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Abstract. This paper presents techniques to address the complexity
problem of subgraph isomorphism detection on large graphs. To
overcome the inherently high computational complexity, the problem is
simplified through the calculation and strengthening of topological node
features. These features can be utilised, in principle, by any subgraph
isomorphism algorithm. The design and capabilities of the proposed uni-
fied strengthening framework are discussed in detail. Additionally, the
concept of an n-neighbourhood is introduced, which facilitates the de-
velopment of novel features and provides an additional platform for fea-
ture strengthening. Through experiments performed with state-of-the-art
subgraph isomorphism algorithms, the theoretical and practical advan-
tages of using these techniques become evident.

Keywords: Graph Matching, Subgraph Isomorphism, Topological Node
Features.

1 Introduction

Identifying subgraph isomorphisms between a pair of graphs is a key problem in
structural pattern recognition with an exponential worst case complexity. Sub-
graph isomorphism algorithms can be either exact, or inexact, with the latter
dealing with incomplete or noisy graphs. In this paper we focus solely on exact
subgraph isomorphism, where the graphs are complete and error-free. The con-
cepts presented in this paper however, may apply equally to inexact algorithms.
Applications for exact subgraph isomorphism include chemical substructure and
protein-protein interaction network matching, social network analysis and VLSI
design [1]. The most widely used algorithms for subgraph isomorphism are Ull-
mann’s algorithm [11] and the VF2 algorithm [2]. These tree-search algorithms
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are able to obtain practical runtime speeds by pruning branches from the search
tree that contain incompatible node matchings. However due to the exponen-
tiality of subgraph isomorphism, as the number of nodes in the graphs increases,
the matching times of both algorithms can quickly become infeasible [4].

To identify more node incompatibilities, and hence further reduce matching
times, local topological information about a node can be encoded into a topolog-
ical node feature (TNF). VF2 for example, uses the simplest TNF, namely the
vertex degree (number of adjacent nodes) to identify incompatible node match-
ings. Topological node features like this are also known as subgraph isomorphism
consistents or, in the case of graph isomorphism, invariants. On the simpler
problem of graph isomorphism, a number of algorithms exist that utilise com-
plex structural information. An early example of this is the Nauty algorithm by
McKay [6], which uses TNFs and a strengthening procedure similar to the tree-
index method discussed in this paper. Using this structural information, Nauty
is able to identify nodes which have identical topological structure, so becoming
acceptable isomorphic mappings. Recently, this idea was extended by Sorlin &
Solnon to create the IDL algorithm [10]. In another recent paper Riesen et al. [5]
ignores the search tree entirely and uses only TNFs to determine isomorphisms.
Their method has a polynomial runtime, but in some cases cannot resolve the
matching due to outstanding permutations.

When extending these concepts to subgraph isomorphism, any pair of matched
nodes is less likely to have identical topological structure. Despite this, it is
still possible to exploit the fact that a node in the full graph will contain the
same topological structure as a node from the subgraph, however with some
extra structure possibly added. From this observation, a rule can be defined for
each TNF as to when a node mapping is considered invalid. For example, if a
subgraph node has a degree of 5, a mapping to any full graph node with a degree
less than 5 is invalid. A recent algorithm utilising TNFs is the ILF algorithm
by Zampelli et al. [12]. This algorithm uses TNF values strengthened through
a similar procedure to Nauty to eliminate incompatibilities. In the paper, the
authors show that ILF can outperform VF2 in many cases even while only using
a simple TNF like degree. The recent LAD algorithm by Solnon [9] uses a local
all different constraint which ensures that for each mapping, the nodes adjacent
to the subgraph node can be uniquely mapped to nodes adjacent to the full graph
node. When combined with the generalised arc consistency (GAC) all different
constraint that is commonly used in constraint programming, LAD has been
shown to be even faster than ILF, on most cases.

In this paper we present a number of techniques that can be used to sim-
plify the subgraph isomorphism process. Similar to [4], the techniques described
here are not designed to challenge existing methods. On the contrary, they
are designed so that they can be utilised as an enhancement to any subgraph
isomorphism algorithm. In Section 2, we describe the concept of a node’s n-
neighbourhood and propose some novel topological node features which utilise
it. Section 3 presents a unified framework consisting of three strengthening tech-
niques. These strengthening techniques, introduced in Sections 3.1 to 3.3, can
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be applied to both topological node features as well as application-specific node
labels. Section 3.4 then shows how these concepts can be combined to create
strengthened features that are resistant to noise. All of these techniques can be
calculated independently on each graph, allowing them to be computed ahead
of time and stored. This makes matching against a large database of graphs
particularly effective. Finally in Section 4, we empirically show the performance
of these techniques to determine when they are best applied.

2 Topological n-Neighbourhood Features

The graphs dealt with in this paper are simple (no self loops, no duplicate
edges) unlabelled graphs, both directed and undirected. A graph is defined as
an ordered pair G = (V,E), where V = {v1, . . . , vn} is a set of vertices and
E = {{vx, vy}, . . .} is a set of edges.

A topological node feature is defined as any feature that is calculated solely
on topological information, as viewed from a particular node. Some traditional
TNFs used in graph matching are:

– degree. The number of adjacent nodes.

– clusterc (clustering coefficient). The number of edges between adjacent nodes
(not including edges to the node being evaluated).

– ncliquesk. The number of cliques of size k that include a particular node.

– nwalkspk. The number of walks of length k that pass through a particular
node.

Both ncliquesk and nwalkspk are vectors, holding values for each different k.
An n-neighbourhood (nN) of a node v is an induced subgraph formed from

all the nodes that can be reached within n steps from v. This induced subgraph
is centered around node v and contains all nodes up to n steps away, and all
edges between those nodes. It is denoted as nN(v, n). For any single node v, a
unique nN may be created for each value n = 1, 2, . . . ,m, where nN(v,m) = G
(the entire graph can be reached in m steps).

There are a number of TNFs that can be calculated from each nN of a node.
Firstly we have the node count, or number of nodes in the nN, denoted by nN-
ncount. Likewise we have the edge count, denoted by nN-ecount. Next we have
the number of walks of length k in the nN, denoted nN-nwalksk. Lastly we have
the number of walks of length k in the nN, that pass through the main node,
denoted nN-nwalkspk. Each of these TNFs will give a different result for each
nN of a node, giving n values, or n ∗ p values for nN-nwalksk and nN-nwalkspk
where k = 1, 2, . . . , p. The primary benefit of calculating TNFs on nNs is the
reduced likelihood of noise (topological structure not present in the subgraph)
from distant nodes being encoded in the feature. For small values of n, the
features contain less information but also less noise. On larger values of n, the
amount of information encoded is higher, but so is the likelihood that noise will
prevent the feature from detecting mismatches.
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3 Node Label Strengthening Framework

Our strengthening framework consists of the summation, listing, and tree indices,
SI, LI and TI, respectively. In this order, there is a natural progression from one
index to the next as they provide more resolution but take longer to compare.
Each of these indices can be applied iteratively and works by incorporating
the indices of neighbouring nodes. One or all of these indices may be applied
for each different value created by a TNF or even an application-specific label
(listing and tree indices only). A detailed description of these indices is given
in the following subsections. Table 1 in Section 3.3 compares the strengths and
weaknesses of each index.

3.1 Summation Index

The Morgan index [7] is an effective TNF, originally used to characterise chem-
ical structures, and more recently to assist in graph isomorphism detection [5].
Despite its success in graph isomorphism, it has limited effectiveness on subgraph
isomorphism.

Derived from the calculation procedure of the Morgan index, we propose the
summation index (SI). The summation index propagates TNFs through the
graph, allowing nodes to encode neighbouring structural information into their
own strengthened TNFs. An example is shown in Figure 1. In this example, we
show how SI can strengthen the node degree. Initially (iteration 0), the SI values
of nodes A−E are their TNF (degree in this case) values: 1, 2, 3, 2, and 2. For
all subsequent iterations, the SI values are the sum of the neighbouring SI values
from the last iteration. After iteration 1, these are 2, 4, 6, 5, and 5. After iteration
2, these are 4, 8, 14, 11, and 11. This process continues for a user-defined number
of iterations, or as required by a particular matching algorithm. Note that on
iteration 0, nodes B, D, and E all had an equal degree, and hence SI, but after
iteration 1, B could be separated from the others.

Definition 1 (Summation Index (SI)).

SIi(v) =

{
feature(v) if i = 0,∑

u SIi−1(u) otherwise.

where u is a vertex adjacent to v.

A(1,2,4)

B(2,4,8)

C(3,6,14)

D(2,5,11)

E(2,5,11)

Fig. 1. Calculating the summation indices. Here we see a simple graph with three
iterations of (degree) SI values shown for each node (iterations 0, 1, and 2).
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As summation requires features to be added (+) and ranked (≤), it cannot be
used for many application-specific labels. To strengthen such labels, the listing
or tree indices below can be used.

3.2 Listing Index

The second feature strengthening technique in our framework is the listing index
(LI). The listing index is a natural progression from summation, containing more
information but also requiring more complex comparisons. Fankhauser et al. [5]
presented this technique for graph isomorphism under the name neighbourhood
information. A node’s neighbourhood information is essentially a list (formally
a multiset) of all feature values of the neighbouring nodes.

The key difference with LI is that features are evaluated separately. This
provides more resolution, at the cost of increased comparison time. As with
summation, this process can be repeated to include more information. The listing
index of a node, at iteration i, is equal to the union of the listing indices of all
neighbouring nodes at i − 1. For Figure 1, iteration 0 would be {1}, {2}, {3},
{2}, and {2}. This would then become {2}, {1, 3}, {2, 2, 2}, {2, 3}, and {2, 3} for
iteration 1, and {1, 3}, {2, 2, 2, 2}, {1, 2, 2, 3, 3, 3}, {2, 2, 2, 2, 3}, and {2, 2, 2, 2, 3}
for iteration 2.

The listing index also follows the same convention as summation, in that on
each iteration, only the previous values of the neighbours are considered, with
no regard to the node’s own previous value.

Definition 2 (Listing Index (LI)).

LIi(v) =

{
{feature(v)} if i = 0,

∪uLIi−1(u) otherwise.

One advantage of listing over summation is that there is no requirement for
the feature values to be numerical. The only requirement is that they can be
compared for equality (=), unless they are TNFs being used on subgraph iso-
morphism, in which case they must be able to be ranked (≤).

3.3 Tree Index

The final feature strengthening technique we present is the tree index (TI). We
show this technique in its pure form as a natural progression from the other
indices, and discuss some alternative versions. This technique can be thought of
as a second interpretation of the listing technique. The initial step is identical to
listing, however the iterations are performed differently. In our listing technique,
each iteration takes the union of neighbouring lists from the last iteration. In-
stead of taking the union of neighbouring lists from the last iteration, we simply
create a list with those lists as elements. This creates an iteratively deeper list
which can be thought of as a tree, beginning from the node and branching i lay-
ers, where i is the iteration number. Using the tree index, the second iteration
indices for nodes A−E would be {{1, 3}}, {{2}, {2, 2, 2}}, {{1, 3}, {2, 3}, {2, 3}},
{{2, 2, 2}, {2, 3}}, and {{2, 2, 2}, {2, 3}} respectively.
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Definition 3 (Tree Index (TI)).

TIi(v) =

{
feature(v) if i = 0,

∪u{TIi−1(u)} otherwise.

This provides us with a rich description of the node’s local structure, resulting
in more complex comparison challenges. In the worst case, where feature values
are not ranked, this leaves us with a tree of linear assignments for each node
comparison. Since the tree index effectively creates a tree of the graph starting
from a node, there is no need to store the resulting values. Instead, we can simply
traverse the graph during the matching.

Alternative versions of this have been presented for graph isomorphism [6,10]
and subgraph isomorphism [12]. These alternative versions precompute the val-
ues and use a renaming step in an attempt to limit the size that must be stored.
The effectiveness of this renaming step depends on the type of graph and can
vary greatly.

Table 1. A naive comparison of the strengths and weaknesses of each index

SI LI TI

Preprocessing Time Very Low Moderate Zero
Preprocessing Space Very Low High Zero
Matching Time Very Low Low Very High
Pruning Effectiveness Moderate High Very High

3.4 Strengthening in n-Neighbourhood

As mentioned in Section 2, TNFs calculated on an nN can be thought of as less
noisy than their counterparts obtained on the main graph. This same concept
applies equally (if not more) to the indices introduced in Sections 3.1 to 3.3.
Instead of propagating the indices through the original graph, we can propa-
gate them through the nN of each node. Although this means that each node’s
strengthened TNF values are calculated on a unique nN graph, these values
are still valid to compare in subgraph isomorphism. The benefit of propagating
through nNs is that it allows us to construct a very distinct picture of the local
structure without being distorted by structural information many steps from
the node. The downside to this is that structure many steps away is ignored
completely, regardless of how useful such information could have been. Since nN
propagation requires propagating information through each nN separately, the
computation required is far more than propagation on the main graph, however
the storage cost is not significantly higher. This makes nN propagation ideal for
databases where graphs can be preprocessed once and matched many times.

4 Experimental Results

To evaluate the effectiveness of the techniques discussed in this paper, we first
perform some analytical tests, followed by practical tests using a state-of-the-art



A Unified Framework for Strengthening TNFs 17

subgraph isomorphism algorithm. For our testing data, we use positive subgraph
isomorphism instances created using the geometric random graph generator from
the igraph library [3]. This generator was chosen as it generates edges using a
geometric method, resulting in graphs likely to be found in computer vision
applications. Each test instance contains a 100 node full graph and a 90 node
subgraph.

4.1 Evaluating Pruning Techniques by ABF

Subgraph isomorphism detection is most commonly performed using a search
tree and some pruning techniques. Given a full graph with N nodes and a sub-
graph with M nodes, we have N !

(N−M)! permutations in the search tree. The depth

of the search tree is determined by the number of nodes in the subgraph. This
value is static as solutions are found only at the leaves. The number of branches
at each search tree node is the number of valid mappings possible for a particular
subgraph node. This value, called the node’s branching factor, starts as N , but
may be pruned to be significantly lower.

To compare the pruning effectiveness of the techniques discussed in this paper,
we use the average branching factor (ABF). We define the ABF as the average
of the branching factors of subgraph nodes. To ensure the order of nodes does
not skew the results, we calculate each node’s branching factor as if it were at
the root of the search tree. More information regarding ABF can be found in
Section 3.5 of [8].

4.2 Analytical Experiments

We evaluate each of the techniques shown in this paper using the average
branching factor (ABF) defined in Section 4.1, averaged over 10 test instances.
For comparison with our techniques in the following figures, we provide the
ABFs of the traditional TNFs that were described in Section 2. These ABF
values are: 39.5 (degree), 39.7 (clusterc), 57.0 (ncliquesk, k = 3, 4, . . . , 8), 48.1
(nwalkspk, k = 1, 2, . . . , 8), and 29.5 (the combination of all four). These ABF
values are based solely on the traditional TNFs, without the use of any nN or
index-related strengthening. As such, they can be compared as is with every
value reported in the following figures.

In Figure 2 we compare the results from the different n-neighbourhood (nN)
features defined in Section 2. For each feature, we show the ABF and comparison
time for nNs up to a depth of 10 steps. Note that for a maximum nN depth of x in
the figure, nNs are calculated and compared for n = 1, 2, . . . , x. The comparison
time here is the average time required to determine all compatibilities between
the subgraph and full graph nodes on each test instance.

Comparing these figures to the traditional TNFs listed above, we can clearly
see the pruning effectiveness of these nN features. At a maximum nN depth of
just two steps, each nN feature has achieved more pruning than all four of the
traditional TNFs. While not performing as well as some others, the nN-nwalksp
feature here is particularly noteworthy, as it is the only feature that has a non-nN
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Fig. 2. ABF and comparison times for n-neighbourhood features

counterpart. A comparison between the non-nN nwalksp (ABF: 48.1) and nN-
nwalksp (ABF: 35.3 → 14.0) shows the effectiveness of nNs. This effectiveness
comes from the noise-reduction inherent in nNs, as discussed in Section 3.4.

Figure 3 compares the results for each of the strengthening indices detailed
in Sections 3.1 to 3.3, and their nN-strengthened counterparts from Section 3.4.
These figures show how the ABF and comparison times change as the maximum
iteration number of the indices increases. The TNF strengthened here is degree,
as this simple TNF will best show the capabilities of the strengthening indices.
Note that due to the significant time required for tree-index comparisons, all
times are shown on a logarithmic scale.
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Fig. 3. ABF and comparison times for SI/LI/TI and their nN-strengthened counter-
parts, using only the degree TNF

Starting from the standard degree ABF of 39.5, it takes only a single iteration
before all indices are below the 29.5 ABF of the combined traditional TNFs.
After four iterations, both LI and TI have achieved greater pruning with just
degree than any single TNF, including nN TNFs. Given a more complex feature,
or combination of features, these strengthening indices can achieve even greater
pruning. Of course as we include more features and strengthening techniques,
the comparison time may also increase.
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4.3 Practical Experiments

The ABF reductions in the previous section show that our techniques can sim-
plify the matching problem, allowing matching algorithms to perform faster. In
this section, we determine whether this reduction in matching time is worth
the increase in feature comparison time. To achieve this, we perform subgraph
isomorphism detection (searching for all solutions) using the VF2 algorithm, as
this is the most commonly used benchmark.

Each full graph in our test set contains exactly 100 nodes. However in or-
der to show how the number of edges affects the performance of certain tech-
niques, we run our tests five times, each time with an increasing number of edges.
For each algorithm and number of edges, we report the average matching time
for 100 test instances. Figure 4 shows subgraph isomorphism detection times for
VF2 when combined with the techniques from this paper.
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Fig. 4. Subgraph Isomorphism times for VF2 using the nN TNFs and strengthening
techniques (again only strengthening degree) from this paper. Regular VF2 is included
for comparison.

Due to the exponentiality of the graph matching problem, VF2 often takes
significantly longer on certain instances, giving its results a high standard devi-
ation. In addition to reducing the average matching times as shown in Figure 4,
our techniques also help VF2 overcome these hard instances. This results in a
more consistent matching time, which is advantageous in real-time applications.

5 Conclusions

In this paper we proposed a number of strengthening techniques that can greatly
increase the pruning power of both TNFs and application-specific labels. By
iteratively encoding the neighbouring topological information, these techniques
were able to significantly reduce matching times while only using the simple TNF
of degree. Both the summation and listing indices were able to perform well in
all cases, whereas the tree index only proved useful on graphs with fewer edges.
With index type, TNFs used, and iteration depth configurable, this framework
can be tailored to suit particular problems or classes of graphs as required.

Additionally we presented some new TNFs based on the n-neighbourhoods of
nodes. These TNFs use the reduced noise inherent in nNs to identify otherwise-
hidden topological incompatibilities between mismatched nodes.
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Through analytical and practical experiments, the effectiveness of these tech-
niques has been shown to achieve significant gains over the standard VF2 al-
gorithm. Subsequent testing has also shown that by adding these strengthening
techniques to the iterative node elimination technique from [4], matching times
can be over twice as fast as those reported in that paper, on the same data.

It should be noted that certain constraint programming algorithms, such as
LAD, achieve significantly lower gains from these techniques. This is due to
additional requirements to integrate TNFs and how such algorithms utilise this
information in the matching process. The creation of alternative integration
techniques to circumvent this issue remains an open research problem. Another
interesting research problem is the creation and matching of topological edge
features.
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