Namely, the
solution of the appropriate puzzle PS .

1

The security of this scheme is based on the lack of ability of the adversary, Eve,
to know which puzzles Alice and Bob have chosen to solve. Therefore, to find out
the secret, Eve has to solve (in the worst case) all (in fact O(n)) of the puzzles
PI that Alice sent. Suppose it takes n time to solve one puzzle, then to agree

1 Another possibility is to solve only the PI puzzles of all
√
n chosen puzzles, and after

detection of the common puzzle to solve an appropriate PS puzzle.
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on the key Alice and Bob will spend O(n
√
n) time, while Eve will spend O(n2)

time. In addition, the important property of the puzzle on which the security
of the scheme is based is its (proven) computational hardness. Furthermore, an
essential property of the puzzles which is implicitly employed in the scheme is
independence of solutions of different puzzles. Namely, the solution of one puzzle
does not reveal solution of the another puzzle(s).

Suppose one implements a puzzle as the instance of the hard on average
problem obtained from the truth table encoding reduction. In this case, the
puzzles are bits in the encoded truth table. Therefore, finding a solution of some
puzzle implies the need to solve all the (hard) instances of the source problem.
Namely, the solutions of all the puzzles are based on the knowledge of the same
bits and (it may turn out that) there is an efficient way to compute solutions of
all the rest of the puzzles. Hence, Alice and Bob do not have an advantage over
Eve.

Therefore, our interest is focused on providing an exponential hard on average
problem which can be used in various cryptographic applications. For example
when implementing the above scheme we want to be sure that there will not
exist a polynomial time algorithm which solves the instances sent by Alice to
Bob within the same or less time than it takes the communicating parties to
establish a key (under the BPP �= NEXP assumption).2

Our Contribution. Following our goal we first prove that the succinct perma-
nent modulo a prime problem is NEXP -hard (via randomized polynomial time
reduction).

We then present general technique of constructing hard instances for a given
polynomial time (deterministic) heuristic that claims to solve the NEXP time
hard problem. This construction does not assume any complexity assumption.
In addition, we provide a new technique that can be interesting as an inde-
pendent result. Specifically, we show how to efficiently generate interactively
(in the standard model of multi-prover interactive proofs where the provers are
computationally unlimited) a hard instance of a (deterministic) heuristic whose
running time is larger than the verifier’s (in particular, for super polynomial but
sub exponential time heuristics). Both these techniques, though, are developed
to work against one-sided error heuristics.

Furthermore, we consider randomized polynomial and super polynomial time
heuristics and establish the following result. Assuming BPP �= NEXP and
given any polynomial or (super polynomial) time randomized one-sided error
heuristic claiming to solveNEXP hard problem, there is an efficient (polynomial
time) randomized procedure that generates a small set of the instances of the
problem such that the heuristic errs on one of them with the high probability.

2 We note that a similar approach can be used to cope with an adversary that can
use randomized algorithms, by choosing instances that are hard in average, in the
double exponential class or beyond. In such a class there is a need for exponential
time even if all possible randomized selections are examined. Presburger Arithmetic
may qualify for such a case, especially given the result on hardness of many instances
that was obtained by Rybalov in [13].
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As a consequence, our main result states that assuming BPP �= NEXP
and given any polynomial time (deterministic or randomized) one-sided error
heuristic, there is an efficient procedure that generates instances of the succinct
permanent modulo a prime problem, such that the heuristic errs on them. More-
over, we present an efficient procedure which for any given hard instance of the
succinct permanent modulo a prime produces exponentially many sets of hard
instances. We then discuss the possibility of the existence of the following prop-
erty of the generated sets: the solutions of the instances of some set do not reveal
information concerning the solutions of the instances of another set.

Organization. Our first step in the work is to establish complexity result of
the succinct permanent modulo a prime problem. In Section 2 we prove that the
decision problem of whether the value of a permanent of a matrix is zero when
the matrix is given in a succinct representation is NEXP time hard. We use the
obtained result to prove that computing the permanent modulo a prime number
is NEXP time hard (via a randomized reduction). Due to space constraints, we
provide only key points of the proofs. Full proofs of all the statements appear in
[4]. In Section 3 we turn to the general problem of constructing a hard instance
of the NEXP hard problem for any given heuristic. We present a polynomial
search of finding hard instances in the case the heuristic is deterministic polyno-
mial time algorithm (for the randomized polynomial time heuristic we make an
assumption of BPP �= NEXP relation), and present a polynomial search that
uses two provers in the case that the heuristic is deterministic super polynomial
(or exponential, assuming EXP �= NEXP).

Finally, we present a procedure that expands any given hard instance of the
succinct permanent modulo a prime to exponential number of sets of the in-
stances. Each set consists of hard on average instances, where the exponential
growth is relative to the number of bits added to the input.

2 The (Worst Case) Hardness of the Succinct Permanent
mod p

In this section we present succinct permanent related problems and build chain
of reductions between them in order to establish the computationally hardness
of the problem of our interest.

2.1 Zero Succinct Permanent

We introduce the Zero Succinct Permanent problem and establish its complexity
hardness.

Definition 1. The Zero Succinct Permanent problem is defined by the following
input and output:
input: An O(logkn) sized boolean circuit C which succinctly represents an n× n
integer matrix A (with positive and negative polynomially bounded values) where
k is some constant integer.
output: permanent(A) == 0.
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Theorem 2. Zero Succinct Permanent is NEXP time hard.

Proof. In [12] the authors have shown that the Succ-3SAT decision problem is
NEXP time hard. We reduce this problem to the Zero Succinct Permanent on
basis of the techniques presented in [16]. Technical details are presented in [4].

	


2.2 Succinct Permanent Modulo a Prime

In this section we define the problem we will focus on and establish its compu-
tational hardness.

Definition 2. The Zero Succinct Permanent mod p problem is defined by the
following input and output:
input: An O(logkn) sized boolean circuit C which succinctly represents an n× n
integer matrix A (with positive and negative polynomially bounded values) where
k is some constant integer.
p is a prime number, s.t. p = O(nk), given in a binary representation.
output: permanent(A) mod p in binary representation.

To prove the hardness of the defined problem, it is enough to prove the deci-
sion version of it. Namely, the problem that decides whether the permanent of a
succinctly represented integer matrix is equal to zero mod p. We call this prob-
lem Zero Succinct Permanent mod p. In the previous section, we proved that
Zero Succinct Permanent Problem (the same problem without modulo opera-
tion) is NEXP time hard in the worst case. In [4] we build a polynomial time
randomized reduction from Zero Succinct Permanent to Zero Succinct Perma-
nent mod p. Given an instance of the Zero Succinct Permanent problem, the
reduction calls (a polynomial number of calls) an oracle of the Zero Succinct
Permanent mod p problem on the randomly chosen instances in order to decide
whether the permanent of the input matrix is zero. Using a Chinese Reminder
Theorem randomized algorithm outputs correct answer with probability 1 if the
permanent of the input matrix is zero. In case the permanent of the input matrix
is non-zero, the probability of a correct answer is at least 1

2 .
Note that we can assume that the input encoded matrices have only positive

values, from the field Zp (when p is also given as a part of the input). Given
an input that encodes a matrix with negative values, we can add an additional
small boolean circuit that performs appropriate arithmetical operations to obtain
an equivalent mod p positive valued matrix. The permanent value of the new
matrix under modulo operation is not changed.

3 Finding Hard Instance for a Given Heuristic

The hardness of theNEXP -complete problemswe have discussed above is aworst
case hardness. Namely, given any polynomial time deterministic (or nondetermin-
istic) algorithm claiming to solve the problem, there are infinitely many integers
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n, such that the algorithm errs on solving at least one instance of length n.
This is due to the fact P ⊂ NEXP (NP ⊂ NEXP ). An interesting ques-
tion is whether we can efficiently produce hard instances of the problem. In [7],
the authors present a technique that provides hard distributions of the inputs
for heuristics (deterministic and randomized) attempting to solve NP -complete
problems. However, to produce a hard instance of some length n, their technique
consumes more time than is required for heuristics to solve this instance.

In this section, we will adapt the technique in [7] to provide a hard distribu-
tion for heuristics that attempt to solve NEXP -complete problems. Obviously,
this technique inherits the disadvantage mentioned above. To overcome this ob-
stacle, we use the idea of two-prover interactive protocols that was proposed
and discussed in [2]. We present a new method to generate hard distributions of
NEXP problems against superpolynomial time heuristics.

To generate hard instances for the Succinct Permanent mod p problem, it is
enough to show how to efficiently generate a hard distribution of any specific
NEXP -complete problem. To obtain a hard distribution of any other complete
language, we apply many-one reduction. In particular, we are considering hard
distributions of the Succ-3SAT problem.

This section is organized as follows: first, we discuss polynomial time heuris-
tics, both deterministic and randomized; next, we observe the case of superpoly-
nomial time heuristics.

3.1 Polynomial Time Heuristics

Deterministic Case. Assume we are given deterministic polynomial time al-
gorithm B claiming to solve the Succ-3SAT problem. The goal is to generate
hard instances for heuristic B. However, the result we have established so far
is considering some special type of heuristics, namely, heuristics that have only
one-sided error. Suppose we are given algorithm B such that if B answers “yes”
on the input x, then it is assumed that indeed it holds that x is in the language.
From now, we assume that the heuristic trying to solve the Succ-3SAT problem
satisfies the above requirement. Next, we describe a technique that generates a
set of instances of the problem that B fails to solve. We use an idea that was
proposed by Gutfreund, Shaltiel and Ta-Shma [7]. In their paper, they describe
a procedure that outputs a set of hard instances of the 3SAT problem. We mod-
ify their technique in order to apply it to our case and formulate the following
lemma, that is a NEXP version of Lemma 3.1 of [7].

Lemma 1. There is a deterministic procedure R, a polynomial q() and a con-
stant d, such that the procedure R gets three inputs: integers n and a and a
description of a deterministic machine B, such that B claims to solve the Succ-
3SAT problem and B has one-sided error. The procedure R runs in time nda2

and outputs at most two boolean circuits where the length of each circuit is ei-
ther n or q(na). Furthermore, if B is an algorithm that runs in time bounded by
na on inputs of length n (for some constant a), then for infinitely many input
lengths n, the invocation of R(n, a,B) gives a set F of boolean circuits, such that
there exists C ∈ F with Succ-3SAT(C) �= B(C).
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Proof. We know that Succ-3SAT has no deterministic polynomial time algo-
rithm. Therefore, there are infinitely many natural numbers n, such that the
heuristic B errs on the input of the size n. Next we consider the statement
denoted as Φn: ‘there exists a boolean circuit C of length n, such that Succ-
3SAT(C)=1 and B(C) �= 1’ .

We define a language ErrB = {Φn | n ∈ N and Φn is true}. Note, that ErrB
is not empty (due to our assumption of one-sided error of the heuristic), and
the length of Φn is a polynomial on the terms of n. The first observation is
that ErrB ∈ NEXP . Indeed, there is a deterministic exponential (in na) time
verifier such that given as a certificate the boolean circuit C, representing a
3SAT instance φC , and an assignment α (of an exponential length on the terms
of n) for φC , checks whether it is the case that both α is a satisfying assignment
for φC and B(C) �= 1.

Therefore, we can reduce ErrB to the Succ-3SAT problem using the prop-
erty of the Cook-Levin reduction noted by the authors in [12]. A result of the
Cook-Levin procedure is a boolean formula that reflects the movements of an
exponential time Turing machine verifying a membership of the language ErrB .
We call this formula Ψn. The variables of this formula are x, α, z, such that x
variables describe a boolean circuit, α variables describe an assignment for the
formula represented by circuit x, and z are the auxiliary variables added by the
reduction. And the following holds: for any (x, α, z) that satisfies Ψn, x satisfies
Φn, and α is a certificate for that. Furthermore, Ψn has a highly regular structure.
In fact, it can be shown, that there is a polynomial time (on the terms of na)
algorithm XΨn , such that given any two binary strings of length c×n computes
a clause-literal relation of the formula Ψn in polynomial in na time. Namely,
for every statement Φn, we match a polynomial sized (in terms of na) boolean
circuit XΨn that encodes a 3SAT formula Ψn. We chose q() to be a polynomial
that is large enough so that q(na) is bigger than the length of XΨn . Finally, we
have reduced the language ErrB into the instances of the Succ-3SAT problem.
Namely, for every Φn (polynomially sized on n), there is XΨn (polynomially sized
on na), such that Φn ∈ ErrB if and only if XΨn ∈ Succ−3SAT .

Searching Procedure. The hard instance for B is obtained by applying the
following searching technique. Assume n is an integer such that B fails to solve
an instance of the length n. Run B on XΨn . If B answers “no” then it errs on
XΨn and we have found a hard instance. If B answers “yes”, we start a searching
process that will hopefully end with the boolean circuit C of the size n, such
that B errs on it. The process sequentially runs B on the inputs obtained from
XΨn by partial assignment of the variables of Ψn that describe a boolean circuit
(x variables).

The process is as follows:

– Define Ψ i
n = Ψn (α1, . . . , αi, xi+1 . . . xn), where α1, . . . αi is a partial assign-

ment for variables of Ψn that describe a boolean circuit. Ψ0
n = Ψn.

– Suppose we have fixed a partial assignment, namely B
(
XΨ i

n

)
= “yes′′. Then

define:
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Ψ i
n, 1 = Ψn (α1, . . . , αi, 1, xi+2 . . . xn).

Ψ i
n, 0 = Ψn (α1, . . . , αi, 0, xi+2 . . . xn).

– Run B
(
XΨ i

n,1

)
. If it answers “yes”, define Ψ i+1

n = Ψ i
n, 1.

Else, run B
(
XΨ i

n,0

)
. If it answers “yes”, define Ψ i+1

n = Ψ i
n, 0.

Else, B errs on one of the two XΨ i
n,1

, XΨ i
n,0

. Output them.
– At the end, we hold the whole assignment C = α1 . . . αn. C is a circuit B

errs on. Output it.

Note, that for each i, Ψ i
n defines a NEXP language. Therefore, we can reduce

it in polynomial time to XΨ i
n
instances.

In the worst case, the searching process will stop when the whole assignment
for x variables is found. In every step of the process, we run machine B on the
input of length poly(na). Since the number of x variables is polynomial in n and
the running time of B is na, the total time procedure R runs on the inputs n,
a, B is poly(na2

). 	

Randomized Case. The main motivation of this section is to produce a hard
distribution of instances of the Succinct Permanent mod p problem. Since the
reduction we have built for this problem from Succ-3SAT is randomized, we have
to consider producing hard instances for polynomial time randomized heuristics.
We assume that the NEXP class of problems is hard for BPP . Namely, we
assume that BPP ⊂ NEXP . Informally, we want to prove that if BPP �=
NEXP , then for any polynomial time randomized algorithm trying to solve the
Succ-3SAT problem, it is possible to efficiently produce two instances of that
problem such that with a high probability the algorithm errs on one of them.
For that, again, we follow the technique of generating a hard distribution of the
instances for randomized heuristics that was proposed in [7]. Again we discuss
the heuristics with one-sided error. Namely, the heuristics such that the answer
“yes” on the input x implies that x belongs to the language with probability 1.

Next, we provide the results from [7] (without their proofs) and combine
them with our observations to get the proof for the following lemma, which is
the NEXP analogous lemma to Lemma 4.1 of [7].

Lemma 2. Assume that NEXP �= BPP . For every constant c > 1
2 , there

is a randomized procedure R, a polynomial q() and a constant d such that the
procedure R gets three inputs: integers n, a and a description of a randomized
machine B that has one-sided error. The procedure R runs in time nda2

and
outputs at most two boolean circuits where the length of each circuit is either n
or q(na). Furthermore, if B is a randomized algorithm that runs in time bounded
by na on inputs of length n then for infinitely many input lengths n, invoking
R(n, a,B) results with probability 1 − 1

n in a set F of boolean circuits such that
there exists C ∈ F with Succ− 3SAT (C) �= Bc(C).

Bc : {0, 1}∗ → {0, 1, ∗} is a deterministic function associated with the random-
ized machine B in the following way. Given some probabilistic machine M and
some function c(n) over integers, such that 1

2 < c(n) ≤ 1, Mc : {0, 1}∗ → {0, 1, ∗}
is defined as follows: Mc(x) = 1 (Mc(x) = 0) if M accepts (rejects) x with prob-
ability at least c(|x|) over its coins; otherwise Mc(x) = ∗.
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Proof. We follow the proof of the Lemma 4.1 in [7].
First, we transform the randomized algorithm B (of the lemma) into a ran-

domized algorithm B by amplification.
The algorithm B: Given an input x of length n, algorithmB uniformly chooses n2

independent strings v1, . . . , vn2 each of them of length na. For every 1 ≤ i ≤ n2,
the algorithm calls B(x, vi) and outputs the majority vote of the answers.

Next, the authors of [7] prove the following statement:

Lemma 3. Let 1
2 < c ≤ 1 be some constant. With probability at least 1 − 2−n

for a randomly chosen u ∈ {0, 1}na+2

, it holds that for every x of length n and
b ∈ {0, 1}:

B(x, u) = b⇒ Bc(x) ∈ {b, ∗}

Now, the randomized heuristic B(x) can be replaced with deterministic algo-
rithm B(x, u), where u is a randomly chosen string. Note, that the heuristic B
has one sided-error. To find incorrect instances for randomized algorithm B, we
find incorrect instances for deterministic machine B(x, u). Using Lemma 3, we
conclude that with high probability one of the instances is incorrect for B as
well.

Randomized Searching Procedure. As in the deterministic case, we start the
searching procedure by defining the following language. Consider the statement
denoted as Φn,u : “there exists a boolean circuit C of length n such that Succ-

3SAT(C)=1 and B(C, u) �= 1” , for every integer n and u ∈ {0, 1}na+2

. We

define the language ErrB =
{
Φn,u | n ∈ N , u ∈ {0, 1}na+2

and Φn,u is true
}
. As

in the deterministic case, due to the assumption of the one-sided error of the
heuristic B, it follows that ErrB is not empty. In addition, it is clear thats it
is a NEXP language. In fact, it can be easily shown, that for infinitely many
n, except for probability 1

2n for random u we have that Φn,u ∈ ErrB . Applying
the same arguments as in the deterministic case, we reduce an instance of ErrB
to the boolean circuit XΨn,u , with the properties as noted in the deterministic
case. Next, we describe the randomized procedure R of Lemma 3.
The procedureR chooses at random strings u ∈ {0, 1}na+2

and u′ ∈ {0, 1}q(na)a+2

.
Then it runs a searching procedure from the deterministic case on the input
XΨn,u with the deterministic heuristic B with the random choices defined by u′,
including the following change: when there is a call to B(x), the procedure calls
B(x, u′).

Following that procedure, R outputs at most two instances and the fol-
lowing holds: for infinitely many n, R outputs a set of instances, such that
with probability at least 1 − 1

n there is an instance C in the set, such that
Bc(C) �= Succ− 3SAT (C).

The analysis of the running time of the randomized searching procedure R is
the same as in the deterministic case. 	
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3.2 Superpolynomial Time Heuristics

Suppose we are given a superpolynomial (deterministic) time algorithm claim-
ing to solve the Succ-3SAT problem. From the hierarchy theorems of complexity
theory,we know that such an algorithmcannot solve all instances of the Succ-3SAT
problem correctly. Hence, we would like to efficiently generate a distribution of the
inputs that the heuristic fails to solve. Note, that in this case, we cannot just use
the previous technique, as we have no time to run the heuristic in order to identify
its answer on the given instance. Namely, it is not efficient (not polynomial time)
to run the searching procedure in this case. The idea is to use an interactive two
provers protocol, in order to efficiently identify, whether a particular instance is
accepted or rejected by the given superpolynomial time heuristic.

According to [2], it holds that for any NEXP language L, there is a ran-
domized polynomial time verifier machine V and infinitely powerful machines
P1, . . . Pk such that the following holds:

1. If x ∈ L then Pr [P1, . . . Pk cause V to accept x] > 1− 2n.

2. If x /∈ L then Pr [P ′
1, . . . P

′
k cause V to accept x] < 2−n for any provers

P ′
1, . . . P

′
k.

Let B denote some superpolynomial time deterministic algorithm with one-sided
error claiming to solve Succ-3SAT problem. We use an interactive proof system
for the language LB – the language of the heuristic B. Namely, LB is the set
of all instances such that B answers “yes” on them (and by the assumption of
one-sided error, B does not mistake on the instances from this set). Note, that
LB is a NEXP language. We start with the language ErrB that was defined
in the previous section. Strictly following the proof of the Lemma 1, we reduce
this language to the Succ-3SAT problem in order to get the set of the instances
{XΨn}.

The idea is to use the scheme of the searching process as before, but with the
following change. Every time the searching procedure calls the heuristic B on
the input x, we run the verifier-provers protocol with the input x. According to
the decision V makes, the process outputs the instance such that B errs on it
with high probability or continues to search for such inputs. In that way, we have
a randomized polynomial time procedure that outputs at most two instances of
the problem, such that B errs on one of them with a high probability. Thus, in
the standard model of interactive proofs, the above procedure efficiently searches
and finds the hard instances for the heuristic B. Note, that in that model, the
running time of the searching procedure does not include the time required by
the provers.

For the randomized superpolynomial heuristic (under an assumption that
NEXP is hard for such class of heuristics), we use the same scheme as in the
randomized polynomial case. Namely, first, by the amplification argument, we
replace the randomized machine with a deterministic one (defined by a random
string of choices), and then we use the idea of the two provers protocol.
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4 Succinct Permanent Modulo a Prime Has Many Hard
Instances

The number of hard instances of the Succinct Permanent mod p grows exponen-
tially with the input size. In Section 2.2, we proved that there exists (for each
sufficiently large n) at least one hard instance of size O(logkn) of the Succinct
Permanent mod p problem that requires a given polynomial time heuristic to
work more than polynomial time to compute the solution correctly. In Section
3 we showed how to find a hard instance for any given heuristic. In this section,
we use any given hard succinct permanent instance for a given heuristic (of size
O(log nk)) to generate a set of O(n) hard succinct permanent instances. The
generated set is a combination of random self-reducible sets that can efficiently
solve the given hard succinct instance. The number of instances in the set is
exponential in the additional bits used to enlarge the succinct representation.

Given a boolean circuit C and a prime number p as inputs to the Succinct
Permanent mod p. Consider a matrix A = M(C) that is represented by C. Let
the first row of A be: (x11 x12 . . . x1 logn x1 logn+1 . . . x1n). Then,

permanent(A) = x11 × per1 + . . .+ x1 logn × perlogn + . . .+ x1n × pern

where perj is a permanent of the Adj1j (adjoint) of the matrix A. We can rewrite
it as follows: permanent(A) = x11×per1+x12×per2+. . .+x1 logn×perlogn+X .

The idea is to build O(n) circuits representing matrices, that are obtained
from A by replacing the first log n entries in a manner that allows computing
a permanent of A modulo p in polylogarithmic time, given permanent results
modulo p of logn randomly chosen circuits from the set.

One of the possibilities to obtain such a construction is to use the features of
the Vandermonde matrix.

Note that in the reduction algorithm, we can use the primes p′, that are re-
quired by the Chinese Reminder theorem, such that p′ ≥ n+1, without changing
the complexity result. Therefore, we can assume that the hard instance is C, p,
s.t. the prime p satisfies p ≥ n+ 1.

For each 1 ≤ i ≤ p and ai ∈ Zp define: ri = (ai ai
2 ai

3 . . . ai
logn) Note, that

it is necessary that p > n in order to construct a set of size that is exponential
in the input size. Let Ri be an n× n matrix obtained from A by replacing the
first logn entries of the first row of A with the vector ri. We show that given the
value of permanent(Ri) mod p of any log n + 1 matrices from R1, . . . Rp, there
is a polynomial time algorithm that computes permanent(A) mod p.

Let a be a vector of the first logn entries of the first row of the matrix A. For
simplicity, suppose we are given

permanent(R1) mod p ≡ z1, . . . permanent(Rlogn+1) mod p ≡ zlogn+1

To compute a permanent of A modulo p, one should compute the values of
X mod p, per1 mod p, per2 mod p, . . . perlogn mod p We build a system of
linear equations. The system contains logn + 1 equations, each with logn + 1
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variables. All the constants in the system are from the field Zp, namely, positive
integer numbers. The matrix representation of the system is as follows:⎛⎜⎜⎜⎝

1 a1 a1
2 . . . a1

logn

1 a2 a2
2 . . . a2

logn

...
...

...
1 (alogn+1) (alog n+1)

2 . . . (alogn+1)
logn

⎞⎟⎟⎟⎠
The vector of variables of the system is: (X per1 per2 . . . perlogn), and the
vector of answers is (z1 z2 . . . zlogn zlogn+1).

Since the matrix is a subset of a Vandermonde matrix, there exists a unique
solution to the system. Since all computations are over the field Zp, the time
needed to solve the system is polynomial in the size of the succinctly represented
instance. To complete the description of the technique, we should clarify that
for each matrix Ri, there exists a succinct circuit representation. We construct
circuit C(Ri) by combining the circuit C (the succinct circuit representation of
the matrix A) with succinct circuit Rowi that contains logn inputs and logn
outputs. Rowi(k) outputs a binary representation of ai

k mod p, for ai ∈ Zp, 1 ≤
k ≤ logn.

In principle, the above technique is not restricted only to the first row of the
matrix. The building procedure is valid if we choose some row of the matrix (or
some column) and some logn entries of the chosen row (or column) — the perma-
nent of the matrix can be computed by each of its rows (or columns). Therefore,
using this observation, we speculate that the succinct permanent problem is not
in the LEARN class, which is defined by Impagliazzo and Wigderson in [8].
That is, having an oracle for the answers of logn or less instances of the same
generated set do not reveal the answers of the hard instances of the set of another
generated set.3 We emphasize, however, that there is an efficient algorithm such
that given the answers for at least logn+ 1 instances from the same generated
set provides in polynomial time answers for any other instance in the same set.
Hence, instances should be carefully chosen from different sets. Such a strat-
egy will not base the hardness on a small set of hard instances as done in the
encoding truth tables technique of [14].

Note that we introduce a new framework in which one would like to avoid the
dependencies of instances in the manner that a solution to one instance (say,
after an exhaustive search for a private key) reveals a solution to other (private
key) instances. Not only there is a need to introduce provable hard on average
instances, it is also important to ensure non revealing instance solutions.

Acknowledgments. With pleasure, we thank Mihalis Yannakakis and Salil
Vadhan for useful inputs.

3 Our speculation is based on the fact that the result of one minor does not totally
reveal the result of another minor of the permanent, otherwise we may use this
property to solve the permanent problem in polynomial time starting with a matrix
of all zeros and adding (non zero) lines and columns one after the other calculating
the delta in the permanent value.
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Abstract. In this work, we apply a common economic tool, namely
money, to coordinate network packets. In particular, we present a net-
work economy, called PacketEconomy, where each flow is modeled as
a population of rational network packets, and these packets can self-
regulate their access to network resources by mutually trading their po-
sitions in router queues. We consider a corresponding Markov model of
trade and show that there are Nash equilibria (NE) where queue po-
sitions and money are exchanged directly between the network packets.
This simple approach, interestingly, delivers significant improvements for
packets and routers.

1 Introduction

It is known that a large number of independent flows is constantly competing
on the Internet for network resources. Without any central authority to regu-
late its operation, the available network resources of the Internet are allocated
by independent routers to the flows in a decentralized manner. Internet flows
may submit at any time an arbitrary amount of packets to the network and
then adjust their packet rate with an appropriate flow control algorithm, like
the AIMD-based algorithms for TCP-flows. The apparent lack of coordination
between the independent flows leads the Internet to an “anarchic” way of oper-
ation and gives rise to issues and problems that can be addressed with concepts
and tools from algorithmic game theory.

Two representative works on applying game theory to network problems
are [15,19]. Certain game-theoretic approaches to congestion problems of the
Internet, and especially the TCP/IP protocol suite, are discussed in [20,1,8,6].
A combinatorial perspective on Internet congestion problems is given in [12].
The focus of the above works and the present paper is on sharing the network
resources between selfish flows. In this work, however, we propose an economy
where packets belonging to selfish flows may interact directly with each other.
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The use of economic tools like pricing, tolls and taxes as a means to regulate
the operation of networks and/or to support quality of service (QoS) functional-
ities in the presence of selfish flows is, for example, discussed in [18,9,4,3,16,17].
In particular, the Paris Metro Pricing approach - using pricing to manage traffic
in the Paris Metro - is adapted to computer networks in [18]. A smart market for
buying priority in congested routers is presented in [16]. In [4,3] taxes are used to
influence the behavior of selfish flows in a different network model. An important
issue identified in [3] is that taxes may cause disutility to network users unless
the collected taxes can be feasibly returned to the users. In our economic model
this issue is naturally solved; trades take place between the flows, so the money
is always in the possession of the flows.

In this work, we apply a common economic tool, namely money, to coordinate
network packets. This is in contrast to much of the existing literature, which
aims to impose charges on Internet traffic, and to our knowledge, this is the first
work to propose economic exchanges directly between packets. In particular,
we present a network economy, called PacketEconomy, where ordinary network
packets can trade their positions in router queues. The role of money in this
approach is to facilitate the trades between the network packets. Queue positions
and money are exchanged directly between the packets while the routers simply
carry out the trades. We show that, in this economy, packets can self-regulate
their access to network resources and obtain better services at equilibrium points.

In their seminal work, Kiyotaki and Wright [13] examine the emergence of
money as a medium of exchange in barter economies. Subsequently, Gintis [10,11]
generalizes the Kiyotaki-Wright model by combining Markov chain theory and
game theory. Inspired by the above works, we propose the PacketEconomy where
money is used as a coordination mechanism for network packets and prove that
there are Nash equilibria where trades are performed to the benefit of all the
flows. In the PacketEconomy, specialization - the reason for the emergence of
money as per Adam Smith ([21, Chapter 4], cited in [13]) - originates from the
diverse QoS requirements of network flows. In particular, the various types of
PacketEconomy flows differ in their tolerance for packet delays.

Contribution. The main contributions of this work are:

• A new game-theoretic model representing network packets as populations of
rational agents. In this model, a network flow is represented as a population
of in-flight packets that can make bilateral trades with other packets.
• Application of bilateral trades and virtual money at a microeconomic level
to support better coordination of rational network packets.
• Application of an interesting combination of ergodic Markov chains and
strategic games within the context of network games.

Outline. We describe in Section 2 the PacketEconomy and analyze in Section 3
a representative scenario of it. The effect of trades is discussed in Section 4.
Concluding remarks are given in Section 5. Due to lack of space, some proofs
have been omitted and can be found in the long version of this work [5].



Money-Based Coordination of Network Packets 199

2 An Economy for Packets

The PacketEconomy is comprised of a network model with selfish flows, a queue
that supports packet trades, a currency and a specific economic goal. The solu-
tion concept is the Nash equilibrium (NE), i.e., a profile of the game in which no
player has anything to gain by changing only his/her own strategy unilaterally.

The Network Model. We assume a one-hop network with a router R and a
set of N flows, as shown in Figure 1. This setting is equivalent to the common
dumbbell topology used for the analysis of many network scenarios, including
the seminal paper of Chiu and Jain [2] on the AIMD algorithm. The router R has
a FIFO DropTail queue with a maximum capacity of q packets and operates in
rounds. In each round, the first packet (the packet at position 0 of the queue) is
served. At the end of the round, the first packet reaches its destination. Packets
that arrive at the router are added to the end of the queue.

Packet Trades. At the beginning of each round all packets in the queue are
shifted one position ahead. A packet that enters the queue in this round, occupies
the first free (after the shift) position at the end of the queue. After the shift, the
packet that has reached position zero is served, while the other packets in the
router queue are simply waiting. These idle packets can engage in trades. During
each router round a fixed number b of trading periods take place. In each trading
period the idle packets are matched randomly in pairs with a predefined pairing
scheme. Each packet pair can perform a trade, as shown in Figure 2, provided
the negotiation performed between them leads to an agreement. The way the
trades take place at a microeconomic level between paired packets resembles the
models of [10,13] where agents meet in random pairs and can make trades.

Packet Delay. The delay dp of a packet p that starts at position k of the
zero-based queue and does not make any trade is k + 1 rounds (Figure 3a). If,
however, the packet engages in trades and buys a total of rb router rounds and
sells rs router rounds, then its delay dp, including the time to be served, becomes
dp = k + 1 + rs − rb rounds. A packet may have an upper bound dp,max on its
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Fig. 1. The network model with
the flows, their packets, the
router, and the queue
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Fig. 2. The state of a router queue in two suc-
cessive rounds. In round t, two trades take place;
one between the packet pair (p1,p2) and one be-
tween the pair (p4,p7).
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delay; for delays larger than dp,max the value of the packet becomes zero and the
packet will not voluntarily accept such delays (that is, it will not sell).

Details. The router operates in rounds and can serve one packet in each one.
All packets are assumed to be of the same size and no queue overflows occur.
In generating the random packet pairs, the use of predefined pairing reduces
the computational burden and avoids stable marriage problems. We make the
plausible assumption that flows with different QoS preferences are competing
for the network resources. We also make the assumption that the preferences of
each flow can be expressed with a utility function for its packets. Thus, packets
with different utility functions will, in general, co-exist in the router queue.

Packet Values. For each packet p there is a flow-specific decreasing function
vp(d) which determines the value of p, given its delay d. The value function of
each flow must be encoded onto each packet. Thus, its computational require-
ments should be low in order not to overload the router. A class of simple value
functions are vp(d) = max{vmax− cp · d, 0} where cp is the cost per unit of delay
(Figure 3b). The value of a packet can be calculated anytime during the packet’s
journey via the vp(d) function.

In the PacketEconomy every packet has its compensatory price p. For prices
lower than p, the packet is ready to buy better queue positions and for prices
higher than p it is ready to sell its position, provided that the extra delay will not
cause it to exceed its maximum delay limit.

Inventories. Every time a packet is delivered in time, wealth is created for the
flow that owns the packet. Each packet p has an inventory Ip(t) containing two
types of indivisible goods or resources; the packet delay dp(t) and the money
account ap(t). Note that delay bears negative value, whereas money represents
positive value. We assume positive integer constants sa, sb and sd, such that
ap(t) ∈ {−sa, . . . , sb} and dp(t) ∈ {0, . . . , sd}. The inventory also contains the
current position posp(t) of the packet in the queue if it is waiting in the queue.
When the packet reaches its destination, the contents of the inventory of the
packet are used to determine its utility. This utility is then reimbursed to the
flow that owns the packet and a new packet of the same flow enters the queue.

Benefit and Utility. Every packet has two types of resources that bear value,
the packet value and the budget of a packet. We define the notion of the packet
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benefit as the sum of the value of a packet plus/minus its budget. Then we use
the benefit concept to define the utility function of the packet. For rate-based
flows (see below), the utility of a packet is equal to its benefit. For window-based
flows the utility function is the benefit rate (benefit per round).

Trades. The objective of each packet is to maximize its utility. Thus, when
two packets are paired in a trading period, their inventories and their trading
strategies are used to determine if they can agree on a mutually profitable trade,
in which one packet offers money and the other offers negative delay. The obvious
prerequisite for a trade to take place is that both packets prefer their post-trade
inventories to their corresponding pre-trade inventories. For this to be possible,
there must be “surplus value” from a potential trade. In this case, both packets
can benefit, i.e., increase their utility, if they come to an agreement.

Flow Types and the Cost of Delay. The delay that a packet experiences has
a negative impact on its utility. The value is a non-increasing function of the
delay. Window-based flows employ a feedback-based mechanism, the congestion
window, which determines the maximum number of packets that the flow may
have in-flight. Every packet that is in-flight occupies one of the available positions
in the congestion window of a window-based flow. The more a packet delays its
arrival, the longer the following packet will have to wait to use the occupied
window position. Therefore, the impact of packet delays for window-based flows
is twofold; the decreased value of the delayed packet and the reduced packet rate.
On the other hand, for rate-based flows which submit packets with some given
rate, the only consequence due to packet delays is the reduced packet value.

Assume a rate-based packet p with balance α1 and delay d1 < dp,max − dε,
for some dε. When a trade changes the delay from d1 to d2 = d1 + dε, then this
also changes the value of the packet from v(d1) to v(d2). The difference between
these two values determines the compensatory price ρ for the packet.

ρ = v(d1)− v(d2) = v(d1)− v(d1 + dε) = cpdε . (1)

At this price, the utility of the packet remains unchanged after the trade. A
packet would agree to sell for a price ρs > ρ, or to buy for ρb < ρ.

For window-based flows, however, the price estimation needs more attention.
Assume a window-based packet with delay d1 < dp,max−dε and account balance
α1. Before the trade, the utility (benefit rate) is r1 = (v1 +α1)/d1. If the packet
agrees to trade its position and to increase its delay by dε, then the utility is
r2 = (v2 +α2)/d2. Then, by setting r1 = r2 we obtain the compensatory price ρ
for the trade.

v1 + α1

d1
=

v2 + α2

d2
⇒ V − cpd1 + α1

d1
=

V − cp(d1 + dε) + (α1 + ρ)

d1 + dε
⇒

ρ = (V + α1)
dε
d1

. (2)

The above expression for the price ensures that the utility function of the packet
remains unchanged. A packet would agree to sell its position, for a price ρs > ρ,
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or to buy a position (dε < 0) for ρb < ρ. Unless otherwise specified, the final
trading price when a trade takes place will be the average of the ρs of the seller
packet and ρb of the buyer packet. We illustrate the PacketEconomy approach
in a representative scenario.

3 Equilibria with Monetary Trades

A Representative Scenario. We examine a simple scenario that produces an
interesting configuration. It consists of a set of N window-based flows fi, for
i ∈ {1 . . .N}, each with a constant window size wi, and

∑
i wi = q. When a

packet is served by the router it is immediately replaced by an identical packet
submitted by the same flow. This is a simplifying but plausible assumption. In
reality, when a flow packet arrives at its destination, a small size acknowledgment
packet (ACK) is submitted by the receiver. When the sending flow receives the
ACK it submits a new identical packet that immediately enters the queue. We
assume b = 1 trading period per round but in general b can be any integer b > 0.

Failure States. For each packet, there is a small probability pf for an extra de-
lay of df rounds, where df is a discrete random variable in {1, 2, . . . , q−1}. These
delays correspond to potential packet failures of real flows, and occur between
the service of a packet and the submission of its replacement. By convention,
the delay df is added to the delay of the packet that has just been served. If
more than one packets enter the queue at the same time (synchronized due to
delays), their order in the queue is decided upon uniformly at random. A packet
that does not participate in any trade and does not suffer delay due to failure
will experience a total delay of q rounds.

Packet States and Strategies. The state τp(t) of a packet p in round t is
a pair τp(t) = (Ip(t), relp(t)), where Ip(t) is the inventory of the packet and
relp(t), which is meaningful only in failure states, is the remaining number of
failure rounds for the packet. The state of all packets of the economy in round t
determines the state of the whole economy τ(t) =

∏q−1
p=0 τp(t). From a packet’s

point of view, a trade is simply an exchange of its inventory state (budget,
delay and position) with a new one. Consequently, a pure strategy of a packet
is a complete ordering of the possible states of its inventory. In each round, the
packets that are waiting move by default one position ahead and, thus, enter a
new inventory state. We assume that the packet ignores the impact of its state
and strategy on the state of the packet population. In every trading period the
packet assumes the same stationary state of the economy.

Definition 1. Let τ(t) be the state of the economy in round t.

Lemma 1. τ(t) is an ergodic Markov chain.

Proof. Assume b = 1 trading period per round. In each round, the economy
moves to a new state with transition probabilities that depend only on the cur-
rent state and the strategies of the packets. Let σp be a pure strategy of each
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packet p of a flow and σ be a pure strategy profile of the whole economy. Then,
there is a corresponding transition probability matrix P σ for the economy. Let
σm be a mixed strategy profile of the whole economy. Then the corresponding
transition probability P σm of the economy for σm is an appropriate convex com-
bination of the transition matrices of the supporting pure strategies. In case of
multiple trading periods per round (b > 1), the economy makes b state transi-
tions per round.

The number of potential states for a packet is finite and, consequently, the
number of states for the whole economy is also finite.

Definition 2. A zero state τ0 is a state of the economy in which all packets
have zero budget and each packet p has delay dp(t0) = posp(t0) + 1, where t0 is
the current round of the router.

Assume that in round t the packet at position 0 fails for q − 1 rounds, in round
t+1 the next packet at position 0 fails for q− 2 rounds etc. Then after q rounds
all new packets will simultaneously enter the queue. Each packet will have zero
budget and by definition their ordering will be random. This also means that
for each packet p, dp(t) = posp(t) + 1. Thus, in round t + q the economy will
be in a zero state. The probability for this to happen is strictly positive and
thus each zero state τ0 is recurrent. Since the number of states of the economy
is finite, the states that are attainable from zero states like τ0 form a (finite in
size) class of irreducible states. Moreover, each zero state is aperiodic, and thus
each of the states of the class of attainable states is also aperiodic. It is known
that any finite, irreducible, and aperiodic Markov chain is ergodic.

Lemma 2. (Proof omitted) For each pure strategy profile σ of the economy,
there is a unique stationary distribution πσ of the economy.

An interesting argument which can now be applied is that given the stationary
distribution of the economy, each trading period becomes a finite state game.

Lemma 3. (Proof omitted) For every idle packet, each trading period of the
economy corresponds to a finite strategic game.

Theorem 1. (Proof omitted) A NE exists where packets perform trades.

Pipelined Shuffling. A core operation of the PacketEconomy is the random
pairing of the packets that takes place in each trading period to generate the
trading pairs. We present a new parallel algorithm that can support the random
pairing procedure in real time. The new algorithm (Algorithm 1) is a parallel,
or better, a pipelined version of the random shuffling algorithm of Fisher-Yates,
which is also known as Knuth shuffling [7,22,14]. We call the new algorithm
Pipelined Shuffling. Its core is a pipeline of q instances 0, 1, . . . , q − 1 of the
Fisher-Yates algorithm. At time t, instance k is at step t+k mod q of the random
shuffling algorithm.

Theorem 2. The Pipelined Shuffling algorithm delivers a random shuffle every
O(1) parallel time steps on a q processors EREW PRAM.
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Algorithm 1. Pipelined Shuffling

1: procedure Shuffle(int[] a)
for i from 0 to q-2 do {

j = random int in i ≤ j ≤ q − 1;
exchange a[j] and a[i]}

2: end procedure

1: procedure ParallelShuffle(int[][] A)
for i from 0 to q-1 do in parallel {

processor i: wait for i periods;
processor i: while (true) {Shuffle(A[i]);}

2: end procedure

The Scheduling Problem. The underlying algorithmic problem of the Pack-
etEconomy is a scheduling problem of network packets. From the router’s point
of view, this problem is a single machine scheduling problem with a max weighted
total wealth objective.

Definition 3. Max-Total-Wealth Scheduling (MTW). A set of n jobs ji, for i =
1, . . . , n. Job ji has processing time pi, release date ri, deadline di and weight wi.
Let ci be the completion time of job i in a schedule. The objective is to find a non-
preemptive schedule that maximizes the total wealth W =

∑
i wi ·max(di− ci, 0).

The release date ri is the time when packet i enters the queue and the dead-
line di is the time when the value of the packet becomes zero. For MTW on a
network router the following assumptions hold: a) The queue discipline is work-
preserving, meaning a non-empty router is never left idle, b) the number of
packets in the queue at any time is bounded by a constant (the maximum queue
size), and c) the packet sizes may differ by at most a constant factor. In this
work, we assume that all packets are of the same size.

The complexity of the MTW problem depends on the assumptions made. It
is not hard to show that without deadlines, even the online version of MTW
can be optimally solved; there is a 1-competitive algorithm for MTW without
deadlines [5]. Moreover, MTW with deadlines can be offline solved in polynomial
time as a linear assignment problem.

However, due to the on-line nature and the finite queue size of the PacketE-
conomy router, the above conventional scheduling algorithms do not seem to
naturally fit the MTW problem of the PacketEconomy. Especially for window-
based flows, where packet transmission is a closed loop, the order in which the
queued packets are served influences, if not determines, the next packet that
will enter the queue. Thus, even the online assumption may not be appropriate.
A different approach to study the scheduling problem of the PacketEconomy
is to consider the (average) packet rate of the flows, as shown in the following
example.

Example 1. Assume a scenario with window-based flows and 5 economy packets
and 5 business packets. There is a deadline of 40 rounds on the maximum delay of
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the economy packets. Moreover, all business packets have to be treated equally.
The same holds for the economy packets. Consider the scenario where each
economy packet will be served with a rate of 1/40 packets/round and delay of
40 rounds and the business flows share the remaining bandwidth; each business
packet is served at a rate of 7/40 packets/round and delay 40/7 rounds. This is
an upper bound on the rate of total wealth for the router for this scenario.

4 The Effect of Trades

The NE of the representative scenario shows that, in principle, money can be
used at a microeconomic level to coordinate network packets. By definition, the
flows of the scenario can only benefit through the use of money; each trade is a
weak Pareto improvement for the current state of the economy. In this section
we further examine the effect of trades.

In the PacketEconomy, each packet can increase its utility by making trades.
To show the potential of the approach, consider a packet of maximum priority
that pays enough to make any trade that reduces its delay. In the analysis, we
will assume that the probability of packet failures is very low, and thus ignore
it. We focus on window-based flows, present an exact calculation for the average
delay of this packet and then derive simpler, approximate bounds.

Lemma 4. The average delay E[d] of the packet is

E[d] =

q∑
s=1

s

(
1

q − 2

)s

(s− 1)
(q − 2)!

(q − s− 1)!
. (3)

Proof. Let rand(L,U, s) be a uniformly random integer in {L,L+ 1, ..., U}\{s}
and pos(p) the current position of packet p. Then, the probability Pr[d > s] is

=

s∏
k=1

Pr[rand(1, q − 1, pos(p)) ≥ s− k + 1] =
q − s− 1

q − 2
· q − s

q − 2
· · · q − 2

q − 2
⇒

Pr[d > s] =

(
1

q − 2

)s

· (q − 2)!

(q − s− 2)!
, and

Pr[d = s] = Pr[d ≤ s]− Pr[d ≤ s− 1] =

(
1

q − 2

)s

(s− 1)
(q − 2)!

(q − s− 1)!
.

Applying the definition of the expected value completes the proof.

Lemma 5. (Proof omitted). Let Xd
min be the minimum of n > 0 discrete uniform

random variables (RV) in [L,U ] and Xc
min be the minimum of n continuous

uniform RV in [L,U ]. Then

E[Xd
min] ≤ E[Xc

min] ≤ E[Xd
min] + 1 . (4)
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Lemma 6. The average delay of the packet does not exceed
−1+2b+2

√
2b(q−2)

2b .

For b = 1 the bound is 1
2 +

√
2(q − 2).

Proof. A packet that enters at position q − 1 has been served when it advances
at least q positions. Note that each random trading partner corresponds to a
uniform random number in [1, q − 1]. To admit a more elegant mathematical
treatment we prefer the continuous distribution. Lemma 5 makes this possible.

Assume that a packet has just entered the queue at position q − 1. Let b
be the number of trading periods per router round. Assume that the packet
spends at least k rounds in the queue until it reaches position 1. During these
k rounds the packet will make bk random draws and will make k single position
advancements. From Lemma 7 we obtain that the average value of the minimum
of the bk random draws is

1

bk + 1
(q − 2) .

Lemma 7. (Proof omitted) Let X1, X2, . . . , Xk be continuous uniform random
variables in [0, U ] and let Xmin = mini=1,...,k Xi. Then E[Xmin] =

1
k+1U .

Note that the average number of rounds and draws until it achieves its best
draw is (k + 1)/2 and (bk + 1)/2, respectively. We will add one to the value of
the average minimum draw, because the minimum position that can be traded
is position 1. Position 0 is the one that is currently being served.

Now, assume that after the k rounds and bk draws the packet advances for
h additional rounds until it reaches position 1. From position 1 it needs a final
round to proceed to position 0 and be served. Thus, the total delay of the packet
is k + h+ 1, and

1

bk + 1
(q − 2) + 1− (k + 1)/2− h− 1 ≤ 0 .

We solve for k and obtain that the larger of the two roots of k is

k =
−1− b− 2bh+

√
(1 + b+ 2bh)2 + 4b(2q − 5− 2h)

2b
. (5)

The total delay k + h + 1 is minimized at h = (1 − b)/(2b). Substituting h =
(1− b)/(2b) in Equation 5 gives that the minimum value of k + h+ 1 is

k + h+ 1 =
b − 1 + 2

√
2b(q − 2)

2b
.

The average delay cannot be larger then the above value. This completes the
proof of Lemma 6.

The above lemma can be generalized to the case where only one packet in every
c > 0 packets in the queue is ready to sell its position. We simply assume b/c
trading periods per round. Then, the average delay of the business packet is not
larger than 1− (c/2) +

√
2c(q − 2). Similarly, we can show:
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(a) The exact average delay (inner
line) and the lower and upper bounds
on the average delay

(b) Experimental measurement of the
delay for the cases of one business
packet and five business packets.

Fig. 4. Delay of the business packet with respect to the queue size

Lemma 8. (Proof omitted) The average delay of the packet is at least
(−1 + 2b+

√
1− 8b+ 4bq)/(2b). For b = 1 the bound is (1/2) +

√
4q − 7.

This lemma too, can be generalized to the case where only one packet in every
c > 0 packets in the queue is ready to sell its position. In this case the average
delay of the business packet is not less than 1

2 (2− c) + 1
2

√
c2 − 8c+ 4qc.

In Figure 4, analytical and experimental results for the delay of the business
packet are presented. In the long version of this work [5], we use the lemmas of this
section to analyze the packet delays and the social wealth of a PacketEconomy
instance for the cases of no trades, ideal trades, and PacketEconomy trades.

5 Conclusion

We presented an economy for network packets and showed the existence of NE
where money circulates to the benefit of the flows. The basic computational step
of the PacketEconomy can be executed in O(1) parallel time on fairly simple
multi-core hardware, making it appropriate for modern network router demands.

There are several other issues that have to be addressed for such a model to
be of practical importance. For example, a greedy flow may submit economy
packets to the network simply to collect money. A realistic economic model
has to anticipate such scenarios and address them with appropriate rules. One
approach could be to have the router restricting the final budget of any packet
to be non-positive, or more effectively, impose router-entry costs on every packet
depending on the current load.

Overall, we examined how money can be used at a microeconomic level as a
coordination tool between network packets and we believe that our results show
that the PacketEconomy approach defines an interesting direction of research
for network games. We are currently examining the use of fiat money and the
implemention of the PacketEconomy in a realistic network context.
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Abstract. This paper is devoted to the study of truthful mechanisms
without payment for the many-to-many assignment problem. Given n
agents and m tasks, a mechanism is truthful if no agent has an incentive
to misreport her values on the tasks (agent ai reports a score wij for
each task tj). The one-to-one version of this problem has already been
studied by Dughmi and Ghosh [4] in a setting where the weights wij are
public knowledge, and the agents only report the tasks they are able to
perform. We study here the case where the weights are private data. We
are interested in the best approximation ratios that can be achieved by
a truthful mechanism. In particular, we investigate the problem under
various assumptions on the way the agents can misreport the weights.

Keywords: Algorithmic game theory, truthful mechanism without pay-
ment, approximation algorithm, many-to-many assignment problem.

1 Introduction

We study here many-to-many assignment problems, where a set of tasks
{t1, . . . , tm} are assigned to a set of agents {a1, . . . , an}. Let xij = 1 if task
tj is assigned to agent ai. We tackle the case where one assigns p tasks per agent
and q agents per task, i.e.

∑
j xij = p and

∑
i xij = q. A weight wij ≥ 0 can rep-

resent the interest shown by agent ai to perform task tj , but also an attendance
level, a bandwidth, etc. The aim of the optimization problem is to assign the
tasks to the agents so as to maximize some social objective, e.g.

∑
i,j wijxij (in

an utilitarian setting) or mini

∑
j wijxij (in an egalitarian setting). This type of

problem can occur in various circumstances:

– Assignment of Papers to Reviewers for a Conference. Consider a program
committee chair who has to assign the m submitted papers (the tasks) to n
reviewers (the agents). Each reviewer is assigned p papers and each paper
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is reviewed by q reviewers. In order to perform the assignment, during the
bidding phase, for each paper tj each reviewer ai indicates an interest score
wij on the conference system.

– Assignment of Public Resources to Non-profit Associations. Consider a town
council who allocates m time slots/room locations (the tasks) to n sports
or cultural associations (the agents). There are q time slots in a week (m/q
room locations) and each association has the possibility of being assigned p
time slots/room locations per week (once for all). Furthermore, for each time
slot tj, each association ai indicates the expected number wij of members
that would attend the activity.

– Assignment of Time Slots on an Earth Observation Satellite. Consider an
earth observation satellite shared among n institutions (the agents). In the
daily management of the satellite, there are m time slots (the tasks) in a
day and a limited number q of possible accesses to the same slot. For a given
institution, there is a maximum of p accesses per day and one access per
time slot. Furthermore, for each time slot tj , each institution ai indicates
the required bandwidth wij .

In all these circumstances, based on the bids, the tasks are assigned to the agents
so as to maximize the social welfare (depending on the social objective). Once
the bids are known, the optimization problems involved are solvable in polyno-
mial time, except for the many-to-many case in the egalitarian setting (strongly
NP-hard by reduction from the 3-partition problem, see Section 4). These opti-
mization problems have also been investigated from the fairness viewpoint in at
least two of the three situations described above, namely for the fair paper as-
signment problem (see e.g. [5,6,11]) and for the fair sharing of a common satellite
resource (see e.g. [10]). Nevertheless, since the weights are private data, an agent
might have an incentive to misreport them in order to increase her individual
satisfaction (the individual satisfaction of an agent ai is

∑
j wijxij).

The aim of the present article is precisely to study truthful mechanisms for
many-to-many assignment problems. A mechanism is truthful if no agent i can
benefit by misreporting her weights wij . At the same time, the mechanism should
guarantee a reasonable approximation to the optimal social objective. Note that
we focus on mechanisms without payment, since payments are not always pos-
sible or desirable [15] (as in most examples above).

Truthful mechanisms dedicated to the one-to-one version of the problem have
already been studied by Dughmi and Ghosh [4] for the utilitarian setting in a
restricted case where, for each pair (i, j), it is public knowledge that the value of
task tj for agent ai is either wij or 0, but agent ai holds private which of those
is the case for each tj . The authors justify considering such a discrete valua-
tion model by observing that, assuming the weights are private, no mechanism
can outperform the trivial one which allocates the tasks uniformly at random,
achieving an approximation ratio of n (as a consequence of classical results of
Vickrey concerning single item auctions [16]). Nevertheless, we believe that some
interesting results are still possible with private weights.
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First, the result given by Dughmi and Ghosh [4] does not hold in the egalitar-
ian setting (in this case, returning a random assignment yields an approximation
ratio of n!). Second, for both the utilitarian and the egalitarian settings, positive
results are possible if one assumes some restrictions on the way the agents mis-
report their preferences. We consider two types of restrictions: the case where
the agents cannot overbid (i.e. they cannot bid weights that are larger than their
true weights), and the case where the agents cannot underbid (i.e. they cannot
bid weights that are smaller than their true weights). The former case occurs
for instance in the assignment of public resources to non-profit associations, as
described above: as soon as the actual attendance level at the various activi-
ties is controlled afterwards, an association cannot overbid, at the risk of losing
credibility. The latter case occurs for instance in the assignment of time slots
on an earth observation satellite, as described above: as soon as the bandwidth
allocated to an institution is equal to the indicated weight, there is no interest
for an institution to bid a value under the required bandwidth (an undersized
bandwith is equivalent to a bandwidth 0 for the institution). The rationale for
these restrictions is based on the assumption that the agents underbid in order
to avoid a task, and conversely they overbid in order to obtain a task. This
assumption holds for all the mechanisms we propose. Note that the restriction
on the way the agents misreport their preferences is related to the idea of so-
called mechanisms with verification [13]. Mechanisms with verification have been
studied both with payment [14,9] and without payment [1,8].

Our Contribution. In Section 2, we study the case where the weights on the
edges are unrestricted. In particular, we provide an n-approximate randomized
mechanism for the egalitarian setting and we show that there is no (n/q − ε)-
algorithm for this problem. In Section 3, we study the case where the agents
cannot overbid. This assumption does not change anything for the egalitarian
setting, but it enables to design a 2-approximate truthful mechanism for the
utilitarian setting (and we show this is the best ratio that can be achieved by
a truthful algorithm). In Section 4, we study the case where the agents can-
not underbid. Conversely to the previous case, this assumption does not change
anything for the utilitarian setting, but it enables to design an optimal truthful
mechanism for the egalitarian setting. Our results are summarized in Table 1,
where we indicate lower (LB) and upper (UB) bounds on the approximation
ratio of a truthful mechanism. Notation “det” (resp. “rand”) stands for determin-
istic (resp. randomized) mechanisms. When no approximation guarantee can be
achieved by a truthful mechanism, we write LB = ∞. Note that all positive
results are based on polynomial-time algorithms, except the optimal truthful
mechanism for agents that do not underbid in the egalitarian setting.

Preliminaries. As customary, we view the many-to-many assignment problem
as a maximum weight b-matching problem in a complete bipartite graph G with
vertex set V = (A, T ) (A for agents, T for tasks). Given degree constraints
b : V → N for the vertices, a b-matching is a set of edges M such that for
all v ∈ V the number of edges in M incident to v, denoted by degM (v), is at
most b(v). Every agent ai has to perform (at most) b(ai) = p tasks, and every
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Table 1. An overview of our results

utilitarian setting egalitarian setting

no restriction det: LB = ∞
rand: LB = (n

q
− ε), UB = n

q

det: LB = ∞
rand: LB = (n

q
− ε), UB = n

no overbidding det: LB = 2− ε [4], UB = 2
rand: LB = ( 4

3
− ε), UB = 2

det: LB = ∞
rand: LB = (n

q
− ε), UB = n

no underbidding det: LB = ∞
rand: LB = (n

q
− ε), UB = n

q
det: UB = 1

task tj has to be assigned to (at most) b(tj) = q agents. There are n = |A|
agents and m = |T | tasks, and we assume that np = mq (otherwise some agents
would perform less than p tasks or some tasks would be assigned to less than q
agents). The weight wij ≥ 0 on edge {ai, tj} represents the interest (value) of
agent ai for task tj . Note that, since np = mq and by positivity of the weights
and completeness of the graph, constraints degM (v) ≤ b(v) ∀v are equivalent to
degM (v) = b(v) ∀v (if some constraints are not saturated, it is always possible to
add (an) edge(s) to the b-matching to saturate them). Let M(i) denote the set of
indices of the p tasks assigned to agent ai in the b-matching M . The aim of each
agent ai is to maximize

∑
j∈M(i) wij . A deterministic mechanism (algorithm)

is truthful if no agent ai has an incentive to misreport the weights wij (j =
1, . . . , n):

∑
j∈M(i) wij ≥

∑
j∈M ′(i) wij where M (resp. M ′) is the b-matching

returned by the mechanism if agent ai truthfully reports (resp. misreports) her
weights (ceteris paribus). For a randomized mechanism, we require truthfulness
in expectation: E[

∑
j∈M(i) wij ] ≥ E[

∑
j∈M ′(i) wij ].

We recall that our aim is to obtain truthful mechanisms returning a b-matching
M which maximizes one of the following social objective functions:

– w(M) =
∑n

i=1

∑
j∈M(i) wij (in the utilitarian setting),

– or w(M) = mini∈{1,...,n}
∑

j∈M(i) wij (in the egalitarian setting).

A deterministic (resp. randomized) mechanism is said to be c-approximate if,
for any instance, w(M∗)/w(M) ≤ c (resp. w(M∗)/E[w(M)] ≤ c) where M is
the b-matching returned by the mechanism, M∗ is an optimal b-matching and
E[w(M)] is the expected weight of M .

2 If Agents Have No Restriction on the Way They Bid

In this section, we show that no performance guarantee can be achieved by a
truthful deterministic mechanism, in both the utilitarian setting and the egali-
tarian setting. Furthermore, we show that there is are n-approximate randomized
truthful mechanisms (in both settings).

2.1 Utilitarian Setting

We show that no positive result can be expected for a deterministic mechanism.
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Theorem 1. In the utilitarian setting, for any c > 1, there is no c-approximate
truthful deterministic mechanism, even if n = m = 2.

Proof. Let c > 1, n = m and p = q = 1 (the b-matching problem reduces to a
matching problem). Assume that there is a c-approximate truthful mechanism
and consider the graph with two agents a1, a2 and two tasks t1, t2. Let γ > c and
w11 = γ, w12 = 0, w21 = 1 and w22 = 0. There are only two perfect matchings
M1 = {{a1, t1}, {a2, t2}} and M2 = {{a1, t2}, {a2, t1}} whose weights are γ and
1 respectively. Since γ > c, the mechanism must return M1.

Now, take the situation where w21 = γ2. The weights of M1 and M2 are then
γ and γ2. Again, a c-approximate mechanism must return M2 since otherwise
w(M∗)
w(M1)

= γ2

γ > c. Consequently, in the first situation, agent a2 has incentive to
declare a false weight w21 = γ2 in order to get task t1, with value 1 instead of 0
(with the initial task t2).

Note that as a consequence there is no f(n,m)-approximate deterministic mech-
anism, for any function f .

In the randomized case, as mentioned earlier, Dughmi and Ghosh [4] have
observed that no truthful mechanism can perform better than the mechanism
returning a random assignment in the one-to-one case (whose approximation
ratio is n since each edge of an optimal matching has a probability 1/n to belong
to the returned matching). Their statement is based on a reference to a seminal
paper by Vickrey [16], whose scope is much broader than the simple assignment
problem. This result generalizes to the many-to-many case. First, note that the
approximation ratio of the mechanism returning a random b-matching is n/q =
m/p since each edge of an optimal b-matching has a probability q/n = p/m to
belong to the returned b-matching. The following theorem shows that this is the
best we can do:

Theorem 2. In the utilitarian setting, for any n, any q, any ε > 0, there is no
(nq − ε)-approximate truthful randomized mechanism.

Proof. Let γ such that 1/γ < 1/(n/q−ε)−q/n. Consider the graph with n agents
and n tasks where w11 = γ+ 1

q −1, wi1 = 1/q for i ≥ 2, and all the other weights
are 0 (note that p = q since n = m). Note that the optimal solution has value
w11+(q−1)×1/q = γ. Let pi be the probability that edge (ai, t1) is taken in the
matching returned by the randomized mechanism. Then since any b-matching
without edge (a1, t1) (resp. with edge (a1, t1)) has value at most 1 (resp. γ), we
get that the expected value of the solution is at most p1γ + (1− p1) ≤ p1γ + 1.
To achieve ratio n/q−ε, we need p1γ+(1−p1) ≥ γ/(n/q−ε) and thus p1γ+1 ≥
γ/(n/q − ε). Hence p1 ≥ 1/(n/q − ε) − 1/γ > q/n (by the choice of γ). Since∑

pi = q (t1 is adjacent to q edges in the returned b-matching), there exists i
such that pi < q/n, say i = 2 wlog (note that i �= 1 since p1 > q/n).

Now, consider the same situation as before but with w21 = γ2. By using the
same argument as above, we see that the mechanism has to choose edge (a2, t1)
with probability greater than q/n.
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Then, in the first situation, if agent 2 truthfully reports her weight w21 she
gets t1 with probability p2 < q/n, while if she reports a weight γ2 for this edge
she gets t1 with probability greater than q/n. The mechanism is not truthful.

2.2 Egalitarian Setting

Similarly to the utilitarian setting, we show that no positive result can be ex-
pected for a deterministic mechanism.

Theorem 3. In the egalitarian setting, for any c > 1, there is no c-approximate
truthful deterministic mechanism, even if n = 2, m = 2 and p = q = 1.

Proof. Let c > 1, n = m = 2 and p = q = 1. By contradiction, assume
that there is a c-approximate truthful deterministic mechanism and consider
the graph with two agents a1, a2 and two tasks t1, t2. Let γ > c and w11 = γ+1,
w12 = γ, w21 = γ + 1 and w22 = γ. There are only two perfect matchings
M1 = {{a1, t1}, {a2, t2}} and M2 = {{a1, t2}, {a2, t1}}. Wlog, assume that the
mechanism returns matching M1.

Now, consider the same situation as before, but w22 = 1. The weight of
matching M1 (resp. M2) is 1 (resp. γ), where the weight of M1 (resp. M2) is
the minimal weight of an edge in M1 (resp. M2). Since the mechanism is c-
approximate, it must return matching M2 (because γ > c).

Then, in the first situation, agent a2 has incentive to bid a false weight w22 = 1
in order to get task t1, with value γ + 1 instead of γ (with the initial task t2).
Therefore, the mechanism is not truthful.

Note that as a consequence there is no f(n,m)-approximate truthful determin-
istic mechanism, for any function f .

In the randomized case, note that, in contrast to the utilitarian setting, re-
turning a random assignment is not n/q-approximate anymore for the egalitarian
setting (consider an instance where p = q = 1, and thus n = m, where all the
weights are equal to 0, except weights wi i = 1 for i = 1, . . . , n: there is only one
matching over n! that has weight 1, all the others having weight 0). However, we
now show that it is possible to get an n-approximation thanks to the following
truthful randomized mechanism:

Let M∗ denote an optimal b-matching for the egalitarian setting.
Return with probability 1/n, for each k ∈ {0, . . . , n− 1}, the b-
matching where tasks with indices in M∗((i + k)mod (n)) are
assigned to agent ai (i = 1, . . . , n).

Theorem 4. In the egalitarian setting, the above mechanism is truthful and
n-approximate.

Proof. This mechanism is truthful since, whatever the bids, every agent ai has
the same expected value

∑n
k=1

1
n

∑
j∈M∗(k) wij = q

n

∑
j wij (since each task

is assigned to q agents in M∗). For k = 0, the mechanism returns M∗. The
b-matching M∗ is thus returned with probability 1/n, and the mechanism is
n-approximate.
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Note that this mechanism is also a truthful n-approximate mechanism for the
utilitarian setting. The following theorem shows that no truthful mechanism can
have an approximation ratio better than n/q (the previous truthful mechanism
achieves therefore the best possible ratio when q = 1):

Theorem 5. In the egalitarian setting, for any n, any q and any ε > 0, there
is no (nq − ε)-approximate truthful randomized mechanism, even if p = q.

Proof. Let us consider a truthful randomized mechanism. Consider the graph
with n agents and n tasks (p = q) where wi1 = γ ≥ 1 for i = 1, . . . , n, and all
the other weights are 1/q (see Figure 1, Situation 1). Since t1 is assigned to q
agents, there exists an agent, say a1 wlog., such that the randomized mechanism
returns a b-matching containing edge {a1, t1} with probability smaller than or
equal to q/n.

a2 a2

a1 a1
γ γ

Agents Agents

an antn tn

t1 t1

0

Tasks Tasks
Situation 1 Situation 2 (a1 lies)

Fig. 1. Illustration of Theorem 5. The sharp edges have weight γ, the dotted edges
have weight 0, and the unrepresented edges have weight 1/q.

Now, consider the same situation as before but w11 = γ and w1j = 0 for j =
2, . . . , n (see Figure 1, Situation 2). Let p1 be the probability that the randomized
mechanism returns a b-matching containing edge {a1, t1} for this instance. The
expected weight of the returned b-matching is p1 × 1 + (1 − p1) × 0 = p1 (the
only non-zero b-matchings are the ones where edges {a1, t1} is chosen).

Since the mechanism is truthful, p1 ≤ q/n (otherwise, in situation 1, agent 1
would have incentive to bid false values in order to be in situation 2). Thus, in
situation 2, since p1 ≤ q/n, the expected weight of the returned b-matching is at
most q/n, while the optimal matching has weight 1. The mechanism is therefore
at most n/q-approximate.

3 If Agents Do Not Overbid
In this section, we assume that the agents cannot bid weights that are strictly
larger than their true weights. This assumption does not change anything in
the egalitarian setting, since the agents do not overbid in the situation used to
establish the lower bound in the unrestricted case. However, we can provide a
2-approximate deterministic truthful mechanism for the utilitarian setting.
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Sort the edges by non-increasing weights. Let M = ∅ and
(e1, . . . , em) denote the sorted list of the edges. For i from 1 to m,
if M ∪ {ei} is a b-matching then M = M ∪ {ei}. Return M .

This greedy b-matching algorithm has been introduced by Avis [2] for the case
p = q = 1, who has shown that it is 2-approximate. Mestre [12] has shown that
this approximation ratio also holds for b-matchings.

Note that the tie-breaking rule (to decide an ordering over edges of equal
weight) matters for the truthfulness of the mechanism. A convenient and simple
tie-breaking rule is the following one: if {ai, tj} and {ai′ , tj′} are such that wij =
wi′j′ , {ai, tj} is ranked before {ai′ , t′j} if i < i′ or if i = i′ and j < j′.

Now, we are able to show that the greedy b-matching algorithm is truthful.

Theorem 6. In the utilitarian setting, if the agents cannot overbid, the greedy
b-matching algorithm is a truthful 2-approximate mechanism.

Proof. We have already said that it returns a 2-approximate matching. We now
show that it is also truthful.

By contradiction, assume that agent ai has incentive to lie on k weights. Let
M (resp., M ′) be the b-matching returned by the algorithm with weights w (resp.
w′), i.e., when agent ai does not (resp. does) misreport her weights. By abuse of
notation, we denote by M(i) (resp. M ′(i)) the set of edges incident to ai in M
(resp. M ′). Let M(i) \M ′(i) = {{ai, tπ(1)}, . . . , {ai, tπ(k)}}, where {ai, tπ(j)} is
the jth edge of M(i) \M ′(i) examined by the algorithm for weights w.

One proceeds as follows to decompose MΔM ′ = (M \M ′) ∪ (M ′ \M) into
k edge-disjoint cycles C1, . . . , Ck alternating one edge in M \M ′ and one edge
in M ′ \M , each cycle Cj including edge {ai, tπ(j)}: initially, C1 = ∅; note that
{ai, tπ(1)} is necessarily the first edge in MΔM ′ examined by the algorithm for
weights w (provided the agents cannot overbid); insert {ai, tπ(1)} in C1; then
extend C1 with the first edge in M ′(tπ(1))\M(tπ(1)) examined by the algorithm;
this latter edge concerns a given agent ai′ ; extend C1 with the first edge in
M(i′) \M ′(i′); and so on until a cycle is created. This is cycle C1. One iterates
to obtain the other cycles C2, . . . , Ck.

Let {ai, tμ(j)} denote the single edge in Cj ∩M ′(i). Since {ai, tμ(j)} is ex-
amined after {ai, tπ(j)} in cycle Cj , one has wi μ(j) ≤ wi π(j). By summing up
these inequalities one obtains

∑
j∈M ′(i) wij ≤

∑
j∈M(i) wij . Thus agent ai has

no incentive to underbid, and the mechanism is truthful.

The following theorem, due to Dughmi and Ghosh in the simpler case where
p = q = 1, shows that no truthful deterministic mechanism can have a better
approximation ratio:

Theorem 7 ([4]). In the utilitarian setting, for any ε ∈ (0, 1), there is no
(2− ε)-approximate truthful deterministic mechanism for the utilitarian setting,
even if n = 2 and p = q = 1.

A similar proof makes possible to establish the following negative result for
randomized mechanisms:
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Theorem 8. In the utilitarian setting, for any ε ∈ (0, 1/3), there is no (4/3−ε)-
approximate truthful randomized mechanism for the utilitarian setting, even if
n = 2 and p = q = 1.

Proof. Let ε ∈ (0, 1/3). Consider a γ > 0 such that 2+γ
3/2+γ > 4

3 − ε.
By contradiction, suppose that there is a (4/3 − ε)-approximate truthful

mechanism and consider the graph with 2 agents a1, a2 and 2 tasks t1, t2. Let
w11 = w21 = 1 + γ and w12 = w22 = 1. There are only two perfect matchings
M1 = {{a1, t1}, {a2, t2}} and M2 = {{a1, t2}, {a2, t1}} with same weights and
by symmetry, wlog., consider that the mechanism returns the matching M1 with
a probability p1 ≥ 1/2 (see Figure 2 case (a). In solid (resp., dotted) lines is the
matching M1 (resp., M2)).

a2a2

a1a1

1 + γ

1 + γ

1 + γ

1 + γ

11

1 0

AgentsAgents

t2t2

t1t1

TasksTasks

Case (a): M1 the matching returned Case (b): agent a2 lies on weight w22

Fig. 2. Illustration of Theorem 8

Now, take the situation where w22 = 0 (see Figure 2, case (b)). The weights of
matching M1 (resp. M2) is 1 + γ (resp. 2 + γ). By truthfulness, the mechanism
should return matching M1 with probability at least p1 (otherwise in the initial
situation agent 2 would have incentive to bid a false value for edge {a2, t2}).
The expected weight of the matching returned by the mechanism in situation 2
is thus p1(1 + γ) + (1 − p1)(2 + γ) = 2 + γ − p1. Since p1 ≥ 1/2, this weight is
smaller than or equal to 3/2 + γ. Since the weight of the optimal matching is
2+γ, the expected approximation ratio of the mechanism is larger then or equal
to w(M∗)

w(M1)
= 2+γ

3/2+γ > 4
3 − ε. Thus the mechanism is not (4/3− ε)-approximate.

4 If Agents Do Not Underbid

In this section, we assume that the agents cannot bid weights that are strictly
smaller than their true weights. This assumption does not change anything in
the utilitarian setting, since the agents do not underbid in the situations used
to establish the lower bound in the unrestricted case.

Let us then consider the egalitarian setting. We will show that there is an
optimal truthful mechanism. As a first remark, the optimization problem of
finding an optimal b-matching is strongly NP-hard: take the 3-partition problem
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where given a set of 3n positive integers {s1, . . . , s3n} of total sum nB we ask
whether there exist n subsets of weight B, each of them consisting of exactly
three elements. Build the graph with n agents and 3n tasks (one task ti for each
integer si), the edges adjacent to a task ti being weighted by si. It is easy to
see that the answer to the 3-partition problem is yes if and only if there exists
a b-matching of (egalitarian) value B.

So an optimal truthful mechanism is not polynomial time (unless P=NP),
even if p = 3. We consider the following mechanism, where P is an upper bound
on the optimal value (say P equals the sum of the p maximum edge weights
adjacent to agent a1 for instance).

Set W ← P . While no solution has been found:

– Consider for each agent ai the set Si(W ) of all sets T ′ of p
tasks such that

∑
tj∈T ′ wij ≥W .

– Use an algorithm A to determine whether there exists a way
to assign to each ai a set of tasks in Si(W ) such that each
task is assigned to q agents.
If a solution is found, output it. Otherwise, set W ←W − 1.

Note that the mechanism terminates: there necessarily exists a feasible assign-
ment for W = 0 since the graph is then complete.

Stated like this, the mechanism might not be truthful. More precisely, to make
it truthful we have to be more careful on the way sets in Si(W ) are assigned to
agents. Informally, by overbidding an agent may add new sets of tasks in Si(W ).
We have to be sure that by doing this she will not be better of. To ensure this,
we shall use an algorithm A which has the following stability property:

Stability: if A assigns on an instance I (defined by the set of agents and the
set Sj(W ) for each agent aj) the set of tasks M(i) ∈ Si(W ) to agent ai, then
on an instance I ′ where S′

i(W ) ⊇ Si(W ) (and S′
j(W ) = Sj(W ) for each j �= i),

A assigns to ai either M(i) or a set in S′
i(W ) \ Si(W ).

It is not difficult to see that there exists a stable algorithm A. Indeed, just
compute (if any) an assignment of maximal total weight, where the weights
of sets in S1(W ), . . . , Sn(W ) are such that any two assignments have different
weights, these weights depending only on n (not on W )1. This way, when sets are
added to Si(W ), if the (unique) maximum weight assignment has not changed
ai receives M(i), otherwise the new maximum weight assignment uses a set in
S′
i(W ) \ Si(W ) for ai, thus ensuring stability.

Theorem 9. In the egalitarian setting, if the agents cannot underbid, the mech-
anism with a stable algorithm A is both optimal and truthful.

1 These weights can be defined as follows: the weight of a set M(k) in Sk(W ) of tasks
is 2αM(k) where αM(k) ∈ N is different for any two sets of tasks (for instance give
a weight vij = 2i(n−1)+(j−1) to each edge (i, j) in G and define αM(k) as the total
weight

∑
j∈M(k) vkj).
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Proof. The b-matching returned by the algorithm at the iteration W has value
at least W (by construction). Since we consider W by decreasing value, the
mechanism is clearly optimal. For truthfulness, consider a graph G with weights
w. Suppose that the mechanism has found a b-matching M when the threshold
is W , assigning the set of tasks M(i) to agent ai. We have

∑
j∈M(i) wij ≥ W .

Suppose that agent ai reports weights w′
ij , j = 1, · · · , n where w′

ij ≥ wij . On this
new instance G weighted by w′ (where w′

kj = wkj for k �= i), suppose that the
mechanism has found a b-matching M ′ for threshold W ′. Since no underbid is
allowed, W ′ ≥W . Hence, two cases may occur.

- If W ′ > W , then necessarily in M ′ agent ai receives a set M ′(i) where∑
j∈M ′(i) wij ≤W . Otherwise, a b-matching would have been found in G weighted

by w with threshold (at least) W + 1.
- If W ′ = W , then the set S′

i(W ) (of the possible sets of p tasks for ai accord-
ing to weights w′) is obtained from Si(W ) (with weights w) by adding all the
subsets of weight less than W according to w, but at least W according to w′.
Hence, by the stability property, in M ′ agent ai either receives M(i), or one of
the added sets whose weight (according to w) is smaller than W . In both cases,∑

j∈M ′(i) wij ≤
∑

j∈M(i) wij .

In both cases, agent ai is not better off, and the mechanism is truthful.

In the particular case p = q = 1, the problem consists in finding an egalitarian
matching and is polynomial time. Our mechanism reduces indeed to finding at
each step W if there exists a perfect matching (polynomial time problem) in the
graph consisting of edges of weight at least W (using a stable perfect matching
algorithm); this is the threshold method [7], which is thus truthful by Theorem 9.

5 Final Remarks

Concerning the unrestricted case, note that the simple truthful mechanism that
consists in considering the agents in a random order, and assigning to each of
them her p preferred tasks among the available ones (random round robin), is
n-approximate in the utilitarian setting2. Despite the fact that its performance
guarantee is the same as the mechanism returning a random assignment, the
random round robin mechanism should be preferred since it is likely to return
much better b-matchings in practice.

In order to strengthen the result concerning the case where the agents do not un-
derbid, it would be interesting to investigate what approximation can be achieved
truthfully in polynomial time. Besides, another natural research direction is to in-
vestigate the group strategyproofness of the mechanisms presented in the paper:
2 Let Wi be the total weight of the p edges of maximum weight which are adjacent

to ai. The expected cost of the solution returned is at least
∑n

i=1(1/n)Wi, and the
mechanism is clearly n-approximate. The bound is tight when all the edges have
weight 0, except the edges adjacent to the same p tasks which have weight M >> 1
for the edges adjacent to a1, and weight 1 for the edges adjacent to the other agents.
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a mechanism is group strategyproof if for every group of agents A′ ⊆ A and every
weights w′ such that w′

ij = wij if i /∈ A′, one has
∑

j∈M ′(i) wij ≤
∑

j∈M(i) wij ,
where M (resp. M ′) is the b-matching returned by the mechanism for weights w
(resp. w′). A third research direction is to study other restrictions regarding the
possible ways that the agents can lie, while still showing positive approximation
guarantees. For instance, what happens if

∑
j wij is a constant for all the agents

? (Think of a conference system that gives the same capital of points to each re-
viewer)Another possible domain restriction is the following:when attributing time
slots to agents, one can assume that the preferences of the agent are single-peaked
[3], i.e. each agent has an ideal time slot and her preferences decrease when mov-
ing away from the ideal point. It would be interesting to study dedicated truthful
mechanisms taking advantage of these domain restrictions.

Acknowledgments. We wish to thank the anonymous reviewers for their fruit-
ful comments on an earlier version of the paper.
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Abstract. Clique clustering is the problem of partitioning a graph into
cliques so that some objective function is optimized. In online clustering,
the input graph is given one vertex at a time, and any vertices that have
previously been clustered together are not allowed to be separated. The
objective here is to maintain a clustering the never deviates too far in the
objective function compared to the optimal solution. We give a constant
competitive upper bound for online clique clustering, where the objective
function is to maximize the number of edges inside the clusters. We also
give almost matching upper and lower bounds on the competitive ratio
for online clique clustering, where we want to minimize the number of
edges between clusters. In addition, we prove that the greedy method
only gives linear competitive ratio for these problems.

1 Introduction

The correlation clustering problem and its different variants have been exten-
sively studied over the past decades; see e.g. [2,5,6]. Several objective function
are used in the literature, e.g., maximize the number of edges within the clusters
plus the number of non-edges between clusters (MaxAgree), or minimize the
number of non-edges inside the clusters plus the number of edges outside them
(MinDisagree). In [2], Bansal et al. show that both the minimization (minimiz-
ing the number of disagreement edges) and the maximization (maximizing the
number of agreement edges) versions are in fact NP-hard. However, from the
point of view of approximation the maximization and minimization versions dif-
fer. In the case of maximizing agreements this problem actually admits a PTAS
whereas in the case of minimizing disagreements it is APX-hard. Several effi-
cient constant factor approximation algorithms are proposed when minimizing
disagreements [2,5,6] and maximizing agreements [5].

Other measures require that the clusters are cliques, complete subgraphs of
the original graph, in which case we can maximize the number of edges inside
the cluster or minimize the number of edges outside the clusters. These mea-
sures give rise to the maximum and minimum edge clique partition problems
(Max-ECP and Min-ECP for short) respectively; the computitional complexity
and approximability of the aforementioned problems have attracted significant
attention recently [7,9,11], and they have numerous applications within the areas
of gene expression profiling and DNA clone classification [1,3,8,11].

P.G. Spirakis and M. Serna (Eds.): CIAC 2013, LNCS 7878, pp. 221–233, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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In this paper, we consider the online variant of clique clustering where the
vertices arrive one at a time, i.e. the input sequence is not known in advance.
Specifically, upon an arrival of a new vertex, it is either clustered into an already
existing cluster or forms a new singleton cluster. In addition, existing clusters can
be merged together. The merge operation in an online setting is irreversible, once
vertices are clustered together, they will remain so, and hence, a bad decision
will have significant impact on the final solution. This online model was proposed
by Charikar et al. [4] and has applications in information retrieval.

Our Results. We investigate the online Max-ECP and Min-ECP clustering
for unweighted graphs and we provide upper and lower bounds for both these
versions of clique clustering. Specifically, we consider the natural greedy strategy
and prove that it is not constant competitive for Max-ECP clustering but has a
competitive ratio that is at best inversely proportional to the number of vertices
in the input. We prove that no deterministic strategy can have competitive
ratio larger than 1/2. We further give a strategy for online Max-ECP clustering
that yield constant competitive ratio. For Min-ECP clustering, we show a lower
bound of Ω(n1−ε), for any ε > 0, for the competitive ratio of any deterministic
strategy. The greedy strategy provides an almost matching upper bound since
greedy belongs to the class of maximal strategies and these are shown to have
competitive ratio O(n). See Table 1 for a summary of our results.

Table 1. Summary of our results

Problem Lower Bound Upper Bound

Greedy Max-ECP 2/(n− 2) 1/(n− 2)

Max-ECP 1/2 0.032262

Greedy Min-ECP (n− 2)/2 2n− 3

Min-ECP n1−ε/2

2 Preliminaries

We begin with some notation and basic definitions of the Max-ECP and Min-
ECP clustering problems. They are defined on an input graph G, where G =
(V,E) with vertices V and edges E. Hence, we wish to find a partitioning of the
vertices in V into clusters so that each cluster induces a clique in the correspond-
ing subgraph of G. In addition, we want to optimize some objective function
associated to the clustering. In the Max-ECP case, this is to maximize the total
number of edges inside the clusters (agreements), whereas in the Min-ECP case,
we want to minimize the number of edges outside the clusters (disagreements).

We will use the online models, motivated by information retrieval applications,
proposed by [4], and by [10] for the online correlation clustering problem. We de-
fine online versions of Max-ECP and Min-ECP clustering in a similar way as [10].
Vertices (with their edges to previous vertices) arrive one at a time and must
be clustered as they arrive. The only two operations allowed are: singleton(v),
that creates a singleton cluster containing the single vertex v and merge(C1, C2),
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which merges two existing clusters into one, given that the resulting cluster in-
duces a clique in the underlying graph. This means that once two vertices are
clustered together, they can never be separated again.

Let C be a clustering consisting of clusters c1, c2, . . . , cm, where each cluster

ci forms a clique. The profit of ci is p(ci)
def
=

(|ci|
2

)
and the profit of C is

p(C)
def
=

m∑
i=1

p(ci) =

m∑
i=1

(
|ci|
2

)
.

We define the cost of C to be |E| − p(C), where E is the set of edges in the
underlying graph. Hence, in Max-ECP, we want to maximize the profit of the
generated clustering and in Min-ECP we want to minimize the cost of the clus-
tering.

It is common to measure the quality of an online strategy by its competitive
ratio. This ratio is defined as the worst case ratio between the profit/cost of the
online strategy and the profit/cost of an offline optimal strategy, one that knows
the complete input sequence in advance. We will use the competitive ratio to
measure the quality of our online strategies.

Note that in the online model, the strategy does not know when the last vertex
arrives and as a consequence any competitive ratio needs to be kept for every
vertex that arrives, from the first to the last.

We henceforth let OPT denote an offline optimal solution to the clustering
problem we are currently considering. The context will normally suffice to specify
which optimum solution is meant. We use OPTkn to denote the offline optimum
solution on vertices vk+1, . . . , vn, where k < n and these vertices are indexed in
their order in the input sequence. We also use OPTn to denote OPT0n. Similarly,
we use Sn to denote the solution of an online strategy on the n first vertices.

Note that we make no claims on the computational complexity of our strate-
gies. In certain cases, our strategies use solutions to computationally intractable
problems (such as clique partitioning problems in graphs) which may be consid-
ered impractical. However, our interest focuses on the relationship between the
results of online strategies and those of offline optimal solutions, we believe that
allowing the online strategy to solve computationally difficult tasks gives a fairer
comparison between the two solutions.

3 Online Max-ECP Clustering

3.1 The Greedy Strategy for Online Max-ECP Clustering

The greedy strategy for Max-ECP clustering merges each input vertex with the
largest current cluster that maintains the clique property. If no such merging is
possible the vertex is placed in a singleton cluster. Greedy strategies are natural
first attempts used to solve online problems and can be shown to behave well
for certain of them. We show that the greedy strategy can be far from optimal
for Max-ECP clustering.
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Theorem 1. The greedy strategy for Max-ECP clustering is no better than
2/(n− 2)-competitive.

Proof. Consider an adversary that provides input to the strategy to make it
behave as badly as possible. Our adversary gives greedy n = 2k vertices in order
from 1 to 2k. Each odd numbered vertex is connected to its even successor,
each odd numbered vertex is also connected to every other odd numbered vertex
before it, and similarly, each even numbered vertex is also connected to every
even numbered vertex before it; see Figure 1.

7 8

1 2

Fig. 1. Illustrating the proof of Theorem 1

The greedy strategy clusters the vertices as odd/even pairs, giving the clus-
tering GDYn having profit p(GDYn) = k. An optimal strategy clusters the odd
vertices in one clique of size k and the even vertices in another clique also of size k.
The profit for the optimal solution is p(OPTn) = k(k−1). Hence, the worst case
ratio between greedy and an optimum solution is at most 1/(k−1) = 1/(n/2−1)
so the competive ratio is at most 2/(n− 2). �

Next, we look at the upper bound for the greedy strategy.

Theorem 2. The greedy strategy for Max-ECP clustering is 1/(n − 2)-
competitive.

Proof. Consider an edge e inside a cluster produced by the greedy strategy on
n vertices. We introduce a weight function w(e) as follows: if e also belongs to

a cluster in OPTn, then we set w(e)
def
= 1. If e does not belong to any cluster

in OPTn, then the two endpoints v and v′ belong to different clusters of OPTn.

Denote these two clusters by ce and c′e and we set w(e)
def
= |ce|+ |c′e|− 2, i.e., the

number of edges in ce and c′e connected to v and v′. Note that not both ce and
c′e can be singleton clusters, so w(e) ≥ 1 in all cases.

Consider now the sum,
∑

e∈GDYn
w(e), where we abuse notation slightly and

let e ∈ GDYn denote that two end points of edge e lies in the same cluster of
GDYn, the greedy clustering on n vertices. The sum counts every edge in OPTn

at least once, since an edge lying in both GDYn and OPTn is counted once and
an edge lying in GDYn but not in OPTn counts all the edges in OPTn connected



Competitive Online Clique Clustering 225

to the two endpoints. The fact that the sum counts all the edges in OPTn follows
since no two clusters in greedy can be merged to a single cluster. Hence,

p(OPTn) ≤
∑

e∈GDYn

w(e) ≤
∑

e∈GDYn

|ce|+ |c′e| − 2 ≤ (|c1|+ |c2| − 2) ·
∑

e∈GDYn

1

≤ (|c1|+ |c2| − 2) · p(GDYn) ≤ (n− 2) · p(GDYn),

where c1 and c2 denote the two largest clusters in OPTn. �

3.2 A Lower Bound for Online Max-ECP Clustering

We present a lower bound for deterministic Max-ECP clustering.

Theorem 3. Any deterministic strategy for Max-ECP clustering is at most 1/2-
competitive.

Proof. Again we use an adversarial argument and let the adversary provide 2k
vertices, where every odd numbered vertex is connected to its subsequent even
numbered vertex, v1 to v2, v3 to v4, etc. The game now continues in stages
with the strategy constructing clusters followed by the adversary adding edges.
In each stage the adversary looks at the clusters constructed; these are either
singletons or pairs {v2i−1, v2i}. For each newly constructed pair cluster, the
adversary adds two new vertices, v′2i−1 connected to v2i−1, and, v

′
2i connected

to v2i; see Figure 2. When the strategy fails to produce any new pair clusters in
a stage, the adversary stops.

v2i v2i−1 v2iv2i−1

v′2i−1 v′2i

Fig. 2. Illustrating the proof of Theorem 3

Assume that the strategy at the end of the stages has constructed k′ pair
clusters, k′ ≤ k, thus giving a profit of k′. Note that the strategy can never
produce the pairs {v2i−1, v

′
2i−1} or {v2i, v′2i} since these are revealed only if the

pair {v2i−1, v2i} is produced. The optimal solution in this case has profit k + k′

since this solution produces 2k′ pair clusters {v2i−1, v
′
2i−1} or {v2i, v′2i}, where

the strategy produces {v2i−1, v2i}, in addition to k− k′ pairs {v2i−1, v2i}, where
the strategy produces singleton clusters. Hence, the competitive ratio is

k′

k + k′
≤ 1

2
, for 0 ≤ k′ ≤ k,

giving the result. �
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3.3 A Constant Competitive Strategy for Online Max-ECP
Clustering

We present a new strategy for Max-ECP clustering and prove that it has constant
competitive ratio. If the optimum solution OPTn does not have any clusters
of size larger than three, the strategy follows the greedy strategy. Otherwise,
the strategy places arriving vertices in singleton clusters until the profit ratio
between the current solution S′

n and the offline optimum solution OPTn (of the
n currently known vertices) goes below a threshold value c. When this happens,
the strategy computes the relative optimum solution given the current clustering.
The strategy is given in pseudocode below.

Strategy Lazy

/* Maintain clustering Sn with profit p(Sn) and let c be a constant */

1 n = 1

2 while new vertex vn arrives do

2.1 S′
n := Sn−1 + singleton(vn)

2.2 Compute OPTn

2.3 if the largest cluster in OPTn has size ≥ 4 then

2.3.1 if p(OPTn) > c · p(S′
n) then

2.3.1.1 Compute the relative optimum of S′
n, ÔPT (S′

n)

2.3.1.2 Construct Sn from ÔPT (S′
n) using only merge operations

else

2.3.1.3 Sn := S′
n

endif

else

2.3.2 Construct Sn using the Greedy strategy

endif

2.4 Report Sn

2.5 n := n+ 1

endwhile

End Lazy

Given a clustering S, the relative optimum, ÔPT (S), is defined as follows:
construct a graph GS such that, for every cluster in S there is a vertex in GS

and two vertices in GS are connected by an edge, if every pair of vertices in

the two underlying clusters are connected. ÔPT (S) is now the offline optimal
clustering in GS .

Given the current clustering, S′
n, the new clustering, Sn, is easily generated

by constructing a cluster in Sn for each cluster in ÔPT (S′
n) by merging the

corresponding clusters in S′
n.

The following theorem follows directly from the construction of the strategy
since the ratio between the profit of the optimal solution (given the current n
vertices) and the profit of the online solution Sn never falls below the threshold c.
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Theorem 4. The Lazy strategy is 1/c-competitive for online Max-ECP cluster-
ing.

We will establish the value of c to be c = (154 + 16
√
61)/9 in Lemma 3.

We give a relationship between the profits of the two clusterings OPTn−1

and OPTn.

Lemma 1. Let cmax be the largest cluster in OPTn−1, having size k, then, for
all n > 2 the profit p(OPTn) ≤ p(OPTn−1) · (k + 1)/(k − 1).

Proof. The maximum increase occurs if vn, the arriving vertex, can be clustered
together with the vertices in cmax. The increase in profit in this cluster goes
from

(
k
2

)
to

(
k+1
2

)
. The maximum increase for the whole clustering occurs if cmax

is the only non-singleton cluster in OPTn−1, giving us a ratio of
(
k+1
2

)
/
(
k
2

)
=

(k + 1)/(k − 1). �

Let G be an undirected graph and let GA and GB be the two subgraphs induced
by some partitioning of the vertices in G. Let C be a clustering on G and let A
and B be the clusterings induced by C on GA and GB respectively.

Lemma 2. If p(A) > 0 and p(C)/p(A) = z > 1, then p(B)/p(C) ≥ r(z) where
r(z) is

r(z) = 1−
√
1 + 8z − 2

z
.

Proof. Our proof is by induction on the number of clusters in C. We assume the
clusters c1, . . . , cm in C are sorted on increasing number of vertices in ai, where
ai is the cluster in A induced by the cluster ci in C.

Similarly we denote by bi the cluster in B induced by the cluster ci in C.
We say that a cluster ci is a null cluster, if the induced cluster ai in A has

p(ai) = 0. This happens if ai is either empty or a singleton set.
We first prove the base case, where we assume that C contains exactly one

non-null cluster, i.e., c1, . . . , cj−1 are clusters such that p(ai) = 0, for 1 ≤ i < j
and cj is the first cluster where p(aj) > 0. Assume that p(cj)/p(aj) = z′′ and
that |aj | = l, |bj| = l′ and |cj | = l+ l′.

We prove the base case of the induction also using induction and assume for
this base case that j = 1. In this case, z = p(C)/p(A) = p(c1)/p(a1) = z′′ and
we get by straightforward calculations that

p(B)

p(C)
=

p(b1)

p(c1)
= 1−

√
1 + 4zl(l− 1)− l

z(l − 1)
≥ r(z),

since the expression before the inegueality is increasing in l, and therefore min-
imized when l = 2.

For the inductive case of the base case, we assume the result holds for j−2 ≥ 0
null clusters and one non-null cluster and prove it for j− 1 null clusters and one
non-null cluster. Let {c2, . . . , cj} be denoted by C′ and let A′ and B′ be the
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induced clusterings of C′ in GA and GB . We set p(C′)/p(A′) = z′ and have
when we add null cluster c1 to the clustering that

z =
p(C)

p(A)
=

p(C′) + p(c1)

p(aj)
= z′ +

p(c1)

p(aj)
,

giving us that z′ ≤ z and

p(B)

p(C)
=

p(b1) + p(B′)
p(C)

≥ p(c1)− |c1|+ 1 + p(B′)
p(c1) + p(C′)

.

The inequality stems from the fact that a1 can either be a singleton or an empty
cluster, so b1 either contains the same number of vertices as c1 or one less.

By the induction hypothesis we have that p(B′) ≥ r(z′) · p(C′), and since
p(A) = p(A′) = p(aj) = p(c1)/(z − z′), p(C′) = z′p(aj) = zp(aj) − p(c1), and

|c1| = (1 +
√
1 + 8(z − z′)p(aj))/2, this gives us that

p(B)

p(C)
≥ (z − z′)p(aj) + (1−

√
1 + 8(z − z′)p(aj))/2 + z′r(z′)p(aj)

zp(aj)

= 1 +
z′(r(z′)− 1)

z
+

1−
√

1 + 8(z − z′)p(aj)
2zp(aj)

≥ 1 +
z′(r(z′)− 1)

z
+

1−
√

1 + 16(z − z′)
4z

.

The last expression is a decreasing function of z′ between 0 and z, so increasing
z′ to z yields p(B)/p(C) ≥ r(z). Hence the base case when C has zero or more
null clusters and exactly one non-null cluster has been completed.

For the general induction step, assume the formula holds for m− 1 clusters,
prove it for m clusters. We let p(C)/p(A) = z, C ′ = {c1, . . . , cm−1}, C = C′ ∪
{cm}, p(C′)/p(A′) = z′ and p(cm)/p(am) = z′′.

By the induction hypothesis we have that

p(B)

p(C)
≥ r(z′) · p(C′) + r(z′′) · p(cn)

p(C′) + p(cn)
= r(z′)

z′(z − z′′)
z(z′ − z′′)

+ r(z′′)
z′′(z′ − z)

z(z′ − z′′)

The last expression decreases as z′′ tends towards z, again giving us p(B)/p(C) ≥
r(z), thus proving our result. �

Lemma 3. If, for a certain value of n, the selection in Step 2.3.1 yields true
in the lazy strategy, then the profit p(OPTn) ≤ a · p(Sn) where a < c is some
constant.

Proof. When the largest clusters in OPTn has size at most three, we have from
the proof of Theorem 2 that greedy has competitive ratio 1/4, and lazy will do at
least as well in this case, since it follows the greedy strategy. So, we can assume
that the largest cluster in OPTn has size at least four. This also means that the
size of the largest cluster in OPTn−1 is at least three.
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We make a proof by induction on n, the number of steps in the algorithm.
The base cases when n = 1, 2 and 3 follow immediately, since lazy (and greedy)
computes optimal solutions in these cases, so a ≤ 4 can be chosen as the constant,
since the competitive ratio is 1/a ≥ 1/4.

Assume for the inductive case that Step 2.3.1 yields true at the n-th iteration
and assume further that the previous time it happened it was in iteration k
(or that the strategy followed greedy in this step). By the induction hypothesis
we know that p(OPTk) ≤ a · p(Sk) for some constant a < c. Let OPT ′

k be the
clustering obtained from OPTn induced by the vertices v1 . . . vk. It is obvious
that p(OPT ′

k) ≤ p(OPTk). Let Ekn be the set of edges between vertices inside
clusters of OPTn that have both endpoints among the vertices vk+1 . . . vn. Simi-
larly, we define E′

kn to be the set of edges inside clusters that have one end point
among the vertices v1 . . . vk and the other among vk+1 . . . vn. We now have that

p(OPT ′
k) + |E′

kn|+ |Ekn| = p(OPTn).

Let S′
n be the clustering solution in iteration n just before the strategy reaches

Step 2.3.1, i.e., when vertex vn is put in a singleton cluster. This gives us, since
p(S′

n) = p(Sk),

p(OPTn) > c · p(S′
n) = c · p(Sk) ≥

c

a
· p(OPT ′

k)

Since p(OPTn)/p(OPT ′
k) ≥ c/a, by Lemma 2 the ratio |Ekn|/p(OPTn) ≥ r(c/a).

Note that Ekn forms a clustering of vertices vk+1, . . . , vn that is independent
of how vertices v1, . . . , vk are clustered. Therefore, when an new cluster Sn is
recomputed in Step 2.3.1.1, it includes at least as many edges as both Sk and
Ekn together. Furthermore, p(Sn−1) = p(Sk) and p(OPTn−1) ≤ c·p(Sn−1), since
otherwise Step 2.3.1.1 would have been done already in the previous iteration.
We have that

p(Sn) ≥ p(Sk) + p(OPTkn) ≥ p(Sk) + |Ekn| = p(Sn−1) + |Ekn|

≥ p(OPTn−1)

c
+ |Ekn| ≥

p(OPTn)

2c
+ |Ekn|

≥ p(OPTn)

2c
+ r(c/a) · p(OPTn).

The second to last inequality follows from Lemma 1, since the largest cluster in
OPTn−1 must have size 3, and the last inequality was given above.

We must guarantee that

p(OPTn)

2c
+ r(c/a) · p(OPTn) ≥

p(OPTn)

a

to prove the lemma, which is equivalent to finding constants a ≤ 4 and c as small
as possible so that 1/(2c) + r(c/a) ≥ 1/a. The inequality holds for a = 4 and in
equality for c = (154 + 16

√
61)/9 ≈ 30.9960. �

From Theorem 4 it follows that the competitive ratio for the lazy strategy is
9/(154 + 16

√
61) ≈ 0.032262.
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4 Online Min-ECP Clustering

4.1 A Lower Bound for Online Min-ECP Clustering

We present a lower bound for deterministic Min-ECP clustering.

Theorem 5. Any deterministic strategy for Min-ECP clustering is no better
than n1−ε/2-competitive, for every ε > 0.

Proof. An adversary provides the following vertices of an input graph in se-
quence. First, one (k− 1)-clique, followed by one additional vertex connected to
one of the previously given vertices, i.e., a lollipop graph; see Figure 3.

Fig. 3. A lollipop graph with a (k − 1)-clique and a vertex connected by a single edge

We now consider different possibilities for clustering the k vertices. For con-
venience, we shall call an edge whose endpoints lie in two different clusters of a
given clustering a disagreement edge (disagreement for short) for this clustering.
First, let us assume that the strategy has clustered the input in such a way
that the (k−1)-clique is not clustered as one cluster. Then this clustering has at
least k−2 disagreements. An optimal clustering contains only one disagreement,
between the (k − 1)-clique and a singleton cluster containing the vertex outside
the clique. Hence, the competitive ratio in this case is at least (k− 2)/1 = n− 2
since the number of vertices is n = k.

Assume next that the strategy has clustered the input as one (k − 1)-clique
and one singleton cluster. In this case, the adversary provides k− 1 independent
cliques of size m, where each of the vertices in an m-clique is connected to one
particular vertex of the original (k−1)-clique; see Figure 4. No other edges exist
in the input.

m
m

m

m
m

m

Fig. 4. Each of the (k − 1) vertices in the central clique is connected with m edges to
an m-clique



Competitive Online Clique Clustering 231

The strategy can at best cluster the k−1m-cliques as clusters, thus generating
m(k−1) disagreements. An optimal solution will, for m sufficently large, cluster
the vertices in the original (k − 1)-clique in each of the new cliques, generating
a solution of k − 1 (m + 1)-cliques. This solution has

(
k−1
2

)
disagreements. If

we set m = (k − 2)t/4, where k is chosen so that m is an integer and t is some
sufficiently large integer, then the competitive ratio becomes

(k − 1)m(
k−1
2

) =
(k − 2)t−1

2
≥ 1

2

(
n1/(t+1)

)t−1

≥ n1− 2
t+1

2
=

n1−ε

2
,

for all ε > 0, since the number of vertices in the input is n = (k − 1)m + k =
(k − 1)(k − 2)t/4 + k ≤ (k − 2)t+1, proving the lower bound. �

4.2 The Greedy Strategy for Online Min-ECP Clustering

In this section, we prove that the greedy strategy yields a competitive ratio of
n − 2, almost matching the lower bound provided in section 4.1. The greedy
strategy was presented in Section 3.1.

Theorem 6. The greedy strategy for Min-ECP clustering is no better than (n−
2)/2-competitive.

Proof. We let an adversary generate the same input sequence of n = 2k vertex
pairs as in the proof of Theorem 1. Greedy generates 2

(
k
2

)
disagreement edges

whereas the optimum solution has k disagreement edges. The competitive ratio
becomes

2
(
k
2

)
k

= k − 1 =
n− 2

2
.

�

We say that a solution to Min-ECP clustering is maximal, if the solution cannot
be improved by the merging of any clusters. A strategy for Min-ECP clustering
is called maximal, if it always produces maximal solutions. Note that greedy
belongs to this class of maximal strategies.

Theorem 7. Any maximal online strategy for Min-ECP clustering problem is
2n− 3-competitive.

Proof. Consider a disagreement edge e connecting vertices v and v′ outside any
cluster produced by the maximal strategy MAXn on n vertices. We start by
showing that either v or v′ must have an adjacent edge that is a disagreement
edge in OPTn. We have two cases: if e is also a disagreement edge in OPTn,
there is a disagreement edge in OPTn adjacent to v or v′.

Now, if e is not a disagreement edge in OPTn, then one of v and v′ connects
to a vertex u, assume it is v, such that the edge e′ = (v, u) is a disagreement
edge in OPTn, i.e., there is a cluster in MAXn containing v and u but not v′

and there is a cluster in OPTn containing v and v′ but not u. The vertex u must
exist, otherwise MAXn would have clustered v and v′ together, a contradiction.



232 A. Fabijan, B.J. Nilsson, and M. Persson

In this way, we have proved that to each disagreement edge in MAXn, there
must be an adjacent disagreement edge in OPTn.

Consider now a disagreement edge e in OPTn. Potentially, all its adjacent
edges can be disagreement edges for MAXn, giving us in the worst case 2n− 4
adjacent disagreement edges different from e and one where they coincide. Hence
the worst case competitive ratio is 2n− 3. �

From our observation that greedy belongs to the class of maximal strategies we
have the following corollary.

Corollary. Greedy is 2n− 3-competitive.

5 Conclusion

We have proved almost matching upper and lower bounds for clique clustering.
Our main result is a constant competitive strategy for clique clustering when the
cost measure is to maximize the total number of edges in the cliques. Our strategy
does not consider the computational feasibility of clique clustering, which can be
considered a drawback. However, we feel that since the lower bound adversarial
arguments also allow this computation, our measure is fairer to the strategy.
In addition, the computational problems required to be solved efficiently for our
strategy are indeed efficiently solvable for large classes of graphs, such as chordal
graphs, line graphs and circular-arc graphs [7].
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Abstract. We consider the monotone connected graph search problem,
that is, the problem of decontaminating a network infected by a mobile
virus, using as few mobile cleaning agents as possible and avoiding recon-
tamination. After a cleaning agent has left a vertex v, this vertex will be-
come recontaminated if m or more of its neighbours are infected, where
m ≥ 1 is a threshold parameter of the system. In the literature, the value
of m has been limited to m = 1 or to the strict majority of the neighbours
of the nodes.

In this paper, we consider this problem for any integer value m ≥ 1.
We direct our investigation to widely used interconnection networks,
namely meshes, hypercubes, and trees. For each of these classes of net-
works, we establish matching upper and lower bounds on the number of
agents necessary to decontaminate with threshold m. The upper bound
proofs are constructive: we present optimal decontamination protocols;
we also show that these protocols are optimal or near-optimal in terms
of number of moves.

1 Introduction

The Framework. Parallel and distributed computing systems are designed
around interconnection networks. As the size, the complexity, and the impor-
tance of a system increases, the presence of malicious threats cannot be avoided.
Such threats may be brought by intruders that travel through the network and
infect any visited site, as for example a virus. The focus of this paper is on coun-
teracting such a threat by a team of mobile cleaning agents (or simply agents)
that traverse the network decontaminating the visited sites.

The team of agents enter the network, viewed as a simple undirected graph,
at a single vertex, called homebase. An agent located at a vertex v can move to
any of the neighbouring nodes of v, decontaminating it with its presence; upon
departure of the (last) agent, a vertex can become re-contaminated if a sufficient
number of its neighbours are contaminated. The goal is to decontaminate the
whole network using as small a team of cleaning agents as possible avoiding any
recontamination. This problem, also known as monotone connected graph search
and as intruder capture, has been extensively studied in the literature (e.g., see
[2, 3, 5–9, 12, 14–19, 21, 22]).

P.G. Spirakis and M. Serna (Eds.): CIAC 2013, LNCS 7878, pp. 234–245, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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The re-contaminationprocess is regulatedby a parameterm: if no agent is there,
a decontaminated vertex v will become re-contaminated ifm or more of its neigh-
bours are infected. The number of agents necessary to decontaminate the entire
network is clearly a function ofm and of the basic parameters of the given network.
In the literature, the problem has been extensively studied whenm = 1, that is the
presence of a single infected neighbour recontaminates a disinfected node with no
agents. Under this assumption the problem has been investigated for a variety of
network classes: Trees [2, 3, 6], Hypercubes [7], Meshes [9], Pyramids [21], Chordal
Rings [8], Tori [8], outerplanar graphs [12], chordal graphs [19], Sierpinski graphs
[18], Star graphs [15], product graphs [14], graphs with large clique number [22],
while the study of arbitrary graphs has been started in [5, 13]. The only studies
of decontamination with m > 1 are for Toroidal Meshes and Trees with strong
majority threshold [17], and for Toroidal Meshes with arbitrary threshold [16].

Main Contributions. We investigate the decontamination problem for arbi-
trary m ≥ 1. We focus on three common classes of interconnection networks:
Meshes, Hypercubes, and Trees; for each network G in those classes, we study
the number A(G,m) of agents necessary to decontaminate G with threshold m.

For each of these classes of networks, we establish matching upper and lower
bounds. The upper bound proofs are constructive: we present optimal decon-
tamination protocols. More precisely:

(i) We first consider k-dimensional meshes with N = n1 × n2 × · · · × nk ver-
tices, where k ≥ 2; w.l.g., let 2 ≤ n1 ≤ n2 ≤ · · · ≤ nk. We prove that for each
such mesh Z, A(Z,m) = 1 for m ≥ k and A(Z,m) = n1 × n2 × ... × nk−m for
1 ≤ m < k. We show that these lower bounds are tight, by exhibiting a solution
algorithm that uses these many agents.
(ii) We then consider k-dimensional hypercubes with N = 2k vertices. We show
that for each such hypercube H , A(H,m) ≤ 2k−m; we prove that this bound
is tight exactly for m = 1 and the trivial cases m = k and m = k − 1, and
asymptotically tight (i.e., for k →∞) for the other values of m.
(iii) Finally we consider the family of trees. Unlike the case of meshes and hy-
percubes, the number of needed cleaning agents may be different for different
trees of the same size. For every tree T and any value of m ≥ 1 we determine the
value A(T,m). We then prove that this number is also sufficient by presenting
a simple decontamination protocol using precisely those many agents.

The algorithms for meshes and hypercube are established in a synchronous set-
ting; this is not a limitation since, as shown in [7–9], with simple modifications
to the algorithm structure, the use of one single extra agent enables to solve the
problem also in asynchronous settings. The proposed algorithms for trees work
immediately also in an asynchronous settings.

Although not the main concern of this paper, we also consider the minimum
number of moves performed by an optimal-size team of agents. We prove that
all our solution protocols are optimal or near-optimal, in order of magnitude,
also with respect to this measure.

Due to space limitations, in the following the proofs are omitted.
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2 Model and Basic Properties

The network is represented as a simple connected undirected graph G with N
vertices. For a vertex v in G, let d(v) denote its degree, and let d(G) denote the
maximum value of d(v) among all the vertices of G.

Operating in G is a team of agents. The agents have distinct Ids, have their
own local memory, can communicate with each other when at the same node, can
move from node to neighbouring node, and execute the same protocol. Distinct
Ids and face-to-face communication allow the agents to coordinate their activities
and to assign different roles and tasks as and when required by the protocol.

Initially, all vertices are infected and the agents enter the network at a single
vertex, called homebase. The presence of one or more agents at a vertex decon-
taminates that vertex making it clean. We say that at a given time a vertex is
gray if infected, black if it is clean and it contains one or more agents, and white
if it is clean but no agent is there. A white vertex is re-contaminated (i.e., it
becomes gray) if m or more of its neighbours are gray; by definition, a black ver-
tex does not become grey regardless of the color of its neighbours. Notice that,
by definition, a white vertex v with d(v) < m can never be re-contaminated.
When an agent moves from u to v on edge (u, v), it protects u from possible
contamination by v. A system so defined is said to have an immunity threshold
m to recontamination, or simply to have m-immunity.

The task of the team of agents is to decontaminate G avoiding any recontam-
ination. The goal is (1) to determine the smallest team size A(G,m) for which
such a task can be achieved; and (2) to devise an optimal monotone strategy,
that is a solution protocol that allows such a minimal team to decontaminate G
without recontamination. A secondary goal is for the minimal team to be able
to perform decontamination using as few moves as possible.

In terms of the number of agents sufficient to decontaminate a system with
m-immunity, the following bounds hold for any network.

Property 1. Let G be a simple connected graph.
(i) A(G,m) = 1 if m ≥ d(G).
(ii) A(G,m) ≤ 2 if m = d(G)− 1.

In a (step-)synchronous system the agents operate in synchronized steps: in each
step all the agents communicate (with those at the same vertex), compute, and
move (when required); these operations might not be instantaneous, but all
operations started in step i are completed by step i + 1. In a asynchronous
system there is no common notion of time or step, and every operation by each
agent takes a finite but otherwise unpredictable amount of time.

The protocols we present are described from a global point of view; their
operations are however fully distributed. Since the agents have distinct IDs,
are aware of the topology, and initially they are all located at the same node,
each agent will initially be assigned a specific role; this role allows the agent
to locally determine the sequence of movement it has to perform according to
the protocol. In the case of meshes and hypercubes, the protocols are described
assuming a synchronous system; in such a system, each agent can locally compute
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also the timing of each of its moves. If the mesh/hypercube is asynchronous, the
timing would given by an additional distinct agent whose task is to synchronize
the operations. Due to space constraints, these details are not explicit in the
following descriptions.

3 Decontaminating Meshes

A k-dimensional mesh Z (k-mesh for short) is a network of N = n1×n2×· · ·×nk

vertices, with k ≥ 2 and 2 ≤ n1 ≤ n2 ≤ · · · ≤ nk. Each vertex vi1,i2,...,ik , 0 ≤
ij ≤ nj−1, is connected to the 2k vertices vi1−1,i2,...,ik , vi1+1,i2,...,ik , vi1,i2−1,...,ik ,
vi1,i2+1,...,ik , ...., vi1,i2,...,ik−1, vi1,i2,...,ik+1, whenever these indexes stay inside the
closed intervals [0, nj − 1] (i.e. the border vertex vi1=0,i2,...,ik are not connected
to vi1−1,i2,...,ik , etc.).

3.1 Upper Bounds for Meshes

We present a protocol for decontaminating a synchronous k-mesh with m-
immunity and analyze its complexity. The decontamination process consists of
two phases. Phase 1 amounts to identifying an initial set C of vertices and have
|C| agents move into these vertices. In Phase 2, these agents move from C to
clean the whole mesh in a synchronized way. The size of C depends on the values
of m and k. Taking v0,0,...,0 as the homebase, we define the initial set C of a
k-mesh to consist of: (i) the only vertex v0,0,...,0, for m ≥ k; (ii) all the vertices
with indices ik, ik−1, ..., ik−m+1 equal to zero, for 1 ≤ m < k. In the latter case,
we have |C| = n1 × n2 × ...× nk−m.

Algorithm MESH-ONE, shown in Figure 1, gives a general scheme of phase
1 for m < k. A key point is that each agent reaches its final destination through
a shortest path from v0,0,...,0. The move operation of the last statement is done
synchronously for all the agents involved. We have:

Algorithm MESH-ONE(k,m)

let C be the submesh of Z composed of all the vertices with indices
ik, ik−1, ..., ik−m+1 equal to zero;

forany v ∈ C choose a shortest path from v0,0,...,0 to v;
let P be the set of such paths for all the vertices of C;
start with a set A of |C| agents in v0,0,...,0;
while ∃ v ∈ C containing more than one agent:

let (v, w1), ..., (v, wr) be the edges from v included in a path in P ;
let pi be the number of paths in P containing (v, wi);
keep one agent in v (its final destination);
for i = 1 to r move pi agents to wi through edge (v, wi).

Fig. 1. Decontamination phase 1 for a k-mesh Z, with m < k
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Lemma 1. For a k-mesh with 1 ≤ m < k, MESH-ONE is a monotone algorithm
that places n1 × n2 × ...× nk−m synchronous agents in the vertices of C in less
than 1

2 (k −m)nk−m+1
k−m moves.

Note that, by Lemma 1, the number of moves to put the agents in C is O(N).
In phase 2 of the decontamination process, the agents move from the vertices

of C until the whole k-mesh has been cleaned. This is attained by algorithm
MESH-TWO, shown in Figure 2.

Formally note that a k-mesh Z can be built by connecting nk (k-1)-meshes
Z0, ..., Znk−1, called (k-1)-submeshes of Z, where Zj is composed of all the ver-
tices with index ik = j. Each submesh Zj, 1 ≤ j ≤ nk − 2, is adjacent to Zj−1,
Zj+1, meaning that each vertex of Zj is adjacent to a vertex of Zj−1 and to one
of Zj+1 for decreasing and increasing values of the index ik, respectively. The
border submeshes Z0, Znk−1 are only adjacent to Z1, Znk−2, respectively. Recur-
sively a k-mesh contains nk×nk−1×· · ·×nk−j disjoint (k−j−1)-submeshes, for
0 ≤ j ≤ k−1. For j = k−2 each 1-submesh reduces to a chain of n1 vertices. For
j = k−1 each 0-submesh reduces to a single vertex. These (k− j−1)-submeshes
will be denoted by Zik,ik−1,...,ik−j

with obvious meaning, where each index ir
spans from 0 to nr − 1. Note that 0-submeshes have k indices with values equal
to the ones of the corresponding vertex. The whole mesh Z has no indices. By
definition we have that C is a submesh of Z. In fact C = Z0,0,...,0 where the
number of indices is k for m ≥ k and m for m < k.

Algorithm MESH-TWO(k,m, s, Zik,ik−1,...,ik−s+1)

let Z′ = Zik,ik−1,...,ik−s+1 ;
if s = m

(i.e. Z′ is composed of nk−m+1 (k −m)-submeshes one of which
contains the agents)

move the agents through the adjacent (k −m)-submeshes of Z′, until
Z′ has been cleaned;

let ir be the index of Z′ with lowest value of r such that ir < nr − 1;
if such an ir exists

move the agents in one step to Zik,...,ir+1,...,ik−s+1

(else the whole mesh Z has been cleaned);
else for t = 0 to nk−s − 1 MESH-TWO(k,m, s+ 1, Zik,ik−1,...,ik−s+1,t).

Fig. 2. Decontamination phase 2 for a k-mesh Z, with m ≤ k

Algorithm MESH-TWO, whose initial call is MESH-TWO(k,m, 1, Z0) with
the agents in C, works recursively on submeshes Zik,ik−1,...,ik−s+1

of different
size, where s is the number of indices in the notation. The external call is on
Z0. A first remark is that for m > k a single agent can decontaminate the mesh
moving as for the case m = k, then the algorithm is defined for 1 ≤ m ≤ k and
C is a submesh with s = m indices in all cases.
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Lemma 2. MESH-TWO is a monotone decontamination algorithm with |C|
synchronous agents starting in C. For m = k the single agent makes N − 1
moves. For 1 ≤ m < k the n1×n2×...×nk−m agents make N−n1×n2×...×nk−m

moves.

Noting that for m > k the mesh can be decontaminated by one agent that
makes the same moves needed for m = k, and combining Lemmas 1 and 2, we
immediately have:

Theorem 1. A k-mesh can be decontaminated monotonically in M(m) = Θ(N)
moves by A(m) synchronous agents, where:

A(m) = 1, for m ≥ k;
A(m) = n1 × n2 × ...× nk−m, for 1 ≤ m < k.

Let us finally recall that, as mentioned in Section 1, a decontamination scheme
for a general value of m has been proposed in [16] for k-meshes with toroidal
closures, an essentially different and somehow simpler problem due to the absence
of borders in the structure. With due transformations in the notation and the
conventions adopted, the results of that paper can be summarized as: A(m) =
2m×n1×n2× ...×nk−m for 1 ≤ m ≤ k−1, and A(m) = 22k−m for k ≤ m ≤ 2k.
In all cases M(m) = Θ(N).

3.2 Lower Bounds and Optimality for Meshes

By definition, at any step of a monotone solution algorithm, all the clean vertices
form a connected subgraph B that includes the homebase. B is called a guarded
block and constitutes the key concept for a lower bound argument.

Let ν(B) and α(B) respectively denote the number of all the vertices of B,
and the number of the vertices of B with at least m gray neighbours. Each of the
latter vertices must contain an agent. For any given guarded block B, then, α(B)
gives the minimum number of agents needed to protect B from re-contamination.
In a decontamination process B varies at each step in a sequence S = B0,
B1,...,BM(m)−1, where B0 contains the homebase only. Therefore A(Z,m) ≥
maxi(α(Bi)) (see Figure 3).

x3

x1

x2Ba

x3

x1

x2Bb

Fig. 3. Two guarded blocks Ba, Bb of 15 vertices for k = 3 and m = 2; α(Ba) = 6 and
α(Bb) = 5, the latter being a minimum value for A(Z,m) in the plane i3 = 0
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Given that at least one agent is needed, and is sufficient to decontaminate a
k-mesh Z with m ≥ k, lower bounds on A(Z,m) will be studied for 1 ≤ m < k.

In the space of Z, we consider polytopes of order h (briefly h-topes), 0 ≤
h ≤ k, with bounding hyperplanes “orthogonal” to the coordinate axes. In an
h-tope vertices, edges, and faces of increasing order are called f-faces, with f =
0, 1, 2, ..., h − 1 respectively. f -faces are in turn f -topes. Polytopes containing
vertex v0,0,...,0 are called basic. Note that in a basic f -face all the vertices have
degree k + f , except the ones on the (f ′<f)-subfaces that have degree k + f ′.

Lemma 3. Let the guarded blocks B0, B1, .... grow initially in the subspace (x1,
x2,..., xk−m+1) that is, for all the other indices ik−m+2 to ik equal to zero.
When a block Br with ν(Br) ≥ n1 × n2 × ... × �nk−m+1/2� is reached we have
α(Br) ≥ n1 × n2 × ... × nk−m, and there is a sequence S where Br is a basic
(k-m+1)-tope and the inequalities on ν(Br), α(Br) hold with the equal sign.

This lemma immediately leads to the following lower bound theorem, that shows
that the upper bound established in Theorem 1 is tight:

Theorem 2. For a k-mesh Z with 1 ≤ m < k we have A(Z,m) ≥ n1 × n2 ×
...× nk−m.

Once the number of agents has been minimized, a corresponding lower bound on
the number of moves is immediately found. In fact the values given in Lemmas 1
and 2 have been computed by counting the number of moves of phases 1 and
2, that are both minimal for the chosen values of A(Z,m). We conclude that
the detailed upper bounds on the number of moves given in the two lemmas
are tight. In general we can state thatM(m) = Ω(N) thus matching the upper
bound of Theorem 1 in order of magnitude.

4 Decontaminating Hypercubes

As well known, a k-dimensional hypercube H (or k-cube for short) is a network of
N = 2k vertices coded with k-bit strings s0, ..., sN−1. Each vertex is denoted by
its code. All vertices have degree k, in fact, the edges connect pairs of vertices
(si, sj) whose codes differ in exactly one bit. The restriction of H to vertices
whose codes agree in exactly t bits is a (k-t)-cube, called a (k-t)-subcube of H .

4.1 Upper Bounds for Hypercubes

As for meshes, the decontamination process consists of phase 1 in which an initial
set C of vertices is defined and |C| agents are dispatched into these vertices; and
phase 2 in which the agents move from C to clean the whole hypercube. The
size of C depends on the values of m and k. Due to the total symmetry of
the hypercube, any vertex can be chosen as the homebase. We take 00...0 as the
homebase and let C be the (k-m)-subcube of H whose vertex codes start with m
zeroes. So |C| = 2k−m. Formally, letting si[1, r] be the prefix of si from position
1 to position r, C is composed of all the vertices si with si[1,m] = 00...0.
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Hypercube decontamination is carried out following the general scheme of
algorithm CUBE, shown in Figure 4. At the end of phase 1, C contains 2k−m

agents, one per vertex, and is built moving the agents inside C only. Along the
process, several agents are placed in the same vertex v at certain steps, one of
which remains in v as its final destination while the others move away. In phase
2, the agents move in parallel waves cleaning all the (k-m)-subcubes of H . As
we shall see, this phase requires some attention for visiting all the gray vertices
exactly once.

Lemma 4. For a k-cube with m ≤ k, phase 1 of algorithm CUBE is monotone
and places 2k−m synchronous agents in the vertices of C in (k −m) · 2k−m−1

moves.

In phase 2 the agents move from C to decontaminate all the (k-m)-subcubes of
H . Due to the structure of the hypercube the vertices of any subcube H1 are
one to one adjacent to the vertices of other subcubes H2 of the same dimensions.
Assuming that each vertex of H1 contains an agent, in one parallel step all these
agents can be transferred onto H2 for cleaning. The only problem is deciding the
sequence of subcubes to be traversed in order to avoid sending agents to already
decontaminated vertices. As indicated in algorithm CUBE - phase 2, a “Gray
sequence” (e.g. a reflected binary sequence) of the prefixes s[1,m] of the vertex
codes solves the problem. We have:

Lemma 5. Algorithm CUBE - phase 2 is a monotone decontamination algo-
rithm using 2k−m synchronous agents that start in C and make N−2k−m moves.

Combining Lemmas 4 and 5 we immediately have:

Theorem 3. A k-cube can be decontaminated monotonically with A(m) = 2k−m

synchronous agents in M(m) = N(1 + k−m−2
2m+1 ) moves.

4.2 Lower Bounds and Optimality for Hypercubes

To some extent determining a lower bound on the number A(Z,m) of agents for
decontaminating a k-cube is more complicated than for meshes. Here we study
the problem for 1 ≤ m ≤ k − 2 as the values A(k) = 1 and A(k-1) = 2 obtained
by the algorithm are obviously minimal.

Consider a particular guarded block Br that contains 2k−m white vertices.
Note that one such a block must exist in any sequence S = B0, B1, ... requiring
a minimum number L ≤ 2k−m of agents because the number of vertices in the
blocks spans from 1 to N and the black vertices are limited to L. We have:

Theorem 4. For a k-cube H with 1 ≤ m ≤ k−2 we have A(m) ≥ k−m+1
k 2k−m.

As a consequence of Theorem 4, the upper bound 2k−m for A(H,m) is strict for
m = 1, and tends to that value for m > 1 if k →∞.

Theorem 5. For a k-cube H with 1 ≤ m ≤ k − 2 we have M(H,m) ≥
Ω(N logN/log logN).

In other words, the overall number of moves with algorithm CUBE in the worst
case, i.e. for fixed m and increasing k, is within a log logN factor from optimal.
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Algorithm CUBE(k,m)

phase 1
let C be the subcube of all the vertices s with s[1, m] = 00...0;
start with a set of |C| = 2k−m agents in vertex 00...0;
if (m < k)

for i = k downto m+ 1
move 2i−m−1 agents from each vertex s with s[1, i] = 00...00
to vertex t with t[1, i] = 00...01.

phase 2
let s0[1, m] = 00...0 and H0 = C;
choose a Gray sequence s0, s1, ...s2m−1 of prefixes of length m;
let H0,H1, ..., H2m−1 be the sequence of (k-m)-subcubes where all

the vertices of Hi have prefix si;
for (i = 1 to 2m−1)

move all the agents from Hi−1 to the adjacent vertices of Hi.

Fig. 4. Decontamination of a k-cube H , with 1 ≤ m ≤ k

5 Decontaminating Tree Networks

We now study the decontamination of tree networks. Observe that, in a tree T ,
the removal of an edge (u, v) in T uniquely identifies two rooted subtrees: the
subtree T [u \ v] rooted in u (and not containing v) and the T [v \ u] rooted in v
(and not containing u). In a tree T , a single agent performing a simple traversal
starting from a leaf is sufficient to decontaminate T if m ≥ deg(T ) − 1. Hence
in the following we will assume m < deg(T )− 1.

5.1 Lower Bounds for Trees

The minimum number of agents needed to decontaminate a tree T depends on
the choice of the homebase, i.e., the node v of T from which the agents start. Let
A(v, T,m) denote the minimum number of agents needed to decontaminate T
when v is the homebase; then A(T,m) = minv{A(v, T,m)} denotes the smallest
number of agents needed to decontaminate T when the agents can choose the
homebase.

Let v1, ..., vk be the neighbours of v in T , where k = deg(v). Without loss of
generality, let A(vi, T (vi \ v),m) ≥ A(vi+1, T (vi+1 \ v),m) for 1 ≤ i < k.

Theorem 6.
(i) If k = 0, then A(v, T,m) = 1.
(ii) If k > 0, then A(v, T,m) ≥ A(v1, T [v1 \ v],m).
(iii) If k > m and A(v1, T [v1 \ v],m = A(vm+1, T [vm+1 \ v],m), then
A(v, T,m) ≥ A(v1, T [v1 \ v],m) + 1.

Consider the function α(v, T,m) defined recursively as follows
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α(v, T,m) =

⎧⎪⎪⎨⎪⎪⎩
1 if k = 0

α(v1, T [v1 \ v],m) if 0 < k ≤ m
α(v1, T [v1 \ v],m) if (k > m) and (a1 > am+1)

1 + α(v1, T [v1 \ v],m) if (k > m) and (a1 = am+1)

where ai = α(vi, T [vi \ v],m).
For all pairs of neighbouring nodes u, v the values α(v, T,m), α(u, T,m),

α(v, T [v \ u],m) and α(u, T [u \ v)]m) can be computed by solving the recur-
rent relation; hence the value α(v, T,m) is uniquely determined for every v in
T , and so is the value α(T,m) = minv{α(v, T,m)}. Note that, as in [3, 17], this
computation can be performed efficiently using the “full saturation” technique
[20]. The importance of the function α is that it is a lower bound on A.
Theorem 7. A(v, T,m) ≥ α(v, T,m)

We next consider a lower bound on the number of moves performed by a minimal
team of agents. LetM(T,m) denote the minimum number of moves necessary
to decontaminate T starting from v with A(T,m) agents and all agents return-
ing to the homebase. By definition, M(T,m) = min{μ(v, T,m) : A(v, T,m) =
A(T,m)} where μ(v, T,m) denote the minimum number of moves necessary to
decontaminate T starting from v with A(v, T,m) agents, all returning to v.
Again, let v1, ..., vk be the neighbours of v in T , where k = d(v).

Theorem 8.

μ(v, T,m) =

{∑
1≤j≤k[μ(vj , T [vj \ v],m) + 2 A(vj , T [vj \ v],m)] if k > 0

0 if k = 0

5.2 Upper Bounds and Optimality for Trees

We first prove that the lower bound of Theorem 7 is tight. The proof is con-
structive. Consider protocolDecontaminate shown in Figure 5.

Algorithm Decontaminate(T, v,m)

move α(T, v) agents to v;
let v1, ..., vk be the neighbours of v in T , and wlg let

α(vi, T (vi \ v),m) ≥ α(vi+1, T (vi+1 \ v),m), 1 ≤ i < k.
for j = k downto j = 1

Decontaminate(T (vj \ v), vj ,m).
move all the agents at vj to v.

Fig. 5. Decontamination of a tree T starting from v, with 1 ≤ m ≤ k − 1

Theorem 9. Algorithm Decontaminate(T, v,m) monotonically
decontaminates T starting from v using α(v, T,m) agents.

From Theorems 7 and 9, it follows A(v, T,m) = α(v, T,m).
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Algorithm OptimalTreeDecontamination(T,m)

choose as starting point a vertex v such that
α(v, T,m) = A(T,m) and μ(v, T,m) = M(T,m),

Decontaminate(T, v,m).

Fig. 6. Optimal decontamination of a tree T , with 1 ≤ m ≤ k − 1

The protocol OptimalTreeDecontamination that uses precisely A(T,m)
agents performing M(T,m) moves is now straightforward (see Figure 6).

Theorem 10. Protocol OptimalTreeDecontamination decontaminates
monotonically any arbitrary tree T using A(T,m) agents performing M(T,m)
moves.

5.3 Other Bounds

The optimal protocol described in the previous section decontaminates any tree
T with the minimal number of agents and an optimal number of moves. It
assumes that the tree T is known. It is still possible to devise a simple and
rather efficient protocol (shown in Figure 7) that decontaminates T requiring
only knowledge of its diameter h(T ) and using precisely those many agents.

Algorithm UnknownTree

Place all h agents at v which becomes the root of T .
Starting from v perform a depth-first traversal of T with the following rules:

(1) when going from a node x to a new node y bring all agents currently
at x but one (i.e., leave one agent at x);

(2) when returning from a node y bring all agents currently at y.

Fig. 7. Decontamination of a tree T of unknown topology

Theorem 11. Protocol UnknownTree monotonically decontaminates a tree
T of unknown topology using at most h(T ) agents.

The of number of agents h(T ) of this simple protocol can be far off from A(T,m).
However, for an infinite family of trees, its cost is no more than twice the cost of
the optimal solution protocol that uses knowledge of T . Let T (k, h) denote the
family of complete k-ary trees of diameter h; that is, the leaves have degree 1,
all other nodes have degree k, and there is a node whose distance from all leaves
is h/2.

Theorem 12. For any T ∈ T (k, h), v ∈ T , h = 2r ≥ 4, k ≥ m + 2 ≥ 3
α(v, T,m) ≥ r + 1.

Theorem 12 extends the results of [2], established for k = 3 and m = 1. It
states that any protocol decontaminating all trees of T (k, h) must use at least
h/2 + 1 agents, implying the worst case optimality, within a constant factor of
2, of Protocol UnknownTree for that infinite class of trees.
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Abstract. In this paper we address the task of finding convex cuts of
a graph. In addition to the theoretical value of drawing a connection
between geometric and combinatorial objects, cuts with this or related
properties can be beneficial in various applications, e. g., routing in road
networks and mesh partitioning. It is known that the decision problem
whether a general graph is k-convex is NP-complete for fixed k ≥ 2.
However, we show that for plane graphs all convex cuts (i. e., k = 2) can
be computed in polynomial time. To this end we first restrict our con-
sideration to a subset of plane graphs for which the so-called alternating
cuts can be embedded as plane curves such that the plane curves form
an arrangement of pseudolines. For a graph G in this set we formulate
a one-to-one correspondence between the plane curves and the convex
cuts of a bipartite graph from which G can be recovered. Due to their
local nature, alternating cuts cannot guide the search for convex cuts
in more general graphs. Therefore we modify the concept of alternating
cuts using the Djoković relation, which is of global nature and gives rise
to cuts of bipartite graphs. We first present an algorithm that computes
all convex cuts of a (not necessarily plane) bipartite graph H ′ = (V,E)
in O(|E|3) time. Then we establish a connection between convex cuts of
a graph H and the Djoković relation on a (bipartite) subdivision H ′ of
H . Finally, we use this connection to compute all convex cuts of a plane
graph in cubic time.

Keywords: Plane graphs, convex cuts, Djoković relation, partial cubes,
bipartite graphs.

1 Introduction

A convex cut of a graph G = (V,E) is a partition of V into V1 and V2 such that
both subgraphs of G induced by V1 and V2 are convex. A convex subgraph of G, in
turn, is a subgraph S of G such that for any pair of vertices v, w in S all shortest
paths from v to w in G are fully contained in S. Following Artigas et al. [1], a
convex k-partition in a graph is a partition of the vertex set into k convex sets.
If G has a convex k-partition, then G is said to be k-convex. Deciding whether a
(general) graph is k-convex is NP-complete for fixed k ≥ 2 [1]. Moreover, given
a bipartite graph G = (V,E) and an integer k, it is NP-complete to decide
whether the largest convex set ∅ �= S ⊂ V has at least k vertices [8].

P.G. Spirakis and M. Serna (Eds.): CIAC 2013, LNCS 7878, pp. 246–263, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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The fundamental notion of convexity in graphs can be used to draw a connec-
tion to continuous objects in a metric space. Note that there exists a different
notion of convexity for plane graphs. A plane graph is called convex if all of
its faces are convex polygons. This second notion is different and not object of
our investigation. The notion of convexity in acyclic directed graphs, motivated
by embedded processor technology, is also different [2]. There, a subgraph S is
called convex if there is no directed path between any pair v, w in S that leaves
S. In addition to being directed, these paths do not have to be shortest paths
as in our case.

Graph partitions with particular properties are of high interest in many ap-
plications [3]. Sample applications that potentially benefit from convexity of a
cut are parallel numerical simulations. For some linear solvers used in these
simulations, the shape of the partitions, in particular short boundaries, small
aspect ratios, but also connectedness and smooth boundaries, plays a significant
role [12]. Convex subgraphs typically admit these properties. Another example
is the preprocessing of road networks for shortest path queries by partitioning
according to natural cuts [6]. The definition of a natural cut is not as strict as
that of a convex cut, but they have a related motivation.

Both from a theoretical point of view and due to the practical importance, it is
natural to ask whether the time complexity of finding convex cuts is polynomial
for certain types of inputs. In this paper, we focus on plane graphs as they are
important in a large number of applications. Their special structure gives rise
to the hope that finding their convex cuts is fundamentally easier. To the best
of our knowledge, there exists no polynomial-time algorithm yet for computing
convex cuts of plane graphs.

1.1 Related Work

Artigas et al. [1] show that every connected chordal graph G = (V,E) is k-
convex, for 1 ≤ k ≤ |V |. They also establish conditions on |V | and p to decide
if the pth power of a cycle is k-convex. Moreover, they present a linear-time
algorithm that decides if a cograph is k-convex.

Our method for finding all convex cuts of a plane graph G is motivated by
the work in Chepoi et al. [5] on the links between alternating and convex cuts of
plane graphs. Plane graphs usually have alternating cuts that are not convex and
convex cuts that are not alternating. Proposition 2 in [5] characterizes the plane
graphs for which the alternating cuts coincide with the convex cuts in terms of a
condition on the boundary of any alternating cut. In this paper we represent the
alternating cuts as plane curves that we call embedded alternating paths (EAPs)
– any EAP partitions G exactly like the alternating cut it represents. In contrast
to [5], however, we focus on the intersections of the EAPs (i. e., alternating cuts).

If any pair of EAPs intersects at most once, we have a slight generalization
of so-called arrangements of pseudolines. The latter arise in discrete geometry,
computational geometry and in the theory of matroids [4]. Duals of arrangements
of pseudolines are known to be partial cubes – a fact that has been applied to
graphs in [9], for example. For basics on partial cubes we rely on the survey [13].
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The following basic fact about partial cubes is crucial for our method for finding
convex cuts: partial cubes are precisely the graphs that are bipartite and on
which the Djoković relation [7] is transitive.

1.2 Paper Outline and Contribution

In Section 3 we first represent the alternating cuts of a plane graph G = (V,E),
as defined in [5], by EAPs. The main work here is on the proper embedding.
We then study the case of G being well-arranged, as we call it, i. e., the case in
which the EAPs form an arrangement of pseudolines, or a slight generalization
thereof. We show that the dual GE of such an arrangement is a partial cube and
reveal a one-to-one correspondence between the EAPs of G and the convex cuts
of GE . Specifically, the edges of GE intersected by any EAP form the cut-set of
a convex cut of GE . Conversely, the cut-set of any convex cut of GE is the set of
edges intersected by a unique EAP of G.

The one-to-one correspondence between the EAPs of a well-arranged graph
G and the convex cuts of bipartite GE suggests that, for the case in which G is
more general, it might be helpful to employ a bipartite graph that can be turned
into G by taking a subgraph and contracting vertices of degree two. We choose
the simplest way to generate such a graph G′, i. e., we subdivide any edge of
G. Before we find all convex cuts of plane G using G′, we show in Section 4
that all convex cuts of a bipartite graph G′ = (V ′, E′) can be found in O(|E′|3)
time, even if G′ is not plane. The fact that we can compute all convex cuts in
bipartite graphs in polynomial time is no contradiction to the NP-completeness
of the decision problem whether the largest convex set in a bipartite graph has
a certain size. In a convex cut both subgraphs have to be convex, while a convex
set S makes no assumptions on V \ S. The key to finding all convex cuts of a
plane graph is a theorem that holds for non-plane graphs, too. In particular, we
characterize convex cuts of G in terms of two relations, one on G and one on G′.
The latter is the Djoković relation.

The results of Section 4 are then used in Section 5 to find all convex cuts of
a plane graph G = (V,E). As in the case of well-arranged graphs, we iteratively
proceed from an edge e to another edge opposite to a face bounded by e, and the
number of such cuts is bounded by 2|E|. This time, however, “opposite” is with
respect to the Djoković relation on G′. Thus we arrive at a set of potentially
convex cuts, which includes all convex cuts. It remains to check whether the
potentially convex cuts are actually convex. This can be done in O(|V |2) time
per potentially convex cut, totalling up to O(|V |3) for all such cuts.

2 Preliminaries

Our methods for finding all convex cuts apply to finite, undirected, unweighted,
and connected graphs that are free of self-loops and whose vertices all have
degree greater than one. The last two conditions are not essential: self-loops
have no impact on the convex cuts, and any edge on a dead-end path toward a
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degree-one vertex gives rise to a trivial convex cut that does not interfere with
the non-trivial convex cuts. We often associate a cut (V1, V2) with its cut-set,
i. e., the set of edges running between V1 and V2.

If G is plane, we may identify V with a set of points in R2 and E with a set of
plane curves that intersect only at their end points, which, in turn, make up V .
For e ∈ E with end points u, v (u �= v) we sometimes write e = {u, v} even when
e is not necessarily determined by u and v due to parallel edges. F∞ denotes the
unbounded face of G and, if F is a face of G, we write E(F ) for the set of edges
that bound F .

We denote the standard metric on G by dG(·, ·). In this metric the distance
between u, v ∈ V amounts to the number of edges on a shortest path from u to
v. A subgraph S = (VS , ES) of a (not necessarily plane) graph H is an isometric
subgraph of H if dS(u, v) = dH(u, v) for all u, v ∈ VS .

Following [7] and using the notation in [13], we set

Wxy = {w ∈ V : dG(w, x) < dG(w, y)} ∀{x, y} ∈ E. (1)

Let e = {x, y} and f = {u, v} be two edges of G. The Djoković relation θ on G’s
edges is defined as follows:

e θ f ⇔ f has one end vertex in Wxy and one in Wyx. (2)

The Djoković relation is reflexive, symmetric [15], but not necessarily transitive.
The vertex set V of G is partitioned by Wab and Wba if and only if G is bipartite.

A partial cube Gq = (Vq, Eq) is an isometric subgraph of a hypercube. For a
survey on partial cubes see [13]. Partial cubes and θ are related in that a graph
is a partial cube if and only if it is bipartite and θ is transitive [13]. Thus, θ
is an equivalence relation on Eq, and the equivalence classes are cut-sets of Gq.
Moreover, the cuts defined by these cut-sets are precisely the convex cuts of
Gq [13]. If (V 1

q , V
2
q ) is a convex cut, the (convex) subgraphs induced by V 1

q and
V 2
q are called semicubes. If θ gives rise to k equivalence classes E1

q , . . . E
k
q , and

thus k pairs (Si
a, S

i
b) of semicubes, where the ordering of the semicubes in the

pair is arbitrary, one can derive a so-called Hamming labeling b : Vq "→ {0, 1}k
by setting

b(v)i =

{
0 if v ∈ Si

a

1 if v ∈ Si
b

(3)

In particular, dGq (u, v) amounts to the Hamming distance between b(u) and b(v)
for all u, v ∈ Vq. This is a consequence of the fact that the corners of a hypercube
have such a labeling and that Gq is an isometric subgraph of a hypercube.

A half-cube H is a graph whose vertices correspond to the vertices in one part
of a bipartite representation of a partial cube Q. Two vertices of H are adjacent
in H if their distance in Q is two [5].

3 Partial Cubes from Embedding Alternating Paths

In Section 3.1 we define a multiset of (not yet embedded) alternating paths that
are analogous to the alternating cuts defined in [5]. Section 3.2 is devoted to
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embedding the alternating paths into R2. In Section 3.3 we study the duals of
these embeddings and show that they are partial cubes.

3.1 Alternating Paths

Intuitively, an EAP P runs through a face F of G such that the edges through
which P enters and leaves F are opposite—or nearly opposite because, if |E(F )|
is odd, there is no opposite edge, and P has to make a slight turn to the left or
to the right. The exact definitions leading up to (not yet embedded) alternating
paths are as follows.

Definition 3.1 (Opposite edges, left, right, unique opposite edge).
Let F �= F∞ be a face of G, and let e, f ∈ E(F ). Then e and f are called
opposite edges of F if the lengths of the two paths induced by E(F )\{e, f} differ
by at most one. If the two paths have different lengths, f is called the left [right]
opposite edge of e if starting on e and running clockwise around F , the shorter
[longer] path comes first. Otherwise, e and f are called unique opposite edges.

Definition 3.2 (Alternating path graph A(G) = (VA, EA)).
The alternating path graph A(G) = (VA, EA) of G = (V,E) is the (non-plane)
graph with VA = E and EA consisting of all two-element subsets {e, f} of E
such that e and f are opposite edges of some face F �= F∞.

The alternating path graph defined above will provide the edges for the multiset
of alternating paths defined next. We resort to a multiset for the sake of unifor-
mity, i.e., to ensure that any edge of G is contained in exactly two alternating
paths (see Figure 1a).

(a) (b)

Fig. 1. Primal graph: Black vertices, thin solid edges. Dual graph: White vertices,
dashed edges. (a) Multiset P(G) of alternating paths: Red vertices, thick solid lines.
The paths in P(G) are colored. In this ad-hoc drawing all alternating paths that contain
a vertex vA (edge e of G) go through the same point on e, i. e., where a red vertex was
placed. (b) Collection E(G) of EAPs: Red vertices, thick solid colored lines.



Finding All Convex Cuts of a Plane Graph in Cubic Time 251

Definition 3.3 ((Multiset P(G) of) Alternating paths in A(G)).
A maximal path P = (v1A, e

1
A, v

2
A, . . . e

n−1
A , vnA) in A(G) = (VA, EA) is called

alternating if

– viA and vi+1
A are opposite for all 1 ≤ i ≤ n− 1 and

– if vi+1
A is the left [right] opposite of viA, and if j is the minimal index greater

than i such that vjA and vj+1
A are not unique opposites (and j exists at all),

then vj+1
A is the right [left] opposite of vjA.

The multiset P(G) contains all alternating paths in A(G): the multiplicity of P
in P(G) is two if vi+1

A is a unique opposite of viA for all 1 ≤ i ≤ n− 1, and one
otherwise.

3.2 Embedding of Alternating Paths

In this section we show that the alternating paths in P(G) can be embedded
into R2 such that any edge {e, f} of any path in P(G) turns into a non-self-
intersecting plane curve with one end point on e and the other end point on f .
Moreover, for any face F of G any pair of embedded paths intersects at most
once in the filled polygon F = F ∪ E(F ). A path in P(G) with multiplicity
m ∈ {1, 2} gives rise to m embedded paths. Visually, we go from Figure 1a to
Figure 1b.

In the following we set rules for embedding alternating paths locally, i. e., into
F . Later on we will make sure that the locally embedded paths fit together at
the face boundaries. We formulate the rules only for faces whose boundaries are
regular polygons. We may do so because all filled polygons in R2 (with the same
number of sides) are homeomorphic—a consequence of the Jordan-Schönflies
theorem [14]. Thus, we may embed the alternating paths first into a regular
polygon Fr and then map the embedded paths from Fr into F using a homeo-
morphism from Fr onto F . The homeomorphism will not affect the intersection
pattern of the local embedding, i. e., information on which paths intersect in F
or hit an edge in E(F ). The intersection pattern in Fr will depend not only on
Fr, but also on the cyclical order in which the EAPs from outside Fr hit E(F ).
For examples see Figures 2b,c and Figure 3a.

Embedding Rules. We call a face F of G even [odd] if |E(F )| is even [odd].
The rules for embedding alternating paths locally are:

1. The part of an EAP that runs through Fr is a straight line, and EAPs cannot
coincide in Fr.

2. An EAP can hit e ∈ E(Fr) only at e’ s relative interior, i. e., not at e’s end
vertices.

3. If two EAPs share a point p on an edge e ∈ E(Fr), they must cross at p and
not just touch.

4. Let Fr �= F∞ be an even face of G, let e, f be unique opposite edges in
E(Fr), and let P1, P2 be the two non-embedded alternating paths in P(G)
that contain the edge {e, f} (P1 = P2 if and only if the multiplicity of P1
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(a) (b)

8

even face odd face

odd faceodd face

F (c)

8

even face odd face

odd faceodd face

F

Fig. 2. (a) Intersection pattern of a filled hexagonal face (b,c) Two intersection patterns
of a filled pentagonal face (see gray circle for difference)

is two). Then the parts of embedded P1 and P2 that run through Fr must
form a pair of distinct parallel line segments (see Figure 2a).

5. Let Fr �= F∞ be an odd face of G, let e ∈ E(Fr), and let P1, P2 ∈ P(G) be
the two paths that contain the vertex e. If e also bounds an even bounded
face, embedded P1, P2 must hit e at two distinct points. If the other face
is a bounded odd face, embedded P1, P2 must hit at a point on e. (see
Figures 2b,c).

6. Let e be an edge of G that separates F∞ from a bounded face, and let
P1, P2 ∈ P(G) be the two paths that contain the vertex e. Then, embedded
P1, P2 must hit e at two distinct points (see Figures 2b,c).

We now map the embedded paths from any Fr into F using a homeomorphism
from Fr onto F . The following is about tying the loose ends of the locally em-
bedded paths, which all sit on edges of G, so as to arrive at a global embedding
of the alternating paths (see Figures 3b,c). Let e ∈ E(G), and let F, F ′ be the
faces of G that are bounded by e. We have two locally embedded paths P 1

F , P
2
F

in F and two locally embedded paths P 1
F ′ , P 2

F ′ in F ′ that all hit e. If F and F ′

are bounded odd faces, we bend the four paths such that they all hit the same
point q on the interior of G (for details see below). Otherwise, let the end point
of P 1

F , P 2
F , P 1

F ′ , and P 2
F ′ be denoted by p1F , p2F , p1F ′ , and p2F ′ , respectively. Due

to having used homeomorphisms to obtain the embedded paths in F and F ′, it
holds that p1F �= p2F and p1F ′ �= p2F ′ . Let e = {u, v}, and let q1, q2 be points on
the interior of e such that q1 is closer to u than q2. Without loss of generality
we may assume that p1F is closer to u than p2F and that p1F ′ is closer to u than
p2F ′ . We now bend p1F and p1F ′ [p2F and p2F ′ ] toward q1 [q2].

It remains to show that the bending operations above can be done such that
the intersection patterns do not change in the interiors of F and F ′. Recall that
the paths are homeomorphic to straight line segments. Thus, there exists ε > 0
such that all locally embedded paths in F and F ′ other than P 1

F , P 2
F , P 1

F ′ , and
P 2
F ′ keep a distance greater than ε to e. The bending, in turn, can be done such

that it affects P 1
F , P 2

F , P 1
F ′ , and P 2

F ′ only in an ε-neighborhood of e.

Notation 3.1. The collection of globally embedded alternating paths (EAPs)
is denoted by E(G) (see again Figures 3b,c).
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(a) (b)
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1
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u
vF

p1
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2
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1P

Fig. 3. (a) Hexagonal face with the same intersection pattern as in Figure 2a. (b,c)
Bending of alternating paths is indicated by the dashed colored lines. For the notation
see the text. (b) Bending toward a single point q on e. (c) Bending toward two points
q1, q2 on e.

The EAPs in Figure 1b are special in that they form an arrangement in the
following sense.

Definition 3.4 (Arrangement of alternating paths, well-arranged
graph).
E(G) is called an arrangement of (embedded) alternating paths if

1. none of the EAPs is a cycle,
2. none of the EAPs intersects itself, and
3. there exist no paths P1 �= P2 ∈ E(G) such that P1 ∩ P2 contains more than

one point.

We call a plane graph G well-arranged if E(G) is an arrangement of alternating
paths.

The notion of an arrangement of alternating paths can be seen as a generalization
of the notion of an arrangement of pseudolines [4]. The latter arrangements are
known to have duals that are partial cubes [9].

3.3 Partial Cubes from Well-Arranged Graphs

The purpose of the following is to prepare for the definition of a graph GE (see
Definition 3.6), which will turn out to be a partial cube if G is well-arranged. In
this case we are able to determine all convex cuts of GE .

Definition 3.5 (Domain D(G) of G, facet of E(G), adjacent facets).
The domain D(G) of G is the set of points covered by the vertices, edges and
bounded faces of G. A facet of E(G) is a (bounded) connected component (in
R2) of D(G) \ (

⋃
e∈E(G) e∪

⋃
v∈V (G) v). Two facets of E(G) are adjacent if their

boundaries share more than one point.

In the following DEAP stands for Dual of Embedded Alternating Paths.
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Definition 3.6 (DEAP graph GE of G).
A DEAP graph GE of G is a plane graph that we obtain from G by placing one
vertex into each facet of E(G) and drawing edges between a pair (u, v) of these
vertices if the facets containing u and v are adjacent in the sense of Defini-
tion 3.5. A vertex of GE can also sit on the boundary of a face as long as it does
not sit on an EAP from E(G) (for an example see the black vertex on the upper
left in Figure 4a).

Since we are not interested in the exact location [course] of GE ’s vertices [edges],
there exists basically one DEAP graph of G. Due to the intersection pattern of
the EAPs in G’s bounded faces, as specified in Section 3.2 and illustrated in
Figure 2, there are the following three kinds of vertices in V (GE):

Definition 3.7 (Primal, intermediate and star vertex of GE).

– Primal Vertices: Vertices which represent a facet that contains a (unique)
vertex v of G in its interior or on its boundary. As we do not care about the
exact location of GE ’s vertices, we may assume that the primal vertices of
GE are precisely the vertices of G.

– Intermediate Vertices: The neighbors of the primal vertices in GE .
– Star Vertices: The remaining vertices in GE .

For an example of a DEAP graph see Figure 4, where the black, gray and white
vertices correspond to the primal, intermediate, and star vertices, respectively.

Theorem 3.1. The DEAP graph GE of a well-arranged plane graph G is a
partial cube.

Proof. We denote the Hamming distance by h(·, ·). To show that GE = (VE , EE)
is a partial cube, it suffices to specify a labeling l : VE "→ {0, 1}n for some n ∈ IN
such that dGE (u, v) = h(l(u), l(v)) for all u, v ∈ VE (see Section 2).

We set the length n of any binary vector l(v) to the number of paths in E(G),
and let the entries of l(v) indicate v’s position with respect to the paths in E(G).
Specifically, we start by numbering the paths in E(G) from one to n, which
yields the paths P1, . . . , Pn. For each 1 ≤ i ≤ n we then select one component of
D(G) \ Pi. Then we set the ith entry of l(v) to one if the face represented by v
is in the selected component of D(G) \ Pi (zero otherwise).

It remains to show that dGE (u, v) = h(l(u), l(v)) for any pair u �= v ∈ V . Since
on any path of length k from u to v in GE it holds that h(l(u), l(v)) ≤ k, we
have dGE (u, v) ≥ h(l(u), l(v)).

To see that dGE (u, v) = h(l(u), l(v)), it suffices to show that u has a neighbor u′

such that h(l(u′), l(v)) < h(l(u), l(v)) (because then there also exists u′′ such that
h(l(u′′), l(v)) < h(l(u′), l(v)) and so on until v is reached in exactly h(l(u), l(v))
steps). The claim follows from the case distinction in the appendix of [10]. 	


The Hamming labelling of GE defined in the proof of Theorem 3.1 guarantees
the following.
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(a) (b)

Fig. 4. DEAP graph GE of the primal graph G shown in Figure 1a. (a) Collection
E(G) of EAPs: Red vertices, thick solid colored lines. DEAP graph GE : Black, gray
and white vertices, thin black solid lines. The black, gray and white vertices are the
primal, intermediate and star vertices, respectively. The dashed polygonal line delimits
D(G). (b) GE only. The red edge, however, is an edge of G. The path formed by the
two bold black edges is an example of a path in GE of length two that connects two
primal vertices that are adjacent in G via an intermediate vertex in GE .

Corollary 3.1. If G is well-arranged, there exists a one-to-one correspondence
between the EAPs of G and the convex cuts of GE . Specifically, the edges inter-
sected by any EAP of G form a cut-set of a convex cut of GE . Conversely, the
cut-set of any convex cut of GE is the set of edges intersected by a unique EAP
of G.

4 Convex Cuts of Not Necessarily Plane Graphs

In this section we assume that H ′ = (V,E) is bipartite (but not necessarily
plane). As mentioned in Section 2, any edge e = {a, b} of H ′ gives rise to a cut
of H ′ into Wab and Wba. The cut-set of this cut is Ce = {f ∈ E | e θ f} = {f =
{u, v} ∈ E | dH′ (a, u) = dH′(b, v)}. In the following we characterize the cut-sets
of the convex cuts of H ′. This characterization is key to finding all convex cuts
of a bipartite graph in O(|E|3) time.

Lemma 4.1. Let H ′ = (V,E) be a bipartite graph, and let e ∈ E. Then Ce is
the cut-set of a convex cut of H ′ if and only if f θ f̂ for all f, f̂ ∈ Ce.

Proof. Let Ce be a non-convex cut of H ′, and let e = {a, b}. Then there exists
a shortest path P = {v1, . . . vn} with both end vertices in, say Wab, such that
P has a vertex in Wba. Let i be the smallest index such that vi ∈ Wba, and let
j be the smallest index greater than i such that vj ∈ Wab. Then f = {vi−1, vi}
and f̂ = {vj, vj+1} are two edges in Ce. Lemma 3.5 in [13] says that no pair of
edges from a shortest path are related by θ, i. e., f θ f̂ does not hold.

Conversely, let f = {u, v}, f̂ = {û, v̂} ∈ Ce such that f θ f̂ does not hold.
Without loss of generality assume û ∈Wuv, v̂ ∈Wvu and dH′(u, û) < dH′ (v, v̂).
Then dH′(v, v̂)−dH′(u, û) ≥ 2. Indeed, dH′ (v, v̂)−dH′ (u, û) must be even because
otherwise one of the two distances dH′ (u, û) and dH′ (v, v̂) is even and the other
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one is odd. Hence, due to H ′ being bipartite and the fact that (adjacent) u and
v are in different parts of H ′, the vertices û and v̂ are in the same part of H ′, a
contradiction to û and v̂ being connected by f̂ ∈ Ce. From dH′(v, v̂)−dH′(u, û) ≥
2 it follows that one can go from v to v̂, which are both in Wvu, by first traversing
f , then going from u to û within Wuv, and finally traversing f̂ . The length of
this path is ≤ dH′ (v, v̂). Thus, Ce is not a cut-set of a convex cut of H ′. 	


Lemma 4.1 suggests to determine the convex cuts of H ′ as sketched in Algo-
rithm 1.

Theorem 4.1. Algorithm 1 computes all cut-sets of convex cuts of a bipartite
graph H ′ using O(|E|3) time and O(|E|) space.

Proof. The correctness follows from Lemma 4.1 due to the symmetry of the
Djoković relation. For each candidate cut-set, one needs to determine if all pairs
of contained edges are Djoković related.

Regarding the running time, observe that for any edge e, the (not necessarily
convex) cut-set Ce can be determined by using BFS to compute the distances
of any vertex to the end vertices of e. Hence each Ce can be determined in
time O(|E|). The inner for-loop has O(|E|)) iterations. Each iteration has time
complexity O(|E|)) when using a linear-time set equality algorithm [11] (which
requires linear space). Hence Algorithm 1 runs in O(|E|3) time. Moreover, each
cut-set is processed sequentially. Since no more than two cut-sets (with O(|E|)
edges each) have to be stored at the same time, the space complexity of Algo-
rithm 1 is O(|E|). 	


A simple loop-parallelization over the edges in line 3 would lead to a parallel
running time of O(|E|2) with O(|E|) processors. If one is willing to spend more
processors and a quadratic amount of memory, then even faster parallelizations
are possible. Since they use standard PRAM results, we forego their description.

For the remainder of this section H denotes a graph (self-loops and degree-one
vertices allowed). We subdivide each edge of H into two edges and thus get a
bipartite graph H ′. An edge e in H that is subdivided into edges e1, e2 of H ′ is
called parent of e1, e2, and e1, e2 are called children of e. The Djoković relation
on H ′ is denoted by θ′.

The next lemma characterizes the convex cuts of H in terms of the Djoković
relation on H ′. The lemma does, however, not imply that the convex cuts of H
can be derived from those of H ′ in polynomial time.

Definition 4.1 (Relation τ). Let e = {ue, ve} and f = {uf , vf} be edges of
H. Then, e τ f if dH(ue, uf) = dH(ve, vf ) = dH(ue, vf ) = dH(ve, uf).

Lemma 4.2. A cut of H with cut-set C is convex if and only if for all e, f ∈ C
either e τ f or (exclusive or) there exists a child e′ of e and a child f ′ of f such
that e′ θ′ f ′.

Proof. Let {a′, b′} be child of e = {ue, ve}, let {c′, d′} be a child of f = {uf , vf}
and assume without loss of generality that dH(ue, uf) ≤ dH′ (ue, vf ). Then
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Algorithm 1. Find all cut-sets of convex cuts of a bipartite graph H ′

1: procedure EvaluateCutSets(bipartite graph H ′)
 Computes the cut-set Cei for each edge ei and stores in isConvex[i] if Cei is the
cut-set of a convex cut

2: Let e1, . . . em denote the edges of H ′; initialize all m entries of the array
isConvex as true

3: for i = 1, . . . , m do
4: Determine Cei = {f1, . . . , fk}
5: for all f j do
6: Determine Cfj

7: if Cfj �= Cei then
8: isConvex[i] := false
9: break

10: end if
11: end for
12: end for
13: end procedure

dH′ (a′, c′) = dH′ (b′, d′) if and only if either e τ f or (exclusive or) there exists a
child e′ of e and a child f ′ of f with e′ θ′ f ′. Indeed, let dH′ (a′, c′) = dH′(b′, d′). If
dH′ (a′, c′) is odd, i. e., the case shown in Figure 5, then dH′ (ue, uf) = dH′ (ve, vf ),
and adding only one of the conditions dH(ue, vf ) = dH(ue, uf) and dH(uf , ve) =
dH(ue, uf) yields that only one child of e is θ′-related to only child of f . Adding
the last condition results in e τ f and no θ′-relations of children. If dH′ (a′, c′) is
even, we cannot have e τ f and only one child of e is θ′-related to only child of f .
Conversely, if e τ f , then dH′(a′, c′) is odd, i. e., the case shown in Figure 5, and
dH′ (a′, c′) = dH′(b′, d′) for at least one pair of children {a′, b′} and {c′, d′}. If
e′ θ f ′, the end vertices of a′, b′ of e′ and c′, d′ of f ′ fulfill dH′ (a′, c′) = dH′ (b′, d′)
by definition of θ′.

Let C be the cut-set of a convex cut that partitions V into V1 and V2, and let
e, f ∈ C (see Figure 5a). Thanks to the above it suffices to find a child {a′, b′}
of e and a child {c′, d′} of f such that dH′(a′, c′) = dH′(b′, d′). Let e = {ue, ve}
and f = {uf , vf}, and let w′

e [w′
f ] denote the vertex of H ′ that subdivides e [f ].

Without loss of generality we assume ue, uf ∈ V1 and ve, vf ∈ V2. Since C is the
cut-set of a convex cut, we know that dH(ue, uf) and dH(ve, vf ) differ by at most
one. If dH(ve, vf ) = dH(ue, uf), let {a′, b′} = {ue, w

′
e} and {c′, d′} = {w′

f , vf}
(this is the case illustrated in Figure 5a). Then, due to the degrees of w′

e and w′
f

being two, dH′ (a′, c′) = dH′(ue, w
′
f ) = dH′(w′

e, vf ) = dH′(b′, d′). If dH(ue, uf)
and dH(ve, vf ) differ by exactly one, we may assume without loss of generality
that dH(ve, vf ) = dH(ue, uf ) + 1. Set {a′, b′} = {w′

e, ve} and {c′, d′} = {w′
f , vf}.

Then, due to the degrees of w′
e and w′

f being two, dH′ (a′, c′) = dH′(w′
e, w

′
f ) =

dH′ (ve, vf ) = dH′(b′, d′).
Conversely, let C be the cut-set of a cut that partitions V into V1 and V2. We

now assume that for all e = {ue, ve}, f = {uf , vf} ∈ C that are not τ -related
there exists a child e′ of e and a child f ′ of f such that e′ θ′ f . As above we
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Fig. 5. (a) If there exists a shortest path from ue to vf [ve to uf ] with length dH(ue, uf )
(indicated by dashed lines), then the red [blue] children of e and f are not θ′-related,
anymore. If both paths exist, no child of e is related to a child of f (and vice versa),
and e τ f . (b,c) Illustration to proof of Lemma 5.1. The red polygonal line indicates a
convex cut of H , and the shaded region is R. In (b) we have R = R′.

assume without loss of generality that ue, uf ∈ V1 and ve, vf ∈ V2. There are
four possibilities for the positions of e′ and f ′ within e and f , only two of which
need to be considered due to symmetry.

1. e′ = {ue, w
′
e} and f ′ = {uf , w

′
f}. In this case dH′ (ue, uf ) = dH′(w′

e, w
′
f ) =

dH′ (ve, vf )± 2.
2. e′ = {ue, w

′
e} and f ′ = {w′

f , vf}. Since the degrees of w′
e and w′

f are two, and
since e′ θ′ f ′, any shortest path from ue to w′

f runs via uf , and any shortest
path from w′

e to vf runs via ve. Hence, dH′ (ue, uf ) = dH′(ue, w
′
f ) − 1 =

dH′ (w′
e, vf )− 1 = dH′ (ve, vf ).

Thus dH(ue, uf) = dH(ve, vf ) ± 1 for all e = {ue, ve}, f = {uf , vf} ∈ C. Hence,
any shortest path with end vertices in V1 [V2] stays within V1 [V2], i. e., C is the
cut-set of a convex cut. 	


5 Convex Cuts of Plane Graphs

Let G = (V,E) denote a plane graph without self-loops and degree-one vertices.
Analogous to Section 4, G′ = (V ′, E′) denotes the (plane bipartite) graph that
one obtains from G by placing a new vertex into the interior of each edge of
G. Note that G and G′ have the same faces. The method for finding all convex
cuts of G in polynomial time that we present in this section is motivated by the
following observations.

1. The cut-sets of a non-bipartite graph H can be characterized in terms of τ
on H and θ′ on H ′ (see Lemma 4.2).

2. Let C be the cut-set of a plane graph. Then one can brachiate through the
edges of C by forming a cyclic sequence (e0, . . . e|C|−1 = e0) such that for
any pair (ei, ei+1) of consecutive edges there exists a face F with {ei, ei+1} ∈
E(F ) (indices are modulo |C|). Such a cyclic sequence, in turn, is equivalent



Finding All Convex Cuts of a Plane Graph in Cubic Time 259

to a cyclic sequence (F0, . . . , F|C|−1), where the (unique) Fi are such that
{ei, ei+1} ∈ E(Fi). The cut-set C is non-cyclical if and only if Fi = F∞ for
some i.

The idea for the following is to gather cut-sets of potentially convex cuts of G
by brachiating through the edges of G while checking τ -relations on G and θ′-
relations on G′. One of the problems is that the number of potentially convex
cuts increases whenever one encounters an edge that is τ -related to one of the
edges that have been gathered already. The following lemma, which is based on
the scenarios depicted in Figures 5b,c, helps to solve the problem.

Lemma 5.1. Let H be a plane graph, let e = {ue, ve}, f = {uf , vf} be edges of
H with e τ f , and let R ⊂ R2 be the minimal region containing e, f , and the
shortest paths from ue to uf , from ve to vf , from ue to vf and from uf to ve. If
HR denotes the subgraph of H whose vertices and edges are contained in R, then
any convex cut of HR with e and f in its cut-set can be extended to a convex cut
of H in at most one way. In particular, a vertex w �∈ R belongs to the same part
as vf if and only if it is closer to vf than to ve.

Proof. Without loss of generality we may assume that the convex cut of HR,
denoted by (V u

R , V v
R), is such that ue, uf ∈ V u

R and ve, vf ∈ V v
R . We assume

that (V u, V v) is a convex cut of H that extends (V u
R , V v

R), i. e., V u
R ⊂ V u and

V v
R ⊂ V v.
Let w be a vertex of H that is not in R. It suffices to show that (V u

R , V v
R)

determines whether w ∈ V u or w ∈ V v. Indeed, let R′ denote the smallest
region containing e, f , as well as the shortest paths from ue to uf and from ve to
vf (see Figure 5b). As in Figure 5c, let P g [P b] denote a shortest path from ue

to vf [ve to uf ]. If P g and P b intersect, at a vertex denoted by x, the part before
and after x is denoted by P g

1 and P g
2 [P b

1 and P b
2 ] (see Figure 5b). Finally, the

length of a path P is denoted by |P |. Up to symmetry it suffices to distinguish
between the following cases.

1. P g and P b are fully contained in R′ (see Figure 5b). In particular, P g and
P b intersect at x. Assuming |P g

1 | < |P b
1 | yields that |P g

2 | > |P b
2 | (since e τ f

and thus |P g
1 | + |P

g
2 | = |P b

1 | + |P b
2 |). Hence, the concatenation of P b

1 and
P g
2 is a path from ue to uf that is shorter than the one from ve to vf ,

a contradiction to e τ f . Hence, |P g
1 | = |P b

1 | and thus |P g
2 | = |P b

2 |. From
|P g

1 | + |P b
2 | = |P

g
1 | + |P

g
2 | = dH(uf , ue) and |P b

1 | + |P
g
2 | = |P b

1 | + |P b
2 | =

dH(vf , ve) it follows that the concatenation of P b
1 and P g

2 , as well as the
concatenation of P g

1 and P b
2 are shortest paths. One of the concatenations

must be cut twice by (V u
R , V c

R), a contradiction to (V u
R , V c

R) being a convex
cut of HR. Hence, this case does not occur.

2. P b is fully contained in R′, but P g is not (see Figure 5c). Let u∗
e be the

last vertex on a shortest path from ue to uf that is also contained in P g.
Furthermore, let w be a vertex of H that is not contained in R, and let P
be a shortest paths between w and uf . We distinguish between the following
cases.
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(i) P enters R through a vertex u′ of P g that is located between ue and u∗
e.

Hence, there exists a shortest path P ′ from w to uf that goes via u∗
e.

Let P ′′ be the path that follows P ′ up to u∗
e and then follows P g until

it reaches vf . If P ′′ is a shortest path, then w ∈ V u. Otherwise there
exists a shortest path from w to uf via vf , i. e., w ∈ V v. In particular,
w belongs to the same part as vf if and only if w is closer to vf than to
ve.

(ii) P enters R through a vertex ûe on P g that is located between u∗
e and

the last vertex on P g before the cut. Let P ′′ be the path that follows P
up to ûe and then follows P g until it reaches vf . If P ′′ is a shortest path,
then w ∈ V u. Otherwise there exists a shortest path from w to uf via
vf , i. e., w ∈ V v. In particular, w belongs to the same part as vf if and
only if w is closer to vf than to ve.

(iii) P enters R through any other vertex. Then the vertex of entry is in V v,
and since ve ∈ V u, it must hold that w ∈ V v and w is closer to vf than
to ve.

3. Both P b and P g are fully contained in R′. Same as above, but using only
cases (i) and (ii). 	


Theorem 5.1. All convex cuts of G = (V,E) can be found using O(|V |3) time
and O(|V |) space.

Proof. Below we assemble cut-sets of potentially convex cuts of G by starting
at an edge of G. This method finds at least all convex cuts of G such that e τ f
does not hold for all e, f in the cut-set. We will deal with the remaining cuts
later.

1. Let F0 �= F∞ be a face of G′ and let e′ = {u′
e, v

′
e}, f ′ = {u′

f , v
′
f}, g′ = {u′

g, v
′
g}

be distinct edges in E′(F0). Then one cannot have e′θ′f ′ and e′ θ′ g′ at the
same time (see Figure 6a). Indeed, assuming the opposite, we may assume
without loss of generality that u′

f , u
′
g ∈ Wu′

ev
′
e
, v′f , v

′
g ∈ Wv′

eu
′
e
. Moreover,

there exists a shortest path from u′
e to u′

g that is contained in Wu′
ev

′
e

and a
shortest path from v′e to v′f that is contained in Wv′

eu
′
e
. From G′ being plane

it follows, however, that the two paths intersect (in Figure 6a the two paths
intersect at the vertex w), a contradiction to the fact that Wu′

ev
′
e

and Wv′
eu

′
e

are disjoint.
2. Let F0 �= F∞ be a face of G′ and let e0 ∈ E(F0) (see Figure 6b). Furthermore,

let e′0,l = {v0,l, w′
0} and e′0,r = {w′

0, v0,r} be the two children of e0. Here v0,l
[v0,r] is the left [right] vertex of e0 when looking onto e0 from the (unique)
face �= F0 that bounds e0, and w′

0 is the vertex in G′ that subdivides e0. As
in Section 4, C′

e′ = {f ′ ∈ E′ | e′ θ′ f ′} is a cut-set of G′ for all e′ ∈ E′. Due
to item 1, C′

e′0,l
[C′

e′0,r
] contains two edges of E′(F ′), i. e., e′0,l [e′0,r] and an

edge denoted by e′1,l [e′1,r]. We denote the parent of e′1,l [e′1,r] by e1,l [e1,r].
3. If the two parents e1,l and e1,r are identical, Lemma 4.2 in conjunction with

item 1 above yields that, if e0 belongs to the cut-set of a convex cut, then
e1,l must belong to the same cut-set.
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Fig. 6. Illustrations to proof of Theorem 5.1. (a) Face F ′
0 of G′ with distinct e′ =

{u′
e, v

′
e}, f ′ = {u′

f , v
′
f}, g′ = {u′

g , v
′
g} ∈ E′(F ′

0). The green curves indicate shortest
paths. One cannot have e′θ′f ′ and e′θ′g′ at the same time. (b) Only edges with a
common color can form a cut-set of a convex cut. Cut-sets {e0, e1,l} and {e0, e1,r, e2,r}.
(c) Illustration to item 4 in the proof of Theorem 5.1. The black curves indicate shortest
paths and the labels on these curves indicate path lengths.

4. Assume that parents e1,l and e1,r are different. We now show that there can
exist at most one convex cut whose cut-set contains e0 and e1,r. We also
show how one can find this convex cut. An analogous result then also holds
for the branch containing e0 and e1,r. Let F1 denote the unique face with
e1,r ∈ E(F1) and F1 �= F0 (see Figure 6b). Furthermore, let f ′

1,r denote the
sibling of e′1,r, i. e., the unique other edge whose parent is e1,r. To simplify
the following, we color the cut-sets C′

e′0,l
, C′

e′0,r
and C′

f ′
1,r

as in Figure 6b, i. e.,
red, blue and green, respectively. If we assume that there exists a convex cut
of G with a cut-set containing e0 and e1,r, then Lemma 4.2 in conjunction
with item 1 above yields that the cut-set contains exactly one edge in E(F1)
other than e1,r and that this edge, denoted by e2,r, either has a blue child
or that the children’s colors are red and green. In the first case all edges in
the cut-set considered so far have a blue child. This is the case illustrated
in Figure 6b. The second case does not occur. Indeed, consider the path P
formed by the edges e′1,l (red), e′1,r (blue), and f ′

1,r (green) in this order. The
second case implies that there exists a path P ∗ that consists of the three
edges e′ (blue), e′2,r (red), and f ′

2,r (green) in this order. With the notation
in Figure 6c let k be the length of a shortest path between v1 and v2. Then,
f ′
1,r θ′ f ′

2,r implies that there exists a shortest path between x1 and u2 with
length k + 2 (recall that the gray vertices have degree two). Furthermore,
e′1,r θ′ e′2,r implies that that there exists a shortest path between u1 and u2

with length k − 2. Hence, there exists a path from w′
1 to w′

2 via v1, u1 and
u2 that has length k + 1, a contradiction to f ′

1,r θ′ f ′
2,r.

5. An iterative application of the previous item yields that e0 can be in the
cut-set of at most two convex cuts, and that these potentially convex cuts
can be determined in time O(|E|) = O(|V |) and space O(|E|) = O(|V |) once
the cut-sets C′

e′0,l
, C′

e′0,r
and C′

e′0,r
have been determined which, in turn, can

be done in time O(|V |) and space O(|V |). As in Theorem 4.1 it now follows
that all convex cuts with τ -free cut-sets can be found in time O(|V |3) and
space O(|V |).
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We now deal with convex cuts whose cut-sets contain τ -related edges. When we
assemble cut-sets of potentially convex cuts, as above, and when we encounter an
edge f with e τ f , we extend the potential cut in the only possible way according
to Lemma 5.1, i. e., a w �∈ R belongs to the same part as vf if and only if it is
closer to vf than to ve. This can be done in O(|V |) time by BFS starting at ve
and BFS starting at vf . In particular, total time O(|V |) is not increased. 	


6 Conclusions

We have presented an algorithm for computing all convex cuts of a plane graph in
cubic time. To the best of our knowledge, it is the first polynomial-time algorithm
for this task. On the way to this result, we first represented alternating cuts as
plane curves (EAPs) and focussed on a subset of �1-graphs for which the EAPs
basically form an arrangement of pseudolines. Thus we came across a one-to-one
correspondence between the EAPs of a graph G and the convex cuts of a bipartite
graph G̃E , one half of which is G. A similar correspondence on general graphs,
in conjunction with an algorithm that computes all convex cuts of a bipartite
graph in cubic time, formed the basis for our algorithm to compute all convex
cuts of a general plane graph in cubic time, too. Consequently, while the problem
is NP-hard for general graphs, we have shown that it becomes polynomial-time
solvable for plane graphs. In future work we would like to investigate if the
convexity test for potentially convex cuts can be accelerated asymptotically. It
seems also worthwhile to apply the techniques based on the Djoković relation to
other graph classes.

Acknowledgements. We thank Peter Sanders and Christian Schulz for helpful
discussions on the topic.
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and Non-additive Weights Is Hard
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Abstract. In a standard path auction, all of the edges in a graph are
sold as separate entities, each edge having a single cost. We consider a
generalisation in which a graph is partitioned and each subset of edges
has a unique owner. We show that if the owner is allowed to apply a
non-additive pricing structure then the winner determination problem
becomes NP-hard (in contrast with the quadratic time algorithm for the
standard additive pricing model). We show that this holds even if the
owners have subsets of only 2 edges. For subadditive pricing (e.g. volume
discounts), there is a trivial approximation ratio of the size of the largest
subset. Where the size of the subsets is unbounded then we show that
approximation to within a Ω(log n) factor is hard. For the superadditive
case we show that approximation with a factor of nε for any ε > 0 is
hard even when the subsets are of size at most 2.

1 Introduction

One of the most commonly studied types of set-system procurement auction is
the path auction (e.g. [2,21,9,16]). In a typical path auction each seller, or agent,
is represented by an edge in a graph and the feasible sets (the sets of sellers
that are suitable to the buyer) are exactly those that contain a path between
two specified vertices of the graph. This models a number of reasonable settings,
such as routing over the internet or in a transport network.

In the standard setting, each of the edges is considered as if it were a separate
entity and takes part in the auction as such. However, it seems reasonable to
assume that multiple edges may actually be controlled by a single entity. In the
examples of Internet routing or transport networks, it seems particularly likely
that this assumption will hold. Therefore, we propose a model that incorporates
the idea that some entity may control the pricing of a set of individual edges,
and we allow them to price bundles of edges in a non-additive way. It is quite
common, in economic and related literature, to study the concept of ‘volume
discounts’ or ‘bundling services’ (see, e.g., [20,19]) — when the price charged for
a collection of goods or services is lower than the sum of the individual prices. In
many situations, producing large quantities of some commodity is more efficient

� Supported by EPSRC Grant EP/G069239/1 “Efficient Decentralised Approaches in
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than producing smaller quantities and hence has lower unit cost. More directly,
two reasonable motivations that may apply here are, firstly, that a path auction
may actually be representative of something other than a network layout. It could
be a model, for instance, to describe the components needed to produce some
complicated commodity, such as an electronic device, where edges represent some
component, and a path through the graph represents a collection of components
that are sufficient to build the device. Alternatively, it is reasonable to assume, in
general, that there may be some overhead to making each single purchase (such
as the overhead of preparing bids, performing background and credit checks,
or drawing up contracts). In this setting, the overhead may be substantial for
selling a single item but could be much reduced for subsequent items. With this
motivation it seems reasonable to allow a seller to alter their prices depending
on the total number of edges they sell.

If we take volume discounts (or bundling) to an extreme level, we have a situ-
ation where a single price may be charged in order to purchase access to any or
all of the edges owned by some entity. This can be particularly attractive in cases
where there is surplus capacity on the network, such as at off-peak times, and it
is the aim of the seller to create demand for their service that may otherwise not
exist. A type of path auction where agents can own multiple edges in a graph was
studied by Du et al. [7]. They show that allowing agents to manipulate which
edges they declare ownership of may have disastrous effects on the payments
that are made (more precisely, an exponential frugality ratio [16,18]). Hence we
do not consider this, and simply assume that information on the ownership of
edges is public knowledge.

Perhaps the most commonly seen auction mechanism is the Vickrey-Clarke-
Groves (VCG) mechanism [22,5,13]. While this can be applied to any set-system
auction, it requires that an optimal feasible set be chosen as ‘winners’. However,
this may not always be possible in polynomial time and this intractability is gen-
erally seen as extremely undesirable. There has also been attention in describing
polynomial-time mechanisms, based on approximation algorithms, for a variety
of settings [1,8,3] in which finding the optimal set (and hence running VCG)
cannot be computed in polynomial time. Shortest path problems can be solved
efficiently (in quadratic time [6]) and it is the aim of this paper to consider the
complexity of finding an optimal solution when we apply bundling (or ‘volume
discounts’). Unfortunately, our results are largely negative. We find that even
the most basic form of discount that we consider — a simple “buy at least x
edges and get a discount of d” scheme — results in the winner-determination
problem being NP-hard. This precludes running the VCG mechanism in poly-
nomial time, which makes its use undesirable. We note that where the discounts
are small relative to the costs then just ignoring discounts would be close to op-
timal. For the case of large discounts we show limits on the approximation ratio
that may be achieved (subject to certain complexity theoretic assumptions).

Instead of having only negative ‘discounts’ we also consider positive values,
which we call volume supplements. While superadditive pricing may not seem as
readily justifiable as the subadditive case, it is worth studying for completeness.
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We are able to show that the winner determination problem for superadditive
pricing is also NP-hard, and it is also hard to find an approximate solution which
is within a factor of nε of the optimal for any ε > 0 where the supplement values
are large in relation to the weights.

2 Preliminaries

Our model involves finding the shortest path between two specified vertices of a
graph, taking into account the volume discounts that may be offered by the edge
owners. In order to represent ‘ownership’ we partition the edges of a graph into
disjoint sets, which we call bundles. Each bundle has a discount vector, which
specifies a discount value depending on the number of edges in that bundle which
are in the chosen path.

To compute a discounted-weight for a given path we add the weight of all of
the edges in the path to the (negative) discount values for each of the bundles.
Hence the aim of the problem is to discover the path between the specified
vertices with the lowest discounted-weight, and we will see this is hard via a
reduction from MINIMUM SET COVER, a well-known NP-hard problem [11].

Name SHORTEST PATH WITH DISCOUNTS
Instance A graph G = (V,E), positive weight function w on edges, two dis-

tinct vertices s, t, a collection, Z = {Z1, . . . , Zm} of subsets (or bundles)
of E (Zi ⊆ E) such that ∀e ∈ E, e occurs in exactly one Zi and a set of
discount vectors D = {d1, . . . ,dm} (one for each Zi) such that dij ≤ 0 for
j ∈ {0, . . . , |Zi|} (observe that, for ease of notation, this vector includes a
discount value for zero edges).

Output The subset P ⊆ E with minimum discounted-weight, given by∑
e∈P w(e) +

∑
Zi∈Z di|Zi∩P |, that contains a path from s to t.

Name EXACT COVER BY 3-SETS
Instance A finite set X containing exactly 3n elements; a collection, C, of

subsets of X each of which contains exactly 3 elements.
Output Does C contain an exact cover for X , i.e. a sub-collection of 3-element

sets D ⊆ C such that each element of X occurs in exactly one subset in D?

Name MINIMUM SET COVER
Instance A finite set X and a collection, C, of subsets of X .
Output What is the size of the minimum cover of X using C?

3 Complexity

We firstly show a simple reduction, from MINIMUM SET COVER, which shows
hardness and also preserves approximation. Informally, we consider a multigraph
on a line and show how the sets that ‘cover’ elements of a ground set (in a set
cover) can be simulated with bundles of edges that cover gaps in the line which
represents the ground set. The discounts are arranged such that the cost of every
non-empty bundle of edges is 1, regardless of the specific number of edges used.
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Lemma 1. MINIMUM SET COVER is polynomial-time reducible to SHORT-
EST PATH WITH DISCOUNTS.

Proof. Taking an instance I of MINIMUM SET COVER, let m = |X | and let
n = |C|. Build an instance I ′ = (G,Z) of SHORTEST PATH WITH DIS-
COUNTS as follows. (We present G as a multigraph, although we will see that
this assumption may be removed later on.) Let n = |C| and let m = |X |. Create
m + 1 vertices, labeled V1, . . . , Vm+1, and let s = V1 and t = Vm+1. For each
Ci ∈ C, for all j ∈ Ci, add an edge ei,j = (Vj , Vj+1) and add all of the ei,j
edges to bundle Zi. Let w(e) = 1 for all e ∈ E be the weight function, and
let the discount vectors be given by di = (0, 0,−1,−2, . . . , 1 − |Zi|) . Hence
for a path P containing a non-zero number of edges from some bundle Zi then
w(Zi∩P )+di|ZI∩P | = 1, so there is a contribution of exactly 1 to the discounted-
weight for each included Zi. Therefore, for any set of bundles S ⊆ Z containing
a path between s and t, the discounted-weight may be given by |S|.

An example of this reduction is shown in Fig. 1 and Fig. 2. Fig. 1 describes
a MINIMUM SET COVER instance, for which the minimum cover is of size 2
(given by the set D = {C1, C4}). In the corresponding instance of SHORTEST
PATH WITH DISCOUNTS in Fig. 2, the lowest discounted-weight path is of
weight 2, consisting of the path P = {e1,1, e1,2, e1,5, e4,3, e4,4, e4,6} (shown as
dashed lines), and hence the bundles S = {Z1, Z4}.

X = {1, 2, 3, 4, 5, 6}
C1 = {1, 2, 5} C2 = {1, 3, 4} C3 = {2, 3, 6} C4 = {3, 4, 6} C5 = {4, 5, 6}

Fig. 1. Example of MINIMUM SET COVER

Z1 = {e1,1, e1,2, e1,5}, Z2 = {e2,1, e2,3, e2,4}, Z3 = {e3,2, e3,3, e3,6},
Z4 = {e4,3, e4,4, e4,6}, Z5 = {e5,4, e5,5, e5,6}

Fig. 2. SHORTEST PATH WITH DISCOUNTS construction from Fig. 1

Returning to the proof, a set S contains a path between s and t if and only
if it contains an edge (Vj , Vj+1) for all j ∈ {1, . . . ,m}. Hence, where S contains
such a path, let D ⊆ C be the set containing Ci if and only if Zi ∈ S. Hence
D contains a cover of X and |D| ≤ |S| — as an edge from (Vj , Vj+1) in some
Zi ∈ S implies an element j in some Ci ∈ D. Similarly, where D contains a cover
of X , then the corresponding set S contains a path from s to t and |S| ≤ |D|.
Following this translation, we have |S| = |D| and the size of the minimum cover
of X can be computed by finding a path P with lowest discounted weight (and
hence the number of bundles in S which contain the edges in P ). 	
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The reduction in Lemma 1 gives an instance of SHORTEST PATH WITH DIS-
COUNTS that is typically a multigraph. This can be amended to construct a
simple graph, by replacing each edge with two edges in series (adding one new
vertex shared by each pair of edges).

Lemma 1 shows that SHORTEST PATH WITH DISCOUNTS is NP-hard, in
general, provided that the cardinality of the bundles is at least 3 (as a gener-
alisation of EXACT COVER BY 3-SETS). As bundles of size 1 correspond to
a polynomial-time computable shortest-path [6], we now consider the remaining
case where the bundles are of size at most 2 — and show that this also results
in an NP-hard problem, even when the discount values are arbitrarily small.

In Fig. 3 we see an example of the proposed reduction — Fig. 1 is encoded
as an instance of SHORTEST PATH WITH DISCOUNTS; where the shortest
discounted path is given by P = {e′1,1, e′1,2, e′1,5, e2,0, e′2,0, e2,x, e3,0, e′3,0, e3,x, e′4,3,
e′4,4, e

′
4,6, e5,0, e

′
5,0, e5,x, e1,1, e1,2, e4,3, e4,4, e1,5, e4,6}, which is marked as a dashed

line. Observe that Fig. 1 is a ‘yes’ instance of EXACT COVER BY 3-SETS and
a path of discounted-weight 21 + 9d exists only because just two ‘upper’ paths
between V1 and V6 (containing e′1,... and e′4,...) are sufficient to give a discount
on all edges in a path from V6 to t. A ‘no’ instance would require three or more
upper paths, which must give a discounted-weight greater than 21 + 9d .

Z = {{e1,1, e′1,1}, {e1,2, e′1,2}, {e1,5, e′1,5}, {e1,0, e′1,0}, {e1,x}, {e2,1, e′2,1}, {e2,3, e′2,3},
{e2,4, e′2,4}, {e2,0, e′2,0}, {e2,x}, {e3,2, e′3,2}, {e3,3, e′3,3}, {e3,6, e′3,6}, {e3,0, e′3,0},
{e3,x}, {e4,3, e′4,3}, {e4,4, e′4,4}, {e4,6, e′4,6}, {e4,0, e′4,0}, {e4,x}, {e5,4, e′5,4},
{e5,5, e′5,5}, {e5,6, e′5,6}, {e5,0, e′5,0}, {e5,x}}

Fig. 3. SHORTEST PATH WITH DISCOUNTS translated from Fig. 1 as described
in Theorem 1. The dashed line marks an optimal solution.

Theorem 1. SHORTEST PATH WITH DISCOUNTS is NP-hard even when
each bundle has size at most 2 and there is a single small discount value d < 0.

Proof. Let I = (X,C) be an instance of EXACT COVER BY 3-SETS, and
build an instance I ′ = (G,Z) of SHORTEST PATH WITH DISCOUNTS as
follows. Let n = |C| and let m = |X |. Create n + m + 1 new vertices, labeled
V1, . . . , Vn+m+1, and let s = V1 and t = Vn+m+1. Let w(e) = 1 for every edge
e ∈ G.

For each of the subcollections Ci ∈ C, let the elements in Ci be given by
{x, y, z}. Insert three edges in series e′i,x,e

′
i,y,e

′
i,z making an ‘upper’ path from Vi

to Vi+1 in G (adding unlabelled vertices, as needed). Next, insert three additional
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edges ei,x = (Vn+x, Vn+x+1),ei,y = (Vn+y , Vn+y+1),ei,z = (Vn+z , Vn+z+1). Now
create three bundles Zi,x = {e′i,x, ei,x}, Zi,y = {e′i,y, ei,y}, and Zi,z = {e′i,z, ei,z}
and add these to Z.

For each i ∈ {1, . . . , n} create a second ‘lower’ path from Vi to Vi+1 consisting
of three new edges, in series, and add two new bundles to Z, one which contains
two of these three new edges and another bundle containing the remaining edge.
Let d be some small value, −1 ≤ d < 0 for a discount parameter and let the
discount vectors be fixed, dj = (0, 0, d) for all j ∈ Z. (The purpose of the
‘lower’ paths are to create an alternative path from each Vi to Vi+1 which has a
discounted-weight of 3+d — as two of the edges are in the same bundle, exactly
one will be discounted.)

Taking P ⊆ E to be the lowest discounted-weight path between s and t, let
S ⊆ Z be the minimal set of bundles that contain all of the edges in P . We can
assume that all of the edges in P between Vn+1 and Vn+m+1 are ‘discounted’
edges (i.e. they are in some bundle with another edge that is also in P ). This
is without loss of generality, as for any path P containing an undiscounted edge
e, there is another path P ′, having the same discounted-weight, that includes
a discounted edge e′ in place of e. To verify this, we know that edge e is in a
bundle with another edge e′. As e is not discounted, we know that e′ is not in
the path. Hence, there is some ‘lower’ path chosen between V1 and Vn+1 that
avoids e′ with discounted-weight 3+d. Create a path P ′ by including the ‘upper’
path that includes e′, which increases the discounted-weight by −d on this path,
but also decreases the discounted-weight of edge e by −d, hence paths P and P ′

have the same discounted-weight.
Observe that any minimal path from s to t contains exactly 3n + m edges.

Furthermore, we have seen that there is a minimum path P where the m edges
from Vn+1 to Vn+m+1 are all discounted. Hence, we are interested in how many
of the upper paths must be selected between V1 and Vn+1, as these add to the
weight of the solution when compared to the lower paths. Assume a collection D
that contains a minimum cover of X ; now consider a set of bundles S such that
for every Ci ∈ D all of Zi,x, Zi,y, Zi,z are present in S. Observe that S contains
a path from Vn+1 and Vn+m+1, or else D does not cover every element in X .
Furthermore, S contains an upper path between two vertices in Vi, . . . , Vi+1 only
if D contains the corresponding set Ci. Let P be the path obtained from all the
bundles in S, as well as ‘lower’ paths between any vertices in {V1, . . . , Vn+1}
that were not connected by S. We can then determine that the total discounted-
weight of path P may be given by 3n+m+nd+md−|D|d (discounts are applied
to m edges from Vn+1 to Vn+m+1, and n− |D| edges in the lower paths from V1

to Vn+1). We can see that P is, in fact, a minimum discounted-weight path, as
any lower weight path must have more lower paths chosen, yet still discounts all
of the edges between Vn+1 and Vn+m+1, which would imply a cover of X exists
which is smaller than D, giving a contradiction.

We now claim that the path from s to t with lowest discounted-weight will
have a weight of 3n+m+ nd+md− (m/3)d if and only if C contains an exact
cover for X , i.e. there is a sub-collection D of 3-element sets D = (D1, ..., Dn)
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such that each element of X occurs in exactly one subset in D. Observe that
if C contains an exact cover, there is a set D such that |D| = m/3 and every
element in X is contained in some Ci in D. Now consider the path P that is
created, as described, by augmenting the set of bundles S (by adding lower paths,
where needed). We have seen that the discounted-weight of P may be given by
3n+m+nd+md−|D|d; hence where an exact cover exists then P has weight of
3n+m+ nd+md− |m/3|d. If no exact cover exists then the discounted-weight
of P is at least 3n+m+ nd+md− (|m/3|+ 1)d.

Hence we have the decision problem “Is there a path in I ′ with discounted-
weight of 3n+m+ nd+md− (m/3)d?” which has a ‘yes’ answer if and only if
instance I contains an exact cover by 3-sets, which is NP-hard to compute. As
computing a minimum discounted-weight path must answer this question (we
have seen that no lower weight path can exist), then we see that computing the
minimum discounted-weight path is also NP-hard. 	


Thus we have seen NP-hardness in the case where one edge in a bundle is dis-
counted, and one is not. If we assume a slightly more general scheme, in which
a discount is only applied after x edges are purchased, it is a simple observation
to extend this hardness result. In the construction given in Theorem 1, simply
simulate every edge e ∈ G by x − 1 edges in series, which are contained in the
same bundle. Hence, in this new graph, selecting any two of these new simulated
edges will trigger the discount value.

It is also worth noting, again, that although this reduction was presented for
simplicity as a multigraph, it would also work as a simple graph. All of the edges
between Vn+1 to Vn+m+1 could be replaced by two edges, in series, having a new
undiscounted edge added to the original edge. This would simply add a constant
weight of m to every possible minimal path, and hence the complexity remains
unchanged.

4 Inapproximability Results

If the discount values are small, relative to the weights, then simply ignoring the
discount values and computing a shortest path would give a good polynomial-
time approximation of the optimal solution. (Assuming a maximum weight of 1
and a discount value of d, then 1/(1+d) is an upper bound on the approximation
ratio.) However, if we assume larger discount values, we can see inapproximability
results, from Lemma 1. If we assume an unweighted case (∀e ∈ E,w(e) = 1) and
allow large discount values, then we have a scenario in which the sets of edges can
be thought of as bundled together, where a single price applies to all non-empty
subsets of a bundle.

We now discuss the implications of Lemma 1 in terms of the inapproximability
of finding a minimum discounted-weight path, although this is primarily a short
review of known set cover approximations.
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4.1 Bounded Cardinality

Let k be an upper bound on the cardinality of the bundles; i.e. no single owner
has more than k edges, and call this k-CARDINALITY SHORTEST PATH
WITH DISCOUNTS. MINIMUM k-SET COVER is the variation in which the
cardinality of all sets in C are bounded from above by a constant k; and hence
it is a corollary of Lemma 1 that MINIMUM k-SET COVER may be computed
exactly with k-CARDINALITY SHORTEST PATH WITH DISCOUNTS.

It is known that the MINIMUM k-SET COVER can be approximated to
within a constant factor, but that no better than a constant factor is possible
unless P=NP. (see, e.g., [10,14]). Fairly obviously, we can get a k-approximation
with the ‘bundling’ discount scheme, by ignoring the discounts and simply
computing the shortest path regardless. It is worth comparing this with the ap-
proximation ratios that are known for MINIMUM k-SET COVER. The best ap-
proximation ratio for MINIMUM k-SET COVER remains something of an open
problem — the best known result for the weighted case is currently Hk − k−1

8k9 ,
where Hk =

∑
1,...k

1
k is the k−th harmonic number [14], and hence finding some

better approximation ratio for k-CARDINALITY SHORTEST PATH WITH
DISCOUNTS would likely be a difficult, but significant, result.

Theorem 2. No polynomial-time algorithm with an approximation ratio of less
than (1−ε) lnn for any ε > 0 exists for SHORTEST PATHWITH DISCOUNTS
unless NP ⊂ DTIME(n

log logn).

Proof. In the proof of Lemma 1, we show that all possible solutions to a MIN-
IMUM SET COVER problem exist with identical weight in an instance of
SHORTEST PATH WITH DISCOUNTS and vice-versa, so it is approximation-
preserving. Hence any approximation ratio for SHORTEST PATH WITH DIS-
COUNTS would give the same ratio for MINIMUM SET COVER. It was shown
by Feige in [10], for MINIMUM SET COVER, that no approximation ratio of (1−
ε) lnn exists for any ε > 0 under the assumption that NP ⊂ DTIME(n

log logn),
hence this also holds for SHORTEST PATH WITH DISCOUNTS. 	


5 Superadditive Pricing

We now consider the alternative setting, where instead of a (negative) ‘discount’
value, we introduce a (positive) ‘supplement’. We call this problem SHORTEST
PATH WITH SUPPLEMENTS, which differs from SHORTEST PATH WITH
DISCOUNTS in that each of the ‘discount’ vectors has only positive values
di|T | ≥ 0 (we call these ‘supplement’ values).

We will see, firstly that even for small supplement values (any d > 0) that
finding the optimal solution is NP-hard. If we have larger supplement values
then we will also see strong inapproximability results. Hardness is shown with
a reduction from EXACT COVER BY 3-SETS, as follows. The reduction is
demonstrated with the example from Fig. 1, which is shown in Fig. 4. Observe
that the shortest path has supplemented weight of 6 — which may be described
by either (1, 2, 5), (3, 4, 6) or (3, 4, 6), (1, 2, 5).
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Fig. 4. Fig. 1 As a SHORTEST PATH WITH SUPPLEMENTS problem.
Z = {1, 2, 3, 4, 5, 6}; edges are labeled with the ‘owner’.

Theorem 3. SHORTEST PATH WITH SUPPLEMENTS is NP-hard, even
with bundles of size at most 2.

Proof. In the first stage, we will ignore the restriction on the size of the bundles.
Take the input X,C to an instance I of EXACT COVER BY 3-SETS. Let m =
|X |, and build an instance I ′ of SHORTEST PATH WITH SUPPLEMENTS
as follows. Let Z ′ = X be the set of owners, and let V ′ = {V ′

1 , . . . , V
′
m/3+1}.

For each triple Ci ∈ C let the elements in Ci be given by {x, y, z}, and insert
m/3 paths of length 3, one between each V ′

j and V ′
j+1 for all j ∈ {1, . . . ,m/3},

and for each of these paths, let the owners of the edges be given by one each
of {x, y, z} (the ordering is unimportant). Let m′ = |E′|, let there be a small
supplement parameter, 1/m2 > d > 0, and let the supplement vectors be fixed,
di = (0, 0, d, . . . , d).

Observe that the shortest path from s to t contains exactly m edges. Also
observe that, where a shortest path exists of weight m, this has exactly m edges
and that no edges share the same owner. Where an exact cover by 3-sets ex-
ists, then there are exactly m/3 subsets of C that contain all of the elements
in X . Hence there are m/3 paths (each of length 3) from V1 to Vm+1 which
can be selected, such that no owner appears for more than one edge. Hence a
shortest path of weight m exists in instance I ′ if and only if the instance I is a
‘yes’ instance of EXACT COVER BY 3-SETS, and SHORTEST PATH WITH
SUPPLEMENTS is NP-hard.

Now, we can see that this still holds where the bundles are of at most size 2.
For the graph G′ = V ′, E′, build an input I ′′ with graph G′′ = V ′′, E′′. Replace
every edge e′ in E′ by a path of length m′ − 1, and label each of these edges
e′′(e,j) for all j ∈ E′ \{e′}. For every bundle Zi in the input, consider every pair of

edges (u, v) ∈ Zi and add a new bundle to Z ′′ containing the two edges labeled
e′′(u,v) and e′′(v,u). Hence for any path P ′ ⊆ E′ of size t there is a corresponding

path P ′′ ⊆ E′′ (with the replaced edges) of size (m′ − 1)t. Also observe that
P ′′ contains two edges in the same bundle, e′′(u,v) and e′′(v,u) if and only if P ′

contained two edges (u, v) in the same bundle. Hence for every shortest path P ′

in I ′ with supplemented weight given by |P | + xd, the shortest path in I ′′ has
supplemented weight |P |(m′ − 1) + xd; hence the solution to instance I ′′ gives
a solution to instance I ′, and thus instance I, and SHORTEST PATH WITH
SUPPLEMENTS is NP-hard even with edge bundles of size at most 2. 	
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As in the subadditive case, it is easy to observe that where the supplement values
are small then ignoring the discounts gives a good approximation ratio (assuming
a maximum weight of 1 and a maximum supplement value of d, then d is an upper
bound on the approximation ratio, as the optimal solution has a supplemented
weight of at least the ‘found’ solution, and the supplemented weight of this
found solution is bounded from above by a factor of d). However, if we allow
supplement values to be as large as m, then we will see strong inapproximability
results, from SHORTEST PATH WITH FORBIDDEN PAIRS.

Name SHORTEST PATH WITH FORBIDDEN PAIRS
Instance A weighted graph G = (V,E,w) with two distinct vertices s, t and a

collection, F = {F1, . . . , Fm} of pairs of vertices.
Output The minimum weight path P ⊂ E from s to t such that for every edge

e ∈ P adjacent to vertex x there is no other edge e′ ∈ P adjacent to vertex
y where there is some Fi ∈ F = {x, y}.

It is known that no polynomial time approximation algorithm for SHORTEST
PATH WITH FORBIDDEN PAIRS exists with an approximation ratio of nε for
any ε > 0, unless P=NP [15].

Theorem 4. No polynomial-time algorithm with an approximation ratio of less
than nε for any ε > 0 exists for SHORTEST PATH WITH SUPPLEMENTS
unless P=NP.

Proof. Taking the input to a SHORTEST PATH WITH FORBIDDEN PAIRS,
build an instance of SHORTEST PATH WITH SUPPLEMENTS with G′ = G
(let n = |V | and m = |E|). For each pair of forbidden vertices {x, y} assume
an edge e ∈ E that is adjacent to one of these vertices (let it be x) and add a
bundle Zi containing this edge e and all edges that are adjacent to y. Assume
an unweighted graph, i.e. w(e) = 1 for all e ∈ E, and that discount values are
large; d ≥ n; hence any SHORTEST PATH WITH SUPPLEMENTS is exactly
a shortest path that contains no two edges in the same bundle (unless no such
path exists, in which case the total weight is greater than n). Observe that
any path through vertex x contains an edge adjacent to x, and hence if it also
contains an edge adjacent to y then there is a bundle containing both edges and
the supplemented weight is at least n + 1 (from the construction of bundles).
Similarly, any path with supplemented weight of less than n contains no two
edges in the same bundle, and hence does not visit the forbidden pair {x, y}.

Another instance I ′′ can be created with bundles of size at most 2 in the same
way as in the proof of Theorem 3, by replacing each edge with m edges in series.
Let the weight of each edge be w′′(e′′) = 1/m. Hence every SHORTEST PATH
WITH SUPPLEMENTS (with weight of less than m) gives a path of the same
size in I which avoids forbidden pairs. Let n′′ be the number of vertices in I ′′,
and observe that n′′ ≤ n3. Any approximation algorithm for I ′′ that gives an
approximation ratio of α = n′′ε (with ε > 0) for I ′′ would give an approximation
ratio of α = nε/3 for SHORTEST PATH WITH FORBIDDEN PAIRS, which
would imply P=NP. 	
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6 Conclusion and Open Problems

We gave a model for generalising shortest-path problems that appears to have
relevance to economic theory. As ‘volume discounts’ appear in a wide range of
literature, it seems an obvious goal to try and combine them with the well-
studied path auction. However, the results we have seen are quite negative —
even the very simplest discounting scheme, of “buy at least x edges and get a d
discount” results in the winner determination problem becoming NP-hard, and
hence the VCG mechanism may not be a practical solution.

Our only alternative mechanism, of ignoring the discounts, is obviously quite
unsatisfactory — we have identified that allowing volume discounts is a desirable
feature. We have also shown that better than Ω(log(n)) approximation ratios
may not be possible, where the discount parameters may be large. This is a
reasonable assumption in many settings, such as the supply of services when
there is relatively little overhead, for example the use of transport or network
infrastructures that have surplus capacity.

Considering the problem as k-CARDINALITY SHORTEST PATH WITH
DISCOUNTS, we do not know how to improve on the approximation ratio of
k, or if a ratio of k might be close to optimal. However, there is scope for
the existence of an approximation algorithm with an improved approximation
ratio. An approximation algorithm which does better than the naive approach
of ignoring the discounts would likely be a fundamental contribution to a better
auction mechanism. There could be economic benefits to being able to run a
tractable procurement auction which takes advantage of these volume discounts,
and this is an area that might benefit from future study.

The reductions of Theorem 1 and Theorem 3 show that finding an exact
solution is NP-hard, even for series-parallel graphs. We may also be interested in
discovering if there are certain other properties of the problem that are required
for hardness results — for example, the distance between edges that are bundled
together. However, it is easy to observe in Lemma 1 that the solutions to a single-
pathed multigraph give exactly the solutions to a set-cover problem of the same
size, and hence there exists a Hk-approximation for this class of graph. If the
general case does not give rise to a better than k approximation, there may be
interesting results in finding classes of graph that have a better approximation.

It is also worth noting that there is a difference in the approximation of the
subadditive and superadditive cases. While the discount parameters may be
reasonably limited by the weights of the edges, the supplement parameter does
not have this limitation — and so we find that approximation may be harder in
the superadditive case when the supplement parameter is large.

Differences in approximation can be particularly important in terms of auction
mechanisms; the frugality ratio of an auction mechanism is often used to measure
its performance in terms of payment. It was shown in [12] that the frugality ratio
(of a truthful approximation mechanism) may be upper bounded a factor of the
approximation ratio; hence a good approximation ratio is important in making
an attractive auction mechanism. Mechanisms with a much better frugality ra-
tio than VCG have been shown to exist for path auctions (e.g. [16,4,17]). It is a
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natural question to ask if similar approaches could improve frugality for this
auction model. By combining those approaches with a good approximation al-
gorithm, it may be possible to create a particularly desirable auction mechanism
— that is both tractable and has good frugality in this setting.
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Abstract. Clubs are generalizations of cliques. For a positive integer s,
an s-club in a graph G is a set of vertices that induces a subgraph of G
of diameter at most s. The importance and fame of cliques are evident,
whereas clubs provide more realistic models for practical applications.
Computing an s-club of maximum cardinality is an NP-hard problem for
every fixed s ≥ 1, and this problem has attracted significant attention
recently. We present new positive results for the problem on large and
important graph classes. In particular we show that for input G and
s, a maximum s-club in G can be computed in polynomial time when
G is a chordal bipartite or a strongly chordal or a distance hereditary
graph. On a superclass of these graphs, weakly chordal graphs, we obtain
a polynomial-time algorithm when s is an odd integer, which is best
possible as the problem is NP-hard on this class for even values of s. We
complement these results by proving the NP-hardness of the problem for
every fixed s on 4-chordal graphs, a superclass of weakly chordal graphs.
Finally, if G is an AT-free graph, we prove that the problem can be solved
in polynomial time when s ≥ 2, which gives an interesting contrast to
the fact that the problem is NP-hard for s = 1 on this graph class.

1 Introduction

Max Clique is one of the most fundamental problems in graph algorithms.
Cliques model highly connected or correlated parts of networks and data sets,
and consequently they find applications in numerous diverse fields. For many real
problems, however, cliques present a too restrictive measure of connectivity (see
e.g., [1,15,25,31]), and the notion of clubs were proposed to give more realistic
models [3,26]. Given a graph G = (V,E) on n vertices and an integer s between
1 and n, a vertex subset S ⊆ V is an s-club if the subgraph of G induced by S
has diameter at most s. Hence 1-clubs are exactly cliques, and every s-club is
also an (s + 1)-club by definition. Notice the non-hereditary nature of s-clubs,
which makes their behavior different from that of cliques for s ≥ 2: although
every subset of a clique is a clique, the same is not true for an s-club. In fact,
deciding whether a given s-club is maximal, in the sense that no superset of it
is an s-club, is NP-complete for every fixed s ≥ 2 [27].
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4−chordal

chordal distance hereditary

strongly chordal

Polynomial for all input s

split

chordal bipartite

AT−free

Polynomial for all input s

Polynomial for all input s

Polynomial for odd input s 

NP−hard for s=2

NP−hard for every even s

NP−hard for every s

weakly chordal

Polynomial for input s > 1

Fig. 1. The inclusion relationship among the mentioned graph classes, where each child
is a subset of its parent. AT-free graphs are not related to the rest. Boxes with thicker
frames contain the results proved in this paper.

Given a graph G and an integer s, the objective of the Max s-Club problem
is to compute an s-club of maximum cardinality. We are interested in the exact
solution of this problem. Note that the problem becomes trivial if G has diameter
at most s.

Max s-Club is NP-hard for every fixed s, even on graphs of diameter s+ 1
[7]. It remains NP-hard on bipartite graphs for every fixed s ≥ 3, and on chordal
graphs for every even fixed s ≥ 2 [4]. On split graphs Max 2-Club in NP-hard
[4], whereas Max s-Club has a trivial solution for all input s ≥ 3. On general
graphs, the problem is fixed-parameter tractable when parameterized by the
solution size [13] for every fixed s ≥ 2, or by the dual of the solution size [30]
for every fixed s. Fixed-parameter tractability of Max 2-Club has been studied
also with respect to various other parameters [20]. Furthermore, Max s-Club

can be solved by an O(1.62n)-time algorithm [13]. The problem can be solved
in polynomial time on trees and interval graphs for all input values of s, and on
graphs of bounded treewidth and graphs of bounded clique-width for every fixed
s that is not a part of the input [29].

In this paper we show that Max s-Club can be solved in polynomial time
for all odd input values of s on weakly chordal graphs. For subclasses of weakly
chordal graphs, we show that the problem can be solved in polynomial time
for all input values of s on chordal bipartite graphs, strongly chordal graphs,
and distance hereditary graphs. To complement these positive results, we show
that on 4-chordal graphs, which form a superclass of weakly chordal graphs,
the problem is NP-hard for every fixed s. In addition to these results, we show
that the problem is solvable in polynomial time for all input s ≥ 2 on AT-free
graphs. Interestingly,Max Clique is NP-hard on this graph class. The inclusion
relationship among the graph classes mentioned above is illustrated in Fig. 1,
which also summarizes our results.
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In this extended abstract, the proofs of Lemma 1, Theorem 6 and Lemma 4
are omitted due to space restrictions.

2 Definitions and First Observations

We refer to the textbook by Diestel [17] for any undefined graph terminology. We
consider finite undirected graphs without loops or multiple edges. Such a graph
G = (V,E) is identified by its vertex set V and its edge set E. Throughout the
paper, we let n = |V | and m = |E|. The subgraph of G induced by U ⊆ V is
denoted by G[U ]. For a vertex v, we denote by NG(v) the set of vertices that are
adjacent to v in G. The distance distG(u, v) between vertices u and v of G is the
number of edges on a shortest path between them. The diameter diam(G) of G
is max{distG(u, v) | u, v ∈ V }. The complement of G is the graph G with vertex
set V , such that any two distinct vertices are adjacent in G if and only if they are
not adjacent in G. For a positive integer k, the k-th power Gk of G is the graph
with vertex set V , such that any two distinct vertices u, v are adjacent in Gk if
and only if distG(u, v) ≤ k. We say that P is a (u, v)-path if P is a path that
joins u and v. The vertices of P different from u and v are the inner vertices of
P . The chordality ch(G) of a graph G is the length of the longest induced cycle
in G; if G has no cycles, then ch(G) = 0. A set of pairwise adjacent vertices is a
clique. A clique is maximal if no proper superset of it is a clique, and maximum
if it has maximum size.

For a non-negative integer k, a graph G is k-chordal if ch(G) ≤ k. A graph G
is weakly chordal if both G and G are 4-chordal. A graph is chordal bipartite if
it is both 4-chordal and bipartite. A graph is chordal if it is 3-chordal. A graph
is a split graph if its vertex set can be partitioned in an independent set and a
clique. A chord xy in a cycle C of even length is said to be odd if the distance
in C between x and y is odd. A graph is strongly chordal if it is chordal and
every cycle of even length at least 6 has an odd chord. A graph G is a distance
hereditary if for any connected induced subgraph H of G, if u and v are in
H , then distG(u, v) = distH(u, v). An asteroidal triple (AT) is a set of three
non-adjacent vertices such that between each pair of them there is a path that
does not contain a neighbor of the third. A graph is AT-free if it contains no
AT. Each of these graph classes can be recognized in polynomial (in most cases
linear) time and they are closed under taking induced subgraphs [9,18]. See the
monographs by Brandstädt et al. [9] and Golumbic [18] for more properties and
characterizations of these classes and their inclusion relationships.

Let s be a positive integer. A set of vertices S in G is an s-club if diam(G[S]) ≤
s. An s-club of maximum size is a maximum s-club. Given a graph G and a
positive integer s, the Max s-Club problem is to compute a maximum s-club
in G. Cliques are exactly 1-clubs, and hence Max 1-Club is equivalent to Max

Clique.

Observation 1. Let G be a graph and let s be a positive integer. If S is an
s-club in G then S is a clique in Gs.
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G1

b)a)

u v

G2

Fig. 2. Cliques in G2 and 2-clubs

Although Observation 1 is easy to see, it is important to note that the back-
ward implication does not hold in general: a (maximal) clique in Gs is not
necessarily an s-club. To see this, let s = 2 and consider the graphs shown in
Fig. 2 a) and b). The set of vertices S shown in black in Fig. 2 a) is the unique
maximum clique of G2

1, but clearly S is not a 2-club in G1, as G1[S] is not even
connected. The example in Fig. 2 b) shows that it does not help to require that
G[S] is connected: the set of black vertices S is a maximal clique in G2

2, G2[S] is
connected, but S is not a 2-club in G2, because distG2[S](u, v) = 3. Observe also
that a maximum s-club in G is not necessarily a maximal clique in Gs. Further-
more, the maximum size of a clique in G2

1 is strictly greater than the maximum
size of a 2-club in G1. For the set of black vertices S in Fig. 2 b), S \ {u} and
S \ {v} are maximum 2-clubs, whereas S is a maximal clique in G2

2.
As we will show in Section 3, for some graph classes, maximal cliques in s-th

powers are in fact s-clubs. For a positive integer s, we say that a graph class G
has the s-clique-power property if for every graphG ∈ G, every maximal clique in
Gs is an s-club in G. Furthermore, we say that G has the clique-power property
if every maximal clique in Gs is an s-club in G, for every positive integer s and
every graph G ∈ G. Due to Observation 1, we see that if G belongs to a graph
class that has the clique-power property, then a vertex set S in G is a maximal
s-club if and only if S is a maximal clique in Gs. As Gs can be computed in time
O(n3) for any positive s, the following is immediate, and it will be the framework
in which we obtain our results.

Proposition 1. Let G be a graph class that has the clique-power property and
let s be a positive integer.

– If Max Clique can be solved in time O(f(n)) on {Gs | G ∈ G}, then Max

s-Club can be solved in time O(f(n) + n3) on G.
– If Max Clique is NP-hard on {Gs | G ∈ G}, then Max s-Club is NP-hard

on G.

3 Graph Classes That Have the Clique-Power Property

In this section we show that 4-chordal graphs and AT-free graphs have the clique-
power property. We start with 4-chordal graphs, and we consider the cases s = 2
and s ≥ 3 separately in the next two lemmas.
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Lemma 1. 4-Chordal graphs have the 2-clique-power property.

Lemma 2. 4-Chordal graphs have the s-clique-power property for every s ≥ 3.

Proof. To obtain a contradiction, assume that there is an integer s ≥ 3 and a
4-chordal graph G such that Gs has a maximal clique S, but S is not an s-club
in G. Let u, v ∈ S be vertices at distance at least s+1 in G[S]. In particular, u, v
are not adjacent in G. Since u, v ∈ S, distG(u, v) ≤ s. Any shortest (u, v)-path
in G has at least one vertex that is at distance at least s+ 1 from some vertex
of S; otherwise all inner vertices of some (u, v)-path of length at most s would
belong to maximal clique S in Gs, and u, v would be at distance at most s in
G[S]. Consider a shortest (u, v)-path P in G that has the minimum number of
vertices at distance at least s + 1 from some vertex of S. Let x be an inner
vertex of P at distance at least s + 1 from a vertex w ∈ S in G. Denote by r
and t the vertices adjacent to x in P . Since P is a shortest path, r and t are
not adjacent. For every vertex h ∈ NG(r) ∩NG(t), let Ph be the path obtained
from P by replacing subpath rxt with rht. Observe that by the choice of P , for
every h ∈ NG(r) ∩ NG(t), Ph is a shortest (u, v)-path, and h is at distance at
least s+ 1 from some vertex of S. For every vertex h ∈ NG(r) ∩NG(t), let

Uh = {g ∈ S \ {u, v} | distG(g, h) = s− 1 and distG(g, r) = distG(g, t) = s}.

We may assume that |Ux| = max{|Uh| | h ∈ NG(r) ∩NG(t)}, because otherwise
we can replace rxt with rht in P . Notice that the set Ux might be empty.

Let Q1 be a shortest (u,w)-path in G, and let Q2 be a shortest (v, w)-path in
G. Note that the length of each of these paths is at most s. Since distG(x,w) > s,
x is not in Q1 or Q2, and x is not adjacent to w or any inner vertex of Q1 or Q2.
Let X be the union of the vertices belonging to P , Q1, and Q2. Observe that
G[X ] contains an induced cycle C that includes vertices x, r, t and edges xr, xt,
because G[X \ {x}] is connected by our construction. Since r, t are not adjacent
and x is not adjacent to any vertex of X \ {r, t}, it follows that C has at least
four vertices. Since G is 4-chordal, C has exactly four vertices. Let y be a vertex
of C different from r, x, t. It follows that distG(w, y) ≤ s − 1, distG(w, r) ≤ s,
and distG(w, t) ≤ s. As distG(w, x) > s, we conclude that distG(w, y) = s − 1,
and distG(w, r) = distG(w, t) = s.

Denote by Q a shortest (w, y)-path in G, and observe that Q has length s−1.
Vertex y belongs to NG(r)∩NG(t). Notice that w ∈ Uy, and thus Uy �= ∅. Since
|Ux| ≥ |Uy| by our construction, and w /∈ Ux, there is a vertex z ∈ Ux\Uy. By the
definition of Ux, distG(z, r) = distG(z, t) = s. Since z /∈ Uy, distG(z, y) �= s− 1.
The assumption that distG(z, y) ≤ s− 2 immediately implies that distG(z, r) ≤
s−1, which gives a contradiction. Hence, distG(z, y) ≥ s. Denote by R a shortest
(z, x)-path in G, and note that R has length s−1 by the definition of Ux. Notice
that r or t does not belong to Q or R. Furthermore, r or t is not adjacent to any
vertex of Q or R, except y and x.

We claim that Q and R have no common vertex and there is no edge between
a vertex of Q and a vertex of R. For contradiction, assume first that Q and
R have a common vertex h. Let R′ be the (h, x)-subpath of R, and let Q′ be
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the (h, y)-subpath of Q. Denote by �1 the length of R′ and by �2 the length
of Q′, and assume that �1 ≤ �2. Then consider the following path from w to
x: first take the (w, h)-subpath of Q and then from h to x the (h, x)-subpath
of R. It follows that the length of this path is at most the length of Q, i.e.,
s− 1, which contradicts that distG(w, x) > s. Hence if Q and R have a common
vertex h then �1 > �2. Now consider the following path from z to y: first take
the (z, h)-subpath of R and then the (h, y)-subpath of Q, which has length at
most s − 1. This implies distG(z, y) ≤ s − 1, which contradicts our previous
conclusion that distG(z, y) ≥ s. Consequently P and Q cannot have a common
vertex. Suppose now that G has an edge z′w′ where z′ is in R and w′ is in
Q. We choose z′w′ in such a way that the distance between x and z′ in R is
minimum. Recall that xy /∈ E. If z′y ∈ E, then distG(z, y) ≤ s − 1. Hence,
z′y /∈ E. By the same arguments, xw′ /∈ E. Then the concatenation of xry, the
(y, w′)-subpath of Q, w′z′, and the (z′, x)-subpath of R is an induced cycle on
at least 5 vertices, contradicting that G is 4-chordal. We conclude that Q and R
have neither common vertices nor adjacent vertices.

Since z, w ∈ S, we know that distG(z, w) ≤ s. Let F be a shortest (z, w)-path
in G. We claim that vertices x, y, r do not belong to F , and neither x nor r is
adjacent to any vertex of F . If x is in F , then the (z, x)-subpath of F has length
at least the length of R, namely s − 1. But since xw /∈ E, this contradicts that
distG(z, w) ≤ s. Symmetrically, we observe that y is not in F either. If r is in F ,
since distG(z, r) = s, then the (z, r)-subpath of F has length at least s, which
contradicts either distG(z, w) ≤ s or F is a shortest (z, w)-path. Now assume
that x is adjacent to some vertex h of F . Since distG(w, x) ≥ s + 1 ≥ 4, the
(z, h)-subpath of F has length at most s−3, but then distG(z, x) ≤ s−2; again a
contradiction. Let r be adjacent to a vertex h of F . Then because distG(r, w) = s,
the (w, h)-subpath of F has length at least s−1, but then distG(r, z) ≤ 2 < s, and
we again obtain a contradiction. To complete the proof, it remains to notice that
the union of the vertices ofQ, R, and F , together with r, induces a subgraph of G
with an induced cycle on at least 5 vertices, but this contradicts our assumption
that G is 4-chordal. 	

Theorem 1. 4-Chordal graphs have the clique-power property.

Theorem 1 immediately follows from Lemmas 1 and 2. The example shown in
Fig. 2 b) shows that this result is tight in the sense that 5-chordal graphs do not
have the clique-power property.

Now we turn to AT-free graphs, and we show that they also have the clique-
power property. In the following proof, we use additional terminology: Let u, v
be vertices of G, and let P be a (u, v)-path in G. We say that P sees a vertex x
of G if x belongs to P or x is adjacent to an inner vertex of P .

Theorem 2. AT-free graphs have the clique-power property.

Proof. To obtain a contradiction, assume that there is an integer s ≥ 2 and an
AT-free graph G = (V,E), such that Gs has a maximal clique S, but S is not
an s-club in G. Let u, v ∈ S be vertices at distance at least s + 1 in G[S]. In
particular, u and v are not adjacent in G.
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Since u, v ∈ S, G has a (u, v)-path of length at most s. Let P be a (u, v)-path
of length at most s in G that sees the maximum number of pairwise non-adjacent
vertices of S. Let U ⊆ S be a maximum size set of pairwise non-adjacent vertices
of S containing u and v that are seen by P . The path P has an inner vertex x at
distance at least s+1 from a vertex w ∈ S in G. Otherwise, all inner vertices of P
would be included in the maximal clique S in Gs, and u, v would be at distance
at most s in G[S]. It follows that w is not adjacent to any vertex of U , because
the distance between x and z in the subgraph of G induced by the vertices of P
and U is at most s− 1 for any z ∈ U . Furthermore, by construction, P does not
see w. Let u′ be any vertex of U . Since u′, w ∈ S, G has a (u′, w)-path of length
at most s. Let Q be a (u′, w)-path of length at most s for any u′ ∈ U that sees
the maximum number of vertices of U . By the choice of P , there is at least one
vertex r ∈ U such that Q does not see r. Let W ⊆ U be the set of vertices of U
seen by Q; hence r /∈ W . Now there is a (r, w)-path R of length at most s in G,
and by the choice of Q, there is at least one vertex t ∈W such that R does not
see t. We claim that {r, t, w} is an AT, contradicting that G is AT-free. Observe
that r, t ∈ U , the vertices of P together with U induce a connected subgraph of
G, and w is not adjacent to any vertex of P or U . Thus G has an (r, t)-path that
does not contain a neighbor of w. Similarly, G has a (t, w)-path each of whose
vertices belongs to Q or W , that does not contain a neighbor of r. Finally, R is
an (r, w)-path that contains no neighbor of t. 	


4 Algorithmic Consequences

In this section we obtain tractability and intractability results by combining the
results of Section 3 with Proposition 1.

4.1 Polynomial Cases

Max s-Club has been studied on chordal graphs by Asahiro et al. [4]. Their
results assume that chordal graphs have the clique-power property, but the prop-
erty is neither stated nor proved in [4]. Balakrishnan and Paulraja [5,6] (see
also [2]) showed that odd powers of chordal graphs are chordal. Consequently,
Proposition 1 and Theorem 1 immediately imply that Max s-Club can be
solved in polynomial time on chordal graphs. We can now generalize this re-
sult to weakly chordal graphs using Theorem 1, since weakly chordal graphs
are 4-chordal. Brandstädt et al. [10] proved that odd powers of weakly chordal
graphs are weakly chordal. Hayward et al. [21,22] showed that Max Clique can
be solved in time O(nm) on weakly chordal graphs. As a consequence of these
results, Proposition 1, and Theorem 1, we obtain the following result.

Theorem 3. Max s-Club can be solved in time O(n3) on weakly chordal graphs,
for all positive odd input integers s.
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Recall that for every even integer s, Max s-Club is NP-hard on chordal
graphs [4], and thus also on weakly chordal graphs and on 4-chordal graphs. For
the strongly chordal subclass of chordal graphs we are able to show polynomial-
time solvability for all values of s. Lubiw [24] showed that any power of a strongly
chordal graph is strongly chordal. With this result, Proposition 1 and Theorem 1
immediately give the following.

Theorem 4. Max s-Club can be solved in time O(n3) on strongly chordal
graphs, for all positive input integers s.

We move to distance hereditary graphs. Recall that they are 4-chordal, and con-
sequently we can apply Theorem 1. Bandelt et al. [8] proved that even powers
of distance hereditary graphs are chordal, and thus weakly chordal. It also fol-
lows from their results that odd powers of distance hereditary graphs are weakly
chordal. Combining this with Proposition 1 and Theorem 1, we obtain the fol-
lowing result.

Theorem 5. Max s-Club can be solved in time O(n3) on distance hereditary
graphs, for all positive input integers s.

Notice that if s is a fixed integer and not a part of the input, then the problem
can be solved in linear time on distance hereditary graphs [29] because these
graphs have clique-width at most 3 [19].

Chordal bipartite graphs form another subclass of 4-chordal graphs and of
weakly chordal graphs. By Theorem 3, Max s-Club can be solved in polynomial
time on chordal bipartite graphs, for odd values of s. For even values of s, s-th
powers of chordal bipartite graphs are not necessary weakly chordal. We mention
that they are not even perfect. A graph is perfect if neither the graph nor its
complement contains an induced cycle of odd length [14]. Perfect graphs form a
superclass of weakly chordal graphs, and Max Clique is solvable in polynomial
time on them. Unfortunately, we cannot use this, due to the above. Still, we are
able to solve Max s-Club on chordal bipartite graphs in polynomial time for
even s using the following structural result that we find interesting also on its
own.

Lemma 3. Let G = (X,Y,E) be a chordal bipartite graph and let s be any
positive integer. Then Gs[X ] and Gs[Y ] are chordal graphs.

Proof. By symmetry, it is sufficient to prove the lemma for Gs[X ]. Since the
lemma is trivially true for s = 1, let us assume that s ≥ 2 for the rest of the proof.
For contradiction suppose there is an induced cycle C = x0, x1, . . . , xk−1, x0 of
length at least 4 in Gs[X ]. For ease of notation, let xk = x0, and read all indices
modulo k throughout the proof. It follows that for every i between 0 and k − 1,
there is a shortest (xi, xi+1)-path Pi of length at most s in G.

For every i, we first show that there is no edge xy ∈ E with x ∈ Pi and y ∈ Pj ,
for j /∈ {i − 1, i, i + 1}. For contradiction suppose there is such an edge xy for
some i. Without loss of generality we may assume that k > j > i + 1. Since
C is an induced cycle, xixj is not an edge of Gs and xi+1xj+1 is not an edge
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of Gs. Let P be the path obtained by the concatenation of the (xi, x)-subpath
of Pi and edge xy and the (y, xj)-subpath of Pj . Similarly, let Q be the path
obtained by the concatenation of the (xi+1, x)-subpath Pi and edge xy and the
(y, xj+1)-subpath of Pj . Observe that both P and Q have length at least s+ 1,
because otherwise xixj or xi+1xj+1 would be an edge of Gs. Let �1 be the length
of the (xi, x)-subpath of P , and let �2 be the length of the (y, xj)-subpath of P .
Thus the length of P is �1+�2+1, and consequently �1+�2 ≥ s. Observe that the
length of Q is at most 2s− �1− �2+1, and since the length of Q is at least s+1,
we have 2s−�1−�2 ≥ s. Combining this inequality with �1+�2 ≥ s, we conclude
that �1 + �2 = s. This implies that both P and Q have length exactly s+ 1. We
can further conclude that both Pi and Pj have length exactly s. However, since
xi, xi+1, xj , xj+1 are all in X , and G is a bipartite graph, there cannot be paths
of length both s and s+ 1 between pairs of these vertices in G, which gives the
desired contradiction.

The above also implies that Pi and Pj do not have common vertices for j /∈
{i − 1, i, i + 1}, since this would imply an edge between a vertex of Pi and a
vertex of Pj , under the above assumptions.

As a consequence of the above, if there is an edge in G between a vertex of
Pi and a vertex of Pj , then we can assume that j = i+ 1. Observe that there is
always an edge between every pair of consecutive paths Pi and Pi+1, and they
might also share some vertices. For every i, we will call an edge xy ∈ E with
x ∈ Pi and y ∈ Pi+1 a long chord with respect to x if there is no other vertex y′ in
the (y, xi+2)-subpath of Pi+1 such that xy′ ∈ E. Observe that xi is not adjacent
to any vertex of Pi+1, since C is an induced cycle in Gs and thus xixi+2 is not
an edge in Gs. We will now follow the long chords between consecutive paths,
and construct an induced cycle C′ in G as follows. Start with any vertex x ∈ P1.
Pick a vertex y in P0 such that yx ∈ E and the (y, x1)-subpath of P0 is longest.
We traverse P1 from x to x2, and as soon as we come to a vertex that is adjacent
to a vertex in P2, we take the first long chord and go to P2. For each i from 2 to
k−1, we continue in this manner from Pi to Pi+1: once we are on Pi we continue
on Pi towards xi+1 and we take the first long chord to Pi+1. At the end once we
are in Pk−1, we take the first edge y′y′′ such that y′ ∈ Pk−1 and y′′ ∈ P0 and
y′′ is not an inner vertex of the (y, x1)-subpath of P0. If y

′ has other neighbors
that are on the (y′′, y)-subpath of P0 then we take as y′′ such a neighbor that is
closest to y. We continue from y′′ to y on P0 and use the edge yx to close the
cycle. Observe that, by the choices we made, the (y′′, y)-subpath of P0 is the only
portion on P0 that contributes to C′, and no vertex on this subpath is adjacent
to y′ or x, except y′′ that is adjacent to y′, and y that is adjacent to x. All other
edges of C′ are long chords or portions of Pi that do not contain any neighbor
of Pi+1, and hence C′ is an induced cycle. Since there is no induced cycle of
length more than 4 in G, and C′ contains distinct vertices from each Pi for
0 ≤ i ≤ k− 1, we conclude that k = 4. Consequently, C′ consists of y0, y1, y2, y3,
such that yi ∈ Pi and yiyi+1 ∈ E, for i = 0, 1, 2, 3. Let �i be the length of the
(xi, yi)-subpath of Pi, and let �′i be the length of the (yi, xi+1)-subpath of Pi,
for i = 0, 1, 2, 3. Since C is an induced cycle in Gs, xixi+2 is not an edge of Gs,
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and we can conclude that �i + �′i ≤ s and �i + �′i+1 ≥ s, for i = 0, 1, 2, 3. Adding
up all four pairs of inequalities, we obtain that �i + �′i = s and �i + �′i+1 = s, for
i = 0, 1, 2, 3. Consequently, we have a path between xi and xi+2 of length s+ 1
using the (xi, yi)-subpath of Pi, the edge yiyi+1, and the (yi+1, xi+2)-subpath of
Pi+1, whereas the length of Pi is s. Since x0, . . . xk−1 ∈ X and G is bipartite, we
cannot have paths of length both s and s+ 1 between pairs of them. Therefore
our initial assumption that Gs[X ] contained an induced cycle of length at least
4 is wrong, and Gs[X ] is chordal. 	


The following theorem now follows from Lemma 3.

Theorem 6. Max s-Club can be solved in time O(n4) on chordal bipartite
graphs, for all positive input integers s.

Finally we move to AT-free graphs. Max Clique is NP-hard on AT-free graphs
[28], and hence Max 1-Club is NP-hard on AT-free graphs. Chang et al. [12]
showed that for every s ≥ 2 and every AT-free graph G, Gs is a cocomparability
graph. Cocomparability graphs form a subclass of AT-free graphs. Fortunately
Max Clique can be solved in polynomial time on cocomparability graphs [18].
This, combined with Proposition 1 and Theorem 2, gives the next result.

Theorem 7. Max s-Club can be solved in time O(n3) on AT-free graphs, for
all positive input integers s ≥ 2.

4.2 Hardness on 4-Chordal Graphs

In Section 4.1 we proved that Max s-Club can be solved in polynomial time
on several subclasses of 4-chordal graphs. Here we complement these results by
showing that the problem is NP-hard on 4-chordal graphs. By Proposition 1, it is
sufficient to show that Max Clique is NP-hard on powers of 4-chordal graphs.

A 2-subdivision of a graph is obtained by replacing every edge with a path of
length three. A graph is a 2-subdivision if it is a 2-subdivision of some graph.
Given a graph G and an integer k, the decision problem Clique asks whether
G has a clique of size at least k, and the decision problem Independent Set

whether G has an independent set of size at least k. Clearly, X is a clique in G
if and only if X is an independent set in G. We use this duality to obtain the
following lemma.

Lemma 4. Clique is NP-complete on 4-chordal graphs of diameter at most 2.

Theorem 8. Clique is NP-complete on {Gs | G is 4-chordal }, for every posi-
tive integer s.

Proof. Asahiro et al. [4] proved that Clique is NP-complete on even powers of
chordal graphs, and consequently on even powers of 4-chordal graphs. For s = 1,
the statement of Theorem 8 follows immediately from Lemma 4. Hence, it is
sufficient to prove the theorem for odd s > 1. Let s = 2r + 1 for r ≥ 1. We give
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a reduction from Clique on 4-chordal graphs of diameter at most 2, which is
NP-complete by Lemma 4.

Let G = (V,E) be a 4-chordal graph of diameter at most 2, which is input
to Clique together with an integer k. Let V = {u1, . . . , un}, and let H be the
graph obtained from G as follows: for each i ∈ {1, . . . , n}, we add r new vertices
v1i , . . . , v

r
i and r new edges uiv

1
i , v

1
i v

2
i , . . ., v

r−1
i vri to G. In other words, we attach

a path v1i , v
2
i ; . . . , v

r
i to every vertex ui of G, via edge uiv

1
i . Let us denote by

U the set of vertices {u1, . . . , un} ∪ (∪r−1
i=1 {vi1, . . . vin}). Since diam(G) ≤ 2 and

s = 2r + 1, we can observe the following:

– U is a clique in Hs,
– for every i ∈ {1, . . . n}, vri is adjacent to every vertex of U in Hs,
– for every pair i, j ∈ {1, . . . , n}, vri and vrj are adjacent in Hs is and only if

ui and uj are adjacent in G.

Consequently, every maximal clique in Hs contains U as a subset. Further-
more, any set {ui1 , . . . , uik} of k vertices in G is a clique of G if and only if
{vri1 , . . . , v

r
ik
} ∪ U is a clique in Hs. Since |U | = rn, we conclude that G has a

clique of size at least k if and only if Hs has a clique of size at least k + rn,
which completes the reduction. 	


Theorem 8 and Proposition 1 immediately give the following result.

Theorem 9. Max s-Club is NP-hard on 4-chordal graphs, for every positive
integer s.
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Abstract. A list assignment of a graph G = (V,E) is a function L
that assigns a list L(u) of so-called admissible colors to each u ∈ V .
The List Coloring problem is that of testing whether a given graph
G = (V,E) has a coloring c that respects a given list assignment L, i.e.,
whether G has a mapping c : V → {1, 2, . . .} such that (i) c(u) �= c(v)
whenever uv ∈ E and (ii) c(u) ∈ L(u) for all u ∈ V . If a graph G has
no induced subgraph isomorphic to some graph of a pair {H1,H2}, then
G is called (H1,H2)-free. We completely characterize the complexity of
List Coloring for (H1,H2)-free graphs.

1 Introduction

Graph coloring involves the labeling of the vertices of some given graph by in-
tegers called colors such that no two adjacent vertices receive the same color.
The goal is to minimize the number of colors. Graph coloring is one of the
most fundamental concepts in both structural and algorithmic graph theory and
arises in a vast number of theoretical and practical applications. Many variants
are known, and due to its hardness, the graph coloring problem has been well
studied for special graph classes such as those defined by one or more forbid-
den induced subgraphs. We consider a more general version of graph coloring
called list coloring and classify the complexity of this problem for graphs char-
acterized by two forbidden induced subgraphs. Kratsch and Schweitzer [22] and
Lozin [23] performed a similar study as ours for the problems graph isomor-
phism and dominating set, respectively. Before we summarize related coloring
results and explain our new results, we first state the necessary terminology. For
a more general overview of the area we refer to the surveys of Randerath and
Schiermeyer [29] and Tuza [32], and to the book by Jensen and Toft [26].

1.1 Terminology

We only consider finite undirected graphs with no multiple edges and self-loops.
A coloring of a graph G = (V,E) is a mapping c : V → {1, 2, . . .} such that
c(u) �= c(v) whenever uv ∈ E. We call c(u) the color of u. A k-coloring of G is
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a coloring c of G with 1 ≤ c(u) ≤ k for all u ∈ V . The Coloring problem is
that of testing whether a given graph admits a k-coloring for some given integer
k. If k is fixed, i.e., not part of the input, then we denote the problem as k-
Coloring. A list assignment of a graph G = (V,E) is a function L that assigns
a list L(u) of so-called admissible colors to each u ∈ V . If L(u) ⊆ {1, . . . , k} for
each u ∈ V , then L is also called a k-list assignment. We say that a coloring
c : V → {1, 2, . . .} respects L if c(u) ∈ L(u) for all u ∈ V . The List Coloring

problem is that of testing whether a given graph has a coloring that respects
some given list assignment. For a fixed integer k, the List k-Coloring problem
has as input a graph G with a k-list assignment L and asks whether G has a
coloring that respects L. The size of a list assignment L is the maximum list
size |L(u)| over all vertices u ∈ V . For a fixed integer �, the �-List Coloring

problem has as input a graph G with a list assignment L of size at most � and
asks whether G has a coloring that respects L. Note that k-Coloring can be
viewed as a special case of List k-Coloring by choosing L(u) = {1, . . . , k} for
all vertices u of the input graph, whereas List k-Coloring is readily seen to
be a special case of k-List Coloring.

For a subset S ⊆ V (G), we let G[S] denote the induced subgraph of G, i.e.,
the graph with vertex set S and edge set {uv ∈ E(G) | u, v ∈ S}. For a graph
F , we write F ⊆i G to denote that F is an induced subgraph of G. Let G be a
graph and {H1, . . . , Hp} be a set of graphs. We say that G is (H1, . . . , Hp)-free
if G has no induced subgraph isomorphic to a graph in {H1, . . . , Hp}; if p = 1,
we may write H1-free instead of (H1)-free.

The complement of a graph G = (V,E) denoted by G has vertex set V and an
edge between two distinct vertices if and only if these vertices are not adjacent in
G. The union of two graphs G and H is the graph with vertex set V (G)∪V (H)
and edge set E(G) ∪ E(H). Note that G and H may share some vertices. If
V (G) ∩ V (H) = ∅, then we speak of the disjoint union of G and H denoted by
G+H . We denote the disjoint union of r copies of G by rG. The graphs Cr , Pr

and Kr denote the cycle, path, and complete graph on r vertices, respectively.
The graph Kr,s denotes the complete bipartite graph with partition classes of
size r and s, respectively. The graph K−

4 denotes the diamond, which is the
complete graph on four vertices minus an edge. The line graph of a graph G
with edges e1, . . . , ep is the graph with vertices u1, . . . , up such that there is
an edge between any two vertices ui and uj if and only if ei and ej share an
end-vertex in G.

1.2 Related Work

Král’ et. al. [20] completely determined the computational complexity of Color-

ing for graph classes characterized by one forbidden induced subgraph. By com-
bining a number of known results, Golovach, Paulusma and Song [13] obtained
similar dichotomy results for the problems List Coloring and k-List Color-

ing, whereas the complexity classifications of the problems List k-Coloring

and k-Coloring are still open (see, e.g., [14] for a survey).
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Theorem 1. Let H be a fixed graph. Then the following three statements hold:

(i) Coloring is polynomial-time solvable for H-free graphs if H is an induced
subgraph of P4 or of P1+P3; otherwise it is NP-complete for H-free graphs.

(ii) List Coloring is polynomial-time solvable for H-free graphs if H is an
induced subgraph of P3; otherwise it is NP-complete for H-free graphs.

(iii) For all � ≤ 2, �-List Coloring is polynomial-time solvable. For all � ≥ 3,
�-List Coloring is polynomial-time solvable for H-free graphs if H is an
induced subgraph of P3; otherwise it is NP-complete for H-free graphs.

When we forbid two induced subgraphs the situation becomes less clear for the
Coloring problem, and only partial results are known. We summarize these re-
sults in the following theorem. Here, C+

3 denotes the graph with vertices a, b, c, d
and edges ab, ac, ad, bc, whereas F5 denote the 5-vertex fan also called the gem,
which is the graph with vertices a, b, c, d, e and edges ab, bc, cd, ea, eb, ec, ed.

Theorem 2. Let H1 and H2 be two fixed graphs. Then the following holds:

(i) Coloring is NP-complete for (H1, H2)-free graphs if

1. H1 ⊇i Cr for some r ≥ 3 and H2 ⊇i Cs for some s ≥ 3
2. H1 ⊇i K1,3 and H2 ⊇i K1,3

3. H1 and H2 contain a spanning subgraph of 2P2 as an induced subgraph
4. H1 ⊇i C3 and H2 ⊇i K1,r for some r ≥ 5
5. H1 ⊇i C3 and H2 ⊇i P164

6. H1 ⊇i Cr for r ≥ 4 and H2 ⊇i K1,3

7. H1 ⊇i Cr for r ≥ 5 and H2 contains a spanning subgraph of 2P2 as an
induced subgraph

8. H1 ⊇i K4 or H1 ⊇i K
−
4 , and H2 ⊇i K1,3

9. H1 ⊇i Cr + P1 for 3 ≤ r ≤ 4 or H1 ⊇i Cr for r ≥ 6, and H2 contains a
spanning subgraph of 2P2 as an induced subgraph.

(ii) Coloring is polynomial-time solvable for (H1, H2)-free graphs if

1. H1 or H2 is an induced subgraph of P1 + P3 or of P4

2. H1 ⊆i C3 + P1 and H2 ⊆i K1,3

3. H1 ⊆i C
+
3 and H2 �= K1,5 is a forest on at most six vertices

4. H1 ⊆i C
+
3 , and H2 ⊆i sP2 or H2 ⊆i sP1 + P5 for s ≥ 1

5. H1 = Kr for r ≥ 4, and H2 ⊆i sP2 or H2 ⊆i sP1 + P5 for s ≥ 1
6. H1 ⊆i F5, and H2 ⊆i P1 + P4 or H2 ⊆i P5

7. H1 ⊆i P5, and H2 ⊆i P1 + P4 or H2 ⊆i 2P2.

Proof. Král’ et al. [20] proved Cases (i):1–4, 6–8. Golovach et al. [12] proved that
4-Coloring is NP-complete for (C3, P164)-free graphs; this shows Case (i):5.
Case (i):9 follows from the following result by Schindl [31]. For 1 ≤ i ≤ j ≤ k,
let Sh,i,j be the tree with only one vertex x of degree 3 that has exactly three
leaves, which are of distance h, i and j to x, respectively. Let Ah,i,j be the
line graph of Sh,i,j. Then, for a finite set of graphs {H1, . . . , Hp}, Coloring is
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NP-complete for (H1, . . . , Hp)-free graphs if the complement of each Hi has a
connected component isomorphic neither to any graph Ai,j,k nor to any path Pr.

Case (ii):1 follows from Theorem 1 (i). Because Coloring can be solved in
polynomial time on graphs of bounded clique-width [19], and (C3+P1,K1,3)-free
graphs [2], (F5, P1+P4)-free graphs [4], (F5, P5)-free graphs [3] and (P5, P1+P4)-
free graphs [3] have bounded clique-width, Cases (ii):2,6–7 hold after observing
in addition that (P5, 2P2)-free graphs are b-perfect and Coloring is polynomial-
time solvable on b-perfect graphs [16]. Gyárfás [15] showed that for all r, t ≥ 1,
(Kr, Pt)-free graphs can be colored with at most (t − 1)r−2 colors. Hence, Col-

oring is polynomial-time solvable on (Kr, F )-free graphs for some linear forest
F if k-Coloring is polynomial-time solvable on F -free graphs for all k ≥ 1.
The latter is true for F = sP1 + P5 [7] and F = sP2 (see e.g. [9]). This shows
Case (ii):5, whereas we obtain Case (ii):4 by using the same arguments together
with a result of Král’ et al. [20], who showed that for any fixed graph H2, Col-

oring is polynomial-time solvable on (C3, H2)-free graphs if and only if it is so
for (C+

3 , H2)-free graphs. Case (ii):3 is showed by combining the latter result with
corresponding results from Dabrowski et al. [9] for (C3, H2)-free graphs obtained
by combining a number of new results with some known results [5,6,24,27,28]. 	


1.3 Our Contribution

We completely classify the complexity of List Coloring and �-List Coloring

for (H1, H2)-free graphs. For the latter problem we may assume that � ≥ 3 due
to Theorem 1 (iii).

Theorem 3. Let H1 and H2 be two fixed graphs. Then List Coloring is
polynomial-time solvable for (H1, H2)-free graphs in the following cases:

1. H1 ⊆i P3 or H2 ⊆i P3

2. H1 ⊆i C3 and H2 ⊆i K1,3

3. H1 = Kr for some r ≥ 3 and H2 = sP1 for some s ≥ 3.

In all other cases, even 3-ListColoring isNP-complete for (H1, H2)-free graphs.

We note that the classification in Theorem 3 differs from the partial classifi-
cation in Theorem 2. For instance, Coloring is polynomial-time solvable on
(C3,K1,4)-free graphs, whereas 3-List Coloring is NP-complete for this graph
class. We prove Theorem 3 in Section 2, whereas Section 3 contains some con-
cluding remarks. There, amongst others, we give a complete classification of the
computational complexity of List Coloring and List 3-Coloring when a set
of (not necessarily induced) subgraphs is forbidden.

2 The Classification

A graphG is a split graph if its vertices can be partitioned into a clique and an in-
dependent set; if every vertex in the independent set is adjacent to every vertex in
the clique, thenG is a complete split graph. The graphKn−M denotes a complete
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graph minus a matching which is obtained from a complete graphKn after remov-
ing the edges of some matching M . Equivalently, a graph G is a complete graph
minus a matching if and only if G is (3P1, P1 +P2)-free [13]. The complement of a
bipartite graph is called a cobipartite graph. Let G be a connected bipartite graph
with partition classes A and B. Then we call G a matching-separated cobipartite
graph if the edges of G that are between vertices from A and B form a matching
in G. The girth of a graph G is the length of a shortest induced cycle in G.

For showing the NP-complete cases in Theorem 3 we consider a number of
special graph classes in the following three lemmas.

Lemma 1. 3-List Coloring is NP-complete for:

(i) complete bipartite graphs
(ii) complete split graphs
(iii) (non-disjoint) unions of two complete graphs
(iv) complete graphs minus a matching

Proof. The proof of Theorem 4.5 in the paper by Jansen and Scheffler [18] is
to show that List Coloring is NP-complete on P4-free graphs but in fact
shows that 3-List Coloring is NP-complete for complete bipartite graphs. This
shows (i). In the proof of Theorem 2 in the paper by Golovach and Heggernes [10]
a different NP-hardness reduction is given for showing that 3-List Coloring is
NP-complete for complete bipartite graphs. In this reduction a complete bipartite
graph is constructed with a list assignment that has the following property: all
the lists of admissible colors of the vertices for one bipartition class are mutually
disjoint. Hence, by adding all possible edges between the vertices in this class,
one proves that 3-List Coloring is NP-complete for complete split graphs.
This shows (ii). Golovach et al. [13] showed (iii). The proof of Theorem 11 in
the paper by Jansen [17] is to show that List Coloring is NP-complete for
unions of two complete graphs that are not disjoint unions, but in fact shows
that 3-List Coloring is NP-complete for these graphs. This shows (iv). 	

Lemma 2. 3-List Coloring is NP-complete for matching-separated cobipar-
tite graphs.

Proof. NP-membership is clear. To show NP-hardness we reduce from Satisfia-

bility. It is known (see e.g. [8]) that this problem remainsNP-complete even if each
clause contains either 2 or 3 literals and each variable is used in at most 3 clauses.
Consider an instance of Satisfiabilitywith n variables x1, . . . , xn andm clauses
C1, . . . , Cm that satisfies these two additional conditions. Let φ = C1 ∧ . . . ∧Cm.
We construct a graph G with a list assignment L as follows (see Fig. 1).

• For each i ∈ {1, . . . , n}, add six vertices x1
i , x

2
i , x

3
i , y

1
i , y

2
i , y

3
i , introduce six

new colors i1, i2, i3, i
′
1, i

′
2, i

′
3, assign lists of admissible colors {i1, i′1}, {i2, i′2},

{i3, i′3} to x1
i , x

2
i , x

3
i , respectively, and {i1, i′2}, {i2, i′3}, {i3, i′1} to y1i , y

2
i , y

3
i ,

respectively.
• Add edges between all vertices xh

i , y
h
i to obtain a clique with 6n vertices.

• For j = 1, . . . ,m, add four vertices u1
j , u

2
j , u

3
j , wj , introduce three new colors

j1, j2, j3, assign the list of admissible colors {j1, j2, j3} to wj , and if Cj

contains exactly two literals, then assign the list {j3} to u3
j .
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{j1, j2, j3}

u2
j u3

j{s3, j1} {i′1, j2} {t1, j3}

x1
t

x3
i

y3i

y1i

x3
s x1

i

{i1, i′2} y2i

{i1, i′1} x2
i

{i2, i′3}

{i2, i′2}
{i3, i′1}

{i3, i′3}

u1
j

wj

Fig. 1. An example of a graph G with a clause vertex Cj = xs∨xi∨xt, where xs, xi, xt

occur for the third, first and first time in φ, respectively

• Add edges between all vertices uh
j , wj to obtain a clique with 4m vertices.

• For j = 1, . . . ,m, consider the clause Cj and suppose that Cj = z1 ∨ z2 or
Cj = z1 ∨ z2 ∨ z3. For h = 1, 2, 3 do as follows:
– if zh = xi is the p-th occurrence of the variable xi in φ, then add the
edge uh

j x
p
i and assign the list of colors {i′p, jh} to uh

j ;
– if zh = xi is the p-th occurrence of the variable xi in φ, then add the
edge uh

j x
p
i and assign the list of colors {ip, jh} to uh

j .

Notice that all the colors i1, i2, i3, i
′
1, i

′
2, i

′
3, j1, j2, j3 are distinct. From its

construction, G is readily seen to be a matching-separated cobipartite graph.

We claim that φ has a satisfying truth assignment if and only if G has a coloring
that respects L. First suppose that φ has a satisfying truth assignment. For
i = 1, . . . , n, we give the vertices x1

i , x
2
i , x

3
i colors i1, i2, i3, respectively, and the

vertices y1i , y
2
i , y

3
i colors i′2, i

′
3, i

′
1 respectively, if xi = true, and we give x1

i , x
2
i , x

3
i

colors i′1, i
′
2, i

′
3, respectively, and y1i , y

2
i , y

3
i colors i1, i2, i3 respectively, if xi =

false. For j = 1, . . . ,m, consider the clause Cj and suppose that Cj = z1 ∨ z2
or Cj = z1 ∨ z2 ∨ z3. Note that if Cj contains exactly two literals, then u3

j is
colored by j3. The clause Cj contains a literal zh = true. Assume first that
zh = xi and that zh is the p-th occurrence of the variable xi in φ. Recall that
uh
j has list of admissible colors {i′p, jh} and that uh

j is adjacent to xp
i colored by

ip. Hence, we color u
h
j by i′p, wj by jh, and for s ∈ {1, 2, 3} \ {h}, we color us

j by
js. Assume now that zh = xi and that zh is the p-th occurrence of the variable
xi in φ. Symmetrically, we color uh

j by ip, wj by jh, and for s ∈ {1, 2, 3} \ {h},
we color us

j by js. We observe that for any distinct i, i′ ∈ {1, . . . , n}, the lists of

admissible colors of x1
i , x

2
i , x

3
i , y

1
i , y

2
i , y

3
i do not share any color with the lists of

x1
i′ , x

2
i′ , x

3
i′ , y

1
i′ , y

2
i′ , y

3
i′ . Also for any distinct j, j′ ∈ {1, . . . ,m}, the lists of colors

of u1
j , u

2
j , u

3
j , wj do not share any color with he lists of u1

j′ , u
2
j′ , u

3
j′ , wj′ . Hence we

obtained a coloring of G that respects L.
Now suppose that c is a coloring of G that respects L. We need the following

claim that holds for all 1 ≤ i ≤ n:

either c(x1
i ) = i1, c(x

2
i ) = i2, c(x

3
i ) = i3 or c(x1

i ) = i′1, c(x
2
i ) = i′2, c(x

3
i ) = i′3.

In order to see this claim, first assume that c(x1
i ) = i1. Then c(y1i ) = i′2, c(x2

i ) =
i2, c(y

2
i ) = i′3, and c(x3

i ) = i3. Symmetrically, if c(x1
i ) = i′1, then c(y3i ) = i3,
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c(x3
i ) = i′3, c(y

2
i ) = i2, and c(x2

i ) = i′2. Hence, the claim holds, and we can do as
follows. For i = 1, . . . , n, we let xi = true if c(x1

i ) = i1, c(x
2
i ) = i2, c(x

3
i ) = i3,

and xi = false if c(x1
i ) = i′1, c(x2

i ) = i′2, c(x3
i ) = i′3. We claim that this truth

assignment satisfies φ. For j ∈ {1, . . . ,m}, consider the clause Cj and suppose
that Cj = z1 ∨ z2 or Cj = z1 ∨ z2 ∨ z3. Recall that if Cj contains exactly two
literals, then c(u3

j) = j3. We also observe that there is an index h ∈ {1, 2, 3}
such that c(uh

j ) �= jh as otherwise it would be impossible to color wj . Hence, if

zh is the p-th occurrence of the variable xi in φ, then c(uh
j ) = i′p if zh = xi and

c(uh
j ) = ip if zh = xi. If c(u

h
j ) = i′p, then c(uh

j ) �= c(xp
i ) = ip, and xi = true.

Otherwise, if c(uh
j ) = ip, then c(uh

j ) �= c(xp
i ) = i′p, and xi = false. In both cases

Cj is satisfied. We therefore find that φ is satisfied. This completes the proof of
Lemma 2. 	


Lemma 3. List 3-Coloring is NP-compete for graphs of maximum degree at
most 3 with girth at least g, and in which any two vertices of degree 3 are of
distance at least g from each other, for any fixed constant g ≥ 3.

Proof. NP-membership is clear. To show NP-hardness we reduce from a variant
of Not-All-Equal Satisfiability with positive literals only. This problem
is NP-complete [30] and defined as follows. Given a set X = {x1, x2, ..., xn} of
logical variables, and a set C = {C1, C2, ..., Cm} of clauses over X in which all
literals are positive, does there exist a truth assignment for X such that each
clause contains at least one true literal and at least one false literal? The variant
we consider takes as input an instance (C, X) of Not-All-Equal Satisfiabil-

ity with positively literals only that has two additional properties. First, each Ci

contains either two or three literals. Second, each literal occurs in at most three
different clauses. One can prove that this variant is NP-complete by a reduction
from the original problem via a well-known folklore trick (see e.g. [13]).

Qpp′

xh xi

C ′pCp

{1, 2} {1, 2}

{1, 2}

{1, 2}Qpp′

xh xi

C ′p

{1, 2} {1, 2}

{1, 2, 3}

b) Cp = xh ∨ xi ∨ xja) Cp = xh ∨ xi

{1, 2}
C ′′p

xj {1, 2}

{1, 2, 3}

Qpp′′ {1, 2}

Qp′p′′ {1, 3}Cp {1, 2}

{1, 2}

Fig. 2. The construction of G and L for g = 3

From an instance (C, X) as defined above, we construct a graph G and a list
assignment L as follows. For each literal xi we introduce a vertex that we denote
by xi as well. We define L(xi) = {1, 2}. For each clause Cp with two literals, we
fix an ordering of its literals, say xh, xi. We then introduce two vertices Cp, C

′
p

and add the edges Cpxh and C′
pxi. We let Cp and C′

p be the end-vertices of a path
Qpp′ of odd length at least g, whose inner vertices are new vertices. We assign
the list {1, 2} to each vertex of Qpp′ . See Fig. 2 a). For each clause Cp with three
literals, we fix an ordering of its literals, say xh, xi, xj . We then introduce three
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vertices Cp, C
′
p, C

′′
p and add edges Cpxh, C

′
pxi, C

′′
p xj . We define L(Cp) = {1, 2}

and L(C′
p) = L(C′′

p ) = {1, 2, 3}. We define paths Qpp′ , Qpp′′ and Qp′p′′ , each
with new inner vertices and of odd length at least g, that go from Cp to C′

p,
from Cp to C′′

p , and from C′
p to C′′

p , respectively. We assign the list {1, 2} to
each inner vertex of Qpp′ and to each inner vertex of Qpp′′ , whereas we assign
the list {1, 3} to each inner vertex of Qp′p′′ . See Fig. 2 b). This completes our
construction of G and L. Because each clause contains at most three literals and
each literal occurs in at most three clauses, G has maximum degree at most 3.
By construction, G has girth at least g and any two vertices of degree 3 have
distance at least g from each other. We claim that X has a truth assignment
such that each clause contains at least one true literal and at least one false
literal if and only if G has a coloring that respects L.

First suppose that X has a truth assignment such that each clause contains at
least one true literal and at least one false literal. We assign color 1 to every true
literal and color 2 to every false literal. Suppose that Cp is a clause containing
exactly two literals ordered as xh, xi Then, by our assumption, one of them is
true and the other one is false. Suppose that xh is true and xi is false. Then we
give Cp color 2 and C′

p color 1. Because the path Qpp′ has odd length, we can
alternate between the colors 1 and 2 for the inner vertices of Qpp′ . If xh is false
and xi is true, we act in a similar way. Suppose that Cp is a clause containing
three literals ordered as xh, xi, xj . By assumption, at least one of the vertices
xh, xi, xj received color 1, and at least one of them received color 2. This leaves
us with six possible cases. If xh, xi, xj have colors 1, 1, 2, then we give Cp, C

′
p, C

′′
p

colors 2,3,1, respectively. If xh, xi, xj have colors 1, 2, 1, then we give Cp, C
′
p, C

′′
p

colors 2,1,3, respectively. If xh, xi, xj have colors 2, 1, 1, then we give Cp, C
′
p, C

′′
p

colors 1,3,2, respectively. If xh, xi, xj have colors 2, 2, 1, then we give Cp, C
′
p, C

′′
p

colors 1,3,2, respectively. If xh, xi, xj have colors 2, 1, 2, then we give Cp, C
′
p, C

′′
p

colors 1,2,3, respectively. If xh, xi, xj have colors 1, 2, 2, then we give Cp, C
′
p, C

′′
p

colors 2,3,1, respectively. What is left to do is to color the inner vertices of the
paths Qpp′ , Qpp′′ , Qp′p′′ . For the inner vertices of the first two paths we alternate
between colors 1 and 2, whereas we alternate between colors 1 and 3 for the inner
vertices of the last path. Because we ensured that in all six cases the vertices
Cp, C

′
p and C′′

p received distinct colors and the length of the paths is odd, we
can do this. Hence, we obtained a coloring of G that respects L.

Now suppose thatG has a coloring that respectsL. Then every literal vertex has
either color 1 or color 2. In the first case we make the corresponding literal true,
and in the second case we make it false. We claim that in this way we obtained
a truth assignment of X such that each clause contains at least one true literal
and at least one false literal. In order to obtain a contradiction suppose that Cp

is a clause, all literals of which are either true or false. First suppose that all its
literals are true, i.e., they all received color 1. If Cp contains exactly two literals,
then both Cp and C′

p received color 2, which is not possible. If Cp contains three
literals, then Cp received color 2. Consequently, the colors of the inner vertices
of the path Qpp′ are forced. Because Qpp′ has odd length, this means that the
neighbor of C′

p that is on Qpp′ received color 2. Then, because C′
p is adjacent to a
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literal vertex with color 1, we find that C′
p must have received color 3. However,

following the same arguments, we now find that the three neighbors of Cp′′ have
colors 1,2,3, respectively. This is not possible. If all literals of Cp are false, we use
the same arguments to obtain the same contradiction. Hence, such a clause Cp

does not exist. This completes the proof of Lemma 3. 	

Note that Lemmas 1 and 2 claim NP-completeness for 3-List Coloring on
some special graph classes, whereas Lemma 3 claims this for List 3-Coloring,
which is the more restricted version of List Coloring where only three distinct
colors may be used in total as admissible colors in the lists of a list assignment.

We are now ready to prove Theorem 3.

Proof (of Theorem 3). We first show the polynomial-time solvable cases. Case 1
follows from Theorem 1 (ii). Any (C3,K1,3)-free graph has maximum degree at
most 2. Kratochv́ıl and Tuza [21] showed that List Coloring is polynomial-
time solvable on graphs of maximum degree 2. This proves Case 2. By Ramsey’s
Theorem, every (Kr, sP1)-free graph contains at most γ(r, s) vertices for some
constant γ(r, s). Hence, we can decide in constant time whether such a graph
has a coloring that respects some given list assignment. This proves Case 3.

Suppose that Cases 1–3 are not applicable. If both H1 and H2 contain a
cycle, then NP-completeness of 3-List Coloring follows from Theorem 2 (i):1.
Suppose that one of the graphs, say H1, contains a cycle, whereas H2 contains
no cycle, i.e., is a forest.

First suppose that H1 contains an induced Cr for some r ≥ 4. Because H2

is not an induced subgraph of P3, we find that H2 contains an induced P1 + P2

or an induced 3P1. If H2 contains an induced P1 + P2, then every complete split
graph is (H1, H2)-free. Hence NP-completeness of 3-List Coloring follows from
Lemma 1 (ii). If H2 contains an induced 3P1, then every union of two complete
graphs is (H1, H2)-free. HenceNP-completeness of 3-ListColoring follows from
Lemma 1 (iii).

Now suppose that H1 contains no induced Cr for some r ≥ 4, but suppose
that it does contain C3. If H2 contains an induced P1 +P2, then every complete
bipartite graph is (H1, H2)-free. Hence NP-completeness of 3-List Coloring

follows from Lemma 1 (i). If H2 contains an induced K1,r for some r ≥ 4, then
every graph of maximum degree at most 3 and of girth at least 4 is (H1, H2)-
free. Hence, NP-completeness of 3-List Coloring follows from Lemma 3 after
choosing g = 4. Suppose that H2 contains neither an induced P1 + P2 nor an
induced K1,r for some r ≥ 4. Recall that H2 is a forest that is not an induced
subgraph of P3. Then H2 = sP1 for some s ≥ 3 or H2 = K1,3.

First suppose that H2 = sP1 for some s ≥ 3. If H1 is not a complete graph
minus a matching, then every complete graph minus a matching is (H1, H2)-
free. Hence NP-completeness of 3-List Coloring follows from Lemma 1 (iv).
If H1 is not a non-disjoint union of two complete graphs, then every non-disjoint
union of two complete graphs is (H1, H2)-free. Hence NP-completeness of 3-List
Coloring follows from Lemma 1 (iii). Now assume that H1 is a complete graph
minus a matching and also the non-disjoint union of two complete graphs. Then
either H1 is a complete graph or a complete graph minus an edge. However, H1
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is not a complete graph by assumption (as otherwise we would end up in Case 3
again). Hence H1 is a complete graph minus an edge. Because H1 contains C3,
this means that H1 contains an induced K−

4 . However, then every matching-
separated cobipartite graph is (H1, H2)-free. Hence NP-completeness of 3-List
Coloring follows from Lemma 2.

Now suppose that H2 = K1,3. By repeating the arguments of the previous
case, in which H2 = sP1 for some s ≥ 3, we obtain NP-completeness of 3-List
Coloring or find that H1 is a complete graph or a complete graph minus an
edge. If H1 is a complete graph, then H1 �= C3 by assumption (as otherwise we
would end up in Case 2 again). This means that H1 contains an induced K4.
If H1 is a complete graph minus an edge, then H1 contains an induced K−

4 as
H1 already contains the graph C3. Hence, in both cases, every (K4,K

−
4 ,K1,3)-

free graph is (H1, H2)-free. Observation 3 in the paper of Král’ et al. [20] tells
us that Coloring is NP-complete for (K4,K

−
4 ,K1,3)-free graphs. However, its

proof shows in fact that 3-Coloring is NP-compete for this graph class. Hence,
NP-completeness of 3-List Coloring follows.

Finally we consider the case when H1 and H2 contain no cycles, i.e., are both
forests.Because neither of them is an induced subgraph ofP3, each of themcontains
an induced 3P1 or an induced P1+P2. Recall that a graph is a complete graphmi-
nus a matching if and only if it is (3P1, P2)-free. Hence, any complete graph minus
a matching is (H1, H2)-free. Then NP-completeness of 3-List Coloring follows
from Lemma 1 (iv). This completes the proof of Theorem 3. 	


3 Conclusion

We completely classified the complexity of List Coloring and �-List Col-

oring for (H1, H2)-free graphs. The next step would be to classify these two
problems for H-free graphs, where H is an arbitrary finite set of graphs. How-
ever, even the case with three forbidden induced subgraphs is not clear. This
is in stark contrast to the situation when we forbid subgraphs that may not
necessarily be induced. For a set of graphs {H1, . . . , Hp}, we say that a graph
G is strongly (H1, . . . , Hp)-free if G has no subgraph isomorphic to a graph in
{H1, . . . , Hp}. For such graphs we can show the following result.

Theorem 4. Let {H1, . . . , Hp} be a finite set of graphs. Then List Coloring

is polynomial-time solvable for strongly (H1, . . . , Hp)-free graphs if there exists a
graph Hi that is a forest of maximum degree at most 3, every connected compo-
nent of which has at most one vertex of degree 3. In all other cases, even List

3-Coloring is NP-complete for (H1, . . . , Hp)-free graphs.

Proof. First suppose there exists a graph Hi that is a forest of maximum degree
at most 3, in which every connected component contains at most one vertex of
degree 3. BecauseHi has maximum degree at most 3, every connected component
of Hi is either a path or a subdivided claw. As such, Hi is not a subgraph of
a graph G if and only if H is not a minor of G. In that case G has path-
width at most |V (H)| − 2 [1]. Then the path-width, and hence, the treewidth
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of G is bounded, as H is fixed. Because List Coloring is polynomial-time
solvable for graphs of bounded treewidth [18], we find that List Coloring

is polynomial-time solvable for strongly Hi-free graphs, and consequently, for
strongly (H1, . . . , Hp)-free graphs. Now suppose that we do not have such a
graph Hi. Then every Hi contains either an induced cycle or is a forest with a
vertex of degree at least 4 or is forest that contains a connected component with
two vertices of degree 3. Then NP-completeness of List 3-Coloring follows
from Lemma 3 after choosing the constant g sufficiently large. 	


We note that a classification for Coloring and k-Coloring similar to the one
in Theorem 4 for List Coloring and List 3-Coloring is not known even if
only one (not necessarily induced) subgraph is forbidden; see Golovach et al. [11]
for partial results in this direction.

Another interestingproblem,which is still open, is the following. It is notdifficult
to see that k-Coloring isNP-complete for graphs of diameter d for all pairs (k, d)
with k ≥ 3 and d ≥ 2 except when (k, d) ∈ {(3, 2), (3, 3)}. Recently, Mertzios and
Spirakis [25] solved one of the two remaining cases by showing that 3-Coloring is
NP-complete even for triangle-free graphs G = (V,E) of diameter 3, radius 2 and
minimum degree δ = θ(|V |ε) for every 0 ≤ ε ≤ 1. This immediately implies that
List 3-Coloring is NP-complete for graphs of diameter 3. What is the computa-
tional complexity of List 3-Coloring for graphs of diameter 2?
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2. Brandstädt, A., Engelfriet, J., Le, H.-O., Lozin, V.V.: Clique-Width for 4-Vertex
Forbidden Subgraphs. Theory Comput. Syst. 39, 561–590 (2006)
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Abstract. Let M be a bridgeless matroid on ground set {1, . . . , n} and
fM : {0, 1}n → {0, 1} be the indicator function of its independent sets. A
folklore fact is that fM is evasive, i.e., D(fM) = n where D(f) denotes
the deterministic decision tree complexity of f. Here we prove query
complexity lower bounds for fM in three stronger query models: (a)
D⊕(fM) = Ω(n), where D⊕(f) denotes the parity decision tree com-
plexity of f ; (b) R(fM) = Ω(n/ log n), where R(f) denotes the bounded
error randomized decision tree complexity of f ; and (c) Q(fM) = Ω(

√
n),

where Q(f) denotes the bounded error quantum query complexity of f.

To prove (a) we propose a method to lower bound the sparsity of
a Boolean function by upper bounding its partition size. Our method
yields a new application of a somewhat surprising result of Gopalan et
al. [11] that connects the sparsity to the granularity of the function.

As another application of our method, we confirm the Log-rank Con-
jecture for XOR functions [27], up to a poly-logarithmic factor, for a fairly
large class of AC0- XOR functions.

To prove (b) and (c) we relate the ear decomposition of matroids to
the critical inputs of appropriate tribe functions and then use the existing
randomized and quantum lower bounds for these functions.

Keywords: (parity, randomized, quantum) decision tree complexity,
matroids, Fourier spectrum, read-once formulae, AC0.

1 Introduction

1.1 Decision Tree Models

The decision tree or querymodel of computing is perhaps one of the simplest mod-
els of computation. Due to its fundamental nature, it has been extensively studied
over last few decades; yet it remains far from being completely understood.
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Fix a Boolean function f : {0, 1}n → {0, 1}. A deterministic decision tree Df

for f takes x = (x1, . . . , xn) as an input and determines the value of f(x1, . . . , xn)
using queries of the form “ is xi = 1? ”. Let C(Df , x) denote the cost of the
computation, that is the number of queries made by Df on input x. The deter-
ministic decision tree complexity of f is defined asD(f) = minDf

maxx C(Df , x).
A bounded error randomized decision tree Rf is a probability distribution over
all deterministic decision trees such that for every input, the expected error of the
algorithm is bounded by some fixed constant less than 1/2. The cost C(Rf , x)
is the highest possible number of queries made by Rf on x, and the bounded
error randomized decision tree complexity of f is R(f) = minRf

maxxC(Rf , x).
A bounded error quantum decision tree Qf is a sequence of unitary operators,
some of which depends on the input string. Broadly speaking, the cost C(Qf , x)
is the number of unitary operators (quantum queries) which depend on x. The
bounded error quantum query complexity of f is Q(f) = minQf

maxx C(Qf , x),
where the minimum is taken over all quantum decision trees computing f . For a
more precise definition we refer the reader to the excellent survey by Buhrman
and de Wolf [8].

A natural theme in the study of decision trees is to understand and exploit the
structure within f in order to prove strong lower bounds on its query complexity.
A classic example is the study of non-trivial monotone graph properties. In the
deterministic case it is known [23] that any such f of n vertex graphs has
complexity Ω(n2), and a famous conjecture [15] asserts that it is evasive, that
is of maximal complexity, D(f) =

(
n
2

)
. In the randomized case the best lower

bound (up to some polylogarithmic factor) is Ω(n4/3), and it is widely believed
that in fact R(f) = Ω(n2). In both models of computation, the structure that
makes the complexity high is monotonicity and symmetry.

In this paper we study the decision tree complexity of another structured
class, called matroidal Boolean functions, which arise from matroids. They form
a subclass of monotone Boolean functions. These are the indicator functions of
the independent sets of matroids. The matroidal Boolean functions inherit the
rich combinatorial structure from matroids. Naturally, one may ask: what effect
does this structure have on the decision tree complexity? It is a folklore fact that
(modulo some degeneracies) such functions are evasive. Our main results in this
paper are query complexity lower bounds for such functions in three stronger
query models, namely: parity decision trees, bounded error randomized decision
trees, and bounded error quantum decision trees. We give here a brief overview
of the relatively less known model of parity decision trees.

A parity decision tree may query “ is
∑

i∈S xi ≡ 1 (mod 2)? ” for an arbitrary
subset S ⊆ [n]. We call such queries parity queries. For a parity decision tree Pf

for f, let C(Pf , x) denote the number of parity queries made by Pf on input x.
The parity decision tree complexity of f is

D⊕(f) = minPf
maxx C(Pf , x).

Note that D⊕(f) ≤ D(f) as “ is xi = 1? ” can be treated as a parity query.
Parity decision trees were introduced by Kushilevitz and Mansour [18] in the

context of learning Boolean functions by estimating their Fourier coefficients.
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The sparsity of a Boolean function f , denoted by ||f̂ ||0, is the number of its
non-zero Fourier coefficients. It turns out that the logarithm of the sparsity is
a lower bound on D⊕(f) [18,24,20]. Thus having a small depth parity decision
tree implies only small number of Fourier coefficients to estimate.

Parity decision trees came into light recently in an entirely different context,
namely in investigations of the communication complexity of XOR functions. Shi
and Zhang [24] and Montanaro and Osborne [20] have observed that the deter-
ministic communication complexity DC(f⊕) of computing f(x⊕y), when x and
y are distributed between the two parties, is upper bounded by D⊕(f). They
have also both conjectured that for some positive constant c, every Boolean
function f satisfies D⊕(f) = O((log ||f̂ ||0)c). Settling this conjecture in affir-
mative would confirm the famous Log-rank Conjecture in the important special
case of XOR functions. Montanaro and Osborne [20] showed that for a monotone

Boolean function D⊕(f) = O((log ||f̂ ||0)2), and conjectured that actually c = 1.

1.2 Our Results and Techniques

In this paper [n] := {1, . . . , n}. LetM be a matroid on ground set [n] and fM
be the indicator function of the independent sets of M. We refer the reader
to Section 2 for relevant definitions. We describe now our lower bounds in the
three computational model. We think that the most interesting case is the parity
decision tree model since it brings together quite a few ideas.

Fourier Spectrum of Matroids Is Dense

Our main technical result is that the Fourier spectrum of matroidal Boolean
functions is dense.

Theorem 1. IfM is a bridgeless matroid on ground set [n] then

log ||f̂M||0 = Ω(n).

An immediate corollary of this result is the lower bound on the parity decision
tree complexity.

Corollary 1. If M is a bridgeless matroid on ground set [n] then

D⊕(fM) = Ω(n).

Another corollary of the theorem is that Q∗(f(x ⊕ y)), the quantum commu-
nication complexity of f(x ⊕ y) in the exact computation model with shared
entanglement is maximal. Indeed, Buhrman and de Wolf [7] have shown that,
up to a factor of 2, it is bounded from below by the logarithm of the rank of the
communication matrix f(x⊕ y). Since Shi and Zhang have proven [27] that the

rank of the communication matrix is exactly ||f̂ ||0, the corollary indeed follows
from Theorem 1.

Corollary 2. If M is a bridgeless matroid then Q∗(fM(x⊕ y)) = Ω(n).



Query Complexity of Matroids 303

To prove Theorem 1 we bring together various concepts and ideas from several
not obviously related areas. The first part of our proof which relates partition
size to Fourier spectrum is actually valid for any Boolean function. Our main
ingredient is a relation (Proposition 3) stating that a small Euler characteris-
tic implies that the sparsity of the function is high, that is the number of its
non-zero Fourier coefficients is large. To prove this we use a recent result of
Gopalan et. al. [11] (originated in the context of property testing) that crucially
uses the Boolean-ness to connect the sparsity to the granularity - the smallest k
such that all Fourier coefficients are multiple od 1/2k. Our second ingredient is
to show (Lemma 2) that the Euler characteristic can be bounded by the parti-
tion size of the Boolean function. Finally to make this strategy work, we need to
choose an appropriate restriction of the function so that the Euler characteristic
of the restriction is non-zero.

When the rank of the matroid is small, the proof of Theorem 1 is in fact
relatively easy. To conclude the proof when the rank is large we use a powerful
theorem of Björner [4] which bounds the partition size of a matroidal Boolean
function by the number of maximum independent sets.

In fact, the same method can be used to lower bound the sparsity of another
large subclass of (not necessarily monotone) Boolean functions, namely the AC0

functions. Hence for such functions parity queries can be simulated by ordinary
ones only with a polynomial factor loss. The formal statement, analogous to
Theorem 1 is the following:

Theorem 2. If f : {0, 1}n → {0, 1} has a circuit of depth d and size m then

log ||f̂ ||0 = Ω(deg(f)/(logm+ d log d)d−1).

We would like to point out that the upper bound on the partition size for the
class of AC0 functions is highly non-trivial result(cf. [13]), whose proof relies
crucially on the Switching Lemma.

Theorems 2 has an interesting corollary that the Log-rank conjecture holds for
AC0 XOR-functions. Indeed, as we have explained already, whenever D⊕(f) =
O((log ||f̂ ||0)c), the Log-rank conjecture holds for f⊕. Obviously D⊕(f) ≤ D(f),
and its is known [21] that D(f) = deg(f)O(1). Therefore we have

Corollary 3. Let Mf be the communication matrix of f⊕. If f : {0, 1}n →
{0, 1} is in AC0 then

DC(f⊕) ≤ (log rk(Mf ))
O(1).

This means that in exact model [7] quantum and classical communication com-
plexity of AC0- XOR functions are polynomially related.

Randomized and Quantum Query Complexity

We obtain a nearly optimal lower bound on the randomized query complexity
of matroids.

Theorem 3. IfM is a bridgeless matroid on ground set [n] then
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R(fM) = Ω(n/ logn).

It is widely conjectured that for every total Boolean function f , the relation
D(f) = O(Q(f)2) holds (Conjecture 1 in [1]). Barnum and Saks (Theorem 2 in
[1]) confirm this conjecture for AND-OR read-once formulae, and we are able to
extend their result to read-once formulae over matroids.

Theorem 4. If f : {0, 1}n → {0, 1} is a read-once formula over matroids then

Q(f) = Ω(
√
n).

Our simple but crucial observation for proving lower bounds for randomized and
quantum query complexity is that for any matroidal Boolean function f, one can
associate, via the ear decomposition of matroids, a tribe function g such that f
matches with g on all critical inputs. The lower bounds then follow from the
partition bound for tribe functions obtained by Jain and Klauck [14] and the
adversary bound for AND-OR read-once formulae by Barnum and Saks [1]. Our
main contribution here is observing that certain lower bound methods for tribe
functions generalize for the larger class of matroidal Boolean functions.

2 Preliminaries

2.1 Matroids and Matroidal Boolean Functions

Definition 1 (Matroid). Let E be a finite set. A collection M⊆ 2E is called
a matroid if it satisfies the following properties:
(1) (non-emptiness) ∅ ∈ M;
(2) (hereditary property) if A ∈ M and B ⊆ A then B ∈M;
(3) (augmentation property) if A,B ∈ M and |A| > |B| then there exists x ∈
A\B such that x ∪B ∈M.

We call E the ground set ofM. The members ofM are called independent sets
ofM. If A /∈M then A is called dependent with respect toM. A circuit inM is
a minimal dependent set. For A ⊆ E, the rank of A with respect toM is defined
as follows:

rk(A,M) := max{|B| | B ⊆ A and B ∈ M}.

The rank or dimension ofM, denoted by rk(M), is defined to be the rank of E
with respect toM.

A matroid M on ground set E can be identified with a Boolean function
fM : {0, 1}|E| → {0, 1} as follows: first identify x ∈ {0, 1}|E| with a subset
S(x) := {e ∈ E | xe = 1} of E; now let fM(x) := 0 ⇐⇒ S(x) ∈ M.

A function f : {0, 1}n → {0, 1} is said to be monotone increasing if:

(∀x, y ∈ {0, 1}n)(x ≤ y =⇒ f(x) ≤ f(y)),

where x ≤ y if for every i ∈ [n] := {1, . . . , n} we have xi ≤ yi. The hereditary
property ofM translates to fM being monotone.
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We call a Boolean function f matroidal if there exists a matroidM such that
f ≡ fM. Examples: AND, OR, MAJORITY, ∨ki=1 ∧�i=1 xij .

An element e ∈ E is called a bridge inM if e does not belong to any circuit of
M. If e is a bridge inM then the corresponding variable xe of fM is irrelevant,
i.e., the function fM does not depend on the value of xe. Thus, for the purpose
of query complexity, we can delete all the bridges and focus our attention on
bridgeless matroids.

Ear Decomposition of Bridgeless Matroids

LetM be a matroid on ground set E. Let T ⊆ E. The contraction ofM by T,
denoted byM/T , is a matroid on the ground set E − T defined as follows:

M/T := {A ⊆ E − T | rk(A ∪ T,M) = |A|+ rk(T,M)}.

Definition 2 (Ear Decomposition [26]). A sequence (C1, . . . , Ck) of circuits
ofM is called an ear decomposition ofM if:
(1) Li := Ci −

⋃
j<i Cj is non-empty and

(2) Li is a circuit in M/
⋃

j<i Cj .

For i = 1, . . . , k, the sets Li are called lobes. An ear decomposition is complete
if
⋃k

i=1 Li = E. Every bridgeless matroid admits a complete ear decomposi-
tion [10]. We identify complete ear decompositions with their lobe partition

E =
⋃k

i=1 Li. For our randomized and quantum lower bounds we will crucially
use the following proposition

Proposition 1. Let M be a bridgeless matroid on ground set E and let E =⋃k
i=1 Li be a complete ear decomposition of M. Let e1, . . . , ek ∈ E such that

ei ∈ Li and L′
i := Li−{ei}. Then

⋃k
i=1 L

′
i is a maximum independent set ofM.

2.2 Read-Once Formulae

Let F be a family of Boolean functions. A read-once formula over F is a Boolean
function represented by a rooted tree whose internal nodes are labeled by mem-
bers of F , and whose leaves are labelled by distinct variables. The inputs to each
function are the outputs of its children.

If F = {∧n,∨n : n ∈ N} then we get the (unbounded fan-in) AND-OR read-

once formulae. Given a complete ear decomposition
⋃k

i=1 Li = E of a matroid,

we associate to it the AND-OR read-once formula g =
∨k

i=1

∧
e∈Li

xe. Such
functions (OR’s of AND’s) are also called tribe functions.

Definition 3 (Critical Inputs of AND-OR Read-once Formulae). An
input is critical for an AND-OR read-once formula if for every AND gate at
most one child evaluates to 0 and for every OR gate at most one child evaluates
to 1.



306 R. Kulkarni and M. Santha

2.3 Fourier Spectrum of Boolean Functions

Every Boolean function f : {0, 1}n → {0, 1} can be uniquely represented by a
real multilinear polynomial: f(x1, . . . , xn) =

∑
S⊆[n] βS

∏
i∈S xi. Moreover, the

coefficients βS are integers. The polynomial degree of f is deg(f) := max{|S| |
βS �= 0}. The degree over F2 of f is deg⊕(f) := max{|S| | βS �= 0 mod 2}. The
Euler Characteristic of f is χ(f) :=

∑
x∈{0,1}n(−1)|x|f(x), where |x| denotes the

number of 1’s in x. One can obtain the following expression for β[n] (cf. [2]):

β[n] =
∑
T⊆[n]

(−1)n−|T |f(T ) = (−1)nχ(f). (1)

Fourier Spectrum

Let f± : {−1, 1}n→ {−1, 1} be obtained from f as follows: f±(z1, . . . , zn) := 1−
2f(1−z1

2 , . . . , 1−zn
2 ). Let f± : {−1, 1}n→ {−1, 1} be represented by the following

polynomial with real coefficients: f±(z1, . . . , zn) =
∑

S⊆[n] f̂(S)
∏

i∈S zi. The

above polynomial is unique and it is called the Fourier expansion of f. The f̂(S)
are called the Fourier coefficients of f. Note that:

f̂([n]) =
(−1)n−1β[n]

2n−1
=

χ(f)

2n−1
. (2)

The sparsity of a Boolean function f is ||f̂ ||0 := |{S | f̂(S) �= 0}|. The granularity
of a Boolean function is the smallest non-negative integer k such that each of its
Fourier coefficients is an integer multiple of 1/2k.

3 Parity Decision Tree Complexity

In this section we prove Theorem 1. The following lemma which lower bounds
the parity decision tree complexity by the sparsity is our starting point.

Lemma 1 (Shi and Zhang [27], Montanaro and Osborne [20]).

D⊕(f) = Ω(log ||f̂ ||0).

The proof distinguishes two cases, according to the size of the rank of the ma-
troid. In the first case, when the rank is small, the only property of matroidal
Boolean functions we use is monotonicity. In the second case, when the rank is
large,we proceed in two distinct steps as explained in the Introduction. Firstly
we show that if the partition size of the function is small then its sparsity is
high, a fact which is valid for any Boolean function. Secondly, in order to upper
bound the partition size, we use partitionability, a strong topological property
of matroids.
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3.1 The Small Rank Case

A Boolean function f is said to be sensitive on ith bit of input x = (x1, . . . , xn)
if f(x1, . . . , xi−1, 1 − xi, xi+1, . . . , xn) �= f(x). The sensitivity of f on input x,
denoted by s(f, x) is the number of sensitive bits of f on x. The sensitivity of a
Boolean function f, denoted by s(f) is maxx s(f, x).

Proposition 2. IfM is a matroid of rank r on ground set [n] then

log ||f̂M||0 ≥ n− r.

Proof. It is easy to see that s(fM) ≥ n−r ifM is a matroid of rank r on ground

set [n]. In [3]) it is shown that for any Boolean function f we have log ||f̂ ||0 ≥
deg⊕(f). In [20] it is proven that for monotone f we also have deg⊕(f) ≥ s(f).

3.2 The Large Rank Case

Small Euler Characteristic Implies High Sparsity

Theorem 5 (Gopalan et. al., Theorem 12 in [11] ). If the sparsity of a
Boolean function is s then its granularity is at most �log s� − 1.

Proposition 3. If f : {0, 1}n → {0, 1} such that χ(f) �= 0 then

log ||f̂ ||0 = Ω(n− log |χ(f)|).

Proof. If f̂([n]) �= 0 then the granularity of f is Ω(log(1/|f̂([n])|)). From Equa-

tion 2 we know that f̂([n]) = χ(f)/2n−1. Together with Theorem 5 this gives
the desired lower bound on the sparsity.

Euler Characteristic Is Upper Bounded by Partition Size

Definition 4 (Sub-cube Partition). A Boolean sub-cube of the Boolean cube
{0, 1}n is an interval [x, y] := {z | x ≤ z ≤ y}, where x, y ∈ {0, 1}n. The sub-
cube partition size of f, denoted by P (f) is the smallest integer such that f−1(1)
can be partitioned into P (f) disjoint Boolean sub-cubes.

Lemma 2. For any Boolean function f, we have |χ(f)| ≤ P (f).

Proof. First note that no x ∈ f−1(0) contributes to χ(f). Let C be a sub-cube in
the partition of f−1(1) into P (f) parts. We can identify C with a partial Boolean
assignment C that assigns 0 or 1 value to a subset SC ⊆ [n] variables. Note that
this partial Boolean assignment certifies that the value of f is 1 on the entire C,
i.e., on any extension of C. If |SC | < n then:

|{x ∈ C | |x| ≡ 0 (mod 2)}| = |{x ∈ C | |x| ≡ 1 (mod 2)}|.

Therefore, the only C’s that contributes to χ(f) have |SC | = n and hence |C| = 1.
In effect, such a C contributes ±1 to χ(f).
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Upper Bounding the Euler Characteristic of Matroids

Definition 5 (Partitionable Boolean Functions, cf. [16]). A monotone
decreasing Boolean function f is said to be partitionable if for every input A ∈
f−1(1) with maximal number of 1s, we can associate φ(A) ∈ f−1(1) such that
the [φ(A), A] partition f−1(1).

Theorem 6 (Björner [4]). IfM is a matroid then ¬fM is partitionable.

Lemma 3. If matroidM has N maximum independent sets then |χ(fM)| ≤ N.

Proof. From Theorem 6 we know that ¬fM is partitionable. Thus for every
maximum independent set A ofM one can associate an independent set φ(A) ⊆
A such that [φ(A), A] form a partition ofM. Since each [φ(A), A] is a Boolean
sub-cube, we get a sub-cube partition of ¬fM with at most N parts. Now the
lemma follows from Lemma 2 and from the fact that |χ(f)| = |χ(¬f)|.

3.3 Putting Things Together

In order to use Proposition 3 we need to show that the Euler characteristic of
bridgeless matroids is non-zero.

Proposition 4. IfM is a bridgeless matroid then we have χ(fM) �= 0.

Proof. We prove by induction on the cardinality of the ground set of bridgeless
matroids that |χ(M)| �= 0. For every matroidM on ground set E and for every
e ∈ E, by definition M− {e} is the matroid whose ground set is E \ {e} and
whose independent sets are those of M not containing e. An element e ∈ E is
called loop if {e} is a circuit inM.

The inductive step distinguishes two cases. If there is a loop e ∈ E then it is
easy to check that |χ(fM)| = |χ(fM−{e})|. If there is a non-loop element e ∈ E
then we denote by Ce the collection of the circuits of M that contain e. Kook
shows that |χ(fM)| satisfies the following recurrence (Theorem 1 in Kook [17]) :

|χ(fM)| =
∑
C∈Ce

|χ(fM/C)|.

Note that the operations contracting a cycle and deleting a loop both preserve
the bridgelessness and reduce the cardinality of the ground set by at least one.

The only base case, under the assumption of bridgelessness, is a matroid on
ground set {e} where {e} is a circuit. It is easy to see that χ �= 0 in this case.

We can now give the proof of Theorem 1.

Proof. Let r be the rank ofM and N be the number of maximum independent
sets of M. If n − r ≥ 2n

3 then the lower bound follows from Proposition 2. If
n− r < 2n

3 then:

|χ(f)| ≤ N ≤
(
n

r

)
=

(
n

n− r

)
≤ 2H(1/3)n,
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where |χ(f)| ≤ N follows from Lemma 3, and N ≤
(
n
r

)
follows from the fact

that every maximal independent set of a matroid has the same cardinality. The
last inequality uses the assumption: n−r < 2

3n. The H there denotes the binary
entropy function: H(ε) = −ε log ε − (1 − ε) log(1 − ε). Since H(1/3) < 1, the
theorem follows from Proposition 3 and Proposition 4.

Remark A. Since intersection of two intervals is again an interval, the partition
size of the intersection of two matroid can be upper bounded when the rank of
either of the matroid is small. Hence our proof goes through for the indicator
functions of intersection of two matroids.

Remark B. The tribe function
∨√

n
i=1

∧√
n

j=1 xij shows that Theorem 1 does not

hold by replacing log ||f̂ ||0 with s(f). We do not know if it holds with deg⊕(f).

4 Randomized Query Complexity

LetM be a bridgeless matroid on ground set [n] with a complete ear decompo-
sition [n] = ∪ri=1Li. First we do some preprocessing. For 0 ≤ t ≤ logn, let

Et :=
⋃

i:2t≤|Li|<2t+1

Li.

Choose an index t0 such that |Et0 | ≥ n/ logn. Let f ′ be a restriction of fM
obtained by fixing the variables outside Et0 as follows: For each Li � Et0 , fix
some ei ∈ Li and set xei = 0, and for e ∈ Li − {ei} set xe = 1. Furthermore for
each Li ⊆ Et0 , fix arbitrarily all but 2t0 variables in Li and set their values to 1.

We re-label the indices so that L1, . . . , Lk ⊆ Et0 and Lk+1, . . . , Lr � Et0 . This
allows us to index the variables of f ′ by xij for i ∈ [k] and j ∈ [�], where � = 2t0

and xij is the jth among the � unrestricted variables in Li. Thus f
′ is a function

on k × � variables where and k × � ≥ n/(2 logn).

g :=

k∨
i=1

�∧
j=1

xij .

Lemma 4. If f is a monotone increasing Boolean function on k × � variables
that matches with g on all the critical inputs then

R(f) = Ω(k × �).

Jain and Klauck prove the above Lemma for the case k = � (Theorem 4 in

[14]). An adaptation of their proof (Appendix ?? ) gives the general case. From
Proposition 1 we have:

Lemma 5. The function f ′ matches with g on all critical inputs.

Theorem 3 is an immediate consequence of Lemma 4 and Lemma 5.
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5 Quantum Query Complexity

LetM be a bridgeless matroid on ground set [n] with a complete ear decompo-
sition [n] = ∪ki=1Li, and let g be the tribe function associated with it.

Lemma 6 (Barnum and Saks, Theorem 2 in [1]). If f is a Boolean function
on n variables that matches with g on all the critical inputs then: Q(f) = Ω(

√
n).

From Proposition 1 we have:

Lemma 7. The function fM matches with g on all critical inputs.

Theorem 7. IfM is a bridgeless matroid on ground set [n] then:

Q(fM) = Ω(
√
n).

Theorem 4 is an extension of the above theorem to read-once formulae over the
family of matroidal Boolean function. Its proof is deferred to Appendix ?? .

An Upper Bound

The following theorem follows along the lines of Theorem 11 in Childs and

Kothari [9] (Appendix ?? ).

Theorem 8. IfM is a matroid of rank r on ground set [n] then

Q(fM) = O(
√
rn).
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Abstract. We present a new dynamic graph structure specifically suited
for large-scale transportation networks that provides simultaneously three
unique features: compactness, agility and dynamicity. We demonstrate
its practicality and superiority by conducting an experimental study for
shortest route planning in large-scale European and US road networks
with a few dozen millions of nodes and edges. Our approach is the first
one that concerns the dynamic maintenance of a large-scale graph with
ordered elements using a contiguous memory part, and which allows an
arbitrary online reordering of its elements.

1 Introduction

In recent years we observe a tremendous amount of research for efficient route
planning in road and other public transportation networks, witnessing extremely
fast algorithms that answer point-to-point shortest path queries in a few msecs
(in certain cases even less) in road networks with a few dozen millions of nodes
and edges after a certain preprocessing phase; see e.g., [3,6,10,12]. These algo-
rithms, known as speed-up techniques, are clever extensions/variations of the
classical Dijkstra’s algorithm. Speed-up techniques employ not only heuristics
to improve the query search space, but also optimizations in the way they are
implemented. The graph structures used (mostly variations of the adjacency
list representation) are not only compact, in the sense that they store nodes
and edges in adjacent memory addresses, but also support arbitrary offline re-
ordering of nodes and edges to increase reference locality. The latter, known as
internal node reordering, effectively improves node locality by offline arranging
nodes within memory, thus improving cache efficiency and query running times.

These graph structures are very efficient when the graph remains static but
may suffer badly when updates occur, since an update must shift a great amount
of elements in memory in order to keep compactness and locality. Updates either
can occur explicitly (reflecting, for instance, changes in a road network varying
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from traffic jams and planned constructions to unforseen disruptions, etc), or
may constitute an inherent part of an algorithm. The latter is evident in many
state-of-the-art approaches, e.g., [3,6,10,12], which perform a mandatory prepro-
cessing phase that introduces many “shortcuts” to the graph that in turn involve
repetitively deleting and inserting edges, often intermixed with limited-scope ex-
ecutions of Dijkstra’s algorithm. Thus, it is essential that any graph structure
used in such cases can support efficient insertions and deletions of nodes and
edges (dynamic graph structure). Hence, for efficient routing in large-scale net-
works, a graph structure is required supporting the following features.

1. Compactness : ability to efficiently access adjacent nodes or edges, a require-
ment of all speed-up techniques based on Dijkstra’s algorithm.

2. Agility: ability to change and reconfigure its internal layout in order to im-
prove the locality of the elements, according to a given algorithm.

3. Dynamicity: ability to efficiently insert or delete nodes and edges.

An obvious choice is an adjacency list representation, implemented with linked
lists of adjacent nodes, because of its simplicity and dynamic nature. Even
though it is inherently dynamic, in a way that it supports insertions and dele-
tions of nodes and edges in O(1) time, it provides no guarantee on the actual
layout of the graph in memory (handled by the system’s memory manager).
Therefore, it does have dynamicity but it has neither compactness nor agility.

A very interesting variant of the adjacency list, extensively used in several
speed-up techniques (see e.g., [3]), is the forward star graph representation [1,2],
which stores the adjacency list in an array, acting as a dedicated memory space
for the graph. The nodes and edges can be laid out in memory in a way that is
optimal for the respective algorithms, occupying consecutive memory addresses
which can then be scanned with maximum efficiency. This is very fast when
considering a static graph, but when an update is needed, the time for inserting
or deleting elements is prohibitive because large shifts of elements must take
place. Thus, a forward star representation offers compactness and agility, and
therefore ultra fast query times, but does not offer dynamicity. For this reason,
a dynamic version was developed [14] that offers constant time insertions and
deletions of edges, at the expense of slower query times and limited agility. The
main idea is to move a node’s adjacent edges to the end of the edge array in
order to insert new edges adjacent to the node.

Motivated by the efficiency of the (static and dynamic) forward star repre-
sentation, we present a new graph structure for directed graphs, called Packed-
Memory Graph, which supports all the aforementioned features. In particular:

– Scanning of adjacent nodes or edges is optimal (up to a constant factor)
in terms of time and memory transfers, and therefore comparable to the
maximum efficiency of the static forward star representation (compactness).

– Nodes and edges can be reordered online within allocated memory in order
to increase any algorithm’s locality of reference, and therefore efficiency. Any
speed-up technique can give its desired node ordering as input to our graph
structure (agility).
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– Inserting or deleting edges and nodes compares favourably with the perfor-
mance of the adjacency list representation implemented as a linked list and
the dynamic forward star representation, and therefore it is fast enough for
all practical applications (dynamicity).

To assess the practicality of our new graph structure, we conducted a series of
experiments on shortest path routing algorithms on large-scale European and US
road networks, implementing the Bidirectional and the A∗ variants of Dijkstra’s
algorithm, as well as all the ALT-based algorithms in [11]. Our goal was to merely
show the performance gain of using our structure compared to the adjacency list
or the dynamic forward star representation on shortest path routing algorithms,
rather than beating the running times of the best speed-up techniques.

Our experiments showed that our graph structure outperforms the adjacency
list and dynamic forward star graph structures in query time (frequent opera-
tions), while being a little slower in update time (rare operations). Hence, our
graph structure is expected to be more efficient in practical applications with
intermixed operations of queries and updates, a fact verified by our experiments.
Note that our graph structure is neither a speed-up technique, nor a dynamic
algorithm. It can, however, increase the efficiency of any speed-up technique or
dynamic algorithm implemented on top of it. As our experiments show, this can
be beneficial for the mandatory preprocessing phase of such techniques.

To the best of our knowledge, our approach is the first one concerning the
dynamic maintenance of a large-scale graph with ordered elements (i) using a
contiguous part of memory, and (ii) allowing an arbitrary online reordering of
its elements without violating its contiguity.

Our graph structure builds upon the cache-oblivious packed-memory array [4].
The main idea is to keep the graph’s elements intermixed with empty elements
so that insertions can be easily accommodated, while ensuring that deletions do
not leave large chunks of memory empty. This is achieved by monitoring and
reconfiguring the density of elements within certain parts of memory without
destroying their relative order. Exposition details and missing proofs due to
space limitations, in the rest of the paper, can be found in the full version [13].

2 Preliminaries

Let G = (V,E) be a directed graph with node set V (n = |V |), edge set E
(m = |E|), and edge weight function wt : E → R+

0 .

Graph Representations. There are multiple data structures for graph rep-
resentations and their use depends heavily on the characteristics of the input
graph and the performance requirements of each specific application. We as-
sume the reader is familiar with the adjacency list representation. A variant of
the adjacency list is the forward star representation [1,2], in which the node list
is implemented as an array, and all adjacency lists are appended to a single edge
array sorted by their source node. Unique non-overlapping adjacency segments
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of the edge array contain the adjacency list of each node. Each node points to the
segment in the edge array containing its adjacent edges. The additional infor-
mation attached to nodes or edges is stored in the same way as in the adjacency
list. The main drawback of the forward star is that in order to insert an edge
at a certain adjacency segment, all edges after the segment must be shifted to
the right. Clearly, this is an O(m) operation. For this reason, a dynamic version
[14] was developed where each adjacency segment has a size equal to a power
of 2, containing the edges and some empty cells at the end. When inserting an
edge, if there are empty cells in the respective segment, the new edge is inserted
in one of them. Otherwise, the whole segment is moved to the end of the edge
array, and its size is doubled. Deletions are handled in a virtual manner, just
emptying the respective cells rather than deallocating reserved memory.

Packed-Memory Array. A packed-memory array [4] maintains N ordered
elements in an array of size P = cN , where c > 1 is a constant. The cells of
the array either contain an element x or are considered empty. Hence, the array
contains N ordered elements and (c − 1)N empty cells called holes. The goal
of a packed-memory array is to provide a mechanism to keep the holes in the
array uniformly distributed, in order to support efficient insertions, deletions and
scans of (consecutive) elements. This is accomplished by keeping intervals within
the array such that a constant fraction of each interval contains holes. When an
interval of the array becomes too full or too empty, breaching its so-called density
thresholds, its elements are spread out evenly within a larger interval by keeping
their relative order. This process is called a rebalance of the (larger) interval.
Note that during a rebalance an element may be moved to a different cell within
an interval. We shall refer to this as the move of an element to another cell. The
density thresholds and the rebalance ranges are monitored by a complete binary
tree on top of the array. More details can be found in [13].

3 The Packed-Memory Graph (PMG)

Structure. Our graph structure consists of three packed-memory arrays, one
for the nodes and two for the edges of the graph (viewed as either outgoing or
incoming) with pointers associating them. The two edge arrays are copies of each
other, with the edges sorted as outgoing or incoming in each case. Therefore, the
description and analysis in the following will consider only the outgoing edge
array. The structure and analysis is identical for the incoming edge array. A
graphical representation of our new graph structure is shown in Fig. 1.

Let Pn = 2k, where k is such that 2k−1 < n ≤ 2k. The nodes are stored
in a packed-memory array of size Pn with node density dn = n

Pn
. Therefore,

the packed-memory node array has size Pn = cnn where cn = 1/dn. Each node
is stored in a separate cell of the packed-memory node array along with any
information associated with it. The nodes are stored with a specific arbitrary
order u0, u1, ..., un−2, un−1 which is called internal node ordering of the graph.
This ordering may have a great impact on the performance of the algorithms
implemented on top of our new graph structure.
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Fig. 1. Packed-memory Graph representation for the graph on the left

Let Pm = 2l, where l is such that 2l−1 < m ≤ 2l. The edges are also stored
in a packed-memory array of size Pm with edge density dm = m

Pm
. Therefore,

the packed-memory edge array has size Pm = cmm where cm = 1/dm. Each
edge is stored in a separate cell of the packed-memory edge array along with any
information associated with it, such as the edge weight. The edges are laid out in
a specific order, which is defined by their source node. More specifically, we define
a partition C = {Eu0 , Eu1 , ..., Eun−2 , Eun−1} of the edges of the graph according
to their source nodes, where Eui = {e ∈ E|source(e) = ui}, Eui ∩ Euj = ∅,
∀i, j, i �= j, and Eu0 ∪ Eu1 ∪ ... ∪ Eun−2 ∪ Eun−1 = E. The sets Eui , 0 ≤ i < n,
are then stored consecutively in a unique range of cells of the packed-memory
edge array in the same order as the one dictated by the internal node ordering
in the packed-memory node array. This range is denoted by Rui and its length is
O(|Eui |) due to the properties of the packed-memory edge array. Every node ui

stores a pointer to the start and to the end of Rui in the edge array (for clarity,
end pointers are not shown in Fig. 1). The end of Rui is at the same location
as the start of Rui+1 , since the outgoing edge sets have the same ordering as the
nodes. If a node ui has no outgoing edges, both of its pointers point to the start
of Rui+1 . Hence, given a node ui, determining Rui takes O(1) time.

Operations. Our new graph structure supports the following operations, whose
asymptotic bounds are given in Table 1 and their proofs can be found in [13].

Scanning Edges. In order to scan the outgoing edges of a node u, the range,
Ru, including them is determined by the pointers stored in the node. Then this
range is sequentially scanned returning every outgoing edge of u.
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Table 1. Space, time and memory transfer complexities (the latter in the cache-
oblivious model [9]). B: cache block size; Δ: maximum node degree (typically O(1)
in large-scale transportation networks).

Adjacency List Dynamic Forward Star Packed-memory Graph

Space O(m + n) O(m + n) O(m + n)

Time

Scanning S edges O(S) O(S) O(S)

Inserting/Deleting an edge O(1) O(1) O(log2 m)

Inserting a node O(1) O(1) O(Δ log2 n)

Deleting a node u

(with adjacent edges) O(Δ) O(n + Δ) O(Δ log2 m + Δ log2 n)

Internal relocation of a

node u (with adj. edges) not supported not supported O(Δ log2 m + Δ log2 n)

Memory Transfers

Scanning S edges O(S) O(1 + S/B) O(1 + S/B)

Inserting/Deleting an edge O(1) O(1) O(1 + log2 m
B )

Inserting a node O(1) O(1) O(1 + Δ log2 n
B )

Deleting a node u

(with adjacent edges) O(Δ) O(1 + n+Δ
B ) O(1 + Δ log2 m+Δ log2 n

B )

Internal relocation of a

node u (with adj. edges) not supported not supported O(1 + Δ log2 m+Δ log2 n
B )

Inserting Nodes. In order to insert a node ui between two existing nodes uj ,
uj+1, we identify the actual cell that should contain ui and execute an insert
operation in the packed-memory node array. Clearly, this insertion changes the
internal node ordering. The insert operation may result in a rebalance of some
interval of the packed-memory node array, and some nodes being moved into
different cells. For each node that is moved, its edges are updated with the new
position of the node. The outgoing edge pointers of the newly created node ui

(which has not yet any adjacent edges) point to the start of the range Ruj+1 .

Deleting Nodes. In order to delete a node ui between two existing nodes ui−1,
ui+1, we first have to delete all of its outgoing edges, a process that is described
in the next paragraph. Then, we identify the actual node array cell that should
be cleared and execute a delete operation in the packed-memory node array. The
delete operation may also result in a rebalance as before, so, for each node that
is moved, its edges are updated with the new position of the node.

Inserting or Deleting Edges. When a new edge (ui, uj) is inserted (deleted), we
proceed as follows. First, node ui and its outgoing edge range Rui are identi-
fied. Then, the cell to insert to (delete from) within this range is selected and
an insert (delete) operation in this cell of the packed-memory edge array is ex-
ecuted. This insert (delete) operation may cause a rebalance in an interval of
the packed-memory edge array, causing some edges to be moved to different
cells. As a result, the ranges of other nodes are changed too. When a range Ruk

changes, the non-zero ranges Rux and Ruy , x < k < y, adjacent to it change too.
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Note that x may not be equal to k − 1 and y may not be equal to k + 1, since
there may be ranges with zero length adjacent to Ruk

. In order for Rux , Ruy

and the pointers towards them to be updated, the next and previous nodes of
uk with outgoing edges need to be identified. Let the maximum time required
to identify these nodes be denoted by Tup. In [13] we describe how to implement
this operation efficiently and explain that for all practical purposes Tup = O(1).

Internal Node Reordering. Due to its design, our graph structure has the ability
to internally reorder its nodes, which can be an attractive property. It does so,
by removing an element from its original position and reinserting it to arbitrary
new position. We call this operation an internal relocation of an element. In fact,
a relocation is nothing more than a deletion and reinsertion of an element, two
operations that have efficient running times and memory accesses.

Comparison with Other Dynamic Graph Structures. An adjacency list
(ADJ) representation supports optimal insertions/deletions of nodes and the
scanning of the edges is fast enough to be used in practice. However, since there
is no guarantee for the memory allocation scheme, the nodes and edges are most
probably scattered in memory, resulting in many cache misses and less efficiency
during scan operations, especially for large-scale networks. Finally, an adjacency
list representation provides (inherently) no support for any (re-)ordering of the
nodes and edges in arbitrary relative positions in memory.

A dynamic forward star (DynFS) representation succeeds in storing the ad-
jacent edges of each node in consecutive memory locations. Hence, the least
amount of blocks is transferred into the cache memory during a scan operation
of a node’s adjacent edges. Moreover, it can efficiently insert or delete new edges
in constant time. When inserting an edge adjacent to a node u, if there is space
in the adjacency segment of u, it gets directly inserted there. Otherwise, the
adjacency segment is moved to the end of the edge array, and its size is doubled.
Therefore, it is clear that edge insertions can be executed in O(1) amortized
time and memory transfers. The edge deletion scheme consists of just emptying
the respective memory cells, without any sophisticated rearranging operations
taking place. Clearly, this also takes constant time. However, due to the particu-
lar update scheme, a specific adjacency segment ordering cannot be guaranteed.
Moving an adjacency segment to the end of the edge array clearly destroys any
locality of references between edges with different endpoints, resulting in slower
query operation. Since the nodes are stored in an array, inserting a new node
u at the end of the array is performed in constant time, while deleting u must
shift all elements after u and therefore takes O(n) time in addition to the time
needed to delete all edges adjacent to u. Finally, the dynamic forward star as it
is designed cannot support internal relocation of a node u (with adjacent edges).
Simply inserting some new adjacent edges causes u to be moved again to the
end of the array, rendering the previous relocation attempt futile.

A packed-memory graph (PMG) representation, due to its memory manage-
ment scheme, achieves great locality of references at the expense of a small
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update time overhead (but fast enough to be used in practice). No update oper-
ation can implicitly alter the relative order of nodes and edges, therefore relative
elements are always stored in memory as close as possible. Finally, the elements
can be efficiently reordered to favour the memory accesses of any algorithm.

4 Experiments

To assess the practicality of our new graph structure, we conducted a series
of experiments on shortest path routing algorithms on real world large-scale
transportation networks (European and US road networks) in static and dynamic
scenarios. For the former, we use the query performance of the static forward
star (FS) structure as a reference point, since FS stores all edges adjacent to
a node in consecutive memory locations. For the latter, we considered mixed
sequences of point-to-point shortest path queries and updates.

All experiments were conducted on an Intel(R) Core(TM) i5-2500K CPU @
3.30GHz with a cache size of 6144Kb and 8Gb of RAM. Our implementations
were compiled by GCC version 4.4.3 with optimization level 3. The road networks
for our experiments were acquired from [7,8] and consist of the road networks
of Italy, Germany, Western US and Central US. Edge weights represent travel
distances. Experiments with travel times exhibited similar relative performance.

4.1 Algorithms

We implemented the full set of shortest path algorithms considered in [11]. These
algorithms are based on the well known Dijkstra’s algorithm, and its Bidirec-
tional and A∗ variants. Given a source node s and a target node t, the A∗ (or
goal-directed) variant modifies the priority of a node according to a monotone
heuristic function ht : V → R which gives a lower bound estimate ht(u) for the
cost of a path from a node u to t. An example for ht is the Euclidean distance
between two nodes. The A∗ algorithm can also be used in a bidirectional manner,
using a symmetric heuristic function hs.

The key contribution in [11] is a highly effective heuristic function for the A∗

algorithm using the triangle inequality theorem and precomputed distances to
a few important nodes (landmarks), resulting in the so-called ALT algorithm.
During a query, ALT computes the lower bounds in constant time using the
precomputed shortest distances to landmarks with the triangle inequality. The
efficiency of ALT depends on the initial selection of landmarks. In [11], two
approaches are used as the quitting criteria of the bidirectional A∗ algorithm. In
the symmetric approach the search stops when one of the searches is about to
settle a node v for which d(s, v)+ht(v) or d(v, t)+hs(v) is larger than the shortest
path distance found so far. In the consistent approach, the heuristic functions
Hs and Ht are used instead of hs and ht, such that Hs(u) +Ht(u) = c, where
c is a constant. These are defined as either average heuristic functions Ht(u) =

−Hs(u) = ht(v)−hs(v)
2 or max heuristic functions Ht(v) = max{ht(v), hs(t) −

hs(v) + b} and Hs(v) = min{hs(v), ht(s)− ht(v) + b}, where b is a constant.
In summary, our performance evaluation consists of the following algorithms:
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– D: Dijkstra’s algorithm.
– B: Bidirectional variant of Dijkstra’s algorithm.
– AE: A∗ search with Euclidean lower bounds.
– BEM: Bidirectional AE with the max heuristic function.
– BEA: Bidirectional AE with the average heuristic function.
– AL: Regular ALT algorithm.
– BLS: Symmetric bidirectional ALT.
– BLM: Consistent bidirectional ALT with the max heuristic function.
– BLA: Consistent bidirectional ALT with the average heuristic function.

Each of these algorithms was implemented once, supporting interchangeable
graph representations in order to minimize the impact of factors other than the
performance of the underlying graph structures. All structures (ADJ, DynFS,
PMG) were implemented under an abstraction layer, having as target to keep
only the essential core parts different, such as the accessing of a node or an edge.
Thus, the only factor differentiating the experiments is the efficiency of accessing
and reading, as well as inserting or deleting nodes and edges in each structure.
Clearly, the abstraction layer yields a small performance penalty, however, it pro-
vides the opportunity to compare all graph structures in a fair, uniform manner.

4.2 Results

Static Performance. We start by analyzing and comparing the real-time per-
formance of the aforementioned algorithms on a static scenario, i.e., consisting
only of shortest path queries. Following [11], we used two performance indica-
tors: (a) the shortest path computation time (machine-dependent), and (b) the
efficiency defined as the number of nodes on the shortest path divided by the
number of the settled nodes by the algorithm (machine-independent).

In each experiment, we considered 10000 shortest path queries. For each query,
the source s and the destination t were selected uniformly at random among all
nodes. In our experiments with the ALT-based algorithms (AL, BLS, BLM,
BLA) we used at most 16 landmarks, as it is the case in [11]. The query perfor-
mance can be increased by adding more well-chosen landmarks.

Our experimental results on the road network of Central US are shown in
Table 2 (results on the other road networks are reported in [13]). For each algo-
rithm and each graph structure, we report the average running times in ms. We
also report the space consumption for each graph structure. As expected, our
experiments confirm the ones in [11] regarding the relative performance of the
evaluated algorithms, with BLA being the best (see [13] for an explanation).

The major outcome of our experimental study is that there is a clear speed-
up of PMG over ADJ and DynFS in all selected algorithms. This is due to
the fact that, at the expense of a small space overhead, the packed-memory
graph achieves greater locality of references, less cache misses, and hence, better
performance during query operations. In our experiments, PMG is roughly 25%
faster than ADJ and 10% faster than DynFS. In addition, its performance is
very close to the optimal performance of the static forward star (FS), taking into
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Table 2. Running times (ms) in the road network of Central US; Eff ≡ Efficieny

Central US
n = 14,081,816 m = 34,292,496
ADJ DynFS PMG FS Eff. (%) Eff. (%)
(3.054Gb) (3.269Gb) (3.297Gb) (3.054Gb) [11]

D 4,474.65 3,418.06 2,864.33 2,766.28 0.07 0.09

B 3,012.38 2,303.91 2,048.01 1,963.67 0.11 0.14

AE 2,055.29 1,522.24 1,414.35 1,370.49 0.17 0.10

BEM 1,881.84 1,448.47 1,274.99 1,236.90 0.19 –

BEA 1,853.45 1,429.97 1,237.39 1,208.97 0.20 0.14

AL 223.26 173.62 161.93 151.34 3.75 1.87

BLS 257.47 205.35 176.84 172.46 3.67 2.02

BLM 211.50 172.11 161.27 157.41 7.43 3.27

BLA 146.51 116.88 108.401 104.88 10.02 3.87

consideration that PMG is a dynamic structure. It is roughly 3% slower in the
larger graph of Central US (denser PMG). Note that the denser the PMG is, the
smaller size it has, the more it resembles an FS and the more it matches its query
performance. Hence, if we take FS as a reference point for query performance in
static scenarios, then PMG is the dynamic structure closest to it.

The space overhead of PMG is such because we chose its node and edge
densities in a way that the sizes of the node and edge arrays are equal to the
next power of 2 of the space needed. Note that the node and edge densities can
be fine-tuned according to our expectation of future updates and the particular
application. However, this is not our prime concern in this experimental study.

Dynamic Performance. We report results on random and realistic sequences
of operations using the three structures ADJ, DynFS, PMG. Further results with
dynamic operations and internal node relocations are reported in [13].

Random Sequence of Operations. We have compared the performance of the
graph structures on sequences of random, uniformly distributed, mixed oper-
ations as a typical dynamic scenario. These sequences contain either random
shortest path queries (BLA) or random updates (edge insertions and deletions).
All sequences contain the same amount of shortest path queries (1000 queries)
with varying order of magnitude of updates in the range [105, 5× 107]. To have
the same basis of comparison, the same sequence of shortest path queries is used
in all experiments. The update operations are chosen at random between edge
insertions and edge deletions. When inserting an edge, we do not consider this
edge during the shortest path queries, since we do not want insertions to have
any effect on them. In a deletion operation, we select at random a previously
inserted edge to remove. We remove no original edges, since altering the origi-
nal graph structure between shortest path queries would yield non-comparable
results.

The experimental results are reported in Figure 2, where the horizontal axis
(log-scale) represents the ratio of the number of updates and the number of
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Fig. 2. Running times on mixed sequences of operations consisting of 1000 queries and
updates of varying length in [105, 5× 107]

queries, while the vertical axis represents the total time for executing the se-
quence of operations. The experiments verify our previous findings. While the
running times of the queries dominate the running times of the updates, PMG
maintains a speed-up over ADJ and DynFS. In the road network of Germany
(resp. Central US), the number of updates should be at least 5000 (resp. 20000)
times more than the number of (BLA) queries in order for PMG to be inferior
to DynFS, and at least 10000 more to be inferior to ADJ. DynFS manages to
have good running times in Germany, which is smaller in size, and hence more
memory space is available for allocation. However, the running times of DynFS
are hindered by the blow-up in its size when it operates on a larger graph, which
is apparent with the Central US road network.

Realistic Sequence of Operations. In order to compare the graph structures in a
typical practical scenario, we have measured running times for the preprocessing
stage of Contraction Hierarchies(CH) [10]. The CH preprocessing stage itera-
tively removes nodes and their adjacent edges from the graph, and shortcuts
their neighbouring nodes if the removed edges represent shortest paths (this is
examined by performing consecutive shortest path queries). We have recorded
the sequence of operations (shortest path queries, edge insertions, node and edge
deletions) executed by the preprocessing routine of the CH code [5], and given it
as input to our three data structures. This is a well suited realistic example, since
it concerns one of the most successful techniques for route planning requiring
a vast amount of shortest path queries and insertions of edges. Note that CH
treats deletions of nodes and edges virtually, hence they are not included in our
sequence of operations. We used the aggressive variant [5] of the CH code, since
it provides the most efficient hierarchy. The results are shown in Table 3.

On all three graph structures, insertions can be processed so fast that have
a minimum effect on the total running time of this sequence, even though they
dominate (by a factor of 6) the shortest path queries. On the other hand, shortest
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Table 3. Total time for processing 3,615,855 shortest path queries and 21,342,855 edge
insertions, generated during CH preprocessing on Germany

Germany Total Time (sec)
ADJ 32,194.4
DynFS 19,938.2
PMG 17,087.7

path queries are the slowest operations on this sequence, and since our graph
structure has the best performance on them, it can easily outperform the two
other graph structures. Our experiments also show that the use of PMG could
improve the particular stage of the CH preprocessing by at least 14%.

Acknowledgements. We would like to thank Daniel Delling for many fruitful
and motivating discussions, and Kostas Tsichlas for introducing us to the cache-
oblivious data structures.
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Capacitated Rank-Maximal Matchings
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Abstract. We consider capacitated rank-maximal matchings. Rank-
maximal matchings have been considered before and are defined as fol-
lows. We are given a bipartite graph G = (A ∪ P , E), in which A de-
notes applicants, P posts and edges have ranks – an edge (a, p) has
rank i if p belongs to (one of) a’s ith choices. A matching M is called
rank-maximal if the largest possible number of applicants is matched in
M to their first choice posts and subject to this condition the largest
number of appplicants is matched to their second choice posts and so
on. We give a combinatorial algorithm for the capacitated version of
the rank-maximal matching problem, in which each applicant or post
v has capacity b(v). The algorithm runs in O(min(B,C

√
B)m) time,

where C is the maximal rank of an edge in an optimal solution and
B = min(

∑
a∈A b(a),

∑
p∈P b(p)) and n,m denote the number of ver-

tices/edges respectively. (B depends on the graph, however it never ex-
ceeds m.) The previously known algorithm [11] for this problem has a
worse running time of O(Cnm log(n2/m) log n) and is not combinato-
rial –it is based on a weakly polynomial algorithm of Gabow and Tarjan
using scaling. To construct the algorithm we use the generalized Gallai-
Edmonds decomposition theorem, which we prove in a convenient form
for our purposes. As a by-product we obtain a faster (by a factor of
O(

√
n)) algorithm for the Capacitated House Allocation with Ties prob-

lem.

1 Introduction

In this paper we consider capacitated rank-maximal matchings. The Rank-
Maximal Matchings problem is defined as follows. We are given a bipartite graph
G = (A ∪ P , E), in which A denotes applicants, P posts and edges have ranks
– an edge (a, p) has rank i if p belongs to (one of) a’s ith choices. Our task is
to compute a rank-maximal matching of G, where a matching is a set of edges,
no two of each share a vertex and a matching M is called rank-maximal if the
largest possible number of applicants is matched in M to their first choice posts
and subject to this condition the largest number of appplicants is matched to
their second choice posts and so on. In the Capacitated Rank-Maximal Matchings
problem each applicant a can have many - up to b(a) posts and each post p can
be occupied by many - up to b(p) applicants. In other words we are also given
a function b : V = A ∪ P → N and we want to find a b-matching M . M ⊆ E is
a b-matching of G if each vertex v has at most b(v) edges of M incident with
it. Let r denote the highest rank of an edge in graph G. For each b-matching M

P.G. Spirakis and M. Serna (Eds.): CIAC 2013, LNCS 7878, pp. 324–335, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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we define its signature as an r-tuple (x1, x2, . . . , xr) such that xi denotes the
number of edges having rank i in M . We define an r-ordering on r-tuples: We
say that (x1, x2, . . . , xr) >r (y1, y2, . . . , yr) if there exists j (0 ≤ j < r) such that
for each k ≤ j we have xk = yk and xj+1 > yj+1. Using the notion of a signature
we will say that b-matching M is rank-maximal if it has the largest signature
under r-ordering among all b-matchings of G.

Previous Results. Rank-maximal matchings were first considered by Irving
in [6], who devised an algorithm running in O(n2c3) time for the version in
which there are no ties and c denotes the upper bound on the length of ev-
ery preference list. In [7] a combinatorial algorithm is given that runs in time
O(min(n,C

√
n)m), where n and m denote the number of vertices and edges in

the graph and C the maximal rank of an edge in an optimal solution. Notice
that C can be of order m. (In [7] the running time of the algorithm is said to be
O(min(n+C,C

√
n)m), but in fact it is O(min(n,C

√
n)m).) In [12] Michail solves

the rank-maximal matchings problem by using maximum weight matchings and
obtains an O(min(n+C,C

√
n)m) algorithm. An algorithm for the Capacitated

Rank-Maximal matchings problem was given by Mehlhorn and Michail in [11].
It runs in O(Cnm log(n2/m) logn) time and is based on a weakly polynomial
algorithm of Gabow and Tarjan using scaling.

New Results. We give a combinatorial algorithm for computing rank-maximal
b-matchings that runs in O(min(B,C

√
B)m) time, where C is the maximal rank

of an edge in an optimal solution and B = min{
∑

a∈A b(a),
∑

p∈P b(p)} and m
denotes the number of edges in the graph. This algorithm is similar in spirit to
that in [7]. However, the extension is not straightforward. In particular we have to
generalize the properties of the Gallai-Edmonds decomposition to b-matchings.
For computing maximum cardinality b-matchings we use the fast algorithm of
Gabow ([5]). Let us notice that for the one-to-many version of the problem
(i.e. each applicant has capacity one and each post has an arbitrary capacity)
we obtain the same running time as for the one-to-one version. (Observe that
in the one-to-many version B = O(n).) One-to-many version of the problem
has applications in allocating students to schools for example. As a by-product
we obtain a faster by a factor of O(

√
n) algorithm for the Capacitated House

Allocation with Ties problem presented by Manlove and Sng in [10] and we
sketch an algorithm for the capacitated version of the Bounded Unpopularity
Matchings problem considered in [4]. (We are able to do so because popular
matchings and bounded unpopularity matchings can be thought of as variations
of rank-maximal matchings.)

Related Work. Matchings with ranked edges have been long known in the
economics literature, see [14] for example. Various other types of matchings
with one-sided preferences have also been studied, for example popular, bounded
unpopularity, Pareto-optimal (see [1],[2],[3], [4], [9], [10], [13] for some of them).
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2 Preliminaries and the Gallai-Edmonds Decomposition
Theorem

In this section we recall the Gallai-Edmonds Decomposition theorem for b-
matchings which is presented in Chapter 10 of [8]. We prove it in a somewhat
different version.

Let G = (V,E) be a simple, undirected, loopless graph (not necessarily bipar-
tite), b – a function V → N , B – an edge subset of E and M – a b-matching of
G.

An edge belonging to B will be referred to as a B-edge and an edge not
belonging to B as a non-B-edge. We call a vertex v unsaturated with respect
to a b-matching M if v has less than b(v) M -edges incident with it and we call
v saturated (wrt M) if v has b(v) M -edges incident with it. An alternating
(with respect to B) path P is any sequence of vertices (v1, v2, . . . , vk) such
that edges on P are alternately B-edges and non-B-edges and no edge occurs on
P more than once and v1 �= vk. An alternating (with respect to B) cycle
C has the same definition as an alternating wrt B path except that v1 = vk and
additionally (vk−1, vk) ∈ B iff (v1, v2) /∈ B. Let us note that both an alternating
cycle and path can go through a given vertex more than once. We will sometimes
treat an alternating path or cycle as an edge set and sometimes as a sequence of
edges. An alternating (wrt a b-matching M) path is called augmenting (wrt
M) if it begins and ends with a non-M -edge and if it begins and ends with an
unsaturated (in M) vertex.

For any given two vertex sets C,D ⊆ V , an edge connecting a vertex in C
with a vertex in D will be called a CD edge and a vertex in C will be called a C
vertex. For any edge set E′, degE′(v) denotes the number of E′-edges incident
with v. For two edge sets B1, B2 ⊆ E, the symmetric difference B1⊕B2 denotes
(B1 \B2) ∪ (B2 \B1).

The Gallai-Edmonds decomposition theorem for b-matchings is easier to for-
mulate if we use the notion of b-edgesets and optimal b-edgesets defined as fol-
lows.

Definition 1. Any B ⊆ E is called a b-edgeset. Let δ(B) =
∑

v∈V |degB(v)−
b(v)|. We will say that B is an optimal b-edgeset if there exists no B′ ⊆ E
such that δ(B′) < δ(B).

If B is an optimal b-edgeset, then it may happen that degB(v) > b(v). Hence
not every optimal b-edgeset is a b-matching. However it is easy to see that every
maximum b-matching is an optimal b-edgeset.

For any b-edgeset B we will say that a vertex v is deficient (in B) if
degB(v) < b(v) and overloaded (in B) if degB(v) > b(v). We partition vertices
V of G into four sets E,O, I, U as follows. Vertex v is in E iff there exists an
optimal b-edgeset such that v is deficient in it and in no optimal b-edgeset is v
overloaded. Vertex v is in O iff there exists an optimal b-edgeset such that v is
overloaded in it and in no optimal b-edgeset is v deficient. Vertex v is in I iff
there exists an optimal b-edgeset in which v is deficient and an optimal b-edgeset
in which v is overloaded. Vertex v is in U if it is not an E, O or I vertex.
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First we show that the above partition of the set of vertices can be computed
efficiently. For a given b-matching M and vertex v we will say that path P is
good for v (with respect to M) if (i) P is alternating wrt M , (ii) P begins
at an unsaturated in M vertex and ends on v and (iii) the beginning edge of
P incident with the unsaturated vertex (if P contains at least one edge) is a
non-M -edge.

Theorem 1. Let M denote any maximum cardinality b-matching. Then

– vertex v is an I vertex iff there exists an even-length good path for v and
there exists an odd-length good path for v,

– vertex v is an E vertex iff v is not an I vertex and there exists an even-length
good path for v,

– vertex v is an O vertex iff v is not an I vertex and there exists an odd-length
good path for v,

– vertex v is a U vertex iff there does not exist a good path for v,

where all considered good paths are wrt M .
If graph G is bipartite then it does not contain an I vertex.

Proof. It suffices to show that there exists an even-length (corr. odd-length)
good path for v wrt M iff v is deficient (resp. overloaded) in some optimal
b-edgeset.

First suppose that there exists an even-length (corr. odd-length) good path
P for v wrt M . Assume further that P starts at x and ends at v. Let B denote
M ⊕ P . For every vertex w /∈ {x, v} we have degB(w) = degM (w). For vertices
x, v we have degB(x) = degM (x) + 1 and degB(v) = degM (v)− 1 (In the case of
an odd-length P we have correspondingly degB(x) = degM (x)+1 and degB(v) =
degM (v)+1.) Therefore δ(B) = δ(M) and thus B is an optimal b-edgeset. In the
case of an odd-length P , we can notice that it cannot happen that v is deficient
in M , because then P would be augmenting wrt M , contradicting the fact that
M is a maximum size b-matching. Thus v is saturated in M . Additionally B is
such that v is deficient (corr. overloaded) in it.

Conversely suppose now that v is deficient (resp. overloaded) in some optimal
b-edgeset B. M ⊕B can be partitioned into a set S of edge-disjoint alternating
paths and cycles (see [8] for example). Let us partition M ⊕B in a maximal way
i.e. so that S does not contain two alternating paths P1, P2 such that P1∪P2 is an
alternating path or cycle. Suppose that S = {P1, P2, . . . , Pk1 , C1, C2, . . . , Ck2},
where each Pi denotes an alt. path and each Ci an alt. cycle. Let M1 = M ⊕P1

and for each i, 2 ≤ i ≤ k1 let Mi = Mi−1⊕Pi. Then we can notice that for each
vertex w we have either degM (w) < degM1(w) ≤ degM2(w) ≤ . . . ≤ degMk1

(w) =
degB(w) or degM (w) ≥ degM1(w) ≥ degM2(w) ≥ . . . ≥ degMk1

(w) = degB(w).
It is because M ⊕ B has been partitioned in a maximal way and thus for each
vertex w we have that all ending or beginning edges of paths P1, . . . , Pk1 incident
with w are solely B-edges (and thus non-M -edges) or solely non-B-edges (and
thus M -edges).

Case 1: v is deficient in B. If v is deficient in M , we are done (as there exists
a zero-length good path for v.) Hence let us assume that v is not deficient in
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M . Since v is not deficient in M , in S there exists a path P beginning at some
vertex w and ending on v with an M -edge.

Claim. P is good for v.

Proof. Since v is saturated in M and P ends with an M -edge at v we have
b(v) = degM (v) > degM⊕P ≥ degB(v). Therefore degB(v) < degB⊕P (v) ≤ b(v).
Suppose that P is not good for v.

If P begins with an M -edge, then we have b(w) ≥ degM (w) > degM⊕P (w) ≥
degB(w). Thus degB(w) < degB⊕P (w) ≤ b(w). This however would mean that
δ(B) = δ(B⊕P )+2 and thus that B is not an optimal b-edgeset. A contradiction.

If w is not deficient in M and P begins with a non-M -edge, then we have
b(w) = degM (w) < degM⊕P (w) ≤ degB(w). (If w is not deficient in M , then it is
saturated in M .) Therefore degB(w) > degB⊕P (w) ≥ b(w) and again we obtain
that δ(B) = δ(B ⊕ P ) + 2 and thus that B is not an optimal b-edgeset. �

Since P is good for v and ends with an M -edge, P is even-length.

Case 2: v is overloaded in B. v is not overloaded in M (M does not contain over-
loaded vertices). Since v is not overloaded in M , in S there exists an alternating
path P beginning at some vertex w and ending on v with a non-M -edge.

Claim. P is good for v.

Proof. Since v is overloaded inB, we have degB(v) > degB⊕P (v) ≥ b(v). Further
on the proof proceeds as in Claim 2. �

Since P is good for v and ends with a non-M -edge, P is odd-length.
Finally, let us suppose that graph G is bipartite and there exists a vertex v

in G that is an I vertex. Therefore there exist good paths P1, P2 for v wrt M
such that one is odd-length, say P1, and the other – P2, is even-length. Suppose
that P1 begins at an unsaturated vertex w1 and P2 at an unsaturated vertex w2.
We can observe that neither v = w1 nor v = w2, because it would mean that
P1 is an augmenting path, which would contradict M being maximum. Let v′

be the first common vertex of P1 and P2 when we start going along P1 and P2

from w1 and w2 respectively. Let P ′
i (i = 1, 2) denote the subpath of Pi from

wi till the first occurence of v′ on Pi. We can notice that it cannot happen that
|P ′

1| + |P ′
2| is odd because then P ′

1 ∪ P ′
2 would be an augmenting path. Hence

|P ′
1|+ |P ′

2| is even and thus |P1 \ P ′
1|+ |P2 \ P ′

2| is odd. Let P denote the multi
edge set (P1 \ P ′

1) ∪ (P2 \ P ′
2) i.e. P contains two copies of edge e if it occurs in

both paths. Then for every vertex u, we have that degP (u) is even. Let now P ′

denote P \ ((P1 \P ′
1)∩ (P2 \P ′

2)). We obtain that |P ′| is odd and for every vertex
u, degP ′(u) is even. Therefore P ′ can be partitioned into edge-disjoint (simple)
cycles, one of which at least will have to be of odd-length, a contradiction. �

Next we give some properties of vertices and edges that can be derived from the
Gallai-Edmonds decomposition theorem.

Lemma 1. Let M be a maximum b-matching and E,O, I, U vertex sets defined
as above. Then
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– every O vertex and every U vertex is saturated in M ,
– every EE edge and every EU edge is an M -edge,
– no OO edge nor OU edge is an M -edge,
– the cardinality of M equals

∑
v∈O b(v) + |EE edges|+ |EU edges|+

|(UU edges) ∩M |+ |(II edges) ∩M |+ |(EI edges) ∩M |.

Proof. Every O and U vertex is saturated in M by definition.
Consider an E vertex v. By definition and Theorem 1, we have that there

exists a good even-length path P from an unsaturated vertex, say u, to v and
there does not exist a good odd-length path from an unsaturated vertex to v.
Hence P ends on v with an M -edge and all occurences of v on P are at an
even-length distance from u. Therefore we can assume that v occurs on P only
once - at the end; if it occurs more than once, we take a subpath of P from u till
the first occurence of v. Suppose next we have a non-M -edge e = (v, w). Then
P ∪ e is an odd-length good path for w. Therefore w is either an O vertex or
an I vertex. This way we obtain that every EE edge and every EU edge is an
M -edge.

Consider an O vertex v. By definition and Theorem 1, there exists a good
odd-length path P from an unsaturated vertex to v and there does not exist a
good even-length path for v. Hence P ends on v with a non-M -edge and as before
we can assume that v occurs on P only once – at the end. Suppose we have an
M -edge e = (v, w). Then P ∪ e is an even-length good path for w. Therefore w
is either an E vertex or an I vertex, which means that no OO edge nor OU edge
is an M -edge.

Edge sets: (1) edges incident with a vertex in O, (2) EE edges, (3) EU edges,
(4) UU edges, (5) II edges, (6) EI are pairwise disjoint, therefore the cardi-
nality of M equals

∑
v∈O b(v) + |EE edges|+ |EU edges|+ |(UU edges)∩M |+

|(II edges) ∩M |+ |(EI edges) ∩M |. �

3 Algorithm for Rank-Maximal b-Matchings

In this section we present a combinatorial algorithm for the Capacitated Rank-
Maximal Matchings problem.

Let Gi denote graph (V, E1 ∪ E2 ∪ . . .Ei), where Ej denotes edges of rank j.
Algorithm RMBM given below runs in phases. In phase i only edges of rank

at most i are present and the aim of phase i is to compute a rank-maximal
b-matching of Gi. In phase 1 this task is fairly easy. A rank-maximal b-matching
M1 of G1 is just a maximum b-matching of G1 and we have several algorithms
at hand for computing it. We choose the one by Gabow [5]. In phase 2 when we
want to compute a rank-maximal b-matching M2 of G2, we would like to start
from M1 and augment it somehow so that we obtain M2. We cannot however
simply add edges of rank 2 and augment M1 as in the process the number of rank
1 edges might decrease i.e. we might end up with M2 having a smaller number of
rank 1 edges than M1. Here Theorem 1 and Lemma 1 come in handy as thanks
to them we will know which vertices must be saturated in each rank-maximal



330 K. Paluch

b-matching of G1, which edges must be present in each rank-maximal b-matching
of G1 and which edges cannot occur in M1. If some vertex v is saturated in each
rank-maximal matching of G1, then there is no point in adding edges of rank
higher than 1 incident with v. If throughout the algorithm vertex v will have
only rank 1 edges incident with it, then the number of rank 1 edges incident
with v will stay the same, because augmenting a given b-matching N along
augmenting paths never decreases the number of N -edges incident with any
vertex. By appropriate deletions of certain edges and moving the other ones to
the sets Si (set Si will contain edges that are present in every rank-maximal
b-matching of Gi), we are able to reduce the task of computing a rank-maximal
b-matching of Gi to computing a maximum bi-matching of G′

i, where bi and G′
i

are correspondingly an appropriately modified function b and graph Gi.

Algorithm RMBM (short for rank-maximal b-matching)

Input: Graph G = (A ∪ P , E), a partition of E = E1 ∪ E2 ∪ . . . ∪ Er, a
function b : A ∪ P → N
Output: a rank-maximal b-matching of G.

Let G′
1 = G1,M0 = ∅, b1 = b, S0 = ∅.

For i = 1 to r do the following steps

if Ei �= ∅, then

1. Determine a max. bi-matching Mi in G′
i by augmenting Mi−1 \Si−1.

2. Partition the vertices of A ∪ P into three disjoint sets: Ei, Oi, and
Ui. Vertex v belongs to Ei(Oi) iff there exists a good even-length
(odd-length) path for v in G′

i wrt Mi. Vertex v belongs to Ui iff there
does not exist a good path for v in G′

i wrt Mi.
3. Delete all edges incident with a vertex in Oi ∪ Ui from Ej , ∀j > i.

Oi ∪ Ui are the vertices that are saturated in every maximum bi-
matching of G′

i. Delete all edges in G′
i connecting two vertices in

Oi or a vertex in Oi with a vertex in Ui. These are the edges that
are not used by any maximum bi-matching of G′

i. Let Ti = {(v, w) :
(v, w) is an EiEi or EiUi edge of G′

i}. Ti contains the edges used by
every maximum bi-matching of G′

i. Let Si = Si−1 ∪ Ti. Remove Ti

from G′
i. For every v ∈ A∪P let bi+1(v) denote bi(v)−degTi(v). Add

the edges in Ei+1 to G′
i. Call the resulting graph G′

i+1.

otherwise
Let bi+1 = bi, Mi = Mi−1, Si = Si−1. Add the edges in Ei+1 to
G′

i. Call the resulting graph G′
i+1.

Output Mr ∪ Sr−1.
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We will show that the following invariants hold:

– every rank-maximal b-matching in Gi has all its edges in G′
i ∪ Si−1

– Mi ∪ Si−1 is a rank-maximal b-matching in Gi.

3.1 Correctness

We start with the following technical fact:

Fact 1. For each i, 1 ≤ i ≤ r, degSi−1(v) =
∑i−1

j=1 degTj (v) = b(v)− bi(v).

Next we give the following lemma, which proves that the edges that are deleted
during phase i + 1 do not belong to any rank-maximal b-matching of Gi+1 and
that the edges from Si all belong to any rank-maximal b-matching of Gi+1 pro-
vided that we keep the invariants until the end of phase i.

Lemma 2. Suppose that every rank-maximal b-matching of Gi is of the form
Mi ∪ Si−1, where Mi is a maximum bi-matching of G′

i and Si−1 is as described
in Algorithm RMBM. Then every rank-maximal b-matching of Gi+1 is contained
in G′

i+1 ∪Si and the whole Si is contained in every rank-maximal b-matching of
Gi+1.

Proof. We need to show that the edges that we removed in the (i+ 1)th phase
of the algorithm do not belong to any rank-maximal b-matching of Gi+1 and all
the edges of Si belong to every rank-maximal b-matching of Gi+1.

Let Ni+1 be any rank-maximal b-matching of Gi+1. Then its signature is
(s1, s2, ..., si, si+1). Ni = Ni+1∩E≤i is a b-matching with signature (s1, s2, ..., si)
and is therefore, a rank-maximal b-matching of Gi. So, by the assumption, Ni is
of the form Mi ∪ Si−1, where Mi is a bi-maximum matching in G′

i. By Lemma
1, Mi does not use any edge of Gi connecting two vertices in Oi or a vertex
in Oi with a vertex in Ui. Therefore Ni+1 does not use them either. Also all
EiEi and EiUi edges belong to Mi and hence they also belong to Ni+1. Oi and
Ui-vertices are saturated in a bi-matching Mi and thus they are also saturated
in a b-matching Ni because by Fact 1 degSi−1(v) = b(v) − bi(v). Therefore in
Ni+1 all Oi and Ui-vertices have only edges of E≤i incident with them and edges
of E>i incident with a vertex in Oi ∪ Ui can be safely deleted from G′

i.
So, Ni+1 is contained in G′

i+1 ∪ Si and all the edges of Si = Si−1 ∪ Ti belong
to Ni+1. �

By deleting appropriate edges and moving others to sets Si we can ensure that
the number of edges of each smaller rank is preserved throughout the algorithm:

Lemma 3. For every i, j such that j > i, the number of edges of rank at most
i is the same in Mi ∪ Si−1 and Mj ∪ Sj−1.

Proof. Since Mj is obtained from Mi by successive augmentations, for every
vertex v we have that the number of (Mi ∪ Si−1) edges incident with v is not
less than the number of (Mj ∪ Sj−1) edges incident with v. Hence, all vertices
in Ui and Oi are saturated in b-matching Mj ∪ Sj−1.

Since G′
j has
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– no edges of rank greater than i incident with vertices in Oi and Ui,
– no EiEi or EiUi edges of rank at most i, as they are contained in Si and

thus in Sj−1,
– no OiUi or OiOi edges of rank at most i,

Mj ∪Sj−1 has at least as many edges of rank at most i as Mi ∪Si−1. Mj ∪Sj−1

cannot have more edges of rank at most i than Mi ∪ Si−1 because all the edges
of rank ≤ i in G′

j ∪ Sj−1 belong to G′
i ∪ Si−1, Si−1 ⊆ Sj , Mi is a maximum

bi-matching of G′
i and for each v ∈ V, bi(v) = b(v)− degSi−1(v). �

Now we prove the correctness of Algorithm RMBM.

Theorem 2. For every i, the following statements hold:
(i) Every rank-maximal b-matching in Gi is of the form Mi ∪ Si−1, where Mi is
a maximum bi-matching in G′

i;
(ii) Mi ∪ Si−1 is a rank-maximal b-matching in Gi.

Proof. We prove this by induction on i. Since all edges in G1 have the same rank,
a rank-maximal b-matching in G1 is the same as a maximum b-matching. Since
M1 is a maximum b-matching in G1 and S0 = ∅ and b1 = b, both statements
hold for i = 1.

Let us now assume that the statements are true for i. We will prove they
are also true for i+ 1. Since Mi ∪ Si−1 is a rank-maximal b-matching in Gi, its
signature is (s1, . . . , si). Suppose the signature of Mi+1 ∪ Si is (r1, . . . , ri, ri+1).

By Lemma 3, we know that for every k between 1 and i,
∑k

j=1 si =
∑k

j=1 ri.
It follows that the signature of Mi+1 ∪ Si is (s1, . . . , si, ri+1) for some ri+1 ≤

si+1.
By the induction hypothesis, every rank-maximal b-matching of Gi is of the

form M ′
i ∪ Si−1, where M ′

i is a maximum bi-matching of G′
i. Hence, by Lemma

2, any rank-maximal b-matching of Gi+1 is contained in G′
i+1 ∪ Si. Thus there

is a matching of cardinality s1 + . . . + si + si+1 in G′
i+1 ∪ Si. Since Mi+1 is a

maximum bi+1-matching in G′
i+1 and degSi(v) = b(v) − bi+1, the cardinality is

at least s1 + . . . si + si+1. Thus ri+1 = si+1.
We get thatMi+1∪Si is a rank-maximal matching in Gi+1. We must also show

that every rank-maximal matching of Gi+1 is of the form M ′
i+1∪Si, where M

′
i+1

is a maximum bi+1-matching in G′
i+1. Let Ni+1 be any rank-maximal matching

of Gi+1. By the induction hypothesis and Lemma 2, we know that Ni+1 is con-
tained in G′

i+1∪Si and the whole Si is contained in Ni+1. Let t = |Si|. Ni+1 \Si

is a bi+1-matching of G′
i+1 and has cardinality s1 + s2 + . . .+ si+1 − t, which is

equal to the cardinality of M ′
i+1, which is a maximum bi+1-matching of G′

i+1.
Hence, Ni+1 \ Si is also a maximum bi+1-matching of G′

i+1. This completes the
proof of the theorem. �

3.2 The Running Time of the Algorithm

Theorem 3. Algorithm RMBM runs in O(min(B,C
√
B)m) time, where C is

the maximal rank of an edge in an optimal solution and
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B = min(
∑

a∈A b(a),
∑

p∈P b(p)) and m denotes the number of edges in the
graph.

Proof. During phase i + 1 of Algorithm RMBM we first augment the bi+1-
matching Mi \ Si to the maximum bi+1-matching Mi+1. Using the algorithm of
Gabow [5], this takes time O(min(

√
B, |Mi+1|− |Mi|+1) ·m). Next we compute

the partition of the vertex set and then delete and move edges. This takes time
O(m). The total number of phases is r. We will show that the number of phases
in which we augment the bi+1-matching is at most C.

Let us notice that when we add edges in Ei+1 to G′
i and Ei is a non-empty

set, then we add only EiEi edges which means that in phase i + 1 there will
be at least one augmentation. It is so because of the following. Let (a, p) be an
EiEi edge. Then in G′

i in phase i before some edges are deleted or moved to
set Si, there exist good even-length paths P1 and P2 for a and p. Let us notice
that no edge of either P1 or P2 is deleted from G′

i in phase i, because P1 and P2

consist only of EiOi edges. Hence P1 and P2 are still present in G′
i+1. Because

G′
i+1 is bipartite, P1 and P2 are vertex-disjoint. Therefore P1 ∪ (a, p) ∪ P2 is an

augmenting path wrt (Mi \ Si).
If Ei+1 is empty, then phase i + 1 takes constant time. Thus every phase in

which Ei+1 is nonempty, adds at least one augmentation and we finish when
there are no more edges to add. Hence the last phase is phase C. �

4 Extensions

The Capacitated House Allocation problem with Ties (CHAT) is defined in [10]
as follows. We are given a bipartite graph G = (A ∪H,E), where
A = {a1, a2, . . . , an1} is the set of agents, H = {h1, h2, . . . , hn2} is the set of
houses and the edges have ranks. An edge (a, h) has rank i if h belongs to (one
of) a’s ith choices. Also each house has a capacity b(h) which indicates the
number of agents that can be matched to it. Each agent a has capacity b(a) = 1.
Given two b-matchings M,M ′, we say that an agent a prefers M to M ′ if either
(i) a is unmatched in M ′ and matched in M or (ii) a is matched in M and
M ′ and prefers the house he is matched with in M to the house he is matched
with in M ′. We say that a b-matching M is popular if there does not exist a
b-matching M ′ such that the number of agents who prefer M ′ to M is greater
than the number of agents who prefer M to M ′. The goal of the problem is to
establish whether a given instance admits a popular b-matching and find one if
it exists.

In the algorithm presented in [10] an EOU labeling needs to be computed.
To that end the authors build a graph C(G1) (where G1 = (A ∪H,E1)), which
contains b(h) clones of each house. As a result graph C(G1) has O(n1m) edges
and computing EOU labeling takes O(n1m) time (m denotes |E|). Instead one
can use the results from Theorem 1 and Lemma 1 and compute the labeling in
O(m) time. The modified algorithm runs in O(

√
Bm) time while the original

one from [10] runs in O((
√
B + n1)m) time, where B = min(n1,

∑
h∈H b(h)).
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The Bounded Unpopularity Matchings problem is considered in [4].
We can give an algorithm for the capacitated version of this problem as well

as for the Capacitated House Allocation problem with Ties by slightly changing
Algorithm RMBM.

Assume that we are given a graph G = (A ∪ P , E), a partition of E =
E1 ∪ E2 ∪ . . . ∪ Er and a function b : A ∪ P → N such that b(a) = 1 for each
a ∈ A. Then as in [4] and [10] we add a dummy new vertex pa to P for each
agent a and an edge (a, pa) to Er+1 and also put b(pa) = 1 (i.e. pa is a last resort
post or house for a and edge (a, pa) has rank r + 1). We will call the modified
algorithm Algorithm BUBM (short for bounded unpopularity b-matchings). Al-
gorithm BUBM is defined as Algorithm RMBM in which each Ei is replaced by
Ẽi everywhere except for the input.

We define Ẽi as follows. Ẽ1 = E1. For i > 1 edge (a, p) ∈ Ẽi iff
– (a, p) ∈ G
– (a, p) is not deleted in phase j of Algorithm BUBM, where j < i,
– (a, p) does not belong to Ẽj for any j < i,
– there does not exist edge (a, p′) having higher rank than (a, p) and satisfying

the above conditions.

Proposition 1. If graph G admits a popular b-matching then Algorithm BUBM
outputs it after at most two phases. Otherwise Algorithm BUBM computes a
bounded unpopularity b-matching having analogous properties as the one in [4].
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Abstract. Cartesian tree is a fundamental data structure with many
applications in the areas of data structures and string processing. In
this paper, we study the construction of a Cartesian tree on a parallel
computation model. We present a CREW PRAM algorithm that runs
in O(log n) parallel time and has linear work and space. This improves
upon the best previous result of Blelloch and Shun which takes O(log2 n)
time and linear work/space.

1 Introduction

The Cartesian tree of an array was defined by Vuillemin [9] as follows: Given an
array A[1 . . . n], the Cartesian tree of the array is a binary tree C = (V,E) where
each node v ∈ V has two attributes Pos(v) and Val(v), and there is a one-to-one
correspondence between a node v and an entry of A. Each node v corresponds
to the Pos(v)-th entry in the array and Val(v) = A[Pos(v)]. A Cartesian tree C
has the dual properties of being a binary search tree w.r.t. the Pos attributes
and a min-heap w.r.t. the Val attributes. That is,

– for any node v, Pos(v) is bigger than the Pos attributes of any descendant in
the left subtree of v and smaller than the Pos attributes of any descendant
in the right subtree of v.

– for any node v, Val(v) is smaller than or equal to the Val attribute of any
its descendant.

Cartesian trees have been studied intensively because of their importance in
many data structural problems, where its most notable application is in the
Range Minimum Query (RMQ) problem on an array. The Cartesian tree com-
pletely captures the information necessary to determine the solution for any
range minimum query on an input array. It was shown that any range mini-
mum query can be reduced to a Nearest Common Ancestor (NCA) query on the
corresponding Cartesian tree of the array in constant time [4]. See the recent
work of Yuan and Atallah [10] for more detailed discussion about RMQ. See also
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the work of Demaine et al. [3], which presented a cache-oblivious algorithm to
construct Cartesian trees. Demaine et al. [3] also showed that Cartesian trees
can be defined on trees rather than arrays, to solve the bottleneck edge query
problem on trees and undirected graphs.

Cartesian trees are also useful in the computation of suffix tree, a fundamental
data structure in string processing, see [5]. Given a suffix array and the longest
common prefix (LCP) information for pairs of suffixes that correspond to ad-
jacent entries in the suffix array, one can apply an algorithm for computing a
Cartesian tree to generate the suffix tree. See [6,2].

Gabow et al. [4] showed that the Cartesian tree of an array can be constructed
in linear time by a simple stack-based sequential algorithm. Regarding parallel
algorithms, Berkman et al. [1] presented a parallel algorithm that can generate
a Cartesian tree for arrays with values from a fixed size domain. Iliopoulos and
Rytter [6] gave an algorithm for general arrays but it requires O(n log n) work.
Recently, Blelloch and Shun [2] designed two CREW PRAM algorithms that use
O(n) work and space. One algorithm has running time O(min{h logn, n}) where
h is the height of the Cartesian tree. The other algorithm has O(log2 n) time.

In this paper, we give a CREW PRAM algorithm that has an improved run-
ning time ofO(log n) while keeping the work and space linear. In the next section,
we introduce our notations and some preliminaries. After reviewing the O(log2 n)
time, O(n) work and space algorithm of Blelloch and Shun [2] in section 3, we
present our algorithm that has O(log n) time but non-optimal work and space in
section 4. Then we improve it to have O(n) work and space in section 5. Finally,
we conclude the paper with a few open problems.

2 Preliminaries

Our input is an array A[1 . . . n]. Without loss of generality, we assume that all
the values in the input array A are distinct. The Cartesian tree C = (V,E) for
array A[1 . . . n] has node set V = {v1, v2, . . . , vn} and each vi corresponds to
the array entry A[i]. That is, Pos(vi) = i and Val(vi) = A[i]. For convenience
of presentation, we denote by Parent(u) the parent of node u in C. In actual
implementation, we can represent the Cartesian tree structure by a pointer array
Parent[1 . . . n] so that Parent[i] = j if Parent(vi) = vj and Parent[i] = 0 if vi
is the root of the Cartesian tree. Such pointer array completely specifies the
structure of the Cartesian tree.

Given a Cartesian tree C, we define its left-spine (resp. right-spine) as the
sequence of nodes on the path from the root to the leftmost (resp. rightmost)
node of C. Note that the nodes on a spine are sorted according to the Val
attributes.

A Cartesian tree can be constructed by the following divide-and-conquer ap-
proach, which is used in, for example, [2] and [6]: Split the input array into two
halves, recursively construct a Cartesian tree for each half, and finally merge
them into one Cartesian tree. As the two recursive calls are independent, this
framework can be readily parallelized. Clearly, how to perform the Cartesian tree
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merging efficiently is the key to designing an efficient algorithm for the original
(Cartesian tree construction) problem.

In the rest of this paper, we will discuss several recursive algorithms following
the above approach and refer to their recursion trees. We use symbols like x, y
and z to refer to nodes of a recursion tree while reserving symbols like u, ui, v
and w for nodes of a Cartesian tree. Each node x in a recursion tree corresponds
to a subarray of A in an obvious way. We denote by Cx the Cartesian tree of the
subarray that corresponds to node x. Furthermore, we denote by Lx and Rx the
left- and right-spine of Cx respectively. The symbol |Lx| represents the number
of nodes in Lx, etc.

In the sequel, we refer to the O(log2 n) time, O(n) work and space CREW
PRAM algorithm of Blelloch and Shun [2] as the Blelloch-Shun algorithm.

3 The Blelloch-Shun Algorithm

In this section, we review the merging of Cartesian trees in the Blelloch-Shun al-
gorithm. Consider an arbitrary node x in the recursion tree and let y and z be
its left and right child. Suppose the Cartesian trees Cy and Cz have been con-
structed and the next task is to merge Cy and Cz to form Cx. Blelloch and Shun
[2] showed that this can be done by “merging” the right-spine, Ry, of Cy with the
left-spine, Lz,of Cz. Recall that Ry and Lz are two lists of nodes sorted according
to their Val attributes, i.e., for any node u in Ry, Val(u) > Val(Parent(u)) and
similarly for nodes in Lz. We merge them into one sorted list by updating their
parent pointers appropriately.

Blelloch and Shun [2] showed that such merging, which only updates the
Parent pointers of nodes in Ry and Lz, suffices to combine the two Cartesian
trees into one. First, the min-heap property is maintained since we will only
set the parent pointer of a node u to some node v with a smaller value, i.e.,
Val(v) < Val(u). Second, consider a node u in Ry. All its descendants (including
itself) have Pos attributes larger than any node in Lz. If the parent of u is
changed to some node v in Lz, u becomes the left child of v and the descendants
of the left subtree of v have Pos attributes smaller than Pos(v). Furthermore,
node v still has at most two children because the original left child of v must
now change its parent to u or some node below u in Ry. Thus, the resultant
tree is still a binary search tree w.r.t. the Pos attributes. Similar argument holds
when a node in Lz changes its parent to some nodes in Ry.

3.1 More Details

Let vy and vz be the root of Cy and Cz respectively. Without loss of generality,
assume that Val(vy) > Val(vz). Let u be the lowest node (i.e., the node farthest
away from the root vz) in Lz such that Val(vy) > Val(u). Let Lb

z be the part of
Lz below u and let La

z be the part above and including u.
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Algorithm 1. Cartesian Tree Merging in the Blelloch-Shun Algorithm

1 Search for the lowest node u in Lz such that Val(vy) > Val(u). Split Lz into La
z

and Lb
z such that La

z is the list of nodes above (and including) u in Lz and Lb
z

the list of nodes below u in Lz .
2 Merge Ry and Lb

z into one list sorted according to the Val attributes by
changing the Parent pointers.

3 Set Rx = Rz and Lx = join(La
z , Ly).

To merge Ry and Lz, it suffices to merge Ry and Lb
z. (The part L

a
z will always

lie above the merged list of Ry and Lb
z.) More importantly, Blelloch and Shun

observed that after merging, only the node vy (among those nodes in Ry and
Lb
z) will be present in a spine of Cx. They exploited this observation to acheive

O(n) work and space. In particular, a node not present in a spine of Cx will
never be involved in future spine merging at higher levels of recursion. Thus,
if mx denotes the number of nodes in Ry and Lb

z that will not be present in
future spine mergings, then mx = |Ry|+ |Lb

z| − 1 and
∑

x mx = O(n) where the
summation is over all node x in the recursion tree. Using the merging algorithm
of Shiloach and Vishkin [8] (see also [7]), merging of Ry and Lb

z will take O(log n)
time and O(|Ry |+ |Lb

z|) = O(mx) work. Hence the total work for spine merging
over all nodes in the recursion tree is O(

∑
xmx) = O(n).

To allow the recursion at the parent of node x to carry out the same Carte-
sian tree merging strategy, we need to prepare Lx and Rx of Cx as well. The
right-spine Rx is simply Rz while the left-spine Lx can be formed by joining
(concatenating) the spines Ly and La

z . More precisely, denote by join(L1, L2)
the list composed of elements in L1 followed by those in L2, in the order they
appeared in L1 and L2. Then we set Lx to join(La

z , Ly). The pseudocode for the
Cartesian tree merging is shown in Algorithm 1.

To facilitate the operations on the spines, each spine is implemented by a
binary search tree using the Val attributes as search keys. The searching of u
in Lz in Step (1) translates to a standard search in binary search tree. Splitting
Lz into La

z and Lb
z is accomplished by a corresponding split operation on the

binary search tree for Lz. The join operation, join(La
z , Ly), in Step (3) is done

by merging the two binary trees corresponding to La
y and Lz. In addition, the

Parent pointer of the first node in Lz is set to point to the last node in La
y.

It is easy to see that each Cartesian tree merging takes only O(log n) time.
Since there are log n levels of recursion, the total running time is O(log2 n).
Regarding the work, the manipulation on the spines in Step (1) and (3) requires
at most O(log|Cx|) work where |Cx| is the number of nodes in the Cartesian
tree Cx, i.e, the size of the subarray corresponding to node x. Hence if W (n)
represents the total work for Step (1) and (3) over all nodes in the recursion
tree, then we have W (n) = 2W (n/2)+O(logn). Solving for W (n), we have that
W (n) = O(n). We have also seen that the merging of Ry and Lb

z in Step (2)
takes O(n) work in total. It follows that the total work is O(n).
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4 A Faster Algorithm with Superlinear Work

We first describe a simpler CREW PRAM algorithm that requires O(log n) time,
and O(n log n) work and space. The algorithm has the same divide-and-conquer
structure as the Blelloch-Shun algorithm. That is, it splits the input into two
equal halves, recursively constructs a Cartesian tree for each half and finally
merge them into one Cartesian tree. The major difference is in the Cartesian
tree merging process.

The main idea of our improvement over previous algorithms is to pull part of
the Cartesian tree merging process out of the recursion, and assign processors to
finish the merging jobs along with the recursive process. More specifically, Step
(2) of Algorithm 1 could be buffered by a scheduler to run without affecting
the executions of other parts of Algorithm 1. The scheduler will finish all the
buffered jobs in O(log n) time and O(n) work. In addition, Step (1) and (3) of
Algorithm 1 also needs to be finished very fast in order to achieve the claimed
O(log n) running time.

4.1 Details of the Algorithm

We first describe the main data structure employed in our algorithm. While the
spines are implemented by binary search trees in the Blelloch-Shun algorithm,
they will be implemented by sorted arrays in our preliminary algorithm. More
precisely, for each recursion level �, we will have an array Spine�[1 . . . n] to store
the left-spine and right-spine of each node in level � of the recursion tree. So,
each entry of the array stores a node u of the Cartesian tree and the nodes of a
spine are stored contiguously in sorted order according to their Val attributes.
Clearly, the total storage for all the Spine arrays is O(n log n).

Now we explain the algorithmic steps. Consider an arbitrary node x in the
recursion tree and assume the notations defined in the previous section. For Step
(1), we deploy one processor per node in Lz to locate node u in O(1) time and
O(|Lz |) work.

In Step (2), we merge Ry and Lb
z, which are sorted lists according to the Val

atttributes, into one sorted list using the same merging algorithm of Shiloach and
Vishkin [8]. At first sight, it seems that using this O(log n) time algorithm will
result in an overall running time of O(log2 n). However, as discussed in section
3, only vy will be present in future spine merging processes. This allows Blelloch
and Shun to obtain O(n) work algorithms. Here, we make use of this observation
differently. We observe that the position of vy in the left-spine, Lx, of Cx can
be determined independent of the merging of Ry and Lb

z. Therefore, this spine
merging process does not affect (or block) the execution of Step (3) at node x.
Once Step (1) and (3) are completed, the recursion can return to the parent node
of x so that the Cartesian tree merging process there can be started, whether
Step (2) at node x has been completed or not.

In Step (3), our algorithm needs to prepare Lx and Rx in a sorted array so
that Step (1) of the higher recursion level can be carried out in the same manner
as described above. The left-spine Lx is obtained by joining Ly and La

z into one
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contiguous sorted array and setting the Parent pointer of the first node of Ly

to the last node of La
z . To do the concatenation, suppose the nodes y and z are

at recursion level � + 1 while node x is at recursion level �. Then we assign a
processor to each entry of Ly and La

z (which are stored in an allocated region
in the array Spine�+1[1..n]) and copy the values into the appropriate region in
Spine�[1..n]. As for the right-spine Rx, it is just the same as Rz and we just need
to copy it from its allocated region in Spine�[1..n] to the appropriate region in
Spine�−1[1..n].

4.2 Complexity Analysis

We first analyze the work. In Step (1), searching for node u requires O(|Lz|)
work. In Step (3), joining Ly and La

z and copying Ry take O(|Ly|+ |La
z |+ |Ry|)

work. Note that O(|Lz | + |Ly| + |La
z | + |Ry|) ≤ O(|Cx|). Since the collection

of Cx’s for all nodes x in the same recursion level induces a partition of the n
elements of the input array A, the sum of all the work in the same recursion
level is O(n). Hence, total work over all recursion levels for Step (1) and (3)
is O(n logn). The independent spine mergings in Step (2) of all the recursion
nodes require a total of O(n) work using Shiloach and Vishkin’s algorithm [8].
Therefore, the whole algorithm requires O(n log n) work.

Regarding the time complexity, there are logn levels of recursion, each taking
O(1) time for Step (1) and (3). The recursion at a node x can return to its parent
node after Step (1) and (3) are finished without waiting for Step (2). Therefore,
Step (1) and (3) for all the nodes in the recursion tree can be finished in O(log n)
time. The finish time for all the spine mergings in Step (2) is also bounded by
O(log n) because the worst finish time of a merge is at most O(log n)+O(log n),
where the first O(log n) is the time to start the spine merging (whose worst case
happens when the merge is at the root recursion), and the second O(log n) is
the time to do the merging with Shiloach and Vishkin’s algorithm. Hence the
overall parallel time is O(log n) for the whole algorithm.

Theorem 1. Given an input array of size n, its Cartesian tree can be con-
structed in O(log n) time with O(n logn) work and space on a CREW PRAM.

5 Our Linear Work and Space Algorithm

To reduce the work and space of our algorithm to O(n), we use a bucketing
technique. Our algorithm will have two phases. In the first phase, we build a
Cartesian tree for each consecutive logn elements in the input array A. So, there
are n/ logn Cartesian trees, each with logn nodes (assuming n is a multiple of
logn and logn is an integer for simplicity). This can be done in O(log n) time
with O(n/ logn) processors, each running a sequential algorithm. Hence this
phase takes O(n) work. For convenience, we call these trees micro-Cartesian
trees.

In the second phase, the remaining problem is to merge these n/ logn Carte-
sian trees into one Cartesian tree. As discussed before, this amounts to merging
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the left and right-spines of these trees appropriately. Our approach is to repre-
sent each spine of a micro-Cartesian tree by a super-node and adapt our previous
algorithm to merge the Cartesian trees by merging spines that are made up of
super-nodes.

More precisely, we define a super-node v to have, besides the Val and Pos at-
tributes, a List attribute so that List(v) is the sequence of nodes represented by
v. The nodes in List(v) are sorted in increasing order of their Val attributes. Fur-
thermore, Val(v) and Pos(v) are defined as the Val attribute and Pos attribute
of the first node in List(v). Hence Val(v) is the minimum Val attribute of all
nodes in List(v). We refer to spines made up of super-nodes as super-spines.

Initially the spine represented by a super-node is the left- or right-spine of a
micro-Cartesian tree. We will see that as the computation proceeds, the spine
represented by a super-node may be split but spines in different super-nodes will
never be joined into one. Therefore, List(v) contains at most O(log n) nodes at
any time.

Let Ã be an array of size 2n/ logn, storing the initial 2n/ logn super-nodes.
(Each micro-Cartesian tree contributes two super-nodes, one for its left-spine,
one for its right-spine.) For the implementation details, we can assume that these
spines are stored contiguously in sorted order (according to their Val attributes)
in an array B of size O(n). The List attribute of each super-node in Ã just needs
to have a pointer to the corresponding spine in B.

Now consider a divide-and-conquer approach to construct one Cartesian tree
from the n/ logn micro-Cartesian trees represented by the array Ã. Let x be an
arbitrary node at level � in the recursion tree and let y and z be its children at
level �+1. Assume that the super-spines of the Cartesian trees Cy and Cz have
been prepared in array Spine�+1 so that each super-spine is a sequence of super-
nodes sorted according to their Val attributes and each super-node represents
a sequence of O(log n) (Cartesian tree) nodes. We denote these super-spines
as L̃y, R̃y, L̃z and R̃z, to distinguish them from those spines in the previous
section, which are sequences of Cartesian tree nodes (not super-nodes). We will
construct a left super-spine, L̃x, of Cx, also as a sequence of super-nodes, stored
contiguously and sorted in their Val attributes in Spine� and likewise for R̃x.
Moreover, we will maintain that each super-node represents at most O(log n)
Cartesian tree nodes.

Let vy and vz be the root of Cy and Cz respectively. Again, assume that
Val(vy) > Val(vz) without loss of generality. The required modifications to Al-
gorithm 1 and complexity analysis are explained as follows:

Step (1) We search for the position of vy in L̃z, i.e., we locate the lowest super-

node u in L̃z such that Val(vy) > Val(u). This is done, as before, by deploying

one processor per super-node in L̃z. This requires O(1) time and O(|L̃z |) work.
Using similar analysis as before, the total work for this task over all nodes x in
the recursion tree is O((n/ logn) logn) = O(n).

Next, we search for Val(vy) in List(u). This can be done in O(1) time using
O(|List(u)|) = O(log n) processors in parallel. Hence the total work for this task
over all nodes x in the recursion tree is O((n/ log n) logn) = O(n).
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We then split the Cartesian tree nodes in List(u) into two lists, one for those
with Val attributes less than Val(vy) and one for the other nodes. The former
list is still represented by the super-node u while the latter will be represented
by a new super-node u′. We let L̃a

z be the part of L̃z above (and including) u
and let L̃b

z be the sequence of super-nodes started with u′ and followed by the
part of L̃z below u.

Step (2) We merge the spines represented by R̃y and L̃b
z into one list by modify-

ing the Parent pointers of the Cartesian tree nodes in B. Imagine the sequence
of Cartesian tree nodes formed by concatenating List(v) for each super-node v in
R̃y, in the order v appeared in R̃y. That sequence is sorted in the Val attributes.

The same holds for L̃b
z as well. Therefore, we can perform the merging of sorted

lists using the algorithm of Shiloach and Vishkin (with a slight adaptation so
that the algorithm accesses the elements to be merged by a pointer reference).

The merging algorithm of Vishkin and Shiloach takes O(log n) time while the
work is proportional to the total number of (Cartesian tree) nodes merged. Since
the merging in this step over all nodes in the merging tree works on disjoint sets
of Cartesian tree nodes, the total work is O(n). Moreover, the merging can be
done independent of each other. Thus, this step for all nodes x in the recursion
tree only adds an additive term of O(log n) in the parallel time complexity.

Step (3) Finally, we need to join L̃y and L̃a
z to form L̃x while R̃x is simply the

same as R̃z. The latter task is accomplished by copying the super-nodes of R̃z

in Spine�+1 to appropriate places in Spine�. Similarly, the former task can be

done by copying the super-nodes of L̃y and L̃a
z stored in Spine�+1 to appropriate

places in Spine�. Furthermore, the Parent pointer of the topmost node in L̃y,

i.e., vy, should be set to point to the last node in L̃a
z .

Note that the number of super-nodes in L̃x and R̃x can be one larger than
the total number of super-nodes in L̃y, R̃y, L̃z and R̃z due to the splitting of
List(u) mentioned in Step 1. There are n/ logn leaf nodes in the recursion tree,
n/(2 logn) nodes in the level above the leaf level, n/(4 logn) nodes in the next
higher level, etc. Therefore, the number of new super-nodes for each level is at
most n/ logn. So, doubling the size of Spine� for each level � above the leaf level
would provide sufficient storage to accomodate the original and extra super-
nodes. It follows that the total storage required is O((n/ log n) logn) = O(n).
Furthermore, this step can be done in O(1) time and O(|L̃y |+ |L̃a

z |+ |R̃z|) work.
It follows that the total work for this step over all nodes in the recursion tree is
O((n/ logn) · logn) = O(n).

It is clear from the above discussion that the total work and storage for all
steps over all nodes in the recursion tree is O(n) and the parallel time is O(log n).

Theorem 2. Given an array of size n, its Cartesian tree can be constructed in
O(log n) time with O(n) work and space on a CREW PRAM.
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6 Conclusion

In this work, we presented an O(log n)-time CREW PRAM algorithm for con-
structing Cartesian trees using linear work and space. This result improves the
previous best known parallel algorithms for Cartesian trees. One open question
is whether the running time could be further reduced to O(log logn). If not,
could a tight lower bound be proved?

The work of Demaine et al. [3] showed that Cartesian trees can be defined
on trees rather than arrays, to solve the bottleneck edge query problem on trees
and undirected graphs. To the best of our knowledge, no parallel algorithm has
been studied for this type of Cartesian trees. So it would be interesting to see if
our technique can be applied to this type of Cartesian trees to get a non-trivial
parallel algorithm.
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Abstract. We study online algorithms with advice for the problem of
coloring graphs which come as input vertex by vertex. We consider the
class of all 3-colorable graphs and its sub-classes of chordal and maximal
outerplanar graphs, respectively.

We show that, in the case of the first two classes, for coloring optimally,
essentially log2 3 advice bits per vertex (bpv) are necessary and sufficient.
In the case of maximal outerplanar graphs, we show a lower bound of
1.0424 bpv and an upper bound of 1.2932 bpv.

Finally, we develop algorithms for 4-coloring in these graph classes.
The algorithm for 3-colorable chordal and outerplanar graphs uses 0.9865
bpv, and in case of general 3-colorable graphs, we obtain an algorithm
using < 1.1583 bpv.

1 Introduction

An online algorithm deals with the natural situation that the input arrives piece-
meal. In contrast to the offline case, the algorithm must compute a part of the
solution for the already given piece of input at every time step. Once a part of
the solution is computed, it must not be changed. The standard way to measure
the quality of an online algorithm is the competitive analysis. Here, the quality
of the solution given by the online algorithm is compared to the quality of the
best possible solutions computable offline, i.e., after knowing the whole input.
This concept was introduced in [19], for a more detailed introduction we refer
to the standard literature, e.g., [4, 12].

Measuring the quality of an online algorithm by comparing its output to an
optimal offline solution gives a universally applicable yardstick. However, it has
the disadvantage that, for many problems, the output of the best possible online
algorithms will still be far from the offline solutions.

In order to better understand and quantify this gap, the idea of online algo-
rithms with advice was introduced by [6] and has been further investigated, e.g.,
in [2,3,7,13]. Here, one asks how much additional information (advice) an online
algorithm needs to close this gap, respectively, which progress can be made with
limited advice.
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Formally, one introduces an advisor (an oracle that knows the whole input)
who provides an unlimited advice bit string to the online algorithm. For any
online algorithm with advice, the advice complexity measures the number of bits
read by the online algorithm. The advice complexity of a problem is the advice
complexity of the best online algorithm (achieving a given competitive ratio).

Coloring vertices of a graph such that no two adjacent vertices get the same
color is a very well known and intensively studied problem. For an online version,
the most obvious input order is the following which will be studied here. In every
step, a new vertex gets revealed, together with all edges to the previously revealed
vertices. Now, the newly revealed vertex has to be colored before the next one
is revealed.

It turns out that online coloring is hard and no constant competitive ratio is
possible [17]. For the class of k-colorable graphs on n vertices, it has been proven
that any online coloring algorithm needs Ω

(
(log n/(4k))k−1

)
colors in the worst

case [20]. For an overview of classical online coloring see [15, 16].
A first study of online path coloring with advice was done in [8]. Further

studies of online coloring of bipartite graphs was done in [1]. In this paper, we
study online coloring with advice on the class of all 3-colorable graphs, and on
its sub-classes of 3-colorable chordal and outerplanar graphs, respectively. We
want to know how much advice is necessary, respectively sufficient, in order to
color these graphs optimally. Also, we investigate how much advice can be saved
if we allow a fourth color. The results mentioned above imply that using only a
constant number of colors is a big improvement over coloring without advice.

For a lower bound, we show that at least 1.0424 · n advice bits are necessary
to color a maximal outerplanar graph with n vertices optimally. For 3-colorable
chordal graphs (and thus for general 3-colorable graphs), we get a lower bound
of (log2 3− ε) · n bits (for arbitrarily small ε).

On the other hand, we describe an algorithm to color general 3-colorable
graphs optimally using 1.5863 · n bits, and we can color maximal outerplanar
graphs optimally using 1.2932 · n bits (where n again is the number of vertices).
Note that 3-coloring is known to be NP-hard [9], but, due to the definition of
our model, there is no computational restriction for the advisor.

Table 1. Overview of the results on the number of bits per vertex for online coloring

number of bits per vertex lower bounds upper bounds

3-coloring 3-coloring 4-coloring

3-colorable graphs log2 3− ε1 1.5863 1.1583

3-colorable chordal graphs log2 3− ε 1.5863 0.9865

maximal outerplanar graphs 1.0424 1.2932 0.9865

Moreover, we analyze the advice needed for coloring 3-colorable graphs with
a competitive ratio of 4/3. In other words, we want to color 3-colorable graphs
with four colors. Note that the offline version of this problem is also known to be

1 log2 3 ≥ 1.5849.
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NP-hard [10, 14]. Here, we show how to obtain a 4-coloring for any 3-colorable
graph with 1.1583 advice bits per vertex.

Additionally, we develop an algorithm to color 3-colorable chordal graphs with
four colors by using less than one bit (0.9865) of advice per vertex. An overview
is shown in Table 1.

In Section 2, we fix our notation, and we show how the string of advice bits can
efficiently be used for one-out-of-three decisions. Section 3 is dedicated to show
our main results. Due to space restrictions, mainly we have restricted ourselves
to describing the ideas. For the formal proofs and algorithms, see also [18]. We
conclude in Section 4.

2 Preliminaries

We use the following notation for online algorithms analogous to [3], for coloring
graphs, and for the problem at hand, respectively.

Definition 1. [3] Consider an input sequence I = (x1, . . . , xn) for some min-
imization problem U . An online algorithm A computes the output sequence
A(I) = (y1, . . . , yn), where yi = f(x1, . . . , xi) for some function f . The cost
of the solution is given by cost(A(I)). An algorithm A is c-competitive, for
some c ≥ 1, if there exists a constant α such that, for every input sequence I,
cost(A(I)) ≤ c · cost(Opt(I)) + α, where Opt is an optimal offline solution for
the problem. If α = 0, then A is called strictly c-competitive. Finally, A is
optimal if it is strictly 1-competitive.

A chord of a cycle H = x1, x2, . . . , xk of length k is an edge of two vertices
{xi, xj}, that is no edge of the cycle {xi, xj} /∈ E(H). A cycle is chordless if it
contains no chords. Additionally, we deal with the graph classes of chordal and
maximal outerplanar graphs. For this, we give a formal definition of it.

Definition 2 (Hajnal, Surányi [11], Brandstädt et al. [5]). A graph G is
chordal if each cycle in G of length at least 4 has at least one chord.

Definition 3 (Planar graph). A graph G = (V,E) is called planar, if it
can be drawn in a plane, such that no two edges intersect. Such a drawing of a
planar graph in the plane is called an embedding. A planar graph G = (V,E) is
maximal if for every nonadjacent pair of vertices vi, vj the graph G′ = (V,E ∪
{vi, vj}) is not planar.

Definition 4 (outerplanar graph). A graph G = (V,E) is called outerpla-
nar, if it has an planar embedding in plane, such that no vertex is totally sur-
rounded by edges. A outerplanar graph is maximal if there are no two nonadja-
cent vertices vi, vj such that the graph G′ = (V,E ∪ {vi, vj}) is still outerplanar.

Next, we fix the notation for coloring graphs.
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Definition 5. Given a graph G = (V,E), a coloring function c is a function
that maps every vertex vi ∈ V to one color from {1, . . . , k}, for some k ∈ N,
such that c(vi) �= c(vj), for all vi, vj with {vi, vj} ∈ E(G). We denote the the
minimal number of colors necessary for a coloring of G with χ(G).

For any vertex v ∈ V, we denote by N (v) = {w ∈ V | {v, w} ∈ E} the set of
neighbor vertices of v in G. If G is directed, E contains ordered pairs, and the
set of predecessors of v is Pred(v) = {w ∈ V | (w, v) ∈ E}.

Definition 6. The Online Coloring Problem with Advice, in Vertex-
Revealing Mode (OColAV) is the following online problem: The input is an
unweighted, undirected graph G = (V,E) with |V (G)| = n and an order ≺ of
revealing on the set of vertices. The goal is to find a minimum-cost coloring
function c : V → {1, . . . , n} for the vertices in G, where the cost of a coloring is
the number of used colors.

In each time step i, the next vertex vi ∈ V (in the order ≺) is revealed, together
with all edges {{vi, vj} | j < i}, and the online algorithm has to decide which
color c(vi) the vertex vi gets. To this end, it can read a certain number of advice
bits.

For every instance I = (G,≺), where G = (V,E), we get a directed graph
G≺ = (V,E′) by giving a direction on every edge e ∈ E depending on the order
of revealing the vertices. Every edge e = {vi, vj} ∈ E is directed from vi to vj ,
i.e., (vi, vj) ∈ E′, iff vi is revealed before vj . Additionally, for a subset of vertices
Vx ⊂ V (G), we denote by GVx = G |Vx the subgraph of G induced by Vx. For
developing algorithms to color a 3-colorable graph optimally, we need a method
to read a one-out-of-three decision from a Boolean advice string. For this, we
use the following lemma.

Lemma 1. Reading several one-out-of-three decisions from a bit string costs
46/29 < 1.5863 ≈ log2 3 bits on average.

Proof. When the first one-out-of-three decision is necessary, 46 bits get read from
the advice string. By these 46 bits and the corresponding 246 different possible
bit combinations, 29 three-way decisions2 can be encoded, because 246 ≥ 329.
With this, for the first three-way decision, the algorithm gets the results of the
next 28 three-way decisions at the same time and keeps them in its memory.
This leads to an average of the information needed for a three-way decision
of 46/29 < 1.5863 ≈ log2 3 ≈ 1.58496 bits. In general, if n one-out-of-three
decisions have to be done, this costs at most 1.5863(n− 1) + 46 = 1.5863n+ d
bits, where d < 45. 	


3 Algorithms and Lower Bounds

In this section, we first turn to the lower bounds. We will show that more than
one bit of advice per vertex is necessary to color a maximal outerplanar graph
optimally, i.e., by three colors.

2 Note, there are better but larger values for x and y to make the factor closer to one.
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Theorem 1. For any k ∈ N, there exists a maximal outerplanar graph Gk on
n = 4k+9 vertices and an ordering ≺ on the vertices of Gk such that every de-
terministic online algorithm for OColAV on (G,≺) needs at least 1

2 ·
(
log2 3 +

1
2

)
·

n− 12 > 1.0424 · n− 12 advice bits to generate an optimal coloring.

For the proof see [18]. Additionally, we want to show that log2 3 bits per vertex
are necessary for coloring any 3-colorable graph online optimally. For this, we
give the following theorem.

Theorem 2. For any k ∈ N, there exists a 3-colorable chordal graph G on n =
k+ 3 vertices and an ordering ≺ such that every deterministic online algorithm
for OColAV on (G,≺) needs at least log2 3 · (k − 1) − 1 = log2 3 · (n − 4) − 1
advice bits to be optimal.

Now we are ready to investigate several algorithms for coloring graphs online with
given advice. Let G be a graph with an order ≺, and let G≺ be the corresponding
directed graph. Depending on the direction of the edges in G≺, we define the
function p : V (G) → {1, 2, 3} for all vertices in G≺, where p(v) = i describes
which position v has in a triangle as follows.

Every vertex vx, that was revealed as isolated, i.e., has outgoing edges only,
is the first vertex of any triangle it belongs to. Such a vertex gets the label 1,
that is p(vx) = 1.

Every vertex vy that is connected to one or more already revealed vertices,
but not closing a triangle, has p(vy) = 2. (In any triangle, there is at most one
ingoing edge).

Finally, every vertex vz which closes one or more triangles (has two ingoing
edges in one triangle) gets p(vz) = 3.

That way, we partition the vertices of a given input instance G≺ into three
classes Vi = {v ∈ V (G) | p(v) = i}, for i ∈ {1, 2, 3}. For an example showing the
different types of vertices, see Figure 1.

Vertex from V1

Vertex from V2

Vertex from V3

v1 v2

v3 v5

v4

Fig. 1. Vertices of different types

In every step of the coloring algorithm, when a new vertex v occurs, there
exists a set of colors by which v may be colored. We denote, for every vertex
v, the set of allowed colors by Cv = {1, . . . , 3} \ {c(w) | w ∈ N (v)}. Note that,
since we use an ordered set of colors, we may speak of a ‘smallest’ color in Cv.

We start with Algorithm 1, which colors an arbitrary 3-colorable graph G
online with 3 colors, where G is revealed according to an order ≺. For this, we
need 1.5863 advice bits per vertex on average.
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The idea of the first algorithm is quite simple. For every isolated vertex v ∈ V1,
the algorithm asks for the optimal color (one out of three). For every vertex
w ∈ V2 connected to an already colored vertex, the algorithm asks for the correct
color from the the remaining colors Cw (at most one out of two), and every vertex
x ∈ V3 gets colored by the only remaining color. This leads to the following
lemma.

Lemma 2. Let G be a graph with χ(G) = 3, and let G≺ be an input instance
for the OColAV. Algorithm 1 colors G optimally with at most (n−3) one-out-of-
three decisions and at most one one-out-of-two decision. With this, Algorithm 1
uses less than 1.5863 · (n−3)+1+45 = 1.5863 ·n+d advice bits3, where d < 42.

Proof. Let G≺ be an input instance of a graph G with χ(G) = 3 and |V (G)| = n.
In the worst case, G≺ contains n − 2 vertices in V1. Otherwise, G does not
contain a cycle, and it is a forest and thus two-colorable. Algorithm 1 does not
use information for the first vertex, because here the coloring can be arbitrary.

For the second revealed vertex, even if it is revealed as isolated, only one bit of
advice is necessary for knowing whether it gets the same color as the first vertex
or a different one. For all further vertices, except the last one, a one-out-of-three
decision might be necessary. Summing up, Algorithm 1 needs at most (n − 3)
one-out-of-three and one one-out-of two decisions. We know from Lemma 1 that
a one-out-of-three decision needs less than 1.5863 bits in the average. This leads
to less than 1.5863 · (n− 3)+1+45 = 1.5863 ·n+d bits at all, where d < 42. 	


Now, we observe that, since vertices in V1 have outgoing edges only, no two of
them can be connected.

Observation 1. Let G≺ be the directed graph resulting from G and the order
≺ of revealing. Then V1 is an independent set in G≺, respectively in G.

This leads us to the following lemma, which holds for general chordal graphs.

Lemma 3. Let G be a chordal graph, (G,≺) be an input instance for OColAV,
and let G≺ be the corresponding directed graph. For the set A = V1 ∪ V2, the
subgraph G≺

A is a forest.

Proof. If G≺
A is not a forest, it contains at least one cycle. This cycle has to

be extended by edges to triangles because G is chordal. Hence, such a cycle
contains at least three vertices from A which form a triangle. The vertex vl
from this triangle, that is revealed last, has two incoming edges in G≺

A and is
consequently an element of V3 (see Figure 2(a),(b)), which is a contradiction to
the assumption. 	


In the following, we analyze OColAV on the class of outerplanar graphs. There-
fore, we need some observations and lemmata for this class of graphs.

3 The constant 45 is a result of the method to encode the one-out-of-three decisions
in the advice.
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(a) A hypothetical
cycle in G≺

Vertex from V1

Vertex from V2

Vertex from V3

(b) Types of the vertices when
all edges are included

Fig. 2. Example of a cycle in a chordal graph

Lemma 4. Let G be an outerplanar graph on n vertices and let G≺ be an input
instance for OColAV. For the set V1 of vertices that are revealed as isolated,
|V1| ≤ 1/2 · n.

Proof. Let G be an outerplanar graph, hence χ(G) = 3, and let G≺ be a corre-
sponding input instance. This implies that all vertices in G lie on an outer cycle.
We know from Observation 1 that all vertices of type V1 are independent in G.
This implies that, between two vertices v, w ∈ V1, there has to be at least one
vertex x ∈ V2 to connect them. This yields |V2| ≥ |V1| − 1. Additionally, at least
at the end one vertex y ∈ V3 is necessary to close the cycle, otherwise G would
be two-colorable. 	


Using Lemma 4, we can analyze Algorithm 1 with the following result.

Lemma 5. Let G be a maximal outerplanar graph with V (G) = n, and let G≺

be a corresponding input instance for the OColAV. Then Algorithm 1 colors G
optimally, using less than 1.29315 · n+ 45 advice bits.

Proof. Let G be a maximal outerplanar graph with V (G) = n, and let G≺

be a corresponding input instance for the OColAV. Let V1, V2, and V3 be the
corresponding sets of vertices. According to Lemma 4, |V1| ≤ |V2| + |V3|. This
leads, by using also Lemma 3, to the following inequalities: |V1|

n ≤ 0.5 and |V1|
n +

|V2|
n < 1. For the number of advice bits per vertex ABpV for Algorithm 1, we

have

ABpV ≤
|V1|
n
· 1.5863 + |V2|

n
. (1)

We maximize the right-hand side of (1) by setting |V1|
n = 0.5. This implies

|V2|
n < 0.5, and thus ABpV < 0.5 · 1.5863 + 0.5 = 1.2931.
For the upper bound on the number of advice bits used by Algorithm 1, this

means: Ab < 1.29315 ·n+d where d ≤ 45 is the number of bits needed to encode
the last ≤ 28 one-out-of-three decisions. 	


In addition to the results for an optimal coloring, we now use the alternative
online Algorithm 2, which colors an arbitrary 3-colorable graph G with 4 colors.
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The idea is to color all vertices of V1, which are revealed as isolated, with an
additional color 4 and to ask for every revealed vertex from V2 and V3 for advice
according to an optimal coloring of G using the colors {1, 2, 3}.

Following this strategy, advice is only necessary for vertices of V2 (1.5863 bits)
and for vertices of V3 (1 bit). So this strategy is efficient for instances with a
high number of isolated vertices.

This leads us to Algorithm 3, which combines the strategies of Algorithm 1
and Algorithm 2. With it, we can color all 3-colorable graphs with at most four
colors. To know what to do, the algorithm reads at the beginning the first bit of
the advice tape and, depending on this bit, it decides which of the two strategies
it follows.

The following lemma shows that Algorithm 3 colors G optimally if, for the
vertices of G≺, |V1|/n · 1.5863 + |V3|/n ≤ 1.15822. Otherwise it colors G with
four colors. In both cases, it needs at most 1.1582196 · n+ d advice bits.

Lemma 6. Let G be a graph with V (G) = n and χ(G) = 3, and let G≺ be a
corresponding input instance for the OColAV. There exists an advice tape with
which Algorithm 3 colors G with four colors, using at most 1.1582196 · n + 45
bits.

Proof. There exists a 4-coloring for G, where all vertices revealed as isolated have
the same color, because χ(G) = 3 and the vertices from set V1 are independent
(see Observation 1). In such a coloring, the algorithm needs a one-out-of-three de-
cision for every vertex from V2 and a one-out-of-two decision for every vertex from
V3, because it is already connected to at least one already colored vertex from V2.

Now, we compute the maximum of advice bits used, by combining both al-
gorithms. Algorithm 1 uses ≤ |V1| · 1.5863 + |V2| bits, and Algorithm 2 uses
≤ |V2| · 1.5863 + |V3| many bits. This leads to a maximal number of advice bits

per vertex at |V1|
n = 0.26986, |V2|

n = 0.73014 and thus to at most 1.1582196 bits
per vertex. This leads to an upper bound of 1.1582196 · n+ d bits overall. 	


For giving the idea of the next algorithm, we analyze, for a chordal graph G, the
graph G′ which is obtained from G by edge contraction.

Lemma 7. Let G be a chordal graph with χ(G) = c. For every graph G′, that
is obtained by contracting an edge of G, G′ is chordal and χ(G′) ≤ c.

Proof. Assume that G is a chordal graph with χ(G) = c and G′ is obtained by
contracting the edge {a, b} in G. Assume that G′ contains a vertex-induced cycle
of length > 3 containing x, where x is the vertex contracted from edge {a, b}. Let
be x, v, w, · · · , z, x this cycle, then either a, v, w, · · · , z, a is also a cycle of length
> 3 in G or a, v, w, · · · , z, b, a is a cycle of length > 4 in G. Both alternatives are
a contradiction to our assumption. It follows that G′ is chordal as well.

Now we show that χ(G′) ≤ χ(G). Assume χ(G′) > χ(G). We have that
x is in a clique C = {x, v1, v2, · · · , vc} of size > χ(G). But the clique size of
{a, v1, v2, · · · , vc} and {b, v1, v2, · · · , vc} is at most χ(G). Thus there exists i, j
with {a, vi} �∈ E(G) and {b, vj} �∈ E(G). If i = j, then C would not be a clique
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Vertex of type V1

Vertex of type V2

Vertex of type V21

Vertex of type V3

v1 v2

v3

v4 v5

v6

v7

v8v9

v10

Fig. 3. Vertices of types V21

of size > χ(G). Thus a, vi, vj , b is a vertex-induced cycle of length 4 in G, which
is a contradiction. 	


Now, we present Algorithm 4 for coloring 3-colorable chordal graphs with 4
colors. For this, we separate the vertices V (G) into two sets A := V1 ∪ V2 and
B := V3. We know that, for every chordal graph G, the graph GA restricted to
the vertices in A is a forest (see Lemma 3).

The idea is to color each tree of GA by a pair of colors (i, 4), for some i ∈
{1, 2, 3}. The remaining vertices in V3 will be colored using only colors {1, 2, 3}.
We will show later that such a coloring always exists.

Before we can describe Algorithm 4, we have to move a few vertices inside
A. It might happen that a vertex v from V2 is revealed as the first one of a
tree in GA. This can occur when all its predecessors in G≺ are in V3 (see v7, v8
in Figure 3). However, in this case, we note that v cannot have a neighbor in
V1. Such a neighbor w would be revealed after v, and consequently the edge
orientation would be (v, w), an ingoing edge for w, thus w �∈ V1. Therefore, we
can define V21 = {v ∈ V2|Pred(v) ⊆ V3}, and move V21 to V1, more precisely
V ′
1 = V1 ∪ V21 and V ′

2 = V2 \ V21, while still preserving independence of V ′
1 .

Remark 1. V ′
1 is an independent set in G, respectively in G≺.

Looking again at Algorithm 2, we observe that all it needs from V1 is that it
is an independent set since all vertices from V1, and only those, are colored by
color 4. Consequently, the algorithm works the same when using V ′

1 instead of
V1. Let us call this variant Algorithm 2′.

We are now ready to describe new Algorithm 4. Here, V ′
1 contains exactly

those vertices from A which are revealed without a predecessor from A, while,
for all vertices in V ′

2 , such a predecessor exists. Consequently, Algorithm 4 asks,
for every vertex x ∈ V1, for two pieces of advice. First, it wants to know which
pair of colors (i, 4) will be used to color the tree x belongs to. Secondly, it asks
which of the two colors x gets itself.

There are three possible pairs of colors. This leads to a combination of a one-
out-of-three and a one-out-of-two decision. Thus, at most 2.5863 bits are needed
for every vertex from V1.

With this information, obviously the algorithm is able to color all vertices
x ∈ V ′

1 . Also, all vertices from V ′
2 can be colored because, at the moment a

vertex v from V ′
2 is revealed, it has a predecessor w in A, and, for w, the color
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pair of the tree both belong to is known, as well as the color w gets. Hence, v
is colored by the other color from that pair without further advice. Inside the
trees of GA, such a coloring is clearly possible, but we still have to show later
that this way a correct coloring of the whole graph is constructed.

Finally, for every vertex z ∈ V3, which closes one or more triangles, the al-
gorithm asks for a one-out-of-two decision, because such vertices have to be
connected to at least two already colored and connected vertices (x, y), with dif-
ferent colors and so, in the worst case, two possible colors remain for z (|Cz | ≤ 2).
The new algorithm needs at most |V ′

1 | · 2.5863 + |V3|+ const many bits.
To prove that such a coloring exists for every 3-colorable chordal graph, we

give a further algorithm, which describes how an oracle can find the related
coloring and with this the right advice tape. Again, we use A = V1 ∪ V2 and
B = V3. We build the graph G′ by subsuming every connected component of GA

in one vertex. When G is a 3-colorable chordal graph, the graph G′ is 3-colorable
as well (see Lemma 7). Thus, we use a 3-coloring c′ of G′.

The 4-coloring c for G can be derived from c′ in the following way. For a
vertex v′ ∈ V (G′), we distinguish two cases. If v′ was constructed by an edge
contraction, we color the contracted tree in G with the colors {c′(v′), 4}, and if v′

corresponds directly to a vertex v ∈ V (G) we define c(v) := c(v′). With this pro-
cedure, we get a coloring which satisfies the needed properties for Algorithm 4.

With the corresponding advice tape, Algorithm 4 needs |V1|
n · 2.5863 +

|V3|
n bits

of advice per vertex. This leads us to the following lemma.

Lemma 8. Let G = (V,E) be a 3-colorable chordal graph and let G≺ be the
corresponding input instance for OColAV. There exists a coloring c : V (G) →
{1, 2, 3, 4} and with this an advice tape such that Algorithm 4 can color G≺ with
the coloring function c.

For proving the claim, we give the algorithm to find such a coloring and prove
that, for every 3-colorable chordal graph, such a coloring will be found.

Proof. Let G≺ be the given input instance. From the order of the vertices, we can
build three sets of vertices V1, V2 and V3. We build from this two sets A = V1∪V2

and B = V3. We know that the graph GA is a forest (see Lemma 3). Each tree
of GA is two-colorable. In the following, we will color each tree of GA with two
colors, where one of the two colors will be 4 for all trees. To find the corresponding
color for each tree, we have to determine a coloring, which fits with a coloring
for the vertices in B.

For finding such a coloring, we build the graph G′ from G by contraction of
edges between vertices of A. This leads us to a surjective function m : V (G) →
V (G′). If Ti ⊂ A is a tree in GA, then for all tj , tk ∈ V (Ti), j �= k, we have
m(tj) = m(tk).

We know that G′ is 3-colorable and chordal as well as G (see Lemma 7),
so we can find an optimal coloring c′ for G′ with three colors, because G is a
3-colorable chordal graph.

We extend the coloring function c′ to c for G by coloring all vertices v ∈
B ⊂ V (G) which are also vertices in G′ with c(v) := c′(v). For all vertices
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wi ∈ A ⊂ V (G) which are represented by one vertex x ∈ V (G′), with m(wi) = x
we color the corresponding tree alternatingly in (c′(x), 4).

It is obvious that the coloring c needs at most 4 colors because c′ was a
coloring with 3 colors and the color 4 is used additionally. The new coloring is
proper for G because no two vertices with color 4 are connected to each other,
and each tree Ti in GA is colored properly with the two colors (c′(x), 4). If the
vertex x represents a tree Tx in GA, it follows that all vertices in G which are
connected to the tree Tx represented by x are connected to x in G′. If c′ is a
proper coloring for G′, it follows that c′(y) �= c′(x), for all vertices y ∈ NG′(x ).
If now the tree which is represented by x in G′ is colored only with c(x) and 4,
it follows that c is a proper coloring. 	

Putting everything together, we can combine the previous algorithms into a
final one, Algorithm 5, formally stated in [18]. This algorithm uses the first two
advice bits to decide which of the Algorithms 1, 2’, 4 it shall use. Consequently,
it always makes use of the best possible advice-per- vertex ratio among those
three. This results in the following analysis.

Theorem 3. Let G = (V,E) be a 3-colorable chordal graph with |V (G)| = n
and let G≺ be the corresponding input instance for OColAV. Algorithm 5 colors
G≺ with 4 colors using at most 0, 9865 · n+ 47 advice bits.

Proof. We have seen before that there exists an advice tape for any of the three
Algorithms 1, 2’, 4. Now, we show that, in any case, there is one of the three

strategies that colors G using 0, 9865 ·n+47 advice bits. Let z1 = |V1|
n , z′1 =

|V ′
1 |
n ,

z2 = |V2|
n , z′2 =

|V ′
2 |
n and z3 = |V3|

n .
For the needed advice bits A1 for Algorithm 1, A2 for Algorithm 2’, and A4

for Algorithm 4, we have (with z1 + z2 = z′1 + z′2, z1 ≤ z′1)

A1 ≤ 1.5863 · z1 + z2 ≤ 1.5863 · z′1 + z′2
A2 ≤ 1.5863 · z′2 + z3

A4 ≤ 2.5863 · z′1 + z3

Additionally, z′1+z′2+z3 = 1. The corresponding convex space has its maximum
at z′1 = 0.30667, z′2 = 0.5, and z3 = 0.19333, and there it needs Ag = 0.98647 · n
bits. The additive constant 47 consists of the two bits read at the beginning and
the usual 45 bits that can remain in each of the sub-algorithms from the block
of bits read for one-out-of-three decisions. 	


4 Conclusion

We introduced first research results for online coloring algorithms with advice
for 3-colorable graphs. For planar, chordal and general 3-colorable graphs we
presented nearly matching lower and upper bounds on the number of advice
bits for the 3-coloring. We also gave 4-coloring online algorithms with advice for
those graph classes (see Table 1). It remains to extend the lower bounds to the
4-coloring. The extension to other graph classes, k-coloring, and general coloring
is also very interesting.
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advice complexity of online problems. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.)
ISAAC 2009. LNCS, vol. 5878, pp. 331–340. Springer, Heidelberg (2009)

4. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cam-
bridge University Press (1998)
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P., Bieliková, M. (eds.) SOFSEM 2008. LNCS, vol. 4910, pp. 247–258. Springer,
Heidelberg (2008)

7. Emek, Y., Fraigniaud, P., Korman, A., Rosén, A.: Online computation with advice.
In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W.
(eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 427–438. Springer, Heidelberg
(2009)
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Abstract. In this paper, we study the sparse linear complementarity
problem, denoted by k-LCP: the coefficient matrix has at most k nonzero
entries per row. It is known that 1-LCP is solvable in linear time, while
3-LCP is strongly NP-hard. We show that 2-LCP is strongly NP-hard,
while it can be solved in O(n3 log n) time if it is sign-balanced, i.e., each
row has at most one positive and one negative entries, where n is the
number of constraints. Our second result matches with the currently best
known complexity bound for the corresponding sparse linear feasibility
problem. In addition, we show that an integer variant of sign-balanced
2-LCP is weakly NP-hard and pseudo-polynomially solvable, and the
generalized 1-LCP is strongly NP-hard.

1 Introduction

Given a matrix M ∈ Rn×n and a vector q ∈ Rn, the linear complementarity
problem (LCP) is to find vectors w, z ∈ Rn such that

w −Mz = q, w, z ≥ 0, w�z = 0. (1)

We denote a problem instance of LCP with M, q by LCP(M, q). We say that n
is the order of LCP(M, q), where we note that the size of LCP(M, q) is O(n2).
The LCP, introduced by Cottle [10], Cottle and Dantzig [11], and Lemke [24], is
one of the most widely studied mathematical programming problems, which, for
example, contains linear and convex quadratic programming problems. Deciding
whether LCP(M, q) has a solution for an arbitrary matrix M is NP-complete [7].
However, there are several classes of matrices M for which the associated LCP
can be solved in polynomial time: for instance, positive semidefinite matrices [22],
and Z-matrices (all off-diagonal entries are nonpositive) [3,14,25]. It is also known
that M is a P-matrix, in which principal minors are all positive, if and only if
LCP(M, q) has a unique solution for every q [27]. For details of theory of LCPs,
see the books of Cottle, Pang, and Stone [13] and Murty [26].
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In this paper, we focus on LCP with sparse coefficient matrix M . We denote
by k-LCP the LCP whose coefficient matrix has at most k nonzero entries per
row. For example, 2-LCP can have the following matrices:

M1 =

⎛⎝ 0 −1 3
0 1 1
−2 0 0

⎞⎠ , M2 =

⎛⎝2 −1 0
0 3 0
5 0 −4

⎞⎠ .

Remark that the general LCP can be reduced to 3-LCP by introducing new
variables.

Sparse LCP appears in the context of game theory. For example, mean payoff
games can be formulated as 3-LCP [2]. Moreover, bimatrix games, which can
be formulated as LCP, has been investigated in terms of sparsity in algorithmic
game theory. A bimatrix game is k-sparse if each column and row in both payoff
matrices of the game have at most k nonzero entries [6,8,16,18].

Sparsity has also been attracting attention for the feasibility problem of sys-
tems of linear inequalities. A system of linear inequalities, i.e., a system of the
form Ax ≤ b, where A ∈ Rm×n and b ∈ Rm, can be reformulated as a system
of linear inequalities where each inequality involves at most three variables. If
each inequality involves at most two variables, it is called a TVPI system1. A
TVPI system can be naturally represented as a graph which has a vertex for each
variable and an edge for each inequality, where an edge connects the vertices cor-
responding to the variables involved by the inequality. Shostak [29] proved that
feasibility of a TVPI system can be decided by following paths and cycles in such
a graph. This idea was used to design the first polynomial-time algorithm [1].
Cohen and Megiddo [9] and Hochbaum and Naor [20] proposed improved al-
gorithms which run in O(mn2(logm + log2 n)) time and O(mn2 logm) time,
respectively, where m and n denote the number of constraints and variables,
respectively. Any TVPI system can further be transformed to a sign-balanced
TVPI system, where the two nonzero coefficients in each inequality have oppo-
site signs. A sign-balanced TVPI system is also called a monotone TVPI system.

We say that 2-LCP is sign-balanced if the coefficient matrixM has at most one
positive and negative entries per row. The matrix M2 above is such an example.
We note that sign-balanced TVPI systems with nonnegativity constraints can
be formulated as sign-balanced 2-LCP.

The first main result of this paper is to present a polynomial-time combina-
torial algorithm for sign-balanced 2-LCP.

Theorem 1. Sign-balanced 2-LCP of order n can be solved in O(n3 log n) time.

We remark that the complexity of Theorem 1 matches with the currently best
known bound, due to Hochbaum and Naor [20], for the feasibility problem of
sign-balanced TVPI systems with nonnegativity constraints. This implies that in
order to improve the complexity of Theorem 1, we need to have a faster algorithm
for the feasibility problem of sign-balanced TVPI systems with nonnegativity
constraints.

1 TVPI stands for “two variables per inequality.”
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It should also be noted that Theorem 1 is not obtained from the results for
the other well-known subclasses of LCP that focus on the sign pattern of M ,
such as Z-LCP (i.e., the coefficient matrix is restricted to be a Z-matrix) and
sign-solvable LCP introduced by Kakimura [21].

On the other hand, it turns out that 2-LCP seems to be intractable.

Theorem 2. 2-LCP is NP-hard in the strong sense.

Since 1-LCP can easily be solved in linear time, Theorems 1 and 2 completely
reveal computational complexity of the LCP in terms of sparsity. Note that 3-
LCP is clearly NP-hard, since LCP can be reduced to 3-LCP in polynomial time.
The first row in Table 1 summarizes our results for LCP.

Toward proving Theorem 1, we first design a simple combinatorial algorithm
for sign-balanced 2-LCP. For a given instance of sign-balanced 2-LCP(M, q),
consider the TVPI system S obtained by dropping the complementarity condi-
tion in (1). The algorithm computes the least element of S to find one of given
constraints that needs to be satisfied with equality. By repeating this at most
n + 1 times, we can find in polynomial time a solution of the instance or con-
clude that it is infeasible. To reduce the running time, we exploit deep results for
sign-balanced TVPI systems. Cohen and Megiddo [9] presented an efficient pro-
cedure to decide whether a given feasible TVPI system is still feasible by adding
new upper and lower bounds for each variable. We apply the procedure to S,
which is not necessarily feasible, to find a constraint that needs to be satisfied
with equality. Note that the obtained result by applying the Cohen–Megiddo’s
procedure might be wrong, since we might apply it to an infeasible system S.
Thus after finishing all the iterations, we check if the obtained result is correct
or not.

The LCP is said to be unit if the coefficient matrix M is restricted to belong
to {0,±1}n×n.

Theorem 3. Unit sign-balanced 2-LCP of order n can be solved in O(n2 logn)
time.

The result is based on the framework of the simple algorithm for sign-balanced
2-LCP, in which we compute the least element by reduction to the shortest-path
problem.

In addition, we discuss an integer variant of LCP. Given a matrix M ∈ Zn×n,
a vector q ∈ Zn, and a positive integer d, the integer LCP is the problem to find
two integer vectors w, z satisfying (1) with z ∈ {0, 1, . . . , d − 1}n. Integer LCP
was first considered by Du Val [17] and Chandrasekaran [4] in the context of
least element theory. Chandrasekaran, Kabadi and Sridhar [5] and Cunningham
and Geelen [15] independently proposed sufficient conditions on a matrixM such
that for every q, LCP(M, q) has an integer solution.

In this paper, we obtain the following result on integer sparse LCP. See also
Table 1.

Theorem 4. Integer sign-balanced 2-LCP is weakly NP-hard, and can be solved
in pseudo-polynomial time.
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The weak NP-hardness follows from the fact that finding an integer solution to a
sign-balanced TVPI system is weakly NP-hard [23]. The algorithm in Theorem
4 has a similar framework to the algorithm in Theorem 1. We here need to
find the least element of integer solutions in the sign-balanced TVPI systems
obtained from a given LCP instance, which can be done in pseudo-polynomial
time [19,20]. Note that the proof of Theorem 2 immediately implies that integer
2-LCP is NP-hard in the strong sense.

Finally, we investigate a generalization of LCPs in terms of sparsity. The
generalized LCP (GLCP), which was introduced by Cottle and Dantzig [12], is a
generalization of LCP from a square coefficient matrix to a vertical rectangular
one.

Theorem 5. 1-GLCP (i.e., the GLCP whose coefficient matrix that has at most
one nonzero entry per row) is NP-hard in the strong sense.

Table 1. Computational complexity of k-LCPs

k 1 sign-balanced 2 2 ≤
LCP O(n) O(n3 logn) NP-hard

integer LCP O(n) pseudo-polynomial NP-hard

GLCP NP-hard

This paper is organized as follows. Section 2 describes existing results of sign-
balanced TVPI systems. Section 3 proposes a simple polynomial-time algorithm
for sign-balanced 2-LCP. Section 4 improves the algorithm in Section 3 using the
Cohen–Megiddo’s procedure. Section 5 shows the NP-hardness of 2-LCP. Due
to the space limitation, the proofs of Theorem 3–5 are omitted. They may be
found in the full version of the paper [30].

2 Sign-Balanced TVPI Systems

Let F be the feasible region of a sign-balanced TVPI system. It is well known that
if x, y ∈ F then the meet z = x∧y is contained in F , where (x∧y)i = min(xi, yi).
Indeed, for each inequality ajxj + akxk ≥ bi (aj > 0, ak < 0), we may assume
that zj = yj , and we have ajzj + akzk ≥ ajyj + akyk ≥ bi, which implies z ∈ F .
If F is bounded below, then there is a vector u ∈ F such that for any z ∈ F ,
we have z ≥ u. Such a vector is called the least element of F . Moreover, F ∩ Zn

also has these properties.
The remaining of this section is organized as follows. In Section 2.1, we present

Shostak’s characterization of infeasibility of a TVPI system by a graph. The
characterization is used by Cohen and Megiddo to design a combinatorial algo-
rithm for solving TVPI systems. To solve the problem, their algorithm decides
O(n(log2 n+ logm)) times whether a given feasible TVPI system is still feasible
by adding a bound for one variable, where m and n are the number of con-
straints and variables, respectively. Cohen and Megiddo presented a procedure
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(Algorithm 2.18 in [9]) which solves a more general decision problem based on
Shostak’s characterization, which runs in O(n2) time. We describe the procedure
in Section 2.2, which will be used in Section 4.

2.1 Characterization by a Graph

Shostak [29] introduced a representation of a TVPI system by a graph and gave
a characterization of infeasibility of the system in terms of the graph. The char-
acterization is a generalization of a negative cycle in the shortest-path problem.

Let S be a TVPI system over variables x1, . . . , xn. Shostak [29] represented S
as an undirected graph G = (V,E) as follows. For each variable xi, the graph G
has the vertex vi. Moreover, G has an additional vertex v0. For each inequality
axj + bxk ≤ c (a, b �= 0), the graph G has the edge {vj , vk}. For each single-
variable inequality xi ≥ α (or xi ≤ β), the graph G has the edge {vi, v0}. For
notational convenience, we introduce a new variable x0 corresponding to v0, and
regard xi ≥ α (resp., xi ≤ β) as xi + bx0 ≥ α (resp., xi + bx0 ≤ β) with b = 0.

Let P = (e1, . . . , el) be a path in G, where ei = {vpi , vpi+1} represents an
inequality aixpi + bixpi+1 ≤ ci for i = 1, . . . , l. If bi and ai+1 have opposite signs
for i = 1, . . . , l−1, that is, one is positive and the other is negative, then P is said
to be admissible. Note that the reverse of an admissible path is also admissible,
and v0 cannot be an intermediate vertex of an admissible path. An admissible
path P induces a new inequality aPxp1 + bPxpl+1

≤ cP by eliminating common
variables xp2 , . . . , xpl

. For example, two inequalities aixpi + bixpi+1 ≤ ci and
ai+1xpi+1+bi+1xpi+2 ≤ ci+1 imply ai|ai+1|xpi+bi+1|bi|xpi+2 ≤ ci|ai+1|+ci+1|bi|.
Any feasible solution to S satisfies all new inequalities induced by admissible
paths in G.

A path is called a loop if the initial and last vertices are identical. An
admissible loop L with initial vertex vp1 induces a single-variable inequality
(aL + bL)xp1 ≤ cL. Note that if vp1 = v0, then aL = bL = 0 holds. We define
the extended graph Ḡ of G by adding for each simple admissible loop L in G
with initial vertex vi (vi �= v0), a new edge which represents the single-variable
inequality induced by L. If Ḡ has an admissible loop L that induces a new in-
equality (aL + bL)xi ≤ cL such that aL + bL = 0 and cL < 0, then the loop L is
called infeasible, in the sense that there is no vector satisfying the new inequality.
Shostak showed infeasibility of S is equivalent to existence of a simple infeasible
loop in Ḡ.

Theorem 6 ([29]). A TVPI system S is feasible if and only if the extended
graph Ḡ has no simple infeasible loop.

2.2 Cohen–Megiddo’s Procedure

In this subsection, we present a procedure of Cohen and Megiddo, which corre-
sponds to Algorithm 2.18 in [9].

Let S be a feasible TVPI system, which may contain a single-variable linear
inequality. By Theorem 6, Ḡ has no simple infeasible loop. Let T be a set of
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single-variable inequalities, and GT be the graph associated with S∪T . Theorem
6 implies that infeasibility of S∪T is equivalent to existence of a simple infeasible
loop L in the extended graph ḠT of GT . Since Ḡ has no simple infeasible loop,
L contains the vertex v0, and at least one of the two edges incident to v0 is an
edge of T . Let T ′ ⊆ T be the set of single-variable inequalities corresponding to
the one or two edges. Then |T ′| ≤ 2 and S ∪ T ′ is infeasible by definition.

Given a feasible TVPI system S and a set T of single-variable inequalities, the
Cohen–Megiddo’s procedure decides whether S∪T is feasible or not, by detecting
a simple infeasible loop in ḠT if exists. By above discussion, the procedure can
be equivalently written as follows:

Cohen–Megiddo’s procedure

Input: a feasible TVPI system S and a set T of single-variable linear in-
equalities.

Output: find a nonempty set T ′ ⊆ T such that |T ′| ≤ 2 and S ∪ T ′ is
infeasible, or return that S ∪ T is feasible.

In particular, when S is a feasible sign-balanced TVPI system, the output T ′

of the Cohen–Megiddo’s procedure has at most one upper and lower bounds.
This is implicitly shown in [9], but we give a proof for correctness.

Lemma 1. Let S be a feasible sign-balanced TVPI system. Let T be a set of
single-variable linear inequalities such that S ∪ T is infeasible. Then the output
T ′ ⊆ T of the Cohen–Megiddo’s procedure contains at most one upper and lower
bounds.

Proof. Let L be a simple infeasible loop with initial vertex v0 and e1, e2 be edges
of L incident to v0. Let P be the path obtained by L \ {e1, e2}. Since S is sign-
balanced, the inequality induced by P has one positive and negative coefficients.
Since L is admissible, this means that either e1 or e2 represents an upper bound
and the other represents a lower bound. At least one of e1 and e2 is due to T ,
and hence the statement holds. 	


Cohen and Megiddo achieved the following running time.

Theorem 7 ([9]). Let S be a feasible TVPI system with m inequalities and n
variables. The Cohen–Megiddo’s procedure terminates in O(mn) time.

3 Simple Algorithm for Sign-Balanced 2-LCP

In this section, we present an O(n4 logn) time algorithm for sign-balanced 2-
LCP. The main idea of our algorithm is reduction of the problem to a sign-
balanced TVPI system.

LCP(M, q) can be regarded as a problem to find a vector z satisfying z�(Mz+
q) = 0 in F := {z | Mz + q ≥ 0, z ≥ 0}. Once we obtain such a vector z,
the pair (w, z), where w = Mz + q, is a solution to LCP(M, q). We denote
SOL(M, q) := {z |Mz + q ≥ 0, z ≥ 0, z�(Mz + q) = 0}.
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If F = ∅, then LCP(M, q) has no solution. Suppose that F �= ∅. Since F is
the feasible region of a sign-balanced TVPI system bounded below, F has the
least element u. If u satisfies u�(Mu + q) = 0, then u is clearly a solution to
LCP(M, q). Otherwise, i.e., if u does not satisfy u�(Mu + q) = 0, then there
is an index i ∈ [n] := {1, . . . , n} such that ui > 0 and (Mu + q)i > 0. This
implies that any z ∈ SOL(M, q) satisfies zi ≥ ui > 0, and hence z satisfies
(Mz + q)i = 0. Thus SOL(M, q) ⊆ (F ∩ {z | (Mz + q)i ≤ 0}), which means
that we can restrict F with a constraint (Mz + q)i ≤ 0, that is, replace F by
F ∩ {z | (Mz + q)i ≤ 0}. Since the inequality (Mz + q)i ≤ 0 has at most one
positive and negative coefficients, F is still the feasible region of a sign-balanced
TVPI system. Moreover, any z ∈ F satisfies zi(Mz + q)i = 0.

We repeat the procedure mentioned above until the least element of F satisfies
z�(Mz + q) = 0 or F turns out to be empty, i.e., LCP(M, q) is infeasible.
Consequently, sign-balanced 2-LCP(M, q) is solved. Note that the number of
repetition is at most n+ 1.

The algorithm is summarized as follows.

Algorithm 1.
Step 1. F := {z |Mz + q ≥ 0, z ≥ 0}.
Step 2. For j = 0, . . . , n

Find the least element u of F . If u does not exist, then return that
LCP(M, q) is infeasible.
If u satisfies u�(Mu+q) = 0, then return u. If u does not satisfy u�(Mu+
q) = 0, then find an index i such that ui > 0 and (Mu+ q)i > 0, update
F ← {z ∈ F | (Mz + q)i ≤ 0}, and go to the next iteration.

It remains to discuss how to find the least element of F at Step 2. The least
element of F is obtained by solving the linear programming problem min{1�z |
z ∈ F}, where 1 is the vector whose elements are all one. Since Algorithm 1
requires to find the least element at most n + 1 times, Algorithm 1 can find a
solution to LCP(M, q) in polynomial time if exists.

The least element can be found more efficiently in a combinatorial way.
Hochbaum and Naor [20] noted that their algorithm for TVPI systems can com-
pute the least element of a sign-balanced TVPI system. Their algorithm runs in
O(n3 logn) time, where n is the order of a given LCP instance, and hence the
running time of Algorithm 1 reduces to O(n4 logn) time in total.

Theorem 8. Algorithm 1 solves sign-balanced 2-LCP of order n in O(n4 logn)
time.

For example, consider LCP(M, q), where

M =

(
−1 1
−2 1

)
, q =

(
−2
3

)
.

The least element of F is u = (0 2)�, which does not satisfy z�(Mz + q) = 0
since Mu + q = (0 5)�. In this case, we have u2 > 0 and (Mu + q)2 > 0. We
update F to F ∩ {z | −2z1 + z2 + 3 ≤ 0}. Then the least element shifts to
u′ = (5 7)�. Since Mu′ + q = 0, we have u′ ∈ SOL(M, q).
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4 Improved Algorithm for Sign-Balanced 2-LCP

Recall that the main step of Algorithm 1 is finding the least element of the
feasible region of a sign-balanced TVPI system S to detect an index i such that
zi > 0 for any solution z of a given LCP(M, q). In our improved algorithm, we
directly detect such an index i without finding the least element.

For that purpose, we execute the Cohen–Megiddo’s procedure described in
Section 2.2 by setting T to be a set of single-variable inequalities in the form of
zi ≤ 0. However, the procedure is guaranteed to run correctly only for feasible
TVPI systems, while S is not necessarily feasible in our algorithm. In fact, the
procedure may return that S ∪T is “feasible” when S is infeasible. For example,
let S be the TVPI system consisting of the following eight constraints:

e1 : z1 − 2z2 ≤ −1, e2 : 2z2 − z3 ≤ 3, e3 : z3 − z1 ≤ −3,
e4 : −z1 + 2z2 ≤ 1, e5 : −2z2 + z3 ≤ −3,
e6 : z1 ≥ 0, e7 : z2 ≥ 0, e8 : z3 ≥ 0,

and T = {e9 : z3 ≤ 0}. Let G be the graph associated with S as described in Sec-
tion 2.1, whose edges are e1, . . . , e8. The simple admissible loop (e1, e2, e3) induces
0 ≤ −1, which implies infeasibility of S by Theorem 6. However, the extended
graph ḠT of S ∪ T , which coincides with the graph GT associated with S ∪ T ,
has only two simple admissible loops with initial vertex v0, namely, (e6, e1, e2, e9)
and (e7, e2, e9). Since neither of the two loops is infeasible, the Cohen–Megiddo’s
procedure decides that S ∪ T is “feasible,” which is a contradiction.

Nevertheless, if the Cohen–Megiddo’s procedure finds a nonempty subset T ′

of size at most two, then the system S ∪ T ′ is known to be infeasible without
regard to feasibility of S. Moreover, we will show in Lemma 2 below that T ′ has
the form {zi ≤ 0}, which corresponds to an index i such that zi > 0 for any
solution z to LCP(M, q). Then, in a similar way to Algorithm 1, we can add a
new constraint (Mz + q)i ≤ 0 to S by complementarity, and repeat this until
the Cohen–Megiddo’s procedure returns that S ∪ T is “feasible.” During and at
the end of the repetition, we do not require that the sign-balanced TVPI system
S is feasible. Instead, we need to solve a sign-balanced TVPI system at the last
step in order to verify the feasibility of S.

A formal description of our algorithm is given as follows. For a set I ⊆ [n],
let Ī := [n] \ I. We denote by zI a subvector of z which consists of entries with
coordinates in I ⊆ [n].

Algorithm 2.
Step 1. I := [n], F := {z |Mz + q ≥ 0, z ≥ 0}.
Step 2. While I �= ∅, do Step 3.
Step 3. Let S be the sign-balanced TVPI system Mz+q ≥ 0, z ≥ 0, (Mz+

q)Ī ≤ 0 and T = {zi ≤ 0 | i ∈ I}.
Execute the Cohen–Megiddo’s procedure with inputs S and T . If the
procedure returns T ′ = {zi ≤ 0} (for some i ∈ I), then update I ←
I \ {i}, F ← F ∩ {z | (Mz + q)i ≤ 0} and go to the next iteration.
Otherwise, go to Step 4.
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Step 4. Find a feasible vector of F ∩ {z | zI ≤ 0}, that is, solve

zI = 0, zĪ ≥ 0, (Mz + q)I ≥ 0, (Mz + q)Ī = 0. (2)

If a feasible vector z∗ exists, then return z∗. Otherwise, return that
LCP(M, q) is infeasible.

For correctness of Algorithm 2, we show the following lemma. Note that
throughout Algorithm 2, F remains to be the feasible region of a sign-balanced
TVPI system.

Lemma 2. Let LCP(M, q) be a sign-balanced 2-LCP instance. LCP(M, q) has
a solution if and only if the sign-balanced TVPI system (2) is feasible.

Proof. The if-part is easy to see. It suffices to show the only-if-part. Suppose that
LCP(M, q) has a solution. At Step 1, F is not empty because SOL(M, q) ⊆ F .

We will show that throughout the execution of Step 3, it holds that

1. any z ∈ SOL(M, q) satisfies zi > 0 for all i ∈ Ī, and
2. SOL(M, q) ⊆ F .

These claims hold at the beginning, that is, when I = [n]. Suppose that
the claims hold for some I ⊆ [n]. We may assume that the Cohen–Megiddo’s
procedure returns a nonempty subset T ′ ⊆ T . Since T contains only upper
bounds, T ′ contains only one upper bound, that is, zi ≤ 0 for some i ∈ I, by
nonemptiness of F and Lemma 1. Since S ∪ {zi ≤ 0} is infeasible, any z′ ∈ F
satisfies z′i > 0, and hence any z ∈ SOL(M, q) satisfies (Mz + q)i = 0 by
SOL(M, q) ⊆ F . This implies that SOL(M, q) ⊆ (F ∩ {z | (Mz + q)i ≤ 0}).
Thus the claims hold.

Therefore, S always has a solution during Step 3 by the second claim. Hence,
when we go to Step 4, S ∪ {zi ≤ 0 | i ∈ I} is feasible, because the Cohen–
Megiddo’s procedure works correctly. Thus (2) has a solution. 	


We discuss the time complexity of Algorithm 2. The following theorem implies
Theorem 1.

Theorem 9. Algorithm 2 solves sign-balanced 2-LCP of order n in O(n3 logn)
time.

Proof. The number of repetitions in Step 3 is at most n since |I| decreases by
one at each repetition. The execution time of each repetition is O(n2) time by
Theorem 7. Therefore, Algorithm 2 takes O(n3) time to go through Step 3. At
Step 4, since the TVPI system (2) has at most 3n inequalities, it is solvable in
O(n3 logn) time by the algorithm of Hochbaum and Naor [20]. This concludes
the proof. 	


Remark 1. The running time of Algorithm 2 can be written as O(n3+TLI(n, n))
time, where TLI(m,n) denotes the time complexity for solving a TVPI system
with m constraints and n variables. In other words, Algorithm 2 reduces sign-
balanced 2-LCP to sign-balanced TVPI system in O(n3) time.

Remark 2. A sign-balanced TVPI system Ax ≤ b, x ≥ 0 where A ∈ Rm×n, b ∈
Rn can be formulated as a sign-balanced 2-LCP instance with
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M =

(m n

m 0 −A
n 0 0

)
, q =

(
b
0

)
.

This implies that sign-balanced 2-LCP cannot be solved faster than sign-
balanced TVPI system with nonnegativity constraints, whose current best run-
ning time is O(n3 logn) [20] when m = O(n). Theorem 9 shows that Algorithm
2 achieves the same running time.

5 NP-Hardness for 2-LCP

In this section, we prove Theorem 2, which says that 2-LCP is NP-hard. This is
contrast to the fact that a TVPI system can be solved in polynomial time even
if the system is not sign-balanced. The NP-hardness can be proved by reduction
of monotone one-in-three 3SAT to 2-LCP.

Given a monotone 3CNF formula ψ =
∧m

j=1(xj1 ∨ xj2 ∨ xj3 ) with n literals,
the monotone one-in-three 3SAT is a problem to decide whether there exists an
assignment to (x1, . . . , xn) so that for each clause, exactly one literal is true.
The monotone one-in-three 3SAT is introduced and proved to be NP-complete
by Schaefer [28].

Proof of Theorem 2. Let ψ =
∧m

j=1(xj1 ∨ xj2 ∨ xj3) be a monotone one-in-three
3SAT instance with n literals. We construct an instance of 2-LCP of order n+9m
from ψ as follows: for each literal i = 1, . . . , n, define

wi + zi = 1. (3)

Moreover, for each clause j = 1, . . . ,m, letting pj = n+ 9(j − 1), set

wpj+1 + zj2 + zj3 = 1, zj1 + wpj+2 + zj3 = 1, zj1 + zj2 + wpj+3 = 1, (4)

and in addition, set

wpj+4 − zpj+1 − zj1 = −1, wpj+5 + zpj+1 + zj1 = 1,

wpj+6 − zpj+2 − zj2 = −1, wpj+7 + zpj+2 + zj2 = 1, (5)

wpj+8 − zpj+3 − zj3 = −1, wpj+9 + zpj+3 + zj3 = 1.

Consider the instance of 2-LCP consisting of the above constraints (3), (4) and
(5). Note that (5) is equivalent to

zpj+1 + zj1 = 1, zpj+2 + zj2 = 1, zpj+3 + zj3 = 1, (6)

since wpj+� ≥ 0 for � = 4, 5, . . . , 9.
We denote by M and q the coefficient matrix and the constant vector of the

above instance of 2-LCP. We will show that LCP(M, q) has a solution if and
only if the monotone one-in-three 3SAT instance ψ is a true instance.

First assume that LCP(M, q) has a solution (w, z). By (3), for any i = 1, . . . , n,
it holds that (wi, zi) = (0, 1) or (wi, zi) = (1, 0). Assign each literal xi true if
zi = 1 and false otherwise.



368 H. Sumita, N. Kakimura, and K. Makino

We will claim that x is a truth assignment for ψ, that is, each clause has
exactly one true literal. Indeed, for each clause j, if zj1 = 0 then wpj+1 = 0 by
(6) and the complementarity, and hence exactly one of zj2 and zj3 is equal to
one by the first equation in (4). If zj1 = 1 then zj2 = zj3 = 0 by the second and
third equations in (4). Thus each clause has exactly one true literal.

Conversely, assume that ψ is a true instance. Let x = (x1, . . . , xn) be a truth
assignment of ψ. Define z ∈ Rn+9m as follows: For i = 1, . . . , n, set zi = 1 if xi is
true, and zi = 0 if xi is false. For j = 1, . . . ,m, set zpj+� = 1− zj� for � = 1, 2, 3
and zpj+� = 0 for � = 4, . . . , 9. Define w = Mz+ q. Then the pair (w, z) satisfies
(3), (4) and (5), and w, z ≥ 0 holds.

We claim that the pair (w, z) is a solution of LCP(M, q). To prove this, it
remains to show that the pair (w, z) satisfies w�z = 0. For i = 1, . . . , n, it clearly
holds that wizi = 0 by (3). Let j ∈ {1, . . . ,m}. Since the clause j has exactly
one true literal, we may suppose by symmetry that zj1 = 1 and zj2 = zj3 = 0.
By (4), it holds that wpj+1 = 1 and wpj+2 = wpj+3 = 0. On the other hand, we
have zpj+1 = 0 and zpj+2 = zpj+3 = 1 by (6), which means that wpj+�zpj+� = 0
for � = 1, 2, 3. For � = 4, . . . , 9, we have wpj+�zpj+� = 0 since zpj+� = 0. Thus
the complementarity condition is satisfied.

Therefore, LCP(M, q) has a solution if and only if ψ is a true instance, and
thus the statement holds. 	
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Abstract. The Fault-Tolerant Facility Placement problem (FTFP) is a
generalization of the Uncapacitated Facility Location Problem (UFL).
In FTFP we are given a set of facility sites and a set of clients. Opening
a facility at site i costs fi and connecting client j to a facility at site
i costs dij , where the costs dij satisfy the triangle inequality. Multiple
facilities can be opened at any site. Each client j has a demand rj , which
means that it needs to be connected to rj different facilities. The goal
is to minimize the sum of facility opening cost and connection cost. The
main result of this paper is a 1.575-approximation algorithm for FTFP,
based on LP-rounding.

1 Introduction

In the Fault-Tolerant Facility Placement problem (FTFP), we are given a set
F of sites at which facilities can be built, and a set C of clients with some
demands that need to be satisfied by different facilities. A client j has demand
rj . Building one facility at a site i costs fi, and connecting one unit of demand
from client j to a facility at site i ∈ F costs dij . The connection costs dij are
symmetric and satisfy the triangle inequality. In a feasible solution, some number
of facilities, possibly zero, are opened at each site i, and demands from each client
are connected to those open facilities, with the constraint that demands from
the same client have to be connected to different facilities.

It is easy to see that if all rj = 1 then FTFP reduces to the classic Uncapaci-
tated Facility Location problem (UFL). If we add a constraint that each site can
have at most one facility, then the problem is equivalent to the Fault-Tolerant
Facility Location problem (FTFL).

Great progress has been achieved lately in designing approximation algorithms
for UFL. Shmoys et al. [14] proposed an approach based on LP-rounding, achiev-
ing a ratio of 3.16. This was then improved by Chudak [5] to 1.736, and later by
Sviridenko [15] to 1.582. Byrka [2] gave an improved algorithm with ratio 1.5,
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by a combination of LP-rounding with dual-fitting techniques. Recently, Li [12]
refined the method from [2] to obtain ratio 1.488, which is now the best known
approximation result for UFL. Other techniques include the primal-dual algo-
rithm by Jain and Vazirani [10], the dual fitting method by Jain et al. [9], and a
local search heuristic by Arya et al. [1]. On the hardness side, it is known that
it is not possible to approximate UFL in polynomial time with ratio less than
1.463, provided that NP �⊆ DTIME(nO(log logn)) [6]. An observation by Sviridenko
strengthened this assumption to P �= NP [17].

FTFL was first introduced by Jain and Vazirani [11] who gave a primal-dual
algorithm with ratio 3 ln(maxj∈C rj). All subsequently discovered constant-ratio
approximation algorithms use variations of LP-rounding, including the work by
Guha et al. [7], Swamy and Shmoys [16], and Byrka et al. [4], who improved the
ratio to 1.7245, the best known approximation ratio for FTFL.

FTFP is a natural generalization of UFL. It was first studied by Xu and
Shen [18], who presented an approximation algorithm with a ratio claimed to
be 1.861. However their algorithm runs in polynomial time only if maxj∈C rj
is polynomial in O(|F| · |C|) and their analysis of the approximation ratio is
flawed1. To date, the best ratio for FTFP is 3.16 in [19], while the only known
lower bound is the 1.463 lower bound for UFL from [6], that applies to FTFP.

The main result of this paper is an LP-rounding algorithm for FTFP with
approximation ratio 1.575, matching the best ratio for UFL achieved via the LP-
rounding method [3] and significantly improving the bound in [19]. In Section 3
we prove that, for the purpose of LP-based approximations, we can assume
that all demand values are polynomial in the number of sites. This demand
reduction trick itself gives us ratio 1.7245, since we can then reduce the problem
to FTFL and use the algorithm from [4]. It also ensures that our algorithms
run in polynomial time. If all demand values rj are equal, the problem can
be solved by simple scaling and applying LP-rounding algorithms for UFL. This
does not affect the approximation ratio, thus achieving ratio 1.575 for this special
case (see also [13]). In Section 4, we demonstrate a technique called adaptive
partitioning, which splits clients into unit demands and partitions the optimal
fractional solution into a fractional solution of the split instance. By exploiting
structural properties of the partitioned solution we were able to extend UFL
rounding algorithms in [8,5,3], retaining the approximation ratio.

2 The LP Formulation

The FTFP problem has a natural Integer Programming (IP) formulation. Let yi
represent the number of facilities built at site i and let xij represent the number
of connections from client j to facilities at site i. If we relax the integrality
constraints, we obtain the following LP and its dual:

1 Confirmed through private communication with the authors.
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min cost(x,y) =
∑

i∈F
fiyi +

∑
i∈F,j∈C

dijxij

(1)

s.t. yi − xij ≥ 0 ∀i ∈ F, j ∈ C∑
i∈F

xij ≥ rj ∀j ∈ C

xij ≥ 0, yi ≥ 0 ∀i ∈ F, j ∈ C

max
∑

j∈C
rjαj (2)

s.t.
∑

j∈C
βij ≤ fi ∀i ∈ F

αj − βij ≤ dij ∀i ∈ F, j ∈ C

αj ≥ 0, βij ≥ 0 ∀i ∈ F, j ∈ C

In the paper we fix some optimal solutions of the LPs (1) and (2) that we denote
by (x∗,y∗) and (α∗,β∗), respectively. We then define the optimal facility cost as
F ∗ =

∑
i∈F

fiy
∗
i and the optimal connection cost as C∗ =

∑
i∈F,j∈C

dijx
∗
ij . Then

LP∗ = cost(x∗,y∗) = F ∗ +C∗ is the joint optimal value of (1) and (2). We can
also associate with each client j its fractional connection cost C∗

j =
∑

i∈F
dijx

∗
ij .

We use notation OPT for the optimal integral solution of (1).
Define (x∗,y∗) to be complete if x∗

ij > 0 implies that x∗
ij = y∗i for all i, j. As

shown in [5], we can modify the given instance by adding at most |C| sites to
obtain an equivalent instance that has a complete optimal solution.

3 Reduction to Polynomial Demands

This section presents a demand reduction trick that reduces the problem for
arbitrary demands to a special case where demands are bounded by |F|. The
reduction is based on a complete optimal fractional solution (x∗,y∗) of LP (1).
We split this solution into two parts, namely (x∗,y∗) = (x̂, ŷ) + (ẋ, ẏ), where
ŷi ← �y∗i �, x̂ij ← �x∗

ij� and ẏi ← y∗i − �y∗i �, ẋij ← x∗
ij − �x∗

ij� for all

i, j. Now we construct two FTFP instances Î and İ with the same parameters
as the original instance, except that the demand of each client j is r̂j =

∑
i∈F

x̂ij

in Î and ṙj =
∑

i∈F
ẋij = rj − r̂j in İ. It is obvious that if we have integral

solutions to both Î and İ then, when added together, they form an integral
solution to the original instance. Moreover, it can be shown that (i) (x̂, ŷ) is a
feasible integral solution to instance Î. (ii) (ẋ, ẏ) is a feasible fractional solution
to instance İ. (iii) ṙj ≤ |F| for every client j. From these properties, we derive
the following theorem (proof omitted).

Theorem 1. Suppose that there is a polynomial-time algorithm A that, for any
instance of FTFP with maximum demand bounded by |F|, computes an integral
solution that approximates the fractional optimum of this instance within factor
ρ ≥ 1. Then there is a ρ-approximation algorithm A′ for FTFP.

4 Adaptive Partitioning

In this section we develop our second technique, which we call adaptive parti-
tioning. Given an FTFP instance and an optimal fractional solution (x∗,y∗)
to LP (1), we split each client j into rj individual unit demand points (or
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just demands), and we split each site i into no more than |F| + 2R|C|2 facil-
ity points (or facilities), where R = maxj∈C rj . We denote the demand set by
C and the facility set by F, respectively. We will also partition (x∗,y∗) into a
fractional solution (x̄, ȳ) for the split instance. We will typically use symbols
ν and μ to index demands and facilities respectively, that is x̄ = (x̄μν ) and
ȳ = (ȳμ). The neighborhood of a demand ν is N(ν) =

{
μ ∈ F : x̄μν > 0

}
. We

will use notation ν ∈ j to mean that ν is a demand of client j; similarly, μ ∈ i
means that facility μ is on site i. Different demands of the same client (that
is, ν, ν′ ∈ j) are called siblings. Further, we use the convention that fμ = fi
for μ ∈ i, α∗

ν = α∗
j for ν ∈ j and dμν = dμj = dij for μ ∈ i and ν ∈ j.

We define Cavg
ν =

∑
μ∈N(ν) dμν x̄μν =

∑
μ∈F

dμν x̄μν . One can think of Cavg
ν as

the average connection cost of demand ν, if we chose a connection to facility μ
with probability x̄μν . Our partition algorithm resembles superficially to the un-
crossing technique in Guha et al.’s [7] O(1)-approximation algorithm for FTFL,
nonetheless our construction and resulted structure is more delicate.

Some demands in C will be designated as primary demands and the set of
primary demands will be denoted by P . In addition, we will use the overlap
structure between demand neighborhoods to define a mapping that assigns each
demand ν ∈ C to some primary demand κ ∈ P . As shown in the rounding
algorithms in later sections, for each primary demand we guarantee exactly one
open facility in its neighborhood, while for a non-primary demand we estimate
its connection cost by the distance to the facility opened by its assigned primary
demand. For this reason the connection cost of a primary demand must be
“small” compared to the non-primary demands assigned to it. To have a bound
on the facility cost, we can think of the fractional x∗

ij as the budget of how
much a client j can use a site i, so (PS.2) means all demands of a client j
together can only use as much as x∗

ij . The reason we need (PS.1) is two-fold: (i)
to have a proper distribution when select one of facility in a primary demand’s
neighborhood and, (ii) to obtain an estimate on the probability that none of a
demand’s neighbor is open. We also need sibling demands assigned to different
primary demands to satisfy the fault-tolerance requirement. The properties are
detailed below.

(PS) Partitioned solution. Vector (x̄, ȳ) is a partition of (x∗,y∗), with unit-
value demands, that is:

1.
∑

μ∈F
x̄μν = 1 for each demand ν ∈ C.

2.
∑

μ∈i,ν∈j x̄μν = x∗
ij for each site i ∈ F and client j ∈ C.

3.
∑

μ∈i ȳμ = y∗i for each site i ∈ F.
(CO) Completeness. Solution (x̄, ȳ) is complete, that is x̄μν �= 0 implies x̄μν =

ȳμ, for all μ ∈ F, ν ∈ C.
(PD) Primary demands. Primary demands satisfy the following conditions:

1. For any two different primary demands κ, κ′ ∈ P we haveN(κ)∩N(κ′) =
∅.

2. For each site i ∈ F,
∑

μ∈i

∑
κ∈P x̄μκ ≤ y∗i .

3. Each demand ν ∈ C is assigned to one primary demand κ ∈ P such that
(a) N(ν) ∩N(κ) �= ∅, and
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(b) Cavg
ν + α∗

ν ≥ Cavg
κ + α∗

κ.

(SI) Siblings. For any pair ν, ν′ of different siblings we have
1. N(ν) ∩N(ν′) = ∅.
2. If ν is assigned to a primary demand κ then N(ν′)∩N (κ) = ∅. In partic-

ular, by Property (PD.3(a)), this implies that different sibling demands
are assigned to different primary demands.

As we shall demonstrate in later sections, these properties allow us to extend
known UFL rounding algorithms to obtain an integral solution to our FTFP
problem with a matching approximation ratio. (For the 1.575-approximation
algorithm in Section 7, these properties will need to be slightly refined.)

Implementation of Adaptive Partitioning. Recall that F and C, respec-
tively, denote the sets of facilities and demands that will be created in this
stage, and (x̄, ȳ) is the partitioned solution to be computed. The partitioning
algorithm consists of two phases: Phase 1 is called the partition phase and Phase
2 is called the augmenting phase. Phase 1 is done in iterations, where in each
iteration we find the “best” client j and create a new demand ν out of it. This
demand either becomes a primary demand itself, or it is assigned to some exist-
ing primary demand. We call a client j exhausted when all its rj demands have
been created and assigned to some primary demands. Phase 1 completes when
all clients are exhausted. In Phase 2 we ensure that every demand has a total
connection values equal to 1, that is condition (PS.1).

For each site i we will initially create one “big” facility μ with initial value
ȳμ = y∗i . While we are partitioning the instance, creating new demands and con-
nections, this facility may end up being split into more facilities to preserve com-
pleteness of the fractional solution. Also, we will gradually decrease the fractional
connection vector for each client j, to account for the demands already created for
j and their connection values. These decreased connection values will be stored
in an auxiliary vector x̃. The intuition is that x̃ represents the part of x∗ that
still has not been allocated to existing demands and future demands can use x̃
for their connections. For technical reasons, x̃ will be indexed by facilities (rather
than sites) and clients, that is x̃ = (x̃μj). At the beginning, we set x̃μj←x∗

ij for
each j ∈ C, where μ ∈ i is the single facility created initially at site i. At each step,
whenever we create a new demand ν for a client j, we will define its values x̄μν and
appropriately reduce the values x̃μj , for all facilities μ. We will deal with two types

of neighborhoods, with respect to x̃ and x̄, that is Ñ(j) = {μ ∈ F : x̃μj > 0} for
j ∈ C and N(ν) = {μ ∈ F : x̄μν > 0} for ν ∈ C. During this process, the following
properties will hold for every facility μ after every iteration:

(c1) For each demand ν either x̄μν = 0 or x̄μν = ȳμ.
(c2) For each client j, either x̃μj = 0 or x̃μj = ȳμ.

It may appear that (c1) is the same property as (CO), yet we repeat it here
as (c1) needs to hold after every iteration, while (CO) only applies to the fi-
nal partitioned fractional solution (x̄, ȳ). A full description of the algorithm
is given in Pseudocode 1. The two helper routines NearestUnitChunk and
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AugmentToUnit can be found in the full version [20]. At a high level, Near-

estUnitChunk orders facilities in Ñ(j) by nonincreasing order of distance to
j and returns a closest set of facilities such that the total connection value x̃μj

is equal to 1. AugmentToUnit works by adding facilities to N(ν) for each
demand ν until every one of them has a total connection value equal 1.

Pseudocode 1. Algorithm: Adaptive Partitioning

Input: F, C, (x∗,y∗)
Output: F, C, (x̄, ȳ)  Unspecified x̄μν ’s and x̃μj ’s are assumed to be 0
1: r̃←r, U ←C,F←∅,C←∅, P ←∅  Phase 1
2: for each site i ∈ F do
3: create a facility μ at i and add μ to F, ȳμ ← y∗

i and x̃μj ←x∗
ij for each j ∈ C

4: while U �= ∅ do
5: for each j ∈ U do
6: Ñ1(j)←NearestUnitChunk(j,F, x̃, x̄, ȳ)
7: tcc(j)←

∑
μ∈Ñ1(j)

dμj · x̃μj

8: p← argminj∈U{tcc(j) + α∗
j}

9: create a new demand ν for client p
10: if Ñ1(p) ∩N(κ) �= ∅ for some primary demand κ ∈ P then

11: assign ν to κ, x̄μν ← x̃μp and x̃μp ← 0 for each μ ∈ Ñ(p) ∩N(κ)
12: else
13: make ν primary, P ←P ∪{ν}, set x̄μν ← x̃μp and x̃μp ← 0 for each μ ∈ Ñ1(p)

14: C←C ∪ {ν}, r̃p ← r̃p − 1
15: if r̃p = 0 then U ←U \ {p}
16: for each client j ∈ C do  Phase 2
17: for each demand ν ∈ j do  each client j has rj demands
18: if

∑
μ∈N(ν) x̄μν < 1 then AugmentToUnit(ν, j,F, x̃, x̄, ȳ)

We start with |F| facilities and in each iteration each client causes at most one
split. We have at most R|C| iterations as in each iteration we create one demand.
(Recall that R = maxj rj .) In Phase 2 the augmenting operation creates no
more than R|C| new facilities. So the total number of facilities will be at most
|F| + R|C|2 + R|C| ≤ |F| + 2R|C|2, which is polynomial in |F| + |C| due to our
bound on R.

Correctness. We now show that all the required properties (PS), (CO), (PD) and
(SI) are satisfied. (CO) is implied by the completeness condition (c1). (PS.1) is
a result of calling Procedure AugmentToUnit() in Line 18. To see that (PS.2)
holds, note that at each step the algorithm maintains the invariant that, for
every i ∈ F and j ∈ C, we have

∑
μ∈i

∑
ν∈j x̄μν +

∑
μ∈i x̃μj = x∗

ij . In the end,
we will create rj demands for each client j, with each demand ν ∈ j satisfying
(PS.1), and hence

∑
ν∈j

∑
μ∈F

x̄μν = rj . As a result we have x̃μj = 0 for every

facility μ ∈ F, and (PS.2) follows. (PS.3) holds because every time we split a
facility μ into μ′ and μ′′, the sum of ȳμ′ and ȳμ′′ is equal to the old value of ȳμ.
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Now we deal with properties in group (PD). First, (PD.1) follows directly
from the algorithm, Pseudocode 1 (Line 13), since every primary demand has its
neighborhood fixed when created, and that neighborhood is disjoint from those
of the existing primary demands. Property (PD.2) follows from (PD.1), (CO)
and (PS.3). In more detail, it can be justified as follows. By (PD.1), for each μ ∈ i
there is at most one κ ∈ P with x̄μκ > 0 and we have x̄μκ = ȳμ due to (CO).
Let K ⊆ i be the set of those μ’s for which such κ ∈ P exists, and denote this
κ by κμ. Then, using conditions (CO) and (PS.3), we have

∑
μ∈i

∑
κ∈P x̄μκ =∑

μ∈K x̄μκμ =
∑

μ∈K ȳμ ≤
∑

μ∈i ȳμ = y∗i . Property (PD.3(a)) follows from
the way the algorithm assigns primary demands. When demand ν of client p
is assigned to a primary demand κ in Line 11 of Pseudocode 1, we move all
facilities in Ñ(p)∩N (κ) (the intersection is nonempty) into N(ν), and we never
remove a facility from N(ν). We postpone the proof for (PD.3(b)) to Lemma 3.

Finally we argue that the properties in group (SI) hold. (SI.1) is easy, since for
any client j, each facility μ is added to the neighborhood of at most one demand
ν ∈ j, by setting x̄μν to ȳμ, while other siblings ν′ of ν have x̄μν′ = 0. Note
that right after a demand ν ∈ p is created, its neighborhood is disjoint from the
neighborhood of p, that is N(ν)∩Ñ (p) = ∅, by Line 11 of Pseudocode 1. Thus all
demands of p created later will have neighborhoods disjoint from the set N(ν)
before the augmenting phase 2. Furthermore, Procedure AugmentToUnit()
preserves this property, because when it adds a facility to N(ν) then it removes

it from Ñ(p), and in case of splitting, one resulting facility is added to N(ν) and

the other to Ñ(p). Property (SI.2) is shown below in Lemma 1.

Lemma 1. Property (SI.2) holds after the Adaptive Partitioning stage.

We need one more lemma before proving our last property (PD.3(b)). For a
client j and a demand ν, we use notation tccν(j) for the value of tcc(j) at the
time when ν was created. (It is not necessary that ν ∈ j but we assume that j
is not exhausted at that time.)

Lemma 2. Let η and ν be two demands, with η created no later than ν, and
let j ∈ C be a client that is not exhausted when ν is created. Then we have (a)
tccη(j) ≤ tccν(j), and (b) if ν ∈ j then tccη(j) ≤ Cavg

ν .

Lemma 3. Property (PD.3(b)) holds after the Adaptive Partitioning stage.

We have thus proved that properties (PS), (CO), (PD) and (SI) hold for our
partitioned solution (x̄, ȳ). In the following sections we show how to use these
properties to round the fractional solution to an integral solution. (In the 1.575-
approximation in Section 7, this partitioning will need to be slightly refined.)

5 Algorithm EGUP with Ratio 3

We first describe a simple algorithm that achieves ratio 3, in order to illustrate
how the properties of our partitioned fractional solution are used in rounding to
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obtain an integral solution with cost close to an optimal solution. The rounding
approach is an extension to the method for UFL in [8].

Algorithm EGUP. In Algorithm EGUP, we apply a rounding process, guided
by the fractional values (ȳμ) and (x̄μν ), that produces an integral solution. For
each primary demand κ ∈ P , we open one facility φ(κ) ∈ N(κ). To this end,
we use randomization: for each μ ∈ N(κ), we choose φ(κ) = μ with probability
x̄μκ, ensuring that exactly one μ ∈ N(κ) is chosen. Note that

∑
μ∈N(κ) x̄μκ = 1,

so this distribution is well-defined. We open this facility φ(κ) and connect κ to
this facility φ(κ), as well as all non-primary demands that are assigned to κ.

In our description above, the algorithm is presented as a randomized algo-
rithm. It can be de-randomized using the method of conditional expectations.

Lemma 4. The expectation of facility cost FEGUP of our solution is at most F ∗.

Lemma 5. The expectation of connection cost CEGUP of our solution is at most
C∗ + 2 · LP∗.

Theorem 2. Algorithm EGUP is a 3-approximation algorithm.

Proof. The feasibility follows from (SI.2) and (PD.1). As for the total cost,
Lemma 4 and Lemma 5 imply that the total cost is at most F ∗+C∗+2 ·LP∗ =
3 · LP∗ ≤ 3 ·OPT. 	


6 Algorithm ECHS with Ratio 1.736

We now improve the approximation ratio to 1 + 2/e ≈ 1.736. The basic idea
to improve the ratio, following the approach of Chudak and Shmoys [5], is to
connect a non-primary demand to its nearest neighbor when one is available and
only use indirect connections when none of its neighbor is open.

Algorithm ECHS. As before, the algorithm starts by solving the linear program
and applying the adaptive partitioning algorithm described in Section 4 to obtain
a partitioned solution (x̄, ȳ). Then we apply the rounding process to compute
an integral solution (see Pseudocode 2).

Analysis. We first show feasibility. The only constraint that is not explicitly
enforced by the algorithm is the fault-tolerance requirement; namely that each
client j is connected to rj different facilities. Let ν and ν′ be two different
sibling demands of client j and let their assigned primary demands be κ and κ′

respectively. Due to (SI.2) we know κ �= κ′. From (SI.1) we have N(ν)∩N (ν′) =
∅. From (SI.2), we have N(ν) ∩N(κ′) = ∅ and N(ν′) ∩N(κ) = ∅. From (PD.1)
we have N(κ)∩N(κ′) = ∅. It follows that (N(ν)∪N(κ))∩ (N(ν′)∪N(κ′)) = ∅.
Since the algorithm connects ν to some facility in N(ν) ∪N(κ) and ν′ to some
facility in N(ν′) ∪N(κ′), ν and ν′ will be connected to different facilities.

This integral solution can be shown to have expected facility cost bounded by
F ∗ and connection cost bounded by C∗ + (2/e) · LP∗ As a result the expected
total cost is bounded by (1 + 2/e) · LP∗. We state this as the theorem below.

Theorem 3. Algorithm ECHS is a (1+2/e)-approximation algorithm for FTFP.
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Pseudocode 2. Algorithm ECHS: Constructing Integral Solution

1: for each κ ∈ P do
2: choose one φ(κ) ∈ N(κ), with each μ ∈ N(κ) chosen as φ(κ) with probability

ȳμ (note x̄μκ = ȳμ for all μ ∈ N(κ))
3: open φ(κ) and connect κ to φ(κ)

4: for each μ ∈ F−
⋃

κ∈P N(κ) do
5: open μ with probability ȳμ (independently)

6: for each non-primary demand ν ∈ C do
7: if any facility in N(ν) is open then
8: connect ν to the nearest open facility in N(ν)
9: else
10: connect ν to φ(κ) where κ is ν’s primary demand

7 Algorithm EBGS with Ratio 1.575

In this section we give our main result, a 1.575-approximation algorithm for

FTFP, where 1.575 is the rounded value of minγ≥1max{γ, 1 + 2/eγ, 1/e+1/eγ

1−1/γ }.
This matches the ratio of the best known LP-rounding algorithm for UFL by
Byrka et al. [3]. Our approach is a combination of the ideas in [3] with the
techniques of demand reduction and adaptive partitioning that we introduced
earlier. However, our adaptive partitioning technique needs to be carefully mod-
ified because now we will be using a more intricate neighborhood structure.

We begin by describing properties that our partitioned fractional solution
(x̄, ȳ) needs to satisfy. The neighborhood N(ν) of each demand ν will be divided
into two disjoint parts. The first part, called the close neighborhood N cls(ν), con-
tains the facilities in N(ν) nearest to ν with the total connection value equal
1/γ. The second part, called the far neighborhood N far(ν), contains the remain-
ing facilities in N(ν) (see below). The respective average connection costs from
ν for these sets are defined by Cavg

cls (ν) = γ
∑

μ∈Ncls(ν)
dμν x̄μν and Cavg

far (ν) =
γ

γ−1

∑
μ∈N far(ν)

dμν x̄μν . We will also use notation Cmax
cls (ν) = maxμ∈Ncls(ν)

dμν
for the maximum distance from ν to its close neighborhood.

Our partitioned solution (x̄, ȳ) must satisfy properties (PS) and (CO) in Sec-
tion 4. In addition, it must satisfy new neighborhood property (NB) and modified
properties (PD’) and (SI’), listed below.

(NB) For each demand ν, its neighborhood is divided into close and far neigh-
borhood, that is N(ν) = N cls(ν) ∪N far(ν), where
– N cls(ν) ∩N far(ν) = ∅,
–

∑
μ∈Ncls(ν)

x̄μν = 1/γ, and

– if μ ∈ Ncls(ν) and μ′ ∈ N far(ν) then dμν ≤ dμ′ν .
Note that the second condition, together with (PS.1), implies that∑

μ∈N far(ν)
x̄μν = 1− 1/γ.

(PD’) Primary demands. Primary demands satisfy the following conditions:

1. For any two different primary demands κ, κ′ ∈ P we have Ncls(κ) ∩
N cls(κ

′) = ∅.
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2. For each site i ∈ F,
∑

κ∈P

∑
μ∈i∩Ncls(κ)

x̄μκ ≤ y∗i .
3. Each demand ν ∈ C is assigned to one primary demand κ ∈ P such that

(a) N cls(ν) ∩N cls(κ) �= ∅, and
(b) Cavg

cls (ν) + Cmax
cls (ν) ≥ Cavg

cls (κ) + Cmax
cls (κ).

(SI’) Siblings. For any pair ν, ν′ of different siblings we have
1. N(ν) ∩N(ν′) = ∅.
2. If ν is assigned to a primary demand κ then N(ν′) ∩N cls(κ) = ∅.

Modified Adaptive Partitioning. As in Section 4, our modified partitioning
algorithm has two phases. Phase 1 runs in iterations. Consider any client j.
As before, Ñ(j) is the neighborhood of j with respect to the yet unpartitioned
solution, namely the set of facilities μ such that x̃μj > 0. Order the facilities

in this set as Ñ(j) = {μ1, ..., μq} in order of non-decreasing distance from j,

that is dμ1j ≤ dμ2j ≤ . . . ≤ dμqj , where q = |Ñ(j)|. Without loss of generality,

there is an index l for which
∑l

s=1 x̃sj = 1/γ, since we can always split one

facility to have this property. Then we define Ñγ(j) = {μ1, ..., μl}. We also

use notation tccγ(j) = D(Ñγ(j), j) =
∑

μ∈Ñγ(j)
dμj x̃μj and dmaxγ(j) =

maxμ∈Ñγ(j)
dμj . In each iteration, we find a not yet exhausted client p that

minimizes the value of tccγ(p) + dmaxγ(p). Now we have two cases:

Case 1: Ñγ(p) ∩N cls(κ) �= ∅, for some existing primary demand κ. In this case
we assign ν to κ. As before, if there are multiple such κ, we pick any of them. We
also fix x̄μν← x̃μp, x̃μp← 0 for each μ ∈ Ñ(p) ∩N cls(κ). As before, although we

check for overlap between Ñγ(p) and N cls(κ), the facilities we actually move into

N(ν) include all facilities in the intersection of Ñ(p), a bigger set, with N cls(κ).
We would like to point out that N(ν) is not finalized at this time as we will add
more facilities to it in the augment phase. As a result N cls(ν) is not fixed either,
as we could potentially add facilities closer to ν than facilities already in N(ν).

Case 2: Ñγ(p)∩Ncls(κ) = ∅, for all existing primary demands κ. In this case we

make ν a primary demand. We then fix x̄μν← x̃μp for μ ∈ Ñγ(p) and set the
corresponding x̃μp to 0. Note that the total connection value in N cls(ν) is now

exactly 1/γ. The set Ñγ(p) turns out to coincide with N cls(ν) as the facilities in

Ñ(p)\ Ñγ(p) are all farther away than any facilitity in Ñγ(p). In the augmenting

phase, Phase 2, we have available only facilities in some subset of Ñ(p) \ Ñγ(p).
Thus N cls(ν) is defined when ν is created.

Once all clients are exhausted, Phase 1 concludes. We then do Phase 2, the
augmenting phase. For each demand ν of client j with total connection value less
than 1, we use our AugmentToUnit() procedure to add additional facilities

from Ñ(j) to ν’s neighborhood to make its total connection value equal 1, as

before a facility is removed from Ñ(j) once added to a demand’s neighborhood.
We do facility split if necessary to make N(ν) have total connection value of 1.

We argue that the fractional solution (x̄, ȳ) satisfies all the stated properties.
Properties (PS), (CO), (NB), (PD’.1) and (SI’.1) are enforced by the algorithm.
The proofs for other properties (PD’.2), (PD’.3(b)) and (SI’.2) are similar to
those in Section 4, with the exception of (PD.3(a)), which we justify below.
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The argument for (PD.3(a)) is a bit subtle, because of complications aris-
ing in Phase 2. For non-primary demands, N(ν), for ν ∈ j, takes all facilities

in N cls(κ) ∩ Ñ(j), which might be close to κ but far from j. As a result, fa-
cilities added in the augmenting phase might appear in N cls(ν), yet they are
not in N cls(κ). It is conceivable that in a worst case, the facilities added in
the augmenting phase form N cls(ν) exclusively, which will then be disjoint from
N cls(κ), and we may not have (PD.3(a)) for demand ν. Nevertheless, we show
that Property (PD.3(a)) holds.

Consider an iteration when we create a demand ν ∈ p and assign it to κ. Then
the setB(p) = Ñγ(p)∩N cls(κ) is not empty. We claim thatB(p) must be a subset
of N cls(ν) after N(ν) is finalized with a total connection value of 1. To see this,

first observe that B(p) is a subset of N(ν), which in turn is a subset of Ñ(p),

after taking into account the facility split. Here Ñ(p) refers to the neighborhood
of client p just before ν was created. For an arbitrary set of facilities A define
dmax(A, ν) as the minimum distance τ such that

∑
μ∈A : dμν≤τ ȳμ ≥ 1/γ. Adding

additional facilities into A cannot make dmax(A, ν) larger, so it follows that

dmax(N cls(ν), ν) ≥ dmax(Ñ(p), ν), because N cls(ν) is a subset of Ñ(p). Since
we have dμν = dμp by definition, it is easy to see that every μ ∈ B(p) satisfies

dμν ≤ dmax(Ñ(p), ν) ≤ dmax(N cls(ν), ν) and hence they all belong to N cls(ν).
We need to be a bit more careful here when we have a tie in dμν but we can
assume ties are always broken in favor of facilities in B(p) when defining N cls(ν).
Finally, since B(p) �= ∅, we have that the close neighborhood of a demand ν and
its primary demand κ must overlap.

Algorithm EBGS. We first solve the linear program and compute the parti-
tioning described earlier. Given the partitioned fractional solution (x̄, ȳ) with
the desired properties, we open exactly one facility in the close neighborhood of
each primary demand, but now each facility μ is chosen with probability γȳμ.
The facilities μ that do not belong to any set Ncls(κ) are opened independently
with probability γȳμ each.

Next, we connect demands to facilities. Each primary demand κ will connect to
the only facility φ(κ) open in its cluster Ncls(κ). For each non-primary demand
ν, if there is an open facility in N(ν) then we connect ν to the nearest such
facility. Otherwise, we connect ν to its target facility φ(κ), where κ is the primary
demand that ν is assigned to.

Analysis. The feasibility of our integral solution follows from (SI.1), (SI.2),
and (PD.1), as these properties ensure that siblings get connected to differ-
ent facilities. It is possible to show that the expected facility cost of our algo-
rithm is bounded by γF ∗ and the expected connection cost can be bounded by

C∗ max{ 1/e+1/eγ

1−1/γ , 1+ 2
eγ }. Hence the total cost is bounded by max{γ, 1/e+1/eγ

1−1/γ , 1+
2
eγ } · LP

∗. Picking γ = 1.575 we obtain:

Theorem 4. Algorithm EBGS is a 1.575-approximation algorithm for FTFP.
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Monnot, Jérôme 209
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