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Abstract. This paper characterizes floodings on edge weighted graphs.
Of particular interest are the highest floodings of a graph below a ceiling
function defined on the nodes. Two classes of algorithms for their con-
struction are presented. The first are applied on the dendrogram repre-
senting the hierarchy associated to the edge weighted graph. The second
consist in shortest distance algorithms on the graph itself.

1 Introduction

Edge weighted graphs are ubiquitous in the field of classification and image
processing. A hierarchy is easily derived from an edge weighted graph: cutting
all edges with a weight above some threshold produces a number of connected
subgraphs, representing each one scale of a taxonomy. For higher thresholds less
edges are cut, resulting in larger subgraphs, obtained by the union of smaller
ones. If the nodes represent the different tiles of a partition, and the edge weights
represent a dissimilarity between adjacent tiles, the hierarchy is a series of nested
partitions which are coarser and coarser, each tile at a given level, being obtained
by the union of tiles at lower levels. In the region adjacency graph for instance,
the nodes represent the catchment basins of a topographic surface, edges link
neighboring basins and their weights represents the altitudes of the pass points
between neighboring basins. If the topographic surface is flooded, the flood passes
from basin to basin through these pass points. The progression of the flood is thus
the same on the topographic surface or on the RAG. The present paper defines
floodings on arbitrary edge weighted graphs. Criteria are given characterizing
physically valid floodings. We then study the extension of a lake containing
a given node when its flooding level increases. The highest flooding below a
ceiling function defined on the nodes is unique. It has a great interest in image
segmentation and filtering. Various algorithms are proposed for its construction.

2 The Laws of Hydrostatics and Floodings

2.1 Criteria Characterizing a Flooding

Consider a non oriented node and edge weighted graph G = [E,N ], E repre-
senting the edges and N the nodes.
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Fig. 1. Tank and pipe network:
- a and b form a regional minimum with τa = τb = λ ; eab ≤ λ ; ebc > λ
- b and c have unequal levels but are separated by a higher pipe.
- d and e form a full lake, reaching the level of its lowest exhaust pipe ecd
- e and f have the same level ; however they do not form a lake, as they are linked by
a pipe which is higher.
The distribution in the last four tanks is not compatible with the laws of hydrostatics.

In order to give a physical interpretation to our graph, we consider the nodes
as vertical tanks of infinite height and depth. The weight τi represents the level
of water in the tank i, equal to −∞ if no water is present. Two neighboring
tanks i and j are linked by a pipe at an altitude eij equal to the weight of the
edge. We call such an edge weighted graph a tank network. Edge weights e and
flooding levels τ take their values in [−∞,+∞]. We suppose that the laws of
hydrostatics apply to our network of tanks and pipes:
* if the level τi in the tank i is higher than the pipe eij , then τi = τj .
* the level τi in the tank i cannot be higher than the level τj , unless eij ≥ τi.

In fact, this second condition implies the first one. We adopt it as a criterion
defining valid floodings on a tank network.

Definition 1. The distribution τ of water in the tanks of the graph G = [E,N ]
is a flooding of this graph, i.e. is a stable distribution of fluid if it verifies
the criterion { for any couple of neighboring nodes (p, q) : (τp > τq ⇒ epq ≥
τp) (criterion 1) }

Figure 1 presents a number of configurations compatible with the laws of hydro-
statics and others which are not.

The following equivalences yield other useful criteria for recognizing flood
distributions on tank networks:

(τp > τq ⇒ epq ≥ τp) ⇔ (not (τp > τq) or epq ≥ τp) ⇔
(τp ≤ τq or τp ≤ epq) ⇔ (τp ≤ τq ∨ epq) (criterion 2)

2.2 The Algebra of Floodings

Lemma 1. If τ and ν are two floodings of a tank network G, then τ ∨ ν and
τ ∧ ν also are floodings of G.

2.3 Creation of Lakes

We first define the ultrametric flooding distance ud(p, q) between two nodes p
and q on an edge weighted graph as the lowest value λ such that there exists
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a connected path between p and q with no edge higher than λ. The highest
edge along the path has a weight λ. For a node p the closed ball of centre p
and radius ρ is defined by Ball(p, ρ) = {q ∈ N | ud(p, q) ≤ ρ}. Such balls have
strange properties:

- two closed balls with the same radius are either disjoint or identical.
- each element of a closed ball is a centre of this ball.
- the radius of a ball is equal to its diameter, that is the longest distance

between two nodes in the ball.
Open balls Ball(p, ρ) = {q ∈ N | ud(p, q) < ρ} have similar properties.
The following lemma presents the basic mechanism generating lakes.

Lemma 2. If (p, q) are neighboring nodes of the flooded graph G, linked by an
edge with weight epq < τp, then τp = τq.

Proof. Indeed the criterion (τp > τq ⇒ epq ≥ τp) is equivalent with (epq < τp ⇒
τp ≤ τq). Hence if epq < τp, we have τp ≤ τq ; so we also have epq < τq implying
τq ≤ τp ; finally τp = τq.

Consider now a node p with a flood level λ. In the open ball Ball(p, λ) all
neighboring nodes (s, t) are connected by an edge est < λ, hence τs = τt = λ
and the whole ball X is a lake with the same altitude λ as p.

Lemma 3. If an open ball Ball(p, ρ) has one node with a floding level λ > ρ,
then its flooding level is uniform and equal to λ.

By definition of an open ball, all edges in the cocycle of X have weights ≥ λ. the
smallest of them has a weight μ > λ or μ = λ. Consider both cases separately.

Creation of a Lake Zone: μ = λ. There exists an edge with weight λ in the
cocycle of X, linking a node s of X with a node t outside X. The node t does
not belong to the open ball Ball(p, λ) but to the closed ball Y = Ball(p, λ) ⊃
Ball(p, λ). What is the level of the flooding within Y ? Each node s of Y is
linked with p by a path whose edges are lower or equal than λ. The criterion
2 characterizing floodings may then be applied to all pairs (u, v) of edges along
this path: τv ≤ τu ∨ euv. If τu, euv ≤ λ, then also τv ≤ λ. This proves:

Lemma 4. If there is at least one node with a weight ≤ λ in a closed ball
Ball(p, λ) of level λ, all other nodes in this ball have a flooding level ≤ λ.

The diameter of Y is λ. Such a closed ball is called lake zone.

Creation of a Regional Minimum Lake: μ > λ. If the smallest edge of the
cocycle is higher than λ, so are all edges of the cocycle. Hence X forms a lake
with a uniform flooding level λ. As it is not possible to quit X without crossing
an edge with a weight λ, we define it as a regional minimum lake.
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From a lake zone to the next As any two nodes of X are linked by a path of
altitude < λ, diam(X) = μ < λ. In a closed ball, diameter and radius are equal,
hence X is also a closed ball of radius μ, i.e. a lake zone. According to the
preceding lemma, if only one node of X has a flooding level equal to μ, then all
its other nodes have a flooding level ≤ μ. But as soon one of its nodes has a
flooding level λ > μ, then all nodes of X have the same flooding level λ. And X
is a regional minimum lake as long as its flooding level is lower than the lowest
edge ν in its cocycle. As the flooding level within X reaches ν, X remains an
open ball Ball(p, ν) with a uniform flooding level ν, included in a closed ball
Ball(p, ν) with a flooding level lower or equal than ν outside X.

An Increasing Series of Lakes Containing a Node p. We define the op-
erator εnep which computes the weight of lowest adjacent edge of p ; similarly,
εXeY is the operator which computes the weight of the lowest edge in the cocycle
of Y. We now describe the extension of the successive lakes containing a given
node p for increasing levels η of flooding.

- for η < εnep, i.e. a flooding level below εnep, the extension of the lake is
X0 = {p} and is a regional minimum lake. Hence for η < εnep : X0 = {p}.

- for η = εnep, the lake containing p is included in a lake zone X1 = B(p, εnep).
The flood level is equal to η on X0 and ≤ η everywhere else on X1. We have
diam(X1) = εnep = εXeX0.

- for diam(X1) < η < εXeX1, the lake is a regional minimum lake with the
extension X1.

- for η = εXeX1, the lake containing p is included in a lake zone X2 =
B(p, εXeX1). The flood level is equal to η on X1 and ≤ η everywhere else on
X2. We have diam(X2) = εXeX1

- ...
- for diam(Xn) < η < εXeXn, the lake is a regional minimum lake with the

extension Xn.
- for η = εXeXn, i.e. a flooding level equal to the lowest adjacent edge of

Xn, the lake containing p is included in a lake zone Xn+1 = B(p, εXeXn). The
flood level is equal to η on Xn and ≤ η everywhere else on Xn+1. We have
diam(Xn+1) = εXeXn.

- the alternating series of regional minima lakes and lake zones goes on until
all nodes of N are flooded.

Dendrogram Structure of the Lake Zone. For p ∈ Y, we define the operator
κp by κp(Y ) = B(p, εXeY ) and its iteration: κ(n)

p (Y ) = κpκ
(n−1)
p (Y ) Starting

with the set X0 = {p} we obtain a series of lake zones: X0 = {p}, X1 = κp{p}, ...,
Xn = κp(Xn−1) = κ

(n)
p {p}.

Obviously, for each node q ∈ κ
(n)
p {p}, there exists a number m such that

κ
(n)
p {p} = κ

(m)
q {q}.

The sets κ
(n)
p {p} for all n and all nodes p form a hierarchy. Its sets may be

organized as a dendrogram. The leaves of the dendrogram are the nodes of G.
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Each node κ
(n)
p {p} is linked by an edge with its unique immediate successor

κ
(n+1)
p {p} as illustrated in fig.2A.

3 Dominated Floodings

3.1 Lake Level and Lake Extension at a Node p

The preceding section has described how the lake containing a given node is ex-
tended as its flooding level increases. Many flooding distributions are physically
possible. However there is only one if we consider the highest flooding below a
ceiling function ω defined on each node. We consider all floodings of G whose
flooding level is lower than the function ω on all its nodes. The supremum of
all these floodings also is a valid flooding of G and is the highest flooding of G
below ω. We define the ceiling function ω(X) as the smallest value taken by ω
on a node of X .

What will be the level of the flooding and the extension of the lake containing
a given node p ? As shown above, the possible lakes containing the node p form
an increasing series of nested sets κ(n){p}, the smallest being {p}, the largest
being the root κ(m){p} of the dendrogram.

The operator ω(X) is decreasing and the operator diam(X) increasing with
X. As the series κ(n){p} is increasing with n, we get a series of decreasing values
ω(κ(n){p}) and a series of increasing values diam(κ(n){p}) :

- as the set {p} has no inside edge, we have diam(κ(0){p}) = diam{p} =
−∞. Hence ω{p} > diam{p} = −∞

- if at the root we still have ω(κ(m){p}) > diam(κ(m){p}), i.e. the ceiling of p
is higher than the root of the dendrogram, then τp = diam(κ(m){p}), the lowest
flooding value covering the whole domain κ(m){p}.

- if on the contrary ω(κ(m){p}) ≤ diam(κ(m){p}), let k ≤ m be the smallest
index for which ω(κ(k){p}) ≤ diam(κ(k){p}) (rel. 1). Hence ω(κ(k−1){p}) >
diam(κ(k−1){p}) (rel. 2), which implies that on κ(k−1){p} the flooding level is
uniform and higher than diam(κ(k−1){p}). On the other hand Rel.1 implies that
on κ(k){p} the maximal flooding level is diam(κ(k){p}). Two possibilities are
compatible with both relations:
* if ω(κ(k−1){p}) ≤ diam(κ(k){p}), then τp = τκ(k−1){p} = ω(κ(k−1){p})
* if ω(κ(k−1){p}) > diam(κ(k){p}), then τp = τκ(k−1){p} = diam(κ(k){p}).

3.2 Illustration

Determination of the Flooding Level at the Node c. The ceiling function
ω is equal to ∞ on all nodes excepting the nodes ω(c) = 6 and ω(h) = 1. We
represent inside a yellow dot the function ω on each node of the dendrogram in
fig.2A.

Let us compute the lake level and the extension of the node c. The small-
est index for which ω(κ(k){c}) ≤ diam(κ(k){c}), is k = 3, with κ(3){c} =
[b, c, d, e, f ] having a diameter 7, whereas ω(κ(3){c}) = 6. For k = 2, we get
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Fig. 2. A: Dendrogram asssociated to the edge weighted graph (red nodes linked
by weighted edges). The yellow disks contain the ceiling level of each node of the
dendrogram.
B: The lake containing the nodes c also contains the nodes (b, c, d, e) at a flooding
level 6.
C: The ancestors of (b, c, d, e) are suppressed and its uncles becom the roots of sub-
dendrograms which may be processed separately.
D: Final dendrogram with the flooding levels of the various nodes.

κ(2){c} = [b, c, d, e] having a diameter 4, whereas ω(κ(2){c}) = 6. According to
the preceding analysis the flooding level of κ(2){c} = [b, c, d, e] is τc = τκ(2){c} =

ω(κ(2){c}) = 6 (see fig.2B).

Pruning the Dendrogram. Fig.2 presents how the upstream of each flooded
node is pruned. As the level of κ(2){c} is known, the dendrogram may be pruned
by discarding all ancestors of κ(2){c}. For k > 2, κ(k){c} is an ancestor of c,
the flooding level of all its immediate successors which are not ancestors of c,
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that is, brothers of κ(k−1){c} is lower or equal than diam(κ(k){c}). The edge
linking each brother Y of κ(k−1){c} with its father κ(k){c} is cut ; like that Y
becomes the root of a sub-dendrogram ; as its flooding level is lower or equal
than diam(κ(k){c}), one sets ω(Y ) = ω(Y ) ∧ diam(κ(k){c}). On the same time
all ancestors of κ(2){c} and the edges linking them are suppressed.

The result of the pruning is illustrated by fig.2B,C. The set κ(2){c} = [b, c, d, e]
got its flooding level 6 and its upstream is pruned:

- κ(3){c} = [b, c, d, e, f ] is suppressed and the node {f} becomes the root of a
sub-dendrogram, with a ceiling value ω({f}) = ω({f}) ∧ diam(κ(3){c}) = 7. As
the sub-dendrogram is reduced to a node, its ceiling value is its flooding value, 7.

- κ(4){c} = [a, b, c, d, e, f ] is suppressed and the node {a} becomes the root of a
sub-dendrogram, with a ceiling value ω({a}) = ω({a}) ∧ diam(κ(4){c}) = 9. As
the sub-dendrogram is reduced to a node, its ceiling value is its flooding value, 9.

- κ(5){c}, the root, is suppressed and the node [g, h, i, j, k] becomes the root
of a sub-dendrogram, with a ceiling value ω([g, h, i, j, k]) = ω([g, h, i, j, k]) ∧
diam(κ(5){c}) = 1.

In summary, as soon a node Y of the dendrogram gets its flooding level, the
dendrogram may be pruned, suppressing all ancestors of Y, transforming each
uncle Z of Y into the root of a sub-dendrogram, with a ceiling value ω(Z) =
ω(Z) ∧ diamκ(Z).

The final result is obtained by processing each sub-dendrogram separately and
is illustrated in fig.2D.

An Algorithm Based on Edge Contractions. The following algorithm con-
structs the dendrogram and computes the flooding levels by iteratively contract-
ing the edges of each lake. We define Λ(p) as a collection of nodes with the
same flooding level τp as the node p. The result of the algorithm is a list Λ of
records of the type (Λ(p), τp). The algorithms proceeds by processing the edges
still present in the graph in the order of increasing altitudes. Initially Λ = ∅ and
for p ∈ N : Λ(p) = [p] and p = “unflooded”:

As long there are edges to process, let (p, q) be the lowest edge to process:
if p = “isf looded” and q = “isf looded” take the next edge, else
X = Ball(p, epq) ; X1 = {x ∈ X | x = “isf looded”} ; X2 = {x ∈ X | ω(x) ≤ epq
and x = “unflooded”}
If X1 ∪X2 = ∅ : Λ(p) =

⋃
x∈XΛ(p) ; ω(p) = ω(X); contract (o, q) on p

else for each x ∈ X/X1 :
τx = ω(x) ∧ epq
Λ = append[Λ, (Λ(x), τx)]
contract X on p
p = “isf looded”

Illustration
- ebc = 1;X1 ∪X2 = ∅;Λ(c) = [b, c] ; ω(c) = 6; contract (b, c) on c
- egh = 2;X2 = [h] ; τh = 1; τg = 2; Λ = append[Λ, (h, 1), (g, 2)] ; contract (g, h)
on h; h = “isf looded”
- ede = 3;X1 ∪X2 = ∅;Λ(e) = [d, e] ; ω(e) = ∞; contract (d, e) on e
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Fig. 3. Adding a dummy node linked to each node x in X by an edge weighted by the
offset at x

- ece = 4;X1 ∪X2 = ∅;Λ(e) = [b, c, d, e] ; ω(e) = 6; contract (c, e) on e
- ejk = 5;X1 ∪X2 = ∅;Λ(e) = [j, k] ; ω(k) = ∞; contract (j, k) on k
- ehi = 6;X1 = [h] ; τi = 6 ; Λ = append[Λ, (i, 6)] ; contract (h, i) on i; i =
“isf looded”
- eef = 7;X1 = [e] ; τf = 7 ; Λ = append[Λ, (f, 7)] ; contract (e, f) on f ;
f = “isf looded”
- eik = 8;X1 = [i] ; τk = 8 ; Λ = append[Λ, (k, 8)] ; contract (i, k) on k; k =
“isf looded”
- eaf = 9;X1 = [e] ; τa = 9 ; Λ = append[Λ, (a, 9)] ; contract (a, f) on f ;
f = “isf looded”
- ef,k = 9; p = “isf looded” and q = “isf looded”, there is no further edge : end

4 Constrained Highest Floodings on Edge Weighted
Graphs as Shortest Distances in an Augmented Graph

4.1 Highest Floodings and Shortest Distances

According to criterion 2, any flooding θ verifies the relation: θp ≤ θq ∨ epq,
for each neighbor q of p. As this relation is to be true for all neighbors of p,
we have θp ≤ ∧

q neighbor of p

(θq ∨ epq) Simultaneously θp ≤ hp. So θp ≤ hp ∧
∧

q neighbor of p

(θq ∨ epq) and the highest of them, τ verifies

τp = hp ∧
∧

q neighbor of p

(τq ∨ epq) .

If we add to the graph Ge a dummy node Ω with a weight τΩ = 0 linked
by a dummy edge (Ω, p) with each node p and holding a weight equal to hp,
we get an augmented graph Ĝe. Relation (6) may be rewritten as τp = (τΩ ∨
eΩp)∧

∧

q neighbor of p

(τq ∨ eqp) . This formula expresses that the shortest path for

the ultrametric flooding distance between Ω and p is eΩp = hp if the path is
simply the edge (Ω, p) or is equal to (τs ∨ eps) if the path passes through the
neighbor s of p, (τq ∨ eqp) taking its smallest value for q = s.
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Theorem 1. The highest flooding of the graph G below a function h defined on
the nodes is the shortest ultrametric flooding distance of each node to Ω .

This theorem permits to use any shortest path algorithm for computing this
highest flooding. The simplest recursively applies the relation (6) until stability
is reached.

Initialisation: τ (0)p = hp

Repeat until τ (m)
p = τ

(m−1)
p : τ

(n)
p = hp ∧

∧

q neighbor of p

(
τ
(n−1)
q ∨ epq

)

Stability is necessarily reached after a number n of iteration as the values
of τ decrease and have a lower ceiling equal to 0. As τ

(n)
p ≤ τ

(n−1)
p ≤ hp,

we get an equivalent algorithm with the following sequence: τ
(n)
p = τ

(n−1)
p ∧

∧

q neighbor of p

(
τ
(n−1)
q ∨ epq

)
.

4.2 The Moore Dijkstra Shortest Path Algorithm [5]

This famous greedy algorithm takes as many steps as there are nodes. At any
step, S represents the subset of nodes for which the shortest path is known. For
any neighboring node of S, the length of the shortest path for which all edges
but the last belong to S constitutes an overestimation of this length. The node
with the lowest guess is correctly estimated.

Initialization:
S = Ω ; S = N ; for each node p in N : τp = hp

Flooding:
While S �= ∅ repeat:

Select j ∈ S for which τj = mini∈S [τi]

S = S\{j}
For any neighbor i of j in S do τi = min [τi, τj ∨ eji]

End While

Remark. The dummy node plays no role, nor the nodes with an infinite ceiling
value. Without dummy node, the initialisation becomes S = ∅ ; for each node
p in N verifying hp < ∞, do τp = hp.

The nodes are processed in an increasing order of flooding. If we keep the
edges linking each node with the node through which it has been flooded in the
algorithm we get a tree. Along each edge of this tree, the level of the flood also
is never decreasing.

5 Conclusion

We have given an axiomatic definition of floodings on edge weighted graph.
The highest flooding under a ceiling function is a morphological opening of this
ceiling function (increasing, anti-extensive and idempotent). The criteria charac-
terizing this flooding permit to express it either as a shortest distance problem
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on an augmented graph for an ultrametric flooding distance or as a pruning
of a dendrogram. The first expression permits to use the shortest path algo-
rithm which is best adapted to each particular problem. The second permits
to imagine extremely fast implementations as the dendrogram rapidly splits in
sub-dendrograms which may be processed independently.

These results may be transposed on floodings for images [4]. An image f
defined on a grid, may be considered as a node weighted graph G; the pix-
els becoming the nodes, their grey tones the node weights ; the edges connect
neighboring pixels/nodes and are not weighted. It may be shown that any flood-
ing τ of an image f is a flooding of the graph G, on which the edges get weights
epq = fp ∨ fq. This results permits to transpose on images all results established
on tank networks.
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