
Walter G. Kropatsch
Nicole M. Artner
Yll Haxhimusa
Xiaoyi Jiang (Eds.)

 123

LN
CS

 7
87

7

9th IAPR-TC-15 International Workshop, GbRPR 2013
Vienna, Austria, May 2013
Proceedings

Graph-Based
Representations
in Pattern Recognition

Lecture Notes in Computer Science 7877
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Walter G. Kropatsch Nicole M. Artner
Yll Haxhimusa Xiaoyi Jiang (Eds.)

Graph-Based
Representations
in Pattern Recognition
9th IAPR-TC-15 International Workshop, GbRPR 2013
Vienna, Austria, May 15-17, 2013
Proceedings

13

Volume Editors

Walter G. Kropatsch
Nicole M. Artner
Yll Haxhimusa
Vienna University of Technology
Department of Pattern Recognition and Image Processing
Favoritenstr. 9-11, 186-3, 1040 Vienna, Austria
E-mail: {krw, artner, yll}@prip.tuwien.ac.at

Xiaoyi Jiang
University of Münster
Department of Computer Science
Einsteinstr. 62, 48149 Münster, Germany
E-mail: xjiang@uni-muenster.de

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-38220-8 e-ISBN 978-3-642-38221-5
DOI 10.1007/978-3-642-38221-5
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2013937223

CR Subject Classification (1998): I.5, I.4, I.3, I.2.10, G.2.2, I.2

LNCS Sublibrary: SL 6 – Image Processing, Computer Vision, Pattern Recognition,
and Graphics

© Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

These proceedings present the papers accepted for the 9th IAPR-TC-15 Work-
shop on Graph-based Representations in Pattern Recognition (GbR) 2013. For
more than 15 years, GbR has been providing a forum for researchers from the
fields of pattern recognition, image processing, and computer vision who build
their works on the basis of graph theory. This year it was a great pleasure for us
to organize the GbR 2013 in the heart of Europe – Vienna, Austria.

The Technical Committee 15 (TC15) of the International Association for
Pattern Recognition (IAPR) was created in 1996. It encourages elaboration of
graph-based research works, is an integral partner in organizing biennial GbR
workshops, sponsors related special sessions at conferences, and promotes special
issues in journals.

Traditionally the work presented at GbR covers a wide range of topics. The
scope of the papers varies from theoretical contributions to applications, from
discovering the new properties of a single graph (graph edit distance, maximum
cut, graph characteristics derived from Schrödinger equation) to developing al-
gorithms for sets of graphs, maximum subgraph problems and graph matching.
A great interest was shown in the problems of graph kernels and topology.

Besides the regular research papers, this workshop featured two highlights:
the IAPR distinguished speakers Mario Vento and Herbert Edelsbrunner. Mario
Vento was among the founders of TC15 some 16 years ago. He summarized the
development of our field starting with the original motivation. It allowed the
younger generation of our community to compare the goals and expectations
of the early years with the current state. Herbert Edelsbrunner created a new
bridge from TC15 to the area of topology and persistence.

Overall, GbR 2013 attracted 27 submissions from 10 countries. Each paper
went through a critical reviewing process by at least two members of the inter-
national Program Committee. Finally, 24 papers including the contributions of
the invited speakers were accepted for oral presentation and publication in these
proceedings.

On behalf of the organizers, we would like to thank the members of the
Program Committee for their timely and competent reviews; the authors of the
submitted papers for their work and their abidance to all deadlines. Finally,
we would like to thank the IAPR for sponsoring our workshop and the IAPR
distinguished speakers for their contributions.

May 2013 Walter G. Kropatsch
Nicole M. Artner

Yll Haxhimusa
Xiaoyi Jiang

Organization

Program Co-chairs

Walter G. Kropatsch Vienna University of Technology, Austria
Nicole M. Artner Vienna University of Technology, Austria
Yll Haxhimusa Vienna University of Technology, Austria
Xiaoyi Jiang University of Münster, Germany

Program Committee

Nicole Artner (Austria)
Antonio Bandera (Spain)
Csaba Beleznai (Austria)
Isabelle Bloch (France)
Luc Brun (France)
Wilhelm Burger (Austria)
Donatello Conte (Italy)
Francisco Escolano (Spain)
Rocio Gonzalez-Diaz (Spain)
Edwin Hancock (UK)
Yll Haxhimusa (Austria)
Xiaoyi Jiang (Germany)
Dimosthenis Karatzas (Spain)
Yukiko Kenmochi (Japan)
Walter Kropatsch (Austria)
Tetsuji Kuboyama (Japan)
Christoph Lampert (Austria)
Cheng-Lin Liu (China)

Josep Lladós (Spain)
Bin Luo (China)
Rebeca Marfil (Spain)
Jean-Marc Ogier (France)
Marcello Pelillo (Italy)
Pedro Real (Spain)
Radim Sara (Czech Republic)
Christian Schellewald (Norway)
Francesc Serratosa (Spain)
Ali Shokoufandeh (USA)
Robin Strand (Sweden)
Peter Sturm (France)
Salvatore Tabbone (France)
Andrea Torsello (Italy)
Antoine Vacavant (France)
Ernest Valveny (Spain)
Mario Vento (Italy)

Local Organizing Committee

Walter Kropatsch
Nicole Artner
Yll Haxhimusa
Elfriede Oberleitner
Aysylu Gabdulkhakova

VIII Organization

Sponsoring Institutions

Vienna University of Technology
PRIP Club
International Association for Pattern Recognition (IAPR)

Table of Contents

A One Hour Trip in the World of Graphs, Looking at the Papers
of the Last Ten Years . 1

Mario Vento

A Unified Framework for Strengthening Topological Node Features and
Its Application to Subgraph Isomorphism Detection 11

Nicholas Dahm, Horst Bunke, Terry Caelli, and Yongsheng Gao

On the Complexity of Submap Isomorphism . 21
Christine Solnon, Guillaume Damiand, Colin de la Higuera, and
Jean-Christophe Janodet

Flooding Edge Weighted Graphs . 31
Fernand Meyer

Graph Matching with Nonnegative Sparse Model . 41
Bo Jiang, Jin Tang, and Bin Luo

TurboTensors for Entropic Image Comparison . 51
Francisco Escolano, Edwin R. Hancock, Boyan Bonev, and
Miguel Angel Lozano

Active-Learning Query Strategies Applied to Select a Graph Node
Given a Graph Labelling . 61

Xavier Cortés and Francesc Serratosa

GMTE : A Tool for Graph Transformation and Exact/Inexact Graph
Matching . 71

Mohamed Amine Hannachi, Ismael Bouassida Rodriguez,
Khalil Drira, and Saul Eduardo Pomares Hernandez

A Comparison of Explicit and Implicit Graph Embedding Methods
for Pattern Recognition . 81

Donatello Conte, Jean-Yves Ramel, Nicolas Sidère,
Muhammad Muzzamil Luqman, Benôıt Gaüzère,
Jaume Gibert, Luc Brun, and Mario Vento

Adjunctions on the Lattice of Dendrograms . 91
Fernand Meyer

A Continuous-Time Quantum Walk Kernel for Unattributed Graphs . . . 101
Luca Rossi, Andrea Torsello, and Edwin R. Hancock

X Table of Contents

Relevant Cycle Hypergraph Representation for Molecules 111
Benôıt Gaüzère, Luc Brun, and Didier Villemin

A Quantum Jensen-Shannon Graph Kernel Using the Continuous-Time
Quantum Walk . 121

Lu Bai, Edwin R. Hancock, Andrea Torsello, and Luca Rossi

Treelet Kernel Incorporating Chiral Information . 132
Pierre-Anthony Grenier, Luc Brun, and Didier Villemin

A Novel Software Toolkit for Graph Edit Distance Computation 142
Kaspar Riesen, Sandro Emmenegger, and Horst Bunke

Map Edit Distance vs. Graph Edit Distance for Matching Images 152
Camille Combier, Guillaume Damiand, and Christine Solnon

An Algorithm for Maximum Common Subgraph of Planar Triangulation
Graphs . 162

Yao Lu, Horst Bunke, and Cheng-Lin Liu

Graph Characteristics from the Schrödinger Operator 172
Pablo Suau, Edwin R. Hancock, and Francisco Escolano

Persistent Homology in Image Processing . 182
Herbert Edelsbrunner

Towards Minimal Barcodes . 184
Roćıo González-Dı́az, Maŕıa-José Jiménez, and Hamid Krim

A Fast Matching Algorithm for Graph-Based Handwriting
Recognition . 194

Andreas Fischer, Ching Y. Suen, Volkmar Frinken,
Kaspar Riesen, and Horst Bunke

On the Evaluation of Graph Centrality for Shape Matching 204
Samuel de Sousa, Nicole M. Artner, and Walter G. Kropatsch

Shape Recognition as a Constraint Satisfaction Problem 214
Aline Deruyver and Yann Hodé

Gaussian Wave Packet on a Graph . 224
Furqan Aziz, Richard C. Wilson, and Edwin R. Hancock

Table of Contents XI

Exact Computation of Median Surfaces Using Optimal 3D Graph
Search . 234

Zhengwang Wu, Xiaoyi Jiang, Nanning Zheng, Yuehu Liu, and
Dachuan Cheng

Estimation of Distribution Algorithm for the Max-Cut Problem 244
Samuel de Sousa, Yll Haxhimusa, and Walter G. Kropatsch

Author Index . 255

A One Hour Trip in the World of Graphs,

Looking at the Papers of the Last Ten Years

Mario Vento

Dept. of Computer Eng. and Electrical Eng. and
Applied Mathematics University of Salerno
Via Ponte Don Melillo, Fisciano (SA), Italy

mvento@unisa.it

1 Motivations of the Trip

The use of a graph-based pattern representation induces the need to formulate
the main operations required in Pattern Recognition in terms of operations on
graphs: classification, usually intended as the comparison between an object and
a set of prototypes, and learning, which is the process for obtaining a model of a
class starting from a set of known samples, are among the key issues that must
be addressed using graph-based techniques.

Forty years have passed since the first papers on this topic appear in Pattern
Recognition literature: a lot of research effort has been devoted to explore this
challenging field and some approaches have been meanwhile consolidated. These
notes aren’t a scientific paper but some considerations inspiring my future talk at
gbr 2013 conference, a little trip in the word of graphs aimed at better knowing
treasures and outstanding locations.

2 Trip Diary

The use of graphs in Pattern Recognition dates back to the early seventies, and
the paper Thirty years of graph matching in Pattern Recognition” [14] reports
a survey of the literature on graph-based techniques since the first years and up
to the early 2000’s. In the last decade we have assisted to a growing interest in
graphs, as confirmed by the number of papers using graphs for different aspects
of Pattern Recognition.

We have surely assisted to a maturation of the classical techniques for graph
comparison, either exact or inexact; contemporarily we are assisting to a rapid
growth of many alternative approaches, such as graph embedding and graph
kernels, aimed at making possible the application to graphs of vector-based
techniques for classification and learning (such as the ones derived from the
statistical classification and learning theory).

The trip is devoted to analyze the main advances registered in graph-based
methodologies in the last ten years, looking at the main recent literature on this
topic; the aim is to reconstruct an unifying view of these approaches when used
in the context of Pattern Recognition tasks.

W.G. Kropatsch et al. (Eds.): GbRPR 2013, LNCS 7877, pp. 1–10, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

2 M. Vento

The analysis starts from the above mentioned survey [14] and enriches the
discussion by considering a selection of the most recent main contributions; con-
sequently, the talk, for the sake of conciseness, will mainly focus on the papers
published during the last ten years. At the beginning, the interests of Pattern
Recognition researchers on graphs were mainly concentrated on graph matching,
either exact or inexact. While for the exact methods the attention was concen-
trated on the definition of novel algorithms attempting to progressively reduce the
computational burden, the approaches used in the inexact methods were inspired
to some different rationales:

– Optimal inexact matching algorithms, able to find a solution minimizing the
matching cost; it is guaranteed that, if an exact solution exists, it will be
found. The algorithms ascribed to this class essentially concentrate on deal-
ing with the input graph variability; the optimality of the solution requires
an exploration of the solution space, usually making the algorithms fairly
more expensive than the exact ones. Most of the algorithms are based on
some forms of Tree search with backtracking, but also other techniques based
on group theory or other mathematical properties of the graphs used in the
matching process have been proposed.

– Suboptimal or approximate matching algorithms, able to ensure only a local
minimum of the matching cost: it is expected that the obtained minimum
is close to the global minimum, even if an upper bound of this distance is
often unknown, so limiting their applicability to cases in which the maxi-
mum error value assumes a secondary importance. The big advantage of this
class of algorithms is the polynomial matching time. While tree searching
methods of this kind have been developed, the most common approach is
based on continuous optimization, by replacing the matching problem, in-
herently discrete, with a continuous one, usually not linear; the advantage
is that it is possible the use of a well established theoretical framework. An-
other important class of algorithms, although not as common as continuous
optimization, is based on the exploitation of the eigenvalues of the adjacency
matrix, which are invariant to node permutations, which can help to reduce
the computational complexity in the matching process. Also a wide array of
other techniques have been used less frequently.

– Error correcting graph matching algorithms, based on the definition of an
explicit model of the errors (missing nodes and/or edges, changes on the
attributes, etc.); the cheapest sequence of operations needed to transform
one graph into the other is used to evaluate a similarity between the two
graphs. So, with respect to exact and inexact graph matching, the discussion
will be finalized to the presentation of the main advances on these kinds of
graph matching algorithms.

Of course what is happening in the recent past, see the journal papers reported
in the Section References, cannot be left out of the discussion: in fact, in the last
decade we have assisted to the birth and growth of methods facing learning and
classification in a rather innovative scientific vision: the computational burden

A One Hour Trip in the World of Graphs 3

of matching algorithms together with their intrinsic complexity, in opposition
to the well established world of statistical Pattern recognition methodologies,
suggested new paradigms for the graph-based methods: why don’t we try to
reduce graph matching and learning to vector-based operations, so as to make
it possible the use of statistical approaches?

Two opposite ways of facing the problem, each with its pros and cons: graphs
from the beginning to the end”, with a few heavy algorithms, but the exploitation
of all the information contained into the graphs; on the other side, the risk of
loosing discriminating power during the conversion of graphs into vectors (by
selecting suitable properties), counterbalanced by the immediate access to all
the theoretically assessed achievements of the statistical framework.

These two opposite factions are now simultaneously active, each hoping to
overcome the other; ten years ago these innovative methods were in the back-
ground, but now they are gaining more and more attention in the scientific
literature on graphs.

Graph embedding, intended as the technique that map whole graphs onto
points in a vector space, in such a way that similar graphs are mapped onto
close points is perhaps the most significant novelty in graph-based in Pattern
Recognition in the recent years. Although seminal works on these fields were
already present in earlier literature, it is in the last decade that these techniques
have gained popularity in the Pattern Recognition community. Bunke et al. [10]
present a survey on the topic of graph kernels and graph embeddings, and in [11]
extend this review and present these techniques as a way to unify the statistical
and structural approaches in Pattern Recognition.

Graph kernels represent a sort of generalization of graph embedding; if we
denote with G the space of all the graphs, a graph kernel is a function that
maps a couple of graphs onto a real number, and holds similar properties to
the dot product defined on vectors. More formally they can be seen as a mea-
sure of the similarity between two graphs; however its formal properties allow
a kernel to replace the vector dot product in several vector-based algorithms
that use this operator (and other functions related to dot product, such as the
Euclidean norm). Among the many Pattern Recognition techniques that can be
adapted to graphs using kernels we mention Support Vector Machine classifiers
and Principal Component Analysis.

Kernels have been used for a long time to extend to the nonlinear case linear
algorithms working on vector spaces, thanks to the Mercer’s theorem: given a
kernel function defined on a compact space X, there is a vector space V and
a mapping between X and V such that the value of the kernel computed on
two points in X is equal to the dot product of the corresponding points in V.
Thus, for compact spaces, a kernel can be seen as an implicit way of performing
an embedding into a vector space. Although Mercer’s theorem do not apply to
graph kernels, in practice these latter can be used as a theoretically sound way
to extend a vector algorithm to graphs. Of course, the actual performance of
these algorithms strongly depend on the appropriateness (with respect to the
task at hand) of the notion of similarity embodied in the graph kernel.

4 M. Vento

3 Trips Souvenirs

What have we experienced from the trip? The analysis of the recent literature of
graph-based techniques shows there is still a warm interest toward the use of this
important data structure for facing Pattern Recognition problems. However, a
definite interpretation of the best promising future directions seems to be still
a bit uncertain: on one hand, we have surely assisted to a maturation of the
classical techniques for graph comparison, either exact or inexact; on the other
hand, we are assisting to a rapid growth of many alternative approaches, such
as graph embedding and graph kernels, whose rationale is to reduce graphs to
vectors so as to make it possible the use of the well established statistical theory
of classification and learning.

The main questions posed by researchers advocating the graphs from begin-
ning to end” approach could be: Is it really effective to solve a problem starting
with graph representations, and going back to vectors, risking to lose important
chunks of discriminative power? If so, why don’t you renounce to use graphs,
and directly use vector-based descriptions from the start?”

The opposite faction could reply: Why do you insist on describing the world
by graphs if there is still a lack of completely assessed and computationally
acceptable algorithms for classifying and for learning graph prototypes?”

The conclusion? We will discuss!

References

1. Auwatanamongkol, S.: Inexact graph matching using a genetic algorithm for
image recognition. Pattern Recognition Letters (PRL) 28(12), 1428–1437 (2007)

2. Bagdanov, A.D., Worring, M.: First order gaussian graphs for efficient structure
classification. PR 36(6), 1311–1324 (2003)

3. Bai, X., Latecki, L.: Path similarity skeleton graph matching. IEEE Trans. on
PAMI 30(7), 1282–1292 (2008)

4. Bengoetxea, E., Larrañaga, P., Bloch, I., Perchant, A., Boeres, C.: Inexact
graph matching by means of estimation of distribution algorithms. PR 35(12),
2867–2880 (2002)

5. Bergamasco, F., Albarelli, A.: A graph-based technique for semi-supervised
segmentation of 3D surfaces. PRL (2012) (in press)

6. Borzeshi, E.Z., Piccardi, M., Riesen, K., Bunke, H.: Discriminative prototype
selection methods for graph embedding. PR (2012)

7. Bourbakis, N., Yuan, P., Makrogiannis, S.: Object recognition using wavelets, L-G
graphs and synthesis of regions. PR 40(7), 2077–2096 (2007)

8. Bunke, H., Dickinson, P., Irniger, C., Kraetzl, M.: Recovery of missing information
in graph sequences by means of reference pattern matching and decision tree
learning. PR 39(4), 573–586 (2006)

9. Bunke, H., Riesen, K.: Improving vector space embedding of graphs through
feature selection algorithms. PR 44(9), 1928–1940 (2011)

10. Bunke, H., Riesen, K.: Recent advances in graph-based pattern recognition with
applications in document analysis. PR 44(5), 1057–1067 (2011)

11. Bunke, H., Riesen, K.: Towards the unification of structural and statistical pattern
recognition. PRL 33(7), 811–825 (2012)

A One Hour Trip in the World of Graphs 5

12. Caelli, T., Kosinov, S.: Inexact graph matching using eigen-subspace projection
clustering. IJPRAI 18(3), 329–354 (2004)

13. Caetano, T., McAuley, J., Cheng, L., Le, Q., Smola, A.: Learning graph matching.
IEEE Trans. on PAMI 31(6), 1048–1058 (2009)

14. Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty years of graph matching in
Pattern Recognition. IJPRAI 18(3), 265–298 (2004)

15. Conte, D., Foggia, P., Jolion, J.M., Vento, M.: A graph-based, multi-resolution
algorithm for tracking objects in presence of occlusions. PR 39(4), 562–572 (2006)

16. Culp, M., Michailidis, G.: Graph-based semisupervised learning. IEEE Trans. on
PAMI 30(1), 174–179 (2008)

17. Czech, W.: Invariants of distance k-graphs for graph embedding. PRL 33(15),
1968–1979 (2012)

18. Dhillon, I., Guan, Y., Kulis, B.: Weighted graph cuts without eigenvectors:
A multilevel approach. IEEE Trans. on PAMI 29(11), 1944–1957 (2007)

19. Dickinson, P.J., Kraetzl, M., Bunke, H., Neuhaus, M., Dadej, A.: Similarity
measures for hierarchical representations of graphs with unique node labels.
IJPRAI 18-3(3), 425–442 (2004)

20. Dickinson, P.J., Bunke, H., Dadej, A., Kraetzl, M.: Matching graphs with unique
node labels. Pattern Analysis & Applications 7, 243–254 (2004)

21. Duchenne, O., Bach, F., Kweon, I.S., Ponce, J.: A tensor-based algorithm for
high-order graph matching. IEEE Trans. on PAMI 33(12), 2383–2395 (2011)

22. Ducournau, A., Bretto, A., Rital, S., Laget, B.: A reductive approach to
hypergraph clustering: An application to image segmentation. PR 45(7),
2788–2803 (2012)

23. Emms, D., Wilson, R.C., Hancock, E.R.: Graph matching using the interference
of continuous-time quantum walks. PR 42(5), 985–1002 (2009)

24. Felzenszwalb, P., Zabih, R.: Dynamic programming and graph algorithms in
computer vision. IEEE Trans. on PAMI 33(4), 721–740 (2011)

25. Fernandez-Madrigal, J.A., Gonzalez, J.: Multihierarchical graph search. IEEE
Trans. on PAMI 24(1), 103–113 (2002)

26. Ferrer, M., Karatzas, D., Valveny, E., Bardaji, I., Bunke, H.: A generic frame-
work for median graph computation based on a recursive embedding approach.
CVIU 115(7), 919–928 (2011)

27. Ferrer, M., Valveny, E., Serratosa, F.: Median graph: A new exact algorithm using
a distance based on the maximum common subgraph. PRL 30(5), 579–588 (2009)

28. Ferrer, M., Valveny, E., Serratosa, F.: Median graphs: A genetic approach based
on new theoretical properties. PR 42(9), 2003–2012 (2009)

29. Ferrer, M., Valveny, E., Serratosa, F., Riesen, K., Bunke, H.: Generalized median
graph computation by means of graph embedding in vector spaces. PR 43(4),
1642–1655 (2010)

30. Foggia, P., Percannella, G., Sansone, C., Vento, M.: A graph-based algorithm for
cluster detection. IJPRAI 22(5), 843–860 (2008)

31. Fränti, P., Virmajoki, O., Hautamaki, V.: Fast agglomerative clustering using a
k-nearest neighbor graph. IEEE Trans. on PAMI 28(11), 1875–1881 (2006)

32. Gao, X., Xiao, B., Tao, D., Li, X.: A survey of graph edit distance. Pattern
Analysis & Applications 13, 113–129 (2010), doi:10.1007/s10044-008-0141-y

33. Gauzere, B., Brun, L., Villemin, D.: Two new graphs kernels in chemoinformatics.
PRL (2012) (in press)

34. Gerstmayer, M., Haxhimusa, Y., Kropatsch, W.: Hierarchical interactive image
segmentation using irregular pyramids. In: Jiang, X., Ferrer, M., Torsello, A. (eds.)
GbRPR 2011. LNCS, vol. 6658, pp. 245–254. Springer, Heidelberg (2011)

6 M. Vento

35. Gibert, J., Valveny, E., Bunke, H.: Feature selection on node statistics based
embedding of graphs. PRL 33(15), 1980–1990 (2012)

36. Gibert, J., Valveny, E., Bunke, H.: Graph embedding in vector spaces by node
attribute statistics. PR 45(9), 3072–3083 (2012)

37. Gonzalez-Diaz, R., Ion, A., Iglesias-Ham, M., Kropatsch, W.G.: Invariant
representative cocycles of cohomology generators using irregular graph pyramids.
CVIU 115(7), 1011–1022 (2011)

38. Gori, M., Maggini, M., Sarti, L.: Exact and approximate graph matching using
random walks. IEEE Trans. on PAMI 27(7), 1100–1111 (2005)

39. Guigues, L., Le Men, H., Cocquerez, J.P.: The hierarchy of the cocoons of a graph
and its application to image segmentation. PRL 24(8), 1059–1066 (2003)

40. Günter, S., Bunke, H.: Self-organizing map for clustering in the graph domain.
PRL 23(4), 405–417 (2002)

41. Günter, S., Bunke, H.: Validation indices for graph clustering. PRL 24(8),
1107–1113 (2003)

42. Hagenbuchner, M., Gori, M., Bunke, H., Tsoi, A.C., Irniger, C.: Using attributed
plex grammars for the generation of image and graph databases. PRL 24(8),
1081–1087 (2003)

43. Hancock, E.R., Wilson, R.C.: Pattern analysis with graphs: Parallel work at bern
and york. PRL 33(7), 833–841 (2012)

44. He, L., Han, C.Y., Everding, B., Wee, W.G.: Graph matching for object
recognition and recovery. PR 37(7), 1557–1560 (2004)

45. Hidović, D., Pelillo, M.: Metrics for attributed graphs based on the maximal
similarity common subgraph. IJPRAI 18(3), 299–313 (2004)

46. Hu, W., Hu, W., Xie, N., Maybank, S.: Unsupervised active learning based on
hierarchical graph-theoretic clustering. IEEE Trans. on SMC-B 39(5), 1147–1161
(2009)

47. Jain, B.J., Obermayer, K.: Graph quantization. CVIU 115(7), 946–961 (2011)
48. Cesar Jr., R.M., Bengoetxea, E., Bloch, I., Larrañaga, P.: Inexact graph

matching for model-based recognition: Evaluation and comparison of optimization
algorithms. PR 38(11), 2099–2113 (2005)

49. Justice, D., Hero, A.: A binary linear programming formulation of the graph edit
distance. IEEE Trans. on PAMI 28(8), 1200–1214 (2006)

50. Kammerer, P., Glantz, R.: Segmentation of brush strokes by saliency preserving
dual graph contraction. PRL 24(8), 1043–1050 (2003)

51. Kang, H.W.: G-wire: A livewire segmentation algorithm based on a generalized
graph formulation. PRL 26(13), 2042–2051 (2005)

52. Kim, D.H., Yun, I.D., Lee, S.U.: Attributed relational graph matching based on
the nested assignment structure. PR 43(3), 914–928 (2010)

53. Kim, J.S., Hong, K.S.: Colortexture segmentation using unsupervised graph cuts.
PR 42(5), 735–750 (2009)

54. Kokiopoulou, E., Frossard, P.: Graph-based classification of multiple observation
sets. PR 43(12), 3988–3997 (2010)

55. Kokiopoulou, E., Saad, Y.: Enhanced graph-based dimensionality reduction with
repulsion laplaceans. PR 42(11), 2392–2402 (2009)

56. Kostin, A., Kittler, J., Christmas, W.: Object recognition by symmetrised graph
matching using relaxation labelling with an inhibitory mechanism. PRL 26(3),
381–393 (2005)

57. Lezoray, O., Elmoataz, A., Bougleux, S.: Graph regularization for color image
processing. CVIU 107(12), 38–55 (2007)

A One Hour Trip in the World of Graphs 7

58. Lin, L., Liu, X., Zhu, S.C.: Layered graph matching with composite cluster
sampling. IEEE Trans. on PAMI 32(8), 1426–1442 (2010)

59. Liu, J., Wang, B., Lu, H., Ma, S.: A graph-based image annotation framework.
PRL 29(4), 407–415 (2008)

60. Lladós, J., Sánchez, G.: Graph matching versus graph parsing in graphics
recognition: A combined approach. IJPRAI 18(3), 455–473 (2004)

61. Luo, B., Wilson, R.C., Hancock, E.R.: Spectral embedding of graphs. PR 36(10),
2213–2230 (2003)

62. Luo, B., Wilson, R.C., Hancock, E.R.: A spectral approach to learning structural
variations in graphs. PR 39(6), 1188–1198 (2006)

63. Ma, F., Bajger, M., Slavotinek, J.P., Bottema, M.J.: Two graph theory based
methods for identifying the pectoral muscle in mammograms. PR 40(9),
2592–2602 (2007)

64. Macrini, D., Dickinson, S., Fleet, D., Siddiqi, K.: Bone graphs: Medial shape
parsing and abstraction. CVIU 115(7), 1044–1061 (2011)

65. Macrini, D., Dickinson, S., Fleet, D., Siddiqi, K.: Object categorization using bone
graphs. CVIU 115(8), 1187–1206 (2011)

66. Mantrach, A., van Zeebroeck, N., Francq, P., Shimbo, M., Bersini, H., Saerens,
M.: Semi-supervised classification and betweenness computation on large, sparse,
directed graphs. PR 44(6), 1212–1224 (2011)

67. Mart́ınez, A.M., Mittrapiyanuruk, P., Kak, A.C.: On combining graph-
partitioning with non-parametric clustering for image segmentation. CVIU 95(1),
72–85 (2004)

68. Massaro, A., Pelillo, M.: Matching graphs by pivoting. PRL 24(8), 1099–1106
(2003)

69. Maulik, U.: Hierarchical pattern discovery in graphs. IEEE Trans. on
SMC-C 38(6), 867–872 (2008)

70. de Mauro, C., Diligenti, M., Gori, M., Maggini, M.: Similarity learning for graph-
based image representations. PRL 24(8), 1115–1122 (2003)

71. Neuhaus, M., Bunke, H.: Self-organizing maps for learning the edit costs in graph
matching. IEEE Trans. on SMC-B 35(3), 503–514 (2005)

72. Neuhaus, M., Bunke, H.: Edit distance-based kernel functions for structural
pattern classification. PR 39(10), 1852–1863 (2006)

73. Neuhaus, M., Bunke, H.: Automatic learning of cost functions for graph edit
distance. Information Sciences 177(1), 239–247 (2007)

74. Qiu, H., Hancock, E.R.: Graph matching and clustering using spectral partitions.
PR 39(1), 22–34 (2006)

75. Qiu, H., Hancock, E.R.: Graph simplification and matching using commute times.
PR 40(10), 2874–2889 (2007)

76. Raveaux, R., Adam, S., Héroux, P., Trupin, É.: Learning graph prototypes for
shape recognition. CVIU 115(7), 905–918 (2011)

77. Raveaux, R., Burie, J.C., Ogier, J.M.: A graph matching method and a graph
matching distance based on subgraph assignments. PRL 31(5), 394–406 (2010)

78. Riesen, K., Bunke, H.: Graph classification by means of lipschitz embedding. IEEE
Trans. on SMC-B 39(6), 1472–1483 (2009)

79. Riesen, K., Bunke, H.: Approximate graph edit distance computation by means
of bipartite graph matching. Image and Vision Computing 27(7), 950–959 (2009)

80. Riesen, K., Bunke, H.: Graph classification based on vector space embedding.
IJPRAI 23, 1053–1081 (2009)

8 M. Vento

81. Riesen, K., Bunke, H.: Reducing the dimensionality of dissimilarity space embed-
ding graph kernels. Engineering Applications of Artificial Intelligence 22, 48–56
(2009)

82. Robles-Kelly, A., Hancock, E.: Graph edit distance from spectral seriation. IEEE
Trans. on PAMI 27(3), 365–378 (2005)

83. Robles-Kelly, A., Hancock, E.R.: String edit distance, random walks and graph
matching. IJPRAI 18(3), 315–327 (2004)

84. Robles-Kelly, A., Hancock, E.R.: A graph-spectral method for surface height
recovery. PR 38(8), 1167–1186 (2005)

85. Robles-Kelly, A., Hancock, E.R.: A riemannian approach to graph embedding.
PR 40(3), 1042–1056 (2007)

86. Rohban, M.H., Rabiee, H.R.: Supervised neighborhood graph construction for
semi-supervised classification. PR 45(4), 1363–1372 (2012)

87. Rota Bulò, S., Pelillo, M., Bomze, I.M.: Graph-based quadratic optimization:
A fast evolutionary approach. CVIU 115(7), 984–995 (2011)

88. Ruberto, C.D.: Recognition of shapes by attributed skeletal graphs. PR 37(1),
21–31 (2004)

89. da, S., Torres, R., Falcão, A., da, F., Costa, L.: A graph-based approach for
multiscale shape analysis. PR 37(6), 1163–1174 (2004)

90. Sanfeliu, A., Alquézar, R., Andrade, J., Climent, J., Serratosa, F., Vergés, J.:
Graph-based representations and techniques for image processing and image anal-
ysis. PR 35(3), 639–650 (2002)

91. Sanfeliu, A., Serratosa, F., Alquezar, R.: Second-order random graphs for
modeling sets of attributed graphs and their application to object learning and
recognition. IJPRAI 18(3), 375–396 (2004)

92. Sanromà, G., Alquézar, R., Serratosa, F.: A new graph matching method for
point-set correspondence using the em algorithm and softassign. CVIU 116(2),
292–304 (2012)

93. Santo, M.D., Foggia, P., Sansone, C., Vento, M.: A large database of graphs and
its use for benchmarking graph isomorphism algorithms. PRL 24(8), 1067–1079
(2003)

94. Scheinerman, E.R., Tucker, K.: Modeling graphs using dot product representa-
tions. Computational Statistics 25, 1–16 (2010)

95. Sebastian, T., Klein, P., Kimia, B.: Recognition of shapes by editing their shock
graphs. IEEE Trans. on PAMI 26(5), 550–571 (2004)

96. Serratosa, F., Alquezar, R., Sanfeliu, A.: Synthesis of function-described graphs
and clustering of attributed graphs. IJPRAI 16(6), 621–655 (2002)

97. Serratosa, F., Alquézar, R., Sanfeliu, A.: Function-described graphs for modelling
objects represented by sets of attributed graphs. PR 36(3), 781–798 (2003)

98. Shang, F., Jiao, L., Wang, F.: Graph dual regularization non-negative matrix
factorization for co-clustering. PR 45(6), 2237–2250 (2012)

99. Shiga, M., Mamitsuka, H.: Efficient semi-supervised learning on locally informa-
tive multiple graphs. PR 45(3), 1035–1049 (2012)

100. Skomorowski, M.: Syntactic recognition of distorted patterns by means of random
graph parsing. PRL 28(5), 572–581 (2007)

101. Solé-Ribalta, A., Serratosa, F.: Models and algorithms for computing the common
labelling of a set of attributed graphs. CVIU 115(7), 929–945 (2011)

102. Solnon, C.: AllDifferent-based filtering for subgraph isomorphism. Artificial Intel-
ligence 174, 850–864 (2010)

103. Sumengen, B., Manjunath, B.: Graph partitioning active contours (gpac) for
image segmentation. IEEE Trans. on PAMI 28(4), 509–521 (2006)

A One Hour Trip in the World of Graphs 9

104. Tang, H., Fang, T., Shi, P.F.: Nonlinear discriminant mapping using the laplacian
of a graph. PR 39(1), 156–159 (2006)

105. Tang, J., Jiang, B., Zheng, A., Luo, B.: Graph matching based on spectral
embedding with missing value. PR 45(10), 3768–3779 (2012)

106. Tao, W., Chang, F., Liu, L., Jin, H., Wang, T.: Interactively multiphase im-
age segmentation based on variational formulation and graph cuts. PR 43(10),
3208–3218 (2010)

107. Torsello, A., Hancock, E.R.: Graph embedding using tree edit-union. PR 40(5),
1393–1405 (2007)

108. Ullmann, J.R.: Bit-vector algorithms for binary constraint satisfaction and sub-
graph isomorphism. J. Exp. Algorithmics 15, 1.6:1.1–1.6:1.64 (2011)

109. Wan, M., Lai, Z., Shao, J., Jin, Z.: Two-dimensional local graph embedding dis-
criminant analysis (2dlgeda) with its application to face and palm biometrics.
Neurocomputing 73(13), 197–203 (2009)

110. Wang, B., Pan, F., Hu, K.M., Paul, J.C.: Manifold-ranking based retrieval using
k-regular nearest neighbor graph. PR 45(4), 1569–1577 (2012)

111. Wang, J.T., Zhang, K., Chang, G., Shasha, D.: Finding approximate patterns in
undirected acyclic graphs. PR 35(2), 473–483 (2002)

112. Wilson, R., Hancock, E., Luo, B.: Pattern vectors from algebraic graph theory.
IEEE Trans. on PAMI 27(7), 1112–1124 (2005)

113. Wilson, R.C., Zhu, P.: A study of graph spectra for comparing graphs and trees.
PR 41(9), 2833–2841 (2008)

114. van Wyk, B., van Wyk, M.: Kronecker product graph matching. PR 36(9),
2019–2030 (2003)

115. van Wyk, B., van Wyk, M.: A pocs-based graph matching algorithm. IEEE Trans.
on PAMI 26(11), 1526–1530 (2004)

116. van Wyk, M.A., van Wyk, B.J.: A learning-based framework for graph matching.
IJPRAI 18(3), 355–374 (2004)

117. Xiao, B., Hancock, E.R., Wilson, R.C.: Graph characteristics from the heat kernel
trace. PR 42(11), 2589–2606 (2009)

118. Xiao, Y., Dong, H., Wu, W., Xiong, M., Wang, W., Shi, B.: Structure-based graph
distance measures of high degree of precision. PR 41(12), 3547–3561 (2008)

119. Xu, N., Ahuja, N., Bansal, R.: Object segmentation using graph cuts based active
contours. CVIU 107(3), 210–224 (2007)

120. Yan, F., Christmas, W., Kittler, J.: Layered data association using graph-theoretic
formulation with application to tennis ball tracking in monocular sequences. IEEE
Trans. on PAMI 30(10), 1814–1830 (2008)

121. Yan, S., Xu, D., Zhang, B., Zhang, H.J., Yang, Q., Lin, S.: Graph embedding and
extensions: A general framework for dimensionality reduction. IEEE Trans. on
PAMI 29(1), 40–51 (2007)

122. Yang, F., Kruggel, F.: A graph matching approach for labeling brain sulci using
location, orientation, and shape. Neurocomputing 73(13), 179–190 (2009)

123. Yang, L.: Building k-edge-connected neighborhood graph for distance-based data
projection. PRL 26(13), 2015–2021 (2005)

124. You, Q., Zheng, N., Gao, L., Du, S., Wu, Y.: Analysis of solution for supervised
graph embedding. IJPRAI 22(7), 1283–1299 (2008)

125. Yu, G., Peng, H., Wei, J., Ma, Q.: Mixture graph based semi-supervised dimen-
sionality reduction. Pattern Recognition and Image Analysis 20, 536–541 (2010)

126. Zampelli, S., Deville, Y., Solnon, C.: Solving subgraph isomorphism problems
with constraint programming. Constraints 15, 327–353 (2010)

10 M. Vento

127. Zanghi, H., Ambroise, C., Miele, V.: Fast online graph clustering via Erdos-Rényi
mixture. PR 41(12), 3592–3599 (2008)

128. Zanghi, H., Volant, S., Ambroise, C.: Clustering based on random graph model
embedding vertex features. PRL 31(9), 830–836 (2010)

129. Zaslavskiy, M., Bach, F., Vert, J.P.: A path following algorithm for the graph
matching problem. IEEE Trans. on PAMI 31(12), 2227–2242 (2009)

130. Zhang, C., Wang, F.: A multilevel approach for learning from labeled and
unlabeled data on graphs. PR 43(6), 2301–2314 (2010)

131. Zhang, F., Hancock, E.R.: Graph spectral image smoothing using the heat kernel.
PR 41(11), 3328–3342 (2008)

132. Zhao, H., Robles-Kelly, A., Zhou, J., Lu, J., Yang, J.Y.: Graph attribute embed-
ding via riemannian submersion learning. CVIU 115(7), 962–975 (2011)

133. Zhi, R., Flierl, M., Ruan, Q., Kleijn, W.: Graph-preserving sparse nonnegative
matrix factorization with application to facial expression recognition. IEEE Trans.
on SMC-B 41(1), 38–52 (2011)

A Unified Framework for Strengthening

Topological Node Features and Its Application
to Subgraph Isomorphism Detection

Nicholas Dahm1,3, Horst Bunke4, Terry Caelli2,5, and Yongsheng Gao3

1 Queensland Research Laboratory, National ICT Australia
2 Victoria Research Laboratory, National ICT Australia

terry.caelli@nicta.com.au
3 School of Engineering, Griffith University, Brisbane, Australia

{n.dahm,yongsheng.gao}@griffith.edu.au
4 Institute of Computer Science and Applied Mathematics,

University of Bern, Switzerland
bunke@iam.unibe.ch

5 Electrical and Electronic Engineering, University of Melbourne, Australia
tcaelli@unimelb.edu.au

Abstract. This paper presents techniques to address the complexity
problem of subgraph isomorphism detection on large graphs. To
overcome the inherently high computational complexity, the problem is
simplified through the calculation and strengthening of topological node
features. These features can be utilised, in principle, by any subgraph
isomorphism algorithm. The design and capabilities of the proposed uni-
fied strengthening framework are discussed in detail. Additionally, the
concept of an n-neighbourhood is introduced, which facilitates the de-
velopment of novel features and provides an additional platform for fea-
ture strengthening. Through experiments performed with state-of-the-art
subgraph isomorphism algorithms, the theoretical and practical advan-
tages of using these techniques become evident.

Keywords: Graph Matching, Subgraph Isomorphism, Topological Node
Features.

1 Introduction

Identifying subgraph isomorphisms between a pair of graphs is a key problem in
structural pattern recognition with an exponential worst case complexity. Sub-
graph isomorphism algorithms can be either exact, or inexact, with the latter
dealing with incomplete or noisy graphs. In this paper we focus solely on exact
subgraph isomorphism, where the graphs are complete and error-free. The con-
cepts presented in this paper however, may apply equally to inexact algorithms.
Applications for exact subgraph isomorphism include chemical substructure and
protein-protein interaction network matching, social network analysis and VLSI
design [1]. The most widely used algorithms for subgraph isomorphism are Ull-
mann’s algorithm [11] and the VF2 algorithm [2]. These tree-search algorithms

W.G. Kropatsch et al. (Eds.): GbRPR 2013, LNCS 7877, pp. 11–20, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

12 N. Dahm et al.

are able to obtain practical runtime speeds by pruning branches from the search
tree that contain incompatible node matchings. However due to the exponen-
tiality of subgraph isomorphism, as the number of nodes in the graphs increases,
the matching times of both algorithms can quickly become infeasible [4].

To identify more node incompatibilities, and hence further reduce matching
times, local topological information about a node can be encoded into a topolog-
ical node feature (TNF). VF2 for example, uses the simplest TNF, namely the
vertex degree (number of adjacent nodes) to identify incompatible node match-
ings. Topological node features like this are also known as subgraph isomorphism
consistents or, in the case of graph isomorphism, invariants. On the simpler
problem of graph isomorphism, a number of algorithms exist that utilise com-
plex structural information. An early example of this is the Nauty algorithm by
McKay [6], which uses TNFs and a strengthening procedure similar to the tree-
index method discussed in this paper. Using this structural information, Nauty
is able to identify nodes which have identical topological structure, so becoming
acceptable isomorphic mappings. Recently, this idea was extended by Sorlin &
Solnon to create the IDL algorithm [10]. In another recent paper Riesen et al. [5]
ignores the search tree entirely and uses only TNFs to determine isomorphisms.
Their method has a polynomial runtime, but in some cases cannot resolve the
matching due to outstanding permutations.

When extending these concepts to subgraph isomorphism, any pair of matched
nodes is less likely to have identical topological structure. Despite this, it is
still possible to exploit the fact that a node in the full graph will contain the
same topological structure as a node from the subgraph, however with some
extra structure possibly added. From this observation, a rule can be defined for
each TNF as to when a node mapping is considered invalid. For example, if a
subgraph node has a degree of 5, a mapping to any full graph node with a degree
less than 5 is invalid. A recent algorithm utilising TNFs is the ILF algorithm
by Zampelli et al. [12]. This algorithm uses TNF values strengthened through
a similar procedure to Nauty to eliminate incompatibilities. In the paper, the
authors show that ILF can outperform VF2 in many cases even while only using
a simple TNF like degree. The recent LAD algorithm by Solnon [9] uses a local
all different constraint which ensures that for each mapping, the nodes adjacent
to the subgraph node can be uniquely mapped to nodes adjacent to the full graph
node. When combined with the generalised arc consistency (GAC) all different
constraint that is commonly used in constraint programming, LAD has been
shown to be even faster than ILF, on most cases.

In this paper we present a number of techniques that can be used to sim-
plify the subgraph isomorphism process. Similar to [4], the techniques described
here are not designed to challenge existing methods. On the contrary, they
are designed so that they can be utilised as an enhancement to any subgraph
isomorphism algorithm. In Section 2, we describe the concept of a node’s n-
neighbourhood and propose some novel topological node features which utilise
it. Section 3 presents a unified framework consisting of three strengthening tech-
niques. These strengthening techniques, introduced in Sections 3.1 to 3.3, can

A Unified Framework for Strengthening TNFs 13

be applied to both topological node features as well as application-specific node
labels. Section 3.4 then shows how these concepts can be combined to create
strengthened features that are resistant to noise. All of these techniques can be
calculated independently on each graph, allowing them to be computed ahead
of time and stored. This makes matching against a large database of graphs
particularly effective. Finally in Section 4, we empirically show the performance
of these techniques to determine when they are best applied.

2 Topological n-Neighbourhood Features

The graphs dealt with in this paper are simple (no self loops, no duplicate
edges) unlabelled graphs, both directed and undirected. A graph is defined as
an ordered pair G = (V,E), where V = {v1, . . . , vn} is a set of vertices and
E = {{vx, vy}, . . .} is a set of edges.

A topological node feature is defined as any feature that is calculated solely
on topological information, as viewed from a particular node. Some traditional
TNFs used in graph matching are:

– degree. The number of adjacent nodes.

– clusterc (clustering coefficient). The number of edges between adjacent nodes
(not including edges to the node being evaluated).

– ncliquesk. The number of cliques of size k that include a particular node.

– nwalkspk. The number of walks of length k that pass through a particular
node.

Both ncliquesk and nwalkspk are vectors, holding values for each different k.
An n-neighbourhood (nN) of a node v is an induced subgraph formed from

all the nodes that can be reached within n steps from v. This induced subgraph
is centered around node v and contains all nodes up to n steps away, and all
edges between those nodes. It is denoted as nN(v, n). For any single node v, a
unique nN may be created for each value n = 1, 2, . . . ,m, where nN(v,m) = G
(the entire graph can be reached in m steps).

There are a number of TNFs that can be calculated from each nN of a node.
Firstly we have the node count, or number of nodes in the nN, denoted by nN-
ncount. Likewise we have the edge count, denoted by nN-ecount. Next we have
the number of walks of length k in the nN, denoted nN-nwalksk. Lastly we have
the number of walks of length k in the nN, that pass through the main node,
denoted nN-nwalkspk. Each of these TNFs will give a different result for each
nN of a node, giving n values, or n ∗ p values for nN-nwalksk and nN-nwalkspk
where k = 1, 2, . . . , p. The primary benefit of calculating TNFs on nNs is the
reduced likelihood of noise (topological structure not present in the subgraph)
from distant nodes being encoded in the feature. For small values of n, the
features contain less information but also less noise. On larger values of n, the
amount of information encoded is higher, but so is the likelihood that noise will
prevent the feature from detecting mismatches.

14 N. Dahm et al.

3 Node Label Strengthening Framework

Our strengthening framework consists of the summation, listing, and tree indices,
SI, LI and TI, respectively. In this order, there is a natural progression from one
index to the next as they provide more resolution but take longer to compare.
Each of these indices can be applied iteratively and works by incorporating
the indices of neighbouring nodes. One or all of these indices may be applied
for each different value created by a TNF or even an application-specific label
(listing and tree indices only). A detailed description of these indices is given
in the following subsections. Table 1 in Section 3.3 compares the strengths and
weaknesses of each index.

3.1 Summation Index

The Morgan index [7] is an effective TNF, originally used to characterise chem-
ical structures, and more recently to assist in graph isomorphism detection [5].
Despite its success in graph isomorphism, it has limited effectiveness on subgraph
isomorphism.

Derived from the calculation procedure of the Morgan index, we propose the
summation index (SI). The summation index propagates TNFs through the
graph, allowing nodes to encode neighbouring structural information into their
own strengthened TNFs. An example is shown in Figure 1. In this example, we
show how SI can strengthen the node degree. Initially (iteration 0), the SI values
of nodes A−E are their TNF (degree in this case) values: 1, 2, 3, 2, and 2. For
all subsequent iterations, the SI values are the sum of the neighbouring SI values
from the last iteration. After iteration 1, these are 2, 4, 6, 5, and 5. After iteration
2, these are 4, 8, 14, 11, and 11. This process continues for a user-defined number
of iterations, or as required by a particular matching algorithm. Note that on
iteration 0, nodes B, D, and E all had an equal degree, and hence SI, but after
iteration 1, B could be separated from the others.

Definition 1 (Summation Index (SI)).

SIi(v) =

{
feature(v) if i = 0,∑

u SIi−1(u) otherwise.

where u is a vertex adjacent to v.

A(1,2,4)

B(2,4,8)

C(3,6,14)

D(2,5,11)

E(2,5,11)

Fig. 1. Calculating the summation indices. Here we see a simple graph with three
iterations of (degree) SI values shown for each node (iterations 0, 1, and 2).

A Unified Framework for Strengthening TNFs 15

As summation requires features to be added (+) and ranked (≤), it cannot be
used for many application-specific labels. To strengthen such labels, the listing
or tree indices below can be used.

3.2 Listing Index

The second feature strengthening technique in our framework is the listing index
(LI). The listing index is a natural progression from summation, containing more
information but also requiring more complex comparisons. Fankhauser et al. [5]
presented this technique for graph isomorphism under the name neighbourhood
information. A node’s neighbourhood information is essentially a list (formally
a multiset) of all feature values of the neighbouring nodes.

The key difference with LI is that features are evaluated separately. This
provides more resolution, at the cost of increased comparison time. As with
summation, this process can be repeated to include more information. The listing
index of a node, at iteration i, is equal to the union of the listing indices of all
neighbouring nodes at i − 1. For Figure 1, iteration 0 would be {1}, {2}, {3},
{2}, and {2}. This would then become {2}, {1, 3}, {2, 2, 2}, {2, 3}, and {2, 3} for
iteration 1, and {1, 3}, {2, 2, 2, 2}, {1, 2, 2, 3, 3, 3}, {2, 2, 2, 2, 3}, and {2, 2, 2, 2, 3}
for iteration 2.

The listing index also follows the same convention as summation, in that on
each iteration, only the previous values of the neighbours are considered, with
no regard to the node’s own previous value.

Definition 2 (Listing Index (LI)).

LIi(v) =

{
{feature(v)} if i = 0,

∪uLIi−1(u) otherwise.

One advantage of listing over summation is that there is no requirement for
the feature values to be numerical. The only requirement is that they can be
compared for equality (=), unless they are TNFs being used on subgraph iso-
morphism, in which case they must be able to be ranked (≤).

3.3 Tree Index

The final feature strengthening technique we present is the tree index (TI). We
show this technique in its pure form as a natural progression from the other
indices, and discuss some alternative versions. This technique can be thought of
as a second interpretation of the listing technique. The initial step is identical to
listing, however the iterations are performed differently. In our listing technique,
each iteration takes the union of neighbouring lists from the last iteration. In-
stead of taking the union of neighbouring lists from the last iteration, we simply
create a list with those lists as elements. This creates an iteratively deeper list
which can be thought of as a tree, beginning from the node and branching i lay-
ers, where i is the iteration number. Using the tree index, the second iteration
indices for nodes A−E would be {{1, 3}}, {{2}, {2, 2, 2}}, {{1, 3}, {2, 3}, {2, 3}},
{{2, 2, 2}, {2, 3}}, and {{2, 2, 2}, {2, 3}} respectively.

16 N. Dahm et al.

Definition 3 (Tree Index (TI)).

TIi(v) =

{
feature(v) if i = 0,

∪u{TIi−1(u)} otherwise.

This provides us with a rich description of the node’s local structure, resulting
in more complex comparison challenges. In the worst case, where feature values
are not ranked, this leaves us with a tree of linear assignments for each node
comparison. Since the tree index effectively creates a tree of the graph starting
from a node, there is no need to store the resulting values. Instead, we can simply
traverse the graph during the matching.

Alternative versions of this have been presented for graph isomorphism [6,10]
and subgraph isomorphism [12]. These alternative versions precompute the val-
ues and use a renaming step in an attempt to limit the size that must be stored.
The effectiveness of this renaming step depends on the type of graph and can
vary greatly.

Table 1. A naive comparison of the strengths and weaknesses of each index

SI LI TI

Preprocessing Time Very Low Moderate Zero
Preprocessing Space Very Low High Zero
Matching Time Very Low Low Very High
Pruning Effectiveness Moderate High Very High

3.4 Strengthening in n-Neighbourhood

As mentioned in Section 2, TNFs calculated on an nN can be thought of as less
noisy than their counterparts obtained on the main graph. This same concept
applies equally (if not more) to the indices introduced in Sections 3.1 to 3.3.
Instead of propagating the indices through the original graph, we can propa-
gate them through the nN of each node. Although this means that each node’s
strengthened TNF values are calculated on a unique nN graph, these values
are still valid to compare in subgraph isomorphism. The benefit of propagating
through nNs is that it allows us to construct a very distinct picture of the local
structure without being distorted by structural information many steps from
the node. The downside to this is that structure many steps away is ignored
completely, regardless of how useful such information could have been. Since nN
propagation requires propagating information through each nN separately, the
computation required is far more than propagation on the main graph, however
the storage cost is not significantly higher. This makes nN propagation ideal for
databases where graphs can be preprocessed once and matched many times.

4 Experimental Results

To evaluate the effectiveness of the techniques discussed in this paper, we first
perform some analytical tests, followed by practical tests using a state-of-the-art

A Unified Framework for Strengthening TNFs 17

subgraph isomorphism algorithm. For our testing data, we use positive subgraph
isomorphism instances created using the geometric random graph generator from
the igraph library [3]. This generator was chosen as it generates edges using a
geometric method, resulting in graphs likely to be found in computer vision
applications. Each test instance contains a 100 node full graph and a 90 node
subgraph.

4.1 Evaluating Pruning Techniques by ABF

Subgraph isomorphism detection is most commonly performed using a search
tree and some pruning techniques. Given a full graph with N nodes and a sub-
graph withM nodes, we have N !

(N−M)! permutations in the search tree. The depth

of the search tree is determined by the number of nodes in the subgraph. This
value is static as solutions are found only at the leaves. The number of branches
at each search tree node is the number of valid mappings possible for a particular
subgraph node. This value, called the node’s branching factor, starts as N , but
may be pruned to be significantly lower.

To compare the pruning effectiveness of the techniques discussed in this paper,
we use the average branching factor (ABF). We define the ABF as the average
of the branching factors of subgraph nodes. To ensure the order of nodes does
not skew the results, we calculate each node’s branching factor as if it were at
the root of the search tree. More information regarding ABF can be found in
Section 3.5 of [8].

4.2 Analytical Experiments

We evaluate each of the techniques shown in this paper using the average
branching factor (ABF) defined in Section 4.1, averaged over 10 test instances.
For comparison with our techniques in the following figures, we provide the
ABFs of the traditional TNFs that were described in Section 2. These ABF
values are: 39.5 (degree), 39.7 (clusterc), 57.0 (ncliquesk, k = 3, 4, . . . , 8), 48.1
(nwalkspk, k = 1, 2, . . . , 8), and 29.5 (the combination of all four). These ABF
values are based solely on the traditional TNFs, without the use of any nN or
index-related strengthening. As such, they can be compared as is with every
value reported in the following figures.

In Figure 2 we compare the results from the different n-neighbourhood (nN)
features defined in Section 2. For each feature, we show the ABF and comparison
time for nNs up to a depth of 10 steps. Note that for a maximum nN depth of x in
the figure, nNs are calculated and compared for n = 1, 2, . . . , x. The comparison
time here is the average time required to determine all compatibilities between
the subgraph and full graph nodes on each test instance.

Comparing these figures to the traditional TNFs listed above, we can clearly
see the pruning effectiveness of these nN features. At a maximum nN depth of
just two steps, each nN feature has achieved more pruning than all four of the
traditional TNFs. While not performing as well as some others, the nN-nwalksp
feature here is particularly noteworthy, as it is the only feature that has a non-nN

18 N. Dahm et al.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 1 2 3 4 5 6 7 8 9 10

A
B

F

Maximum nN depth

nN-ncount
nN-ecount
nN-nwalks
nN-nwalksp

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 1 2 3 4 5 6 7 8 9 10

C
om

pa
ris

on
 T

im
e

(s
)

Maximum nN depth

nN-ncount
nN-ecount
nN-nwalks
nN-nwalksp

Fig. 2. ABF and comparison times for n-neighbourhood features

counterpart. A comparison between the non-nN nwalksp (ABF: 48.1) and nN-
nwalksp (ABF: 35.3 → 14.0) shows the effectiveness of nNs. This effectiveness
comes from the noise-reduction inherent in nNs, as discussed in Section 3.4.

Figure 3 compares the results for each of the strengthening indices detailed
in Sections 3.1 to 3.3, and their nN-strengthened counterparts from Section 3.4.
These figures show how the ABF and comparison times change as the maximum
iteration number of the indices increases. The TNF strengthened here is degree,
as this simple TNF will best show the capabilities of the strengthening indices.
Note that due to the significant time required for tree-index comparisons, all
times are shown on a logarithmic scale.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 2 4 6 8 10

A
B

F

Maximum Iteration Number

SI
SI-nN
LI
LI-nN
TI
TI-nN

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 2 4 6 8 10

C
om

pa
ris

on
 T

im
e

(s
),

 lo
g

sc
al

e

Maximum Iteration Number

SI
SI-nN
LI
LI-nN
TI
TI-nN

Fig. 3. ABF and comparison times for SI/LI/TI and their nN-strengthened counter-
parts, using only the degree TNF

Starting from the standard degree ABF of 39.5, it takes only a single iteration
before all indices are below the 29.5 ABF of the combined traditional TNFs.
After four iterations, both LI and TI have achieved greater pruning with just
degree than any single TNF, including nN TNFs. Given a more complex feature,
or combination of features, these strengthening indices can achieve even greater
pruning. Of course as we include more features and strengthening techniques,
the comparison time may also increase.

A Unified Framework for Strengthening TNFs 19

4.3 Practical Experiments

The ABF reductions in the previous section show that our techniques can sim-
plify the matching problem, allowing matching algorithms to perform faster. In
this section, we determine whether this reduction in matching time is worth
the increase in feature comparison time. To achieve this, we perform subgraph
isomorphism detection (searching for all solutions) using the VF2 algorithm, as
this is the most commonly used benchmark.

Each full graph in our test set contains exactly 100 nodes. However in or-
der to show how the number of edges affects the performance of certain tech-
niques, we run our tests five times, each time with an increasing number of edges.
For each algorithm and number of edges, we report the average matching time
for 100 test instances. Figure 4 shows subgraph isomorphism detection times for
VF2 when combined with the techniques from this paper.

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 206 266 344 427 524

M
at

ch
in

g
T

im
e

(s
),

 lo
g

sc
al

e

Edges

VF2 (unmodified)
VF2 + nN-ncount
VF2 + nN-ecount
VF2 + nN-nwalks
VF2 + nN-nwalksp

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 206 266 344 427 524

M
at

ch
in

g
T

im
e

(s
),

 lo
g

sc
al

e

Edges

VF2 (unmodified)
VF2 + SI
VF2 + SI-nN
VF2 + LI
VF2 + LI-nN
VF2 + TI
VF2 + TI-nN

Fig. 4. Subgraph Isomorphism times for VF2 using the nN TNFs and strengthening
techniques (again only strengthening degree) from this paper. Regular VF2 is included
for comparison.

Due to the exponentiality of the graph matching problem, VF2 often takes
significantly longer on certain instances, giving its results a high standard devi-
ation. In addition to reducing the average matching times as shown in Figure 4,
our techniques also help VF2 overcome these hard instances. This results in a
more consistent matching time, which is advantageous in real-time applications.

5 Conclusions

In this paper we proposed a number of strengthening techniques that can greatly
increase the pruning power of both TNFs and application-specific labels. By
iteratively encoding the neighbouring topological information, these techniques
were able to significantly reduce matching times while only using the simple TNF
of degree. Both the summation and listing indices were able to perform well in
all cases, whereas the tree index only proved useful on graphs with fewer edges.
With index type, TNFs used, and iteration depth configurable, this framework
can be tailored to suit particular problems or classes of graphs as required.

Additionally we presented some new TNFs based on the n-neighbourhoods of
nodes. These TNFs use the reduced noise inherent in nNs to identify otherwise-
hidden topological incompatibilities between mismatched nodes.

20 N. Dahm et al.

Through analytical and practical experiments, the effectiveness of these tech-
niques has been shown to achieve significant gains over the standard VF2 al-
gorithm. Subsequent testing has also shown that by adding these strengthening
techniques to the iterative node elimination technique from [4], matching times
can be over twice as fast as those reported in that paper, on the same data.

It should be noted that certain constraint programming algorithms, such as
LAD, achieve significantly lower gains from these techniques. This is due to
additional requirements to integrate TNFs and how such algorithms utilise this
information in the matching process. The creation of alternative integration
techniques to circumvent this issue remains an open research problem. Another
interesting research problem is the creation and matching of topological edge
features.

Acknowledgements. The authors would like to thank Gábor Csárdi and
Tamás Nepusz for providing the igraph library, including VF2 implementation.

References

1. Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty years of graph matching in
pattern recognition. International Journal of Pattern Recognition and Artificial
Intelligence 18(3), 265–298 (2004)

2. Cordella, L., Foggia, P., Sansone, C., Vento, M.: A (sub)graph isomorphism
algorithm for matching large graphs. IEEE Transactions on Pattern Analysis and
Machine Intelligence 26(10), 1367–1372 (2004)

3. Csardi, G., Nepusz, T.: The igraph software package for complex network research.
Inter. Journal Complex Systems 1695, 1–9 (2006),
http://igraph.sourceforge.net

4. Dahm, N., Bunke, H., Caelli, T., Gao, Y.: Topological features and iterative node
elimination for speeding up subgraph isomorphism detection. In: Proceedings of
the 21st International Conference on Pattern Recognition (2012)

5. Fankhauser, S., Riesen, K., Bunke, H., Dickinson, P.: Suboptimal graph isomor-
phism using bipartite matching. International Journal of Pattern Recognition and
Artificial Intelligence (accepted for publication)

6. McKay, B.B.: Practical graph isomorphism. Congressus Numerantium 30, 45–87
(1981)

7. Morgan, H.L.: The generation of a unique machine description for chemical struc-
tures - a technique developed at chemical abstracts service. Journal of Chemical
Documentation 5(2), 107–113 (1965)

8. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 1st edn. Prentice
Hall Press, Upper Saddle River (1995)

9. Solnon, C.: AllDifferent-based filtering for subgraph isomorphism. Artificial
Intelligence 174(12–13), 850–864 (2010)

10. Sorlin, S., Solnon, C.: A parametric filtering algorithm for the graph isomorphism
problem. Constraints 13, 518–537 (2008)

11. Ullmann, J.R.: An algorithm for subgraph isomorphism. Journal of the ACM 23(1),
31–42 (1976)

12. Zampelli, S., Deville, Y., Solnon, C.: Solving subgraph isomorphism problems with
constraint programming. Constraints 15(3), 327–353 (2010)

http://igraph.sourceforge.net

On the Complexity of Submap Isomorphism

Christine Solnon1,2, Guillaume Damiand1,2, Colin de la Higuera3,
and Jean-Christophe Janodet4

1 INSA de Lyon, LIRIS, UMR 5205 CNRS, 69621 Villeurbanne, France
2 Université de Lyon, France

3 LINA, UMR CNRS 6241, Université de Nantes, France
4 IBISC, Université d’Evry, France

Abstract. Generalized maps describe the subdivision of objects in cells,
and incidence and adjacency relations between cells, and they are widely
used to model 2D and 3D images. Recently, we have defined submap
isomorphism, which involves deciding if a copy of a pattern map may
be found in a target map, and we have described a polynomial time
algorithm for solving this problem when the pattern map is connected.
In this paper, we show that submap isomorphism becomes NP-complete
when the pattern map is not connected, by reducing the NP-complete
problem Planar-4 3-SAT to it.

1 Motivations

Combinatorial maps and generalized maps [1] are very nice data structures to
model the topology of nD objects subdivided in cells (e.g., 0D vertices, 1D edges,
2D faces, 3D volumes, . . .) by means of incidence and adjacency relationships
between these cells. In 2D, maps may be used to model the topology of an
embedding of a planar graph in a plane. In particular, these models are very
well suited for scene modeling [2], and for 2D and 3D image segmentation [3].

In [4], we have defined a basic tool for comparing 2D maps, i.e., submap
isomorphism (which involves deciding if a copy of a pattern map may be found
in a target map), and we have proposed an efficient polynomial-time algorithm
for solving this problem when the pattern map is connected. This work has been
generalized to nD maps in [5]. The subisomorphism defined in [5] is based on
induced submap relations, such that submaps are obtained by removing some
darts and all their seams, just like induced subgraphs are obtained by removing
some vertices and all their incident edges. In [6], we have introduced a new
kind of submap relation, called partial submap: partial submaps are obtained by
removing not only some darts (and all their seams), but also some other seams,
just like partial subgraphs are obtained by removing not only some vertices
(and their incident edges), but also some other edges. The polynomial time
algorithm described in [5] for solving the induced submap isomorphism problem
may be extended to the partial case in a very straightforward way. However,
this algorithm still assumes that the pattern map is connected. In this paper,
we show that the submap isomorphism problem becomes NP-complete when the
pattern map is not connected, both for partial and induced submaps.

W.G. Kropatsch et al. (Eds.): GbRPR 2013, LNCS 7877, pp. 21–30, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

22 C. Solnon et al.

v3f1 f2

v1 v2

v5 v4

a b c d e f g h i j k l m n

α0 h c b e d g f a j i l k n m

α1 b a d c f e h g n k j m l i

α2 a b c i j f g h d e k l m n

(a) (b) (c)

Fig. 1. (a) A plane graph. (b) The corresponding 2G-map. (c) Its graphical repre-
sentation: darts are represented by segments labeled with letters, consecutive darts
separated with a little segment are 0-sewn (e.g., α0(b) = c and α0(c) = b), consecutive
darts separated with a dot are 1-sewn (e.g., α1(a) = b and α1(b) = a), parallel adjacent
darts are 2-sewn (e.g., α2(d) = i and α2(i) = d).

Outline of the Paper. In Section 2, we recall definitions related to generalized
maps. In Section 3, we define the submap isomorphism problem and recall some
complexity results about this problem. In Section 4, we describe the planar-4
3-SAT problem, which is NP-complete. In Section 5, we describe a polynomial-
time reduction of planar-4 3-SAT to submap isomorphism, thus showing that
submap isomorphism is NP-complete.

2 Recalls and Basic Definitions on Generalized Maps

In this work we consider generalized maps, which are more general than combi-
natorial maps, and we refer the reader to [1] for more details.

Definition 1. (nG-map) Let n ≥ 0. An n-dimensional generalized map (or nG-
map) is defined by a tuple G = (D,α0, . . . , αn) such that (i) D is a finite set of
darts; (ii) ∀i ∈ {0, . . . , n}, αi is an involution1 on D; and (iii) ∀i, j ∈ {0, . . . , n}
such that i+ 2 ≤ j, αi ◦ αj is an involution.

2G-maps may be used to model the embedding of a planar graph into a plane.
For example, Fig. 1 displays a plane graph and the corresponding 2G-map. We
say that a dart d is i-sewn with a dart d′ whenever d = αi(d

′) and d
= d′,
whereas it is i-free whenever d = αi(d). A seam is a tuple (d, i, d′) such that d′

is i-sewn to d. For example, (a, 0, h) is a seam of the map displayed in Fig. 1
because α0(a) = h.

Definition 2. (seams of a set of darts in an nG-map) Let G = (D,α0, . . . , αn)
be an nG-map and E ⊆ D be a set of darts. The set of seams associated with E
in G is: seamsG(E) = {(d, i, αi(d))|d ∈ E, i ∈ {0, . . . , n}, αi(d) ∈ E,αi(d)
= d}.

A map is connected if any pair of darts is connected by a path of sewn darts.

Definition 3 (Connected map). A generalized map G = (D,α0, . . . , αn) is
connected if ∀d ∈ D, ∀d′ ∈ D, there exists a path between d and d′, i.e., a
sequence of darts (d1, . . . , dk) such that d1 = d, dk = d′ and ∀i∈{1, . . . , k − 1},
∃ji ∈ {0, . . . , n}, di+1 = αji(di).

1 An involution f on D is a bijective mapping from D to D such that f = f−1.

On the Complexity of Submap Isomorphism 23

Map isomorphism [1] allows us decide of the equivalence of two maps.

Definition 4. (nG-map isomorphism [1]) Two nG-maps G = (D,α0, . . . , αn)
and G′ = (D′, α′

0, . . . , α
′
n) are isomorphic if there exists a bijection f : D → D′,

such that ∀d ∈ D, ∀i ∈ [0, n], f(αi(d)) = α′
i(f(d)).

In [4], induced submaps have been defined: G is an induced submap of G′ if G
preserves all seams of G′, i.e, for every couple of darts (d1, d2) of G, d1 is i-sewn
to d2 in G′ if and only if d1 is i-sewn to d2 in G.

Definition 5. (induced submap) A map G′ = (D′, α′
0, . . . , α

′
n) is an induced

submap of G = (D,α0, . . . , αn) if D
′ ⊆ D and seamsG′(D′) = seamsG(D

′).

In [6], we have introduced another submap relation, called partial submap by
analogy with existing work on graphs. Indeed, induced subgraphs are obtained
by removing some nodes (and all their incident edges) whereas partial subgraphs
are obtained by removing not only some nodes (and all their incident edges) but
also some edges. In our map context, partial submaps are obtained by removing
not only some darts (and all their seams) but also some other seams.

Definition 6. (partial submap) A map G′ = (D′, α′
0, . . . , α

′
n) is a partial submap

of G = (D,α0, . . . , αn) if D
′ ⊆ D and seamsG′(D′) ⊆ seamsG(D

′).

3 The Submap Isomorphism Problem

The submap isomorphism problem involves deciding if a pattern map is isomor-
phic to a submap of a target map, and it is formally defined as follows:

Problem: Partial (resp. induced) submap isomorphism
Instance: A triple (n,G,G′) such that n > 0, and G and G′ are nG-maps.
Question: Does there exist a partial (resp. induced) submap of G′ which
is isomorphic to G?

We note G p G′ (resp. G i G′) when the answer is yes. Note that G i G′ ⇒
G p G′. Fig. 2 displays examples of submap isomorphisms.

The complexity of the submap isomorphism problem depends on the connect-
edness of the pattern map. For example, the map G1 of Fig. 2 is not connected,
and is composed of two connected components, whereas the maps G2, G3 and
G4 are connected. In [5], we have described a polynomial-time algorithm which
solves the submap isomorphism problem when the pattern map G is connected.
When the pattern map G is not connected, we may use this algorithm to search
for all occurrences of each connected component of G in the target map G′. Let
us consider, for example, the map G1 of Fig. 2. Its left hand side component
occurs once in G2 and twice in G3 and G4, and its right hand side component
occurs twice in G2, G3 and G4 (as it is automorphic). To solve the submap iso-
morphism problem from these occurrence lists, we have to solve the following
combinatorial problem: Can we select one occurrence in G′ of each connected
component of G so that the selected occurrences do not overlap in G′?

24 C. Solnon et al.

b d
a c

G1 G2 G3 G4

Fig. 2. Submap isomorphism examples. G1 is not isomorphic to a submap of G2 (i.e.,
G1 ��p G2 and G1 ��i G2), though each connected component of G1 is a submap of G2.
G1 is isomorphic to a partial submap of G3, but not to an induced one (i.e., G1 �p G3

and G1 ��i G3), because the seams (a, 2, c) and (b, 2, d) of G3 are not preserved in G1.
G1 is isomorphic to an induced submap of G4 and, therefore, it is also isomorphic to a
partial submap of G4 (i.e., G1 �p G4 and G1 �i G4).

Theorem 1 claims that this combinatorial problem is NP-complete.

Theorem 1. The partial (resp. induced) submap isomorphism problem is NP-
complete.

The problem trivially belongs to NP since one can check that a given partial
(resp. induced) submap of the target map G′ is isomorphic to the pattern map
G in polynomial time. We may use for example the polynomial algorithm of [5],
which has been defined for non connected maps.

To prove that it is NP-complete, we show in Section 5 that Planar-4 3-SAT,
which is known to be NP-complete, may be reduced to it in polynomial time.

4 Planar-4 3-SAT

Planar-4 3-SAT is a special case of the SAT problem, which involves deciding if
there exists a truth assignment for a set X of variables such that a boolean for-
mula F over X is satisfied [7]. We assume that F is in Conjunctive Normal Form
(CNF), i.e., it is a conjunction of clauses such that each clause is a disjunction
of literals which are either variables of X or negations of variables of X .

The formula-graph associated with a CNF formula F over a set of variables
X is the bipartite graph GX,F = (V,E) such that V associates a vertex with
every variable xi ∈ X and every clause cj of F , and E associates an edge (xi, cj)
with every variable/clause couple such that variable xi occurs in clause cj .

The planar-4 3-SAT problem is formally defined as follows.

Problem: Planar-4 3-SAT
Instance: A couple (X,F) such that X is a set of boolean variables and
F is a CNF formula over X such that (i) every clause of F is a disjunction
of 3 literals, (ii) the formula-graph GX,F is planar, and (iii) the degree
of every vertex of GX,F is bounded by 4 (i.e., each variable occurs in at
most 4 different clauses)
Question: Does there exist a truth assignment for X which satisfies F?

On the Complexity of Submap Isomorphism 25

X = {x, y, z, u, w}
F = (x̄ ∨ y ∨ u)∧

(x̄ ∨ y ∨ z̄)∧
(ȳ ∨ z ∨ u)∧
(z̄ ∨ u ∨ w̄)∧
(x ∨ w ∨ ū)

C4

C2

C3

C5
w

C1

y

x

u

z

Fig. 3. An instance of Planar-4 3-SAT and its associated formula graph (clauses cor-
respond to circles, and variables to squares)

Planar-4 3-SAT has been shown to be NP-complete in [8]. Fig. 3 displays an
instance of Planar-4 3-SAT and its associated formula-graph.

To reduce an instance (X,F) of Planar-4 3-SAT to an instance (n,G,G′) of
submap isomorphism, we first perform a preprocessing: We iteratively eliminate
from (X,F) every variable xi ∈ X which occurs in only one clause cj of F (those
whose degree is equal to 1 in the formula-graph), set xi to the truth value which
satisfies cj , and eliminate cj from F , until either X and F become empty (thus
showing that the answer is trivially yes), or all variables in X occur in 2, 3, or
4 clauses of F .

5 Reduction of Planar-4 3-SAT to Submap Isomorphism

Let us first show that planar-4 3-SAT can be reduced to induced submap iso-
morphism in polynomial time: The partial case will be studied at the end of this
section. We consider an instance (X,F) of planar-4 3-SAT and we show how to
build an instance (n,G,G′) such that G i G′ iff the answer to (X,F) is yes.
We consider 2G-maps, so that n = 2, and the 2G-maps G and G′ are constructed
by assembling building blocks which are 2G-maps. Fig. 4 displays building blocks
associated with variables: For each variable xi ∈ X such that the degree of xi in
the formula-graph GX,F is equal to k with 2 ≤ k ≤ 4 (as the preprocessing step
has removed any variable whose degree is equal to 1), we build two variable pat-
terns V ′

k and Vk which will respectively occur in G′ and G. Each variable pattern
V ′
k (resp. Vk) looks like a flower whose core is a 2k-edge face and which have 2k

petals (resp. k petals), where each petal is a 6-edge face. For each petal in each
variable pattern V ′

k, the edge opposite to the core of the flower is a connecting edge
which may be 2-sewn with clause patterns to define G′.

For each clause, we build two clause patterns C′ and C which will respectively
occur in G′ and G. The clause pattern C′ is composed of a 3-edge central face
which has 3 adjacent 4-edge faces, whereas the clause pattern C is composed of
a 3-edge face which has 1 adjacent 4-edge face, as displayed below:

Clause pattern C′: Clause pattern C:

26 C. Solnon et al.

V4’:

V3:

V2:
V4:

V3’:

V2’:

Patterns associated with variables in G’: Patterns associated with variables in G:

Fig. 4. Variable patterns used as building blocks to define G′ and G. Connecting edges
in G′ are displayed in bold.

Edges ofC′ displayed in bold are connecting edges which are 2-sewn with variable
patterns to define G′.

Definition of the 2G-map G′. For each variable xi ∈ X such that the degree of
xi in the formula-graph GX,F is equal to k, G′ contains an occurrence of the
variable pattern V ′

k. Each petal of this occurrence of V ′
k is alternatively labeled

with xi and x̄i. For each clause cj of F , G′ contains an occurrence of the clause
pattern C′. Each 4-edge face of this occurrence of C′ is labeled with a different
literal of cj. Variable and clause patterns are 2-sewn to define a connected 2G-
map: every connecting edge of each clause pattern is 2-sewn with a different
connecting edge of a variable pattern such that the two faces which become
adjacent by this seam are labeled with the same literal. We can easily check that
this 2G-map can always be built in polynomial time as the formula-graph GX,F

is planar, and there exist polynomial-time algorithms for embedding a planar
graph in a plane [9]: We can use the same embedding for constructing G′. Fig. 5
displays the 2G-map associated with the formula displayed in Fig. 3.

Definition of the 2G-map G. If the SAT instance has n variables and c clauses,
then G is composed of n+ c different components: a component Vk is associated
with every variable xi ∈ X , where k is the degree of xi in GX,F ; a component
C is associated with every clause. For example, the 2G-map G associated with
the formula displayed in Fig. 3 contains 10 components: 3 occurrences of V3, 1
occurrence of V4, 1 occurrence of V2, and 5 occurrences of C.

Proof of (G i G′) ⇒ (∃ truth assignment of X which satisfies F). Let us first
assume that there exists an induced submap G′′ of G′ which is isomorphic to G,
and let us show that there exists a truth assignment of X which satisfies F .

If G′′ is isomorphic to G then, according to Def. 4, there exists a bijection f
which matches darts of G′′ with darts of G and which preserves all seams. By
extension, we say that f matches faces of G′′ with faces of G. As we consider

On the Complexity of Submap Isomorphism 27

w

x

x
x

x

x
x

u u

u

u

uu

u

x

x

x

u

u

u

C1

C2

C3 C4

C5

y

z

y

y

y

y
y

y

y

y

z

z z
z

z

z

z

z
z

u

u

w

w

w

w

w

Fig. 5. 2G-map G′ associated with the SAT instance displayed in Fig. 3. Note that this
map contains holes (corresponding to white parts in the figure): each dart d adjacent
to these holes is 2-free so that α2(d) = d.

induced submap isomorphism, two faces of G which belong to two different
connected components cannot be matched by f with faces which are 2-sewn in
G′′ (according to Def. 5). Fig. 6 displays an example of such a solution for the
instance (2, G,G′) of the induced submap isomorphism problem associated with
the instance (X,F) of Planar-4 3-SAT displayed in Fig. 3.

G contains c occurrences of C, where c is the number of clauses of F . Each
occurrence of C has a 3-edge face adjacent to a 4-edge face. These faces can only
be matched with faces which belong to occurrences of C′ in G′ as 3-edge faces
in G′ only come from C′ patterns. As there are c occurrences of C in G, each
occurrence of C′ in G′ is matched with a different occurrence of C in G. For the
same reasons, each occurrence of a variable pattern Vk in G is matched with a
different occurrence of a variable pattern V ′

k in G′: Petal and core faces in G can
only be matched with petal and core faces in G′, and an occurrence of Vi cannot
be matched with faces of an occurrence of V ′

j if i
= j. For each variable pattern
V ′
k, the label of the petals of V ′

k which are not matched with petals of variable
patterns of G gives the truth assignment for the corresponding variable. For each
clause pattern C′, the label of the 4-edge face of C′ which is matched with a
4-edge face of C corresponds to a literal which satisfies the clause associated
with C′. As two faces of G which belong to two different connected components
cannot be matched by f with faces which are 2-sewn in G′′, we ensure that
when a 4-edge face of a clause pattern is matched, then the adjacent petal is not

28 C. Solnon et al.

w

x

x
x

x

x
x

u u

u

u

uu

u

x

x

x

u

u

u

C1

C2

C3 C4

C5

y

z

y

y

y

y
y

y

y

y

z

z z
z

z

z

z

z
z

u

u

w

w

w

w

w

Fig. 6. Solution of the induced submap isomorphism instance (2, G, G′) associated with
the Planar-4 3-SAT instance displayed in Fig. 3. The induced submap of G′ which is
isomorphic to G is displayed in dark grey. Note that two different components of this
submap cannot be 2-sewn in G′ as we consider induced submap isomorphism.

matched, i.e., when a clause is satisfied by a literal l, then no other clause can be
satisfied by the negation of this literal so that the truth assignment deduced from
the flower matching actually satisfies all clauses of F . For example, the truth
assignment corresponding to the solution displayed in Fig. 6 is {x̄, y, z̄, u, w}.

Proof of (∃ truth assignment of X which satisfies F) ⇒ (G i G′). Let us as-
sume that there exists a truth assignment of X which satisfies F and let us
show that there exists an induced submap G′′ of G′ which is isomorphic to G,
i.e., that there exists a dart matching which preserves all seams of G. For each
variable pattern Vk in G associated with a variable xi, we match the darts of the
core face with the darts of the core face of the variable pattern associated with
xi in G′ and we match the darts of the k 6-edge petals of Vk with the darts of
the k 6-edge petals which are labeled with the negation of the truth value of xi.
For each clause pattern C in G associated with a clause cj , we match the darts
of the 3-edge face of C with the darts of the 3-edge face of the clause pattern
associated with cj in G′ and we match the darts of the 4-edge face of C with the
darts of one of the three 4-edge faces: We choose a 4-edge face which is labeled
with a literal which is satisfied by the truth assignment (this 4-edge face cannot
be 2-sewn with a matched 6-edge petal).

Proof for the Partial Case. Let us now consider the partial case: We consider
an instance (X,F) of planar-4 3-SAT and we show how to build an instance
(n,G,G′) such that G p G′ iff the answer to (X,F) is yes. The proof is similar

On the Complexity of Submap Isomorphism 29

w

x

x
x

x

x
x

u u

u

u

uu

u

x

x

x

u

u

u

C1

C2

C3 C4

C5

y

z

y

y

y

y
y

y

y

y

z

z z
z

z

z

z

z
z

u

u

w

w

w

w

w

Fig. 7. Solution of the partial submap isomorphism instance (2, G,G′) associated with
the Planar-4 3-SAT instance displayed in Fig. 3. The partial submap of G′ which is
isomorphic to G is displayed in dark grey.

to the induced case. The difference between the induced and the partial cases
is that, when considering induced submap isomorphism, two faces which belong
to two different components in G cannot be matched with faces of G′ which are
2-sewn whereas, when considering partial submap isomorphism, two faces which
belong to two different components in G may be matched with faces of G′ which
are 2-sewn. Therefore, we modify the clause pattern C so that the 4-edge face is
adjacent to a 3-edge face, on one side, and to a 6-edge face on the opposite side,
as displayed below:

These 6-edge faces can only be matched with petals.The label of the petal which
is matched with the 6-edge face of a clause pattern corresponds to the literal
which satisfies the clause. Fig. 7 displays an example of solution for partial
submap isomorphism.

6 Conclusion

We have shown that submap isomorphism is NP-complete when the pattern
map G is not connected. This implies that there does not exist a polynomial-
time algorithm for this problem, unless P=NP. The practical tractability of this

30 C. Solnon et al.

problem actually depends on the number of different connected components
of G. Indeed, if G contains k different connected components, we can use the
polynomial-time algorithm of [5] to search for all occurrences of each component
of G in the target map G′. Let m be the maximum number of occurrences of
a connected component of G in G′ (m is bounded by the number of darts of
G′). The number of candidate solutions to explore is bounded by mk so that the
problem remains tractable if k is small enough.

A consequence of our NP-completeness proof is that the maximum common
submap problem introduced in [10] is NP-hard in the general case, i.e., if the
common submap is not necessarily connected (as searching for a common submap
is more general than deciding of submap isomorphism). However, the complexity
of the maximum common submap problem in the particular case where the
common submap must be connected is still an open question: We haven’t found
a polynomial-time algorithm for solving this problem, neither have we found a
polynomial-time reduction from a known NP-complete problem to this problem.
Hence, further work will mainly concern the answer to this question.

Acknowledgments. The authors would like to thank Daniel Goncalves (Univer-
sity of Montpellier) for his pointer to problem Planar-3SAT, and fruitful remarks.

References

1. Lienhardt, P.: N-dimensional generalized combinatorial maps and cellular
quasi-manifolds. Computational Geometry and Applications 4(3), 275–324 (1994)

2. Fradin, D., Meneveaux, D., Lienhardt, P.: A hierarchical topology-based model for
handling complex indoor scenes. Computer Graphics Forum 25(2), 149–162 (2006)

3. Braquelaire, J.P., Brun, L.: Image segmentation with topological maps and
inter-pixel representation. Visual Communication and Image Representation 9(1),
62–79 (1998)

4. Damiand, G., de la Higuera, C., Janodet, J.-C., Samuel, É., Solnon, C.: A polyno-
mial algorithm for submap isomorphism: Application to searching patterns in im-
ages. In: Torsello, A., Escolano, F., Brun, L. (eds.) GbRPR 2009. LNCS, vol. 5534,
pp. 102–112. Springer, Heidelberg (2009)

5. Damiand, G., Solnon, C., de la Higuera, C., Janodet, J.C., Samuel, E.: Polynomial
algorithms for subisomorphism of nd open combinatorial maps. Computer Vision
and Image Understanding (CVIU) 115(7), 996–1010 (2011)

6. Combier, C., Damiand, G., Solnon, C.: From maximum common submaps to
edit distances of generalized maps. Pattern Recognition Letters 33(15), 2020–2028
(2012)

7. Cook, S.A.: The complexity of theorem-proving procedures. In: ACM Symposium
on Theory of Computing, pp. 151–158 (1971)

8. Jansen, K., Müller, H.: The minimum broadcast time problem for several processor
networks. Theoretical Computer Science 147(1-2), 69–85 (1995)

9. Mohar, B.: A linear time algorithm for embedding graphs in an arbitrary surface.
SIAM Journal on Discrete Mathematics 12(1), 6–26 (1999)

10. Combier, C., Damiand, G., Solnon, C.: Measuring the distance of generalized
maps. In: Jiang, X., Ferrer, M., Torsello, A. (eds.) GbRPR 2011. LNCS, vol. 6658,
pp. 82–91. Springer, Heidelberg (2011)

Flooding Edge Weighted Graphs

Fernand Meyer

CMM-Centre de Morphologie Mathématique,
Mathématiques et Systèmes, MINES ParisTech, France

fernand.meyer@mines-paristech.fr

Abstract. This paper characterizes floodings on edge weighted graphs.
Of particular interest are the highest floodings of a graph below a ceiling
function defined on the nodes. Two classes of algorithms for their con-
struction are presented. The first are applied on the dendrogram repre-
senting the hierarchy associated to the edge weighted graph. The second
consist in shortest distance algorithms on the graph itself.

1 Introduction

Edge weighted graphs are ubiquitous in the field of classification and image
processing. A hierarchy is easily derived from an edge weighted graph: cutting
all edges with a weight above some threshold produces a number of connected
subgraphs, representing each one scale of a taxonomy. For higher thresholds less
edges are cut, resulting in larger subgraphs, obtained by the union of smaller
ones. If the nodes represent the different tiles of a partition, and the edge weights
represent a dissimilarity between adjacent tiles, the hierarchy is a series of nested
partitions which are coarser and coarser, each tile at a given level, being obtained
by the union of tiles at lower levels. In the region adjacency graph for instance,
the nodes represent the catchment basins of a topographic surface, edges link
neighboring basins and their weights represents the altitudes of the pass points
between neighboring basins. If the topographic surface is flooded, the flood passes
from basin to basin through these pass points. The progression of the flood is thus
the same on the topographic surface or on the RAG. The present paper defines
floodings on arbitrary edge weighted graphs. Criteria are given characterizing
physically valid floodings. We then study the extension of a lake containing
a given node when its flooding level increases. The highest flooding below a
ceiling function defined on the nodes is unique. It has a great interest in image
segmentation and filtering. Various algorithms are proposed for its construction.

2 The Laws of Hydrostatics and Floodings

2.1 Criteria Characterizing a Flooding

Consider a non oriented node and edge weighted graph G = [E,N], E repre-
senting the edges and N the nodes.

W.G. Kropatsch et al. (Eds.): GbRPR 2013, LNCS 7877, pp. 31–40, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

32 F. Meyer

a b c d e f g h i j

Fig. 1. Tank and pipe network:
- a and b form a regional minimum with τa = τb = λ ; eab ≤ λ ; ebc > λ
- b and c have unequal levels but are separated by a higher pipe.
- d and e form a full lake, reaching the level of its lowest exhaust pipe ecd
- e and f have the same level ; however they do not form a lake, as they are linked by
a pipe which is higher.
The distribution in the last four tanks is not compatible with the laws of hydrostatics.

In order to give a physical interpretation to our graph, we consider the nodes
as vertical tanks of infinite height and depth. The weight τi represents the level
of water in the tank i, equal to −∞ if no water is present. Two neighboring
tanks i and j are linked by a pipe at an altitude eij equal to the weight of the
edge. We call such an edge weighted graph a tank network. Edge weights e and
flooding levels τ take their values in [−∞,+∞]. We suppose that the laws of
hydrostatics apply to our network of tanks and pipes:
* if the level τi in the tank i is higher than the pipe eij , then τi = τj .
* the level τi in the tank i cannot be higher than the level τj , unless eij ≥ τi.

In fact, this second condition implies the first one. We adopt it as a criterion
defining valid floodings on a tank network.

Definition 1. The distribution τ of water in the tanks of the graph G = [E,N]
is a flooding of this graph, i.e. is a stable distribution of fluid if it verifies
the criterion { for any couple of neighboring nodes (p, q) : (τp > τq ⇒ epq ≥
τp) (criterion 1) }

Figure 1 presents a number of configurations compatible with the laws of hydro-
statics and others which are not.

The following equivalences yield other useful criteria for recognizing flood
distributions on tank networks:

(τp > τq ⇒ epq ≥ τp) ⇔ (not (τp > τq) or epq ≥ τp) ⇔
(τp ≤ τq or τp ≤ epq) ⇔ (τp ≤ τq ∨ epq) (criterion 2)

2.2 The Algebra of Floodings

Lemma 1. If τ and ν are two floodings of a tank network G, then τ ∨ ν and
τ ∧ ν also are floodings of G.

2.3 Creation of Lakes

We first define the ultrametric flooding distance ud(p, q) between two nodes p
and q on an edge weighted graph as the lowest value λ such that there exists

Flooding Edge Weighted Graphs 33

a connected path between p and q with no edge higher than λ. The highest
edge along the path has a weight λ. For a node p the closed ball of centre p
and radius ρ is defined by Ball(p, ρ) = {q ∈ N | ud(p, q) ≤ ρ}. Such balls have
strange properties:

- two closed balls with the same radius are either disjoint or identical.
- each element of a closed ball is a centre of this ball.
- the radius of a ball is equal to its diameter, that is the longest distance

between two nodes in the ball.
Open balls Ball(p, ρ) = {q ∈ N | ud(p, q) < ρ} have similar properties.
The following lemma presents the basic mechanism generating lakes.

Lemma 2. If (p, q) are neighboring nodes of the flooded graph G, linked by an
edge with weight epq < τp, then τp = τq.

Proof. Indeed the criterion (τp > τq ⇒ epq ≥ τp) is equivalent with (epq < τp ⇒
τp ≤ τq). Hence if epq < τp, we have τp ≤ τq ; so we also have epq < τq implying
τq ≤ τp ; finally τp = τq.

Consider now a node p with a flood level λ. In the open ball Ball(p, λ) all
neighboring nodes (s, t) are connected by an edge est < λ, hence τs = τt = λ
and the whole ball X is a lake with the same altitude λ as p.

Lemma 3. If an open ball Ball(p, ρ) has one node with a floding level λ > ρ,
then its flooding level is uniform and equal to λ.

By definition of an open ball, all edges in the cocycle of X have weights ≥ λ. the
smallest of them has a weight μ > λ or μ = λ. Consider both cases separately.

Creation of a Lake Zone: μ = λ. There exists an edge with weight λ in the
cocycle of X, linking a node s of X with a node t outside X. The node t does
not belong to the open ball Ball(p, λ) but to the closed ball Y = Ball(p, λ) ⊃
Ball(p, λ). What is the level of the flooding within Y ? Each node s of Y is
linked with p by a path whose edges are lower or equal than λ. The criterion
2 characterizing floodings may then be applied to all pairs (u, v) of edges along
this path: τv ≤ τu ∨ euv. If τu, euv ≤ λ, then also τv ≤ λ. This proves:

Lemma 4. If there is at least one node with a weight ≤ λ in a closed ball
Ball(p, λ) of level λ, all other nodes in this ball have a flooding level ≤ λ.

The diameter of Y is λ. Such a closed ball is called lake zone.

Creation of a Regional Minimum Lake: μ > λ. If the smallest edge of the
cocycle is higher than λ, so are all edges of the cocycle. Hence X forms a lake
with a uniform flooding level λ. As it is not possible to quit X without crossing
an edge with a weight λ, we define it as a regional minimum lake.

34 F. Meyer

From a lake zone to the next As any two nodes of X are linked by a path of
altitude < λ, diam(X) = μ < λ. In a closed ball, diameter and radius are equal,
hence X is also a closed ball of radius μ, i.e. a lake zone. According to the
preceding lemma, if only one node of X has a flooding level equal to μ, then all
its other nodes have a flooding level ≤ μ. But as soon one of its nodes has a
flooding level λ > μ, then all nodes of X have the same flooding level λ. And X
is a regional minimum lake as long as its flooding level is lower than the lowest
edge ν in its cocycle. As the flooding level within X reaches ν, X remains an
open ball Ball(p, ν) with a uniform flooding level ν, included in a closed ball
Ball(p, ν) with a flooding level lower or equal than ν outside X.

An Increasing Series of Lakes Containing a Node p. We define the op-
erator εnep which computes the weight of lowest adjacent edge of p ; similarly,
εXeY is the operator which computes the weight of the lowest edge in the cocycle
of Y. We now describe the extension of the successive lakes containing a given
node p for increasing levels η of flooding.

- for η < εnep, i.e. a flooding level below εnep, the extension of the lake is
X0 = {p} and is a regional minimum lake. Hence for η < εnep : X0 = {p}.

- for η = εnep, the lake containing p is included in a lake zone X1 = B(p, εnep).
The flood level is equal to η on X0 and ≤ η everywhere else on X1. We have
diam(X1) = εnep = εXeX0.

- for diam(X1) < η < εXeX1, the lake is a regional minimum lake with the
extension X1.

- for η = εXeX1, the lake containing p is included in a lake zone X2 =
B(p, εXeX1). The flood level is equal to η on X1 and ≤ η everywhere else on
X2. We have diam(X2) = εXeX1

- ...
- for diam(Xn) < η < εXeXn, the lake is a regional minimum lake with the

extension Xn.
- for η = εXeXn, i.e. a flooding level equal to the lowest adjacent edge of

Xn, the lake containing p is included in a lake zone Xn+1 = B(p, εXeXn). The
flood level is equal to η on Xn and ≤ η everywhere else on Xn+1. We have
diam(Xn+1) = εXeXn.

- the alternating series of regional minima lakes and lake zones goes on until
all nodes of N are flooded.

Dendrogram Structure of the Lake Zone. For p ∈ Y, we define the operator
κp by κp(Y) = B(p, εXeY) and its iteration: κ(n)p (Y) = κpκ

(n−1)
p (Y) Starting

with the set X0 = {p} we obtain a series of lake zones: X0 = {p}, X1 = κp{p}, ...,
Xn = κp(Xn−1) = κ

(n)
p {p}.

Obviously, for each node q ∈ κ
(n)
p {p}, there exists a number m such that

κ
(n)
p {p} = κ

(m)
q {q}.

The sets κ(n)p {p} for all n and all nodes p form a hierarchy. Its sets may be
organized as a dendrogram. The leaves of the dendrogram are the nodes of G.

Flooding Edge Weighted Graphs 35

Each node κ
(n)
p {p} is linked by an edge with its unique immediate successor

κ
(n+1)
p {p} as illustrated in fig.2A.

3 Dominated Floodings

3.1 Lake Level and Lake Extension at a Node p

The preceding section has described how the lake containing a given node is ex-
tended as its flooding level increases. Many flooding distributions are physically
possible. However there is only one if we consider the highest flooding below a
ceiling function ω defined on each node. We consider all floodings of G whose
flooding level is lower than the function ω on all its nodes. The supremum of
all these floodings also is a valid flooding of G and is the highest flooding of G
below ω. We define the ceiling function ω(X) as the smallest value taken by ω
on a node of X .

What will be the level of the flooding and the extension of the lake containing
a given node p ? As shown above, the possible lakes containing the node p form
an increasing series of nested sets κ(n){p}, the smallest being {p}, the largest
being the root κ(m){p} of the dendrogram.

The operator ω(X) is decreasing and the operator diam(X) increasing with
X. As the series κ(n){p} is increasing with n, we get a series of decreasing values
ω(κ(n){p}) and a series of increasing values diam(κ(n){p}) :

- as the set {p} has no inside edge, we have diam(κ(0){p}) = diam{p} =
−∞. Hence ω{p} > diam{p} = −∞

- if at the root we still have ω(κ(m){p}) > diam(κ(m){p}), i.e. the ceiling of p
is higher than the root of the dendrogram, then τp = diam(κ(m){p}), the lowest
flooding value covering the whole domain κ(m){p}.

- if on the contrary ω(κ(m){p}) ≤ diam(κ(m){p}), let k ≤ m be the smallest
index for which ω(κ(k){p}) ≤ diam(κ(k){p}) (rel. 1). Hence ω(κ(k−1){p}) >
diam(κ(k−1){p}) (rel. 2), which implies that on κ(k−1){p} the flooding level is
uniform and higher than diam(κ(k−1){p}). On the other hand Rel.1 implies that
on κ(k){p} the maximal flooding level is diam(κ(k){p}). Two possibilities are
compatible with both relations:
* if ω(κ(k−1){p}) ≤ diam(κ(k){p}), then τp = τκ(k−1){p} = ω(κ(k−1){p})
* if ω(κ(k−1){p}) > diam(κ(k){p}), then τp = τκ(k−1){p} = diam(κ(k){p}).

3.2 Illustration

Determination of the Flooding Level at the Node c. The ceiling function
ω is equal to ∞ on all nodes excepting the nodes ω(c) = 6 and ω(h) = 1. We
represent inside a yellow dot the function ω on each node of the dendrogram in
fig.2A.

Let us compute the lake level and the extension of the node c. The small-
est index for which ω(κ(k){c}) ≤ diam(κ(k){c}), is k = 3, with κ(3){c} =
[b, c, d, e, f] having a diameter 7, whereas ω(κ(3){c}) = 6. For k = 2, we get

36 F. Meyer

a a

a a

b b

b b

c c

c c

d d

d d

e e

e e

f f

f f

g g

g g

h h

h h

i i

i i

j j

j j

k k

k k

6 6

6 6

6

6 6 6

6

6

6

6

6

1 1

1 1

1

1 1

1

1 1

1

1

9

9 9

7

7 7

8

1

2 2

1 1

1 1

� � � � � � �� �

�

� �

�

� �

�

�

� �

�

A

C

B

D

Fig. 2. A: Dendrogram asssociated to the edge weighted graph (red nodes linked
by weighted edges). The yellow disks contain the ceiling level of each node of the
dendrogram.
B: The lake containing the nodes c also contains the nodes (b, c, d, e) at a flooding
level 6.
C: The ancestors of (b, c, d, e) are suppressed and its uncles becom the roots of sub-
dendrograms which may be processed separately.
D: Final dendrogram with the flooding levels of the various nodes.

κ(2){c} = [b, c, d, e] having a diameter 4, whereas ω(κ(2){c}) = 6. According to
the preceding analysis the flooding level of κ(2){c} = [b, c, d, e] is τc = τκ(2){c} =

ω(κ(2){c}) = 6 (see fig.2B).

Pruning the Dendrogram. Fig.2 presents how the upstream of each flooded
node is pruned. As the level of κ(2){c} is known, the dendrogram may be pruned
by discarding all ancestors of κ(2){c}. For k > 2, κ(k){c} is an ancestor of c,
the flooding level of all its immediate successors which are not ancestors of c,

Flooding Edge Weighted Graphs 37

that is, brothers of κ(k−1){c} is lower or equal than diam(κ(k){c}). The edge
linking each brother Y of κ(k−1){c} with its father κ(k){c} is cut ; like that Y
becomes the root of a sub-dendrogram ; as its flooding level is lower or equal
than diam(κ(k){c}), one sets ω(Y) = ω(Y) ∧ diam(κ(k){c}). On the same time
all ancestors of κ(2){c} and the edges linking them are suppressed.

The result of the pruning is illustrated by fig.2B,C. The set κ(2){c} = [b, c, d, e]
got its flooding level 6 and its upstream is pruned:

- κ(3){c} = [b, c, d, e, f] is suppressed and the node {f} becomes the root of a
sub-dendrogram, with a ceiling value ω({f}) = ω({f}) ∧ diam(κ(3){c}) = 7. As
the sub-dendrogram is reduced to a node, its ceiling value is its flooding value, 7.

- κ(4){c} = [a, b, c, d, e, f] is suppressed and the node {a} becomes the root of a
sub-dendrogram, with a ceiling value ω({a}) = ω({a}) ∧ diam(κ(4){c}) = 9. As
the sub-dendrogram is reduced to a node, its ceiling value is its flooding value, 9.

- κ(5){c}, the root, is suppressed and the node [g, h, i, j, k] becomes the root
of a sub-dendrogram, with a ceiling value ω([g, h, i, j, k]) = ω([g, h, i, j, k]) ∧
diam(κ(5){c}) = 1.

In summary, as soon a node Y of the dendrogram gets its flooding level, the
dendrogram may be pruned, suppressing all ancestors of Y, transforming each
uncle Z of Y into the root of a sub-dendrogram, with a ceiling value ω(Z) =
ω(Z) ∧ diamκ(Z).

The final result is obtained by processing each sub-dendrogram separately and
is illustrated in fig.2D.

An Algorithm Based on Edge Contractions. The following algorithm con-
structs the dendrogram and computes the flooding levels by iteratively contract-
ing the edges of each lake. We define Λ(p) as a collection of nodes with the
same flooding level τp as the node p. The result of the algorithm is a list Λ of
records of the type (Λ(p), τp). The algorithms proceeds by processing the edges
still present in the graph in the order of increasing altitudes. Initially Λ = ∅ and
for p ∈ N : Λ(p) = [p] and p = “unflooded”:

As long there are edges to process, let (p, q) be the lowest edge to process:
if p = “isf looded” and q = “isf looded” take the next edge, else
X = Ball(p, epq) ; X1 = {x ∈ X | x = “isf looded”} ; X2 = {x ∈ X | ω(x) ≤ epq
and x = “unflooded”}
If X1 ∪X2 = ∅ : Λ(p) =

⋃
x∈XΛ(p) ; ω(p) = ω(X); contract (o, q) on p

else for each x ∈ X/X1 :
τx = ω(x) ∧ epq
Λ = append[Λ, (Λ(x), τx)]
contract X on p
p = “isf looded”

Illustration
- ebc = 1;X1 ∪X2 = ∅;Λ(c) = [b, c] ; ω(c) = 6; contract (b, c) on c
- egh = 2;X2 = [h] ; τh = 1; τg = 2; Λ = append[Λ, (h, 1), (g, 2)] ; contract (g, h)
on h; h = “isf looded”
- ede = 3;X1 ∪X2 = ∅;Λ(e) = [d, e] ; ω(e) = ∞; contract (d, e) on e

38 F. Meyer

Fig. 3. Adding a dummy node linked to each node x in X by an edge weighted by the
offset at x

- ece = 4;X1 ∪X2 = ∅;Λ(e) = [b, c, d, e] ; ω(e) = 6; contract (c, e) on e
- ejk = 5;X1 ∪X2 = ∅;Λ(e) = [j, k] ; ω(k) = ∞; contract (j, k) on k
- ehi = 6;X1 = [h] ; τi = 6 ; Λ = append[Λ, (i, 6)] ; contract (h, i) on i; i =
“isf looded”
- eef = 7;X1 = [e] ; τf = 7 ; Λ = append[Λ, (f, 7)] ; contract (e, f) on f ;
f = “isf looded”
- eik = 8;X1 = [i] ; τk = 8 ; Λ = append[Λ, (k, 8)] ; contract (i, k) on k; k =
“isf looded”
- eaf = 9;X1 = [e] ; τa = 9 ; Λ = append[Λ, (a, 9)] ; contract (a, f) on f ;
f = “isf looded”
- ef,k = 9; p = “isf looded” and q = “isf looded”, there is no further edge : end

4 Constrained Highest Floodings on Edge Weighted
Graphs as Shortest Distances in an Augmented Graph

4.1 Highest Floodings and Shortest Distances

According to criterion 2, any flooding θ verifies the relation: θp ≤ θq ∨ epq,
for each neighbor q of p. As this relation is to be true for all neighbors of p,
we have θp ≤

∧
q neighbor of p

(θq ∨ epq) Simultaneously θp ≤ hp. So θp ≤ hp ∧∧
q neighbor of p

(θq ∨ epq) and the highest of them, τ verifies

τp = hp ∧
∧

q neighbor of p

(τq ∨ epq) .

If we add to the graph Ge a dummy node Ω with a weight τΩ = 0 linked
by a dummy edge (Ω, p) with each node p and holding a weight equal to hp,
we get an augmented graph Ĝe. Relation (6) may be rewritten as τp = (τΩ ∨
eΩp)∧

∧
q neighbor of p

(τq ∨ eqp) . This formula expresses that the shortest path for

the ultrametric flooding distance between Ω and p is eΩp = hp if the path is
simply the edge (Ω, p) or is equal to (τs ∨ eps) if the path passes through the
neighbor s of p, (τq ∨ eqp) taking its smallest value for q = s.

Flooding Edge Weighted Graphs 39

Theorem 1. The highest flooding of the graph G below a function h defined on
the nodes is the shortest ultrametric flooding distance of each node to Ω .

This theorem permits to use any shortest path algorithm for computing this
highest flooding. The simplest recursively applies the relation (6) until stability
is reached.

Initialisation: τ (0)p = hp

Repeat until τ (m)
p = τ

(m−1)
p : τ

(n)
p = hp ∧

∧
q neighbor of p

(
τ
(n−1)
q ∨ epq

)
Stability is necessarily reached after a number n of iteration as the values

of τ decrease and have a lower ceiling equal to 0. As τ
(n)
p ≤ τ

(n−1)
p ≤ hp,

we get an equivalent algorithm with the following sequence: τ (n)p = τ
(n−1)
p ∧∧

q neighbor of p

(
τ
(n−1)
q ∨ epq

)
.

4.2 The Moore Dijkstra Shortest Path Algorithm [5]

This famous greedy algorithm takes as many steps as there are nodes. At any
step, S represents the subset of nodes for which the shortest path is known. For
any neighboring node of S, the length of the shortest path for which all edges
but the last belong to S constitutes an overestimation of this length. The node
with the lowest guess is correctly estimated.

Initialization:
S = Ω ; S = N ; for each node p in N : τp = hp

Flooding:
While S
= ∅ repeat:

Select j ∈ S for which τj = mini∈S [τi]

S = S\{j}
For any neighbor i of j in S do τi = min [τi, τj ∨ eji]

End While

Remark. The dummy node plays no role, nor the nodes with an infinite ceiling
value. Without dummy node, the initialisation becomes S = ∅ ; for each node
p in N verifying hp < ∞, do τp = hp.

The nodes are processed in an increasing order of flooding. If we keep the
edges linking each node with the node through which it has been flooded in the
algorithm we get a tree. Along each edge of this tree, the level of the flood also
is never decreasing.

5 Conclusion

We have given an axiomatic definition of floodings on edge weighted graph.
The highest flooding under a ceiling function is a morphological opening of this
ceiling function (increasing, anti-extensive and idempotent). The criteria charac-
terizing this flooding permit to express it either as a shortest distance problem

40 F. Meyer

on an augmented graph for an ultrametric flooding distance or as a pruning
of a dendrogram. The first expression permits to use the shortest path algo-
rithm which is best adapted to each particular problem. The second permits
to imagine extremely fast implementations as the dendrogram rapidly splits in
sub-dendrograms which may be processed independently.

These results may be transposed on floodings for images [4]. An image f
defined on a grid, may be considered as a node weighted graph G; the pix-
els becoming the nodes, their grey tones the node weights ; the edges connect
neighboring pixels/nodes and are not weighted. It may be shown that any flood-
ing τ of an image f is a flooding of the graph G, on which the edges get weights
epq = fp ∨ fq. This results permits to transpose on images all results established
on tank networks.

References

1. Marcotegui, B., Beucher, S.: Fast implementation of waterfalls based on graphs.
In: ISMM05: Mathematical Morphology and its Applications to Signal Processing,
pp. 177–186 (2005)

2. Cousty, J., Bertrand, G., Najman, L., Couprie, M.: Watershed cuts: Minimum
spanning forests and the drop of water 1principle. IEEE Transactions on Pattern
Analysis and Machine Intelligence 31, 1362–1374 (2009)

3. Meyer, F.: Minimal spanning forests for morphological segmentation. In: ISMM94:
Mathematical Morphology and its Applications to Signal Processing, pp. 77–84
(1994)

4. Meyer, F.: Flooding and segmentation. In: Goutsias, J., Vincent, L., Bloomberg,
D.S. (eds.) Mathematical Morphology and its Applications to Image and Signal
Processing. Computational Imaging and Vision, vol. 18, pp. 189–198 (2002)

5. Moore, E.F.: The shortest path through a maze. In: Proc. Int. Symposium on Theory
of Switching, vol. 30, pp. 285–292 (1957)

Graph Matching with Nonnegative Sparse Model

Bo Jiang, Jin Tang, and Bin Luo�

School of Computer Science and Technology,
Anhui University, Hefei 230039, Anhui, China

zeyiabc@163.com, ahhftang@gmail.com, luobin@ahu.edu.cn

Abstract. Graph matching is an essential problem in computer vision
and pattern recognition. In this paper, we propose a novel graph match-
ing method based on non-negative sparse model (NSGM). The main
feature for our NSGM is that it can generate sparse solution and thus
naturally imposes the discrete mapping constraints approximately in the
optimization process. In addition, an efficient algorithm was derived to
solve NSGM problem. Promising experimental results on both synthetic
and real image matching tasks show the effectiveness of the proposed
matching method.

Keywords: Graph matching, Sparse model, Nonnegative matrix
factorization.

1 Introduction

Many problems of interest in computer vision and pattern recognition can be
formulated as a problem of finding consistent correspondences between two sets
of features. In computer vision, the problem of establishing correspondences
between two sets of features can be effectively solved by attributed relational
graph (ARG) matching. The goal of ARG matching (graph matching) is to find
a mapping between the two node sets that preserves both unary attributes and
binary relationships between nodes as much as possible.

Previous approaches [1–3] have formulated graph matching as an Integer
Quadratic Programming (IQP). Since IQP is known to be NP-hard, graph
matching is either solved exactly in very restricted setting (bipartite graph
matching, for example using the Hungarian method) or approximately. Most of
recent literatures on graph matching follow the second way, i.e., developing ap-
proximate relaxations to the graph matching problem [4, 2, 5, 6, 3, 1]. Torresani
et al.[7] represented graph matching as an energy minimization problem which
can be efficiently optimized by dual decomposition. Leordeanu and Hebert [3]
proposed a simple and efficient approximate method (spectral matching, SM) to
IQP using a spectral relaxation technique. Cour et al.[5] extended SM to spectral
matching with affine constraint (SMAC) by incorporating the affine constraints
into the spectral relaxation. Comparing with SM, it further encodes the one-to-
one matching constraints, therefore can approximate the original IQP problem

� Corresponding author.

W.G. Kropatsch et al. (Eds.): GbRPR 2013, LNCS 7877, pp. 41–50, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

42 B. Jiang, J. Tang, and B. Luo

more closely. Leordeanu and Hebert [8] proposed an iterative matching method
(IPFP) which optimized the IQP in the discrete domain and therefore can sat-
isfy the one-to-one mapping constraints strictly in the optimization process.
Zhou et al.[9] proposed a new matching algorithm by exploiting the properties
of factorized affinity matrix. Cho et al. [1] interpreted graph matching using
the probabilistic framework and proposed a graph matching method based on
random walks.

The optimal solution for graph matching problems (IQP) is discrete, binary
and thus nonnegative, sparse in nature. To our knowledge, most existing relax-
ation algorithms do not utilize or emphasize this sparse property. This motivates
us to use nonnegative sparse model for graph matching problem. Following this
way, we propose a new relaxation algorithm for graph matching problem based
on nonnegative sparse model (NSGM). There are two main features for NSGM
method. Firstly, NSGM can generate sparse solution and thus can approximately
incorporate the mapping constraints (discrete and binary) in optimization pro-
cess. Secondly, an efficient algorithm can be derived to solve NSGM problem.

The remainder of this paper is organized as follows. In Section 2, we introduce
the formulation of ARG matching as an IQP problem. In Section 3, we propose
our NSGM graphmatching method, and show some benefits of NSGM. In Section
4, we apply our matching method to some matching tasks.

2 Problem Formulation

2.1 Attributed Graph Matching

Assume that two ARGs to be matched are GD = (V D, ED, AD, RD) and GM =
(VM , EM , AM , RM) where V represents a set of nodes, E, edges, and A, unary
attributes, R, binary relations. Each node vDi ∈ V D or edge eDij ∈ ED has an as-

sociated attribute vector aD
i ∈ AD or rij ∈ RD [1, 8]. In image feature matching,

an attribute vector aDi ∈ AD usually describes a local feature descriptor (e.g.,
SIFT descriptors and shape context), and rij ∈ RD generally represents the re-
lationship (e.g., geometric distance) between two feature points. The objective
of graph matching is to determine the correct correspondences between GD and
GM . A correspondence mapping is a set C of pairs (or assignments) (vDi , v

M
i′),

where vDi ∈ V D and vMi′ ∈ VM . For each assignment ai = (vDi , v
M
i′) in C, there

is an affinity Wai,ai = fa(a
D
i , a

M
i′) that measures how well the node vDi ∈ V D

matches the node vMi′ ∈ VM . Also, for each pair of assignments (ai, aj), where
ai = (vDi , v

D
i′) and aj = (vMj , vMj′), there is an affinity Wai,aj = fr(r

D
ij , r

M
i′j′)

that measures how compatible the nodes (vDi , v
D
j) in the data graph GD are

with the nodes (vMi′ , v
M
j′) in the model graph GM . Thus, we can use a matrix W

with the diagonal term Wai,ai representing a unary affinity of a correspondence
(vDi , v

M
i′), and the non-diagonal element Wai,aj containing a pair-wise affinity

between two assignments ai = (vDi , v
D
i′) and aj = (vMj , vMj′).

We can represent the correspondences by an matching matrix P where
Pii′ = 1 implies that the node vDi in GD corresponds to the node vMi′ in GM , and

Graph Matching with Nonnegative Sparse Model 43

Pii′ = 0 otherwise. In this paper, we denote p ∈ {0, 1}mn (m = |V D|, n = |VM |)
as a row-wise vectorized replica of P, i.e., p = (P11...P1n, ...,Pm1...Pmn). The
graph matching problem can be formulated as an integer quadratic program-
ming (IQP)[8, 5, 1], i.e., finding the indicator vector p that maximizes the score
function as

max
p

pTWp (1)

s.t. p ∈ {0, 1}mn, Ap = 1 (2)

The constraints (Eq.(2)) ensure one-to-one matching between GD and GM [8].

2.2 Graph Matching Relaxations

The above IQP problem for graph matching is NP-hard and no efficient algo-
rithm exists. Therefore, lots of approximate algorithms have been proposed to
find the solution of this problem [1, 2, 5, 3, 8]. These approaches usually avoid
combinatorial searching by approximating the objective function or by relaxing
the mapping constraints. In general, a practical approximate solution should
have the following two matching properties strongly[4, 5, 8]:

(1) It should maximize the objective function (Eq.(1)) as far as possible;
(2) It should satisfy the constraints (Eq.(2)) as closely as possible.

We call these properties as Objective Property and Constraint Property, respec-
tively. Usually, the approximate algorithms cannot guarantee that the solution
satisfies the constraints strictly, and they obtain the final correspondence solu-
tion based on a post-optimization step by using some discretization techniques,
which usually lead to weak local optimal solutions for the original IQP problem.
Leordeanu and Hebert [3] proposed a spectral technique (SM) to graph matching
problem.Thismethod can have strong objective property, i.e., it can find the global
maximum of the relaxed problem effectively. However, the method does not hold
the constraint property because of the relaxation, namely ‖p‖F = 1. They also re-
cently proposed an iterativematching method (IPFP) [8] which integrates the dis-
cretization step and objective function optimization simultaneously. This method
optimizes the IQP in the discrete domain and thus can have constraint property
strictly. Cour et al. [5] extended SM to spectral matching with affine constraints
(SMAC) by incorporating the matching constraints within the relaxation process.
Comparing with SM, this method has the constraint property more strongly and
therefore can obtain a more effective solution for the graph matching problem.

3 Nonnegative Sparse Graph Matching

The optimal solution for the above IQP graph matching problem (Eq.(1)) is
discrete, binary and thus sparse, nonnegative in nature, i.e., there exists small
number of positive nonzero elements in the optimal solution. This motivates us
to use nonnegative sparse model for graph matching problem. In the following,

44 B. Jiang, J. Tang, and B. Luo

we first propose our nonnegative sparse graph matching (NSGM) model. Then,
an efficient algorithm is introduced to solve it. At last, some benefits of NSGM
are demonstrated.

3.1 Relaxation Model

By adding a L1 norm constraint on the solution p, our NSGM can be formulated
as follows:

max
p

pTWp s.t. ‖p‖1 = 1,pi ≥ 0. (3)

where ‖p‖1 =
∑mn

i=1 |pi|.
The above optimization can be explained as a problem subject to a L1 norm

constraint on the solution. The main feature for this kind of problems is that
they can encourage sparse solutions [10, 11, 10–12], i.e., many components of
the solution p are zero. It will be shown that only the relative values between
the elements of p matter, we can fix the L1 norm of p to 1.

There are two main features for our NSGM model. Firstly, NSGM can gen-
erate sparse solution and thus naturally incorporates the discrete mapping con-
straints approximately, i.e., it has constraint property approximately. Secondly,
an efficient update algorithm can be derived to solve NSGM problem, i.e., it can
also have strong objective property. Therefore, our NSGM can approximate the
original IQP problem closely and thus can lead to an effective solution for graph
matching problem. Our NSGM is most similar to spectral matching method[3],
which relaxes the original IQP problem by solving the following problem:

max
p

pTWp s.t. ‖p‖F = 1, (4)

where ‖p‖F =
√∑mn

i=1 p
2
i . The main difference between our NSGM and SM is

that we impose sparse constraint on the related solution. We demonstrate later
that the ability to maintain this constraint leads to a very better solution for
graph matching problem.

3.2 Computational Algorithm

In this section, we develop an efficient algorithm to solve our NSGM problem.
As discussed in Section 3.1, the optimal solution for NSGM is nonnegative. This
motivates us to use a nonnegative matrix factorization (NMF) technique to solve
NSGM problem. Since pi ≥ 0, Eq.(3) is equivalent to the following,

max
p

pTWp s.t.

mn∑
i=1

pi = 1,pi ≥ 0. (5)

This problem can be efficiently solved by an iterative algorithm. The algorithm
iteratively updates a current solution vector p(t) as follows [13]:

p
(t+1)
i = p

(t)
i

(Wp(t))i
[p(t)]TWp(t)

. (6)

Graph Matching with Nonnegative Sparse Model 45

The iteration starts with an initial p(0) and is repeated until convergence. The
optimality and convergence of this update rule can refer to the work [13]. A
drawback of Eq. (5) (or Eq. (3)) is not always convex. The final results depend
on initializations. Fortunately, there exists a good initialization, i.e., the spec-

tral matching solution [3]. Specifically, we compute the initial p(0) as p
(0)
i =

(
∑mn

i=1 qi)
−1qi where q is the principal eigenvector of W. Since W has nonneg-

ative elements, by Perron-Frobenius theorem, the elements of q will be in the
interval [0, 1][3]. The overall matching algorithm can be summarized as follows:

Step1. Initialization. Compute the principal eigenvector q of W. Set

p
(0)
i =

qi∑mn
i=1 qi

(7)

Step2. Updating p(t)(t = 0, 1, 2...) until convergence as follows:

p
(t+1)
i = p

(t)
i

(Wp(t))i
[p(t)]TWp(t)

. (8)

Step3. Let p∗ be the convergence solution of Step 2. Compute the final binary
matching solution p̃∗ based on p∗ using Greedy algorithm[3, 5].

3.3 Sparsity and Desirable Matching Properties

The main difference between NSGM and other methods [2, 5, 3] is that a L1

norm constraint is imposed on the solution p and thus encourages a sparse solu-
tion. Here we show that, by enforcing sparse solution, it can satisfy the constraint
property more closely and thus return more effective solution for graph matching
problem. This is the key feature for NSGM model. For further illustration, spar-
sity, objective score and constraint preserving residual (CPR) are first defined.
Let p∗ be the convergence solution of the relaxation algorithms. Let p̃∗ be the
final discretization binary solution obtained by performing some discretization
processes such as Greedy and Hungarian algorithms[3, 5].

(1) Sparsity measures the percentage of non-zero elements in p∗. Firstly, set
δ = 0.01 × mean(p∗), then renew p∗

i = 0 if p∗
i ≤ δ, and finally calculate the

percentage of nonzero elements in the renewed p∗ as sparsity.
(2) Objective Score measures the objective property of the matching
algorithm. It is defined as OS = p̃∗TWp̃∗.
(3)CPRmeasures the constraint property. It is defined as CPR = 1

m minα ‖p̃∗−
αp∗‖F , where m = |V D|, α is a weighting parameter to compensate the loss of
residual due to scaling.

Figure 1(b) shows the solution vector p(t) of NSGM for the matching between
ARGs generated from 2D point sets shown in Figure 1(a). The points and their
geometric relationships correspond to the nodes and edges of ARG, respectively.
There are no unary attribute and only one binary relation which is the Euclidean

46 B. Jiang, J. Tang, and B. Luo

(a)

0 100 200 300 400
0

1

2

3

4
x 10

−3

 Iteration:0 (SM)
(Sparsity=1.00, CPR=0.25)

0 100 200 300 400
0

2

4

6

8
x 10

−3

 Iteration:5
 (Sparsity=0.99, CPR=0.21)

0 100 200 300 400
0

0.005

0.01

0.015

0.02

 Iteration:20
 (Sparsity=0.74, CPR=0.19)

0 100 200 300 400
0

0.02

0.04

0.06

0.08

 Iteration:50
 (Sparsity=0.24, CPR=0.13)

0 100 200 300 400
0

0.02

0.04

0.06

0.08

 Iteration:100
 (Sparsity=0.13, CPR=0.096)

0 100 200 300 400
0

0.01

0.02

0.03

0.04

0.05

0.06

 Iteration:300
 (Sparsity=0.055, CPR=0.013)

(b)

0 0.02 0.04 0.06 0.08 0.1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Deformation noise σ

Sp
ar

si
ty

outliers n
out

 = 0

inliers n
in

 = 20 SM
NSGM

(c) Sparsity

0 0.02 0.04 0.06 0.08 0.1
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Deformation noise σ

C
PR inliers n

in
 = 20

outliers n
out

 = 0

SM
NSGM

(d) CPR

0 0.02 0.04 0.06 0.08 0.1
185

190

195

200

205

210

Deformation noise σ

O
bj

ec
tiv

e
sc

or
e

inliers n
in

 = 20
outliers n

out
 = 0

SM
NSGM

(e) Objective score

0 0.02 0.04 0.06 0.08 0.1

0.4

0.5

0.6

0.7

0.8

0.9

1

Deformation noise σ

A
cc

ur
ac

y

inliers n
in

 = 20
outliers n

out
 = 0

SM
NSGM

(f) Accuracy

Fig. 1. (a) 2D synthetic point sets (top) and ground truth solution (bottom); (b)
solution vector p(t) across the different iterations; (c)-(f) average performance curves
for our NSGM vs. SM method on synthetic data matching

distance between two points (see Experimental section in detail). Intuitively,
as the iteration increases, p(t) becomes more and more sparse and therefore
approximates the true solution (ground truth) more and more closely. Figure
1(c-f) show the average performance for our NSGM vs. SM method on synthetic
data (see Experimental section in detail). Here, the accuracy is measured by the
number of detected true matches divided by the total number of ground truths.
We can note that:(1) NSGM can generate sparse solution and retain lower CPR
value than SM, indicating NSGM can satisfy the matching constraints more
closely than SM.(2) NSGM significantly outperforms SM in objective score and
accuracy, demonstrating that NSGM can find the final discrete solution for the
original IQP problem more optimal than that of SM method. These will be
further quantified in the experiments and obviously demonstrate the benefits of
our NSGM method.

4 Experiments

In order to evaluate the practicality of our NSGM matching method, we have
applied it to the matching tasks including synthetic point matching, feature point
matching using CMU image sequence and feature matching on real images. We
have used the mapping constraints that one model feature can match at most
one data feature and vice-versa. Our method has been compared with other
state-of-the-art methods including SM[3], IPFP[8] and SMAC[5].

Graph Matching with Nonnegative Sparse Model 47

4.1 Synthetic Point Sets Matching

Our first experiment is based on synthetic 2D point data. Similar to the work
[1, 3], we have randomly generated data sets of nM 2D model points as inlier
nodes for GM . The range of the x-y point coordinates is

√
nM/10 to enforce an

approximate constant density of 10 points over a 1 × 1 region. We obtain the
corresponding nD nodes in graph GD by transforming the whole data set with
a random rotation and translation and then adding Gaussian noise N(0, σ) to
the nM point positions from GM . The parameter N(0, σ) controls the level of
position deformation. There are no unary attribute and only one binary relation
which is the Euclidean distance between points. The affinity matrix W is com-
puted by Wii′,jj′ = exp(‖rDij − rMi′j′‖2F /σr), where scaling factor σr has been set

to 0.5 in this experiment and rDij is the Euclidean distance between two points.
Wii′,ii′ = 0. For each deformation noise level σ, we have generated 50 random
point sets and then computed the average performances including matching ac-
curacy, objective score, sparse and CPR. Figure 2 shows the comparison results.
It is noted that: (1) our NSGM method can generate expected sparse solution
and return desirable lower CPR value than other competing methods, indicating
that our method has the constraint property more strongly than other methods.
Since IPFP puts the discretization step into its optimization process, it can
satisfy the mapping constraints strictly (CPR = 0). However, IPFP cannot re-
turn the objective score and matching accuracy as high as NSGM method. (2)
Comparing with other three methods, our method obviously return the high-
est matching accuracy and objective score. This clearly demonstrates that our
NSGM method can generate more effective solution for graph matching problem.

In addition to the deformation noise, we have also evaluated the effect of our
method when outlier nodes (features) exist in both graphs. Here nout outlier
feature nodes have been added in both graphs respectively at random positions.
Analogously, we have generated 50 random point sets for each outlier level nout

and then calculated the average performances. Figure 3 summarizes the results
of the different methods as the outlier node number nout varies from 1 to 30. The
main feature is that the solution of our method can keep sparse and thus consid-
erably outperforms other competing methods in matching accuracy and objec-
tive score. This demonstrates that our method can approximate the constraint

0 0.02 0.04 0.06 0.08 0.1

0.5

0.6

0.7

0.8

0.9

1

Deformation noise σ

A
cc

ur
ac

y

Inliers n
in

 = 20
Outliers n

out
 = 0

SM
IPFP
SMAC
NSGM

(a) Accuracy

0 0.02 0.04 0.06 0.08 0.1

330

340

350

360

370

380

Deformation noise σ

O
bj

ec
tiv

e
sc

or
e

Inliers n
in

 = 20

Outliers n
out

 = 0

SM
IPFP
SMAC
NSGM

(b) Objective score

0 0.02 0.04 0.06 0.08 0.1

0

0.2

0.4

0.6

0.8

1

Deformation noise σ

Sp
ar

si
ty

Inliers n
in

 = 20
Outliers n

out
 = 0

SM
IPFP
SMAC
NSGM

(c) Sparsity

0 0.02 0.04 0.06 0.08 0.1

0

0.05

0.1

0.15

0.2

0.25

Deformation noise σ

C
PR

Inliers n
in

 = 20
Outliers n

out
 = 0

SM
IPFP
SMAC
NSGM

(d) CPR

Fig. 2. Comparison results on synthetic point matching when deformation noise exists
for the nodes in both graphs

48 B. Jiang, J. Tang, and B. Luo

0 5 10 15 20 25 30
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Outliers n
out

A
cc

ur
ac

y

Inliers n
in

 = 20

Deformation noise σ = 0

SM
IPFP
SMAC
NSGM

(a) Accuracy

0 5 10 15 20 25 30

400

500

600

700

800

900

1000

1100

1200

Outliers n
out

O
bj

ec
tiv

e
sc

or
e

Inliers n
in

 = 20

deformation noise σ = 0

SM
IPFP
SMAC
NSGM

(b) Objective score

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Outliers n
out

Sp
ar

si
ty

Inliers n
in

 = 20

Deformation noise σ = 0

 SM
IPFP
SMAC
NSGM

(c) Sparsity

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

Outliers n
out

C
PR

Inliers n
in

 = 20

Deformation noise σ = 0

 SM
IPFP
SMAC
NSGM

(d) CPR

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Outliers n
out

A
cc

ur
ac

y

Inliers n
in

 = 20

Deformation noise σ = 0.02

SM
IPFP
SMAC
NSGM

(e) Accuracy

0 5 10 15 20 25 30

400

500

600

700

800

900

1000

1100

1200

Outliers n
out

O
bj

ec
tiv

e
sc

or
e

Inliers n
in

 = 20

Deformation noise σ = 0.02

SM
IPFP
SMAC
NSGM

(f) Objective score

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Outliers n
out

Sp
ar

si
ty

Inliers n
in

 = 20

Deformation noise σ = 0.02

SM
IPFP
SMAC
NSGM

(g) Sparsity

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

Outliers n
out

C
PR

Inliers n
in

 = 20

Deformation noise σ = 0.02

SM
IPFP
SMAC
NSGM

(h) CPR

Fig. 3. Comparison results on synthetic point matching when outlier noise and defor-
mation noise exist in both graphs

property closely and thus performs more robustly and effectively for the graphs
with outlier nodes.

4.2 Feature Point Matching Across Image Sequence

In this section, we perform feature point matching on CMU house sequence [10,
21, 22], and compare with other methods. For each image, 30 landmark points
were manually marked with known correspondences.We have matched all images
spaced by 10, 20, 30, · · · 90 and 100 frames and computed the average accu-
racy per separation gap. For each image pair, the coordinates of their landmark
points have been first normalized to the interval [0, 1], then the affinity matrix
has been computed by Wii′,jj′ = exp(‖rDij − rMi′j′‖2F /σr), where rDij is the Eu-
clidean distance between two points, σr has been set to 0.5. Comparison results
are shown in Figure 4. It is noted that NSGM considerably outperforms other
three methods as the separation increases. Also, NSGM can generate sparse solu-
tion which has desirable constraint property more strongly. These are consistent
with the results on the synthetic data experiments and further demonstrate the
practicality and benefits of the proposed method.

4.3 Real Image Matching

In this experiment we apply our method to real image matching problem.
Following the experimental setting in [1], we test our matching method on a
dataset of 30 image pairs containing various images. The results are summarized
in Table 1 and some examples are shown in Figure 5. From Table 1, we can
note that our NSGM can return higher accuracy and relative score than other
methods.

Graph Matching with Nonnegative Sparse Model 49

(a) Correspondences between CMU images using NSGM method

20 40 60 80 100

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Separation between frames

A
cc

ur
ac

y

SM
IPFP
SMAC
NSGM

(b) Accuracy

20 40 60 80 100
800

820

840

860

880

900

920

940

960

980

Separation between frames

O
bj

ec
tiv

e
sc

or
e

SM
IPFP
SMAC
NSGM

(c) Objective score

20 40 60 80 100

0

0.2

0.4

0.6

0.8

1

Separation between frames

Sp
ar

si
ty

SM
IPFP
SMAC
NSGM

(d) Sparsity

20 40 60 80 100

0

0.05

0.1

0.15

0.2

0.25

Separation between frames

C
P

R

SM
IPFP
SMAC
NSGM

(e) CPR

Fig. 4. Comparison results on CMU house images

Table 1. Matching performance on the real image dataset (30 pairs)

Methods NSGM SMAC SM

Avg.of accuracy (%) 67.63 52.38 58.66
Avg.of relative score (%) 96.59 75.47 92.56

Fig. 5. Some results on real image dataset. True matches are represented by yellow
lines, and false matches by red lines

50 B. Jiang, J. Tang, and B. Luo

5 Conclusions

A robust graph matching method based on nonnegative sparse model was pro-
posed in this paper. We first formulated the graph matching problem to an op-
timization setting with nonnegative and sparse constraint. Then, we developed
an efficient algorithm to solve this problem. We have showed that our NSGM
based solution was sparse and thus approximately imposed the discrete mapping
constraints in the optimization process.

As an important method in pattern recognition, sparse model has been draw-
ing much attention from different communities. In this paper, we have explored
it to graph matching task and achieve promising results. Our future work will
focus on more theoretical analysis for this method. Also, we will focus on robust
matching algorithm by imposing more mapping constraints.

Acknowledgment. This work is supported by the National Natural Science
Foundation of China (No. 61073116, 61211130309).

References

1. Cho, M., Lee, J., Lee, K.M.: Reweighted random walks for graph matching.
In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part V. LNCS,
vol. 6315, pp. 492–505. Springer, Heidelberg (2010)

2. Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty years of graph matching in
pattern recognition. International Journal of Pattern Recognition and Artificial
Intelligence, 265–298 (2004)

3. Leordeanu, M., Hebert, M.: A spectral technique for correspondence problem using
pairwise constraints. In: ICCV, pp. 1482–1489 (2005)

4. Choi, O., Kweon, I.S.: Robust feature point matching by preserving local geometric
consistency. CVIU 113, 726–742 (2009)

5. Cour, M., Srinivasan, P., Shi, J.: Balanced graph matching. In: NIPS, pp. 313–320
(2006)

6. Enqvist, O., Josephon, K., Kahl, F.: Optimal correspondences from pairwise
constraints. In: ICCV, pp. 1295–1302 (2009)

7. Torresani, L., Kolmogorov, V., Rother, C.: Feature correspondence via graph
matching: Models and global optimization. In: Forsyth, D., Torr, P., Zisserman,
A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 596–609. Springer, Heidelberg
(2008)

8. Leordeanu, M., Hebert, M.: An integer projected fixed point method for graph
matching and map inference. In: NIPS, pp. 1114–1122 (2009)

9. Zhou, F., Torre, F.D.: Factorized graph matching. In: CVPR, pp. 127–134 (2012)
10. Donoho, D.: Compressed sensing. Technical Report, Stanford University (2006)
11. Donoho, D.: For most large underdetermined systerms of linear equations, the

minimal l1-norm solution is also the sparsest solution. In: Comm. Pure Appl.
Math., vol. 59 (2006)

12. Duchi, J., Shwartz, S.S., Singer, Y., Chandra, T.: Efficient projections onto the
l1-ball for learning in high dimensions. In: ICML (2008)

13. Ding, C., Li, T., Jordan, M.I.: Convex and semi-nonnegative matrix factorization.
PAMI 32(1), 45–55 (2010)

TurboTensors for Entropic Image Comparison

Francisco Escolano1, Edwin R. Hancock2, Boyan Bonev1,
and Miguel Angel Lozano1

1 University of Alicante, Spain
{sco,boyan,malozano}@dccia.ua.es

2 University of York, UK
erh@cs.york.ac.uk

Abstract. In this paper we propose an information-geometric method
for comparing superpixel (turbopixel) images. Turbopixels are encoded
by tensors and they are referred to as TurboTensors. Our methodology
has three ingredients. Firstly, we formulate the comparison of the tur-
bopixels topology in terms of the non-rigid alignment of the Isomap
embedding of the weighted adjacency matrices; we propose a multi-
dimensional information-theoretic dissimilarity measure. Secondly, we
formulate the comparison of bags-of-turbopixels through tangent spaces
de-projection and multi-dimensional and non-parametric information-
theoretic dissimilarity measures. Thirdly, we combine the two latter el-
ements into a flexible energy function whose minimization yields the
optimal matching of superpixels images as well as their similarity. In
our experiments we show that the proposed method is a useful tool for
finding clusters in image sequences. Finally, we show that our approach
outperforms state-of-the-art image comparison through non-rigid and
affine matching of SURF features.

1 Introduction

Image comparison through matching has been a recurrent topic in computer vi-
sion. Two types of existing approaches are: feature-based and segmentation-based.
Feature-based methods rely on the computation of invariant detectors and de-
scriptors followed by either a bag-of-features algorithm usually complemented
by matching through RANSAC. Segmentation-based image comparison relies
heavily on obtaining a high quality segmentation and then compose a structural
representation like a graph or, more recently, a tree. The recent emergence of
superpixels [1], motivated by the need of label images from a labelled training
data [2], provides a methodology for defining over-segmented images so that
pixels are grouped in coherent regions in terms of intensity or textural affinity
within each of these regions referred to as superpixels. Recently, superpixels have
been applied both to video segmentation [3] and object tracking [4]. Concerning
image similarity, the Earth Movers Distance (EMD) between superpixels is used
in [5] to match two superpixels images. Despite this encouraging methodology
which takes into account the topology of the superpixels images to be matched,

W.G. Kropatsch et al. (Eds.): GbRPR 2013, LNCS 7877, pp. 51–60, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

52 F. Escolano et al.

the results obtained show that more progress is needed when dealing with im-
age sequences or videos. Despite their apparent flexibility and relative robustness
against image variations, a robust method for quantifying the similarity between
superpixels images is a challenging open question. In this paper, we propose an
information-geometric methodology for providing a robust similarity measure
between superpixels images. Here we use the turbopixels [6] approach. In the
section 2 we describe how to characterize each superpixel with a covariance ma-
trix which lies on a Riemannian manifold (tensor space); we also describe how
to build a graph of tensors associated to the turbopixels (turbotensors) . We
also introduce a tangent-space based method for encoding images as bags of
turbotensors as well as graphs of turbotensors. Our methodology (section 3) is
based on the combination of both structural (embedded graphs of turbotensors)
and appearance (bags of turbotensors) dissimilarity measures for the final com-
parison of turbopixels images. Our experiments, detailed in section 4 shows how
powerful and flexible such a combination can be. We also show that the proposed
approach improves SURF matching + dissimilarity in terms of retrieval-recall.

2 TurboTensors

2.1 Characterizing TurboPixels

Given an image I, the TurboPixels approach [6] produces a planar graph G =
(V , E) which encodes an over-segmenation of I. The topology of the graph is
relatively stable (but not too much stable) with respect to a different imaging
conditions (changes in view point, illumination, and so on) and the main changes
occur in the properties of the superpixels. Thus, characterizing the chromatic and
textural information contained in superpixels is key to achieve successful image
comparison methods based on over-segmentations.

Given a pixel p ∈ vi, let Φ(p) = (f1(p), . . . , fd(p))
T be a feature vector includ-

ing the following region properties: i) the x and y pixel coordinates, ii) the red,
green and blue color descriptors, iii) Ix(p) and Iy(p), the gradient components,

Fig. 1. Riemannian manifold (the sphere) and tangent space Tμ at point μ. Points in
the tangent space are the de-projections (log) of their corresponding projections (exp)
which lie in the Manifold.

TurboTensors for Entropic Image Comparison 53

and iv) Ixx(p) and Iyy(p) the Laplacian components. The set of d×d covariance
matrices (tensors) Xi =

1
s−1

∑s
i=1(Φ(i)− Φ̄)(Φ(i)− Φ̄)T , where s = |vi| (number

of pixels in vi), lie on a Riemannian manifold M (see Fig. 1). Such matrices are
referred to as TurboTensors. For each turbotensor X ∈ M there exists a neigh-
borhood which can be mapped to a given neighborhood in Rd×d. Such a mapping
is continuous, bidirectional and one-to-one. As a Riemannian manifold is differ-
entiable, the derivatives at each X always exist, and such derivatives lie in the so
called tangent space TX, which is a vector space in Rd×d. The tangent space at
X is endowed with an inner product < u,v >X= trace(X− 1

2uX−1vX− 1
2). The

tangent space is also endowed with an exponential map expX : TX → M which
maps a tangent vector u to a point U = expX(u) ∈ M on the manifold. Such
mapping is one-to-one, bidirectional and continuously differentiable and maps u
to the point reached by the unique geodesic (minimum-length curve connecting
two points in the manifold) from X to U: g(X,U). The exponential map is only
one-to-one in the neighborhood of X and this implies that the inverse mapping
logX : M → TX is uniquely defined in a small neighborhood of X. Therefore, we
have the following mappings for going to from the tangent space to the manifold
and back (to the tangent space) respectively and the geodesic:

expX(u) = X
1
2 exp(X− 1

2uX− 1
2)X

1
2 , logX(U) = X

1
2 log(X− 1

2UX− 1
2)X

1
2 , (1)

g2(X,U) =< logX(U), logX(U) >X= trace
(
log2(X− 1

2UX− 1
2)
)
,(2)

where we use matrix exponentiation and logarithm.

2.2 Images as Bags of TurboTensors

Given two over-segmented images IX and IY and their respective planar graphs
GX and GY , we have two sets of turbopixels VX = {vx1 , . . . , vxn} and VY =
{vy1 , . . . , vym}, with n = |VX | and m = |VY | respectively. Following the Rie-
mannian approach and defining a common Φ(.) d−dimensional function for each
pixel, each image can be considered as a bag of turbotensors of dimension d× d,
namely TX = {X1, . . . ,Xn} and TY = {Y1, . . . ,Ym}. In order to compare
both bags from a distributional point of view (a multi-dimensional generaliza-
tion of histogramming) it is more convenient to exploit the logarithmic map and
work in a tangent space that is suitable for both turbotensor bags. The usual
mechanism is to commence by computing the Karcher (weigthed) mean [7] of
Z = TX ∪ TY = {Zk} with k = 1, . . . , N where N = n+m. The Karcher mean
is defined as μ = argminZ∈M g2(Zk,Z) and it is usually computed after few

iterations using the update μt+1 = expμt(Z̄t) where Z̄t = 1
N

∑N
k=1 logμt(Zk),

although more efficient Netwon-based methods have recently been proposed [8].
Since logμ(μ) = 0, we have that μ is the origin of a tangent space where we
can de-project the turbotensors both in TX and TY . For instance, for each Xi

we have

vecμ(Xi) = vecI(u), u = logμ(Xi) vecI(u) = (u11
√
2u12 . . . u22

√
2u23 . . . udd)

T,
(3)

54 F. Escolano et al.

and similarly for each Yj . Therefore, we have d(d + 1)/2-dimensional vectors
vecμ(Xi) and vecμ(Yj) that we can compare through ||vecμ(Xi)− vecμ(Yi)||2.
However, the potentially high dimensionality d× d precludes the adaptation of
multi-dimensional point alignment methods like Coherent Point Drift [9] (CPD)
to this context. On the other hand, the locality of the tangent space defined at
μ and the fact that ||vecμ(Xi) − vecμ(Yi)||2 ≈ g(Xi,Yj)

2 allow us to exploit
multi-dimensional information theoretic measures for comparing both the de-
projected bags of turbotensors and, consequently, the input images IX and IY .
However, as happens in classical bag-of-words, this approach does not consider
the rich structural/topological information encoded in the turbopixels graphs.

2.3 Images as TurboTensors Graphs

Let us redefine the turbopixels graphs as attributed graphs: GX = (VX , EX ,WX)
and GY = (VY , EY ,WY), where VX and VY are the node sets defining the super-
pixels, and EX , EY represent turbopixels common boundaries; WX and WX are
weighted adjacency matrices where WX is defined as follows

WX(i, j) =

{
g(Xi,Xj)

2 if (i, j) ∈ EX
0 otherwise

, (4)

and similarly for WY . The fact that the weigthed adjacency matrices are con-
structed over geodesics allows us to map the relational structures encoded by GX

and GY to a Euclidean space using a multi-dimensional scaling technique such as
Isomap [10]. Isomap provides quasi iso-metric low-dimensional embeddings for
sets of multi-dimensional data using approximate geodesic distances. Such dis-
tances (shortest path lengths) are provided by applying the Dijkstra algorithm
to a proximity graph. Here we do not need to approximate the geodesic dis-
tance between the turbotensors because they lie in a Riemannian manifold. All
we have to do is to flatten the manifold whilst imposing structural constraints.
To this end we replace the Isomap proximity graph by the weighted adjacency
matrices WX and WX . Hence we compare turbotensors through adjacency links
not on the basis of their geodesic proximity, but upon the superpixel adjacency.
Consequently, after centering WX we obtain their centered adjacency matrix
τX = −HWXH/2 with H = In − 1n/n, where In is the n × n identity matrix
and 1n is the n×n matrix with all ones entries. Let τX = ΦXΛXΦ

T
X be the spec-

tral decomposition of τX , that is, we have the eigenvectors φ
(z)
X as the columns

of ΦX and the corresponding eigenvalues λ
(z)
X in the diagonal of ΛX . Let Φ′

X

and Λ′
X the result of re-ordering both eigenvalues and eigenvectors according to

the descending eigenvalues. Isomap only considers the d most important posi-
tive eigenvalues. Let Φ′

Xd
be the n × d matrix obtained by re-ordering ΦX and

discarding rows d+ 1 . . . n. Matrix Λ′
Xd

is obtained similarly and has dimension
d×d. Consequently, the Isomap embedding for the n nodes in WY is encoded by

the columns of ΘX = Λ
′1/2
Xd

Φ′T
Xd

which is a d×n matrix. The i−th column of ΘX

has the following structure: Θ
(i)
X = (

√
λ
′(1)
Xd

φ
′(1)
Xd

(i) . . .
√
λ
′(d)
Xd

φ
′(d)
Xd

(i))T . This em-

bedding flattens or unrolls the Riemannian manifold so that the embeddings of

TurboTensors for Entropic Image Comparison 55

adjacent turbotensors satisfy ||Θ(i)
X −Θ

(j)
X ||2 = ψ(g(Xi,Xj)

2)s.t.eij=1±ε, where ε
is an error term and Ψ(.) is a potential function which corresponds to the identi-
tity if and only if eij = 1 and g(Xi,Xj) is the true geodesic distance between Xi

and Xj . In uniform areas in the image where turbopixels truly over-segment the
image, we find low geodesic distances between adjacent turbopixels and the latter

conditions are fulfiled. However, in general we have ||Θ(i)
X −Θ

(j)
X ||2
= g(Xi,Xj)

2

at least at turbopixels defining true low-frequency edges in the image. As a result,
we impose the grid-like structure of the turbopixels graph on the embedding and
this imposition is stronger at turbopixels defining non-important edges. There-
fore, if we apply the latter embedding to τY in order to obtain a d−dimensional

Θ
(j)
Y and both WX and WY encode a similar topology, it is possible to deform

the columns in ΘY to match the ones in ΘX . Otherwise, we will have a signifi-
cant residual error after performing the optimal deformation. In this case, since
d is not usually too large it is possible to formulate the problem of matching
graphs GX = (VX , EX ,WX) and GY = (VY , EY ,WY) in terms of the non rigid
alignment of the multidimensional columns in ΘX and ΘY . Following CPD the
non-rigid alignment problem is formulated in terms of a minimization problem
which can be solved by a fast EM approach (see details in [9]).

3 Entropic Image Comparison

Given two images IX and IY over-segmented by following the turbopixels ap-
proach, we quantify their dissimilarity in terms of both their appearance (from
the bags of turbotensors de-projected in the tangent space) and in terms of their
structure/topology (from the Isomap embeddings). We refer the term encod-
ing appearance dissimilarity as appear term and the one encoding embedding
dissimilarity as graph term.

Dent(IX , IY) = Eappear(vecμ(TX), vecμ(TY)) + λEgraph(ΘX , ΘY) , (5)

where vecμ(TX) = {vecμ(X1), . . . , vecμ(Xn)} (and similarly for vecμ(TY)) and
λ ≥ 0 controls the degree of structural information cosidered. As vecμ(TX)
and vecμ(TY) are multi-dimensional distributions which lie in the same tan-
gent space, the term Eappear(., .) can be computed with bypass information-
theoretic divergence estimators, that is, estimators which do not need to compute
a multi-dimensional histogram and are asymptotically consistent. We apply the
same rationale to compute Egraph(., .) but we use a more discriminative bypass
divergence, provided that ΘX and ΘY are aligned in advance.

3.1 Divergences in Tangent Spaces

The simplest way of characterizing TX is through a generalized Gaussian for ten-
sors [7][11]. Then, after estimating the parameters of two generalized Gaussians
from the samples we may compute the symmetrized Kullback-Leibler divergence
between the two Gaussians, and even formulate the registration problem in terms

56 F. Escolano et al.

of minimizing the latter divergence (see [12] where they extend the approach
to more-realistic mixtures of tensors). Such extension is also required in im-
ages where turbotensors cannot be assumed to be i.i.d. and thus the central
limit theorem is not applicable. In this paper we propose to use more flexi-
ble non-parametric bypass divergences. One of them is the Henze and Penrose
divergence [13] between two distributions FX and FY :

DHP (FX ||Fy) =

∫
p2F2

X(z) + q2F2
Y (z)

pFX(z) + qFY (z)
dz , (6)

where p ∈ [0, 1] and q = 1 − p. This divergence is the limit of the Friedman-
Rafsky run length statistic [14], that in turn is a multi-dimensional generalization
based on MSTs (Minimum-Spanning Trees) of the Wald-Wolfowitz test. The
Friedman-Rafsky test exploits the fact that the MST relates samples that are
close in Rd(d+1)/2. Let vecμ(TX) = {vecμ(xi)} and vecμ(TY) = {vecμ(yi)}be
two sets of samples drawn from FX and FY , respectively. The steps of the
Friedman-Rafsky test are: (a) Build the MST over the samples in vecμ(Z) =
vecμ(TX)∪vecμ(TY) = {zi}; (b) Remove the edges that do not connect a sample
from vecμ(TX) with a sample from vecμ(TY); and c) the proportion of non-
removed edges converges to D̄HP (FX ||Fy) = 1 −DHP (FX ||Fy) ∈ [0, 1]. See an
example in Fig. 2.

The second non-parametric (and more efficient) bypass divergence considered
in this paper is the Total Variation kd-Partition Divergence. Such divergence is
based on the kd-partition estimation of a multi-dimensinonal density function
introduced in [15]. Let x be a d(d + 1)/2-dimensional random variable defined
in Ω, and FX its pdf. Let A = {Aj|j = 1, . . . , p} be a partition of Ω for which
Ai∩Aj = ∅ if i
= j and

⋃
j Aj = Ω. Then, we can approximate FX(x) in each cell

as F̂XAj
(x) =

nj

nμ(Aj)
, where: μ(Aj) is the d(d+ 1)/2-dimensional volume of Aj ,

n is the number of samples of x, and nj are the number of these samples inside
Aj . The partition is created recursively following the data splitting method of
the k-d tree algorithm. At each level, data is split at the median along one axis.
Then, data splitting is recursively applied to each subspace until an uniformity

Fig. 2. Left: Henze-Penrose divergences for Gaussians; same mean and covariance
(left) with D̄HP (FX ||FY) = 0.5427 and different means (right) with D̄HP (fX ||fY) =
0.8191. Right: same cases for kd-P divergences with DkdP (FX ||FY) = 0.24 (left) vs
DkdP (FX ||FY) = 0.92 (right).

TurboTensors for Entropic Image Comparison 57

stop criterion is satisfied. As the distribution of the median of the samples in Aj

tends to a normal distribution that can be standardized as:

Zj =
√
nj 2(medd(Aj) −mind(Aj)−maxd(Aj))/(maxd(Aj)−mind(Aj))

(7)
where medd(Aj), mind(Aj) and maxd(Aj) are the median, minimum and
maximum, respectively, of the samples in cell Aj along dimension d. An im-
probable value of Zj , that is, |Zj| > 1.96 (the 95% confidence threshold of a
standard normal distribution) indicates significant deviation from uniformity.
Non-uniform cells should be divided further. The uniformity test is not applied
until there are less than

√
n data points in each partition, that is, until the level

Ln =
⌈
1
2 log2(n)

⌉
is reached. Then, if we have two distributions FX and FY from

which we draw a set vecμ(TX) of n samples and a set vecμ(TX) of m samples,
respectively. If we apply the partition scheme of the k-d partition algorithm to
the set of samples vecμ(Z) = vec(TX)∪vecμ(TY) = {zi}, the result is a partition
A, being A = {Aj |j = 1, . . . , p}. For FX and FY their respecitve probability at
any cell Aj is given by FX(Aj) =

nj

n and FX(Aj) =
mj

m , where nj is the number
of samples of FX in cell Aj and mj is the number of samples of FY in the cell
Aj . Since the same partition A is applied to both sample sets, and considering
the set of cells Aj a finite alphabet, we can compute the k-dP total variation
divergence between FX) and FY as:

DkdP (FX ||FY) =
1

2

p∑
j=1

|FX(Aj)− FX(Aj)| ∈ [0, 1] , (8)

see an example in Fig. 2.
Considering the two above described divergences we have two alternative

definition of the appearance Eappear(vecμ(TX), vecμ(TY)) : D̄HP (FX ||Fy) and
DkdP (FX ||FY).

3.2 Divergences between Embeddings

Let W∗ the optimal non-rigid transformation of ΘY to align it with ΘX . Then,
the normalized-entropy square variation (NSEV) is [16]

DNESV (ΘX ,W∗(ΘY)) = (H(W∗(ΘY)) −H(ΘX))2
/
H(W∗(ΘY)) +H(ΘX) ,

(9)
where H(.) is the Shannon entropy. What is important in NESV is the fact
that it is a multi-dimensional divergence. This implies estimating the Shannon
entropy through a bypass approach. In this regard, we exploit the kNN-based
bypass estimator proposed by Leonenko [17]. This estimator is both consistent
and fast to compute.

In order to define Egraph(ΘX , ΘY) we have to consider that, in general,
DNESV (ΘX ,W∗(ΘY))
= DNESV (W ′∗(ΘX), ΘY), where W ′ encodes the opti-
mal way of aligning ΘX with the static ΘY . . Then, it is convenient to sym-
metrize, as we do with the Kullback-Leibler divergence, to obtain

Egraph(ΘX , ΘY) = DNESV (ΘX ,W∗(ΘY)) +DNESV (W ′∗(ΘX), ΘY) . (10)

58 F. Escolano et al.

4 Experimental Results

In order to test the proposed dissimilarity measure between over-segmented im-
ages we analyze the content of 100 frames of real-time video taken by a wearable
device. We have divided the video in 6 fragments attending to both semantical
content and observer position: corridor#1,end#1, hall, corridor#2, hall (seen in
the opposite sense), and end#2. As both corridors have a similar topology, the
combination of non-rigid alignment and NESV provides almost a unique cluster
but at the fragments representing transitions between corridors (end of the first
corridor, and hall seen backwards). This is due to the fact that the non-rigid
alignment of structural constrained Isomap enforces the similarity between im-
ages following a similar perspective/vanishing point topology (we present some
examples for each zone in Fig. 3).

With a pure topological criterion we can only answer a question of whether a
given frame is corridor-like or not. However, in video-analysis applications some-
times we are interesting in answering the following question: in what part of the
video is located a given frame? To answer that question it is better to use a
pure appearance-based approach. If we analyze the results for Eappear for the
Henze-Penrose divergence , we find that the first corridor is almost perfectly
clustered due to the common appearance statistics of its frames; the second cor-
ridor less clustered but transitions are well clustered. This is consistend with the
fact that the hall and the second corridor suffer from strong illumination effects
that make the clustering more local for that kind of divergence. However, such
effects are removed by using the kd-partition total variance divergence which pro-
vides a good clustering of the second corridor and isolates it from the hall. The
latter divergence answers the questions: to what corridor belongs a given frame?
and, does the frame belongs to the first hall? We combine Egraph and Eappear

with λ = 0.01 (because the appearance divergences give outcomes in [0, 1]) and
choosing the kd-partition total variance divergence , we are able of enforcing the
coherence of the second corridor cluster and simultaneously answering whether
a frame belongs to a transition (end of corridor, hall). In Fig. 4-letf we present
the retrieval-recall curves for all the latter cases. There is a significant quan-
titative improving of Egraph by Eappear and the integration of the two latter
elements have a similar result. In all cases we have considered d = 10 both for
the embedding and the divergences. The average number of turbopixels was 500.

corridor#1 end#1 hall corridor#2 hall end#2

Fig. 3. Examples of frames for each video fragment: corridor#1 (frames #1), end#1
(frame #37), hall (frame #52), corridor#2 (frame #70), hall (backwards) (frames #86)
and end#2 (frame #93)

TurboTensors for Entropic Image Comparison 59

Fig. 4. Retrieval-Recall Curves. Left: Results for Egraph vs Eappear and also for their
combination. Rigth: The complete energy function outperforms SURF matching with
CPD both in the non-rigid and the affine versions.

Finally, we compare turbopixels with state-of-the-art feature matching. More
precisely, we extract SURF features [18] and perform both non-rigid and affine
alignment between images. As a similarity measure we use the NESV diver-
gence [16] considering d = 64 (SURF dimensionality). In Fig. 4-right, we show
that the turbopixels approach outperforms SURF matching with NESV simi-
larity. The bypass estimator used in the experiments allows to compute high-
dimensional entropies (64D) with hundreds of SURF points per image.

5 Conclusions

In this paper we propose an information-geometry approach for image com-
parison. Our contribution is threefold: (1) we formulate the structural com-
parison of superpixel-based images from a graph matching perspective which
in turn is posed in terms of non-rigid manifold alignment, including also a
multi-dimensional information-theoretic dissimilarity measure; (2) we formulate
the comparison of bags-of-superpixels through tangent spaces de-projection and
multi-dimensional and non-parametric information-theoretic dissimilarity mea-
sures; (3) we combine (1) and (2) to outperform SURF matching + SNESV
dissimilarity in terms of retrieval-recall. Future work includes the analysis of the
role of Egraph term in the general case of comparing images taken from different
vanishing points (e.g. frontal views, slanted views, and so on) in order to test
the usefulness of super-pixels in image retrieval.

Acknowledgements. F. Escolano, B. Bonev and M. Lozano are funded by
Project TIN2012-32839 of the Spanish Government and E. R. Hancock is funded
by a Royal Society Wolfson Research Merit Award.

60 F. Escolano et al.

References

1. Ren, X., Malik, J.: Learning a classification model for segmentation. In: ICCV,
pp. 10–17 (2003)

2. Gu, C., Lim, J., Arbelaez, P., Malik, J.: Recognition using regions. In: CVPR,
pp. 1030–1037 (2009)

3. Vazquez-Reina, A., Avidan, S., Pfister, H., Miller, E.: Multiple hypothesis video
segmentation from superpixel flows. In: Daniilidis, K., Maragos, P., Paragios, N.
(eds.) ECCV 2010, Part V. LNCS, vol. 6315, pp. 268–281. Springer, Heidelberg
(2010)

4. Wang, S., Lu, H., Yang, F., Yang, M.H.: Superpixel tracking. In: ICCV (2011)
5. Boltz, S., Nielsen, F., Soatto, S.: Earth mover distance on superpixels. In: ICIP,

pp. 4597–4600 (2010)
6. Levinshtein, A., Stere, A., Kutulakos, K., Fleet, D., Dickinson, S., Siddiqi, K.:

Turbopixels: Fast superpixels using geometric flows. IEEE Trans. Pattern Anal.
Mach. Intell. 31(12), 2290–2297 (2009)

7. Pennec, X., Fillard, P., Ayache, N.: A riemannian framework for tensor computing.
International Journal of Computer Vision 66(1), 41–66 (2006)

8. Zhang, F., Hancock, E.: New riemannian techniques for directional and tensorial
image data. Pattern Recognition 43(4), 1590–1606 (2010)

9. Myronenko, A., Song, X.B.: Point-set registration: Coherent point drift. EEE
Trans. on Pattern Analysis and Machine Intelligence 32(12), 2262–2275 (2010)

10. Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for
nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)

11. Pennec, X., Stefanescu, R., Arsigny, V., Fillard, P., Ayache, N.: Riemannian elastic-
ity: A statistical regularization framework for non-linear registration. In: MICCAI,
vol. 2, pp. 943–950 (2005)

12. Chiang, M.C., Leow, A., Klunder, A., Dutton, R., Barysheva, M., Rose, S.,
McMahon, K., de Zubicaray, G., Toga, A., Thompson, P.: Fluid registration of dif-
fusion tensor images using information theory. IEEE Trans. Med. Imaging 27(4),
442–456 (2008)

13. Henze, N., Penrose, M.: On the multi-variate runs test. Annals of Statistics 27,
290–298 (1999)

14. Friedman, J., Rafsky, L.: Mutivariate generalization of the wald-wolfowitz and
smirnov two-sample tests. Annals of Statistics 7(4), 697–717 (1979)

15. Stowell, D., Plumbley, M.: Fast multidimensional entropy estimation by k-d parti-
tioning. IEEE Signal Processing Letters 16(6), 537–540 (2009)

16. Escolano, F., Hancock, E., Lozano, M.: Graph matching through entropic manifold
alignment. In: CVPR, pp. 2417–2424 (2011)

17. Leonenko, N., Pronzato, L., Savani, V.: A class of renyi information estimators for
multidimensional densities. Annals of Statistics 36(5), 2153–2182 (2008)

18. Bay, H., Ess, A., Tuytelaars, T., Gool, L.J.V.: Speeded-up robust features (surf).
Computer Vision and Image Understanding 110(3), 346–359 (2008)

W.G. Kropatsch et al. (Eds.): GbRPR 2013, LNCS 7877, pp. 61–70, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Active-Learning Query Strategies Applied
to Select a Graph Node Given a Graph Labelling*

Xavier Cortés and Francesc Serratosa

Universitat Rovira i Virgili, Departament d’Enginyeria Informàtica i Matemàtiques, Spain
{xavier.cortes,francesc.serratosa}@urv.cat

Abstract. Given two graphs, the aim of graph matching is to find the “best”
matching between nodes of one graph and nodes of the other graph. Due to
distortions of the data and the complexity of the problem, in some applications,
an active and interactive graph algorithm is needed. The active module queries
one of the nodes of the graphs and the interactive module receives from
an oracle (human or artificial) the node of the other graph that has to be
mapped with and considers the new knowledge. We present different active
strategies that decide the node to be queried and adapt these strategies to the
graph-matching problem.

Keywords: Machine Learning, Active and Interactive Graph Matching, Least
Confident, Maximum Entropy, Expected Model Change.

1 Introduction

The key idea behind active learning [1], [2] is that a machine learning algorithm can
achieve a greater accuracy with fewer classified training examples if it is allowed to
choose the data from which it learns. The learner queries some elements and the
answerer of the queries decides which classes these elements belong to. The answerer
might be another automatic system or a human annotator and in general, it is called an
oracle since it is assumed its answer is always correct. Active learning is well
motivated in many modern machine-learning problems, where unclassified examples
may be abundant but finding the class is difficult, time-consuming or expensive to
obtain. Active learning scenarios involve evaluating the informativeness of unlabelled
instances, thus, the most informative instances are the ones presented to the oracle.

If we put together machine learning and graph matching disciplines, we can define a
model in which examples and classes in the machine learning discipline are composed
of the set of nodes of one of the graphs and the nodes of the other graphs, respectively.
Therefore, in this new framework, we want to learn the labelling between two graphs
that is considered to be the best. That is, we wish to find the best labelling between
nodes of both graphs but with the minimum necessary help of an oracle.

In this paper, we have analysed several active strategies to select the unlabelled
instances and we have adapted them to select a mapping between a pair of nodes
given a labelling between graphs. An interactive algorithm for error-tolerant graph

* This research is supported by the CICYT project DPI 2010-17112.

62 X. Cortés and F. Serratosa

matching [3] will query this mapping to the oracle with the aim of increasing the
goodness of the labelling. This interactive method is useful in applications that crucial
to have a perfect match is crucial but data is very noisy and it is difficult to extract the
local parts of objects (medical applications). Conversely, this method is not useful in
applications that an unclassified graph has to be compared with a huge number of
graphs in a database (fingerprint identification). The human interaction in each graph
comparison would increase the run time considerably. Some of the active strategies
presented in this paper have been previously presented in [4]. In this paper, they are
explained in depth and other ones are included.

The rest of the paper is organised as follows. In section 2 and 3, we present
the basic graph-matching notation and summarise the known active strategies. In
section 4, we present the adaptation of the active strategies in the graph-matching
framework. Finally, in section 5 we show the practical evaluation and we conclude
the paper in section 6.

2 Graph Matching

Let and be two attributed graphs. We suppose that and have the same
number of nodes since they have been enlarged enough to incorporate null nodes.
We define nodes in and as and and we define arcs as
and , , , , 1, … , . Moreover, let be a bijective labelling between
nodes of both graphs. The cost of matching graphs and , given this isomorphism

, is represented by , , , (1)

where and . That is, the cost is defined as the addition of the
pairwise costs of matching nodes and arcs. These local costs can be represented through
two matrices , , , and , , , ,, and their definition depends on the application [17], [21]. There are several
error-tolerant graph-matching algorithms that return the best isomorphism f between two
graphs: Probabilistic relaxation [5], Graduated-Assignment [6], Expectation-Maximisation
[7], Bipartite Graph Matching [8] or Graph Matching with Point-Set Correspondence [9],
[10]. In fact, the input of these algorithms can be matrices and instead of graphs
and since matrices capture all the differences between graphs and the minimisation
cost is defined through these matrices (1). Considering that the involved graphs have a
degree of disturbance and also the exponential complexity of the problem, these
algorithms do not return exactly the isomorphism f but a probability matrix related to it
(except [8]). We represent this matrix by P where each cell contains ,

. Thus, given the probability matrix P, it is necessary to derive the
final labelling f by a discretization process.

In general, if we want to solve the error-tolerant graph-matching problem based on
probabilities [5], [6], [7], [9] or [10], given two graphs and , the general
objective function to optimize corresponds to the quadratic assignment problem
objective function,

 Active-Learning Query Strategies Applied to Select a Graph Node 63

, , , , , ,
, ,

(2)

where is restricted to
 ∑ , 1, and ∑ , 1, (3)

3 Query Strategies

This section provides an overview of the query strategies used in different active
learning scenarios [1]. We use the following notation. is an unclassified instance
that can be queried, is one of the classes and is a classification model. Finally, the
element refers to the most informative instance according to some query strategy

. Besides, the conditional probability | ; represents the posterior class
probability of class given an instance and a classification model .

Uncertainly Sampling. The active learner queries the instances about which it is least
certain how to classify. This approach is often straightforward for probabilistic
learning models. For instance, when there are only two classes, the sampling strategy
simply queries the instance whose posterior probability of a class is nearest ½. For the
multiple class case, there are three interesting options.

Least Confident (LC) [11]: This strategy queries the element that its highest
probability of belonging to a class is the lower one between all the elements. argmin | ; (4)

where argmax | ; is the most likely class labelling.

Margin Sampling (MS) [12]: This strategy aims to incorporate the posterior
probability of the second most likely labelled. Intuitively, instances with large
margins are easy, since the classifier has little doubt in differentiating between the
two most likely class labels. On the contrary, instances with small margins are more
ambiguous, thus knowing the true label would help the model to discriminate more
effectively between them. If and are the first and second most probable class
labels under the model , respectively, the queried element is, argmin | ; | ; (5)

Maximum Entropy (ME) [11]: This strategy queries the element with maximum
Shannon Entropy given the probabilities. The main idea of the method is to query the
elements that are more difficult to be classified, argmax ∑ | ; | ; (6)

Query by Committee [13]: This strategy involves maintaining a committee of models
which are all trained on the current labelled set but represent competing hypothesis.

64 X. Cortés and F. Serratosa

The most informative query is considered to be the instance about which they most
disagree. For measuring a level of disagreement, an option is the vote entropy argmax ∑ (7)

where represents the number of votes that a class receives from among the
committee member’s predictions and is the number of committees.

Expected Model Change [14]: An active learner queries the instances that would
impart the greatest change to the current model if we knew its class. Since probabilistic
models are usually trained using a Gradient Ascent technique, the change imparted to
the model can be measured by the magnitude of the training gradient. And due to the
learning module does not know the true class of an instance in advance; we must
instead calculate the length as an expectation over the possible classes. Moreover, we
assume the resulting magnitude of the training gradient when the pair , has
been added to the model is similar to the gradient magnitude of the probability
related to , . We make this approximation because the gradient magnitude should
be nearly zero since the method converged in the previous round training and because
we assume the training instances are independent. argmax ∑ | ; , , (8)

The magnitude of the gradient of (eq. 1) respect variable , is , ∑ ∑ , , , , ,
(9)

Variance Reduction [15]: The aim of this strategy is to query the instance that
minimises the learner’s future error by minimising its variance. They used the
estimated distribution of the model’s output to estimate the variance of the learner
after some new instance has been labelled to class . argmin (10)

Estimated Error Reduction [16]: Similarly to Variance Reduction strategy, the aim of
this strategy is to query the instance that minimises the learner’s future error but, instead
of minimising the variance, the aim is to minimise the expectation of this error . argmin (11)

Density-Weighted Methods [11]: It has been suggested that Uncertainty Sampling
and Query by Committee strategies are prone to querying outliers. Although they are
the least certain instances, they are not representatives of the other instances in the
distribution. Therefore, knowing their label is unlikely to improve accuracy on the
data as a whole. The main idea of this strategy is that instances should not only be
those that are uncertain, but also those that are representative of the input distribution.

Consider that any strategy can be represented through equations argmax

or argmin where represents the informativeness of instance

according to some query strategy . Then, the most informative query is,

 Active-Learning Query Strategies Applied to Select a Graph Node 65

_ argmax (12)

or _ argmin (13)

The choice of argmax or argmin depends on the strategy . The term weights the
informativeness of by its average distance to all other instances in the input

distribution; ∑ , . Parameter is the number of

instances and parameter controls the relative importance of the density term.

4 Active Learning Strategies Based on the Probability Matrix

In this section, we present several strategies to select a node of that have to be
queried to the specialist. The specialist feedback is which means it believes

. The pool-based active learning [1] method can be cast directly to our problem since
we have access to all the elements to be classified (graph nodes of) and also the
predefined classes (graph nodes of). Usually, query elements are selectively drawn
from the set of unclassified elements. In our case, an “unclassified element” is a node of

 that we don’t know its mapping. For this reason, the pool of nodes to be queried is
composed of nodes of that have never been queried before. In the strategies we
present, there is a logical function that shows if node has been queried before.
This logical function is used y the interactive algorithm [3] to assure a node is not queried
several times. Note that in the case that for all nodes of then the
following strategies returns the empty set. We next show our query strategies applied to
graph matching. We have put together the original strategies and the weighted density
strategies. In our case, the distance between elements is represented by the cost between
two nodes of . Note that we write the cost function instead of the matrix since in
this case both parameters of the cost function are nodes of graph .

Uncertainly Sampling. We define three different strategies.
Least Confident (LC): The learner queries the node of that has not been
previously queried and whose maximum probability given the nodes of is the
lower. Node is obtained in two steps. Firstly, we obtain the set of nodes in : , … , , … , such that, argmax ,.., , ; 1, . . , (14)

note that represents the node selected of when is considered. For this

reason, some of the nodes in this set can appear several times, ; .
And secondly, we select the node in such that its respective node in the set

obtains the minimum probability, argmin ,.., | , (15)

And the Weighted Least Confident (wLC): argmin ,.., | , (15’)

66 X. Cortés and F. Serratosa

Least Confident given the Current Labelling (LCCL): The aim of this strategy is to
query the nodes that are matched through the current labelling but they have not been
queried before. Therefore, it could be seen as the method tries to minimise the
hamming distance between the current labelling and the ideal labelling (the labelling
that would have been predicted by the oracle if all the nodes were queried). The
learner queries node of that has not been previously queried and it has the
minimum probability given the current labelling . Formally, argmin ,.., | , (16)

And the weighted strategy (wLCCL): argmin ,.., | , (16’)

Margin Sampling (MS): We define as the most probable node respect and it

is defined as in equation (14). We also define as the second most probable node

and defined in a similar way than but without considering this node. Then, the
queried element is, argmin ,.., | , , (17)

And the weighted Margin Sampling (wMS): argmin ,.., | , , (17’)

Maximum Entropy (ME): The selected node depends on the Shannon Entropy, argmax ,.., | ∑ , , (18)

And the weighted Maximum Entropy (ME): argmax ,.., | ∑ , , (18’)

Query by Committee: The general idea of this strategy would be to use several graph
matching algorithms [5], [6], [7], [8], [9], [10] and then use the obtained matchings as
models. Due to the huge time consuming that would suppose, we leave the study of
how to efficiently implement this method as a future work.

Expected Model Change: We define two strategies.
Maximum Gradient Norm (MGN): The magnitude of the training gradient of variable , is defined as , (eq. 9). The learner should query the node
defined through the following equation, argmax,.., ∑ , , (19)

And the weighted Maximum Gradient Norm (wMGN): argmax,.., ∑ , , (19’)

 Active-Learning Query Strategies Applied to Select a Graph Node 67

Maximum Probability Change given a Common Labelling (MPCCL): The learner
should query the instance that if changed its current labelling, would result a
maximum increase in its probability, argmax,.., max,.., , , (20)

And the weighted strategy (wMPCCL): argmax,.., max,.., , , (20’)

If max,.., , , , the current labelling of is not the ideal one,

considering only probabilities , , for all . On the contrary, if max,.., , , , then, the current labelling is the one that obtains

the maximum probability, so, it is the ideal case.

Variance Reduction & Estimated Error Reduction: We do not have implemented
these methods. Both methods are based on statistical analysis. In our case, we only
have one instance per class. Thus, it seems difficult to be applied in our framework.

5 Practical Evaluation

To experimentally validate our method, we have used some well-known graph
databases: Letter high, GREC, COIL-Graph [18]. These databases have different
characteristics such as cardinality, diversity, mean number of nodes and so on.
Nevertheless, we considered only the , attribute on the nodes and arcs have no
attributes. Several graph matching algorithms and graph-class prototypes have been
compared using these datasets [19]. We have not taken into consideration the
separation of these graphs into classes in any of the experiments. We have also used
House and Hotel datasets [20]. They are composed by a set of reference points
associated with different frames of a video. We built graphs as follows. Nodes are the
points in the database and edges were generated using a 3-NN method. The first two
rows of Table 1 show the main database characteristics. Third and fourth rows of
table 1 show the mean and standard deviation of the weighting coefficient .

Each test set is composed of elements , , that have a pairs of graphs and
a matching: , , … , , … , , . Graphs , 1 , are

Table 1. Database characteristics

Database Letter COIL GREC Hotel House

Nodes 4.7 11.5 12.8 30 30

Edges 4.5 11.9 27.1 38.1 39.5

Mean of 1.5 33.8 222.1 184.6 154.5

St. dev. of 0.2 8.3 51.5 35.6 33.9

Node noise (σ) 0.75 15 0 10 10

Edge noise (Prob.) 0 0 0.2 0. 04 0.04

68 X. Cortés and F. Serratosa

the ones in the original databases. is the number of graphs of these datasets. Graphs
, 1 , have been randomly generated through distorting . The attribute

value of nodes have been modified applying a Gaussian distribution with mean zero
and the standard deviation shown in the fourth row of table 1. Finally, some edges
have been erased or inserted given the probability shown in the last row of table 1.

Both graphs and have the same number of nodes. The labelling has been
computed together with the generation of the distorted graph and we assume it is
the best labelling between and . Nevertheless, by construction, we do not
guarantee this labelling to obtain the minimum cost.

In this practical evaluation we show the precision of the strategies to select a node
that has been incorrectly mapped. We want the active method to suggest a node of

 that the current matching obtained by the graph-matching algorithm is different
from the human’s matching . This is because, in this case, the active and interactive
methods will help the system to improve its output since the human will try to correct
the wrong mapping. We are not interested in the cases that since
the human’s interaction is going to be useless. Given an element of the test set , , and the obtained matching , the delta function represents the usefulness
of the active action as follows, , , 1 if0 (21)

If the active method has been useful then , 1. The of an
active strategy is computed as the average usefulness of all the active actions through
the elements , , of the test set. ∑ , ,

 (22)

Table 2 shows the Node Precision results of the active strategies. LC, LCCL and ME
obtain the best results and the ME obtains the highest means. Considering the nature
of the databases, less structure have the graphs, better performs MS strategy.
Conversely, MGN performs better with more structural information. Finally, MPCCL
obtained poor results in all of our tests.

Table 3 shows the Node Precision results of the weighted active strategies and
table 4 shows the difference between non-weighted strategies (table 2) and weighted

Table 2. Node Precision of different strategies and random selection. Bold values are higher
than 0.75.

 Uncertainly Sampling Expe. Model Change

 LC LCCL MS ME MGN MPCCL Random

Letter 0.81 0.81 0.80 0.81 0.56 0.51 0.53

COIL 0.81 0.81 0.78 0.79 0.53 0.55 0.55

GREC 0.79 0.80 0.74 0.77 0.97 0.56 0.34

HOUSE 0.79 0.82 0.77 0.78 1.00 0.77 0.53

HOTEL 0.71 0.77 0.68 0.75 1.00 0.72 0.56

Mean 0.78 0.80 0.75 0.78 0.81 0.62 0.50

 Active-Learning Query Strategies Applied to Select a Graph Node 69

strategies (table 3). There are few differences between them and they appear in cases
the original strategies obtained poor results. We suppose this is because few nodes are
distant from the other ones.

Table 3. Node Precision of different weighted strategies and random selection. Bold values are
higher than 0.75.

 Uncertainly Sampling Expe. Model Change

 wLC wLCCL wMS wME wMGN wMPCCL Random

Letter 0.83 0.82 0.80 0.81 0.77 0.51 0.53

COIL 0.81 0.81 0.78 0.80 0.72 0.56 0.55

GREC 0.79 0.80 0.74 0.77 0.97 0.56 0.34

HOUSE 0.79 0.82 0.77 0.78 1.00 0.77 0.53

HOTEL 0.71 0.77 0.68 0.77 1.00 0.72 0.56

Mean 0.78 0.80 0.75 0.78 0.89 0.62 0.50

Table 4. Node Precision difference between non-weighted and weighted. Bold values are
higher than 0.

 LC LCCL MS ME MGN MPCCL Rand

Letter 0.01 0.01 0.00 0.00 0.21 0.00 0.00

COIL 0.00 0.00 0.00 0.01 0.18 0.00 0.00

GREC 0.00 0.00 0.00 0.00 0.00 0.00 0.00

HOUSE 0.00 0.00 0.00 0.00 0.00 0.00 0.00

HOTEL 0.00 0.00 0.00 0.02 0.00 0.00 0.00

6 Conclusions and Future Work

We have presented different strategies to be applied on an active graph-matching
algorithm. These strategies are based on classical active machine learning but they are
applied to the case of searching for the best labelling between nodes. Moreover, they
are based on the probability matrix between nodes that some sub-optimal algorithms
use to iteratively find the best labelling. Experimental validation shows that MGN and
LCCL obtain the highest precision for the non-weighted and weighted strategies,
respectively.

As a future work, we want to apply these strategies to active and interactive error-
tolerant graph matching algorithms. These algorithms improve the obtained labelling
between nodes through the feedback of an oracle. Presented strategies decide the node
to be queried to the oracle.

References

1. Settles, B.: Active Learning Literature Survey. Computer Science Technical Report 1648,
University of Wisconsin-Madison

2. Kotsiantis, S.B.: Supervised Machine Learning: A Review of Classification Techniques.
Informatica 31, 249–268 (2007)

70 X. Cortés and F. Serratosa

3. Serratosa, F., Cortés, X., Solé-Ribalta, A.: Interactive Graph Matching by means of
Imposing the Pairwise Costs. In: International Conference on Pattern Recognition,
ICPR 2012, Accepted for publication, Tsukuba (2012)

4. Cortés, X., Serratosa, F., Solé-Ribalta, A.: Active Graph Matching based on Pairwise
Probabilities between nodes. In: Gimel’farb, G., Hancock, E., Imiya, A., Kuijper, A.,
Kudo, M., Omachi, S., Windeatt, T., Yamada, K. (eds.) SSPR&SPR 2012. LNCS,
vol. 7626, pp. 98–106. Springer, Heidelberg (2012)

5. Fekete, G., Eklundh, J.O., Rosenfeld, A.: Relaxation: Evaluation and Applications.
IEEE Transactions on Pattern Analysis and Machine Intelligence 3(4), 459–469 (1981)

6. Gold, S., Rangarajan, A.: A Graduated Assignment Algorithm for Graph Matching.
IEEE Transactions on Pattern Analysis and Machine Intelligence 18(4), 377–388 (1996)

7. Luo, B., Hancock, E.R.: Structural graph matching using the EM algorithm and singular
value decomposition. IEEE Transactions on Pattern Analysis and Machine
Intelligence 23(10), 1120–1136 (2001)

8. Riesen, K., Bunke, H.: Approximate graph edit distance computation by means of bipartite
graph matching. Image Vision Comput. 27(7), 950–959 (2009)

9. Sanromà, G., Alquézar, R., Serratosa, F.: A New Graph Matching Method for Point-Set
Correspondence using the EM Algorithm and Softassign. Computer Vision and Image
Understanding 116(2), 292–304 (2012)

10. Sanromà, G., Alquézar, R., Serratosa, F., Herrera, B.: Smooth Point-set Registration using
Neighbouring Constraints. Pattern Recognition Letters, PRL 33, 2029–2037 (2012)

11. Settles, B., Craven, M.: An analysis of active learning strategies for sequence labelling tasks.
In: Conference on Empirical Methods in Natural Language Processing, pp. 1069–1078
(2008)

12. Culotta, A., McCallum, A.: Reducing labelling effort for structured prediction tasks.
In: National Conference on Artificial Intelligence, pp. 746–751 (2005)

13. Melville, P., Mooney, R.: Diverse ensembles for active learning. In: International
Conference on Machine Learning, pp. 584–591 (2004)

14. Settles, B., Craven, M., Ray, S.: Multiple-instance active learning. Advances in Neural
Information Processing Systems 20, 1289–1296 (2008)

15. Zhang, T., Oles, F.J.: A probability analysis on the value of unlabelled data for classification
problems. In: International Conference on Machine Learning, pp. 1191–1198 (2000)

16. Roy, N., McCallum, A.: Toward optimal active learning through sampling estimation of
error reduction. In: International Conference on Machine Learning, pp. 441–448 (2001)

17. Sanfeliu, A., Fu, K.: A distance measure between attributed relational graphs for pattern
recognition. IEEE Trans. on Sys. Man and Cybern 13, 353–362 (1983)

18. Riesen, K., Bunke, H.: IAM graph database repository for graph based pattern recognition
and machine learning. In: da Vitoria Lobo, N., Kasparis, T., Roli, F., Kwok, J.T.,
Georgiopoulos, M., Anagnostopoulos, G.C., Loog, M. (eds.) SSPR & SPR 2008. LNCS,
vol. 5342, pp. 287–297. Springer, Heidelberg (2008)

19. Serratosa, F., Cortés, X., Solé-Ribalta, A.: Component Retrieval based on a Database of
Graphs for Hand-Written Electronic-Scheme Digitalisation. Expert Systems With
Applications, ESWA 40, 2493–2502 (2013)

20. Caetano, T.S., Caelli, T., Schuurmans, D., Barone, D.A.C.: Graphical Models and Point
Pattern Matching. IEEE Trans. Pattern Analysis and Machine Intelligence 28(10),
1646–1663 (2006)

21. Solé, A., Serratosa, F., Sanfeliu, A.: On the Graph Edit Distance cost: Properties and
Applications. International Journal of Pattern Recognition and Artificial Intelligence,
IJPRAI 26(5) (2012)

GMTE : A Tool for Graph Transformation

and Exact/Inexact Graph Matching

Mohamed Amine Hannachi1,2, Ismael Bouassida Rodriguez1,2,3,
Khalil Drira1,2, and Saul Eduardo Pomares Hernandez1,4

1 CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France
2 Univ de Toulouse, LAAS, F-31400 Toulouse, France

3 ReDCAD, University of Sfax, B.P. 1173, 3038 Sfax, Tunisia
4 Computer Science Department, Instituto Nacional de Astrof́ısica, Óptica y

Electrónica, C.P. 72840, Tonantzintla, Puebla, Mexico
{hannachi,bouassida,khalil,sepomare}@laas.fr

Abstract. Multi-labelled graphs are a powerful and versatile tool for
modelling real applications in diverse domains such as communication
networks, social networks, and autonomic systems, among others. Due
to dynamic nature of such kind of systems the structure of entities is
continuously changing along the time, this because, it is possible that
new entities join the system, some of them leave it or simply because
the entities relations change. Here is where graph transformation takes
an important role in order to model systems with dynamic and/or evo-
lutive configurations. Graph transformation consists of two main tasks:
graph matching and graph rewriting. At present, few graph transfor-
mation tools support multi-labelled graphs. To our knowledge, there is
no tool that support inexact graph matching for the purpose of graph
transformation. Also, the main problem of these tools lies on the lim-
ited expressiveness of rewriting rules used, that negatively reduces the
range of application scenarios to be modelling and/or negatively increase
the number of rewriting rules to be used. In this paper, we present the
tool GMTE Graph Matching and Transformation Engine. GMTE han-
dles directed and multi-labelled graphs. In addition, to the exact graph
matching, GMTE handles the inexact graph matching. The approach
of rewriting rules used by GMTE combines Single PushOut rewriting
rules with edNCE grammar. This combination enriches and extends the
expressiveness of the graph rewriting rules. In addition, for the graph
matching, GMTE uses a conditional rule schemata that supports com-
plex comparison functions over labels. To our knowledge, GMTE is the
first graph transformation tool that offers such capabilities.

1 Introduction

Graphs are a powerful and natural way of modelling complex systems on an
intuitive level. Graph-based modelling is applied in diverse domain such as com-
munication networks, social networks, autonomic systems, data representing,
entity relationship and UML diagrams, and visualization of software architec-
tures. Due to the dynamic nature of such systems, graph transformation concept

W.G. Kropatsch et al. (Eds.): GbRPR 2013, LNCS 7877, pp. 71–80, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

72 M.A. Hannachi et al.

takes an important role in order to model dynamic behavior by describing the
evolution of graph based structures.

The research area of graph transformation dates back to the seventies, but de-
velopment of software tools that support this formalism only begun twenty years
later. These tools have made graph transformation more and more popular and
widely used as a modelling paradigm. Currently, numerous graph transformation
tools are under development, covering a wide spectrum of applications such as
bioinformatics, process management, object-oriented modeling, architectural de-
sign, reengineering, distributed systems, etc. PROGRES [1], AGG [2], GROOVE
[3] are well-known tools, which support general purpose graph transformation.
For specific purpose we could find VMTS [4], GreAT [5], ATOM3 [6] for model
transformation.

In this paper, we expose our general graph matching and transformation
engine GMTE1 handling exact and inexact graph matching with expressive
graphs and rewriting rules. In section 2, we present the preliminaries concept.
In Section 3, we introduce exact graph matching, extensions of model graph
definition, vertex matching and consistent valuation building. Graph updating
process where rewriting rules consider variable labels, both positive and neg-
ative application conditions, connection instructions, modification instruction
and conditional rule schemata with label calculation, is presented in this section.
Section 4 deals with inexact graph matching based on the graph edit distance
and bipartite matching. Comparison to a reference tool is performed in Section
5. The concluding remarks and perspectives are discussed in Section 6.

2 Preliminaries

In this section, we establish the fundamental definitions used in this paper and
give the formal problem statement. This paper investigates the subgraph match-
ing and transformation for directed and multi-labeled graphs.

Definition 1. A multi-labeled graph G is defined as a 6-tuple G = V,E, LV ,
DLV , LE , DLE), where V is the set of vertices E ⊆ V × V is the set of edges.
DLV and DLE are the definition domains of vertex labels and edge labels. LV :
V → DLV is the function assigning labels to vertices and LE : E → DLE is the
function assigning labels to edges.

The main idea of graph transformation is the rule-based modification of graphs.
The foundation of a rule is a pair of graphs (L,R), called the left-hand side L
and the right-hand side R. Applying the rule p = (L,R) means finding a match
of L in the source graph and replacing L by R, leading to the target graph of the
graph transformation. The problem of finding a match of L is treated by graph
isomorphism.

Definition 2. Two graphs G1 = (V1, E1) and G2 = (V2, E2) are isomorphic if
there exists a mapping M ⊆ V1×V2 such that for all pairs of vertices vi, vj ∈ V1,

1 Graph Matching and Transformation Engine (GMTE), available at
http://homepages.laas.fr/khalil/GMTE/

http://homepages.laas.fr/khalil/GMTE/

GMTE : A Tool for Graph Transformation and Exact/Inexact Graph Matching 73

(vi, vj) ∈ E1 if and only if (M(vi),M(vj)) ∈ E2. M is, in this case, a graph
isomorphism between G1 and G2. A subgraph isomorphism is an isomorphism
between G1 and a subgraph G′ of G2.

In contrast to the exact graph matching, the inexact (or approximate, error-
tolerance) graph matching allows nodes or edges mismatch or both. Graph edit
distance is one of the most commonly used and well-known approach that de-
fines similarity between graphs. The distance between two graphs is measured
by applying a sequence of edit operations (i.e. node and edge insertion, deletion,
or substitution) in order to transform one graph into the other. For each edit
operation, a cost is assigned. The cost of an edit series is the sum of the individ-
ual edit operations. The graph edit distance is the minimum cost necessary for
transforming one graph to another.

Definition 3. Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs. The graph
edit distance of G1 and G2 defined by

d(G1, G2) = min
(e1...ek)∈P (G1,G2)

k∑
i=0

C(ei)

where P (G1, G2) denotes the set of edit paths transforming G1 into G2, and C
denotes the edit cost function.

3 Graph Matching and Transformation Engine

In this section we deal with concepts and theory that our tool is built on them.
The GMTE encompasses two main processes: the first one is called the pattern
matching process and the second one is the graph updating process.

3.1 Exact Matching Process

The matching process between two graphs G1 = (V1, E1) and G2 = (V2, E2)
consists of finding a mapping M which assigns nodes from G1 to nodes from
G2, taking into account some predefined constraints. The mapping M is a set of
node pairs. Each pair represents the mapping of a node from G1 with node from
G2 if and only if the mapping is a bijection, preserve adjacency (if two nodes are
adjacent in the first graph, their image by the bijection should be adjacent), so
M is called isomorphism.

The graph matching algorithm implemented within the GMTE, is the one
defined in [7]. The algorithm considers a Breadth-first search approach similar
to that introduced by the algorithm described by Messmer and Bunke in [8].
The choice to rely on such approach is motivated by the fact that this algorithm
is highly effective in cases where matching involves several similar graphs.

For GMTE the definition of the left-hand side L is extended to allow the use
of variable attributes for nodes and edges labels.

74 M.A. Hannachi et al.

Definition 4. Let SX = X1, ..., Xi be a set of variables. A model graph MG is
defined as a 6-tuple MG = (V,E, LV , DLV , LE , DLE), where V , E, LV and LE

have the same descriptions as given in Definition 1. DLV = [(L1 ∪ S1
X) ∪ ... ∪

(Ln ∪ Sn
X)] is the definition domain of vertex labels, with S1

X , ..., S
n
X are subsets

of SX . DLE = [(E1 ∪ S′1
X) ∪ ... ∪ (En ∪ S′n

X)] is the definition domain of edge

labels, with S′1
X , ..., S

′n
X are subsets of SX .

Considering the extension previously introduced, we establish some new notions
related to label and vertex matching and to valuation merging. Two labels are
considered matchable if and only if they are either constant and having same
type or if the labels from the model graph is variable it must have the same type
as the constant label from the input graph. Based on this notion, two nodes
or edges are matchable if and only if they have same number of labels, their
labels are, two by two, matchable in respect of their occurrence order, and the
results of all parameter matching are consistent. Two valuations V al1 and V al2
are consistent if and only if, for every pair (x1, value1) belonging to V al1 and
every pair (x2, value2) belonging to V al2, x1 and x2 are two different variables
(syntactically) or represent the same variable and associate it with the same
value x1 = x2 and value1 = value2. Typically, a vertex v1(x, y, x, 3) is not
matchable with v2(1, 1, 2, 3) but is matchable with v3 = (1, 2, 1, 3) and gives in
this case the valuation set {(x, 1), (y, 2)} as a result.

3.2 Graph Updating Process

Dealing with graph transformation two major technical problems arise: how to
delete L from G and how to connect R with the remaining part of it. To cope
with these problems GMTE combines two approaches. The first one is the simple
pushout SPO [9], where a graph transformation rule is (L,K,R). L and R are
the left and right hand side graphs of the rule and K is a common subgraph of
L and R that will be preserved after the rule application. Also K has a second
role which consists of the part that the added nodes will be connected to. The
removal of L \K raises the problem of dangling edges (edges without starting or
ending node). This approach implies that dangling edges are deleted once L \K
is removed.

According to [10] there is another powerful mechanism which is based on
connection instructions who enrich the formalism of how to connect R. This
approach, called Node Controlled Embedding, allows connecting nodes from the
right-hand side graph to the neighbours of removed nodes from the left-hand
side graph.

The GMTE rewriting techniques uses the last extension of the NCE which
is the edNCE used for directed and edge labelled graph. For edNCE grammars
a connection instruction is of the form (m,μ, p/q, x, d, d′) with obvious meaning:
a q-labelled edge should be established between x (node from R) and every
μ-labelled node of host graph G that is a p-neighbour of m (node from L), with
d, d′ ∈ {in, out} , where d is the old edge direction and d′ the new one. The
host graph is multi-labelled so μ, p and q are sets of labels. To determine the

GMTE : A Tool for Graph Transformation and Exact/Inexact Graph Matching 75

applicability of a transformation rule, the approaches presented above are based
on the existence of an instance of the sub-graph L. In some cases, it is necessary
to express additional conditions to specify conditions relating to the absence
of an occurrence in the host graph. Such conditions or restrictions are called
negative application conditions (NAC) [11].

3.3 Conditional Rule Schemata

The conditional rule schemata introduced in [12] extend graph transformation
with operations on labels. Within the GMTE we have two types of operations.
Operations on nodes and edges labels of the Add zone are called functions.
When operations are used within nodes and edges labels of the Delete zone and
Invariant zone they are called conditions.

Rule graphs used by the GMTE are multi-labelled so conditions and functions
could be used on any label of node and edge with the respect to the following
two conditions:

– Conditions are Boolean expression built in an arithmetic expressions, used
as label of nodes and edges within the Delete zone and Invariant zone.
Functions used only on the Add zone.

– V ar (Addzone) ⊆ V ar (Delete zone + Invariant zone).

where V ar(Y) is set of all variables in zone Y . Constraint label formalism is
added in order to extend the expressiveness of the matching and the transfor-
mation. We used the muParser 2 which is an extensible high performance math
expression parser library written in C ++. The main objective of this library is
to provide a fast and easy way of parsing mathematical expressions.

3.4 Rule and Application Condition

In GMTE, the basic representation of a rule is a single graph combining all of
the following four zones:

– Invariant zone: a subgraph that needs to be present in the input graph in
order for the rule to be applicable, this pattern is preserved after the rule
application;

– Absent zone: a subgraph that must be absent in the input graph to allow
the application of the rule;

– Delete zone: a subgraph that needs to be present in the input graph in order
to be deleted after the rule application;

– Add zone: a subgraph that will be added after the rule application.

As we can see, the presence of the Invariant zone and Delete zone form the
positive application condition, and the absence of the Absent zone forms the

2 A fast math parser library Version 2.2.0 (muParser), available at
http://muparser.beltoforion.de/

http://muparser.beltoforion.de/

76 M.A. Hannachi et al.

negative application condition. The rule within the GMTE could be extended to
meet a much more powerful transformation mechanism assured by the connection
instructions as it was defined in the previous Section.

Two main rule application approaches are implemented within the GMTE.
The first one is to simply apply all rules listed in a rule file to a given input
graph. The second one is to recursively apply all rules listed in a rule file to a
given input graph, and to all graphs generated by such applications.

4 Inexact Matching

In this section we introduce our approach for inexact graph matching. Graph edit
distance is one of the most flexible graph similarity measures. Our approach in-
line with [13]. In [13] the authors proposed to compute graph edit distance based
on bipartite graph matching by means of the Linear Sum Assignment Problem.
Their algorithm performs quite efficiently, but it is limited in that it is often ap-
plicable for matching two graphs with equal number of nodes. In case of subgraph
matching, the authors expand the cost matrix to get a square matrix. Therefore,
this expansion increases computation time. As we can see in the sequel, our ap-
proach tackles efficiently this problem, a) using a modified version of the LSAP
algorithm and b) possibility to directly work on a rectangular cost matrix.

4.1 Node/Edge Edit Distance

To compute the distance between two nodes or edges, we use a modified version
of the the Heterogeneous Euclidean Overlap Metric (HEOM) [14] which handles
numeric and string labels. But first, we will start by defining a metric to mea-
sure the distance between two labels. Given two labels li, l

′
i (i is the index of

the label within the node or the edge attributes) the distance is measured by
labelDistance(li, l

′
i) defined as follow:

labelDistance(li, l
′
i) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if li or l

′
i is missing,

ed(li,l
′
i)

max(|li|,|l′i|)
if li or l

′
i are strings,

|li−l
′
i|

1+|li−l
′
i|

if li or l
′
i are numerics.

The string edit distance of s and t, denoted by ed(s, t) is the minimal atomic
string operations (character insertion, deletion or substitution) needed to trans-
form s into t. when labels are strings, we could see that if they are equal then
the distance is 0, and if they are totally different, the distance is 1. In case labels
are numeric, the distance is 0 if they have same value and the distance is � 1 if
| li − l

′
i |→ ∞. We define node/edge distance as follow:

δ(n, n′) =

√√√√max(|n|,|n′|)∑
i=0

(labelDistance(li, l
′
i))

2

| n | denotes the number of labels within a node or an edge. n and n′ could be
either two nodes or two edges.

GMTE : A Tool for Graph Transformation and Exact/Inexact Graph Matching 77

4.2 Cost Matrix

Let G1 = (V1, E1) and G2 = (V2, E2) be two multi-labelled graph, where
| V1 |= n and | V2 |= m. The cost matrix defined as C = (cij)n×m, where
each element cij ≥ 0 correspond to the cost of assigning the ith of V1 to the
jth element of V2. To enhance the matching, information about edges distance
could be added to the cost matrix. The technique is somehow similar to [15],
except for the cost matrix is rectangular to reduce computation time. For each
cij (assignment cost of node ui to the node vj) an adjacency edge cost matrix
is generated. The cost resulting from the minimum-cost edge assignment for all
edges connected to ui and vj is added to cij .

Cij = cij +min{
∑

cost(eui , evj)}

where min{
∑

cost(eui , evj)} is computed by the algorithm using the adjacency-
edge cost matrix of node ui and vj . The problem is then to determine the
minimum cost of assigning node from G to node from G′.

4.3 Bipartite Graph Matching

Standard graph matching procedures assign nodes and edges of one graph to
another using some kind of search tree and trying to minimize the global edit
cost. Let n and m be the number of nodes in G and G′. We have n!

m! possibilities
of assigning nodes from G to G′. The time complexity of such brute a force
algorithm is O(nm). However, according to [16] the process of assigning nodes
can be solved as Linear Sum Assignment Problem LSAP . For the previously
defined cost matrix the problem is how to match each row to a different column
in such a way that the sum of the assignment is minimal. In other words, we
want to select n elements of C, so that there is exactly one element in each row
and one in each column, and the sum of the corresponding sum is minimal.

4.4 Assignment Algorithm

In [17] the paper considers the classic linear assignment problem with a min-sum
objective function, and the most efficient and easily available codes for its solu-
tion. Also it gives a survey describing the different approaches in the literature,
presenting their implementations, and pointing out similarities and differences.
Then it selects eight codes and introduces a wide set of dense instances contain-
ing both randomly generated and benchmark problems. According to [17], the
modified versions of the Volgenant Jonker algorithm [18] is one of the fastest
to solve dense linear assignment problem instances. In [18] authors have made
a significant modification that led to speed up the algorithm. This modification
is based on a selection procedure that selects a number of small cost elements
from the cost matrix.

The GMTE adopt the modified versions of the Volgenant Jonker algorithms
[18]: for square problem LAPMOD and the non-square problem LAPMODrow.

78 M.A. Hannachi et al.

The LAPMODrow is a special version of the core oriented LAP algorithm,
used where the cost matrix is constructed with less rows than columns. For the
bipartite matching, LAPMOD is used when graphs have equal number of nodes
and LAPMODrow is used when the nodes number in one graph is less than the
other.

5 Comparison with Other Tools

In this section, we compare GMTE with other graph transformation tools. The
comparison is summarized in Table 1 and covers different criteria. These criteria
have been presented in different papers like [3,19]. GMTE is categorized as a
general purpose tool, however, it can be used through the expressiveness of his
rule for model transformations as well.

The third criterion considers advanced rule features, these features increase
the expressiveness of rules. GMTE and GROOVE support parallel rule appli-
cation. This rule will be applied to all subgraphs that satisfy the application
conditions. Also, GMTE like the other tools support standard case application
(application on a precise or random matching). GMTE supports recursive rules
application. GROOVE, PROGRES, Fujaba and GrGen [20] support using regu-
lar expressions on edge labels, GMTE supports label calculation known as label
condition and functions on node and edge labels. Moreover, GMTE combines
the SPO and edNCE to support a reach formalism for gluing and embedding
technique through the use of connection instructions. Most of the presented tools
in this section support either the SPO or the DPO approach, which reduce the
expressiveness of the rule.

Table 1. Comparison between GMTE and other tools

Tool Purpose Typing Advanced rule features Editing

AGG General purpose Required - Graphical

PROGRES General purpose Required Set nodes Graphical
Star rules

Regular expression

GReAT Model transformation Required Match condition Graphical
Recursive pattern

GrGen Multi-purpose Required Regular expressions Textual

VIATRA2 Model transformation Required Recursive patterns Textual

GROOVE General purpose Optional Regular expressions Graphical
Quantification

VMTS Model transformation Required Quantification Textual

ATOM3 Model transformation Required Triple Graph Grammar Graphical

GMTE General purpose Optional Parallel application,
Label calculation, Textual

Connection instructions
Codification instructions

GMTE : A Tool for Graph Transformation and Exact/Inexact Graph Matching 79

The final criterion is whether a tool provides a graphical user interface for
editing graphs and rules or is text-based only. GMTE can reads the rule graph
and the host graph description from input XML files. The standard used is
GraphML [21], which is an XML-based file format for graphs. Its main fea-
tures include supporting directed, undirected, and mixed graphs, hypergraphs,
hierarchical graphs, graphical representations, references to external data,
application-specific attribute data, and light-weight parsers.

6 Conclusion

In this paper we addressed the problem of tools for graph matching and graph
transformation. We presented a tool capable of performing matching and trans-
formation for multi-labelled graphs. Also, we enhanced the rewriting system by
extending the expressiveness of rules. To our knowledge, GMTE is the first tool
that implements the edNCE approach and combines it with SPO approach,
in order to get a rich formalism for both gluing and connecting technique. As
well, we improved the formalism through the use of conditional rule schemata
which are rule schemata equipped with a Boolean term built on arithmetic ex-
pressions. This allows to control rule applications by comparing values of labels.
Also GMTE support inexact graph and subgraph matching, by efficiently com-
puting the graph edit distance based on bipartite matching by means of faster
and adaptive version the Volgenant-Jonker assignment algorithm.

For other part, we are working on extending our tool with the use of graph
transformation system with time. Also, we are looking to implement a faster
algorithm for inexact matching in order to reduce computation time. In order to
show the efficiency of our approach, we plan to improve autonomic approaches
like [22] with graph capabilities for reconfiguration consistency checking purpose.

Acknowledgment. This research is supported by the Itea2 A2Nets
(Autonomic Services in M2M Networks) project3.

References

1. Schürr, A., Winter, A., Zündorf, A.: The PROGRES approach: Language and en-
vironment. In: Ehrig, H., Engels, G., Kreowski, H.J., Rozenberg, G. (eds.) Hand-
book of Graph Grammars and Computing by Graph Transformation: Applications,
Languages, and Tools, vol. 3, pp. 487–550. World Scientific (1999)

2. Taentzer, G.: AGG: A tool environment for algebraic graph transformation. In:
Münch, M., Nagl, M. (eds.) AGTIVE 1999. LNCS, vol. 1779, pp. 481–488. Springer,
Heidelberg (2000)

3. Ghamarian, A.H., de Mol, M., Rensink, A., Zambon, E., Zimakova, M.: Modelling
and analysis using groove. STTT 14(1), 15–40 (2012)

4. Lengyel, L., Levendovszky, T., Charaf, H.: Constraint validation support in visual
model transformation systems. Acta Cybern. 17(2), 339–357 (2005)

3 https://a2nets.erve.vtt.fi/

https://a2nets.erve.vtt.fi/

80 M.A. Hannachi et al.

5. Balasubramanian, D., Narayanan, A., van Buskirk, C.P., Karsai, G.: The graph
rewriting and transformation language: Great. ECEASST 1 (2006)

6. de Lara, J., Vangheluwe, H.: AToM3: A tool for multi-formalism and meta-
modelling. In: Kutsche, R.-D., Weber, H. (eds.) FASE 2002. LNCS, vol. 2306,
pp. 174–188. Springer, Heidelberg (2002)

7. Guennoun, K., Drira, K., Diaz, M.: A proved component-oriented approach for man-
agins dynamic software architectures. In: Proc. 7th IASTED International Confer-
ence on Software Engineering and Application, Marina Del Rey, CA, USA (2004)

8. Messmer, B.T., Bunke, H.: Efficient subgraph isomorphism detection: A decompo-
sition approach. IEEE Trans. Knowl. Data Eng. 12(2), 307–323 (2000)

9. Ehrig, H., Korff, M., Löwe, M.: Tutorial introduction to the algebraic approach
of graph grammars based on double and single pushouts. In: Ehrig, H., Kreowski,
H.-J., Rozenberg, G. (eds.) Graph Grammars 1990. LNCS, vol. 532, pp. 24–37.
Springer, Heidelberg (1991)

10. Rozenberg, G. (ed.): Handbook of graph grammars and computing by graph trans-
formation: volume I. foundations. World Scientific Publishing Co., Inc., River Edge
(1997)

11. Habel, A., Heckel, R., Taentzer, G.: Graph grammars with negative application
conditions. Fundamenta Informaticae 26, 287–313 (1995)

12. Plump, D., Steinert, S.: Towards graph programs for graph algorithms. In: Ehrig,
H., Engels, G., Parisi-Presicce, F., Rozenberg, G. (eds.) ICGT 2004. LNCS,
vol. 3256, pp. 128–143. Springer, Heidelberg (2004)

13. Fankhauser, S., Riesen, K., Bunke, H.: Speeding up graph edit distance computa-
tion through fast bipartite matching. In: Jiang, X., Ferrer, M., Torsello, A. (eds.)
GbRPR 2011. LNCS, vol. 6658, pp. 102–111. Springer, Heidelberg (2011)

14. Wilson, D.R., Martinez, T.R.: Improved heterogeneous distance functions. J. Artif.
Int. Res. 6(1), 1–34 (1997)

15. Riesen, K., Bunke, H.: Approximate graph edit distance computation by means of
bipartite graph matching. Image Vision Comput. 27(7), 950–959 (2009)

16. Riesen, K., Neuhaus, M., Bunke, H.: Bipartite Graph Matching for Computing the
Edit Distance of Graphs, pp. 1–12 (2007)

17. Dell’Amico, M., Toth, P.: Algorithms and codes for dense assignment problems:
the state of the art. Discrete Appl. Math. 100(1-2), 17–48 (2000)

18. Volgenant, A.: Linear and semi-assignment problems: A core oriented approach.
Computers & OR 23(10), 917–932 (1996)

19. Fuss, C., Mosler, C., Ranger, U., Schultchen, E.: The jury is still out: A comparison
of agg, fujaba, and progres. ECEASST 6 (2007)

20. Geiß, R., Batz, G.V., Grund, D., Hack, S., Szalkowski, A.: GrGen: A fast SPO-
based graph rewriting tool. In: Corradini, A., Ehrig, H., Montanari, U., Ribeiro,
L., Rozenberg, G. (eds.) ICGT 2006. LNCS, vol. 4178, pp. 383–397. Springer,
Heidelberg (2006)

21. Brandes, U., Eiglsperger, M., Herman, I., Himsolt, M., Marshall, M.S.: GraphML
progress report. In: Mutzel, P., Jünger, M., Leipert, S. (eds.) GD 2001. LNCS,
vol. 2265, p. 501. Springer, Heidelberg (2002)

22. Ben-Halima, R., Jmaiel, M., Drira, K.: A QoS-oriented reconfigurable middleware
for self-healing Web services. In: Proceedings of the IEEE International Confer-
ence on Web Services (ICWS 2008), Beijing, China. IEEE Computer Society Press
(2008)

A Comparison of Explicit and Implicit Graph

Embedding Methods for Pattern Recognition

Donatello Conte1, Jean-Yves Ramel2, Nicolas Sidère2,
Muhammad Muzzamil Luqman3, Benôıt Gaüzère4, Jaume Gibert4,

Luc Brun4, and Mario Vento1

1 Università di Salerno
Via Ponte Don Melillo, 1, 84084 Fisciano(SA) Italy

{dconte,mvento}@unisa.it
2 Université François Rabelais de Tours, Laboratoire Informatique (EA6300)

64 Avenue Jean Portalis, 37200 Tours France
{ramel,sidere}@univ-tours.fr

3 L3i Laboratory, University of La Rochelle
17042 La Rochelle France

muhammad muzzamil.luqman@univ-lr.fr
4 GREYC UMR CNRS 6072

14000 Caen France
{benoit.gauzere,jaume.gibert,luc.brun}@ensicaen.fr

Abstract. In recent years graph embedding has emerged as a promising
solution for enabling the expressive, convenient, powerful but computa-
tional expensive graph based representations to benefit from mature, less
expensive and efficient state of the art machine learning models of statis-
tical pattern recognition. In this paper we present a comparison of two
implicit and three explicit state of the art graph embedding method-
ologies. Our preliminary experimentation on different chemoinformatics
datasets illustrates that the two implicit and three explicit graph em-
bedding approaches obtain competitive performance for the problem of
graph classification.

1 Introduction

Two important challenges related to graphs concern the structural pattern recog-
nition field: first of all, graph based methods like graph matching are computa-
tionally demanding hence restricting the application of such methods. Secondly,
despite numerous theoretical results on graphs, the graph space has no strong
algebraic properties. It is for example not a group nor a vector space. Such a
lack of mathematical properties on the graph’s space does not allow to readily
combine structural and statistical pattern recognition methods.

Graph embedding methods map either explicitly or implicitly graphs into
high dimensional spaces hence allowing to perform the basic mathematical com-
putations required by various statistical pattern recognition techniques. Graph
embedding methods appear thus as an interesting solution to address graph
clustering and classification problems.

W.G. Kropatsch et al. (Eds.): GbRPR 2013, LNCS 7877, pp. 81–90, 2013.
© Springer-Verlag Berlin Heidelberg 2013

82 D. Conte et al.

The graph embedding methods are formally categorized as implicit graph
embedding or explicit graph embedding. The implicit graph embedding methods
are based on graph kernels. A graph kernel is a function that can be thought of
as a dot product in some implicitly existing vector space. Instead of mapping
graphs from graph space to vector space and then computing their dot product,
the value of the kernel function is evaluated in graph space. Such an implicit
embedding satisfies all properties of a dot product. Since it does not explicitly
map a graph to a point in vector space, a strict limitation of implicit graph
embedding is that it does not permit all operations that could be defined on
vector spaces. Further reading on state of the art methods of graph kernels and
implicit graph embedding could be found in [2].

On the other hand, explicit graph embedding methods explicitly embed an in-
put graph into a feature vector and thus enable the use of all the methodologies
and techniques devised for vector spaces. The vectors obtained by an explicit
graph embedding method can also be employed in a standard dot product for
defining an implicit graph embedding function between two graphs. An impor-
tant property of explicit graph embedding is that graphs of different size and
order need to be embedded into a feature vector of determined size. The selec-
tion of the axis of this feature vector requires thus a fine analysis of the analysed
dataset in order to selected features representive of the set while remaining suf-
ficiently generic to describe any input graph. We refer the interested reader to
[16] for further reading on classical explicit graph embedding techniques.

Similarly to the previous study described in [6], in this paper we propose
a comparison between two implicit graph embedding methods based on graph
kernels ([1,5]) and three methods of explicit graph embedding with comparable
behavior ([7,12,17]). The difference between these techniques will be illustrated
on classification problems using chemoinformatic datasets, such as those from
IAM [14], the predictive toxicology challenge (PTC) dataset [20] and the MAO
dataset from GREYC [5]. In Section 2 and Section 3 we describe the respective
graph kernels and explicit graph embedding methods. Section 4 details the ex-
perimental evaluation alongwith a discussion on the classification performance
of these methods. Finally, the paper concludes in Section 5.

2 Classification by Graph Kernels Methods

2.1 Method 1: Laplacian Graph Kernel

The graph edit distance between two graphs is defined as the minimal number of
vertices and edge removal/addition/relabeling required to transform one graph
into an other [13]. Unfortunately, even though the edit distance defines a met-
ric under weak conditions, this distance is not definite negative. Consequently,
kernels directly based on the edit distance are not definite positive and hence do
not correspond to a valid kernel.

Let us consider a set of input graphs {G1, . . . , Gn} defining our graph test
database. Given a kernel k, the gram matrix K associated to this database is
an n × n matrix defined by Ki,j = k(Gi, Gj). As denoted by Steinke [19], the

A Comparison of Explicit and Implicit Graph Embedding Methods 83

inverse of K (or its pseudo inverse if K is not invertible) may be considered as
a regularization operator on the set of vector of dimension n. Conversely, the
inverse (or pseudo inverse) of any definite positive regularization operator may
be considered as a kernel.

From this point view, designing a “good” graph kernel comes up to define for
each dataset a Gram matrix K whose associated norm penalizes the mapping of
different values to similar graphs. One scheme to design a kernel consists thus to
first build a definite positive regularization operator and then to take its inverse
(or its pseudo inverse) to obtain a kernel. Let us consider the Laplacian operator
defined as follows: given the set of graphs, {G1, . . . , Gn}, we first consider the

n × n adjacency matrix Wi,j = e−
d(Gi,Gj)

σ where σ is a tuning variable and
d(·, ·) denotes the edit distance [15]. The normalized Laplacian of {G1, . . . , Gn}
is then defined as L = I −D− 1

2WD− 1
2 where D is a diagonal matrix defined by

Di,i =
∑n

j=1Wi,j .
Well known results from spectral graph theory ([3]) establish that L is a sym-

metric, semi definite positive matrix whose eigenvalues belongs to the interval
[0, 2]. Unfortunately, the Laplacian is also well know for being non invertible
since the eigenvector vector 1 = (1, . . . , 1) is associated to the eigenvalue 0. The
only semi definite property of the Laplacian matrix forbids a direct inversion
of this matrix. Moreover, the pseudo inverse of the Laplacian induces numer-
ical instabilities which does not lead to a reliable kernel. Therefore, following
Smola [18], we rather regularize the spectrum of L. The regularized version of
L, denoted as L̃, is defined as L̃ = I+λL, where λ is a regularisation coefficient.
The regularized laplacian L̃ is invertible and its inverse K = L̃−1 is taken as a
kernel. Using a classification or regression scheme, such a kernel leads to map to
close values graphs having a small edit distance (and thus a strong similarity).

The implicit embedding induced by the Graph Laplacian kernel is not fixed by
some a priori rules but is deduced from a regularization of the matrix of pairwise
distances between objects. From this point of view, this implicit embedding is
close from the explicit embedding proposed by Jouili and Tabbone [10] which
additionally requires a dimensionality reduction step.

2.2 Method 2: Treelet Kernel

Treelet kernel [5] is a graph kernel based on a bag of non linear patterns which
computes an explicit distribution of each pattern within a graph. This method
explicitly enumerates the set of treelets included within a graph. The set of
treelets, denoted T , is defined as the 14 trees having a size lower than or equals
to 6 nodes. Thanks to the limited number of different patterns encoding treelets,
an efficient enumeration of the number of occurrences of each labeled pattern
within a graph can be computed by algorithm defined in [5]. Labeling information
included within treelets is encoded by a canonical key which is defined such as
if treelets have a same structure, their canonical key is similar if and only if the
two treelets are isomorphic. Each treelet being uniquely identified by the index
of its pattern and its canonical key, any graph G can be associated to a vector

84 D. Conte et al.

f(G) which encodes the number of occurrences of each treelet t ∈ T by ft(G).
Note that this vector representation may be of very high dimension since it may
encode all possible treelets according to all possible nodes and edges labellings
defined for a graph family. In chemoinformatics, such a vector representation
may have a dimension higher than 4.25× 109 [5] which forbids its explicit vector
embedding. Treelet kernel between graphs is defined as a sum of sub kernels
between common treelets of both graphs:

KT (G,G
′) =

∑
t∈T (G)∩T (G′)

k(ft(G), ft(G
′)) (1)

where T (G) encodes the set of treelets included within G and k(., .) defines
any positive definite kernel between real numbers such as linear, Gaussian or
polynomial kernel. Each sub kernel k(., .) encodes the similarity of the number
of occurrences for each treelet t common to both graphs to be compared.

In order to improve the accuracy of treelet kernel, each treelet can be weighted
according to a prediction task:

KT (G,G
′) =

∑
t∈T (G)∩T (G′)

w(t)k(ft(G), ft(G
′)) (2)

As described in [4], each weight w(t) ∈ R+ can be computed in a sparse and
optimal way for a given training set by using multiple kernel learning (MKL).
Using sparsity promotes the selection of relevant treelets according to the pre-
diction task and w(t) can thus be understood as a measure of the importance of
treelet t for the prediction task.

3 Classification by Graph Embedding Methods

3.1 Method 1: Topological Embedding

One of the main challenges of graph embedding is to preserve topological infor-
mation provided by the graph representation after transformation into a feature
vector. The topological embedding method proposed in [17] provides an interest-
ing answer to this problem by using a generic lexicon of topological structures
that could be enumerated in graphs during the computation of the vectorial
signature of the graphs. However, this lexicon must be comprehensive enough
to ensure discrimination from a graph to another. They have therefore decided
to take as a baseline the non-isomorphic graphs network presented in [9]. The
network presents all graphs composed of n edges up to N (where N is the max-
imum number of edges). Thereafter, the term pattern will refer to a subgraph
element of the non-isomorphic graph network.

For example, Figure 1 shows the non-isomorphic graph network until the
fourth rank giving a lexicon of 11 patterns.

The vectorial representation of a graph topology will be built by counting the
occurrences of each pattern of the lexicon. In other way, each element of the

A Comparison of Explicit and Implicit Graph Embedding Methods 85

Fig. 1. The non-isomorphic graph network used to embed the topology

Fig. 2. Matrix (b) corresponding to vectorial signature of graph presented in (a)

vector is the frequency of apparition of a pattern, which represents a descriptor
of a part of the graph. Thus, the topology of the graph is embedded in the
vectorial representation. This vectorial representation needs now to be enriched
by encapsulating the information provided by labels that can be associated to
the edges and vertices. As each of these labels can be composed with several
attributes, the inclusion of this information can be problematic regarding the
nature (numerical) and the number of attributes constituting a label. Two ways
are proposed to by-pass these problems :

1. the first method consists of discretizing numerical attributes to obtain sym-
bolic attributes. Then a combination of all these symbolic attributes can be
realized to list all possible labels.

2. the second method is to perform a clustering in the label space using at-
tributes as feature vectors. This results in some new classes of labels where
their number can be controlled.

The construction of the vectorial representation can then be performed by
filling all the cells of the matrix generated with the frequency of each pattern
and each label for this pattern. The matrix (see Fig. 2b) presents an example of
the proposed vectorial representation for the graph represented on Fig. 2a. More
details about this topological embedding method can be found in [17].

86 D. Conte et al.

3.2 Method 2: Fuzzy Multilevel Graph Embedding (FMGE)

The Fuzzy Multilevel Graph Embedding method (FMGE) performs multilevel
analysis of graph to extract discriminatory information of three different levels.
These include the graph level information, structural level information and the
elementary level information. The three levels of information represent three
different views of graph for extracting global details, details on topology of graph
and details on elementary building units of graph. The feature vector of FMGE
is named Fuzzy Structural Multilevel Feature Vector - FSMFV (see Fig. 3).

Fig. 3. Feature vector of FMGE

The features for graph level information represent a coarse view of graph and
give general information about the graph. These features include graph order
and graph size.

The features for structural level information represent a deeper view of graph
and are extracted from the node degrees and subgraph homogeneity in graph.
Subgraph homogeneity is represented by computing resemblance attributes for
the nodes and edges of graph. The resemblance attributes for an edge is computed
from the attributes on its neighboring nodes. The resemblance for a numeric
attribute (a) is computed as a ratio of this attribute’s values on neighboring
nodes of an edge (a1 and a2) (see Eq. 3). Whereas the resemblance for a symbolic
attribute (b) is computed as a ratio of this attribute’s values on neighboring
nodes of an edge (b1 and b2) (see Eq. 4).

resemblance(a1, a2) = min(|a1|, |a2|)/max(|a1|, |a2|) (3)

resemblance(b1, b2) =

∣∣∣∣1 b1 = b2
0 otherwise

∣∣∣∣ (4)

The third level of information is extracted by penetrating into further depth
and more granular view of graph and employing details of the elementary build-
ing blocks of graph. These features represent the information extracted from
the node and edge attributes. The node degree, numeric resemblance attributes,
numeric node attributes and numeric edge attributes are embedded by fuzzy his-
tograms whereas the symbolic resemblance attributes, symbolic node attributes
and symbolic edge attributes are embedded by crisp histograms. FMGE learns
the intervals, for constructing these histograms, during an unsupervised learning
phase and employs the learned intervals during graph embedding phase [12].

The feature vector obtained by FMGE is based on histogram encoding of
the multilevel information extracted from graph. The number of features in the

A Comparison of Explicit and Implicit Graph Embedding Methods 87

vector is directly dependent on the number of bins employed for constructing
these histograms. The use of high dimensional histograms is explicitly built into
the method as it enables FMGE to provide a more robust encoding of information
and enables it to generalize to unseen graphs. However, the feature vector can
become sparse and confuse between classes of graphs. In order to reduce the
size of FMGE feature vector and to remove the unimportant features for a given
graph dataset, we select the subset of top-ranked features on the basis of ranks
obtained through the Relief algorithm [11].

3.3 Method 3: Attribute Statistics Based Embedding

The attribute statistics based embedding of graphs is a simple and efficient way
of expressing the labelling information stored in nodes and edges of graphs in
a rather naive feature vector. It basically consists in computing frequencies of
appearences of very simple subgraph structures such as nodes with certain labels
or node-edge-node structures with specific label sequences. Formally, consider a
set of graphs G = {g1, . . . , gN}, with gi = (Vi, Ei, μi, νi) being the ith graph
in the set with labelling alphabet LVi for the nodes and LEi for the edges. We
assume that all graphs in G have the same labelling alphabets, this is LVi = LVj

and LEi = LEj for all i, j ∈ {1, . . . , N}. We do not assume, however, that
each node and edge label occurs in each graph. Let LV = {α1, . . . , αp} and
LE = {ω1, . . . , ωq} be the common labelling alphabets.

For each graph g = (V,E, μ, ν) ∈ G, we define p unary features measuring the
number of times each label in LV appears in the graph, this is

Ui = #(αi, g) = | {v ∈ V |αi = μ(v)} |. (5)

Binary features for edges are defined by computing how many times each possible
sequence of node-edge-node labels appears in the graph. In particular,

Bk
ij = #([αi ↔ αj]ωk

, g)

= | {e = (u, v) ∈ E |αi = μ(u) ∧ αj = μ(v) ∧ ωk = ν(e)} |. (6)

Note that, since graphs are undirected, these features are symmetric, this is,
Bk

ij = Bk
ji for all i, j ∈ {1, . . . , p}. We can then just consider half of them and

always assume that i ≤ j. This results in defining 1
2 ·q ·p · (p+1) binary features.

The final embedding configuration is the ensemble of all this features. Note
than another interpretation of these features is their relation with random walks.
In particular the random walk graph kernel implicilty computes the number of
random walks of any length in each graph. In the attribute statistics based em-
bedding case, one just considers walks of length 0 (node labels appearences) and
walks of length 1 (node-edge-node label sequences). Although much simpler and
local, the fact that these features are explicitly built makes them interesting
and flexible enough to provide robust results in several classification problems.
Distance correlation with edit distance or their extension to continuous
attributed graphs [8,7] have also been shown in the literature.

88 D. Conte et al.

4 Experimental Results

This section deals with the experimentation aiming at evaluate and compare the
implicit and explicit embedding approaches. In particular, we consider classifi-
cation tasks applied to chemoinformatics datasets.

4.1 The Considered Application and the Dataset

We have conducted experiments on four datasets of molecules. Molecules are
easily converted into graphs by representing atoms as nodes and the covalent
bonds as edges. Nodes are labeled with chemical symbols and edges by the
valence of the linkage:

AIDS. This dataset consists of two classes (active, inactive) of 2000 graphs
representing molecules with activity against HIV or not.

Mutagenicity. This dataset is divided in two classes regarding the mutagenic-
ity (one of the numerous adverse properties of a compound that hampers its
potential to become a marketable drug) of 4337 molecules.

Predictive Toxicology Challenge (PTC). This dataset deals with the pre-
dicting of the outcome of biological tests for the carcinogenicity of chemicals
using information related to chemical structure only (positive or negative)
on four catgories of animals : female rats (FR), male rats (MR), female mice
(FM), male mice (MM) with about 240 graphs per set.

Monoamine Oxidase Dataset (MAO). This problem is defined on a set
of 68 molecules divided into two classes: the molecules that inhibit the
monoamine oxidase (antidepressant drugs) and those that do not.

These datasets are issued from public repositories. AIDS and Mutagenicity come
from the IAM database repository1, while PTC and MAO are both available
in the GREYC’s Chemistry databank2. Classification accuracy is measured by
following the classification scheme designed by the datasets authors ([14,5]). For
AIDS or Mutagenicity, a validation subset is used to optimize an SVM and the
classification accuracy is obtained on an independant test subset. We used a k -
fold cross-validation approach for PTC (k=68) andMAO (k=10) to parameterize
an SVM and obtain the classification mean rates.

4.2 Results and Comparison

Table 1 shows the classification rates achieved by the 6 methods. Taking into ac-
count the four datasets, all implicit and explicit methods seems to be competitive
and comparable. Of course, depending on the data, some variations can appear
but these variations are small and they rather not be a criterion for choosing one
method over another. Thus, other considerations should be taken into account.
In particular, computational complexity or parameterization dependancy should
be evaluated for all these approaches.

1 http://www.iam.unibe.ch/fki/databases/iam-graph-database
2 https://brunl01.users.greyc.fr/CHEMISTRY/index.html

http://www.iam.unibe.ch/fki/databases/iam-graph-database
https://brunl01.users.greyc.fr/CHEMISTRY/index.html

A Comparison of Explicit and Implicit Graph Embedding Methods 89

Table 1. Classification results for different methods and datasets

PTC

Mutagenicity AIDS MAO FM MM FR MR

Laplacian kernel 70.2 92.6 90.0 59.2 55.2 57.7 60.9
Treelet kernel 77.1 99.1 91.2 58.7 61.9 60.4 60.8
Treelet kernel with MKL 77.6 99.7 94.1 64.2 64.6 71.2 64.8

Topological Embedding 77.2 99.4 91.2 65.9 67.5 68.7 63.7
FMGE 76.5 99.0 92.1 63.9 66.3 60.0 59.9
Attribute Statistics 76.5 99.6 90.6 64.8 63.1 67.9 59.7

On top of these things, an important remark one should be aware of is the
fact that most of the discussed methodologies might present some restrictions
in order to be evaluated in other pattern recognition problems. For instance,
explicit embeddings may be favored over implicit ones whenever the explicit
vector representation is required by some algorithms which require more than
the dot product. Indeed, graph kernels are limited to kernel methods such as
SVM. On the other hand, though, implicit ones are usually defined between two
graphs whereas most of explicit methods require the whole dataset to compute
the graph embedding. So, implicit methods may be favored other explicit one
whenever the access to the whole dataset is limited.

5 Conclusions

Graph embedding for pattern recognition is a recent emerging trend to enable
the pattern recognition community to benefit from the representative power of
graph based structural approaches of pattern recognition and the computational
power of machine learning models of statistical pattern recognition approaches.
We have outlined two graph kernel based implicit graph embedding methods and
three explicit graph embedding methods. Our initial experimentation on different
chemoinformatic databases for the problem of graph classification illustrates that
all the methods under consideration obtain competitive performance in terms of
classification rates. Our future research goals are to take forward this study on
the comparison of implicit and explicit graph embedding methods for revealing
the strengths of these methods in terms of learning abilities, automatic parameter
optimization, computational complexity and other interesting criteria.

References

1. Brun, L., Conte, D., Foggia, P., Vento, M.: A graph-kernel method for re-
identification. In: Kamel, M., Campilho, A. (eds.) ICIAR 2011, Part I. LNCS,
vol. 6753, pp. 173–182. Springer, Heidelberg (2011)

2. Bunke, H., Riesen, K.: Recent advances in graph-based pattern recognition with
applications in document analysis. Pattern Recognition 44(5), 1057–1067 (2011)

90 D. Conte et al.

3. Chung, F.R.K.: Spectral Graph Theory (CBMS Regional Conference Series in
Mathematics, No. 92). American Mathematical Society (February 1997)

4. Gaüzère, B., Brun, L., Villemin, D.: Graph kernels based on relevant patterns and
cycle information for chemoinformatics. In: Proceedings of ICPR 2012. IAPR, pp.
1775–1778. IEEE (November 2012)

5. Gaüzére, B., Brun, L., Villemin, D.: Two new graphs kernels in chemoinformatics.
Pattern Recognition Letters 33(15), 2038–2047 (2012)

6. Gaüzère, B., Hasegawa, M., Brun, L., Tabbone, S.: Implicit and explicit graph
embedding: Comparison of both approaches on chemoinformatics applications.
In: Gimel’farb, G., Hancock, E., Imiya, A., Kuijper, A., Kudo, M., Omachi, S.,
Windeatt, T., Yamada, K. (eds.) SSPR&SPR 2012. LNCS, vol. 7626, pp. 510–518.
Springer, Heidelberg (2012)

7. Gibert, J., Valveny, E., Bunke, H.: Graph embedding in vector spaces by node
attribute statistics. Pattern Recognition 45(9), 3072–3083 (2012)

8. Gibert, J., Valveny, E., Bunke, H., Fornés, A.: On the correlation of graph edit
distance and L1 distance in the attribute statistics embedding space. In: Gimel’farb,
G., Hancock, E., Imiya, A., Kuijper, A., Kudo, M., Omachi, S., Windeatt, T.,
Yamada, K. (eds.) SSPR&SPR 2012. LNCS, vol. 7626, pp. 135–143. Springer,
Heidelberg (2012)

9. Jaromczyk, J., Toussaint, G.: Relative neighborhood graphs and their relatives. In:
Proceedings of the IEEE (1992)

10. Jouili, S., Tabbone, S.: Graph embedding using constant shift embedding. In: Ünay,
D., Çataltepe, Z., Aksoy, S. (eds.) ICPR 2010. LNCS, vol. 6388, pp. 83–92. Springer,
Heidelberg (2010)

11. Luqman, M.M., Ramel, J.Y., Lladós, J.: Improving Fuzzy Multilevel Graph
Embedding through Feature Selection Technique. In: Gimel’farb, G., Hancock, E.,
Imiya, A., Kuijper, A., Kudo, M., Omachi, S., Windeatt, T., Yamada, K. (eds.)
SSPR & SPR 2012. LNCS, vol. 7626, pp. 243–253. Springer, Heidelberg (2012)

12. Luqman, M.M., Ramel, J.Y., Lladós, J., Brouard, T.: Fuzzy multilevel graph
embedding. Pattern Recognition 46(2), 551–565 (2013)

13. Neuhaus, M., Bunke, H.: Bridging the Gap Between Graph Edit Distance and
Kernel Machines. World Scientific Publishing Co., Inc., River Edge (2007)

14. Riesen, K., Bunke, H.: Iam graph database repository for graph based pattern
recognition and machine learning. In: da Vitoria Lobo, N., Kasparis, T., Roli, F.,
Kwok, J.T., Georgiopoulos, M., Anagnostopoulos, G.C., Loog, M. (eds.) SSPR &
SPR 2008. LNCS, vol. 5342, pp. 287–297. Springer, Heidelberg (2008)

15. Riesen, K., Bunke, H.: Approximate graph edit distance computation by means of
bipartite graph matching. Image Vision Computing 27(7), 950–959 (2009)

16. Riesen, K., Bunke, H.: Graph classification based on vector space embedding.
IJPRAI 23(6), 1053–1081 (2009)

17. Sidere, N., Héroux, P., Ramel, J.Y.: Vector representation of graphs: Application to
the classification of symbols and letters. In: ICDAR, pp. 681–685. IEEE Computer
Society (2009)

18. Smola, A.J., Kondor, R.I.: Kernels and regularization on graphs. In: XV Annual
Conference on Learning Theory, pp. 144–158 (2003)

19. Steinke, F., Schlkopf, B.: Kernels, regularization and differential equations. Pattern
Recognition 41(11), 3271–3286 (2008)

20. Toivonen, H., Srinivasan, A., King, R., Kramer, S., Helma, C.: Statistical evaluation
of the predictive toxicology challenge 2000–2001. Bioinformatics 19(10), 1183–1193
(2003)

Adjunctions on the Lattice of Dendrograms

Fernand Meyer

CMM-Centre de Morphologie Mathématique,
Mathématiques et Systèmes, MINES ParisTech, France

fernand.meyer@mines-paristech.fr

Abstract. Dendrograms are used in hierarchical classification. They
also are useful structures in image processing, for segmentation or fil-
tering purposes. The structure of a hierarchy is univocally expressed by
a ultrametric ecart. The hierarchies form a complete lattice on which two
adjunctions will be defined.

1 Introduction

Hierarchies are the classical structures for representing a taxonomy. The most
famous taxonomy is the Linnaean system. Each genus is the union of all species
it contains, which in turn is the union of animals it contains.

As hierarchies are nested partitions of a domain, they are also encountered
in image segmentation. Multiple segmentations of increasing coarseness are pro-
duced. Each level of the hierarchy contains a partition of the image and from
level to level only fusions of regions take place [4].

Partitions are thus the simplest hierarchies, with only one level. The algebraic
structure of partitions has been studies by Heijmans, Serra and Ronse [2], [11],
[7]. Often one is not interested in partitioning the total domain of an image,
but one wants to get the masks of some objects of interest. These masks are
disjoint sets but do not partition the domain ; they constitute a partial partition
as introduced by Ch. Ronse [5].

A series of nested partitions, where each coarser partition is obtained by
merging regions of finer partitions, constitutes a hierarchy. We have a partial
hierarchy or dendrogram, if the lowest level contains particular interest zones ;
in higher levels, some preexisting regions become larger, eventually merge and
others appear. Consider a topographic surface which is flooded such that all
lakes have the same altitude. For each flooding level, the lakes form a partial
partition. From one level to a higher level, the extension of a lake may grow,
new lakes appear, existing lakes merge. The corresponding partial hierarchy is
called min-tree [8] and is often used for image filtering.

The paper is organized as follows. A first part gives an axiomatic definition
of dendrograms and hierarchies. The second derives an ultrametric half distance
derived from a stratification index. An order relation between dendrograms orga-
nizes the hierarchies as a complete lattice. Finally, two adjunctions are defined on
dendrograms. Combining erosion and dilation in an adjunction produces open-
ings and closings, from which the classical morphological filters may then be
derived [3].

W.G. Kropatsch et al. (Eds.): GbRPR 2013, LNCS 7877, pp. 91–100, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

92 F. Meyer

2 Dendrograms and Hierarchies

The axiomatic definition of dendrograms and hierarchies is due to Benzecri [1].
Let E be a domain with a finite number of elements are called points (for instance
the pixels of an image) and P(E) the family of subsets of E. Let X be a subset
of P(E), on which we consider an arbitrary order or preorder relation relation
≺ (in the present work ≺ is the inclusion relation ⊂ between sets) The union of
all sets belonging to X is called support of X : supp(X). The subsets of X may
be structured into:

* the summits : Sum(X) = {A ∈ X | ∀B ∈ X : A ≺ B ⇒ A = B}
* the leaves : Leav(X) = {A ∈ X | ∀B ∈ X : B ≺ A ⇒ A = B}
* the nodes : Nod(X) = X − Leav(X)
* the predecessors : Pred(A) = {B ∈ X | A ≺ B}
* the immediate predecessors :
ImPred(A) = {B ∈ X | {U | U ∈ X , A ≺ U and U ≺ B} = (A,B)}

* the successors : Succ(A) = {B ∈ X | B ≺ A}
Fig.5, at the end of the document, presents a dendrogram in which the letters
represent subsets of P(E) ; and A → B means that B ≺ A. Then A is the
summit ; B is the predecessor of (D,E, F,H, I) and the immediate predecessor
of (D,E, F) ; (H, I,E, F, J,G) are leaves ; (J,G) are successors of A and C, and
immediate successors of C.

2.1 Dendrograms

We now structure X as a tree or a dendrogram (also called "partial hierarchy")

Dendrograms : X is a dendrogram if and only if the set Pred(A) of the prede-
cessors of A, with the order relation induced by ≺ is a total order. The maximal
element of this family is a summit, which is the unique summit containing A.

Proposition 1. The following properties are equivalent:
1)X is a dendrogram
2) U, V,A ∈ X : A ⊂ U and A ⊂ V ⇒ U ⊂ V or V ⊂ U
3) U, V ∈ X : U � V and V � U ⇒ U ∩ V = ∅
4) Any element A ∈ X− Sum(X) possesses a unique immediate predecessor
(valid as we suppose E and X finite)

Proposition 2. A family (Ai)i∈I of sets in X with a non empty intersection is
completely ordered for ⊂.

A dendrogram is said to be connected if it possesses a unique summit. Finite
dendrograms are classically represented as a tree : each element A ∈ X is a node
of the tree, and is linked by an edge with its unique immediate predecessor.

Consider a dendrogram Π verifying : A ∈ supp(Π) ⇒ Pred(A) = A. Such
a dendrogram has only one hierarchical level is called partial partition (partial
partitions have been introduced by C.Ronse in [5]). If supp(Π) = E, then it is
called partition.

Adjunctions on the Lattice of Dendrograms 93

2.2 Hierarchies

Definition 1. We call hierarchy H a dendrogram verifying
⋃
Leav(H) =

supp(H)

Proposition 3. A dendrogram X is a hierarchy if and only any element A of
X is the union of all other elements of X contained in A:
∀A ∈ X :

⋃
{B ∈ X | B ⊂ A ;B
= A} = {A, ∅}

For understanding the difference between dendrograms and hierarchies, we give
an example of each used all along the paper.

Hierarchy : A prototype of hierarchy is a series of nested partitions, where
each coarser partition is obtained by merging regions of finer partitions. The
leaves are the regions of the finest partition ; their union constitutes the support
of the hierarchy.

Dendrogram : A prototype of a dendrogram is constituted by the lake distri-
bution of a topographic surface. Each lake is included in all lakes with a higher
level. The leaves are the lakes when they just cover the regional minima. The
union of all lakes is larger than the union of the leaves. For each flooding level,
the lakes form a partial partition. From one level to a higher level, the extension
of a lake may grow, new lakes appear, existing lakes merge.

2.3 Stratification Index and Partial Ultrametric Distances (PUD)

Consider a dendrogram or hierarchy X ; X is a stratified hierarchy, if it is
equipped with an index function st from X into the interval [0, L] of R which is
strictly increasing with the inclusion order:
∀A,B ∈ X : A ⊂ B and B
= A ⇒ st(A) < st(B).
As E is finite, the number of distinct stratification levels is finite. We suppose
that for all A ∈ X : st(A) < L and set st(∅) = L.

Each dendrogram X with a stratification index st induces on the points
p, q ∈ E a partial ultrametric distance χ(p, q). If no set of X contains both
p and q, then χ(p, q) = L. Otherwise, the family (Ai)i∈I of sets of X containing
both p and q has a non empty intersection, and as established above, is com-
pletely ordered for ⊂ . Thus it possesse a smallest element A and χ(p, q) = st(A).
In particular χ(p, p) is the stratification index of the smallest set X of containing
p ; if no set of X contains p, then χ(p, p) = st(∅) = L ; such a point is called
"alien" of X .

Properties : χ has the following properties:
∀p, q ∈ E : χ(p, q) = χ(q, p)
∀p, q, r ∈ E : χ(p, q) ≤ max {χ(p, r), χ(r, q)}
Remark: χ is not a distance but an ecart as χ(p, q) = 0 does not necessarily
imply p = q. We call it partial ultrametric distance.

94 F. Meyer

Properties of the Balls of a Partial Ultrametric Distance
Closed balls, defined as Ball(p, ρ) = {q ∈ E | χ(p, q) ≤ ρ} have strange
properties:

* Each element of a closed ball Ball(p, ρ) = {q ∈ E | χ(p, q) ≤ ρ} is centre of
this ball.
* Two closed balls Ball(p, ρ) and Ball(q, ρ) with the same radius are either
disjoint or identical.
* The radius of a ball is equal to its diameter. If A is a set of the dendrogram,
p an arbitrary point of A, then A is the ball of center p and of radius equal to
the diameter of A (the maximal distance between two points of A.

Inversely, the closed balls of a partial ultrametric distance χ form a
dendrogram X .

2.4 Partial Partitions by Thresholding Partial Hierarchies

Consider a partial hierarchy X with its associated PUD χ. By thresholding the
PUD at level λ one obtains a partial binary ultrametric half distance
(PBUD):

πλ(x, y) =
1 if χ(x, y) > λ
0 if χ(x, y) ≤ λ

associated to a partial partition Πλ.

Aliens and Singletons

Aliens and singletons of partial partitions. We define aliens and singletons of a
partial partition π:

* Singletons are characterized by: ∀p, q ∈ E , p
= q, : π(p, q) = 1 and π(p, p) = 0.
* The support of π is the set of points p verifying : π(p, p) = 0
* Aliens, which are points outside the support are characterized by: ∀p ∈ E :
π(p, p) = 1 implying ∀q ∈ E : π(p, p) ≤ π(p, q) ∨ π(q, r) so that π(p, q) = 1

Aliens and singletons of dendrograms. Consider a PUD χ and its thresholds
πλ at level λ. For increasing values of λ, the partial partitions πλ obtained
by thresholding χ have increasing supports suppλ(χ) = {p ∈ E : χ(p, p) ≤ λ} .
Let p ∈ E be a point verifying χ(p, p) = λ and the partition πμ obtained by
thresholding χ at the level μ. And consider ν =

∧
q �=p

χ(p, q). Since χ(p, p) ≤

χ(p, q) ∨ χ(q, p), we have ν ≥ λ. The status of p will vary in the partitions πν
for increasing levels ν :

* μ < λ : πμ(p, p) = 1 and p does not belong to the support of πμ and is an alien
* λ ≤ μ < ν : πμ(p, p) = 0 but for q
= p, πμ(p, q) = 1 and p is a singleton
* ν ≤ μ : πμ(p, p) = 0 and for there exists q
= p such that πμ(p, q) = 0 and p is
a regular node.

Adjunctions on the Lattice of Dendrograms 95

3 The Lattice of Hierarchies

3.1 Order Relation between Hierarchies and Partial Hierarchies

Let A and B be two dendrograms with their associated PUD : χA and χB. The
following relation defines an order relation between the hierarchies: B ≤ A ⇔
∀p, q ∈ E χA (p, q) ≤ χB (p, q)

It follows that ∀p ∈ E : BallB(p, ρ) ⊂ BallA(p, ρ). We say that the hierarchy
A is coarser than the hierarchy B and that the hierarchy B is finer than the
hierarchy B.

For each p /∈ supp(A) : χA (p, p) = L which implies that χB(p, p) = L, so
that p /∈ supp(B).

The smallest dendrogram has an empty support and contains only aliens, i.e.
points p verifying ∀q ∈ E , χ(p, q) = L.

The smallest hierarchy has E as support and contains only singletons ∀p
=
q ∈ E, χ(p, q) = L, and ∀p ∈ E, χ(p, q) = 0. The largest hierarchy is E itself,
whose PUD verifies: ∀p, q ∈ E : χ (p, q) = 0

To binary PUDs χA and χB correspond partitions and partial partitions.
Their closed balls verify : BallB(p, 0) ⊂ BallA(p, 0), the aliens remaining outside
the balls. Hence the tiles of the finer partition B are included in the tiles of
the coarser partition A which is coherent with the usual definition of the order
between partitions.

3.2 The Lattice of Dendrograms

Consider a family of dendrograms (Ai)i∈I , the PUD of the dendrogram Ai

being χi.

Infimum of Hierarchies. The infimum ∧Ai is the largest dendrogram which is
smaller than each Ai and its PUD is the smallest verifying for all elements of the
family χ∧Ai ≥ χi. As the supremum of PUDs is a PUD, we have χ∧Ai =

∨
i

χi.

And suppλ χ∧Ai =
∧
i

suppλAi.

Supremum of Dendrograms. The supremum ∨Ai is the smalles dendrogram
which is larger than each Ai and its PUD is the largest verifying for all elements

of the family χ∨Ai ≤ χi. Unfortunately
∧
i

χi is not a PUD and χ∨Ai =
︷︸︸︷∧
i

χi

is the largest partial ultrametric distance which is lower than
∧
i

χi. It exists as

the set of ultrametric distances lower than
∧
i

χi is not empty and contains the

largest dendrogram whose PUD verifies ∀p, q ∈ E, χ(p, q) = 0. As this family is
closed by supremum it has a largest element.

Illustration
Fig.1 presents two hierarchies HA and HB through their nested partitions. The
supremum and infimum of both hierarchies also are represented. The infimum

96 F. Meyer

Fig. 1. Two hierarchies HA and HB and their derived supremum and infimum

takes for each threshold the intersection of the corresponding partitions, obtained
through intersection of the tiles. The supremum is obtained by keeping only the
boundaries existing in each component.

4 Adjunctions on Partial Hierarchies

4.1 Erosion and Dilations by a Structuring Element of Binary Sets

Adjunctions are the mother of morphology. Consider a lattice, A,B two arbitrary
elements of the lattice ; the operator δ and ε iff δA < B ⇔ A < εB [9]. Then δ
and ε are increasing operators, δ a dilation and ε an erosion, εδ a closing and δε
an opening.

Consider the classical erosion and dilation of binary sets by a structuring
element. Chosing a point O in the domain E, we associate to each point x the
vector

−→
Ox. Inversely we associate to each affine vector

−→
Ox its extremity x. We

write x+ b for the extremity of the vector
−→
Ox+

−→
Ob and define Xb =

⋃
x∈Xx+ b,

the set X translated by the vector
−→
Ob (X−b for the translation

−→
bO). We have

the following equivalence: Bp ⊂ X ⇔ ∀b ∈ B : p + b ∈ X ⇔ ∀b ∈ B : p ∈ X−b

from which we derive two classical and equivalent formulations of the erosion of
a set X by a structuring element B : X �B = {p ∈ X | Bp ⊂ X} =

∧
b∈B

X−b. It

appears that each of these formulations, which are equivalent for sets lead to
two distinct adjunctions in the case of partial hierarchies.

4.2 A First Adjunction Based on the Supremum and Infimum
of Translated PUD

Consider a dendrogram X and its PUD χ. If we translate all elements of X
by a translation

−→
bO we get a new hierarchy X−b with a PUD χb defined by

Adjunctions on the Lattice of Dendrograms 97

χb(p, q) = χ(p− b, q− b). To the eroded hierarchy X �B =
∧
b∈B

X−b corresponds

the PUD
∨
b∈B

χ−b defined by
∨
b∈B

χ−b(p, q) =
∨
b∈B

χ(p − b, q − b | b ∈ B). The

adjunction dilation is then X ⊕B =
∨
b∈B

Xb with the associated PUD
︷ ︸︸ ︷∧
b∈B

χb . For

showing that the first X � B =
∧
b∈B

Xb is an erosion and the second X ⊕ B =∨
b∈B

Xb a dilation, we have to show that they form an adjunction: for any two

hierarchies X ,Y ∈ X (E) : X ⊕B < Y ⇔ X < Y �B.
We will prove the adjunction through the PUD χ and ζ associated to the

hierarchies X and Y: X < Y �B ⇔ χ >
∨
b∈B

ζ−b ⇔ ∀b ∈ B : χ > ζ−b ⇔ ∀b ∈ B :

χb > ζ ⇔
∧
b∈B

χb > ζ

Remains to establish :
∧
b∈B

χb > ζ ⇔
︷ ︸︸ ︷∧
b∈B

χb > ζ :

*
︷ ︸︸ ︷∧
b∈B

χb > ζ ⇒
∧
b∈B

χb > ζ since
︷ ︸︸ ︷∧
b∈B

χb is the largest ultrametric ecart below∧
b∈B

χb

* Suppose now
∧
b∈B

χb > ζ. Since ζ is an ultrametric ecart below
∧
b∈B

χb, it is

smaller or equal to the largest ultrametric ecart below
∧
b∈B

χb, that is
︷ ︸︸ ︷∧
b∈B

χb

This completes the proof :

X < Y �B ⇔ χ >
∨
b∈B

ζ−b ⇔
∧
b∈B

χb > ζ ⇔
︷ ︸︸ ︷∧
b∈B

χb > ζ ⇔ X ⊕B < Y

The expression of the PUD is

χ�B(p, q) =

[∨
b∈B

χ−b

]
(p, q) =

∨
{χ(p− b, q − b) | b ∈ B}

χ⊕B(p, q) =

[︷ ︸︸ ︷∧
b∈B

χb

]
(p, q) =

︷ ︸︸ ︷∧
{χ(p+ b, q + b) | b ∈ B}

If there exists a b ∈ B, such that χ(p − b, p− b) = λ, then χ � B(p, p) ≥ λ ;
in other words, aliens of E for χ are dilated by the structuring element B.

We illustrate in figures 2 and 3 the erosion and the opening of a one dimen-
sional hierarchy by a structuring element made of three pixels.

4.3 Adjunction on Hierarchies and Partial Hierarchies, Defined
on a Tile by Tile Basis

Adjunctions on Partial Partition. The second formulation of the erosion
for sets {p ∈ X | Bp ⊂ X} will now be adapted to a partial partition with its
PUD χ. Two points p and q belong to the same tile of the partition eroded by a
structuring element B, if they are centers of disks entirely included in the same
tile of the initial partition (see fig.4), which is the case if and only if all pairs

98 F. Meyer

Fig. 2. Erosion and opening by a segment of 3 pixels: intermediate steps

3 2 1 4 2

3 2 2 2 2 2 4 2 2 2

Opening by

3 points

Initial image

Fig. 3. Dendrogram of an initial image and its opening by a segment of 3 points

Fig. 4. The points p and q belong to the same tile of the partition eroded by a disk,
as they are centers of disks entirely included in the same tile of the initial partition

Adjunctions on the Lattice of Dendrograms 99

x, y ∈ Bp ∪ Bq belong to the same tile of the partition, i.e. χ(x, y) = 0. Hence
the PUD εχ of the eroded hierarchy is δχ(p, q) =

∨
{χ(x, y) | x, y ∈ Bp ∪Bq}.

Consider now a point p such that Bp is not included in any tile of the
partition χ. For each Bp, there exists s, t ∈ Bp such that χ(s, t) = 1, hence
δχ(p, p) =

∨
{χ(x, y) | x, y ∈ Bp ∪Bp} = 1, showing that p is an alien in the

eroded partition χ. On the other hand if there exists a tile of the partition
containing Bp and the erosion of this tile is reduced to a singleton p, then
δχ(p, p) =

∨
{χ(x, y) | x, y ∈ Bp ∪Bp} = 0. In other terms, this erosion of par-

tial partitions adjusts the support of the partial partition by including aliens
when necessary, and is identical with the erosion defined by Ronse in [7] (but
distinct from the adjunction defined by J.Serra for partitions [10], where each
tile of a partition is eroded and dilated separately, empty spaces being filled with
singletons).

Adjunctions on Dendrograms. The expression established for partial parti-
tions is still valid for arbitrary dendrograms:
δχ(p, q) =

∨
{χ(x, y) | x, y ∈ Bp ∪Bq} .

It may be reformulated as the supremum of three terms:
δχ(p, q) =

∨
{χ(x, y) | x, y ∈ Bp ∪Bq} =

∨
{χ(p+ b1, p+ b2) | b1, b2 ∈ B}

∨
∨

{χ(p+ b1, q + b2) | b1, b2 ∈ B} ∨
∨

{χ(q + b1, q + b2) | b1, b2 ∈ B} .
The first and last terms are dominated by the central term. Indeed, for each
couple b1, b2 ∈ B : χ(p+ b1, p+ b2) ≤ χ(p+ b1, q + b2) ∨ χ(q + b2, p+ b2).

We obtain like that a simpler expression for this dilation : δχ =
∨{

χ(p+ b1,

q + b2) | b1, b2 ∈ B
}
, PUD of the erosion of the hierarchy εX . The adjunct

dilation δX (x, y) of the dendrogram is defined by the erosion of its PUD

εχ(x, y) =
︷ ︸︸ ︷∧

{χ(x− b1, y − b2) | b1, b2 ∈ B} .
The couple (εX , δX) forms an adjunction for the partial hierarchies.

4.4 Ordering the Adjunctions on Partial Hierarchies or Partitions

Both adjunctions established above are ordered as:

–
∨

{χ(p+ b, q + b) | b ∈ B} ≤
∨

{χ(p+ b1, q + b2) | b1, b2 ∈ B} , showing
that the partial hierarchy εX is coarser than the partial hierarchy X �B

–
︷ ︸︸ ︷∧

{χ(p− b1, q − b2) | b1, b2 ∈ B} ≤
︷ ︸︸ ︷∧

{χ(p− b, q − b) | b ∈ B} showing that
the partial hierarchy δX is finer than the partial hierarchy X ⊕B

A

B C

D E F

J G
IH

Fig. 5. A dendrogram

100 F. Meyer

If the origin belongs to the structuring element we have the following order
relations between the partial hierarchies εX ≤ X �B ≤ X ≤ X ⊕B ≤ δX .

5 Conclusion

We have established two adjunctions for partial hierarchies, also valid for hi-
erarchies, partitions and partial partitions through the associated PUD. The
adjustment of the supports is treated automatically thanks to the introduction
of aliens. Aliens and singletons have distinct definitions and distinct fates in the
transformations. The morphological corpus can now be derived from these ad-
junctions. Iterating erosions or dilations increase their sizes. An erosion followed
by its adjunct dilation produces an opening γ, a dilation followed by its adjunct
erosion a closing ϕ. The classical filters γϕ, ϕγ, γϕγ, ϕγϕ may then be derived.
Alternate sequential filters may be obtained by concatenating alternatively open-
ings and closings of increasing sizes. One may also imagine geodesic dilations of
hierarchies, by iterating an elementary geodesic dilation of a hierarchy under a
hierarchy : δX ∧ Y and εX ∨ Y.

References

1. Benzécri, J.P.: L’analyse des données 1. La taxinomie, ch. 3, pp. 119–153. Dunod
(1973)

2. Heijmans, H.: Connected morphological operators for binary images. Computer
Vision and Image Understanding 73(1), 99–120 (1999)

3. Matheron, G.: Filters and lattices. In: Serra, J. (ed.) Mathematical Morphology
Volume II: theoretical advances. Academic Press, London (1988)

4. Meyer, F.: An overview of morphological segmentation. International Journal of
Pattern Recognition and Artificial Intelligence 17(7), 1089–1118 (2001)

5. Ronse, C.: Partial partitions, partial connections and connective segmentation.
J. Math. Imaging Vis. 32(2), 97–125 (2008)

6. Ronse, C.: Reconstructing masks from markers in non-distributive lattices. Appl.
Algebra Eng. Commun. Comput. 19, 51–85 (2008)

7. Ronse, C.: Adjunctions on the lattices of partitions and of partial partitions. Appl.
Algebra Eng., Commun. Comput. 21(5), 343–396 (2010)

8. Salembier, P., Garrido, L.: Connected operators based on region-tree pruning. In:
Goutsias, J., Vincent, L., Bloomberg, D.S. (eds.) Mathematical Morphology and
its Applications to Image and Signal Processing, vol. 18, pp. 169–178. Springer,
US (2002)

9. Serra, J. (ed.): Image Analysis and Mathematical Morphology. II: Theoretical
Advances. Academic Press, London (1988)

10. Serra, J.: Morphological operators for the segmentation of colour images. In:
Bilodeau, M.S.M., Meyer, F. (eds.) Space, structure, and randomness. Contribu-
tions in honor of Georges Matheron in the fields of geostatistics, random sets, and
mathematical morphology. Lecture Notes in Statistics, vol. 183, pp. 223–255, xviii,
395 p. Springer, New York (2005)

11. Serra, J.: A lattice approach to image segmentation. J. Math. Imaging Vis. 24,
83–130 (2006)

A Continuous-Time Quantum Walk Kernel

for Unattributed Graphs

Luca Rossi1, Andrea Torsello1, and Edwin R. Hancock2

1 Department of Environmental Science, Informatics and Statistics,
Ca’ Foscari University of Venice, Italy
{lurossi,torsello}@dsi.unive.it

2 Department of Computer Science, University of York, YO10 5GH, UK
edwin.hancock@york.ac.uk

Abstract. Kernel methods provide a way to apply a wide range of learn-
ing techniques to complex and structured data by shifting the represen-
tational problem from one of finding an embedding of the data to that
of defining a positive semidefinite kernel. In this paper, we propose a
novel kernel on unattributed graphs where the structure is character-
ized through the evolution of a continuous-time quantum walk. More
precisely, given a pair of graphs, we create a derived structure whose
degree of symmetry is maximum when the original graphs are isomor-
phic. With this new graph to hand, we compute the density operators of
the quantum systems representing the evolutions of two suitably defined
quantum walks. Finally, we define the kernel between the two original
graphs as the quantum Jensen-Shannon divergence between these two
density operators. The experimental evaluation shows the effectiveness
of the proposed approach.

Keywords: Graph Kernels, Graph Classification, Continuous-Time
Quantum Walk, Quantum Jensen-Shannon Divergence.

1 Introduction

Graph-based representations have become increasingly popular due to their abil-
ity to characterize in a natural way a large number of systems which are best
described in terms of their structure. Concrete examples include the use of graphs
to represent shapes [1], metabolic networks [2], protein structure [3], and road
maps [4]. Unfortunately, our ability to analyse this wealth of data is severely
limited by the restrictions posed by standard pattern recognition techniques,
which usually require the graphs to be first embedded into a vectorial space,
a procedure which is far from being trivial. The reason for this is that there
is no canonical ordering for the nodes in a graph and a correspondence order
must be established before analysis can commence. Moreover, even if a corre-
spondence order can be established, graphs do not necessarily map to vectors of
fixed length, as the number of nodes and edges can vary.

Kernel methods [5], whose best known example is furnished by support vector
machines (SVMs) [6], provide a neat way to shift the problem from that of

W.G. Kropatsch et al. (Eds.): GbRPR 2013, LNCS 7877, pp. 101–110, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

102 L. Rossi, A. Torsello, and E.R. Hancock

finding an embedding to that of defining a positive semidefinite kernel, via the
well-known kernel trick. In fact, once we define a positive semidefinite kernel
k : X × X → R on a set X , then we know that there exists a map φ : X →
H into a Hilbert space H , such that k(x, y) = φ(x)
φ(y) for all x, y ∈ X .
Thus, any algorithm that can be formulated in terms of scalar products of the
φ(x)s can be applied to a set of data on which we have defined our kernel.
As a consequence, we are now faced with the problem of defining a positive
semidefinite kernel on graphs rather than computing an embedding. However,
due to the rich expressiveness of graphs, also this task has proven to be difficult.

Many different graph kernels have been proposed in the literature [7–9]. Graph
kernels are generally instances of the family of R-convolution kernels introduced
by Haussler [10]. The fundamental idea is that of defining a kernel between two
discrete objects by decomposing them and comparing some simpler substruc-
tures. For example, Gärtner et al. [7] propose to count the number of common
random walks between two graphs, while Borgwardt and Kriegel [8] measure the
similarity based on the shortest paths in the graphs. Shervashidze et al. [9], on
the other hand, count the number of graphlets, i.e. subgraphs with k nodes. Note
that these kernels can be defined both on unattributed and attributed graphs,
although we will restrict our analysis to the simpler case of unattributed graphs,
while the more general case will be the focus of future work. Another interest-
ing approach is that of Bai and Hancock [11], where the authors investigate the
possibility of defining a graph kernel based on the Jensen-Shannon kernel.

In this paper, we introduce a novel kernel on unattributed graphs where we
probe the graph structure through the evolution of a continuous-time quantum
walk [12, 13]. In particular, we are taking advantage of the fact that the in-
terference effects introduced by the quantum walk seem to be enhanced by the
presence of symmetrical motifs in the graph [14, 15]. To this end, we define a
walk onto a new structure that is maximally symmetric when the original graphs
are isomorphic. Finally, to define the kernel we make use of the quantum Jensen-
Shannon divergence, a measure which has recently been introduced as a means
to compute the distance between quantum states [16, 17].

The remainder of this paper is organized as follows: Section 2 provides an
essential introduction to the basic terminology required to understand the pro-
posed quantum mechanical framework. With these notions to hand, we introduce
our graph kernel in Section 3. Section 4 illustrates the experimental results, while
the conclusions are presented in Section 5.

2 Quantum Mechanical Background

Quantum walks are the quantum analogue of classical random walks [13]. In
this paper we consider only continuous-time quantum walks, as first introduced
by Farhi and Gutmann in [12]. Given a graph G = (V,E), the state space
of the continuous-time quantum walk defined on G is the set of the vertices
V of the graph. Unlike the classical case, where the evolution of the walk is
governed by a stochastic matrix (i.e. a matrix whose columns sum to unity), in

A Continuous-Time Quantum Walk Kernel for Unattributed Graphs 103

the quantum case the dynamics of the walker is governed by a complex unitary
matrix i.e., a matrix that multiplied by its conjugate transpose yields the identity
matrix. Hence, the evolution of the quantum walk is reversible, which implies
that quantum walks are non-ergodic and do not possess a limiting distribution.
Using Dirac notation, we denote the basis state corresponding to the walk being
at vertex u ∈ V as |u〉. A general state of the walk is a complex linear combination
of the basis states, such that the state of the walk at time t is defined as

|ψt〉 =
∑
u∈V

αu(t) |u〉 (1)

where the amplitude αu(t) ∈ C and |ψt〉 ∈ C|V | are both complex.
At each point in time the probability of the walker being at a particular vertex

of the graph is given by the square of the norm of the amplitude of the relative
state. More formally, let Xt be a random variable giving the location of the
walker at time t. Then the probability of the walker being at the vertex u at
time t is given by

Pr(Xt = u) = αu(t)α
∗
u(t) (2)

where α∗
u(t) is the complex conjugate of αu(t). Moreover αu(t)α

∗
u(t) ∈ [0, 1], for

all u ∈ V , t ∈ R+, and in a closed system
∑

u∈V αu(t)α
∗
u(t) = 1.

Recall that the adjacency matrix of the graph G has elements

Auv =

{
1 if (u, v) ∈ E
0 otherwise

(3)

The evolution of the walk is governed by Schrödinger equation, where we take
the Hamiltonian of the system to be the graph adjacency matrix, which yields

d

dt
|ψt〉 = −iA |ψt〉 (4)

Given an initial state |ψ0〉, we can solve Equation 4 to determine the state vector
at time t

|ψt〉 = e−iAt |ψ0〉 = Φe−iΛtΦ
 |ψ0〉 , (5)

where A = ΦΛΦT is the spectral decomposition of the adjacency matrix.

2.1 Quantum Jensen-Shannon Divergence

A pure state is defined as a state that can be described by a ket vector |ψi〉.
Consider a quantum system that can be in a number of states |ψi〉 each with
probability pi. The system is said to be in the ensemble of pure states {|ψi〉 , pi}.
The density operator (or density matrix) of such a system is defined as

ρ =
∑
i

pi |ψi〉 〈ψi| (6)

104 L. Rossi, A. Torsello, and E.R. Hancock

The Von Neumann entropy [18] of a density operator ρ is

HN (ρ) = −Tr(ρ log ρ) = −
∑
j

λj logλj , (7)

where the λjs are the eigenvalues of ρ. With the Von Neumann entropy to hand,
we can define the quantum Jensen-Shannon divergence between two density
operators ρ and σ as

DJS(ρ, σ) = HN

(ρ+ σ

2

)
− 1

2
HN (ρ) − 1

2
HN (σ) (8)

This quantity is always well defined, symmetric and negative definite [19]. It
can also be shown that DJS(ρ, σ) is bounded, i.e., 0 ≤ DJS(ρ, σ) ≤ 1. Let
ρ =

∑
i piρi be a mixture of quantum states ρi, with pi ∈ R+ such that

∑
i pi = 1,

then we can prove that

HN (
∑
i

piρi) ≤ HS(pi) +
∑
i

piHN (ρi) (9)

where the equality is attained if and only if the states ρi have support on or-
thogonal subspaces. By setting p1 = p2 = 0.5, we see that

DJS(ρ, σ) = HN

(ρ+ σ

2

)
− 1

2
HN (ρ) − 1

2
HN (σ) ≤ 1 (10)

Hence DJS is always less or equal than 1, and the equality is attained only if ρ
and σ have support on orthogonal subspaces.

3 QJSD Kernel

Given two graphs G1(V1, E1) and G2(V2, E2) we build a new graph G = (V , E)
where V = V1 ∪ V2, E = E1 ∪ E2 ∪ E12, and (u, v) ∈ E12 only if u ∈ V1 and
v ∈ V2.With this new structure to hand, we define two continuous-time quantum
walks

∣∣ψ−
t

〉
=
∑

u∈V ψ−
0u |u〉 and

∣∣ψ+
t

〉
=
∑

u∈V ψ+
0u |u〉 on G with starting states

ψ−
0u =

{
+ du

C if u ∈ G1

− du

C if u ∈ G2
ψ+
0u =

{
+ du

C if u ∈ G1

+ du

C if u ∈ G2
(11)

where du is the degree of the node u and C is the normalisation constant such
that the probabilities sum to one.

We let the two quantum walks evolve until a time T and we define the average
density operators ρT and σT over this time as

ρT =
1

T

∫ T

0

∣∣ψ−
t

〉 〈
ψ−
t

∣∣ dt σT =
1

T

∫ T

0

∣∣ψ+
t

〉 〈
ψ+
t

∣∣ dt (12)

In other words, we defined two mixed systems with equal probability of being in
any of the pure states defined by the quantum walks evolutions.

A Continuous-Time Quantum Walk Kernel for Unattributed Graphs 105

Then, given two unattributed graphs G1 and G2, we define the quantum
Jensen-Shannon kernel kT (G1, G2) between them as

kT (G1, G2) = DJS(ρT , σT) (13)

where ρT and σT are the density operators defined as in Eq. 12. Note that this
kernel is parametrised by the time T . As it is not clear how we should set this
parameter, in this paper we propose to let T → ∞. However, in Section 4 we
will show that a proper choice of T can yield an increased average accuracy in
an SVM classification task.

We now proceed to show some interesting properties of our kernel. First,
however, we need to prove the following

Lemma 1. If G1 and G2 are two isomorphic graphs, then ρT and σT have
support on orthogonal subspaces.

Proof. We need to prove that

(ρT)
†σT =

1

T 2

∫ T

0

ρt1 dt1

∫ T

0

σt2 dt2 = 0 (14)

where 0 is the matrix of all zeros, ρt =
∣∣ψ−

t

〉 〈
ψ−
t

∣∣ and σt =
∣∣ψ+

t

〉 〈
ψ+
t

∣∣. Note
that if ρ†t1σt2 = 0 for every t1 and t2, then (ρT)

†σT = 0. We now prove that if

G1 is isomorphic to G2 then
〈
ψ−
t1

∣∣ψ+
t2

〉
= 0 for every t1 and t2.

Let U = e−iAt be the unitary evolution operator of the quantum walk. If
t1 = t2 = t, then

〈
ψ−
0

∣∣ (U t)†U t
∣∣ψ+

0

〉
= 0 since (U t)†U t is the identity matrix

and the initial states are orthogonal by construction. On the other hand, if
t1
= t2, we have

〈
ψ−
0

∣∣UΔt
∣∣ψ+

0

〉
= 0 where Δt = t2 − t1. To conclude the proof

we rewrite the previous equation as

〈
ψ−
0

∣∣UΔt
∣∣ψ+

0

〉
=
∑
k

ψ+
k0

∑
l

ψ+
l0U

Δt
lk

=
∑
k1

ψ+
k10

∑
l

ψ+
l0U

Δt
lk1

−
∑
k2

ψ+
k20

∑
l

ψ+
l0U

Δt
lk2

=
∑
l

ψ+
l0

(∑
k1

ψ+
k10

UΔt
lk1

−
∑
k2

ψ+
k20

UΔt
lk2

)
= 0 (15)

where the indices l, k, k1 and k2 run over the nodes of G, G1 and G2 respectively.
To see that Eq. 15 holds, note that U is a symmetric matrix and it is invariant
to graph symmetries, i.e., if u and v are symmetric then UΔt

uu = UΔt
vv , and that

if G1 and G2 are isomorphic, then k1 = k2 and ψ+
1:k10

= ψ+
k1+1:k20

.

Corollary 1. Given a pair of graphs G1 and G2, the kernel satisfies the follow-
ing properties: 1) 0 ≤ kT (G1, G2) ≤ 1 and 2) if G1 and G2 are isomorphic, then
kT (G1, G2) = 1.

106 L. Rossi, A. Torsello, and E.R. Hancock

Proof. The first property is trivially proved by noting that, according to Eq. 13,
the kernel between G1 and G2 is defined as the quantum Jensen-Shannon di-
vergence between two density operators, and then recalling that the value of
quantum Jensen-Shannon divergence is bounded to lie between 0 and 1.

The second property follows again from Eq. 13 and Theorem 1. It is sufficient
to note that the quantum Jensen-Shannon divergence reaches its maximum value
if and only if the density operators have support on orthogonal spaces.

Unfortunately we cannot prove that our kernel is positive semidefinite, but both
empirical evidence and the fact that the Jensen-Shannon Divergence is negative
semidefinite on pure quantum states [19] while our graph similarity is maximal
on orthogonal states suggest that it might be.

3.1 Kernel Computation

We conclude this section with a few remarks on the computational complexity
of our kernel. Recall that |ψt〉 = e−iAt |ψ0〉, then we rewrite Eq. 12 as

ρT =
1

T

∫ T

0

e−iAt |ψ0〉 〈ψ0| eiAt dt (16)

Since e−iAt = Φe−iΛtΦ
, we can rewrite the previous equation in terms of the
spectral decomposition of the adjacency matrix,

ρT =
1

T

∫ T

0

Φe−iΛtΦ
 |ψ0〉 〈ψ0|ΦeiΛtΦ
 dt (17)

The (r, c) element of ρT can be computed as

ρT (r, c) =
1

T

∫ T

0

(∑
k

∑
l

φrke
−iλktφlkψ

−
0l

)(∑
m

∑
n

ψ†
0mφmne

iλntφcn

)
dt

(18)

Let ψ̄k =
∑

l φlkψ0l and ψ̄n =
∑

m φmnψ
†
0n, then

ρT (r, c) =
1

T

∫ T

0

(∑
k

φrke
−iλktψ̄k

∑
n

φcne
iλntψ̄n

)
dt (19)

which can be finally rewritten as

ρT (r, c) =
∑
k

∑
n

φrkφcnψ̄kψ̄n
1

T

∫ T

0

ei(λn−λk)t dt (20)

If we let T → ∞, Eq. 20 further simplifies to

ρT (r, c) =
∑
λk∈Λ̃

∑
m

∑
n

φ(λk)r,mφ(λk)c,nψ̄mψ̄n (21)

where Λ̃ is the set of unique eigenvalues of A and φ(λk) is the matrix whose
columns are the eigenvectors associated with λk. As a consequence, we see that
the complexity of computing the QJSD kernel is upper bounded by that of
computing the eigendecomposition of G, i.e. O(|V|3).

A Continuous-Time Quantum Walk Kernel for Unattributed Graphs 107

Fig. 1. Two-dimensional MDS embeddings of the synthetic data (top row) on different
distance matrices (bottom row). From left to right, the distance is computed as the edit
distance between the graphs, the distance between the graph spectra and the distance
associated with the QJSD kernel.

4 Experimental Results

In this section, we evaluate the performance of our kernel and we compare it with
a number of well-known alternative graph kernels, namely the classic random
walk kernel [7], the shortest-path kernel [8] and a set of graphlet kernels [9]. We
test different variants of the graphlet kernel, where we vary the graphlet sizes
k ∈ {3, 4} and the type of graphlets (all possible size k graphlets vs only those
which are fully connected).

The experiments are performed on three different standard dataset, namely
MUTAG, Enzymes and PPI. Table 1 reports some statistics about these datasets.
MUTAG is a dataset of 188 mutagenic aromatic and heteroaromatic compounds
labeled according to whether or not they have a mutagenic effect on the Gram-
negative bacterium Salmonella typhimurium. Enzymes is a dataset of graphs
representing protein tertiary structures that consists of 600 enzymes from the
BRENDA enzyme database. Finally, the PPI dataset consists of protein-protein
interaction (PPIs) networks related to histidine kinase from two different groups:
40 PPIs from Acidovorax avenae and 46 PPIs from Acidobacteria. To these three
datasets, we add a fourth set of 30 synthetically generated graphs, 10 for each
class. The graphs belonging to each class were sampled from a generative model
with size 12,14 and 16 respectively. Details about the generative model can be
found in [20].

108 L. Rossi, A. Torsello, and E.R. Hancock

We first evaluate the Multidimensional Scaling embedding of the synthetic
graphs for three different distance matrices, namely the edit distance, the
distance between the graph spectra and the distance corresponding to our kernel
function. The distance between the graph spectra is computed as follows. For
each graph G with adjacency matrix A, we compute the column vector sG of
the ordered eigenvalues of A. As the graphs are of different sizes and thus their
spectra are of different lengths, the vectors are all made to be the same length
by padding zeros to the end of the shorter vector. The (i, j)th element of the
distance matrix is then dij = ||si − si||. Figure 1 shows the MDS embeddings
and the graph distance matrices. It is clear that the distance matrix associated
with our kernel has a well-defined block structure which is reflected in the MDS
embedding, where the three classes seem to be easily separable.

A second experiment uses a binary C-SVM to test the efficacy of our kernel
for classification. We perform 10-fold cross validation, where for each sample we
independently tune the value of C, the SVM regularizer constant, by considering
the training data from that sample. The process is averaged over 100 random
partitions of the data. Given this setting, we first investigate the effect of the time
parameter in the classification accuracy. Fig. 2 shows the value of the average
accuracy (± standard error) on the synthetic dataset as the time parameter T
varies. Here the red horizontal line shows the mean accuracy for T → ∞. The
plot shows that the choice of the time greatly influences the performance of
our kernel, as we can clearly see that the average accuracy reaches a maximum
before stabilizing around the asymptotic value. This should be compared with
the average accuracy that we achieve for T → ∞, which, although not optimal,
is not too far from the maximum. however, a more detailed study of the time
parameter is beyond the scope of this paper and will thus be the subject of
future work.

Finally, Table 2 reports the average classification accuracies (± standard error)
of the different kernels. As we can see, the proposed kernel achieves the best
result on three out of four datasets. The poor accuracy on the Enzymes dataset
is likely to be linked to the presence of disjoint graphs, as this will affect the
way in which the walk spreads through the graph. Note, however, that this is
a particularly hard dataset where the structures of the graphs provide limited
information about the underlying class structure. In fact, all kernels based only
on graph structure perform only marginally better than random guess, and node
and edge attributes need to be taken into account too.

Table 1. Statistics on the graph datasets

datasets # graphs # classes avg # nodes disjoint

Synth 30 3 (10 each) 13.77 N
MUTAG 188 2 (125 vs. 63) 17.93 N
Enzymes 600 6 (100 each) 32.63 Y
PPI 86 2 (40 vs. 46) 109.60 N

A Continuous-Time Quantum Walk Kernel for Unattributed Graphs 109

Fig. 2. The mean accuracy (± standard error) of the QJSD kernel as the time param-
eter T varies. The red horizontal line shows the mean accuracy for T → ∞.

Table 2. Classification accuracy (± standard error) on unattributed graph datasets.
QJSD is the proposed kernel, SP is the shortest-path kernel [8], RW is the random walk
kernel [7], while Gk (CGk) denotes the graphlet kernel computed using all graphlets
(all the connected graphlets, respectively) of size k [9].

Kernel Synth MUTAG Enzymes PPI

QJSD 85.20± 0.47 86.55± 0.15 24.20 ± 0.38 78.43± 0.30

SP 74.90 ± 0.33 85.02 ± 0.17 28.55± 0.42 66.14 ± 0.40

RW 78.53 ± 0.43 77.87 ± 0.21 22.15 ± 0.37 69.70 ± 0.30

G3 79.33 ± 0.39 82.04 ± 0.14 24.87 ± 0.22 51.95 ± 0.44

G4 83.60 ± 0.48 81.89 ± 0.13 28.60 ± 0.21 73.14 ± 0.37

CG3 56.57 ± 0.47 66.43 ± 0.08 19.92 ± 0.27 52.89 ± 0.50

CG4 81.57 ± 0.54 69.08 ± 0.15 23.05 ± 0.06 61.56 ± 0.41

5 Conclusions

In this paper, we have introduced a novel kernel on unattributed graphs where
we probe the graph structure using the time evolution of a continuous-time
quantum walk. More precisely, given a pair of graphs we computed the quan-
tum Jensen-Shannon divergence between the evolutions of two quantum walks
on a suitably defined union of the original graphs. With the quantum Jensen-
Shannon divergence to hand, we established our graph kernel. We performed
an extensive experimental evaluation and we demonstrated the effectiveness of
the proposed approach. Future work will focus on incorporating node and edge
labels information, as well as studying the role of the time parameter more
in depth.

110 L. Rossi, A. Torsello, and E.R. Hancock

Acknowledgments. Edwin Hancock was supported by a Royal Society Wolfson
Research Merit Award.

References

1. Siddiqi, K., Shokoufandeh, A., Dickinson, S., Zucker, S.: Shock graphs and shape
matching. International Journal of Computer Vision 35, 13–32 (1999)

2. Jeong, H., Tombor, B., Albert, R., Oltvai, Z., Barabási, A.: The large-scale
organization of metabolic networks. Nature 407, 651–654 (2000)

3. Ito, T., Chiba, T., Ozawa, R., Yoshida, M., Hattori, M., Sakaki, Y.: A comprehen-
sive two-hybrid analysis to explore the yeast protein interactome. Proceedings of
the National Academy of Sciences 98, 4569 (2001)

4. Kalapala, V., Sanwalani, V., Moore, C.: The structure of the united states road
network. University of New Mexico (2003) (preprint)

5. Schölkopf, B., Smola, A.J.: Learning with kernels: Support vector machines,
regularization, optimization, and beyond. MIT Press (2001)

6. Vapnik, V.: Statistical learning theory (1998)
7. Gärtner, T., Flach, P.A., Wrobel, S.: On graph kernels: Hardness results and

efficient alternatives. In: Schölkopf, B., Warmuth, M.K. (eds.) COLT/Kernel 2003.
LNCS (LNAI), vol. 2777, pp. 129–143. Springer, Heidelberg (2003)

8. Borgwardt, K., Kriegel, H.: Shortest-path kernels on graphs. In: Fifth IEEE
International Conference on Data Mining, p. 8. IEEE (2005)

9. Shervashidze, N., Vishwanathan, S., Petri, T., Mehlhorn, K., Borgwardt, K.:
Efficient graphlet kernels for large graph comparison. In: Proceedings of the In-
ternational Workshop on Artificial Intelligence and Statistics. Society for Artificial
Intelligence and Statistics (2009)

10. Haussler, D.: Convolution kernels on discrete structures. Technical report,
UC Santa Cruz (1999)

11. Bai, L., Hancock, E.: Graph kernels from the Jensen-Shannon divergence. Journal
of Mathematical Imaging and Vision, 1–10 (2012)

12. Farhi, E., Gutmann, S.: Quantum computation and decision trees. Physical Review
A 58, 915 (1998)

13. Kempe, J.: Quantum random walks: an introductory overview. Contemporary
Physics 44, 307–327 (2003)

14. Emms, D., Wilson, R., Hancock, E.: Graph embedding using quantum commute
times. Graph-Based Representations in Pattern Recognition, 371–382 (2007)

15. Rossi, L., Torsello, A., Hancock, E.R.: Approximate axial symmetries from
continuous time quantum walks. In: Gimel’farb, G., Hancock, E., Imiya, A.,
Kuijper, A., Kudo, M., Omachi, S., Windeatt, T., Yamada, K. (eds.) SSPR &
SPR 2012. LNCS, vol. 7626, pp. 144–152. Springer, Heidelberg (2012)

16. Majtey, A., Lamberti, P., Prato, D.: Jensen-Shannon divergence as a measure of
distinguishability between mixed quantum states. Physical Review A 72, 052310
(2005)

17. Lamberti, P., Majtey, A., Borras, A., Casas, M., Plastino, A.: Metric character of
the quantum Jensen-Shannon divergence. Physical Review A 77, 052311 (2008)

18. Nielsen, M., Chuang, I.: Quantum computation and quantum information.
Cambridge University Press (2010)

19. Briët, J., Harremoës, P.: Properties of classical and quantum jensen-shannon
divergence. Physical review A 79, 52311 (2009)

20. Torsello, A., Rossi, L.: Supervised learning of graph structure. Similarity-Based
Pattern Recognition, 117–132 (2011)

Relevant Cycle Hypergraph Representation

for Molecules

Benóıt Gaüzère1, Luc Brun1, and Didier Villemin2

1 GREYC UMR CNRS 6072, Caen, France
2 LCMT UMR CNRS 6507, Caen, France

{benoit.gauzere,didier.villemin,luc.brun}@ensicaen.fr

Abstract. Chemoinformatics aims to predict molecule’s properties
through informational methods. Some methods base their prediction
model on the comparison of molecular graphs. Considering such a molec-
ular representation, graph kernels provide a nice framework which al-
lows to combine machine learning techniques with graph theory. Despite
the fact that molecular graph encodes all structural information of a
molecule, it does not explicitly encode cyclic information. In this paper,
we propose a new molecular representation based on a hypergraph which
explicitly encodes both cyclic and acyclic information into one molecu-
lar representation called relevant cycle hypergraph. In addition, we pro-
pose a similarity measure in order to compare relevant cycle hypergraphs
and use this molecular representation in a chemoinformatics prediction
problem.

Keywords: Graph Kernel, Chemoinformatics, Relevant Cycles.

1 Introduction

Chemoinformatics consists in predicting molecule’s properties from their simi-
larity. Most of existing methods, called fingerprint methods, encode molecules as
collections of chemical descriptors and deduce similarity between molecules from
the similarity of their collections of descriptors. Another approach consists in us-
ing the molecular graph G = (V,E, μ, ν) representation associated to a molecule.
Unlabeled graph (V,E) encodes molecular structural information while labelling
function μ maps each vertex to an atom’s label corresponding to its chemical
element and labelling function ν characterizes each edge by the valency (single,
double, triple or aromatic) of the corresponding atomic bond which connects
two atoms. Hydrogen atoms are implicitly encoded into molecular graph repre-
sentation using the valency of atoms.

Considering molecular graph representation, similarity between molecules can
be deduced from the similarity of their molecular graphs. Graph kernels can be
understood as symmetric graph similarity measures. Using a semi definite posi-
tive kernel, the value k(G,G′), where G and G′ encode two graphs, corresponds
to a scalar product between two vectors ψ(G) and ψ(G′) in an Hilbert space.
Graph kernels thus provide a natural connection between structural and statis-
tical pattern recognition fields.

W.G. Kropatsch et al. (Eds.): GbRPR 2013, LNCS 7877, pp. 111–120, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

112 B. Gaüzère, L. Brun, and D. Villemin

A large family of graph kernels defined in chemoinformatics is based on bag
of patterns. These methods extract a bag of patterns from graphs and deduce
similarity between graphs from similarity between their bags. Most of existing
graph kernels based on bags of patterns are defined on linear patterns [8]. Such
methods are generally limited by the lack of expressiveness of linear patterns
to encode structural information of graphs. In order to encode more structural
information, some methods are defined on non-linear patterns. For example, tree-
pattern kernel [9] is based on an implicit enumeration of tree-patterns, i.e. trees
where a vertex can appear more than once. Another approach, called treelet
kernel [4], computes an explicit enumeration of a limited set of subtrees which
allows to perform an a-posteriori feature weighting step [5]. Others graph kernels
aim to transform a molecular graph into a set of chemical relevant groups [3]
or a set of cycles [7,6] but these methods do not define a valid kernel or do not
allow to encode relationships between cyclic and acyclic parts of a molecule.

In this paper, we propose to define a new molecular representation encoded
by an hypergraph which aims to encode adjacency relationships between cyclic
and acyclic parts of a molecule. After a presentation of existing methods to
encode molecular cyclic information in Section 2, we define in Section 3 our new
molecular representation. In addition, we propose in Section 4 a method to apply
treelet kernel on this new molecular representation. This method allows us to
use our new molecular representation to predict molecule’s properties. Section 5
shows results obtained by our contribution to a chemoinformatics problem.

2 Encoding Cyclic Information

Most of existing graph kernels based on bags of patterns applied to chemoin-
formatics are based on the molecular graph representation (Section 1). Whereas
this representation allows to encode most of the structural information of a given
molecule, it does not explicitly encode some special combinations of atoms, such
as cycles, which may have a particular influence on molecule’s properties. In or-
der to highlight such particular groups of atoms, Frölich et al. [3] have proposed
to encode a molecule by a set of predefined subgraphs composing the associated
molecule. These predefined subgraphs correspond to chemical relevant groups of
atoms and are generally defined by cycles or connected atom groups. Then, simi-
larity between molecules is deduced by an optimal matching between two sets of
relevant groups. Unfortunately, the kernel defined from this optimal assignment
may lead to a non positive definite kernel [12], hence restricting the application
field of this kernel.

Some other approaches aim to encode a molecule by a subset of its cycles. A
first approach, proposed by Horváth [7], consists in computing the set of simple
cycles of a molecule. Then, similarity between two molecules is defined as a sum
of two kernels encoding respectively the cyclic and acyclic similarities between
both molecules. Similarity between cycles is defined by the number of common
simple cycles and similarity between acyclic parts by a tree-pattern kernel [9]. An
extension of this method only computes the set of relevant cycles [6], as defined

Relevant Cycle Hypergraph Representation for Molecules 113

by Vismara [13], of the molecular graph hence providing a better computational
efficiency. Whereas this approach provides an explicit encoding of cyclic infor-
mation, the cyclic system is encoded by a set of cycles which does not encode
relationships between cycles.

In order to encode additional information, Gaüzère et al. [5] have proposed
to encode the set of relevant cycles and their adjacency relationships within
the relevant cycle graph. The similarity between molecules can then be deduced
by combining a kernel on relevant cycle graphs which encodes cyclic system
similarity and a kernel on molecular graphs which encodes the similarity of
molecules based on atom’s relationships. Despite the fact that this approach leads
to good results on experiments involving cyclic molecules, this representation, as
the one of Horváth [6], separates cyclic and acyclic information by defining two
different molecular representations. Then, global similarity between molecules
is computed using two distinct similarity measures, each of them being applied
on one representation. This separation induces a loss of adjacency relationships
between cyclic and acyclic parts of molecules. In the following, we propose a new
molecular representation which aims to merge cyclic and acyclic information into
one molecular representation and hence encodes adjacency relationships between
cyclic and acyclic parts.

3 Encoding Topological Relationships between Cyclic
and Acyclic Parts

In order to encode adjacency relations between cyclic and acyclic parts of a
molecule, we propose to define a molecular representation which aims to repre-
sent a set of atoms encoding a cycle as a single vertex. For any graph G, a simple
cycle is defined as a subgraph C = (V ′, E′, μ, ν) of G = (V,E, μ, ν) where each
vertex v ∈ V ′ has a degree equal to 2. Each cycle C ⊆ G can be represented as
a vector C ∈ {0, 1}|E| where Ci equals 1 if i is an edge of C and 0 otherwise.
Using this vector representation, the set of vectors encoding cycles of G defines
a vector space [13]. Given this vector space, the union of all bases of minimum
length defines the set of relevant cycles, denoted CR. The length of a base is
defined as the sum of lengths of its cycles.

Adjacency relationships between relevant cycles can be encoded by the rele-
vant cycle graph [5]. This graph is defined as GC = (CR, ECR , μCR , νCR) where
each vertex c ∈ CR corresponds to a relevant cycle. Each vertex c is associated
to the set of vertices V (c) corresponding to the set of atoms included within
c and the set of edges E(c) corresponding to the set of atomic bonds forming
cycle c. By extension, E(CR) denotes the set of atomic bonds belonging to a
relevant cycle of CR. An edge (c1, c2) is in ECR if V (c1) ∩ V (c2)
= ∅, i.e. if c1
and c2 share at least one vertex of the molecular graph (Figure 1). The labelling
function μCR(c) is defined as a canonical code of the cyclic sequence of vertex
and edge labels defining c. In the same way, the label function νCR(e) of an
edge e = (c, c′) is defined as a canonical code of the path common to c and c′.
Despite the fact that this relevant cycle graph encodes adjacency information

114 B. Gaüzère, L. Brun, and D. Villemin

N

N

O

O

O
(a) Molecular graph. (b) Relevant cycle graph.

Fig. 1. A cyclic molecular graph and its relevant cycle graph representation

of the molecular cyclic system, all adjacency information involving vertices and
edges of a molecular graph which are not included within a cycle is missing. For
example, acyclic parts connected to C1, C3 and C4 and connection between C2

and C4 in Figure 1(a) are not encoded within the associated relevant cycle graph
representation (Figure 1(b)).

Therefore, in order to add this information into our molecular representation,
a first approach consists in adding missing vertices and edges to our relevant
cycle graph. Unfortunately, such an approach can not handle the case where an
atom is connected to two distinct relevant cycles. As shown in Figure 2(a), the
atom labeled O is connected by an unique edge to two distinct cycles in the
molecular graph representation. This adjacency relationship can not be encoded
by a simple graph where an edge connects only two vertices. Therefore, in order to
handle such relationships, we propose to define a new hypergraph representation
of the molecular graph.

A directed hypergraph [1,2] H = (V,E) is defined as a set of vertices V
and a set E = Ee ∪ Eh encoding the union of a set of edges Ee ⊂ V × V
and a set of hyperedges Eh ⊂ P(V) × P(V) where P(V) denotes the set of all
subsets of V . An ordered hyperedge e = (su, sv) with su = {u1, . . . , ui} and
sv = {v1, . . . , vj} defines an adjacency relation between sets {u1, . . . , ui} and
{v1, . . . , vj}, as illustrated in Figure 2(b). In the following, we assume that if
∃e = (s1, s2) ∈ E then ∃e′ = (s2, s1) ∈ E and e and e′ are considered as a same
unique hyperedge. Such a definition allows us to represent relationships between
an acyclic atom and a set of cycles, each cycle being encoded as a vertex.

A molecular graph G = (V,E, μ, ν) can now be encoded as a relevant cycle
hypergraph HRC(G) = (VRC , ERC). Within relevant cycle graph representation,
the set of vertices CR encodes the set of atoms V (CR) and the set of atomic
bonds E(CR) which belong to a cycle. Considering such a representation, miss-
ing molecular graph information corresponds to atoms and atomic bonds not
included within a cycle. These sets are respectively defined by the complement

Relevant Cycle Hypergraph Representation for Molecules 115

O
(a) Acyclic atom connected to two
cycles by an unique edge

O
(b) Hyperedge e representing origi-
nal edge. e = ({C1, C2}, O).

Fig. 2. Special case where a graph can not encode the representation based on relevant
cycle graph

of V (CR) and E(CR) in V and E. Therefore, in order to include all atom infor-
mation into our relevant cycle hypergraph, VRC is defined by the union of two
subsets:

1. A first subset CR corresponding to the set of relevant cycles,
2. and a second subset V − V (CR) corresponding to the set of atoms not in-

cluded within a cycle.

Considering set of vertices VRC , we define a function p : V → P(VRC) defined
as p(u) = {u} if u /∈ V (CR) and {c ∈ CR | u ∈ V (c)} if not. This function p
encodes the print of vertex v ∈ V on VRC . In the same way as for vertices, the
set of hyperedges ERC is composed of two subsets:

1. A set of edges Ee
RC composed of:

– edges between relevant cycle vertices, corresponding to the set of edges
ECR ,

– edges e = (p(u), p(v)) such that (u, v) ∈ E − E(CR), |p(u)| = 1 and
|p(v)| = 1. This set of edges corresponds to edges of molecular graph
G connecting two acyclic atoms or connecting a single relevant cycle to
another single relevant cycle (C2 and C4 in Figure 1) or an acyclic part
of G (C3 and N in Figure 1),

2. and a set of hyperedges e = (p(u), p(v)) ∈ Eh
RC such that (u, v) ∈ E−E(CR),

|p(u)| > 1 or |p(v)| > 1. This set of hyperedges corresponds to special cases
where an edge connects at least two distinct relevant cycles to another part
of the molecule (Figure 2). This edge is thus encoded by an hyperedge which
connects the two sets of vertices p(u) and p(v).

This molecular hypergraph representation (Figure 3(c)) encodes all atoms v ∈ V
either by a vertex encoding a cycle or by v itself if v /∈ V (CR). In the same way,

116 B. Gaüzère, L. Brun, and D. Villemin

each atomic bond e ∈ E is encoded within our molecular hypergraph represen-
tation. In addition, we note that set of vertices incident to an hyperedge defines
a clique:

Theorem 1. Let be a graph G = (V,E) and its associated relevant cycle hyper-
graph HRC(G) = (VRC , ERC). If ∃e = (s1, s2) ∈ Eh

RC and c1, c2 ∈ VRC such
that {c1, c2} ⊆ s1 or {c1, c2} ⊆ s2, then (c1, c2) ∈ Ee

RC , i.e. c1 is adjacent to c2.

Proof. If c1 ∈ s1 and c2 ∈ s1, then by construction of Eh
RC , ∃e = (u, v) ∈ E such

that {c1, c2} ⊆ p(u) = s1. By definition of function p and since c1, c2 ∈ CR, it
holds that u ∈ V (c1) ∩ V (c2). By definition of relevant cycle graph, (c1, c2) ∈
ECR ⊂ Ee

RC . The proof for c1 ∈ s2 and c2 ∈ s2 is similar.

Algorithm 1 describes the different steps required to transform molecular graph
G into its associated relevant cycle hypergraph HRC . The first step consists in
computing the relevant cycle graph of G, as described in [5], and initializing our
hypergraph by this graph (Algo. 1, Lines 3 and 4). Then, the set of acyclic parts
is included to the current graph representation (Algo. 1, Lines 6 and 7). Finally,
hyperedges are included into our relevant cycle hypergraph (Algo. 1, Line 9).

4 Similarity between Relevant Cycle Hypergraphs

The previous section defines a molecular representation which provides a new
way to encode adjacency relations between cyclic and acyclic parts of a molecule.
In order to apply QSAR methods on this molecular representation, we have to
define a similarity measure between relevant cycle hypergraphs. Graph kernels,
such as treelet kernel [4], are only defined on molecular graphs and can not be ap-
plied directly on an hypergraph representation of a molecule. In this section, we
propose to adapt treelet kernel to the comparison of relevant cycle hypergraphs.

Treelet kernel is a graph kernel defined as a kernel between two sets of pat-
terns extracted from both graphs to be compared. The set of extracted patterns,
denoted T and called treelets, is composed of all labeled trees with a number of

Algorithm 1. Computing relevant cycle hypergraph from molecular graph.

Require: G = (V,E)
Ensure: HRC = (VRC , ERC), ERC = Ee

RC ∪ Eh
RC

1: GC(CR, ECR) = GC(G) {Relevant cycle graph}
2: {Adding all information included within cycles}
3: VRC = CR
4: Ee

RC = ECR
5: {Adding information not included within a cycle}
6: VRC = VRC ∪ {v /∈ V (CR)}
7: Ee

RC = Ee
RC ∪ {(p(u), p(v)) | (u, v) ∈ E, |p(u)| = 1 AND |p(v)| = 1}

8: {Special case (Figure 2).}
9: Eh

RC = {(p(u), p(v)) | (u, v) ∈ E, |p(u)| > 1 OR |p(v)| > 1}
10: return HRC

Relevant Cycle Hypergraph Representation for Molecules 117

N

S

S

C

O

(a) Molecular graph G including cycles. (b) Relevant cycle graph GC.

N

S

S
C

O

(c) Relevant cycle hypergraph HRC(G).

N

S

S
C

O

(d) Reduced relevant cycle graph
GRCR(G).

Fig. 3. Different encodings of a same molecule

vertices less than or equal to 6. Based on the explicit enumeration of this set of
substructures, each graph G is associated to a vector f(G) encoding the number
of occurrences of each treelet t in G:

f(G) = (ft(G))t∈T (G) with ft(G) = |(t�G)| (1)

where T (G) denotes the set of treelets extracted from G and � the subgraph
isomorphism relationship. Using this vector representation, similarity between
treelet distributions is computed using a sum of subkernels between treelet’s
number of occurrences:

KT (G,G
′) =

∑
t∈T (G)∩T (G′)

k(ft(G), ft(G
′)) (2)

where k(., .) defines any positive definite kernel between real numbers such as
linear kernel, Gaussian kernel or intersection kernel. Despite the fact that this
method may be applied on many kinds of graphs, it can not be directly applied
to hypergraphs.

118 B. Gaüzère, L. Brun, and D. Villemin

An hypergraph encodes global relationships defined between sets of vertices.
At the opposite, treelet kernel is defined on graphs where relationships are de-
fined locally between elementary vertices. Therefore, in order to apply treelet
kernel to our hypergraph representation, we have to transform global relation-
ships defined within our hypergraph representation to local relationships be-
tween elementary vertices. This transformation is performed by merging all sets
of vertices incident to an hyperedge. This merge operation relies to transform
hyperedges to edges.

An equivalence relation ∼ between vertices c ∈ VRC is defined such that
c1 ∼ c2 if and only if ∃e = (s1, s2) ∈ ERC such that {c1, c2} ⊆ s1 or {c1, c2} ⊆ s2.
Using equivalence relation ∼ previously defined, we can now define the equiv-
alence class c̄ = {c′; c ∼ c′} of a vertex c. Intuitively, two cycles sharing a
common hyperedge belong to the same equivalence class. Then, by applying
a contraction kernel on each class c̄, we define a reduced relevant cycle graph
GRCR = (VRCR, ERCR) with:

– VRCR = {c̄, c ∈ VRC},
– ERCR = {e = (c̄1, c̄2), (c1, c2) ∈ ERC , c1 � c2}. Intuitively, the set of edges
ERCR corresponds to the union of the usual edges Ee

RC of HRC and the
transformation of hyperedges Eh

RC into usual edges.

Labelling function μRCR(c̄), c ∈ VRC , is defined in a canonical way by the se-
quence of atom and edge labels encountered during a depth first traversal of
the spanning tree covering c̄ and having the lowest lexicographic order. Such a
spanning tree exists since any pair of vertices {c, c′} sharing a same hyperedge
is connected (Theorem 1).

Given this second representation of a molecule defined by the reduced relevant
cycle graph, our new similarity measure based on treelet kernel is defined in
two parts. A first step aims to extract the set of treelets T1 = T (VRC , E

e
RC).

(VRC , E
e
RC) corresponds to a sub hypergraph of HRC which does not include any

hyperedge e ∈ Eh
RC . Therefore, the set of treelets T1 encodes information which

does not include special cases depicted in Figure 2. Information corresponding
to these special cases, encoded by hyperedges e ∈ Eh

RC , is included into our
similarity measure by the set of treelets T2 extracted from the reduced relevant
cycle Graph GRCR built from the transformation of hyperedges into edges. In
order to avoid redundancy, we reduce the set of treelets T2 to treelets containing
at least one edge corresponding to an hyperedge eh ∈ Eh

RC . Finally, we define the
set of treelets TCR(G) associated to a molecular graph G by T1 ∪ T2. Similarity
between molecules is then defined as a sum of subkernels comparing number of
occurrences of each treelet t ∈ TCR(G) (Equation 2). This approach allows us
to use a set of patterns which encodes most of the adjacency relations between
cyclic and acyclic parts.

5 Experiments

We have tested our new molecule representation on an experiment defined as
a classification problem. This dataset is taken from the Predictive Toxicity

Relevant Cycle Hypergraph Representation for Molecules 119

Table 1. Classification accuracy on PTC

Method MM FM MR FR

1 Treelet Kernel (TK) 208 205 209 212
2 TK on cycles (TC) 211 210 203 232
3 Treelet on relevant cycle hypergraph (TCH) 217 224 207 233
4 Cyclic Pattern Kernel [6] 209 207 202 228
5 Gaussian Edit Distance Kernel [10] 223 212 194 234

6 TK + MKL 218 224 224 250
7 TC + MKL 216 213 212 237
8 TCH + MKL 225 229 215 239

9 Combo TK - TC 219 226 226 251
10 Combo TK - TCH 225 230 224 252

Challenge [11] which aims to predict carcinogenicity of chemical compounds
applied to female (F) and male (M) rats (R) and mice (M). This experiment
is based on ten different datasets for each class of animal, each of them being
composed of one train set and one test set. The amount of predicted molecules
is equals to 336 for male mice, 349 for female mice, 344 for male rats and 351 for
female rats. Table 1 shows the amount of correctly classified molecules over the
ten test sets for each method and for each class of animal. The first three lines
of Table 1 shows results obtained by a treelet kernel applied on differents molec-
ular representations. Line 1 corresponds to treelet kernel applied on molecular
graph, Line 2 to relevant cycle graph and Line 3 corresponds to kernel defined in
Section 3. First, we can note that our new molecular representation obtains the
best results among the three tested representations. This observation validates
our hypothesis on the importance of relationships between cyclic and acyclic
parts. This results can be compared with two other graph kernels. Line 4 shows
results obtained by the kernel defined by Horváth based on the set of relevant
cycles common to two molecules. As we can see, omitting relevant cycles rela-
tionships and adjacency relationships between cyclic and acyclic parts decreases
the accuracy of this kernel. Line 5 corresponds to a graph kernel based on the
notion of edit distance [10] between molecular graphs. This kernel obtains better
results than treelet kernel applied on relevant cycle hypergraph for two classes
over four. The second part of Table 1 shows results obtained by treelet kernels
after a feature weighting step as defined in [5]. After this weighting step, treelet
kernel applied on our new representation (Table 1, Line 8) obtains best results
on two classes of animals and obtains second best results on the two other classes
when only considering Lines 6 to 8. Note that our sparse feature weighting step
reduces the number of treelets extracted from relevant cycle hypergraphs from
5700 to 25 relevant treelets. In comparison, treelet weighting step applied on
molecular graph reduces the set of treelets from 3500 to 150 treelets. Note that
this optimal weighting step selects both non linear treelets and treelets hav-
ing 6 nodes which validates the relevance of using such substructures. Finally,
treelet kernel has been combined with relevant cycle graph (Table 1, Line 9) and
our new representation (Table 1, Line 10). This combination of two molecular

120 B. Gaüzère, L. Brun, and D. Villemin

representations obtains the best results on three classes over four of animals
when compared to combination of relevant cycle graph and molecular graph
representations, hence showing the relevance of our molecular representation.

6 Conclusion

In this article, we have defined a new molecular representation based on hyper-
graphs which is able to encode adjacency relationships between cyclic and acyclic
parts of a molecule. In addition, we have proposed a method to apply treelet
kernel on our hypergraph representation. Our experiments show that the adja-
cency information encoded by this molecular representation can lead to better
results than methods applied on classic molecular graphs. One outlook of this
work consists in including the relative positioning of bonds connecting acyclic
parts of a molecule on a same cycle.

References

1. Berge, C.: Graphs and hypergraphs, vol. 6. Elsevier (1976)
2. Ducournau, A.: Hypergraphes: clustering, réduction et marches aléatoires

orientées pour la segmentation d’images et de vidéo. PhD thesis, École Nationale
d’Ingénieurs de Saint-Étienne (2012)

3. Fröhlich, H., Wegner, J.K., Sieker, F., Zell, A.: Optimal assignment kernels for
attributed molecular graphs. In: Proceedings of the 22nd International Conference
on Machine learning, ICML 2005, pp. 225–232. ACM Press (2005)

4. Gaüzère, B., Brun, L., Villemin, D.: Two New Graphs Kernels in Chemoinformat-
ics. Pattern Recognition Letters 33(15), 2038–2047 (2012)

5. Gaüzère, B., Brun, L., Villemin, D., Brun, M.: Graph kernels based on relevant
patterns and cycle information for chemoinformatics. In: Proceedings of ICPR
2012. IAPR, pp. 1775–1778. IEEE (November 2012)

6. Horváth, T.: Cyclic pattern kernels revisited. In: Ho, T.-B., Cheung, D., Liu, H.
(eds.) PAKDD 2005. LNCS (LNAI), vol. 3518, pp. 791–801. Springer, Heidelberg
(2005)

7. Horváth, T., Gartner, T., Wrobel, S.: Cyclic pattern kernels for predictive graph
mining. In: Proceedings of the 2004 ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD 2004, pp. 158–167 (2004)

8. Kashima, H., Tsuda, K., Inokuchi, A.: Kernels for graphs, ch. 7, pp. 155–170.
MIT Press (2004)

9. Mahé, P., Vert, J.-P.: Graph kernels based on tree patterns for molecules. Machine
Learning 75(1), 3–35 (September 2008) (2009)

10. Neuhaus, M., Bunke, H.: Bridging the gap between graph edit distance and kernel
machines. World Scientific Pub. Co. Inc. (2007)

11. Toivonen, H., Srinivasan, A., King, R., Kramer, S., Helma, C.: Statistical evaluation
of the predictive toxicology challenge 2000-2001. Bioinformatics 19(10), 1183–1193
(2003)

12. Vert, J.-P.: The optimal assignment kernel is not positive definite,
http://hal.archives-ouvertes.fr/hal-00218278

13. Vismara, P.: Union of all the minimum cycle bases of a graph. The Electronic
Journal of Combinatorics 4(1), 73–87 (1997)

http://hal.archives-ouvertes.fr/hal-00218278

A Quantum Jensen-Shannon Graph Kernel

Using the Continuous-Time Quantum Walk

Lu Bai1, Edwin R. Hancock1,�, Andrea Torsello2, and Luca Rossi2

1 Department of Computer Science, University of York, UK
{lu,erh}@cs.york.ac.uk

2 Ca’ Foscari University of Venice, Italy
{torsello,lurossi}@dsi.unive.it

Abstract. In this paper, we use the quantum Jensen-Shannon diver-
gence as a means to establish the similarity between a pair of graphs
and to develop a novel graph kernel. In quantum theory, the quantum
Jensen-Shannon divergence is defined as a distance measure between
quantum states. In order to compute the quantum Jensen-Shannon di-
vergence between a pair of graphs, we first need to associate a density
operator with each of them. Hence, we decide to simulate the evolution
of a continuous-time quantum walk on each graph and we propose a
way to associate a suitable quantum state with it. With the density op-
erator of this quantum state to hand, the graph kernel is defined as a
function of the quantum Jensen-Shannon divergence between the graph
density operators. We evaluate the performance of our kernel on several
standard graph datasets from bioinformatics. We use the Principle Com-
ponent Analysis (PCA) on the kernel matrix to embed the graphs into
a feature space for classification. The experimental results demonstrate
the effectiveness of the proposed approach.

Keywords: Graph Kernels, Continuous-time QuantumWalk, Quantum
Jensen-Shannon Divergence.

1 Introduction

There has been an increasing interest in learning graph structures using graph
kernels. A graph kernel is usually defined in terms of a similarity measure be-
tween graphs [1]. To extend the large spectrum of kernel methods from the vec-
torial domain to the graph domain, Haussler [2] proposed a generic way, named
R-convolution, to define a kernel between two graphs by decomposing them
and measuring the pairwise similarities between the resulting substructures. For
example, Kashima et al. [3] proposed a graph kernel where they compute the
number of matchings random walks in a pair of graphs. Borgwardt et al. [4]
proposed a shortest path kernel where they enumerate the shortest paths which
possess the same length. Shervashidze et al. [5] developed a subtree kernel on
limited size subtrees where they iteratively update the vertex labels in a pair

� Edwin R. Hancock is supported by a Royal Society Wolfson Research Merit Award.

W.G. Kropatsch et al. (Eds.): GbRPR 2013, LNCS 7877, pp. 121–131, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

122 L. Bai et al.

of graphs, and then count the numbers of matching vertex labels between pairs
of subtrees in the two graphs. The main feature of these graph kernels is that
they usually share the exploit the topological information on the arrangement of
vertices and edges in a graph. An attractive alternative kernel measure between
a pair of graphs is based on measuring the mutual information using the classical
Jensen-Shannon divergence. In probability theory, the classical Jensen-Shannon
divergence is a similarity measure between probability distributions, and it is
symmetric, always well defined and bounded [6]. In [7], we have used the clas-
sical Jensen-Shannon divergence to define a Jensen-Shannon kernel for graphs.
Here, the Jensen-Shannon kernel between a pair of graphs is defined using the
classical Jensen-Shannon divergence between some suitably defined probability
distributions over the vertices of the graphs. Since the entropy associated with a
probability distribution of a graph can be directly computed without the need of
decomposing the graph, the Jensen-Shannon kernel, unlike the aforementioned
graph kernels, avoids the computational burdensome of comparing the similari-
ties between all the pairs of substructures of the graphs.

To develop the work in [7] further, we aim to extend the classical Jensen-
Shannon divergence measure of graphs into the context of quantum theory by
using the quantum Jensen-Shannon divergence [6,8], and then use this as a means
of defining a novel graph kernel. Unlike the classical divergence, which is defined
as a similarity measure between probability distributions, the quantum Jensen-
Shannon divergence is introduced in quantum theory as a distance measure
between quantum states, where a quantum state is described by its density op-
erator [8]. In order to compute the quantum Jensen-Shannon divergence between
a pair of graphs, we first need to associate a quantum state with each graph.
To this end, we propose to define a mixed quantum state which is based on the
evolution of a continuous-time quantum walk on each graph.

Recently, the continuous-time quantum walk has been introduced as the nat-
ural quantum analogue of the classical random walk by Farhi and Gutmann in
[9]. Similarly to the classical random walk on a graph, its state space is the set
of vertices of the graph. However, unlike the classical random walk, whose state
vector is real-valued and whose evolution is governed by a double stochastic ma-
trix, the state vector of the continuous-time quantum walk is complex-valued and
its evolution is governed by a time-varying unitary matrix. The continuous-time
quantum walk possesses a number of interesting properties which are not exhib-
ited by the classical random walk. For instance, the continuous-time quantum
walk is reversible and non-ergodic, and does not have a limiting distribution.
Hence, the continuous-time quantum walk can offer us an elegant way to de-
sign quantum algorithms on graphs which have some interesting properties. For
further information on quantum walks, we refer the readers to the textbook [10].

In this paper we are interested in developing a quantum kernel for graphs
using the quantum Jensen-Shannon divergence and the continuous-time quan-
tum walk. Given a graph G, we start by evolving a continuous-time quantum
walk on G. The quantum walk evolution can then be described by an ensem-
ble of pure states each describing the state of the quantum walker at time t.

A Quantum Jensen-Shannon Graph Kernel Using the Continuous-Time 123

As a consequence, we can associate with G the resulting mixed state and its
density operator. With the density operators of a pair of graphs to hand, the
proposed graph kernel is finally defined as the quantum Jensen-Shannon diver-
gence between their density operators. We evaluate the performance of our kernel
on several standard graph datasets from bioinformatics. We use the kernel Prin-
ciple Component Analysis (kPCA) on the kernel matrix to embed graphs into
a feature space where we perform the classification. The experimental results
demonstrate the effectiveness of the proposed framework.

2 Quantum Mechanical Background

In this section, we describe the quantum mechanical formalisms that will be used
in this work. We commence by reviewing the fundamental concept of continuous-
time quantum walk on a graph. We then describe how to associate a density
operator with a given graph through a continuous-time quantum walk. With the
density operator to hand, we finally show how to compute the von Neumann
entropy of the graph.

2.1 The Continuous-Time Quantum Walk

The continuous-time quantum walk is the natural quantum analogue of the
classical random walk [11,9]. Similarly to the classical random walk, the state
space of the continuous-time quantum walk defined on a graph G(V,E) is the
set of the vertices V of G(V,E). However, the evolution of the quantum walk is
governed by an unitary matrix rather than a stochastic matrix.

In [9], the basis state corresponding to the walk being at vertex u ∈ V in
G(V,E) is denoted, by Dirac notation, as |u〉. Here |u〉 are orthonormal vectors
in a n-dimensional complex-valued Hilbert space H. A general state of the walk
is then a complex linear combination of the basis states, and the state of the
walk at time t is defined as

|ψt〉 =
∑
u∈V

αu(t) |u〉 (1)

where the amplitude αu(t) ∈ C and |ψt〉 ∈ C|V | are both complex. The proba-
bility of the walk being at a particular vertex of the graph G(V,E) is given by
the square of the norm of the amplitude of the relative state. More formally, let
Xt be a random variable giving the location of the walk at time t. Then the
probability of the walk being at vertex u ∈ V at time t is given by

Pr(Xt = u) = αu(t)α
∗
u(t) (2)

where α∗
u(t) is the complex conjugate of αu(t). Moreover

∑
u∈V αu(t)α

∗
u(t) = 1

and αu(t)α
∗
u(t) ∈ [0, 1], for all u ∈ V , t ∈ R+.

Let A is the adjacency matrix of G(V,E), then the vertex degree matrix of
G(V,E) is a diagonal matrix D whose elements are given by D(u, u) = du =

124 L. Bai et al.∑
v∈V A(u, v). From the degree matrix D and the adjacency matrix A we can

construct the Laplacian matrix L = D − A. Then the evolution of the walk at
time t is given by Schrödinger equation, where we take the Hamiltonian of the
system to be the graph Laplacian matrix L, as

∂

∂t
|ψt〉 = −iL |ψt〉 (3)

Given a initial state |ψ0〉, Eq.(3) can be solved to calculate the state of the walk
at a time, t, as

|ψt〉 = e−iLt |ψ0〉 (4)

where Ut = e−iLt is the unitary matrix. To implement the simulation of the quan-
tum walk evolution, we re-write Eq.(4) in terms of the spectral decomposition
L = Φ
ΛΦ of the Laplacian matrix L, where Λ = diag(λ1, λ2, ..., λ|V |) is a diag-
onal matrix with the ordered eigenvalues as elements (0 = λ1 < λ2 < ... < λ|V |)
and Φ = (φ1|φ2|...|φ|V |) is a matrix with the corresponding ordered orthonormal
eigenvectors as columns. Hence, Eq.(4) can also be re-written as

|ψt〉 = Φ
e−iΛtΦ |ψ0〉 (5)

In this work, we define the initial state |ψ0〉 of G(V,E) as

|ψ0〉 =
∑
u∈V

du√∑
u∈V dud∗u

|u〉 (6)

where du√∑
u∈V dud∗

u

is the initial amplitude on vertex u. In other words, the initial

probability distribution induced by |ψ0〉 is equal to the steady state of random
walk on G(V,E).

2.2 A Density Operator for Graphs

In quantum mechanics, the density operator ρ is a matrix that describes an
ensemble of pure states, i.e. a mixed state. A pure state is a quantum state
that can be described by a single state vector |ψ〉 and its density operator ρ
can be written as |ψ〉 〈ψ|. On the other hand, we can think of a mixed quantum
state as an ensemble of pure states described by a density operator ρ. More
formally, consider a quantum system that can be found in a number of pure
states {(|ψn〉 , n)|(n = 1, 2, . . . , N)} each with a probability pn. The density
operator (i.e. density matrix) of the system is then defined as

ρ =
∑
n

pn |ψn〉 〈ψn| (7)

Now we proceeed to show how to associate a density operator with a graph
through a continuous-time quantum walk. Consider a graph G(V,E) and
continuous-time quantum walk |ψt〉 onG. We can see |ψt〉 as a pure state describ-
ing the state of the walk at time t. If we associate with each of these pure states

A Quantum Jensen-Shannon Graph Kernel Using the Continuous-Time 125

a probability pt = 1/T , we obtain a mixed state {(|ψt〉 , t)|(t = 1, 2, . . . , T)}
describing the quantum walk evolution on G(V,E). Hence, the density operator
ρG of G(V,E) of this mixed state is defined as

ρG =
T∑

t=1

pt |ψt〉 〈ψt| (8)

2.3 The von Neumann Entropy of A Graph

In quantum mechanics, the von Neumann entropy is an extension of the classical
Shannon entropy, and it is defined on a density matrix (i.e. density operator) ρ as
HN (ρ) = −Tr(ρ log ρ) [12]. Note that if ρ is the density matrix associated with
a pure state, then the von Neumann entropy of ρ vanishes. Consider a graph
G(V,E) and its density operator ρG defined as in Eq.(8), its von Neumann
entropy is

HN (ρG) = −Tr(ρG log ρG) (9)

Note that computingHN (ρG) is a rather complex operation, since it involves tak-
ing the logarithm of the density operator matrix ρG. In practice, it is more con-
venient to firstly determine the spectral decomposition of ρG = Φ

ρ;GΛρ;GΦρ;G,
and then Eq.(9) can be re-written as

HN (ρG) = −
|V |∑
j

λj;ρ;G logλj;ρ;G (10)

where λ1;ρ:G, . . . , λj;ρ;G, . . . , λ|V |;ρ;G is the ordered eigenvalues of ρG.

3 A Quantum Jensen-Shannon Graph Kernel

In this section, we use the quantum Jensen-Shannon divergence to develop a
novel kernel for graphs. We commence by reviewing the concept of quantum
Jensen-Shannon divergence, which can be seen as an extension of the classi-
cal Jensen-Shannon divergence to the quantum realm. The quantum Jensen-
Shannon divergence between a pair of density operators is defined as a function
of the von Neumann entropy associated with the operators. With the density op-
erators to hand, we show that the quantum kernel between the pair of graphs can
be computed as a function of the quantum Jensen-Shannon divergence between
their density operators.

3.1 Classical and Quantum Jensen-Shannon Divergence

The classical Jensen-Shannon divergence is a non-extensive mutual information
measure defined between probability distributions over structured data, and it is
related to the Shannon entropy [13]. Assume there are two (discrete) probability

126 L. Bai et al.

distributions P = (p1, p2, . . . , pX) and Q = (q1, q2, . . . , qY), the classical Jensen-
Shannon divergence between P and Q is defined as

DJS(P,Q) = HS

(P +Q

2

)
− 1

2
HS(P) − 1

2
HS(Q) (11)

where HS(P) =
∑

x px log px is the Shannon entropy. The classical Jensen-
Shannon divergence is always well defined, symmetric, negative definite and
bounded, i.e., 0 ≤ DJS ≤ 1. By replacing the Shannon entropy HS of a proba-
bility distribution with the von Neumann entropy of a density operator as defined
in Eq.(10), in [6] the classical Jensen-Shannon divergence has been extended to
the quantum realm to define the quantum Jensen-Shannon divergence between
quantum states

DQJS(ρ, σ) = HN

(ρ+ σ

2

)
− 1

2
HN (ρ) − 1

2
HN (σ) (12)

where ρ and σ are two density operators describing the corresponding quan-
tum states, and HN (.) is the von Neumann entropy of a density operator. The
quantum Jensen-Shannon divergence is always well defined, symmetric, positive
definite and bounded, i.e., 0 ≤ DQJS ≤ 1 [6].

3.2 A Quantum Jensen-Shannon Kernel for Graphs

We propose a novel quantum kernel for graphs by using the quantum Jensen-
Shannon divergence between the density operators associated with the graphs.
To this end, we let a continuous-time quantum walk evolve on a pair of graphs
Ga(Va, Ea) and Gb(Vb, Eb) with time t (t = 1, . . . , T). Then the density operators
ρG;a and σG;b of Ga(Va, Ea) and Gb(Vb, Eb) can be computed from their mixed
states using Eq.(8). With the density operators ρG;a and σG;b, and the quantum
Jensen-Shannon divergence DQJS(ρG;a, σG;b) between ρG;a and σG;b computed
using Eq.(12) to hand, the quantum Jensen-Shannon divergence DQJS(Ga, Gb)
between the pair of graphs Ga(Va, Ea) and Gb(Vb, Eb) is

DQJS(Ga, Gb) = HN

(ρG;a + σG;b

2

)
− 1

2
HN (ρG;a) − 1

2
HN (σG;a) (13)

Then, we define the quantum Jensen-Shannon kernel kQJS(Ga, Gb) between
Ga(Va, Ea) and Gb(Vb, Eb) as

kQJS(Ga, Gb) = exp(λDQJS(Ga, Gb))

= exp(λHN

(ρG;a + σG;b

2

)
− 1

2
λHN (ρG;a) − 1

2
λHN (σG;a)) (14)

where λ is a decay factor which satisfies 0 < λ < 1, and HN (.) is the von
Neumann entropy of the density operator associated to the graph. Here λ is
used to ensure that the large values do not tend to dominant the kernel value.
In particular, in this work we use λ = 0.1.

A Quantum Jensen-Shannon Graph Kernel Using the Continuous-Time 127

Lemma. The quantum Jensen-Shannon graph kernel is positive definite pd.
Proof. This follows the definitions in [6,8,14]. In [14], a diffusion kernel ks =
exp(λs(Gp, Gq)) associated with any symmetric similarity measure s(Gp, Gq) has
been proven to be pd. Since the quantum Jensen-Shannon divergence between a
pair of density operators is symmetric [6,8], then the proposed quantum Jensen-
Shannon graph kernel is pd.

Note that, a positive definite graph kernel is often called a valid kernel. Clearly,
the positive definiteness constraint restricts the class of valid graph kernels which
can be defined by different similarity measures on graphs. However, the property
of positive definiteness is crucial for the definition of kernel machines and turns
out to be sufficiently strong to implicate a considerable number of theoretical
properties associated with graph kernels [15].

3.3 Algorithmic Complexity

The computational complexity of the proposed quantum Jensen-Shannon kernel
of graphs depends on several factors. These factors include 1) the computation
of the initial state of the continuous-time quantum walk, 2) the simulation of
the continuous-time quantum walk evolution at each time step t = 1, 2, . . . , T ,
3) the construction of the density operator associated with the graph, and 4)
the computation of the von Neumann entropy of the density operator. It is clear
that these operations are all dependent on the graph size, and that the com-
plexity is highly influenced by the termination time T of the continuous-time
quantum walk evolution. For example, we can easily show that the cost of com-
puting the von Neumann entropy of the density operator is O(|V |2), where |V |
is the number of vertices of the graph. However, it’s easy to see that the over-
all complexity is dominated by that of computing the eigendecomposition of
the graph Laplacian, which is cubic in the number of vertices of the graph,
i.e. O(|V |3). This algorithmic complexity analysis reveals that our quantum
Jensen-Shannon kernel between graphs can be computed in polynomial time.

4 Experimental Evaluations

In this section, we demonstrate the performance of our quantum Jensen-Shannon
kernel, and then compare it to several state of the art graph based learning meth-
ods on three standard graph datasets abstracted from bioinformatics. These
datasets include: MUTAG, ENZYMES and PPIs. The MUTAG dataset con-
tains graphs representing 188 chemical compounds to predict mutagenicity. The
ENZYMES dataset contains graphs representing protein tertiary structures con-
sisting of 600 enzymes from the BRENDA enzyme database. The PPIs dataset
consists of protein-protein interaction networks (PPIs). Here we select Pro-
teobacteria40 PPIs and Acidobacteria46 PPIs as the testing graphs. Details
about the datasets are shown in Table.1 and [5,16].

128 L. Bai et al.

Table 1. Information of the Graph based Datasets

Datasets MUTAG ENZYMES PPIs

Maximum # vertices 28 126 232
Minimum # vertices 10 2 3
Average # vertices 17.93 32.63 109.60

testing graphs 188 600 86

4.1 Von Neumann Entropy Evaluation

We commence by exploring the relationship between the von Neumann entropy
of a graph and its corresponding increasing time t. In our experiments, we utilize
the testing graphs in the MUTAG, ENZYMES and PPIs datasets. For each
graph, we let the continuous-time quantum walk evolve until a maximum time t,
where we vary t from 1 to 50. For each time t we compute the density operator
associated with the graph using Eq.(8). Then the von Neumann entropy of the
graph at each time t can be computed from its corresponding density operator.
The experimental results are shown in Fig.1. The left, middle and right subfigures
of Fig.1 show the results of the evaluation on the MUTAG, Enzymes and PPIs
datasets separately. The x-axis shows the time t which is from 1 to 50, and the
y-axis shows the mean value of the von Neumann entropies of graphs belonging
to the same class at each time t. Here the different lines represent the entropies
of different classes of graphs separately. This evaluation suggests that the von
Neumann entropies of different classes of graphs can be divided well, and tend
to be stable with increasing time t.

0 10 20 30 40 50
−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

data1
data2

0 10 20 30 40 50
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

data1
data2
data3
data4
data5
data6

0 10 20 30 40 50
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

data1
data2

Fig. 1. Evaluations on the von Neumann Entropy for increasing time t

4.2 Experiments on Standard Graph Datasets from Bioinformatics

Experimental Setup. We evaluate the performance of our quantum Jensen-
Shannon kernel on the graph datasets abstracted from bioinformatics databases,
and then compare it with several alternative state of the art graph learning
methods. These methods include 1) the Weisfeiler-Lehman subtree kernel [5],
2) the shortest path graph kernel [4], 3) the Shannon entropy associated with
the information functionals FV and FP [17], and 4) the Ihara zeta function on

A Quantum Jensen-Shannon Graph Kernel Using the Continuous-Time 129

graphs [18]. Based on the evaluation in Section 4.2, here we set time t from 1 to
50. For the kernel methods, we compute the kernel matrix of each graph kernel
on each dataset, we then apply the PCA [19] on the kernel matrix to embed the
graphs into principle component space as feature vectors. For other methods,
we compute the characteristics values of graphs on each dataset. We perform
10-fold cross-validation using the Support Vector Machine (SVM) Classification
associated with the Sequential Minimal Optimization (SMO) [20] on the graph
feature vectors or characteristics values to evaluate the performance of our kernel
and that of the alternative methods. We use nine samples for training and one for
testing. All the SMO-SVMs and their parameters were performed and optimized
on a Weka workbench [21]. We report the average classification accuracies of each
method in Table 2.

Results. a) On the MUTAG dataset, the accuracies of all the methods are
similar, our kernel overcomes or is competitive to the alternatives. b) On the
ENZYMES dataset, the accuracy of our kernel is obviously lower than that of
the Weisfeiler-Lehman subtree kernel, but is competitive to that of the shortest
path graph kernel and outperforms that of others. c) On the PPIs dataset,
the accuracy of our kernel is obviously higher than that of the alternatives.
As a whole, our kernel outperforms or is competitive to the alternatives, only
the Weisfeiler-Lehman subtree kernel and the shortest path graph kernel are
competitive to our kernel on the ENZYMES dataset.

Table 2. Accuracies Comparisons on Graph Datasets abstracted from Bioninformatics

Datasets MUTAG ENZYMES PPIs

quantum Jensen-Shannon kernel 84.04% 32.16% 76.20%

Weisfeiler-Lehman subtree kernel 84.57% 38.50% 76.16%

shortest path graph kernel 85.29% 31.16% 78.45%

Shannon entropy with FV 84.57% 24.17% 70.93%

Shannon entropy with FP 84.57% 24.17% 70.93%

Ihara zeta function on graphs 80.85% 32.00% 70.93%

5 Conclusion

In this paper, we developed a novel graph kernel by using the quantum Jensen-
Shannon divergence and the continuous-time quantum walk on graphs. Given
a graph, we evolved a continuous-time quantum walk on its structure and we
showed how to associate a mixed quantum state to the graph and how to com-
pute the von Neumann entropy of the corresponding density operator. With the
von Neumann entropies to hand, the quantum Jensen-Shannon kernel between a
pair of graphs was defined as a function of the quantum Jensen-Shannon diver-
gence between the corresponding density operators. Finally, we used the Prin-
ciple Component Analysis (PCA) on the kernel matrix to embed the graphs
into a feature space where we performed the classification task. Experiments on
several standard datasets demonstrate the effectiveness of the proposed graph

130 L. Bai et al.

kernel. Our future work is to extend the quantum graph kernel to a quantum
hypergraph kernel. In [22], we have developed a hypergraph kernel by using
the classical Jensen-Shannon divergence. In [23], we have explored the use of
discrete-time quantum walks on a directed line graph which can be generated by
transforming a hypergraph. It would thus be interesting to extend these works by
using the quantum Jensen-Shannon divergence to compare the quantum walks
of hypergraphs based on their directed line graphs.

References

1. Schölkopf, B., Smola, A.: Learning with Kernels. MIT Press (2002)
2. Haussler, D.: Convolution kernels on discrete structures. Technical Report

UCS-CRL-99-10, Santa Cruz, CA, USA (1999)
3. Kashima, H., Tsuda, K., Inokuchi, A.: Marginalized kernels between labeled

graphs. In: Proceedings of International Conference on Machine Learning,
pp. 321–328 (2003)

4. Borgwardt, K.M., Kriegel, H.P.: Shortest-path kernels on graphs. In: Proceedings
of the IEEE International Conference on Data Mining, pp. 74–81 (2005)

5. Shervashidze, N., Schweitzer, P., van Leeuwen, E.J., Mehlhorn, K., Borgwardt,
K.M.: Weisfeiler-lehman graph kernels. Journal of Machine Learning Research 1,
1–48 (2010)

6. Lamberti, P., Majtey, A., Borras, A., Casas, M., Plastino, A.: Metric character of
the quantum jensen-shannon divergence. Physical Review A 77, 052311 (2008)

7. Bai, L., Hancock, E.R.: Graph kernels from the jensen-shannon divergence. Journal
of Mathematical Imaging and Vision (to appear)

8. Majtey, A., Lamberti, P., Prato, D.: Jensen-shannon divergence as a measure of
distinguishability between mixed quantum states. Physical Review A 72, 052310
(2005)

9. Farhi, E., Gutmann, S.: Quantum computation and decision trees. Physical Review
A 58, 915 (1998)

10. Dirac, P.: The Principles of Quantum Mechanics, 4th edn. Oxford Science
Publications (1958)

11. Kempe, J.: Quantum random walks: an introductory overview. Contemporary
Physics 44, 307–327 (2003)

12. Nielsen, M., Chuang, I.: Quantum computation and quantum information.
Cambridge university press (2010)

13. Martins, A.F., Smith, N.A., Xing, E.P., Aguiar, P.M., Figueiredo, M.A.: Nonex-
tensive information theoretic kernels on measures. Journal of Machine Learning
Research 10, 935–975 (2009)

14. Konder, R., Lafferty, J.: Diffusion kernels on graphs and other discrete input spaces.
In: Proceedings of International Conference on Machine Learning, pp. 315–322
(2002)

15. Neuhaus, M., Bunke, H.: Bridging the gap between graph edit distance and kernel
machines. World Scientific (2007)

16. Escolano, F., Hancock, E.R., Lozano, M.A.: Heat diffusion: Thermodynamic depth
complexity of networks. Physical Review E 85, 036206 (2012)

17. Dehmer, M.: Information processing in complex networks: Graph entropy and
information functionals. Applied Mathematics and Computation 201, 82–94 (2008)

A Quantum Jensen-Shannon Graph Kernel Using the Continuous-Time 131

18. Ren, P., Wilson, R.C., Hancock, E.R.: Graph characterization via ihara coefficients.
IEEE Transactions on Neural Networks 22, 233–245 (2011)

19. Schölkopf, B., Smola, A.J., Müller, K.R.: Kernel principal component analysis. In:
Proceedings of International Conference on Artificial Neural Networks, pp. 583–588
(1997)

20. Platt, J.C.: Fast training of support vector machines using sequential minimal
optimization. In: Schölkopf, B., Burges, C.J.C., Smola, A.J. (eds.) Advances in
Kernel Methods, pp. 185–208 (1999)

21. Witten, I.H., Frank, E., Hall, M.A.: Data Mining: Practical Machine Learning
Tools and Techniques. Morgan Kaufmann (2011)

22. Bai, L., Hancock, E.R., Ren, P.: A jensen-shannon kernel for hypergraphs. In:
Gimel’farb, G., Hancock, E., Imiya, A., Kuijper, A., Kudo, M., Omachi, S.,
Windeatt, T., Yamada, K. (eds.) SSPR & SPR 2012. LNCS, vol. 7626, pp. 181–189.
Springer, Heidelberg (2012)

23. Ren, P., Aleksic, T., Emms, D., Wilson, R., Hancock, E.: Quantumwalks, ihara zeta
functions and cospectrality in regular graphs. Quantum Information Processing 10,
405–417 (2011)

Treelet Kernel Incorporating Chiral Information

Pierre-Anthony Grenier1, Luc Brun1, and Didier Villemin2

1 GREYC UMR CNRS 6072, Caen, France
2 LCMT UMR CNRS 6507, Caen, France

{pierre-anthony.grenier,didier.villemin}@ensicaen.fr,
luc.brun@greyc.ensicaen.fr

Abstract. Molecules being often described using a graph representa-
tion, graph kernels provide an interesting framework which allows to
combine machine learning and graph theory in order to predict molecule’s
properties. However, some of these properties are induced both by rela-
tionships between the atoms of a molecule and by constraints on the
relative positioning of these atoms. Graph kernels based solely on the
graph representation of a molecule do not encode this relative position-
ing of atoms and are consequently unable to predict accurately some
molecule’s properties. This paper presents a new method which incor-
porates spatial constraints into the graph kernel framework in order to
overcome this limitation.

Keywords: Graph kernel, Chemoinformatics, Chirality.

1 Introduction

A molecular graph G = (V,E, μ, ν) is a description of a molecule by a graph
where the unlabeled graph (V,E) encodes the structure of the molecule, each
vertex encoding an atom and each edge a bond between two atoms, μ associates
to each vertex a label encoding the nature of the atom (carbon, oxygen, ...) and ν
associates to each edge a type of bond (single, double, triple or aromatic). Several
graph kernels [3,1] based on this representation have been proposed in order to
predict molecule’s properties. However, some molecules may have a same molec-
ular formula, a same molecular graph but a different relative positioning of their
atoms inducing different properties. Such molecules are said to be stereoisomers.
However, usual graph kernels based on the molecular graph representation are
not able to capture any dissimilarity between such molecules. From a more local
point of view, an atom is called stereocenter if a permutation of the positions
of two atoms belonging to its neighborhood produces a different stereoisomer.
In the same way, two connected atoms form a stereocenter if a permutation of
the positions of two atoms belonging to the union of their neighborhoods pro-
duces a different stereoisomer. According to chemical experts, stereoisomerism
is represented to 98% by the geometrical isomerism of double connection and
the asymmetry of carbons. We thus focus the remaining of this paper on those
case.

W.G. Kropatsch et al. (Eds.): GbRPR 2013, LNCS 7877, pp. 132–141, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Treelet Kernel Incorporating Chiral Information 133

(a) Asymmetric carbon (b) Double bond

Fig. 1. Two types of stereocenters

In order to get an intuition of stereoisomerism, let us consider an acyclic molec-
ular graph rooted on an atom of carbon with four neighbors, each neighbor being
associated to a different subtree. Such an atom, called an asymmetric carbon, is a
stereocenter and has two different spatial configurations of its neighbors encoded
by a same molecular graph (Fig. 1(a)). Using molecule represented in Fig. 1(a),
one configuration corresponds to the case where the three atoms (Cl,Br,F) con-
sidered from the atom H are encountered in this order when turning clockwise
around the central carbon atom. The alternative stereoisomer corresponds to
the case where this sequence of atoms is encountered counter-clockwise when
considered from the same position. Two carbons, connected by a double bond,
can also define stereoisomers (Fig 1(b)). Indeed, on the left side of Fig.1(b) both
hydrogen atoms are located on the same side of the double bond while they are
located on opposite sides on the stereoisomer represented on the right. In this
case both carbon atoms of the double bond correspond to a stereocenter.

Method described in [2] includes information about the spatial configuration
of atoms within the tree-pattern kernel [3]. However, this method only considers
the direct neighbors of a stereocenter while, as shown by Fig. 2, the difference
between two subtrees of a stereocenter may not be located on the root of the
subtrees. In this last case [2] considers as identical two different stereocenters.

In this paper we propose a method to incorporate the spatial configuration of
atoms within a graph kernel based on a subtree enumeration [1]. This method
remains valid even when the spatial configuration is not encoded in the direct
neighborhood of a stereocenter. In Section 2, we define a graph encoding of
stereoisomers and we introduce chiral vertices as vertices encoding stereocen-
ters. Next, in Section 3, we restrict our attention to acyclic molecules. Such a
restriction allows us to efficiently characterise a chiral vertex by a rooted tree.
In Section 4, we define the smallest tree characterizing a chiral vertex and use
this information to design a graph kernel between chiral molecules. Finally, we
demonstrate the validity of our kernel through experiments in Section 5.

Fig. 2. Asymmetric carbons with identical neighborhood

134 P.-A. Grenier, L. Brun, and D. Villemin

2 Encoding of Stereoisomers

An usual method in chemistry to encode stereoisometry consists in considering
a fixed order on the neighborhood of each vertex. In order to encode such an
information, we introduce the notion of ordered graph. An ordered graph G =
(V,E, μ, ν, ord) is a molecular graph Ĝ = (V,E, μ, ν) together with a function
ord which maps each vertex to an ordered list of its neighbors:

ord

{
V → V ∗

v → v1 . . . vn
(1)

where V (v) = {v1, . . . , vn} denotes the neighborhood of v.
Two ordered graphs G1 = (V1, E1, μ1, ν1, ord1) and G2 = (V2, E2, μ2, ν2, ord2)

are said to be isomorphic G1 �
o
G2 iff there is an isomorphism between both

graphs which respects the order on the neighborhoods:

∃f ∈ Isom(Ĝ1, Ĝ2) s.t. ∀v ∈ V1 ord1(v) = v1 . . . vn, ord2(f(v)) = f(v1) . . . f(vn)
(2)

Note that, the ordered graph isomorphism induces an equivalence relationship
as well as the usual graph isomorphism.

For exemple, in Fig. 1(a) the ordered list H,Cl,Br,F for the central carbon
represents the molecule to the left (and H,Cl,F,Br represents its stereoisomer).
But if we consider the molecule from the Cl atom, the list Cl,H,F,Br is a valid
alternative encoding of the molecule. So, a spatial configuration of atoms within
a neighborhood must be encoded by several equivalent orders. We thus introduce
the notion of partially ordered graph which encodes all equivalent orderings of
an ordered graph. A partially ordered graph (G,Σ) is an ordered graph G with
a set of re-ordering functions Σ where σ ∈ Σ associates to each vertex v a
permutation on {1, . . . , |V (v)|}. Let G = (V,E, μ, ν, ord) be an ordered graph,
σ(G) = (V,E, μ, ν, ordσ) is defined as the application of σ on each ordered
neighborhood of G:

∀v ∈ V s.t. ord(v) = v1, . . . , vn, ordσ(v) = vϕ(1), . . . , vϕ(n) with ϕ = σ(v). (3)

Two partially ordered graphs (G1, Σ1) and (G2, Σ2) are said to be isomorphic
iff:

G1 �
po
G2 ⇔

{
∀σ1 ∈ Σ1, ∃σ2 ∈ Σ2 |σ1(G1) �

o
σ2(G2)

∀σ2 ∈ Σ2, ∃σ1 ∈ Σ1 |σ1(G1) �
o
σ2(G2)

(4)

The relationship induced by partially ordered isomorphisms is reflexive and tran-
sitive as the one induced by ordered graph isomorphisms. This relation is also
symmetric since we consider both re-ordering functions of Σ1 and Σ2. We denote
by IsomOrderP(G1, G2) the set of isomorphism between two partially ordered
graph G1 and G2.

2.1 Partially Ordered Graph Encoding of a Molecule

The partial ordered graph of a molecule is defined by first defining its molecular
graph Gunordered = (V,E, μ, ν). Let us denote VC1 the subset of V containing all

Treelet Kernel Incorporating Chiral Information 135

atoms of carbon with four neighbors: VC1 = {v ∈ V | μ(v) = ’C’ and |V (v)| = 4}.
The subset of V containing all atoms of carbon which share a double bond with
another carbon is noted VC2 : VC2 = {v ∈ V | ∃e(v, w) ∈ E, ν(e) = 2, |V (v)| =
|V (w)| = 3 and μ(v) = μ(w) = ’C’}. For each v ∈ VC2 we denote w = n=(v) the
other carbon of its double bond. In order to encode spatial configurations, let us
define an ordered graph Gordered from Gunordered. Each vertex v ∈ V −VC1 −VC2

does not require any encoding of the configuration of its neighborhood. The or-
dered list of its neighbors is thus set randomly. In order to set an order on the
neighborhood of a vertex v ∈ VC1 we set randomly one of its neighbor v1 at the
first position. The three other neighbors of v are ordered in a way such that if
we look at v from v1, the three remaining neighbors are ordered clockwise (Sec-
tion 1). One of the three orders (defined up to circular permutations) fulfilling
this condition is chosen randomly (Fig. 3(a)). Finally, let us consider a vertex
v ∈ VC2 , with n=(v) = w, V (v) = {w, a, b} and V (w) = {v, c, d}. The order
on neighborhoods of v and w are set as ord(v) = w, a, b and ord(w) = v, c, d,
whereby a, b, c, d are traversed clockwise when turning around the double bond
for a given plane embedding. We add to this graph the set of re-ordering function
Σ containing all the re-ordering functions σ such that: for each v in VC1 , σ(v)
corresponds to an even number of transpositions on {1, . . . , |V (v)|} and for each
v in VC2 , with n=(v) = w, σ(v) and σ(w) correspond to a same number of trans-
positions (Fig. 3(b)). Indeed, an additional transposition on one of the atoms of
a double bond, would correspond to a permutation of the relative positioning of
its neighbors hence enconding a different stereoisomer (Section 1).

Remark 1. Using the above construction scheme, the re-ordering functions of
any partially order graph encoding a molecule satisfies the following properties:

– Given a sequence of neighbors of each vertex, we can always find a re-ordering
such that the ordered list of each vertex starts by its selected neighbor.

– For any re-ordering functions, the permutations associated to two adjacent
carbons belonging to VC2 may be decomposed into a same number of trans-
positions.

A partially ordered graph encodes the spatial configuration of atoms within the
neighborhood of each of its vertex. Let us now define a stereocenter (also called
a chiral vertex).

(a) Element of VC1 (b) Two elements of VC2

Fig. 3. Example of elements of VC1 and of VC2 with their ordered list (top) and the
ordered lists obtained using two permutations σ ∈ Σ and σ′ ∈ Σ

136 P.-A. Grenier, L. Brun, and D. Villemin

Definition 1. Let G = (V,E, μ, ν, ord,Σ) a partially ordered graph. A vertex
v ∈ V of degree n is a chiral vertex iff:

∀(i, j) ∈ {1, . . . , n}2, �f ∈ IsomOrderP(G, τi,j(G)) with f(v) = v

where τi,j is a re-ordering function equals to the identity on all vertices except
v for which it permutes the vertices of index i and j in ord(v).

In other words, a vertex is chiral if any permutation of its neighbors produces
a different partially ordered graph (called a different stereoisomer within the
chemistry framework).

3 Isomorphism between Labeled Partially Ordered Tree

Let us now restrict our attention to acyclic graphs in order to obtain a more
efficient calculus of isomorphisms between partially ordered graphs. Given a
rooted tree, the father of each node v is denoted pv. We define an ordered rooted
tree T = (V,E, μ, ν, ord) as a rooted tree T̂ = (V,E, μ, ν) with a function ord
mapping each vertex to an ordered list of its children. Like the isomorphism
between ordered graph presented in Sec. 2, there is an isomorphism between two
labeled ordered tree T1 = (V1, E1, μ1, ν1, ord1) and T2 = (V2, E2, μ2, ν2, ord2) if
there is an isomorphism between both trees which complies with their order :

∃f ∈ Isom(T̂1, T̂2) s.t. ∀v ∈ V1 ord1(v) = v1 . . . vn, ord2(f(v)) = f(v1) . . . f(vn)
(5)

where {v1, . . . , vn} denotes the children of v. Note that, an isomorphism between
ordered tree maps roots of each tree one on the other and preserves father-child
relationships.

Following [4], we associate to each ordered rooted tree, a unique depth-first
string. This string is based on the sequence of node and edge labels obtained by
traversing the tree in a depth-first order. As shown by [4](Lemma 2.2), two iso-
morphic ordered trees have the same depth-first string encoding and conversely.

Using the same approach than for partially ordered graphs, a partially ordered
rooted tree (T,Σ) is an ordered rooted tree T associated to a set of re-ordering
functions Σ on the children of each vertex. To define a partially ordered tree
(T,ΣT), from an acyclic partially ordered graph (G,ΣG) encoding a molecule,
we have to define a root and for each vertex an order and a set of permutations on
its children encoding equivalent orders. Since the root has no parent, its children
correspond to its set of neighbors and we set ordG(r) = ordT (r). For any other
vertex v, the list of its children is the list of its neighbors minus pv. To define an
order for each v in T , we apply one of the re-ordering function σ ∈ ΣG which
puts pv in the first position (Remark 1). The set of re-ordering functions ΣT is
defined by considering all re-ordering functions σ ∈ ΣG which, for each v ∈ V ,
keep pv in the first position of the ordered list of v.

In order to define a unique code for each partially ordered tree we define, as
in [4], the depth-first canonical form (DFCF*) of a partially ordered tree, as

Treelet Kernel Incorporating Chiral Information 137

the ordered tree that gives the minimal depth-first string encoding among all
possible ordered trees σ(T) obtained by applying σ ∈ Σ on T . The depth-first
string encoding of the DFCF* is called the depth-first canonical string (DFCS*)
of a partially ordered tree. Since, two isomorphic ordered trees have the same
depth-first string encoding, two partially ordered trees are isomorphic if their
DFCS* are identical.

Given a unique code associated to a partially ordered rooted tree, the chirality
of a vertex may be efficiently tested if one can transpose definition 1 to partially
ordered rooted trees:

Proposition 1. Let T = (V,E, μ, ν, ord,Σ) be a partially ordered tree rooted
in r. r is a chiral vertex if ∀(i, j) ∈ {1, . . . , |V (r)|}2, T
�

po
τi,j(T),

where τi,j is a re-ordering function equals to the identity on any vertex but r
where it permutes children of index i and j in the ordered list of r.

Proof. Using acyclic graphs, an isomorphism between partially ordered rooted
trees corresponds to an isomorphism between partially ordered graphs with an
additional constraint on the mapping of both roots. If we can find an isomor-
phism between T and τi,j(T) such an isomorphism f satisfies f(r) = r and also
corresponds to an isomorphism between partially ordered graphs. Conditions of
Def. 1 are thus violated and r is not chiral. The reverse implication may be
demonstrated using the same type of reasoning.

A partially ordered tree (T,Σ) can have two isomorphic subtrees whose roots
have the same parent. In that case a permutation exchanging those subtrees on
the DFCF* leads to an isomorphic ordered tree. In such a case, the root of these
subtrees are said to be equivalent:

vi ∼ vj ⇔
{

∃v ∈ V s.t. pvi = pvj = v and
∃σ ∈ Σ | ϕ(i) = j, DFCF*(σ(T)) �

o
DFCF*(T) with ϕ = σ(v)

(6)
Since all equivalent nodes are the children of a same parent, the representative
of each class is defined as the vertex with the minimal index within the ordered
list of children of its parent:

∀i ∈ {1, . . . , n} rep(vi) = min{j | vj ∼ vi}. (7)

4 From a Global to a Local Characterization of Chirality

Proposition 1 provides a global characterization of chirality. However, such a
proposition does not allow to characterize the minimal subgraph of a molecule
which induces the chiral property of a vertex. Using acyclic graphs, such a mini-
mal subgraph corresponds to the smallest partially rooted tree, rooted on a chiral
vertex v which allows to characterize the chirality of v using Proposition 1.

138 P.-A. Grenier, L. Brun, and D. Villemin

Fig. 4. Left: An asymmetric carbon •⊙with its minimal chiral subtree (surrounded by
a dotted line). Right: minimal subtrees rooted on its children.

4.1 Minimal Chiral Subtree of an Asymmetric Carbon

Let v be a chiral vertex representing an asymmetric carbon. We denote its neigh-
bors v1, . . . , v4. We consider the partially ordered tree (T,Σ) rooted in v and
described in Sec. 3. We note T1, . . . , T4 the subtrees of T rooted on the chil-
dren of v. For any i ∈ {1, 2, 3, 4} we denote T j

i the subtree of Ti composed
of all nodes with a depth lower than j. According to Proposition 1, the chiral-
ity of v may be characterized from its subtrees T j

i iff all pairs of subtrees are

non isomorphic. Indeed, in such a case no transposition of two subtrees T j
i and

T j′
k can induce an isomorphic partially ordered rooted tree. Therefore for each

i ∈ {1, 2, 3, 4}, we define the minimal subtree associated to vi as T
j∗(i)
i with

j∗(i) = min{j | ∀k ∈ {1, . . . , 4} − {i}, T j
i
� T j

k}. For exemple in Fig. 4, the
root of T1 is a Cl atom and the root of each other Ti is an oxygen atom, thus
j∗(1) = 1. The minimal chiral subtree of v is the subtree of T rooted on v, where

v has for children T
j∗(1)
1 , . . . , T

j∗(4)
4 . The asymmetric carbon is then represented

by the DFCS* of this tree.
To find j∗(i), we increase j for each T j

i until T j
i
� T j

k for each k ∈ {1, . . . , 4},
k
= i. At each iteration we compute the DFCS* of each tree. Therefore the

calculus of the minimal chiral subtree of v is performed in O((max
i

|T j∗(i)
i |)2)

which is bounded by O(|V |2).

4.2 Minimal Chiral Subtree of Double Bond

Let us consider a double bond e = (va, vb) and let us denote by v1a and v2a the two
remaining neighbors of va. Considering the partially ordered tree T rooted on va,
va is chiral only if the subtrees rooted on the children of va are not isomorphic
(Proposition 1). This implies that the two subtrees rooted on v1a and v2a are
not isomorphic. This necessary condition is however not sufficient. Indeed if the
subtrees rooted on the remaining neighbors v1b and v2b of vb are isomorphic,
then one can apply a re-ordering function σ ∈ Σ on T which simultaneously

Treelet Kernel Incorporating Chiral Information 139

Fig. 5. A double bond (a), its minimal chiral subtree (b) and its contraction (c)

permutes the subtrees rooted on v1a and v2a and the subtrees rooted on v1b and
v2b (Remark 1). The resulting rooted tree σ(T) is isomorphic to T by definition
but also to τ(T), where τ permutes only vertices v1a and v2a in the ordered list
of children of va. In such a case, va is non chiral (Proposition 1). Therefore, the
non chirality of vb induces the non chirality of va and conversely.

Hence va and vb are chirals, only if the two following conditions are satisfied:
subtrees rooted on v1a and v2a are non isomorphic and subtrees rooted on v1b and
v2b are also non isomorphic.

In order to encode this constraints, we define as in Section 4.1 the minimal non
isomorphic subtrees rooted on v1a (T 1

a) and v2a (T 2
a) together with the minimal

non isomorphic subtrees rooted on v1b (T 1
b) and v2b (T

2
b). We denote by Ta and

Tb the two partially ordered rooted trees rooted on va and vb. The subtrees of
these two roots being respectively (T 1

a , T
2
a) and (T 1

b , T
2
b).

The tree encoding the chirality of the double bond is then defined as a partially
ordered rooted tree, whose root corresponds to a virtual vertex (not corresponding
to any atom) connected to the two subtrees Ta and Tb. As for Sec. 4.1, the compu-
tation of the minimal chiral subtree is bounded by O(|V |2). Fig. 5a represents a
double bond between two carbon atoms with its minimal chiral subtree (Fig. 5b).

4.3 Graph Contraction

Using results in Section 4.1 and 4.2, each stereocenter may be associated to a
minimal chiral subtree and a DFCS* code representing it (Section 3). However,
properties of a molecule are both determined by its set of minimal chiral subtrees
and by relationships between these trees and the remaining part of the molecule.
In order to obtain a local characterization of such relationships, we propose to
contract the minimal chiral subtree of each stereocenters.

Let us consider a stereocenter s and its minimal chiral subtree(T =(VT , ET), Σ)
associated to a DFCS* code cs. We define for this tree a set of connection
vertices Vcon = {v ∈ Leaf(T) | d(v) > 1} and a set of edges to contract
KT = ET − Econ where Econ = {(v, pv) ∈ Vcon × VT }. The contraction of
KT creates a new graph Gs = (Vs, Es), with a contracted node ns labeled by cs
and Vs = V − (VT − Vcon) ∪ {ns};Es = E −KT (Fig. 5c).

Each edge of Econ connects an element l of Vcon to ns in Gs. The label
of e = (ns, l) has to encode the position of l in the minimal chiral subtree.
We thus consider the path connecting r to l in the minimal chiral subtree:
CP (l) = v1, .., vn where v1 = r and vn = l. Let us denote ij the index of vj
in the ordered list of children of pvj . The sequence i2 . . . in defines a unique path

140 P.-A. Grenier, L. Brun, and D. Villemin

Fig. 6. The set of stereotreelet with ns(•⊙), elements of Vcon(•), elements of V−Vcon(◦)

in the chiral subtree associated to ns. Such a sequence may thus be considered
as a proper label of edge e. However as mentioned in Section 3, some paths may
pass through equivalent subtrees and should thus be considered as equivalent.
In order to encode such equivalence relationship we define the label of e as

ν(e) =
n⊙

i=2

rep(vi) with rep defined in Eq. 7.

4.4 StereoTreelet

For each stereocenter s we have a graph Gs. The stereotreelets of Gs are defined
as all subtrees of Gs whose size is lower than 6 and which include ns. Since each
neighbors v of ns corresponds to a leaf of the minimal chiral tree of s, the edge
(v, ns) is already encoded within the code cs of ns. Consequently, we impose
that each neighbor v of ns in a stereotreelet must have at least another neighbor
(different of ns). This constraint induces the set of stereotreelets represented in
Fig. 6. The set of stereotreelet T (G) of G is defined as the union of stereotreelets
of each Gs.

When all stereotreelets of G have been enumerated, we compute its spectrum
s(G) which corresponds to a vector representing the treelet distribution. Each
component of this vector is equal to the frequency of a given stereotreelet t:
s(G) = (ft(G))t∈T (G) with ft(G) = |(t ⊆ G)|. The kernel between two graphs G
and G′ is defined as a sum of kernels between the different number of treelets
common to both graphs: k(G,G′) =

∑
t∈T (G)∩T (G′)

K(ft(G), ft(G
′)).

5 Experiments

We have tested our method on a dataset of acyclic chiral molecules [5] related
to a regression problem. This dataset is composed of 90 molecules together with
their optical rotations. In practice, we only select 35 molecules, since almost all
molecules have only one stereocenter, and for 55 molecules this stereocenter is
unique in the dataset. Such molecules correspond to a property represented only
once in the dataset which can thus not be accurately predicted. The property
to predict, the optical rotation, is connected with chirality and has a standard
deviation of 38.25 for the 35 selected molecules.

For our experiment we use a leave-one-out cross-validation on the dataset
to predict the optical rotation of each molecule. The predicted rotations are

Treelet Kernel Incorporating Chiral Information 141

Table 1. Optical rotation prediction for the acyclic chiral dataset

Method
Kernel Ridge Weighted Average Gram’s matrix

Average Error RMSE Average Error RMSE computations (s)

Random Kernel 31.7 39.5 32.0 39.3 0.03

KMean[6] 31.0 38.7 32.3 39.6 153.84

Treelet Kernel[1] 26.0 33.9 28.9 37.4 0.49

Stereotreelet Kernel 21.0 25.6 11.6 16.3 0.13

computed by using both kernel ridge regression and the weighted mean of known

values using the similarity measure provided by the kernel ŷ =

∑

i

k(Gi,G)×yi

∑

i

k(Gi,G) . We

present in Table 1 the average errors, Root Mean Squared Errors (RMSE) and
computation times of the Gram matrix for our method and the ones of [6,1]
which do not take into account chirality. Results obtained by using a random
Gram matrix are also shown.

Weighted mean providesmuch better results for our kernel since on this dataset
each molecule has a non null similarity with a reduced number of molecules (less
than 10). Such a reduced number of data do not allow kernel ridge regression to
perform reliable prediction. Other methods provide similar results than those ob-
tained using a random Gram matrix. These results are also comparable with the
variance of the dataset. Such a result may be explained by the fact that optical
rotation is connected to chirality which is not encoded by these kernels.

6 Conclusion

In this paper we proposed a graph kernel for chemoinformatics that considers the
spatial constraints of atoms within molecules. Our experiments show promising
results and our future work will consist to create larger datasets and to extend
our method to graphs including cycles.

References

1. Gaüzère, B., Brun, L., Villemin, D.: Two new graphs kernels in chemoinformatics.
Pattern Recognition Letters (April 2012)

2. Brown, J., Urata, T., Tamura, T., Arai, M., Kawabata, T., Akutsu, T.: Com-
pound analysis via graph kernels incorporating chirality. J. Bioinform. Comp. Bio.,
S1:63–81 (2010)

3. Mahé, P., Vert, J.-P.: Graph kernels based on tree patterns for molecules. Machine
Learning 75(1), 3–35 (2008)

4. Chi, Y., Yang, Y., Muntz, R.R.: Canonical forms for labeled trees and their
applications in frequent subtree mining. KAIS 8(2), 203–234 (2005)

5. Zhu, H.J., Ren, J., Pittman Jr., C.U.: Matrix model to predict specific optical
rotations of acyclic chiral molecules. Tetrahedron 2007 63, 2292–2314 (2007)

6. Suard, F., Rakotomamonjy, A., Bensrhair, A.: Kernel on bag of paths for measuring
similarity of shapes. In: ESANN (2002)

A Novel Software Toolkit for Graph Edit

Distance Computation

Kaspar Riesen1, Sandro Emmenegger1, and Horst Bunke2

1 Institute for Information Systems, University of Applied Sciences and
Arts Northwestern Switzerland,

Riggenbachstrasse 16, CH-4600 Olten, Switzerland
{kaspar.riesen,sandro.emmenegger}@fhnw.ch

2 Institute of Computer Science and Applied Mathematics, University of Bern,
Neubrückstrasse 10, CH-3012 Bern, Switzerland

bunke@iam.ch

Abstract. Graph edit distance is one of the most flexible mechanisms
for error-tolerant graph matching. Its key advantage is that edit distance
is applicable to unconstrained attributed graphs and can be tailored to
a wide variety of applications by means of specific edit cost functions.
The computational complexity of graph edit distance, however, is expo-
nential in the number of nodes, which makes it feasible for small graphs
only. In recent years the authors of the present paper introduced sev-
eral powerful approximations for fast suboptimal graph edit distance
computation. The contribution of the present work is a self standing
software tool integrating these suboptimal graph matching algorithms.
It is about being made publicly available. The idea of this software tool
is that the powerful and flexible algorithmic framework for graph edit
distance computation can easily be adapted to specific problem domains
via a versatile graphical user interface. The aim of the present paper is
twofold. First, it reviews the implemented approximation methods and
second, it thoroughly describes the features and application of the novel
graph matching software.

1 Introduction to Graph Edit Distance

Graph matching refers to the process of evaluating the structural similarity of
graphs. A large number of methods for graph matching have been proposed
in recent years [1–5]. Compared to other graph matching methods, graph edit
distance is very flexible. Due to its ability to cope with arbitrary structured
graphs with unconstrained label alphabets for both nodes and edges. Therefore,
graph edit distance has been used in the context of classification and clustering
tasks in diverse applications [6–8].

Given two graphs, the source graph g1 and the target graph g2. The basic idea
of graph edit distance is to transform g1 into g2 using some distortion operations.
A standard set of distortion operations is given by insertions, deletions, and
substitutions of both nodes and edges. We denote the substitution of two nodes

W.G. Kropatsch et al. (Eds.): GbRPR 2013, LNCS 7877, pp. 142–151, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Graph Edit Distance Software 143

u and v by (u → v), the deletion of node u by (u → ε), and the insertion of node
v by (ε → v). For edges we use a similar notation. A sequence of edit operations
e1, . . . , ek that transform g1 completely into g2 is called an edit path between g1
and g2.

Obviously, for every pair of graphs (g1, g2), there exist an infinite number of
different edit paths transforming g1 into g2. Let Υ (g1, g2) denote the set of all
possible edit paths between two graphs g1 and g2. To find the most suitable edit
path out of Υ (g1, g2), one introduces a cost for each edit operation, measuring
the strength of the corresponding operation. The idea of such a cost function is
to define whether or not an edit operation represents a strong modification of
the graph. Usually, the cost is defined with respect to the underlying node or
edge labels, i.e. the cost c(e) is a function depending on the edit operation e.

Clearly, between two similar graphs, there should exist an inexpensive edit
path, representing low cost operations, while for dissimilar graphs an edit path
with high cost is needed. Consequently, the edit distance of two graphs is defined
by the minimum cost edit path between two graphs. Formally, the graph edit
distance between g1 and g2 is defined by

d(g1, g2) = min
(e1,...,ek)∈Υ (g1,g2)

k∑
i=1

c(ei)

The possibility to parametrize graph edit distance bymeans of a cost function cru-
cially amounts for the versatility of this particular dissimilarity model. That is, by
means of graph edit distance it is possible to integrate domain specific knowledge
about object similarity when defining the cost of the elementary edit operations.
Thus, the concept of edit distance can be tailored to specific applications.

Traditionally, the computation of edit distance is carried out by means of a
tree search algorithm which explores the space of all possible mappings of the
nodes and edges of g1 to the nodes and edges of g2. Yet, a spate of other graph
edit distance computation algorithms have been developed during the last years.
The present paper introduces a flexible software package for various graph edit
distance computation variants (including the traditional tree search algorithm).
The graph edit distance software will be made publicly available soon under

http://www.fhnw.ch/wirtschaft/iwi/gmt

In Fig. 1 the main window of our novel graph matching software tool is shown.
In ① in Fig. 1 the user of the framework is asked to define the source graph set
S = {g1, . . . , gn} the target graph set T = {g′1, . . . , g′m}1, the folder where the
individual graphs are locally stored (graph folder) and a results folder where the
computed distance matrix D = (d(gi, gj))n×m is saved (gi ∈ S and gj ∈ T). For
more detailed and technical descriptions of the input formats of both graph sets
and graphs as well as the output format of the distance matrix we refer to the
above mentioned website. In ② in Fig. 1 the user defines whether or not to log
meta information about the graphs being processed and the corresponding edit
paths.

1 Clearly, the source and target set might be the same sets in some applications.

144 K. Riesen, S. Emmenegger, and H. Bunke

The remainder of the present paper reviews different versions of graph edit
distance available in our software tool and describes the user-defined parameters
and options for graph edit distance computation in detail.

①

②

③ ④

⑤

⑥
⑦⑧

9

❷

⑩

❶

❸

Fig. 1. The main window of our novel graph matching software tool

2 Graph Edit Distance Algorithms

In ③ in Fig. 1 the graph edit distance algorithm actually to be applied can be
chosen by the user. The five available algorithms are briefly described in the next
paragraphs.

A*-Algorithm with Bipartite Heuristic (exact graph edit distance). A widely used
method for exact graph edit distance is based on the A* algorithm [9] which is
a best-first search algorithm. The basic idea is to organize the underlying search
space as an ordered tree. The root node of the search tree represents the starting
point of our search procedure, inner nodes of the search tree correspond to partial
solutions, and leaf nodes represent complete – not necessarily optimal – solutions.
Such a search tree is constructed dynamically at runtime by iteratively creating
successor nodes linked by edges to the currently considered node in the search
tree. In order to determine the most promising node in the current search tree
often a heuristic function is used. Formally, for a node p in the search tree, we
use g(p) to denote the cost of the optimal path from the root node to the current

Graph Edit Distance Software 145

node p, and we use h(p) for denoting the estimated cost from p to a leaf node. The
sum g(p)+ h(p) gives the total cost assigned to an open node in the search tree.
Given that the estimation of the future cost h(p) is lower than, or equal to, the
real cost, it is guaranteed that the algorithm finds an optimal edit path [9]. To
solve the problem of estimating a lower bound h(p) for the future costs, one can
map the unprocessed nodes and edges of graph g1 to the unprocessed nodes and
edges of graph g2 such that the resulting costs are minimal. In [10] it is proposed
to use a fast bipartite assignment algorithm of the unprocessed nodes and edges
of the two graphs as heuristic function h(p). This specific heuristic function h(p)
described in [10] is actually implemented in our software framework.

Beam Search. The method described in the previous paragraph finds an opti-
mal edit path between two graphs g1 and g2 and thus returns the exact graph
edit distance d(g1, g2). Unfortunately, the computational complexity of any ex-
act graph edit distance algorithm is exponential in the number of nodes of the
involved graphs (whether or not a heuristic function h(p) is deployed to gov-
ern the tree traversal process). This means that the running time and space
complexity may be huge even for reasonably small graphs2. In [11] the issue of
efficient graph edit distance computation is addressed by simple variants of a
standard A* algorithm. One method presented in [11] is based on the idea of
beam search. Instead of expanding all successor nodes in the search tree, only a
fixed number s of nodes to be processed are kept in the set of open nodes at all
times. Whenever a new partial edit path is added, only the s partial edit paths p
with the lowest costs g(p) + h(p) are kept, and the remaining partial edit paths
are removed. This means that not the full search space is explored, but only
those nodes are expanded that belong to the most promising partial matches.

For similar graphs, it is clear that edit operations of an optimal path have low
costs. Therefore if only the partial edit paths with lowest costs are considered,
we will obtain an edit path that is nearly optimal, which will result in a subop-
timal distance close to the exact distance. For dissimilar graphs, the suboptimal
distance will remain large. Note that this method requires the user to define the
maximum number of open paths s (cp. ④ in Fig. 1). The parameter s controls
both the degree of suboptimality and the computation time of the procedure.
That is, increasing the parameter s simultaneously augments the probability of
finding the true graph edit distance and the running time.

Bipartite Graph Edit Distance using Assignment Algorithms. In [12–14] the au-
thors of the present paper introduced a novel algorithmic framework which allows
us to approximately compute edit distance in a substantially faster way than
traditional methods. The proposed algorithms consider only local, rather than
global, edge structure during the optimization process. The method is based on
an (optimal) fast bipartite assignment procedure mapping nodes and their local
structure of one graph to nodes and their local structure of another graph.

2 In practice we are able to compute the edit distance of graphs typically containing
12 nodes at most.

146 K. Riesen, S. Emmenegger, and H. Bunke

In [12] the algorithmic framework first substitutes all nodes of the smaller
graph and the nodes remaining in the larger graph are either deleted (if they
belong to g1) or inserted (if they belong to g2). In [13] this idea is extended
by allowing insertions or deletions to occur not only in the larger, but also in
the smaller of the two graphs under consideration. To this end, for two graphs
g1 and g2 to be matched with nodes V1 = {u1, . . . , un} and V2 = {v1, . . . , vm},
respectively, a cost matrix C is defined as follows:

C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c11 c12 · · · c1m c1ε ∞ · · · ∞

c21 c22 · · · c2m ∞ c2ε
. . .

.

.

.

.

.

.
.
.
.

. . .
.
.
.

.

.

.
. . .

. . . ∞
cn1 cn2 · · · cnm ∞ · · · ∞ cnε

cε1 ∞ · · · ∞ 0 0 · · · 0

∞ cε2
. . .

.

.

. 0 0
. . .

.

.

.

.

.

.
. . .

. . . ∞
.
.
.

. . .
. . . 0

∞ · · · ∞ cεm 0 · · · 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
where cij denotes the cost of a node substitution c(ui → vj), ciε denotes the
cost of a node deletion c(ui → ε), and cεj denotes the cost of a node insertion
c(ε → vj).

Obviously, the left upper corner of the cost matrix represents the costs of all
possible node substitutions, the diagonal of the right upper corner the costs of
all possible node deletions, and the diagonal of the bottom left corner the costs
of all possible node insertions. Note that each node can be deleted or inserted at
most once. Therefore any non-diagonal element of the right-upper and left-lower
part is set to ∞. The bottom right corner of the cost matrix is set to zero since
substitutions of the form (ε → ε) should not cause any costs.

In the definition of cost matrix C, to each entry cij , i.e. to each cost of a node
substitution c(ui → vj), the minimum sum of edge edit operation costs, implied
by node substitution ui → vj , is added. That is, using a bipartite optimization
procedure the cost of an optimal assignment of the adjacent edges of ui and vj
is computed and added to entry cij . Clearly, to entry ciε the cost of the deletion
of all adjacent edges of ui is added, and to the entry cεj the cost of all insertions
of the adjacent edges of vj is added. Note that in ② in Fig. 1 one can define
whether or not to log the cost matrix C in the output window.

On the basis of the quadratic cost matrix C any bipartite assignment algo-
rithm can be executed. The result returned by bipartite optimization procedures
applied to C corresponds to the minimum cost mapping of the nodes and their
local edge structure of g1 to the nodes and their local edge structure of g2. In ②

in Fig. 1 one can choose to log the optimal mapping of local structures found on
matrix C in the output window. Given the optimal mapping between local struc-
tures, the edit operations on nodes and the implied edit operations of the edges
can be inferred, and the accumulated costs of the individual edit operations
on both nodes and edges can be computed. Note that assignment algorithms
are not able to consider the global edge structure during the matching process.
Hence, optimal matchings of nodes (considering the local edge structure) do not

Graph Edit Distance Software 147

necessarily lead to an optimal (i.e. minimum cost) edit path. That is, this pro-
cedure leads to a suboptimal graph edit distance, which is equal to or greater
than the exact edit distance.

In [12, 13] we make use of Munkres’ algorithm [15] as basic bipartite optimiza-
tion procedure. In [14] not only Munkres’ Algorithm but also a modern version of
the Hungarian Algorithm as well as the algorithm of Volgenant and Jonker [16]
are incorporated to solve the assignment problem. In our software package all
three assignment algorithms are implemented.

3 Defining the Cost Function

The definition of adequate and application-specific cost functions is a key task in
edit distance based graph matching. The definition of the cost is usually depend-
ing on the underlying label alphabets for nodes and edges. In our algorithmic
framework, the labels for both nodes and edges can be given by the set of integers
L = {1, 2, 3, . . .}, real numbers L = R, a set of symbolic labels L = {α, β, γ, . . .},
strings defined over an alphabet V L = {V ∗}, or an arbitrary combination of
different labels. Unlabeled graphs are obtained as a special case by assigning the
same symbolic label λ to all nodes and edges. In our software tool a single node
can be labeled with up to five different node attributes which can be arbitrarily
named by the user (cp. ⑤ in Fig. 1). In Fig. 2 (a), for instance, the nodes are
labeled with three attributes x, y and z (the nodes represent points in a three-
dimensional space R3). In Fig. 2 (b) the nodes are labeled with two attributes,
viz. a symbolic attribute named type and a string named sequence. Note that
the label alphabets are implicitly defined by the distance function to be applied
on them (see next paragraph).

The first step in cost definition is to define a non-negative parameter repre-
senting the cost of a deletion or insertion c(u → ε) or c(ε → u), respectively, of
an arbitrary node u (cp. ⑥ in Fig. 1). For the sake of symmetry, an identical
cost for deletions and insertions has to be defined. Second, for each attribute a
distance function for node substitutions has to be chosen by the user. Typically,
the cost of a node substitution (u → v) is measured by means of some distance
function d : L×L → R defined on the node label alphabet L. For now we assume
that the nodes are labeled with a single attribute from alphabet L. The attribute
values of u and v are u.A ∈ L and v.A ∈ L, respectively. In our software tool
four different distance functions can be defined on each node attribute. Note
that the first two distance functions are applicable to numerical attributes only.
The last distance function is applicable to string attributes:

1. absolute value of difference: d(u.A, v.A) = |u.A− v.A|
2. squared difference: d(u.A, v.A) = (u.A− v.A)2

3. discrete metric: d(u.A, v.A) =

{
μ, if u.A = v.A

ν, else

where μ, ν are non-negative real values (μ, ν ∈ R+) to be defined by the user
(cp. ⑦ in Fig. 1).

148 K. Riesen, S. Emmenegger, and H. Bunke

4. Levenshtein distance: d(u.A, v.A) = minimal number of single-character edit
operations (deletions, insertions, substitutions) required to change string u.A
into string v.A, also known as string edit distance (sed).

Assuming that the nodes are labeled with k > 1 attributes, the i-th attribute
values of u and v are u.Ai ∈ Li and v.Ai ∈ Li, respectively. For each attribute
an individual distance function di : Li × Li → R has been defined by the user.
The weighting parameter σi ∈]0, 1] (cp. ⑧ in Fig. 1) can be defined in order to
scale the relative importance of an attribute distance value by means of

σi · di(u.Ai, v.Ai)

In our framework there are two ways of combining the k individual weighted dis-
tance values (σi · di(u.Ai, v.Ai))1≤i≤k, viz. by building the sum or the product
(cp. ⑨ in Fig. 1). Finally, in ⑩ in Fig. 1 the user is asked to define a parameter
p indicating that the p-th root is extracted from the combined node cost. De-
pending on whether the individual node costs are added or multiplied, we thus
get the cost c(u → v) for node substitution (u → v) as(

k∑
i=1

σi · di(u.Ai, v.Ai)

)1/p

or

(
k∏

i=1

σi · di(u.Ai, v.Ai)

)1/p

In Fig. 2 two examples of node cost functions are shown. In Fig. 2 (a) the cost
for a node substitution is given as a weighted Euclidean distance between the
nodes:

c(u → v) =
√
0.5 · (u.x− v.x)2 + 0.7 · (u.y − v.y)2 + 0.9 · (u.z − v.z)2

In Fig. 2 (b) the cost for a node substitution is defined by:

c(u → v) =

{
0.5 · sed(u.sequence, v.sequence), if u.type = v.type

sed(u.sequence, v.sequence), if u.type
= v.type

The edge attributes and their distance function can be defined analogously. Ad-
ditionally, for edges the user has to define whether the edges are directed or
undirected (cp. ❶ in Fig. 1). The weighting parameter α ∈ [0, 1] (cp. ❷ in
Fig. 1) controls whether the edit operation cost on the nodes or on the edges is
more important. That is, each cost of every node operation (deletion, insertion,
substitution) is multiplied by α. In the case of edge operations the costs are mul-
tiplied by (1−α). The default setting is α = 0.5 leading to balanced importance
between node and edge operation cost.

4 Similarity Kernel from Edit Distance

Kernel machines constitute a very powerful class of algorithms [17, 18]. As a
matter of fact, kernel methods have become a rapidly emerging sub-field in in-
telligent information processing. As any kernel function can be regarded as a

Graph Edit Distance Software 149

(a)

(b)

Fig. 2. Two different parameter settings for defining the cost functions on node
attributes

object similarity measure, the edit distance of graphs can also be interpreted
as a pattern similarity measure in the context of kernel machines, which makes
a large number of powerful methods applicable to graphs [19], including sup-
port vector machines for classification and kernel principal component analysis
for feature space transformation and dimensionality reduction. In our algorith-
mic framework we provide four different transformations of graph edit distance
d(g1, g2) to a similarity measure κi(g1, g2) (cp. ❸ in Fig. 1):

– κ1(g1, g2) = −d(g1, g2)2
– κ2(g1, g2) = −d(g1, g2)
– κ3(g1, g2) = tanh(−d(g1, g2))
– κ4(g1, g2) = exp(−d(g1, g2))

Note that these similarity kernels are not positive definite and are therefore not
valid kernels in the strict sense. Yet, there is theoretical and practical evidence
that using kernel machines in conjunction with indefinite kernels may be both
reasonable and beneficial [19, 20].

5 Conclusion and Future Work

In comparison with the great variety of software tools for statistical pattern
recognition, the number of tools for structural pattern recognition is rather lim-
ited. There are some software tools available for manipulating graphs or exact

150 K. Riesen, S. Emmenegger, and H. Bunke

graph matching (e.g. the iGraph tool [21] or the VF2 library [22]), yet, a soft-
ware tool for (approximate) graph edit distance computation is still missing.
The present paper reviews three versions of graph edit distance which have been
integrated in one publicly available software tool. We expect that the graph
matching software tool introduced in this paper provides a major contribution
towards promoting the use of graph based representations in pattern recognition
and related fields.

In [23] a novel framework for graph isomorphism based on approximate graph
edit distance computations has been introduced. It is planned to integrate these
methods and thus the possibility of exact graph matching in our software tool
in future work.

Acknowledgements. This work has been supported by the Hasler Foundation
Switzerland.

References

1. Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty years of graph matching
in pattern recognition. Int. Journal of Pattern Recognition and Artificial Intelli-
gence 18(3), 265–298 (2004)

2. Luo, B., Wilson, R., Hancock, E.R.: Spectral embedding of graphs. Pattern
Recognition 36(10), 2213–2223 (2003)

3. Wilson, R., Hancock, E.R.: Levenshtein distance for graph spectral features.
In: Kittler, J., Petrou, M., Nixon, M. (eds.) Proc. 17th Int. Conf. on Pattern
Recognition, vol. 2, pp. 489–492 (2004)

4. Boeres, M.C., Ribeiro, C.C., Bloch, I.: A randomized heuristic for scene recognition
by graph matching. In: Ribeiro, C.C., Martins, S.L. (eds.) WEA 2004. LNCS,
vol. 3059, pp. 100–113. Springer, Heidelberg (2004)

5. Sorlin, S., Solnon, C.: Reactive tabu search for measuring graph similarity. In:
Brun, L., Vento, M. (eds.) GbRPR 2005. LNCS, vol. 3434, pp. 172–182. Springer,
Heidelberg (2005)

6. Neuhaus, M., Bunke, H.: An error-tolerant approximate matching algorithm for
attributed planar graphs and its application to fingerprint classification. In: Fred,
A., Caelli, T.M., Duin, R.P.W., Campilho, A.C., de Ridder, D. (eds.) SSPR&SPR
2004. LNCS, vol. 3138, pp. 180–189. Springer, Heidelberg (2004)

7. Ambauen, R., Fischer, S., Bunke, H.: Graph edit distance with node splitting and
merging and its application to diatom identification. In: Hancock, E., Vento, M.
(eds.) GbRPR 2003. LNCS, vol. 2726, pp. 95–106. Springer, Heidelberg (2003)

8. Robles-Kelly, A., Hancock, E.R.: Graph edit distance from spectral seriation. IEEE
Transactions on Pattern Analysis and Machine Intelligence 27(3), 365–378 (2005)

9. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic deter-
mination of minimum cost paths. IEEE Transactions of Systems, Science, and
Cybernetics 4(2), 100–107 (1968)

10. Riesen, K., Fankhauser, S., Bunke, H.: Speeding up graph edit distance compu-
tation with a bipartite heuristic. In: Frasconi, P., Kersting, K., Tsuda, K. (eds.)
Proc. 5th. Int. Workshop on Mining and Learning with Graphs, pp. 21–24 (2007)

Graph Edit Distance Software 151

11. Neuhaus, M., Riesen, K., Bunke, H.: Fast suboptimal algorithms for the compu-
tation of graph edit distance. In: Yeung, D.-Y., Kwok, J.T., Fred, A., Roli, F.,
de Ridder, D. (eds.) SSPR & SPR 2006. LNCS, vol. 4109, pp. 163–172. Springer,
Heidelberg (2006)

12. Riesen, K., Neuhaus, M., Bunke, H.: Bipartite graph matching for computing the
edit distance of graphs. In: Escolano, F., Vento, M. (eds.) GbRPR. LNCS, vol. 4538,
pp. 1–12. Springer, Heidelberg (2007)

13. Riesen, K., Bunke, H.: Approximate graph edit distance computation by means of
bipartite graph matching. Image and Vision Computing 27(4), 950–959 (2009)

14. Fankhauser, S., Riesen, K., Bunke, H.: Speeding up graph edit distance computa-
tion through fast bipartite matching. In: Jiang, X., Ferrer, M., Torsello, A. (eds.)
GbRPR 2011. LNCS, vol. 6658, pp. 102–111. Springer, Heidelberg (2011)

15. Munkres, J.: Algorithms for the assignment and transportation problems. Journal
of the Society for Industrial and Applied Mathematics 5, 32–38 (1957)

16. Jonker, R., Volgenant, T.: A shortest augmenting path algorithm for dense and
sparse linear assignment problems. Computing 38, 325–340 (1987)

17. Schölkopf, B., Smola, A.: Learning with Kernels. MIT Press (2002)
18. Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge

University Press (2004)
19. Neuhaus, M., Bunke, H.: Bridging the Gap Between Graph Edit Distance and

Kernel Machines. World Scientific (2007)
20. Haasdonk, B.: Feature space interpretation of SVMs with indefinite kernels. IEEE

Transactions on Pattern Analysis and Machine Intelligence 27(4), 482–492 (2005)
21. Csárdi, G., Nepusz, T.: The igraph software package for complex network research.

Inter. Journal Complex Systems 1695 (2006)
22. Cordella, L.P., Foggia, P., Sansone, C., Vento, M.: An improved algorithm for

matching large graphs. In: Proc. of the 3rd IAPR TC-15 Workshop on Graphbased
Representations in Pattern Recognition, pp. 149–159 (2001)

23. Riesen, K., Fankhauser, S., Bunke, H., Dickinson, P.: Efficient suboptimal graph
isomorphism. In: Torsello, A., Escolano, F., Brun, L. (eds.) GbRPR 2009. LNCS,
vol. 5534, pp. 124–133. Springer, Heidelberg (2009)

Map Edit Distance vs. Graph Edit Distance

for Matching Images

Camille Combier1,2, Guillaume Damiand2,3, and Christine Solnon2,3

1 Université Lyon 1, LIRIS, UMR 5205 CNRS, 69622 Villeurbanne, France
2 Université de Lyon, France

3 INSA de Lyon, LIRIS, UMR 5205 CNRS, 69621 Villeurbanne, France
{guillaume.damiand,christine.solnon}@liris.cnrs.fr

Abstract. Generalized maps are widely used to model the topology of
nD objects (such as 2D or 3D images) by means of incidence and ad-
jacency relationships between cells (0D vertices, 1D edges, 2D faces, 3D
volumes, ...). Recently, we have introduced a map edit distance. This
distance compares maps by means of a minimum cost sequence of edit
operations that should be performed to transform a map into another
map. In this paper, we introduce labelled maps and we show how the
map edit distance may be extended to compare labeled maps. We exper-
imentally compare our map edit distance to the graph edit distance for
matching regions of different segmentations of a same image.

1 Motivations

In many computer vision applications we have to match interest points or regions
extracted from different images in order to, e.g., recognize objects or reconstitute
3D models from 2D images. When looking for such matchings, graph-based ap-
proaches offer a good compromise between local approaches, which match each
point with the most similar point of the other image independently from its
relationships with other points, and global approaches such as RANSAC, which
consider rigid transformations. Indeed, graph-based approaches are able to ex-
ploit local relationships while being more tolerant to deformations than global
approaches such as RANSAC based ones [1].

There exist different kinds of graph matchings [2], ranging from subgraph
isomorphism to more error-tolerant matchings such as the graph edit distance.
The graph edit distance is a generic measure, which is parametrized by edition
costs, and it is widely used to match graphs. It defines the distance between
two graphs G1 and G2 as the minimum cost sequence of edit operations for
transforming G1 into G2. Edit operations are vertex and edge deletion, insertion
and substitution. A vertex matching may be derived from the sequence of edit
operations in a straightforward way: Any vertex v1 of G1 which is substituted
to a vertex v2 of G2 is actually matched with v2 [3].

Graphs are well suited to model binary relationships such as point proximity
or region adjacency. However, graphs are less well suited to model the topology
of the subdivision of a plane in faces, edges, and vertices. Combinatorial maps

W.G. Kropatsch et al. (Eds.): GbRPR 2013, LNCS 7877, pp. 152–161, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Map Edit Distance vs. Graph Edit Distance 153

are very nice data structures to model this kind of topological information: they
model the topology of nD objects subdivided into cells (e.g., vertices, edges,
faces, volumes, . . .) by means of incidence and adjacency relationships between
these cells. Combinatorial maps have been extended to generalized maps in [4],
which are fully homogeneous in any dimension, thus simplifying algorithms and
the development of computer libraries. In 2D, combinatorial and generalized
maps may be used to model the topology of an embedding of a planar graph in
a plane. In particular, these models are very well suited for scene modeling [5],
for 2D and 3D image segmentation [6], and there exist efficient algorithms to
extract maps from images [7].

We have defined a map edit distance in [8]. This map edit distance is a straight-
forward extension of the graph edit distance: it defines the distance between two
maps as a minimum cost sequence of edit operations, and a matching may be
derived from this edit operation sequence. However, this map edit distance has
been defined for non labelled maps. In this paper, we introduce labelled maps,
such that cells may be associated with labels which describe their properties, and
we extend our map edit distance to labelled maps. Another goal of this paper
is to compare our map edit distance with the graph edit distance for matching
regions of different segmentations of a same image, and therefore answer the
following question: Does the topology of the subdivision of the image in regions
(besides region adjacency relationships) help to match image regions?

Outline of the Paper. In Section 2, we recall definitions related to generalized
maps and to the map edit distance. In Section 3, we introduce labelled maps and
show how the map edit distance may be extended to handle labels. In Section 4,
we experimentally compare our map edit distance to the graph edit distance for
matching regions of segmented images. In Section 5, we discuss further work.

2 Recalls on Generalized Maps and the Map Edit
Distance

In this work we consider generalized maps, and we refer the reader to [4] for
more details.

Definition 1 (nG-map). Let n ≥ 0. An n-dimensional generalized map
(or nG-map) is defined by a tuple G = (D,α0, . . . , αn) such that

1. D is a finite set of darts;
2. ∀i ∈ {0, . . . , n}, αi is an involution on D (i.e., it is a bijection such that

∀d ∈ D,αi(αi(d)) = d);
3. ∀i, j ∈ {0, . . . , n} such that i+ 2 ≤ j, αi ◦ αj is an involution.

We say that a dart d is i-sewn with a dart d′ whenever d′ = αi(d) and d
= d′,
whereas it is i-free whenever d = αi(d). We say that a dart d is free if it is i-free
for every dimension.

154 C. Combier, G. Damiand, and C. Solnon

v3f1 f2

v1 v2

v5 v4

a b c d e f g h i j k l m n

α0 h c b e d g f a j i l k n m

α1 b a d c f e h g n k j m l i

α2 a b c i j f g h d e k l m n

(a) (b) (c)

Fig. 1. (a) A plane graph. (b) The corresponding 2G-map. (c) Its graphical repre-
sentation: darts are represented by segments labeled with letters, consecutive darts
separated with a little segment are 0-sewn (e.g., α0(b) = c and α0(c) = b), consecutive
darts separated with a dot are 1-sewn (e.g., α1(a) = b and α1(b) = a), parallel darts
are 2-sewn (e.g., α2(d) = i and α2(i) = d).

2G-maps may be used to model the embedding of a planar graph into a plane.
For example, Fig. 1 displays a plane graph, composed of 5 vertices, 6 edges and
2 faces, and the corresponding 2G-map, composed of 14 darts.

Cells are implicitly defined by sets of darts corresponding to orbits: the i-cell
incident to a dart d is defined by celli(d) =< {α0, . . . , αn} \ {αi} > (d). Let us
consider, for example, the 2G-map of Fig. 1. The cells incident to dart e are:

– cell0(e) =< {α1, α2} > (e) = {e, f, j, k}, corresponding to vertex v4;
– cell1(e) =< {α0, α2} > (e) = {d, e, i, j}, corresponding to edge (v2, v4);
– cell2(e) < {α0, α1} > (e) = {a, b, c, d, e, f, g, h}, corresponding to face f1.

The map edit distance is based on edit operations which are used to transform
maps. These edit operations allow one to add/delete free darts, and to sew/unsew
darts. More precisely, let G = (D,α0, . . . , αn) be an nG-map.

– Let d ∈ D be a free dart of G (i.e., ∀i ∈ {0, . . . , n}, αi(d) = d). The deld(G)
operation removes d from D.

– Let d
∈ D be a dart. The addd(G) operation adds d to D so that d becomes
a free dart of G, i.e., ∀i ∈ {0, . . . , n}, αi(d) = d.

– Let S be a set of triples (d, i, d′) such that d ∈ D and d′ ∈ D are i-free (i.e.,
d
= d′, αi(d) = d, and αi(d

′) = d′). The sewS(G) operation i-sews d to d′

for every triple (d, i, d′) ∈ S, i.e., it sets αi(d) to d′ and αi(d
′) to d.

– Let S be a set of triples (d, i, d′) such that d ∈ D and d′ ∈ D are i-sewn darts
(i.e., d
= d′, αi(d) = d′, and αi(d

′) = d). The unsewS(G) operation i-unsews
d to d′ for every triple (d, i, d′) ∈ S, i.e., it sets αi(d) to d and αi(d

′) to d′.

When comparing these edit operations to classical graph edit operations, the
del and add operations are related to vertex deletion and addition operations,
whereas the sew and unsew operations are related to edge deletion and addition
operations. A main difference is that sew/unsew operations operate on sets of
darts instead of sewing/unsewing darts one by one. Indeed, sewing/unsewing a
single dart may lead to a non valid nG-map. Let us consider for example the
nG-map of Fig. 1. We cannot 2-unsew darts d and i without also 2-unsewing
darts e and j (otherwise α0 ◦α2 no longer is an involution so that Property 3 of

Map Edit Distance vs. Graph Edit Distance 155

definition 1 no longer is satisfied). The map edit distance is then defined as the
cost of the minimal cost edit path.

Definition 2 (edit path). Let G be an nG-map and Δ =< δ1, . . . , δk > be a
sequence of k edit operations. Δ is an edit path for G if δk(δk−1(. . . (δ1(G)))),
denoted Δ(G), is an nG-map (according to definition 1).

Definition 3 (map edit distance). Let c be a function which associates a cost
c(δ) ∈ R+ with every operation δ. The edit distance between the two nG-maps G
and G′ is dc(G,G

′) =
∑

δi∈Δ(c(δi)) where Δ is an edit path such that Δ(G) = G′

and
∑

δi∈Δ(c(δi)) is minimal.

3 Extension of the Map Edit Distance to Labelled Maps

Generalized maps describe the topology of the subdivision of a space into cells.
However, they do not express other information such as, for example, geometry,
texture or colour information. This kind of information may be added by means
of labels associated with cells. In generalized maps, cells are implicitly defined by
sets of darts and correspond to orbits. Therefore, to associate a label with an i-
cell c, we propose to label every dart of c, i.e., every dart d such that celli(d) = c.
Note that, a dart belongs to exactly one cell for every dimension i ∈ {0, . . . , n}.
For consistency reasons, we impose that all darts of a same i-cell have the same
label for dimension i.

Definition 4 (Labelled nG-maps). Let n ≥ 1. A labelled nG-map is a tuple
G = (D,α0, . . . , αn, L, l) such that (D,α0, . . . , αn) is an nG-map, L is a set
of labels, and l : D × {0, . . . , n} → L is a labelling function such that ∀d, d′ ∈
D, ∀i ∈ {0, . . . , n}, celli(d) = celli(d

′) ⇒ l(d, i) = l(d′, i).

In other words, l(d, i) is the label associated with the i-cell incident to d. Let
us consider, for example, the 2G-map of Fig. 1. To associate the label x with
vertex v4, we define l(e, 0) = l(f, 0) = l(j, 0) = l(k, 0) = x; to associate the label
y with edge (v2, v4), we define l(d, 1) = l(e, 1) = l(i, 1) = l(j, 1) = y; to associate
the label z with face f1, we define l(a, 2) = l(b, 2) = l(c, 2) = l(d, 2) = l(e, 2 =
l(f, 2) = l(g, 2) = l(h, 2) = z.

The map edit distance of [8] has been defined for non labelled maps. To
extend it to labelled maps, we introduce a new edit operation that substitutes
dart labels. Let G = (D,α0, . . . , αn, L, l) be a labelled nG-map, d ∈ D be a dart,
i ∈ {0, ..., n}, and l′ ∈ L be a label. The subs(d,l′,i)(G) operation substitutes the
label l(d, i) of dart d with the new label l′. The cost function c must also be
extended so that the cost of an edit operation (subs, del, add, sew, or unsew)
depends on dart labels.

4 Experimental Comparison

In this section, we compare the map edit distance with the graph edit distance
for matching regions of different segmentations of a same image. Our goal is to

156 C. Combier, G. Damiand, and C. Solnon

(a) (b) (c)

Fig. 2. (a) An image. (b) A segmentation of (a) in 389 regions. (c) A finer segmentation
of (a) in 415 regions.

evaluate the interest of using maps, which model the topology of the subdivi-
sion of the image in regions, instead of using graphs, which only model region
adjacency relationships.

4.1 Test Suite

For this very first experimental comparison, we compare different segmentations
of a same image. This allows us to have a ground truth for evaluating match-
ings: we consider that two regions coming from two different segmentations of
the same image are correctly matched if their intersection is not empty. We have
considered 6 different images (2 cars, 2 cows and 2 motorbikes) extracted from
the ETHZ benchmark1. For each image, we have generated different segmen-
tations, using the algorithm of [9] with different threshold values, so that the
number of regions varies from 240, for the coarser segmentations, to 460, for the
finer ones. Fig. 2 gives an example of two segmentations of a same image. Note
that all segmentations are recomputed from the same initial image so that re-
gions of finer segmentations are not necessarily subdivisions of regions of coarser
segmentations.

For each segmentation, we have built a graph and a 2G-map which represent
it. The graph is a classical region adjacency graph (RAG), which associates a
vertex with each region, and an edge with every pair of adjacent regions. The
2G-map associates a face with every region, the edges of the map describe the
adjacency relations between the regions and the vertices of the map describe
the adjacency relations between the edges.

The sizes of the resulting RAGs and 2G-maps are given in Table 1. Note that
if the number of faces of the 2G-maps corresponds to the number of vertices
of the RAGs, the 2G-maps have slightly more edges than RAGs as two regions
having multiple adjacency relationships are linked by a single edge in RAGs
(multiple adjacency occurs when two regions are adjacent several times).

Each region r of the segmented images is described by two basic descrip-
tors: A color descriptor, color(r), which is the average color of the pixels of r

1 available at http://pascallin.ecs.soton.ac.uk/challenges/VOC/databases.html

http://pascallin.ecs.soton.ac.uk/challenges/VOC/databases.html

Map Edit Distance vs. Graph Edit Distance 157

Table 1. Comparison of the sizes of RAGs and 2G-maps, for the coarser segmentations
(Min) and the finer ones (Max)

RAGs 2G-maps

Nb of vertices Nb of edges Nb of darts Nb of vertices Nb of edges Nb of faces

Min Max Min Max Min Max Min Max Min Max Min Max

240 460 688 1217 2792 4948 463 816 698 1237 240 460

(a value ranging between 0 and 255 as we consider gray-level colours), and an
area descriptor, area(r), which is the number of pixels of r.

First experiments showed us that the graph edit distance can hardly correctly
match regions when RAGs are not labelled. Actually, RAGs usually have many
automorphisms (i.e., symetries), so that there exist many different matchings
between two isomorphic RAGs which preserve adjacency relationships (but of
course, only one of these matchings correctly matches regions). In order to im-
prove the matching process, we have added structural labels to RAGs. Therefore,
for RAGs:

– each edge (u, v) is labelled with adj(u, v), the number of adjacency relation-
ships between the two regions associated with u and v;

– each vertex u corresponding to a region ru is labelled with a triple (totAdj(u),
color(ru), area(ru)), where totAdj(u) =

∑
v(adj(u, v)) is the total number

of adjacency relationships of all edges (u, v) incident to u.

The structural labels adj(u, v) and totAdj(u) greatly improve results for RAGs.
We do not add these structural labels to 2G-maps as this information is already
available in 2G-maps. Therefore, for every dart d of 2G-maps, we define l(d, 2) =
(color(rd), area(rd)), where rd is the region associated with the dart d. As no
information is associated with vertices and edges of the 2G-maps, we define
l(d, 0) = l(d, 1) = ε.

4.2 Cost Functions

For RAGs, we define the cost of substituting a vertex u whose label is (totAdj(u),
color(ru), area(ru)) with a vertex v whose label is (totAdj(v), color(rv),
area(rv)) by

c(subs(u, v)) = ωstruct · |totAdj(u) − totAdj(v)|
+ ωcolor · |color(ru)−color(rv)|

255

+ ωarea · (1 − min(area(ru),area(rv))
max(area(ru),area(rv))

)

where ωstruct, ωcolor, and ωarea are 3 parameters which determine the relative
weights of structural, color and area information. The cost of adding or deleting
a vertex or an edge is set to 1.

For 2G-maps, we define the cost of substituting a dart u whose label is l(u, 2) =
(color(ru), area(ru)) with a dart v whose label is l(v, 2)= (color(rv), area(rv))
by

158 C. Combier, G. Damiand, and C. Solnon

c(subs(u, v)) = ωcolor · |color(ru)−color(rv)|
255

+ ωarea · (1 − min(area(ru),area(rv))
max(area(ru),area(rv))

)

where ωcolor and ωarea are 2 parameters which determine the relative weights
of color and area information. The cost of adding or deleting a dart is set to
1. The cost of sewing/unsewing operations is equal to the number of triples
(d, i, d′) added/removed (as sew/unsew operations add/remove sets of seams for
consistency reasons).

4.3 Matching Algorithms

Computing edit distances is a NP-hard problem, both for graphs and maps.
Exact algorithms do not scale well and cannot compute edit distances within a
reasonable amount of time for the graphs and maps considered here. Therefore,
we use heuristic algorithms, which compute approximate solutions.

For the graph edit distance, we use the algorithm proposed in [3]: The graph
matching problem is approximated by an assignment problem which is solved
by the Munkres algorithm [10].

For the map edit distance, we use an extension to labelled maps of the greedy
algorithm described in [11]: Starting from an empty matching, this algorithm
iteratively matches darts until no more darts can be matched; at each iteration
the pair of darts to be matched is chosen in order to minimize the corresponding
edit costs.

Both algorithms have polynomial time complexities: O(v3) for the graph edit
distance, where v is the number of vertices of the largest graph, and O(d2 · log(d))
for the map edit distance, where d is the number of darts of the largest map. How-
ever, as d is more than ten times larger than v on our benchmark, the matching
process is faster for graphs than for maps: for the coarsest segmentations, having
240 regions, graphs (having 240 vertices) are matched in 2 seconds or so whereas
maps (having 2792 darts) are matched in 8 seconds or so; for the finest segmenta-
tions, having 460 regions, graphs (having 460 vertices) are matched in 5 seconds
or so whereas maps (having 4948 darts) are matched in 25 seconds or so.

4.4 Experimental Results

Let us now compare graph and map edit distances for matching regions of two
different segmentations of a same image. Comparing different segmentations of a
same image allows us to have a ground truth: we consider that two regions coming
from two different segmentations of the same image are correctly matched if their
intersection is not empty. When images are modelled with RAGs, we measure the
percentage of vertices which are correctly matched, i.e., whose associated regions
are correctly matched. When images are modelled with 2G-maps, we measure
the percentage of darts which are correctly matched, i.e., whose associated 2-cells
are correctly matched.

Map Edit Distance vs. Graph Edit Distance 159

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10

2G−maps: wcolor=0, warea=0
Graphs: wstruct=1, wcolor=0, warea=0

!
 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10

2G−maps: wcolor=0, warea=1
Graphs: wstruct=1, wcolor=0, warea=1

(a) (b)

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10

2G−maps: wcolor=1, warea=0
Graphs: wstruct=1, wcolor=1, warea=0

!
 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10

2G−maps: wcolor=1, warea=1
Graphs: wstruct=1, wcolor=1, warea=1

(c) (d)

Fig. 3. Average percentage of correctly matched darts/vertices (on the y-axis) with
respect to the difference k of segmentation levels (on the x-axis). (a) Using structural
information only, i.e., ωcolour = 0 and ωarea = 0. (b) Using structural and area infor-
mation, i.e., ωcolour = 0 and ωarea = 1. (c) Using structural and colour information,
i.e., ωcolour = 1 and ωarea = 0. (d) Using structural, colour and area information, i.e.,
ωcolour = 1 and ωarea = 1.

For each image, we sort its different segmentations from the coarsest one
(which has 240 regions) to the finest one (which has 460 regions). For each
segmentation i, we measure the percentage of correctly matched vertices/darts
when comparing it with segmentation i + k of the same image, where the dif-
ference k of segmentation levels ranges from 0 up to 10 (it may be less than
10 if segmentation i + 10 does not exist): when k = 0, we actually compare a
segmentation with itself; the larger k, the more different the two segmentations.

Fig. 3 displays the evolution of the percentage of correctly matched ver-
tices/darts with respect to the difference k of segmentation levels (on average
for the 6 images and each segmentation level i). For the graph edit distance,
we always set ωstruct to 1 as this always improves results. We consider different
combinations of the two other weight parameters ωcolour and ωweight. Let us first
compare graphs and 2G-maps when colour and area information is ignored, i.e.,
ωcolour = 0 and ωarea = 0. For 2G-maps, we are able to correctly match all darts

160 C. Combier, G. Damiand, and C. Solnon

when k = 0 (i.e., when we compare isomorphic 2G-maps), but this rate quickly
decreases when increasing k: it is equal to 20% or so when k = 3, and smaller
than 10% when k ≥ 5. For graphs, we are never able to match more than 10% of
the vertices, even when k = 0. Actually, RAGs have many automorphisms (i.e.,
symetries). Some of these symetries are broken by adding the structural labels
(number of adjacency relationships on edges, and total number of adjacency re-
lationships on vertices). However, even with structural labels, RAGs still have
many automorphisms so that a vertex may be matched with several vertices.

Adding colour or area information, i.e., setting ωcolour or ωarea to 1, signif-
icantly improves results and, when k ≤ 5, results obtained with 2G-maps are
significantly better than those obtained with graphs. However, for higher values
of k, the percentage of correctly matched darts/vertices hardly reaches 20%.

Finally, when combining colour and area information, graphs and 2G-maps
obtain rather similar results, though 2G-maps are slightly better than graphs
when k ≤ 4.

This first experiment shows us that structural information is better modelled
and exploited with 2G-maps than with graphs. This comes from the fact that
2G-maps do not only model region adjacency relationships, but also other topo-
logical information such as, for example, the order in which faces are encountered
when turning around a vertex. As a matter of fact, if RAGs usually have many
automorphisms, 2G-maps usually have no automorphism at all. However, when
adding colour or area labels, the difference between 2G-maps and graphs be-
comes less significant as this information greatly improves the graph matching
process.

Note that the differences observed between 2G-maps and graphs may also
come from the matching algorithms we have considered: these matching algo-
rithms are heuristic algorithms which compute approximate solutions. The graph
matching algorithm of [3] considers only local, rather than global, edge structure
during the optimization process. Also, the greedy map matching algorithm of [11]
considers local seams to choose the next pair of darts to match. It is not possible
to compute exact solutions within a reasonable amount of time, considering the
fact that graphs (resp. maps) have hundreds (resp. thousands) of vertices (resp.
darts). Therefore, we cannot assess the quality of the approximations computed
by the heuristic algorithms.

5 Conclusion

In this paper, we have extended generalized maps to labelled nG-maps, thus al-
lowing us to add information on cells in every dimension, and we have extended
the map edit distance to handle these labels by adding a dart substitution op-
eration. We have compared the map edit distance with the graph edit distance
for matching regions of different segmentations of a same image. We have shown
that regions are better matched when we use 2G-maps for modelling the topol-
ogy of the subdivision of the image in regions rather than when we use RAGs
for modelling region adjacency relationships.

Map Edit Distance vs. Graph Edit Distance 161

We have performed similar experiments on 2D meshes modelling 3D objects.
We have generated different degradations of a same mesh (obtained by merg-
ing nearly co-planar adjacent faces), and compare the percentage of correctly
matched faces when using 2G-maps and when using graphs. We observed simi-
lar results, i.e., 2G-maps allow us to better match faces than graphs.

As future works, we plan to study different domains of application which
use graphs and similarity measures in order to see if we can improve existing
solutions by using nG-maps and the map edit distance. We also would like to
improve our algorithm in order to speed-up the computation times and propose
more heuristics to guide the choice of the best pair of darts to be matched. Lastly
we plan to study other types of similarity measures. We think for example to
extend graph kernels to generalized maps.

References

1. Fischler, M.A., Bolles, R.C.: Random sample consensus: A paradigm for model
fitting with applications to image analysis and automated cartography. Comm. of
the ACM 6(24), 381–395 (1981)

2. Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty Years Of Graph Matching In
Pattern Recognition. International Journal of Pattern Recognition and Artificial
Intelligence (2004)

3. Riesen, K., Bunke, H.: Approximate graph edit distance computation by means of
bipartite graph matching. Image Vision Comput. 27, 950–959 (2009)

4. Lienhardt, P.: N-dimensional generalized combinatorial maps and cellular
quasi-manifolds. Computational Geometry and Applications 4(3), 275–324 (1994)

5. Fradin, D., Meneveaux, D., Lienhardt, P.: A hierarchical topology-based model for
handling complex indoor scenes. Computer Graphics Forum 25(2), 149–162 (2006)

6. Braquelaire, J.P., Brun, L.: Image segmentation with topological maps and
inter-pixel representation. Visual Communication and Image Representation 9(1),
62–79 (1998)

7. Damiand, G.: Topological model for 3d image representation: Definition and
incremental extraction algorithm. Computer Vision and Image Understand-
ing 109(3), 260–289 (2008)

8. Combier, C., Damiand, G., Solnon, C.: From maximum common submaps to
edit distances of generalized maps. Pattern Recognition Letters 33(15), 2020–2028
(2012)

9. Dupas, A., Damiand, G.: First results for 3D image segmentation with topologi-
cal map. In: Coeurjolly, D., Sivignon, I., Tougne, L., Dupont, F. (eds.) DGCI 2008.
LNCS, vol. 4992, pp. 507–518. Springer, Heidelberg (2008)

10. Munkres, J.: Algorithms for the assignment and transportation problems. Journal
of the Society of Industrial and Applied Mathematics 5(1), 32–38 (1957)

11. Combier, C., Damiand, G., Solnon, C.: Measuring the distance of generalized
maps. In: Jiang, X., Ferrer, M., Torsello, A. (eds.) GbRPR 2011. LNCS, vol. 6658,
pp. 82–91. Springer, Heidelberg (2011)

An Algorithm for Maximum Common Subgraph

of Planar Triangulation Graphs

Yao Lu1, Horst Bunke2, and Cheng-Lin Liu1

1 National Lab of Pattern Recognition
Institute of Automation, Chinese Academy of Sciences

yaolubrain@gmail.com, liucl@nlpr.ia.ac.cn
2 Institute of Computer Science and Applied Mathematics (IAM),

University of Bern
bunke@iam.unibe.ch

Abstract. We propose a new fast algorithm for solving the Maximum
Common Subgraph (MCS) problem. MCS is an NP-complete problem.
In this paper, we focus on a special class of graphs, i.e. Planar Trian-
gulation Graphs, which are commonly used in computer vision, pattern
recognition and graphics. By exploiting the properties of Planar Trian-
gulation Graphs and restricting the problem to connected MCS, for two
such graphs of size n and m and their maximum common subgraph of
size k, our algorithm solves the MCS problem approximately with time
complexity O(nmk).

Keywords: Planar Triangulation Graphs, Delauney Triangulation,
Maximum Common Subgraph.

1 Introduction

Images and many other objects can be represented as graphs. The graph repre-
sentation of an object characterizes its local features and their spatial relation-
ship. Its theoretical properties, applications and efficient algorithms have been
studied for decades [1]. Maximum Common Subgraph (MCS) is an important
problem in pattern recognition [2]. It incorporates graph isomorphism and sub-
graph isomorphism as special cases. It has applications in computer vision and
pattern recognition such as video indexing [3] and document classification [4].
However, MCS is known to be NP-complete in general. In order to obtain an
efficient algorithm of practical value, we need to specialize the problem and/or
look for approximate solutions.

In this paper, we focus on a special class of graphs, i.e. Planar Triangulation
Graphs. Planar Triangulation Graphs are commonly used in pattern recognition,
computer vision, and graphics. Perhaps the best known procedure to obtain
such a graph is Delaunay triangulation. It has important properties such as
sparseness, locality, and avoiding skinny angles in the triangulation. It has been
shown that not much spatial information is lost after Delaunay triangulation of
a set of points [5]. Moreover, Delaunay triangulation can be efficiently computed

W.G. Kropatsch et al. (Eds.): GbRPR 2013, LNCS 7877, pp. 162–171, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

An Algorithm for MCS of Planar Triangulation Graphs 163

with time complexity O(n logn) by various methods [6]. And there are graph
matching algorithms specialized for Delaunay triangulation graphs [7, 8].

The main contribution of in this paper is a new algorithm for the MCS prob-
lem of Planar Triangulation Graphs that has a practical high execution speed.
By exploiting the properties of Planar Triangulation Graphs and restricting the
problem to connected MCS, we are able to derive an algorithm with time com-
plexity O(nmk), for approximately solving the MCS problem of two Planar
Triangulation Graphs of size n and m and their maximum common subgraph of
size k. Given two graphs, our algorithm will return a common subgraph, but it
is not guaranteed that it is a maximum common subgraph. However, our exper-
imental verification showed that most of the common subgraphs returned in our
experiments are in fact maximum common subgraphs, and those that are not
are missing only a small fraction of nodes and edges.

2 Connected Maximum Common Subgraphs

2.1 Basic Definitions

Definition 1. A graph is an ordered pair G = (V,E) comprising a set V of
nodes together with a set E � V × V of edges.

Remark. The graphs we assume in this paper are unweighted and undirected
graphs without node or edge attributes.

Definition 2. A subgraph of a graph G is a graph whose node set is a subset
of that of G, and whose adjacency relation is a subset of that of G restricted to
this subset.

Definition 3. An isomorphism of graphs G and H is a bijective function be-
tween the node sets of G and H, f : V (G) → V (H) such that any two nodes u
and v of G are adjacent in G if and only if f(u) and f(v) are adjacent in H.

Definition 4. A subgraph isomorphism from G to H is an injective function
f : V (G) → V (H) such that if there exists a subgraph S of H and f is a graph
isomorphism from G to S.

Definition 5. Let G, G1, and G2 be graphs. G is a common subgraph of G1 and
G2 if there exists a subgraph isomorphisms from G to G1 and from G to G2.

Definition 6. A common subgraph G of G1 and G2 is maximal if there exists
no other common subgraph G′ of G1 and G2 that has more edges than G.

Remark. This definition is given in [15] as Maximum Common Edge Subgraph.
The work described in this paper will be based on this kind of MCS. It is preferred
over Maximum Common Induced Subgraph for the reasons explained in [10, 15].

Definition 7. A graph is connected if there is a path from any node to any other
node in the graph.

Finding connected MCS is in general NP-complete since subgraph isomorphism
remains NP-complete even for connected graphs of bounded treewidth [9], which
is a special case of connected MCS.

164 Y. Lu, H. Bunke, and C.-L. Liu

2.2 Related Work

Many exact algorithms for finding MCS have been proposed in the literature.
Two early examples are [10] and [11], which are based on backtrack search and
maximum clique detection in an association graph, respectively. Later algorithms
are described in [12–14]. All these algorithms have exponential time complexity.
Moreover, there are algorithms specialized for chemical structures [15], which
can achieve faster solutions in this domain than general MCS algorithms.

In this paper, we specialize on Planar Triangulation Graphs, a class of graphs
which are widely used in computer vision, pattern recognition and graphics.

3 Planar Triangulation Graphs

A Planar Triangulation Graph is obtained by triangulation of points in a plane.
See [6, 16] for references on triangulation. In Fig.1, we show an example obtained
by Delaunay triangulating a set of points in the two-dimensional plane.

Fig. 1. Delaunay Triangulation of a set of points in the two-dimensional plane

3.1 Properties

Planar triangulation graphs have two important properties [6].

Property 1. Each triangle of a Planar Triangulation Graph has at most three
adjacent triangles.

Property 2. A Planar Triangulation Graph of size n has O(n) triangles and
O(n) edges.

These properties allow us to design a fast algorithm for connected MCS of Planar
Triangulation Graphs, as will be shown in the following sections.

An Algorithm for MCS of Planar Triangulation Graphs 165

3.2 Breadth-First Traversal of Triangles

In this subsection, we describe a method for traversing the triangles of a Planar
Triangulation Graph. Note that it is a traversal of triangles rather than of nodes.

Starting from a given ordered triangle of a Planar Triangulation Graph with a
triangle visiting order (e.g. clock-wise), there is a unique breadth-first traversal
of triangles of the graph. The breadth-first traversal process works as follows.
For example, in Fig. 2(a), let us take triangle e (with order 6-3-4) as the root
of the traversal. Then the adjacent triangles of the root triangle are visited in
clock-wise order. From edge 6-3, triangle d is visited, from edge 3-4, triangle
b is visited, and from edge 4-6, triangle f is visited. Then we continue the
process with triangle d, and so on. Except for the root triangle, for each visit of a
triangle, at most one new node is encountered. After the traversal is finished, the
visiting order of nodes 1 to 10 is: 4,5,2,3,8,1,7,9,10. The breadth-first traversal
of triangles can be represented as a tree, as shown in Fig. 2(b). By property 1,
this tree has a special structure: it has at most 3 children at its root node and
at most 2 children at the other nodes.

Given a triangle, its adjacent triangles can be found by using a hash table
with O(1) operations. And the hash table can be built with time complexity
O(n) since there are only O(n) triangles and each triangle has at most three
adjacent triangles. Therefore, for a Planar Triangulation Graph of size n, the
breadth-first traversal of triangles has time complexity O(n).

d
a

b
c

e g

f

i j
h

k

l
m

3

6

9
8

1

2

10

5

4

7

(a) Planar Triangulation Graph

e

d b f

h a c g j

i k l

m

6-3
3-4

4-6

1-6 1-3

7-6

8-7

9-6
2-4

9-4

5-9 8-9

(b) Tree structure of the traversal of trian-
gles

Fig. 2. Breadth-First Traversal of Triangles

With these special properties and structures, we can derive an efficient heuris-
tic algorithm for finding connected MCS of a given pair of Planar Triangulation
Graphs, as shown in the next section.

166 Y. Lu, H. Bunke, and C.-L. Liu

4 Algorithm

The algorithm works as follows: starting with an arbitrarily chosen pair of or-
dered triangles as root in graphs G1 and G2, do a pair of breadth-first traversals
of triangles on both graphs simultaneously. The visiting orders of the nodes of
the initial pair triangles are 1, 2, 3. Two triangles of two graphs are matched and
added to their traversal if their corresponding nodes have the same node visiting
order. If a node has not been visited in the traversal yet, its node visiting order
is set to be 0. The process continues until no triangles can be added to the pair
of traversals. Finally, the graphs composed of the matched triangle pairs are the
MCS. A pseudo-code description of our algorithm is given in Algorithm 1.

As an example, consider finding the MCS of the graphs in Fig. 3(a). In Fig.
3(b), we start with ordered triangles 2-3-4 and b-c-e as the roots of the pair
of traversals. The visiting orders of nodes 2, 3, 4 and nodes b, c, e are 1, 2, 3,
respectively. Triangles 2-3-4 and b-c-e are matched and added to the traversal
since their corresponding nodes have the same node visiting order (all 0 now
and 1,2,3 after). From ordered triangle 2-3-4, triangles 2-3-1, 3-4-6 and 4-2-
5 are visited, in that order. And from ordered triangle b-c-e, triangles b-c-a,
c-e-f and e-b-d are visited, in that order. Next, triangles 2-3-1 and b-c-a are
matched since the the condition is satisfied, then triangles 3-4-6 and c-e-f, and
finally triangles 4-2-5 and e-b-d (Fig. 3(c)). However, triangle 4-5-6 cannot
be matched to either d-e-g or e-f-g because node 6’s node visiting order is 6
and node g’s node visiting order is 0. Finally, as shown in Fig. 3(d), the graphs
composed of 2-3-4, 2-3-1, 3-4-6 and 4-2-5 and of b-c-e, b-c-a, c-e-f and
e-b-d are the MCS of the two graphs in Fig. 3(a).

For each such a pair of traversals, it takes O(k) operations assuming the
maximum common subgraph of size k. To find the MCS, we have to consider all
pairs of ordered triangles as the roots of the pairs of the traversals. By Property
2, there are O(nm) pairs of ordered triangles in total. Consequently, if we take
all pairs of ordered triangles as the roots of the traversals, there are O(nm) pairs
of traversals. Hence, the overall time complexity of the algorithm is O(nmk).

At first glance, our algorithm looks similar to String Growing algorithm for
subgraph isomorphism [17]. But there are two main differences: (1) our algorithm
is specialized for Planar Triangulation Graphs while String Growing algorithm is
specialized for Region Adjacent Graphs. (2) Our algorithm has worst case time
complexity O(nmk) while String Growing algorithm has worst case exponential
time complexity.

5 Experiments

In the experiments, n random points in the two-dimensional plane were generated
to obtain point set S1 and triangulated by Delaunay triangulation to obtain
graph G1. m points around the center of S1 were selected to obtain point set
S2 and then triangulated by Delaunay triangulation to obtain graph G2. Due to
the boundary effect of Delaunay triangulation, G2 is not necessarily a subgraph
of G1 in general.

An Algorithm for MCS of Planar Triangulation Graphs 167

1

32

4

5 6

a

b

d

e

c

f

g

(a)

1

32

4

5 6

a

b

d

e

c

f

g

(b)

1

32

4

5 6

a

b

d

e

c

f

g

(c)

1

32

4

5 6

a

b

d

e

c

f

g

(d)

Fig. 3. Illustration of the algorithm

Algorithm 1. MCS of Planar Triangulation Graphs

1 foreach Pair of ordered triangles (Ti,Tj) do
2 Initialize empty set M
3 Initialize empty queues Q1 and Q2

4 Enqueue(Q1,Ti)
5 Enqueue(Q2,Tj)
6 while Q1 and Q2 are not empty do
7 T1 = Dequeue(Q1)
8 T2 = Dequeue(Q2)
9 M = M ∪ {(T1,T2)}

10 foreach Pair of triangles (T adj
1 ,T adj

2) adjacent to (T1,T2) and not in M
do

11 if their corresponding nodes have the same node visiting order then

12 Enqueue(Q1,T
adj
1)

13 Enqueue(Q2,T
adj
2)

14 end

15 end

16 end
17 Record M with its cardinality

18 end
19 return M with the maximum cardinality

168 Y. Lu, H. Bunke, and C.-L. Liu

The graph data was generated in MATLAB. The algorithm is implemented
in C++. The experiments were run with Intel Core i5-2400 3.1GHz CPU and
4GB RAM and with a single thread.

5.1 Small Random Graphs

In this set of experiments, our algorithm is compared with an exact MCS al-
gorithm. The exact algorithm works by constructing an association graph and
finding the maximum clique of it, as in [11, 12]. The maximum clique corre-
sponds to the MCS. The association graphs were built according to [12]. The
maximum clique algorithm we used is a Branch-and-Bound method [18], due to
its relatively high speed (still exponential time complexity) and efficient imple-
mentation. McGregor’s algorithm [10] requires that every node of the smaller
graph must be matched to some node of the larger graph. Such requirement is
not always satisfied in practice. Therefore, McGregor’s algorithm is not included
in the comparison. The sizes of graphs range only from 5 to 20, due to the high
computational costs of the exact MCS algorithm. Three cases of MCS testing
experiments were conducted: 20 nodes vs. 5 nodes, 20 nodes vs. 10 nodes, and 20
nodes vs. 15 nodes. The number of edges of the common subgraphs and runtime
of two algorithms averaged over 20 trials are shown in Table 1 and Table 2,
respectively. Again, due to the high computational costs of the exact algorithm,
only 20 trials in each case were conducted.

Table 1. Average edges of MCS dependent on graph size (nodes)

Algorithm 20 vs. 5 20 vs. 10 20 vs. 15

Exact 7.5 20.25 32.95

Ours 7.4 19.5 32.7

Table 2. Runtime (sec) dependent on graph size (nodes)

Algorithm 20 vs. 5 20 vs. 10 20 vs. 15

Exact 0.002 6.35 2202.123

Ours 0.005 0.032 0.087

5.2 Large Random Graphs

In this set of experiments, the performance of our algorithm in finding MCS of
relatively large graphs is shown. We vary the size of G1 and G2 to record the
runtime of our algorithm in Fig. 4. The size of graphs range from 50 nodes to
2000 nodes. See Fig. 5 for visualization.

In Fig. 4(a), the size of G2 is kept constant at 50 nodes, while the size of
G1 varies from 50 to 2000 nodes. In contrast, in Fig. 4(b), the size of G2 varies
from 50 to 300 nodes at constant size of G1 at 500 nodes. The computation time

An Algorithm for MCS of Planar Triangulation Graphs 169

500 1000 1500 2000
0

50

100

150

200

Graph Size

R
u

n
ti

m
e:

 s
ec

(a) Size of G2 is constantly equal
to 50 nodes, while the size of G1 is
varied from 50 to 2000 nodes.

50 100 150 200 250 300
0

200

400

600

800

1000

Graph Size

R
u

n
ti

m
e:

 s
ec

(b) Size of G1 is constantly equal
to 500 nodes, while the size of G2 is
varied from 50 to 300 nodes.

Fig. 4. Runtime (sec) dependent on graph size (nodes)

measured in these experiments (averaged over 10 trials) confirms the theoretical
complexity mentioned in Section 4. In Fig. 4(a), a linear increase of the compu-
tation time in terms of the size of G1 of is observed, while the behavior in Fig.
4(b) is superlinear in the size of G2 since the increase of the size of the smaller
graph would also increase the size of the maximum common subgraph.

To the knowledge of the authors, there exists no other specialized algorithm
for computing connected MCS of Planar Triangulation Graphs. Therefore there
exists no direct competitor against which the proposed algorithm could be evalu-
ated. Of course one could benchmark the new algorithm against other algorithms
that were developed for general graphs. Here we note, however, that the algo-
rithms in [10, 12–14] were tested on much smaller graphs (≤ 100 nodes) than
the ones considered in this set of experiments. Therefore, it is computationally
prohibitive to run comparison experiments.

6 Conclusion and Future Work

We present a fast algorithm for approximately solving the MCS problem of
Planar Triangulation Graphs. In its present version, the algorithm can only cope
with unweighted graphs without node attributes. However, it is straightforward
to include weights on edges and attributes on nodes. Theoretical analysis on the
quality of the approximation and more systematic experimental comparison with
other MCS algorithms, such as one using approximate maximum clique detection
methods [19], will be explored in the future. Also the application of the proposed
algorithm to Planar Triangulation Graphs obtained from real images will be an
interesting topic to be explored in future research.

170 Y. Lu, H. Bunke, and C.-L. Liu

Fig. 5. 100 nodes vs. 200 nodes: 39 sec

An Algorithm for MCS of Planar Triangulation Graphs 171

References

1. Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty Years of Graph Matching in
Pattern Recognition. International Journal of Pattern Recognition and Aritificial
Intelligence 18(3), 265–298 (2004)

2. Bunke, H., Shearer, K.: A Graph Distance Metric Based on the Maximal Common
Subgraph. Pattern Recognition Letters 19(3), 255–259 (1998)

3. Shearer, K., Bunke, H., Venkatesh, S.: Video Indexing and Similarity Re-
trieval by Largest Common Subgraph Detection Using Decision Trees. Pattern
Recognition 34(5), 1075–1091 (2001)

4. Schenker, A., Last, M., Bunke, H., Kandel, A.: Classification of Web Documents
Using Graph Matching. International Journal of Pattern Recognition and Artificial
Intelligence 18(03), 475–496 (2004)

5. Dobkin, D., Friedman, S., Supowit, K.: Delaunay Graphs Are Almost as Good as
Complete Graphs. Discrete and Computational Geometry 5(4), 399–407 (1990)

6. Berg, M., Cheong, O., Kreveld, M., Overmars, M.: Computational geometry:
algorithms and applications. Springer (2008)

7. Finch, A., Wilson, R., Hancock, E.: Matching Delaunay Graphs. Pattern Recogni-
tion 30(1), 123–140 (1997)

8. Shin, D., Tjahjadi, T.: Similarity Invariant Delaunay Graph Matching. In: da
Vitoria Lobo, N., Kasparis, T., Roli, F., Kwok, J.T., Georgiopoulos, M., Anagnos-
topoulos, G.C., Loog, M. (eds.) SSPR & SPR 2008. LNCS, vol. 5342, pp. 25–34.
Springer, Heidelberg (2008)

9. Matouěk, J., Thomas, R.: On the Complexity of Finding Iso-and other morphisms
for Partial k-trees. Discrete Mathematics 108(1), 343–364 (1992)

10. McGregor, J.: Backtrack Search Algorithms and the Maximal Common Subgraph
Problem. Software Practice and Experience 12(1), 23–34 (1982)

11. Levi, G.: A Note on the Derivation of Maximal Common Subgraphs of Two
Directed or Undirected Graphs. Calcolo 9(4), 341–352 (1972)

12. Koch, I.: Enumerating All Connected Maximal Common Subgraphs in Two
Graphs. Theoretical Computer Science 250(1), 1–30 (2001)

13. Bunke, H., Foggia, P., Guidobaldi, C., Sansone, C., Vento, M.: A Comparison of
Algorithms for Maximum Common Subgraph on Randomly Connected Graphs.
In: Caelli, T.M., Amin, A., Duin, R.P.W., Kamel, M.S., de Ridder, D. (eds.) SSPR
& SPR 2002. LNCS, vol. 2396, pp. 123–132. Springer, Heidelberg (2002)

14. Conte, D., Foggia, P., Vento, M.: Challenging Complexity of Maximum Common
Subgraph Detection Algorithms: A Performance Analysis of Three Algorithms on
a Wide Database of Graphs. Journal of Graph Algorithms and Applications 11(1),
99–143 (2007)

15. Raymond, J., Willett, P.: Maximum Common Subgraph Isomorphism Algorithms
for the Matching of Chemical Structures. Journal of Computer-Aided Molecular
Design 16(7), 521–533 (2002)

16. Bern, M., Eppstein, D.: Mesh Generation And Optimal Triangulation. Computing
in Euclidean Geometry 1, 23–90 (1992)

17. Lladós, J., Mart́ı, E., Villanueva, J.: Symbol Recognition by Error-Tolerant Sub-
graph Matching between Region Adjacency Graphs. IEEE Trans. Pattern Analysis
and Machine Intelligence 23(10), 1137–1143 (2001)

18. Konc, J., Janezic, D.: An Improved Branch and Bound Algorithm for the
Maximum Clique Problem. Communications in Mathematical and in Computer
Chemistry/MATCH 58(3), 569–590 (2007)

19. Pelillo, M., Torsello, A.: Payoff-Monotonic Game Dynamics and the Maximum
Clique Problem. Neural Computation 18(5), 1215–1258 (2006)

Graph Characteristics
from the Schrödinger Operator

Pablo Suau1, Edwin R. Hancock2, and Francisco Escolano1

1 Mobile Vision Research Lab, University of Alicante, Spain
{pablo,sco}@dccia.ua.es

2 Department of Computer Science, University of York, UK
edwin.hancock@york.ac.uk

Abstract. In this paper, we show how the Schrödinger operator may
be applied to the problem of graph characterization. The motivation is
the similarity of the Schrödinger equation to the heat difussion equa-
tion, and the fact that the heat kernel has been used in the past for
graph characterization. Our hypothesis is that due to the quantum na-
ture of the Schrödinger operator, it may be capable of providing richer
sources of information than the heat kernel. Specifically the possibil-
ity of complex amplitudes with both negative and positive components,
allows quantum interferences which strongly reflect symmetry patterns
in graph structure. We propose a graph characterization based on the
Fourier analysis of the quantum equivalent of the heat flow trace. Our
experiments demonstrate that this new method can be succesfully ap-
plied to characterize different types of graph structures.

Keywords: graph characterization, heat flow, Schrödinger equation,
quantum walks.

1 Introduction

The analysis of graph and network topology is widely used in fields including
computer vision, biology, data mining and linguistics. In all these areas, effec-
tive methods for characterizing or distinguishing different graph structures are
essential, and as a result, many approaches to the graph characterization prob-
lem have been proposed, including algorithms based on random walks [1], the
Ihara zera function [2] or the spectral radius [3]. Another family of graph char-
acterization technique, introduced by Escolano et al. [4], can be derived from the
analysis of the heat flow. Heat flow accounts for information transfer between
nodes of a graph and it is determined by the heat kernel [5], and this in turn is
the solution of the heat difussion equation.

Mathematically, the heat diffussion equation is similar to Schrödinger equa-
tion, which characterizes the dynamics of a particle in a quantum system [6].
However, similarities are superficial since both underlying physics and the dy-
namics induced by the Schrödinger equation are different to those induced by the
heat difussion equation. In this paper we demonstrate that the solution of the

W.G. Kropatsch et al. (Eds.): GbRPR 2013, LNCS 7877, pp. 172–181, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Graph Characteristics from the Schrödinger Operator 173

Schrödinger equation, i.e. the Schrödinger operator, may provide a useful tool for
characterizing graph structure. The quantum nature of the Schrödinger operator
gives rise to several interesting non-classical effects including quantum interfer-
ences produced by the negative components of the complex amplitudes arising
from the solution of Schrödinger equation. Moreover, interferences proved to be
useful in several applications, e.g. detection of symmetric motifs in graphs via
continuous-time quantum walks [7] or graph embedding by means of quantum
commute times [8]. Furthermore, the quantum nature of the amplitude must also
be taken into account when designing new methods and algorithms based on the
Schrödinger operator. For instance, dynamic systems based on the Schrödinger
operator, e.g. continuous-time quantum walks, are non-ergodic. In this paper,
we propose a new graph characterization method that exploits features due to
non-ergodicity.

The remainder of this paper is structured as follows. In Section 2 we sum-
marize the concept of heat flow for graph characterization. In Section 3 the
Schrödinger operator is introduced. The main contributions of this paper are
presented in Section 4, in which we formally analyze the Schrödinger operator
and propose a new graph characterization technique based on an equivalent of
the heat flow. Then, in Section 5, we show some experimental results. Finally
we draw some conclusions and point out ways in which this work can be further
extended.

2 Heat Flow

Let G = (V,E) be an undirected graph where V is its set of nodes and E ⊆ V ×V
is its set of edges. The Laplacian matrix L = D − A is constructed from the
|V | × |V | adjacency matrix A, in which the element A(u, v) = 1 if (u, v) ∈ E
and 0 otherwise, where the elements of the diagonal |V | × |V | degree matrix are
D(u, u) =

∑
v∈V A(u, v). The |V |×|V | heat kernel matrix Kt is the fundamental

solution of the heat equation

∂Kt

∂t
= −LKt, (1)

and depends on the Laplacian matrix L and time t. It describes how information
flows across the edges of a graph with time, and its solution is Kt = e−Lt.

The heat kernel Kt is a doubly stochastic matrix. Double stochasticity implies
that diffusion conserves heat. In [4], a graph is characterized from the constraints
it imposes to heat diffusion due to its structure. This characterization is based
on the normalized instantaneous flow Ft(G) of graph G, that accounts the edge-
normalized heat flowing through the graph at a given instant t, and it is defined
as:

Ft(G) =
2|E|
n

n∑
i=1

∑
j �=i

A(i, j)

(
n∑

k=1

φk(i)φk(j)e
−λkt

)
. (2)

A more compact definition of the edge-normalized instantaneous flow is Ft(G) =
(2|E|/n)A : Kt, where X : Z = trace(XZT) is the Frobenius inner product. The

174 P. Suau, E.R. Hancock, and F. Escolano

heat flow trace describing the graph is constructed by computing Eq. 2 on the
interval [0, tmax].

3 Heat Kernel vs. Schrödinger Operator

The Schrödinger equation describes how the complex state vector |ψt〉 ∈ C|V | of
a continuous-time quantum walk varies with time [9]:

∂|ψt〉
∂t

= −iL|ψt〉. (3)

Given an initial state |ψ0〉 the latter equation can be solved to give |ψt〉 =
Ψt|ψ0〉, where Ψt = e−iLt is a complex |V | × |V | unitary matrix. In this paper
we refer to Ψt as the Schrödinger operator. Our attention in this paper will be
focused on the operator itself and not on the quantum walk process. As can be
seen, Eq. 3 is similar to Eq. 1. However, the physical dynamics induced by the
Schrödinger equation are totally different, due to the existence of oscillations
and interferences.

In this section we address the question of whether the Schrödinger operator
may be used to characterize the structure of a graph. Empirical analysis on dif-
ferent graph structures shows that both the heat kernel and the Schrödinger op-
erator evolve with time in a manner which strongly depends on graph structure.
1 However, the underlying physics and the dynamics are different (see Fig. 1). In
the case of heat flow heat diffuses between nodes through the edges, eventually
creating transitive links (energy exchanges between nodes that are not directly
connected by an edge), until reaching a stationary energy equilibrium state. The
Schrödinger operator yields a faster energy distribution through the system (e.g.
for a 100 nodes line graph, it takes t = 50 time steps for the Schrödinger oper-
ator to reach every possible position on the graph, taking more than twice this
time in the case of the heat kernel). Moreover, due to negativecomponents of
the complex amplitudes, interferences are created, producing energy waves. The
main difference is that the Schrödinger operator never reaches an equilibrium
state. In other words, it is non-ergodic. Graph connectivity imposes constraints
on the distribution of energy. In the case of the heat kernel, a higher number of
energy distribution constraints implies the creation of more transitive links with
time [4]. This is also true in the case of the Schrödinger operator, for which lower
frequency and more symmetrical energy distribution patterns are also observed.

3.1 Analysis of the Schrödinger Operator

Further formal analysis of the Schrödinger operator supports the empirical evi-
dence stated above. We first consider the Schrödinger operator when t tends to
zero. Its Taylor expansion is given by:

Ψt = e−iLt = cosLt− i sinLt = I|V | − iLt− t2

2!
L2 + i

t3

3!
L3 +

t4

4!
L4 · · · , (4)

1 Videos showing the evolution of both heat kernel and Schrödinger operator are avail-
able at http://www.dccia.ua.es/~pablo/downloads/schrodinger_operator.zip

http://www.dccia.ua.es/~pablo/downloads/schrodinger_operator.zip

Graph Characteristics from the Schrödinger Operator 175

Fig. 1. Evolution of the keat kernel (top) and the Schrödinger operator (bottom) with
time (t = 1, 25 and 50) for a 100 node line graph

where I|V | is the |V | × |V | identity matrix. Hence

lim
t→0

Ψt ≈ I|V | − iLt, (5)

where Ψt = Kt when t = 0. At this time instant every node conserves its energy
(as in the case of the Heat Kernel). The role of the identity matrix is to make the
Schrödinger operator unitary. Due to the −iLt term, it can be seen that energy
spreads as a wave even for t values close to zero. Thus, the Schrödinger operator
causes energy to distribute in a waveform from the initial time instant.

In order to explore the ergodicity of the Schrödinger operator we consider
both its spectral decomposition and that of the heat kernel:

Kt =
n∑

p=1

e−tλpφpφ
T
p and (6)

Ψt =

n∑
p=1

e−itλpφpφ
T
p , (7)

where λp is the p-th eigenvalue of the Laplacian L and φp its corresponding
eigenvector.

The spectral decomposition of the heat kernel demonstrate that it is domi-
nated by the lowest eigenvalues, due to the fact that e−tλp tends to zero as t tends
to infinity. However, e−itλp is indefinite when t tends to infinity. Thus, there are
two importante differences with the heat kernel. Firstly, the Schrödinger opera-
tor never converges (it is non-ergodic), and secondly, it is not dominated by any
particular eigenvalue (i.e. there is more dependence on global graph structure as
t tends to infinity).

176 P. Suau, E.R. Hancock, and F. Escolano

Finally, we can compare the Euler equation based Schrödinger operator Ψt

with the wave equation formula

ψ = υei(kx−wt+ε), (8)

where υ is the amplitude, ε is the initial phase, k is the wavenumber, and w is
the angular frequency. Schrödinger operator can be interpreted as a wave with
υ = 1, k = ε = 0 and w = L. In fact, Eq. 7 expresses the Schrödinger operator
as a linear combination of p = 1 · · ·n waves with different frequencies λp.

3.2 The Quantum Energy Flow

As stated in Section 2 the heat flow characterizes a graph by means of a trace
that accounts for the information flowing on the graph with time. Due to the
similarity between the heat diffusion and the Schrödinger equations, we could
define quantum energy flow (QEF) as

Qt(G) = A : Ψt, (9)

and the quantum energy trace (the equivalent of heat flow) as the evolution of Qt

with time. It must be noted that the hamiltonian of the quantum system defined
by Ψt is given by the graph laplacian L. The adjacency matrix A in Eq. 9 causes
the QEF to only account for the energy distributing through edges. In Fig. 2
we compare the heat flow and the QEF traces for two different types of graph.
In [4], graph structure is characterized by the heat flow’s phase transition point
(PTP). The overall information transmited in the system increases until reaching
a PTP, and then decreases until convergence. This is ilustrated inf Fig. 2 (left).
A PTP based caractherization can not be applied in the case of the Schrödinger
operator, due to its non-ergodicity and the existence of several PTPs. However,
we observe again a difference in phase transition frequency depending on the
structure of the graph.

Fig. 2. Heat flow (left) and QEF (right) for two different 10 node graphs: a random
graph (top) and a line graph (bottom). In both cases, the x axis represents time.

Graph Characteristics from the Schrödinger Operator 177

3.3 Frequency Domain Analysis of the Schrödinger Operator

The results and analysis above suggest a correlation between graph structure and
both the Schrödinger operator and the QEF frequency patterns. We therefore
propose a graph characterization based on the QEF in the frequency domain.
In order to obtain this characterization, we consider the QEF as a non-periodic
signal: we select a time interval [0, T] and we apply the Fast Fourier Transform
to the QEF. We refer to this representation as the frequency domain trace. The
frequency domain trace for the graphs in Fig. 2 can be seen in Fig. 3. The first
conclusion from these plots is that the more complex graphs are characterized
by the presence of higher frequencies.

Fig. 3. Frequency domain trace obtained from the quantum energy flow of the random
graph (left) and the line graph (right) in Fig. 2

However, this representation depends on graph size. Fig. 4 (left) shows the
frequency domain trace for four differently sized line graphs. This plot demon-
strates that the maximum spectral amplitude is proportional to the graph size.
In order to compare arbitrarely sized graphs we apply a simple frequency do-
main trace normalization based on its maximum amplitude. The result of this
normalization can be seen in Fig. 4 (right).

During our experiments we will represent graphs by means of a cumulative
frequency domain trace, obtained by accumulating the normalized amplitudes
from lower to higher frequencies of their corresponding frequency domain traces.
In Fig. 5 we compare the cumulative frequency domain trace obtained from
five graphs and their corresponding heat flows. In the case of the cumulative fre-
quency domain trace, the area under the curve provides a good estimate of graph
complexity. Simpler graphs yield larger areas. The PTPs of the corresponding
heat flow traces also provide a good complexity estimate. In this case, the PTP
for simple graphs is reached later in time. However, in this particular example,
the heat flow trace estimates the complexity of the line graph to be lower than
that of the circle graph. That is not the case of the cumulative frequency domain
trace, for which the complexity of the line graph is higher.

178 P. Suau, E.R. Hancock, and F. Escolano

Fig. 4. Unnormalized (left) and normalized (right) frequency domain traces for four
different size line graphs (10, 20, 30 and 40 nodes)

Fig. 5. Cumulative frequency domain traces (left) and heat flow (right) for five simple
10 node graphs: a random graph (Gauss10), a 8-connected 2x5 grid (Grid8N10), a
4-connected 2x5 grid (Grid4N10), a line graph (Line10) and a circular graph (Circle10)

4 Experimental Results

4.1 Noise Sensitivity

The aim of this first experiment is to show the sensitivity of frequency domain
traces to graph noise. We first constructed a base 400 nodes random graph by
means of the Erdös-Rényi model [10]. We then compared the frequency domain
trace of the base graph to those obtained after applying random edit operations
on it. In this experiment we only applied edge removal operations, and thus, in
each iteration, we remove a random edge from the base graph and we compute
the Euclidean trace between the unnormalized traces. The results are shown
in Fig. 6. Four experiments were performed, using four different time intervals
[0..T] to construct the frequency domain traces.

Graph Characteristics from the Schrödinger Operator 179

Fig. 6. Results of the noise sensitivity experiment. Number of edit operations (edge
removals) versus distance between edited graph’s frequency domain trace and base
graph’s one, for four different T values.

From Fig. 6, it is clear that the final trace is not strongly affected by small
disturbances. For larger time intervals there appears to be a significant sensitivity
to noise. However, difference between traces is still low. The remainder of the
experiments in this paper are conducted after setting T = 1024.

4.2 Graph Characterization

In order to test the discriminative power of our characterization we constructed
a dataset of synthetic graphs. The dataset consists of three groups of 32 graphs,
each group characterized by a different graph structure. All of the graphs in
the dataset have 90 nodes. The graphs in the first group are random graphs
constructed using the Erdös-Rényi [10] model, in which each pair of nodes is
linked by an edge with probability given by p. In our experiments we set p = 0.1.
The graphs in the second group belong to the category of scale free graphs
(i.e. graphs for which its degree distribution follows a power law), and were
constructed using the Barabási and Albert’s model [11].In this model we have
set m0 = 5 for the initial size of the graphs and m = 2 for the number of
links to add during each iteration, following the addition of a node. Finally, the
graphs in the third group correspond to small world graphs (i.e. graphs in which
most nodes are not neighbours of each other, but in which average path length
between a graph pair of nodes is small). These small world graphs are generated
by means of the Watts and Strogatz algorithm [12]. In this case we set the mean
degree value to K = 10 and the rewiring probability to p = 0.2.

A cumulative frequency domain trace was computed for all graphs in the set,
and the results are shown in Fig. 7. The first conclusion of our experiment is that
these traces clearly discriminate between different graph structures. This conclu-
sion is supported by a Multidimensional Scaling analysis (MDS) of the traces (also
shown in Fig. 7). The aim of MDS is to apply dimensionality reduction on data
while preserving relative distances between patterns. If we project the traces onto
a 2D space, the graphs in the three groups are clearly split into three different
clusters with high intra-cluster homogeneity and high-inter cluster separability.

180 P. Suau, E.R. Hancock, and F. Escolano

Fig. 7. Characterization of synthetic graphs. Left: cumulative frequency domain traces.
Right: MDS results.

In Fig. 7 we explore the relationship between frequency and structure. The
frequency spectrum of random graphs is characterized by higher amplitudes at
high frequencies. In the case of small world graphs, the predominant frequencies
are in the middle part of the spectrum. Scale free graphs are characterized by
higher amplitudes at lower frequencies. These results suggest that the structure
of random graphs is more complex in the sense that it imposes more constraints
to the distribution of energy on the graph. As a consequence, energy waves
exhibit higher frequency as they propagate. Scale free and small world graphs
impose less restrictions on the distribution of energy through the graph, and are
associated with lower frequency patterns.

5 Conclusions and Future Work

Heat flow, based on the heat kernel, has been succesfully used to characterize
graph structure. The aim of the present paper was to answer the question of
whether the Schrödinger operator (the solution to the Schrödinger equation) can
be used also to characterize graph structure. After analyzing energy distribution
through the graph based on the Schrödinger operator, we introduced a new
characterization method based on the analysis in the frequency domain. Our
experiments show that the cumulative frequency domain trace is a useful tool
for graph analysis, that is not sensitive to small changes in graph structure.

However, based on these promising preliminary results, further in depth anal-
ysis is required. Firstly, and similarly to heat flow, the cumulative frequency
domain trace does not provide us with a quantitative measure to directly com-
pare graph structures. A first step in this direction could be to apply this trace as
part of the thermodynamic depth complexity measurement framework, in order
to obtain a numerical representation of graph structure [4][13]. Secondly, during
our analysis of the Schrödinger operator we detected the presence of symmetric
energy distribtuion patterns on the graph. We could analyze how this symmetry

Graph Characteristics from the Schrödinger Operator 181

depends on graph structure and whether the results of this analysis are related
to previous work on symmetry detection based on quantum walks [7]. Finally, it
would be interesting to relate the Schrödinger operator and the cumulative fre-
quency domain trace representation to the structure of complex network systems
such as social or biological networks.

References

1. Aziz, F., Wilson, R.C., Hancock, E.R.: Graph Characterization via Backtrack-
less Paths. In: Pelillo, M., Hancock, E.R. (eds.) SIMBAD 2011. LNCS, vol. 7005,
pp. 149–162. Springer, Heidelberg (2011)

2. Peng, R., Wilson, R., Hancock, E.: Graph Characterization vi Ihara Coefficients.
IEEE Transactions on Neural Networks 22(2), 233–245 (2011)

3. Das, K.C.: Extremal Graph Characterization from the Bounds of the Spectral
Radius of Weighted Graphs. Applied Mathematics and Computation 217(18),
7420–7426 (2011)

4. Escolano, F., Hancock, E., Lozano, M.A.: Heat Diffusion: Thermodynamic Depth
Complexity of Networks. Physical Review E 85(3), 036206(15) (2012)

5. Xiao, B., Hancock, E., Wilson, R.: Graph Characteristics from the Heat Kernel
Trace. Pattern Reognition 42(11), 2589–2606 (2009)

6. Aubry, M., Schlickewei, U., Cremers, D.: The Wave Kernel Signature: A Quantum
Mechanical Approach To Shape Analysis. In: IEEE International Conference on
Computer Vision (ICCV), Workshop on Dynamic Shape Capture and Analysis
(4DMOD) (2011)

7. Rossi, L., Torsello, A., Hancock, E.R.: Approximate Axial Symmetries from
Continuous Time Quantum Walks. In: Gimel’farb, G., Hancock, E., Imiya, A.,
Kuijper, A., Kudo, M., Omachi, S., Windeatt, T., Yamada, K. (eds.) SSPR & SPR
2012. LNCS, vol. 7626, pp. 144–152. Springer, Heidelberg (2012)

8. Emms, D., Wilson, R.C., Hancock, E.R.: Graph Embedding Using Quantum
Commute Times. In: Escolano, F., Vento, M. (eds.) GbRPR. LNCS, vol. 4538,
pp. 371–382. Springer, Heidelberg (2007)

9. Farhi, E., Gutmann, S.: Quantum Computation and Decision Trees. Physical
Review A 58, 915–928 (1998)

10. Erdös, P., Rényi, A.: On Random Graphs. I. Publicationes Mathematicae 6,
290–297 (1959)

11. Barabási, A.L., Albert, R.: Emergence of Scaling in Random Networks.
Science 286(5439), 509–512 (1999)

12. Watts, D.J., Strogatz, S.H.: Collective Dynamics of ’Small-World’ Networks.
Nature 393(6684), 440–442 (1998)

13. Han, L., Escolano, F., Hancock, E., Wilson, R.: Graph Characterizations From Von
Neumann Entropy. Pattern Recognition Letters 33(15), 1958–1967 (2012)

Persistent Homology in Image Processing�

Herbert Edelsbrunner

Institute of Science and Technology Austria
Am Campus 1, 3400 Klosterneuburg

edels@ist.ac.at

Taking images is an efficient way to collect data about the physical world. It can
be done fast and in exquisite detail. By definition, image processing is the field
that concerns itself with the computation aimed at harnessing the information
contained in images [10]. This talk is concerned with topological information.
Our main thesis is that persistent homology [5] is a useful method to quantify
and summarize topological information, building a bridge that connects algebraic
topology with applications. We provide supporting evidence for this thesis by
touching upon four technical developments in the overlap between persistent
homology and image processing.

1. Hierarchically Represented Images. Algorithms for persistent homol-
ogy are fast but can be challenged by the size of high-resolution images.
Hierarchical data structures, such as quad-trees for 2- and oct-trees for 3-
dimensional images, reduce the size and access time [9]. They can also be
used to speed up the computation of persistence diagrams by orders of mag-
nitudes [1].

2. Adaptive Topology. The connectivity on a microscopic level (between pix-
els or voxels) has an influence on the global topological information as com-
puted for example by persistent homology. The adaptive topology is defined
on the microscopic level to guarantee global results that are consistent with
basic symmetries in topology, including Lefschetz and Alexander duality [7].

3. Stable Measurements. A fundamental result in persistence is its stability
under perturbations of the input data [3,4]. We leverage this property to
obtain stable length estimates of tube-like shapes, such as root systems of
plants [6]. Such estimates are desirable in phenotype-genotype studies as
they limit the influence of noise in the data acquisition on the conclusions
we draw.

4. Connection to Scale Space. We use persistent homology to quantify the
effect of diffusion on critical points in an image [8]. The main result is an
upper bound on the persistence moment, showing that it goes to zero as the
image diffuses [2]. It sheds light on the experimentally observed phenomenon
that the creation of critical points during diffusion is a rare event.

The four technical developments differ from each other, ranging from founda-
tional to applied and from algorithmic to mathematical. This is evidence for the

� This research is partially supported by the European Science Foundation (ESF)
under the Research Network Programme, the European Union under the Toposys
Project FP7-ICT-318493-STREP, the Russian Government under the Mega Project
11.G34.31.0053.

W.G. Kropatsch et al. (Eds.): GbRPR 2013, LNCS 7877, pp. 182–183, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

edels@ist.ac.at

Persistent Homology in Image Processing 183

versatility of persistent homology, which is a consequence of its role as a bridge
that connects fundamental concepts in mathematics and general phenomena in
our physical reality.

References

1. Bendich, P., Edelsbrunner, H., Kerber, M.: Computing robustness and persistence
for images. IEEE Trans. Visual. Comput. Graphics 16, 1251–1260 (2010)

2. Chen, C., Edelsbrunner, H.: Diffusion runs low on persistence fast. In: Proc. 13th
Internat. Conf. Comput. Vision, pp. 423–430 (2011)

3. Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Stability of persistence diagrams.
Discrete Comput. Geom. 37, 103–120 (2007)

4. Cohen-Steiner, D., Edelsbrunner, H., Harer, J., Mileyko, Y.: Lipschitz functions
have Lp-stable persistence. Found. Comput. Math. 10, 127–139 (2010)

5. Edelsbrunner, H., Letscher, D., Zomorodian, A.J.: Topological persistence and sim-
plification. Discrete Comput. Geom. 28, 511–533 (2002)

6. Edelsbrunner, H., Pausinger, F.: Stable length estimates of tube-like shapes.
Manuscript, IST Austria, Klosterneuburg, Austria (2013)

7. Edelsbrunner, H., Symonova, O.: The adaptive topology of a digital image. In: 9th
Internat. Sympos. Voronoi Diagrams Sci. Engin., pp. 41–48 (2012)

8. Iijima, T.: Basic theory on normalization of a pattern (in case of typical one-
dimensional pattern) – in Japanese. Bull. Electrotechn. Lab. 26, 368–388 (1962)

9. Samet, H.: The Design and Analysis of Spatial Data Structures. Addison-Wesley,
Reading (1990)

10. Sonka, M., Hlavak, V., Boyle, R.: Image Processing, Analysis and Machine
Learning, 2nd edn. PWS Publishing, Pacific Grove (1999)

Towards Minimal Barcodes�

Roćıo González-Dı́az1, Maŕıa-José Jiménez1, and Hamid Krim2

1 Applied Math Dept., School of Computer Engineering, U. Seville, Spain
2 ECE Dept., NCSU, Raleigh, NC USA
{rogodi,majiro}@us.es, ahk@ncsu.edu

Abstract. In the setting of persistent homology computation, a useful
tool is the persistence barcode representation in which pairs of birth and
death times of homology classes are encoded in the form of intervals.
Starting from a polyhedral complex K (an object subdivided into cells
which are polytopes) and an initial order of the set of vertices, we are
concerned with the general problem of searching for filters (an order of
the rest of the cells) that provide a minimal barcode representation in the
sense of having minimal number of “k-significant” intervals, which cor-
respond to homology classes with life-times longer than a fixed number
k. As a first step, in this paper we provide an algorithm for computing
such a filter for k = 1 on the Hasse diagram of the poset of faces of K.

Keywords: Persistent homology, persistence barcodes, graphs,
polyhedral complexes.

1 Introduction

The persistence barcode representation, which encodes pairs of cells meaning
birth and death of homology classes in persistent homology computation, de-
pends on the filter considered for such computation. Although, as we will see
later, the total number of intervals remains invariant, the lengths of these inter-
vals depend on the selected filter. Since, non-significant intervals (i.e. intervals
with short length) do not imply relevant homological information, we are inter-
ested in providing good properties to be satisfied by the selected filter, so that
the number of non-significant intervals in the corresponding persistence barcode
is maximized (i.e. the number of significant intervals is minimized). Motivated
by practical applications of persistent homology computation, our starting point
is a given polyhedral complex and an initial order of the set of vertices. From an
information-theoretic viewpoint, and if we interpret the number of ”significant
intervals” as the coding length of a complex, our goal is to then select the most
”parsimonious” representation (also by Occam’s razor principle). As is also well
known, the coding length is also intimately related to the notion of entropy (i.e.
a topological entropy of a complex in our case). While ideally, one would want to
balance this minimization with a penalty term of the number of ”insignificant”

� Partially supported under grant MTM2012-32706. Authors listed alphabetically.

W.G. Kropatsch et al. (Eds.): GbRPR 2013, LNCS 7877, pp. 184–193, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Towards Minimal Barcodes 185

intervals. This development is under way, and requires the statistical distribu-
tion of the long intervals. Our aim is to look for a way to insert the rest of the
cells along the filter in order to minimize the number of significant intervals.

The remainder of this paper is organized as follows. Section 2 covers the rele-
vant background material. In Section 3, we prove that the number of intervals in
a persistence barcode does not depend on the selected filter, we give the defini-
tion of minimal barcode and show two practical examples in which computation
of minimal barcodes can be useful. In Section 4, an algorithm for computing
on the Hasse diagram of the poset of faces of the polyhedral complex, a filter
that produces a minimal barcode is given. Section 5 is devoted to relations be-
tween minimal barcodes and the optimal discrete Morse function. Conclusions
and future work are presented in Section 6.

2 Background

This paper is developed in a combinatorial algebraic topology setting, where the
objects of interest are (geometric) polyhedral complexes [14]. A polyhedral com-
plex K is a collection of convex polytopes such that: (1) every face of a polytope
in K is itself a polytope in K; (2) the intersection of any two polytopes in K is a
face of each of them. The set of cells of dim. i (or i-cells), σi (superscript specifies
its dimension), will be denoted by Ki, and the number of cells in the set of cells
S by |S|. An n-dim. polyhedral complex satisfies that Kn
= ∅ and Kn+1 = ∅,
where n > 0. Particular cases arise when the polytopes belong to a specified set
of polyhedra, such as simplicial complexes (vertices, edges, triangles, tetrahedra,
up to dim. 3) or cubical complexes (vertices, edges, squares, cubes, up to dim.
3). In general, we will always refer to a finite polyhedral complex K (i.e. with
m cells, m being a finite number). Several polytopes associated with combina-
torial optimization problems have surprisingly small extended formulations (see
[3,20,10]). It may not be very surprising that no polynomial size extended for-
mulations of polytopes associated with NP-hard optimization problems like the
traveling salesman polytope are known.

Homology theory uses algebraic groups to encode the topological structure
of K. Finite formal sums of elements of Ki (called i-chains) define an additive
abelian group structure on Ki. A proper face of σ ∈ Ki is a face of σ of dim.
i− 1. The boundary of σ, denoted by ∂(σ) is the formal sum (with coefficients in
Z/Z2) of the proper faces of σ. The boundary operator is extended to all chains
ofK by linearity. An i-chain a is an i-cycle if ∂(a) = 0; it is an i-boundary if there
is an (i + 1)-chain b such that ∂(b) = a. Two i-cycles a and a′ are homologous
if a + a′ is an i-boundary. The quotient of i-cycles over i-boundaries is the ith

homology group of K. The i-Betti number that is the rank of the ith homology
group of K will be denoted by βi. Then, the basic topological structure of K
is quantified by the number of independent cycles in each homology group. See
[17,12].

Persistent homology [4,21] studies homology classes and their lifetimes (per-
sistence). While homology characterizes an object, persistent homology charac-
terizes a sequence of growing object-instances, i.e. an object together with an

186 R. González-Dı́az, M.-J. Jiménez, and H. Krim

Fig. 1. An example of a 2-dim. simplicial complex and three persistence barcodes
corresponding to different filters (fixed by the order in the set of cells given along
the horizontal axis of the representations). Bottom: two minimal barcodes. Right: two
barcodes with same order of the 0-cells.

order of the cells {σ1, . . . , σm} (where σs < σt iff s < t) called a filter, such that
if σi is a proper faces of σj then i < j.

Given a filter of K, the algorithm for computing persistent homology that
appears in [4], marks an i-cell σt as positive (birth) if it belongs to an i-cycle in
Kt (σt creates a new homology class at time t) and negative (death) otherwise
(σt destroys the homology class created at some time s for 0 ≤ s < t).

Given a filter {σ1, . . . , σm}, a persistence barcode [2] is a graphical representa-
tion of pairs of birth and death times as a collection of horizontal line segments
(intervals) in a plane. If a cell σs creates a homology class at time s, and it
is destroyed at time t, 0 ≤ s < t ≤ m then the interval [s, t) is added to the
corresponding persistence barcode (see [2]); If a cell σs, 0 ≤ s ≤ m creates a
homology class at time s and it survives along the process, then the interval
[s,∞) is added to the persistence barcode.

3 Minimal Barcodes

In this section, a formal definition of minimal barcode is presented along with
two practical examples for which a computation of minimal barcodes can be
useful.

For a fixed i, we refer to i-barcode the set of intervals of a given persistence
barcode corresponding to the pairs of positive i-cells and negative (i + 1)-cells
of K. The following result holds.

Lemma 1. The number of intervals in an i-barcode, 0 ≤ i ≤ n, is constant,
independently of the selected filter.

Proof. First, the number of intervals of infinite length in the i-barcode is in-
dependent on the filter since it coincides with βi. Second, each i-cell σi

t in the

Towards Minimal Barcodes 187

given filter, 0 ≤ t ≤ m, is marked as positive or negative. No cell can remain
unmarked after the whole process. This is easy to prove using AT-models [6]: σi

t

is marked as positive if f i−1∂(σi
t) = 0 and negative otherwise (see [7]). Third, let

Bi (resp. Di) be the number of positive (resp. negative) i-cells. Then, we have
that |K0| = B0, |Kn| = Bn +Dn, βn = Bn, and, for 0 < i < n, |Ki| = Bi +Di

and βi = Bi − Di+1. Therefore, we obtain that D0 = 0, B0 = |K0|, and for
0 < i ≤ n, Di = |Ki−1| − βi−1 − Di−1 and Bi = |Ki| −Di. We conclude that,
for 0 ≤ i ≤ n, nor Bi neither Di (which coincides with the number of finite
intervals in the (i − 1)-barcode) depend on the selected filter. "#
A general idea in the study of topological persistence is that significant topo-
logical attributes must have long life-times, and topological features with short
life-times are considered to be “noise”. Following this idea, in the definition be-
low, k-significant intervals correspond to homology classes whose life-times are
longer than a fixed number k.

Definition 1. Fixed k > 0, an interval [s, t) is k-significant if k < t− s.

Our general aim is to find, under some constraints, depending on the nature of
the application, filters that minimize the number of long-life homological classes
which are associated with significant intervals.

Nevertheless, filters are, in many cases, totally determined. Examples of this
is when objects are presented as point cloud data and Rip or Cech complexes
are constructed to fill in the higher-dimensional simplices of the proximity graph
whose edges are determined by proximity, i.e. vertices within some specified dis-
tance ε (see [8]). But, in other cases, only order of 0-cells are given. For example,
when a continuous function (e.g. a height function or barycentric distance) is
provided and the 0-cells of K are ordered by the function values at them.

We briefly present here two particular examples of this last case:

1. Application of persistent homology to the evaluation of a 3D reconstruction
process (carving voxel) of human models from images captured from a set of
cameras placed around the subject. In fact, we refer to the visual hull that is
constructed from images of cameras from different viewpoints. This problem
can be seen as a view planning problem (see [19], a survey of computer vision
sensor planning, [18], a more recent survey of view planning for 3-D vision).
In our case, [9], starting from a compact block of voxels, each time a camera
is added, a set of voxels are deleted (carved) from the 3D reconstruction,
so the sequence of 3D reconstructions along decreasing number of cameras
gives place to a filter of the corresponding cubical complexes. This allows
to analyze the topological evolution of the reconstruction process. Only k-
significant intervals are considered, where k is the distance (in number of
cells) from one reconstruction to the next one. An initial partial order is hence
considered in the set of vertices that have to be added in the computation
along the process. See Fig. 2.

2. In [11] an image/video application using topological invariants for human
gait recognition is shown. Using a background subtraction approach, a stack
of silhouettes is extracted and glued through their gravity centers, forming

188 R. González-Dı́az, M.-J. Jiménez, and H. Krim

Fig. 2. Examples of 3D reconstructions using a) 4 cameras and b) 10 cameras. Rep-
resentative cycles of homology are highlighted in both cases. c) Persistence barcode
associated to the whole sequence of 3D reconstructions with increasing number of
cameras (from 1 to 50) is shown.

a 3D digital image I. From this 3D representation, the boundary simplicial
complex ∂K(I) is obtained. Four filters are computed preserving four dif-
ferent given orders of the vertices of ∂K(I) depending on four directions of
view. The persistence barcodes associated with the previous filters are then
computed (see Fig. 3). These filters capture relations among the parts of the
human body when walking. Only intervals with long life-times are consid-
ered. Finally, a topological gait signature is extracted from the persistence
barcodes according to the filters.

From now on, suppose a bijective function h : K0 → {1, 2, ..., |K0|} (i.e. an order
of the 0-cells of K) is given. Let us denote by F the set of filters F of K such
that for any two 0-cells σ0

s , σ
0
t ∈ F , s < t, it is satisfied that h(σ0

s) < h(σ0
t).

Definition 2. A persistence barcode associated with a filter F ∈ F is minimal
if the persistence barcode associated with any other filter in F contains greater
or equal number of significant intervals.

Observe that a filter F ∈ F with a minimal barcode always exists and might not
be unique (see Fig. 1 as examples of minimal barcodes).

4 Hasse Diagrams for the Poset of Faces and Minimal
Barcodes

Our aim in this section is to construct a filter F ∈ F with a minimal barcode.
Consider the poset given by the set of cells of K together with the partial

order induced by the coface relation, that is, τ < σ if τ is a face of σ. The Hasse
diagram H of this poset (poset of faces) is the directed graph whose vertex set
is the set of cells and whose arcs are the covering pairs (τ, σ) in the poset, that
is, τ < σ and there is no ρ such that τ < ρ < σ (it is said that σ covers τ).
We draw the Hasse diagram in the plane in such a way that, if τ is a face of

Towards Minimal Barcodes 189

Fig. 3. Left: A simplicial complex ∂K(I) corresponding to a gait, vertical direction
of view (defined by the segment [a, b]) and the gravity center GC. Right: persistence
barcode according to the vertical direction of view, corresponding to a filter of the
subcomplex K[a,GC] (from a to GC) of ∂K(I).

σ (σ covers τ), then the point representing σ is in a lower level than the point
representing τ , corresponding the level with the dimension of the cells. Then
no arrows are required in the drawing, since the directions of the arrows are
implicit. V i denotes the set of points vi at level i, for 0 ≤ i ≤ n.

In Alg. 1, a matching (or independent set of edges) M in H is provided,
together with a vertex-labeling of H (see Fig. 4). The resulting labeling and
matching will produce a filter of K.

A weight wi(vi) for each vi ∈ V i, 1 ≤ i ≤ n, will also be assigned along
the process as follows. First, "0 : V 0 → {1, . . . , |K0|} is defined for each vertex
v0 ∈ V 0 by "0(v0) = h(σ0), where σ0 is the 0-cell represented by the point v0.
Second, for i = 1 to i = n, the weight of each point vi ∈ V i will be

wi(vi) = max{"i−1(vi−1) such that vi−1 is adjacent to vi}.

Observe that more than one point in V i can have the same weight. Then, a
matching between vertices of V i−1 and vertices of V i is given satisfying that if
vi−1 is matched with vi then "(vi−1) = w(vi). Observe that fixing a weight w,
only one point of the set W = {vi ∈ V i such that wi(vi) = w} is matched with
some point in V i−1. At the end of the process, a bijective function "i : V i →
{1, . . . , |Ki|}, 1 ≤ i ≤ n, is obtained, satisfying:

P1 if wi(ui) < wi(vi), then "i(ui) < "i(vi) for any ui, vi ∈ V i;
P2 if wi(vi) = wi(ui) and (vi−1, vi) ∈ M for some vi−1 ∈ V i−1, vi, ui ∈ V i

then "i(vi) < "i(ui) (any point in V i matched with a point in V i−1 always
precedes the other points in V i with same weight);

P3 if wi(vi) = wi(ui), vi, ui ∈ V i and (vi, vi+1) ∈ M for some vi+1 ∈ V i+1 then
"i(ui) < "i(vi) (points in V i matched with points in V i+1 go after other
points in V i not matched with any point in V i+1, with same weight);

P4 Points in V i with same weight have consecutive labels.

190 R. González-Dı́az, M.-J. Jiménez, and H. Krim

Fig. 4. a) An example of a 2-dim. simplicial complex; b) 1st step (i = 1) of Alg. 1
(red edges represent matchings); c) 2nd step (i = 1) of Alg. 1; d) subgraph Hv3 and
an augmenting path (blue and red edges); e) a maximal matching for Hv3 (red edges);
f) final matching M on H .

P1, P2 and P3 will guarantee that the corresponding filter is correct in the
sense that a cell is not added to the filter until all its faces are added.

Algorithm 1. Computing a vertex-labeling and a matching M of H.

a. Labeling "0 : V 0 → {1, 2, . . . , |K0|} is given by the corresponding initial order
of the 0-cells of K.

b. Assign the weight w1(v1) to each point v1 ∈ V 1.
c. M = {(v0, v1) satisfying that v0 ∈ V 0, v1 ∈ V 1, "0(v0) = w1(v1)}. If there

are more than one point in V 1 with the same weight, select one of them to
match.

d. Construct "1 : V 1 → {1, 2, . . . , |K1|} satisfying P1, P2, P4.

Repeat the following process for i = 1 to i = n− 1:

1. Assign the weight wi+1(vi+1) to each point vi+1 ∈ V i+1.
2. Update matching:

M := M ∪ {(vi, vi+1) such that vi ∈ M̄ i, vi+1 ∈ V i+1, "i(vi) = wi+1(vi+1)},

where M̄ i is the set of points of V i not-matched with any point of V i−1. If
there are more than one point in V i+1 with the same weight, select one of
them to match.

3. For each vi−1 ∈ V i−1, consider the subgraph Hvi−1 whose set of vertices is:
A ∪B ∪ C where A = {vi−1}, B = {vi ∈ V i such that wi(vi) = "i−1(vi−1)}
and C = {vi+1 ∈ V i+1 such that wi+1(vi+1) = "i(vi) for some point vi ∈ V i

satisfying that wi(vi) = "i−1(vi−1)}.

Towards Minimal Barcodes 191

3.1. If the matching M |H
vi−1

(i.e., M restricted to Hvi−1) is not maximal in
Hvi−1 , find a maximal one, Mvi−1 , using the augmenting path algorithm,
with the restriction that each augmented path always begins in a not-
matched vertex vi ∈ Hvi−1 ∩ V i. This last restriction will guarantee that
if vi−1 was not matched in Hvi−1 , it remains unmatched in Hvi−1 .

3.2. Remove from M the pairs in M |Hvi−1 and add to M the pairs in Mvi−1 .

4. Update "i : V i → {1, 2, . . . , |Ki|} satisfying P1, P2, P3, P4.
5. For each point vi+1 ∈ V i+1, update weight wi+1(vi+1) if needed.
6. Construct "i+1 : V i+1 → {1, 2, . . . , |Ki+1|} satisfying P1, P2, P4.

Observe that a labeling "i satisfying P1, P2, P3, P4 (Step 4 in the description
of the algorithm above) can always be obtained. First, before updating, labeling
"i satisfied P1, P2, P4 (Step 6). Second, to satisfy P3, we just interchange the
labels between points in V i with same weight, then the updated labeling "i will
also P3 and also P1, P2 and P4.

Since the points vi ∈ V i correspond to i-cells in K, 0 ≤ i ≤ n, an order of
all the points in the planar representation of the Hasse diagram of K provide a
filter of K. Such an order O can be constructed as follows:

Algorithm 2. Computing a filter F of K form a vertex-labeling and matching
M of H obtained in Alg. 1.

1. Initially O is the ordered set of all the points in V 0 ordered by their labels.
2. For i = 1 to i = n do:

(a) For every point vi ∈ V i matched with a point vi−1 ∈ V i−1, insert vi

in O just after vi−1 (this way, the i-cell associated with the point vi is
added to the filter F just after its last face is added).

(b) Add the rest of the points in V i at the end of O ordered by their labels.

Remark 1. The number of non-significant intervals in the filter F given by the
order O coincides with the number of pairs in M .

Proposition 1. Fixing a filter F of K up to dimension i − 1 (i.e., a filter of⋃i−1
j=0K

j), Step 3 in the description of Alg. 1 produces a minimal i-barcode.

Proof. Observe that fixing a labeling and matching up to level i − 1, Setp 3 of
Alg. 1 produces a maximal matching between points at level i − 1, i and i + 1,
with the condition that points in vi−1 already matched with points in V i−2 are
not matched with any point in V i. "#
Implementation of the above algorithms is an ongoing work. Based on the pre-
vious proposition and some preliminary computations our conjecture is that the
procedure explained above produces a filter with a minimal barcode.

5 Relations between Minimal Barcodes and Optimal
Discrete Morse Function

Discrete Morse functions on cell complexes were defined by Forman in [5]. A
function, f : K → R is a discrete Morse function if for every σ ∈ K, f takes a

192 R. González-Dı́az, M.-J. Jiménez, and H. Krim

value less than or equal to f(σ) on at most one coface of σ and takes a value
greater than or equal to f(σ) on at most one face of σ. A cell σ is critical if
all cofaces take strictly greater values and all faces are strictly lower. A discrete
vector field V is a collection of pairs (σi < σi+1) of cells in K such that each
cell is in at most one pair of V . A discrete Morse function defines a discrete
vector field by pairing σi < σi+1 whenever f(σi) ≥ f(σi+1). The critical cells
are precisely those that do not appear in any pair. Discrete vector fields that arise
from Morse functions are called gradient vector fields. A V -path is a sequence of
cells: σi

0, σ
i+1
0 , σi

1, σ
i+1
1 , . . . σi

r−1, σ
i+1
r−1, σ

i
r where (σi

t, σ
i+1
t) ∈ V , σi+1

t > σi
t+1 and

σi
t
= σi

t+1. A V -path is a non-trivial closed V -path if σi
r = σi

0 for r ≥ 1. Forman
shows that a discrete vector field is the gradient vector field of a discrete Morse
function if and only if there are no non-trivial closed V -paths.

There have been several works in the literature dealing with the problem
of obtaining optimal discrete Morse functions (the function has the minimum
possible number of critical cells in each dimension) and perfect Morse function
(the number of critical i-cells coincides with the ith Betti number of the complex).
In [13] it is shown that computing optimal Morse matchings in the setting of
simplicial complexes is NP-hard. In [15], a linear algorithm to define optimal
discrete Morse functions on discrete 2-manifolds is introduced. In [1] the authors
establish conditions under which a 2-dim. simplicial complex admits a perfect
discrete Morse function and conversely.

It is clear that our work presents similarities with the problem of the compu-
tation of optimal discrete Morse functions. But in our case, a fixed ordering on
the 0-cells are given. Then, optimal discrete Morse matchings could not produce
minimal barcodes (indeed, could not produce valid filters) and viceversa, the
set of non-significant intervals in a minimal barcode could not be an optimal
discrete Morse matching.

6 Conclusions and Future Work

In this paper, starting from a polyhedral complex K and an initial order of
the set of vertices, we provide an algorithm for computing a filter on the Hasse
diagram of the poset of faces of K such that the associated persistence barcode
representation has a minimal number of significant intervals which correspond
to homology classes with life-times longer than 1.

An idea to adapt the presented algorithm to compute minimal barcodes to the
case in which significant intervals are intervals with length greater than k, for
k > 1, could be: First, to compute a minimal barcode using the above algorithms.
Observe that, in this case, the matched points are successively inserted in the
filter whereas the non-matched points are successively added at the end. Second,
modify the Hasse diagram pretending collapses of the pairs of cells associated
with the non-significant intervals and apply the above algorithm again. Observe
that in this step we only reorder the cells that have been added to the end.
Third, repeat the process k − 1 times.

Towards Minimal Barcodes 193

References

1. Ayala, R., Fernandez-Ternero, D., Vilches, J.A.: Perfect discrete Morse functions
on 2-complexes. Pattern Recognition Letters 33, 1495–1500 (2012)

2. Carlsson, G., de Silva, V., Morozov, D.: Zigzag persistent homology and real-valued
functions. In: Proc. 25th Annual Symposium on Computational Geometry (SoCG),
pp. 247–256 (2009)

3. Conforti, M., Cornuejols, G., Zambelli, G.: Extended formulations in combinatorial
optimization. 4OR: A Quarterly Journal of Operations Research 8(1), 1–48 (2010)

4. Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and sim-
plification. In: Proc. 41st Annual Symposium on Foundations of Computer Science
(FOCS 2000), pp. 454–463. IEEE Computer Society (2000)

5. Forman, R.: Morse theory for cell complexes. Advances in Mathematics 134, 90–145
(1998)

6. Gonzalez-Diaz, R., Real, P.: On the cohomology of 3D digital images. Discrete
Applied Math. 147(2-3), 245–263 (2005)

7. Gonzalez-Diaz, R., Ion, A., Jimenez, M.J., Poyatos, R.: Incremental-Decremental
Algorithm for Computing AT-Models and Persistent Homology. In: Real, P., Diaz-
Pernil, D., Molina-Abril, H., Berciano, A., Kropatsch, W. (eds.) CAIP 2011, Part
I. LNCS, vol. 6854, pp. 286–293. Springer, Heidelberg (2011)

8. Ghrist, R.: Barcodes: The persistent topology of data. Bulletin of the American
Mathematical Society 45, 61–75 (2008)

9. Gutierrez, A., Monaghan, D., Jiménez, M.J., O’Connor, N.E.: Persistent Homology
for 3D Reconstruction Evaluation. In: Ferri, M., Frosini, P., Landi, C., Cerri, A.,
Di Fabio, B. (eds.) CTIC 2012. LNCS, vol. 7309, pp. 139–147. Springer, Heidelberg
(2012)

10. Kaibel, V.: Extended formulations in combinatorial optimization. Optima 85, 2–7
(2011)

11. Lamar-León, J., Garćıa-Reyes, E.B., Gonzalez-Diaz, R.: Human Gait Identification
Using Persistent Homology. In: Alvarez, L., Mejail, M., Gomez, L., Jacobo, J. (eds.)
CIARP 2012. LNCS, vol. 7441, pp. 244–251. Springer, Heidelberg (2012)

12. Hatcher, A.: Algebraic Topology. Cambridge University Press (2002)
13. Joswig, M., Pfetsch, M.E.: Computing Optimal Discrete Morse Funcions. Elec.

Notes Disc. Math. 17, 191–195 (2004)
14. Kozlov, D.N.: Combinatorial Algebraic Topology. Springer (2008)
15. Lewiner, T., Lopes, H., Tavares, G.: Optimal Discrete Morse Functions for 2-

manifolds. Comput. Geom. 26, 221–233 (2003)
16. Maver, J., Bajcsy, R.: Occlusions as a guide for planning the next view. IEEE

Transactions on Pattern Analysis and Machine Intelligence 15(5), 417–433 (1993)
17. Munkres, J.: Elements of Algebraic Topology. Addison-Wesley Co. (1984)
18. Scott, W.R., Roth, G., Rivest, J.F.: View planning for automated three-

dimensional object reconstruction and inspection. ACM Computing Surveys 35(1)
(2003)

19. Tarabanis, K.A., Allen, P.K., Tsai, R.Y.: A survey of sensor planning in computer
vision. IEEE Trans. on Robotics and Automation 11(1), 86–104 (1995)

20. Vanderbeck, F., Wolsey, L.A.: Reformulation and decomposition of integer pro-
grams. In: Junger, M., et al. (eds.) 50 Years of Integer Programming 1958-2008,
pp. 431–502. Springer (2010)

21. Zomorodian, A., Carlsson, G.: Computing persistent homology. Discrete and Com-
putational Geometry 33(2), 249–274 (2005)

A Fast Matching Algorithm

for Graph-Based Handwriting Recognition

Andreas Fischer1, Ching Y. Suen1,
Volkmar Frinken2, Kaspar Riesen3, and Horst Bunke4

1 Centre for Pattern Recognition and Machine Intelligence, Concordia University
1455 de Maisonneuve Blvd West, Montreal, Quebec H3G 1M8, Canada

{an fisch,suen}@encs.concordia.ca
2 Computer Vision Center, Dept. of Computer Science,

Universitat Autònoma de Barcelona, Edifici O, 08193 Bellaterra, Spain
vfrinken@cvc.uab.cat

3 Institute for Informations Systems, University of Applied Sciences and Arts
Northwestern Switzerland, Riggenbachstrasse 16, 4600 Olten, Switzerland

kaspar.riesen@fhnw.ch
4 Institute of Computer Science and Applied Mathematics,

University of Bern, Neubrückstrasse 10, 3012 Bern, Switzerland
bunke@iam.unibe.ch

Abstract. The recognition of unconstrained handwriting images is usu-
ally based on vectorial representation and statistical classification. De-
spite their high representational power, graphs are rarely used in this
field due to a lack of efficient graph-based recognition methods. Recently,
graph similarity features have been proposed to bridge the gap between
structural representation and statistical classification by means of vector
space embedding. This approach has shown a high performance in terms
of accuracy but had shortcomings in terms of computational speed. The
time complexity of the Hungarian algorithm that is used to approximate
the edit distance between two handwriting graphs is demanding for a
real-world scenario. In this paper, we propose a faster graph matching
algorithm which is derived from the Hausdorff distance. On the historical
Parzival database it is demonstrated that the proposed method achieves
a speedup factor of 12.9 without significant loss in recognition accuracy.

1 Introduction

In many pattern recognition applications, graphs are the first choice to rep-
resent objects. Their ability to model different parts of an object as well as
their binary relations can be used to derive powerful representations of molecu-
lar compounds [1], computer networks [2], and symbols in digital images [3], to
name just a few. In the domain of handwriting recognition, graphs have found
widespread application for single character recognition, especially in the case of
Chinese characters that are composed of many complex strokes [4].

However, when it comes to the recognition of unconstrained handwriting im-
ages that contain complete sentences in natural language, graph-based represen-
tation is rarely used due to problems arising from the large variety of character

W.G. Kropatsch et al. (Eds.): GbRPR 2013, LNCS 7877, pp. 194–203, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

A Fast Matching Algorithm for Graph-Based Handwriting Recognition 195

shapes, the large number of words in natural language, and the inability to
segment connected handwriting into characters before recognition [5]. Available
systems are usually based on vectorial pattern representation x ∈ IRn and statis-
tical classifiers, e.g., hidden Markov models [6] and recurrent neural networks [7].
They cannot be applied directly on graphs representing handwriting.

Recently, a general approach to bridging the gap between graph-based hand-
writing representation and statistical classification has been proposed in [8].
Based on dissimilarity space embedding [9,10], handwriting graphs are trans-
formed into feature vectors by calculating their similarity to a set of character
prototypes. Graph similarity is obtained by means of graph edit distance [11], an
error-tolerant matching method that can be applied to any kind of graph. The
similarities constitute the real-valued components of the feature vectors which
can then be used in combination with any statistical classifier.

When compared with traditional statistical feature sets, the graph similarity
features have shown a promising performance in terms of recognition
accuracy [8]. However, although the Hungarian algorithm [12] was used to ap-
proximate the graph edit distance in cubic time with respect to graph size [13],
the computational complexity remained high, resulting in slow execution speed.

In this paper, we derive a faster matching algorithm for graph-based hand-
writing recognition from the Hausdorff distance. The proposed method runs in
quadratic time with respect to graph size and hence significantly reduces the
complexity of the recognition process.

Experiments are conducted on the historical Parzival database [14] which
includes images from a 13th century manuscript written in Old German. For
a single word recognition task with hidden Markov models, it is demonstrated
that the proposed matching algorithm achieves a speedup factor of 12.9 without
significant loss in recognition accuracy.

The remainder of this paper is organized as follows. First, the graph similarity
features are reviewed in Section 2. Next, the proposed matching algorithm is
presented in Section 3. Then, experimental results are presented and discussed
in Section 4. Finally, conclusions are drawn in Section 5.

2 Graph Similarity Features

In this section, we briefly review the graph similarity features that are described
in detail in [8]. It is a general framework that allows the use of graph-based hand-
writing representation in combination with statistical classification by means of
vector space embedding.

2.1 Handwriting Graphs

The handwriting graphs used in this paper are derived from handwriting skele-
ton images. An original image is shown in Figure 1a and a skeleton graph in
Figure 1b. Image preprocessing includes binarization, correction of the baseline
inclination, separation of the writing region into an upper, middle, and lower
part, and thinning of the strokes to a width of one pixel.

196 A. Fischer et al.

(a) original image (b) skeleton graph, sliding window

Fig. 1. Handwriting graphs

Afterwards, a handwriting graph is constructed by adding endpoints, intersec-
tions, and the upper left pixel of circular structures to the set of nodes, labeled
with their image position (x, y) ∈ IR2. Then, further connection points at dis-
tance D along the skeleton are added as nodes. The connection point distance D
is a parameter to be chosen by the user that determines the node density on the
skeleton. Whenever two nodes are connected over the skeleton, they are linked
with an undirected, unlabeled edge.

2.2 Vector Space Embedding and Recognition System

An intriguing challenge for connected handwriting recognition is the inability to
segment the image into characters before recognition [5]. Instead, a common ap-
proach is to perform an oversegmentation with a sliding window moving from left
to right over the image and extracting a sequence of feature vectors x1, . . . , xN
with xi ∈ IRn. The segments are grouped into characters during recognition.

Handwriting graphs are transformed into feature vectors by means of dis-
similarity space embedding [10]. First, prototype character graphs are selected,
either manually or automatically [15]. Then, a sliding window is moved over the
handwriting graph from left to right as illustrated in Figure 1b. At each position,
the graph dissimilarity d(g1, g2) ∈ IR between the subgraph g1 in the window
and the prototype graph g2 is calculated for all prototypes. This results in a
sequence of feature vectors x1, . . . , xN with xi = (d(g1,i, g2,1), . . . , d(g1,i, g2,n))
and a dimensionality xi ∈ IRn equal to the number n of prototypes. The dis-
similarity measure used is the graph edit distance which is discussed in detail in
Section 3.1. An important property of the edit distance is that it can be applied
to any kind of graph.

After embedding, the resulting feature vector sequence can be used for recog-
nition with any statistical classifier. In this paper, we employ hidden Markov
models (HMM) [6] for word recognition. For any further details on the recogni-
tion system as well as the graph similarity features in general, we refer to [8].

A Fast Matching Algorithm for Graph-Based Handwriting Recognition 197

3 Fast Matching Algorithm

A shortcoming of the graph similarity features is their high computational time
complexity for matching two handwriting graphs. For a median graph size of
30 nodes, the graph matching process takes about half a minute per word on a
2.66GHz personal computer (see Section 4). Considering a real-world scenario,
for instance the daily processing of handwritten letters sent to a company or the
processing of large collections of historical manuscripts for digital libraries, this
computational speed is demanding in terms of hardware resources.

In this section, we derive a faster graph matching method from the Hausdorff
distance. It preserves most properties of the formerly used approximate graph
edit distance [13] which is based on a node assignment according to some edit
cost. By allowing multiple node assignments for the proposed method, the time
complexity is reduced from cubic to quadratic with respect to graph size.

In the following, the approximate graph edit distance is reviewed in
Section 3.1, the Hausdorff distance is discussed in Section 3.2, and the proposed
modified Hausdorff distance is introduced in Section 3.3.

3.1 Approximate Graph Edit Distance

To calculate the dissimilarity d(g1, g2) between two graphs g1 and g2, repre-
senting the subgraph inside the sliding window and a character prototype (see
Section 2.2, Figure 1b), the graph edit distance is used to derive graph similar-
ity features [11]. This distance is given by the minimum cost of edit operations
needed to transform g1 into g2. Possible edit operations include the substitution,
deletion, and insertion of nodes and edges.

For the handwriting graphs under consideration (see Section 2.1), the
Euclidean cost function is used with

– c(n1, n2) = ||(x1, y1) − (x2, y2)|| for node label substitution
– c(n1, ε) = c(ε, n2) = Cn ≥ 0 for node deletion and insertion
– c(e1, ε) = c(ε, e2) = Ce ≥ 0 for edge deletion and insertion

where (xi, yi) is the attribute vector associated with node ni, representing the
location of ni in the two-dimensional plane. This definition ensures the edit
distance to be metric [11]. The non-negative parameters Cn and Ce for deletion
and insertion are optimized on a validation set to adapt the generic cost function
to the graph data. As there are no edge labels, no edge label substitution cost
need to be defined.

Usually, the edit distance is calculated with the A∗ algorithm which performs
a best-first tree search, possibly using a lower bound heuristic for the estimated
future cost [11]. The A∗ algorithm always finds the optimal solution but has an
exponential time complexity with respect to the graph size. In order to match
large handwriting graphs, an approximation is used to obtain a suboptimal edit
distance in polynomial time [13]. The approximation reduces the edit distance to
a node assignment problem which can then be solved in cubic time by Munkres’

198 A. Fischer et al.

v1 v2 v3

u1 u2 u3 u4 ε ε ε

ε ε ε ε

Fig. 2. Assignment problem

algorithm [12], also known as the Hungarian algorithm. Although the algorithm
does not always find an optimal solution for the edit distance, it is reasonably
accurate, especially for small distances among similar graphs which is important
for the task of classification [13].

The edit distance can be formulated as a node assignment problem as il-
lustrated in Figure 2. In this example, we consider a graph g1 with three nodes
v1, v2, v3 (top row) that is matched with a graph g2 having four nodes u1, u2, u3, u4
(bottom row). For each node in g1, an ε-node is inserted in the bottom row, and
for each node in g2 an ε-node is inserted in the top row. Assignments between the
top and the bottom row correspond with node edit operations, e.g., substitution
(v1, u3), deletion (v3, ε), and insertion (ε, u2).

Finding a complete assignment with minimum cost1 corresponds to finding
an optimal solution for the edit distance if the edges of the graphs are ignored.
By taking the implied cost of adjacent edge operations into account for each
node assignment, the true edit distance can be approximated. The method is
suboptimal because only local adjacent edge structures are matched instead of
the global edge structure. Munkres’ algorithm solves the assignment problem in
O(N3) where N is the sum of the number of nodes in g1 and g2.

For graph similarity features, a normalization of the approximate graph edit
distance with respect to its maximum value has proven beneficial. It is accom-
plished by dmax(g1, g2) = N · Cn + E · Ce where N is the sum of the number
of nodes in g1 and g2 and E is the sum of the number of edges. The maximum
corresponds to the deletion of all nodes and edges in g1 and the insertion of all
nodes and edges in g2. A similarity value is obtained by

ŝ(g1, g2) = 1 − d(g1, g2)

dmax(g1, g2)
(1)

Also, a normalization over all prototype characters p ∈ P is performed at each
sliding window position yielding the final graph similarity measure

s(g1, g2) =
ŝ(g1, g2)

2∑
P ŝ(g1, p)

(2)

1 The assignment cost (ε, ε) is zero.

A Fast Matching Algorithm for Graph-Based Handwriting Recognition 199

3.2 Hausdorff Distance

The Hausdorff distance is a distance measure between two subsets of a metric
space. In case of finite subsets A and B the Hausdorff distance H(A,B) is

H(A,B) = max(max
A

min
B

d(a, b),max
B

min
A

d(a, b)) (3)

where a ∈ A, b ∈ B, and d(a, b) is the underlying metric [16]. In Equation 3,
minB d(a, b) is the nearest neighbor distance of a in B, minA d(a, b) is the near-
est neighbor distance of b in A, and the Hausdorff distance corresponds to the
maximum over all nearest neighbor distances.

The Hausdorff distance is widely used in the domain of image matching [16],
for example to locate templates within target images. In its original definition,
only the maximum over all nearest neighbor distances is taken into account.
Hence, Hausdorff distance is sensitive to outliers in the data. A straight-forward
modification that integrates all nearest neighbor distances can be achieved with

H ′(A,B) =
∑
A

min
B

d(a, b) +
∑
B

min
A

d(a, b) (4)

Considering A as the nodes of graph g1, B as the nodes of graph g2, and
d(n1, n2) = c(n1, n2) = ||(x1, y1) − (x2, y2)|| as the underlying metric, i.e., the
node substitution cost (see Section 3.1), the Hausdorff distance can be directly
applied to the handwriting graphs. It ignores the edges of the graphs and can
trivially be calculated in O(NM) where N and M denote the number of nodes
in g1 and g2, respectively.

Therefore the Hausdorff distance or its modification in Equation 4 can be used
as a fast alternative for the approximate graph edit distance. In our experiments
(see Section 4) a normalization with respect to all prototypes p ∈ P has proven
beneficial yielding the final graph dissimilarity measures

h(g1, g2) =
H(g1, g2)∑
P H(g1, p)

(5)

h′(g1, g2) =
H ′(g1, g2)∑
P H ′(g1, p)

(6)

3.3 Modified Hausdorff Distance

In this paper, we propose a novel modification of the Hausdorff distance that
takes into regard not only substitution, but also deletion and insertion cost. It
is defined as

H ′′(A,B) =
∑
A

min
B

c̄1(a, b) +
∑
B

min
A

c̄2(a, b) (7)

by replacing the metric d in Equation 4 with the cost functions c̄1 and c̄2. Again,
A corresponds with the nodes of graph g1 and B with the nodes of g2. The cost
functions c̄1(n1, n2) and c̄2(n1, n2) for matching node n1 with node n2 are

200 A. Fischer et al.

v1 v2 v3

u1 u2 u3 u4 ε

ε

Fig. 3. Multiple assignments

c̄1(n1, n2) =

{
c(n1,n2)

2 , if c(n1, n2) < c(n1, ε)

c(n1, ε), otherwise
(8)

c̄2(n1, n2) =

{
c(n1,n2)

2 , if c(n1, n2) < c(ε, n2)

c(ε, n2), otherwise
(9)

with respect to the cost function c of the edit distance (see Section 3.1). That is,

minB c̄1(a, b) returns half of the node substitution cost c(n1,n2)
2 if the substitution

(n1, n2) is preferred over deletion (n1, ε) of n1. Among all possible substitutions
the one with the smallest cost is chosen. Otherwise, the deletion cost c(n1, ε)

is returned. Similarly, minA c̄2(a, b) returns the best c(n1,n2)
2 if the substitution

(n1, n2) is preferred over insertion (ε, n2) of n2.
The correspondence between the modified Hausdorff distance H ′′ and the

approximate edit distance is illustrated in Figure 3 in analogy to Figure 2. Based
on H ′′, each node of graph g1 (top row) is either assigned to a node of graph g2
(bottom row) if a substitution is preferred in c̄1 or to the ε node for deletion.
Vice versa, each node of graph g2 is either assigned to a node of graph g1 if a
substitution is preferred in c̄2 or to the ε node for insertion.

H ′′ equals the cost of all assignments. The cost of double assignments, e.g.,
(v1, u3) in Figure 3, is the full substitution cost c(n1, n2) = c̄1(n1, n2)+c̄2(n1, n2).
Deletions and insertions contribute their respective cost. The only difference to
the assignment problem solved by the approximate edit distance is the possibility
of multiple assignments, e.g., with v2 in Figure 3. In such a case H ′′ is smaller
than the approximate edit distance which is an upper bound of H ′′.

Finally, implied adjacent edge costs can be taken into account for the assign-
ments in c̄1 and c̄2 in the same way as for the approximate edit distance. For
small edit distances between two graphs, H ′′ is, indeed, expected to provide a
good approximation of the edit distance in quadratic time.

For the graph similarity features, the usual normalization is applied (see

Section 3.1). With ĥ′′(g1, g2) = 1− H′′(g1,g2)
dmax(g1,g2)

the final graph similarity measure

is obtained as

h′′(g1, g2) =
ĥ′′(g1, g2)

2∑
P ĥ′′(g1, p)

(10)

A Fast Matching Algorithm for Graph-Based Handwriting Recognition 201

4 Experimental Evaluation

Experiments are conducted on the historical Parzival database2 [14] which in-
cludes images from a 13th century manuscript written in Old German. 11, 743
word images are considered that contain 3, 177 word classes and 87 characters.

For a single word recognition task with graph similarity features and HMM-
based recognition (see Section 2), the similarity function h′′ obtained from the
modified Hausdorff distance is compared with the Hausdorff distance h, its
variant h′, and the approximate edit distance s (see Section 3).

4.1 Setup

First, the word images are divided into three distinct sets for training, validation,
and testing. Half of the words are used for training and a quarter of the words
for validation and testing, respectively. For vector space embedding, 79 character
prototypes are used as in [8].

Parameters that are optimized with respect to the validation accuracy include
the connection point distance D ∈ {3, 5, 7, 9} for graph-based representation, the
deletion and insertion cost Cn, Ce ∈ {0, 0.4D, 0.6D, . . . , 1.4D} of the graph edit
distance, and the number of Gaussian mixtures G ∈ {1, 2, . . . , 30} of the HMM.
Optimal parameter values are adopted from previous studies [8] conducted with
the approximate edit distance s. The same values are used for h, h′, and h′′.

Table 1. Word recognition accuracy on the test set in percentage

h h′ h′′ s

49.78 83.95 93.66 94.00

4.2 Results

The achieved word recognition accuracy on the test set is listed in Table 1. As
stated in [8], the best accuracy of 94.00% achieved with graph similarity features
and approximate edit distance s significantly outperforms traditional statisti-
cal feature sets which achieve a maximum accuracy of 90.49% [8]. This result
demonstrates the general effectiveness of the proposed graph-based approach to
handwriting recognition.

With an accuracy of 93.66% the proposed modified Hausdorff distance h′′

achieves nearly the same performance as s. There is no statistically significant
difference between the results (t-test, α = 0.05). That is, the improvement from
cubic to quadratic time complexity can be achieved without significant loss in
accuracy.

2 http://www.iam.unibe.ch/fki/databases/iam-historical-document-database

http://www.iam.unibe.ch/fki/databases/iam-historical-document-database

202 A. Fischer et al.

Table 2. Runtime statistics. The median graph size in terms of number of nodes,
the median number of graph matchings per word, the mean runtimes on a 2.66GHz
processor for s and h′′ per word in seconds, and the speedup factor.

Graph Size Matchings Runtime s Runtime h′′ Speedup

30 6162 33.24 2.57 12.9

When comparing the results of h and h′, a very remarkable difference in
performance is observed. This is possibly due to the fact that the Hausdorff
variant h′ is less sensitive to outliers. Still, both distance measures perform
significantly worse than h′′ and s.

The runtime statistics of h′′ and s are listed in Table 2. Both methods are
implemented in Java. For an optimal value Dopt = 3, the median number of
graph nodes is 30 and the proposed algorithm achieves a speedup factor of 12.9.

An anomaly is observed for the cost function parameters Cn,opt = 3 and
Ce,opt = 0. The edge cost parameter Ce,opt = 0 indicates that the use of edges
in the chosen graph representation actually leads to worse results. We explain
this anomaly by the fact that the handwriting images of historical manuscripts
contain many broken characters due to binarization problems. Imposing an edge
cost leads to stronger deviations from the clean prototype characters in this case.

5 Conclusions

Graph similarity features provide a general framework to combine graph-based
representation and statistical classification for the recognition of handwritten
text images. The framework proposed in this paper is based on vector space
embedding of handwriting graphs with respect to a set of character prototypes.
It showed a high recognition accuracy when compared with traditional statistical
feature sets, but had shortcomings in computational speed when matching two
handwriting graphs with an approximate graph edit distance.

In this paper, we propose a fast matching algorithm derived from the Haus-
dorff distance that reduces the complexity of the graph matching process from
cubic to quadratic time with respect to graph size. The method retains most
properties of the approximate edit distance but allows multiple node assign-
ments. On the historical Parzival database it was demonstrated for an HMM-
based word recognition task that a speedup factor of 12.9 could be achieved
without significant loss in accuracy.

In the domain of handwriting recognition, future work includes the investiga-
tion of different graph-based representations of handwriting within the proposed
framework. In the field of image matching, the proposed distance measure could
be used as a variant of the Hausdorff distance in various applications, such as
template location. Finally, for graph-based recognition in general, the algorithm
offers a promising possibility to approximate the graph edit distance in quadratic
time with respect to graph size. This issue needs to be verified on diverse graph
data sets.

A Fast Matching Algorithm for Graph-Based Handwriting Recognition 203

Acknowledgment. This work has been supported by the Swiss National
Science Foundation fellowship project PBBEP2 141453, the Spanish project
TIN2009-14633-C03-03, and the Spanish MICINN under the MIPRCV
“Consolider Ingenio 2010” CSD2007-00018 project.

References

1. Mahé, P., Ueda, N., Akutsu, T., Perret, J., Vert, J.: Graph kernels for molecular
structure-activity relationship analysis with support vector machines. Journal of
Chemical Information and Modeling 45(4), 939–951 (2005)

2. Bunke, H., Dickinson, P.J., Kraetzl, M., Wallis, W.D.: A Graph-Theoretic
Approach to Enterprise Network Dynamics. Progress in Computer Science and
Applied Logic, vol. 24. Birkhäuser (2006)

3. Llados, J., Marti, E., Villanueva, J.: Symbol recognition by error-tolerant subgraph
matching between region adjacency graphs. IEEE Trans. PAMI 23(10), 1137–1143
(2001)

4. Lu, S., Ren, Y., Suen, C.Y.: Hierarchical attributed graph representation and
recognition of handwritten chinese characters. Pattern Recognition 24(7), 617–632
(1991)

5. Bunke, H., Varga, T.: Off-line Roman cursive handwriting recognition. In:
Chaudhuri, B. (ed.) Digital Document Processing, pp. 165–173. Springer (2007)

6. Ploetz, T., Fink, G.A.: Markov models for offline handwriting recognition: A survey.
Int. Journal on Document Analysis and Recognition 12(4), 269–298 (2009)

7. Graves, A., Liwicki, M., Fernandez, S., Bertolami, R., Bunke, H., Schmidhuber, J.:
A novel connectionist system for improved unconstrained handwriting recognition.
IEEE Trans. PAMI 31(5), 855–868 (2009)

8. Fischer, A., Riesen, K., Bunke, H.: Graph similarity features for HMM-based
handwriting recognition in historical documents. In: Proc. 12th Int. Conf. on
Frontiers in Handwriting Recognition, pp. 253–258 (2010)

9. Pekalska, E., Duin, R.: The Dissimilarity Representations for Pattern Recognition:
Foundations and Applications. World Scientific (2005)

10. Riesen, K., Bunke, H.: Graph Classification and Clustering Based on Vector Space
Embedding. World Scientific (2010)

11. Bunke, H., Allermann, G.: Inexact graph matching for structural pattern recogni-
tion. Pattern Recognition Letters 1(4), 245–253 (1983)

12. Munkres, J.: Algorithms for the assignment and transportation problems. Journal
of the Society for Industrial and Applied Mathematics 5(1), 32–38 (1957)

13. Riesen, K., Bunke, H.: Approximate graph edit distance computation by means of
bipartite graph matching. Image and Vision Computing 27(7), 950–959 (2009)

14. Fischer, A., Wüthrich, M., Liwicki, M., Frinken, V., Bunke, H., Viehhauser, G.,
Stolz, M.: Automatic transcription of handwritten medieval documents. In: Proc.
15th Int. Conf. on Virtual Systems and Multimedia, pp. 137–142 (2009)

15. Fischer, A., Bunke, H.: Character prototype selection for handwriting recognition
in historical documents with graph similarity features. In: Proc. 19th European
Signal Processing Conference, pp. 1435–1439 (2011)

16. Huttenlocher, D.P., Klanderman, G.A., Kl, G.A., Rucklidge, W.J.: Comparing
images using the Hausdorff distance. IEEE Trans. PAMI 15, 850–863 (1993)

On the Evaluation of Graph Centrality

for Shape Matching

Samuel de Sousa, Nicole M. Artner, and Walter G. Kropatsch

Vienna University of Technology
Pattern Recognition and Image Processing Group

Vienna, Austria
{sam,artner,krw}@prip.tuwien.ac.at

Abstract. Graph centrality has been extensively applied in Social Net-
work Analysis to model the interaction of actors and the information flow
inside a graph. In this paper, we investigate the usage of graph centrali-
ties in the Shape Matching task. We create a graph-based representation
of a shape and describe this graph by using different centrality measures.
We build a Naive Bayes classifier whose input feature vector consists of
the measurements obtained by the centralities and evaluate the different
performances for each centrality.

Keywords: centrality, shape matching, graph.

1 Introduction

Humans have the innate skill of recognizing objects by their appearance, shape,
silhouettes, and contours. When this object recognition task is performed by
machines, the shape representation is an important factor that needs to be taken
into account, which might be considered as a key factor to obtain a good or bad
recognition performance. We analyze the shape representation based on graph
theory by abstracting pixels of an image as vertices and modeling their spatial
relationship with edges.

Several implicit information can be extracted from graphs. For instance,
centrality measurements of graphs or networks have been extensively explored in
Social Network Analysis (SNA) [19] to understand the flow of information or to
identify potential key actors inside the network. However, those measures could
be also applied in a different context that may not be related to SNA and still be
capable of achieving meaningful results. For instance, graph centralities could be
used to represent a graph based on the distribution of centrality values over the
vertices.

In this paper, we analyze the impact of using graph centralities in the model-
ing and description of shapes. To the best of our knowledge, there is no graph-
based approach employing centrality measures for 2D shape matching. Hence,
we represent a shape using a graph and calculate the following centrality mea-
sures: Degree, Betweenness, Closeness, PageRank, and Eigenvector. We divide
a dataset of shapes into 8 classes and train classifiers to recognize those shapes

W.G. Kropatsch et al. (Eds.): GbRPR 2013, LNCS 7877, pp. 204–213, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

On the Evaluation of Graph Centrality for Shape Matching 205

by taking into consideration only the centralities of graphs. We add salt noise to
the shapes in order to evaluate the impact that the absence of certain nodes and
edge has in the recognition task. Our main contribution is a novel way of graph
comparison and “matching” based on graph centralities, and the evaluation of
their robustness under topological changes of the graph. Our results indicate
that the closeness centrality is the most reliable centrality for the matching task
under minor changes in the graph.

The remainder of this paper is organized as follows: Section 2 provides a lit-
erature review on graph centrality and graph-based shape representation. We
introduce the centralities measurements and discuss our overall methodology
in Section 3. Our experiments are explained in Section 4 narrowing our fea-
ture modeling and examining the results obtained by our classifiers. Finally, we
present our conclusions and future work in Section 5.

2 Related Work

The concept of centrality has already been used by Bavelas in 1948 [1] to ex-
plain human behavior. It is frequently used in the analysis of different types of
networks. Hence, many different measures of centrality have been proposed [4].
Borgatti et al. [4] try to give a graph-theoretic review of centrality measures,
where measures are classified according to the features of their calculation. They
focus on the three best-known measures of centrality: degree, closeness, and be-
tweenness [9]. One of their findings is that there are four basic dimensions to
distinguish between centrality measures: (i) the types of walks considered, (ii)
the properties of walks measured, (iii) the type of nodal involvement, and (iv)
the type of summarization.

Correa et al. [6] use derivatives of centrality in the visualization of social
networks. The derivative of centrality informs how much a given node influences
the importance of another node, even if they are not directly connected. They
found out that derivatives of centrality are tool for analyzing social networks,
they help to simplify the layout of complex networks and to visually measure
the centralization degree of a network. Furthermore, they provide information
to estimate other metrics like structural balance and uncertainty.

Mukherjee et al. [13] present an application of centrality in human action
recognition. They employ centrality to create a compact codebook out of a large
vocabulary of poses (bag-of-word approach). Cukierski et al. [7] use centrality
to solve an open problem in the ISOMAP algorithm [12], which is a non-linear
dimensionality reduction method. The ISOMAP algorithm computes geodesic
distances between data points with the help of a neighborhood graph. Unfortu-
nately, these graphs sometimes contain unwanted edges, which connect disparate
regions of one or more manifolds and this leads to a distortion of the calculated
geodesic distance matrix. This problem is where Cukierski et al. propose an
edge-removal method based on graph betweenness centrality, which can robustly
identify manifold-shorting edges.

In the literature, shock graphs are frequently employed in graph-based shape
matching. Shock graphs are related to medial axis transform [3], but with a

206 S. de Sousa, N.M. Artner, and W.G. Kropatsch

higher descriptive power. Each vertex in a shock graph is labeled by the shock
type and the edges depend on the shock formation times. Siddiqi et al. [17] match
2D shapes based on directed, acyclic shock graphs. By employing a shock graph
grammar the task of matching shock graphs can be reduced to matching shock
trees, which can be done in polynomial time.

Sebastian et al. [15] match 2D shape outlines based on the edit distance be-
tween their corresponding shock graphs. They propose a novel framework, where
they partition the shape space with the help of shock graph topology, discretize
the space of deformations based of their shock graph transitions, and find the
globally optimal sequence of transitions by employing a graph edit distance algo-
rithm. Torsello et al. [18] present a geometric measure to determine the similarity
between shapes calculated from the skeletons. This measure allows to distinguish
between perceptually distinct shapes whose skeletons are ambiguous and to dis-
tinguish between the main skeletal structure and its ligatures.

Besides the works on shock graphs and skeletons, there are approaches which
match shapes by their contour. Felzenszwalb and Schwartz [8] present a so-
called shape-tree, which describes the boundary of shape at multiple levels of
resolution. Their representation can be used to determine the similarity between
two shapes and for matching a deformable shape model to a cluttered image.
In [20], Zhu et al. propose a hierarchical deformable template, which describes
an object by a hierarchical graph defined by parent-child relationships. In the
top vertex the pose (position, orientation, and scale) of the center of the object
is stored and in the child vertices the poses of points on the object boundary are
described.

The review of the related work showed that, to the best of our knowledge,
there is no graph-based approach employing centrality measures for 2D shape
matching. Hence, this paper is the first attempt to use centrality in graph-based
shape matching.

3 Graph-Based Shape Matching

Our methodology starts by building a graph-based representation of the
shape and by calculating several centrality measures of this graph. The result-
ing centra-lity-based representation of the graph is further input into a classifier
as the feature vector in order to distinguish different shapes by the centrality
representation.

Given a graph G = (V , E), a centrality can be interpreted as a function f :
V → R, which assigns a real value to each vertex v ∈ V . In general, centrality
measures the importance of a vertex within a graph or the importance of an actor
in a social network [19]. We elucidate this concept using the graph displayed
in Figure 1a. The measures of centrality computed for this undirected graph
are listed in Figure 1b, where b(v), c(v), d(v), e(v), and r(v) stand for degree,
closeness, between, eigenvector and rank of a vertex v ∈ V , respectively. Those
measures are explained in the following sections.

On the Evaluation of Graph Centrality for Shape Matching 207

(a) Sample graph G = (V, E), |V| = 8
and |E| = 10.

v d(v) b(v) c(v) e(v) r(v)

0 2 0.00 0.53 0.58 0.09

1 1 0.00 0.38 0.18 0.06

2 1 0.00 0.43 0.33 0.05

3 3 4.00 0.63 0.72 0.14

4 3 4.00 0.63 0.72 0.14

5 5 9.50 0.70 1.00 0.23

6 3 6.50 0.58 0.55 0.15

7 2 0.00 0.53 0.58 0.09

(b) Centrality values obtained for the
graph.

Fig. 1. For each vertex v ∈ V, we compute the importance of the vertex according to
a specific centrality

3.1 Degree Centrality

The degree of a vertex d(v) is a measure that counts the number of edges incident
to v [9]. By evaluating the degree centrality, one can compare the connectivity
of vertices, but this measure does not tell how well-positioned a certain vertex is
within the graph. In the graph of the example in Figure 1a, the highest degree
is 5 and the lowest is 1.

The importance of a vertex with regard to degree centrality depends on the
average degree in a graph. For instance, a degree 8 is considered high in a graph
whose average degree is 2, but it is low in a graph whose average is 20. Hence,
other centrality measures are capable of providing more detailed information
about a vertex.

3.2 Betweenness Centrality

The communication between two non-adjacent vertices depends on the path
between them. The main idea of betweenness centrality [19] is that vertices that
lie on the geodesic path of many other vertices will possess great control over
the information flow, due to the fact that they reside “between” others.

The betweenness centrality b(v) of a vertex v is calculated as follows:

b(v) =
∑

s∈V \{v}

∑
t∈V \{s,v}

σst(v)

σst
, (1)

where σst is the number of geodesic paths between vertices s and t. The value
σst(v) stands for the number of geodesic paths between s and t via v. The
computation of the betweenness centrality requires the determination of the
geodesic paths by calculating the geodesic distances to all vertices in the graph.
The lower complexity for this centrality is O(V2 logV+VE) achieved by Johnson
et al. [2].

208 S. de Sousa, N.M. Artner, and W.G. Kropatsch

The third column of Figure 1b shows the betweenness centrality calculated
for the sample graph. Vertices 5 and 6 have the highest importance considering
betweenness centrality. Furthermore, their degree centralities are also high. This
shows that there is a certain degree of dependence between the different mea-
sures of centrality. A vertex with degree 1 will not have the highest betweenness
centrality in a graph (except for a graph with only two vertices connected by
an edge). Looking at the two pairs of vertices 0 and 7 and 1 and 2, one can
see that even though all of them have betweenness centrality of 0, their degree
centralities are different (1 and 2).

3.3 Closeness Centrality

Closeness centrality [9] is a measure that evaluates how close a certain vertex is
to all other vertices in the graph. It computes the inverse of the shortest paths
from a vertex to all other vertices. Let d(s, v) be the shortest distance between
vertices s and v, the closeness centrality c(v) of a vertex v can be computed as
follows:

c(v) =
∑

s∈G\{v}

1

d(s, v)
. (2)

In comparison to betweenness centrality, which can result in values equal to 0
(see vertices 0, 1, 2 and 7 in the example in Figure 1a), closeness centrality will
only be 0 for vertices which are disconnected from the graph. In the sample graph
in Figure 1a, vertex 5 obtained the highest closeness centrality (c(v)). However,
the c(v) of vertex 5 is not much higher than vertices 3 and 4 (in contrast to b(v)).
In SNA it is known that if information is spread from the vertex with the highest
c(v), it will spread over the whole network in the shortest time possible [4].

3.4 Eigenvector Centrality

Given a graph G = (V , E), the eigenvector centrality e(v) corresponds to the
eigenvector X = (x1, x2, . . . , x|V|)

T associated with the highest eigenvalue λ of
the graph adjacency matrix [14].

As proved by the Perron Frobenius theorem [10], a square matrix (such as the
adjacency matrix of a graph) with positive values has a unique, largest eigenvalue
with strictly, positive eigenvector entries.

3.5 PageRank Centrality

PageRank [5] is an algorithm for measuring the importance of a web page. Ac-
cording to [14], the page rank centrality r(v) is a variant of the eigenvector
centrality and it can be determined by the following equation:

R =
1 − d

n
.1+ dLR, (3)

On the Evaluation of Graph Centrality for Shape Matching 209

where R = (r1, r2, · · · · , rn)T is the page rank vector, where ri is the page rank
of vertex (webpage) i and n is the total number of vertices (webpages), d is
a damping factor with d = 0.85, 1 is a column vector, and L is a modified
adjacency matrix (for details on the computation see [14]).

3.6 Centrality Shape Descriptor

We propose to describe 2D shapes by histograms of their centrality measures,
which are calculated on a 8-neighborhood graph. Each centrality measure de-
scribes different properties of a shape. Figure 2 displays the same graph with
different representations of centralities.

(a) Degree (b) Betweenness (c) Closeness (d) Eigenvector (e) PageRank low

high

Fig. 2. Visualization of the centrality values of a shape. The centrality values are color
coded from low to high values.

The degree centrality (Fig. 2a) shows high values in the center of the shape
and low values in the boundaries. Hence, the degree histogram will simply count
how many vertices exist of the two groups: (i) vertices inside the shape with
8-connected neighboring vertices, and (ii) vertices on the boundary. The be-
tweenness centrality (Fig. 2b) shows high values for vertices that were frequently
traversed by geodesic paths of the graph. Closeness representation (Fig. 2c) con-
tains higher values for vertices that are “closer” to all other vertices and low
values for “distant” ones. The eigenvector centrality (Fig. 2d) shows high values
in the “center” of the shape and those values decrease towards the boundaries.
Finally, PageRank (Fig. 2e) results show high values in the center of the shape
and small values on the boundary. However, those values on the boundary are
slightly different from the degree results, they are not as uniform as the degree
centrality.

4 Experiments

The histograms of the graph centralities are used to create feature vectors for a
Naive Bayes classifier. We have used the Kimia’s Shape 99 database [16] which
contains 11 images of 9 classes. Figure 3 displays one image of each class. Con-
sidering that once the graph is built, we do not use any image information such
as boundaries, curvature. One way to evaluate the robustness of each centrality
when the topology of graph changes, i.e. when the number of vertices and edges
of the graph change. To achieve that we add different percentages of random

210 S. de Sousa, N.M. Artner, and W.G. Kropatsch

plane animal dude tool shark scribble rabbit stingray hand

Fig. 3. Sample images of classes used for training

noise to the images of the database. As we are working with binary images and
the foreground (shape) is black, we add random “salt” noise (white pixels) which
will cause missing nodes when the graph is constructed. The first three images
of Figure 3 do not show any noise. The following two figures (tool and shark)
show 1% of noise. Images of scribble and rabbit show 5% of noise and the final
two images show 10% of noise.

We build six different classifiers using the centrality values. Five classifiers
are computed using each individual histogram of a centrality measure with fixed
number of bins (in our experiments bins = 40, value was chosen empirically).
One extra classifier (referred from now on as “all”) combines all five histograms
as a feature vector of the training data.

Our code was developed in python and the centralities were calculated using
the igraph library1. We train our six classifiers using the original dataset with-
out any noise. We classify the original training set and corrupted versions of it
with 1%, 5%, and 10% noise as previously described. The classification of the
training data aims to evaluate the correctness of the classifier, It demonstrates,
for instance, how well the histograms of each centrality differ from each class
and thus allow correct classification of new data. Figure 4 shows the impact of
10% of noise in computation of the centrality values. Closeness centrality (Fig.
4c) shows robust results against noise whereas other centralities suffer a great
impact from additive noise.

(a) Degree (b) Betweeness (c) Closeness (d) Eigenvector (e) PageRank low

high

Fig. 4. Visualization of the centrality values of a shape under 10% of noise. The
centrality values are color coded from low to high values.

The results of classification are displayed in Table 1. First column displays the
classifier evaluated. Second column (no noise) displays the result of the classifi-
cation on the training data, which shows that the classifier using all centralities

1 http://igraph.sourceforge.net

http://igraph.sourceforge.net

On the Evaluation of Graph Centrality for Shape Matching 211

Table 1. Results of classification using different centrality measures. The closeness
centrality achieved the best results under random noise.

classifier No noise 1% noise 5% noise 10% noise
All 0.98 0.85 0.65 0.46

Betweenness 0.82 0.67 0.51 0.29

Closeness 0.94 0.93 0.92 0.83

PageRank 0.81 0.32 0.11 0.11

Eigenvector 0.89 0.69 0.27 0.26

Degree 0.81 0.37 0.17 0.14

obtained the best results (98% of correctness). Most of the individual centralities
were able to perform well (with at least 81% of correctness). However, when 1%
of noise is added, the closeness centrality starts to obtain the best performance.
The other centrality measures are more sensitive to noise than closeness and their
results drop remarkably: the addition of random noise had the highest impact
on the results of PageRank, Degree, and Eigenvector. We observe that closeness

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) All - No noise (b) All - 5% noise (c) All - 10% noise

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d) Closeness - No noise (e) Closeness - 5% noise (f) Closeness - 10% noise

Fig. 5. Confusion Matrices of classification. First row shows the combination of all
histograms. Second row displays the closeness centrality. Each matrix column shows
the real class and the row shows the predicted class.

212 S. de Sousa, N.M. Artner, and W.G. Kropatsch

centrality remains stable in the under the missing nodes in the graph. Even when
10% of noise is added, it still obtains better results than other centralities on
the training data.

It can be concluded that closeness centrality is the most robust centrality
measure for our shape matching and that the simple combination of all central-
ities did not obtain the best result but it was still considerably better than the
other isolated centralities. Furthermore, the performance of the degree centrality
changes severely as under “salt” noise due to the fact that the vertices inside
the shape have degrees smaller than eight and therefore the whole histogram
distribution of degree is significantly different from the training data.

Figure 5 shows the confusion matrices of the classification results for classifiers
all and closeness. For instance, Figure 5d shows that the classifier of closeness
centrality misclassified airplanes, dogs, sharks, and dudes in the training data.
This might have occurred due to the sharp edges of the pictures leading to
similar histograms. However, the per-class classification of closeness is still very
high after 10% of noise.

5 Conclusion

In this paper we evaluate the usage of graph centralities as descriptors in 2D
shape matching. We create a representation for the shape using the histograms
of centralities and we train a Naive Bayes classifier based on that representation.
Our results indicate that in the presence of random noise, the closeness centrality
obtained the highest classification rates compared to the other centralities.

One clear advantage of such a representation is the rotation invariance achie-
ved by the graph representation. Scale invariance might be achieved if, for in-
stance, histograms are normalized. However, if based solely on the histogram,
important details of the shape might not be captured, i.e. some shapes might
result in the same centrality histogram even though they belong to different
classes. One solution to this problem could consist on adding the relationships
between mountains and valleys of the shape in one direction (such as clockwise)
and integrating this relationship in the feature modeling.

In future, we plan to investigate other representations for centralities or other
combinations of multiple centralities such as using boosting. Also, integrating
spatial information into the graph representation might increase the performance
of results and help in the disambiguation of similar shapes as performed by [11].

Acknowledgments. Samuel de Sousa acknowledges financial support by the
Austrian Agency for International Cooperation in Education & Research (OeAD)
within the OeAD Sonderstipendien program, financed by the Vienna PhD School
of Informatics.

On the Evaluation of Graph Centrality for Shape Matching 213

References

1. Bavelas, A.: A mathematical model for group structure. Human Organization 7(3),
16–30 (1948)

2. Black, P.E.: Johnson’s algorithm. Dictionary of Algorithms and Data Structures
(2004)

3. Blum, H.: Biological shape and visual science (part I). Journal of Theoretical
Biology 38, 205–287 (1973)

4. Borgatti, S.P., Everett, M.G.: A graph-theoretic perspective on centrality. Social
Networks 28(4), 466–484 (2006)

5. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine.
Computer Networks and ISDN Systems 30(1-7), 107–117 (1998)

6. Correa, C., Ma, K.-L.: Visualizing social networks. In: Aggarwal, C.C. (ed.) Social
Network Data Analytics, pp. 307–326. Springer, US (2011)

7. Cukierski, W., Foran, D.: Using betweenness centrality to identify manifold short-
cuts. In: IEEE International Conference on Data Mining Workshops, ICDMW
2008, pp. 949–958 (December 2008)

8. Felzenszwalb, P., Schwartz, J.: Hierarchical matching of deformable shapes. In:
IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2007, pp.
1 –8 (June 2007)

9. Freeman, L.: Centrality in social networks: Conceptual clarification. Social
Networks 1(3), 215–239 (1979)

10. Frobenius, G.: Über Matrizen aus nicht negativen Elementen. In: Sitzungsberichte
Königlich Preussichen Akademie der Wissenschaft, pp. 456–477 (1912)

11. Iglesias-Ham, M., Garćıa-Reyes, E., Kropatsch, W., Artner, N.: Convex deficiencies
for human action recognition. Journal of Intelligent & Robotic Systems 64, 353–364
(2011)

12. de Silva, V., Tenenbaum, J.B., Langford, J.C.: A global geometric framework for
nonlinear dimensionality reduction. Science 290, 2319–2323 (2000)

13. Mukherjee, S., Biswas, S., Mukherjee, D.: Recognizing human action at a dis-
tance in video by key poses. IEEE Transactions on Circuits and Systems for Video
Technology 21(9), 1228–1241 (2011)

14. Okamoto, K., Chen, W., Li, X.-Y.: Ranking of closeness centrality for large-scale
social networks. In: Preparata, F.P., Wu, X., Yin, J. (eds.) FAW 2008. LNCS,
vol. 5059, pp. 186–195. Springer, Heidelberg (2008)

15. Sebastian, T., Klein, P., Kimia, B.: Recognition of shapes by editing their shock
graphs. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(5),
550–571 (2004)

16. Sharvit, D., Chan, J., Tek, H., Kimia, B.B.: Symmetry-based indexing of im-
age databases. Journal of Visual Communication and Image Representation 9(4),
366–380 (1998)

17. Siddiqi, K., Shokoufandeh, A., Dickinson, S., Zucker, S.: Shock graphs and shape
matching. International Journal of Computer Vision 35, 13–32 (1999)

18. Torsello, A., Hancock, E.R.: A skeletal measure of 2d shape similarity. Computer
Vision and Image Understanding 95(1), 1–29 (2004)

19. Wasserman, S., Faust, K.: Social Network Analysis. Methods and Applications.
Cambridge University Press, New York (1994)

20. Zhu, L., Chen, Y., Yuille, A.: Learning a hierarchical deformable template for rapid
deformable object parsing. IEEE Transactions on Pattern Analysis and Machine
Intelligence 32(6), 1029–1043 (2010)

Shape Recognition as a Constraint

Satisfaction Problem

Aline Deruyver1 and Yann Hodé2

1 ICube Laboratory, BFO Team, UMR 7005, 67 412 ILLKIRCH, France
aline.deruyver@unistra.fr

2 Centre Hospitalier, G08, 68 250 Rouffach, France

Abstract. This article proposes a new way to modelize spatial
constraints in order to recognize shapes in the context of constraints sat-
isfaction problems (CSP). The proposed spatial constraints take into ac-
count not only distances and orientations but also equational properties
of the border lines of segmented regions (some characteristic points are
defined). This approach is used to build graphs of constraints and the arc-
consistency of these graphs is checked by using the ACBC algorithm. The
experimentations show the efficiency of this approach to recognize
geometrical shapes such as circle and ring in over-segmented images.

1 Introduction

Recognizing objects with a specific shape is a current challenge of image inter-
pretation. Among the most popular segmentation methods, many of them are
composed of the two following steps: The first one consists in splitting the image
in small homogeneous regions where pixels are so similar that they are supposed
to belong to the same object. The second one consists in merging these regions
to retrieve the object seen in the image.

We focus our work on this two steps approach. Although the assumption
underlying the first step is not always valid (sometimes the boundaries between
an object and its background or between two objects are not materialized by a
local change of pixel values and are build by the brain [1]), it holds in many cases.
A very popular algorithm to obtain an initial set of small homogeneous regions
from a grey scale image is the watershed algorithm [2]. It has the advantage of not
necessary requiring interactive information as seeds put in targeted regions and
it may be used without notifying any threshold value which is very interesting
for building an automatic segmentation method.

The merging process of the second step follows rules related with local or
regional assumptions about what makes two connected regions similar or not.
The most obvious criterion is the grey level value. It may be assumed that two
connected regions belonging to the same object, have more similar grey levels
values, than two connected regions belonging to two different objects [3], [4].
However this simple idea is far from being always true. Moreover, this approach
assumes implicitly a bottom-up process. It means that information is processed

W.G. Kropatsch et al. (Eds.): GbRPR 2013, LNCS 7877, pp. 214–223, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Shape Recognition as a Constraint Satisfaction Problem 215

sequentially with increasing complexities and that the observed shapes are the
result of this data driven process [1]. In this framework, one looks for the laws
that determine how a combination of information at a given level produces new
information at a higher level. But are we sure that these laws that would drive the
signal transformation and interpretation are the key of pattern recognition? The
possibility of a mixed bottom-up and top down strategy has been hypothesized in
human, according to perceptual experiments on normal subjects and on subjects
with a lesioned brain ([5],[6]). Then, it is possible for example that the brain has
a library of basic shapes and that he tries to match the image content with
this library. If we accept this hypothesis, some top-down process may occur.
The problem is what formalism may be used to match high level representation
(knowledge) and low level representation (set of pixels) and how to match them.
We have proposed [7] a way to manage this two levels with the graph formalism:
Region Adjacency Graph (RAG) for the low level and semantic graph for the
high level. The two structures are matched thanks to arc-consistency checking
algorithms. The aim is

– either to control the merging process of the nodes of the RAG as far as the
merged nodes may be matched with the nodes of the semantic graph such
that it stays arc-consistant [7],

– either to univocally match the nodes of the RAG with a node of the se-
mantic graph thanks to its constraints. This way of doing is relevant only
when univocal matching is possible for a majority of the segmented regions.
Faithfully, this property can be observed in many cases [8].

In both cases, the more the semantic graph imposed constraints, the more the
solution will be univocal and relevant. Semantic graphs are very convenient to
represent spatial relationships between different parts of an object. To increase
the level of constraints, it could be useful to describe as precisely as possible the
shape of each part of an object. A shape may be completely and very precisely
described with a set of equations, each equation describing a part of the shape
between two of its characteristic points. We propose in this paper, a way to
integrate these equational constraints into the semantic graph.

We first define which parameters have to be used to describe morphologic
properties along the border lines of studied regions of pixels. Next, we show
how the matching between the low level data and the high level model of repre-
sentation can be done. The definition of a finite domain constraint satisfaction
problem with bilevel constraints are recalled and the definition of hyper-Arc
consistency problems with bilevel constraints is given. In section 4, we show how
to build constraints able to express some properties of border lines of the shape
with respect to equations describing the edges. We show, in section 5, how this
approach can be used to recognise simple shapes such as circles. Finally some ex-
periments are presented showing the relative noise robustness of our algorithm.
In these experiments we try to retrieve the ring and the center of a water meter.

216 A. Deruyver and Y. Hodé

2 Characteristic Points of a Segmented Region

To know if a segmented region is compatible with equational constraints, it is
necessary to check if the edge pixels of this region are compatible with the equa-
tional constraints. Storing the coordinates of all the edge pixels of a segmented
region is not very convenient and some characteristic pixels of the segmented
region may summarize the whole contour of this region.

In order to define points of interest describing the relations between two re-
gions in a given direction, we define the interface curve of a region A connected
to a region B as the set of pixels of the region A that are connected to pixels of
region B. Among the different characteristic points of this curve, we choose the
following points:

– The convex extremity of the interface curve (red circles in Figure 1.a). In
fact there is three values to store corresponding to the coordinates of the
extremum segment. Indeed sometimes we can have several extremum points
having the same abcisse coordinate as we can see in Figure 1.b.

– The extremum points: Points corresponding to extremums of the interface
curve (yellow circles in Figure 1.a) in terms of coordinates.

a. b. c.

Fig. 1. Characteristic points of a shape

3 Constraint Satisfaction Problems with Bilevel
Constraints: Arc-Consistency and Hyper-Arc
Consistency

In a previous work, the Connectivity-Direction-Metric Formalism was defined
and was used to recognize objects (cerebral anatomy, faces, flowers, ...) made up
of several compounds, spatially organized in the context of a constraint satisfac-
tion problem with bilevel constraints. [8,9]. For each type of object, a graph of
constraints was built to describe the spatial constraints between each compound
of the object to recognize. The AC4BC Algorithm was applied to check if the
spatial organization of the different segmented parts of the object satisfy the set
of constraints imposed by the graph. In this context, the aim was to find a given
spatial organization between the different compounds of the object and not to
retrieve an object with a specific shape.

Shape Recognition as a Constraint Satisfaction Problem 217

New constraints introducing the characteristic points defined in the previous
section will be used in the same context. However, to check if a shape respects
morphological properties described by mathematical equations, it is sometimes
necessary to impose constraints between more than two compounds. For exam-
ple, to check if three extremum points are on a given arc of circle, we need to
build a constraint between these three points. In this case it will be necessary
to build an hyper-arc. Moreover, it is also necessary to check if the sequence of
regions making up the edge of an object are continuously linked. The notion of
intra-node constraint will be used to perform this checking. Then for a better
understanding of the paper, it is necessary to recall the definitions of a constraint
satisfaction problem with bilevel constraints and of a arc-consistency problem
with bilevel constraints. The definition of hyper-arc consistency problems with
bilevel constraints is given as well.

3.1 Finite-Domain Constraint Satisfaction Problem with Bilevel
Constraints (FDCSPBC)

In a FDCSPBC , we define two kinds of constraint: the binary inter-node con-
straints Cij between two nodes and the binary intra-node constraints Cmpi be-
tween two values that could be associated with the node i (i.e. compatible). In
the framework of image analysis, these constraints are mainly spatial constraints
between regions. Let be Di the domain associated to a node i.

Definition 1. Let Cmpi be a compatibility relation, such that (a, b) ∈ Cmpi iff
a and b are compatible. Let Cij be a constraint between i and j. Let us consider
a pair Si, Sj such that Si ⊂ Di and Sj ⊂ Dj, Si, Sj |= Cij means that (Si, Sj)
satisfies the oriented constraint Cij . Within the image analysis framework, the
sets Si and Sj contain sets of segmented regions.

Si, Sj |= Cij ⇔

⎧⎨⎩∀ai ∈ Si, ∃(a′i, aj) ∈ Si × Sj ,
such that (ai, a

′
i) ∈ Cmpi

and (a′i, aj) ∈ Cij

The sets {S1...Sn} satisfy FDCSPBC iff ∀Cij Si, Sj |= Cij .

We associate a graph G to a constraint satisfaction problem in the following way:
(1) G has a node i for each variable i. (2) A directed arc (i, j) is associated with
each constraint Cij . (3) Arc(G) is the set of arcs of G and e is the number of
arcs in G. (4) Node(G) is the set of nodes of G and n is the number of nodes in G.

3.2 Arc-Consistency Problem with Bilevel Constraints (ACBC)
associated with the FDCSPBC

Definition 2. Let (i, j) ∈ arc(G). Let P(Di) be the set of sub parts of the
domain Di. Arc (i,j) is arc consistent with respect to P(Di) and P(Dj) iff ∀Si ∈
P(Di) ∃Sj ∈ P(Dj) such that ∀v ∈ Si ∃t ∈ Si, ∃w ∈ Sj Cmpi(v, t) and Cij(t, w).
(v and t could be identical)

218 A. Deruyver and Y. Hodé

The definition of an arc consistent graph becomes:

Definition 3. Let P(Di) be the set of sub parts of the domain Di. Let P=P(D1)
× ×P(Dn). A graph G is arc-consistent with respect to P iff ∀(i, j) ∈ arc(G):
(i,j) is arc-consistent with respect to P(Di) and P(Dj).

The purpose of an arc-consistency algorithm with bilevel constraints is, given
a graph G and a set P , to compute P ′, the largest arc-consistent domain with
bilevel constraints for G in P . The AC4BC derived from the AC4 algorithm
proposed by Mohr and Henderson in 1986 [10,11] solve the ACBC problem (See
[8] and [9] for the details of the algorithm).

3.3 Hyper-Arc Consistency Problem with Bilevel Constraints
(HACBC) associated with the FDCSPBC

In order to build more detailed constraints, it is sometimes necessary to manage
n-ary constraints. It is quite easy to generalize the notion of bilevel constraints
to n-ary constraints. In this case we have an hyper-graph. The definition of the
hyper-arc consistency with bilevel constraints is:

Definition 4. Let be a CSP (X,D,C) with X a set of nodes, D a set of domains
and C a set of constraints, and a constraint c ∈ C applied on the node x1,
x2,...,xn with their domains Dx1, Dx2, ..., Dxn respectively such that c ⊆ Dx1 ×
Dx2 × ... × Dxn. Let Cmpxi be a compatibility relation (intra-node constraint)
associated with the node xi, i ∈ [1..n] such that (a, b) ∈ Cmpxi if and only if a
and b are compatible. Then c is hyper-arc consistent with two levels of constraints
if for each i ∈ [1..n] and a ∈ Dxi, ∃a′ ∈ Dxi and ∃ an n-uplet d ∈ c with a ∈ d
and (a, a′) ∈ Cmpxi and d satisfies the constraint c.

A CSP is hyper-arc consistent if all its constraints are hyper-arc consistent.

4 Rules to Retrieve a Curve with Local Constraints

Let C be a continuous part of a curve defined by a function y = f(x) between
two values xmin and xmax. As we work on an over-segmented image, we can
consider that the derivative of the small part C of the curve is monotonic. Let
two regions named head and tail be such that (xmin, f(xmin)) is a characteristic
point of the head region, and (xmax, (f(xmax)) is a characteristic point of the
tail region. Let P be a set of connected regions forming a chain between the head
region and the tail region. Let Shin the inner part of a shape and Shout the outer
part of the shape. A region R ∈ P must have the 4 following properties:

1. Rule 1: R has to be ”internal edge compatible” with the shape: at least
a characteristic point should be compatible with the equational constraint
of the edge of the shape and all the other characteristic points should be
compatible with the equational constraint defining the edge or the inner
part of the shape. Moreover, ∀R′ ∈ P , R′ ∈ Di where Di is the Domain of
the node i corresponding to the edge of the shape.

Shape Recognition as a Constraint Satisfaction Problem 219

2. Rule 2: All the regions connected to R have to be compatible with the shape
and have to belong to the node of the shape or to the node of regions which
are adjacent to the shape. It means that, if pc and p′c are characteristic
points of regions, ∀pc ∈ R, if pc ∈ Shin, p′c ∈ Shout ⇒ p′c
∈ R and ∀pc ∈ R,
if pc ∈ Shout, p′c ∈ Shin ⇒ p′c
∈ R (See Figure 2a).

3. Rule 3: ∀R ∈ P , it exists an ”edge continuity” between R and another
connected regions R′ ∈ P . It means that the two regions have to be linked at
the level of the pixels belonging to the edge (See Figure 2b). This constraint
depends on the mathematical equation discribing the edge that we look for.
This rule can be easily implemented thanks to the intra-node constraints
(Cmpi) defined in section 2.4. See [7] for the implementation of Cmpi.

4. Rule 4: If we consider that the derivative of C is monotonic, C must be
concave or convex with respect to a segment whose the extremities are two
characteristic points belonging to a same border interface between R and a
connected region.

a. b.

Fig. 2. a. The external edge of the circle is made up of regions 1, 2, 3 and 4 (their
characteristic points are outside of the diameter of the circle defined by south and north
extremum regions (black points). However, the region 1 does not belong to the external
edge because it has a characteristic point inside the circle and not only on the border.
b. In the left drawing, the connected regions A and B satisfy the edge continuity, in
the right drawing A and B do not satisfy the edge continuity as the location of the
connection between the two regions is not on the theoretical edge defined by the shape
equation.

Thanks to these four properties we can state the following theorem:

Theorem 1. The satisfaction of the four rules defined previously is enough to
guarantee that ∀p ∈ C, ∃R ∈ P such that p belongs to the edge pixels of R.

This theorem assures that working with characteristic points of regions is enough
to check that all the edge pixels of the regions of P follow C.

Proof. Given the four previous rules, we want to show that all the pixels of the
curve C oriented in a given direction (for example the North direction) belong
to the edges of segmented regions of the image.

Initial Constraint (1): We can state from the rules 1, 2, 3 and 4 that all the
characteristic points of all the regions are compatible with the curve and that
no region has characteristic points both inside and outside the curve.

220 A. Deruyver and Y. Hodé

Let suppose that a pixel p of the curve (yellow point in Figure 3b) is internal
to a region R which is a part of the curve thanks to its characteristic points.
Then the region R breaks the continuity of the curve. It exists a north projection
(PN) and a south projection (PS) of this pixel on the north and the south edges
of this region (red points in Figure 3c). By definition, for this region R, it exists a
north extremum (extrN) and a south extremum (extrS) among its characteristic
points and these extremums are such that, according to a north/south axis,
extrN < PN < p < PS < extrS . As we have assumed that the pixel p is on
the curve C and that the derivative of C is monotonic, and thanks to the rule
4, it is possible to show that the north extremum is necessarily external to the
shape defined by the curve C and the south extremum is necessarily internal to
the shape defined by the curve C. Then the region R has characteristic points
internal and external to the shape, which is impossible with respect to the initial
constraint (1). Then, it does not exist any pixel of the curve that can be internal
to the region R which none characteristic pixels are on the curve. Then all the
pixels of the curve C are on edge pixels of the regions. In conclusion the curve
C is entirely described by a sub-part of the set of edge pixels of a set of regions.

a.

b.

c.

Fig. 3. a. Curve defined by its equation and its characteristic points (in particular, its
extremities belonging respectively to head region and tail region of P). Pink points:
characteristic points external to the curve belonging to regions of P : y ≤ f(x). Green
points: characteristic points internal to the curve belonging to regions of P : y ≥ f(x)
b. We suppose that the yellow pixel is internal to a region R. c. The only possible
kind of configuration, thanks to the rule 4. In red, the north projection and the south
projection of the yellow pixel on the north and the south edges of R.

5 Application to the Retrieval of a Circle

We suppose that we want to retrieve a circle with a given radius r ± ε with
the equation (x − a)2 + (y − b)2 = r2. The coordinates of the center (a, b) are
deduced during the reasoning. The compatibility of the points with the equation

Shape Recognition as a Constraint Satisfaction Problem 221

is checked thanks to the property defined by the previous theorem. The design
of a graph of constraints describing a circle has to be made in nine steps:

– Creating the nodes of the graph:
• The nodes corresponding to the convex salient points of the circle in
the vertical and horizontal directions with respect to an orthonormal
coordinate system.

• The nodes corresponding to the edge of the object (circle) and to the
edge of the background connected to the object.

• The nodes corresponding to the non edge part of the object and to the
non edge part of the background.

• The node of the whole object (union of the edge and non edge nodes of
the circle and union of the edge and non edge nodes of the background)

– Determining the:
• binary constraints between each couple of salient points nodes to check
if regions of pixels are compatible with equational contraints.

• n-ary (hyperarcs) constraints linking more than two salient point nodes
to check if regions are compatible with equational constraints (the n-ary
constraints are checked after binary constraints to save time-computing).

• n-ary constraints linking the salient point nodes with the edge node of the
object and the edge node of the background according to the equational
constraints.

• n-ary constraints linking the salient point nodes with the edge node of the
object which ensures the four properties defined in section 5. The path
between the salient point nodes and a region of the edge is only made
up of region belonging to the edge. The notion of intra-node constraint
defined in section 2.4 (Cmpi) is used to define these contraints.

• union constraints between edge and non edge nodes and their union
node.

Fig. 4. Nodes to describe a circle. In red, extremum points (N4, N5, N6, N7).

In the case of a circle the graph contains 10 nodes (see Figure 4) with N0:
non edge part of the background, N1: background edge, N2: non edge part of
the circle, N3: circle edge, N4: Est extremum, N5: west extremum, N6: south
extermum, N7: north extremum N8: whole circle (union of N2 and N3) N9:
whole background (union of N0 and N1). See the constraints in the Figure 5.

222 A. Deruyver and Y. Hodé

Fig. 5. The graph describing the spatial constraints between each node. N4, N7 and
N6 are linked with an hyper-arc constraint checking if it satisfies the property of an arc
of circle. The same hyper arc is imposed on N5, N7 and N6. The identity constraints
imposed on N3 are linked with a logical OR operator (by using the notion of quasi-arc
consistency [12]). The same operator OR is applied on the identity constraints imposed
on N8 and N9. The other arcs are linked with a logical AND operator.

6 Experiments

In this application the aim is to localize the water meter in the image in order
to detect if it is not broken, to recognize the type of water meter (analogical or
numerical) and to read the numerical value displayed on it if there is one. These
images are very noisy and the grey level values are not a relevant information
to recognize the frame and the center of the water meter. The only way to make
a correct interpretation is to use the spatial relations and the morphological

a.

b.

c.

Fig. 6. Interpretation of water meter images. a: original images, b: segmented images
with a watershed algorithm c: detection of the frame and the center of the water meter.
(The original images are supplied by the company ”Véolia”).

Shape Recognition as a Constraint Satisfaction Problem 223

characteristics of the object subparts. Our approach has been applied to a set
of 14 images : 7 images containing true water meters and 7 containing broken
water meters. The aim was to localize the frame and the center of the water
meter. The images not containing a water meter are detected. In this case the
graph is not consistent. Figure 6 presents the 7 labeled images.

7 Conclusion and Discussion

Thanks to the new constraints, the detection of the center of the water meters
which is a circle is quite good and precise. The results are much better than those
obtained in the previous works which does not include these constraints. More
experiments have to be made on other kind of shapes. However the framework
proposed in this paper is very generic and can be adapted in a quite natural way
to other shapes that can be described with mathematical equations. The Hough
transform is another approach using mathematical equations as well, but one
interest of our approach is the checking of the constraint of continuity on the
curve which is not guaranteed with the Hough transform. Moreover it gives the
possibility to look for more complex shapes like diamond or any kind of polygon.

References

1. Marr, D.: Vision. Freeman and Company, New York (1982)
2. Meyer, F.: Un algorithme optimal de partage des eaux. In: Proceeding 8th Congress

AFCET, Lyon-Villeurbanne, vol. 2, pp. 847–859 (1992)
3. Lallich, S., Muhlenbachand, F., Jolion, J.: A test to control a region growing process

within a hierarchical graph. Pattern Recognition Letter 36(10), 2201–2211 (2003)
4. Jolion, J.: Stochastic pyramid revisited. Pattern Recognition Letter 24, 1035–1042

(2003)
5. Beck, D.M., Kastner, S.: Top-down and bottom-up mechanisms in biasing compe-

tition in the human brain. Vision Res. 49(10), 1154–1165 (2009)
6. Kveraga, K., Ghuman, A.S., Bar, M.: Top-down predictions in the cognitive brain.

Brain Cogn. 65(2), 145–168 (2007)
7. Deruyver, A., Hodé, Y., Jolion, J.-M.: Graph consistency checking: A tool to check

the semantic consistency of a segmentation. International Journal of Semantic
Computing 5, 179–210 (2011)

8. Deruyver, A., Hodé, Y.: Constraint satisfaction problem with bilevel constraint:
application to interpretation of over segmented images. Artificial Intelligence 93,
321–335 (1997)

9. Deruyver, A., Hodé, Y.: Qualitative spatial relationships for image interpretation
by using a conceptual graph. Image and Vision Computing 27, 876–886 (2009)

10. Mohr, R., Henderson, T.: Arc and path consistency revisited. Artificial Intelli-
gence 28, 225–233 (1986)

11. Bessière, C.: Arc-consistency and arc-consistency again. Artificial Intelligence 65,
179–190 (1994)

12. Deruyver, A., Hodé, Y., Brun, L.: Image interpretation with a conceptual graph:
labeling over-segmented images and detection of unexpected objects. Artificial
Intelligence 173, 1245–1265 (2009)

Gaussian Wave Packet on a Graph

Furqan Aziz, Richard C. Wilson, and Edwin R. Hancock�

Department of Computer Science, University of York, YO10 5GH, UK
{furqan,wilson,erh}@cs.york.ac.uk

Abstract. The wave kernel provides a richer and potentially more ex-
pressive means of characterising graphs than the more widely studied
wave equation. Unfortunately the wave equation whose solution gives
the kernel is less easily solved than the corresponding heat equation.
There are two reasons for this. First, the wave equation can not be ex-
pressed in terms of the familiar node-based Laplacian, and must instead
be expressed in terms of the edge-based Laplacian. Second, the eigenfunc-
tions of the edge-based Laplacian are more complex than those of the
node-based Laplacian. This paper presents the solution of a wave equa-
tion on a graph. Wave equation provides an interesting alternative to
the heat equation defined using the Edge-based Laplacian. This provides
the prerequisites for deeper analysis of graphs and their characterisation.
For instance it potentially allows the study of non-dispersive solutions or
solitons. In this paper we give a complete solution of the wave equation
for a Gaussian wave packet. To simulate the equation on a graph, we
assume the initial distribution be a Gaussian wave packet on a single
edge of the graph. We show the evolution of this Gaussian wave packet
with time on some synthetic graphs.

Keywords: Edge-based Laplacian,WaveEquation, Gaussian wave packet.

1 Introduction

Traditional graph theory defines a discrete Laplacian, Δ, as an operator which is
defined only on the vertices of a graph. This Laplacian has found application in
many areas like computer vision, machine learning and pattern recognition. For
example Fiedler [1] has used the eigenvector corresponding to second smallest
eigenvalue of the Laplacian for graph partitioning. Xiao et al [2] have used heat
kernel, which is derived from graph Laplacian, to embed the nodes of a graph
in Euclidean space. Zhang et al[3] have used the heat kernel for anisotropic
image smoothing. The graph Laplacian was used by Coifman and Lafon[4] for
dimensionality reduction of data.

The discrete Laplacian defined over the vertices of a graph, however, cannot
link most results in analysis to a graph theoretic analogue. For example the wave
equation utt = Δu, defined with discrete Laplacian, does not have finite speed
of propagation. In [5,6], Friedman and Tillich develop a calculus on graph which

� Edwin Hancock was supported by a Royal Society Wolfson Research Merit Award.

W.G. Kropatsch et al. (Eds.): GbRPR 2013, LNCS 7877, pp. 224–233, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Gaussian Wave Packet on a Graph 225

provides strong connection between graph theory and analysis. Their work is
based on the fact that graph theory involves two different volume measures.
i.e., a “vertex-based” measure and an “edge-based” measure. This approach has
many advantages. It allows the application of many results from analysis directly
to the graph domain.

While the method of Friedman and Tillich leads to the definition of both a
divergence operator and a Laplacian (through the definition of both vertex and
edge Laplacian), it is not exhaustive in the sense that the edge-based eigen-
functions are not fully specified. In a recent study we have fully explored the
eigenfunctions of the edge-based Laplacian and developed a method for explicitly
calculating the edge-interior eigenfunctions of the edge-based Laplacian [7]. This
reveals a connection between the eigenfunctions of the edge-based Laplacian and
both the classical random walk and the backtrackless random walk on a graph.
The eigensystem of the edge-based Laplacian contains eigenfunctions which are
related to both the adjacency matrix of the line graph and the adjacency matrix
of the oriented line graph.

As an application of the edge-based Laplacian, we have recently presented a
new approach to characterizing points on a non-rigid three-dimensional shape[8].
This is based on the eigenvalues and eigenfunctions of the edge-based Laplacian,
constructed over a mesh that approximates the shape. This leads to a new shape
descriptor signature, called the Edge-based Heat Kernel Signature (EHKS).
The EHKS was defined using the heat equation, which is based on the edge-
based Laplacian. This has applications in shape segmentation, correspondence
matching and shape classification.

Wave equation provides potentially richer characterisation of graphs than heat
equation. Initial work by ElGhawalby and Hancock [9] has revealed some if its
potential uses. They have proposed a new approach for embedding graphs on
pseudo-Riemannian manifolds based on the wave kernel. However, there are two
problems with the rigourous solution of the wave equation; a) we need to compute
the edge-based Laplacian, and b) the solution is more complex than the heat
equation.

In this paper we present a solution of the edge-based wave equation on a
graph. We assume a Gaussian wave packet on one of the edge of the graph,
and see its evolution over time. The remainder of this paper is organized as
follows. We commence by introducing graphs and some definitions. In section 3,
we introduce the eigensystem of the edge-based Laplacian. In section 4, we give
a general solution of the wave equation, and in section 5 we give the solution for
the Gaussian wave packet as initial condition. Finally we show simulation of our
work on some synthetic graphs.

2 Graphs

A graph G = (V,E) consists of a finite nonempty set V of vertices and a finite
set E of unordered pairs of vertices, called edges. A directed graph or digraph D =
(VD, ED) consists of a finite nonempty set VD of vertices and a finite set ED of

226 F. Aziz, R.C. Wilson, and E.R. Hancock

ordered pairs of vertices, called arcs. So a digraph is a graph with an orientation
on each edge. A digraph D is called symmetric if whenever (u, v) is an arc of D,
(v, u) is also an arc of D. There is a one-to-one correspondence between the set
of symmetric digraphs and the set of graphs, given by identifying an edge of the
graph with an arc and its inverse arc on the digraph on the same vertices. We
denote by D(G) the symmetric digraph associated with the graph G.

The line graph L(G) = (VL, EL) is constructed by replacing each arc of D(G)
by a vertex. These vertices are connected if the head of one arc meets the tail of
another. Therefore

VL = {(u, v) ∈ D(G)}
EL = {((u, v), (v, w)) : (u, v) ∈ D(G), (v, w) ∈ D(G)}

The oriented line graph OL(G) = (VO ;EO) is constructed in the same way as
the L(G) except that reverse pairs of arcs are not connected, i.e. ((u, v), (v, u))
is not an edge. The vertex and edge sets of OL(G) are therefore

VL = {(u, v) ∈ D(G)}

EL = {((u, v), (v, w)) : (v, w)), (u, v) ∈ D(G), (v, w) ∈ D(G), u
= w}
Figure 1(a) shows a simple graph, 1(b) its digraph, and 1(c) the corresponding
oriented line graph.

(a) Graph (b) Diagraph (c) Oriented line
graph

Fig. 1. Graph, its digraph, and its oriented line graph

3 Edge-Based Eigensystem

In this section we review the eigenvalues and eigenfunctions of the edge-based
Laplacian[5][7]. Let G = (V , E) be a graph with a boundary ∂G. Let G be
the geometric realization of G. The geometric realization is the metric space
consisting of vertices V with a closed interval of length le associated with each
edge e ∈ E . We associate an edge variable xe with each edge that represents the
standard coordinate on the edge with xe(u) = 0 and xe(v) = 1. For our work, it
will suffice to assume that the graph is finite with empty boundary (i.e., ∂G = 0)
and le = 1.

Gaussian Wave Packet on a Graph 227

3.1 Vertex Supported Edge-Based Eigenfunctions

The vertex-supported eigenpairs of the edge-based Laplacian can be expressed in
terms of the eigenpairs of the normalized adjacency matrix of the graph. Let A be
the adjacency matrix of the graphG, and Ã be the row normalized adjacency ma-
trix. i.e., the (i, j)th entry of Ã is given as Ã(i, j) = A(i, j)/

∑
(k,j)∈E A(k, j). Let

(φ(v), λ) be an eigenvector-eigenvalue pair for this matrix. Note φ(.) is defined
on vertices and may be extended along each edge to an edge-based eigenfunc-
tion. Let ω2 and φ(e, xe) denote the edge-based eigenvalue and eigenfunction.
Here e = (u, v) represents an edge and xe is the standard coordinate on the edge
(i.e., xe = 0 at v and xe = 1 at u). Then the vertex-supported eigenpairs of the
edge-based Laplacian are given as follows:

1. For each (φ(v), λ) with λ
= ±1, we have a pair of eigenvalues ω2 with
ω = cos−1 λ and ω = 2π − cos−1 λ. Since there are multiple solutions to
ω = cos−1 λ, we obtain an infinite sequence of eigenfunctions; if ω0 ∈ [0, π] is
the principal solution, the eigenvalues are ω = ω0 + 2πn and ω = 2π − ω0 +
2πn, n ≥ 0. The eigenfunctions are φ(e, xe) = C(e) cos(B(e) + ωxe) where

C(e)2 =
φ(v)2 + φ(u)2 − 2φ(v)φ(u) cos(ω)

sin2(ω)

tan(B(e)) =
φ(v) cos(ω) − φ(u)

φ(v) sin(ω)

There are two solutions here, {C,B0} or {−C,B0 + π} but both give the
same eigenfunction. The sign of C(e) must be chosen correctly to match the
phase.

2. λ = 1 is always an eigenvalue of Ã. We obtain a principle frequency ω = 0,
and therefore since φ(e, xe) = C cos(B) and so φ(v) = φ(u) = C cos(B),
which is constant on the vertices.

3.2 Edge-Interior Eigenfunctions

The edge-interior eigenfunctions are those eigenfunctions which are zero on ver-
tices and therefore must have a principle frequency of ω ∈ {π, 2π}. Recently we
have shown that these eigenfunctions can be determined from the eigenvectors
of the adjacency matrix of the oriented line graph[7]. We have shown that the
eigenvector corresponding to eigenvalue λ = 1 of the oriented line graph provides
a solution in the case ω = 2π. In this case we obtain |E| − |V |+ 1 linearly inde-
pendent solutions. Similary the eigenvector corresponding to eigenvalue λ = −1
of the oriented line graph provides a solution in the case ω = π. In this case we
obtain |E| − |V | linearly independent solutions. This comprises all the principal
eigenpairs which are supported on the vertices.

228 F. Aziz, R.C. Wilson, and E.R. Hancock

3.3 Normalization of Eigenfunctions

Note that although these eigenfunctions are orthogonal, they are not normal-
ized. To normalize these eigenfunctions we need to find the normalization factor
corresponding to each eigenvalue. Let ρ(ω) denotes the normalization factor cor-
responding to eigenvalue ω. Then

ρ2(ω) =
∑
e∈E

∫ 1

0

φ2 (e, xe) dxe

Evaluating the integral, we get

ρ(ω) =

√∑
e∈E

C(e)2
[
1

2
+

sin (2ω + 2B(e))

4ω
− sin(2B(e))

4ω

]
Once we have the normalization factor to hand, we can compute a complete
set of orthonormal bases by dividing each eigenfunction with the corresponding
normalization factor. Once normalized, these eigenfunctions form a complete set
of orthonormal bases for L2(G, E).

4 General Solution of the Wave Equation

Let a graph coordinateX defines an edge e and a value of the standard coordinate
on that edge x. The eigenfunctions of the edge-based Laplacian are

φω,n(X) = C(e, ω) cos (B(e, ω) + ωx+ 2πnx)

The edge-based wave equation is

∂2u

∂t2
(X , t) = ΔEu(X , t)

We look for separable solutions of the form u(X , t) = φω,n(X)g(t). This gives

φω,n(X)g′′(t) = g(t) (ω + 2πn)
2
φ(ω, n)

which gives a solution for the time-based part as

g(t) = αω,n cos [(ω + 2πn)t] + βω,nsin [(ω + 2πn)t]

By superposition, we obtain the general solution

u (X , t) =
∑
ω

∑
n

C(e, ω) cos [B(e, ω) + ωx+ 2πnx]

{αω,n cos [(ω + 2πn)t] + βω,nsin [(ω + 2πn)t]}

Gaussian Wave Packet on a Graph 229

4.1 Initial Conditions

Since the wave equation is second order partial differential equation, we can
impose initial conditions on both position and speed

u(X , 0) = p(X)

∂u

∂t
(X , 0) = q(X)

and we obtain

p(X) =
∑
ω

∑
n

αω,nC(e, ω) cos [B(e, ω) + ωx+ 2πnx]

q(X) =
∑
ω

∑
n

βω,n(ω + 2πn)C(e, ω) cos [B(e, ω) + ωx+ 2πnx]

We can obtain these coefficients using the orthogonality of the eigenfunctions.
So we get

αω,n =
∑
e

C(e, ω)
1

2

[
Fω,n + F ∗

ω,n

]
where

Fω,n = eiB
∫ 1

0

dxp(e, x)eiωxei2πn

similarly

βω,n(ω + 2πn) =
∑
e

C(e, ω)
1

2

[
Gω,n +G∗

ω,n

]
where

Gω,n = eiB
∫ 1

0

dxq(x, e)ei(ω+2πn)x = eiB
∫ 1

0

dxp′(x, e)ei(ω+2πn)x

5 Gaussian Wave Packet

Let the initial position be a Gaussian wave packet p(e, x) = e−a(x−μ)2 on one
particular edge and zero everywhere else. Then we have

Fω,n = eiB
∫ 1

0

dxe−a(x−μ)2eiωxei2πnx

= eiBeiμωe−
ω2

4a

∫ 1

0

dxe−a(x−μ− iω
2a)

2

ei2πnx

Let the Gaussian is fully contained on one edge. i.e., p(x, e) is only supported
on this edge, then

Fω,n = eiBeiμωe−
ω2

4a

∫ ∞

−∞
dxe−a(x−μ− iω

2a)
2

ei2πnx

230 F. Aziz, R.C. Wilson, and E.R. Hancock

Solving, we get

Fω,n =

√
π

a
ei[B+μ(ω+2πn)]e−

1
4a (ω+2nπ)2

Similarly we obtain

F ∗
ω,n =

√
π

a
e−i[B+μ(ω+2πn)]e−

1
4a (ω+2nπ)2

and so

αω,n =

√
π

a
e−

1
4a (ω+2nπ)2C(e, ω) cos[B + μ (ω + 2πn)]

Since p(x, e) is zero at both ends the coefficients β can be found straightforwardly.

βω,n =

√
π

a
e−

1
4a (ω+2nπ)2C(e, ω) sin[B + μ (ω + 2πn)]

5.1 Complete Reconstruction

Let f be the edge on which the initial function is non-zero. Let the Gaussian is
fully contained on one edge. Then

u(X , t) =
∑
ω

√
π

a
C(ω, e)C(ω, f)

∑
n

e−
1
4a (ω+2πn)2

cos [B(ω, e) + ωx+ 2πnx] cos [B(ω, f) + (ω + 2πn)(t+ μ)]

For a particular sequence with principal eigenvalue ω, we need to calculate

uω =
∑
n

√
π

a
e−

1
4a

(ω+2πn)2 cos [B(ω, e) + ωx+ 2πnx] cos [B(ω, f) + (ω + 2πn)(t+ μ)]

Writing the cosine in exponential form, we obtain

uw =
∑
n

√
π

a
e−

1
4a (ω+2πn)2

×1

4

[
ei[B(e,ω)+B(f,ω)]ei(ω+2πn)(x+t+μ) + e−i[B(e,ω)+B(e,ω)]e−i(ω+2πn)(x+t+μ)

+ei[B(e,ω)−B(f,ω)]ei(ω+2πn)(x−t−μ) + e−i[B(e,ω)−B(e,ω)]e−i(ω+2πn)(x−t−μ)
]

We need to evaluate terms like terms like
∑

n
π
a
e−

1
4a ei[B(e,ω)+B(f,ω)]ei(ω+2πn)(x+t+μ),

where the values of ω and n depend on the particular eigenfunction sequence
under evaluation.

Let W(z) be z wrapped to the range [− 1
2 ,

1
2), i.e.,

W(z) = z −
⌊
z +

1

2

⌋

Gaussian Wave Packet on a Graph 231

Solving for all cases, the complete solution becomes

u(X , t) =
∑

ω∈Ωa

C(ω, e)C(ω, f)

2

(
e−aW(x+t+μ)2 cos

[
B(e, ω) +B(f, ω) + ω

⌊
x+ t+ μ+

1

2

⌋]

+ e−aW(x−t−μ)2 cos

[
B(e, ω) −B(f, ω) + ω

⌊
x− t− μ+

1

2

⌋])

+
1

2|E|

(
1

4
e−aW(x+t+μ)2 +

1

4
e−aW(x−t−μ)2

)

+
∑

ω∈Ωc

C(ω, e)C(ω, f)

4

(
e−aW(x−t−μ)2 − e−aW(x+t+μ)2

)

+
∑

ω∈Ωc

C(ω, e)C(ω, f)

4

(
(−1)�x−t−μ+ 1

2 �e−aW(x−t−μ)2

−(−1)�x+t+μ+ 1
2 �e−aW(x+t+μ)2

)

where Ωa represents the set of vertex-supported eigenvalues and Ωb and Ωc

represent the set of edge-interior eigenvalues respectively. i.e., π and 2π.

6 Experiments

In this section, we show the evolution of Gaussian wave packet on some simple
graphs. Figure 2 shows the result for a graph with five nodes and seven edges

Fig. 2. Graph with 5 vertices and 7 edges

232 F. Aziz, R.C. Wilson, and E.R. Hancock

Fig. 3. Graph with 6 vertices and 8 edges

Fig. 4. Graph with 6 vertices and 9 edges

Gaussian Wave Packet on a Graph 233

for time t = 0, t = 1, t = 2 and t = 3. Note that when the wave packet hits a
node with degree greater than 2, some part of the packet is reflected back while
the other part is equally distributed to the connecting edges. A similar result
is shown for graph with six nodes and eight edges in Figure 3, and for a graph
with six nodes and nine edges in Figure 4.

7 Conclusion and Future Work

In this paper we have developed a complete solution of the wave equation on
a graph which is based on the edge-based Laplacian of a graph. We assume
the initial distribution be a Gaussian wave packet and shown its evolution with
time on different graphs. The advantage of using the edge-based Laplacian over
vertex-based Laplacian is that it allows the direct application of many results
from analysis to graph theoretic domain. For example it allows the study of non-
dispersive solutions or solitons. In future our goal is to use the solution of the
wave equation and other equations defined using the edge-based Laplacian for
characterizing graphs with higher accuracy.

References

1. Fiedler, M.: A property of eigenvectors of non-negative symmetric matrices and its
application to graph theory. Czechoslovak Mathematics Journal (1975)

2. Xiao, B., Yu, H., Hancock, E.R.: Graph matching using manifold embedding. In:
Campilho, A.C., Kamel, M.S. (eds.) ICIAR 2004. LNCS, vol. 3211, pp. 352–359.
Springer, Heidelberg (2004)

3. Zhang, F., Hancock, E.R.: Graph spectral image smoothing using the heat kernel.
Pattern Recognition, 3328–3342 (2008)

4. Coifman, R.R., Lafon, S.: Diffusion maps. Applied and Computational Harmonic
Analysis, 5–30 (2006)

5. Friedman, J., Tillich, J.P.: Wave equations for graphs and the edge based laplacian.
Pacific Journal of Mathematics, 229–266 (2004)

6. Friedman, J., Tillich, J.P.: Calculus on graphs. CoRR (2004)
7. Wilson, R.C., Aziz, F., Hancock, E.R.: Eigenfunctions of the edge-based laplacian

on a graph. Linear Algebra and its Applications (2013)
8. Aziz, F., Wilson, R.C., Hancock, E.R.: Shape signature using the edge-based lapla-

cian. In: International Conference on Pattern Recognition (2012)
9. ElGhawalby, H., Hancock, E.R.: Graph embedding using an edge-based wave kernel.

In: Hancock, E.R., Wilson, R.C., Windeatt, T., Ulusoy, I., Escolano, F. (eds.) SSPR
& SPR 2010. LNCS, vol. 6218, pp. 60–69. Springer, Heidelberg (2010)

Exact Computation of Median Surfaces

Using Optimal 3D Graph Search�

Zhengwang Wu1, Xiaoyi Jiang2, Nanning Zheng1,
Yuehu Liu1, and Dachuan Cheng2

1 Institute of Artificial Intelligence and Robotics, Xi’an Jiaotong University, China
2 Department of Mathematics and Computer Science,

University of Münster, Germany
3 Department of Biomedical Imaging, China Medical University, Taiwan

Abstract. In this paper we formulate the generalized median surface
problem and present its exact solution by means of an optimal 3D graph
search algorithm. In addition to the general interest in median surface
computation our work is also motivated by the task of parameter space
exploration without ground truth, which is an effective means of dealing
with the difficult parameter problem. A concrete application in this con-
text will be demonstrated on artery boundary detection in ultrasound
data. It will be shown that the median computation can not only avoid
the parameter training, but also potentially achieve even better results
than with trained parameters. Particularly in situations with no available
ground truth, the median-based approach can thus be a good alternate.

1 Introduction

Median computation has turned out to be a useful concept in pattern recogni-
tion [1]. Given an object set S in space U , the generalized median is defined
by x ∈ U which minimizes the sum of distances to all objects in S and can
be considered as a good representative of the given set. Another motivation of
median computation is to eliminate some erroneous objects by averaging over
all objects. Generally, the median concept is motivated by well established re-
sults from supervised classifier combination: By averaging the results of several
classifiers a more reliable classification can be achieved [2].

The median concept has been concretized to a lot of domains including vectors
[3], strings [4], graphs [5], clusterings [6], and segmentations [7]. In [8] the 2D
median contour problem is investigated. In this work we consider the related 3D
median surface problem.

There exist only very few general frameworks for median computation. One
such framework described in [5] is based on an embedding into the vector
space. The median vector is computed by means of the Weiszfeld algorithm
[3] and inversely transformed to the original space. Another general framework
[9] computes the weighted mean of a pair of objects in an evolutionary scheme.

� This work is supported by NSFC, Grant No. 90920008.

W.G. Kropatsch et al. (Eds.): GbRPR 2013, LNCS 7877, pp. 234–243, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Exact Computation of Median Surfaces Using Optimal 3D Graph Search 235

Both frameworks are approximative only and therefore suitable for those median
problems with inherently high computational complexity. Indeed, they have been
applied to computing generalized median of strings [4,9] and graphs [5], both
being of NP-hard problems.

Many median computation algorithms have been developed for specific do-
mains to integrate as much as possible domain-specific knowledge in order to
obtain possibly exact solutions in an efficient way. For instance, the general-
ized median string problem is NP-hard for the edit distance, but simplified
histogram-based distances enable low-order polynomial time [10]. For 2D con-
tours dynamic programming can be used to determine the optimal median con-
tour in a time linear to the image size [8]. In this work we will show that for
the class of so-called terrain-like surfaces (to be formally defined later) consid-
ered here, we can apply an optimal 3D graph search algorithm to exactly and
efficiently solve median surface problem.

In addition to the general interest in median surface computation this work is
also motivated by our recent work on exploring the parameter space of segmen-
tation algorithms without ground truth. Ensemble techniques similar to multiple
classifier systems should be developed to achieve the best possible segmentation
result on a per-image basis.

The outline of this paper is as follows. In Section 2 we define the median
surface problem under consideration, which is further motivated by segmentation
parameter exploration in Section 3. The median surface problem will be exactly
solved by applying an optimal 3D graph search algorithm (Section 4). We report
experimental results to demonstrate the usability of median surface computation
in the context of segmentation parameter exploration in Section 5. Finally, some
discussions in Section 6 conclude the paper.

2 Median Surface Problem

The surfaces of concern in this paper are terrain-like (height-field) as specified
in Definition 1.

Definition 1. A terrain-like surface is a function: f : X × Y → Z with X =
{1, 2, . . . ,M}, Y = {1, 2, . . . , N}, and Z = {1, 2, . . . , L}. In order to guarantee
surface connectivity in 3D, an additional smoothness constraint requires |f(x+
1, y)−f(x, y)| ≤ Δx and |f(x, y+1)−f(x, y)| ≤ Δy for small positive constants
Δx and Δy.

In the following we will use the term ”surface” only for the sake of simplicity. This
class of surfaces are very common in image analysis. In 3D biomedical volume
datasets an important task is to detect such terrain-like surfaces, possibly in
an optimal manner. Stacking 2D images along the time axis also results in 3D
volume datasets and related terrain-like surface detection tasks.

Given a set S ofK surfaces {S1, S2, . . . , SK} and a distance function d() which
measures the dissimilarity of two surfaces, the general median surface is defined
by:

236 Z. Wu et al.

S = arg min
s∈US

K∑
i=1

d(s, Si) (1)

where US represents the space (universe) of all potential solutions, i.e. surfaces
within the volume X × Y × Z.

The distance function is defined by:

d(s, Si) =

M∑
x=1

N∑
y=1

wxy · ρ(s(x, y), Si(x, y)) (2)

where ρ is a dissimilarity function for scalar values. Any function suitable for a
certain application, e.g. Lp, can be used for this purpose. In particular, those
from robust statistics [11] may help to achieve improved performance against
outliers in the input surface data. In the simplest case the weight wxy can be
set to be constant for all (x, y) positions. But in general, a location-sensitive
weight gives us more flexibility to incorporate application-specific knowledge to
a largest extent. For our segmentation parameter exploration we will fully utilize
this flexibility.

3 Motivation

One motivation of median surface computation is exploring segmentation pa-
rameter space without ground truth. Segmentation algorithms mostly have some
parameters and their optimal setting is not a trivial task. In automatic param-
eter training a training image set with (manual) ground truth segmentation is
assumed to be available. Then, a subspace of the parameter space is explored
to find out the best parameter setting. For each parameter setting candidate a
performance measure is computed in the following way:

– Segment each image of the training set based on the parameter setting;
– Compute a performance measure by comparing the segmentation result and

the corresponding ground truth;
– Compute the average performance measure over all images of the training set.

The optimal parameter setting is given by the one with the largest average per-
formance measure. Since fully exploring the subspace can be very costly, space
subsampling [12] and genetic search [13] have been proposed. While this ap-
proach is reasonable and has been successfully practiced in several applications,
its fundamental disadvantage is the need of ground truth segmentation. The
manual generation of ground truth is always painful and thus a main barrier of
wide use in many situations.

Recently, it is proposed to apply the concept of generalized median for implic-
itly exploring the parameter space without the need of ground truth segmenta-
tion. Assuming a reasonable subspace of the parameter space (i.e. a lower and

Exact Computation of Median Surfaces Using Optimal 3D Graph Search 237

upper bound for each parameter), it is sampled into a finite number M of param-
eter settings. Then, the segmentation procedure is run for all the M parameter
settings and the generalized median of the M segmentation results is computed.
The rationale here is that the median segmentation tends to be a good one within
the explored parameter subspace, as successfully demonstrated for 2D contour
detection [8] and region segmentation [7]. Segmentation of terrain-like surfaces
is one of the most important problems in (biomedical) image analysis. Thus,
median surface computation can help to alleviate the segmentation parameter
problem in 3D surface segmentation as well.

Another situation is segmentation of 2D images along the time axis. Many
algorithms from the literature, e.g. [14], perform the segmentation independently
on all images and thus cannot guarantee a continuous segmentation over time,
which is highly desired when working with high-speed imaging devices. If the
parameter space exploration technique described above is applied in this case to
the 3D volumes by stacking all image-wise segmentations along the time axis, we
obtain a continuous temporal segmentation without any extra effort as a nice
spinoff of handling the parameter problem. For doing this, we certainly need
to relax the input for the median surface computation to potentially include
discontinuous surfaces. But this is not a problem at all.

In summary median surface computation is not only an interesting topic in
its own right but also of substantial practical value. This motivates us to find
an efficient way for exact median surface computation.

4 Exact Computation by Optimal 3D Graph Search

In this section we show that the median surface problem defined in Eq. (1) can
be transformed into an optimal 3D surface detection problem, which is solvable
by an optimal 3D graph search algorithm in low-order polynomial time.

First, we reformulate Eq. (1) as follows.

S = arg min
s∈US

K∑
i=1

d(s, Si)

= arg min
s∈US

K∑
i=1

M∑
x=1

N∑
y=1

wxy · ρ(s(x, y), Si(x, y))

= arg min
s∈US

M∑
x=1

N∑
y=1

wxy ·
K∑
i=1

ρ(z = s(x, y), Si(x, y))︸ ︷︷ ︸
cxyz

= arg min
s∈US

M∑
x=1

N∑
y=1

cxyz︸ ︷︷ ︸
C(s)

= arg min
s∈US

C(s) (3)

238 Z. Wu et al.

A candidate solution surface s ∈ US is characterized by the z-value s(x, y) for
each position (x, y) on the gridX×Y . We assign each point (x, y, z) in the volume
X × Y × Z a cost cxyz, which is determined by its deviations (in z-direction)
from the K input surfaces Si(x, y) and the position-specific weight wxy. Then,
the goodness of a candidate solution surface s can be measured by C(s), i.e.
summing up the costs of all positions. Therefore, the median surface is simply
the optimal surface with minimal cost from the solution space US (consisting of
all terrain-like surfaces within the volume X × Y × Z).

The discussion above leads to the following new optimization problem. We
first compute a cost cxyz for each point (x, y, z) in the volume X×Y ×Z. Then,
the median surface is determined by finding the terrain-like surface within the
volume with the minimal sum of costs.

It is important to notice that we cannot solve this optimization problem by
computing the optimal z-value for each of the M ×N positions (x, y) indepen-
dently, which could be done, for instance, by enumerating all z-values out of Z
and minimizing cxyz. Doing it this way, we may encounter the trouble of generat-
ing a discontinuous resultant surface. Only for simple cases (e.g. constant weight
wxy and ρ = L2) the simple position-wise optimization is guaranteed to deliver
an optimal continuous resultant surface. But in general, a global optimization
approach is needed.

For the special case N = 1 (i.e. the y-axis vanishes), the 3D optimal sur-
face segmentation is reduced to a 2D optimal contour detection problem. This
simplified problem was solved in [8] by a highly efficient dynamic programming
algorithm. Unfortunately, there is no direct way of extending the dynamic pro-
gramming solution to the 3D problem at hand.

Fortunately, the optimal 3D graph search algorithm described in [15] solves
exactly our 3D optimal surface detection problem. In the following we briefly
present the most important steps of this algorithm and the readers are referred
to [15] for more details. A node-weighted directed graph G = (V,E,W) is con-
structed as follows. For each point (x, y, z) in the volume X × Y × Z a corre-
sponding node V (x, y, z) is defined in G, whose weight W (x, y, z) is assigned
according to:

W (x, y, z) =

{
cxyz − cxy,z−1 z > 1

cxyz z = 1
(4)

where cxyz is the cost defined in Eq. (3). G contains two types of arcs: E =
Ea ∪ Er. The set Ea of intraposition arcs rules the connections within the
same position (x, y). Each node V (x, y, z) (z > 1) has a direct arc to the node
V (x, y, z − 1) below it, i.e.,

Ea = {< V (x, y, z), V (x, y, z − 1) > | z > 1}

The set Er of interposition arcs rules the connections of adjacent positions and
is defined by:

Exact Computation of Median Surfaces Using Optimal 3D Graph Search 239

Er =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{< V (x, y, z), V (x+ 1, y,max(0, z −Δx)) >

| x ∈ {1, . . . ,M − 1}, z ∈ Z} ∪
{< V (x, y, z), V (x− 1, y,max(0, z −Δx)) >

| x ∈ {2, . . . ,M}, z ∈ Z} ∪
{< V (x, y, z), V (x, y + 1,max(0, z −Δy)) >

| y ∈ {1, . . . , N − 1}, z ∈ Z} ∪
{< V (x, y, z), V (x, y − 1,max(0, z −Δy)) >

| y ∈ {2, . . . , N}, z ∈ Z}
Given the constructed digraph G, a closed set C is a subset of nodes such that
all successors of any nodes in C are also contained in C. The cost of a closed set
is the total cost of all its nodes. In [15] it was shown that the original optimal
surface detection problem is equivalent to finding a minimum nonempty closed
set in G. This is a well studied problem in graph theory and can be solved by
computing a minimum s−t cut in a related graph Gst (see [15] for the details
of constructing Gst from G). In our implementation the Boykov-Kolmogorov
algorithm [16] is applied to compute the minimum s−t cut. For a graph with n
nodes and m arcs, the theoretical worst-case time complexity for this algorithm
is O(n2mc), where c is the cost of the minimum cut.

5 Experimental Results

In this section we demonstrate a practical use of median surface computation by
applying the algorithm described above to segmentation parameter exploration
on ultrasound data.

5.1 Ultrasound Image Data and Experimental Settings

The task considered here is the extraction of artery boundaries from ultrasound
videos. An artery has a near wall and a far wall, as illustrated in Fig. 1(b).
Along with the time axis the 2D images can be regarded a 3D volume, see
Fig. 1(a). Three ultrasound videos from patients were used in our experiments.
For these videos, a ground truth of the arterial walls (golden standard) was
labeled manually.

The algorithm from [14] was applied to detect the two contours in each 2D
image. These contours are stacked to build 3D, possibly discontinuous, surfaces.
For each video, 100 different parameter settings were used to generate 100 near
wall surfaces and 100 far wall surfaces. Then, a median surface was computed
from each of the two surface ensembles. For this computation a position-wise
weight wxy, see Eq. (2), is needed to measure the dissimilarity between the z-
values of a candidate median surface and an input surface at (x, y). In our current
implementation this was done in the following way. A normal distribution is
estimated using all z-values of the 100 input surfaces at (x, y). Then, wxy is
chosen to be [1.0 - density at z = s(x, y)].

240 Z. Wu et al.

Fig. 1. Ultrasound video. (a) Along with the time axis the 2D images build a 3D
volume. (b) The near (blue) and far (red) wall of the artery in a single image.

For comparison purpose the best-performing one among the 100 parameter set-
tings was determined for each video by comparingwith the ground truth. In all our
tests the comparison between two surfaces, e.g. a segmented surface and a ground
truth, was done by computing the average L1 deviation in z per (x, y) position.

5.2 Comparison with the Best Parameter Setting

Totally we have 6 test cases (near and far wall, 3 videos). For each of the test cases
the median surface was computed from the 100 input surfaces and compared with
the surface from the best-performing parameter setting, which was determined
by a per-video basis. The results are shown in Table 1, which are further detailed
in Figures 2-4 with the average deviation per image and the distribution of
deviations.

These results indicate that basically no real performance differences exist be-
tween the best-performing parameter setting and our approach of parameter
space exploration by means of median surface computation. This fact is particu-
larly remarkable since the parameter optimization was done on a per-video basis
in contrast to the popular practice of using training images. In the latter case
the trained best parameters can be expected to achieve good results on addi-
tional test images, but in general not the best result per image. Overall, it can
be concluded that without using any ground truth information, the generalized
median technique is able to produce segmentations of identical quality as the
training approach.

5.3 Comparison with the Ground Truth

Since all the real data include manually labeled ground truth (GT), we compared
our median result with the ground truth. The averageL1 deviation in z is shown in
Table 2. In addition, the results from the best-performing parameter setting (BP)
were also compared with GT. Some results are given in Figure 5 for illustration
purpose. As can be seen in Table 2, these results turn out to be inferior to our
median segmentation results. Using our median surface algorithm thus can not
only avoid the parameter training (which is only possible with existing ground
truth), but also potentially achieve even better segmentation results than with

Exact Computation of Median Surfaces Using Optimal 3D Graph Search 241

0 100 200
0

0.05

0.1
Near Wall Difference

Frame Number

D
iff

er
en

ce
 (

U
ni

t:p
ix

el
s)

0 100 200
0

0.05

0.1
Far Wall Difference

Frame Number

D
iff

er
en

ce
 (

U
ni

t:p
ix

el
s)

0.04 0.05 0.06 0.07 0.08
0

50

100

150
Near Wall Difference Histogram

Difference (Unit:pixels)

T
ot

al
 N

um
be

r

0.01 0.02 0.03 0.04 0.05
0

50

100

150
Near Wall Difference Histogram

Difference (Unit:pixels)

T
ot

al
 N

um
be

r

Fig. 2. Comparison with the best parameter setting: video 1

0 20 40 60 80
0

0.05

0.1
Near Wall Difference

Frame Number

D
iff

er
en

ce
 (

U
ni

t:p
ix

el
s)

0 20 40 60 80
0

0.05

0.1
Far Wall Difference

Frame Number

D
iff

er
en

ce
 (

U
ni

t:p
ix

el
s)

0.02 0.04 0.06 0.08
0

10

20

30

40
Near Wall Difference Histogram

Difference (Unit:pixels)

T
ot

al
 N

um
be

r

0.01 0.02 0.03 0.04 0.05
0

10

20

30
Near Wall Difference Histogram

Difference (Unit:pixels)

T
ot

al
 N

um
be

r

Fig. 3. Comparison with the best parameter setting: video 2

0 50 100
0

0.05

0.1
Near Wall Difference

Frame Number

D
iff

er
en

ce
 (

U
ni

t:p
ix

el
s)

0 50 100
0

0.05

0.1
Far Wall Difference

Frame Number

D
iff

er
en

ce
 (

U
ni

t:p
ix

el
s)

0.04 0.05 0.06 0.07 0.08
0

20

40

60
Near Wall Difference Histogram

Difference (Unit:pixels)

T
ot

al
 N

um
be

r

0.02 0.03 0.04 0.05
0

10

20

30

40
Near Wall Difference Histogram

Difference (Unit:pixels)

T
ot

al
 N

um
be

r

Fig. 4. Comparison with the best parameter setting: video 3

the best parameters. This fact is clearly due to the ensemble nature of the median
surface computation.

242 Z. Wu et al.

Fig. 5. Comparison of GT (red), BP (yellow), and median (blue)

Table 1. Comparison with the best parameter setting (unit: pixels)

video #images near wall far wall

1 251 0.066 0.036

2 86 0.063 0.034

3 111 0.065 0.036

Table 2. Comparison with the ground truth GT (unit: pixels)

video #images comparison type near wall far wall

median vs. GT 0.341 0.336
1 251

BP vs. GT 0.492 0.388

median vs. GT 0.321 0.365
2 86

BP vs. GT 0.504 0.478

median vs. GT 0.312 0.334
3 111

BP vs. GT 0.481 0.436

6 Conclusion

In this paper we have formulated the generalized median surface problem and
presented its exact solution by means of an optimal 3D graph search algorithm.
This work is motivated by the task of parameter space exploration without
ground truth, which is an effective means of dealing with the difficult parameter
problem and has been successfully applied to domains like 2D contour detection
[8] and region segmentation [7]. Our median surface computation algorithm thus
provides a useful tool for parameter exploration in 3D surface segmentation or
2D contour segmentation in a temporal context. A concrete application has been
demonstrated on artery boundary detection in ultrasound data, which confirmed
the findings from the previous studies. That is, the median computation can not
only avoid the parameter training, but also potentially achieve even better results
than with trained parameters. Parameter training is only possible with existing
ground truth, which is not always available. The median-based approach can
thus be a good alternate in case of no ground truth.

The optimal 3D graph search algorithm in [15] designed for terrain-like surface
detection has several interesting extensions. One extension is for simultaneously
detecting multiple surfaces subject to certain spatial constraints. In addition,
the algorithm can be applied to tube-like, or more generally star-shaped, surface

Exact Computation of Median Surfaces Using Optimal 3D Graph Search 243

segmentation based on transforming the initial image data to another space.
These extensions allow us to study the median surface problem for a broader
range of surface classes and will be investigated in future.

References

1. Jiang, X., Bunke, H.: Learning by generalized median concept. In: Pattern Recog-
nition and Machine Vision, pp. 1–16. River Publishers (2010)

2. Rokach, L.: Pattern Classification Using Ensemble Methods. World Scientific
(2010)

3. Weiszfeld, E., Plastria, F.: On the point for which the sum of the distances to n
given points is minimum. Annals of Operations Research 167, 7–41 (2009)

4. Jiang, X., Wentker, J., Ferrer, M.: Generalized median string computation by
means of string embedding in vector spaces. Pattern Recognition Letters 33,
842–852 (2012)

5. Ferrer, M., Karatzas, D., Valveny, E., Bardaj́ı, I., Bunke, H.: A generic frame-
work for median graph computation based on a recursive embedding approach.
Computer Vision and Image Understanding 115, 919–928 (2011)

6. Vega-Pons, S., Ruiz-Shulcloper, J.: A survey of clustering ensemble algorithms. Int.
Journal of Pattern Recognition and Artificial Intelligence 25, 337–372 (2011)

7. Franek, L., Abdala, D.D., Vega-Pons, S., Jiang, X.: Image segmentation fusion using
general ensemble clusteringmethods. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.)
ACCV 2010, Part IV. LNCS, vol. 6495, pp. 373–384. Springer, Heidelberg (2011)

8. Wattuya, P., Jiang, X.: A class of generalized median contour problem with exact
solution. In: Yeung, D.-Y., Kwok, J.T., Fred, A., Roli, F., de Ridder, D. (eds.)
SSPR & SPR 2006. LNCS, vol. 4109, pp. 109–117. Springer, Heidelberg (2006)

9. Franek, L., Jiang, X.: Evolutionary weighted mean based framework for generalized
median computation with application to strings. In: Gimel’farb, G., Hancock, E.,
Imiya, A., Kuijper, A., Kudo, M., Omachi, S., Windeatt, T., Yamada, K. (eds.)
SSPR & SPR 2012. LNCS, vol. 7626, pp. 70–78. Springer, Heidelberg (2012)

10. Solnon, C., Jolion, J.-M.: Generalized vs set median strings for histogram-based dis-
tances: Algorithms and classification results in the image domain. In: Escolano, F.,
Vento, M. (eds.) GbRPR 2007. LNCS, vol. 4538, pp. 404–414. Springer, Heidelberg
(2007)

11. Stewart, C.: Robust parameter estimation in computer vision. SIAM Reviews 41,
513–537 (1999)

12. Min, J., Powell, M.W., Bowyer, K.W.: Automated performance evaluation of
range image segmentation algorithms. IEEE Transactions on Systems, Man, and
Cybernetics, Part B 34, 263–271 (2004)

13. Pignalberi, G., Cucchiara, R., Cinque, L., Levialdi, S.: Tuning range image segmen-
tation by genetic algorithm. EURASIP J. Adv. Sig. Proc. 2003, 780–790 (2003)

14. Cheng, D., Jiang, X.: Detections of arterial wall in sonographic artery im-
ages using dual dynamic programming. IEEE Trans. Information Technology in
Biomedicine 12, 792–799 (2008)

15. Li, K., Wu, X., Chen, D., Sonka, M.: Optimal surface segmentation in volumetric
images-a graph-theoretic approach. IEEE Trans. on Pattern Analysis and Machine
Intelligence (PAMI) 28, 119–134 (2006)

16. Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow
algorithms for energy minimization in vision. IEEE Trans. on Pattern Analysis
and Machine Intelligence (PAMI) 26, 1124–1137 (2004)

Estimation of Distribution Algorithm

for the Max-Cut Problem

Samuel de Sousa, Yll Haxhimusa, and Walter G. Kropatsch

Vienna University of Technology
Pattern Recognition and Image Processing Group

Vienna, Austria
{sam,yll,krw}@prip.tuwien.ac.at

Abstract. In this paper, we investigate the Max-Cut problem and pro-
pose a probabilistic heuristic to address its classic and weighted version.
Our approach is based on the Estimation of Distribution Algorithm
(EDA) that creates a population of individuals capable of evolving at
each generation towards the global solution. We have applied the Max-
Cut problem for image segmentation and defined the edges’ weights as
a modified function of the L2 norm between the RGB values of nodes.
The main goal of this paper is to introduce a heuristic for Max-Cut and
additionally to investigate how it can be applied in the segmentation
context.

Keywords: max-cut, graph cut, eda, segmentation.

1 Introduction

Many problems in computer vision end up by assigning a certain label (corre-
sponding to a class) to a pixel or a region in the image. Therefore, it is required
to choose a proper representation in order to assign such label. Many algorithms
that are suitable for graph theoretical problems can also be applied in the com-
puter vision domain if the problem is modeled using the graph formulation.
Thus, the choice of representing images as graphs has several advantages over
other approaches.

A graph theoretical clustering algorithm consists of searching for a certain
combinatorial structure in the edge weighted graph, such as the minimum span-
ning tree [9,16] or normalized cut [26,28]. Among those methods, the complete
linkage clustering algorithm [20] reduces the search to the problem of finding a
complete subgraph (i.e. the maximal clique [24]) in the image. Also, graph-based
spectral methods have been successfully used for clustering [21] as well.

Given a graph G = (V , E), Max-Cut is the problem of finding a partition
(T, T̄) of the nodes V that maximizes the number of edges between T and its
complement set T̄ . This problem belongs to the class NP-Hard [11], therefore,
no polynomial time algorithm is able to solveMax-Cut for any arbitrary class of
graphs, although several approximations have been proposed. In fact, for planar
graphs, it is possible to compute the maximum cut in polynomial time [14].

W.G. Kropatsch et al. (Eds.): GbRPR 2013, LNCS 7877, pp. 244–253, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Estimation of Distribution Algorithm for the Max-Cut Problem 245

In this paper, we propose a heuristic for the Max-Cut problem for any ar-
bitrary class of graphs and we model the weighted Max-Cut as the problem
of maximizing the sum of weighted edges between two sets of nodes. Nodes of
the same set connected by an edge should be merged into one single cluster and
nodes of different sets connected by a bichromatic edge should remain separated.
Our probabilistic heuristic is based on the Estimation of Distribution Algorithm
(EDA) [1]. Moreover, we have used the segmentation task to show the applicabil-
ity of the problem in the pattern recognition domain. We address the weighted
version of Max-Cut whose weights belong to R.

The remainder of this paper is organized as follows: Section 2 provides a
literature review on graph-based segmentation. The Max-Cut problem is in-
troduced and explained in Section 3. Our heuristic is disclosed in Section 4. We
map the theoretical graph problem into image segmentation in Section 5. Our
experiments are described in Section 6. Finally, we present our conclusions and
future directions in Section 7.

2 Related Work

Early graph-based clustering methods [29] use fixed thresholds and local mea-
sures in computing a cluster, i.e. the minimum spanning tree (MST) is computed.
The clustering criterion is to break the MST edges with the largest weight. The
work of Urquhart [27] attempts to overcome the problem of fixed threshold by
normalizing the weight of an edge using the smallest weight incident on the ver-
tices touching that edge. The methods in [9,16] use an adaptive criterion that
depend on local properties rather than global ones and have the minimum span-
ning tree as the base algorithm. It is shown in [7] that minimum spanning tree
clustering technique, although unsupervised one, approaches the performance of
‘Bayes classifier’, as the number of sample points from each class increases.

The methods based on minimum cuts [4,6] in graph are designed to minimize
the similarity between pixels that are being split [28,26]. Authors in [28] define
a cut criterion, but it was biased toward finding small components. Shi and
Malik [26] developed the normalized cut criterion to address this bias, which
takes into consideration self-similarity of regions. These cut-criterion methods
capture the non-local properties of the image, in contrast with the simple graph-
based methods such as breaking edges in the MST. However they provide only
a characterization of such cut rather than of final segmentation as it is provided
by Felzenszwalb [9]. Shi and Malik [26] developed an approximation method
for computing the minimum normalized cut, closely related to spectral graph
methods, e.g [10].

The minimal spanning tree and the minimum cut are explicitly defined on
weighted edge graph, whereas the concept of a maximal clique is defined on
unweighted edge graphs. As a consequence, maximal clique based clustering
algorithms work on unweighted graphs derived from the edge weighted graphs
by means of thresholding [17]. Pavan and Pelillo [24] generalized the concept of
maximal clique to weighted graphs.

246 S. de Sousa, Y. Haxhimusa, and W.G. Kropatsch

Markov Random Field (MRF) has been used for clustering [12]. However the
use ofMRF for image clustering usually leads to NP-Hard problems. The graph-
based approximation method for MRF problems [5] yields practical solution, if
the number of labels for the pixel is small, which limits these methods for use
in segmentation and clustering.

A disadvantage of graph theoretical approaches for image segmentation, i.e.
clustering, is that these algorithms in some real-time applications are very time
consuming.

3 Max-Cut

Given an undirected graph G = (V , E), a cut in the graph is a partition of the
vertices V into T and T̄ . Let T̄ = V \T be the complement set of T and E(T, T̄)
be the set of edges connecting a vertex in T with another in T̄ . The Max-Cut
problem consists of finding the cut that maximizes |E(T, T̄)|. It is one of the
problems of Karp [19] and it belongs to the NP-Hard class. An example of a
maximum cut is shown in Figure 1a.

(a)
(b)

Fig. 1. (a) The cut that maximizes the number of bichromatic edges between the T (red
squared nodes) and T̄ (black circular nodes). (b) The Maximum Cut of a 4-connected
representation.

Considering the complexity of NP-Hard problems, common approaches con-
sist of creating ρ-approximated algorithms, i.e. polynomial algorithms whose so-
lution is ρ times the optimal solution [13]. There is a vast and growing amount of
algorithms to deal with NP-Hard problems. Researchers seek to find approaches
that are capable of achieving better approximation rates as well as they attempt
to demonstrate that there are no better approximations above a certain thresh-
old. For instance, Goemans-Williason [13] proposed an approximated algorithm
to the Max-Cut problem whose rate is close to:

α = min0≤θ≤π
2

π

θ

1 − cos θ
> 0.87856. (1)

Estimation of Distribution Algorithm for the Max-Cut Problem 247

According to the authors, the approach was a substantial improvement in
nearly twenty years. Subsequently, H̊astad [15] sets a barrier that unless P =
NP , Max-Cut can not be approximated by a deterministic algorithm that
adheres to a rate strictly exceeding 16/17 [15,18].

Finally, Kaporis et al. [18] proposed a deterministic algorithm in polynomial
time that approximates almost all instances of Max-Cut with a rate above
the H̊astad threshold. Their solution became the first improvement of Max-
Cut after a decade [18]. Thus, seeking to break the barrier imposed by H̊astad,
Kaporis et al. use two strategies: Assuming that the maximum cut is not known,
it becomes necessary to (i) find an upper bound for the Max-Cut as well as (ii)
to improve significantly the known lower bounds.

4 Estimation of Distribution Algorithm

Evolutionary Algorithms (EA) and more specifically Estimation of Distribution
Algorithms (EDA) consist of an ensemble of individuals (agents) sampling the
search space for potential solutions of a given problem. Those individuals have
a knowledge about the laws of the environment and a quality measurement that
represents how able those individuals are to solve the problem [2]. Those solutions
are created based on chromosomes and each chromosome has a probability p
of being chosen. Evolutionary Algorithms have been applied to the Max-Cut
problem before such as in [8], where the authors propose a hybrid evolutionary
algorithm using Variable Neighborhood Search and Memetic Algorithm.

In this paper, chromosomes are represented by the nodes of the graph and the
nodes should follow a probability distribution, such as the uniform distribution
in which all nodes are likely to be chosen with the same probability.

We apply the Population Based Incremented Learning (Pbil) algorithm [3]
which takes a vector of probabilities P = {p(v1), p(v2), . . . , p(vn)} associated
with how capable a chromosome (vi) is to provide a solution for the problem.
We create a population S = {s1, s2, . . . , sn} of individuals that will choose a
subset of nodes to compose the cut T . The best individual (sgbest) of generation
g is selected to survive and it is added into generation g+1. Hence, we guarantee
that sg+1

best ≥ sgbest. The probability of pg(vi) is updated as follows:

pg+1(vi) = (1 − α) × pg(vi) + α×
∑|S|

k=1[vi ∈ sk]

|S| , (2)

where α ∈ [0, 1] is a learning rate parameter that weights the impact of both
terms of the formula. By using a high α, we decrease the impact of the probability
in the previous generation ((1 − α) × pg(vi)) and we increase the impact of
having this node chosen by many individuals. In our experiments, α = 0.5, which
means we balance equally the importance of both terms. In this algorithm, each
individuals choose one or more nodes to belong to the solution, the number of
nodes chosen by each individual is computed randomly in such a way to follow
the probability distribution of the nodes.

248 S. de Sousa, Y. Haxhimusa, and W.G. Kropatsch

Data: G(V, E), P,G
Result: Sbest

1 begin
2 Sbest = ∅
3 for i = 1 to G do
4 Si ← population(G(V, E), P);

5 Si ← Si ∪ {Sbest};
6 Si

best ← evaluate(Si);

7 if Si
best > Sbest then

8 Sbest ← Si
best;

9 end

10 end

11 end

(a) Estimation of Distribution Algorithm:
Individuals (S) evolve through generations
G until the best individual (sbest) is found.

si sj

(b) Each individual (e.g. si, sj) selects a
cut T of the graph. Probability of nodes
in generation g+1 is updated using sgbest.

Fig. 2. Estimation of Distribution Algorithm

Figure 2a shows the Estimation of Distribution Algorithm. Line 4 creates a
population based on the current graph and on the nodes’ probabilities P . We
add our best individual Sbest into the current population which ensures that
the next generation will produce as good results as the current one. Figure 2b
shows an example of two individuals selecting a subset of nodes of the graph
as their candidate solution for the cut. The best individual survives the current
generation and evolves.

5 Max-Cut-Based Image Segmentation

In order to segment the image, we first create a graph representation. One ap-
proach could consider on assigning each pixel of the image as a node and using a
4-connected neighborhood to create the edges. However, considering that Max-
Cut tries to maximize the bichromatic edges, by using this representation, we
might end up with a cut such that all edges are bichromatic as displayed in
Figure 1b.

Our graph representation is built as follows: Given a non visited region in
the image, we add a seed to that region and we grow this seed by adding pixels
whose absolute difference to the seed does not exceed a certain threshold t (in
our experiments t = 40). For each region we average the intensity components
of the RGB of all pixels belonging to that region and we define the weight of
an edge (ew) between two nodes (vi, vj) as a modified function of the L2 norm
between the two regions:

ew(vi, vj) = (2 × [||rgb(vi) − rgb(vj)||2 > t]− 1)× ||rgb(vi)− rgb(vj)||2. (3)

Estimation of Distribution Algorithm for the Max-Cut Problem 249

(a) Initial Graph (b) Iteration #0 (c) Iteration #1 (d) Iteration #2

(e) Iteration #12 (f) Iteration #65 (g) Iteration #68 (h) Iteration #91

Fig. 3. Evolution of the segmentation through the EDA generations

This equation states that based on a threshold t, an edge between two nodes
might be either positive or negative. This negative weight assumption prevents
the EDA of choosing certain edges in the segmentation process. In the classic
Max-Cut problem, an edge has the weight of 1. But in the weighted version
we maximize

∑
ew(vi, vj); vi ∈ T, vj ∈ T̄ ; ew(vi, vj) ∈ R which is the sum of the

bichromatic edges’ weights.
During the construction of the graph, each pixel in the boundary of two re-

gions will produce an edge, which means that nodes modeling bigger regions
will have more edges. In this way, our implementation of graph allows multiple
edges between two nodes in order to give preference to bigger regions in the
segmentation process. The addition of negative edges work as a mechanism to
prevent Max-Cut of choosing those edges in the search for the global maxima.
The negative edges penalize the cost function in such a way that if the EDA
chooses one such edge, the cost will be smaller than not choosing that edge.
Hence, we still try to maximize the sum of ew(vi, vj), however, some edges will
not be added into the final cut.

We map the nodes’ cut into the region segmentation as follows: whenever
there is a bichromatic edge in the graph, there will be isolated regions in the

250 S. de Sousa, Y. Haxhimusa, and W.G. Kropatsch

image, i.e. distinct regions in the final segmented image as generated. However,
when there is an edge between two nodes of the same color, those nodes will be
merged into a single region in the final segmentation.

6 Experiments

We have applied our algorithm on images of the Berkeley database [22]. Figure 3
shows an example of the segmentation results during the evolution of the EDA.
The initial graph generated by the watershed technique is displayed in Figure
3a and final result of segmentation is available in Figure 3h.

Elephants Airplane Church

Fig. 4. Segmentation of images from the Berkeley database [22] using the EDA. First
row displays the input image. The second row displays the initial graph representation.
Our segmentation obtained by Max-Cut is displayed in the third row. We show the
edges between regions in the fourth row.

Estimation of Distribution Algorithm for the Max-Cut Problem 251

As aforementioned, this paper attempts to apply the Max-Cut into the seg-
mentation problem. We have computed the results for other images (Elephants,
Airplane, Church) in Figure 4. For all images, nodes that were merged into a
single node succeeded to do so, due to the fact that the distance between re-
gions in the RGB space are relatively small. Hence, those edges were modeled
as negative edges and were not selected by the EDA to compose the final result
because the addition of negative edges would penalize the cost.

For instance, the segmentation result obtained in the Elephants’ picture did
not merge the blue sky in the right upper corner considering that the distance
between those two regions in RGB was higher than the threshold used during
the optimization. On the other hand, the left-most elephant was merged with
a piece of sky, which clearly does not produce a correct result. However, many
segmentation algorithms, including many graph cuts use interaction with users
by adding manual scribbles or regions containing the object of interest to help the
segmentation procedure [23,25]. The negative edges’ assumption is an attempt
to improve the segmentation results by computing a similarity measure between
regions. However, other mechanisms such as brushing or scribbling could be used
to map Max-Cut in the segmentation. One could add some knowledge about
the spatial location of the regions to the cost function as an attempt to bring
color information and spatial configuration together to improve the results.

7 Conclusions

Graph-based representation of an image has many advantages over other repre-
sentations due to the fact that many problems can be posed in graph theoretical
manner. In this paper we investigate the Max-Cut problem which belongs to
the class of problems called NP-Hard and use the Algorithm of Estimation of
Distribution to compute a solution for it.

The focus of this paper is to show a heuristic for theMax-Cut problem and to
show that it can be applied in the segmentation task by assuming, for instance,
the negative edges’ concept. We are continuously investigating how this problem
could be better explored for segmentation.

Acknowledgments. Samuel de Sousa acknowledges financial support by the
Austrian Agency for International Cooperation in Education & Research (OeAD)
within the OeAD Sonderstipendien program, financed by the Vienna PhD School
of Informatics.

References

1. Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation
(Genetic Algorithms and Evolutionary Computation). Springer (October 2001)

2. Bäck, T.: Evolutionary algorithms in theory and practice: evolution strategies,
evolutionary programming, genetic algorithms. Oxford University Press, Oxford
(1996)

252 S. de Sousa, Y. Haxhimusa, and W.G. Kropatsch

3. Baluja, S.: Population-based incremental learning: A method for integrating
genetic search based function optimization and competitive learning (1994)

4. Boykov, Y., Lea, G.F.: Graph Cuts and Efficient N-D Image Segmentation. Int.
J. Comput. Vision 70(2), 109–131 (2006)

5. Boykov, Y., Veksler, O., Zabih, R.: Markov random fields with efficient approx-
imations. In: Proceedings of IEEE Conference on Computer Vision and Pattern
Recognition, USA, pp. 648–655. IEEE Computer Society (1998); Also as Cornell
CS technical report TR97-1658, December 3 (1997)

6. Boykov, Y.Y., Jolly, M.P.: Interactive graph cuts for optimal boundary & region
segmentation of objects in N-D images, vol. 1, pp. 105–112 (2001)

7. Chowdhury, N., Murhty, C.: Minimal spanning tree based clustering technique:
Relationship whith bayes classifier. Pattern Recognition 30(11), 1919–1929 (1997)

8. Duarte, A., Sánchez, A., Fernández, F., Cabido, R.: A low-level hybridization
between memetic algorithm and vns for the max-cut problem. In: Proceedings of
the 2005 Conference on Genetic and Evolutionary Computation, GECCO 2005,
pp. 999–1006. ACM, New York (2005)

9. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation.
International Journal of Computer Vision 59(2), 167–181 (2004)

10. Fiedler, M.: A property of eigenvectors of nonnegative symmetric matrices and its
application to graph theory. Checz Mathematical Journal 25(100), 619–633 (1975)

11. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York (1979)

12. Geman, S., Geman, D.: Stochastic relaxation, gibbs distribution, and the bayesian
restoration of images. IEEE Transactions on Pattern Analysis and Machine
Intelligence 6, 721–741 (1984)

13. Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for
maximum cut and satisfiability problems using semidefinite programming. J.
ACM 42(6), 1115–1145 (1995)

14. Hadlock, F.: Finding a Maximum Cut of a Planar Graph in Polynomial Time.
SIAM Journal on Computing 4(3), 221–225 (1975)

15. H̊astad, J.: Some optimal inapproximability results. J. ACM 48(4), 798–859 (2001)
16. Haxhimusa, Y., Kropatsch, W.: Segmentation Graph Hierarchies. In: Fred, A.,

Caelli, T.M., Duin, R.P.W., Campilho, A.C., de Ridder, D. (eds.) SSPR&SPR
2004. LNCS, vol. 3138, pp. 343–351. Springer, Heidelberg (2004)

17. Jain, A.K., Dubes, R.: Algorithms for Clustering Data. Prentice Hall, Berlin (1988)
18. Kaporis, A.C., Kirousis, L.M., Stavropoulos, E.C.: Approximating almost all

instances of max-cut within a ratio above the h̊astad threshold. In: Azar, Y.,
Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 432–443. Springer, Heidelberg
(2006)

19. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E.,
Thatcher, J.W. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum
Press (1972)

20. Lance, J., Williams, W.: A general theory of classificatory sorting strategies: I
hierarchical systems. Journal on Computing 9, 373–380 (1967)

21. Luo, B., Wilson, R.C., Hancock, E.R.: Spectral feature vectors for graph clustering.
In: Caelli, T.M., Amin, A., Duin, R.P.W., Kamel, M.S., de Ridder, D. (eds.) SSPR
& SPR 2002. LNCS, vol. 2396, pp. 83–93. Springer, Heidelberg (2002)

22. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural
images and its application to evaluating segmentation algorithms and measuring
ecological statistics. In: Proc. 8th Int’l Conf. Computer Vision, vol. 2, pp. 416–423
(July 2001)

Estimation of Distribution Algorithm for the Max-Cut Problem 253

23. Noma, A., Graciano, A.B., Cesar Jr., R.M., Consularo, L.A., Bloch, I.: Inter-
active image segmentation by matching attributed relational graphs. Pattern
Recognition 45(3), 1159–1179 (2012)

24. Pavan, M., Pelillo, M.: Graph-theoretic approach to clustring and segmentation.
In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition,
vol. 1, pp. 145–152. IEEE Computer Society (2003)

25. Rother, C., Kolmogorov, V., Blake, A.: “grabcut”: interactive foreground extrac-
tion using iterated graph cuts. ACM Trans. Graph. 23(3), 309–314 (2004)

26. Shi, J., Malik, J.: Normalized Cuts and Image Segmentation. IEEE Transactions
on Pattern Analysis and Machine Intelligence 22(8), 888–905 (2000)

27. Urquhart, R.: Graph theoretical clustering based on limited neighborhood sets.
Pattern Recognition 15(3), 173–187 (1982)

28. Wu, Z., Leahy, R.M.: An optimal graph theoretic approach to data clustering:
Theory and its application to image segmentation. IEEE Transactions on Pattern
Analysis and Machine Intelligence 15(11), 1101–1113 (1993)

29. Zahn, C.: Graph-theoretical methods for detecting and describing gestal clusters.
IEEE Transaction on Computing 20, 68–86 (1971)

Author Index

Artner, Nicole M. 204
Aziz, Furqan 224

Bai, Lu 121
Bonev, Boyan 51
Bouassida Rodriguez, Ismael 71
Brun, Luc 81, 111, 132
Bunke, Horst 11, 142, 162, 194

Caelli, Terry 11
Cheng, Dachuan 234
Combier, Camille 152
Conte, Donatello 81
Cortés, Xavier 61

Dahm, Nicholas 11
Damiand, Guillaume 21, 152
de la Higuera, Colin 21
Deruyver, Aline 214
Drira, Khalil 71

Edelsbrunner, Herbert 182
Emmenegger, Sandro 142
Escolano, Francisco 51, 172

Fischer, Andreas 194
Frinken, Volkmar 194

Gao, Yongsheng 11
Gaüzère, Benôıt 81, 111
Gibert, Jaume 81
González-Dı́az, Roćıo 184
Grenier, Pierre-Anthony 132

Hancock, Edwin R. 51, 101, 121, 172,
224

Hannachi, Mohamed Amine 71
Haxhimusa, Yll 244
Hodé, Yann 214

Janodet, Jean-Christophe 21
Jiang, Bo 41
Jiang, Xiaoyi 234
Jiménez, Maŕıa-José 184

Krim, Hamid 184
Kropatsch, Walter G. 204, 244

Liu, Cheng-Lin 162
Liu, Yuehu 234
Lozano, Miguel Angel 51
Lu, Yao 162
Luo, Bin 41
Luqman, Muhammad Muzzamil 81

Meyer, Fernand 31, 91

Pomares Hernandez, Saul Eduardo 71

Ramel, Jean-Yves 81
Riesen, Kaspar 142, 194
Rossi, Luca 101, 121

Serratosa, Francesc 61
Sidère, Nicolas 81
Solnon, Christine 21, 152
Sousa, Samuel de 204, 244
Suau, Pablo 172
Suen, Ching Y. 194

Tang, Jin 41
Torsello, Andrea 101, 121

Vento, Mario 1, 81
Villemin, Didier 111, 132

Wilson, Richard C. 224
Wu, Zhengwang 234

Zheng, Nanning 234

	Preface
	Organization
	Table of Contents
	A One Hour Trip in the World of Graphs,Looking at the Papers of the Last Ten Years
	1 Motivations of the Trip
	2 Trip Diary
	3 Trips Souvenirs
	References

	A Unified Framework for Strengthening Topological Node Features and Its Applicationto Subgraph Isomorphism Detection
	1 Introduction
	2 Topological
	Neighbourhood Features
	3 Node Label Strengthening Framework
	3.1 Summation Index
	3.2 Listing Index
	3.3 Tree Index
	3.4 Strengthening in

	4 Experimental Results
	4.1 Evaluating Pruning Techniques by ABF
	4.2 Analytical Experiments
	4.3 Practical Experiments

	5 Conclusions
	References

	On the Complexity of Submap Isomorphism
	1 Motivations
	2 Recalls and Basic Definitions on Generalized Maps
	3 The Submap Isomorphism Problem
	4 Planar-43-SAT
	5 Reduction of Planar-4 3-SAT to Submap Isomorphism
	6 Conclusion
	References

	Flooding Edge Weighted Graphs
	1 Introduction
	2 The Laws of Hydrostatics and Floodings
	2.1 Criteria Characterizing a Flooding
	2.2 The Algebra of Floodings
	2.3 Creation of Lakes

	3 Dominated Floodings
	3.1 Lake Level and Lake Extension at a Node p
	3.2 Illustration

	4 Constrained Highest Floodings on Edge Weighted Graphs as Shortest Distances in an Augmented Graph
	4.1 Highest Floodings and Shortest Distances
	4.2 The Moore Dijkstra Shortest Path Algorithm [5]

	5 Conclusion
	References

	Graph Matching with Nonnegative Sparse Model
	1 Introduction
	2 Problem Formulation
	2.1 Attributed Graph Matching
	2.2 Graph Matching Relaxations

	3 Nonnegative Sparse Graph Matching
	3.1 Relaxation Model
	3.2 Computational Algorithm
	3.3 Sparsity and Desirable Matching Properties

	4 Experiments
	4.1 Synthetic Point Sets Matching
	4.2 Feature Point Matching Across Image Sequence
	4.3 Real Image Matching

	5 Conclusions
	References

	TurboTensors for Entropic Image Comparison
	1 Introduction
	2 TurboTensors
	2.1 Characterizing TurboPixels
	2.2 Images as Bags of TurboTensors
	2.3 Images as TurboTensors Graphs

	3 Entropic Image Comparison
	3.1 Divergences in Tangent Spaces
	3.2 Divergences between Embeddings

	4 Experimental Results
	5 Conclusions
	References

	Active-Learning Query Strategies Appliedto Select a Graph Node Given a Graph Labelling
	1 Introduction
	2 Graph Matching
	3 Query Strategies
	4 Active Learning Strategies Based on the Probability Matrix
	5 Practical Evaluation
	6 Conclusions and Future Work
	References

	GMTE: A Tool for Graph Transformationand Exact/Inexact Graph Matching
	1 Introduction
	2 Preliminaries
	3 Graph Matching and Transformation Engine
	3.1 Exact Matching Process
	3.2 Graph Updating Process
	3.3 Conditional Rule Schemata
	3.4 Rule and Application Condition

	4 Inexact Matching
	4.1 Node/Edge Edit Distance
	4.2 Cost Matrix
	4.3 Bipartite Graph Matching
	4.4 Assignment Algorithm

	5 Comparison with Other Tools
	6 Conclusion
	References

	A Comparison of Explicit and Implicit GraphEmbedding Methods for Pattern Recognition
	1 Introduction
	2 Classification by Graph Kernels Methods
	2.1 Method 1: Laplacian Graph Kernel
	2.2 Method 2: Treelet Kernel

	3 Classification by Graph Embedding Methods
	3.1 Method 1: Topological Embedding
	3.2 Method 2: Fuzzy Multilevel Graph Embedding (FMGE)
	3.3 Method 3: Attribute Statistics Based Embedding

	4 Experimental Results
	4.1 The Considered Application and the Dataset
	4.2 Results and Comparison

	5 Conclusions
	References

	Adjunctions on the Lattice of Dendrograms
	1 Introduction
	2 Dendrograms and Hierarchies
	2.1 Dendrograms
	2.2 Hierarchies
	2.3 Stratification Index and Partial Ultrametric Distances (PUD)
	2.4 Partial Partitions by Thresholding Partial Hierarchies

	3 The Lattice of Hierarchies
	3.1 Order Relation between Hierarchies and Partial Hierarchies
	3.2 The Lattice of Dendrograms

	4 Adjunctions on Partial Hierarchies
	4.1 Erosion and Dilations by a Structuring Element of Binary Sets
	4.2 A First Adjunction Based on the Supremum and Infimum of Translated PUD
	4.3 Adjunction on Hierarchies and Partial Hierarchies, Defined on a Tile by Tile Basis
	4.4 Ordering the Adjunctions on Partial Hierarchies or Partitions

	5 Conclusion
	References

	A Continuous-Time Quantum Walk Kernelfor Unattributed Graphs
	1 Introduction
	2 Quantum Mechanical Background
	2.1 Quantum Jensen-Shannon Divergence

	3 QJSDKernel
	3.1 Kernel Computation

	4 Experimental Results
	5 Conclusions
	Acknowledgments.

	References

	Relevant Cycle Hypergraph Representationfor Molecules
	1 Introduction
	2 Encoding Cyclic Information
	3 Encoding Topological Relationships between Cyclic and Acyclic Parts
	4 Similarity between Relevant Cycle Hypergraphs
	5 Experiments
	6 Conclusion
	References

	A Quantum Jensen-Shannon Graph KernelUsing the Continuous-Time Quantum Walk
	1 Introduction
	2 Quantum Mechanical Background
	2.1 The Continuous-Time Quantum Walk
	2.2 A Density Operator for Graphs
	2.3 The von Neumann Entropy of A Graph

	3 A Quantum Jensen-Shannon Graph Kernel
	3.1 Classical and Quantum Jensen-Shannon Divergence
	3.2 A Quantum Jensen-Shannon Kernel for Graphs
	3.3 Algorithmic Complexity

	4 Experimental Evaluations
	4.1 Von Neumann Entropy Evaluation
	4.2 Experiments on Standard Graph Datasets from Bioinformatics

	5 Conclusion
	References

	Treelet Kernel Incorporating Chiral Information
	1 Introduction
	2 Encoding of Stereoisomers
	2.1 Partially Ordered Graph Encoding of a Molecule

	3 Isomorphism between Labeled Partially Ordered Tree
	4 From a Global to a Local Characterization of Chirality
	4.1 Minimal Chiral Subtree of an Asymmetric Carbon
	4.2 Minimal Chiral Subtree of Double Bond
	4.3 Graph Contraction
	4.4 StereoTreelet

	5 Experiments
	6 Conclusion
	References

	A Novel Software Toolkit for Graph EditDistance Computation
	1 Introduction to Graph Edit Distance
	2 Graph Edit Distance Algorithms
	3 Defining the Cost Function
	4 Similarity Kernel from Edit Distance
	5 Conclusion and Future Work
	References

	Map Edit Distance vs. Graph Edit Distancefor Matching Images
	1 Motivations
	2 Recalls on Generalized Maps and the Map Edit Distance
	3 Extension of the Map Edit Distance to Labelled Maps
	4 Experimental Comparison
	4.1 Test Suite
	4.2 Cost Functions
	4.3 Matching Algorithms
	4.4 Experimental Results

	5 Conclusion
	References

	An Algorithm for Maximum Common Subgraphof Planar Triangulation Graphs
	1 Introduction
	2 Connected Maximum Common Subgraphs
	2.1 Basic Definitions
	2.2 Related Work

	3 Planar Triangulation Graphs
	3.1 Properties
	3.2 Breadth-First Traversal of Triangles

	4 Algorithm
	5 Experiments
	5.1 Small Random Graphs
	5.2 Large Random Graphs

	6 Conclusion and Future Work
	References

	Graph Characteristicsfrom the Schrödinger Operator
	1 Introduction
	2 Heat Flow
	3 Heat Kernel vs. Schrödinger Operator
	3.1 Analysis of the Schrödinger Operator
	3.2 The Quantum Energy Flow
	3.3 Frequency Domain Analysis of the Schrödinger Operator

	4 Experimental Results
	4.1 Noise Sensitivity
	4.2 Graph Characterization

	5 Conclusions and Future Work
	References

	Persistent Homology in Image Processing
	References

	Towards Minimal Barcodes
	1 Introduction
	2 Background
	3 Minimal Barcodes
	4 Hasse Diagrams for the Poset of Faces and Minimal Barcodes
	5 Relations between Minimal Barcodes and Optimal Discrete Morse Function
	6 Conclusions and Future Work
	References

	A Fast Matching Algorithmfor Graph-Based Handwriting Recognition
	1 Introduction
	2 Graph Similarity Features
	2.1 Handwriting Graphs
	2.2 Vector Space Embedding and Recognition System

	3 Fast Matching Algorithm
	3.1 Approximate Graph Edit Distance
	3.2 Hausdorff Distance
	3.3 Modified Hausdorff Distance

	4 Experimental Evaluation
	4.1 Setup
	4.2 Results

	5 Conclusions
	References

	On the Evaluation of Graph Centralityfor Shape Matching
	1 Introduction
	2 Related Work
	3 Graph-Based Shape Matching
	3.1 Degree Centrality
	3.2 Betweenness Centrality
	3.3 Closeness Centrality
	3.4 Eigenvector Centrality
	3.5 PageRank Centrality
	3.6 Centrality Shape Descriptor

	4 Experiments
	5 Conclusion
	References

	Shape Recognition as a ConstraintSatisfaction Problem
	1 Introduction
	2 Characteristic Points of a Segmented Region
	3 Constraint Satisfaction Problems with Bilevel Constraints: Arc-Consistency and Hyper-Arc Consistency
	3.1 Finite-Domain Constraint Satisfaction Problem with Bilevel Constraints (FDCSPBC)
	3.2 Arc-Consistency Problem with Bilevel Constraints (ACBC) associated with the FDCSPBC
	3.3 Hyper-Arc Consistency Problem with Bilevel Constraints (HACBC) associated with the FDCSPBC

	4 Rules to Retrieve a Curve with Local Constraints
	5 Application to the Retrieval of a Circle
	6 Experiments
	7 Conclusion and Discussion
	References

	Gaussian Wave Packet on a Graph
	1 Introduction
	2 Graphs
	3 Edge-Based Eigensystem
	3.1 Vertex Supported Edge-Based Eigenfunctions
	3.2 Edge-Interior Eigenfunctions
	3.3 Normalization of Eigenfunctions

	4 General Solution of the Wave Equation
	4.1 Initial Conditions

	5 Gaussian Wave Packet
	5.1 Complete Reconstruction

	6 Experiments
	7 Conclusion and Future Work
	References

	Exact Computation of Median SurfacesUsing Optimal 3D Graph Search
	1 Introduction
	2 Median Surface Problem
	3 Motivation
	4 Exact Computation by Optimal 3D Graph Search
	5 Experimental Results
	5.1 Ultrasound Image Data and Experimental Settings
	5.2 Comparison with the Best Parameter Setting
	5.3 Comparison with the Ground Truth

	6 Conclusion
	References

	Estimation of Distribution Algorithmfor the Max-Cut Problem
	1 Introduction
	2 Related Work
	3 Max-Cut
	4 Estimation of Distribution Algorithm
	5 Max-Cut-Based Image Segmentation
	6 Experiments
	7 Conclusions
	References

	Author Index

