
A Comparison of Explicit and Implicit Graph

Embedding Methods for Pattern Recognition

Donatello Conte1, Jean-Yves Ramel2, Nicolas Sidère2,
Muhammad Muzzamil Luqman3, Benôıt Gaüzère4, Jaume Gibert4,
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Abstract. In recent years graph embedding has emerged as a promising
solution for enabling the expressive, convenient, powerful but computa-
tional expensive graph based representations to benefit from mature, less
expensive and efficient state of the art machine learning models of statis-
tical pattern recognition. In this paper we present a comparison of two
implicit and three explicit state of the art graph embedding method-
ologies. Our preliminary experimentation on different chemoinformatics
datasets illustrates that the two implicit and three explicit graph em-
bedding approaches obtain competitive performance for the problem of
graph classification.

1 Introduction

Two important challenges related to graphs concern the structural pattern recog-
nition field: first of all, graph based methods like graph matching are computa-
tionally demanding hence restricting the application of such methods. Secondly,
despite numerous theoretical results on graphs, the graph space has no strong
algebraic properties. It is for example not a group nor a vector space. Such a
lack of mathematical properties on the graph’s space does not allow to readily
combine structural and statistical pattern recognition methods.

Graph embedding methods map either explicitly or implicitly graphs into
high dimensional spaces hence allowing to perform the basic mathematical com-
putations required by various statistical pattern recognition techniques. Graph
embedding methods appear thus as an interesting solution to address graph
clustering and classification problems.
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The graph embedding methods are formally categorized as implicit graph
embedding or explicit graph embedding. The implicit graph embedding methods
are based on graph kernels. A graph kernel is a function that can be thought of
as a dot product in some implicitly existing vector space. Instead of mapping
graphs from graph space to vector space and then computing their dot product,
the value of the kernel function is evaluated in graph space. Such an implicit
embedding satisfies all properties of a dot product. Since it does not explicitly
map a graph to a point in vector space, a strict limitation of implicit graph
embedding is that it does not permit all operations that could be defined on
vector spaces. Further reading on state of the art methods of graph kernels and
implicit graph embedding could be found in [2].

On the other hand, explicit graph embedding methods explicitly embed an in-
put graph into a feature vector and thus enable the use of all the methodologies
and techniques devised for vector spaces. The vectors obtained by an explicit
graph embedding method can also be employed in a standard dot product for
defining an implicit graph embedding function between two graphs. An impor-
tant property of explicit graph embedding is that graphs of different size and
order need to be embedded into a feature vector of determined size. The selec-
tion of the axis of this feature vector requires thus a fine analysis of the analysed
dataset in order to selected features representive of the set while remaining suf-
ficiently generic to describe any input graph. We refer the interested reader to
[16] for further reading on classical explicit graph embedding techniques.

Similarly to the previous study described in [6], in this paper we propose
a comparison between two implicit graph embedding methods based on graph
kernels ([1,5]) and three methods of explicit graph embedding with comparable
behavior ([7,12,17]). The difference between these techniques will be illustrated
on classification problems using chemoinformatic datasets, such as those from
IAM [14], the predictive toxicology challenge (PTC) dataset [20] and the MAO
dataset from GREYC [5]. In Section 2 and Section 3 we describe the respective
graph kernels and explicit graph embedding methods. Section 4 details the ex-
perimental evaluation alongwith a discussion on the classification performance
of these methods. Finally, the paper concludes in Section 5.

2 Classification by Graph Kernels Methods

2.1 Method 1: Laplacian Graph Kernel

The graph edit distance between two graphs is defined as the minimal number of
vertices and edge removal/addition/relabeling required to transform one graph
into an other [13]. Unfortunately, even though the edit distance defines a met-
ric under weak conditions, this distance is not definite negative. Consequently,
kernels directly based on the edit distance are not definite positive and hence do
not correspond to a valid kernel.

Let us consider a set of input graphs {G1, . . . , Gn} defining our graph test
database. Given a kernel k, the gram matrix K associated to this database is
an n × n matrix defined by Ki,j = k(Gi, Gj). As denoted by Steinke [19], the
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inverse of K (or its pseudo inverse if K is not invertible) may be considered as
a regularization operator on the set of vector of dimension n. Conversely, the
inverse (or pseudo inverse) of any definite positive regularization operator may
be considered as a kernel.

From this point view, designing a “good” graph kernel comes up to define for
each dataset a Gram matrix K whose associated norm penalizes the mapping of
different values to similar graphs. One scheme to design a kernel consists thus to
first build a definite positive regularization operator and then to take its inverse
(or its pseudo inverse) to obtain a kernel. Let us consider the Laplacian operator
defined as follows: given the set of graphs, {G1, . . . , Gn}, we first consider the

n × n adjacency matrix Wi,j = e−
d(Gi,Gj)

σ where σ is a tuning variable and
d(·, ·) denotes the edit distance [15]. The normalized Laplacian of {G1, . . . , Gn}
is then defined as L = I −D− 1

2WD− 1
2 where D is a diagonal matrix defined by

Di,i =
∑n

j=1 Wi,j .
Well known results from spectral graph theory ([3]) establish that L is a sym-

metric, semi definite positive matrix whose eigenvalues belongs to the interval
[0, 2]. Unfortunately, the Laplacian is also well know for being non invertible
since the eigenvector vector 1 = (1, . . . , 1) is associated to the eigenvalue 0. The
only semi definite property of the Laplacian matrix forbids a direct inversion
of this matrix. Moreover, the pseudo inverse of the Laplacian induces numer-
ical instabilities which does not lead to a reliable kernel. Therefore, following
Smola [18], we rather regularize the spectrum of L. The regularized version of
L, denoted as L̃, is defined as L̃ = I+λL, where λ is a regularisation coefficient.
The regularized laplacian L̃ is invertible and its inverse K = L̃−1 is taken as a
kernel. Using a classification or regression scheme, such a kernel leads to map to
close values graphs having a small edit distance (and thus a strong similarity).

The implicit embedding induced by the Graph Laplacian kernel is not fixed by
some a priori rules but is deduced from a regularization of the matrix of pairwise
distances between objects. From this point of view, this implicit embedding is
close from the explicit embedding proposed by Jouili and Tabbone [10] which
additionally requires a dimensionality reduction step.

2.2 Method 2: Treelet Kernel

Treelet kernel [5] is a graph kernel based on a bag of non linear patterns which
computes an explicit distribution of each pattern within a graph. This method
explicitly enumerates the set of treelets included within a graph. The set of
treelets, denoted T , is defined as the 14 trees having a size lower than or equals
to 6 nodes. Thanks to the limited number of different patterns encoding treelets,
an efficient enumeration of the number of occurrences of each labeled pattern
within a graph can be computed by algorithm defined in [5]. Labeling information
included within treelets is encoded by a canonical key which is defined such as
if treelets have a same structure, their canonical key is similar if and only if the
two treelets are isomorphic. Each treelet being uniquely identified by the index
of its pattern and its canonical key, any graph G can be associated to a vector



84 D. Conte et al.

f(G) which encodes the number of occurrences of each treelet t ∈ T by ft(G).
Note that this vector representation may be of very high dimension since it may
encode all possible treelets according to all possible nodes and edges labellings
defined for a graph family. In chemoinformatics, such a vector representation
may have a dimension higher than 4.25× 109 [5] which forbids its explicit vector
embedding. Treelet kernel between graphs is defined as a sum of sub kernels
between common treelets of both graphs:

KT (G,G′) =
∑

t∈T (G)∩T (G′)

k(ft(G), ft(G
′)) (1)

where T (G) encodes the set of treelets included within G and k(., .) defines
any positive definite kernel between real numbers such as linear, Gaussian or
polynomial kernel. Each sub kernel k(., .) encodes the similarity of the number
of occurrences for each treelet t common to both graphs to be compared.

In order to improve the accuracy of treelet kernel, each treelet can be weighted
according to a prediction task:

KT (G,G′) =
∑

t∈T (G)∩T (G′)

w(t)k(ft(G), ft(G
′)) (2)

As described in [4], each weight w(t) ∈ R
+ can be computed in a sparse and

optimal way for a given training set by using multiple kernel learning (MKL).
Using sparsity promotes the selection of relevant treelets according to the pre-
diction task and w(t) can thus be understood as a measure of the importance of
treelet t for the prediction task.

3 Classification by Graph Embedding Methods

3.1 Method 1: Topological Embedding

One of the main challenges of graph embedding is to preserve topological infor-
mation provided by the graph representation after transformation into a feature
vector. The topological embedding method proposed in [17] provides an interest-
ing answer to this problem by using a generic lexicon of topological structures
that could be enumerated in graphs during the computation of the vectorial
signature of the graphs. However, this lexicon must be comprehensive enough
to ensure discrimination from a graph to another. They have therefore decided
to take as a baseline the non-isomorphic graphs network presented in [9]. The
network presents all graphs composed of n edges up to N (where N is the max-
imum number of edges). Thereafter, the term pattern will refer to a subgraph
element of the non-isomorphic graph network.

For example, Figure 1 shows the non-isomorphic graph network until the
fourth rank giving a lexicon of 11 patterns.

The vectorial representation of a graph topology will be built by counting the
occurrences of each pattern of the lexicon. In other way, each element of the
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Fig. 1. The non-isomorphic graph network used to embed the topology

Fig. 2. Matrix (b) corresponding to vectorial signature of graph presented in (a)

vector is the frequency of apparition of a pattern, which represents a descriptor
of a part of the graph. Thus, the topology of the graph is embedded in the
vectorial representation. This vectorial representation needs now to be enriched
by encapsulating the information provided by labels that can be associated to
the edges and vertices. As each of these labels can be composed with several
attributes, the inclusion of this information can be problematic regarding the
nature (numerical) and the number of attributes constituting a label. Two ways
are proposed to by-pass these problems :

1. the first method consists of discretizing numerical attributes to obtain sym-
bolic attributes. Then a combination of all these symbolic attributes can be
realized to list all possible labels.

2. the second method is to perform a clustering in the label space using at-
tributes as feature vectors. This results in some new classes of labels where
their number can be controlled.

The construction of the vectorial representation can then be performed by
filling all the cells of the matrix generated with the frequency of each pattern
and each label for this pattern. The matrix (see Fig. 2b) presents an example of
the proposed vectorial representation for the graph represented on Fig. 2a. More
details about this topological embedding method can be found in [17].
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3.2 Method 2: Fuzzy Multilevel Graph Embedding (FMGE)

The Fuzzy Multilevel Graph Embedding method (FMGE) performs multilevel
analysis of graph to extract discriminatory information of three different levels.
These include the graph level information, structural level information and the
elementary level information. The three levels of information represent three
different views of graph for extracting global details, details on topology of graph
and details on elementary building units of graph. The feature vector of FMGE
is named Fuzzy Structural Multilevel Feature Vector - FSMFV (see Fig. 3).

Fig. 3. Feature vector of FMGE

The features for graph level information represent a coarse view of graph and
give general information about the graph. These features include graph order
and graph size.

The features for structural level information represent a deeper view of graph
and are extracted from the node degrees and subgraph homogeneity in graph.
Subgraph homogeneity is represented by computing resemblance attributes for
the nodes and edges of graph. The resemblance attributes for an edge is computed
from the attributes on its neighboring nodes. The resemblance for a numeric
attribute (a) is computed as a ratio of this attribute’s values on neighboring
nodes of an edge (a1 and a2) (see Eq. 3). Whereas the resemblance for a symbolic
attribute (b) is computed as a ratio of this attribute’s values on neighboring
nodes of an edge (b1 and b2) (see Eq. 4).

resemblance(a1, a2) = min(|a1|, |a2|)/max(|a1|, |a2|) (3)

resemblance(b1, b2) =

∣
∣
∣
∣
1 b1 = b2
0 otherwise

∣
∣
∣
∣ (4)

The third level of information is extracted by penetrating into further depth
and more granular view of graph and employing details of the elementary build-
ing blocks of graph. These features represent the information extracted from
the node and edge attributes. The node degree, numeric resemblance attributes,
numeric node attributes and numeric edge attributes are embedded by fuzzy his-
tograms whereas the symbolic resemblance attributes, symbolic node attributes
and symbolic edge attributes are embedded by crisp histograms. FMGE learns
the intervals, for constructing these histograms, during an unsupervised learning
phase and employs the learned intervals during graph embedding phase [12].

The feature vector obtained by FMGE is based on histogram encoding of
the multilevel information extracted from graph. The number of features in the



A Comparison of Explicit and Implicit Graph Embedding Methods 87

vector is directly dependent on the number of bins employed for constructing
these histograms. The use of high dimensional histograms is explicitly built into
the method as it enables FMGE to provide a more robust encoding of information
and enables it to generalize to unseen graphs. However, the feature vector can
become sparse and confuse between classes of graphs. In order to reduce the
size of FMGE feature vector and to remove the unimportant features for a given
graph dataset, we select the subset of top-ranked features on the basis of ranks
obtained through the Relief algorithm [11].

3.3 Method 3: Attribute Statistics Based Embedding

The attribute statistics based embedding of graphs is a simple and efficient way
of expressing the labelling information stored in nodes and edges of graphs in
a rather naive feature vector. It basically consists in computing frequencies of
appearences of very simple subgraph structures such as nodes with certain labels
or node-edge-node structures with specific label sequences. Formally, consider a
set of graphs G = {g1, . . . , gN}, with gi = (Vi, Ei, μi, νi) being the ith graph
in the set with labelling alphabet LVi for the nodes and LEi for the edges. We
assume that all graphs in G have the same labelling alphabets, this is LVi = LVj

and LEi = LEj for all i, j ∈ {1, . . . , N}. We do not assume, however, that
each node and edge label occurs in each graph. Let LV = {α1, . . . , αp} and
LE = {ω1, . . . , ωq} be the common labelling alphabets.

For each graph g = (V,E, μ, ν) ∈ G, we define p unary features measuring the
number of times each label in LV appears in the graph, this is

Ui = #(αi, g) = | {v ∈ V |αi = μ(v)} |. (5)

Binary features for edges are defined by computing how many times each possible
sequence of node-edge-node labels appears in the graph. In particular,

Bk
ij = #([αi ↔ αj ]ωk

, g)

= | {e = (u, v) ∈ E |αi = μ(u) ∧ αj = μ(v) ∧ ωk = ν(e)} |. (6)

Note that, since graphs are undirected, these features are symmetric, this is,
Bk

ij = Bk
ji for all i, j ∈ {1, . . . , p}. We can then just consider half of them and

always assume that i ≤ j. This results in defining 1
2 ·q ·p · (p+1) binary features.

The final embedding configuration is the ensemble of all this features. Note
than another interpretation of these features is their relation with random walks.
In particular the random walk graph kernel implicilty computes the number of
random walks of any length in each graph. In the attribute statistics based em-
bedding case, one just considers walks of length 0 (node labels appearences) and
walks of length 1 (node-edge-node label sequences). Although much simpler and
local, the fact that these features are explicitly built makes them interesting
and flexible enough to provide robust results in several classification problems.
Distance correlation with edit distance or their extension to continuous
attributed graphs [8,7] have also been shown in the literature.
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4 Experimental Results

This section deals with the experimentation aiming at evaluate and compare the
implicit and explicit embedding approaches. In particular, we consider classifi-
cation tasks applied to chemoinformatics datasets.

4.1 The Considered Application and the Dataset

We have conducted experiments on four datasets of molecules. Molecules are
easily converted into graphs by representing atoms as nodes and the covalent
bonds as edges. Nodes are labeled with chemical symbols and edges by the
valence of the linkage:

AIDS. This dataset consists of two classes (active, inactive) of 2000 graphs
representing molecules with activity against HIV or not.

Mutagenicity. This dataset is divided in two classes regarding the mutagenic-
ity (one of the numerous adverse properties of a compound that hampers its
potential to become a marketable drug) of 4337 molecules.

Predictive Toxicology Challenge (PTC). This dataset deals with the pre-
dicting of the outcome of biological tests for the carcinogenicity of chemicals
using information related to chemical structure only (positive or negative)
on four catgories of animals : female rats (FR), male rats (MR), female mice
(FM), male mice (MM) with about 240 graphs per set.

Monoamine Oxidase Dataset (MAO). This problem is defined on a set
of 68 molecules divided into two classes: the molecules that inhibit the
monoamine oxidase (antidepressant drugs) and those that do not.

These datasets are issued from public repositories. AIDS and Mutagenicity come
from the IAM database repository1, while PTC and MAO are both available
in the GREYC’s Chemistry databank2. Classification accuracy is measured by
following the classification scheme designed by the datasets authors ([14,5]). For
AIDS or Mutagenicity, a validation subset is used to optimize an SVM and the
classification accuracy is obtained on an independant test subset. We used a k -
fold cross-validation approach for PTC (k=68) andMAO (k=10) to parameterize
an SVM and obtain the classification mean rates.

4.2 Results and Comparison

Table 1 shows the classification rates achieved by the 6 methods. Taking into ac-
count the four datasets, all implicit and explicit methods seems to be competitive
and comparable. Of course, depending on the data, some variations can appear
but these variations are small and they rather not be a criterion for choosing one
method over another. Thus, other considerations should be taken into account.
In particular, computational complexity or parameterization dependancy should
be evaluated for all these approaches.

1 http://www.iam.unibe.ch/fki/databases/iam-graph-database
2 https://brunl01.users.greyc.fr/CHEMISTRY/index.html

http://www.iam.unibe.ch/fki/databases/iam-graph-database
https://brunl01.users.greyc.fr/CHEMISTRY/index.html
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Table 1. Classification results for different methods and datasets

PTC

Mutagenicity AIDS MAO FM MM FR MR

Laplacian kernel 70.2 92.6 90.0 59.2 55.2 57.7 60.9
Treelet kernel 77.1 99.1 91.2 58.7 61.9 60.4 60.8
Treelet kernel with MKL 77.6 99.7 94.1 64.2 64.6 71.2 64.8

Topological Embedding 77.2 99.4 91.2 65.9 67.5 68.7 63.7
FMGE 76.5 99.0 92.1 63.9 66.3 60.0 59.9
Attribute Statistics 76.5 99.6 90.6 64.8 63.1 67.9 59.7

On top of these things, an important remark one should be aware of is the
fact that most of the discussed methodologies might present some restrictions
in order to be evaluated in other pattern recognition problems. For instance,
explicit embeddings may be favored over implicit ones whenever the explicit
vector representation is required by some algorithms which require more than
the dot product. Indeed, graph kernels are limited to kernel methods such as
SVM. On the other hand, though, implicit ones are usually defined between two
graphs whereas most of explicit methods require the whole dataset to compute
the graph embedding. So, implicit methods may be favored other explicit one
whenever the access to the whole dataset is limited.

5 Conclusions

Graph embedding for pattern recognition is a recent emerging trend to enable
the pattern recognition community to benefit from the representative power of
graph based structural approaches of pattern recognition and the computational
power of machine learning models of statistical pattern recognition approaches.
We have outlined two graph kernel based implicit graph embedding methods and
three explicit graph embedding methods. Our initial experimentation on different
chemoinformatic databases for the problem of graph classification illustrates that
all the methods under consideration obtain competitive performance in terms of
classification rates. Our future research goals are to take forward this study on
the comparison of implicit and explicit graph embedding methods for revealing
the strengths of these methods in terms of learning abilities, automatic parameter
optimization, computational complexity and other interesting criteria.
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