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Abstract. Graph edit distance is one of the most flexible mechanisms
for error-tolerant graph matching. Its key advantage is that edit distance
is applicable to unconstrained attributed graphs and can be tailored to
a wide variety of applications by means of specific edit cost functions.
The computational complexity of graph edit distance, however, is expo-
nential in the number of nodes, which makes it feasible for small graphs
only. In recent years the authors of the present paper introduced sev-
eral powerful approximations for fast suboptimal graph edit distance
computation. The contribution of the present work is a self standing
software tool integrating these suboptimal graph matching algorithms.
It is about being made publicly available. The idea of this software tool
is that the powerful and flexible algorithmic framework for graph edit
distance computation can easily be adapted to specific problem domains
via a versatile graphical user interface. The aim of the present paper is
twofold. First, it reviews the implemented approximation methods and
second, it thoroughly describes the features and application of the novel
graph matching software.

1 Introduction to Graph Edit Distance

Graph matching refers to the process of evaluating the structural similarity of
graphs. A large number of methods for graph matching have been proposed
in recent years [1–5]. Compared to other graph matching methods, graph edit
distance is very flexible. Due to its ability to cope with arbitrary structured
graphs with unconstrained label alphabets for both nodes and edges. Therefore,
graph edit distance has been used in the context of classification and clustering
tasks in diverse applications [6–8].

Given two graphs, the source graph g1 and the target graph g2. The basic idea
of graph edit distance is to transform g1 into g2 using some distortion operations.
A standard set of distortion operations is given by insertions, deletions, and
substitutions of both nodes and edges. We denote the substitution of two nodes
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u and v by (u → v), the deletion of node u by (u → ε), and the insertion of node
v by (ε → v). For edges we use a similar notation. A sequence of edit operations
e1, . . . , ek that transform g1 completely into g2 is called an edit path between g1
and g2.

Obviously, for every pair of graphs (g1, g2), there exist an infinite number of
different edit paths transforming g1 into g2. Let Υ (g1, g2) denote the set of all
possible edit paths between two graphs g1 and g2. To find the most suitable edit
path out of Υ (g1, g2), one introduces a cost for each edit operation, measuring
the strength of the corresponding operation. The idea of such a cost function is
to define whether or not an edit operation represents a strong modification of
the graph. Usually, the cost is defined with respect to the underlying node or
edge labels, i.e. the cost c(e) is a function depending on the edit operation e.

Clearly, between two similar graphs, there should exist an inexpensive edit
path, representing low cost operations, while for dissimilar graphs an edit path
with high cost is needed. Consequently, the edit distance of two graphs is defined
by the minimum cost edit path between two graphs. Formally, the graph edit
distance between g1 and g2 is defined by

d(g1, g2) = min
(e1,...,ek)∈Υ (g1,g2)

k∑

i=1

c(ei)

The possibility to parametrize graph edit distance bymeans of a cost function cru-
cially amounts for the versatility of this particular dissimilarity model. That is, by
means of graph edit distance it is possible to integrate domain specific knowledge
about object similarity when defining the cost of the elementary edit operations.
Thus, the concept of edit distance can be tailored to specific applications.

Traditionally, the computation of edit distance is carried out by means of a
tree search algorithm which explores the space of all possible mappings of the
nodes and edges of g1 to the nodes and edges of g2. Yet, a spate of other graph
edit distance computation algorithms have been developed during the last years.
The present paper introduces a flexible software package for various graph edit
distance computation variants (including the traditional tree search algorithm).
The graph edit distance software will be made publicly available soon under

http://www.fhnw.ch/wirtschaft/iwi/gmt

In Fig. 1 the main window of our novel graph matching software tool is shown.
In ① in Fig. 1 the user of the framework is asked to define the source graph set
S = {g1, . . . , gn} the target graph set T = {g′1, . . . , g′m}1, the folder where the
individual graphs are locally stored (graph folder) and a results folder where the
computed distance matrix D = (d(gi, gj))n×m is saved (gi ∈ S and gj ∈ T ). For
more detailed and technical descriptions of the input formats of both graph sets
and graphs as well as the output format of the distance matrix we refer to the
above mentioned website. In ② in Fig. 1 the user defines whether or not to log
meta information about the graphs being processed and the corresponding edit
paths.

1 Clearly, the source and target set might be the same sets in some applications.
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The remainder of the present paper reviews different versions of graph edit
distance available in our software tool and describes the user-defined parameters
and options for graph edit distance computation in detail.

①

②

③ ④

⑤

⑥
⑦⑧

9

❷

⑩

❶

❸

Fig. 1. The main window of our novel graph matching software tool

2 Graph Edit Distance Algorithms

In ③ in Fig. 1 the graph edit distance algorithm actually to be applied can be
chosen by the user. The five available algorithms are briefly described in the next
paragraphs.

A*-Algorithm with Bipartite Heuristic (exact graph edit distance). A widely used
method for exact graph edit distance is based on the A* algorithm [9] which is
a best-first search algorithm. The basic idea is to organize the underlying search
space as an ordered tree. The root node of the search tree represents the starting
point of our search procedure, inner nodes of the search tree correspond to partial
solutions, and leaf nodes represent complete – not necessarily optimal – solutions.
Such a search tree is constructed dynamically at runtime by iteratively creating
successor nodes linked by edges to the currently considered node in the search
tree. In order to determine the most promising node in the current search tree
often a heuristic function is used. Formally, for a node p in the search tree, we
use g(p) to denote the cost of the optimal path from the root node to the current
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node p, and we use h(p) for denoting the estimated cost from p to a leaf node. The
sum g(p)+ h(p) gives the total cost assigned to an open node in the search tree.
Given that the estimation of the future cost h(p) is lower than, or equal to, the
real cost, it is guaranteed that the algorithm finds an optimal edit path [9]. To
solve the problem of estimating a lower bound h(p) for the future costs, one can
map the unprocessed nodes and edges of graph g1 to the unprocessed nodes and
edges of graph g2 such that the resulting costs are minimal. In [10] it is proposed
to use a fast bipartite assignment algorithm of the unprocessed nodes and edges
of the two graphs as heuristic function h(p). This specific heuristic function h(p)
described in [10] is actually implemented in our software framework.

Beam Search. The method described in the previous paragraph finds an opti-
mal edit path between two graphs g1 and g2 and thus returns the exact graph
edit distance d(g1, g2). Unfortunately, the computational complexity of any ex-
act graph edit distance algorithm is exponential in the number of nodes of the
involved graphs (whether or not a heuristic function h(p) is deployed to gov-
ern the tree traversal process). This means that the running time and space
complexity may be huge even for reasonably small graphs2. In [11] the issue of
efficient graph edit distance computation is addressed by simple variants of a
standard A* algorithm. One method presented in [11] is based on the idea of
beam search. Instead of expanding all successor nodes in the search tree, only a
fixed number s of nodes to be processed are kept in the set of open nodes at all
times. Whenever a new partial edit path is added, only the s partial edit paths p
with the lowest costs g(p) + h(p) are kept, and the remaining partial edit paths
are removed. This means that not the full search space is explored, but only
those nodes are expanded that belong to the most promising partial matches.

For similar graphs, it is clear that edit operations of an optimal path have low
costs. Therefore if only the partial edit paths with lowest costs are considered,
we will obtain an edit path that is nearly optimal, which will result in a subop-
timal distance close to the exact distance. For dissimilar graphs, the suboptimal
distance will remain large. Note that this method requires the user to define the
maximum number of open paths s (cp. ④ in Fig. 1). The parameter s controls
both the degree of suboptimality and the computation time of the procedure.
That is, increasing the parameter s simultaneously augments the probability of
finding the true graph edit distance and the running time.

Bipartite Graph Edit Distance using Assignment Algorithms. In [12–14] the au-
thors of the present paper introduced a novel algorithmic framework which allows
us to approximately compute edit distance in a substantially faster way than
traditional methods. The proposed algorithms consider only local, rather than
global, edge structure during the optimization process. The method is based on
an (optimal) fast bipartite assignment procedure mapping nodes and their local
structure of one graph to nodes and their local structure of another graph.

2 In practice we are able to compute the edit distance of graphs typically containing
12 nodes at most.
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In [12] the algorithmic framework first substitutes all nodes of the smaller
graph and the nodes remaining in the larger graph are either deleted (if they
belong to g1) or inserted (if they belong to g2). In [13] this idea is extended
by allowing insertions or deletions to occur not only in the larger, but also in
the smaller of the two graphs under consideration. To this end, for two graphs
g1 and g2 to be matched with nodes V1 = {u1, . . . , un} and V2 = {v1, . . . , vm},
respectively, a cost matrix C is defined as follows:

C =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c11 c12 · · · c1m c1ε ∞ · · · ∞

c21 c22 · · · c2m ∞ c2ε
. . .

.

.

.

.

.

.
.
.
.

. . .
.
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.

.

.

.
. . .

. . . ∞
cn1 cn2 · · · cnm ∞ · · · ∞ cnε

cε1 ∞ · · · ∞ 0 0 · · · 0

∞ cε2
. . .

.

.

. 0 0
. . .

.

.

.

.

.

.
. . .

. . . ∞
.
.
.

. . .
. . . 0

∞ · · · ∞ cεm 0 · · · 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where cij denotes the cost of a node substitution c(ui → vj), ciε denotes the
cost of a node deletion c(ui → ε), and cεj denotes the cost of a node insertion
c(ε → vj).

Obviously, the left upper corner of the cost matrix represents the costs of all
possible node substitutions, the diagonal of the right upper corner the costs of
all possible node deletions, and the diagonal of the bottom left corner the costs
of all possible node insertions. Note that each node can be deleted or inserted at
most once. Therefore any non-diagonal element of the right-upper and left-lower
part is set to ∞. The bottom right corner of the cost matrix is set to zero since
substitutions of the form (ε → ε) should not cause any costs.

In the definition of cost matrix C, to each entry cij , i.e. to each cost of a node
substitution c(ui → vj), the minimum sum of edge edit operation costs, implied
by node substitution ui → vj , is added. That is, using a bipartite optimization
procedure the cost of an optimal assignment of the adjacent edges of ui and vj
is computed and added to entry cij . Clearly, to entry ciε the cost of the deletion
of all adjacent edges of ui is added, and to the entry cεj the cost of all insertions
of the adjacent edges of vj is added. Note that in ② in Fig. 1 one can define
whether or not to log the cost matrix C in the output window.

On the basis of the quadratic cost matrix C any bipartite assignment algo-
rithm can be executed. The result returned by bipartite optimization procedures
applied to C corresponds to the minimum cost mapping of the nodes and their
local edge structure of g1 to the nodes and their local edge structure of g2. In ②

in Fig. 1 one can choose to log the optimal mapping of local structures found on
matrix C in the output window. Given the optimal mapping between local struc-
tures, the edit operations on nodes and the implied edit operations of the edges
can be inferred, and the accumulated costs of the individual edit operations
on both nodes and edges can be computed. Note that assignment algorithms
are not able to consider the global edge structure during the matching process.
Hence, optimal matchings of nodes (considering the local edge structure) do not
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necessarily lead to an optimal (i.e. minimum cost) edit path. That is, this pro-
cedure leads to a suboptimal graph edit distance, which is equal to or greater
than the exact edit distance.

In [12, 13] we make use of Munkres’ algorithm [15] as basic bipartite optimiza-
tion procedure. In [14] not only Munkres’ Algorithm but also a modern version of
the Hungarian Algorithm as well as the algorithm of Volgenant and Jonker [16]
are incorporated to solve the assignment problem. In our software package all
three assignment algorithms are implemented.

3 Defining the Cost Function

The definition of adequate and application-specific cost functions is a key task in
edit distance based graph matching. The definition of the cost is usually depend-
ing on the underlying label alphabets for nodes and edges. In our algorithmic
framework, the labels for both nodes and edges can be given by the set of integers
L = {1, 2, 3, . . .}, real numbers L = R, a set of symbolic labels L = {α, β, γ, . . .},
strings defined over an alphabet V L = {V ∗}, or an arbitrary combination of
different labels. Unlabeled graphs are obtained as a special case by assigning the
same symbolic label λ to all nodes and edges. In our software tool a single node
can be labeled with up to five different node attributes which can be arbitrarily
named by the user (cp. ⑤ in Fig. 1). In Fig. 2 (a), for instance, the nodes are
labeled with three attributes x, y and z (the nodes represent points in a three-
dimensional space R

3). In Fig. 2 (b) the nodes are labeled with two attributes,
viz. a symbolic attribute named type and a string named sequence. Note that
the label alphabets are implicitly defined by the distance function to be applied
on them (see next paragraph).

The first step in cost definition is to define a non-negative parameter repre-
senting the cost of a deletion or insertion c(u → ε) or c(ε → u), respectively, of
an arbitrary node u (cp. ⑥ in Fig. 1). For the sake of symmetry, an identical
cost for deletions and insertions has to be defined. Second, for each attribute a
distance function for node substitutions has to be chosen by the user. Typically,
the cost of a node substitution (u → v) is measured by means of some distance
function d : L×L → R defined on the node label alphabet L. For now we assume
that the nodes are labeled with a single attribute from alphabet L. The attribute
values of u and v are u.A ∈ L and v.A ∈ L, respectively. In our software tool
four different distance functions can be defined on each node attribute. Note
that the first two distance functions are applicable to numerical attributes only.
The last distance function is applicable to string attributes:

1. absolute value of difference: d(u.A, v.A) = |u.A− v.A|
2. squared difference: d(u.A, v.A) = (u.A− v.A)2

3. discrete metric: d(u.A, v.A) =

{
μ, if u.A = v.A

ν, else

where μ, ν are non-negative real values (μ, ν ∈ R
+) to be defined by the user

(cp. ⑦ in Fig. 1).
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4. Levenshtein distance: d(u.A, v.A) = minimal number of single-character edit
operations (deletions, insertions, substitutions) required to change string u.A
into string v.A, also known as string edit distance (sed).

Assuming that the nodes are labeled with k > 1 attributes, the i-th attribute
values of u and v are u.Ai ∈ Li and v.Ai ∈ Li, respectively. For each attribute
an individual distance function di : Li × Li → R has been defined by the user.
The weighting parameter σi ∈]0, 1] (cp. ⑧ in Fig. 1) can be defined in order to
scale the relative importance of an attribute distance value by means of

σi · di(u.Ai, v.Ai)

In our framework there are two ways of combining the k individual weighted dis-
tance values (σi · di(u.Ai, v.Ai))1≤i≤k, viz. by building the sum or the product
(cp. ⑨ in Fig. 1). Finally, in ⑩ in Fig. 1 the user is asked to define a parameter
p indicating that the p-th root is extracted from the combined node cost. De-
pending on whether the individual node costs are added or multiplied, we thus
get the cost c(u → v) for node substitution (u → v) as

(
k∑

i=1

σi · di(u.Ai, v.Ai)

)1/p

or

(
k∏

i=1

σi · di(u.Ai, v.Ai)

)1/p

In Fig. 2 two examples of node cost functions are shown. In Fig. 2 (a) the cost
for a node substitution is given as a weighted Euclidean distance between the
nodes:

c(u → v) =
√
0.5 · (u.x− v.x)2 + 0.7 · (u.y − v.y)2 + 0.9 · (u.z − v.z)2

In Fig. 2 (b) the cost for a node substitution is defined by:

c(u → v) =

{
0.5 · sed(u.sequence, v.sequence), if u.type = v.type

sed(u.sequence, v.sequence), if u.type �= v.type

The edge attributes and their distance function can be defined analogously. Ad-
ditionally, for edges the user has to define whether the edges are directed or
undirected (cp. ❶ in Fig. 1). The weighting parameter α ∈ [0, 1] (cp. ❷ in
Fig. 1) controls whether the edit operation cost on the nodes or on the edges is
more important. That is, each cost of every node operation (deletion, insertion,
substitution) is multiplied by α. In the case of edge operations the costs are mul-
tiplied by (1−α). The default setting is α = 0.5 leading to balanced importance
between node and edge operation cost.

4 Similarity Kernel from Edit Distance

Kernel machines constitute a very powerful class of algorithms [17, 18]. As a
matter of fact, kernel methods have become a rapidly emerging sub-field in in-
telligent information processing. As any kernel function can be regarded as a
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(a)

(b)

Fig. 2. Two different parameter settings for defining the cost functions on node
attributes

object similarity measure, the edit distance of graphs can also be interpreted
as a pattern similarity measure in the context of kernel machines, which makes
a large number of powerful methods applicable to graphs [19], including sup-
port vector machines for classification and kernel principal component analysis
for feature space transformation and dimensionality reduction. In our algorith-
mic framework we provide four different transformations of graph edit distance
d(g1, g2) to a similarity measure κi(g1, g2) (cp. ❸ in Fig. 1):

– κ1(g1, g2) = −d(g1, g2)
2

– κ2(g1, g2) = −d(g1, g2)
– κ3(g1, g2) = tanh(−d(g1, g2))
– κ4(g1, g2) = exp(−d(g1, g2))

Note that these similarity kernels are not positive definite and are therefore not
valid kernels in the strict sense. Yet, there is theoretical and practical evidence
that using kernel machines in conjunction with indefinite kernels may be both
reasonable and beneficial [19, 20].

5 Conclusion and Future Work

In comparison with the great variety of software tools for statistical pattern
recognition, the number of tools for structural pattern recognition is rather lim-
ited. There are some software tools available for manipulating graphs or exact
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graph matching (e.g. the iGraph tool [21] or the VF2 library [22]), yet, a soft-
ware tool for (approximate) graph edit distance computation is still missing.
The present paper reviews three versions of graph edit distance which have been
integrated in one publicly available software tool. We expect that the graph
matching software tool introduced in this paper provides a major contribution
towards promoting the use of graph based representations in pattern recognition
and related fields.

In [23] a novel framework for graph isomorphism based on approximate graph
edit distance computations has been introduced. It is planned to integrate these
methods and thus the possibility of exact graph matching in our software tool
in future work.
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