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Abstract. Multi-labelled graphs are a powerful and versatile tool for
modelling real applications in diverse domains such as communication
networks, social networks, and autonomic systems, among others. Due
to dynamic nature of such kind of systems the structure of entities is
continuously changing along the time, this because, it is possible that
new entities join the system, some of them leave it or simply because
the entities relations change. Here is where graph transformation takes
an important role in order to model systems with dynamic and/or evo-
lutive configurations. Graph transformation consists of two main tasks:
graph matching and graph rewriting. At present, few graph transfor-
mation tools support multi-labelled graphs. To our knowledge, there is
no tool that support inexact graph matching for the purpose of graph
transformation. Also, the main problem of these tools lies on the lim-
ited expressiveness of rewriting rules used, that negatively reduces the
range of application scenarios to be modelling and/or negatively increase
the number of rewriting rules to be used. In this paper, we present the
tool GMTE Graph Matching and Transformation Engine. GMTE han-
dles directed and multi-labelled graphs. In addition, to the exact graph
matching, GMTE handles the inexact graph matching. The approach
of rewriting rules used by GMTE combines Single PushOut rewriting
rules with edNCE grammar. This combination enriches and extends the
expressiveness of the graph rewriting rules. In addition, for the graph
matching, GMTE uses a conditional rule schemata that supports com-
plex comparison functions over labels. To our knowledge, GMTE is the
first graph transformation tool that offers such capabilities.

1 Introduction

Graphs are a powerful and natural way of modelling complex systems on an
intuitive level. Graph-based modelling is applied in diverse domain such as com-
munication networks, social networks, autonomic systems, data representing,
entity relationship and UML diagrams, and visualization of software architec-
tures. Due to the dynamic nature of such systems, graph transformation concept
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takes an important role in order to model dynamic behavior by describing the
evolution of graph based structures.

The research area of graph transformation dates back to the seventies, but de-
velopment of software tools that support this formalism only begun twenty years
later. These tools have made graph transformation more and more popular and
widely used as a modelling paradigm. Currently, numerous graph transformation
tools are under development, covering a wide spectrum of applications such as
bioinformatics, process management, object-oriented modeling, architectural de-
sign, reengineering, distributed systems, etc. PROGRES [1], AGG [2], GROOVE
[3] are well-known tools, which support general purpose graph transformation.
For specific purpose we could find VMTS [4], GreAT [5], ATOM3 [6] for model
transformation.

In this paper, we expose our general graph matching and transformation
engine GMTE1 handling exact and inexact graph matching with expressive
graphs and rewriting rules. In section 2, we present the preliminaries concept.
In Section 3, we introduce exact graph matching, extensions of model graph
definition, vertex matching and consistent valuation building. Graph updating
process where rewriting rules consider variable labels, both positive and neg-
ative application conditions, connection instructions, modification instruction
and conditional rule schemata with label calculation, is presented in this section.
Section 4 deals with inexact graph matching based on the graph edit distance
and bipartite matching. Comparison to a reference tool is performed in Section
5. The concluding remarks and perspectives are discussed in Section 6.

2 Preliminaries

In this section, we establish the fundamental definitions used in this paper and
give the formal problem statement. This paper investigates the subgraph match-
ing and transformation for directed and multi-labeled graphs.

Definition 1. A multi-labeled graph G is defined as a 6-tuple G = V,E, LV ,
DLV , LE , DLE), where V is the set of vertices E ⊆ V × V is the set of edges.
DLV and DLE are the definition domains of vertex labels and edge labels. LV :
V → DLV is the function assigning labels to vertices and LE : E → DLE is the
function assigning labels to edges.

The main idea of graph transformation is the rule-based modification of graphs.
The foundation of a rule is a pair of graphs (L,R), called the left-hand side L
and the right-hand side R. Applying the rule p = (L,R) means finding a match
of L in the source graph and replacing L by R, leading to the target graph of the
graph transformation. The problem of finding a match of L is treated by graph
isomorphism.

Definition 2. Two graphs G1 = (V1, E1) and G2 = (V2, E2) are isomorphic if
there exists a mapping M ⊆ V1×V2 such that for all pairs of vertices vi, vj ∈ V1,

1 Graph Matching and Transformation Engine (GMTE ), available at
http://homepages.laas.fr/khalil/GMTE/

http://homepages.laas.fr/khalil/GMTE/
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(vi, vj) ∈ E1 if and only if (M(vi),M(vj)) ∈ E2. M is, in this case, a graph
isomorphism between G1 and G2. A subgraph isomorphism is an isomorphism
between G1 and a subgraph G′ of G2.

In contrast to the exact graph matching, the inexact (or approximate, error-
tolerance) graph matching allows nodes or edges mismatch or both. Graph edit
distance is one of the most commonly used and well-known approach that de-
fines similarity between graphs. The distance between two graphs is measured
by applying a sequence of edit operations (i.e. node and edge insertion, deletion,
or substitution) in order to transform one graph into the other. For each edit
operation, a cost is assigned. The cost of an edit series is the sum of the individ-
ual edit operations. The graph edit distance is the minimum cost necessary for
transforming one graph to another.

Definition 3. Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs. The graph
edit distance of G1 and G2 defined by

d(G1, G2) = min
(e1...ek)∈P (G1,G2)

k∑

i=0

C(ei)

where P (G1, G2) denotes the set of edit paths transforming G1 into G2, and C
denotes the edit cost function.

3 Graph Matching and Transformation Engine

In this section we deal with concepts and theory that our tool is built on them.
The GMTE encompasses two main processes: the first one is called the pattern
matching process and the second one is the graph updating process.

3.1 Exact Matching Process

The matching process between two graphs G1 = (V1, E1) and G2 = (V2, E2)
consists of finding a mapping M which assigns nodes from G1 to nodes from
G2, taking into account some predefined constraints. The mapping M is a set of
node pairs. Each pair represents the mapping of a node from G1 with node from
G2 if and only if the mapping is a bijection, preserve adjacency (if two nodes are
adjacent in the first graph, their image by the bijection should be adjacent), so
M is called isomorphism.

The graph matching algorithm implemented within the GMTE, is the one
defined in [7]. The algorithm considers a Breadth-first search approach similar
to that introduced by the algorithm described by Messmer and Bunke in [8].
The choice to rely on such approach is motivated by the fact that this algorithm
is highly effective in cases where matching involves several similar graphs.

For GMTE the definition of the left-hand side L is extended to allow the use
of variable attributes for nodes and edges labels.
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Definition 4. Let SX = X1, ..., Xi be a set of variables. A model graph MG is
defined as a 6-tuple MG = (V,E, LV , DLV , LE , DLE), where V , E, LV and LE

have the same descriptions as given in Definition 1. DLV = [ ( L1 ∪ S1
X ) ∪ ... ∪

( Ln ∪ Sn
X )] is the definition domain of vertex labels, with S1

X , ..., Sn
X are subsets

of SX . DLE = [(E1 ∪ S′1
X) ∪ ... ∪ (En ∪ S′n

X)] is the definition domain of edge

labels, with S′1
X , ..., S′n

X are subsets of SX .

Considering the extension previously introduced, we establish some new notions
related to label and vertex matching and to valuation merging. Two labels are
considered matchable if and only if they are either constant and having same
type or if the labels from the model graph is variable it must have the same type
as the constant label from the input graph. Based on this notion, two nodes
or edges are matchable if and only if they have same number of labels, their
labels are, two by two, matchable in respect of their occurrence order, and the
results of all parameter matching are consistent. Two valuations V al1 and V al2
are consistent if and only if, for every pair (x1, value1) belonging to V al1 and
every pair (x2, value2) belonging to V al2, x1 and x2 are two different variables
(syntactically) or represent the same variable and associate it with the same
value x1 = x2 and value1 = value2. Typically, a vertex v1(x, y, x, 3) is not
matchable with v2(1, 1, 2, 3) but is matchable with v3 = (1, 2, 1, 3) and gives in
this case the valuation set {(x, 1), (y, 2)} as a result.

3.2 Graph Updating Process

Dealing with graph transformation two major technical problems arise: how to
delete L from G and how to connect R with the remaining part of it. To cope
with these problems GMTE combines two approaches. The first one is the simple
pushout SPO [9], where a graph transformation rule is (L,K,R). L and R are
the left and right hand side graphs of the rule and K is a common subgraph of
L and R that will be preserved after the rule application. Also K has a second
role which consists of the part that the added nodes will be connected to. The
removal of L \K raises the problem of dangling edges (edges without starting or
ending node). This approach implies that dangling edges are deleted once L \K
is removed.

According to [10] there is another powerful mechanism which is based on
connection instructions who enrich the formalism of how to connect R. This
approach, called Node Controlled Embedding, allows connecting nodes from the
right-hand side graph to the neighbours of removed nodes from the left-hand
side graph.

The GMTE rewriting techniques uses the last extension of the NCE which
is the edNCE used for directed and edge labelled graph. For edNCE grammars
a connection instruction is of the form (m,μ, p/q, x, d, d′) with obvious meaning:
a q-labelled edge should be established between x (node from R) and every
μ-labelled node of host graph G that is a p-neighbour of m (node from L), with
d, d′ ∈ {in, out} , where d is the old edge direction and d′ the new one. The
host graph is multi-labelled so μ, p and q are sets of labels. To determine the
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applicability of a transformation rule, the approaches presented above are based
on the existence of an instance of the sub-graph L. In some cases, it is necessary
to express additional conditions to specify conditions relating to the absence
of an occurrence in the host graph. Such conditions or restrictions are called
negative application conditions (NAC) [11].

3.3 Conditional Rule Schemata

The conditional rule schemata introduced in [12] extend graph transformation
with operations on labels. Within the GMTE we have two types of operations.
Operations on nodes and edges labels of the Add zone are called functions.
When operations are used within nodes and edges labels of the Delete zone and
Invariant zone they are called conditions.

Rule graphs used by the GMTE are multi-labelled so conditions and functions
could be used on any label of node and edge with the respect to the following
two conditions:

– Conditions are Boolean expression built in an arithmetic expressions, used
as label of nodes and edges within the Delete zone and Invariant zone.
Functions used only on the Add zone.

– V ar ( Addzone ) ⊆ V ar ( Delete zone + Invariant zone ).

where V ar(Y ) is set of all variables in zone Y . Constraint label formalism is
added in order to extend the expressiveness of the matching and the transfor-
mation. We used the muParser 2 which is an extensible high performance math
expression parser library written in C ++. The main objective of this library is
to provide a fast and easy way of parsing mathematical expressions.

3.4 Rule and Application Condition

In GMTE, the basic representation of a rule is a single graph combining all of
the following four zones:

– Invariant zone: a subgraph that needs to be present in the input graph in
order for the rule to be applicable, this pattern is preserved after the rule
application;

– Absent zone: a subgraph that must be absent in the input graph to allow
the application of the rule;

– Delete zone: a subgraph that needs to be present in the input graph in order
to be deleted after the rule application;

– Add zone: a subgraph that will be added after the rule application.

As we can see, the presence of the Invariant zone and Delete zone form the
positive application condition, and the absence of the Absent zone forms the

2 A fast math parser library Version 2.2.0 (muParser), available at
http://muparser.beltoforion.de/

http://muparser.beltoforion.de/
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negative application condition. The rule within the GMTE could be extended to
meet a much more powerful transformation mechanism assured by the connection
instructions as it was defined in the previous Section.

Two main rule application approaches are implemented within the GMTE.
The first one is to simply apply all rules listed in a rule file to a given input
graph. The second one is to recursively apply all rules listed in a rule file to a
given input graph, and to all graphs generated by such applications.

4 Inexact Matching

In this section we introduce our approach for inexact graph matching. Graph edit
distance is one of the most flexible graph similarity measures. Our approach in-
line with [13]. In [13] the authors proposed to compute graph edit distance based
on bipartite graph matching by means of the Linear Sum Assignment Problem.
Their algorithm performs quite efficiently, but it is limited in that it is often ap-
plicable for matching two graphs with equal number of nodes. In case of subgraph
matching, the authors expand the cost matrix to get a square matrix. Therefore,
this expansion increases computation time. As we can see in the sequel, our ap-
proach tackles efficiently this problem, a) using a modified version of the LSAP
algorithm and b) possibility to directly work on a rectangular cost matrix.

4.1 Node/Edge Edit Distance

To compute the distance between two nodes or edges, we use a modified version
of the the Heterogeneous Euclidean Overlap Metric (HEOM) [14] which handles
numeric and string labels. But first, we will start by defining a metric to mea-
sure the distance between two labels. Given two labels li, l

′
i (i is the index of

the label within the node or the edge attributes) the distance is measured by
labelDistance(li, l

′
i) defined as follow:

labelDistance(li, l
′
i) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if li or l
′
i is missing,

ed(li,l
′
i)

max(|li|,|l′i|)
if li or l

′
i are strings,

|li−l
′
i|

1+|li−l
′
i|

if li or l
′
i are numerics.

The string edit distance of s and t, denoted by ed(s, t) is the minimal atomic
string operations (character insertion, deletion or substitution) needed to trans-
form s into t. when labels are strings, we could see that if they are equal then
the distance is 0, and if they are totally different, the distance is 1. In case labels
are numeric, the distance is 0 if they have same value and the distance is � 1 if
| li − l

′
i |→ ∞. We define node/edge distance as follow:

δ(n, n′) =

√√√√
max(|n|,|n′|)∑

i=0

(labelDistance(li, l
′
i))

2

| n | denotes the number of labels within a node or an edge. n and n′ could be
either two nodes or two edges.
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4.2 Cost Matrix

Let G1 = (V1, E1) and G2 = (V2, E2) be two multi-labelled graph, where
| V1 |= n and | V2 |= m. The cost matrix defined as C = (cij)n×m, where
each element cij ≥ 0 correspond to the cost of assigning the ith of V1 to the
jth element of V2. To enhance the matching, information about edges distance
could be added to the cost matrix. The technique is somehow similar to [15],
except for the cost matrix is rectangular to reduce computation time. For each
cij (assignment cost of node ui to the node vj) an adjacency edge cost matrix
is generated. The cost resulting from the minimum-cost edge assignment for all
edges connected to ui and vj is added to cij .

Cij = cij +min{
∑

cost(eui , evj )}

where min{∑ cost(eui , evj )} is computed by the algorithm using the adjacency-
edge cost matrix of node ui and vj . The problem is then to determine the
minimum cost of assigning node from G to node from G′.

4.3 Bipartite Graph Matching

Standard graph matching procedures assign nodes and edges of one graph to
another using some kind of search tree and trying to minimize the global edit
cost. Let n and m be the number of nodes in G and G′. We have n!

m! possibilities
of assigning nodes from G to G′. The time complexity of such brute a force
algorithm is O(nm). However, according to [16] the process of assigning nodes
can be solved as Linear Sum Assignment Problem LSAP . For the previously
defined cost matrix the problem is how to match each row to a different column
in such a way that the sum of the assignment is minimal. In other words, we
want to select n elements of C, so that there is exactly one element in each row
and one in each column, and the sum of the corresponding sum is minimal.

4.4 Assignment Algorithm

In [17] the paper considers the classic linear assignment problem with a min-sum
objective function, and the most efficient and easily available codes for its solu-
tion. Also it gives a survey describing the different approaches in the literature,
presenting their implementations, and pointing out similarities and differences.
Then it selects eight codes and introduces a wide set of dense instances contain-
ing both randomly generated and benchmark problems. According to [17], the
modified versions of the Volgenant Jonker algorithm [18] is one of the fastest
to solve dense linear assignment problem instances. In [18] authors have made
a significant modification that led to speed up the algorithm. This modification
is based on a selection procedure that selects a number of small cost elements
from the cost matrix.

The GMTE adopt the modified versions of the Volgenant Jonker algorithms
[18]: for square problem LAPMOD and the non-square problem LAPMODrow.
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The LAPMODrow is a special version of the core oriented LAP algorithm,
used where the cost matrix is constructed with less rows than columns. For the
bipartite matching, LAPMOD is used when graphs have equal number of nodes
and LAPMODrow is used when the nodes number in one graph is less than the
other.

5 Comparison with Other Tools

In this section, we compare GMTE with other graph transformation tools. The
comparison is summarized in Table 1 and covers different criteria. These criteria
have been presented in different papers like [3,19]. GMTE is categorized as a
general purpose tool, however, it can be used through the expressiveness of his
rule for model transformations as well.

The third criterion considers advanced rule features, these features increase
the expressiveness of rules. GMTE and GROOVE support parallel rule appli-
cation. This rule will be applied to all subgraphs that satisfy the application
conditions. Also, GMTE like the other tools support standard case application
(application on a precise or random matching). GMTE supports recursive rules
application. GROOVE, PROGRES, Fujaba and GrGen [20] support using regu-
lar expressions on edge labels, GMTE supports label calculation known as label
condition and functions on node and edge labels. Moreover, GMTE combines
the SPO and edNCE to support a reach formalism for gluing and embedding
technique through the use of connection instructions. Most of the presented tools
in this section support either the SPO or the DPO approach, which reduce the
expressiveness of the rule.

Table 1. Comparison between GMTE and other tools

Tool Purpose Typing Advanced rule features Editing

AGG General purpose Required - Graphical

PROGRES General purpose Required Set nodes Graphical
Star rules

Regular expression

GReAT Model transformation Required Match condition Graphical
Recursive pattern

GrGen Multi-purpose Required Regular expressions Textual

VIATRA2 Model transformation Required Recursive patterns Textual

GROOVE General purpose Optional Regular expressions Graphical
Quantification

VMTS Model transformation Required Quantification Textual

ATOM3 Model transformation Required Triple Graph Grammar Graphical

GMTE General purpose Optional Parallel application,
Label calculation, Textual

Connection instructions
Codification instructions
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The final criterion is whether a tool provides a graphical user interface for
editing graphs and rules or is text-based only. GMTE can reads the rule graph
and the host graph description from input XML files. The standard used is
GraphML [21], which is an XML-based file format for graphs. Its main fea-
tures include supporting directed, undirected, and mixed graphs, hypergraphs,
hierarchical graphs, graphical representations, references to external data,
application-specific attribute data, and light-weight parsers.

6 Conclusion

In this paper we addressed the problem of tools for graph matching and graph
transformation. We presented a tool capable of performing matching and trans-
formation for multi-labelled graphs. Also, we enhanced the rewriting system by
extending the expressiveness of rules. To our knowledge, GMTE is the first tool
that implements the edNCE approach and combines it with SPO approach,
in order to get a rich formalism for both gluing and connecting technique. As
well, we improved the formalism through the use of conditional rule schemata
which are rule schemata equipped with a Boolean term built on arithmetic ex-
pressions. This allows to control rule applications by comparing values of labels.
Also GMTE support inexact graph and subgraph matching, by efficiently com-
puting the graph edit distance based on bipartite matching by means of faster
and adaptive version the Volgenant-Jonker assignment algorithm.

For other part, we are working on extending our tool with the use of graph
transformation system with time. Also, we are looking to implement a faster
algorithm for inexact matching in order to reduce computation time. In order to
show the efficiency of our approach, we plan to improve autonomic approaches
like [22] with graph capabilities for reconfiguration consistency checking purpose.
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