
An Introduction to Search Combinators

Tom Schrijvers1, Guido Tack2, Pieter Wuille1,3,
Horst Samulowitz4, and Peter J. Stuckey5

1 Universiteit Gent, Belgium
{tom.schrijvers,pieter.wuille}@ugent.be

2 National ICT Australia (NICTA) and Monash University, Victoria, Australia
guido.tack@monash.edu

3 Katholieke Universiteit Leuven, Belgium
pieter.wuille@cs.kuleuven.be

4 IBM Research, New York, USA
samulowitz@us.ibm.com

5 National ICT Australia (NICTA) and University of Melbourne, Victoria, Australia
pjs@cs.mu.oz.au

Abstract. The ability to model search in a constraint solver can be an essen-
tial asset for solving combinatorial problems. However, existing infrastructure
for defining search heuristics is often inadequate. Either modeling capabilities
are extremely limited or users are faced with a general-purpose programming
language whose features are not tailored towards writing search heuristics. As a
result, major improvements in performance may remain unexplored.

This article introduces search combinators, a lightweight and solver-
independent method that bridges the gap between a conceptually simple model-
ing language for search (high-level, functional and naturally compositional) and
an efficient implementation (low-level, imperative and highly non-modular). By
allowing the user to define application-tailored search strategies from a small set
of primitives, search combinators effectively provide a rich domain-specific lan-
guage (DSL) for modeling search to the user. Remarkably, this DSL comes at a
low implementation cost to the developer of a constraint solver.

1 Introduction

Search heuristics often make all the difference between effectively solving a combi-
natorial problem and utter failure. Heuristics make a search algorithm efficient for a
variety of reasons, e.g., incorporation of domain knowledge, or randomization to avoid
heavy-tailed runtimes. Hence, the ability to swiftly design search heuristics that are tai-
lored towards a problem domain is essential for performance. This article introduces
search combinators, a versatile, modular, and efficiently implementable language for
expressing search heuristics.

1.1 Status Quo

In CP, much attention has been devoted to facilitating the modeling of combinatorial
problems. A range of high-level modeling languages, such as OPL [1], Comet [2],

E. Albert (Ed.): LOPSTR 2012, LNCS 7844, pp. 2–16, 2013.
© Springer-Verlag Berlin Heidelberg 2013

An Introduction to Search Combinators 3

or Zinc [3], enable quick development and exploration of problem models. But there
is substantially less support for high-level specification of accompanying search heuris-
tics. Most languages and systems, e.g. ECLiPSe [4], Gecode [5], Comet [2], or MiniZ-
inc [6], provide a set of predefined heuristics “off the shelf”. Many systems also support
user-defined search based on a general-purpose programming language (e.g., all of the
above systems except MiniZinc). The former is clearly too confining, while the latter
leaves much to be desired in terms of productivity, since implementing a search heuris-
tic quickly becomes a non-negligible effort. This also explains why the set of predefined
heuristics is typically small: it takes a lot of time for CP system developers to implement
heuristics, too – time they would much rather spend otherwise improving their system.

1.2 Contributions

In this article we show how to resolve this stand-off between solver developers and
users, by introducing a domain-specific modular search language based on combinators,
as well as a modular, extensible implementation architecture.

For the User, we provide a modeling language for expressing complex search heuris-
tics based on an (extensible) set of primitive combinators. Even if the users are only
provided with a small set of combinators, they can already express a vast range of
combinations. Moreover, using combinators to program application-tailored search
is vastly more productive than resorting to a general-purpose language.

For the System Developer, we show how to design and implement modular combina-
tors. The modularity of the language thus carries over directly to modularity of the
implementation. Developers do not have to cater explicitly for all possible combi-
nator combinations. Small implementation efforts result in providing the user with
a lot of expressive power. Moreover, the cost of adding one more combinator is
small, yet the return in terms of additional expressiveness can be quite large.

The technical challenge is to bridge the gap between a conceptually simple search lan-
guage and an efficient implementation, which is typically low-level, imperative and
highly non-modular. This is where existing approaches are weak; either the expres-
siveness is limited, or the approach to search is tightly tied to the underlying solver
infrastructure.

The contribution is therefore the novel design of an expressive, high-level, composi-
tional search language with an equally modular, extensible, and efficient implementa-
tion architecture.

1.3 Approach

We overcome the modularity challenge by implementing the primitives of our search
language as mixin components [7]. As in Aspect-Oriented Programming [8], mixin
components neatly encapsulate the cross-cutting behavior of primitive search concepts,
which are highly entangled in conventional approaches. Cross-cutting means that a
mixin component can interfere with the behavior of its sub-components (in this case,
sub-searches). The combination of encapsulation and cross-cutting behavior is essential

4 T. Schrijvers et al.

s ::= prune | ifthenelse(cond,s1,s2)
prunes the node perform s1 until cond is false, then perform s2

| base_search(vars,var-select,domain-split) | and([s1,s2, . . . ,sn])
label perform s1, on success s2 otherwise fail, . . .

| let(v,e,s) | or([s1,s2, . . . ,sn])
introduce new variable v with perform s1, on termination start s2, . . .
initial value e, then perform s | portfolio([s1,s2, . . . ,sn])

| assign(v,e) perform s1, if not exhaustive start s2, . . .
assign e to variable v and succeed | restart(cond,s)

| post(c,s) restart s as long as cond holds
post constraint c at every node during s

Fig. 1. Catalog of primitive search heuristics and combinators

for systematic reuse of search combinators. Without this degree of modularity, minor
modifications require rewriting from scratch.

An added advantage of mixin components is extensibility. We can add new features
to the language by adding more mixin components. The cost of adding such a new
component is small, because it does not require changes to the existing ones. Moreover,
experimental evaluation bears out that this modular approach has no significant over-
head compared to the traditional monolithic approach. Finally, our approach is solver-
independent and therefore makes search combinators a potential standard for designing
search.

This article provides on overview of the work on search combinators, that appeared
in the proceedings of the 17th International Conference on Principles and Practice of
Constraint Programming (CP) 2011 [9] and the Special Issue on Modeling and Refor-
mulation of the Constraints journal [10].

2 High-Level Search Language

This section introduces the syntax of our high-level search language and illustrates its
expressive power and modularity by means of examples. The rest of the article then
presents an architecture that maps the modularity of the language down to the imple-
mentation level.

The search language is used to define a search heuristic, which a search engine ap-
plies to each node of the search tree. For each node, the heuristic determines whether to
continue search by creating child nodes, or to prune the tree at that node. The queuing
strategy, i.e., the strategy by which new nodes are selected for further search (such as
depth-first traversal), is determined separately by the search engine, it is thus orthogo-
nal to the search language. The search language features a number of primitives, listed
in the catalog of Fig. 1. These are the building blocks in terms of which more complex
heuristics can be defined, and they can be grouped into basic heuristics (base_search
and prune), combinators (ifthenelse, and, or, portfolio, and restart), and state manage-
ment (let, assign, post). This section introduces the three groups of primitives in turn.

For many users, the given primitives will represent a simple and at the same time suf-
ficiently expressive language that allows them to implement complex, problem-specific

An Introduction to Search Combinators 5

search heuristics. The examples in this section show how versatile this base language is.
However, we emphasize that the catalog of primitives is open-ended. Advanced users
may need to add new, problem-specific primitives, and Sect. 3 explains how the lan-
guage implementation explicitly supports this.

The concrete syntax we chose for presentation uses simple nested terms, which
makes it compatible with the annotation language of MiniZinc [6]. However, other
concrete syntax forms are easily supported (e.g., we support C++ and Haskell).

2.1 Basic Heuristics

Let us first discuss the two basic primitives, base_search and prune.

base_search. The most widely used method for specifying a basic heuristic for a
constraint problem is to define it in terms of a variable selection strategy which picks
the next variable to constrain, and a domain splitting strategy which splits the set of
possible values of the selected variable into two (or more) disjoint sets.

The CP community has spent a considerable amount of work on defining and ex-
ploring many such variable selection and domain splitting heuristics. The provision of
a flexible language for defining new basic searches is an interesting problem in its own
right, but in this article we concentrate on search combinators that combine and modify
basic searches.

To this end, our search language provides the primitive base_search(vars, var-
select, domain-split), which specifies a systematic search. If any of the variables vars
are still not fixed at the current node, it creates child nodes according to var-select and
domain-split as variable selection and domain splitting strategies respectively.

Note that base_search is a CP-specific primitive; other kinds of solvers provide
their own search primitives. The rest of the search language is essentially solver-inde-
pendent. While the solver provides few basic heuristics, the search language adds great
expressive power by allowing these to be combined arbitrarily using combinators.

prune. The second basic primitive, prune, simply cuts the search tree below the current
node. Obviously, this primitive is useless on its own, but we will see shortly how prune
can be used together with combinators.

2.2 Combinators

The expressive power of the search language relies on combinators, which combine
search heuristics (which can be basic or themselves constructed using combinators)
into more complex heuristics.

and/or. Probably the most widely used combination of heuristics is sequential compo-
sition. For instance, it is often useful to first label one set of problem variables before
starting to label a second set. The following heuristic uses the and combinator to first
label all the xs variables using a first-fail strategy, followed by the ys variables with a
different strategy:

6 T. Schrijvers et al.

s1

s2

and([s1, s2]) or([s1, s2])

s1 s2

if(c, s1, s2)

¬c

s2

s1
c

c

c

s1 s1

s1

s1 s2

portfolio([s1, s2, s3])

s s s s

c c c c

restart(c, s)

s s s

c c c ¬c

1) 2)

3) 4)

5)

Fig. 2. Primitive combinators

and([base_search(xs,firstfail,min),
base_search(ys,smallest,max)])

As you can see in Fig. 1, the and combinator accepts a list of searches s1, . . . ,sn, and
performs their and-sequential composition. And-sequential means, intuitively, that so-
lutions are found by performing all the sub-searches sequentially down one branch of
the search tree, as illustrated in Fig. 2.1.

The dual combinator, or([s1, . . . ,sn]), performs a disjunctive combination of its sub-
searches – a solution is found using any of the sub-searches (Fig. 2.2), trying them in
the given order.

Statistics and ifthenelse. The ifthenelse combinator is centered around a conditional
expression cond. As long as cond is true for the current node, the sub-search s1 is used.
Once cond is false, s2 is used for the complete subtree below the current node (see
Fig. 2.3).

We do not specify the expression language for conditions in detail, we simply as-
sume that it comprises the typical arithmetic and comparison operators and literals that
require no further explanation. It is notable though that the language can refer to the
constraint variables and parameters of the underlying model. Additionally, a condition
may refer to one or more statistics variables. Such statistics are collected for the dura-
tion of a subsearch until the condition is met. For instance ifthenelse(depth < 10,s1,s2)

An Introduction to Search Combinators 7

maintains the search depth statistic during subsearch s1. At depth 10, the ifthenelse
combinator switches to subsearch s2.

We distinguish two forms of statistics: Local statistics such as depth and discrepan-
cies express properties of individual nodes. Global statistics such as number of explored
nodes, encountered failures, solution, and time are computed for entire search trees.

It is worthwhile to mention that developers (and advanced users) can also define
their own statistics, just like combinators, to complement any predefined ones. In fact,
Sect. 3 will show that statistics can be implemented as a subtype of combinators that
can be queried for the statistic’s value.

Abstraction. Our search language draws its expressive power from the combination
of primitive heuristics using combinators. An important aspect of the search language
is abstraction: the ability to create new combinators by effectively defining macros in
terms of existing combinators.

For example, we can define the limiting combinator limit(cond,s) to perform s while
condition cond is satisfied, and otherwise cut the search tree using prune:

limit(cond,s)≡ ifthenelse(cond,s,prune)

The once(s) combinator, well-known in Prolog as once/1, is a special case of the
limiting combinator where the number of solutions is less than one. This is simply
achieved by maintaining and accessing the solutions statistic:

once(s)≡ limit(solutions < 1,s)

Exhaustiveness and portfolio/restart. The behavior of the final two combinators,
portfolio and restart, depends on whether their sub-search was exhaustive. Exhaustive-
ness simply means that the search has explored the entire subtree without ever invoking
the prune primitive.

The portfolio([s1, . . . ,sn]) combinator performs s1 until it has explored the whole
subtree. If s1 was exhaustive, i.e., if it did not call prune during the exploration of the
subtree, the search is finished. Otherwise, it continues with portfolio([s2, . . . ,sn]). This
is illustrated in Fig. 2.4, where the subtree of s1 represents a non-exhaustive search, s2

is exhaustive and therefore s3 is never invoked.
An example for the use of portfolio is the hotstart(cond,s1,s2) combinator. It per-

forms search heuristic s1 while condition cond holds to initialize global parameters for
a second search s2. This heuristic can for example be used to initialize the widely applied
Impact heuristic [11]. Note that we assume here that the parameters to be initialized are
maintained by the underlying solver, so we omit an explicit reference to them.

hotstart(cond,s1,s2)≡ portfolio([limit(cond,s1),s2])

The restart(cond,s) combinator repeatedly runs s in full. If s was not exhaustive, it is
restarted, until condition cond no longer holds. Fig. 2.5 shows the two cases, on the left
terminating with an exhaustive search s, on the right terminating because cond is no
longer true.

The following implements random restarts, where search is stopped after 1000 fail-
ures and restarted with a random strategy:

8 T. Schrijvers et al.

restart(true, limit(failures < 1000,base_search(xs, randomvar, randomval)))

Clearly, this strategy has a flaw: If it takes more than 1000 failures to find the solution,
the search will never finish. We will shortly see how to fix this by introducing user-
defined search variables.

The prune primitive is the only source of non-exhaustiveness. Combinators propa-
gate exhaustiveness in the obvious way:

– and([s1, . . . ,sn]) is exhaustive if all si are
– or([s1, . . . ,sn]) is exhaustive if all si are
– portfolio([s1, . . . ,sn]) is exhaustive if one si is
– restart(cond,s) is exhaustive if the last iteration is
– ifthenelse(cond,s1,s2) is exhaustive if, whenever cond is true, then s1 is, and,

whenever cond is false, then s2 is

2.3 State Access and Manipulation

The remaining three primitives, let, assign, and post, are used to access and manipulate
the state of the search:

– let(v,e,s) introduces a new search variable v with initial value of the expression e
and visible in the search s, then continues with s. Note that search variables are
distinct from the decision variables of the model.

– assign(v,e): assigns the value of the expression e to search variable v and succeeds.
– post(c,s): provides access to the underlying constraint solver, posting a constraint

c at every node during s. If s is omitted, it posts the constraint and immediately
succeeds.

These primitives add a great deal of expressiveness to the language, as the following
examples demonstrate.

Random Restarts: Let us reconsider the example using random restarts from the pre-
vious section, which suffered from incompleteness because it only ever explored 1000
failures. A standard way to make this strategy complete is to increase the limit geomet-
rically with each iteration:

geom_restart(s)≡ let(maxfails,100,
restart(true,portfolio([limit(failures < maxfails,s),

and([assign(maxfails,maxfails∗ 1.5),
prune])]))

The search initializes the search variable maxfails to 100, and then calls search s with
maxfails as the limit. If the search is exhaustive, both the portfolio and the restart com-
binators are finished. If the search is not exhaustive, the limit is multiplied by 1.5, and
the search starts over. Note that assign succeeds, so we need to call prune afterwards in
order to propagate the non-exhaustiveness of s to the restart combinator.

An Introduction to Search Combinators 9

combinator
1

combinator
2

combinator
n-1

combinator
n

exit(p,status)

enter(p)
for every child c

init(p,c)

start(r)

Fig. 3. The modular message protocol

Other Heuristics. Many more heuristics can be implemented with the primitive com-
binators: branch-and-bound, restarting branch-and-bound, limited discrepancy search,
iterative deepening, dichotomic search, . . . See [10] for the details of these heuristics.

3 Modular Combinator Design

The previous section caters for the user’s needs, presenting a high-level modular syntax
for our combinator-based search language. To cater for advanced users’ and system de-
velopers’ needs, this section goes beyond modularity of syntax, introducing modularity
of design.

Modularity of design is the one property that makes our approach practical. Each com-
binator corresponds to a separate module that has a meaning and an implementation
independent of the other combinators. This enables us to actually realize the search
specifications defined by modular syntax.

Solver independence is another notable property of our approach. While a few combi-
nators access solver-specific functionality (e.g., base_search and post), the approach
as such and most combinators listed in Fig. 1 are in fact generic (solver- and even CP-
independent); their design and implementation is reusable.

In the following we explain our design in detail by means of code implementations
of most of the primitive combinators we have covered in the previous section.

3.1 The Message Protocol

To obtain a modular design of search combinators we step away from the idea that
the behavior of a search combinator, like the and combinator, forms an indivisible

10 T. Schrijvers et al.

whole; this leaves no room for interaction. The key insight here is that we must iden-
tify finer-grained steps, defining how different combinators interact at each node in the
search tree. Interleaving these finer-grained steps of different combinators in an appro-
priate manner yields the composite behavior of the overall search heuristic, where each
combinator is able to cross-cut the others’ behavior.

Considering the diversity of combinators and the fact that not all units of behavior
are explicitly present in all of them, designing this protocol of interaction is non-trivial.
It requires studying the intended behavior and interaction of combinators to isolate the
fine-grained units of behavior and the manner of interaction. The contribution of this
section is an elegant and conceptually uniform design that is powerful enough to express
all the combinators presented in this article.

The Messages. We present this design in the form of a message protocol. The protocol
specifies a set of messages (i.e., an interface with one procedure for each fine-grained
step) that have to be implemented by all combinators. In pseudo-code, this protocol for
combinators consists of four different messages:

protocol combinator
start(rootNode);
enter(currentNode);
exit(currentNode,status);
init(parentNode,childNode);

The protocol concerns the dynamic behavior of a search combinator. A single static
occurrence of a search combinator in a search heuristic may have zero or more dynamic
life cycles. During a life cycle, the combinator observes and influences the search of a
particular subtree of the overall search tree.

– The message start(rootNode) starts up a new life cycle of a combinator for the
subtree rooted at rootNode. The typical implementation of this message allocates
and initializes data for the life cycle.

– The message enter(currentNode) notifies the combinator of the fact that the
node currentNode of its subtree is currently active. At this point the combinator
may for instance decide to prune it.

– The message exit(currentNode,status) informs the combinator that the
currently active node currentNode is a leaf node of its subtree. The node’s status
is one of failure, success or abort which denote respectively an inconsistent
node, a solution and a pruned node.

– The message init(parentNode,childNode) registers with the combinator
the node childNode as a child node of the currently active node parentNode.

Typically, during a life cycle, a combinator sees every node three times. The first time
the node is included in the life cycle, either as a root with start or as the child of
another node with init. The second time the node is processed with enter. The last
time the node processing has determined that the node is either a leaf with exit or the
parent of one or more other nodes with init.

An Introduction to Search Combinators 11

The Nodes. All of the message signatures specify one or two search tree nodes as pa-
rameters. Each such node keeps track of a solver State and the information associated
by combinators to that State.

We observe three different access patterns of nodes:

1. In keeping with the solver independence stipulated above, we will see that most
combinators only query and update their associated information and do not access
the underlying solver State at all.

2. Restarting-based combinators, like restart and portfolio, copy nodes. This
means copying the solver’s State representation and all associated information
for later restoration.

3. Finally, selected solver-specific combinators like base_search do perform solver-
specific operations on the underlying State, like querying variable domains and
posting constraints.

The Calling Hierarchy. In addition to the message signatures, the protocol also stipu-
lates in what order the messages are sent among the combinators (see Fig. 3). While in
general a combinator composition is tree-shaped, the processing of any single search
tree node p only involves a stack of combinators. For example, given or([and1([s1,s2]),
and2([s3,s4])]),1 p is included in life cycles of [or,and1,s1], [or,and1,s2], [or,and2,s3]
or [or,and2,s4]. We also say that the particular stack is active at node p. The picture
shows this stack of active combinators on the left.

Every combinator in the stack has both a super-combinator above and a sub-
combinator below, except for the top and the bottom combinators. The bottom is always
a basic heuristic (base_search, prune, assign, or post). The important aspect to take
away from the picture is the direction of the four different messages, either top-down
or bottom-up.

The protocol initializes search by sending the start(root) message, where root
is the root of the overall search tree, to the topmost combinator. This topmost combi-
nator decides what child combinator to forward the message to, that child combinator
propagates it to one of its children and so on, until a full stack of combinators is initial-
ized.

Next, starting from the root node, nodes are processed in a loop. The enter(node)
message is passed down through the stack of combinator stack to the primitive heuris-
tic at the bottom, which determines whether the node is a leaf or has children. In the
former case, the primitive heuristic passes the exit(node,status) message up. In
the latter case, it passes the init(node,child) message down from the top for each
child. These child nodes are added to the queue that fuels the loop. At any point, in-
termediate combinators can decide not to forward messages literally, but to alter them
instead (e.g., to change the status of a leaf from success to abort), or to initiate a
different message flow (e.g. to start a new subtree).

3.2 Basic Setup

Before we delve into the interesting search combinators, we first present an example
implementation of the basic setup consisting of a base search (base_search) and a

1 The left and right and are subscripted to distinguish them.

12 T. Schrijvers et al.

search engine (dfs). This allows us to express overall search specifications of the form:
dfs(base_search(vars,var-select,domain-split)).

Base Search. We do not provide full details on a base_search combinator, as it is not
the focus of this article. However, we will point out the aspects relevant to our protocol.

The first line of base_search’s implementation expresses two facts. Firstly, it states
that the base_search implements the combinator protocol. Secondly, its constructor
has three parameters (vars, var-select, domain-select) that can be referred to
in its message implementations.

In the enter message, the node’s solver state is propagated. Subsequently, the con-
dition isLeaf(c,vars) checks whether the solver state is unsatisfiable or there are
no more variables to assign. If either is the case, the exit status (respectively failure
or success) is sent to the parent combinator. For now, the parent combinator is
just the search engine, but later we will see how how other combinators can be inserted
between the search engine and the base search.

If neither is the case, the search branches depending on the variable selection and
domain splitting strategies. This involves creating a child node for each branch, deter-
mining the variable and value for that child and posting the assignment to the child’s
state. Then, the top combinator (i.e., the engine) is asked to initialize the child node.
Finally the child node is pushed onto the search queue.

combinator base_search(vars,var-select,domain-select)
enter(c):

c.propagate
if isLeaf(c,vars)
parent.exit(c,leafstatus(c))

pos = ... // from vars based on var-select
for each child: // based on domain-select
val = ... // based on domain-select
child.post(vars[pos]=val)
top.init(c,child)
queue.push(child)

Note that, as the base_search combinator is a base combinator, its exit message is im-
material (there is no child heuristic of base_search that could ever call it). The start
and init messages are empty. Many variants on and generalizations of the above im-
plementation are possible.

Depth-First Search Engine. The engine dfs serves as a pseudo-combinator at the top
of a combinator expression heuristic and serves as the heuristic’s immediate
parent as well. It maintains the queue of nodes, a stack in this case. The search starts
from a given root node by starting the heuristic with that node and then entering
it. Each time a node has been processed, new nodes may have been pushed onto the
queue. These are popped and entered successively.

An Introduction to Search Combinators 13

combinator dfs(heuristic)
start(root):

top=this
heuristic.parent=this
queue=new stack()
heuristic.start(root)
heuristic.enter(root)
while not queue.empty
heuristic.enter(queue.pop())

init(n,c):
heuristic.init(n,c)

The engine’s exit message is empty, the enter message is never called and the init
message delegates initialization to the heuristic.

Other engines may be formulated with different queuing strategies.

3.3 Combinator Composition

The idea of search combinators is to augment a base_search. We illustrate this with a
very simple print combinator that prints out every solution as it is found. For simplicity
we assume a solution is just a set of constraint variables vars that is supplied as a
parameter. Hence, we obtain the basic search setup with solution printing with:

dfs(print(vars,base_search(vars,strategy)))

Print. The print combinator is parametrized by a set of variables vars and a search
combinatorchild. Implicitly, in a composition, that child’s parent is set to the print
instance. The same holds for all following search combinators with one or more children.

The only message of interest for print is exit. When the exit status is success, the
combinator prints the variables and propagates the message to its parent.

combinator print (vars,child)
exit(c,status):

if status==success
print c.vars

parent.exit(c,status)

The other messages are omitted. Their behavior is default: they all propagate to the
child. The same holds for the omitted messages of following unary combinators.

We refer to [10] for the definitions of all the primitive search combinators.

4 Modular Combinator Implementation

The message-based combinator approach lends itself well to different implementation
strategies. In the following we briefly discuss two diametrically opposed approaches we
have explored:

14 T. Schrijvers et al.

Dynamic composition implements combinators as objects that can be combined arbi-
trarily at runtime. It therefore acts like an interpreter. This is a lightweight imple-
mentation, it can be ported quickly to different platforms, and it does not involve a
compilation step between the formulation and execution of a search heuristic.

Static composition uses a code generator to translate an entire combinator expression
into executable code. It is therefore a compiler for search combinators. This ap-
proach lends itself better to various kinds of analysis and optimization.

As both approaches are possible, combinators can be adapted to the implementation
choices of existing solvers. Experimental evaluation [10] has shown that both approaches
have competitive performance.

4.1 Dynamic Composition

To support dynamic composition, we have implemented our combinators as C++ classes
whose objects can be allocated and composed into a search specification at runtime.
The protocol events correspond to virtual method calls between these objects. For the
delegation mechanism from one object to another, we explicitly encode a form of dy-
namic inheritance called open recursion or mixin inheritance [7]. In contrast to the OOP
inheritance built into C++ and Java, this mixin inheritance provides two essential abili-
ties: 1) to determine the inheritance graph at runtime and 2) to use multiple copies of
the same combinator class at different points in the inheritance graph. In contrast, C++’s
built-in static inheritance provides neither.

The C++ library currently builds on top of the Gecode constraint solver [5]. However,
the solver is accessed through a layer of abstraction that is easily adapted to other solvers
(e.g., we have a prototype interface to the Gurobi MIP solver). The complete library
weighs in at around 2500 lines of code, which is even less than Gecode’s native search
and branching components.

4.2 Static Composition

In a second approach, also on top of Gecode, we statically compile a search specifica-
tion to a tight C++ loop. Again, every combinator is a separate module independent of
other combinator modules. A combinator module now does not directly implement the
combinator’s behavior. Instead it implements a code generator (in Haskell), which in
turn produces the C++ code with the expected behavior.

Hence, our search language compiler parses a search specification, and composes
(in mixin-style) the corresponding code generators. Then it runs the composite code
generator according to the message protocol. The code generators produce appropriate
C++ code fragments for the different messages, which are combined according to the
protocol into the monolithic C++ loop. This C++ code is further post-processed by the C++

compiler to yield a highly optimized executable.
As for dynamic composition, the mixin approach is crucial, allowing us to add more

combinators without touching the existing ones. At the same time we obtain with the
press of a button several 1000 lines of custom low-level code for the composition of just
a few combinators. In contrast, the development cost of hand crafted code is prohibitive.

An Introduction to Search Combinators 15

As the experiments in the next section will show, compiling the entire search
specification into an optimised executable achieves better performance than dynamic
composition. However, the dynamic approach has the big advantage of not requiring a
compilation step, which means that search specifications can be constructed at runtime,
as exemplified by the following application.

4.3 Further Implementations

We are in the process of implementing the search combinators approach on three more
platforms:

MiniZinc. As a proof of concept and platform for experiments, we have integrated
search combinators into a complete MiniZinc toolchain:2 The toolchain comprises a
pre-compiler, which is necessary to support arbitrary expressions in annotations, such as
the condition expressions for an ifthenelse. The expressions are translated into standard
MiniZinc annotations that are understood by the FlatZinc interpreter. We extended the
Gecode FlatZinc interpreter to parse the search combinator annotation and construct the
corresponding heuristic using the Dynamic Composition approach described above.

Prolog. Our Tor library [13] implements a subset of the search message protocol in
Prolog. The library is currently available for SWI-Prolog [14] and B-Prolog [15], and
extends the capabilities of their respective finite domain solver libraries. Among others,
it provides all the search heuristics of ECLiPSe Prolog’s [4] search/6 predicate, but in
a fully compositional way. The library implements the dynamic approach supplemented
with load-time program specialization.

Scala. Desouter [16] has implemented a preliminary library of search combinators for
Scala [17] on the Java Virtual Machine. His implementation exploits Scala’s built-in
mixin mechanism (called traits) to further factorize the combinator implementations.
The library’s current backend is the JaCoP solver [18].

5 Conclusion

Search combinators provide a powerful high-level language for modeling complex
search heuristics. To make this approach useful in practice, the architecture matches the
modularity of the language with the modularity of the implementation. This relieves
system developers from a high implementation cost and yet, as experiments show, im-
poses no runtime penalty.

Acknowledgements. NICTA is funded by the Australian Government as represented
by the Department of Broadband, Communications and the Digital Economy and the
Australian Research Council. This work was partially supported by Asian Office of
Aerospace Research and Development grant 10-4123.

2 The source code including examples can be downloaded from
http://www.gecode.org/flatzinc.html

http://www.gecode.org/flatzinc.html

16 T. Schrijvers et al.

References

1. Van Hentenryck, P., Perron, L., Puget, J.F.: Search and strategies in OPL. ACM TOCL 1(2),
285–315 (2000)

2. Van Hentenryck, P., Michel, L.: Constraint-Based Local Search. MIT Press (2005)
3. Marriott, K., Nethercote, N., Rafeh, R., Stuckey, P., Garcia de la Banda, M., Wallace, M.:

The design of the Zinc modelling language. Constraints 13(3), 229–267 (2008)
4. Schimpf, J., Shen, K.: ECLiPSe – From LP to CLP. Theory and Practice of Logic Program-

ming 12(1-2), 127–156 (2012)
5. Schulte, C., et al.: Gecode, the generic constraint development environment (2009)

http://www.gecode.org/ (accessed November 2012)
6. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: MiniZinc: Towards

a standard CP modelling language. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp.
529–543. Springer, Heidelberg (2007)

7. Cook, W.R.: A denotational semantics of inheritance. PhD thesis, Brown University (1989)
8. Kiczales, G., Lamping, J., Menhdhekar, A., Maeda, C., Lopes, C., Loingtier, J.-M., Irwin,

J.: Aspect-oriented programming. In: Akşit, M., Matsuoka, S. (eds.) ECOOP 1997. LNCS,
vol. 1241, pp. 220–242. Springer, Heidelberg (1997)

9. Schrijvers, T., Tack, G., Wuille, P., Samulowitz, H., Stuckey, P.J.: Search combinators. In:
Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 774–788. Springer, Heidelberg (2011)

10. Schrijvers, T., Tack, G., Wuille, P., Samulowitz, H., Stuckey, P.: Search combinators. Con-
straints, 1–37 (2012)

11. Refalo, P.: Impact-based search strategies for constraint programming. In: Wallace, M. (ed.)
CP 2004. LNCS, vol. 3258, pp. 557–571. Springer, Heidelberg (2004)

12. Perron, L.: Search procedures and parallelism in constraint programming. In: Jaffar, J. (ed.)
CP 1999. LNCS, vol. 1713, pp. 346–361. Springer, Heidelberg (1999)

13. Schrijvers, T., Triska, M., Demoen, B.: Tor: Extensible search with hookable disjunction. In:
Principles and Practice of Declarative Programming, PPDP 2012. ACM (2012)

14. Wielemaker, J., Schrijvers, T., Triska, M., Lager, T.: SWI-Prolog. Theory and Practice of
Logic Programming 12(1-2), 67–96 (2012)

15. Zhou, N.F.: The language features and architecture of B-Prolog. Theory and Practice of Logic
Programming 12(1-2), 189–218 (2012)

16. Desouter, B.: Modular Search Heuristics in Scala. Master’s thesis, Ghent University (2012)
(in Dutch)

17. Cremet, V., Garillot, F., Lenglet, S., Odersky, M.: A core calculus for Scala type checking.
In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 1–23. Springer,
Heidelberg (2006)

18. Kuchcinski, K., Szymanek, R.: JaCoP - Java Constraint Programming solver (2012),
http://www.jacop.eu/ (accessed November 2012)

http://www.gecode.org/
http://www.jacop.eu/

	An Introduction to Search Combinators
	Introduction
	Status Quo
	Contributions
	Approach

	High-Level Search Language
	Basic Heuristics
	Combinators
	State Access and Manipulation

	Modular Combinator Design
	The Message Protocol
	Basic Setup
	Combinator Composition

	Modular Combinator Implementation
	Dynamic Composition
	Static Composition
	Further Implementations

	Conclusion
	References

