
Elvira Albert (Ed.)

 123

LN
CS

 7
84

4

22nd International Symposium, LOPSTR 2012
Leuven, Belgium, September 2012
Revised Selected Papers

Logic-Based
Program Synthesis
and Transformation

Lecture Notes in Computer Science 7844
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Elvira Albert (Ed.)

Logic-Based
Program Synthesis
and Transformation
22nd International Symposium, LOPSTR 2012
Leuven, Belgium, September 18-20, 2012
Revised Selected Papers

13

Volume Editor

Elvira Albert
Complutense University of Madrid
Department of Computer Science (DSIC)
Séneca Avenue 2
28040 Madrid, Spain
E-mail: elvira@fdi.ucm.es

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-38196-6 e-ISBN 978-3-642-38197-3
DOI 10.1007/978-3-642-38197-3
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2013936976

CR Subject Classification (1998): D.1.6, D.2.4-5, F.4.1, G.2.2, F.3, I.2.2-4, D.3.1,
F.1.1

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2013

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume contains a selection of the papers presented at the 22nd
International Symposium on Logic-Based Program Synthesis and Transforma-
tion (LOPSTR 2012) held during September 18-20, 2012, in Leuven. LOPSTR
2012 was co-located with PPDP 2012, the 14th International ACM SIGPLAN
Symposium on Principles and Practice of Declarative Programming.

Previous LOPSTR symposia were held in Odense (2011), Hagenberg (2010),
Coimbra (2009), Valencia (2008), Lyngby (2007), Venice (2006 and 1999),
London (2005 and 2000), Verona (2004), Uppsala (2003), Madrid (2002), Paphos
(2001), Manchester (1998, 1992, and 1991), Leuven (1997), Stockholm (1996),
Arnhem (1995), Pisa (1994), and Louvain-la-Neuve (1993). Information about
the conference can be found at: http://costa.ls.fi.upm.es/lopstr12/.

The aim of the LOPSTR series is to stimulate and promote international re-
search and collaboration in logic-basedprogramdevelopment. LOPSTR tradition-
ally solicits contributions, in any language paradigm, in the areas of specification,
synthesis, verification, analysis, optimization, specialization, security, certification,
applications and tools, program/model manipulation, and transformational tech-
niques. LOPSTR has a reputation for being a lively, friendly forum for presenting
and discussing work in progress. Formal proceedings are produced only after the
symposium so that authors can incorporate this feedback in the published papers.

In response to the call for papers, 27 contributions were submitted from 19
different countries. The Program Committee accepted four full papers for im-
mediate inclusion in the formal proceedings, and nine more papers were ac-
cepted after a revision and another round of reviewing. In addition to the
13 contributed papers, this volume includes the abstracts of the invited talks
by two outstanding researchers: one LOPSTR invited talk by Tom Schrijvers
(University of Ghent, Belgium) and a joint PPDP-LOPSTR invited talk by
Jürgen Giesl (RWTH Aachen, Germany).

I want to thank the Program Committee members, who worked diligently to
produce high-quality reviews for the submitted papers, as well as all the external
reviewers involved in the paper selection. I am very grateful the LOPSTR 2012
Conference Co-chairs, Daniel De Schreye and Gerda Janssens, and the local
organizers for the great job they did in preparing the conference. I also thank
Andrei Voronkov for his excellent EasyChair system that automates many of
the tasks involved in chairing a conference. Finally, I gratefully acknowledge the
sponsors of LOPSTR: The Association for Logic Programming and Fonds voor
Wetenschappelijk Onderzoek Vlaanderen.

March 2013 Elvira Albert

Organization

Program Committee

Elvira Albert Complutense University of Madrid, Spain
Sergio Antoy Portland State University, USA
Demis Ballis University of Udine, Italy
Henning Christiansen Roskilde University, Denmark
Michael Codish Ben-Gurion University of the Negev, Israel
Danny De Schreye K.U. Leuven, Belgium
Esra Erdem Sabanci University, Istanbul
Maribel Fernandez King’s College London, UK
Carsten Fuhs University College London, UK
John Gallagher Roskilde University, Denmark
Robert Glück University of Copenhagen, Denmark
Miguel Gomez-Zamalloa Complutense University of Madrid, Spain
Rémy Haemmerlé Technical University of Madrid, Spain
Geoff Hamilton Dublin City University, Ireland
Reiner Hähnle Technical University of Darmstadt, Germany
Gerda Janssens K.U. Leuven, Belgium
Isabella Mastroeni University of Verona, Italy
Kazutaka Matsuda University of Tokyo, Japan
Paulo Moura Universidade da Beira Interior, Portugal
Johan Nordlander Lule̊a University of Technology, Sweden
Andrey Rybalchenko Technische Universität München, Germany
Kostis Sagonas Uppsala University, Sweden
Francesca Scozzari Università “G. D’Annunzio” di Chieti, Italy
Valerio Senni Universtà di Roma “Tor Vergata”, Italy
German Vidal Technical University of Valencia, Spain

Additional Reviewers

Amtoft, Torben
De Angelis, Emanuele
Fioravanti, Fabio
Grossniklaus, Michael

Hentschel, Martin
Nigam, Vivek
Nogueira, Vitor
Riesco, Adrian

Table of Contents

Symbolic Evaluation Graphs and Term Rewriting — A General
Methodology for Analyzing Logic Programs (Abstract) 1

Jürgen Giesl, Thomas Ströder, Peter Schneider-Kamp,
Fabian Emmes, and Carsten Fuhs

An Introduction to Search Combinators . 2
Tom Schrijvers, Guido Tack, Pieter Wuille, Horst Samulowitz, and
Peter J. Stuckey

A Declarative Pipeline Language for Complex Data Analysis 17
Henning Christiansen, Christian Theil Have, Ole Torp Lassen, and
Matthieu Petit

Semantic Code Clones in Logic Programs . 35
Céline Dandois and Wim Vanhoof

Specialization with Constrained Generalization for Software Model
Checking . 51

Emanuele De Angelis, Fabio Fioravanti, Alberto Pettorossi, and
Maurizio Proietti

Enhancing Declarative Debugging with Loop Expansion and Tree
Compression . 71

David Insa, Josep Silva, and César Tomás

XACML 3.0 in Answer Set Programming . 89
Carroline Dewi Puspa Kencana Ramli, Hanne Riis Nielson, and
Flemming Nielson

Types vs. PDGs in Information Flow Analysis . 106
Heiko Mantel and Henning Sudbrock

Galliwasp: A Goal-Directed Answer Set Solver . 122
Kyle Marple and Gopal Gupta

Computing More Specific Versions of Conditional Rewriting Systems . . . 137
Naoki Nishida and Germán Vidal

Improving Determinization of Grammar Programs for Program
Inversion . 155

Minami Niwa, Naoki Nishida, and Masahiko Sakai

X Table of Contents

A Framework for Guided Test Case Generation in Constraint Logic
Programming . 176

José Miguel Rojas and Miguel Gómez-Zamalloa

Simplifying the Verification of Quantified Array Assertions via Code
Transformation . 194

Mohamed Nassim Seghir and Martin Brain

Proving Properties of Co-logic Programs with Negation by Program
Transformations . 213

Hirohisa Seki

Program Analysis and Manipulation to Reproduce Learners’ Erroneous
Reasoning . 228

Claus Zinn

Author Index . 245

Symbolic Evaluation Graphs

and Term Rewriting — A General Methodology
for Analyzing Logic Programs�

(Abstract)

Jürgen Giesl1, Thomas Ströder1, Peter Schneider-Kamp2,
Fabian Emmes1, and Carsten Fuhs3

1 LuFG Informatik 2, RWTH Aachen University, Germany
2 Dept. of Mathematics and Computer Science, University of Southern Denmark

3 Dept. of Computer Science, University College London, UK

There exist many powerful techniques to analyze termination and complexity of
term rewrite systems (TRSs). Our goal is to use these techniques for the anal-
ysis of other programming languages as well. For instance, approaches to prove
termination of definite logic programs by a transformation to TRSs have been
studied for decades. However, a challenge is to handle languages with more com-
plex evaluation strategies (such as Prolog, where predicates like the cut influence
the control flow).

We present a general methodology for the analysis of such programs. Here,
the logic program is first transformed into a symbolic evaluation graph which
represents all possible evaluations in a finite way. Afterwards, different analyses
can be performed on these graphs. In particular, one can generate TRSs from
such graphs and apply existing tools for termination or complexity analysis of
TRSs to infer information on the termination or complexity of the original logic
program.

More information can be found in the full paper [1].

Reference

1. Giesl, J., Ströder, T., Schneider-Kamp, P., Emmes, F., Fuhs, C.: Symbolic evaluation
graphs and term rewriting — a general methodology for analyzing logic programs.
In: Proc. PPDP 2012, pp. 1–12. ACM Press (2012)

� Supported by the DFG under grant GI 274/5-3, the DFG Research Training Group
1298 (AlgoSyn), and the Danish Council for Independent Research, Natural Sciences.

E. Albert (Ed.): LOPSTR 2012, LNCS 7844, p. 1, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

An Introduction to Search Combinators

Tom Schrijvers1, Guido Tack2, Pieter Wuille1,3,
Horst Samulowitz4, and Peter J. Stuckey5

1 Universiteit Gent, Belgium
{tom.schrijvers,pieter.wuille}@ugent.be

2 National ICT Australia (NICTA) and Monash University, Victoria, Australia
guido.tack@monash.edu

3 Katholieke Universiteit Leuven, Belgium
pieter.wuille@cs.kuleuven.be

4 IBM Research, New York, USA
samulowitz@us.ibm.com

5 National ICT Australia (NICTA) and University of Melbourne, Victoria, Australia
pjs@cs.mu.oz.au

Abstract. The ability to model search in a constraint solver can be an essen-
tial asset for solving combinatorial problems. However, existing infrastructure
for defining search heuristics is often inadequate. Either modeling capabilities
are extremely limited or users are faced with a general-purpose programming
language whose features are not tailored towards writing search heuristics. As a
result, major improvements in performance may remain unexplored.

This article introduces search combinators, a lightweight and solver-
independent method that bridges the gap between a conceptually simple model-
ing language for search (high-level, functional and naturally compositional) and
an efficient implementation (low-level, imperative and highly non-modular). By
allowing the user to define application-tailored search strategies from a small set
of primitives, search combinators effectively provide a rich domain-specific lan-
guage (DSL) for modeling search to the user. Remarkably, this DSL comes at a
low implementation cost to the developer of a constraint solver.

1 Introduction

Search heuristics often make all the difference between effectively solving a combi-
natorial problem and utter failure. Heuristics make a search algorithm efficient for a
variety of reasons, e.g., incorporation of domain knowledge, or randomization to avoid
heavy-tailed runtimes. Hence, the ability to swiftly design search heuristics that are tai-
lored towards a problem domain is essential for performance. This article introduces
search combinators, a versatile, modular, and efficiently implementable language for
expressing search heuristics.

1.1 Status Quo

In CP, much attention has been devoted to facilitating the modeling of combinatorial
problems. A range of high-level modeling languages, such as OPL [1], Comet [2],

E. Albert (Ed.): LOPSTR 2012, LNCS 7844, pp. 2–16, 2013.
© Springer-Verlag Berlin Heidelberg 2013

An Introduction to Search Combinators 3

or Zinc [3], enable quick development and exploration of problem models. But there
is substantially less support for high-level specification of accompanying search heuris-
tics. Most languages and systems, e.g. ECLiPSe [4], Gecode [5], Comet [2], or MiniZ-
inc [6], provide a set of predefined heuristics “off the shelf”. Many systems also support
user-defined search based on a general-purpose programming language (e.g., all of the
above systems except MiniZinc). The former is clearly too confining, while the latter
leaves much to be desired in terms of productivity, since implementing a search heuris-
tic quickly becomes a non-negligible effort. This also explains why the set of predefined
heuristics is typically small: it takes a lot of time for CP system developers to implement
heuristics, too – time they would much rather spend otherwise improving their system.

1.2 Contributions

In this article we show how to resolve this stand-off between solver developers and
users, by introducing a domain-specific modular search language based on combinators,
as well as a modular, extensible implementation architecture.

For the User, we provide a modeling language for expressing complex search heuris-
tics based on an (extensible) set of primitive combinators. Even if the users are only
provided with a small set of combinators, they can already express a vast range of
combinations. Moreover, using combinators to program application-tailored search
is vastly more productive than resorting to a general-purpose language.

For the System Developer, we show how to design and implement modular combina-
tors. The modularity of the language thus carries over directly to modularity of the
implementation. Developers do not have to cater explicitly for all possible combi-
nator combinations. Small implementation efforts result in providing the user with
a lot of expressive power. Moreover, the cost of adding one more combinator is
small, yet the return in terms of additional expressiveness can be quite large.

The technical challenge is to bridge the gap between a conceptually simple search lan-
guage and an efficient implementation, which is typically low-level, imperative and
highly non-modular. This is where existing approaches are weak; either the expres-
siveness is limited, or the approach to search is tightly tied to the underlying solver
infrastructure.

The contribution is therefore the novel design of an expressive, high-level, composi-
tional search language with an equally modular, extensible, and efficient implementa-
tion architecture.

1.3 Approach

We overcome the modularity challenge by implementing the primitives of our search
language as mixin components [7]. As in Aspect-Oriented Programming [8], mixin
components neatly encapsulate the cross-cutting behavior of primitive search concepts,
which are highly entangled in conventional approaches. Cross-cutting means that a
mixin component can interfere with the behavior of its sub-components (in this case,
sub-searches). The combination of encapsulation and cross-cutting behavior is essential

4 T. Schrijvers et al.

s ::= prune | ifthenelse(cond,s1,s2)
prunes the node perform s1 until cond is false, then perform s2

| base_search(vars,var-select,domain-split) | and([s1,s2, . . . ,sn])
label perform s1, on success s2 otherwise fail, . . .

| let(v,e,s) | or([s1,s2, . . . ,sn])
introduce new variable v with perform s1, on termination start s2, . . .
initial value e, then perform s | portfolio([s1,s2, . . . ,sn])

| assign(v,e) perform s1, if not exhaustive start s2, . . .
assign e to variable v and succeed | restart(cond,s)

| post(c,s) restart s as long as cond holds
post constraint c at every node during s

Fig. 1. Catalog of primitive search heuristics and combinators

for systematic reuse of search combinators. Without this degree of modularity, minor
modifications require rewriting from scratch.

An added advantage of mixin components is extensibility. We can add new features
to the language by adding more mixin components. The cost of adding such a new
component is small, because it does not require changes to the existing ones. Moreover,
experimental evaluation bears out that this modular approach has no significant over-
head compared to the traditional monolithic approach. Finally, our approach is solver-
independent and therefore makes search combinators a potential standard for designing
search.

This article provides on overview of the work on search combinators, that appeared
in the proceedings of the 17th International Conference on Principles and Practice of
Constraint Programming (CP) 2011 [9] and the Special Issue on Modeling and Refor-
mulation of the Constraints journal [10].

2 High-Level Search Language

This section introduces the syntax of our high-level search language and illustrates its
expressive power and modularity by means of examples. The rest of the article then
presents an architecture that maps the modularity of the language down to the imple-
mentation level.

The search language is used to define a search heuristic, which a search engine ap-
plies to each node of the search tree. For each node, the heuristic determines whether to
continue search by creating child nodes, or to prune the tree at that node. The queuing
strategy, i.e., the strategy by which new nodes are selected for further search (such as
depth-first traversal), is determined separately by the search engine, it is thus orthogo-
nal to the search language. The search language features a number of primitives, listed
in the catalog of Fig. 1. These are the building blocks in terms of which more complex
heuristics can be defined, and they can be grouped into basic heuristics (base_search
and prune), combinators (ifthenelse, and, or, portfolio, and restart), and state manage-
ment (let, assign, post). This section introduces the three groups of primitives in turn.

For many users, the given primitives will represent a simple and at the same time suf-
ficiently expressive language that allows them to implement complex, problem-specific

An Introduction to Search Combinators 5

search heuristics. The examples in this section show how versatile this base language is.
However, we emphasize that the catalog of primitives is open-ended. Advanced users
may need to add new, problem-specific primitives, and Sect. 3 explains how the lan-
guage implementation explicitly supports this.

The concrete syntax we chose for presentation uses simple nested terms, which
makes it compatible with the annotation language of MiniZinc [6]. However, other
concrete syntax forms are easily supported (e.g., we support C++ and Haskell).

2.1 Basic Heuristics

Let us first discuss the two basic primitives, base_search and prune.

base_search. The most widely used method for specifying a basic heuristic for a
constraint problem is to define it in terms of a variable selection strategy which picks
the next variable to constrain, and a domain splitting strategy which splits the set of
possible values of the selected variable into two (or more) disjoint sets.

The CP community has spent a considerable amount of work on defining and ex-
ploring many such variable selection and domain splitting heuristics. The provision of
a flexible language for defining new basic searches is an interesting problem in its own
right, but in this article we concentrate on search combinators that combine and modify
basic searches.

To this end, our search language provides the primitive base_search(vars, var-
select, domain-split), which specifies a systematic search. If any of the variables vars
are still not fixed at the current node, it creates child nodes according to var-select and
domain-split as variable selection and domain splitting strategies respectively.

Note that base_search is a CP-specific primitive; other kinds of solvers provide
their own search primitives. The rest of the search language is essentially solver-inde-
pendent. While the solver provides few basic heuristics, the search language adds great
expressive power by allowing these to be combined arbitrarily using combinators.

prune. The second basic primitive, prune, simply cuts the search tree below the current
node. Obviously, this primitive is useless on its own, but we will see shortly how prune
can be used together with combinators.

2.2 Combinators

The expressive power of the search language relies on combinators, which combine
search heuristics (which can be basic or themselves constructed using combinators)
into more complex heuristics.

and/or. Probably the most widely used combination of heuristics is sequential compo-
sition. For instance, it is often useful to first label one set of problem variables before
starting to label a second set. The following heuristic uses the and combinator to first
label all the xs variables using a first-fail strategy, followed by the ys variables with a
different strategy:

6 T. Schrijvers et al.

s1

s2

and([s1, s2]) or([s1, s2])

s1 s2

if(c, s1, s2)

¬c

s2

s1
c

c

c

s1 s1

s1

s1 s2

portfolio([s1, s2, s3])

s s s s

c c c c

restart(c, s)

s s s

c c c ¬c

1) 2)

3) 4)

5)

Fig. 2. Primitive combinators

and([base_search(xs,firstfail,min),
base_search(ys,smallest,max)])

As you can see in Fig. 1, the and combinator accepts a list of searches s1, . . . ,sn, and
performs their and-sequential composition. And-sequential means, intuitively, that so-
lutions are found by performing all the sub-searches sequentially down one branch of
the search tree, as illustrated in Fig. 2.1.

The dual combinator, or([s1, . . . ,sn]), performs a disjunctive combination of its sub-
searches – a solution is found using any of the sub-searches (Fig. 2.2), trying them in
the given order.

Statistics and ifthenelse. The ifthenelse combinator is centered around a conditional
expression cond. As long as cond is true for the current node, the sub-search s1 is used.
Once cond is false, s2 is used for the complete subtree below the current node (see
Fig. 2.3).

We do not specify the expression language for conditions in detail, we simply as-
sume that it comprises the typical arithmetic and comparison operators and literals that
require no further explanation. It is notable though that the language can refer to the
constraint variables and parameters of the underlying model. Additionally, a condition
may refer to one or more statistics variables. Such statistics are collected for the dura-
tion of a subsearch until the condition is met. For instance ifthenelse(depth < 10,s1,s2)

An Introduction to Search Combinators 7

maintains the search depth statistic during subsearch s1. At depth 10, the ifthenelse
combinator switches to subsearch s2.

We distinguish two forms of statistics: Local statistics such as depth and discrepan-
cies express properties of individual nodes. Global statistics such as number of explored
nodes, encountered failures, solution, and time are computed for entire search trees.

It is worthwhile to mention that developers (and advanced users) can also define
their own statistics, just like combinators, to complement any predefined ones. In fact,
Sect. 3 will show that statistics can be implemented as a subtype of combinators that
can be queried for the statistic’s value.

Abstraction. Our search language draws its expressive power from the combination
of primitive heuristics using combinators. An important aspect of the search language
is abstraction: the ability to create new combinators by effectively defining macros in
terms of existing combinators.

For example, we can define the limiting combinator limit(cond,s) to perform s while
condition cond is satisfied, and otherwise cut the search tree using prune:

limit(cond,s)≡ ifthenelse(cond,s,prune)

The once(s) combinator, well-known in Prolog as once/1, is a special case of the
limiting combinator where the number of solutions is less than one. This is simply
achieved by maintaining and accessing the solutions statistic:

once(s)≡ limit(solutions < 1,s)

Exhaustiveness and portfolio/restart. The behavior of the final two combinators,
portfolio and restart, depends on whether their sub-search was exhaustive. Exhaustive-
ness simply means that the search has explored the entire subtree without ever invoking
the prune primitive.

The portfolio([s1, . . . ,sn]) combinator performs s1 until it has explored the whole
subtree. If s1 was exhaustive, i.e., if it did not call prune during the exploration of the
subtree, the search is finished. Otherwise, it continues with portfolio([s2, . . . ,sn]). This
is illustrated in Fig. 2.4, where the subtree of s1 represents a non-exhaustive search, s2

is exhaustive and therefore s3 is never invoked.
An example for the use of portfolio is the hotstart(cond,s1,s2) combinator. It per-

forms search heuristic s1 while condition cond holds to initialize global parameters for
a second search s2. This heuristic can for example be used to initialize the widely applied
Impact heuristic [11]. Note that we assume here that the parameters to be initialized are
maintained by the underlying solver, so we omit an explicit reference to them.

hotstart(cond,s1,s2)≡ portfolio([limit(cond,s1),s2])

The restart(cond,s) combinator repeatedly runs s in full. If s was not exhaustive, it is
restarted, until condition cond no longer holds. Fig. 2.5 shows the two cases, on the left
terminating with an exhaustive search s, on the right terminating because cond is no
longer true.

The following implements random restarts, where search is stopped after 1000 fail-
ures and restarted with a random strategy:

8 T. Schrijvers et al.

restart(true, limit(failures < 1000,base_search(xs, randomvar, randomval)))

Clearly, this strategy has a flaw: If it takes more than 1000 failures to find the solution,
the search will never finish. We will shortly see how to fix this by introducing user-
defined search variables.

The prune primitive is the only source of non-exhaustiveness. Combinators propa-
gate exhaustiveness in the obvious way:

– and([s1, . . . ,sn]) is exhaustive if all si are
– or([s1, . . . ,sn]) is exhaustive if all si are
– portfolio([s1, . . . ,sn]) is exhaustive if one si is
– restart(cond,s) is exhaustive if the last iteration is
– ifthenelse(cond,s1,s2) is exhaustive if, whenever cond is true, then s1 is, and,

whenever cond is false, then s2 is

2.3 State Access and Manipulation

The remaining three primitives, let, assign, and post, are used to access and manipulate
the state of the search:

– let(v,e,s) introduces a new search variable v with initial value of the expression e
and visible in the search s, then continues with s. Note that search variables are
distinct from the decision variables of the model.

– assign(v,e): assigns the value of the expression e to search variable v and succeeds.
– post(c,s): provides access to the underlying constraint solver, posting a constraint

c at every node during s. If s is omitted, it posts the constraint and immediately
succeeds.

These primitives add a great deal of expressiveness to the language, as the following
examples demonstrate.

Random Restarts: Let us reconsider the example using random restarts from the pre-
vious section, which suffered from incompleteness because it only ever explored 1000
failures. A standard way to make this strategy complete is to increase the limit geomet-
rically with each iteration:

geom_restart(s)≡ let(maxfails,100,
restart(true,portfolio([limit(failures < maxfails,s),

and([assign(maxfails,maxfails∗ 1.5),
prune])]))

The search initializes the search variable maxfails to 100, and then calls search s with
maxfails as the limit. If the search is exhaustive, both the portfolio and the restart com-
binators are finished. If the search is not exhaustive, the limit is multiplied by 1.5, and
the search starts over. Note that assign succeeds, so we need to call prune afterwards in
order to propagate the non-exhaustiveness of s to the restart combinator.

An Introduction to Search Combinators 9

combinator
1

combinator
2

combinator
n-1

combinator
n

exit(p,status)

enter(p)
for every child c

init(p,c)

start(r)

Fig. 3. The modular message protocol

Other Heuristics. Many more heuristics can be implemented with the primitive com-
binators: branch-and-bound, restarting branch-and-bound, limited discrepancy search,
iterative deepening, dichotomic search, . . . See [10] for the details of these heuristics.

3 Modular Combinator Design

The previous section caters for the user’s needs, presenting a high-level modular syntax
for our combinator-based search language. To cater for advanced users’ and system de-
velopers’ needs, this section goes beyond modularity of syntax, introducing modularity
of design.

Modularity of design is the one property that makes our approach practical. Each com-
binator corresponds to a separate module that has a meaning and an implementation
independent of the other combinators. This enables us to actually realize the search
specifications defined by modular syntax.

Solver independence is another notable property of our approach. While a few combi-
nators access solver-specific functionality (e.g., base_search and post), the approach
as such and most combinators listed in Fig. 1 are in fact generic (solver- and even CP-
independent); their design and implementation is reusable.

In the following we explain our design in detail by means of code implementations
of most of the primitive combinators we have covered in the previous section.

3.1 The Message Protocol

To obtain a modular design of search combinators we step away from the idea that
the behavior of a search combinator, like the and combinator, forms an indivisible

10 T. Schrijvers et al.

whole; this leaves no room for interaction. The key insight here is that we must iden-
tify finer-grained steps, defining how different combinators interact at each node in the
search tree. Interleaving these finer-grained steps of different combinators in an appro-
priate manner yields the composite behavior of the overall search heuristic, where each
combinator is able to cross-cut the others’ behavior.

Considering the diversity of combinators and the fact that not all units of behavior
are explicitly present in all of them, designing this protocol of interaction is non-trivial.
It requires studying the intended behavior and interaction of combinators to isolate the
fine-grained units of behavior and the manner of interaction. The contribution of this
section is an elegant and conceptually uniform design that is powerful enough to express
all the combinators presented in this article.

The Messages. We present this design in the form of a message protocol. The protocol
specifies a set of messages (i.e., an interface with one procedure for each fine-grained
step) that have to be implemented by all combinators. In pseudo-code, this protocol for
combinators consists of four different messages:

protocol combinator
start(rootNode);
enter(currentNode);
exit(currentNode,status);
init(parentNode,childNode);

The protocol concerns the dynamic behavior of a search combinator. A single static
occurrence of a search combinator in a search heuristic may have zero or more dynamic
life cycles. During a life cycle, the combinator observes and influences the search of a
particular subtree of the overall search tree.

– The message start(rootNode) starts up a new life cycle of a combinator for the
subtree rooted at rootNode. The typical implementation of this message allocates
and initializes data for the life cycle.

– The message enter(currentNode) notifies the combinator of the fact that the
node currentNode of its subtree is currently active. At this point the combinator
may for instance decide to prune it.

– The message exit(currentNode,status) informs the combinator that the
currently active node currentNode is a leaf node of its subtree. The node’s status
is one of failure, success or abort which denote respectively an inconsistent
node, a solution and a pruned node.

– The message init(parentNode,childNode) registers with the combinator
the node childNode as a child node of the currently active node parentNode.

Typically, during a life cycle, a combinator sees every node three times. The first time
the node is included in the life cycle, either as a root with start or as the child of
another node with init. The second time the node is processed with enter. The last
time the node processing has determined that the node is either a leaf with exit or the
parent of one or more other nodes with init.

An Introduction to Search Combinators 11

The Nodes. All of the message signatures specify one or two search tree nodes as pa-
rameters. Each such node keeps track of a solver State and the information associated
by combinators to that State.

We observe three different access patterns of nodes:

1. In keeping with the solver independence stipulated above, we will see that most
combinators only query and update their associated information and do not access
the underlying solver State at all.

2. Restarting-based combinators, like restart and portfolio, copy nodes. This
means copying the solver’s State representation and all associated information
for later restoration.

3. Finally, selected solver-specific combinators like base_search do perform solver-
specific operations on the underlying State, like querying variable domains and
posting constraints.

The Calling Hierarchy. In addition to the message signatures, the protocol also stipu-
lates in what order the messages are sent among the combinators (see Fig. 3). While in
general a combinator composition is tree-shaped, the processing of any single search
tree node p only involves a stack of combinators. For example, given or([and1([s1,s2]),
and2([s3,s4])]),1 p is included in life cycles of [or,and1,s1], [or,and1,s2], [or,and2,s3]
or [or,and2,s4]. We also say that the particular stack is active at node p. The picture
shows this stack of active combinators on the left.

Every combinator in the stack has both a super-combinator above and a sub-
combinator below, except for the top and the bottom combinators. The bottom is always
a basic heuristic (base_search, prune, assign, or post). The important aspect to take
away from the picture is the direction of the four different messages, either top-down
or bottom-up.

The protocol initializes search by sending the start(root) message, where root
is the root of the overall search tree, to the topmost combinator. This topmost combi-
nator decides what child combinator to forward the message to, that child combinator
propagates it to one of its children and so on, until a full stack of combinators is initial-
ized.

Next, starting from the root node, nodes are processed in a loop. The enter(node)
message is passed down through the stack of combinator stack to the primitive heuris-
tic at the bottom, which determines whether the node is a leaf or has children. In the
former case, the primitive heuristic passes the exit(node,status) message up. In
the latter case, it passes the init(node,child) message down from the top for each
child. These child nodes are added to the queue that fuels the loop. At any point, in-
termediate combinators can decide not to forward messages literally, but to alter them
instead (e.g., to change the status of a leaf from success to abort), or to initiate a
different message flow (e.g. to start a new subtree).

3.2 Basic Setup

Before we delve into the interesting search combinators, we first present an example
implementation of the basic setup consisting of a base search (base_search) and a

1 The left and right and are subscripted to distinguish them.

12 T. Schrijvers et al.

search engine (dfs). This allows us to express overall search specifications of the form:
dfs(base_search(vars,var-select,domain-split)).

Base Search. We do not provide full details on a base_search combinator, as it is not
the focus of this article. However, we will point out the aspects relevant to our protocol.

The first line of base_search’s implementation expresses two facts. Firstly, it states
that the base_search implements the combinator protocol. Secondly, its constructor
has three parameters (vars, var-select, domain-select) that can be referred to
in its message implementations.

In the enter message, the node’s solver state is propagated. Subsequently, the con-
dition isLeaf(c,vars) checks whether the solver state is unsatisfiable or there are
no more variables to assign. If either is the case, the exit status (respectively failure
or success) is sent to the parent combinator. For now, the parent combinator is
just the search engine, but later we will see how how other combinators can be inserted
between the search engine and the base search.

If neither is the case, the search branches depending on the variable selection and
domain splitting strategies. This involves creating a child node for each branch, deter-
mining the variable and value for that child and posting the assignment to the child’s
state. Then, the top combinator (i.e., the engine) is asked to initialize the child node.
Finally the child node is pushed onto the search queue.

combinator base_search(vars,var-select,domain-select)
enter(c):

c.propagate
if isLeaf(c,vars)
parent.exit(c,leafstatus(c))

pos = ... // from vars based on var-select
for each child: // based on domain-select
val = ... // based on domain-select
child.post(vars[pos]=val)
top.init(c,child)
queue.push(child)

Note that, as the base_search combinator is a base combinator, its exit message is im-
material (there is no child heuristic of base_search that could ever call it). The start
and init messages are empty. Many variants on and generalizations of the above im-
plementation are possible.

Depth-First Search Engine. The engine dfs serves as a pseudo-combinator at the top
of a combinator expression heuristic and serves as the heuristic’s immediate
parent as well. It maintains the queue of nodes, a stack in this case. The search starts
from a given root node by starting the heuristic with that node and then entering
it. Each time a node has been processed, new nodes may have been pushed onto the
queue. These are popped and entered successively.

An Introduction to Search Combinators 13

combinator dfs(heuristic)
start(root):

top=this
heuristic.parent=this
queue=new stack()
heuristic.start(root)
heuristic.enter(root)
while not queue.empty
heuristic.enter(queue.pop())

init(n,c):
heuristic.init(n,c)

The engine’s exit message is empty, the enter message is never called and the init
message delegates initialization to the heuristic.

Other engines may be formulated with different queuing strategies.

3.3 Combinator Composition

The idea of search combinators is to augment a base_search. We illustrate this with a
very simple print combinator that prints out every solution as it is found. For simplicity
we assume a solution is just a set of constraint variables vars that is supplied as a
parameter. Hence, we obtain the basic search setup with solution printing with:

dfs(print(vars,base_search(vars,strategy)))

Print. The print combinator is parametrized by a set of variables vars and a search
combinatorchild. Implicitly, in a composition, that child’s parent is set to the print
instance. The same holds for all following search combinators with one or more children.

The only message of interest for print is exit. When the exit status is success, the
combinator prints the variables and propagates the message to its parent.

combinator print (vars,child)
exit(c,status):

if status==success
print c.vars

parent.exit(c,status)

The other messages are omitted. Their behavior is default: they all propagate to the
child. The same holds for the omitted messages of following unary combinators.

We refer to [10] for the definitions of all the primitive search combinators.

4 Modular Combinator Implementation

The message-based combinator approach lends itself well to different implementation
strategies. In the following we briefly discuss two diametrically opposed approaches we
have explored:

14 T. Schrijvers et al.

Dynamic composition implements combinators as objects that can be combined arbi-
trarily at runtime. It therefore acts like an interpreter. This is a lightweight imple-
mentation, it can be ported quickly to different platforms, and it does not involve a
compilation step between the formulation and execution of a search heuristic.

Static composition uses a code generator to translate an entire combinator expression
into executable code. It is therefore a compiler for search combinators. This ap-
proach lends itself better to various kinds of analysis and optimization.

As both approaches are possible, combinators can be adapted to the implementation
choices of existing solvers. Experimental evaluation [10] has shown that both approaches
have competitive performance.

4.1 Dynamic Composition

To support dynamic composition, we have implemented our combinators as C++ classes
whose objects can be allocated and composed into a search specification at runtime.
The protocol events correspond to virtual method calls between these objects. For the
delegation mechanism from one object to another, we explicitly encode a form of dy-
namic inheritance called open recursion or mixin inheritance [7]. In contrast to the OOP
inheritance built into C++ and Java, this mixin inheritance provides two essential abili-
ties: 1) to determine the inheritance graph at runtime and 2) to use multiple copies of
the same combinator class at different points in the inheritance graph. In contrast, C++’s
built-in static inheritance provides neither.

The C++ library currently builds on top of the Gecode constraint solver [5]. However,
the solver is accessed through a layer of abstraction that is easily adapted to other solvers
(e.g., we have a prototype interface to the Gurobi MIP solver). The complete library
weighs in at around 2500 lines of code, which is even less than Gecode’s native search
and branching components.

4.2 Static Composition

In a second approach, also on top of Gecode, we statically compile a search specifica-
tion to a tight C++ loop. Again, every combinator is a separate module independent of
other combinator modules. A combinator module now does not directly implement the
combinator’s behavior. Instead it implements a code generator (in Haskell), which in
turn produces the C++ code with the expected behavior.

Hence, our search language compiler parses a search specification, and composes
(in mixin-style) the corresponding code generators. Then it runs the composite code
generator according to the message protocol. The code generators produce appropriate
C++ code fragments for the different messages, which are combined according to the
protocol into the monolithic C++ loop. This C++ code is further post-processed by the C++

compiler to yield a highly optimized executable.
As for dynamic composition, the mixin approach is crucial, allowing us to add more

combinators without touching the existing ones. At the same time we obtain with the
press of a button several 1000 lines of custom low-level code for the composition of just
a few combinators. In contrast, the development cost of hand crafted code is prohibitive.

An Introduction to Search Combinators 15

As the experiments in the next section will show, compiling the entire search
specification into an optimised executable achieves better performance than dynamic
composition. However, the dynamic approach has the big advantage of not requiring a
compilation step, which means that search specifications can be constructed at runtime,
as exemplified by the following application.

4.3 Further Implementations

We are in the process of implementing the search combinators approach on three more
platforms:

MiniZinc. As a proof of concept and platform for experiments, we have integrated
search combinators into a complete MiniZinc toolchain:2 The toolchain comprises a
pre-compiler, which is necessary to support arbitrary expressions in annotations, such as
the condition expressions for an ifthenelse. The expressions are translated into standard
MiniZinc annotations that are understood by the FlatZinc interpreter. We extended the
Gecode FlatZinc interpreter to parse the search combinator annotation and construct the
corresponding heuristic using the Dynamic Composition approach described above.

Prolog. Our Tor library [13] implements a subset of the search message protocol in
Prolog. The library is currently available for SWI-Prolog [14] and B-Prolog [15], and
extends the capabilities of their respective finite domain solver libraries. Among others,
it provides all the search heuristics of ECLiPSe Prolog’s [4] search/6 predicate, but in
a fully compositional way. The library implements the dynamic approach supplemented
with load-time program specialization.

Scala. Desouter [16] has implemented a preliminary library of search combinators for
Scala [17] on the Java Virtual Machine. His implementation exploits Scala’s built-in
mixin mechanism (called traits) to further factorize the combinator implementations.
The library’s current backend is the JaCoP solver [18].

5 Conclusion

Search combinators provide a powerful high-level language for modeling complex
search heuristics. To make this approach useful in practice, the architecture matches the
modularity of the language with the modularity of the implementation. This relieves
system developers from a high implementation cost and yet, as experiments show, im-
poses no runtime penalty.

Acknowledgements. NICTA is funded by the Australian Government as represented
by the Department of Broadband, Communications and the Digital Economy and the
Australian Research Council. This work was partially supported by Asian Office of
Aerospace Research and Development grant 10-4123.

2 The source code including examples can be downloaded from
http://www.gecode.org/flatzinc.html

http://www.gecode.org/flatzinc.html

16 T. Schrijvers et al.

References

1. Van Hentenryck, P., Perron, L., Puget, J.F.: Search and strategies in OPL. ACM TOCL 1(2),
285–315 (2000)

2. Van Hentenryck, P., Michel, L.: Constraint-Based Local Search. MIT Press (2005)
3. Marriott, K., Nethercote, N., Rafeh, R., Stuckey, P., Garcia de la Banda, M., Wallace, M.:

The design of the Zinc modelling language. Constraints 13(3), 229–267 (2008)
4. Schimpf, J., Shen, K.: ECLiPSe – From LP to CLP. Theory and Practice of Logic Program-

ming 12(1-2), 127–156 (2012)
5. Schulte, C., et al.: Gecode, the generic constraint development environment (2009)

http://www.gecode.org/ (accessed November 2012)
6. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: MiniZinc: Towards

a standard CP modelling language. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp.
529–543. Springer, Heidelberg (2007)

7. Cook, W.R.: A denotational semantics of inheritance. PhD thesis, Brown University (1989)
8. Kiczales, G., Lamping, J., Menhdhekar, A., Maeda, C., Lopes, C., Loingtier, J.-M., Irwin,

J.: Aspect-oriented programming. In: Akşit, M., Matsuoka, S. (eds.) ECOOP 1997. LNCS,
vol. 1241, pp. 220–242. Springer, Heidelberg (1997)

9. Schrijvers, T., Tack, G., Wuille, P., Samulowitz, H., Stuckey, P.J.: Search combinators. In:
Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 774–788. Springer, Heidelberg (2011)

10. Schrijvers, T., Tack, G., Wuille, P., Samulowitz, H., Stuckey, P.: Search combinators. Con-
straints, 1–37 (2012)

11. Refalo, P.: Impact-based search strategies for constraint programming. In: Wallace, M. (ed.)
CP 2004. LNCS, vol. 3258, pp. 557–571. Springer, Heidelberg (2004)

12. Perron, L.: Search procedures and parallelism in constraint programming. In: Jaffar, J. (ed.)
CP 1999. LNCS, vol. 1713, pp. 346–361. Springer, Heidelberg (1999)

13. Schrijvers, T., Triska, M., Demoen, B.: Tor: Extensible search with hookable disjunction. In:
Principles and Practice of Declarative Programming, PPDP 2012. ACM (2012)

14. Wielemaker, J., Schrijvers, T., Triska, M., Lager, T.: SWI-Prolog. Theory and Practice of
Logic Programming 12(1-2), 67–96 (2012)

15. Zhou, N.F.: The language features and architecture of B-Prolog. Theory and Practice of Logic
Programming 12(1-2), 189–218 (2012)

16. Desouter, B.: Modular Search Heuristics in Scala. Master’s thesis, Ghent University (2012)
(in Dutch)

17. Cremet, V., Garillot, F., Lenglet, S., Odersky, M.: A core calculus for Scala type checking.
In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 1–23. Springer,
Heidelberg (2006)

18. Kuchcinski, K., Szymanek, R.: JaCoP - Java Constraint Programming solver (2012),
http://www.jacop.eu/ (accessed November 2012)

http://www.gecode.org/
http://www.jacop.eu/

A Declarative Pipeline Language

for Complex Data Analysis

Henning Christiansen, Christian Theil Have,
Ole Torp Lassen, and Matthieu Petit

Research group PLIS: Programming, Logic and Intelligent Systems
Department of Communication, Business and Information Technologies

Roskilde University, P.O. Box 260, 4000 Roskilde, Denmark
{henning,cth,otl,petit}@ruc.dk

Abstract. We introduce BANpipe – a logic-based scripting language
designed to model complex compositions of time consuming analyses. Its
declarative semantics is described together with alternative operational
semantics facilitating goal directed execution, parallel execution, change
propagation and type checking. A portable implementation is provided,
which supports expressing complex pipelines that may integrate different
Prolog systems and provide automatic management of files.

1 Introduction

Computations for biological sequence processing are often complex compositions
of time consuming analyses, including calls to external resources and databases.
The expected output, intermediate results, and original input data are often huge
files. To facilitate such computations, we introduce a new declarative scripting
language called BANpipe. The name BANpipe is in reference to Bayesian Anno-
tation Networks (BANs) [4,11], which BANpipe is designed to support. BANpipe
is not limited to BANs, but it is a general and extensible pipeline programming
language which can be adapted for different scenarios. The language supports
complex pipelines of Prolog programs, PRISM [19] models, and other types of
programs through rules which specify dependencies between files.

BANpipe rules express dependencies between symbolically represented files
that are automatically mapped to the underlying filesystem. A dependency is
specified in terms of a function from (symbolic) input files to (symbolic) output
files. The implementation of this function is delegated to a predicate in a Prolog
or PRISM program. BANpipe handles the calling of these predicates (in sepa-
rate processes) and converts between symbolical identifiers and real files in the
filesystem. The symbolic filenames may include logic variables, and dependency
rules may include guards which enable advanced control mechanisms.

Execution of a pipeline script is goal directed, where only the desired result
is specified, and the system then executes the programs necessary to achieve the
result as entailed by the dependencies in the script. Computations entailed by
multiple goals are only performed once and subsequently shared by the goals.

E. Albert (Ed.): LOPSTR 2012, LNCS 7844, pp. 17–34, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

18 H. Christiansen et al.

Incremental change propagation is supported, so that only the necessary files
are recomputed in case one or more program or input data files are modified.

BANpipe is implemented in Logtalk [12], a portable language based on Pro-
log. BANpipe supports seamless integration of programs written for different
Prolog systems and runs on multiple operating systems. It is designed to be fa-
miliar to the logic programming community, and scripts in BANpipe can utilize
the full power of Logtalk/Prolog and associated libraries to automate complex
workflows. The BANpipe is designed to be extensible. It is easy to define a new
specialized semantics, as well as extending many of the core components of the
system such as the mechanisms to handle tracking and organization of gener-
ated files. The system is extended with semantics that enables parallel execution
and advanced debugging facilities (type checking, interactive tracing and visu-
alization of the pipeline structure). These facilities are particularly useful when
working complex pipelines that may be very time-consuming to run.

Overview of the Paper
Section 2 gives an informal introduction to the language and its semantics, and
Section 3 explains the declarative semantics in depth. Because of the way the
semantics are presented, proofs in this and the following sections often turn out
to be trivial. A number of operational semantics are described in Section 4,
including sequential operational semantics, change propagation semantics and
parallel operational semantics. Following this, Section 5 introduces an alternative
semantics for type inference. Examples of BANpipe scripts from the domain
of biological sequence analysis are given in Section 6. Section 7 discusses the
implementation of BANpipe. Related work is discussed in Section 8. Conclusions
and future research directions are presented in Section 9.

2 Syntax and Informal Semantics of BANpipe

The BANpipe language consists of scripts for composing collections of programs
that work on data files. We add another layer on top of the traditional file system,
so that an arbitrary ground Prolog term can be used for identifying a file. We
assume a (local) file environment that maps such file identifiers into files, via
their real file name in the local file system or a remote resource. The syntax
inherits Prolog’s notions of terms and variables (written with capital letters). A
Prolog constant whose name indicates a protocol is treated as a URL. The files
for other terms are determined through the local file environment. For example:

– ’file:///a/b/c/datafile’: refers to the file with the real name datafile
in the /a/b/c directory in the local file system,

– ’http://a.b.c/file’: refers to a file referenced using the http protocol.
– f(7): may refer to a file in the local file system.

To simplify usage, we refer to Prolog terms expected to denote files as file names.

A Declarative Pipeline Language for Complex Data Analysis 19

The programs referred to in BANpipe scripts are placed in modules, and
a program defines a function from zero or more files to one or more files; a
program may take options as additional arguments that modify the function
being calculated. Programs are referred to in the body of BANpipes dependency
rules, exemplified as follows.

file1, file2 <- m::prog([file3,file4],op1,op2). (1)

Here prog is a program in module m, taking two files file3 and file4, plus
options op1 and op2 as input. The rule states how two output files file1 and
file2 depend on file3, file4, namely being the result of applying the function
(or task) given by m::prog([−,−],op1,op2).

File names in rules can be parameterized as shown in this rule:

f(N) <- m::prog(g(N)). (2)

For any ground instance of N, this rule explains the dependency between two files,
e.g., between f(7) and g(7) or f(h(a)) and g(h(a)). Rules can be recursive
as shown in the following example.

f(0) <- file::get(’file:///data’). (3)

f(N) <- N > 0, N1 is N-1 | m::prog(f(N1)). (4)

Here, rule (3) applies a built-in module for simple file handling including the get
facility that provides a copy of a file as shown; rule (4) includes a guard, which
may precede the program call and is used for rule selection and for instantiating
variables not given by the matching in the head. The recursion works as expected:
the evaluation of a query f(2) involves the calculation of files named f(2), f(1)
and f(0) from the local file with the real name data.

A BANpipe script is a sequence of rules defined by the following syntax,
extended with any definitions of Prolog predicates that are used in rule guards.

〈rule〉 ::= 〈head〉 <- {〈guard〉|} 〈body〉 (5)

〈head〉 ::= 〈file〉1, . . . ,〈file〉m m ≥ 1 (6)

〈file〉 ::= any Prolog term, as described above (7)

〈body〉 ::= 〈program call〉 (8)

〈guard〉 ::= sequence of one or more Prolog calls (9)

〈program call〉 ::= 〈module〉::〈program name〉(
〈file〉1, . . . ,〈file〉n, options) n ≥ 0

(10)

The following restrictions must hold for any BANpipe script:

– File names given as URLs cannot occur in rule heads.
– When a rule head contains file names with variables, any file name in that

head must contain the same variables.
– The evaluation of a guard must always terminate.

20 H. Christiansen et al.

A query is a finite set of qoals, each of which is a ground term, supposed to
represent a file name. The selection of a rule for the evaluation of a goal must
be unique. We capture the essential properties in the following definition and
explain afterwards how such a selection function is implemented in practice.

Definition 1. A selection function for a BANpipe script S is a partial function
σS from non-URL ground Prolog terms to ground instances of rules of S such
that if

σS(f) =
(
fout
1 , . . . , fout

n <- guard | m :: prog(f in
1 , . . . , f in

m , opts)
)

(11)

then guard evaluates to true, and it holds that

f = fout
i for some i = 1, . . . , n, (12)

σS(f
out
i) = σS(f) for all i = 1, . . . , n. (13)

Any such instance is called a selection instance for S.

To simplify notation later, we may leave out the guard when referring to a se-
lected instance, as it has made its duty for testing and variable instantiation,
once the selection is effectuated. Condition (12) states that the chosen rule is ac-
tually relevant for f , and condition (13) indicates that whenever a rule is applied,
it calculates the unique results for all files mentioned in its head, independently
of which request for a file that triggered the rule.

In the implemented system, the rules are checked in the order they appear in
the script and the file names in their heads from left to right. If such a head file
name unifies with the given f , and the guard succeeds, the rule is a candidate for
selection. However, if the execution of a guard leads to a runtime error or does
not instantiate all remaining variables in the rule, the search stops and no rule
is selected. Condition (13) of Def. 1 is undecidable, but it is straightforward to
define sufficient conditions that can be checked syntactically; we do not consider
this topic further here. In the implemented system, it is not checked.

The evaluation of a query Q can be done in a standard recursive way, which
will be described in more detail in Section 4.

2.1 Defining Programs and Modules

As mentioned, the tasks activated from a BANpipe script are defined by pro-
grams that are grouped into named modules. How these modules are structured
is not required for the understanding of the BANpipe script language, so we give
here just a brief overview. A module m must contain a designated interface file
that implements each task through a Prolog predicate of the following form,

task([in-file1, . . . , in-filen],opts,[out-file1, . . . , out-filem]) (14)

that will be matched by a program call m::task(· · ·) in a script as described
above. In accordance with the precise semantics specified below, the file names

A Declarative Pipeline Language for Complex Data Analysis 21

(whether URLs or arbitrary Prolog ground terms) encountered by the script are
mapped into references to actual files, which then are given to task predicates
that access the files through standard input/output built-ins.

The interface file may contain all the code that implements the tasks but,
typically, a module contains a number of source files shared by the different
tasks. The execution of a task is done by a Prolog system or the PRISM system.

The system includes a sort of dynamic types that are specified in the in-
terface files and not visible in the BANpipe scripts. Besides the predicate that
implements a particular task, each task is declared using a fact on the form,

task(task([Typein1 , . . . ,Typeinn],options,[Typeout1 , . . . ,Typeoutm])) (15)

Each Type
in/out
i are Prolog terms – this is described in more detail in Section 5.

The options argument is a list of valid options (functors) and their default values.

3 Declarative Semantics of BANpipe

Raw data and results of analyses are represented as data files. No assumptions
are made about the structure of those files, and we assume an unspecified domain

DataFile (16)

including a ⊥ element, indicating an unsuccessful result.
Program calls in a script denote tasks that are mappings from a (perhaps

empty) sequence of data files into another sequence of data files. Thus

Task =
∑

i=0,1,...;j=1,2,...

Task i,j (17)

Task i,j = DataFile i → DataFilej (18)

Tasks must be strict: if any input argument is ⊥, the result is ⊥. A task may
also result in ⊥ reflecting a runtime error or a Prolog failure.

Definition 2. A program semantics is a function [[−]] from triples of module
name, program name, and ground values for possible option parameters into
tasks. For module mod, program prog (with n input and m output files), and
option values opts, this function is indicated as

[[mod :: prog(opts)]] ∈ Taskn,m. (19)

Ground file names are used as synonyms for variables ranging over the domain
DataFile; for a ground file name f , the corresponding unique variable, called a
file variable, is denoted f̂ , and this notation is extended to sets, F̂ = {f̂ | f ∈ F};
whenever f is a URL, f̂ is called a URL variable. (Partial) answers to queries
are represented below as substitution for file variables into DataFile and are
typically indicated by the letter Φ with possible subscripts. We recognize a special

22 H. Christiansen et al.

form of URL substitutions for URL variables only. For ease of notation, a URL
substitution is assumed to provide a value for any URL variable which might be
⊥. The notation Φ0 typically refers to a URL substitution. A substitution Φ is
considered equivalent to the set of equations {f̂ .

= d | Φ(f̂) = d}.1
The declarative meaning of a BANscript is given by a recursive systems of

equations defined as follows.

Definition 3. Given a BANscript S, a defining equation for a non-URL file
name f is of the form

〈f̂out
1 , . . . , f̂out

m 〉 .
= [[mod :: prog(opts)]]〈f̂ in

1 , . . . , f̂ in
n 〉 (20)

where f = f̂out
i for some i = 1, . . . ,m, and S has a selection instance for f ,

fout
1 , . . . , fout

m <- m :: prog(f in
1 , . . . , f in

m , opts). (21)

Given such S and [[−]], the defining set of equations for a query Q, denoted
Eq(Q,S) is defined as the smallest set E of defining equations such that

– E contains a defining equation for any q ∈ Q,
– for any equation in E whose righthand side contains a non-URL variable f̂ ,

E contains a defining equation for f .

We say that a BANscript S is well-behaved for a query Q if Eq(Q,S) exists, is
finite, and contains no circularities.2

Notice that Eq(Q,S) is defined independently of program semantics, so this
definition is equally relevant for a standard semantics as for different abstract
semantics reflecting different program properties.

The solution to a set of equations is given as usual, as a substitution that
maps variables to values, such that the left and right hand sides of each equation
become identical when all functions are evaluated. Whenever a script S is well-
behaved for a query Q, and Φ0 is a URL substitution for the URL variables
of Eq(Q,S), there exists a unique solution for Eq(Q,S) ∪ Φ0. To prove this,

we first convert each equation on tuples into equations of the form f̂i
.
= . . .

by projections, and then notice that all variables in the righthand sides can be
eliminated in a finite number of steps. Condition (13) of Def. 1 ensures that the
resulting set of equations with variable-free righthand sides is unique. We can
thus define:

Definition 4. Let [[−]] be a program semantics, S a BANscript which is well-
behaved for a query Q and Φ0 a URL substitution, and let Φ be the solution to
Eq(Q,S)∪Φ0. The answer to Q (with respect to S, [[−]] and Φ0) is the restriction

of Φ to Q̂; the substitution Φ is referred to as the full answer to Q.
The query is failed whenever the solution assigns ⊥ to any variable in Q̂.

1 We use the symbol “
.
=” to distinguish equations that are explicit syntactic objects

from the normal use of “=” as meta-notation.
2 “No circularities” can be formalized by separating variables into disjoint, indexed
strata, such that for an equation · · ·V · · · = · · ·V ′ · · · , that the stratum number for
V ′ is always lower than the stratum number for V .

A Declarative Pipeline Language for Complex Data Analysis 23

Alternatively, this semantics could have been formulated in terms of a fixed point
or a least model, which is straightforward due to the well-behavedness property.

Well-behavedness is obviously an undecidable property as an arbitrary Tur-
ing machine can be encoded through recurrence of variables in the terms that
represent file names. In practice, this can be checked by symbolic execution of
the script using depth-first search with a depth limit.

4 Operational Semantics

We present a number of alternative operational semantics for BANpipe as ab-
stract algorithms.

4.1 Bottom-Up Operational Semantics with Memoization

The following algorithm defines an operational semantics that works in a bottom-
up fashion, calculating all involved files from scratch. Each file needed to obtain
the final results is evaluated exactly once, even if used in different program calls.

Algorithm 1. Bottom-up operational semantics for BANscript
Input: A query Q, a BANscript S, program semantics [[−]]

and initial substitution Φ0;
Output: A substitution;

Φ := Φ0;
while Eq(Q,S) contains an equation

〈f̂out
1 , . . . , f̂out

m 〉 .
= [[P]]〈f̂ in

1 , . . . , f̂ in
n 〉

for which Φ(f̂out
i) is undefined for all i = 1, . . . ,m,

and Φ(f̂ in
j) is defined for all j = 1, . . . , n

do Φ := Φ[f̂out
1 /df1, . . . , f̂out

m /dfm]

where 〈df1, · · · , dfm〉 = [[P]]〈Φ(f̂ in
1), . . . , Φ(f̂ in

n)〉;
return Φ;

Theorem 1. Given a program semantics [[−]], a BANscript S which is well-
behaved for a query Q and a URL substitution Φ0, Algorithm 1 returns the full
answer Φ to Q. The solution to Q is a found as a the restriction of Φ to Q̂.

Having the algorithm to return the full substitution produced, makes it possible
to use it also for incremental maintenance of solutions, cf. Section 4.2 below.

Sketch of Proof. Each step performed in the while loop in Algorithm 1 corre-
sponds to a variable elimination step in Eq(Q,S) ∪ Φ0. Furthermore, each such

step that processes an equation of the form 〈f̂out
1 , . . . , f̂out

m 〉 .
= [[P]]〈f̂ in

1 , . . . , f̂ in
n 〉,

will bind variables f̂out
1 , . . . , f̂out

m to their final values in the resulting solution. �

24 H. Christiansen et al.

This abstract operational semantics can be transformed into a running imple-
mentation by adding suitable data structures for representing the defining equa-
tions and the file environment (appearing in the algorithm as substitutions).

Algorithm 1 can also be applied for non-standard program semantics to calcu-
late program properties, which is used below for predicting change propagation,
Section 4.2, and type inference, Section 5.

4.2 Operational Semantics for Incremental Change Propagation

When one or more data files, or programs producing data files, are modified, the
current file substitution may become inconsistent with the script. As BANpipe is
intended for programs with substantial execution time, the number of program
runs needed to reestablish consistency should be reduced to a minimum.

An alternative program semantics is used for measuring change propagation,
based on the domain DataFileprop = {changed , unchanged ,⊥}. The matching
program semantics [[−]]prop is defined as follows: whenever the program prog
(with n input and m output files) in module mod has been modified, or one of
its input arguments (xi below) has the value changed , we set

[[mod :: prog(opts)]]
prop〈x1, . . . , xn〉 = 〈changed , . . . , changed︸ ︷︷ ︸

m times

〉; (22)

otherwise (i.e., program not modified, input = 〈unchanged , . . . , unchanged〉), the
program call returns 〈unchanged , . . . , unchanged〉.

We consider the difference between two substitutions Φbefore and Φafter , in-
tended to represent correct values for all file variables before and after the mod-
ification. This is characterized by a propagation substitution defined as follows.

Diff (Φbefore , Φafter)(f̂) =

{
unchanged whenever Φbefore(f̂) = Φafter (f̂)

changed otherwise

(23)
Changes in the set of URL files (i.e., where the ultimate input comes from) is
characterized by a propagation substitution for URL variables.

The following algorithm that predicts which files that need to be re-evaluated,
is used as a helper for Algorithm 3, below.

Algorithm 2. Change prediction for BANscript
Input: A query Q, a BANscript S and URL change substitution Φprop

0 ;
Output: A substitution of variables into {changed , unchanged};

Φprop := run Algorithm 1 for Q, S, [[−]]
prop

and Φprop
0 ;

return Φprop ;

We state the following weak correctness statement for Algorithm 2.

A Declarative Pipeline Language for Complex Data Analysis 25

Theorem 2 (Soundness of the change prediction algorithm). Let Φbefore
0

and Φafter
0 be URL substitutions for the same set of variables into DataFile, and

assume two program semantics [[−]]
before

and [[−]]
after

. Let, furthermore,

Φbefore
1 be the full answer for Q wrt S, [[−]]

before
and Φbefore

0 ,

Φafter
1 the full answer for Q wrt S, [[−]]after and Φafter

0 , and

Φprop
1 the result of running Algorithm 2 for Q, S and Diff (Φbefore

0 , Φafter
0).

Then it holds for any ground file name f , that if Φprop
1 (f̂) = unchanged, then

Φbefore
1 (f̂) = Φbefore

2 (f̂).

Sketch of Proof. According to theorem 1, Φbefore
1 (resp. Φafter

1) can be charac-

terized as the result of running Algorithm 1 for Q, S, [[−]]before and Φbefore
0 (resp.

[[−]]
after

and Φafter
0). We can thus construct three synchronized runs of algorithm

1, calculating Φbefore
1 , Φafter

1 and Φprop
1 selecting the same equations in the same

order. The theorem is easily shown by induction over these runs. �
The algorithm for incremental maintenance of the solution, when input data or
programs are modified, is specified as follows. It uses Algorithm 2 to identify
which files to recompute; their values are set to undefined in the current file
substitution, and a run of Algorithm 1 starting from this substitution leads to
correctly updated file substitutions with as few program calls as possible.

Algorithm 3. Incremental maintenance for BANscript
Input: A query Q, a BANscript S, a (revised) program semantics [[−]]

after
,

a substitution Φ1 produced by Algorithm 1 from some
Q, S, [[−]]

before
and Φbefore

0 ,

and a (revised) URL substitution Φafter
0 ;

Output: A substitution;

Φprop := run Algorithm 2 for Q, S and Diff (Φbefore
0 , Φafter

0);

Φ2 := Φ1 \ { (f̂/Φ1(f̂)) | Φprop(f̂) = changed};
φ3 := run Algorithm 1 for Q, S, [[−]]

after
and Φ2;

return Φ3;

We leave out the correctness statement, which is straightforward to formulate
and follows easily from the previous theorems.

4.3 A Parallel Operational Semantics

BANpipe scripts are obvious candidates for parallel execution, as we can illus-
trate with this fragment of a script.

f0 <- m0::p0(f1,f2,f3). f2 <- m2::p2(’file:///data’).

f1 <- m1::p1(’file:///data’). f3 <- file::get(’http://serv/remoteF’).

26 H. Christiansen et al.

Here f1 and f2 can be computed independently in parallel, and at the same time
f3 can be downloaded from the internet. When they all have finished, m0::p0
can start running, taking as input the files thus produced, but not before.

A parallel operational semantics ia described as modification of Algorithm 1.
We assume a task manager that maintains a queue of defining equations ready
to be executed. Whenever sufficient resources are available, e.g., a free processor
plus a suitable chunk of memory, it takes an equation from the queue and start
its evaluation in a new process. The task manager receives messages of the form

enqueue(e), e being a defining equation,

and sends messages back of the form

finished(e, df1, df2, . . .), e being a defining equation, df1, df2, . . . ∈ DataFile.

Such a message should guarantee that the task referred to in e has been applied
correctly in order to produce the resulting file values df1, df2, . . . according to
the standard semantics [[−]]. A parallel operational semantics can now be given
by the following abstract algorithm.

Algorithm 4. Parallel operational semantics for BANscript
Input: A query Q, a BANscript S, program semantics [[−]]

and initial substitution Φ0;
Output: A substitution;

Φ := Φ0;
E := Eq(Q,S); // Equations not yet enqueued
F := ∅; // Equations that have been processed
while F �= Eq(Q,S) do

while there is an e ∈ E of the form

〈f̂out
1 , . . . , f̂out

m 〉 .
= [[P]]〈f̂ in

1 , . . . , f̂ in
n 〉

for which Φ(fout
i) is undefined for all i = 1, . . . ,m,

and Φ(f in
j) is defined for all j = 1, . . . , n

do enqueue(e);
E := E \ {e};

await message finished(e′, df1, df2, . . .);

Φ := Φ[f̂ ′
1
out/df1, . . . , f̂ ′

m′
out/dfm′]

where e′ =
(
〈f̂ ′

1
out , . . . , f̂ ′

m′
out〉 .

= · · ·
)
;

F := F ∪ {e′};
return Φ;

Correctness is straightforward as this algorithm performs exactly the same file
assignments as algorithm 1. We refrain from a formal exposition.

A Declarative Pipeline Language for Complex Data Analysis 27

This algorithm is implemented in our system for a multicore computer, but it
should also work for other architectures such as grids and clusters. Algorithms
3 and 4 can be combined into a system that monitors the user’s actions and,
after each editing, automatically initiates the necessary program runs in order to
restore consistency. This will also involve stopping active processes, whose input
files have become outdated.

5 Types and Type Inference for BANpipe Scripts

The system includes a dynamic type system such that, for a given program call,
the output files are assigned types based on the types of the input files. These
types are programmer-defined and may not indicate anything about the internal
structure of the file, but provide a general mechanism for checking and inferring
aspects of scripts. It is up to the programmer to associate a meaning with the
types, and they are used by the system to check and infer specified aspects which
may, e.g., be file formats.

Types are not visible in a script, but are managed through optional decla-
rations in the interface files (cf. Section 2.1) and are checked separately by a
symbolic execution of the program as explained in the following.

A type can be any Prolog term. A URL file has a default type file, which
may be coerced into a more specific type by a variant of the file::get task,
illustrated as follows.

f <- file::get([’http:://server/file.html’],type(text(html))).

A task specified with a task declaration as in (15) that includes an polymorphic
type declaration specifying requirements for its input and output files. Each

Type
in/out
i and options are Prolog terms, possibly with variables, and any vari-

able in a Typeoutj must occur in some Typeink or options . Thus, if the types
for n actual input files plus actual option values simultaneously unifies with
Typein1 , . . . ,Typeinn , opts , unique ground instances are created for
Typeout1 , . . . ,Typeoutm , which are then assigned as types for m output files.

Correct typing of a well-behaved BANscript S with respect to a given query
Q are formalized through a type semantics [[−]]

type
. For each task with n input

and m output files, assuming a type declaration as in (15) above, we define,

[[mod::prog(opts)]]
type〈x1, . . . , xn〉 = 〈Typeout1 , . . . , T ypeoutm 〉ρ

where ρ is the unifier of 〈x1, . . . , xn, opts〉
and 〈Typein1 , . . . ,Typeinn , options〉

(24)

If the mentioned unifier does not exists, the result is instead 〈⊥, . . . ,⊥〉.
We can now use Algorithm 1 with this semantics for type checking a BANpipe

script with respect to a given query as a symbolic execution of the program. The
initial substitution Φtype

0 maps any URL variable to the type file.

28 H. Christiansen et al.

Algorithm 5. Type inference for BANscript
Input: A query Q, a BANscript S;
Output: A substitution of variables into types;

Φtype := run Algorithm 1 for Q, S, [[−]]
type

and Φtype
0 ;

return Φtype ;

If, in the resulting substitution, any file is mapped to⊥, we say that type checking
of S failed for Q; otherwise type checking succeeded. Taking [[−]]

type
as definition

of correct typing, correctness of this algorithm is a consequence of theorem 1.

6 Examples

We exemplify BANpipe using examples drawn from biological sequence analysis
and machine learning. In the first example we present a simple gene prediction
pipeline and in the second example we show how such a pipeline can be extended
with recursive rules used to implement self-training.

6.1 A Basic Gene Prediction Pipeline

The following is an example of a simple gene prediction pipeline, corresponding
to experiments previously reported [4]. The premise is to train a gene finder
expressed as a PRISM model using some of the known genes of the Escherischia
Coli genome (the training set) and verify its prediction accuracy on a different
set of known genes (the test set). First we get some initial data files; namely a
genome sequence (fasta seq) and a list of reference genes (genes ptt),

fasta_seq <- file::get([’ftp://ftp.ncbi.nih.gov/.../NC_000913.fna’]).

genes_ptt <- file::get([’ftp://ftp.ncbi.nih.gov/.../NC_000913.ptt’]).

The fetched files are parsed into suitable format (Prolog facts), and we then
extract all open reading frames (orfs) from the genome, and divide them into
a training set and a test set,

genome <- fasta::parse([fasta_seq]).

genes(reference) <- ptt::parse([genes_ptt]).

orfs <- sequence::extract_orfs([genome]).

orfs(training_set), orfs(test_set) <- file::random_split([orfs],seed(42)).

Slightly simplified, open reading frames are subsequences of the genome which
may contain genes. The random split program divides the orfs randomly into
the two files orfs(training set) and orfs(test set). The process is deter-
ministic due to the seed(42) option, i.e. it will split orfs in the same way if it
is rerun. Next, we extract known genes corresponding to each set,

genes(Set) <- ranges::intersect([genes(reference),orfs(Set)]).

A Declarative Pipeline Language for Complex Data Analysis 29

The ranges module contains tasks which deal with files containing particu-
lar facts which, besides representing sub-sequences, also includes their posi-
tions in a genome. The intersect task finds all facts from genes(reference)

where the represented sub-sequences are completely overlapped3 by a member of
orfs(Set). It is used here to find the reference genes that belong to some Set,
i.e., either the training set or the test set. This concludes the preparation
of data files and we turn to the rules for the gene finder:

params <- genefinder::learn([genes(training_set)]).

predictions <- genefinder::predict([orfs(test_set), params]).

report <- accuracy::measures([genes(test_set), predictions]).

The genefindermodule contains a PRISM based gene finder and the learn task
bootstraps and invokes PRISMs machine learning procedure from the facts in
the file genes(traning set). The resulting params file is a parameterization for
the PRISM model. Using this parameterization, the task predict probabilisti-
cally predicts which orfs in orfs(test set) represent genes, resulting in the file
predictions. Finally, the accuracy of the predictions are evaluated with re-
gards to the reference genes, genes(test set), by the task accuracy::measures
which calculates, e.g., sensitivity and specificity.

6.2 Self-training

Self-training has been demonstrated to yield improved gene prediction accuracy
[2]. A self-training gene finder can be expressed by mutually recursive rules,

known_genes <- ...

self_learn(1) <- genefinder::learn([known_genes]).

self_learn(N) <- N > 1, N1 is N-1 | genefinder::learn([predict(N1)]).

predict(N) <- genefinder::predict([self_learn(N)]).

To elaborate: known genes (obtained somehow) is the starting point for training
and self learn(1) is the parameter file resulting from training on known genes.
The second self learn(N) rule is the recursive case, which learns parameters
from the predictions of the previous iteration. The goal predict(N) produces a
set of gene predictions based on the parameters of obtained from self learn(N).
For instance, the goal predict(100) corresponds to predictions after 100 itera-
tions of self-training.

The example is simple and elegant, but it is not fully satisfactory. Typically,
we are interested in termination when learning converges – not after a predefined
number of steps. This demonstrates a limitation of BANpipe – we cannot check
for convergence in the guard, since the guard does not have direct access of
generated files. It is possible to work around this issue by, e.g., letting the task
itself check for convergence4 , but this would not be elegant.

3 For the biologically inclined; we require this overlap to be in the same reading frame.
4 This could be done with extra input files with the accuracy and results of previous
iteration. If accuracy of the previous iteration is good enough, the task would just
output the same files as done in the previous iteration.

30 H. Christiansen et al.

7 Implementation

The system was originally implemented directly in PRISM, but the latest im-
plementation is in Logtalk to ensure portability across a wider range of Prolog
systems and operating systems. The implementation in Logtalk is considerably
simpler and more closely resembles the algorithms given in this paper. In partic-
ular, the use of parameterized objects [13] makes it easy to plug in alternative
semantics. The implementation also contains several debugging facilities imple-
mented as alternative semantics. It is possible to combine components from
several Prolog systems in the same script and the full power of Logtalk and
its libraries is available within scripts. The implementation is designed to be
extendable by users. It is available from http://banpipe.org.

7.1 Task Invocation

When the system needs to invoke a task, it first looks up the interface file of
the module where the task is defined. The interface is a plain Prolog file from
which BANpipe extracts information about tasks in the module and how to
invoke them. A optional declaration, invoke with/1, in the interface file is used
to specify that tasks in the module should be run within a particular Prolog
system. The argument of invoke with/1 identifies a particular Logtalk object
(an invoker) which is responsible for invocation of the Prolog/PRISM process.
The purpose of an invoker object is to launch the system of choice in the directory
of the module, load the interface file (along with possible dependencies) and
finally to call a goal corresponding to the task to be invoked.

This goal is constructed from the relevant rule in the script – it has a functor
identical to the name of the task and three arguments: The first argument is a
list of (real) filenames, which is derived from the symbolic input filenames. The
second argument is a list of options: The list of options along with their default
values are read from the task declaration in the interface file, but options given
in the corresponding rule of the script override (replace) default options. The
third argument is a list of file names to be written when the goal completes.

7.2 File Maintenance

BANpipe keeps track of generated files using a transactional file index, the oper-
ations of which are defined through a Logtalk protocol. The file index defines a
many-to-many relation; the combination of module name, task name, input files
and options is used as a unique key to identify generated files.

Before the invocation of a task, a lookup in the file index determines if a
compatible previously generated file is available and can be returned immedi-
ately. If not, a transaction is initiated which allocates unique output filenames
to be associated with the task call. If the task completes and writes all its as-
sociated output files, the transaction is committed. Otherwise, if the task fails,
the transaction rolls back and the filename allocations are relinquished.

A Declarative Pipeline Language for Complex Data Analysis 31

Note that we do not have destructive updates as with, e.g., make. Files are
never overwritten when dependencies change or task definitions change. Changes
are not detected automatically, but must be indicated in the task declaration of a
module, e.g., with a version option with a new default value. Such changes result
in different unique keys for relevant task calls and hence distinct output files,
which can propagate upwards as changed dependencies. As consequence, we have
full revision history of previously computed result files (this can be important
for traceability in data analysis experiments). This approach is slightly different
from Algorithm 3, which works with destructive updates.

7.3 Semantics

The bottom-up semantics (Algorithm 1) is implemented as a parametric Logtalk
object, that can be parameterized with a semantics object. This is an object ad-
hering to a Logtalk protocol that requires it to supply the operation apply/3.
The arguments to apply/3 is a matched rule, a corresponding task and a re-
sult argument. Different semantics objects with alternative implementations of
apply/3 can then be used to specialize the implementation of Algorithm 1 for
different purposes. For instance, with the execution semantics, apply/3 will run
a task and unify the result argument to a list of names of generated output files,
whereas for type checking semantics the result will be a list of types.

Debugging Facilities are realized through specialized semantics objects. Type
checking is implemented using a particular semantics object that can serve as
parameter to our generic implementation of Algorithm 1. This exactly mimics
how typechecking semantics is formally defined in section 5. The typechecking
semantics object does not run the tasks, but performs the type unification as
detailed in section 5.

A call graph is a graph data structure which, for a particular file request,
contains a node for file that may transitively be a dependency file and edges
between such files represent task calls. We generate call graphs using a seman-
tics object that with Algorithm 1 builds a tree of all task calls involved when
requesting a filename. A post-processing of this tree to identify identical nodes
yields a call graph. The system includes functionality to pretty-print the graph.

The tracer semantics is a facility which adds interactive tracing. It is im-
plemented as a semantics object which can be parameterized with any other
semantics object. With such a parameterization, interactive tracing is available
with any other mode of execution (semantics object).

Parallel Execution is implemented through a scheduler – corresponding to
Algorithm 5 – which picks tasks that are ready to run by utilizing a call graph.
Ready tasks are orphans in the call graph. For each enqueued task, a new thread5

5 We use portable high-level multi-threading constructs provided by Logtalk [14].

32 H. Christiansen et al.

is started which runs Algorithm 1. When the thread completes, the job is re-
moved from the queue and also the call graph. If files for the scheduled task are
available, Algorithm 1 immediately returns.

8 Related Work

Computational pipelines are ubiquitous. The classic example is Unix pipes, which
feed the output of one program into another. Declarative pipeline languages with
non-procedural semantics goes back at least to the make utility [7]. The safeness
of make-file based incremental recompilation has later been proved through a
specification of its semantics [9]. There are several contemporary and very pow-
erful derivatives of the make utility such as Ant (Java) [1], Rake (Ruby) [24],
SCons (Python) [10] and plmake (Prolog) [15]. These frameworks are very ex-
pressive and integrate with their “host” languages which gives developers almost
unlimited capabilities. None of them, however, have available formal semantics.

The importance of pipelines for biological sequence analysis has been acknowl-
edged [17] and there are a variety of biological pipeline languages to choose from,
e.g., EGene [6], BioPipe [8], DIYA [21], and SKAM [16]. The first three are
configured using a static XML format with limited expressivity. DIYA targets
annotation of bacterial genomes which has also been a motivating case for us.
SKAM is Prolog based like BANpipe and allows interaction with Prolog, but
does not have well-defined semantics.

Many systems have features comparable to those of BANpipe, e.g., automatic
parallelization, type checking and advanced control mechanisms, although one
rarely finds all of these features in the same system. BANpipe is, to our knowl-
edge, the only system which provides all these features in a declarative language
with well-defined semantics.

Another distinct difference and advantage of BANpipe over other systems
which represent dependencies between files, is that the symbolic filenames rep-
resented by Prolog terms are independent from the actual filenames. Different
scripts using different symbolic file names may share computed files.

The family of concurrent logic languages [20] has syntactical and semantic
similarities to BANpipe. Rules have guards and the successful execution of a
guard implies a committed choice to evaluate the body of a rule. In flat variants
of the these languages, guards are restricted to a predefined set of predicates
as opposed to arbitrary used defined predicates. BANpipe allows user defined
predicates, but for the semantics to be well-defined, these are subject to obvi-
ous restrictions, e.g. they should terminate. BANpipe rules have a single goal in
the rule body, whereas concurrent logic languages typically have conjunctions
of goals. These languages execute in parallel and synchronize computations by
suspension of unification, which may be subject to certain restrictions. For in-
stance, in Guarded Horn Clauses [23], the guard is not allowed to bind variables
in the head and the body may not bind variables in the guard. BANpipe have
more restricted assumptions; the guard never binds variables in the head and
the body never binds variables in the head or the guard.

A Declarative Pipeline Language for Complex Data Analysis 33

9 Conclusions

BANpipe is a declarative logic language for modeling of computational pipelines
with time consuming analyses. It has well-defined abstract and operational se-
mantics, and is extended for change propagation, parallelism and type checking.

There are currently two implementations of BANpipe. The original PRISM-
based implementation has been used to run fairly large pipelines for biological
sequence analysis. The current implementation in Logtalk is simpler, better doc-
umented and more suitable for use in other domains. No evaluation of the per-
formance either implementation has been done, since the computations done by
tasks are expected to dwarf the overhead of the pipeline. Obviously, paralleliza-
tion reduce computation time under certain conditions. In our parallelization
strategy, only dependencies dictate which tasks can run simultaneously. It would
be interesting to explore how further constraints can be integrated, for instance
with respect to available memory.

Many contemporary approaches to data analysis, particularly for big data, ex-
ploit distributed processing and it would be obvious also to include support for
distributed computing in BANpipe. This would involve distributing files among
nodes and deciding what nodes should run what tasks. This could be either ex-
plicitly defined by the script (with suitable syntactic extensions) or automatically
managed using a bag-of-tasks approach.

Perhaps inspiration can be drawn from distributed query processing systems
such as Scope [3], Pig [18] and Hive [22], which are based on distributed map-
reduce [5]. The purpose of these systems are different than BANpipe, but they
also share some characteristics, i.e., a declarative specification of desired result
and caching of intermediary computations. A main difference, though, is that
computations are much more course-grained in BANpipe – it delegates the actual
processing of data to tasks.

Acknowledgement. This work is part of the project “Logic-statistic modeling
and analysis of biological sequence data” funded by the NABIIT program under
the Danish Strategic Research Council.

References

1. Apache ant, http://ant.apache.org/ (accessed November 30, 2012)
2. Lomsadze, A., Besemer, J., Borodovsky, M.: Genemarks: a self-training method for

predicition of gene starts in microbial genomes. Implications for finding sequence
motifs in regulatory regions. Nucleic Acids Research 29, 2607–2618 (2001)

3. Chaiken, R., Jenkins, B., Larson, P.Å., Ramsey, B., Shakib, D., Weaver, S., Zhou,
J.: Scope: easy and efficient parallel processing of massive data sets. Proceedings
of the VLDB Endowment 1(2), 1265–1276 (2008)

4. Christiansen, H., Have, C.T., Lassen, O.T., Petit, M.: Bayesian Annotation Net-
works for Complex Sequence Analysis. In: Technical Communications of the 27th
International Conference on Logic Programming, ICLP 2011. Leibniz Interna-
tional Proceedings in Informatics (LIPIcs), vol. 11, pp. 220–230. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik (2011)

http://ant.apache.org/

34 H. Christiansen et al.

5. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters.
Communications of the ACM 51(1), 107–113 (2008)

6. Durham, A.M., Kashiwabara, A.Y., Matsunaga, F.T.G., Ahagon, P.H., Rainone,
F., Varuzza, L., Gruber, A.: Egene: a configurable pipeline generation system for
automated sequence analysis. Bioinformatics 21(12), 2812–2813 (2005)

7. Feldman, S.I.: Make – A program for maintaining computer programs. Software –
Practice and Experience 9(3), 255–265 (1979)

8. Hoon, S., Ratnapu, K.K., Chia, J.M., Kumarasamy, B., Juguang, X., Clamp, M.,
Stabenau, A., Potter, S., Clarke, L., Stupka, E.: Biopipe: A flexible framework for
protocol-based bioinformatics analysis. Genome Research, 1904–1915 (2003)

9. Jørgensen, N.: Safeness of make-based incremental recompilation. In: Eriksson,
L.-H., Lindsay, P.A. (eds.) FME 2002. LNCS, vol. 2391, pp. 126–145. Springer,
Heidelberg (2002)

10. Knight, S.: Building software with scons. Computing in Science & Engineering 7(1),
79–88 (2005)

11. Lassen, O.T.: Compositionality in probabilistic logic modelling for biological se-
quence analysis. PhD thesis, Roskilde University (2011)

12. Moura, P.: Logtalk - Design of an Object-Oriented Logic Programming Language.
PhD thesis, Department of Computer Science, University of Beira Interior, Portu-
gal (September 2003)

13. Moura, P.: Programming patterns for logtalk parametric objects. In: Abreu, S.,
Seipel, D. (eds.) INAP 2009. LNCS (LNAI), vol. 6547, pp. 52–69. Springer, Hei-
delberg (2011)

14. Moura, P., Crocker, P., Nunes, P.: Multi-threading programming in Logtalk. In:
Abreu, S., Costa, V.S. (eds.) Proceedings of the 7th Colloquium on Implementa-
tion of Constraint LOgic Programming Systems, pp. 87–101. University of Oporto,
Oporto (2007)

15. Mungall, C.: Make-like build system based on prolog,
https://github.com/cmungall/plmake (accessed November 30, 2012)

16. Mungall, C.: Skam - skolem assisted makefiles, http://skam.sourceforge.net/
(accessed November 30, 2012)

17. Noble, W.S.: A quick guide to organizing computational biology projects. PLoS
Comput. Biol. 5(7), e1000424 (2009)

18. Olston, C., Reed, B., Srivastava, U., Kumar, R., Tomkins, A.: Pig latin: a not-so-
foreign language for data processing. In: Proceedings of the 2008 ACM SIGMOD
International Conference on Management of Data, pp. 1099–1110. ACM (2008)

19. Sato, T., Kameya, Y.: Prism: a language for symbolic-statistical modeling. In:
International Joint Conference on Artificial Intelligence, vol. 15, pp. 1330–1339
(1997)

20. Shapiro, E.: The family of concurrent logic programming languages. ACM Com-
puting Surveys 21(3), 412 (1989)

21. Stewart, A.C., Osborne, B., Read, T.D.: Diya: a bacterial annotation pipeline for
any genomics lab. Bioinformatics 25, 962–963 (2009)

22. Thusoo, A., Sarma, J.S., Jain, N., Shao, Z., Chakka, P., Anthony, S., Liu, H.,
Wyckoff, P., Murthy, R.: Hive: a warehousing solution over a map-reduce frame-
work. Proceedings of the VLDB Endowment 2(2), 1626–1629 (2009)

23. Ueda, K.: Guarded horn clauses. Technical Report TR-103, ICOT, Tokyo (1985)
24. Weirich, J.: Rake – ruby make, http://rake.rubyforge.org/ (accessed November

30, 2012)

https://github.com/cmungall/plmake
http://skam.sourceforge.net/
http://rake.rubyforge.org/

Semantic Code Clones in Logic Programs

Céline Dandois� and Wim Vanhoof

University of Namur - Faculty of Computer Science
21 rue Grandgagnage, 5000 Namur, Belgium

{cda,wva}@info.fundp.ac.be

Abstract. In this paper, we study what is a semantic code clone pair in
a logic program. Unlike our earlier work, that focused on simple syntactic
equivalence for defining clones, we propose a more general approxima-
tion based on operational semantics and transformation rules. This new
definition captures a wider set of clones, and allows to formally define
the conditions under which a number of refactorings can be applied.

1 Introduction

Code duplication, also called code cloning, occurs intuitively when two or more
source code fragments have an identical or sufficiently similar computational
behavior, independent of them being textually equal or not. Those fragments
are described as duplicated or cloned. Clone detection has received a substantial
amount of attention in recent years [15], but there is no standard definition for
what constitutes a clone and the latter’s definition is often bound to a particular
detection technique [14]. Not unsurprisingly, most definitions and the associated
detection techniques are based on somehow comparing the syntactical structure
of two code fragments as a rough approximation of their semantics. Some ex-
amples are the recent abstract syntax-tree based approaches for Erlang [7] and
Haskell [2], as well as our own work [4] in the context of logic programming.
These syntax-based approaches suffer from a number of limitations. On the one
hand, syntactical equivalence is too basic a characterization for defining, in a
simple and uniform way, the conditions under which a number of refactorings
that aim at removing duplication from a logic program [17,22] can be applied.
On the other hand, looking at syntactical equivalence only, they are unable to
classify as cloned slightly different computations that yield nevertheless the same
result such as, in a logic programming setting, the goals X is 10 and X is 5 ∗ 2.
Or, in other words, they cannot capture semantic equivalence of code fragments,
even in cases where such equivalence could rather simply be established.

As a somewhat contrived but prototype example, representative of various
real code clones, consider the following predicate definitions:
take mult n(0, L, [], 1) ←
take mult n(N, [], [], 1) ← N > 0
take mult n(N, [X|Xs], [X|Y s], P) ← N > 0, prev(N1, N),

take mult n(N1, Xs, Y s, P1), P is X*P1

� F.R.S.-FNRS Research Fellow.

E. Albert (Ed.): LOPSTR 2012, LNCS 7844, pp. 35–50, 2013.
© Springer-Verlag Berlin Heidelberg 2013

36 C. Dandois and W. Vanhoof

add ij(L, I, 0, 0) ←
add ij([], I, J, 0) ← J > 0
add ij([A|As], 1, J, S) ← J > 0, J1 is J-1, add ij(As, 1, J1, S1), S is A+S1

add ij([A|As], I, J, S) ← I > 1, J ≥ I, I1 is I-1, J1 is J-1, add ij(As, I1, J1, S)

The predicate prev is simply defined as prev(N1, N) ← N1 is N -1. An atom of
the form take mult n(N,L1, L2, P) succeeds if the list L2 contains the N first
naturals of the list L1 and if P is the product of those naturals. On the other
hand, an atom add ij(L, I, J, S) succeeds if S equals the sum of those naturals in
the list L between the positions I and J . While syntactically very different, it is
clear that take mult n and add ij share some common functionality that may be
worthwhile to exploit in a refactoring setting. Indeed, both predicates partition
a list and apply some operation on one element of this partition. Obviously, this
functionality is hard to detect based on syntactically comparing the atoms in
the definitions of take mult n and add ij, as would be the case by our previous
work [4] or similar syntax-based techniques.

In the next section, we define the notion of a semantic clone pair in a logic
programming setting. While semantic equivalence is in general undecidable, we
provide in the third section an approximation of our definition, based on well-
known program transformations. This approximation allows to formally capture
the relation between cloned code fragments such as the functionality shared
by take mult n and add ij from above. Thereby, it goes far beyond syntacti-
cal equivalence and considerably extends our previous work on the subject [4].
Finally, in the last section, we compare our work to the related literature, we ex-
pose a simple procedure for refactoring a particular case of duplication captured
by our definitions, and we give some ideas for further research.

2 Defining Semantic Clones

In what follows, we consider an extended form of logic language including higher-
order constructs [9,3], and we assume the reader to be familiar with the basic
logic programming concepts [1]. Inspired from the language HiLog [3], the syntax
that we will use is based on a countably infinite set V of variables and a countable
set N of arityless relation names. The latter set contains what is called functors
and predicate names in first-order logic (and by the way, it eliminates the dis-
tinction between those entities), including built-in ones such as the unification
operator “=”. The set T of terms satisfies the following conditions: V ∪ N ⊆ T
and ∀x, t1, . . . , tn ∈ T : x(t1, . . . , tn) ∈ T (n ≥ 1). A term is thus built by any
logical symbol preceding any finite number of arguments. As such, add, add(X),
add(X,Y, Z), add(X)(Y, Z) and W (X,Y, Z) are valid terms. A (positive or ne-
gative) atom is a term. A clause of arity n(n ≥ 0) is a construct of the form
C = H ← B1, . . . , Bs, where H , the head of the clause (denoted hd(C)), is an
atom of the particular form h(t1, . . . , tn) where h ∈ N and t1, . . . , tn ∈ T , and
B1, . . . , Bs(s ≥ 0), the body of the clause (denoted bd(C)), is a conjunction of
atoms, also called a goal. A predicate is defined by a sequence of clauses whose
heads share the same predicate symbol and arity. Finally, a program is formed

Semantic Code Clones in Logic Programs 37

by a set of predicate definitions. To ease the notation, we will use the following
auxiliary notations and functions. A sequence of objects o1, . . . , on will some-
times simply be represented by o (for example, a predicate is typically denoted
C). For a sequence of n objects o and a set of naturals S ⊆ {1, . . . , n}, we use
o|S to denote the restriction of o to the objects with an index in S. The function

rel takes a predicate C as argument and returns its relation name and arity in
the form p/n. For a goal G which is a subgoal of a clause H ← L,G,R with L
and R possibly empty subgoals, uvars(G) denotes the set of variables from G
that are shared with L and/or R. Finally, the function vars returns the set of
variables contained in a given object and the function dom returns the domain
of a given function.

As usual, a substitution is defined as a mapping from variables to terms. In
what follows, we will only use idempotent substitutions, i.e. substitutions θ =
{X1/t1, . . . , Xk/tk} where the variablesX do not appear free in the terms t, or in
other words, where we have that θθ = θ [10]. As an example, {X/Y, Y/Z, Z/a} is
not considered a valid substitution but {X/a, Y/a, Z/a} is. A variable renaming,
or simply renaming, is a particular case of idempotent substitution, from vari-
ables to variables. As usual, θσ denotes the composition of substitutions θ and σ.
We will use the operator �ρ to represent the standard variance between terms,

according to some renaming ρ. Slightly abusing notation, we will use �{p/q}
ρ to

represent the fact that a predicate definition is a variant of another, according
to some renaming ρ and to the renaming of each occurrence of the predicate
symbol p by q.

Our main definitions will be based on the operational semantics of logic pro-
gramming [1,9,3], and more precisely, on the concept of computed answer sub-
stitution [8,1]. The computed answer substitution (CAS) semantics may be ex-
pressed as the following function: CAS : P×Q→ (P(Subst),⊆), where P is the
set of programs, Q is the set of queries, and (P(Subst),⊆) is the powerset of
the set of substitutions ordered by set inclusion [12]. This function is thus such
that, given a program P and a query Q, CAS(P,Q) = {θ | there exists an SLD-
derivation of Q in P with computed answer substitution θ}. An empty set stands
for a failed query. Note that for SLD-resolution, we adopt the standard clause
and atom selection rules of Prolog, respectively top-down and left-to-right.

We define a code fragment in a predicate C as either (1) the entire predicate
definition of C, or (2) a strict subsequence of clauses belonging to the predi-
cate definition of C, or (3) a subgoal in some clause body of C. Given a code
fragment F and assuming that newp is a unique relation name not used in
the program at hand, we define the predicate definition relative to F , denoted
pdr(F), as follows: if F is a predicate definition, then pdr(F) is F itself ; if F
is a strict subsequence of clauses with rel(F) = p/m, then pdr(F) is such that

F �{p/newp}
∅ pdr(F) ; finally, if F is a subgoal of a clause, then pdr(F) is defined

by newp(uvars(F)) ← F . Note that both cases 1 and 2 consider a sequence of
clauses but the predicate definitions relative to those types of code fragment are
obtained differently. Indeed, in case 1, contrary to case 2, information about the
relation represented by the fragment is already known and do not need to be

38 C. Dandois and W. Vanhoof

constructed by extraction. We define the arity of a code fragment F , denoted
F/n, as the arity of pdr(F). The following definition allows to relate the seman-
tics of two code fragments.

Definition 1. Given two code fragments F1 in C1 and F2 in C2 from a program
P with rel(pdr(F1)) = p/m and rel(pdr(F2)) = q/n, F1 computes a subrelation
of F2, denoted F1 � F2, if and only if for each call p(t) to pdr(F1) with CAS((P \
{C2})∪{pdr(F1)}, p(t)) = {θ1, . . . , θk}, there exists a call to pdr(F2), say q(X)σ,
such that:

◦ CAS((P \ {C1}) ∪ {pdr(F2)}, q(X)σ) = {θ′1, . . . , θ′k}, and
◦ either k = 0 (both sets are empty) or there exists a bijective mapping between

the substitutions of {θ1, . . . , θk} and those of {θ′1, . . . , θ′k}, and
◦ for each pair of corresponding substitutions θi and θ′i(1 ≤ i ≤ k), we have

that tθi �ρ tσθ′i with vars(t) ∩ dom(ρ) = ∅.

Intuitively, F1 � F2 means that all goals that can be (dis)proven by the relation
represented by F1 can equally be (dis)proven, at least in some way, by the relation
represented by F2. More precisely, for every call p(t) to pdr(F1) there exists a call
q(X)σ to pdr(F2) having the same procedural behavior, i.e. either both calls fail
or they succeed producing the same solutions, but not necessarily in the same
order nor with the same frequency. In other words, in case of success of the query
Q = p(t), the query Q′ = q(X)σ must at least contain the variables of Q that are
instantiated by the resolution ofQ and the resolution ofQ′ must instantiate these
variables in the same way. Corresponding non-ground answers may be variants
of each other, as long as the associated variable renaming does not include the
variables from Q remaining free, i.e. concerns only the new variables introduced
during the resolution of Q.

Note that part of the bindings produced by the call p(t) might be present
in the instantiation of the call to q(X)σ (in the σ), hence the need to compose
its computed answers with σ for the comparison of variance. Furthermore, both
code fragments are taken to be independent, i.e. one being not defined in function
of the other. This explains the exclusion of C2 from the program for resolution
of the call to pdr(F1) and vice versa. Finally, F1 and F2 are not necessarily code
fragments of the same arity nor granularity (a predicate definition may compute
a subrelation of a goal, for example) and that both code fragments either may
belong to two different predicate definitions or to the same predicate definition.

Example 1. Consider the well-known predicate definitions of rev1, implementing
naive reverse, and of rev2, implementing reverse with an accumulator:
rev1([], []) ←
rev1([X|Xs], Y) ← rev1(Xs,Z), append(Z, [X], Y)

rev2([], B,B) ←
rev2([A|As],B,C) ← rev2(As, [A|B], C)

We may state that rev1 computes a subrelation of rev2 since for each call to
rev1 of the form rev1(t1, t2) for terms t1 and t2, there exists a call to rev2,

Semantic Code Clones in Logic Programs 39

namely rev2(t1, [], t2), such that both calls either fail or result in the same
set of computed answer substitutions. To illustrate the role of the condition
vars(t) ∩ dom(ρ) = ∅ in Definition 1, let take the call rev1([X], Y) which pro-
duces the unique solution {Y/[X]}. The call rev2([X], [], Y) satisfies the defini-
tion of subrelation, as written just above, but not the call rev2([A], [], Y) since
it instantiates Y to [A] and a renaming from X to A is not allowed. Note that
rev2 � rev1 is not true since, given the call rev2(X,Y, [a, b, c]), for example, it
does not exist a call to rev1 able to provide the solutions for X and Y .

Note that, without loss of generality, we considered two entire predicate de-
finitions in our example, but the concept of subrelation can be applied just as
easily to other types of code fragment since it is based in all cases on the predicate
definitions relative to the compared fragments.

Returning to the example from the introduction, neither take mult n � add ij
nor add ij � take mult n. However, it is possible to define a third predicate, say
g, such that take mult n � g and add ij � g, disclosing consequently the com-
mon functionality that exists between take mult n and add ij. This is exactly
the basic idea behind our definition of a code clone pair.

Definition 2. Given a code fragment F , two code fragments F1 and F2 form
an F -code clone pair if and only if F1 � F and F2 � F .

Intuitively, this definition means that the code fragment F can be seen as gen-
eralizing both F1 and F2 in such a way that it can be used to compute both the
relations computed by F1 and F2. Back to our running example, such a possible
generalization of take mult n and add ij is the predicate g defined as:
g(Base,Pred,L, I, 0, Base, 1) ←
g(Base,Pred, [], I, J,Base, 1) ← J > 0
g(Base,Pred, [A|As], 1, J, R1, R2) ← J > 0, J1 is J-1, g(Base,Pred,As, 1, J1, V,W),

P red(A,V,R1), R2 is A*W
g(Base,Pred, [A|As], I, J, R1, R2) ← I > 1, J ≥ I, I1 is I-1, J1 is J-1,

g(Base,Pred,As, I1, J1, R1, R2)

An atom of the form g(Base, Pred, L, I, J, R1, R2) succeeds if R1 results from
combining those naturals of the list L between the positions I and J by an
operator Pred whose right-neutral element is Base, and if R2 is the prod-
uct of those naturals. Regarding the semantics, we effectively have that g al-
lows to compute both take mult n and add ij since a generic call of the form
take mult n(t1, t2, t3, t4) is equivalent to the call g([], list, t2, 1, t1, t3, t4) and a
call add ij(t1, t2, t3, t4) is equivalent to the call g(0, add, t1, t2, t3, t4,), for terms
t1, t2, t3 and t4, and predicates list and add defined as follows: list(X,Xt, [X|Xt]) ←
and add(X,Y, Z) ← Z is X+Y . Some ideas for building the above generic calls to
g in an algorithmic way are given in the last section of this paper.

Returning to the definition of an F -code clone pair, two particular cases may
be deduced. First, if F1 � F2, then F1 and F2 form an F2-code clone pair,
given that by definition F2 � F2. The predicates rev1 and rev2 belong to this

40 C. Dandois and W. Vanhoof

category. Secondly, if we have both F1 � F2 and F2 � F1, then F1 and F2 are
fully semantically equivalent, in the sense that every call to pdr(F1) could be
replaced by a call to pdr(F2), and vice versa. For example, this could be the case
for two predicates sorting a list in increasing order – one implementing quicksort,
the other implementing bubble sort – or for two predicates representing the
relations “greater than” and “smaller than”.

As the examples show, the proposed notion of an F -code clone pair captures
a larger subset of cloned code fragments than would any definition based on
syntactical comparison, such as our previous work [4]. Obviously, the notion
of an F -code clone pair is not, in general, computable, but, to the best of our
knowledge, this is the first attempt of formal definition for logic programs. As we
will argue in the next section, it can also be approximated by using well-known
program transformations.

3 Approximating Semantic Clones

3.1 Basic Definitions

Even if computing F -code clone pairs in the sense outlined above is beyond the
scope of the present work, a first step consists in providing an approximation
of F -code clone pairs that is verifiable by program analysis. To that end, we
will formalize how two predicate definitions, one computing a subrelation of
the other, can be related by program transformation. As a starting point, we
borrow from the work of Pettorossi and Proietti [12] the notion of transformation
sequence, adapted to our needs.

Definition 3. Let R be a set of program transformation rules. Given a logic pro-
gram P and a predicate C defined over the language of P , an R-transformation
sequence of P ∪ {C} is a finite sequence of programs P0 ∪ {C0}, . . . , Pk ∪ {Ck}
where P0 = P and C0 = C, and ∀i(0 < i ≤ k) : Pi ∪ {Ci} is obtained by the
application of one rule from R on Pi−1 ∪ {Ci−1}.

Given our interest in approximating the notion of subrelation, we restrict our
attention to R-transformation sequences that are �-correct.

Definition 4. A program transformation rule from R is �-correct if and only

if its application on any given program P ∪ {C} produces a program P ∪ {C′}
such that C

′ � C (i.e. C
′
computes a subrelation of C). An R-transformation

sequence of the form P0 ∪ {C0}, . . . , Pk ∪ {Ck} is �-correct if and only if (1)
∀i(0 < i ≤ k) : P0 ⊆ Pi and (2) Ck � C0 with respect to Pk.

Concerning �-correctness of an R-transformation sequence, the first condition
means that the original program P0 remains unchanged throughout the transfor-
mation process and thus, that its semantics is preserved. The second condition
means that the last derived version of the original predicate C0 computes a
subrelation of C0. This highlights our objective that the transformation process
focuses on transforming a single predicate definition.

Semantic Code Clones in Logic Programs 41

Recall that we consider a logic program as a set of predicate definitions, not
as a set of individual clauses. If we use only �-correct transformation rules and
if, at each transformation step i (0 ≤ i < k), the chosen rule is applied to a
single predicate from the program (Pi \ P0) ∪ {Ci}, then the R-transformation
sequence is �-correct by construction. Indeed, the first condition ensures that
Ck � Ck−1 � . . . � C0 and thus Ck � C0 since the concept of subrelation can
easily be proved transitive, while the second condition ensures that ∀i (0 < i ≤
k) : P0 ⊆ Pi. Building an R-transformation sequence in such a way implies that
at each transformation step i (0 ≤ i < k), either Pi+1 = Pi (the predicate Ci

is transformed), or Ci+1 = Ci (either one new predicate is created in Pi or one
predicate in Pi \ P0, i.e. previously created during the transformation process,

is transformed). This fact is explained because the predicate C becoming C
′

in the definition of �-correctness of a transformation rule does not necessarily
correspond to the Ci becoming Ci+1 in the definition of �-correctness of an R-
transformation sequence. Instead, it corresponds to the single predicate selected
in the program (Pi \ P0) ∪ {Ci} to be transformed. Note that other kinds of
rules than �-correct ones could be used to obtain a �-correct R-transformation
sequence but we will not detail this possibility.

Finally, we are able to approximate the notion of subrelation.

Definition 5. Given two code fragments F1 and F2 from a program P with
rel(pdr(F1)) = p/m and rel(pdr(F2)) = q/n, and given a set R of program
transformation rules, F1 computes an R-subrelation of F2, denoted F1 �R F2, if
and only if there exists a �-correct R-transformation sequence of P ∪{pdr(F2)},
say of k steps, such that pdr(F2)k �{q/p}

ρ pdr(F1).

At the level of code fragments, demonstrating F1 �R F2 boils thus down to
deriving the predicate definition relative to the more specific code fragment F1

from the predicate definition relative to the more general code fragment F2, by
means of a �-correct R-transformation sequence.

3.2 A First Instantiation of R

One obvious and useful instantiation of R is to use the well-known program trans-
formation rules Definition introduction, Unfolding, In-situ folding and Deletion
of clauses with finitely failed body defined by Tamaki and Sato [19,20] and by
Pettorossi and Proietti [12,13]. These rules can trivially be adapted to our nota-
tion, and their definition can be found in Appendix. All these rules are proved
totally correct with respect to CAS semantics (i.e. CAS semantics-preserving)
and thus also �-correct. We propose two other rules, which allow to specialize
the predicate definition under transformation with respect to a given call, and
to remove superfluous arguments.

Definition 6. [R5] Specialization. Let P ∪{C} be a program and A a call to

C. The Specialization rule transforms the program into P ∪ {C′}, where C
′
is

the predicate obtained by (once) unfolding the body atom A in the clause A← A.

42 C. Dandois and W. Vanhoof

The specialization rule is trivially �-correct, i.e. C
′
computes a subrelation of

C, since for every call to C
′
, there exists a call to C, notably A, computing the

same set of answers.

Definition 7. [R6] Argument removal. Let P ∪ {C} be a program. The Ar-

gument removal rule transforms the program into P ∪ {C′}, where C
′
is the

predicate obtained from C by removing, both from the clause heads and from
each recursive call in the clause bodies, an argument having the same constant
value everywhere in C or an argument represented by an anonymous variable,
i.e. having only one occurrence in each clause.

An argument which is a constant or an anonymous variable does not influence
the bindings created by any call to the predicate. Consequently, each answer
computed by a call to the transformed predicate is a subset of an answer com-
puted by the original predicate (the latter possibly including the binding of a
variable to the constant value being removed by the transformation).

Definition 8. The set Rs is constituted of the transformation rules Definition
introduction, Unfolding, In-situ folding, Deletion of clauses with finitely failed
body, Specialization and Argument removal.

As illustrated below, the set Rs allows to characterize an important subset of
subrelations, namely those in which the subrelation can be obtained from the
more general predicate by partially evaluating [16,5] a call to the latter.

Example 2. Consider the following two predicate definitions:
add1&sqr([], []) ←
add1&sqr([A|As], [B|Bs]) ← N is A+1, B is N*N, add1&sqr(As,Bs)

map(P, [], []) ←
map(P, [X|Xs], [Y |Y s]) ← P (X,Y), map(P,Xs, Y s)

A call add1&sqr(L1, L2) transforms a list L1 into L2 by replacing each ele-
ment x by (x+1)2, while a call map(P,L1, L2) transforms L1 into L2 by ap-
plying the binary predicate P to each element. It can be easily verified that
add1&sqr �Rs map. Indeed, there exists a�-correctRs -transformation sequence
in which add1&sqr is derived from map:

(P0 ∪ {map0}), (P1 ∪ {map0}), (P1 ∪ {map1}), (P1 ∪ {map2}), (P1 ∪ {map3})

where P0 = {add1&sqr} andmap0 = map; P1 is obtained from P0 by introducing
the predicate op(A,B) ← N is A+1, B is N*N ; map1 is the following predicate,
obtained by specializing map0 with respect to the call map(op,A,B):
map(op, [], []) ←
map(op, [X|Xs], [Y |Y s]) ← op(X,Y), map(op,Xs, Y s)

and map2 is obtained by unfolding, in map1, the call to op:
map(op, [], []) ←
map(op, [X|Xs], [Y |Y s]) ← N is X+1, Y is N*N, map(op,Xs, Y s)

Semantic Code Clones in Logic Programs 43

Finally, map3 is obtained by removing the superfluous argument op from the
definition of map2:
map([], []) ←
map([X|Xs], [Y |Y s]) ← N is X+1, Y is N*N, map(Xs,Y s)

It can be easily seen that the obtained predicate is a variant of add1&sqr.

3.3 Towards a More Involved Instantiation of R

In order to capture a larger class of subrelations (hence, clone pairs), we will
now define two more transformation rules. As the rules in Rs , they change the
definition of the given predicate and possibly its arity, but not its name.

We first introduce the concept of a slice, similarly to the definition proposed by

Vasconcelos and Aragão [23]. A slice of a program P ∪{C} is a program P ∪{C′}
where the predicate C

′
is obtained from C by removing a (possibly empty) subset

of its clauses and removing, from each remaining clause, a (possibly empty)
subset of the atoms therein. In what follows, we restrict our attention to slices
that are correct with respect to a given set of argument positions.

Definition 9. Let the program P ∪ {C′} be a slice of P ∪ {C} with rel(C) =

rel(C
′
) = p/m, and Π ⊆ {1, . . . ,m} be a set of argument positions of C. The

slice P ∪ {C′} is correct with respect to Π if and only if for each call p(t) to C,
with CAS(P ∪ {C}, p(t)) = {θ1, . . . , θk}, the following holds:

◦ CAS(P ∪ {C′}, p(t)) = {θ′1, . . . , θ′k}, and
◦ either k = 0 (both sets are empty) or there exists a bijective mapping between

the substitutions of {θ1, . . . , θk} and those of {θ′1, . . . , θ′k}, and
◦ for each pair of corresponding substitutions θi and θ′i(1 ≤ i ≤ k), we have

that t|Πθi �ρ t|Πθ′i with vars(t|Π) ∩ dom(ρ) = ∅.

In other words, a slice is correct with respect to a set of argument positions Π
if it computes the same answers as those computed by the original program, at
least as far as the argument positions in Π are concerned. Correct slices may be
computed by existing techniques [23,6].

Example 3. The following predicate definition, executing list traversal, is a cor-
rect slice with respect to Π = {1} of the predicate add1&sqr from Example
2:
add1&sqr([], []) ←
add1&sqr([A|As], [B|Bs]) ← add1&sqr(As,Bs)

Definition 10. [R7] Slicing. Let P ∪ {C} be a program, Π a set of argument

positions and P ∪ {C′} a correct slice of the program with respect to Π. The

Slicing rule transforms the program P ∪ {C} into P ∪ {C′}.

44 C. Dandois and W. Vanhoof

By the definition of a correct slice, we have that C
′ � C, i.e. C

′
computes

a subrelation of C. As a transformation rule, slicing is related to the merging
refactoring for functional programs [2,7] and to the field of skeletons and tech-
niques for synthesizing logic programs [18].

The following rule allows to change the order of the arguments of a predicate.
It is obviously �-correct.

Definition 11. [R8] Argument permutation. Let P ∪ {C} be a program
with rel(C) = p/m, and φ : {1, . . . ,m} → {1, . . . ,m} a bijective mapping. The

Argument permutation rule transforms the program P ∪ {C} into P ∪ {C′} by
replacing every atom of the form p(t1, . . . , tm) (clause head or recursive call) by
an atom of the form p(tφ(1), . . . , tφ(m)).

We can now define a more involved set of transformation rules. As the fol-
lowing examples will show, this set is sufficient to characterize the predicates
take mult n and add ij from the introduction as subrelations of the more gen-
eral predicate g, thereby characterizing them as a g-clone pair.

Definition 12. The set Ra is constituted of the transformation rules in Rs to-
gether with Slicing and Argument permutation.

Example 4. Returning to our running example, by rule R1, we may introduce
the definition of list. By R5, with the query g([], list, L, 1, J, R1, R2), we obtain
the predicate definition of g1:
g([], list, L, 1, 0, [], 1) ←
g([], list, [], 1, J, [], 1) ← J > 0
g([], list, [A|As], 1, J, R1, R2) ← J > 0, J1 is J-1, g([], list, As, 1, J1, V,W),

list(A,V, R1), R2 is A*W
g([], list, [A|As], 1, J, R1, R2) ← 1 > 1, J ≥ I, I1 is I-1, J1 is J-1,

g([], list, As, I1, J1, R1, R2)

We may delete, by R4, the last clause since the evaluation of the goal 1 > 1 fails,
and by R6, the 1st, 2nd and 4th arguments, constant, to obtain g5:
g(L, 0, [], 1) ←
g([], J, [], 1) ← J > 0
g([A|As], J, R1, R2) ← J > 0, J1 is J-1, g(As,J1, V,W), list(A, V,R1), R2 is A*W

By R2 with respect to the atom list(A, V,R1), we obtain g6:
g(L, 0, [], 1) ←
g([], J, [], 1) ← J > 0
g([A|As], J, [A|V], R2) ← J > 0, J1 is J-1, g(As, J1, V,W), R2 is A*W

By R3, using the predicate definition of prev, we obtain g7:
g(L, 0, [], 1) ←
g([], J, [], 1) ← J > 0
g([A|As], J, [A|V], R2) ← J > 0, prev(J1, J), g(As, J1, V,W), R2 is A*W

Semantic Code Clones in Logic Programs 45

Lastly, by R8, with argument mapping {(1, 2), (2, 1), (3, 3), (4, 4)}, we get g8:
g(0, L, [], 1) ←
g(J, [], [], 1) ← J > 0
g(J, [A|As], [A|V], R2) ← J > 0, prev(J1, J), g(As, J1, V,W), R2 is A*W

We have that take mult n is a variant of g8 taking into account the replacement
of the relation name g by take mult n. It follows that the predicate take mult n
computes an Ra -subrelation of g.

Example 5. It is possible to establish in a similar way that add ij �Ra g. The
trickiest part of the demonstration consists in the application of rule R7. After
introducing the definition of add by rule R1 and applying rule R5 with the query
g(0, add, L, I, J, R1, R2), we obtain the following predicate definition for g1:
g(0, add, L, 1, 0, 0, 1) ←
g(0, add, [], 1, J, 0, 1) ← J > 0
g(0, add, [A|As], 1, J, R1, R2) ← J > 0, J1 is J-1, g(0, add,As, 1, J1, V,W),

add(A,V,R1), R2 is A*W
g(0, add, [A|As], 1, J, R1, R2) ← 1 > 1, J ≥ I, I1 is I-1, J1 is J-1,

g(0, add,As, I1, J1, R1, R2)

Then, by R7 and the set of argument positions {1, . . . , 6}, we obtain the correct
slice g2:
g(0, add, L, 1, 0, 0, 1) ←
g(0, add, [], 1, J, 0, 1) ← J > 0
g(0, add, [A|As], 1, J, R1, R2) ← J > 0, J1 is J-1, g(0, add,As, 1, J1, V,W), add(A,V,R1)
g(0, add, [A|As], 1, J, R1, R2) ← 1 > 1, J ≥ I, I1 is I-1, J1 is J-1,

g(0, add,As, I1, J1, R1, R2)

The atom R2 is A*W may be deleted because it succeeds or fails in the same
way as the other atoms of the clause, in particular as the atom add(A, V,R1)
which always succeeds if A is a natural and fails otherwise.

Finally, by suppressing the 1st, 2nd and 7th superfluous arguments by R6 and
unfolding the atom add(A, V,R1) by R2, we may conclude that add ij computes
an Ra -subrelation of g.

3.4 Return to Clone Pairs

We may state that an R-subrelation can be seen as approximating a subrelation.

Proposition 1. Given two code fragments F1 and F2 from a program P , if F1

computes an R-subrelation of F2, then F1 also computes a subrelation of F2.

This result stems from the fact that, by Definition 5, the predicate C derived
by the transformation sequence originating in pdr(F2) computes a subrelation of
pdr(F2) while being, at the same time, a variant of pdr(F1) (modulo a relation
name substitution). Note that the converse of the proposition is not necessarily
true, at least referring to our set of rules Ra . Indeed, for example, even if the
predicate rev1 computes a subrelation of rev2, it computes no Ra -subrelation

46 C. Dandois and W. Vanhoof

of rev2. This could be explained because the way of computing the reverse list is
inherently different in both predicate definitions, they implement two different
algorithms and the one of rev1 can possibly not be derived from the one of rev2
by the transformation rules from Ra

1.
We can now also approximate the notion of an F -code clone pair by building

upon an R-transformation sequence.

Definition 13. Given a code fragment F and given a set R of program trans-
formation rules, two code fragments F1 and F2 form an (F ,R)-clone pair if and
only if F1 �R F and F2 �R F .

Example 6. As shown by Examples 4 and 5, the predicates take mult n et add ij
form a (g,Ra)-clone pair.

Given our definition of an F -clone pair, the following result is immediate:

Proposition 2. Given a code fragment F , given a set R of program transfor-
mation rules and given two code fragments F1 and F2 from a program P , if F1

and F2 form an (F ,R)-clone pair, then they also form an F -clone pair.

4 Refactoring and Ongoing Work

Let us first examine the relevance of our definitions of an F -clone pair and an
(F ,R)-clone pair in the context of refactorings that aim at removing duplicated
(cloned) code from a program. Some basic refactorings exist in the literature
of logic programming. Pettorossi and Proietti propose two rules concerning ex-
act duplication [12]: “Deletion of Duplicate Clauses” and “Deletion of Duplicate
Goals”. Those rules allow to replace a sequence of clauses C,C in a predicate de-
finition by the clause C and to replace a goal G,G in the body of a clause by the
goal G. Serebrenik et al. present two refactorings for Prolog programs [17]. The
first one aims at identifying identical subsequences of goals in different predicate
bodies, in order to extract them into a new predicate. The detection phase is said
to be comparable to the problem of determining longest common subsequences.
The second refactoring aims at eliminating copy-pasted predicates, with iden-
tical definitions. However, to limit the search complexity, only predicates with
identical names in different modules are considered duplicated. Vanhoof and De-
grave expose the idea of a more complex refactoring [21,22]: generalization of two
predicate definitions into a higher-order one. Those refactorings are frequently
studied for other programming languages [14], and we may point out in partic-
ular another kind of generalization realized thanks to a merging operator [2].
Our definitions of clone pairs allow to embody all above refactorings in a single
simple schema, under some conditions.

A particular case of subrelation occurs when there exists a general call to
pdr(F2), let say K, such that each call to pdr(F1) could be replaced by an

1 In the case of rev1 and rev2, this particular relation between both predicates could
be proven but this requires using properties other than the rules in Ra [18,11].

Semantic Code Clones in Logic Programs 47

instance of this general call. It means that, according to Definition 1, each call
to pdr(F1) of the form p(X)σ has the same procedural behaviour than the call
Kσ. In such a situation, F1 may be written in terms of F2, in the following way:

1. if F2 is not a predicate definition, then add pdr(F2) to P as a new predicate.
2. supposing rel(pdr(F2)) = newq/n, if F2 is a subgoal of a clause body, then it

simply becomes the atom newq(uvars(F2)) ; if F2 is a subsequence of clauses
with rel(F2) = q/n, then it is replaced by a new clause q(Y1, . . . , Yn) ←
newq(Y1, . . . , Yn).

3. add other new predicates to P if needed
4. if F1 is a subgoal of a clause body, then it simply becomes the atom K ; if

F1 is a subsequence of clauses or a predicate definition with rel(F1) = p/m,
then it is replaced by a new clause p(X1, . . . , Xm)← K.

Consequently, when two code fragments F1 and F2 form an F -code clone pair
because they are both linked to F by this particular case of subrelation, it is
possible to remove the duplication by simply applying the items 1 and 2 of the
above procedure for the fragment F and the items 3 and 4 for F1 and F2.

Example 7. All previous examples benefit from this particularity, which allows
us to write, assuming the creation of the new predicates op, list, add and g:
rev1(X,Y) ← rev2(X, [], Y)

add1&sqr(L1, L2) ← map(op,L1, L2)

take mult n(N,L1, L2, P) ← g([], list, L1, 1, N, L2, P)

add ij(L, I, J, S) ← g(0, add,L, I, J, S,)

This kind of rewriting is however not possible for all subrelations. For exam-
ple, consider the simple predicate mult computing the product of two naturals:
mult(X,Y, Z) ← Z is X*Y . This implementation using the built-in predicate
“is” implies that every call to mult where the two first arguments are not
ground fails. This property allows to show that mult computes a subrelation
of our predicate add ij. Indeed, to every call of the form mult(t1, t2, t3) with
t1, t2 ground naturals, we may associate a call add ij([t4, t5], 1, 2, t3) with t4, t5
ground naturals such that t1 ∗ t2 = t4 + t5. However, it is not possible to write
mult(X,Y, Z) ← add ij([A,B], 1, 2, Z)σ because there exists no substitution σ
making an appropriate link between X,Y and A,B.

This particular case of subrelation (hence, of F -clone pair) is not computable,
but it also may be approximated. Indeed, it is possible to state a set R of cau-
tiously chosen program transformation rules such that if F1 computes an R-
subrelation of F2, then it also computes this particular kind of subrelation of F2.
Concretely, each rule may be associated with a simple operation on a given call,
such that at the end of the R-transformation sequence, the call K is constructed.
Both sets Rs and Ra verify this property. Thus, given an Ra -transformation se-
quence allowing to prove an (F,Ra)-code clone pair, it is possible to refactor the
corresponding duplication.

As for some concluding remarks, note that our definitions of clone pairs ge-
neralize the definition of a purely syntactically structural clone as the one in our

48 C. Dandois and W. Vanhoof

previous work [4] by considering variance with respect to an R-transformation
sequence. Indeed, a purely syntactical clone pair between code fragments F1 and
F2 corresponds to an (F,R)-clone pair where the code fragment F is either F1

or F2 and where no transformation rule has to be applied.
The price to pay for the generality of the definition relies of course in the

complexity needed for verifying whether two code fragments are related by an
R-subrelation. Also note that even if the verification could be completely au-
tomated, doing so might turn out to be far from trivial since deciding which
transformation rule to apply and how to parametrize it may reveal to be quite
complex. An interesting topic of ongoing work is how to find a generalization
of two code fragments suspected of forming an (F,R)-clone pair. Developing an
algorithm for detecting (a relevant subset) of (F,R)-clone pairs will be an im-
portant step in identifying semantic clones [15].

Acknowledgements. We warmly thank the reviewers for their thought-
provoking remarks. We particularly thank A. Pettorossi and M. Proietti for
their enriching discussions.

References

1. Apt, K.: Logic programming. In: Handbook of Theoretical Computer Science. For-
mal Models and Sematics, vol. B, pp. 493–574. Elsevier (1990)

2. Brown, C., Thompson, S.: Clone detection and elimination for Haskell. In: Pro-
ceedings of the 2010 SIGPLAN Workshop on Partial Evaluation and Program
Manipulation, PEPM 2010, pp. 111–120. ACM (2010)

3. Chen, W., Kifer, M., Warren, D.: HiLog: A foundation for higher-order logic pro-
gramming. Journal of Logic Programming 15(3), 187–230 (1993)

4. Dandois, C., Vanhoof, W.: Clones in logic programs and how to detect them. In:
Vidal, G. (ed.) LOPSTR 2011. LNCS, vol. 7225, pp. 90–105. Springer, Heidelberg
(2012)

5. Leuschel, M.: Advanced Techniques for Logic Program Specialisation. Ph.D. thesis,
Katholieke Universiteit Leuven (1997)

6. Leuschel, M., Vidal, G.: Forward slicing by conjunctive partial deduction and ar-
gument filtering. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 61–76.
Springer, Heidelberg (2005)

7. Li, H., Thompson, S.: Clone detection and removal for Erlang/OTP within a refac-
toring environment. In: Proceedings of the 2009 SIGPLAN Workshop on Partial
Evaluation and Program Manipulation, PEPM 2009, pp. 169–178. ACM (2009)

8. Lloyd, J.W.: Foundations of Logic Programming, 2nd edn. Springer (1987)
9. Nadathur, G., Miller, D.: Higher-order logic programming. In: Handbook of Logic

in Artificial Intelligence and Logic Programming, vol. 5, pp. 499–590. Oxford Uni-
versity Press (1998)

10. Palamidessi, C.: Algebraic properties of idempotent substitutions. In: Paterson,
M.S. (ed.) Automata, Languages and Programming. LNCS, vol. 443, pp. 386–399.
Springer, Heidelberg (1996)

11. Pettorossi, A., Proietti, M., Senni, V.: Constraint-based correctness proofs for logic
program transformations. Tech. Rep. 24, IASI-CNR (2011)

Semantic Code Clones in Logic Programs 49

12. Pettorossi, A., Proietti, M.: Transformation of logic programs. In: Handbook of
Logic in Artificial Intelligence and Logic Programming, vol. 5, pp. 697–787. Oxford
University Press (1998)

13. Pettorossi, A., Proietti, M.: Synthesis and transformation of logic programs using
unfold/fold proofs. The Journal of Logic Programming 41, 197–230 (1999)

14. Roy, C.K., Cordy, J.R.: A survey on software clone detection research. Tech. rep.
(2007)

15. Roy, C.K., Cordy, J.R., Koschke, R.: Comparison and evaluation of code clone
detection techniques and tools: A qualitative approach. Science of Computer Pro-
gramming 74(7), 470–495 (2009)

16. Sahlin, D.: Mixtus: An automatic partial evaluator for full Prolog. New Generation
Computing 12, 7–15 (1993)

17. Serebrenik, A., Schrijvers, T., Demoen, B.: Improving Prolog programs: Refactor-
ing for Prolog. Theory and Practice of Logic Programming (TPLP) 8, 201–215
(2008), other version consulted https://lirias.kuleuven.be/bitstream/

123456789/164765/1/technical note.pdf

18. Seres, S., Spivey, M.: Higher-order transformation of logic programs. In: Lau, K.-K.
(ed.) LOPSTR 2000. LNCS, vol. 2042, pp. 57–68. Springer, Heidelberg (2001)

19. Tamaki, H., Sato, T.: Unfold/fold transformations of logic programs. In: Proceed-
ings of the 2nd International Conference on Logic Programming, ICLP 1984 (1984)

20. Tamaki, H., Sato, T.: A generalized correctness proof of the unfold/fold logic pro-
gram transformation. Tech. Rep. 86-4, Ibaraki University, Japan (1986)

21. Vanhoof, W.: Searching semantically equivalent code fragments in logic programs.
In: Etalle, S. (ed.) LOPSTR 2004. LNCS, vol. 3573, pp. 1–18. Springer, Heidelberg
(2005)

22. Vanhoof, W., Degrave, F.: An algorithm for sophisticated code matching in logic
programs. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS,
vol. 5366, pp. 785–789. Springer, Heidelberg (2008)

23. Weber Vasconcelos, W., Aragão, M.A.T.: An adaptation of dynamic slicing tech-
niques for logic programming. In: de Oliveira, F.M. (ed.) SBIA 1998. LNCS (LNAI),
vol. 1515, pp. 151–160. Springer, Heidelberg (1998)

Appendix

The following well-known program transformation rules come from the work of
Tamaki and Sato [19,20] and of Pettorossi and Proietti [12,13]. Their definition
are adapted to our notation.

Definition. [R1] Definition introduction. Let P ∪ {C} be a program. We
define a predicate D = 〈newp(. . .) ← Body1, . . . , newp(. . .) ← Bodyn〉(1 ≤ n),
such that (1) newp is a predicate symbol not occurring in P and (2) ∀i(1 ≤
i ≤ n), all predicate symbols in the goal Bodyi occur in P . By Definition intro-
duction, we derive from P ∪{C} the new program P ′∪{C}, where P ′ = P ∪{D}.

Definition. [R2] Unfolding. Let P ∪{〈C1, . . . , Ci, . . . , Ck〉} be a program with
Ci = H ← L,A,R where A is a positive atom and L and R are (possibly empty)
goals. Suppose that:

https://lirias.kuleuven.be/bitstream/123456789/164765/1/technical_note.pdf
https://lirias.kuleuven.be/bitstream/123456789/164765/1/technical_note.pdf

50 C. Dandois and W. Vanhoof

1. D1, . . . , Dn (n > 0) is the subsequence of all clauses of P such that ∀j(1 ≤
j ≤ n), there is a variant of the clause Dj, say D

′
j, with vars(Ci)∩vars(D′

j) =
∅ and A is unifiable with hd(D′

j) with most general unifier θj, and
2. ∀j(1 ≤ j ≤ n) : C′

j is the clause (H ← L, bd(D′
j), R)θj

If we unfold Ci w.r.t. A, we derive the clauses C′
1, . . . , C

′
n and we get the new

program P ∪ {〈C1, . . . , C
′
1, . . . , C

′
n, . . . , Ck〉}.

Remark that the application of the unfolding rule realizes an (SLD-)resolution
step to clause Ci with the selection of the positive atom A and the input clauses
D1, . . . , Dn [12].

Definition. [R3] In-situ folding. Let P ∪ {〈C1, . . . , C
′
1, . . . , C

′
n, . . . , Ck〉} be

a program and D1, . . . , Dn be a subsequence of clauses in P . Suppose that there
exist an atom A and two goals L and R such that for each i(1 ≤ i ≤ n), there
exists a substitution θi which satisfies the following conditions:

1. C′
i is a variant of the clause H ← L, bd(Di)θi, R,

2. A = hd(Di)θi,
3. for every clause D of P not in the sequence D1, . . . , Dn, hd(D) is not unifi-

able with A, and
4. for every variable X in the set vars(Di) \ vars(hd(Di)), we have that:

◦ X i is a variable which does not occur in (H,L,R) and
◦ the variable Xθi does not occur in the term Y θi, for any variable Y
occurring in bd(Di) and different from X.

If we in-situ fold C′
1, . . . , C

′
n using D1, . . . , Dn, we derive the clause C = H ←

L,A,R and we get the new program P ∪ {〈C1, . . . , C, . . . , Ck〉}.

Note that, in this version of the folding rule, the clauses C′
1, . . . , C

′
n cannot be

folded using clauses from C′
1, . . . , C

′
n. Moreover, the unfolding and in-situ fold-

ing rules are inverse transformation rules. Indeed, the application of the in-situ
folding rule can be reversed by an application of the unfolding rule: if we derive
a clause C from C′

1, . . . , C
′
n using clauses D1, . . . , Dn, it is always possible to

unfold C using D1, . . . , Dn to get C′
1, . . . , C

′
n [12].

Definition. [R4] Deletion of clauses with finitely failed body. Let P ∪
{〈C1, . . . , Ci, . . . , Ck〉} be a program with Ci = H ← L,A,R where A is a (posi-
tive or negative) atom and L and R are (possibly empty) goals. Suppose that A
has a finitely failed SLDNF-tree in P , then C has a finite failed body. By Deletion
of Clauses with Finitely Failed Body, we derive from P ∪{〈C1, . . . , Ci, . . . , Ck〉}
the new program P ∪ {〈C1, . . . , Ck〉}.

Specialization with Constrained Generalization
for Software Model Checking

Emanuele De Angelis1, Fabio Fioravanti1,
Alberto Pettorossi2, and Maurizio Proietti3

1 DEC, University ‘G. D’Annunzio’, Pescara, Italy
{emanuele.deangelis,fioravanti}@unich.it

2 DICII, University of Rome Tor Vergata, Rome, Italy
pettorossi@disp.uniroma2.it

3 IASI-CNR, Rome, Italy
maurizio.proietti@iasi.cnr.it

Abstract. We present a method for verifying properties of imperative
programs by using techniques based on constraint logic programming
(CLP). We consider a simple imperative language, called SIMP, extended
with a nondeterministic choice operator and we address the problem of
checking whether or not a safety property ϕ (that specifies that an unsafe
configuration cannot be reached) holds for a SIMP program P . The op-
erational semantics of the language SIMP is specified via an interpreter I
written as a CLP program. The first phase of our verification method
consists in specializing I with respect to P , thereby deriving a specialized
interpreter IP . Then, we specialize IP with respect to the property ϕ and
the input values of P , with the aim of deriving, if possible, a program
whose least model is a finite set of constrained facts. To this purpose we
introduce a novel generalization strategy which, during specialization,
has the objecting of preserving the so called branching behaviour of the
predicate definitions. We have fully automated our method and we have
made its experimental evaluation on some examples taken from the liter-
ature. The evaluation shows that our method is competitive with respect
to state-of-the-art software model checkers.

1 Introduction

Software model checking is a body of formal verification techniques for imperative
programs that combine and extend ideas and techniques developed in the fields
of static program analysis and model checking (see [19] for a recent survey).

In this paper we consider a simple imperative language SIMP acting on integer
variables, with nondeterministic choice, assignment, conditional, and while-do
commands (see, for instance, [29]) and we address the problem of verifying safety
properties. Basically, a safety property states that when executing a program, an
unsafe configuration cannot be reached from any initial configuration. Note that,
since we consider programs that act on integer numbers, the problem of deciding
whether or not an unsafe configuration is unreachable is in general undecidable.

E. Albert (Ed.): LOPSTR 2012, LNCS 7844, pp. 51–70, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

52 E. De Angelis et al.

In order to cope with this undecidability limitation, many program analy-
sis techniques have followed approaches based on abstraction [4], by which the
concrete data domain is mapped to an abstract domain so that reachability is
preserved, that is, if a concrete configuration is reachable, then the corresponding
abstract configuration is reachable. By a suitable choice of the abstract domain
one can design reachability algorithms that terminate and, whenever they prove
that an abstract unsafe configuration is unreachable from an abstract initial con-
figuration, then the program is proved to be safe (see [19] for a general abstract
reachability algorithm). Notable abstractions are those based on convex polyhe-
dra, that is, conjunctions of linear inequalities (also called constraints here).

Due to the use of abstraction, the reachability of an abstract unsafe config-
uration does not necessarily imply that the program is indeed unsafe. It may
happen that the abstract reachability algorithm produces a spurious counterex-
ample, that is, a sequence of configurations leading to an abstract unsafe con-
figuration which does not correspond to any concrete computation. When a
spurious counterexample is found, counterexample-guided abstraction refinement
(CEGAR) automatically refines the abstract domain so that a new run of the ab-
stract reachability algorithm rules out the counterexample [1,3,30]. Clearly, the
CEGAR technique may not terminate because an infinite number of spurious
counterexamples may be found. Thus, in order to improve the termination be-
haviour of that technique, several more sophisticated refinement strategies have
been proposed (see, for instance, [14,16,20,32]).

In this paper in order to improve the termination of the safety verification pro-
cess, we propose a technique based on the specialization of constraint logic pro-
grams. Constraint Logic Programming (CLP) has been shown to be very suitable
for the analysis of imperative programs, because it provides a very convenient
way of representing symbolic program executions and also, by using constraints,
program invariants (see, for instance, [16,18,27,28]). Program specialization is a
program transformation technique which, given a program P and a portion in1

of its input data, returns a specialized program Ps that is equivalent to P in
the sense that when the remaining portion in2 of the input of P is given, then
Ps(in2) = P (in1, in2) [12,21,22]. The specialization of CLP programs has been
proposed in [27] as a pre-processing phase for program analysis. This analysis is
done in various steps. First, the semantics of an imperative language is provided
by means of a CLP program which defines the interpreter I of that language, and
then, program I is specialized with respect to the program P whose safety prop-
erty should be checked. The result of this specialization is a CLP program IP
and, since program specialization preserves semantic equivalence, we can analyze
IP for proving the properties of P .

Similarly to [27], also the technique proposed in this paper produces a special-
ized interpreter IP . However, instead of applying program analysis techniques,
we further specialize IP with respect to the property characterizing the input
values of P (that is, the precondition of P), thereby deriving a new program I ′P .
The effect of this further specialization is the modification of the structure of the

Specialization with Constrained Generalization 53

program IP and the explicit addition of new constraints that denote invariants of
the computation. Through various experiments we show that by exploiting these
invariants, the construction of the least model of the program I ′P terminates in
many interesting cases and, thus, it is possible to verify safety properties by
simply inspecting that model.

An essential ingredient of program specialization are the generalization steps,
which introduce new predicate definitions representing invariants of the program
executions. Generalizations can be used to enforce the termination of program
specialization (recall that termination occurs when no new predicate definitions
are generated) and, in this respect, they are similar to the widening operators
used in static program analysis [4,5]. One problem encountered with general-
izations is that sometimes they introduce predicate definitions which are too
general, thereby making specialization useless. In this paper we introduce a new
generalization strategy, called the constrained generalization, whose objective is
indeed to avoid the introduction of new predicate definitions that are too general.

The basic idea of the constrained generalization is related to the branching
behaviour of the unfolding steps, as we now indicate. Given a sequence of unfold-
ing steps performed during program specialization, we may consider a symbolic
evaluation tree made out of clauses, such that every clause has as children the
clauses which are generated by unfolding that clause. Suppose that a clause γ
has n children which are generated by unfolding using clauses γ1, . . . , γn, and
suppose that during program specialization we have to generalize clause γ. Then,
we would like to perform this generalization by introducing a new predicate defi-
nition, say δ, such that by unfolding clause δ, we get again, if possible, n children
and these children are due to the same clauses γ1, . . . , γn.

Since in this generalization the objective of preserving, if possible, the branch-
ing structure of the symbolic evaluation tree, is realized by adding extra con-
straints to the clause obtained after a usual generalization step (using, for in-
stance, the widening operator [4] or the convex-hull operator [5]), we call the
generalization proposed in this paper a constrained generalization. Similar pro-
posals have been presented in [2,15] and in Section 7 we will briefly compare
those proposals with ours.

The paper is organized as follows. In Section 2 we describe the syntax of the
SIMP language and the CLP interpreter which defines the operational semantics
of that language. In Section 3 we outline our software model checking approach
by developing an example taken from [14]. In Sections 4 and 5 we describe our
strategy for specializing CLP programs and, in particular, our novel constrained
generalization technique. In Section 6 we report on some experiments we have
performed by using a prototype implementation based on the MAP transfor-
mation system [26]. We also compare the results we have obtained using the
MAP system with the results we have obtained using state-of-the-art software
model checking systems such as ARMC [28], HSF(C) [13], and TRACER [17].
Finally, in Section 7 we discuss the related work and, in particular, we compare
our method with other existing methods for software model checking.

54 E. De Angelis et al.

2 A CLP Interpreter for a Simple Imperative Language

The syntax of our language SIMP, a C-like imperative language, is defined by
using: (i) the set Int of integers, ranged over by n, (ii) the set {true, false} of
booleans, and (iii) the set Loc of locations, ranged over by x. We have also the
following derived sets: (iv) Aexpr of arithmetic expressions, (v) Bexpr of boolean
expressions, (vi) Test of tests, and (vii) Com of commands. The syntax of our
language is as follows.
Aexpr � a ::= n | x | a0 aop a1
Bexpr � b ::= true | false | a0 rop a1 | ! b | b0 bop b1
Test � t ::= nd | b
Com � c ::= skip | x = a | c0;c1 | if (t) { c0 } else c1 | while (t) { c } | error
where the arithmetic operator aop belongs to {+, -, *}, the relational operator
rop belongs to {<, <=, ==}, and the boolean operator bop belongs to {&&, ||}.
The constant nd denotes the nondeterministic choice and error denotes the error
command. The other symbols should be understood as usual in C. We will write
if (t) { c0 }, instead of if (t) { c0 } else skip.

Now we introduce a CLP program which defines the interpreter of our SIMP
language. We need the following notions.

A state is a function from Loc to Int. It is denoted by a list of CLP terms,
each of which is of the form bn(loc(X),V), where bn is a binary constructor
binding the location X to the value of the CLP variable V. We assume that the
set of locations used in every command is fixed and, thus, for every command,
the state has a fixed, finite length. We have two predicates operating on states:
(i) lookup(loc(X),S,V), which holds iff the location X stores the value V in the
state S, and (ii) update(loc(X),V,S1,S2), which holds iff the state S2 is equal to
the state S1, except that the location X stores the value V.

We also have the predicates aev(A,S,V) and bev(B,S), for the evaluation of
arithmetic expressions and boolean expressions, respectively. aev(A,S,V) holds
iff the arithmetic expression A in the state S evaluates to V, and bev(B,S) holds iff
the boolean expression B holds in the state S. A test T in a state S is evaluated via
the predicate tev(T,S) defined as follows: (i) for all states S, both tev(nd,S) and
tev(not(nd),S) hold (and in this sense nd denotes the nondeterministic choice),
and (ii) for all boolean expressions B, tev(B,S) holds iff bev(B,S) holds.

A command c is denoted by a term built out of the following constructors: skip
(nullary), asgn (binary) for the assignment, comp (binary) for the composition of
command, ite (ternary) for the conditional, and while (binary) for the while-
do. The operator ‘;’ associates to the right. Thus, for instance, the command
c0;c1;c2 is denoted by the term comp(c0,comp(c1,c2)).

A configuration is a pair of a command and a state. A configuration is denoted
by the term cf(c,s), where cf is a binary constructor which takes as arguments
the command c and the state s. The interpreter of our SIMP language, adapted
from [29], is defined in terms of a transition relation that relates an old config-
uration to either a new configuration or a new state. That relation is denoted
by the predicate tr whose clauses are given below. tr(cf(C,S),cf(C1,S1)) holds

Specialization with Constrained Generalization 55

iff the execution of the command C in the state S leads to the new configura-
tion cf(C1,S1), and tr(cf(C,S),S1) holds iff the execution of the command C in
the state S leads to the new state S1.
tr(cf(skip,S), S).
tr(cf(asgn(loc(X),A),S),S1) :- aev(A,S,V), update(loc(X),V,S,S1).
tr(cf(comp(C0,C1),S), cf(C1,S1)) :- tr(cf(C0,S),S1).
tr(cf(comp(C0,C1),S), cf(comp(C0’,C1),S’)) :- tr(cf(C0,S), cf(C0’,S’)).
tr(cf(ite(T,C0,C1),S), cf(C0,S)) :- tev(T,S).
tr(cf(ite(T,C0,C1),S), cf(C1,S)) :- tev(not(T),S).
tr(cf(while(T,C),S), cf(ite(T,comp(C,while(T,C)),skip),S)).

A state s is said to be initial if initProp holds in s. A configuration is said to be
initial if its state is initial. A configuration is said to be unsafe if its command
is error.

Now, we introduce a CLP program, called R, that by using a bottom-up evalu-
ation strategy, performs in a backward way the reachability analysis over config-
urations. Program R checks whether or not an unsafe configuration is reachable
from an initial configuration, by starting from the unsafe configurations. The
semantics of program R is given by its least model, denoted M(R).

Definition 1 (Reachability Program). Given a boolean expression initProp
holding in the initial states and a command com, the reachability program R is
made out of the following clauses:
unsafe :- initConf(X), reachable(X).
reachable(X) :- unsafeConf(X). % unsafe configurations are reachable
reachable(X) :- tr(X,X1), reachable(X1).
initConf(cf(com,S)) :- bev(initProp,S).% initProp holds in the initial state S
unsafeConf(cf(error,S)). % the error command defines an unsafe configuration

together with the clauses for the predicates tr and bev and the predicates they
depend upon. In the above clauses for R the terms initProp and com denote
initProp and com, respectively. We will say that com is safe with respect to
initProp (or com is safe, for short) iff unsafe �∈M(R).

3 Specialization-Based Software Model Checking

In this section we outline the method for software model checking we propose.
By means of an example borrowed from [14], we argue that program special-
ization can prove program safety in some cases where the CEGAR method (as
implemented in ARMC [28]) does not work.
Let the property initProp which characterizes the initial states be:

x==0 && y==0 && n>=0
and the SIMP command com be:

while (x<n) { x = x+1; y = y+1 };
while (x>0) { x = x-1; y = y-1 };
if (y>x) error

We want to prove that com is safe with respect to initProp, that is, there is
no execution of com with input values of x, y, and n satisfying initProp, such

56 E. De Angelis et al.

that the error command is executed. As shown in Table 1 of Section 6, CEGAR
fails to prove this safety property, because an infinite set of counterexamples is
generated (see the entry ‘∞’ for Program re1 in the ARMC column).

By applying the specialization-based software model checking method we pro-
pose in this paper, we will be able to prove that com is indeed safe. As indicated
in Section 2, we have to show that unsafe �∈M(R), where R is the CLP program
of Definition 1, com is the term:

comp(while(lt(loc(x),loc(n)),
comp(asgn(loc(x),plus(loc(x),1)), asgn(loc(y),plus(loc(y),1)))),

comp(while(gt(loc(x),0),
comp(asgn(loc(x),minus(loc(x),1)), asgn(loc(y),minus(loc(y),1)))),

ite(gt(loc(y),loc(x)),error,skip)))
and initProp is the term:

and(eq(loc(x),0), and(eq(loc(y),0), ge(loc(n),0)))

Our method consists of the three phases as we now specify.

The Software Model Checking Method
Input : A boolean expression initProp characterizing the initial states and a SIMP
command com.
Output : The answer safe iff com is safe with respect to initProp.

Let R be the CLP program of Definition 1 defining the predicate unsafe.
Phase (1): Specializecom(R,Rcom);
Phase (2): SpecializeinitProp(Rcom, RSp);
Phase (3): BottomUp(RSp,MSp);
Return the answer safe iff unsafe �∈MSp.

During Phase (1), by making use of familiar transformation rules (definition
introduction, unfolding, folding, removal of clauses with unsatisfiable body, and
removal of subsumed clauses [7]), we ‘compile away’, similarly to [27], the SIMP
interpreter by specializing program R with respect to com, thereby deriving the
following program Rcom which encodes the reachability relation associated with
the interpreter specialized with respect to com:
1. unsafe :- X=1, Y=1, N>=1, new1(X,Y,N).
2. new1(X,Y,N) :- X<N, X’=X+1, Y’=Y+1, new1(X’,Y’,N).
3. new1(X,Y,N) :- X>=1, X>=N, X’=X-1, Y’=Y-1, new2(X’,Y’,N).
4. new1(X,Y,N) :- X=<0, X<Y, X>=N.
5. new2(X,Y,N) :- X>=1, X’=X-1, Y’=Y-1, new2(X’,Y’,N).
6. new2(X,Y,N) :- X=<0, X<Y.
The specialization of Phase (1) is said to perform ‘the removal of the interpreter’.
Note that: (i) the two predicates new1 and new2 correspond to the two while-do
commands occurring in com, and (ii) the assignments and the conditional occur-
ring in com, do not occur in Rcom because by unfolding they have been replaced
by suitable constraints relating the values of X and Y (that is, the old values of
the SIMP variables x and y) to the values of X’ and Y’ (that is, the new values
of those variables x and y).

Specialization with Constrained Generalization 57

Unfortunately, the program Rcom is not satisfactory for showing safety, be-
cause the bottom-up construction of the least model M(Rcom) does not ter-
minate. The top-down evaluation of the unsafe query in Rcom does not ter-
minate either. Then, in Phase (2) we specialize program Rcom with respect to
the property initProp, thereby deriving the specialized program RSp. During
this Phase (2) the constraints occurring in the definitions of new1 and new2 are
generalized according to a suitable generalization strategy based both on widen-
ing [4,8,11] and on the novel constrained generalization strategy we propose
in this paper. Suitable new predicate definitions will be introduced during this
Phase (2), so that at Phase (3) we can construct the least model MSp of the
derived program RSp by using a bottom-up evaluation procedure. We will show
that, in our example, the construction of the least model MSp terminates and
we can prove the safety of the command com by showing that the atom unsafe
does not belong to that model.

Phase (2) of our method makes use of the same transformation rules used
during Phase (1), but those rules are applied according to a different strategy,
whose effect is the propagation of the constraints occurring in Rcom.

We start off by introducing the following definition:
7. new3(X,Y,N) :- X=1, Y=1, N>=1, new1(X,Y,N).
and then folding clause 1 by using this clause 7. We get the folded clause:
1.f unsafe:- X=1, Y=1, N>=1, new3(X,Y,N).
We proceed by following the usual unfold-definition-fold cycle of the special-
ization strategies [8,11]. Each new definition introduced during specialization
determines a new node of a tree, called DefsTree, whose root is clause 7, which
is the first definition we have introduced. (We will explain below how the tree
DefsTree is incrementally constructed.) Then, we unfold clause 7 and we get:
8. new3(X,Y,N) :- X=1, Y=1, N>=2, X’=2, Y’=2, new1(X’,Y’,N).
9. new3(X,Y,N) :- X=1, Y=1, N=1, X’=0, Y’=0, new2(X’,Y’,N).
Now, we should fold these two clauses. Let us deal with them, one at the time,
and let us first consider clause 8. In order to fold clause 8 we consider a definition,
called the candidate definition, which is of the form:
10. new4(X,Y,N) :- X=2, Y=2, N>=2, new1(X,Y,N).
The body of this candidate definition is obtained by projecting the constraint
in clause 8 with respect to X’, Y’, and N, and renaming the primed variables to
unprimed variables. Since in DefsTree there is an ancestor definition, namely
the root clause 7, with the predicate new1 in the body, we apply the widening
operator , introduced in [11], to clause 7 and clause 10, and we get the definition:
11. new4(X,Y,N) :- X>=1, Y>=1, N>=1, new1(X,Y,N).
(Recall that the widening operation of two clauses c1 and c2, after replacing
every equality A=B by the equivalent conjunction A>=B, A=<B, keeps the atomic
constraints of clause c1 which are implied by the constraint of clause c2.)

At this point, we do not introduce clause 11 (as we would do if we perform
a usual generalization using widening alone, as indicated in [8,11]), but we ap-
ply our constrained generalization, which imposes the addition of some extra
constraints to the body of clause 11, as we now explain.

58 E. De Angelis et al.

With each predicate newk we associate a set of constraints, called the regions
for newk, which are all the atomic constraints on the unprimed variables (that is,
the variables in the heads of the clauses) occurring in any one of the clauses for
newk in program Rcom. Then, we add to the body of the generalized definition
obtained by widening, say newp(...) :- c, newk(...), (clause 11, in our case), all
negated regions for newk which are implied by c.

In our example, the regions for new1 are: X<N, X>=1, X>=N, X=<0, X<Y (see
clauses 2, 3, and 4) and the negated regions are, respectively: X>=N, X<1, X<N,
X>0, X>=Y. The negated regions implied by the constraint X=2, Y=2, N>=2, occur-
ring in the body of the candidate clause 10, are: X>0 and X>=Y.

Thus, instead of clause 11, we introduce the following clause 12 (we wrote
neither X>0 nor X>=1 because those constraints are implied by X>=Y, Y>=1):
12. new4(X,Y,N) :- X>=Y, Y>=1, N>=1, new1(X,Y,N).
and we say that clause 12 has been obtained by constrained generalization from
clause 10. Clause 12 is placed in DefsTree as a child of clause 7, as clause 8 has
been derived by unfolding clause 7. By folding clause 8 using clause 12 we get:
8.f new3(X,Y,N) :- X=1, Y=1, N>=2, X’=2, Y’=2, new4(X’,Y’,N).
Now, it remains to fold clause 9 and in order to do so, we consider the following
candidate definition:
13. new5(X,Y,N) :- X=0, Y=0, N=1, new2(X,Y,N).
Clause 13 is placed in DefsTree as a child of clause 7, as clause 9 has been derived
by unfolding clause 7. We do not make any generalization of this clause, because
no definition with new2 in its body occurs as an ancestor of clause 13 in DefsTree.
By folding clause 9 using clause 13 we get:
9.f new3(X,Y,N) :- X=1, Y=1, N=1, X’=0, Y’=0, new5(X’,Y’,N).
Now, we consider the last two definition clauses we have introduced, that is,
clauses 12 and 13. First, we deal with clause 12. Starting from that clause, we
perform a sequence of unfolding-definition-folding steps similar to the sequence
we have described above, when presenting the derivation of clauses 8.f and 9.f,
starting from clause 7. During this sequence of steps, we introduce two predicates,
new6 and new7 (see the definition clauses 16 and 18, respectively), for performing
the required folding steps. We get the following clauses:
14.f new4(X,Y,N):-X>=Y, X<N, Y>0, X’=X+1, Y’=Y+1, new4(X’,Y’,N).
15.f new4(X,Y,N):-X>=Y, X>=N, Y>0, N>0, X’=X-1, Y’=Y-1, new6(X’,Y’,N).
17.f new6(X,Y,N):-X>0, X>=Y, X>=N-1, Y>=0, N>0, X’=X-1, Y’=Y-1, new7(X’,Y’,N).
19.f new7(X,Y,N):-X>0, X=<Y, N>0, X’=X-1, Y’=Y-1, new7(X’,Y’,N).
The tree DefsTree of all the definitions introduced during Phase (2), can be
depicted as follows:

DefsTree : 7. new3(X,Y,N):= X=1,Y=1,N>=1,new1(X,Y,N).

12. new4(X,Y,N):= X>=Y,Y>=1,N>=1,new1(X,Y,N).

13. new5(X,Y,N):= X=0,Y=0,N=1,new2(X,Y,N).

16. new6(X,Y,N):= X>=Y,X+1>=N,Y>=0,N>=1,new2(X,Y,N).

18. new7(X,Y,N):= X>=Y,N>=1,new2(X,Y,N).

Specialization with Constrained Generalization 59

Then, we deal with clause 13. Again, starting from that clause we perform a
sequence of unfolding-definition-folding steps. By unfolding clause 13 w.r.t. new2
we get an empty set of clauses for new5. Then, we delete clause 9.f because there
are no clauses for new5.

Eventually, we get the program RSp made out of the following clauses:
1.f unsafe :- X=1, Y=1, N>=1, new3(X,Y,N).
7.1f new3(X,Y,N):-X=1, Y=1, N>=2, X’=2, Y’=2, new4(X’,Y’,N).
together with the clauses 14.f, 15.f, 17.f, and 19.f.

This concludes Phase (2).
Now, we can perform Phase (3) of our method. This phase terminates im-

mediately because in RSp there are no constrained facts (that is, clauses whose
bodies consist of constraints only) and M(RSp) is the empty set.

Thus, unsafe �∈M(RSp) and we conclude that the command com is safe with
respect to initProp.

One can verify that if we were to do the generalization steps of Phase (2) using
the widening technique alone (without the constrained generalization), we could
not derive a program that allows us to prove safety, because during Phase (3)
the execution of the BottomUp procedure does not terminate.

4 The Specialization Strategy

Phases (1) and (2) of our Software Model Checking method outlined in Section 3
are realized by two applications of a single, general specialization strategy for
CLP programs that we now present.

This strategy is an adaptation of the specialization strategies we have pre-
sented in [8,11] and, as already mentioned in Section 3, it makes use of the fol-
lowing transformation rules: definition introduction, unfolding, clause removal,
and folding. These rules, under suitable conditions, guarantee that the least
model semantics is preserved (see, for instance, [7]).

Our general specialization strategy is realized by the following Specialize
procedure.

Procedure Specialize
Input : A CLP program of the form P ∪ {γ0}, where γ0 is unsafe← c,G.
Output : A CLP program Ps such that unsafe∈M(P ∪{γ0}) iff unsafe∈M(Ps).

Ps := {γ0}; InDefs := {γ0}; Defs := ∅;
while there exists a clause γ in InDefs
do Unfold(γ, Γ);

Generalize&Fold(Defs, Γ,NewDefs,Δ);
Ps := Ps∪Δ; InDefs := (InDefs−{γ})∪NewDefs; Defs := Defs∪NewDefs;

end-while

60 E. De Angelis et al.

Initially, this procedure considers the clause γ0 of the form:
unsafe← c,G

where c is a constraint and G is a goal, and then iteratively applies the following
two procedures: (i) the Unfold procedure, which uses the unfolding rule and
the clause removal rule, and (ii) the Generalize&Fold procedure, which uses the
definition introduction rule and the folding rule.

The Unfold procedure takes as input a clause γ and returns as output a set Γ
of clauses derived from γ by one or more applications of the unfolding rule, which
consists in: (i) replacing an atom A occurring in the body of a clause by the bodies
of the clauses in P whose head is unifiable with A, and (ii) applying the unifying
substitution. The first step of the Unfold procedure consists in unfolding γ with
respect to the leftmost atom in its body. In order to guarantee the termination of
the Unfold procedure, an atom A is selected for unfolding only if it has not been
derived by unfolding a variant of A itself. More sophisticated unfolding strategies
can be applied (see [22] for a survey of techniques for controlling unfolding), but
our simple strategy turns out to be effective in all our examples. At the end of the
Unfold procedure, subsumed clauses and clauses with unsatisfiable constraints
are removed.

The Generalize&Fold procedure takes as input the set Γ of clauses produced
by the Unfold procedure and introduces a set NewDefs of definitions, that is,
clauses of the form newp(X)← d(X), A(X), where newp is a new predicate sym-
bol, X is a tuple of variables, d(X) is a constraint whose variables are among
the ones in X , and A(X) is an atom whose variables are exactly those of the
tuple X . Any such definition denotes a set of states X satisfying the constraint
d(X). By folding the clauses in Γ using the definitions in NewDefs and the defi-
nitions introduced during previous iterations of the specialization procedure, the
Generalize&Fold procedure derives a new set of specialized clauses. In particular,
a clause of the form:

newq(X)← c(X), A(X)

obtained by the Unfold procedure, is folded by using a definition of the form:
newp(X)← d(X), A(X)

if for all X , c(X) implies d(X). This condition is also denoted by c(X) � d(X),
where the quantification ‘for all X ’ is silently assumed. If c(X) � d(X), we say
that d(X) is a generalization of c(X). The result of folding is the specialized
clause:

newq(X)← c(X), newp(X).
The specialization strategy proceeds by applying the Unfold procedure followed
by the Generalize&Fold procedure to each clause in NewDefs, and terminates
when no new definitions are needed for performing folding steps. Unfortunately,
an uncontrolled application of the Generalize&Fold procedure may lead to the
introduction of infinitely many new definitions, thereby causing the nontermi-
nation of the specialization procedure. In the following section we will define
suitable generalization operators which guarantee the introduction of finitely
many new definitions.

Specialization with Constrained Generalization 61

5 Constrained Generalization

In this section we define the generalization operators which are used to ensure
the termination of the specialization strategy and, as mentioned in the Intro-
duction, we also introduce constrained generalization operators that generalize
the constraints occurring in a candidate definition and, by adding suitable extra
constraints, have the objective of preventing that the set of clauses generated by
unfolding the generalized definition is larger than the set of clauses generated
by unfolding the candidate definition. In this sense we say the objective of con-
strained generalization is to preserve the branching behaviour of the candidate
definitions.

Let C denote the set of all linear constraints. The set C is the minimal set of
constraints which: (i) includes all atomic constraints of the form either p1≤ p2
or p1 < p2, where p1 and p2 are linear polynomials with variables X1, . . . , Xk

and integer coefficients, and (ii) is closed under conjunction (which we denote
by ‘,’ and also by ‘∧’). An equation p1 = p2 stands for p1 ≤ p2 ∧ p2 ≤ p1. The
projection of a constraint c onto a tuple X of variables, denoted project(c,X), is
a constraint such that R |= ∀X (project(c,X) ↔ ∃Y c), where Y is the tuple of
variables occurring in c and not in X , and R is the structure of the real numbers.

In order to introduce the notion of a generalization operator (see also [11],
where the set C of all linear constraints with variables X1, . . . , Xk has been
denoted Link), we need the following definition [6].

Definition 2 (Well-Quasi Ordering �). A well-quasi ordering (or wqo, for
short) on a set S is a reflexive, transitive relation � on S such that, for every
infinite sequence e0e1 . . . of elements of S, there exist i and j such that i<j and
ei � ej. Given e1 and e2 in S, we write e1 ≈ e2 if e1 � e2 and e2 � e1. A wqo �
is thin iff for all e ∈ S, the set {e′ ∈ S | e ≈ e′} is finite.

The use of a thin wqo guarantees that during the Specialize procedure each defi-
nition can be generalized a finite number of times only, and thus the termination
of the procedure is guaranteed.

The thin wqo Maxcoeff, denoted by �M , compares the maximum absolute
values of the coefficients occurring in polynomials. It is defined as follows. For
any atomic constraint a of the form p < 0 or p ≤ 0, where p is q0 + q1X1 + . . .+
qkXk, we define maxcoeff(a) to be max {|q0|, |q1|, . . . , |qk|}. Given two atomic
constraints a1 of the form p1 < 0 and a2 of the form p2 < 0, we have that
a1 �M a2 iff maxcoeff(a1) ≤ maxcoeff(a2).

Similarly, if we are given the atomic constraints a1 of the form p1≤0 and a2
of the form p2≤ 0. Given two constraints c1 ≡ a1, . . . , am, and c2 ≡ b1, . . . , bn,
we have that c1 �M c2 iff, for i = 1, . . . ,m, there exists j ∈ {1, . . . , n} such that
ai �M bj . For example, we have that:
(i) (1−2X1 < 0) �M (3+X1 < 0),
(ii) (2−2X1+X2 < 0) �M (1+3X1 < 0), and
(iii) (1+3X1 < 0) ��M (2−2X1+X2 < 0).

62 E. De Angelis et al.

Definition 3 (Generalization Operator �). Let � be a thin wqo on the
set C of constraints. A function � from C×C to C is a generalization operator
with respect to � if, for all constraints c and d, we have: (i) d � c � d, and
(ii) c� d � c.

A trivial generalization operator is defined as c� d = true, for all constraints c
and d (without loss of generality we assume that true � c for every constraint c).
This operator is used during Phase (1) of our Software Model Checking method.

Definition 3 generalizes several operators proposed in the literature, such as
the widening operator [4] and the most specific generalization operator [23,33].

Other generalization operators defined in terms of relations and operators on
constraints such as widening and convex-hull, have been defined in [11]. Some of
them can be found in Appendix A.

Now we describe a method for deriving, from any given generalization oper-
ator �, a new version of that operator, denoted �cns, which adds some extra
constraints and still is a generalization operator. The operator �cns is called the
constrained generalization operator derived from �. Constrained generalization
operators are used during Phase (2) of our Software Model Checking method.

In order to specify the constrained generalization operator we need the fol-
lowing notions.

Let P ∪ {γ0} be the input program of the Specialize procedure. For any con-
straint d and atom A, we define the unfeasible clauses for the pair (d,A), denoted
UnfCl(d,A), to be the set {(H1 ← c1, G1), . . . , (Hm ← cm, Gm)}, of (renamed
apart) clauses of P ∪ {γ0} such that, for i = 1, . . . ,m, A and Hi are unifiable
via the most general unifier ϑi and (d ∧ ci)ϑi is unsatisfiable.

The head constraint of a clause γ of the form H ← c, A is the constraint
project(c,X), where X is the tuple of variables occurring in H . For any atomic
constraint a, neg(a) denotes the negation of a defined as follows: neg(p < 0) is
−p≤ 0 and neg(p≤ 0) is −p< 0. Given a set C of clauses, we define the set of
the negated regions of C, denoted NegReg(C), as follows:

NegReg(C) = {neg(a) | a is an atomic constraint of a head constraint
of a clause in C}.

For any constraint d and atom A, we define the following constraint:

cns(d,A) =
∧
{r | r ∈ NegReg(UnfCl(d,A)) ∧ d � r}.

We have that d � cns(d,A). Now, let � be a generalization operator with
respect to the thin wqo �. We define the constrained generalization operator
derived from �, as follows:

�cns(c, d, A) = (c� d) ∧ cns(d,A).

Now we show that�cns is indeed a generalization operator w.r.t. the thin wqo �B

we now define. Given a finite set B of (non necessarily atomic) constraints, a
constraint c1∧ . . .∧cn, where c1, . . . , cn are atomic, and a constraint d, we define
the binary relation �B on constraints as follows: c1 ∧ . . . ∧ cn �B d iff either
(i) (c1 ∧ . . . ∧ cn) � d, or (ii) there exists i ∈ {1, . . . , n} such that ci ∈ B and
(c1 ∧ . . . ∧ ci−1 ∧ ci+1 ∧ . . . ∧ cn) �B d. It can be shown that �B is a thin wqo.

Specialization with Constrained Generalization 63

We observe that, for all constraints c, d, and all atoms A: (i) since d � c� d
and d � cns(d,A), then also d � �cns(c, d, A), and (ii) by definition of �B, for all
constraints e, if c�d � e, then �cns(c, d, A) �B e, where B = NegReg(P ∪{γ0}).

Thus, we have the following result.

Proposition 1. For any program P ∪{γ0} given as input to the Specialize pro-
cedure, for any atom A, the operator �cns(_,_, A) is a generalization operator
with respect to the thin well-quasi ordering �B, where B = NegReg(P ∪ {γ0}).

During Phase (2) in the Specialize procedure we use the following sub-procedure
Generalize&Fold which is an adaptation of the one in [11].

Procedure Generalize&Fold
Input : (i) a set Defs of definitions structured as a tree of definitions, called
DefsTree, (ii) a set Γ of clauses obtained from a clause γ by the Unfold procedure,
and (iii) a constrained generalization operator �cns.
Output : (i) A set NewDefs of new definitions, and (ii) a set Δ of folded clauses.

NewDefs := ∅; Δ := Γ ;
while in Δ there exists a clause δ: H ← d,G1, A,G2 where the predicate symbol
of A occurs in the body of some clause in Γ do
Generalize:

Let X be the set of variables occurring in A and dX = project(d,X).
1. if in Defs ∪NewDefs there exists a (renamed apart) clause

η: newp(X)← e, A such that dX�e and e�cns(dX , A)
then NewDefs := NewDefs

2. elseif there exists a clause α in Defs such that:
(i) α is of the form newq(X) ← b, A, and (ii) α is the most recent ancestor
of γ in DefsTree whose body contains a variant of A
then NewDefs := NewDefs ∪ {newp(X)← �cns(b, dX , A), A}

3. else NewDefs := NewDefs ∪ {newp(X)← dX , A}
Fold:
Δ := (Δ− {δ}) ∪ {H ← d,G1, newp(X), G2}

end-while

The proof of termination of the Specialize procedure of Section 4 is a variant
of the proof of Theorem 3 in [10]. In this variant we use Proposition 1 and we
also take into account the fact that during the execution of the procedure, only
a finite number of atoms are generated (modulo variants). Since the correctness
of the Specialize procedure directly follows from the fact that the transformation
rules preserve the least model semantics [7], we have the following result.

Theorem 1 (Termination and Correctness of Specialization). (i) The
Specialize procedure always terminates. (ii) Let program Ps be the output of the
Specialize procedure. Then unsafe∈M(P) iff unsafe∈M(Ps).

64 E. De Angelis et al.

6 Experimental Evaluation

In this section we present some preliminary results obtained by applying our
Software Model Checking method to some benchmark programs taken from the
literature. The results show that our approach is viable and competitive with
the state-of-the-art software model checkers.

Programs ex1, f1a, f2, and interp have been taken from the benchmark set
of DAGGER [14]. Programs substring and tracerP are taken from [20] and [16],
respectively. Programs re1 and singleLoop have been introduced to illustrate the
constrained generalization strategy. Finally, selectSort is an encoding of the Se-
lection sort algorithm where references to arrays have been replaced by using the
nondeterministic choice operator nd to perform array bounds checking. The source
code of all the above programs is available at http://map.uniroma2.it/smc/.

Our model checker uses the MAP system [26] which is a tool for transforming
constraint logic programs implemented in SICStus Prolog. MAP uses the clpr
library to operate on constraints over the reals. Our model checker consists of
three modules: (i) a translator which takes a property initProp and a command
com and returns their associated terms, (ii) the MAP system for CLP program
specialization which performs Phases (1) and (2) of our method, and (iii) a pro-
gram for computing the least models of CLP programs which performs Phase (3)
of our method.

We have also run three state-of-the-art CLP-based software model checkers on
the same set of programs, and we have compared their performance with that of
our model checker. In particular, we have used: (i) ARMC [28], (ii) HSF(C) [13],
and (iii) TRACER [17]. ARMC and HSF(C) are CLP-based software model
checkers which implement the CEGAR technique. TRACER is a CLP-based
model checker which uses Symbolic Execution (SE) for the verification of safety
properties of sequential C programs using approximated preconditions or ap-
proximated postconditions.

Table 1. Time (in seconds) taken for performing model checking. ‘∞’ means ‘no answer
within 20 minutes’, and ‘⊥’ means ‘termination with error’.

Program MAP ARMC HSF(C) TRACER
W Wcns CHWM CHWMcns SPost WPre

ex1 1.08 1.09 1.14 1.25 0.18 0.21 ∞ 1.29
f1a ∞ ∞ 0.35 0.36 ∞ 0.20 ⊥ 1.30
f2 ∞ ∞ 0.75 0.88 ∞ 0.19 ∞ 1.32
interp 0.29 0.29 0.32 0.44 0.13 0.18 ∞ 1.22
re1 ∞ 0.33 0.33 0.33 ∞ 0.19 ∞ ∞
selectSort 4.34 4.70 4.59 5.57 0.48 0.25 ∞ ∞
singleLoop ∞ ∞ ∞ 0.26 ∞ ∞ ⊥ 1.28
substring 88.20 171.20 5.21 5.92 931.02 1.08 187.91 184.09
tracerP 0.11 0.12 0.11 0.12 ∞ ∞ 1.15 1.28

Specialization with Constrained Generalization 65

Table 1 reports the results of our experimental evaluation which has been
performed on an Intel Core Duo E7300 2.66Ghz processor with 4GB of memory
under the GNU Linux operating system.

In Columns W and CHWM we report the results obtained by the MAP system
when using the procedure presented in Section 5 and the generalization operators
Widen and CHWidenMax [11], respectively. In Columns Wcns and CHWMcns

we report the results for the constrained versions of those generalization op-
erators, called Widencns and CHWidenMaxcns , respectively. In the remaining
columns we report the results obtained by ARMC, HSF(C), and TRACER us-
ing the strongest postcondition (SPost) and the weakest precondition (WPre)
options, respectively. More details on the experimental results can be found in
Appendix B.

On the selected set of examples, we have that the MAP system with the
CHWidenMaxcns is able to verify 9 properties out of 9, while the other tools
do not exceed 7 properties. Also the verification time is generally comparable
to that of the other tools, and it is not much greater than that of the fastest
tools. Note that there are two examples (re1 and singleLoop) where constrained
generalization operators based on widening and convex-hull are strictly more
powerful than the corresponding operators which are not constrained.

We also observe that the use of a constrained generalization operator usually
causes a very small increase of the verification time with respect to the non-
constrained counterparts, thus making constrained generalization a promising
technique that can be used in practice for software verification.

7 Related Work and Conclusions

The specialization-based software model checking technique presented in this
paper is an extension of the technique for the verification of safety properties of
infinite state reactive systems, encoded as CLP programs, presented in [9,11].
The main novelties of the present paper are that here we consider imperative
sequential programs and we propose a new specialization strategy which has the
objective of preserving, if possible, the branching behaviour of the definitions to
be generalized.

The use of constraint logic programming and program specialization for veri-
fying properties of imperative programs has also been proposed by [27]. In that
paper, the interpreter of an imperative language is encoded as a CLP program.
Then the interpreter is specialized with respect to a specific imperative program
to obtain a residual program on which a static analyser for CLP programs is
applied. Finally, the information gathered during this process is translated back
in the form of invariants of the original imperative program. Our approach does
not require static analysis of CLP and, instead, we discover program invari-
ants during the specialization process by means of (constrained) generalization
operators.

The idea of constrained generalization which has the objective of preserving
the branching behaviour of a clause, is related to the technique for preserving

66 E. De Angelis et al.

characteristic trees while applying abstraction during partial deduction [24]. In-
deed, a characteristic tree provides an abstract description of the tree generated
by unfolding a given goal, and abstraction corresponds to generalization. How-
ever, the partial deduction technique considered in [24] is applied to ordinary
logic programs (not CLP programs) and constraints such as equations and in-
equations on finite terms, are only used in an intermediate phase.

In order to prove that a program satisfies a given property, software model
checking methods try to automatically construct a conservative model (that is,
a property-preserving model) of the program such that, if the model satisfies the
given property, then also does the actual program. In constructing such a model
a software model checker may follow two dual approaches: either (i) it may start
from a coarse model and then progressively refine it by incorporating new facts,
or (ii) it may start from a concrete model and then progressively abstract away
from it some irrelevant facts.

Our verification method follows the second approach. Given a program P ,
we model its computational behaviour as a CLP program (Phase 1) by using
the interpreter of the language in which P is written. Then, the CLP program
is specialized with respect to the property to be verified, by using constrained
generalization operators which have the objective of preserving, if possible, the
branching behaviour of the definitions to be generalized. In this way we may
avoid loss of precision, and at the same time, we enforce the termination of the
specialization process (Phase 2).

In order to get a conservative model of a program, different generalization
operators have been introduced in the literature. In particular, in [2] the authors
introduce the bounded widen operator c∇B d, defined for any given constraint c
and d and any set B of constraints. This operator, which improves the precision
of the widen operator introduced in [4], has been applied in the verification
of synchronous programs and linear hybrid systems. A similar operator c∇B d,
called widening up to B, has been introduced in [15]. In this operator the set B of
constraints is statically computed once the system to be verified is given. There
is also a version of that operator, called interpolated widen, in which the set B
is dynamically computed [14] by using the interpolants which are derived during
the counterexample analysis.

Similarly to [2,5,14,15], the main objective of the constrained generalization
operators introduced in this paper is the improvement of precision during pro-
gram specialization. In particular, this generalization operator, similar to the
bounded widen operator, limits the possible generalizations on the basis of a
set of constraints defined by the CLP program obtained as output of Phase 1.
Since this set of constraints which limits the generalization depends on the out-
put of Phase 1, our generalization is more flexible than the one presented in [2].
Moreover, our generalization operator is more general than the classical widen-
ing operator introduced in [4]. Indeed, we only require that the set of constraints
which have a non-empty intersection with the generalized constraint c � d, are
entailed by d.

Specialization with Constrained Generalization 67

Now let us point out some advantages of the techniques for software model
checking which, like ours, use methodologies based on program specialization.

(1) First of all, the approach based on specialization of interpreters provides
a parametric, and thus flexible, technique for software model checking. Indeed,
by following this approach, given a program P written in the programming
language L, and a property ϕ written in a logic M , in order to verify that ϕ
holds for P , first (i) we specify the interpreter IL for L and we specify the
semantics SM of M (as a proof system or a satisfaction relation) in a suitable
metalanguage, then (ii) we specialize the interpreter and the semantics with
respect to P and ϕ, and finally (iii) we analyze the derived specialized program
(by possibly applying program specialization again, as done in this paper).

The metalanguage we used in this paper for Step (i) is CLP in which we have
specified both the interpreter and the reachability relation (which defines the
semantics of the reachability formula to be verified).

These features make program specialization a suitable framework for software
model checking because it can easily adapt to the changes of the syntax and the
semantics of the programming languages under consideration and also to the
different logics where the properties of interest are expressed.
(2) By applying suitable generalization operators we can make sure that spe-
cialization always terminates and produces an equivalent program with respect
to the property of interest. Thus, we can apply a sequence of specializations,
thereby refining the analysis to the desired degree of precision.
(3) Program specialization provides a uniform framework for program analysis.
Indeed, as already mentioned, abstraction operators can be regarded as particu-
lar generalization operators and, moreover, specialization can be easily combined
to other program transformation techniques, such as program slicing, dead code
elimination, continuation passing transformation, and loop fusion.
(4) Finally, on a more technical side, program specialization can easily accom-
modate polyvariant analysis [31] by introducing several specialized predicate
definitions corresponding to the same point of the program to be analyzed.

Our preliminary experimental results show that our approach is viable and
competitive with state-of-the-art software model checkers such as ARMC [28],
HSF(C) [13] and TRACER [17].

In order to further validate of our approach, we plan in the near future to
perform experiments on a larger set of examples. In particular, in order to sup-
port a larger set of input specifications, we are currently working on rewriting
our translator so that it can take CIL (C Intermediate Language) programs [25].
We also plan to extend our interpreter to deal with more sophisticated features
of imperative languages such as arrays, pointers, and procedure calls.

Moreover, since our specialization-based method preserves the semantics of
the original specification, we also plan to explore how our techniques can be effec-
tively used in a preprocessing step before using existing state-of-the-art software
model checkers for improving both their precision and their efficiency.

68 E. De Angelis et al.

References

1. Ball, T., Rajamani, S.K.: Boolean programs: a model and process for software
analysis. MSR TR 2000-14, Microsoft Report (2000)

2. Bjørner, N., Browne, A., Manna, Z.: Automatic generation of invariants and inter-
mediate assertions. In: Montanari, U., Rossi, F. (eds.) CP 1995. LNCS, vol. 976,
pp. 589–623. Springer, Heidelberg (1995)

3. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-Guided
Abstraction Refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000)

4. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction of approximation of fixpoints. In: Proc. POPL
1977, pp. 238–252. ACM Press (1977)

5. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: Proc. POPL 1978, pp. 84–96. ACM Press (1978)

6. Dershowitz, N.: Termination of rewriting. Journal of Symbolic Computation 3(1-2),
69–116 (1987)

7. Etalle, S., Gabbrielli, M.: Transformations of CLP modules. Theoretical Computer
Science 166, 101–146 (1996)

8. Fioravanti, F., Pettorossi, A., Proietti, M.: Automated strategies for specializing
constraint logic programs. In: Lau, K.-K. (ed.) LOPSTR 2000. LNCS, vol. 2042,
pp. 125–146. Springer, Heidelberg (2001)

9. Fioravanti, F., Pettorossi, A., Proietti, M.: Verifying CTL properties of infinite
state systems by specializing constraint logic programs. In: Proc. VCL 2001, DSSE-
TR-2001-3, pp. 85–96. University of Southampton, UK (2001)

10. Fioravanti, F., Pettorossi, A., Proietti, M.: Verifying infinite state systems by spe-
cializing constraint logic programs. R. 657, IASI-CNR, Rome, Italy (2007)

11. Fioravanti, F., Pettorossi, A., Proietti, M., Senni, V.: Generalization strategies for
the verification of infinite state systems. Theo. Pract. Log. Pro. 13(2), 175–199
(2013)

12. Gallagher, J.P.: Tutorial on specialisation of logic programs. In: Proc. PEPM 1993,
pp. 88–98. ACM Press (1993)

13. Grebenshchikov, S., Gupta, A., Lopes, N.P., Popeea, C., Rybalchenko, A.: HSF(C):
A Software Verifier based on Horn Clauses. In: Flanagan, C., König, B. (eds.)
TACAS 2012. LNCS, vol. 7214, pp. 549–551. Springer, Heidelberg (2012)

14. Gulavani, B.S., Chakraborty, S., Nori, A.V., Rajamani, S.K.: Automatically Re-
fining Abstract Interpretations. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS
2008. LNCS, vol. 4963, pp. 443–458. Springer, Heidelberg (2008),
www.cfdvs.iitb.ac.in/~bhargav/dagger.php

15. Halbwachs, N., Proy, Y.E., Roumanoff, P.: Verification of real-time systems using
linear relation analysis. Formal Methods in System Design 11, 157–185 (1997)

16. Jaffar, J., Navas, J.A., Santosa, A.E.: Symbolic execution for verification. Comput-
ing Research Repository (2011)

17. Jaffar, J., Navas, J.A., Santosa, A.E.: TRACER: A Symbolic Execution Tool for
Verification (2012), paella.d1.comp.nus.edu.sg/tracer/

18. Jaffar, J., Santosa, A.E., Voicu, R.: An interpolation method for CLP traversal.
In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 454–469. Springer, Heidelberg
(2009)

19. Jhala, R., Majumdar, R.: Software model checking. ACM Computing Surveys
41(4), 21:1–21:54 (2009)

www.cfdvs.iitb.ac.in/~bhargav/dagger.php
paella.d1.comp.nus.edu.sg/tracer/

Specialization with Constrained Generalization 69

20. Jhala, R., McMillan, K.L.: A Practical and Complete Approach to Predicate Re-
finement. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp.
459–473. Springer, Heidelberg (2006)

21. Jones, N.D., Gomard, C.K., Sestoft, P.: Partial Evaluation and Automatic Program
Generation. Prentice Hall (1993)

22. Leuschel, M., Bruynooghe, M.: Logic program specialisation through partial de-
duction: Control issues. Theo. Pract. Log. Pro. 2(4&5), 461–515 (2002)

23. Leuschel, M., Martens, B., De Schreye, D.: Controlling generalization and poly-
variance in partial deduction of normal logic programs. ACM Transactions on Pro-
gramming Languages and Systems 20(1), 208–258 (1998)

24. Leuschel, M., De Schreye, D.: Constrained partial deduction. In: Proc. WLP 1997,
Munich, Germany, pp. 116–126 (1997)

25. Necula, G.C., McPeak, S., Rahul, S.P., Weimer, W.: CIL: Intermediate language
and tools for analysis and transformation of C programs. In: Nigel Horspool, R.
(ed.) CC 2002. LNCS, vol. 2304, pp. 213–228. Springer, Heidelberg (2002),
kerneis.github.com/cil/

26. The MAP transformation system, www.iasi.cnr.it/~proietti/system.html
27. Peralta, J.C., Gallagher, J.P., Saglam, H.: Analysis of Imperative Programs

through Analysis of Constraint Logic Programs. In: Levi, G. (ed.) SAS 1998. LNCS,
vol. 1503, pp. 246–261. Springer, Heidelberg (1998)

28. Podelski, A., Rybalchenko, A.: ARMC: The Logical Choice for Software Model
Checking with Abstraction Refinement. In: Hanus, M. (ed.) PADL 2007. LNCS,
vol. 4354, pp. 245–259. Springer, Heidelberg (2007)

29. Reynolds, C.J.: Theories of Programming Languages. Cambridge Univ. Press
(1998)

30. Saïdi, H.: Model checking guided abstraction and analysis. In: Palsberg, J. (ed.)
SAS 2000. LNCS, vol. 1824, pp. 377–396. Springer, Heidelberg (2000)

31. Smith, S.F., Wang, T.: Polyvariant flow analysis with constrained types. In:
Smolka, G. (ed.) ESOP 2000. LNCS, vol. 1782, pp. 382–396. Springer, Heidelberg
(2000)

32. Sharygina, N., Tonetta, S., Tsitovich, A.: An abstraction refinement approach com-
bining precise and approximated techniques. Soft. Tools Techn. Transf. 14(1), 1–14
(2012)

33. Sørensen, M.H., Glück, R.: An algorithm of generalization in positive supercompi-
lation. In: Proc. ILPS 1995, pp. 465–479. MIT Press (1995)

Appendix A: Some Generalization Operators

Here we define some generalization operators which have been used in the ex-
periments we have performed (see also [11]).
• (W) Given any two constraints c ≡ a1, . . . , am, and d, the operator Widen,
denoted �W , returns the constraint ai1, . . . , air, such that {ai1, . . . , air} = {ah |
1 ≤ h ≤m and d � ah}. Thus, Widen returns all atomic constraints of c that
are entailed by d (see [4] for a similar widening operator used in static program
analysis). The operator �W is a generalization operator w.r.t. the thin wqo �M .
• (WM) Given any two constraints c ≡ a1, . . . , am, and d ≡ b1, . . . , bn, the oper-
ator WidenMax, denoted �WM , returns the conjunction ai1, . . . , air, bj1, . . . , bjs,
where: (i) {ai1, . . . , air} = {ah | 1≤h≤m and d � ah}, and (ii) {bj1, . . . , bjs} =
{bk | 1≤k≤n and bk �M c}.

kerneis.github.com/cil/
www.iasi.cnr.it/~proietti/system.html

70 E. De Angelis et al.

The operator WidenMax is a generalization operator w.r.t. the thin wqo �M .
It is similar to Widen but, together with the atomic constraints of c that are
entailed by d, it returns also the conjunction of a subset of the atomic constraints
of d.

Next we define a generalization operator by using the convex hull operator,
which is often used in static program analysis [5].
• (CH) The convex hull of two constraints c and d in C, denoted by ch(c, d), is
the least (w.r.t. the � ordering) constraint h in C such that c � h and d � h.
(Note that ch(c, d) is unique up to equivalence of constraints.)
• (CHWM) Given any two constraints c and d, we define the operator CHWiden-
Max, denoted �CHWM , as follows: c �CHWM d = c �WM ch(c, d). The operator
�CHWM is a generalization operator w.r.t. the thin wqo �M .

CHWidenMax returns the conjunction of a subset of the atomic constraints
of c and a subset of the atomic constraints of ch(c, d).

Appendix B: Detailed Experimental Results

In Table 2 we present in some more detail the time taken for proving the proper-
ties of interest by using our method for software model checking with the general-
ization operators Widen (Column W) and CHWidenMax (Column CHWM) [11],
and the constrained generalization operators derived from them Widencns (Col-
umn Wcns) and CHWidenMaxcns (Column CHWMcns), respectively.

Columns Ph1, Ph2, and Ph3 show the time required during Phases (1), (2),
and (3), respectively, of our Software Model Checking method presented in Sec-
tion 3. The sum of these three times for each phase is reported in Column Tot.

Table 2. Time (in seconds) taken for performing software model checking with the
MAP system. ‘∞’ means ‘no answer within 20 minutes’. Times marked by ‘�’ are
relative to the programs obtained after Phase (2) and have no constrained facts (thus,
for those programs the times of Phase (3) are very small (≤ 0.01 s)).

Program
Ph1

W Wcns CHWM CHWMcns

Ph2 Ph3 Tot Ph2 Ph3 Tot Ph2 Ph3 Tot Ph2 Ph3 Tot
ex1 1.02 0.05 0.01 1.08 0.07 � 0 1.09 0.11 0.01 1.14 0.23 � 0 1.25
f1a 0.35 0.01 ∞ ∞ 0.01 ∞ ∞ 0 � 0 0.35 0.01 � 0 0.36
f2 0.71 0.03 ∞ ∞ 0.13 ∞ ∞ 0.03 � 0.01 0.75 0.17 � 0 0.88
interp 0.27 0.01 0.01 0.29 0.02 � 0 0.29 0.04 0.01 0.32 0.17 � 0 0.44
re1 0.31 0.01 ∞ ∞ 0.02 � 0 0.33 0.02 � 0 0.33 0.02 � 0 0.33
selectSort 4.27 0.06 0.01 4.34 0.43 � 0 4.70 0.3 0.02 4.59 1.3 � 0 5.57
singleLoop 0.22 0.02 ∞ ∞ 0.02 ∞ ∞ 0.03 ∞ ∞ 0.04 � 0 0.26
substring 0.24 0.01 87.95 88.20 0.02 170.94 171.2 4.96 � 0.01 5.21 5.67 � 0.01 5.92
tracerP 0.11 0 � 0 0.11 0.01 � 0 0.12 0 � 0 0.11 0.01 � 0 0.12

Enhancing Declarative Debugging

with Loop Expansion and Tree Compression�

David Insa, Josep Silva, and César Tomás

Universitat Politècnica de València
Camino de Vera s/n, E-46022 Valencia, Spain

{dinsa,jsilva,ctomas}@dsic.upv.es

Abstract. Declarative debugging is a semi-automatic debugging tech-
nique that allows the programer to debug a program without the need
to see the source code. The debugger generates questions about the re-
sults obtained in different computations and the programmer only has
to answer them to find the bug. Declarative debugging uses an internal
representation of programs called execution tree, whose structure highly
influences its performance. In this work we introduce two techniques that
optimize the execution trees structure. In particular, we expand and col-
lapse the representation of loops allowing the debugger to find bugs with
a reduced number of questions.

Keywords: Declarative Debugging, Tree Compression, Loop
Expansion.

1 Introduction

Debugging is one of the most difficult and less automated tasks of software en-
gineering. This is due to the fact that bugs are usually hidden under complex
conditions that only happen after particular interactions of software components.
Programmers cannot consider all possible computations of their pieces of soft-
ware, and those unconsidered computations usually produce a bug. In words of
Brian Kernighan, the difficulty of debugging is explained as follows:

“Everyone knows that debugging is twice as hard as writing a program
in the first place. So if you’re as clever as you can be when you write it,
how will you ever debug it?”

The Elements of Programming Style, 2nd edition

The problems caused by bugs are highly expensive. Sometimes more than the
product development price. For instance, the NIST report [14] calculated that

� This work has been partially supported by the Spanish Ministerio de Economı́a
y Competitividad (Secretaŕıa de Estado de Investigación, Desarrollo e Innovación)
under grant TIN2008-06622-C03-02 and by the Generalitat Valenciana under grant
PROMETEO/2011/052. David Insa was partially supported by the Spanish Minis-
terio de Eduación under FPU grant AP2010-4415.

E. Albert (Ed.): LOPSTR 2012, LNCS 7844, pp. 71–88, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

72 D. Insa, J. Silva, and C. Tomás

undetected software bugs produce a cost to the USA economy of $59 billion per
year.

There have been many attempts to define automatic techniques for debugging,
but in general with poor results. One notable exception is Declarative Debug-
ging [16,17]. In this work we present a technique to improve the performance of
Declarative Debugging reducing the debugging time.

Declarative debugging is a semi-automatic debugging technique that automat-
ically generates questions about the results obtained in subcomputations. Then,
the programmer answers the questions and with this information the debugger
is able to precisely identify the bug in the source code. Roughly speaking, the
debugger discards parts of the source code associated with correct computations
until it isolates a small part of the code (usually a function or procedure). One
interesting property of this technique is that programmers do not need to see
the source code during debugging. They only need to know the actual and in-
tended results produced by a computation with given inputs. Therefore, if we
have available a formal specification of the pieces of software that is able to
answer the questions, then the technique is fully automatic.

In declarative debugging, a data structure called Execution Tree (ET) rep-
resents a program execution, where each node is associated with a particular
method execution.1 Moreover, declarative debugging uses a navigation strategy
to select ET nodes, and to ask the programmer about their validity. Each node
contains a particular method execution with its inputs and outputs. If the pro-
grammer marks a node as wrong, then the bug must be in its subtree; and it
must be in the rest of the tree if it is marked as correct. We find a buggy node
when the programmer marks a node as wrong, and all its children are marked
as correct. Hence, the debugger reports the associated method as buggy.

Let us explain the technique with an example. Consider the Java program
shown in Fig. 1. This program initializes the elements of a matrix to 1, and then
traverses the matrix to sum all of them. The ET associated with this example
is shown in Fig. 2 (left). Because it is not relevant in our technique, we omit
the information of the nodes in the ETs of this paper, and instead we label
them (inside) with the number of the method associated with them. Observe
that main (0) calls once to the constructor Matrix (1), and then calls nine times
to position (2) inside two nested loops. In the ET, every node has a number
(outside) that indicates the number of questions needed to find the bug when it
is the buggy node. To compute this number, we have considered the navigation
strategy Divide and Query [16], that always selects the ET node that minimizes
the difference between the numbers of descendants and non-descendants (i.e.,
better divides the ET by the half).

Declarative debugging can produce long series of questions making the de-
bugging session too long. Moreover, it works at the level of methods, thus the

1 Nodes represent computations. Hence, depending on the underlying paradigm, they
can represent methods, functions, procedures, clauses, etc. Our technique can be ap-
plied to any paradigm, but, for the sake of concreteness, we will center the discussion
on the object-oriented paradigm and our examples on Java.

Enhancing Declarative Debugging with Loop Expansion 73

public class Matrix {
private int numRows;
private int numColumns;
private int[][] matrix;

(1) public Matrix(int numRows, int numColumns) {
this.numRows = numRows;
this.numColumns = numColumns;
this.matrix = new int[numRows][numColumns];
for (int i = 0; i < numRows; i++)
for (int j = 0; j < numColumns; j++)

this.matrix[i][j] = 1;
}

(2) public int position(int numRow, int numColumn) {
return matrix[numRow][numColumn];

}
}

public class SumMatrix {
(0) public static void main(String[] args) {

int result = 0;
int numRows = 3;
int numColumns = 3;
Matrix m = new Matrix(numRows, numColumns);
for (int i = 0; i < numRows; i++)

for (int j = 0; j < numColumns; j++)
result += m.position(i, j);

System.out.println(result);
}

}

Fig. 1. Iterative Java program

granularity level of the bug found is a method. In this work we propose two new
techniques that reduce (i) the number of questions needed to detect a bug, (ii)
the complexity of the questions, and also (iii) the granularity level of the bug
found. The first technique improves a previous technique called Tree Compres-
sion [4], and the second one is a new technique named Loop Expanssion. While
the first technique is based on a transformation of the ET, the second one is
based on a transformation of the source code. In both cases, the produced ET
can be debugged more efficiently using the standard algorithms. Therefore, the
techniques are conservative with respect to previous implementations and they
can be integrated in any debugger as a preprocessing stage. The cost of the
transformations is low compared with the cost of generating the whole ET. In
fact, they are efficient enough as to be always used in all declarative debuggers
before the ET exploration phase. According to our experiments (summarized in
Table 1), as an average, they reduce the number of questions in 27.65 % with a
temporal cost of 274 ms for loop expansion and 123 ms for tree compression.

The rest of the paper has been organized as follows. In Section 2 we discuss the
related work. Section 3 introduces some preliminary definitions that will be used
in the rest of the paper. In Section 4 we explain our techniques and their main
applications, and we introduce the algorithms that improve the structure of the
ET. Then, in Section 6 we provide details about our implementation and some
experiments carried out with real Java programs. Finally, Section 7 concludes.

74 D. Insa, J. Silva, and C. Tomás

Fig. 2. ETs of the examples in Fig. 1 (left) and 8 (right)

2 Related Work

Reducing the number of questions asked by declarative debuggers is a well-known
objective in the field, and there exist several works devoted to achieve this goal.
Some of them face the problem by defining different ET transformations that
modify the structure of the ET to explore it more efficiently.

For instance, in [15], authors improve the declarative debugging of Maude
balancing the ET by introducing nodes. These nodes represent transitivity in-
ferences done by their inference system. Although these nodes could be omitted,
if they are kept, the ET becomes more balanced. Balanced ETs are very conve-
nient for strategies such as Divide and Query [17], because it is possible to prune
almost half of the tree after every answer, thus obtaining a logarithmic number
of questions with respect to the number of nodes in the ET. This approach is
related to our technique, but it has some drawbacks: it can only be applied
where transitivity inferences took place while creating the ET, and thus most of
the parts of the tree cannot be balanced, and even in these cases the balancing
only affects two nodes. Our techniques, in contrast, balance loops, that usually
contain many nodes.

Our first technique is based on Tree Compression (TC) introduced by Davie
and Chitil [4]. In particular, we define an algorithm to decide when TC must
be applied (or partially applied) in an ET. TC is a conservative approach that
transforms an ET into an equivalent (smaller) ET where we can detect the
same bugs. The objective of this technique is essentially different to previous
ones: it tries to reduce the size of the ET by removing redundant nodes, and it is

Enhancing Declarative Debugging with Loop Expansion 75

only applicable to recursive calls. For each recursive call, TC removes the child
node associated with the recursive call and all its children become children of
the parent node. Let us explain it with an example.

Example 1. Consider the ET in Fig. 3. Here, TC removes six nodes, thus stati-
cally reducing the size of the tree. Observe that the average number of questions
has been reduced (7217 vs 42

11) thanks to the use of TC.

Fig. 3. Example of Tree Compression

Unfortunately, TC does not always produce good results. Sometimes reducing
the number of nodes causes a worse ET structure that is more difficult to debug
and thus the number of questions is increased, producing the contrary effect to
the intended one.

Example 2. Consider the ET in Fig. 4 (top). In this ET, the average number
of questions needed to find the bug is 33

9 . Nevertheless, after compressing the
recursive calls (the dark nodes), the average number of questions is augmented
to 28

7 (see the ET at the left). The reason is that in the new compressed ET
we cannot prune any node because its structure is completely flat. The previous
structure allowed us to prune some nodes because deep trees are more convenient
for declarative debugging. However, if we only compress one of the two recursive
calls, the number of questions is reduced to 27

8 (see the ET at the right).

Fig. 4. Negative and positive effects of Tree Compression

76 D. Insa, J. Silva, and C. Tomás

Example 2 clearly shows that TC should not be always applied. From the best
of our knowledge, there does not exist an algorithm to decide when to apply TC,
and current implementations always compress all recursive calls [3,7]. Our new
technique solves this problem with an analysis to decide when to compress them.

A similar approach to TC is declarative source debugging [2], that instead
of modifying the tree prevents the debugger from selecting questions related
to nodes generated by recursive calls. Another related approach was presented
in [13]. Here, authors introduced a source code (rather than an ET) transforma-
tion for list comprehensions in functional programs. Concretely, this technique
transforms list comprehensions into a set of equivalent methods that implement
the iteration. The produced ET can be further transformed to remove the in-
ternal nodes reducing the size of the final ET as in the TC technique. Even
though this technique is used in other paradigm and only works for a different
program construct (list comprehensions instead of loops), it is very similar to our
loop expansion technique because it transforms the program to implement the
list comprehension iterations with recursive functions. This is somehow equiva-
lent to our transformation for for-each loops. However, the objective of their
technique is different. Their objective is to divide a question related to a list
comprehension in different (probably easier) questions, while our objective is to
balance the tree, and thus they are optimized in a different way. Of course, their
transformation is orthogonal to our technique and it can be applied before.

Even though the techniques discussed can be applied to any language, they
only focus on recursion. This means that they cannot improve ETs that use
loops, avoiding their use in the imperative or the object-oriented paradigm where
loops predominate. Our second technique is based on an automatic transforma-
tion of loops into recursive methods. Hence, it allows the previously discussed
transformations to work in presence of iteration.

3 Preliminaries

Our ET transformations are based on its structure and the signature of the
method in each node. Therefore, for the purpose of this work, we can provide a
definition of ET whose nodes are labeled with a number referring to a specific
method.

Definition 1 (Execution Tree). An execution tree is a labeled directed tree
T = (N,E) whose nodes N represent method executions and are labeled with
method identifiers, where the label of node n is referenced with l(n). Each edge
(n → n′) ∈ E indicates that the method associated with l(n′) is invoked during
the execution of the method associated with l(n).

We use numbers as method identifiers that uniquely identify each method in the
source code. This simplification is enough to keep our definitions and algorithms
precise and simple. Given an ET, simple recursion is represented with a branch

Enhancing Declarative Debugging with Loop Expansion 77

of chained nodes with the same identifier. Nested recursion happens when a
recursive branch is descendant of another recursive branch. Multiple recursion
happens when a node labeled with an identifier n has two or more children
labeled with n.

The weight of a node is the number of nodes contained in the tree rooted at
this node. We refer to the weight of node n as wn. In the following, we will refer
to the two most used navigation strategies for declarative debugging: Top-Down
[12] and Divide and Query (D&Q) [16]. In both cases, we will always implicitly
refer to the most efficient version of both strategies, respectively named, (i)
Heaviest First [1], which always traverses the ET from the root to the leaves
selecting always the heaviest node; and (ii) Hirunkitti’s Divide and Query [6],
which always selects the node in the ET that better divides the number of nodes
in the ET by the half. A comparative study of these techniques can be found in
[17].

For the comparison of strategies we use function Questions(T, s) that com-
putes the number of questions needed (as an average) to find the bug in an ET
T using the navigation strategy s.

4 Execution Trees Optimization

In this section we present two new techniques for the optimization of ETs: Tree
Compression (TC) and Loop Expansion (LE). TC was defined and described in
[4]. Here, we introduce an algorithm to compress a recursive branch of the ET
in any case (i.e., simple recursion, nested recursion, and multiple recursion). We
also discuss how navigation strategies are affected by TC. The other technique
introduced is Loop Expansion that essentially transforms a loop into an equiv-
alent recursive method. Then, TC adequately balances the iterations to obtain
a new ET as optimized as possible. We explain each technique separately and
propose algorithms for them that can work independently.

4.1 When to Apply Tree Compression

Tree compression was proposed as a general technique for declarative debugging.
However, it was defined in the context of a functional language (Haskell) and
with the use of a particular strategy (Hat-Delta). The own authors realized that
TC can produce wide trees that are difficult to debug and, for this reason, defined
strategies that avoid asking about the same method repeatedly. These strategies
do not prevent to apply TC. They just assume that the ET has been totally
compressed and they follow a top-down traversal of the ET that can jump to
any node when the probability of this node to contain the bug is high. This way
of proceeding somehow partially mitigates the bad structure of the produced
ET when it is totally compressed. Our approach is radically different: We do not
create a new strategy to avoid the bad ET structure; but we transform the ET
to ensure a good structure.

78 D. Insa, J. Silva, and C. Tomás

Even though TC can produce bad ETs (as shown in Example 4), its authors
did not study how this technique works with other (more extended) strategies
such as Top-Down or D&Q. So it is not clear at all when to use it. To study
when to use TC, we can consider the most general case of a simple recursion
in an ET. It is shown in Fig. 5 where clouds represent possibly empty sets of
subtrees and the dark nodes are the recursion branch with a length of n ≥ 2
calls.

Fig. 5. Recursion branch in an ET

It should be clear that the recursion branch can be useful to prune nodes of
the tree. For instance, in the figure, if we ask for the node n/2, we prune n/2
subtrees. Therefore, in the case that the subtrees Ti, 1 ≤ i ≤ n, are empty, then
no pruning is possible. In that case, only the nodes in the recursion branch could
be buggy; but, because they form a recursive chain, all of them have the same
label. Thus no matter which one is buggy because all of them refer to the same
method. Hence, TC must be used to reduce the recursive branch to a single node
avoiding navigation strategies to explore this branch. Hence, we can conclude
that we must compress every node whose only child is a recursive call. This result
can be formally stated for Top-Down as follows.

Theorem 1. Let T be an ET with a recursion branch R = n1 → n2 → . . .→ nm

where the only child of a node ni, 1 ≤ i ≤ m − 1, is ni+1. And let T ′ be an
ET equivalent to T except that nodes ni and ni+1 have been compressed. Then,
Questions(T ′,Top-Down) < Questions(T,Top-Down).

The associated proof can be found in [10].
This theorem shows us that, in some situations, TC must be used to statically

improve the ET structure. But TC is not the panacea, and we need to identify
in what cases it should be used. D&Q is a good example of strategy where TC
has a negative effect.

Tree Compression for D&Q
In general, when debugging an ET with the strategy D&Q, TC should only
be applied in the case described by Theorem 1 (Ti, 1 ≤ i ≤ n, are empty).
The reason is that D&Q can jump to any node of the ET without following a
predefined path. This allows D&Q to ask about any node of the recursion branch
without asking about the previous nodes in the branch. Note that this does not
happen in other strategies such as Top-Down. Therefore, D&Q has the ability
to use the recursion branch as a mean to prune half of the iterations.

Enhancing Declarative Debugging with Loop Expansion 79

Observe in Fig. 6 that, except for very small recursion branches (e.g., n ≤ 3),
D&Q can take advantage of the recursion branch to prune half of the iterations.
The greater is n the more nodes pruned. Observe that D&Q can prune nodes
even in the case when there is only one child for every node in the recursion
branch (e.g., Ti, 1 ≤ i ≤ n, is a single node). Therefore, if we add more nodes
to the subtrees T i, then more nodes can be pruned and D&Q will behave even
better.

Fig. 6. TC applied to a recursive method

Tree Compression for Top-Down
In the case of Top-Down-based strategies, it is not trivial at all to decide when
to apply TC. Considering again the ET in Fig. 5, there are two factors that
must be considered: (i) the length n of the recursive branch, and (ii) the size of
the trees Ti, 1 ≤ i ≤ n. In order to decide when TC should be used, we provide
Algorithm 1 that takes an ET and compresses all recursion branches whenever
it improves the ET structure.

Essentially, Algorithm 1 analyzes for each recursion what is the effect of ap-
plying TC, and it is finally applied only when it produces an improvement. This
analysis is done little by little, analyzing each pair of parent-child (recursive)
nodes in the sequence separately. Thus, it is possible that the final result is to
only compress one (or several) parts of one recursion branch. For this, variable
recs initially contains all nodes of the ET with a recursive child. Each of these
nodes is processed with the loop in line 1 bottom-up (lines 2-3). That is, the
nodes closer to the leaves are processed first. In order to also consider multiple
recursion, the algorithm uses the loops in lines 5 and 8. These loops store in the
variable improvement the improvement achieved when compressing each recur-
sive branch. In addition to the functions (Cost and Compress) shown here, the
algorithm uses three more functions whose code has not been included because
they are trivial: function Children computes the set of children of a node in
the ET (i.e., Children(m) = {n | (m → n) ∈ E}); function Sort takes a set
of nodes and produces an ordered sequence where nodes have been decreasingly
ordered by their weights; and function Pos takes a node and a sequence of nodes
and returns the position of the node in the sequence.

Given two nodes parent and child candidates to make a TC, the algorithm
first sorts the children of both the parent and the child (lines 9-10) in the order
in which Top-Down would ask them (sorted by their weight). Then, it combines
the children of both nodes simulating a TC (line 11). Finally, it compares the
average number of questions when compressing or not the nodes (line 12). The
equation that appears in line 12 is one of the main contributions of the algorithm,
because this equation determines when to perform TC between two nodes in

80 D. Insa, J. Silva, and C. Tomás

Algorithm 1. Optimized Tree Compression

Input: An ET T = (N,E)
Output: An ET T ′

Inicialization: T ′ = T and recs = {n | n, n′ ∈ N ∧ (n → n′) ∈ E ∧ l(n) = l(n′)}

begin
1) while (recs
= ∅)
2) take n ∈ recs such that �n′ ∈ recs with (n → n′) ∈ E+

3) recs = recs\{n}
4) parent = n
5) do
6) maxImprovement = 0
7) children = {c | (n → c) ∈ E ∧ l(n) = l(c)}
8) for each child ∈ children
9) pchildren = Sort(Children(parent))
10) cchildren = Sort(Children(child))
11) comb = Sort((pchildren ∪ cchildren)\{child})
12) improvement = Cost(pchildren)+Cost(cchildren)

wparent
− Cost(comb)

wparent−1

13) if (improvement > maxImprovement)
14) maxImprovement = improvement
15) bestNode = child
16) end for each
17) if (maxImprovement
= 0)
18) T ′ = Compress(T ′, parent, bestNode)
19) while (maxImprovement
= 0)
20) end while
end
return T ′

function Cost(sequence)
begin
21) return

∑
{Pos(node , sequence) ∗ wnode | node ∈ sequence}+ |sequence |

end

function Compress(T = (N,E), parent , child)
begin
22) nodes = Children(child)
23) E′ = E\{(child → n) ∈ E | n ∈ nodes}
24) E′ = E′ ∪ {(parent → n) | n ∈ nodes}
25) N ′ = N\{child}
end
return T ′ = (N ′, E′)

a branch with the strategy Top-Down. This equation depends in turn on the
formula (line 21 in function Cost) used to compute the average cost of exploring
an ET with Top-Down.

Enhancing Declarative Debugging with Loop Expansion 81

If we analyze Algorithm 1, we can easily realize that its asymptotic cost
is quadratic with the number of recursive calls O(N2) because in the worst
case, all recursive calls would be compared between them. Note also that the
algorithm could be used with incomplete ETs [8] (this is useful when we try to
debug a program while the ET is being generated). In this case, the algorithm
can still be applied locally, i.e., to those subtrees of the ET that are totally
generated.

4.2 Loop Expansion

Recursive calls group the iterations in different subtrees whose roots belong to
the recursion branch. This is very convenient because it allows the debugger
to prune different iterations. Therefore, recursion is beneficial for declarative
debugging except in the cases discussed in the previous section. Contrarily, loops
produce very wide trees where all iterations are represented as trees with a
common root. In this structure, it is impossible to prune more than one iteration
at a time, being the debugging of these trees very expensive.

To solve this problem, in this section we present a technique for declarative
debugging that transforms loops into equivalent recursive methods. Because it-
eration is more efficient than recursion, there exist many approaches to trans-
form recursive methods into equivalent loops (e.g., [5,11]). However, there exist
few approaches to transform loops into equivalent recursive methods. An excep-
tion is the one presented in [18] to improve performance in multi-level memory
hierarchies. Nevertheless, we are not aware of any algorithm of this kind pro-
posed for Java or for any other object-oriented language. Hence, we had to
implement this algorithm as a Java library and made it public for the com-
munity: http://users.dsic.upv.es/~jsilva/loops2recursion/. Moreover,
it has been also integrated into a declarative debugger [7]. Due to lack of space
we cannot describe here the algorithm, but we made a technical report with a
detailed description [9]. This algorithm has an asymptotic cost linear with the
number of loops in the program and is the basis of LE. Basically, it transforms
each loop into an equivalent recursive method. The transformation is slightly dif-
ferent for each kind of loop (while, do, for or foreach). In the case of for-loops,
it can be explained with the code in Fig. 7 where A, B, C and D represent blocks
of code. If we observe the transformed ET we see that each iteration is repre-
sented with a different node of the recursive branch r(1) → r(2) → . . .→ r(10),
thus it is possible to detect a bug in a single iteration. This means that, in the
case that function f had a bug, thanks to the transformation, the debugger could
detect that a bug exists in the code in B + C or in A + D. Note that this is
not possible in the original ET where the debugger would report that A + B
+ C + D has a bug. This is a very important result because it augments the
granularity level of the reported bugs, detecting bugs inside loops and not only
inside methods.

http://users.dsic.upv.es/~jsilva/loops2recursion/

82 D. Insa, J. Silva, and C. Tomás

Fig. 7. ET transformation from a loop to a recursive method

Nested recursion augments the possibilities of pruning. For instance, class
Matrix in Fig. 1 can be automatically transformed2 to the code in Fig. 8. The ET
associated with the transformed program is shown in Fig. 2 (right). Observe that
there is a recursion branch for each executed loop, and thus, we have recursive
branches (those labelled with 4) inside a recursive branch (labelled with 3).
Hence, the new nodes added by the transformation are used to represent each
single iteration; and thanks to them, now it is possible to prune loops, iterations,
or single calls inside an iteration.

Our implementation combines the use of TC and LE as follows: (i) Expand all
loops of the source code with LE, (ii) generate the ET with the transformed code,
and (iii) use Algorithm 1 to compress the ET with the current strategy—observe
that if the strategy is later changed, all nodes removed by the compression can
be introduced again, and the ET compressed for the new strategy—. In this
way, we produce an ideal representation of loops where each individual loop is
partially or totally expanded to produce an optimal debugging session.

5 Correctness

In this section we prove that after our transformations, all bugs that could
be detected in the original ET can still be detected in the transformed one.
An even more interesting result is that the transformed ET can contain more
buggy nodes than the original one, and thus, we can detect bugs that be-
fore were undetectable. Regarding TC, its correctness has been proved in [4].

2 For the sake of clarity, in the figure we replaced the names of the generated recursive
methods by sumRows and sumColumns. In the implementation, if a loop has a Java
label in the original source code, the transformation uses this label to name the
recursive method. If this label does not exist, then the name of the loop is the
name of the method that contains this loop followed by “ loopN”, where N is an
autonumeric. While debugging, the user can see the source code of the loop, and she
can change its name if she wants to do it.

Enhancing Declarative Debugging with Loop Expansion 83

public class SumMatrix {
(0) public static void main(String[] args) {

int result = 0;
int numRows = 3;
int numColumns = 3;
Matrix m = new Matrix(numRows, numColumns);
// For loop
{ // Init for loop

int i = 0;
// First iteration
if (i < numRows) {

Object[] res = SumMatrix.sumRows(m, i, numRows, numColumns, result);
result = (Integer)res[0];

}
}
System.out.println(result);

}
(3) private static Object[] sumRows(Matrix m, int i, int numRows, int numColumns, int result) {

// For loop
{ // Init for loop

int j = 0;
// First iteration
if (j < numColumns) {

Object[] res = SumMatrix.sumColumns(m, i, j, numColumns, result);
result = (Integer)res[0];

}
}
// Update for loop
i++;
// Next iteration
if (i < numRows)

return SumMatrix.sumRows(m, i, numRows, numColumns, result);
return new Object[]{result};

}
(4) private static Object[] sumColumns(Matrix m, int i, int j, int numColumns, int result) {

result += m.position(i, j);
// Update for loop
j++;
// Next iteration
if (j < numColumns)

return SumMatrix.sumColumns(m, i, j, numColumns, result);
return new Object[]{result};

}
}

Fig. 8. Recursive version of the program in Fig. 1

Our algorithm does not influence this correctness property because it only de-
cides what nodes should be compressed, but the TC algorithm is the standard
one. The correctness of LE is stated in the following. The associated proofs can
be found in [10].

Theorem 2. [Completeness] Let P be a program, let T be the ET associated
with P, and let T ′ be the ET obtained by applying loop expansion to T . For each
buggy node in T , there is at least one buggy node in T ′.

Theorem 3. [Soundness] Let P be a program, let T be the ET associated with P,
and let T ′ be the ET obtained by applying loop expansion to T . If T ′ contains a
buggy node associated with code f ⊆ P, then T contains a buggy node associated
with code g ⊆ P and f ⊆ g.

From Theorem 2 and 3 we have a very interesting corollary that reveals that the
transformed tree can find more bugs than the original ET.

Corollary 1. Let P be a program, let T be the ET associated with P, and let
T ′ be the ET obtained by applying loop expansion to T . If T contains n buggy
nodes, then T ′ contains n′ buggy nodes with n ≤ n′.

84 D. Insa, J. Silva, and C. Tomás

Table 1. Summary of the experiments

Benchmark
Nodes

LE
Time Questions %

ET LE TCori TCopt LE TC ET LE TCori TCopt LETC TC

Factoricer 55 331 51 51 5 151 105 11.62 8.50 7.35 7.35 63.25 100.0

Classifier 25 57 22 24 3 184 4 8.64 6.19 6.46 6.29 72.80 97.36

LegendGame 87 243 87 87 10 259 31 12.81 8.28 11.84 11.84 92.43 100.0

Romanic 121 171 112 113 3 191 12 16.24 7.74 10.75 9.42 58.00 87.62

FibRecursive 5378 6192 98 101 12 251 953 15.64 12.91 9.21 8.00 51.15 86.86

FactTrans 197 212 24 26 3 181 26 10.75 7.88 6.42 5.08 47.26 79.13

BinaryArrays 141 203 100 100 5 172 79 12.17 7.76 7.89 7.89 64.83 100.0

FibFactAna 178 261 44 49 7 202 33 7.90 8.29 8.50 6.06 76.71 71.29

RegresionTest 13 121 15 15 5 237 4 4.77 7.17 4.20 4.20 88.05 100.0

BoubleFibArrays 16 164 10 10 10 213 27 9.31 8.79 4.90 4.90 52.63 100.0

StatsMeanFib 19 50 23 23 6 195 21 7.79 8.12 6.78 6.48 83.18 95.58

Integral 5 8 8 8 3 152 2 6.80 5.75 7.88 5.88 86.47 74.62

TestMath 3 5 3 3 3 195 2 7.67 6.00 9.00 7.67 100.0 85.22

TestMath2 92 2493 13 13 3 211 607 14.70 11.54 15.77 12.77 86.87 80.98

Figures 2 10 10 10 24 597 13 9.00 7.20 6.60 6.60 73.33 100.0

FactCalc 128 179 75 75 3 206 46 8.45 7.60 7.96 7.96 94.20 100.0

SpaceLimits 95 133 98 100 15 786 10 36.26 12.29 18.46 14.04 38.72 76.06

6 Implementation

We have implemented the original TC algorithm and the optimized version pre-
sented in this paper; and also the LE algorithm in such a way that they all canwork
together. This implementation has been integrated into the Declarative Debugger
for Java DDJ [7]. The experiments, the source code of the tool, the benchmarks,
and other materials can be found at http://www.dsic.upv.es/~jsilva/DDJ/.

All the implementation has been done in Java. The optimized TC algorithm
contains around 90 LOC, and the LE algorithm contains around 1700 LOC.
We conducted a series of experiments in order to measure the influence of both
techniques in the performance of the debugger. Table 1 summarizes the obtained
results.

The first column in Table 1 shows the name of the benchmarks. For each
benchmark, column nodes shows the number of nodes descendant of a loop3 in
the original ET (ET), in the ET after applying LE (LE), in the ET after applying
LE first and then the original version of TC—compressing all nodes—(TCori),
and in the ET after applying LE first and then the optimized version of TC—
Algorithm 1—(TCopt); column LE shows the number of loops expanded; column
Time shows the time (in milliseconds) needed to apply LE and TE; column
Questions shows the average number of questions asked with each of the previ-
ously described ETs. Each benchmark has been analyzed assuming that the bug
could be in any node of its associated ET. This means that each value in column

3 We consider these nodes because the part of the ET that is not descendant of a loop
remains unchanged after applying our technique, and thus the number of questions
needed to find the bug is the same before and after the transformations.

http://www.dsic.upv.es/~jsilva/DDJ/

Enhancing Declarative Debugging with Loop Expansion 85

Questions represents the average of a set of experiments. For instance, in order
to obtain the information associated with Factoricer, this benchmark has been
debugged 55 times with the original ET, 331 with the ET after applying loop
expansion, etc. In total, Factoricer was debugged 55+331+51+51=488 times,
considering all ET transformations and assuming each time that the bug was
a different node (and computing the average of all tests for each ET); finally,
column (%) shows, on the one hand, the percentage of questions asked after ap-
plying our transformations (LE and TC) with respect to the original ET (LETC);
and, on the other hand, the percentage of questions asked using Algorithm 1 to
decide when to apply TC, with respect to always applying TC (TC). From the
table we can conclude that our transformations produce a reduction of 27.65 %
in the number of questions asked by the debugger. Moreover, the use of Algo-
rithm 1 to decide when to apply TC also produces an important reduction in
the number of questions with an average of 9.72 %.

7 Conclusions

Declarative debugging can generate too many questions to find a bug, and once
it is found, the debugger reports a whole method as the buggy code. In this
work we make a step forward to solve these problems. We introduce techniques
that reduce the number of questions by improving the structure of the ET. This
is done with two transformations called tree compression and loop expansion.
Moreover, loop expansion also faces the second problem, and it allows us to detect
bugs in loops and not only in methods, augmenting in this way the granularity
level of the bug found. As a side effect, being able to ask about the correctness
of loops allows us to reduce the complexity of questions: the programmer can
answer about a part of a method (a single loop), and not only to the whole
method mixing the effects of different loops. We think that this is an interesting
result that opens new possibilities for future work related to the complexity of
questions. The idea of transforming loops into recursive methods in an ET is
novel, and it allows us to apply all previous techniques based on recursion in the
imperative and object-oriented paradigms.

Acknowledgements. We want to thank Rafael Caballero and Adrián Riesco
for productive comments and discussions at the initial stages of this work. We
also thank the anonymous referees of LOPSTR’12 for useful feedback and con-
structive criticism which has improved this work.

References

1. Binks, D.: Declarative Debugging in Gödel. PhD thesis, University of Bristol (1995)
2. Calejo, M.: A Framework for Declarative Prolog Debugging. PhD thesis, New Uni-

versity of Lisbon (1992)

86 D. Insa, J. Silva, and C. Tomás

3. Davie, T., Chitil, O.: Hat-delta: One Right Does Make a Wrong. In: Butterfield,
A. (ed.) Draft Proceedings of the 17th International Workshop on Implementation
and Application of Functional Languages, IFL 2005, p. 11. Tech. Report No: TCD-
CS-2005-60, University of Dublin, Ireland (September 2005)

4. Davie, T., Chitil, O.: Hat-delta: One Right Does Make a Wrong. In: Seventh Sym-
posium on Trends in Functional Programming, TFP 2006 (April 2006)

5. Harrison, P.G., Khoshnevisan, H.: A new approach to recursion removal. Theor.
Comput. Sci. 93(1), 91–113 (1992)

6. Hirunkitti, V., Hogger, C.J.: A Generalised Query Minimisation for Program De-
bugging. In: Adsul, B. (ed.) AADEBUG 1993. LNCS, vol. 749, pp. 153–170.
Springer, Heidelberg (1993)

7. Insa, D., Silva, J.: An Algorithmic Debugger for Java. In: Proc. of the 26th IEEE
International Conference on Software Maintenance, pp. 1–6 (2010)

8. Insa, D., Silva, J.: Debugging with Incomplete and Dynamically Generated Execu-
tion Trees. In: Proc. of the 20th International Symposium on Logic-based Program
Synthesis and Transformation, LOPSTR 2010, Austria (2010)

9. Insa, D., Silva, J.: A Transformation of Iterative Loops into Recursive Loops.
Technical Report DSIC/05/12, Universidad Politécnica de Valencia (2012),
http://www.dsic.upv.es/~jsilva/research.htm#techs

10. Insa, D., Silva, J., Tomás, C.: Enhancing Declarative Debugging with Loop Expan-
sion and Tree Compression. Technical Report DSIC/11/12, Universidad Politécnica
de Valencia (2012), http://www.dsic.upv.es/~jsilva/research.htm#techs

11. Liu, Y.A., Stoller, S.D.: From recursion to iteration: what are the optimizations?
In: Proceedings of the 2000 ACM SIGPLAN Workshop on Partial Evaluation and
Semantics-Based Program Manipulation, PEPM 2000, pp. 73–82. ACM, New York
(2000)

12. Lloyd, J.W.: Declarative error diagnosis. New Gen. Comput. 5(2), 133–154 (1987)
13. Nilsson, H.: Declarative Debugging for Lazy Functional Languages. PhD thesis,

Linköping, Sweden (May 1998)
14. NIST: The Economic Impacts of Inadequate Infrastructure for Software Testing.

USA National Institute of Standards and Technology, NIST Planning Report 02-3
(May 2002)

15. Riesco, A., Verdejo, A., Mart́ı-Oliet, N., Caballero, R.: Declarative Debugging
of Rewriting Logic Specifications. Journal of Logic and Algebraic Programming
(September 2011)

16. Shapiro, E.Y.: Algorithmic Program Debugging. MIT Press (1982)
17. Silva, J.: A Survey on Algorithmic Debugging Strategies. Advances in Engineering

Software 42(11), 976–991 (2011)
18. Yi, Q., Adve, V., Kennedy, K.: Transforming loops to recursion for multi-level

memory hierarchies. In: Proceedings of the SIGPLAN 2000 Conference on Pro-
gramming Language Design and Implementation, pp. 169–181 (2000)

http://www.dsic.upv.es/~jsilva/research.htm#techs
http://www.dsic.upv.es/~jsilva/research.htm#techs

Enhancing Declarative Debugging with Loop Expansion 87

Appendix 1: Proofs of Technical Results

This section presents the proofs of Theorems 1, 2, 3 and Corollary 1.

Theorem 1. Let T be an ET with a recursion branch R = n1 → n2 → . . .→ nm

where the only child of a node ni, 1 ≤ i ≤ m − 1, is ni+1. And let T ′ be an
ET equivalent to T except that nodes ni and ni+1 have been compressed. Then,
Questions(T ′,Top-Down) < Questions(T,Top-Down).

Proof. Let us consider the two nodes that form the sub-branch to be compressed.
For the proof we can call them n1 → n2. Firstly, the number of questions needed
to find a bug in any ancestor of n1 is exactly the same if we compress or not the
sub-branch. Therefore, it is enough to prove that Questions(T1c,Top-Down) <
Questions(T1,Top-Down) where T1 is the subtree whose root is n1 and T1c is
the subtree whose root is n1 after tree compression.
Let us assume that n2 has j children. Thus we call T2 the subtree whose root is
n2, and T2i the subtree whose root is the i-th child of n2. Then,

Questions(T2,Top-Down) =
(j+1)+

j∑

i=1

|T2i
|∗(i+Questions(T2i

,Top-Down))

|T2|

Here, (j +1) are the questions needed to find a bug in n2. To reach the children
of n2, the own n2 and the previous i− 1 children must be asked first, and this is
why we need to add i to Questions(T2i,Top-Down), Finally, |Tx| represents the
number of nodes in the (sub)tree Tx.

Therefore, Questions(T1c,Top-Down) = Questions(T2,Top-Down)

and Questions(T1,Top-Down) = 2+|T2|∗(i+Questions(T2 ,Top-Down))
|T2|+1

Clearly, Questions(T1c,Top-Down) < Questions(T1,Top-Down), and thus the
claim follows.

Theorem 2. Let P be a program, let T be the ET associated with P, and let
T ′ be the ET obtained by applying loop expansion to T . For each buggy node in
T , there is at least one buggy node in T ′.

Proof. Let us prove the theorem for an arbitrary buggy node n in T associated
with a function f . Firstly, because loop expansion only transforms iterative loops
into recursive loops, all functions executed in T are also executed in T ′. This
means that every node in T has a counterpart (equivalent) node in T ′ that
represents the same (sub)computation. Therefore, we can call n′ to the node
that represents in T ′ the same execution than n in T . Because n is buggy, then
n is wrong, and all the children of n (if any) are correct. Hence, n′ is also wrong.
Moreover, if f does not contain a loop, then loop expansion has no effect on
the code of f and thus n and n′ will have exactly the same children, and thus,
trivially, n′ is also buggy in T ′. If we assume the existence of a loop in f , then we
will have a situation as the one shown in the ETs of Figure 7. We can consider
for the proof that the ET at the left is the subtree of n and the ET at the right is
the subtree of n′. Then, because n is buggy, all nodes labeled with g are correct
(in both ETs) and, thus, either n′ or one of the nodes labeled with r are buggy.

88 D. Insa, J. Silva, and C. Tomás

Theorem 3. Let P be a program, let T be the ET associated with P, and let
T ′ be the ET obtained by applying loop expansion to T . If T ′ contains a buggy
node associated with code f ⊆ P, then, T contains a buggy node associated with
code g ⊆ P and f ⊆ g.

Proof. According to the proof of Theorem 2, every node in T has a counterpart
(equivalent) node in T ′. Hence, let n be the buggy node in T and let n′ be the
associated buggy node in T ′. If f does not have a loop, then both n and n′ point
to the same function (f) and thus the theorem holds trivially. If f contains a
loop that has been expanded, then, as stated in the proof of Theorem 2, either
n′ or one of its descendants (say n′′) that represent the iterations of the loop are
buggy. But we know that the code of n′′ is the code of the loop that is included
in the code of f . Therefore, in all cases f ⊆ g.

Corollary 1. Let P be a program, let T be the ET associated with P, and let
T ′ be the ET obtained by applying loop expansion to T . If T contains n buggy
nodes, then T ′ contains n′ buggy nodes with n ≤ n′.

Proof. Trivial from Theorems 2 and 3. On the one hand, equality is ensured with
Theorem 2 because for each buggy node in T , there is at least one buggy node
in T ′. On the other hand, if a node in T is associated with a function whose
code contains more than one loop that has been expanded, then T ′ can contain
more than one new buggy node not present in T .

XACML 3.0 in Answer Set Programming

Carroline Dewi Puspa Kencana Ramli,
Hanne Riis Nielson, and Flemming Nielson

Department of Applied Mathematics and Computer Science
Danmarks Tekniske Universitet

Lyngby, Denmark
{cdpu,hrni,fnie}dtu.dk

Abstract. We present a systematic technique for transforming XACML
3.0 policies in Answer Set Programming (ASP). We show that the result-
ing logic program has a unique answer set that directly corresponds to
our formalisation of the standard semantics of XACML 3.0 from [9]. We
demonstrate how our results make it possible to use off-the-shelf ASP
solvers to formally verify properties of access control policies represented
in XACML, such as checking the completeness of a set of access control
policies and verifying policy properties.

Keywords: XACML, access control, policy language, Answer Set Pro-
gramming.

1 Background

XACML (eXtensible Access Control Markup Language) is a prominent access
control language that is widely adopted both in industry and academia. XACML
is an international standard in the field of information security and in February
2005,XACML version 2.0 was ratified byOASIS.1 XACML represents a shift from
a more static security approach as exemplified by ACLs (Access Control Lists)
towards a dynamic approach, based on Attribute Based Access Control (ABAC)
systems. These dynamic security concepts are more difficult to understand, audit
and interpret in real-world implications. The use of XACML requires not only the
right tools but also well-founded concepts for policy creation and management.

The problem with XACML is that its specification is described in natural
language (c.f. [8,11]) and manual analysis of the overall effect and consequences
of a large XACML policy set is a very daunting and time-consuming task. How
can a policy developer be certain that the represented policies capture all possible
requests? Can they lead to conflicting decisions for some request? Do the policies
satisfy all required properties? These complex problems cannot be solved easily
without some automatised support.

1 TheOrganization for the Advancement of Structured Information Standards (OASIS)
is a global consortium that drives the development, convergence, and adoption of e-
business and web service standards.

E. Albert (Ed.): LOPSTR 2012, LNCS 7844, pp. 89–105, 2013.
© Springer-Verlag Berlin Heidelberg 2013

90 C.D.P. Kencana Ramli, H.R. Nielson, and F. Nielson

To address this problem we propose a logic-based XACML analysis frame-
work using Answer Set Programming (ASP). With ASP we model an XACML
Policy Decision Point (PDP) that loads XACML policies and evaluates XACML
requests against these policies. The expressivity of ASP and the existence of
efficient implementations of the answer set semantics, such as clasp2 and DLV3,
provide the means for declarative specification and verification of properties of
XACML policies.

Our work is depicted in Figure 1. There are two main modules, viz. the PDP
simulation module and the access control (AC) security property verification
module. In the first module, we transform an XACML query and XACML poli-
cies from the original format in XML syntax into abstract syntax, which is more
compact than the original. Subsequently we generate a query program ΠQ and
XACML policies program ΠXACML that correspond to the XACML query and
the XACML policies, respectively. We show that the corresponding answer set
of ΠQ∪ΠXACML is unique and it coincides with the semantics of original XACML
policy evaluation. In the second module, we demonstrate how our results make
it possible to use off-the-shelf ASP solvers to formally verify properties of AC
policies represented in XACML. First we encode the AC security property and
a generator for each possible domain of XACML policies into logic programs
ΠAC property and Πgenerator , respectively. The encoding of AC property is in the
negated formula in order to show at a later stage that each answer set corres-
ponds to a counter example that violates the AC property. Together with the
combination of ΠXACML ∪ ΠAC property ∪ Πgenerator we show that the XACML
policies satisfy the AC property when there is no available answer set.

XACML Query
in original format

XACML Query
in abstract syntax

XACML Query
in a logic program

XACML Policies
in original format

XACML Policies
in abstract syntax

XACML Policies
in logic programs

XACML Response
Answer Set

Access Con-
trol Properties
in logic programs

Domain Generator
in logic programs

Result
Answer Set(s)

Fig. 1. Translation Process from Original XACML to XACML-ASP

Outline. We consider the current version, XACML 3.0, Committee Specification
01, 10 August 2010. In Section 2 we explain the abstract syntax and semantics of

2 http://www.cs.uni-potsdam.de/clasp/
3 http://www.dlvsystem.com/

http://www.cs.uni-potsdam.de/clasp/
http://www.dlvsystem.com/

XACML 3.0 in Answer Set Programming 91

XACML 3.0. Then we describe the transformation of XACML 3.0 components
into logic programs in Section 3. We show the relation between XACML 3.0
semantics and ASP semantics in Section 4. Next, in Section 5, we show how to
verify AC properties, such as checking the completeness of a set of policies. In
Section 6 we discuss the related work. We end the paper with conclusions and
future work.

2 XACML 3.0

In order to avoid superfluous syntax of XACML 3.0, first we present the abstract
syntax of XACML 3.0 which only shows the important components of XACML
3.0. We continue the explanation by presenting the semantics of XACML 3.0
components’ evaluation based on XACML 3.0 Committee Specification [11]. We
take the work of Ramli et. al [9] as our reference.

2.1 Abstract Syntax of XACML 3.0

Table 1 shows the abstract syntax of XACML 3.0. We use bold font for non-
terminal symbols, typewriter font for terminal symbols and identifiers and
values are written in italic font. A symbol followed by the star symbol (∗) indic-
ates that there are zero or more occurrences of that symbol. Similarly, a symbol
followed by the plus symbol (+) indicates that there are one or more occurrences
of that symbol. We consider that each policy has a unique identifier (ID). We
use initial capital letter for XACML components such as PolicySet, Policy, Rule,
etc., and small letters for English terminology.

Table 1. Abstraction of XACML 3.0 Components

XACML Policy Components

PolicySet PS ::= PSid = [T , 〈(PSid | Pid)
∗〉,CombID]

Policy P ::= Pid = [T , 〈Rid
+〉,CombID]

Rule R ::= Rid = [Effect,T ,C]
Condition C ::= true | fbool(a1, . . . , an)
Target T ::= null |

∧
E+

AnyOf E ::=
∨

A+

AllOf A ::=
∧

M+

Match M ::= Attr
CombID ::= po | do | fa | ooa
Effect ::= p | d

Attribute Attr ::= category(attribute value)

XACML Request Component

Request Q ::= { (Attr | error(Attr))+ }

There are three levels of policies in XACML, namely PolicySet, Policy and
Rule. PolicySet or Policy can act as the root of a set of access control policies,

92 C.D.P. Kencana Ramli, H.R. Nielson, and F. Nielson

while Rule is a single entity that describes one particular access control policy.
Throughout this paper we consider that PolicySet is the root of the set of access
control policies.

Both PolicySet and Policy are containers for a sequence of PolicySet, Policy or
Rule. A PolicySet contains either a sequence of PolicySet elements or a sequence
of Policy elements, while a Policy can only contain a sequence of Rule elements.
Every sequence of PolicySet, Policy or Rule elements has an associated combining
algorithm. There are four common combining algorithms defined in XACML 3.0,
namely permit-overrides (po), deny-overrides (do), first-applicable (fa) and only-
one-applicable (ooa).

A Rule describes an individual access control policy. It regulates whether an
access should be permitted (p) or denied (d). All PolicySet, Policy and Rule are
applicable whenever their Target matches with the Request. When the Rule’s
Target matches the Request, then the applicability of the Rule is refined by its
Condition.

A Target element identifies the set of decision requests that the parent ele-
ment is intended to evaluate. The Target element must appear as a child of a
PolicySet and Policy element and may appear as a child of a Rule element. The
empty Target for Rule element is indicated by null attribute. The Target ele-
ment contains a conjunctive sequence of AnyOf elements. The AnyOf element
contains a disjunctive sequence of AllOf elements, while the AllOf element con-
tains a conjunctive sequence of Match elements. Each Match element specifies
an attribute that a Request should match.

A Condition is a Boolean function over attributes or functions of attributes. In
this abstraction, the user is free to define the Condition as long as its expression
returns a Boolean value, i.e., either true or false. Empty Condition is always
associated to true.

A Request contains a set of attribute values for a particular access request
and the error messages that occurred during the evaluation of attribute values.

2.2 XACML 3.0 Formal Semantics

The evaluation of XACML policies starts from the evaluation of Match elements
and continues bottom-up until the evaluation of the root of the XACML element,
i.e., the evaluation of PolicySet. For each XACML element X we denote by �X�
a semantic function associated to X . To each Request element, this function
assigns a value from a set of values that depends on the particular type of the
XACML elementX . For example, the semantic function �X�, whereX is a Match
element, ranges over the set {m, nm, idt }, while its range is the set { t, f, idt }
when X is a Condition element. A further explanation will be given below.
An XACML component returns an indeterminate value whenever the decision
cannot be made. This happens when there is an error during the evaluation
process. See [9] for further explanation of the semantics of XACML 3.0.

Evaluation of Match, AllOf, AnyOf and Target Components. Let X be
either a Match, an AllOf, an AnyOf or a Target component and let Q be a set

XACML 3.0 in Answer Set Programming 93

of all possible Requests. A Match semantic function is a mapping �X� : Q →
{m, nm, idt }, where m, nm and idt denote match, no-match and indeterminate,
respectively.

Our evaluation of Match element is based on equality function.4 We check
whether there are any attribute values in Request element that match the Match
attribute value.

Let Q be a Request element and let M be a Match element. The evaluation
of Match M is as follows

�M�(Q) =

⎧⎪⎨
⎪⎩
m if M ∈ Q and error(M) /∈ Q
nm if M /∈ Q and error(M) /∈ Q
idt if error(M) ∈ Q

(1)

The evaluation of AllOf is a conjunction of a sequence of Match elements. The
value of m, nm and idt corresponds to true, false and undefined in 3-valued logic,
respectively.

Given a Request Q, the evaluation of AllOf, A =
∧n

i=1Mi, is as follows

�A�(Q) =

⎧⎪⎨
⎪⎩
m if ∀i : �Mi�(Q) = m

nm if ∃i : �Mi�(Q) = nm

idt otherwise

(2)

where each Mi is a Match element.
The evaluation of AnyOf element is a disjunction of a sequence of AllOf ele-

ments. Given a Request Q, the evaluation of AnyOf, E =
∨n

i=1Ai, is as follows

�E�(Q) =

⎧⎪⎨
⎪⎩
m if ∃i : �Ai�(Q) = m

nm if ∀i : �Ai�(Q) = nm

idt otherwise

(3)

where each Ai is an AllOf element.
The evaluation of Target element is a conjunction of a sequence of AnyOf

elements. An empty Target, indicated by null attribute, is always evaluated to
m. Given a Request Q, the evaluation of Target, T =

∧n
i=1 Ei, is as follows

�T �(Q) =

⎧⎪⎨
⎪⎩
m if ∀i : �Ei�(Q) = m or T = null

nm if ∃i : �Ei�(Q) = nm

idt otherwise

(4)

where each Ei is an AnyOf element.

Evaluation of Condition. Let X be a Condition component and let Q be
a set of all possible Requests. A Condition semantic function is a mapping
�X� : Q → { t, f, idt}, where t, f and idt denote true, false and indeterminate,
respectively.

The evaluation of Condition element is based on the evaluation of its Boolean
function as described in its element. To keep it abstract, we do not specify specific
functions; however, we use an unspecified function, eval, that returns { t, f, idt }.
4 Our Match evaluation is a simplification compared with [11].

94 C.D.P. Kencana Ramli, H.R. Nielson, and F. Nielson

Given a Request Q, the evaluation of Condition C is as follows

�C�(Q) = eval(C,Q) (5)

Evaluation of Rule. Let X be a Rule component and let Q be a set of possible
Requests. A Rule semantic function is a mapping �X� : Q → { p, d, ip, id, na },
where p, d, ip, id and na correspond to permit, deny, indeterminate permit, inde-
terminate deny and not− applicable, respectively.

Given a Request Q, the evaluation of Rule Rid = [E, T , C] is as follows

�Rid �(Q) =

⎧⎪⎨
⎪⎩
E if �T �(Q) = m and �C�(Q) = t

na if (�T �(Q) = m and �C�(Q) = f) or (�T �(Q) = nm)

iE otherwise

(6)

where E is an effect, E ∈ { p, d }, T is a Target element and C is a Condition
element.

Evaluation of Policy and PolicySet. Let X be either a Policy or a Poli-
cySet component and let Q be a set of all possible Requests. A Policy semantic
function is a mapping �X� : Q→ { p, d, ip, id, idp, na }, where p, d, ip, id, idp and na
correspond to permit, deny, indeterminate permit, indeterminate deny, indeter-
minate deny permit and not− applicable, respectively.

Given a Request Q, the evaluation of Policy Pid = [T, 〈R1, . . . ,Rn〉,CombID]
is as follows

�Pid�(Q) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

id if �T �(Q) = idt and
⊕

CombID(R) = d

ip if �T �(Q) = idt and
⊕

CombID(R) = p

na if �T �(Q) = nm or ∀i : �Ri�(Q) = na⊕
CombID(R) otherwise

(7)

where T is a Target element, and each Ri is a Rule element. We use R to denote
〈�R1�(Q), . . . , �Rn�(Q)〉.
Note: The combining algorithm denoted by

⊕
CombID will be explained in Sec-

tion 2.3.
The evaluation of PolicySet is exactly like the evaluation of Policy except that

it differs in terms of input parameter. While in Policy we use a sequence of Rule
elements as an input, in the evaluation of PolicySet we use a sequence of Policy
or PolicySet elements.

2.3 XACML Combining Algorithms

There are four common combining algorithms defined in XACML 3.0, namely
permit-overrides (po), deny-overrides (do), first-applicable (fa) and only-one-
applicable (ooa). In this paper, we do not consider the deny-overrides combining
algorithm since it is the mirror of the permit-overrides combining algorithm.

Permit-Overrides (po) Combining Algorithm. The permit-overrides com-
bining algorithm is intended for use if a permit decision should have priority
over a deny decision. This algorithm has the following behaviour [11].

XACML 3.0 in Answer Set Programming 95

1. If any decision is “permit”, then the result is “permit”.
2. Otherwise, if any decision is “indeterminate deny permit”, then the result is

“indeterminate deny permit”.
3. Otherwise, if any decision is “indeterminate permit” and another decision

is “indeterminate deny” or “deny”, then the result is “indeterminate deny
permit”.

4. Otherwise, if any decision is “indeterminate permit”, then the result is “in-
determinate permit”.

5. Otherwise, if decision is “deny”, then the result is “deny”.
6. Otherwise, if any decision is “indeterminate deny”, then the result is “inde-

terminate deny”.
7. Otherwise, the result is “not applicable”.

Let 〈s1, . . . , sn〉 be a sequence of element of { p, d, ip, id, idp, na }. The permit-
overrides combining operator is defined as follows

⊕
po

(〈s1, . . . , sn〉) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p if ∃i : si = p

idp if ∀i : si �= p and

(∃j : sj = idp

or (∃j, j′ : sj = ip and (sj′ = id or sj′ = d))

ip if ∃i : si = ip and ∀j : sj �= ip ⇒ sj = na

d if ∃i : si = d and ∀j : sj �= d ⇒ (sj = id or sj = na)

id if ∃i : si = id and ∀j : sj �= id ⇒ sj = na

na otherwise

(8)

First-Applicable (fa) Combining Algorithm. Each Rule must be evaluated
in the order in which it is listed in the Policy. If a particular Rule is applicable,
then the result of first-applicable combining algorithm must be the result of
evaluating the Rule. If the Rule is “not applicable” then the next Rule in the
order must be evaluated. If no further Rule in the order exists, then the first-
applicable combining algorithm must return “not applicable”.

Let 〈s1, . . . , sn〉 be a sequence of element of { p, d, ip, id, idp, na }. The first-
applicable combining operator is defined as follows:

⊕
fa

(〈s1, . . . , sn〉) =
{
si if ∃i : si �= na and ∀j : (j < i)⇒ (sj = na)

na otherwise
(9)

Only-One-Applicable (ooa) Combining Algorithm. If only one Policy is
considered applicable by evaluation of its Target, then the result of the only-one-
applicable combining algorithm must be the result of evaluating the Policy. If in
the entire sequence of Policy elements in the PolicySet, there is no Policy that is
applicable, then the result of the only-one-applicable combining algorithm must
be “not applicable”. If more than one Policy is considered applicable, then the
result of the only-one-applicable combining algorithm must be “indeterminate”.
We follow [9] for the equation of only-one-applicable combining algorithm.

96 C.D.P. Kencana Ramli, H.R. Nielson, and F. Nielson

Let 〈s1, . . . , sn〉 be a sequence of element of { p, d, ip, id, idp, na }. The only-one-
applicable combining operator is defined as follows:

⊕
ooa

(〈s1, . . . , sn〉) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

idp if (∃i : si = idp) or

(∃i, j : i �= j and si = (d or id) ∧ sj = (p or ip))

id if (∀i : si �= (p or ip or idp)) and

((∃j : sj = id) or (∃j, k : j �= k and sj = sk = d))

ip if (∀i : si �= (d or id or idp)) and

((∃j : sj = ip) or (∃j, k : j �= k and sj = sk = p))

si if ∃i : si �= na and ∀j : j �= i⇒ sj = na

na otherwise

(10)

3 Transforming XACML Components into Logic
Programs

In this section we show, step by step, how to transform XACML 3.0 compon-
ents into logic programs. We begin by introducing the syntax of logic programs
(LPs). Then we show the transformation of XACML component into LPs start-
ing from Request element to PolicySet element. We also present transformations
for combining algorithms. The transformation of each XACML element is based
on its formal semantics explained in Section 2.2 and Section 2.3.

3.1 Preliminaries

We recall basic notation and terminology that we use in the remainder of this
paper.

First-Order Language. We consider an alphabet consisting of (finite or count-
ably infinite) disjoint sets of variables, constants, function symbols, predicate
symbols, connectives { not,∧,← }, punctuation symbols { “(”, “,”, “)”, “.” }
and special symbols { �,⊥ }. We use upper case letters to denote variables and
lower case letters to denote constants, function and predicate symbols. Terms,
atoms, literals and formulae are defined as usual. The language given by an al-
phabet consists of the set of all formulae constructed from the symbols occurring
in the alphabet.

Logic Programs. A rule is an expression of the form

A ← B1 ∧ · · · ∧Bm ∧ not Bm+1 ∧ · · · ∧ not Bn. (11)

where A is either an atom or ⊥ and each Bi, 1 ≤ i ≤ n, is an atom or �. �
is a valid formula. We usually write B1 ∧ · · · ∧ Bm ∧ not Bm+1 ∧ · · · ∧ not Bn

simply as B1, . . . , Bm,not Bm+1, . . . ,not Bn. We call the rule as a constraint
when A = ⊥. One should observe that the body of a rule must not be empty. A
fact is a rule of the form A← �.

A logic program is a finite set of rules. We denote ground(Π) for the set of all
ground instances of rules in the program Π .

XACML 3.0 in Answer Set Programming 97

3.2 XACML Components Transformation into Logic Programs

The transformation of XACML components is based on the semantics of each
component explained in Section 2.2. Please note that the calligraphic font in
each transformation indicates the XACML component’s name, that is, it does
not represent a variable in LP.

3.2.1 Request Transformation
XACML Syntax : Let Q = { At1, . . . ,Atn } be a Request component. We trans-
form all members of Request element into facts. The transformation of Request,
Q, into LP ΠQ is as follows

Ati ← �. 1 ≤ i ≤ n

3.2.2 XACML Policy Components Transformation
We use a two-place function val to indicate the semantics of XACML components
where the first argument is the name of XACML component and the second
argument is its value.

Transformation of Match, AnyOf, AllOf and Target Components.Given
a semantic equation of the form �X�(Q) = v if cond1 and . . . and condn, we
produce a rule of the form val(X, v) ← cond1, . . . , condn. Given a semantic
equation of the form �X�(Q) = v if cond1 or . . . or condn, we produce a rule
of the form val(X, v) ← cond i. 1 ≤ i ≤ n. For example, the Match evalu-
ation �M�(Q) = m if M ∈ Q and error(M) /∈ Q is transformed into a rule:
val(M,m) ← M,not error(M). The truth value of M depends on whether
M←� is in ΠQ and the same is the case also for the truth value of error(M).

Let M be a Match component. The transformation of MatchM into LP ΠM
is as follows (see (1) for Match evaluation)

val(M,m) ← M,not error(M).
val(M,nm) ← not cat(a),not error(M).
val(M, idt) ← error(M).

Let A =
∧n

i=1Mi be an AllOf component where eachMi is a Match component.
The transformation of AllOf A into LP ΠA is as follows (see (2) for AllOf
evaluation)

val(A,m) ← val(M1,m), . . . , val(Mn,m).
val(A, nm) ← val(Mi, nm). (1 ≤ i ≤ n)
val(A, idt) ← not val(A,m),not val(A, nm).

Let E =
∨n

i=1Ai be an AnyOf component where each Ai is an AllOf component.
The transformation of AnyOf E into LP ΠE is as follows (see (3) for AnyOf
evaluation)

val(E ,m) ← val(Ai,m). (1 ≤ i ≤ n)
val(E ,nm) ← val(A1, nm), . . . , val(An, nm).
val(E , idt) ← not val(A,m),not val(E ,nm).

98 C.D.P. Kencana Ramli, H.R. Nielson, and F. Nielson

Let T =
∧n

i=1 Ti be a Target component where each Ei is an AnyOf component.
The transformation of Target T into LP ΠT is as follows (see (4) for Target
evaluation)

val(null,m) ← �.
val(T ,m) ← val(E1,m), . . . , val(En,m).
val(T , nm) ← val(Ei, nm). (1 ≤ i ≤ n)
val(T , idt) ← not val(T ,m),not val(T , nm).

Transformation of Condition Component. The transformation of Condi-
tion C into LP ΠC is as follows

val(C, V) ← eval(C, V).

Moreover, the transformation of Condition also depends on the transformation
of eval function into LP. Since we do not describe specific eval functions, we leave
this transformation to the user.

Example 1. A possible eval function for ”rule r1: patient only can see his or her
patient record” is

Πcond(r1) :
val(cond(r1), V) ← eval(cond(r1), V).
eval(cond(r1), t) ← patient id(X), patient record id(X),

not error(patient id(X)),not error(patient record id(X)).
eval(cond(r1), f) ← patient id(X), patient record id(Y), X
= Y,

not error(patient id(X)),not error(patient record id(Y)).
eval(cond(r1), idt) ← not eval(cond(r1), t),not eval(cond(r1), f).

The error(patient id(X)) and error(patient record id(X)) indicate possible
errors that might occur, e.g., the system could not connect to the database so
that the system does not know the identifier of the patient. �

Transformation of Rule Component. The general step of the transformation
of Rule component is similar to the transformation of Match component.

Let R = [e, T , C] be a Rule component where e ∈ { p, d }, T is a Target and
C is a Condition. The transformation of Rule R into LP ΠR is as follows (see
(6) for Rule evaluation)

val(R, e) ← val(T ,m), val(C, t).
val(R, na) ← val(T ,m), val(C, f).
val(R, na) ← val(T , nm).
val(R, ie) ← not val(R, e),not val(R, na).

Transformation of Policy and PolicySet Components. Given a Policy
component Pid = [T , 〈R1, . . . ,Rn〉,CombID] where T is a Target, 〈R1, . . . ,Rn〉
is a sequence of Rule elements and CombID is a combining algorithm identifier.
In order to indicate that the Policy contains Rule Ri, for every Rule Ri ∈
〈R1, . . . ,Rn〉, ΠPid

contains:

decision of(Pid ,Ri, V) ← val(Ri, V). (1 ≤ i ≤ n)

XACML 3.0 in Answer Set Programming 99

The transformation for Policy Π into LP ΠPid
is as follows (see (7) for Policy

evaluation)

val(Pid , id) ← val(T , idt), algo(CombID,Pid , d).
val(Pid , ip) ← val(T , idt), algo(CombID,Pid , p).
val(Pid , na) ← val(T , nm).
val(Pid , na) ← val(R1, na), . . . , val(Rn, na).
val(Pid , V

′) ← val(T ,m), decision of(Pid ,R, V), V
= na, algo(CombID,Pid , V
′).

val(Pid , V
′) ← val(T , idt), decision of(Pid ,R, V), V
= na, algo(CombID,Pid , V

′), V ′
= p.
val(Pid , V

′) ← val(T , idt), decision of(Pid ,R, V), V
= na, algo(CombID,Pid , V
′), V ′
= d.

We write a formula decision of(Pid ,R, V), V �= na to make sure that there is a
Rule in the Policy that is not evaluated to na. We do this to avoid a return
value from a combining algorithm that is not na, even tough all of the Rule
elements are evaluated to na. The transformation of PolicySet is similar to the
transformation of Policy component.

3.3 Combining Algorithm Transformation

We define generic LPs for permit-overrides combining algorithm and only-one-
applicable combining algorithm. Therefore, we use a variable P to indicate a
variable over Policy identifier and R, R1 and R2 to indicate variables over Rule
identifiers. In case the evaluation of PolicySet, the input P is for PolicySet iden-
tifier, R,R1 and R2 are for Policy (or PolicySet) identifiers.

Permit-Overrides Transformation. Let Πpo be a LP obtained by permit-
overrides combining algorithm transformation (see (8) for the permit-overrides
combining algorithm semantics). Πpo contains:

algo(po, P, p) ← decision of(P,R, p).
algo(po, P, idp) ← not algo(po, P, p), decision of(P,R, idp).
algo(po, P, idp) ← not algo(po, P, p), decision of(P,R1, ip), decision of(P,R2, d).
algo(po, P, idp) ← not algo(po, P, p), decision of(P,R1, ip), decision of(P,R2, id).
algo(po, P, ip) ← not algo(po, P, p),not algo(po, P, idp), decision of(P,R, ip).
algo(po, P, d) ← not algo(po, P, p),not algo(po, P, idp),not algo(po, P, ip),

decision of(P,R, d).
algo(po, P, id) ← not algo(po, P, p),not algo(po, P, idp),not algo(po, P, ip),

not algo(po, P, d), decision of(P,R, id).
algo(po, P, na) ← not algo(po, P, p),not algo(po, P, idp),not algo(po, P, ip),

not algo(po, P, d),not algo(po, P, id).

First-Applicable Transformation. Let Πfa be a LP obtained by first-
applicable combining algorithm transformation (see (9) for the first-applicable
combining algorithm semantics). For each Policy (or PolicySet) that uses this
combining algorithm, Pid = [T , 〈R1, . . . ,Rn〉, fa], ΠPid

contains:

algo(fa,Pid , E) ← decision of(Pid ,R1, V), V
= na.
algo(fa,Pid , E) ← decision of(Pid ,R1, na),decision of(Pid ,R2, E), E
= na.

...
algo(fa,Pid , E) ← decision of(Pid ,R1, na), . . . , decision of(Pid ,Rn−1, na),

decision of(P,Rn, E).

100 C.D.P. Kencana Ramli, H.R. Nielson, and F. Nielson

Only-One-Applicable Transformation. Let Πooa be a LP obtained by only-
one-applicable combining algorithm transformation (see (10) for the only-one-
applicable combining algorithm semantics). Πooa contains:

algo(ooa, P, idp) ← decision of(P,R, idp).
algo(ooa, P, idp) ← decision of(P,R1, id), decision of(P,R2, ip), R1
= R2.
algo(ooa, P, idp) ← decision of(P,R1, id), decision of(P,R2, p),R1
= R2.
algo(ooa, P, idp) ← decision of(P,R1, d), decision of(P,R2, ip), R1
= R2.
algo(ooa, P, idp) ← decision of(P,R1, d), decision of(P,R2, p), R1
= R2.
algo(ooa, P, ip) ← not algo(ooa, P, idp), decision of(P,R, ip).
algo(ooa, P, ip) ← not algo(ooa, P, idp), decision of(P,R1, p),

decision of(P,R2, p), R1
= R2.
algo(ooa, P, id) ← not algo(ooa, P, idp), decision of(P,R, id).
algo(ooa, P, id) ← not algo(ooa, P, idp), decision of(P,R1, d),

decision of(P,R2, d), R1
= R2.
algo(ooa, P, p) ← not algo(ooa, P, idp),

not (ooa, P, ip), decision of(P,R, p).
algo(ooa, P, d) ← not algo(ooa, P, idp),not (ooa, P, id),not (ooa, P, ip),

decision of(P,R, d).
algo(ooa, P, na) ← not algo(ooa, P, idp),not (ooa, P, id),not (ooa, P, ip),

not decision of(P,R, d),not decision of(P,R, p).

4 Relation between XACML-ASP and XACML 3.0
Semantics

In this section we discuss the relationship between the ASP semantics and
XACML 3.0 semantics. First, we recall the semantics of logic programs based on
their answer sets. Then we show that the program obtained from transforming
XACML components into LPs (ΠXACML) merges with the query program (ΠQ)
has a unique answer set and its unique answer set corresponds to the semantics
of XACML 3.0.

4.1 ASP Semantics

The declarative semantics of a logic program is given by a model-theoretic se-
mantics of formulae in the underlying language. The formal definition of answer
set semantics can be found in much literature such as [3,6].

The answer set semantics of logic program Π assigns to Π a collection of
answer sets – interpretations of ground(Π). An interpretation I of ground(Π) is
an answer set forΠ if I is minimal (w.r.t. set inclusion) among the interpretations
satisfying the rules of

ΠI = {A← B1, . . . , Bm| A ← B1, . . . , Bm,not Bm+1, . . . ,not Bn ∈ Π and
I(not Bm+1, . . . ,not Bn) = true}

A logic program can have a single unique answer set, many or no answer set(s).
Therefore, we show that programs with a particular characteristic are guaranteed
to have a unique answer set.

XACML 3.0 in Answer Set Programming 101

Acyclic Programs. We say that a program is acyclic when there is no cycle
in the program.The acyclicity in the program is guaranteed by the existence of
a certain fixed assignment of natural numbers to atoms that is called a level
mapping.

A level mapping for a program Π is a function

l : BΠ → N

where N is the set of natural numbers and BΠ is the Herbrand base for Π .
We extend the definition of level mapping to a mapping from ground literals to
natural numbers by setting l(not A) = l(A).

Let Π be a logic program and l be a level mapping for Π . Π is acyclic
with respect to l if for every clause A ← B1, . . . , Bm,not Bm+1, . . . ,not Bn in
ground(Π) we find

l(A) > l(Bi) for all i with 1 ≤ i ≤ n

Π is acyclic if it is acyclic with respect to some degree of level mapping. Acyclic
programs are guaranteed to have a unique answer set [3].

4.2 XACML Semantics Based on ASP Semantics

We can see from Section 3 that all of the XACML 3.0 transformation programs
are acyclic. Thus, it is guaranteed that ΠXACML has a unique answer set.

Proposition 1. Let ΠXACML be a program obtained from XACML 3.0 element
transformations and let ΠQ be a program transformation of Request Q. Let M
be the answer set of ΠXACML ∪ΠQ. Then the following equation holds

�X�(Q) = V if and only if val(X,V) ∈ M .

where X is an XACML component.

Note: We can see that there is no cycle in all of the program transformations.
Thus, there is a guarantee that the answer set of ΠXACML ∪ ΠQ is unique. The
transformation of each component into a logic program is based on exactly the
definition of its XACML evaluation. The proof of this proposition can be seen
in the extended version in [10].

5 Analysis XACML Policies Using Answer Set
Programming

In this section we show how to use ASP for analysing access control security
properties through ΠXACML. In most cases, ASP solver can solve combinatorial
problems efficiently. There are several combinatorial problems in analysis access
control policies, e.g., gap-free property and conflict-free property [14,5]. In this

102 C.D.P. Kencana Ramli, H.R. Nielson, and F. Nielson

section we look at gap-free analysis since in XACML 3.0 conflicts never occur.5

We also present a mechanism for the verification of security properties against
a set of access control policies.

5.1 Query Generator

In order to analyse access control property, sometimes we need to analyse all
possible queries that might occur. We use cardinality constraint (see [15,16])
to generate all possible values restored in the database for each attribute. For
example, we have the following generator:

Pgenerator :
(1) 1{subject(X) : subject db(X)}1 ← �.
(2) 1{action(X) : action db(X)}1 ← �.
(3) 1{resource(X) : resource db(X)}1 ← �.
(4) 1{environment(X) : environment db(X)}1 ← �.

The first line of the encoding means that we only consider one and only one
subject attribute value obtained from the subject database. The rest of the
encoding means the same as the subject attribute.

5.2 Gap-Free Analysis

A set of policies is gap-free if there is no access request for which there is an
absence of decision. XACML defines that there is one PolicySet as the root of a
set of policies. Hence, we say that there is a gap whenever we can find a request
that makes the semantics of the PSroot is assigned to na. We force ASP solver
to find the gap by the following encoding.

Πgap :
gap ← val(PSroot , na).
⊥ ← not gap.

In order to make sure that a set of policies is gap-free we should generate all
possible requests and test whether at least one request is not captured by the set
of policies. Thus, the answer sets of program P = ΠXACML∪Πgenerator ∪Πgap are
witnesses that the set of policies encoded in ΠXACML is incomplete. When there
is no model that satisfies the program then we are sure that the set of policies
captures all of possible cases.

5.3 Property Analysis

The problem of verifying a security property Φ on XACML policies is not only
to show that the property Φ holds on ΠXACML but also that we want to see the

5 A conflict decision never occurs when we strictly use the standard combining al-
gorithms defined in XACML 3.0, since every combining algorithm always returns
one value.

XACML 3.0 in Answer Set Programming 103

witnesses whenever the property Φ does not hold in order to help the policy
developer refine the policies. Thus, we can see this problem as finding models for
ΠXACML ∪Πgenerator ∪Π¬Φ. The founded model is the witness that the XACML
policies cannot satisfy the property Φ.

Example 2. Suppose we have a security property:

Φ: An anonymous person cannot read any patient records.

Thus, the negation of property Φ is as follows

¬Φ: An anonymous person can read any patient records.

We define that anonymous persons are those who are neither patients, nor guard-
ians, nor doctors, nor nurses. We encode P¬Φ as follows

(1) anonymous ← not subject(patient),not subject(guardian),
not subject(doctor),not subject(nurse).

(2) ⊥ ← not anonymous.
(3) action(read) ← �.
(4) resource(patient record) ← �.
(5) ⊥ ← not val(PSroot, p).

We list all of the requirements (lines 1 – 4). We force the program to find an
anonymous person (line 2). Later we force that the returned decision should be
to permit (line 5). When the program ΠXACML∪Πgenerator ∪Π¬Φ returns models,
we conclude that the property Φ does not hold and the returned models are the
flaws in the policies. On the other hand, we conclude that the property Φ is
satisfied if no model is found.

6 Related Work

There are some approaches to defining AC policies in LPs, for instance, Barker et
al. use constraint logic program to define role-based access control in [4], while
Jajodia et al. adopt the FAM / CAM language [7] – a logical language that
uses a fixed set of predicates. However, their approaches are based on their own
access control policy language whereas our approach is to define a well-known
access control policy language, XACML.

Our approach is inspired by the work of Ahn et al. [1,2]. There are three main
differences between our approach and the work of Ahn et al.

First, while they consider XACML version 2.0 [8], we address the newer
version, XACML 3.0. The main difference between XACML 3.0 and XACML
2.0 is the treatment of indeterminate values. As a consequence, the combining
algorithms in XACML 3.0 are more complex than the ones in XACML 2.0.
XACML 2.0 only has a single indeterminate value while XACML 3.0 distin-
guishes between the following three types of indeterminate values:

i. Indeterminate permit (ip) – an indeterminate value arising from a policy
which could have been evaluated to permit but not deny;

104 C.D.P. Kencana Ramli, H.R. Nielson, and F. Nielson

ii. Indeterminate deny (id) – an indeterminate value arising from a policy which
could have been evaluated to deny but not permit;

iii. Indeterminate deny permit (idp) – an indeterminate value arising from a
policy which could have been evaluated as both deny and permit.

Second, Ahn et al. produce a monolithic logic program that can be used for
the analysis of XACML policies while we take a more modular approach by
first modelling an XACML Policy Decision Point as a logic program and then
using this encoding within a larger program for property analysis. While Ahn,
et al. only emphasize the “indeterminate” value in the combining algorithms, we
deal with the “indeterminate” value in all XACML components, i.e., in Match,
AnyOf, AllOf, Target, Condition, Rule, Policy and PolicySet components.

Finally, Ahn et al. translate the XACML specification directly into logic pro-
gramming, so the ambiguities in the natural language specification of XACML
are also reflected in their encodings. To avoid this, we base our encodings on our
formalisation of XACML from [9].

7 Conclusion and Future Work

We have modelled the XACML Policy Decision Point in a declarative way using
the ASP technique by transforming XACML 3.0 elements into logic programs.
Our transformation of XACML 3.0 elements is directly based on XACML 3.0 se-
mantics [11] and we have shown that the answer set of each program transforma-
tion is unique and that it agrees with the semantics of XACML 3.0. Moreover, we
can help policy developers analyse their access control policies such as checking
policies’ completeness and verifying policy properties by inspecting the answer
set of ΠXACML∪Πgenerator ∪Πconfiguration – the program obtained by transforming
XACML 3.0 elements into logic programs joined with a query generator program
and a configuration program.

For future work, we can extend our work to handle role-based access control
in XACML 3.0 [13] and to handle delegation in XACML 3.0 [12]. Also, we
can extend our work for checking reachability of policies. A policy is reachable
if we can find a request such that this policy is applicable. Thus, by removing
unreachable policies we will not change the behaviour of the whole set of policies.

References

1. Ahn, G.-J., Hu, H., Lee, J., Meng, Y.: Reasoning about XACML policy descriptions
in answer set programming (preliminary report). In: NMR 2010 (2010)

2. Ahn, G.-J., Hu, H., Lee, J., Meng, Y.: Representing and reasoning about web access
control policies. In: COMPSAC. IEEE Computer Society (2010)

3. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving.
Cambridge University Press (2003)

4. Barker, S., Stuckey, P.J.: Flexible access control policy specification with constraint
logic programming. TISSEC 6 (2003)

XACML 3.0 in Answer Set Programming 105

5. Bruns, G., Huth, M.: Access-control via Belnap logic: Effective and efficient com-
position and analysis. In: 21st IEEE Computer Security Foundations Symposium
(2008)

6. Gelfond, M.: Handbook of knowledge representation. In: Porter, B., van Harmelen,
F., Lifschitz, V. (eds.) Foundations of Artificial Intelligence, vol. 3, ch. Answer
Sets, pp. 285–316. Elsevier (2007)

7. Jajodia, S., Samarati, P., Subrahmanian, V.S., Bertino, E.: A unified framework
for enforcing multiple access control policies. In: Proceedings of ACM SIGMOD
International Conference on Management of Data (1997)

8. Moses, T.: eXtensible Access Control Markup Language (XACML) version 2.0.
Technical report, OASIS (August 2010), http://docs.oasis-open.org/
xacml/2.0/access control-xacml-2.0-core-spec-os.pdf

9. Kencana Ramli, C.D.P., Nielson, H.R., Nielson, F.: The logic of XACML. In: Ar-
bab, F., Ölveczky, P.C. (eds.) FACS 2011. LNCS, vol. 7253, pp. 205–222. Springer,
Heidelberg (2012)

10. Ramli, C.D.P.K., Nielson, H.R., Nielson, F.: XACML 3.0 in answer set program-
ming – extended version. Technical report, arXiv.org. (February 2013)

11. Rissanen, E.: eXtensible Access Control Markup Language (XACML) version 3.0
(committe specification 01). Technical report, OASIS (August 2010),
http://docs.oasis-open.org/xacml/3.0/

xacml-3.0-core-spec-cs-01-en.pdf

12. Rissanen, E.: XACML v3.0 administration and delegation profile version 1.0 (com-
mitte specification 01). Technical report, OASIS (August 2010),
http://docs.oasis-open.org/xacml/3.0/

xacml-3.0-administration-v1-spec-cs-01-en.pdf

13. Rissanen, E.: XACML v3.0 core and hierarchical role based access control (rbac)
profile version 1.0 (committe specification 01). Technical report, OASIS (August
2010), http://docs.oasis-open.org/xacml/3.0/
xacml-3.0-rbac-v1-spec-cs-01-en.pdf

14. Samarati, P., de Capitani di Vimercati, S.: Access control: Policies, models, and
mechanisms. In: Focardi, R., Gorrieri, R. (eds.) FOSAD 2000. LNCS, vol. 2171,
pp. 137–196. Springer, Heidelberg (2001)

15. Simons, P., Niemelá, I., Soininen, T.: Extending and implementing the stable model
semantics. Artificial Intelligence 138, 181–234 (2002)

16. Syrjänen, T.: Lparse 1.0 User’s Manual

http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-cs-01-en.pdf
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-cs-01-en.pdf
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-administration-v1-spec-cs-01-en.pdf
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-administration-v1-spec-cs-01-en.pdf
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-rbac-v1-spec-cs-01-en.pdf
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-rbac-v1-spec-cs-01-en.pdf

Types vs. PDGs in Information Flow Analysis

Heiko Mantel and Henning Sudbrock

Computer Science Department, TU Darmstadt, Germany
{mantel,sudbrock}@mais.informatik.tu-darmstadt.de

Abstract. Type-based and PDG-based information flow analysis tech-
niques are currently developed independently in a competing manner,
with different strengths regarding coverage of language features and se-
curity policies. In this article, we study the relationship between these
two approaches. One key insight is that a type-based information flow
analysis need not be less precise than a PDG-based analysis. For proving
this result we establish a formal connection between the two approaches
which can also be used to transfer concepts from one tradition of infor-
mation flow analysis to the other. The adoption of rely-guarantee-style
reasoning from security type systems, for instance, enabled us to develop
a PDG-based information flow analysis for multi-threaded programs.

Keywords: Information flow security, Security type system, Program
dependency graph.

1 Introduction

When giving a program access to confidential data one wants to be sure that the
program does not leak any secrets to untrusted sinks, like, e.g., to untrusted
servers on the Internet. Such confidentiality requirements can be characterized by
information flow properties. For verifying that a program satisfies an information
flow property, a variety of program analysis techniques can be employed.

The probably most popular approach to information flow analysis is the use of
security type systems. Starting with [24], type-based information flow analyses
were developed for programs with various language features comprising proce-
dures (e.g., [25]), concurrency (e.g., [23]), and objects (e.g., [16]). Security type
systems were proposed for certifying a variety of information flow properties,
including timing-sensitive and timing-insensitive properties (e.g., [22] and [2])
and properties supporting declassification (e.g., [14]).

Besides type systems, one can also employ other program analysis techniques
for certifying information flow security. For instance, it was proposed in [10] to
use program dependency graphs (PDGs) for information flow analysis. A PDG [4]
is a graph-based program representation that captures dependencies caused by
the data flow and the control flow of a program. PDG-based information flow
analyses recently received new attention, resulting in, e.g., a PDG-based infor-
mation flow analysis for object-oriented programs and a PDG-based information
flow analysis supporting declassification [8,7].

E. Albert (Ed.): LOPSTR 2012, LNCS 7844, pp. 106–121, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Types vs. PDGs in Information Flow Analysis 107

Type-based and PDG-based information flow analyses are currently developed
independently. The two sub-communities both see potential in their approach,
but the pros and cons of the two techniques have not been compared in detail. In
this article, we compare type-based and PDG-based information flow analyses
with respect to their precision. Outside the realm of information flow security
there already exist results that compare the precision of data-flow oriented and
type-based analyses, for instance, for safety properties [18,17]. Here, we clarify
the relation between type-based and PDG-based analyses in the context of in-
formation flow security. We investigate whether (a) one approach has superior
precision, (b) both have pros and cons, or (c) both are equally precise. To be
able to establish a precise relation, we consider two prominent analyses that are
both fully formalized for a simple while language, namely the type-based anal-
ysis from Hunt and Sands [11] and the PDG-based analysis from Wasserrab,
Lohner, and Snelting [27].

Our main result is that the two analyses have exactly the same precision. This
result was surprising for us, because one motivation for using PDGs in an in-
formation flow analysis was their precision [8]. We derive our main result based
on a formal connection between the two kinds of security analyses, which we
introduce in this article. It turned out that this connection is also interesting in
its own right, because it can be used for transferring ideas from type-based to
PDG-based information flow analyses and vice versa. In this article, we illus-
trate this possibility in one direction, showing how to derive a novel PDG-based
information flow analysis that is suitable for multi-threaded programs by ex-
ploiting our recently proposed solution for rely-guarantee-style reasoning in a
type-based security analysis [15]. The resulting analysis is compositional and,
thereby, enables a modular security analysis. This is an improvement over the
analysis from [5], the only provably sound PDG-based information flow analysis
for multi-threaded programs developed so far. Moreover, in contrast to [5] our
novel analysis supports programs with nondeterministic public output.

In summary, the main contributions of this article are
1. the formal comparison of the precision of a type-based and a PDG-based
information flow analysis, showing that they have the same precision;

2. the demonstration that our formal connection between the type-based and the
PDG-based analysis can be used to transfer concepts from one approach to the
other (by transferring rely-guarantee-style reasoning as mentioned above); and

3. a provably sound PDG-based information flow analysis for multi-threaded pro-
grams that is compositional with respect to the parallel composition of threads
and compatible with nondeterministic public output.

We believe that the connection between type- and PDG-based information flow
analysis can serve as a basis for further mutual improvements of the analysis tech-
niques. Such a transfer is desirable because there are other relevant aspects than
an analysis’ precision like, e.g., efficiency and availability of tools. Moreover, we
hope that the connection between the two approaches to information flow analy-
sis fosters mutual understanding and interaction between the two communities.

108 H. Mantel and H. Sudbrock

2 Type-Based Information Flow Analyses

If one grants a program access to secret information, one wants to be sure that the
program does not leak secrets to untrusted sinks like, e.g., untrusted servers in a
network. A secure program should not only refrain from directly copying secrets
to untrusted sinks (as, e.g., with an assignment “sink :=secret”), but also should
not reveal secrets indirectly (as, e.g., by executing “if (secret > 0) then sink :=1”).

It is popular to formalize information flow security by the property that val-
ues written to public sinks do not depend on secrets, the probably best known
such property being Noninterference [6,13]. In the following, we define informa-
tion flow security for programs by such a property, and we present a security
type system for certifying programs with respect to this property.

2.1 Execution Model and Security Property

We consider a set of commands Com that is defined by the grammar

c ::= skip | x :=e | c; c | if (e) then c else c fi | while (e) do c od,

where x ∈Var is a variable and e ∈Exp is an expression. Expressions are terms
built from variables and from operators that we do not specify further. The set of
free variables in expression e ∈Exp is denoted with fv (e). Amemory is a function
mem : Var→Val that models a snapshot of a program’s memory, where Val is
a set of values and mem(x) is the value of x . Judgments of the form 〈c,mem〉 ⇓
mem ′ model program execution, with the interpretation that command c, if
executed with initial memory mem , terminates with memory mem ′. The rules
for deriving the judgments are as usual for big-step semantics.1

To define the security property, we consider a security lattice D = {l , h} with
two security domains where l � h and h �� l . This models the requirement that
no information flows from domain h to domain l . This is the simplest policy
capturing information flow security.2 A domain assignment is a function dom :
Var → D that associates a security domain with each program variable. We
say that variables in the set L = {x ∈ Var | dom(x) = l} are public or low,
and that variables in the set H = {x ∈ Var | dom(x) = h} are secret or high.
The resulting security requirement is that the final values of low variables do not
depend on the initial values of high variables. This requirement captures security
with respect to an attacker who sees the initial and final values of low variables,
but cannot access values of high variables (i.e., access control works correctly).

Definition 1. Two memories mem and mem ′ are low-equal (written mem =L

mem ′) if and only if mem(x) = mem ′(x) for all x ∈ L.
A command c is noninterferent if whenever mem1 =L mem2 and 〈c,mem1〉 ⇓

mem ′
1 and 〈c,mem2〉 ⇓ mem ′

2 are derivable then mem ′
1 =L mem ′

2.

1 The rules and detailed proofs of theorems in this article are available on the authors’
website (http://www.mais.informatik.tu-darmstadt.de/Publications).

2 The results in this article can be lifted to other security lattices.

http://www.mais.informatik.tu-darmstadt.de/Publications

Types vs. PDGs in Information Flow Analysis 109

[exp]
Γ � e :

⊔
x∈fv(e) Γ (x)

[if]
Γ � e : t pc � t � Γ {c1} Γ ′

1 pc � t � Γ {c2} Γ ′
2

pc � Γ {if (e) then c1 else c2 fi} Γ ′
1 � Γ ′

2

[assign] Γ � e : t
pc � Γ {x :=e} Γ [x �→ pc � t]

[seq]
pc � Γ {c1} Γ ′ pc � Γ ′ {c2} Γ ′′

pc � Γ {c1; c2} Γ ′′

[skip]
pc � Γ {skip} Γ

[while]

Γ ′
i � e : ti pc � ti � Γ ′

i {c} Γ ′′
i 0 ≤ i ≤ k

Γ ′
0 = Γ Γ ′

i+1 = Γ ′′
i � Γ Γ ′

k+1 = Γ ′
k

pc � Γ {while (e) do c od} Γ ′
k

Fig. 1. Type system from [11]

Example 1. Consider command c to the right and
assume that dom(x) = dom(y) = l and dom(z)= h.
Consider furthermore low-equal memories mem1

andmem2 with mem1(x) = mem2(x) = mem1(y) =
mem2(y) = 1, mem1(z) = −1, and mem2(z) = 1.

1. if (z < 0) then
2. while (y > 0) do
3. y:=y + z od else
4. skip fi;
5. x :=y

Then 〈c,mem1〉 ⇓ mem ′
1 and 〈c,mem2〉 ⇓ mem ′

2 are derivable with mem ′
1(x) =

0 and mem ′
2(x) = 1. Since mem ′

1 �=L mem ′
2 command c is not noninterferent.

2.2 The Type-Based Information Flow Analysis by Hunt and Sands

A type-based analysis uses a collection of typing rules to inductively define a
subset of programs. The intention is that every program in the subset satis-
fies an information flow property like, e.g., the one from Definition 1. Starting
with [24], many type-based information flow analyses were developed (see [21]
for an overview). Here, we recall the type system from Hunt and Sands [11]
which is, unlike many other type-based security analyses, flow-sensitive (i.e., it
takes the order of program statements into account to improve precision).

In [11], typing judgments have the form pc Γ {c}Γ ′, where c is a command,
Γ, Γ ′ : Var → D are environments, and pc is a security domain. The interpre-
tation of the judgment is as follows: For each variable y ∈ Var , Γ ′(y) is a valid
upper bound on the security level of the value of y after command c has been
run if (a) for each x ∈ Var , Γ (x) is an upper bound on the security level of the
value of x before c has been run and (b) pc is an upper bound on the security
level of all information on which it might depend whether c is run.

The typing rules from [11] are displayed in Figure 1, where ! denotes the least
upper bound operator on D, which is extended to environments by (Γ!Γ ′)(x) :=
Γ (x)!Γ ′(x). The typing rules ensure that for any given c, Γ , and pc there is an
environment Γ ′ such that pc Γ {c}Γ ′ is derivable. Moreover, this environment
is uniquely determined by c, Γ , and pc [11, Theorem 4.1].

Definition 2. Let c ∈ Com, Γ (x) = dom(x) for all x ∈ Var, and Γ ′ be the
unique environment such that l Γ {c}Γ ′ is derivable. Command c is accepted
by the type-based analysis if Γ ′(x) � dom(x) for all x ∈ Var.

110 H. Mantel and H. Sudbrock

Example 2. Consider command c and domain assignment dom from Example 1.
Let Γ (x) = dom(x) for all x ∈ Var . Then the judgment l Γ {c}Γ ′ is derivable
if and only if Γ ′(x)=Γ ′(y)=Γ ′(z)= h and Γ ′(x ′) = Γ (x ′) for all other x ′ ∈ Var .
Since Γ ′(x) �� dom(x) command c is not accepted by the type-based analysis.

Theorem 1. Commands accepted by the type-based analysis are noninterferent.

The theorem follows from Theorem 3.3 in [11].

3 PDG-Based Information Flow Analyses

PDG-based information flow analyses, firstly proposed in [10], exploit that the
absence of certain paths in a program dependency graph (PDG) [4] is a sufficient
condition for the information flow security of a program. In this section, we
recall the PDG-based analysis from [27] which is sound with respect to the
property from Definition 1. In order to make the article self-contained, we recall
the construction of control flow graphs (CFGs) and PDGs in Sections 3.1 and 3.2.

3.1 Control Flow Graphs

Definition 3. A directed graph is a pair (N , E) where N is a set of nodes and
E ⊆ N×N is a set of edges. A path p from node n1 to node nk is a non-empty se-
quence of nodes 〈n1, . . . ,nk〉 ∈ N+ where (ni, ni+1) ∈ E for all i ∈ {1, . . . , k−1}.
We call a path trivial if it is of the form 〈n〉 (i.e., a sequence of length 1), and
non-trivial otherwise. Moreover, we say that node n is on the path 〈n1, . . . ,nk〉
if n = ni for some i ∈ {1, . . . , k}.

Definition 4. A control flow graph with def and use sets is a tuple
(N, E,def,use) where (N , E) is a directed graph, N contains two distinguished
nodes start and stop, and def , use : N → P(Var) are functions returning the
def and use set, respectively, for a node. (The set P(Var) denotes the powerset
of the set Var.)

Nodes start and stop represent program start and termination, respectively, and
the remaining nodes represent program statements and control conditions. An
edge (n, n ′)∈E models that n ′ might immediately follow n in a program run.
Finally, the sets def (n) and use(n) contain all variables that are defined and
used, respectively, at a node n. In the remainder of this article we simply write
“CFG” instead of “CFG with def and use sets.”

We recall the construction of the CFG for a command following [26], where
statements and control conditions are represented by numbered nodes.

Definition 5. We denote with |c| the number of statements and control condi-
tions of c ∈ Com, and define |c| recursively by |skip|=1, |x :=e|=1, |c1; c2| =
|c1|+ |c2|, |if (e) then c1 else c2 fi| = 1 + |c1|+ |c2|, and |while (e) do c od| = 1 + |c|.

Types vs. PDGs in Information Flow Analysis 111

Definition 6. For c ∈ Com and 1 ≤ i ≤ |c| we denote with c[i] the ith statement
or control condition in c, which we define recursively as follows: If c = skip or
c = x :=e then c[1] = c. If c = c1; c2 then c[i] = c1[i] for 1 ≤ i ≤ |c1| and
c[i] = c2[i − |c1|] for |c1| < i ≤ |c|. If c= if (e) then c1 else c2 fi then c[1] = e,
c[i] = c1[i−1] for 1 < i ≤ 1 + |c1|, and c[i] = c2[i−1− |c1|] for 1 + |c1| < i ≤ |c|.
If c = while (e) do c1 od then c[1] = e and c[i] = c1[i−1] for 1 < i ≤ |c|.

Note that the ith statement or control condition, i.e., c[i], is either an expression,
an assignment, or a skip-statement.

Definition 7. For c ∈ Com, Nc = {1, . . . , |c|} ∪ {start , stop}.

We define an operator � : (N∪{start , stop})×N→ Z∪{start , stop} by n� z =
n − z if n ∈ N and n � z = n if n ∈ {start , stop}.

Definition 8. For c ∈ Com the set Ec ⊆ Nc ×Nc is defined recursively by:
– Eskip = Ex :=e = {(start , 1), (1, stop), (start , stop)},
– Eif (e) then c1 else c2 fi = {(start , 1), (start , stop)} ∪
{(1, n ′) | (start , n ′� 1) ∈ Ec1 ∧ n ′ �= stop} ∪
{(1, n ′) | (start , n ′�(1+ |c1|)) ∈ Ec2 ∧ n ′ �= stop} ∪
{(n, n ′) | (n � 1, n ′� 1) ∈ Ec1 ∧ n �= start} ∪
{(n, n ′) | (n �(1+ |c1|), n ′�(1+ |c1|))∈Ec2 ∧ n �= start},

– Ec1;c2 = {(start , stop)} ∪
{(n, n ′) | (n, n ′) ∈ Ec1 ∧ n ′ �= stop} ∪
{(n, n ′) | (n � |c1|, n ′� |c1|) ∈ Ec2 ∧ n �= start} ∪
{(n, n ′) | (n, stop)∈Ec1 ∧ (start , n ′� |c1|)∈Ec2 ∧ n �= start ∧ n ′ �= stop}, and

– Ewhile (e) do c od = {(start , 1), (start , stop)} ∪
{(1, n ′) | (start , n ′� 1) ∈ Ec} ∪
{(n ′, 1) | (n ′� 1, stop) ∈ Ec} ∪
{(n, n ′) | (n � 1, n ′� 1)∈Ec ∧ n �= start ∧ n ′ �= stop}.

Definition 9. For c ∈ Com we define defc : Nc →P(Var) by defc(n) = {x} if
n ∈ {1, . . . , |c|} and c[n] = x :=e, and by defc(n) = {} otherwise. Moreover, we
define usec : Nc →P(Var) by usec(n)= fv (e) if n ∈ {1, . . . , |c|} and c[n] = x :=e
or c[n] = e, and by usec(n) = {} otherwise.

Definition 10. The control flow graph of c is CFGc = (Nc , Ec , defc, usec).

Note that, by definition, an edge from start to stop is contained in Ec . This edge
models the possibility that c is not executed.

We now augment CFGs with def and use sets by two nodes in and out to
capture the program’s interaction with its environment. Two sets of variables
I, O ⊆ Var , respectively, specify which variables may be initialized by the envi-
ronment before program execution and which variables may be read by the envi-
ronment after program execution. This results in the following variant of CFGs:

Definition 11. Let CFG = (N , E, def , use) and I, O ⊆ Var. Then CFGI,O =
(N ′, E′, def ′, use ′) where N ′ = N ∪ {in, out}, E′ = {(start , stop), (start , in),

112 H. Mantel and H. Sudbrock

in
{z}
{} out

{}
{x,y}

start
{}
{} stop

{}
{}

1
{}
{z}

2
{}
{y}

3
{y}
{y,z}

4
{}
{}

5
{x}
{y}

start

1 5

2 4

3

in out

Fig. 2. The CFG and the PDG for the command from Example 1

(out , stop)}∪{(in , n ′) | (start , n ′)∈E∧n ′ �= stop}∪{(n, out) | (n, stop)∈E∧n �=
start} ∪ {(n, n ′)∈E | n �∈ {start , stop} ∧ n ′ �∈ {start , stop}}, def ′(in) = I,
use ′(in) = def ′(out) = {}, use ′(out) = O, and def ′(n) = def (n) and use ′(n) =
use(n) for n ∈ N .

Definitions 10 and 11 both augment the usual notion of control flow graphs (see
Definition 4). In the remainder of this article, we use the abbreviation CFG for
arbitrary control flow graphs (including those that satisfy Definition 10 or 11).

We use a graphical representation for displaying CFGs where we depict nodes
with ellipses and edges with solid arrows. For each node n we label the corre-
sponding ellipse with nX

Y where X = def (n) and Y = use(n).

Example 3. Command c in Example 1 contains three statements and two control
conditions (i.e., |c|=5). Hence, Nc = {1, . . . , 5, start , stop}. Nodes 1–5 represent
the statements and control conditions in Lines 1–5 of the program, respectively.
The control flow graph CFG{z},{x ,y}

c is displayed at the left hand side of Figure 2.

3.2 The PDG-Based Information Flow Analysis by Wasserrab et al

PDGs are directed graphs that represent dependencies in imperative pro-
grams [4]. PDGs were extended to programs with various languages features like
procedures (e.g., [9]), concurrency (e.g., [3]), and objects (e.g., [8]). We recall the
construction of PDGs from CFGs for the language from Section 2 based on the
following notions of data dependency and control dependency.

Definition 12. Let (N , E, def , use) be a CFG and n, n ′ ∈N . If x ∈ def (n) we
say that the definition of x at n reaches n ′ if there is a non-trivial path p from n
to n ′ such that x �∈ def (n ′′) for every node n ′′ on p with n ′′ �=n and n ′′ �=n ′.

Node n ′ is data dependent on node n if there exists x ∈ Var such that x ∈
def (n), x ∈ use(n ′), and the definition of x at n reaches n ′.

Intuitively, a node n ′ is data dependent on a node n if n ′ uses a variable that
has not been overwritten since being defined at n.

Example 4. Consider the CFG on the left hand side of Figure 2. The definition
of y at Node 3 reaches Node 5 because 〈3, 2, 5〉 is a non-trivial path and y �∈
def (2). Hence, Node 5 is data dependent on Node 3 because y ∈ def (3), y �∈
def (2), and y ∈ use(5). Note that Node 2 is also data dependent on Node 3, and
that Node 3 is data dependent on itself.

Types vs. PDGs in Information Flow Analysis 113

Definition 13. Let (N , E, def , use) be a CFG. Node n ′ postdominates node n
if n �= n ′ and every path from n to stop contains n ′.

Node n ′ is control dependent on node n if there is a non-trivial path p from n
to n ′ such that n ′ postdominates all nodes n ′′ �∈ {n, n ′} on p and n ′ does not
postdominate n.

Intuitively, a node n ′ is control dependent on a node n if n represents the inner-
most control condition that guards the execution of n ′.

Example 5. Consider again the CFG in Figure 2. Node 5 postdominates Node 1
because Node 5 is on all paths from Node 1 to Node stop. Hence, Node 5 is not
control dependent on Node 1. Nodes 2, 3, and 4 do not postdominate Node 1.
Node 3 is not control dependent on Node 1 because Node 3 does not postdom-
inate Node 2 and all paths from Node 1 to Node 3 contain Node 2. However,
Node 3 is control dependent on Node 2. Moreover, Nodes 2 and 4 are control
dependent on Node 1 because 〈1, 2〉 and 〈1, 4〉 are non-trivial paths in the CFG.

Definition 14. Let CFG =(N , E, def , use) be a control flow graph. The directed
graph (N ′, E′) is the PDG of CFG (denoted with PDG(CFG)) if N ′ = N and
(n, n ′) ∈ E′ if and only if n ′ is data dependent or control dependent on n in CFG.

We use the usual graphical representation for displaying PDGs, depicting Node n
with an ellipse labeled with n, edges that reflect control dependency with solid
arrows, and edges that reflect data dependency with dashed arrows. Moreover,
we do not display nodes that have neither in- nor outgoing edges.

Example 6. The PDG of the CFG at the left of Figure 2 is displayed right of the
CFG. Node stop is not displayed because it has neither in- nor outgoing edges.

The PDG-based information flow analysis from Wasserrab et al [27] for a com-
mand c is based on the PDG of CFGH,L

c (cf. Definition 11).

Definition 15. The command c ∈ Com is accepted by the PDG-based analysis
if and only if there is no path from in to out in PDG(CFGH ,L

c).

Example 7. For command c and domain assignment dom from Example 1 the
graph PDG(CFGH ,L

c) is displayed at the right of Figure 2. It contains a path
from Node in to Node out , (e.g., the path 〈in , 3, out〉). In consequence, c is not
accepted by the PDG-based analysis.

Theorem 2. Commands accepted by the PDG-based analysis are noninterferent.

The theorem follows from [27, Theorem 8].

4 Comparing the Type- and the PDG-Based Analysis

While both the type-based analysis from Section 2 and the PDG-based analy-
sis from Section 3 are sound, both analyses are also incomplete. I.e., for both

114 H. Mantel and H. Sudbrock

analyses there are programs that are noninterferent (according to Definition 1),
but that are not accepted by the analysis. A complete analysis is impossible,
because the noninterference property is undecidable (this can be proved in a
standard way by showing that the decidability of the property would imply the
decidability of the halting problem for the language under consideration [21]).
This raises the question if one of the two analyses is more precise than the other.
In this section, we answer this question. As an intermediate step, we establish a
relation between the two analyses:

Lemma 1. Let c ∈ Com, y ∈ Var, and Γ be an environment. Let Γ ′ be the
unique environment such that l Γ {c} Γ ′ is derivable in the type system from
Section 2. Moreover, let X be the set of all x ∈ Var such that there exists a path
from in to out in PDG(CFG{x},{y}

c). Then Γ ′(y) =
⊔

x∈X Γ (x) holds.

Proof sketch. We argue that the following more general statement holds: If the
judgment pc Γ {c}Γ ′ is derivable, then the equality Γ ′(y) =

⊔
x∈X Γ (x) holds

if there is no path from start to out in PDG(CFG{},{y}
c) that contains a node

n �∈ {start , out}, and the equality Γ ′(y) = pc !
(⊔

x∈X Γ (x)
)
holds if there is

such a path. Intuitively, the absence of a path from start to out with more than
two nodes guarantees that y is not changed during any execution of c, while y
might be changed during an execution of c if a path from start to out with
more than two nodes exists. Hence, the security domain pc (determined by the
type-based analysis as an upper bound on the security level of all information on
which it depends whether c is executed) is included in the formula for Γ ′(y) only
if such a path exists in the PDG. Formally, the more general statement is proven
by induction on the structure of the command c. A detailed proof is available
on the authors’ website. Lemma 1 follows from this more general statement by
instantiating pc with the security level l . "!

Lemma 1 is the key to establishing the following theorem that relates the pre-
cision of the type-based analysis to the precision of the PDG-based analysis,
showing that the analyses have exactly the same precision.

Theorem 3. A command c ∈ Com is accepted by the type-based analysis if and
only if it is accepted by the PDG-based analysis.

Proof. Our proof is by contraposition. Let Γ (x) = dom(x) for all x ∈ Var , and
let Γ ′ be the unique environment such that l Γ {c} Γ ′ is derivable in the
type system from Section 2. If c is not accepted by the type-based analysis then
dom(y)= l and Γ ′(y)= h for some y ∈Var . Hence, by Lemma 1 there exists

x ∈Var with dom(x)= h and a path 〈in, . . . , out〉 in PDG(CFG{x},{y}
c). Hence,

there is a path 〈in , . . . , out〉 in PDG(CFGH ,L
c). Thus, c is not accepted by

the PDG-based analysis. If c is not accepted by the PDG-based analysis then
there is a path 〈in, . . . , out〉 in PDG(CFGH ,L

c). But then there exist variables
x , y with dom(x)= h and dom(y)= l such that there is a path 〈in , . . . , out〉 in
PDG(CFG{x},{y}

c). Hence, by Lemma 1, Γ ′(y) = h. Since dom(y) = l it follows
that Γ ′(y) �� dom(y). Thus, c is not accepted by the type-based analysis. "!

Types vs. PDGs in Information Flow Analysis 115

Theorem 3 shows that the information flow analyses from [11] and [27] have
exactly the same precision. More generally this means that, despite their con-
ceptual simplicity, type-based information flow analyses need not be less precise
than PDG-based information flow analyses.

Given that both analyses have equal precision, the choice of an information
flow analysis should be motivated by other aspects. For instance, if a program’s
environment is subject to modifications, one might desire a compositional anal-
ysis, and, hence, choose a type-based analysis. On the other hand, if a program
is not accepted by the analyses one could use the PDG-based analysis to localize
the source of potential information leakage by inspecting the path in the PDG
that leads to the rejection of the program.

Beyond clarifying the connection between type-based and PDG-based infor-
mation flow analyses, Theorem 3 also provides a bridge that can be used to
transfer concepts from the one tradition of information flow analysis to the
other. In the following section, we exploit this bridge to transfer the concept
of rely-guarantee-style reasoning for the analysis of multi-threaded programs
from type-based to PDG-based information flow analysis.

5 Information Flow Analysis of Multi-threaded Programs

Multi-threaded programs may exhibit subtle information leaks that do not occur
in single-threaded programs. Such a leak is illustrated by the following example.

Example 8. Consider two threads with shared memory that execute commands
c1 = if (x) then skip; skip else skip fi; y:=True and c2 = skip; skip; y:=False, respec-
tively, and that are run under a Round-Robin scheduler that selects them al-
ternately starting with the first thread and rescheduling after each execution
step. If initially x =True then c1 assigns True to y after c2 assigns False to y.
Otherwise, c1 assigns True to y prior to the assignment to y in c2. I.e., the initial
value of x is copied into y. Such leaks are also known as internal timing leaks.

Many type-based analyses detect such leaks (for instance, [23,22,28,15]). Regard-
ing PDG-based analyses, this is only the case for a recently proposed analysis [5].
However, this analysis has serious limitations: It forbids publicly observable
nondeterminism, and it is not compositional (cf. Section 6 for a more detailed
comparison). This motivated us to choose this domain for illustrating how the
connection between type-based and PDG-based information flow analysis (from
Section 4) can be exploited to transfer ideas from the one analysis style to
the other. More concretely, we show how rely-guarantee-style reasoning can be
transferred from a type-based to a PDG-based information flow analysis. The
outcome is a sound PDG-based information flow analysis for multi-threaded pro-
grams that is superior to the one in [5] in the sense that it supports publicly
observable nondeterminism.

116 H. Mantel and H. Sudbrock

5.1 A Type-Based Analysis for Multi-threaded Programs

We consider multi-threaded programs executing a fixed number of threads that
interact via shared memory, i.e., configurations have the form 〈(c1, . . . , ck),mem〉
where the commands ci model the threads and mem models the shared memory.

In the following, we recall the type-based analysis from [15] that exploits
rely-guarantee-style reasoning, where typing rules for single threads exploit as-
sumptions about when and how variables might be accessed by other threads.
Assumptions are modeled bymodes in the setMod={asm-noread , asm-nowrite},
where asm-noread and asm-nowrite are interpreted as the assumption that no
other thread reads and writes a given variable, respectively.3 The language for
commands from Section 2 is extended as follows with a notation for specifying
when one starts and stops making assumptions for a thread, respectively:

ann ::= acq(m, x)
∣∣ rel(m, x) c ::= . . .

∣∣ //ann// c,

where m ∈ Mod and x ∈ Var . The annotations //acq(m, x)// and //rel(m, x)//,
respectively, indicate that an assumption for x is acquired or released.

Typing judgments for commands have the form Λ{c}Λ′ where Λ,Λ′ : Var ⇀
D are partial environments. Partial environments provide an upper bound on the
security level only for low variables for which a no-read and for high variables
for which a no-write assumption is made, respectively. For other variables, the
typing rules ensure that dom(x) is an upper bound on the security level of the
value of x . We write Λ〈x 〉 for the resulting upper bound (defined by Λ〈x 〉 = Λ(x)
if Λ is defined for x and by Λ〈x 〉 = dom(x) otherwise). This reflects that (a) low
variables that might be read by other threads must not store secrets because the
secrets might be leaked in other threads (i.e., the upper bound for low variables
without no-read assumption must be l), and that (b) other threads might write
secrets into high variables without no-write assumption (and, hence, the upper
bound for high variables without no-write assumption cannot be l).

The security type system contains two typing rules for assignments:

Λ(x) is defined
Λ′ = Λ[x #→ (

⊔
y∈fv(e)Λ〈y〉)]

 Λ {x :=e} Λ′

(
⊔

y∈fv(e)Λ〈y〉) � dom(x)

Λ(x) is not defined Λ′ = Λ

 Λ {x :=e} Λ′

The left typing rule is like in the type system from Section 2. The rule applies
if Λ is defined for the assigned variable. The right typing rule reflects that if Λ
is not defined for the assigned variable x then dom(x) must remain an upper
bound on the security level of the value of x , and, hence, only expressions that
do not contain secret information may be assigned to x if dom(x) = l .

A slightly simplified4 variant of the typing rule for conditionals is as follows:

 Λ {c1} Λ′ Λ {c2} Λ′ l =
⊔

x∈fv(e) Λ〈x 〉
 Λ {if (e) then c1 else c2 fi} Λ′

3 We omit the modes guar -noread and guar -nowrite representing guarantees from [15],
because they are irrelevant for the security type system.

4 The original rule from [15] permits that guards depend on secrets (i.e., h =⊔
x∈fv(e) Λ〈x〉) if the branches are in a certain sense indistinguishable.

Types vs. PDGs in Information Flow Analysis 117

In contrast to the corresponding typing rule in Section 2, the guard is required to
be low. This ensures that programs with leaks like in Example 8 are not typable.

For the complete set of typing rules we refer to [15].

Remark 1. In contrast to the type system in Section 2 the security level pc is
not considered here, because the typing rules ensure that control flow does not
depend on secrets (permitting some exceptions as indicated in Footnote 4).

Definition 16. A multi-threaded program consisting of commands c1, . . . , ck is
accepted by the type-based analysis for multi-threaded programs if the judgment
 Λ0 {ci} Λ′

i is derivable for each i ∈ {1, . . . , k} for some Λ′
i (where Λ0 is

undefined for all x ∈ Var) and the assumptions made are valid for the program.

Validity of assumptions is formalized in [15] by sound usage of modes, a no-
tion capturing that the assumptions made for single threads are satisfied in
any execution of the multi-threaded program. Theorem 6 in [15] ensures that
the type-based analysis for multi-threaded programs is sound with respect to
SIFUM-security, an information flow security property for multi-threaded pro-
grams. We refer the interested reader to [15] for the definitions of sound usage
of modes and of SIFUM-security.

5.2 A Novel PDG-Based Analysis for Multi-threaded Programs

We define a PDG-based analysis for multi-threaded programs by transferring
rely-guarantee-style reasoning from the type-based analysis (Definition 16) to
PDGs. To this end, we augment the set of edges of the program dependency graph
PDG(CFGH,L

c), obtaining a novel program dependency graph PDG ||(CFGH,L
c).

Using this graph, the resulting analysis for multi-threaded programs is as follows:

Definition 17. A multi-threaded program consisting of commands c1, . . . , ck
is accepted by the PDG-based analysis for multi-threaded programs if there
is no path from in to out in PDG ||(CFGH,L

ci) for each i ∈ {1, . . . , k} and the
assumptions made are valid for the program.

It follows from Definition 17 that the analysis is compositional with respect to
the parallel composition of threads.

We now define the graph PDG ||(CFGH,L
c), where the additional edges in

PDG ||(CFGH,L
c) model dependencies for nodes in and out that result from the

concurrent execution of threads that respect the assumptions made for c.

Definition 18. If command c is not of the form //ann//c′ we say that c does
not acquire m ∈ Mod for x ∈ Var and that c does not release m ∈ Mod for
x ∈ Var. Moreover, if an arbitrary command c does not release m for x then
the command //acq(x ,m)//c acquires m for x , and if c does not acquire m for x
then the command //rel(x ,m)//c releases m for x .

For c ∈ Com we define the function modesc : (Nc × Mod) → P(Var) by
x ∈modesc(n,m) if and only if for all paths p =〈start , . . . ,n〉 in CFGc there is
a node n ′ on p such that c[n ′] acquires m for x , and if n ′′ follows n ′ on p then
c[n ′′] does not release m for x .

118 H. Mantel and H. Sudbrock

Definition 19. Let c ∈Com. Then PDG ||(CFGH,L
c) = (N , E∪E′) for (N , E) =

PDG(CFGH,L
c) and (n, n ′)∈E′ if and only if one of the following holds:

1. n = in and there exist a variable x ∈ H ∩ usec(n
′), a node n ′′ ∈ N with

x �∈ modesc(n
′′, asm-nowrite), and a path p from n ′′ to n ′ in CFGH,L

c with
x �∈ defc(n

′′′) for every node n ′′′ on p with n ′′′ �= n ′′ and n ′′′ �= n ′,
2. n ′ = out and there exist a variable x ∈ L ∩ defc(n), a node n ′′ ∈ N with
x �∈ modesc(n

′′, asm-noread), and a path p from n to n ′′ in CFGH,L
c such

that x �∈ defc(n
′′′) for every node n ′′′ on p with n ′′′ �= n and n ′′′ �= n ′′, or

3. n ∈ {1, . . . , |c|}, c[n] ∈ Exp, and n ′ = out.

The edges defined in Items 1 and 2 are derived from the typing rules for assign-
ments: The edge (in , n) in Item 1, where n uses a high variable whose value might
have been written by another thread, captures that the high variable might con-
tain secrets when being used at n. The edge (n, out) in Item 2, where n defines
a low variable whose value might be eventually read by another thread, ensures
that the command is rejected if the definition at n might depend on secret input
(because then there is a path from in to n). The edges defined in Item 3 are
derived from the typing rule for conditionals: If the guard represented by Node
n depends on secrets (i.e., there is a path from in to n) then the command is
rejected because together with the edge (n, out) there is a path from in to out .

Example 9. Consider the following command c where the security domains of
variables are dom(x)= l and dom(y)= h:

//acq(asm-noread , x)//; x :=y; x :=0; //rel(asm-noread , x)//

Then PDG ||(CFGH,L
c) = PDG(CFGH,L

c), and c is accepted by the PDG-based
analysis for multi-threaded programs. Let furthermore c′ = x :=y; x :=0. Then
PDG ||(CFGH,L

c′) �= PDG(CFGH,L
c), because the graph PDG ||(CFGH,L

c′) con-
tains an edge from the node representing x :=y to Node out (due to Item 2 in

Definition 19). Hence, c′ is not accepted, because PDG ||(CFGH,L
c′) contains a

path from Node in to Node out via the node representing the assignment x :=y.
Not accepting c′ is crucial for soundness because another thread executing

x ′:=x could copy the intermediate secret value of x into a public variable x ′.

Theorem 4. If a multi-threaded program is accepted by the PDG-based analy-
sis for multi-threaded programs then the program is accepted by the type-based
analysis for multi-threaded programs.

The proof is by contradiction; it exploits the connection between PDG-based
and type-based analysis stated in Lemma 1. A detailed proof is available on the
authors’ website.5

Soundness of the PDG-based analysis follows directly from Theorem 4 and
the soundness of the type-based analysis (see [15, Theorem 6]).

5 The reverse direction of Theorem 4 does not hold, because the type-based analysis
for multi-threaded programs classifies some programs with secret control conditions
as secure that are not classified as secure by our PDG-based analysis.

Types vs. PDGs in Information Flow Analysis 119

6 Related Work

We focus on related work covering flow-sensitive type-based analysis, PDG-based
analysis for concurrent programs, and connections between analysis techniques.
For an overview on language-based information flow security we refer to [21].

Flow-sensitivity of type-based analyses. In contrast to PDG-based information
flow analyses, many type-based information flow analyses are not flow-sensitive.
The first flow-sensitive type-based information flow analysis is due to Hunt and
Sands [11]. Based on the idea of flow-sensitive security types from [11], Man-
tel, Sands, and Sudbrock developed the first sound flow-sensitive security type
system for concurrent programs [15].

PDG-based analyses for concurrent programs. Hammer [7] presents a PDG-based
analysis for concurrent Java programs, where edges between the PDGs of the
individual threads are added following the extension of PDGs to concurrent
programs from [12]. However, there is no soundness result. In fact, since the
construction of PDGs from [12] does not capture dependencies between nodes in
the PDG that result from internal timing (cf. Example 8), the resulting PDG-
based information flow analysis fails to detect some information leaks.

Giffhorn and Snelting [5] present a PDG-based information flow analysis for
multi-threaded programs that does not accept programs with internal timing
leaks. The analysis enforces an information flow property defined in the tradi-
tion of observational determinism [20,28], and, therefore, does not accept any
programs that have nondeterministic public output. Hence, the analysis forbids
useful nondeterminism, which occurs, for instance, when multiple threads ap-
pend entries to the same log file. Our novel analysis (from Section 5) permits
concurrent writes to public variables and, hence, accepts secure programs that
are not accepted by the analysis from [5]. Moreover, in contrast to the analysis
from [5] our novel analysis is compositional with respect to the parallel compo-
sition of threads.

Connections between different analysis techniques. Hunt and Sands show in [11]
that the program logic from [1] is in fact equivalent to the type-based analysis
from [11]. Rehof and Fähndrich [19] exploit concepts from PDGs (the computa-
tion of so-called summary edges for programs with procedures) in a type-based
flow analysis. In this article, we go a step further by establishing and exploiting
a formal connection between a type-based and a PDG-based analysis.

7 Conclusion

While security type systems are established as analysis technique for information
flow security, information flow analyses based on program dependency graphs
(PDGs) have only recently received increased attention. In this article, we in-
vestigated the relationship between these two alternative approaches.

As a main result, we showed that the precision of a prominent type-based in-
formation flow analysis is not only roughly similar to the precision of a prominent

120 H. Mantel and H. Sudbrock

PDG-based analysis, but that the precision is in fact exactly the same. More-
over, our result provides a bridge for transferring techniques and ideas from one
tradition of information flow analysis to the other. This is an interesting possibil-
ity because there are other relevant attributes than the precision of an analysis
(e.g., efficiency and the availability of tools). We showed at the example of rely-
guarantee-style information flow analysis for multi-threaded programs that this
bridge is suitable to facilitate learning by one sub-community from the other.

We hope that our results clarify the relationship between the two approaches.
The established relationship could be used as a basis for communication between
the sub-communities to learn from each other and to pursue joint efforts to make
semantically justified information flow analysis more practical. For instance, our
results give hope that results on controlling declassification with security type
systems can be used to develop semantic foundations for PDG-based analyses
that permit declassification. Though there are PDG-based analyses that permit
declassification (e.g., [8]), all of them yet lack a soundness result, and, hence, it
is unclear which noninterference-like property they certify.

Acknowledgment. We thank the anonymous reviewers for their valuable sug-
gestions. This work was funded by the DFG under the project FM-SecEng in
the Computer Science Action Program (MA 3326/1-3).

References

1. Amtoft, T., Banerjee, A.: Information Flow Analysis in Logical Form. In: Gia-
cobazzi, R. (ed.) SAS 2004. LNCS, vol. 3148, pp. 100–115. Springer, Heidelberg
(2004)

2. Boudol, G., Castellani, I.: Noninterference for Concurrent Programs and Thread
Systems. Theoretical Computer Science 281(1-2), 109–130 (2002)

3. Cheng, J.: Slicing Concurrent Programs - A Graph-Theoretical Approach. In:
Fritszon, P.A. (ed.) AADEBUG 1993. LNCS, vol. 749, pp. 223–240. Springer,
Heidelberg (1993)

4. Ferrante, J., Ottenstein, K.J., Warren, J.D.: The Program Dependence Graph and
its Use in Optimization. ACM Transactions on Programming Languages and Sys-
tems 9(3), 319–349 (1987)

5. Giffhorn, D., Snelting, G.: Probabilistic Noninterference Based on Program De-
pendence Graphs. Tech. Rep. 6, Karlsruher Institut für Technologie (KIT) (2012)

6. Goguen, J.A., Meseguer, J.: Security Policies and Security Models. In: IEEE Sym-
posium on Security and Privacy, pp. 11–20 (1982)

7. Hammer, C.: Information Flow Control for Java. Ph.D. thesis, Universität
Karlsruhe (TH) (2009)

8. Hammer, C., Snelting, G.: Flow-sensitive, Context-sensitive, and Object-sensitive
Information Flow Control based on Program Dependence Graphs. International
Journal of Information Security 8(6), 399–422 (2009)

9. Horwitz, S., Reps, T.W., Binkley, D.: Interprocedural Slicing Using Dependence
Graphs. ACM Transactions on Programming Languages and Systems 12(1), 26–60
(1990)

10. Hsieh, C.S., Unger, E.A., Mata-Toledo, R.A.: Using Program Dependence Graphs
for Information Flow Control. Journal of Systems and Software 17(3), 227–232
(1992)

Types vs. PDGs in Information Flow Analysis 121

11. Hunt, S., Sands, D.: On Flow-Sensitive Security Types. In: ACM Symposium on
Principles of Programming Languages, pp. 79–90 (2006)

12. Krinke, J.: Advanced Slicing of Sequential and Concurrent Programs. Ph.D. thesis,
Universität Passau (2003)

13. Mantel, H.: Information Flow and Noninterference. In: Encyclopedia of
Cryptography and Security, 2nd edn., pp. 605–607. Springer (2011)

14. Mantel, H., Sands, D.: Controlled Declassification based on Intransitive Nonin-
terference. In: Chin, W.-N. (ed.) APLAS 2004. LNCS, vol. 3302, pp. 129–145.
Springer, Heidelberg (2004)

15. Mantel, H., Sands, D., Sudbrock, H.: Assumptions and Guarantees for Composi-
tional Noninterference. In: IEEE Computer Security Foundations Symposium, pp.
218–232 (2011)

16. Myers, A.C.: JFlow: Practical Mostly-Static Information Flow Control. In: ACM
Symposium on Principles of Programming Languages, pp. 228–241 (1999)

17. Naik, M., Palsberg, J.: A Type System Equivalent to a Model Checker. ACM
Transactions on Programming Languages and Systems 30(5), 1–24 (2008)

18. Palsberg, J., O’Keefe, P.: A Type System Equivalent to Flow Analysis. In: ACM
Symposium on Principles of Programming Languages, pp. 367–378 (1995)

19. Rehof, J., Fähndrich, M.: Type-Based Flow Analysis: From Polymorphic Subtyp-
ing to CFL-Reachability. In: ACM Symposium on Principles of Programming Lan-
guages, pp. 54–66 (2001)

20. Roscoe, A.W., Woodcock, J.C.P., Wulf, L.: Non-interference through Determin-
ism. In: Gollmann, D. (ed.) ESORICS 1994. LNCS, vol. 875, pp. 33–53. Springer,
Heidelberg (1994)

21. Sabelfeld, A., Myers, A.C.: Language-based Information-Flow Security. IEEE Jour-
nal on Selected Areas in Communication 21(1), 5–19 (2003)

22. Sabelfeld, A., Sands, D.: Probabilistic Noninterference for Multi-threaded Pro-
grams. In: IEEE Computer Security Foundations Workshop, pp. 200–215 (2000)

23. Smith, G., Volpano, D.: Secure Information Flow in a Multi-threaded Imperative
Language. In: ACM Symposium on Principles of Programming Languages, pp.
355–364 (1998)

24. Volpano, D., Smith, G., Irvine, C.: A Sound Type System for Secure Flow Analysis.
Journal of Computer Security 4(3), 1–21 (1996)

25. Volpano, D., Smith, G.: A Type-Based Approach to Program Security. In: Bidoit,
M., Dauchet, M. (eds.) TAPSOFT 1997. LNCS, vol. 1214, pp. 607–621. Springer,
Heidelberg (1997)

26. Wasserrab, D., Lochbihler, A.: Formalizing a Framework for Dynamic Slicing of
Program Dependence Graphs in Isabelle/HOL. In: Mohamed, O.A., Muñoz, C.,
Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 294–309. Springer, Heidelberg
(2008)

27. Wasserrab, D., Lohner, D., Snelting, G.: On PDG-based Noninterference and its
Modular Proof. In: ACM Workshop on Programming Languages and Analysis for
Security, pp. 31–44 (2009)

28. Zdancewic, S., Myers, A.C.: Observational Determinism for Concurrent Program
Security. In: IEEE Computer Security Foundations Workshop, pp. 29–43 (2003)

Galliwasp: A Goal-Directed Answer Set Solver

Kyle Marple and Gopal Gupta

University of Texas at Dallas
800 W. Campbell Road

Richardson, TX 75080, USA

Abstract. Galliwasp is a goal-directed implementation of answer set
programming. Unlike other answer set solvers, Galliwasp computes par-
tial answer sets which are provably extensible to full answer sets. Galli-
wasp can execute arbitrary answer set programs in a top-down manner
similar to SLD resolution. Galliwasp generates candidate answer sets by
executing ordinary rules in a top-down, goal-directed manner using coin-
duction. Galliwasp next checks if the candidate answer sets are consistent
with restrictions imposed by OLON rules. Those that are consistent are
reported as solutions. Execution efficiency is significantly improved by
performing the consistency check incrementally, i.e., as soon as an ele-
ment of the candidate answer set is generated. We discuss the design of
the Galliwasp system and its implementation. Galliwasp’s performance
figures, which are comparable to other popular answer set solvers, are
also presented.

1 Introduction

As answer set programming (ASP) [8] has gained popularity, answer set solvers
have been implemented using various techniques. These techniques range from
simple guess-and-check based methods to those based on SAT solvers and com-
plex heuristics. None of these techniques impart any operational semantics to
the answer set program in the manner that SLD resolution does to Prolog; they
can be thought of as being similar to bottom-up methods for evaluating logic
programs. Earlier we described [10,17] how to find partial answer sets by means
of a top-down, goal-directed method based on coinduction. The Galliwasp sys-
tem [16], described in this paper, is the first efficient implementation of this
goal-directed method. Galliwasp is consistent with the conventional semantics
of ASP: no restrictions are placed on the queries and programs that can be
executed. That is, any A-Prolog program can be executed on Galliwasp.

Galliwasp is an implementation of A-Prolog [7] that uses grounded normal
logic programs as input. The underlying algorithm of Galliwasp leverages coin-
duction [23,10] to find partial answer sets containing a given query. Programs are
executed in a top-down manner in the style of Prolog, computing partial answer
sets through SLD-style call resolution and backtracking. Each partial answer set
is provably extensible to a complete answer set [10,17].

The algorithm of Galliwasp uses call graphs to classify rules according to two
attributes: (i) if a rule can be called recursively with an odd number of negations

E. Albert (Ed.): LOPSTR 2012, LNCS 7844, pp. 122–136, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Galliwasp: A Goal-Directed Answer Set Solver 123

between the initial call and its recursive invocation, it is said to contain an odd
loop over negation (OLON) and referred to as an OLON rule for brevity, and
(ii) if a rule has at least one path in the call graph that will not result in such a
call, it is called an ordinary rule. Our goal-directed method uses ordinary rules
to generate candidate answer sets (via co-induction extended with negation) and
OLON rules to reject invalid candidate sets. The procedure can be thought of
as following the generate and test paradigm with ordinary rules being used for
generation of candidate answer sets and OLON rules for testing that a candidate
answer set is, indeed, a valid answer set.

The main contribution of this paper is an execution mechanism in which con-
sistency checks are incrementally executed as soon as an element of the candidate
answer set is generated. By interleaving the generation and testing of candidate
answer sets in this manner, Galliwasp speeds up execution significantly. As soon
as an element p is added to a candidate answer set, OLON rules that might
reject the answer set due to presence of p in it are invoked.

In this paper we describe the design and implementation of Galliwasp. This
includes an overview of goal-directed ASP, the design and implementation of
Galliwasp’s components, and techniques developed to improve performance. Fi-
nally, the performance figures are presented and compared to other ASP solvers.

There are many advantages of a goal-directed execution strategy: (i) ASP can
be extended to general predicates [18], i.e., to answer set programs that do not
admit a finite grounding; (ii) extensions of ASP to constraints (in the style of
CLP(R)) [12], probabilities (in the style of ProbLog [4]), etc., can be elegantly
realized; (iii) Or-parallel implementations of ASP that leverage techniques from
parallel Prolog implementations [11] can be developed; (iv) abductive reason-
ing [14] can be incorporated with greater ease. Work is in progress to extend
Galliwasp in these directions.

2 Goal-Directed Answer Set Programming

The core of Galliwasp is a goal-directed execution method for computing an-
swer sets which is sound and complete with respect to the Gelfond-Lifschitz
method [10,17]. For convenience, two key aspects of our goal-directed method
are summarized here: its handling of OLON rules and its use of coinduction.

2.1 OLON Rules and Ordinary Rules

Our goal-directed method requires that we identify and properly handle both
ordinary and OLON rules, as defined in the introduction. Rules are classified by
constructing and examining a call graph. Unlike in Prolog, literals can be either
positive or negative, and the attributes of a rule are determined by the number
of negations between any recursive calls in the call graph.

To build the call graph, each positive literal is treated as a node in the graph.
For each rule, arcs are drawn from the node corresponding to the head of the
rule to every node corresponding to the positive form of a literal in the body

124 K. Marple and G. Gupta

of the rule. If the literal in the body is positive, the arc is blue; if the literal is
negative, the arc is red. At most one of each color arc is created between any
two nodes, and each arc is labelled to identify all of the rules associated with it.

When the graph has been created, each path is examined in a bottom-up
fashion, stopping when any literal in the path is repeated. If there is a path from
a node N to itself such that the number of red arcs on the path is odd, then we
call all of the rules for N’s literal associated with the path OLON rules. If there
is no path from a node N to itself, or if there is a path from N to itself such that
the number of red arcs on the path is even, we call all of the rules for N’s literal
associated with the path ordinary rules.

Every rule will have at least one of the two attributes. Additionally, a rule can
be both an OLON rule and an ordinary rule, as the example below illustrates:

p :- not q. ... (i)

q :- not p. ... (ii)

q :- not r. ... (iii)

r :- not p. ... (iv)

Rule (i) is both an OLON rule and an ordinary rule: ordinary because of rule
(ii), OLON because of rules (iii) and (iv).

2.2 Coinductive Execution

The goal-directed method [10,17] generates candidates answer sets by execut-
ing ordinary rules via coinduction extended with negation. Given a query, an
extended query is constructed to enforce the OLON rules. This extended query
is executed in the style of SLD resolution with coinduction (co-SLD resolution)
[23,10].

Under the operational semantics of coinduction, a call p succeeds if it unifies
with one of its ancestor calls. Each call is remembered, and this set of ancestor
calls forms the coinductive hypothesis set (CHS). Under our algorithm, the CHS
also constitutes a candidate answer set. As such, it would be inconsistent for p
and not p to be in the CHS at the same time: when this is about to happen, the
system must backtrack. As a result, only ordinary rules can generate candidate
answer sets. Any OLON rule that is not also an ordinary rule will fail during
normal execution, as it will attempt to add the negation of its head to the CHS.

Candidate sets produced by ordinary rules must still be checked for consis-
tency with the OLON rules in a program. To accomplish this, the query is
extended to perform this check.

Before looking at this extension, let us consider an OLON rule of the form
p :- B, not p.

where B is a conjunction of goals. One of two cases must hold for an answer set
to exist: (i) p is in the answer set through another rule in the program, (ii) at
least one goal in B must fail. This is equivalent to saying that the negation of
the rule, not B ∨ p must succeed. Note that checks of this form can be created
for any OLON rule [10,17]. This includes both OLON rules of the form

p :- B.

where the call to not p is indirect, and headless rules of the form

Galliwasp: A Goal-Directed Answer Set Solver 125

:- B.

where the negation not B must succeed.
Our method handles OLON rules by creating a special rule, called the NMR

check, which contains a sub-check for each OLON rule in a program. The body
of the NMR check is appended to each query prior to evaluation, ensuring that
any answer set returned is consistent with all of the OLON rules in the program.
Prior to creating the sub-checks, a copy of each OLON rule is written in the form

p :- B, not p.

as shown above, with the negation of the rule head added to the body in cases
where the call is indirect. Each sub-check is then created by negating the body
of one of the copied rules. For instance, the sub-check for a rule

p :- q, not p.

will be
chk p :- not q.

chk p :- p.

The body of the NMR check will then contain the goal chk p, ensuring that the
OLON rule is properly applied.

Some modification to co-SLD resolution is necessary to remain faithful to
ASP’s stable model semantics. This is due to the fact that coinduction computes
the greatest fixed point of a program, while the GL method computes a fixed
point that is between the least fixed point (lfp) and greatest fixed point (gfp)
of a program, namely, the lfp of the residual program.To adapt coinduction for
use with ASP, our goal-directed method restricts coinductive success to cases in
which there are an even, non-zero number of calls to not between a call and an
ancestor to which it unifies. This prevents rules such as

p :- p.

from succeeding, as this would be the case under normal co-SLD resolution. To
compute an answer set for a given program and query, our method performs co-
SLD resolution using this modified criterion for coinductive success. When both
a query and the NMR check have succeeded, the CHS will be a valid answer set
[10,17]. Consider the program below:

p :- q.

q :- p.

Under normal co-SLD resolution, both p and q would be allowed to succeed, re-
sulting in the incorrect answer set {p, q}. However, using our modified criterion,
both rules will fail, yielding the correct answer set {not p, not q}.

3 The Galliwasp System

The Galliwasp system is an implementation of the above SLD resolution-style,
goal-directed method of executing answer set programs. A number of issues arise
that are discussed next. Improvements to the execution algorithm that make
Galliwasp more efficient are also discussed.

126 K. Marple and G. Gupta

3.1 Order of Rules and Goals

As with normal SLD resolution, rules for a given literal are executed in the
order given in the program, with the body of each rule executed left to right.
With the exception of OLON rules, once the body of a rule whose head matches
a given literal has succeeded, the remaining rules do not need to be accessed
unless failure and backtracking force them to be selected.

As in top-down implementations of Prolog, this means that the ordering of
clauses and goals can directly impact the runtime performance of a program. In
the best case scenario, this can allow Galliwasp to compute answers much faster
than other ASP solvers, but in the worst case scenario Galliwasp may end up
backtracking significantly more, and as a result take much longer.

One example of this can be found in an instance of the Schur Numbers bench-
mark used in Sect. 5. Consider the following clauses from the grounded instance
for 3 partitions and 13 numbers:

false :- not haspart(1).

false :- not haspart(2).

false :- not haspart(3).

false :- not haspart(4).

false :- not haspart(5).

false :- not haspart(6).

false :- not haspart(7).

false :- not haspart(8).

false :- not haspart(9).

false :- not haspart(10).

false :- not haspart(11).

false :- not haspart(12).

false :- not haspart(13).

During benchmarking, Galliwasp was able to find an answer set for the program
containing the above clauses in 0.2 seconds. However, the same program with
the order of only the above clauses reversed could be left running for several
minutes without terminating.

Given that Galliwasp is currently limited to programs that have a finite
grounding, its performance can be impacted by the grounder program that is
used. In the example above, all 13 ground clauses are generated by the grounding
of a single rule in the original program. Work is in progress to extend Galliwasp
to allow direct execution of datalog-like ASP programs (i.e., those with only
constants and variables) without grounding them first. In such a case, the user
would have much more control over the order in which rules are tried.

3.2 Improving Execution Efficiency

The goal-directed method described in Sect. 2 can be viewed as following the
generate and test paradigm. Given a query Q, N where Q represents the orig-
inal user query, and N the NMR check, the goal directed procedure generates
candidate answer sets through the execution of Q using ordinary rules. These

Galliwasp: A Goal-Directed Answer Set Solver 127

candidate answer sets are tested by the NMR check N which rejects a candidate
if the restrictions encoded in the OLON rules are violated.

Naive generate and test can be very inefficient, as the query Q may generate
a large number of candidate answer sets, most of which may be rejected by the
NMR check. This can lead to a significant amount of backtracking, slowing down
the execution. Execution can be made significantly more efficient by generating
and testing answer sets incrementally. This is done by interleaving the execution
of Q and N. As soon as a literal, say p, is added to a candidate answer set, goals in
NMR check that correspond to OLON rules that p may violate are invoked. We
illustrate the incremental generate and test algorithm implemented in Galliwasp.

Consider the rules below:
p :- r.

p :- s.

q :- big goal.

r :- not s.

s :- not r.

:- p, r.

Let us assume that this fragment is part of a program where big goal will
always succeed, but is computationally expensive and contains numerous choice
points. For simplicity, let us also assume that the complete program contains no
additional OLON rules, and no additional rules for the literals p, q, r or s. As
the program contains only the OLON rule from the fragment above, the NMR
check will have only one sub-check, which will consist of two clauses:

nmr check :- chk 1.

chk 1 :- not p.

chk 1 :- not r.

Next, assume that the program is compiled and run with the following query:
?- p, q.

As with any query, the NMR check will be appended, resulting in the final query:
?- p, q, nmr check.

The NMR check ensures that p and r are never present in the same answer set,
so any valid answer set will contain p, q, not r, s, big goal, and the literals
upon which big goal depends.

If the program is run without NMR check reordering, the first clause for p will
initially succeed, adding r to the CHS. Failure will not occur until the NMR check
is reached, at which point backtracking will ensue. Eventually, the initial call to p
will be reached, the second clause will be selected, and the query will eventually
succeed. However, the choicepoints in big goal could result in a massive amount
of backtracking, significantly delaying termination. Additionally, big goal will
have to succeed twice before a valid answer set is found.

Now let us consider the same program and query using incremental generate
and test. The first clause for p will still initially succeed. However, as r succeeds,
the clause of chk 1 calling not r will be removed. Since only one clause will
remain for chk 1, chk 1 will be reordered, placing it immediately after the call
to p and before the call to q. The call to p will then succeed as before, but

128 K. Marple and G. Gupta

failure and backtracking will occur almost immediately, as the call to chk 1 will
immediately call not p. As before, the call to not p will result in the second
clause for p being selected and the query will eventually succeed. However, as
failure occurs before big goal is reached, the resulting backtracking is almost
eliminated. Additionally, big goal does not need to be called twice before a so-
lution is found. As a result, execution with NMR check reordering will terminate
much sooner than execution without reordering.

Adding incremental test and generation to Galliwasp leads to a considerable
improvement in efficiency, resulting in the performance of the Galliwasp system
becoming comparable to state-of-the-art solvers.

4 System Architecture of Galliwasp

The Galliwasp system consists of two components: a compiler and an interpreter.
The compiler reads in a grounded instance of an ASP program and produces a
compiled program, which is then executed by the interpreter to compute answer
sets. An overview of the system architecture is shown in Fig. 4.

Fig. 1. Galliwasp’s system architecture

4.1 Compiler

The primary goal of Galliwasp’s design is to maximize the runtime performance
of the interpreter. Because Galliwasp computes answer sets for a program based
on user-supplied queries, answer sets cannot be computed until a program is
actually run by the interpreter. However, many of the steps in our goal-directed
algorithm, as well as parsing, program transformations and static analysis, are
independent of the query. The purpose of Galliwasp’s compiler is to perform
as much of the query-independent work as possible, leaving only the actual

Galliwasp: A Goal-Directed Answer Set Solver 129

computation of answer sets to the interpreter. Because a single program can be
run multiple times with different queries, compilation also eliminates the need to
repeat the query-independent steps every time a program is executed. The most
important aspects of the compiler are the input language accepted, the parsing
and pre-processing performed, the construction of the NMR check, the program
transformations applied, and the formatting of the compiled output.

Input Language. The Galliwasp compiler’s input language is grounded A-
Prolog [7], extended to allow partial compatibility with text-mode output of
the lparse grounder. This allows grounded program instances to be obtained by
invoking lparse with the -t switch, which formats the output as text.

Only a subset of lparse’s text output is supported by Galliwasp. The support
is made possible by special handling of rules with the literal false as their
head, a convention used by lparse to add a head to otherwise headless rules,
and support for lparse’s compute statement. Other features of lparse, such as
constraint and weight literals, choice rules, and optimize statements, are not
currently supported in Galliwasp. Work is in progress to support them.

When lparse encounters a headless rule, it produces a grounded rule with
false as the head and a compute statement containing the literal not false.
Because the literal false is not present in the body of any rule, special handling
is required to properly detect such rules as OLON rules.

The compute statements used by lparse are of the form
compute N { Q }.

where N specifies the number of answer sets to compute and Q is a set of literals
that must be present in a valid answer set. Our system handles these statements
by treating them as optional, hard-coded queries. If a compute statement is
present, the interpreter may be run without user interaction, computing up to
N answer sets using Q as the query. When the interpreter is run interactively, it
ignores compute statements and executes queries entered by the user.

Parsing and Pre-processing. The compiler’s front end and pre-processing
stages prepare the input program for easy access and manipulation during the
rest of the compilation process. The front end encompasses the initial lexical
analysis and parsing of the input program, while the pre-processing stage handles
additional formatting and simplification, and substitutes integers for literals.

After lexical analysis of the input program is performed, it is parsed into a list
of rules and statements by a definite clause grammar (DCG). During parsing, a
counter is used to number the rules as they are read, so that the relative order
of rules for a given literal can be maintained.

The list of statements produced by the DCG is next converted into a list of rules
and a single compute statement. Each rule is checked to remove duplicate goals.
Any rule containing its head as a goal with no intervening negation will also be
removed at this stage. The cases covered in this step should not normally occur,
but as they are allowed by the language, they are addressed before moving on.

The next stage of pre-processing is integer substitution. Every propositional
symbol p is mapped to a unique integer Np > 0. A positive literal p is represented

130 K. Marple and G. Gupta

by Np, while a negative literal not p is represented by −Np. Since the interpreter
must use the original names of propositions when it prints the answer, a table
that maps each Np to p is included in the compiled output.

Finally, the list of rules is sorted by head, maintaining the relative order of
rules with the same head. This eliminates the need for repeated searching in
subsequent stages of compilation. After sorting, compilation moves on to the
next stage, the detection of OLON rules and construction of the NMR check.

Construction of the NMR Check. Construction of the NMR check begins
with the detection of the OLON rules in the ASP program. This detection is
performed by building and traversing a call graph similar to the one described
in Sect. 2.1. These rules are then used to construct the individual checks that
form the NMR check, as described in Sect. 2.2.

Clauses for the sub-checks are treated as any other rule in the program, and
subject to program transformation in the next stage of compilation. However, the
NMR check itself is not modified by the program transformation stage. Instead,
if the modified sub-checks allow for immediate failure, this will be detected at
runtime by the interpreter.

Program Transformation. The program transformation stage consists of
computing dual rules, explained below, and removing rules when it can be triv-
ially determined at compile time that they will never succeed. This stage of
compilation improves performance without affecting the correctness of our algo-
rithm.

Dual rules, i.e., rules for the negation of each literal, are computed as follows.
For proposition p defined by the rules,

p :- B1.

...

p :- Bn.

where each Bi is a conjunction of positive and negative literals, its dual
not p :- not B1, ..., not Bn.

is added to the program. For any proposition q for which there are no rules
whose head contains q, a fact is added for not q.

The addition of dual rules simplifies the design of the interpreter by removing
the need to track the scope of negations: all rules can be executed in a uniform
fashion, regardless of the number of negations encountered. When a negated
calls are encountered, they are expanded using dual rules. While adding these
rules may significantly increase the size of the program, this is not a problem:
the interpreter performs indexing that allows it to access rules in constant time.

After the dual rules have been computed, the list is checked once more to
remove simple cases of rules that can be trivially determined to always fail. This
step simply checks to see if a fact exists for the negation of some goal in the
rule body and removes the rule if this is the case. If the last rule for a literal is
removed, a fact for the negation is added and subsequent rules calling the literal
will also be removed.

Galliwasp: A Goal-Directed Answer Set Solver 131

Output Formatting. As with the rest of the compiler, the output produced
by the compiler is designed to reduce the amount of work performed by the
interpreter. This is done by including space requirements and sorting the rules
by their heads before writing them to the output.

As a result of the output formatting, the interpreter is able to read in the input
and create the necessary indexes in linear time with respect to the size of the
compiled program. After indexing, all that remains is to execute the program,
with all other work having been performed during compilation.

4.2 Interpreter

While the compiler was designed to perform a variety of time consuming tasks,
the interpreter has been designed to maximize run-time performance, finding an
answer set or determining failure as quickly as possible. Two modes of operation,
interactive and automatic, are supported. When a program is run interactively,
the user can input queries and accept or reject answer sets as can be done
with answers to a query in Prolog. In automatic mode it executes a compute
statement that is included in the program. In either mode, the key operations
can be broken up into three categories: program representation and indexing,
co-SLD resolution, and dynamic incremental enforcement of the NMR check.

Program Representation and Indexing. One of the keys to Galliwasp’s
performance is the indexing performed prior to execution of the program. As a
result, look-up operations during execution can be performed in constant time,
much as in any implementation of Prolog.

As mentioned in Sect. 4.1, the format of the compiler’s output allows the
indexes to be created in time that is linear with respect to the size of the program.
The compiled program includes the number of positive literals, which allows a
hash table to be constructed using an extremely simple perfect hash function.
For n positive literals, 2n entries are needed, as 0 is never used. For a literal L
which may be positive or negative,

index(L) =

{
L L > 0,

2n+ 1 + L L < 0

Because the program is sorted by the compiler, the main index can be created
in a single pass, using fixed length arrays rather than dynamically allocated
memory.

To allow for the NMR check interleaving and simplification discussed in Sect.
4.2, the query and NMR check are stored separately from the rest of the program.
Whereas the rules of the program, including the sub-checks of the NMR check,
are stored in ordinary arrays, the query and NMR check are stored in a linked
list. This allows their goals to be reordered in constant time. Additional indexing
is also performed, linking each literal to its occurrences in the NMR check.
Together, these steps allow modification of the NMR check with respect to a
given literal to be performed in linear time with respect to the number times
the literal and its dual occurs in the sub-checks.

132 K. Marple and G. Gupta

Co-SLD Resolution. Once the program has been indexed, answer sets are
found by executing the query using coinduction, as described in Sect. 2.2. Each
call encountered is checked against the CHS. If the call is not present, it is added
to the CHS and expanded according to ordinary SLD resolution. If the call is
already in the CHS, immediate success or failure occurs, as explained below.

As mentioned in Sect. 2.2, our algorithm requires that a call that unifies
with an ancestor cannot succeed coinductively unless it is separated from that
ancestor by an even, non-zero number of intervening negations. This is facilitated
by our use of dual rules, discussed in Sect. 4.1.

When the current call is of the form not p and the CHS contains p (or vice
versa), the current call must fail, lest the CHS become inconsistent. If the current
call is identical to one of the elements of the CHS, then the number of intervening
negations must have been even. However, it is not clear that it was also non-zero.
This additional information is provided by a counter that tracks of the number
of negations encountered between the root of the proof tree and the tip of the
current branch. When a literal is added to the CHS, it is stored with the current
value of the counter. A recursive call to the literal can coinductively succeed only
if the counter has increased since the literal was stored.

Dynamic Incremental Enforcement of the NMR Check. Because recur-
sive calls are never expanded, eventual termination is guaranteed, just as for
any other ASP solver. However, since we use backtracking, the size of the search
space can cause the program to execute for an unreasonable amount of time.

To alleviate this problem, we introduced the technique of incrementally en-
forcing the NMR check (cf. Sect. 3.2 above). Our technique can be viewed as a
form of coroutining: steps of the testing and generation phases are interleaved.
The technique consists of simplifying NMR sub-checks and of reordering the calls
to sub-checks within the query. These modifications are done whenever a literal
is added to the CHS, and are “undone” upon backtracking.

When a literal is added to the CHS, all occurrences of that literal are removed
from every sub-check, as they would immediately succeed when treated as calls.
If such a removal causes the body of a sub-check clause to become empty, the
entire sub-check is removed, as it is now known to be satisfied.

The next step is to remove every sub-check clause that contains the negation
of the literal: such a clause cannot be satisfied now. If this clause causes the
entire sub-check to disappear, the literal obviously cannot be added to the CHS,
and backtracking occurs. If the sub-check does not disappear, but is reduced
to a single clause (i.e., it becomes deterministic), then a call to the sub-check is
moved to the front of the current query: this ensures early testing of whether the
addition of the literal is consistent with the relevant OLON rules. If the resultant
sub-check contains more than one clause, there is no attempt to execute it earlier
than usual, as that might increase the size of the search space.

As mentioned in Sect. 4.2, indexing allows these modifications to be performed
efficiently. If the original search space is small, they may result in a small increase
in runtime. In most non-trivial cases, however, the effect is a dramatic decrease
in the size of the search space. It is this technique that enables Galliwasp to

Galliwasp: A Goal-Directed Answer Set Solver 133

be as efficient as illustrated in the next section: early versions of the system
used a simple generate-and-test approach, but many of the programs that now
terminate in a fraction of a second ran for inordinate amounts of time.

5 Performance Results

In this section, we compare the performance of Galliwasp to that of clasp [5],
cmodels [9] and smodels [20] using instances of several problems. The range of
problems is limited somewhat by the availability of compatible programs. While
projects such as Asparagus [2] have a wide variety of ASP problem instances

Table 1. Performance results; times in seconds

Problem Galliwasp clasp cmodels smodels

queens-12 0.033 0.019 0.055 0.112
queens-13 0.034 0.022 0.071 0.132
queens-14 0.076 0.029 0.098 0.362
queens-15 0.071 0.034 0.119 0.592
queens-16 0.293 0.043 0.138 1.356
queens-17 0.198 0.049 0.176 4.293
queens-18 1.239 0.059 0.224 8.653
queens-19 0.148 0.070 0.272 3.288
queens-20 6.744 0.084 0.316 47.782
queens-21 0.420 0.104 0.398 95.710
queens-22 69.224 0.112 0.472 N/A
queens-23 1.282 0.132 0.582 N/A
queens-24 19.916 0.152 0.602 N/A
mapclr-4x20 0.018 0.006 0.011 0.013
mapclr-4x25 0.021 0.007 0.014 0.016
mapclr-4x29 0.023 0.008 0.016 0.018
mapclr-4x30 0.026 0.008 0.016 0.019
mapclr-3x20 0.022 0.005 0.009 0.008
mapclr-3x25 0.065 0.006 0.011 0.010
mapclr-3x29 0.394 0.006 0.012 0.011
mapclr-3x30 0.342 0.007 0.012 0.011
schur-3x13 0.209 0.006 0.010 0.009
schur-2x13 0.019 0.005 0.007 0.006
schur-4x44 N/A 0.230 1.394 0.349
schur-3x44 7.010 0.026 0.100 0.076
pigeon-10x10 0.020 0.009 0.020 0.025
pigeon-20x20 0.050 0.048 0.163 0.517
pigeon-30x30 0.132 0.178 0.691 4.985
pigeon-8x7 0.123 0.072 0.089 0.535
pigeon-9x8 0.888 0.528 0.569 4.713
pigeon-10x9 8.339 4.590 2.417 46.208
pigeon-11x10 90.082 40.182 102.694 N/A

134 K. Marple and G. Gupta

available, the majority use lparse features unsupported by Galliwasp. Work is
in progress to support these features.

The times for Galliwasp in Table 1 are for the interpreter reading compiled
versions of each problem instance. No queries are given, so the NMR check alone
is used to find solutions. The times for the remaining solvers are for the solver
reading problem instances from files in the smodels input language. A timeout
of 600 seconds was used, with the processes being automatically killed after that
time and the result being recorded as N/A in the table.

Galliwasp is outperformed by clasp in all but one case and outperformed
by cmodels, in most cases, but the results are usually comparable. Galliwasp’s
performance can vary significantly, even between instances of the same problem,
depending on the amount of backtracking required. In the case of programs
that timed out or took longer than a few seconds, the size and structure of the
programs simply resulted in a massive amount of backtracking.

We believe that manually reordering clauses or changing the grounding meth-
od will improve performance in most cases. In particular, experimentation with
manual clause reordering has resulted in execution times on par with clasp’s.
However, the technique makes performance dependent on the query used to
determine the optimal ordering. As a result, the technique is not general enough
for use in performance comparisons, and no reordering of clauses was used to
obtain the results reported here.

6 Related and Future Work

Galliwasp’s goal-directed execution method is based on a previously published
technique, but has been significantly refined [10,19]. In particular, the original
algorithm was limited to ASP programs which were call-consistent or order-
consistent [19]. Additionally, the implementation of the previous algorithm was
written as a Prolog meta-interpreter, and incapable of providing results compa-
rable to those of existing ASP solvers. Galliwasp, written in C, is the first goal-
directed implementation capable of direct comparison with other ASP solvers.

Various other attempts have been made to introduce goal-directed execution
to ASP. However, many of these methods rely on modifying the semantics or
restricting the programs and queries which can be used, while Galliwasp’s al-
gorithm remains consistent with stable model semantics and works with any
arbitrary program or query. For example, the revised Stable Model Semantics
[21] allows goal-directed execution [22], but does so by modifying the stable
model semantics underlying ASP. SLD resolution has also been extended to
ASP through credulous resolution [3], but with restrictions on the type of pro-
grams and queries allowed. Similar work may also be found in the use of ASP
with respect to abduction [1], argumentation [13] and tableau calculi [6].

Our plans for future work focus on improving the performance of Galliwasp
and extending its functionality. In both cases, we are planning to investigate
several possible routes.

Galliwasp: A Goal-Directed Answer Set Solver 135

With respect to performance, we are looking into exercising better control over
the grounding of programs, or eliminating of grounding altogether. The develop-
ment of a grounder optimized for goal-directed execution is being investigated
([15], forthcoming), as is the extension of answer set programming to predicates
(preliminary work can be found in [18]). Both have the potential to significantly
improve Galliwasp’s performance by reducing the amount of backtracking that
results from the use of grounded instances produced using lparse.

In the area of functionality, we plan to expand Galliwasp’s input language to
support features commonly allowed by other solvers, such as constraint literals,
weight literals and choice rules. Extensions ofGalliwasp to incorporate constraint
logic programming, probabilistic reasoning, abduction and or-parallelism are also
being investigated. We believe that these extensions can be incorporated more
naturally into Galliwasp given its goal-directed execution strategy.

The complete source for Galliwasp is available from the authors at [16].

7 Conclusion

In this paper we introduced the goal-directed ASP solver Galliwasp and pre-
sented Galliwasp’s underlying algorithm, limitations, design, implementation
and performance. Galliwasp is the first approach toward solving answer sets that
uses goal-directed execution for general answer set programs. Its performance is
comparable to other state-of-the-art ASP solvers. Galliwasp demonstrates the
viability of the top-down technique. Goal-directed execution can offer significant
potential benefits. In particular, Galliwasp’s underlying algorithm paves the way
for ASP over predicates [18] as well as integration with other areas of logic pro-
gramming. Unlike in other ASP solvers, performance depends on the amount of
backtracking required by a program: at least to some extent this can be con-
trolled by the programmer. Future work will focus on improving performance
and expanding functionality.

Acknowledgments. The authors are grateful to Feliks Kluźniak for many dis-
cussions and ideas.

References

1. Alferes, J.J., Pereira, L.M., Swift, T.: Abduction in Well-Founded Semantics and
Generalized Stable Models via Tabled Dual Programs. Theory and Practice of
Logic Programming 4, 383–428 (2004)

2. Asparagus (2012), http://asparagus.cs.uni-potsdam.de
3. Bonatti, P.A., Pontelli, E., Son, T.C.: Credulous Resolution for Answer Set Pro-

gramming. In: Proceedings of the 23rd National Conference on Artificial Intelli-
gence, AAAI 2008, vol. 1, pp. 418–423. AAAI Press (2008)

4. De Raedt, L., Kimmig, A., Toivonen, H.: ProbLog: A Probabilistic Prolog and
Its Application in Link Discovery. In: Proceedings of the 20th International Joint
Conference on Artifical Intelligence, IJCAI 2007, pp. 2468–2473. Morgan Kauf-
mann (2007)

http://asparagus.cs.uni-potsdam.de

136 K. Marple and G. Gupta

5. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: clasp: A Conflict-Driven
Answer Set Solver. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007.
LNCS (LNAI), vol. 4483, pp. 260–265. Springer, Heidelberg (2007)

6. Gebser, M., Schaub, T.: Tableau Calculi for Answer Set Programming. In: Etalle,
S., Truszczyński, M. (eds.) ICLP 2006. LNCS, vol. 4079, pp. 11–25. Springer, Hei-
delberg (2006)

7. Gelfond, M.: Representing Knowledge in A-Prolog. In: Kakas, A.C., Sadri, F. (eds.)
Computational Logic: Logic Programming and Beyond. LNCS (LNAI), vol. 2408,
pp. 413–451. Springer, Heidelberg (2002)

8. Gelfond, M., Lifschitz, V.: The Stable Model Semantics for Logic Programming.
In: Proceedings of the Fifth International Conference on Logic Programming, pp.
1070–1080. MIT Press (1988)

9. Giunchiglia, E., Lierler, Y., Maratea, M.: SAT-Based Answer Set Programming.
In: Proceedings of the 19th National Conference on Artifical Intelligence, AAAI
2004, pp. 61–66. AAAI Press (2004)

10. Gupta, G., Bansal, A., Min, R., Simon, L., Mallya, A.: Coinductive Logic Pro-
gramming and Its Applications. In: Dahl, V., Niemelä, I. (eds.) ICLP 2007. LNCS,
vol. 4670, pp. 27–44. Springer, Heidelberg (2007)

11. Gupta, G., Pontelli, E., Ali, K.A., Carlsson, M., Hermenegildo, M.V.: Parallel
Execution of Prolog Programs: A Survey. ACM Transactions on Programming
Languages and Systems 23(4), 472–602 (2001)

12. Jaffar, J., Lassez, J.L.: Constraint Logic Programming. In: Proceedings of the 14th
ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages,
POPL 1987, pp. 111–119. ACM (1987)

13. Kakas, A., Toni, F.: Computing Argumentation in Logic Programming. Journal of
Logic and Computation 9(4), 515–562 (1999)

14. Kakas, A.C., Kowalski, R.A., Toni, F.: Abductive Logic Programming. Journal of
Logic and Computation 2(6), 719–770 (1992)

15. Marple, K.: Design and Implementation of a Goal-directed Answer Set Program-
ming System. Ph.D. thesis, University of Texas at Dallas

16. Marple, K.: galliwasp, http://www.utdallas.edu/~kbm072000/galliwasp/
17. Marple, K., Bansal, A., Min, R., Gupta, G.: Goal-Directed Execution of Answer

Set Programs. Tech. rep., University of Texas at Dallas (2012),
http://www.utdallas.edu/~kbm072000/galliwasp/publications/goaldir.pdf

18. Min, R.: Predicate Answer Set Programming with Coinduction. Ph.D. thesis, Uni-
versity of Texas at Dallas (2010)

19. Min, R., Bansal, A., Gupta, G.: Towards Predicate Answer Set Programming via
Coinductive Logic Programming. In: Iliadis, L., Vlahavas, I., Bramer, M. (eds.)
AIAI 2009. IFIP, vol. 296, pp. 499–508. Springer, Boston (2009)

20. Niemelä, I., Simons, P.: Smodels - An Implementation of the Stable Model and
Well-Founded Semantics for Normal Logic Programs. In: Fuhrbach, U., Dix, J.,
Nerode, A. (eds.) LPNMR 1997. LNCS, vol. 1265, pp. 420–429. Springer, Heidel-
berg (1997)

21. Pereira, L.M., Pinto, A.M.: Revised Stable Models - A Semantics for Logic Pro-
grams. In: Bento, C., Cardoso, A., Dias, G. (eds.) EPIA 2005. LNCS (LNAI),
vol. 3808, pp. 29–42. Springer, Heidelberg (2005)

22. Pereira, L.M., Pinto, A.M.: Layered Models Top-Down Querying of Normal Logic
Programs. In: Gill, A., Swift, T. (eds.) PADL 2009. LNCS, vol. 5418, pp. 254–268.
Springer, Heidelberg (2009)

23. Simon, L.: Extending Logic Programming with Coinduction. Ph.D. thesis, Univer-
sity of Texas at Dallas (2006)

http://www.utdallas.edu/~kbm072000/galliwasp/
http://www.utdallas.edu/~kbm072000/galliwasp/publications/goaldir.pdf

Computing More Specific Versions

of Conditional Rewriting Systems�

Naoki Nishida1 and Germán Vidal2

1 Graduate School of Information Science, Nagoya University
Furo-cho, Chikusa-ku, 4648603 Nagoya, Japan

nishida@is.nagoya-u.ac.jp
2 MiST, DSIC, Universitat Politècnica de València

Camino de Vera, s/n, 46022 Valencia, Spain
gvidal@dsic.upv.es

Abstract. Rewrite systems obtained by some automated transforma-
tion often have a poor syntactic structure even if they have good proper-
ties from a semantic point of view. For instance, a rewrite system might
have overlapping left-hand sides even if it can only produce at most
one constructor normal form (i.e., value). In this paper, we propose a
method for computing “more specific” versions of deterministic condi-
tional rewrite systems (i.e., typical functional programs) by replacing a
given rule (e.g., an overlapping rule) with a finite set of instances of this
rule. In some cases, the technique is able to produce a non-overlapping
system from an overlapping one. We have applied the transformation
to improve the systems produced by a previous technique for function
inversion with encouraging results (all the overlapping systems were suc-
cessfully transformed to non-overlapping systems).

1 Introduction

Rewrite systems [4] form the basis of several rule-based programming languages.
In this work, we focus on the so called deterministic conditional rewrite systems
(DCTRSs), which are typical functional programs with local declarations [23].
When the rewrite systems are automatically generated (e.g., by program in-
version [2,14,15,17,22,28,27,29] or partial evaluation [1,7,8,35]), they often have
a poor syntactic structure that might hide some properties. For instance, the
rewriting systems generated by program inversion sometimes have overlapping
left-hand sides despite the fact that they actually have the unique normal form
property w.r.t. constructor terms — i.e., they can only produce at most one
constructor normal form for every expression — or are even confluent.

� This work has been partially supported by the Spanish Ministerio de Economı́a y
Competitividad (Secretaŕıa de Estado de Investigación, Desarrollo e Innovación)
under grant TIN2008-06622-C03-02, by the Generalitat Valenciana under grant
PROMETEO/2011/052, and by MEXT KAKENHI #21700011.

E. Albert (Ed.): LOPSTR 2012, LNCS 7844, pp. 137–154, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

138 N. Nishida and G. Vidal

Consider, e.g., the following TRS (left) from [29] (where we use [|] and nil
as list constructors) and its inversion (right):

inc(nil)→ [0] inc−1([0])→ nil
inc([0|xs])→ [1|xs] inc−1([1|xs])→ [0|xs]
inc([1|xs])→ [0|inc(xs)] inc−1([0|ys])→ [1|inc−1(ys)]

Now, observe that every instance of inc−1(x) using a constructor term has a
unique constructor normal form. However, this system is not confluent — con-
sider, e.g., the reductions starting from inc−1([0]) — and, moreover some of the
left-hand sides overlap, thus preventing us from obtaining a typical (determinis-
tic) functional program. In this case, one can observe that the recursive call to
inc−1 in the third rule can only bind variable ys to a non-empty list, say [z|zs].
Therefore, the system above could be transformed as follows:

inc−1([0])→ nil
inc−1([1|xs])→ [0|xs]

inc−1([0, z|zs])→ [1|inc−1([z|zs])]

Now, the transformed system is non-overlapping (and confluent) and, under
some conditions, it is equivalent to the original system (roughly speaking, the
derivations to constructor terms are the same).

A “more specific” transformation was originally introduced by Marriott et
al. [24] in the context of logic programming. In this context, a more specific
version of a logic program is a version of this program where each clause is
further instantiated or removed while preserving the successful derivations of the
original program. According to [24], the transformation increases the number of
finitely failed goals (i.e., some infinite derivations are transformed into finitely
failed ones), detects failure more quickly, etc. In general, the information about
the allowed variable bindings which is hidden in the original program may be
made explicit in a more specific version, thus improving the static analysis of
the program’s properties.

In this paper, we adapt the notion of a more specific program to the context
of deterministic conditional term rewriting systems. In principle, the transfor-
mation may achieve similar benefits as in logic programming by making some
variable bindings explicit (as illustrated in the transformation of function inc−1

above). Adapting this notion to rewriting systems, however, is far from trivial:

– First, there is no clear notion of successful reduction, and aiming at preserv-
ing all possible reductions would give rise to a meaningless notion. Consider,
e.g., the rewrite systems R = {f(x) → g(x), g(a) → b} and R′ = {f(a) →
g(a), g(a)→ b}. Here, one would expect R′ to be a correct more specific ver-
sion of R (in the sense of →R=→R′). However, the reduction f(b)→R g(b)
is not possible in R′.

– Second, different reduction strategies require different conditions in order to
guarantee the correctness of the transformation.

Computing More Specific Versions of Conditional Rewriting Systems 139

– Finally, in contrast to [24], we often require computing a set of instances of a
rewrite rule (rather than a single, more general instance) in order to produce
non-overlapping left-hand sides. Consider the rewrite system R = {f(a) →
a, f(x) → g(x), g(b) → b, g(c)→ c}. If we aim at computing a single more
specific version for the second rule, only the same rule is obtained. However,
if a set of instances is allowed rather a single common instance, we can obtain
the system R′ = {f(a) → a, f(b) → g(b), f(c) → g(c), g(b) → b, g(c)→ c},
which is non-overlapping.

Apart from introducing the notions of successful reduction and more specific
version (MSV), we provide a constructive algorithm for computing more specific
versions, which is based on constructing finite (possibly incomplete) narrowing
trees for the right-hand sides of the original rewrite rules. Here, narrowing [36,19],
an extension of term rewriting by replacing pattern matching with unification, is
used to guess the allowed variable bindings for a given rewrite rule. We prove the
correctness of the algorithm (i.e., that it actually outputs a more specific version
of the input system). We have tested the usefulness of the MSV transformation
to improve the inverse systems obtained by the program inversion method of
[28,27,29], and our preliminary results are very encouraging.

This paper is organized as follows. In Section 2, we briefly review some notions
and notations of term rewriting and narrowing. Section 3 introduces the notions
of more specific version of a rewriting system. Then, we introduce an algorithm
for computing more specific versions in Section 4 and prove its correctness. Fi-
nally, Section 5 concludes and points out some directions for future research.
A preliminary version of this paper — with a more restricted notion of more
specific version and where only unconditional rules are considered — appeared
in [31].

2 Preliminaries

We assume familiarity with basic concepts of term rewriting and narrowing. We
refer the reader to, e.g., [4], [32], and [16] for further details.

Terms and Substitutions. A signature F is a set of function symbols. Given a
set of variables V with F ∩ V = ∅, we denote the domain of terms by T (F ,V).
We assume that F always contains at least one constant f/0. We use f, g, . . . to
denote functions and x, y, . . . to denote variables. Positions are used to address
the nodes of a term viewed as a tree. A position p in a term t is represented
by a finite sequence of natural numbers, where ε denotes the root position. We
let t|p denote the subterm of t at position p and t[s]p the result of replacing the
subterm t|p by the term s. Var(t) denotes the set of variables appearing in t. A
term t is ground if Var(t) = ∅.

A substitution σ : V #→ T (F ,V) is a mapping from variables to terms such
that Dom(σ) = {x ∈ V | x �= σ(x)} is its domain. Substitutions are extended
to morphisms from T (F ,V) to T (F ,V) in the natural way. We denote the ap-
plication of a substitution σ to a term t by tσ rather than σ(t). The identity

140 N. Nishida and G. Vidal

substitution is denoted by id. A variable renaming is a substitution that is a
bijection on V . A substitution σ is more general than a substitution θ, denoted
by σ � θ, if there is a substitution δ such that δ ◦ σ = θ, where “◦” denotes
the composition of substitutions (i.e., σ ◦ θ(x) = (xθ)σ = xθσ). The restriction
θ |̀V of a substitution θ to a set of variables V is defined as follows: xθ |̀V = xθ if
x ∈ V and xθ |̀V = x otherwise. We say that θ = σ [V] if θ |̀V = σ |̀V .

A term t2 is an instance of a term t1 (or, equivalently, t1 is more general than
t2), in symbols t1 � t2, if there is a substitution σ with t2 = t1σ. Two terms
t1 and t2 are variants (or equal up to variable renaming) if t2 = t1ρ for some
variable renaming ρ. A unifier of two terms t1 and t2 is a substitution σ with
t1σ = t2σ; furthermore, σ is a most general unifier of t1 and t2, denoted by
mgu(t1, t2), if, for every other unifier θ of t1 and t2, we have that σ � θ.

TRSs and Rewriting. A set of rewrite rules l → r such that l is a nonvariable
term and r is a term whose variables appear in l is called a term rewriting
system (TRS for short); terms l and r are called the left-hand side and the
right-hand side of the rule, respectively. We restrict ourselves to finite signatures
and TRSs. Given a TRS R over a signature F , the defined symbols DR are
the root symbols of the left-hand sides of the rules and the constructors are
CR = F \ DR. Constructor terms of R are terms over CR and V , denoted by
T (CR,V). We sometimes omit R from DR and CR if it is clear from the context.
A substitution σ is a constructor substitution (of R) if xσ ∈ T (CR,V) for all
variables x.

For a TRS R, we define the associated rewrite relation →R as the smallest
binary relation satisfying the following: given terms s, t ∈ T (F ,V), we have
s →R t iff there exist a position p in s, a rewrite rule l → r ∈ R and a
substitution σ with s|p = lσ and t = s[rσ]p; the rewrite step is often denoted
by s →p,l→r t to make explicit the position and rule used in this step. The
instantiated left-hand side lσ is called a redex.

A term t is called irreducible or in normal form w.r.t. a TRS R if there is
no term s with t →R s. A substitution is called normalized w.r.t. R if every
variable in the domain is replaced by a normal form w.r.t. R. We sometimes
omit “w.r.t. R” if it is clear from the context. We denote the set of normal forms
by NFR. A derivation is a (possibly empty) sequence of rewrite steps. Given a
binary relation →, we denote by →∗ its reflexive and transitive closure. Thus
t→∗

R s means that t can be reduced to s in R in zero or more steps; we also use
t→n

R s to denote that t can be reduced to s in exactly n rewrite steps.
A conditional TRS (CTRS) is a set of rewrite rules l → r ⇐ C, where C is

a sequence of equations. In particular, we consider only oriented equations of
the form s1 � t1, . . . , sn � tn. For a CTRS R, we define the associated rewrite
relation →R as follows: given terms s, t ∈ T (F ,V), we have s →R t iff there
exist a position p in s, a rewrite rule l → r ⇐ s1 � t1, . . . , sn � tn ∈ R and a
substitution σ such that s|p = lσ, siσ →∗

R tiσ for all i = 1, . . . , n, and t = s[rσ]p.

Narrowing. The narrowing principle [36] mainly extends term rewriting by re-
placing pattern matching with unification, so that terms containing logic (i.e.,

Computing More Specific Versions of Conditional Rewriting Systems 141

free) variables can also be reduced by non-deterministically instantiating these
variables. Conceptually, this is not significantly different from ordinary rewriting
when TRSs contain extra variables (i.e., variables that appear in the right-hand
side of a rule but not in its left-hand side), as noted in [3]. Formally, given a
TRS R and two terms s, t ∈ T (F ,V), we have that s �R t is a narrowing step
iff there exist1

– a nonvariable position p of s,
– a variant l → r of a rule in R,
– a substitution σ = mgu(s|p, l) which is a most general unifier of s|p and l,

and t = (s[r]p)σ. We often write s �p,l→r,θ t (or simply s �θ t) to make explicit
the position, rule, and substitution of the narrowing step, where θ = σ |̀Var(s)

(i.e., we label the narrowing step only with the bindings for the narrowed term).
A narrowing derivation t0 �∗

σ tn denotes a sequence of narrowing steps t0 �σ1

· · · �σn tn with σ = σn ◦ · · · ◦ σ1 (if n = 0 then σ = id). Given a narrowing
derivation s �∗

σ t with t a constructor term, we say that σ is a computed answer
for s.

Example 1. Consider the TRS

R =

{
add(0, y)→ y (R1)

add(s(x), y)→ s(add(x, y)) (R2)

}

defining the addition add/2 on natural numbers built from 0/0 and s/1. Given
the term add(x, s(0)), we have infinitely many narrowing derivations starting
from add(x, s(0)), e.g.,

add(x, s(0)) �ε,R1,{x �→0} s(0)
add(x, s(0)) �ε,R2,{x �→s(y1)} s(add(y1, s(0))) �1,R1,{y1 �→0} s(s(0))
. . .

with computed answers {x #→ 0}, {x #→ s(0)}, etc.

Narrowing is naturally extended to deal with equations and CTRSs (see Sec-
tion 4).

3 More Specific Conditional Rewrite Systems

In this section, we introduce the notion of a more specific conditional rewrite
system. Intuitively speaking, we produce a more specific CTRS R′ from a CTRS
R by replacing a conditional rewrite rule l → r ⇐ C ∈ R with a finite number of
instances of this rule, i.e., R′ = (R \ {l → r ⇐ C}) ∪ {(l → r ⇐ C)σ1, . . . , (l →
r ⇐ C)σn}, such that R′ is semantically equivalent to R under some conditions.

1 We consider the so called most general narrowing, i.e., the mgu of the selected sub-
term and the left-hand side of a rule—rather than an arbitrary unifier—is computed
at each narrowing step.

142 N. Nishida and G. Vidal

The key idea is that more specific versions should still allow the same reduc-
tions of the original system. However, as mentioned in Section 1, if we aimed at
preserving all possible rewrite reductions, the resulting notion would be useless
since it would never happen in practice. Therefore, to have a practically applica-
ble technique, we only aim at preserving what we call successful reductions. In
the following, given a CTRS R, we denote by

s→R a generic conditional rewrite

relation based on some strategy s (e.g., innermost conditional reduction
i→R).

Definition 2 (successful reduction w.r.t.
s→). Let R be a CTRS and let

s→R be a conditional rewrite relation. A rewrite reduction t
s→∗
R u where t is a

term and u is a constructor term, is called a successful reduction w.r.t.
s→R.

Let us now introduce our notion of a more specific version of a rewrite rule:

Definition 3 (more specific version of a rule). Let R be a CTRS and
s→R

be a conditional rewrite relation. Let l → r ⇐ C ∈ R be a rewrite rule. We say
that the finite set of rewrite rules Rmsv = {l1 → r1 ⇐ C1, . . . , ln → rn ⇐ Cn}
is a more specific version of l → r ⇐ C in R w.r.t.

s→R if

– there are substitutions σ1, . . . , σn such that (l → r ⇐ C)σi = li → ri ⇐ Ci

for i = 1, . . . , n, and

– for all terms t, u, we have that t
s→∗

R u is successful in R iff t
s→∗

R′ u is
successful in R′, with R′ = (R\{l → r ⇐ C})∪Rmsv ; moreover, we require

t
s→∗
R u and t

s→∗
R′ u to apply the same rules to the same positions and in the

same order, except for the rule l → r ⇐ C in R that is replaced with some
rule li → ri ⇐ Ci, i ∈ {1, . . . , n}, in R′.2

Note that a rewrite rule is always a more specific version of itself; therefore the
existence of a more specific version of a given rule is always ensured. In general,
however, the more specific version is not unique and, thus, there can be several
strictly more specific versions of a rewrite rule.

The notion of a more specific version of a rule is extended to CTRSs in
a stepwise manner: given a CTRS R, we first replace a rule of R by its more
specific version thus producingR′, then we replace another rule ofR′ by its more
specific version, and so forth. We denote each of these steps by R #→more R′. We
say that R′ is a more specific version of R if there is a sequence of (zero or
more) #→more steps leading from R to R′. Note that, given a CTRS R and one
of its more specific versions R′, we have that →R′ ⊆→R (i.e., NFR ⊆ NFR′),
DR = DR′ and CR = CR′ .

2 This is required to prevent situations like the following one. Consider R = {f(0) →
g(0), f(x) → g(x), g(0) → 0}. Here, any instance of rule f(x) → g(x) would be a more
specific version if the last condition were not required (since the rule f(0) → g(0)
already belongs to R and could be used instead).

Computing More Specific Versions of Conditional Rewriting Systems 143

Example 4. Consider the following CTRS R (a fragment of a system obtained
automatically by the function inversion technique of [29]):

inv([left|x2])→ (t, n(x, y)) ⇐ inv(x2) � (x1, x), inv′(x1) � (t, y) (R1)
inv([str(x)|t])→ (t, sym(x)) (R2)

inv([left, right|t])→ (t, bottom) (R3)

where the definition of function inv′ is not relevant for this example and we omit
the tuple symbol (e.g., tp2) from the tuple of two terms — we write (t1, t2)
instead of tp2(t1, t2). Here, we replace the first rule of R by the following two
instances Rmsv:

inv([left, left|x3])→ (t, n(x, y)) ⇐ inv([left|x2]) � (x1, x), inv
′(x1) � (t, y)

inv([left, str(x3)|x4])→ (t, n(x, y)) ⇐ inv([str(x3)|x4]) � (x1, x), inv
′(x1) � (t, y)

using the substitutions σ1 = {x2 #→ [left|x3]} and σ2 = {x2 #→ [str(x3)|x4]}.
Observe that function inv in (R\{R1}) ∪Rmsv is now non-overlapping. Note

that producing only a single instance would not work since the only common
generalization of σ1 and σ2 is {x2 #→ [x3|x4]} so that the more specific version
would be

inv([left, x3|x4])→ (t, n(x, y)) ⇐ inv([x3|x4]) � (x1, x), inv′(x1) � (t, y)

and thus, function inv would still be overlapping.

Now, we show a basic property of more specific versions of a CTRS. In the fol-
lowing, we say that a CTRS R has the unique constructor normal form property
w.r.t.

s→R if, for all successful reductions t
s→∗u and t

s→∗u′, with u, u′ ∈ T (C,V),
we have u = u′.

Theorem 5. Let R be a CTRS and let R′ be a more specific version of R w.r.t.
s→R. Then, R has the unique constructor normal form property w.r.t.

s→R iff so
does R′.

Proof. The claim follows straightforwardly since derivations producing a con-
structor normal form are successful derivations, and they are preserved by the
MSV transformation by definition. "!

4 Computing More Specific Versions

In this section, we tackle the definition of a constructive method for computing
more specific versions of a CTRS. For this purpose, we consider the following
assumptions:

– We restrict the class of CTRSs to deterministic CTRSs (DCTRSs) [5,13,23].
Furthermore, we require them to be constructor systems (see below).

– We only consider constructor-based reductions (a particular case of inner-
most conditional reduction), i.e., reductions where the computed matching
substitutions are constructor.

144 N. Nishida and G. Vidal

– We use a form of innermost conditional narrowing to approximate the po-
tential successful reductions and, thus, compute its more specific version.

DCTRSs are 3-CTRSs [5,13,23] (see also [32]) (i.e., CTRSs where extra variables
are allowed as long as Var(r) ⊆ Var(l)∪Var(C) for all rules l → r ⇐ C), where
the conditional rules have the form

l → r ⇐ s1 � t1, . . . , sn � tn

with s1 � t1, . . . , sn � tn oriented equations, and such that

– Var(si) ⊆ Var(l) ∪ Var(t1) ∪ · · · ∪ Var(ti−1), for all i = 1, . . . , n;
– Var(r) ⊆ Var(l) ∪ Var(t1) ∪ . . . ∪ Var(tn).

Moreover, we assume that the DCTRSs are constructor systems where l =
f(l1, . . . , ln) with li ∈ T (C,V), i = 1, . . . ,m, and t1, . . . , tn ∈ T (C,V).

In DCTRSs, extra variables in the conditions are not problematic since no
redex contains extra variables when it is selected. Actually, as noted by [23],
these systems are basically equivalent to functional programs since every rule

l → r ⇐ s1 � t1, . . . , sn � tn

can be seen in a functional language as

l = let t1 = s1 in
let t2 = s2 in
. . .

let tn = sn in r

Here, DCTRSs allow us to represent functional local definitions using oriented
conditions.

Under these conditions, innermost reduction extends quite naturally to the
conditional case. In particular, we follow Bockmayr and Werner’s conditional
rewriting without evaluation of the premise [6], adapted to our setting as follows:

Definition 6 (constructor-based conditional reduction). Let R be a DC-
TRS. Constructor-based conditional reduction is defined as the smallest relation
satisfying the following transition rules:

(reduction)
p = inn(s1) ∧ l → r ⇐ C ∈ R ∧ s1|p = lσ ∧ σ is constructor

(s1 � t1, . . . , sn � tn)
c→ (Cσ, s1[rσ]p � t1, . . . , sn � tn)

(matching)
n > 1 ∧ s1 ∈ T (C,V) ∧ s1 = t1σ

(s1 � t1, . . . , sn � tn)
c→ (s2 � t2, . . . , sn � tn)σ

where inn(s) selects the position of an innermost subterm s matchable with the
left-hand side of a rule (i.e., a term l′σ′ of the form f(c1, . . . , cn) with f ∈ D
and c1, . . . , cn ∈ T (C,V) for some l′ → r′ ⇐ C′ ∈ R and some σ′), e.g., the
leftmost one.

Computing More Specific Versions of Conditional Rewriting Systems 145

Intuitively speaking, in order to reduce a sequence of equations s1 � t1, . . . , sn �
tn, we consider two possibilities:

– If the first oriented equation has some innermost subterm that matches the
left-hand side of a rewrite rule, we perform a reduction step. Note that, in
contrast to ordinary conditional rewriting, the conditions are not verified
but just added to the sequence of equations (as in Bockmayr and Werner’s
reduction without evaluation of the premise).

– If the left-hand side of the first oriented equation is a constructor term, then
we match both sides (note that the right-hand side is a constructor term
by definition) and remove this equation from the sequence. In the original
definition of [6], this matching substitution is computed when applying a
given rule in order to verify the conditions. Our definition simply makes
computing the substitution more operational by postponing it to the point
when its computation is required.
Note that this rule requires having more than one equation, since the initial
equation should not be removed.

In order to reduce a ground term s, we consider an initial oriented equation
s � x, where x is a fresh variable not occurring in s, and reduce it as much as
possible using the reduction and matching rules. If we reach an equation of the
form t � x, where t is a constructor term, we say that s reduces to t; actually,
[6, Theorem 2] proves the equivalence between ordinary conditional rewriting
and conditional rewriting without evaluation of the premise.

Example 7. Consider again the system R from Example 4 and the initial term
inv([left, str(a)]). We have, for instance, the following (incomplete) constructor-
based reduction:

(inv([left, str(a)]) � w)
c→ (inv([str(a)]) � (x1, x), inv

′(x1) � (t, y), (t, n(x, y)) � w)
c→ ((nil, sym(a)) � (x1, x), inv

′(x1) � (t, y), (t, n(x, y)) � w)
c→ (inv′(nil) � (t, y), (t, n(sym(a), y)) � w)

In the following, given a rule l → r ⇐ C, we introduce the use of conditional nar-
rowing to automatically compute an approximation of the successful constructor-
based reductions.

Our definition of constructor-based conditional narrowing (a special case of

innermost conditional narrowing [9,12,18]), denoted by
c
�, is defined as follows:

Definition 8 (constructor-based conditional narrowing). Let R be a DC-
TRS. Constructor-based conditional narrowing is defined as the smallest relation
satisfying the following transition rules:

(narrowing)
p = inn(s1) ∧ l → r ⇐ C ∈ R ∧ σ = mgu(s1|p, l)

(s1 � t1, . . . , sn � tn)
c
�σ (C, s1[r]p � t1, . . . , sn � tn)σ

(unification)
n > 1 ∧ s1 ∈ T (C,V) ∧ σ = mgu(s1, t1)

(s1 � t1, . . . , sn � tn)
c
�σ (s2 � t2, . . . , sn � tn)σ

146 N. Nishida and G. Vidal

where inn(s) selects the position of an innermost subterm whose proper subterms
are constructor terms, and which is unifiable with the left-hand side of a rule,
e.g., the leftmost one.

As it can be seen, our definition of constructor-based conditional narrowing
for DCTRSs mimics the definition of constructor-based reduction but replaces
matching with unification in both transition rules. Note, however, that the first
rule is often non-deterministic since a given innermost subterm can unify with
the left-hand sides of several rewrite rules.

We adapt the notion of successful derivations to rewriting and narrowing
derivations of equations.

Definition 9. Let R be a DCTRS and let
s→R be a conditional rewrite relation.

A rewrite reduction (C, t � x)
s→∗
R (u � x) where t is a term, x is a fresh vari-

able, C is a (possibly empty) sequence of (oriented) equations, and u ∈ T (C,V)
is a constructor term, is called a successful reduction w.r.t.

s→R.

Note that t
s→∗
R u is successful w.r.t.

s→R iff so is (t � x)
s→∗
R (u � x), where x

is a fresh variable.

Definition 10. Consider a sequence of equations C, a term s and a fresh vari-
able x. We say that a constructor-based conditional narrowing derivation of the
form (C, s � x)

c
�∗

σ (t � x) is successful if t ∈ T (C,V) is a constructor term.

We say that a derivation of the form (C, s � x)
c
�∗

σ (C′, s′ � x) is a failing
derivation if no more narrowing steps can be applied and at least one of the
following conditions holds:

– C′ is not the empty sequence, or

– s′ is not a constructor term.

A finite derivation is called incomplete when it is neither successful nor failing.

Because of the non-determinism of rule narrowing, the computation of all nar-
rowing derivations starting from a given term is usually represented by means
of a narrowing tree:

Definition 11 (constructor-based conditional narrowing tree). Let R be
a DCTRS and C be a sequence of equations. A (possibly incomplete) constructor-
based conditional narrowing tree for C in R is a (possibly infinite) directed rooted
node- and edge-labeled graph τ built as follows:

– the root node of τ is labeled with C;

– every node C1 is either a leaf (a node with no output edge) or it is unfolded
as follows: there is an output edge from node C1 to node C2 labeled with σ for
all constructor-based conditional narrowing steps C1

c
�σ C2 for the selected

innermost narrowable term;

– the root node is not a leaf — at least the root node should be unfolded.

Computing More Specific Versions of Conditional Rewriting Systems 147

By abuse of notation, we will denote a finite constructor-based conditional nar-
rowing tree τ (and its subtrees) for C as a finite set with the constructor-based

conditional narrowing derivations starting from C in this tree, i.e., C
c
�∗

θ C′ ∈
τ if there is a root-to-leaf path from C to C′ in τ labeled with substitutions
θ1, θ2, . . . , θn such that C

c
�θ1 · · · c

�θn C′ is a constructor-based conditional
narrowing derivation and θ = θn ◦ · · · ◦ θ1.

Example 12. Consider again the system R from Example 4 and the initial se-
quence of equations C = (inv(x2) � (x1, x), inv′(x1) � (t, y), (t, n(x, y)) � w),
where w is a fresh variable (the reason to consider this initial sequence of equa-
tions will be clear in Definition 14 below). The depth-1 (i.e., derivations are
stopped after one narrowing step) constructor-based conditional narrowing tree
τ for C contains the following derivations:

C
c
�{x2 �→[left|x′

2]} (inv(x′
2) � (x′

1, x
′), inv′(x′

1) � (t′, y′),
(t′, n(x′, y′)) � (x1, x), inv′(x1) � (t, y), (t, n(x, y)) � w)

C
c
�{x2 �→[str(x′)|t′]} ((t′, sym(x′)) � (x1, x), inv′(x1) � (t, y), (t, n(x, y)) � w)

C
c
�{x2 �→[left,right|t′]} ((t′, bottom) � (x1, x), inv′(x1) � (t, y), (t, n(x, y)) � w)

Note that a constructor-based conditional narrowing tree can be incomplete in
the sense that we do not require all unfoldable nodes to be unfolded (i.e., some fi-
nite derivations in the tree may be incomplete). Nevertheless, if a node is selected
to be unfolded, it should be unfolded in all possible ways using constructor-based
conditional narrowing (i.e., one cannot partially unfold a node by ignoring some
unifying rules, which would give rise to incorrect results). In order to keep the
tree finite, one can introduce a heuristics that determines when the construction
of the tree should terminate. We consider the definition of a particular strat-
egy for ensuring termination out of the scope of this paper; nevertheless, one
could use a simple depth-k strategy (as in the previous example) or some more
elaborated strategies based on well-founded or well-quasi orderings [10] (as in
narrowing-driven partial evaluation [1]).

Let us now recall the notion of least general generalization [34] (also called
anti-unification [33]), which will be required to compute a common generaliza-
tion of all instances of a term by a set of narrowing derivations.

Definition 13 (least general generalization [34], lgg). Given two terms s
and t, we say that w is a generalization of s and t if w � s and w � t; moreover, it
is called the least general generalization of s and t, denoted by lgg(s, t), if w′ � w
for all other generalizations w′ of s and t. This notion is extended to sets of terms
in the natural way: lgg({t1, . . . , tn}) = lgg(t1, lgg(t2, . . . lgg(tn−1, tn) . . .)) (with
lgg({t1}) = t1 when n = 1).

An algorithm for computing the least general generalization can be found, e.g.,
in [11]. Let us recall this algorithm for self-containedness. In order to compute

148 N. Nishida and G. Vidal

lgg(s, t), this algorithm starts with a tuple 〈{s "x t}, x〉, where x is a fresh
variable, and applies the following rules until no rule is applicable:

〈{f(s1, . . . , sn) "x f(t1, . . . , tn)} ∪ P, w〉 ⇒ 〈{s1 "x1 t1, . . . , sn "xn tn} ∪ P, wσ〉
where σ is {x #→ f(x1, . . . , xn)}
and x1, . . . , xn are fresh variables

〈{s "x t, s "y t} ∪ P, w〉 ⇒ 〈{s "y t} ∪ P, wσ〉
where σ is {x #→ y}

Then, the second element of the final tuple is the computed least general gener-
alization.

For instance, the computation of lgg(f(a, g(a)), f(b, g(b))) proceeds as follows:

〈{f(a, g(a)) "x f(b, g(b))}, x〉 ⇒ 〈{a "x1 b, g(a) "x2 g(b)}, f(x1, x2)〉
⇒ 〈{a "x1 b, a "x3 b}, f(x1, g(x3))〉
⇒ 〈{a "x3 b}, f(x3, g(x3))〉

Therefore, lgg(f(a, g(a)), f(b, g(b))) = f(x3, g(x3)).
We now introduce a constructive algorithm to produce a more specific version

of a rule:

Definition 14 (MSV algorithm for DCTRSs). Let R be a DCTRS and let
l → r ⇐ C ∈ R be a conditional rewrite rule such that not all terms in r and C
are constructor terms. Let τ be a finite (possibly incomplete) constructor-based
conditional narrowing tree for (C, r � x) in R, where x is a fresh variable,
and τ ′ ⊆ τ be the tree obtained from τ by excluding the failing derivations (if
any). We compute a more specific version of l → r ⇐ C in R, denoted by
MSV(R, l → r ⇐ C, τ) , as follows:

– If τ ′ = ∅, then MSV(R, l → r ⇐ C, τ) = ⊥, where ⊥ is used to denote that
the rule is useless (i.e., no successful constructor-based reduction can use it)
and can be removed from R.

– If τ ′ �= ∅, then we let τ ′ = τ1 & . . .& τn be a partition of the set τ ′ such that
τi �= ∅ for all i = 1, . . . , n. Then,3

MSV(R, l → r ⇐ C, τ) = {(l → r ⇐ C)σ1, . . . , (l → r ⇐ C)σn}

where

(l → r ⇐ C)σi = lgg({(l → r ⇐ C)θ | (C, r � x)
c
�∗

θ (C′, r′ � x) ∈ τi})

with Dom(σi) ⊆ Var(C) ∪ Var(r), i = 1, . . . , n.4

3 The lgg operator is trivially extended to equations by considering them as terms,
e.g., the sequence s1 � t1, s2 � t2 is considered as the term ∧(� (s1, t1),� (s2, t2)),
where � and ∧ are binary function symbols.

4 By definition of constructor-based conditional narrowing, it is clear that σ1, . . . , σn

are constructor substitutions.

Computing More Specific Versions of Conditional Rewriting Systems 149

Regarding the partitioning of the derivations in the tree τ ′, i.e., computing
τ1, . . . , τn such that τ ′ = τ1 & . . . & τn, we first apply a simple pre-processing
to avoid trivial overlaps between the generated rules: we remove from τ ′ those
derivations (C, r � x)

c
�∗

θ (C
′, r′ � x) such that there exists another derivation

(C, r � x)
c
�∗

θ′ (C′′, r′′ � x) with θ′ � θ. In this way, we avoid the risk of hav-
ing such derivations in different subtrees, τi and τj , thus producing overlapping
rules. Once these derivations have been removed, we could proceed as follows:

– No partition (n = 1). This is what is done in the original transformation for
logic programs [24] and gives good results for most examples (i.e., produces
a non-overlapping system).

– Consider a maximal partitioning, i.e., each τi just contains a single deriva-
tion. This strategy might produce poor results when the computed substi-
tutions overlap, since overlapping instances would then be produced (even
if the considered function was originally non-overlapping).

– Use a heuristics that tries to produce a non-overlapping system whenever
possible. Basically, it would proceed as follows. Assume we want to apply the
MSV transformation to a function f . Let k be a natural number greater than
the maximum depth of the left-hand sides of the rules defining f . Then, we
partition the tree τ ′ as τ1, . . . , τn so that it satisfies the following condition
(while keeping n as small as possible): for each (C, r � x)

c
� ∗

θ C1 and

(C, r � x)
c
�∗

θ′ C2 in τi, we have that

• lθ and lθ′ are unifiable,5 or

• topk(lθ) and topk(lθ
′) are equivalent up to variable renaming,

where l → r ⇐ C is the considered rule. Here, given a fresh constant �, topk

is defined as follows: top0(t) = �, topk(x) = x for k > 0, topk(f(t1, . . . , tm))
= f(topk−1(t1), . . . , topk−1(tm)) for k > 0, i.e., topk(t) returns the topmost
symbols of t up to depth k and replaces the remaining subterms by the fresh
constant �.

Example 15. Let us apply the MSV algorithm to the first rule of the system
R introduced in Example 4. Here, we consider the depth-1 constructor-based
conditional narrowing tree τ with the derivations shown in Example 12. We first
remove derivations labeled with less general substitutions, so that from the first
and third derivations of Example 12, only the first one remains. Therefore, we
only consider the first and second derivations of Example 12:

C
c
�{x2 �→[left|x′

2]} (inv(x′
2) � (x′

1, x
′), inv′(x′

1) � (t′, y′),
(t′, n(x′, y′)) � (x1, x), inv′(x1) � (t, y), (t, n(x, y)) � w)

C
c
�{x2 �→[str(x′)|t′]} (t′, sym(x′)) � (x1, x), inv′(x1) � (t, y), (t, n(x, y)) � w

5 Suppose that θ and θ′ belong to different partitions, e.g., τi and τj , resp., and let σi

and σj be the substitutions obtained from τi and τj , resp., in Definition 14. Then,
σi ≤ θ and σj ≤ θ′ and, thus, lσi and lσj are unifiable. Therefore, MSV generates
an overlapping system.

150 N. Nishida and G. Vidal

Now, either by considering a maximal partitioning or the one based on function
topk, we compute the following partitions:

τ1 =

{C c
�{x2 �→[left|x′

2]} (inv(x′
2) � (x′

1, x
′), inv′(x′

1) � (t′, y′),
(t′, n(x′, y′)) � (x1, x), inv′(x1) � (t, y), (t, n(x, y)) � w)}

τ2 =

{C c
�{x2 �→[str(x′)|t′]}((t

′, sym(x′)) � (x1, x), inv′(x1) � (t, y), (t, n(x, y)) � w)}

so that the computed more specific version,Rmsv, contains the two rules already
shown in Example 4.

Now, we consider the correctness of the MSV transformation.

Theorem 16. Let R be a DCTRS, l → r ⇐ C ∈ R be a rewrite rule such
that not all terms in r and C are constructor terms. Let τ be a finite (possibly
incomplete) constructor-based conditional narrowing tree for (C, r � x) in R.
Then,

– If MSV(R, l → r ⇐ C, τ) = Rmsv, then Rmsv is a more specific version of

l → r ⇐ C in R w.r.t.
c→R.

– If MSV(R, l → r ⇐ C, τ) = ⊥, then l → r ⇐ C is not used in any successful

reduction in R w.r.t.
c→R.

This theorem can be proved by using a lifting lemma (cf. [25, Lemmas 3.4, 6.11,
and 9.4]).

Lemma 17 (lifting lemma). Let R be a DCTRS, S, T sequences of equa-
tions, θ a constructor substitution, and V a set of variables such that Var(S) ∪
Dom(θ) ⊆ V and T = Sθ. If T

c→∗ T ′ then there exists a sequence of equations
S′ and substitutions θ′, σ such that

– S
c
�∗

σ S′,
– S′θ′ = T ′,
– θ′ ◦ σ = θ [V], and
– θ′ is a constructor substitution.

Furthermore, one may assume that the narrowing derivation S
c
�∗

σ S′ and the

rewrite sequence T
c→∗
R T ′ employ the same rewrite rules at the same positions

in the corresponding equations.

Proof. We prove this lemma by induction on the length k of T
c→∗ T ′. The case

with k = 0 is trivial, so let k > 0. Let S = (s � t, S1) and T = (sθ � tθ, S1θ)
c→

T1
c→∗ T ′. We make a case analysis depending on which transition rule is applied

at the first step.

– If the reduction rule is applied, there exist a conditional rewrite rule l →
r ⇐ C ∈ R and a constructor substitution σ such that Var(l, r, C)∩V = ∅,
sθ = sθ[lσ]p, T1 = (Cσ, sθ[rσ]p � tθ, S1θ) = (C, s[r] � t, S1)(σ ∪ θ). Since

Computing More Specific Versions of Conditional Rewriting Systems 151

θ is a constructor substitution, the root symbol of s|p is a defined symbol,
and thus, s|p is not a variable. It follows from s|pθ = lσ that s|p and l are
unifiable. Let δ be an mgu of s|p and l. Then, we have that δ � (σ ∪ θ),
and hence δ is a constructor substitution. Now, by applying narrowing to
S = (s � t, S1), we have that S

c
�δ (C, s[r] � t, S1)δ. Let δ

′ be a constructor
substitution such that δ′ ◦ δ = (σ ∪ θ). By the induction hypothesis, we

have that (C, s[r] � t, S1)δ
c
�∗

δ′′ S
′ with S′θ′ = T ′, θ′ ◦ δ′′ = δ′ for some

constructor substitution θ′. Now we have that S
c
�∗

δ′′◦δ S
′, S′θ′ = T ′, and

θ′ ◦ (δ′′ ◦ δ) = θ [V].
– If rule matching is applied, there exists a constructor substitution σ such

that sθ = tθσ, and hence s and t are unifiable. Let δ be an mgu of s and t.
Then, we have that δ � (σ ◦ θ), and hence δ is a constructor substitution.

By applying unification to S, we have that S
c
�δ S1δ. Let δ

′ be a constructor
substitution such that δ′ ◦ δ = (σ ◦ θ). By the induction hypothesis, we have

that S1δ
c
�∗

δ′′S
′ with S′θ′ = T ′, θ′◦δ′′ = δ′ for some constructor substitution

θ′. Now we have that S
c
�∗

δ′′◦δ S
′, S′θ′ = T ′, and θ′ ◦ (δ′′ ◦ δ) = θ [V]. "!

The correctness of the MSV transformation can now be proved by using the
lifting lemma:

Proof (Theorem 16). Let Rmsv = {(l → r ⇐ C)σ1, . . . , (l → r ⇐ C)σn} and
R′ = (R \ {l → r ⇐ C}) ∪ Rmsv. It suffices to show that for a constructor

terms t and a sequence S of equations with a fresh variable x, S
c→R (t � x) is

successful in R iff S
c→R′ (t � x) is successful in R′.

First, we note that if S
c→∗
R′ (t � x) is successful in R′ then S

c→∗
R (t � x)

is successful in R: it follows from the definition of
c→ that the set of rules used

in S
c→∗

R′ T is a DCTRS such that every rule either appears in R or it is a

constructor instance of some rule in R. Hence
c→R′ ⊆ c→R. Thus, we only show

that if S
c→∗
R (t � x) is successful in R then S

c→∗
R′ (t � x) is successful in R′.

We prove this claim by induction on the length k of S
c→∗
R t � x. The case that

k = 0 is trivial, so let k > 0. Let S
c→∗
R (t � x) be

S = (s[l′θ] � s′, S′)
c→l′→r′⇐C′ (C′θ, s[r′θ] � s′, S′)

c→∗
R (s[t1] � s′, S′)

c→∗
R (t � x)

for a term s, a constructor term s′, a constructor substitution θ and a constructor
term t1 ∈ T (C,V). We make a case analysis whether l′ → r′ ⇐ C′ is l → r ⇐ C
or not.

– The case that l′ → r′ ⇐ C′ �= l → r ⇐ C. Since l′ → r′ ⇐ C′ ∈ R′, we have
that S = (s[l′θ] � s′, S′)

c→R′ (C′θ, s[r′θ] � s′, S′).

– Otherwise, by definition of
c→, we have that (lθ � y)

c→R (Cθ, rθ � y)
c→∗
R

(t1 � y) for some fresh variable y. Thus, it follows from Lemma 17 that

(C, r � y)
c
�∗

δ (t1 � y) and δ � θ for some constructor substitution δ.
By construction of τ , there exist a sequence T ′ of equations and constructor
substitutions σ′, σ′′ such that (C, r � y)

c
�∗

σ′ T ′ c
�∗

σ′′ (t1 � y) and (C, r �

152 N. Nishida and G. Vidal

y)
c
�∗

σ′ T ′ ∈ τ , i.e., δ = σ′ ◦ σ′′ and τ �= ∅ — this means that if l → r ⇐ C
is used in a successful derivation, then MSV(R, l → r ⇐ C, τ) �= ⊥. By the
construction of σ1, . . . , σn, we have that σi � σ′ for some i, and hence σi � θ.
Thus, we have that S = (s[l′θ] � s′, S′)

c→(l→r⇐C)σi
(C′θ, s[r′θ] � s′, S′).

By the induction hypothesis, we have that (C′θ, s[r′θ] � s′, S′)
c→∗

R′ (t � x),

and hence S
c→∗
R′ (t � x). "!

5 Conclusion and Future Work

We have introduced the notion of a more specific version of a rewrite rule in
the context of conditional rewrite systems with some restrictions (i.e., typical
functional programs). The transformation is useful to produce non-overlapping
systems from overlapping ones while preserving the so called successful reduc-
tions. We have introduced an automatic algorithm for computing more specific
versions and have proved its correctness.

We have undertaken the extension of the implemented program inverter of [29]
with a post-process based on the MSV transformation. We have tested the result-
ing transformation with the 15 program inversion benchmarks of [20].6 In nine of
these benchmarks (out of fifteen) an overlapping systemwas obtained by inversion
while the remaining six are non-overlapping.By applying theMSV transformation
to all overlapping rules — except for a predefined operator du — using a depth-
3 constructor-based conditional narrowing tree in all examples, we succeeded in
improving the nine overlapping systems. These promising results point out the
usefulness of the approach to improve the quality of inverted systems.

As for future work, we plan to explore the use of the MSV transformation to
improve the accuracy of non-termination analyses.

Acknowledgements. We thank the anonymous reviewers for their useful com-
ments and suggestions to improve this paper.

References

1. Albert, E., Vidal, G.: The narrowing-driven approach to functional logic program
specialization. New Generation Computing 20(1), 3–26 (2002)

2. Almendros-Jiménez, J.M., Vidal, G.: Automatic partial inversion of inductively
sequential functions. In: Horváth, Z., Zsók, V., Butterfield, A. (eds.) IFL 2006.
LNCS, vol. 4449, pp. 253–270. Springer, Heidelberg (2007)

6 Unfortunately, the site shown in [20] is not accessible now. Some of the benchmarks
can be found in [14,15,21]. All the benchmarks are reviewed in [26] and also available
from the following URL: http://www.trs.cm.is.nagoya-u.ac.jp/repius/. The two
benchmarks pack and packbin define non-tail-recursive functions which include some
tail-recursive rules; we transform them into pure tail recursive ones using the method
introduced in [30] (to avoid producing non-operationally terminating programs), that
are also inverted using the approach of [29].

Computing More Specific Versions of Conditional Rewriting Systems 153

3. Antoy, S., Hanus, M.: Overlapping rules and logic variables in functional logic
programs. In: Etalle, S., Truszczyński, M. (eds.) ICLP 2006. LNCS, vol. 4079, pp.
87–101. Springer, Heidelberg (2006)

4. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press
(1998)

5. Bertling, H., Ganzinger, H.: Completion-time optimization of rewrite-time goal
solving. In: Dershowitz, N. (ed.) RTA 1989. LNCS, vol. 355, pp. 45–58. Springer,
Heidelberg (1989)

6. Bockmayr, A., Werner, A.: LSE narrowing for decreasing conditional term rewrite
systems. In: Dershowitz, N., Lindenstrauss, N. (eds.) CTRS 1994. LNCS, vol. 968,
pp. 51–70. Springer, Heidelberg (1995)

7. Bondorf, A.: Towards a self-applicable partial evaluator for term rewriting systems.
In: Bjørner, D., Ershov, A., Jones, N. (eds.) Proceedings of the International Work-
shop on Partial Evaluation and Mixed Computation, pp. 27–50. North-Holland,
Amsterdam (1988)

8. Bondorf, A.: A self-applicable partial evaluator for term rewriting systems. In:
Dı́az, J., Orejas, F. (eds.) TAPSOFT 1989. LNCS, vol. 352, pp. 81–95. Springer,
Heidelberg (1989)

9. Bosco, P., Giovannetti, E., Moiso, C.: Narrowing vs. SLD-resolution. Theoretical
Computer Science 59, 3–23 (1988)

10. Dershowitz, N.: Termination of rewriting. Journal of Symbolic Computa-
tion 3(1&2), 69–115 (1987)

11. Dershowitz, N., Jouannaud, J.-P.: Rewrite systems. In: van Leeuwen, J. (ed.) Hand-
book of Theoretical Computer Science. Formal Models and Semantics, vol. B, pp.
243–320. Elsevier, Amsterdam (1990)

12. Fribourg, L.: SLOG: a logic programming language interpreter based on clausal
superposition and rewriting. In: Proceedings of the Symposium on Logic Program-
ming, pp. 172–185. IEEE Press (1985)

13. Ganzinger, H.: Order-sorted completion: The many-sorted way. Theoretical Com-
puter Science 89(1), 3–32 (1991)

14. Glück, R., Kawabe, M.: A program inverter for a functional language with equality
and constructors. In: Ohori, A. (ed.) APLAS 2003. LNCS, vol. 2895, pp. 246–264.
Springer, Heidelberg (2003)

15. Glück, R., Kawabe, M.: A method for automatic program inversion based on LR(0)
parsing. Fundamenta Informaticae 66(4), 367–395 (2005)

16. Hanus, M.: The integration of functions into logic programming: From theory to
practice. Journal of Logic Programming 19&20, 583–628 (1994)

17. Harrison, P.G.: Function inversion. In: Proceedings of the International Workshop
on Partial Evaluation and Mixed Computation, pp. 153–166. North-Holland, Am-
sterdam (1988)

18. Hölldobler, S.: Foundations of Equational Logic Programming. LNCS (LNAI),
vol. 353. Springer, Heidelberg (1989)

19. Hullot, J.-M.: Canonical forms and unification. In: Bibel, W., Kowalski, R.A. (eds.)
Automated Deduction. LNCS, vol. 87, pp. 318–334. Springer, Heidelberg (1980)

20. Kawabe, M., Futamura, Y.: Case studies with an automatic program inversion sys-
tem. In: Proceedings of the 21st Conference of Japan Society for Software Science
and Technology, 6C-3, 5 pages (2004)

21. Kawabe, M., Glück, R.: The program inverter LRinv and its structure. In:
Hermenegildo, M.V., Cabeza, D. (eds.) PADL 2004. LNCS, vol. 3350, pp. 219–
234. Springer, Heidelberg (2005)

154 N. Nishida and G. Vidal

22. Khoshnevisan, H., Sephton, K.M.: InvX: An automatic function inverter. In: Der-
showitz, N. (ed.) RTA 1989. LNCS, vol. 355, pp. 564–568. Springer, Heidelberg
(1989)

23. Marchiori, M.: On deterministic conditional rewriting. Technical Report MIT-LCS-
TM-405, MIT Laboratory for Computer Science (1997),
http://www.w3.org/People/Massimo/papers/MIT-LCS-TM-405.pdf

24. Marriott, K., Naish, L., Lassez, J.-L.: Most specific logic programs. Annals of Math-
ematics and Artificial Intelligence 1, 303–338 (1990),
http://www.springerlink.com/content/k3p11kl316m73764/

25. Middeldorp, A., Hamoen, E.: Completeness results for basic narrowing. Applicable
Algebra in Engineering, Communication and Computing

26. Nishida, N., Sakai, M.: Completion after program inversion of injective functions.
Electronic Notes in Theoretical Computer Science 237, 39–56 (2009)

27. Nishida, N., Sakai, M., Sakabe, T.: Generation of inverse computation programs
of constructor term rewriting systems. IEICE Transactions on Information and
Systems J88-D-I(8), 1171–1183 (2005) (in Japanese)

28. Nishida, N., Sakai, M., Sakabe, T.: Partial inversion of constructor term rewriting
systems. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 264–278. Springer,
Heidelberg (2005)

29. Nishida, N., Vidal, G.: Program inversion for tail recursive functions. In: Schmidt-
Schauß, M. (ed.) Proceedings of the 22nd International Conference on Rewriting
Techniques and Applications. Leibniz International Proceedings in Informatics,
vol. 10, pp. 283–298. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2011)

30. Nishida, N., Vidal, G.: Conversion to first-order tail recursion for improving pro-
gram inversion (2012) (submitted for publication)

31. Nishida, N., Vidal, G.: More specific term rewriting systems. In: The 21st Inter-
national Workshop on Functional and (Constraint) Logic Programming, Nagoya,
Japan (2012), Informal proceedings
http://www.dsic.upv.es/~gvidal/german/wflp12/paper.pdf

32. Ohlebusch, E.: Advanced topics in term rewriting. Springer, UK (2002)
33. Pfenning, F.: Unification and anti-unification in the calculus of constructions. In:

Proceedings of the Sixth Annual Symposium on Logic in Computer Science, pp.
74–85. IEEE Computer Society (1991)

34. Plotkin, G.: Building-in equational theories. Machine Intelligence 7, 73–90 (1972)
35. Ramos, J.G., Silva, J., Vidal, G.: Fast Narrowing-Driven Partial Evaluation for

Inductively Sequential Systems. In: Danvy, O., Pierce, B.C. (eds.) Proceedings of
the 10th ACM SIGPLAN International Conference on Functional Programming,
pp. 228–239. ACM Press (2005)

36. Slagle, J.R.: Automated theorem-proving for theories with simplifiers, commuta-
tivity and associativity. Journal of the ACM 21(4), 622–642 (1974)

http://www.w3.org/People/Massimo/papers/MIT-LCS-TM-405.pdf
http://www.springerlink.com/content/k3p11kl316m73764/
http://www.dsic.upv.es/~gvidal/german/wflp12/paper.pdf

Improving Determinization of Grammar

Programs for Program Inversion�

Minami Niwa, Naoki Nishida, and Masahiko Sakai

Graduate School of Information Science, Nagoya University
Furo-cho, Chikusa-ku, 4648603 Nagoya, Japan

{mniwa@sakabe.i., nishida@, sakai@}is.nagoya-u.ac.jp

Abstract. The inversion method proposed by Glück and Kawabe uses
grammar programs as intermediate results that comprise sequences of op-
erations (data generation, matching, etc.). The determinization method
used in the inversion method fails for a grammar program of which the
collection of item sets causes a conflict even if there exists a determin-
istic program equivalent to the grammar program. In this paper, by
ignoring shift/shift conflicts, we improve the determinization method so
as to cover grammar programs causing shift/shift conflicts. Moreover,
we propose a method to eliminate infeasible definitions from unfolded
grammar programs and show that the method succeeds in determinizing
some grammar programs for which the original method fails. By using
the method as a post-process of the original inversion method, we make
the original method strictly more powerful.

1 Introduction

Inverse computation for an n-ary function f is, given an output t of f , the calcula-
tion of (all) possible inputs t1, . . . , tn of f such that f(tn, . . . , tn) = t. Methods of
inverse computation are distinguished into two approaches [30, 31]: inverse inter-
pretation [5, 2, 1, 3, 10]1 and program inversion[21, 11, 18, 12, 30, 17, 31, 13, 34, 7,
25, 24, 8, 9, 16, 27, 20]. Methods of program inversion take the definition of f as
input and compute a definition of the inverse function for f . Surprisingly, the es-
sential ideas of the existing inversion methods for functional programs are almost
the same,2 except for [27, 20]. In general, function definitions for inverses that
are generated by inversion methods are non-deterministic w.r.t. the application
of function definitions even if the target functions are injective. For this reason,
determinization of such inverted programs is one of the most interesting and
challenging topics in developing inversion methods and has been investigated in
several ways [7, 8, 16, 4, 23].

� This work has been partially supported by MEXT KAKENHI #21700011.
1 Narrowing [14]which is amethod for equational unification is also classified into inverse
interpretation for term rewriting systems.

2 Roughly speaking, f(−→p0) = let t1 = f1(−→p1) in . . . let tn = fn(−→pn) in t0 is trans-
formed into f−1(t0) = let (−→pn) = f−1

n (tn) in . . . let (−→p1) = f−1
1 (t1) in (−→p0).

E. Albert (Ed.): LOPSTR 2012, LNCS 7844, pp. 155–175, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

156 M. Niwa, N. Nishida, and M. Sakai

The inversion method LRinv proposed by Glück and Kawabe [7, 8, 16] adopts
an interesting approach to determinization. A functional program is first trans-
lated into a context-free grammar, called a grammar program, whose language
is the sequences of atomic operations (data generation, matching, etc.), each of
which corresponds to a possible execution of the original program. The semantics
of operations in grammar programs is defined as a simple stack machine where
data terms are stored in the stack (input arguments, intermediate results, and
outputs), and the meanings of atomic operations (terminal symbols) are defined
as pop and push operations on the stack. The grammar program is inverted by
reversing the bodies of production rules and by replacing each operation by its
opposite operation. Then, the inverted grammar program is determinized by a
method based on LR(0) parsing so that the resulting grammar is easily convert-
ible into a functional program without overlaps between function definitions.

LRinv deals with functional programs that cannot express non-deterministic
definitions of functions. For this reason, for an input whose inverted grammar
program causes conflicts in its item collection, LRinv fails and does not produce
any program.

The mechanism of the determinization method in LRinv is complicated but
very interesting. For example, some grammar programs corresponding to non-
terminating and overlapping rewriting systems 3 are transformed into termi-
nating and non-overlapping rewriting systems which correspond to terminating
functional programs. Moreover, the determinization method is independent of
the inversion principle, and thus, the method is useful as a post-process of any
other inversion methods.

Unfortunately, the determinization method is not successful for all grammar
programs obtained by the inversion phase — there exist some examples for
which this method fails but other inversion methods (e.g., [27]) succeed. The
failure of the determinization method is mainly caused by shift/shift conflicts
that are branches of shift relations in the collection of item sets with two or
more different atomic operations, not all of which are matching operations. In
the determinization method, a grammar program causing such conflicts does not
proceed to the code generation step even if there exists a deterministic program
that is equivalent to the grammar program.

In this paper, by ignoring shift/shift conflicts, we improve the determinization
method, proposing it as a semi-determinization method so as to cover grammar
programs causing shift/shift conflicts. To make the scope of LRinv larger, as
target programs, we deal with conditional term rewriting systems — one of
well studied computation models of functional programs — instead of functional
programs in [7, 8, 16]. Inevitably, we adapt LRinv to the setting of term rewriting.

For any grammar program that causes no conflict, the semi-determinization
method works as well as the original method since we do not modify the transfor-
mation itself. We show that the semi-determinization method succeeds in deter-
minizing some grammar programs causing shift/shift conflicts. This means that

3 Unlike functional programs used in [8], rewriting systems can express non-
deterministic computation.

Improving Determinization of Grammar Programs for Program Inversion 157

the semi-determinization is strictly more powerful than the original determiniza-
tion method. We also show that the semi-determinization method converts some
grammar programs whose corresponding rewriting systems are not terminating,
into ones whose corresponding rewriting systems are terminating.

The language generated by a grammar program may contain infeasible se-
quences, in which a term c(t1, . . . , tn) is generated and pushed onto the stack
and later its root symbol is examined by an unsuccessful matching operation that
examines whether the root symbol is a constructor other than c. Such sequences
never happen in completed executions of functions, and thus, we can exclude
function definitions containing infeasible sequences while preserving semantic
equivalence. Unfortunately, such infeasible sequences do not explicitly appear in
function definitions obtained by the semi-determinization method. However, they
sometimes appear explicitly after unfolding functions. In this paper, we adapt
the unfolding method of functional programs to grammar programs, and propose
a method to eliminate infeasible definitions from unfolded grammar programs.
We show that the method succeeds in determinizing some grammar programs
which both the original and semi- determinization methods fail to determinize.

The main contributions of this paper are to adapt LRinv to the setting of
term rewriting, and to make LRinv strictly more powerful.

This paper is organized as follows. In Section 2, we recall rewriting systems
and grammar programs. In Section 3, we adapt translations between functional
and grammar programs to rewriting systems. In Section 4, we introduce the
overview of LRinv by means of an example. In Section 5, we show that the
semi-determinization method is meaningful for some examples. In Section 6,
we propose a method to eliminate infeasible definitions from unfolded grammar
programs. In Section 7, we summarize and describe future work of this research.

2 Preliminaries

In this section, we recall rewriting systems and grammar programs.

2.1 Rewriting Systems

Throughout this paper, we use V as a set of variables, and C andF for finite sets of
constructor and function symbols that appear in programs, where each symbol f
has a fixed arity n and coaritym, represented by f/n or f/n/m— ifm > 0, then
f returns a tuple of m values. For terms t1, . . . , tn, we denote the set of variables
in t1, . . . , tn by Var(t1, . . . , tn). We assume that C contains constructor symbols
to represent tuples (t1, . . . , tm), e.g., tpm/m/m, and we omit such symbols from
tpm(t1, . . . , tm). The set of constructor terms over C is denoted by T (C,V) and the
set of ground constructor terms is denoted by T (C). For the sake of readability and
expressiveness, functional programs are written as deterministic conditional term
rewriting systems 4 (DCTRSs) [29], which are sets of conditional rewrite rules of

4 The terminology “deterministic” in the field of conditional rewriting means that the
conditional part can be evaluated from left to right. Thus, the terminology is different
from the one used for “deterministic computation” of functional programs.

158 M. Niwa, N. Nishida, and M. Sakai

the form l → r ⇐ s1 � t1, . . . , sk � tk such that Var(r) ⊆ Var(l, t1, . . . , tk) and
Var(si) ⊆ Var(l, t1, . . . , ti−1) for all i > 0. A DCTRS is called a term rewriting
system (TRS) if every rule in the DCTRS is unconditional.

A DCTRS R is called a pure constructor systems [22] (a normalized CTRS
in [4]) if every conditional rule is of the form

f0(u0,1, . . . , u0,n0)→ r0 ⇐ f1(u1,1, . . . , u1,n1) � r1, . . . , fk(uk,1, . . . , uk,nk
) � rk

where fi ∈ F and ui,1, . . . , ui,ni , ri ∈ T (C,V) for all i ≥ 0. R is called ultra-non-
erasing [26] if Var(l, t1, . . . , tk) ⊆ Var(s1, . . . , sk, r) for every conditional rule
l → r ⇐ s1 � t1, . . . , sk � tk. R is called ultra-linear [26] if both the tuples
(l, t1, . . . , tk) and (s1, . . . , sk, r) are linear for every conditional rule l → r ⇐
s1 � t1, . . . , sk � tk.

This paper assumes that DCTRSs are ultra-non-erasing and ultra-linear pure
constructor systems — conditional rules of such DCTRSs can be seen in a func-
tional language as

f0(u0,1, . . . , u0,n0) = let r1 = f1(u1,1, . . . , u1,n1) in
. . .

let rk = fk(uk,1, . . . , uk,nk
) in r0

This paper also assumes that the main function defined by a given system is
injective. For a DCTRS R, the reduction relation we consider is the leftmost
constructor-based reduction [33, 28], exactly the usual call-by-value evaluation
of functional programs — only constructor instances of the left-hand sides of
rules are reduced.

Two different rewrite rules l1 → r1 ⇐ C1 and l2 → r2 ⇐ C2 are called
overlapping if l1 and a renamed variant of l2 are unifiable; otherwise, they are
non-overlapping. Note that there is no inner overlaps since we restrict DCTRSs to
be pure constructor systems. A DCTRS is called overlapping if it has overlapping
rewrite rules; otherwise, the DCTRS is non-overlapping.

2.2 Grammar Programs

In the following, to represent sequences of objects, we may use the usual list
representations, e.g., the sequence 1 2 3 is denoted by [1, 2, 3], [1]@[2, 3], etc.

Let Op = {c! | c ∈ C} ∪ {c? | c ∈ C} ∪ {(i1 . . . ij) | j > 0, {i1, . . . , ij} =
{1, . . . , j}}, the set of alphabets. A grammar program is a context-free gram-
mar (F ,Op, S,G) [8], where we consider F the set of non-terminal symbols,
Op the set of terminal symbols, S the initial non-terminal symbol (not used
in this paper), and G the set of production rules (function definition) of the
form f → α with f ∈ F and α ∈ (F ∪ Op)∗.5 In the following, instead of the

5 For an operation a, pop(a) and push(a) denote the numbers of values popped and
pushed by a, resp.: pop(f) = n and push(f) = m for f/n/m ∈ F ; pop(c?) = push(c!)
= 1 and push(c?) = pop(c!) = n for c/n ∈ C; pop((i1 . . . ij)) = push((i1 . . . ij))
= j. Note that f → a1 . . . am with a1, . . . , am ∈ F ∪ Op should be consistent,
i.e., pop(f) +

∑m
i=1(push(ai) − pop(ai)) = push(f) and pop(f) +

∑k−1
i=n (push(ai) −

pop(ai)) ≥ pop(ak) for all 1 ≤ k ≤ m−1. These (in)equalities are necessary to guess
the arity and coarity of generated auxiliary functions (non-terminals).

Improving Determinization of Grammar Programs for Program Inversion 159

quadruple (F ,Op, S,G) for a context-free grammar, we only write G as the
grammar program. We consider only grammar programs that can be translated
back into functional programs (DCTRSs in this paper). For the sake of readabil-
ity, this paper does not deal with the duplication/equality operator ' (shown
in [8], but the techniques in this paper also extend to the setting with the du-
plication/equality operator.

Non-terminal and terminal symbols are called operations, and terminal sym-
bols are called atomic operations (i.e., Op is the set of atomic operations). For
a constructor c ∈ C, the operation c! is called a constructor application of c,
and the operation c? is called a pattern matching of c. Operations (i1 . . . ij) in
Op are called permutations. For a grammar program G with a function f ∈ F ,
the notation L(G, f) represents the set of atomic-operation sequences generated
from the non-terminal f .

The semantics→G of a grammar programG is defined over pairs of operation-
and term-sequences — a binary relation over Op∗ × T (C)∗ — as follows:

([f]@α,�t)→G (β@α,�t) where f → β ∈ G

([c!]@α, [u1, . . . , un]@�t)→G (α, [c(u1, . . . , un)]@�t) where c/n ∈ C
([c?]@α, [c(u1, . . . , un)]@�t)→G (α, [u1, . . . , un]@�t) where c/n ∈ C

([(i1 . . . ij)]@α, [u1, . . . , uj]@�t)→G (α, [ui1 , . . . , uij]@�t)

where �t denotes a sequence of terms. When computing f(t1, . . . , tn) with f/n/m
∈ F , we start with ([f], [t1, . . . , tn]) and obtain the result (u1, . . . , um) if ([f],
[t1, . . . , tn])→∗

G ([], [u1, . . . , um]). The second component of the pairs plays a role
of a stack that stores input, intermediate, and resulting terms. For c/n ∈ C, the
constructor application c! pops the n topmost values t1, . . . , tn from the stack
and pushes the value c(t1, . . . , tn) onto the stack; the pattern matching c? pops
the topmost value c(t1, . . . , tn) from the stack and then pushes values t1, . . . , tn
onto the stack. A permutation (i1 . . . ij) reorders the j topmost values on the
stack by moving in parallel the k-th element to the ik-th position. We merge
sequences of permutations in G into single optimized ones such as (2 1) (3 1 2)
into (3 2 1), and drop identity permutations such as (1 2 3).

3 Translation between DCTRSs and Grammar Programs

Translations between functional and grammar programs can be found in [8].
In this section, we adapt the translations to DCTRSs. In the translations, a
conditional rewrite rule is transformed into a function definition, and vice versa.

First, we show a translation of DCTRSs into grammar programs. Recall that
DCTRSs in this paper are ultra-non-erasing and ultra-linear. The translation
below relies on these properties.

Definition 1. Let R be a DCTRS. We assume that any conditional rewrite rule
in R is normalized to the following form:

f0(u0,1, . . . , u0,n0)→ (r0,1, . . . , r0,m0) ⇐ f1(u1,1, . . . , u1,n1)� (r1,1, . . . , r1,m1),
...

fk(uk,1, . . . , uk,nk
)� (rk,1, . . . , rk,mk

)

160 M. Niwa, N. Nishida, and M. Sakai

where fi/ni/mi ∈ F and ui,1, . . . , ui,ni , ri,1, . . . , ri,mi ∈ T (C,V) for all i ≥ 0.
The translation GRM of DCTRSs into grammar programs is defined as follows:

GRM (R) = {f → α | f(u0,1, . . . , u0,n0) → (r0,1, . . . , r0,m0)⇐ C ∈ R,

(α1, s1) = Grm?([u0,1, . . . , u0,n0], [], [

n0︷ ︸︸ ︷
⊥, . . . ,⊥]),

(α2, s2) = Grmc(C,α1, s1),
(α, [r0,1, . . . , r0,m0]) = Grm !([r0,m0 , . . . , r0,1], α2, s2) }

where ⊥ is a fresh constant used as dummy elements in a stack, and Grmc, Grm !,
and Grm? are functions with type Cond∗ × Op∗ × T (C,V)∗ → Op∗ × T (C,V)∗
and T (C,V)∗×Op∗×T (C,V)∗ → Op∗×T (C,V)∗,6 which are defined as follows:

– Grmc([], α, s) = (α, s),
– Grmc([f(l1, . . . , ln) � (r1, . . . , rm)]@C,α, s) = Grmc(C,α2, s2), where

• (α1, [l1, . . . , ln]@ s1) = Grm !([ln, . . . , l1], α, s), and

• (α2, s2) = Grm?([r1, . . . , rm], α1 @[f], [

n︷ ︸︸ ︷
⊥, . . . ,⊥]@ s1),

– Grm?([], α, s) = (α, s),
– Grm?([x]@�t, α, [u1, . . . , ui−1,⊥]@ s) = Grm?(�t, α, [u1, . . . , ui−1, x]@ s),
– Grm?([c(l1, . . . , ln)]@�t, α, [u1, . . . , ui−1,⊥]@ s) = Grm?([l1, . . . , ln]@�t, α@

[(i 1 . . . i− 1), c?], [

n︷ ︸︸ ︷
⊥, . . . ,⊥]@ s),

– Grm !([], α, s) = (α, s),
– Grm !([x]@�t, α, [u1, . . . , ui−1, x]@ s) = Grm !(�t, α@[(i 1 . . . i−1)], [x, u1, . . . ,

ui−1]@ s), and
– Grm !([c(l1, . . . , ln)]@�t, α, s) = Grm !(�t, α1 @[c!], [c(l1, . . . , ln)]@ s1), where

(α1, [l1, . . . , ln]@ s1) = Grm !([ln, . . . , l1], α, s)

where x is a variable and uj �= ⊥ for all j < i. Sequences of permutations are
optimized during (or after) the translation.

Example 2. Let us consider the function snoc defined by the following TRS:

Rsnoc =

{
snoc(nil, y)→ cons(y, nil)

snoc(cons(x1, x2), y)→ cons(x1, snoc(x2, y))

}

where C = {nil/0, cons/2, . . .} and F = {snoc/2/1}. The function snoc appends
the second argument to the end of the first argument, e.g., snoc(cons(1, cons(2,
nil)), 3) = cons(1, cons(2, cons(3, nil))). Rsnoc is normalized as follows:

{
(A) snoc(nil, y)→ (cons(y, nil))
(B) snoc(cons(x1, x2), y)→ (cons(x1, y))⇐ snoc(x2, y) � (y)

}

6 Cond is the set of conditions. The first argument stores terms or conditions to be
transformed, the second stores generated operations, and the third stores the state
of the stack that is used in executing operations.

Improving Determinization of Grammar Programs for Program Inversion 161

We have that GRM ({(A)}) = { snoc→ nil? nil! (2 1) cons! } since

– Grm?([nil, y], [], [⊥,⊥]) =Grm?([y], nil?, [⊥]) = Grm?([], nil?, [y])=(nil?, [y]),
– Grmc([], nil?, [y]) = (nil?, [y]),
– Grm !([cons(y, nil)], nil?, [y]) = Grm !([], nil? nil! (2 1) cons!, [cons(y, nil)]) =

(nil? nil! (2 1) cons!, [cons(y, nil)]), where Grm !([nil, y], nil?, [y]) = Grm !([y],
nil? nil!, [nil, y]) = Grm !([], nil? nil! (2 1), [y, nil]) = (nil? nil! (2 1), [y, nil]).

We also have that GRM ({(B)}) = { snoc → cons? (2 3 1) snoc (2 1) cons! }.
Therefore, Rsnoc is translated into the following grammar program:

Gsnoc =

{
snoc→ nil? nil! (2 1) cons!
snoc→ cons? (2 3 1) snoc (2 1) cons!

}

Next, we show a translation of grammar programs into DCTRSs. We assume
that the arity and coarity of the main function defined by a given grammar
program are given. Before the translation, we need to determine the arities and
coarities of all auxiliary functions (non-terminal symbols) in grammar programs.
To this end, we solve equalities and inequalities to keep consistency of stacks
(see Footnote 5). Solutions of the (in)equalities are not unique but we take one
of them, in which the arity and coarity of auxiliary functions are as small as
possible.

Definition 3. Let G be a grammar program. The translation FCT of grammar
programs into DCTRSs is defined as follows:

FCT (G) = { θ(f(x1, . . . , xn) → (r1, . . . rm)⇐ C) | f → α ∈ G, f/n/m ∈ F ,
([r1, . . . , rm], C, θ) =
Fct(α, [x1, . . . , xn], [], ∅) }

where x1, . . . , xn are fresh variables, and Fct is a function with type Op∗ ×
T (C,V)∗ × Cond∗ × Subst → T (C,V)∗ × Cond∗ × Subst,7 which is defined as
follows:

– Fct([], s, C, θ) = (s, C, θ),
– Fct([c?]@α, [x]@ s, C, θ) = (α, [x1, . . . , xn]@ s, C, θ ◦ {x #→ c(x1, . . . , xn)}),
– Fct([c!]@α, [u1, . . . , un]@ s, C, θ) = (α, [c(u1, . . . , un)]@ s, C, θ),
– Fct([f]@α, [u1, . . . , un]@ s, C, θ) = (α, [y1, . . . , ym]@ s, C@[f(u1, . . . , un) →

(y1, . . . , ym)], θ), where f/n/m ∈ F , and
– Fct([(i1 . . . ij)]@α, [u1, . . . , uj]@ s, C, θ) = (α, [ui1 , . . . , uij]@ s, C, θ),

where x is a variable, c/n ∈ C, and x1, . . . , xn, y1, . . . , ym are fresh variables.

We will show an example of the application of FCT to a grammar program later
(see Example 5).

7 Subst denotes the set of substitutions. The first argument of Fct stores operation
sequences we translate; the second stores the state of the stack that is used in execut-
ing operations; the third stores generated conditions; the fourth stores substitutions
generated by matching operators.

162 M. Niwa, N. Nishida, and M. Sakai

As mentioned above, given a grammar program G with a function f , if the
arity and coarity of the main function are fixed and we determine the arities
and coarities of auxiliary functions (non-terminals) to be as small as possible,
then each function definition in G is translated into a unique conditional rewrite
rule and G is translated back into a unique DCTRS, up to variable renaming.
Viewed in this light, for any grammar program, the corresponding DCTRSs are
unique. We call a grammar program deterministic if the corresponding DCTRS
is non-overlapping. Two different function definitions are called non-overlapping
if the corresponding rewrite rules are non-overlapping.

4 Overview of LRinv

In this section, we briefly recall LRinv [7, 8, 16] by using an example. We also
recall the concrete definitions of item sets and conflicts related to item sets, called
shift/shift conflicts, which influence the success or failure of the determinization
method (i.e., the power of LRinv).

LRinv assumes that functions to be inverted are injective over inductive data
structures. To make the scope of LRinv larger, we deal with DCTRSs instead of
the original source language shown in [7, 8, 16].

As the first step, we translate a given DCTRS into a grammar program G.
To invert the grammar program G, each function definition f → a1 . . . an ∈ G
is inverted to the one f−1 → (an)

−1 . . . (a1)
−1, where (g)−1 = g−1 for g ∈ F ,

(c?)−1 = c! and (c!)−1 = c? for c ∈ C, and ((i1 . . . im))−1 = (j1 . . . jm) with k
= ijk for a permutation (i1 . . . im) [8]. Note that the inverted grammar can be
translated back into a DCTRS, and thus, the inverted grammar is a grammar
program, where the arity of f−1 is the coarity of f , and the coarity of f−1 is the
arity of f .

Example 4. The grammar program Gsnoc in Example 2 is inverted as follows:

Gsnoc−1 =

{
snoc−1 → cons? (2 1) nil? nil!
snoc−1 → cons? (2 1) snoc−1 (3 1 2) cons!

}

Gsnoc−1 is translated back into the following overlapping DCTRS:

Rsnoc−1 =

{
snoc−1(cons(x, nil))→ (nil, x)
snoc−1(cons(x, y))→ (cons(x, z), w) ⇐ snoc−1(y) � (z, w)

}

Note that this DCTRS is also obtained by other inversion methods, e.g., [27].

When the inverted grammar programs are deterministic (i.e., the corresponding
DCTRSs are non-overlapping), program inversion is completed and returns the
corresponding non-overlapping DCTRSs. In the case of Example 4, however,
Gsnoc−1 is not deterministic (i.e., Rsnoc−1 is overlapping). Thus, we proceed to
the determinization method based on LR(0) parsing as follows:

Step 1 (collection of item sets). Given a grammar program, the collection
of LR(0) item sets is computed by a closure operation (see below). If the col-
lection has no conflict (shift/reduce, reduce/reduce, or shift/shift conflicts),

Improving Determinization of Grammar Programs for Program Inversion 163

then we proceed to Step 2; otherwise, the determinization method fails and
returns the overlapping DCTRS corresponding to the given grammar pro-
gram.

Step 2 (code generation). Given the conflict-free collection of LR(0) item
sets, the grammar program is converted into a deterministic one. For lack of
space, we do not describe the details of this step.

In the following, we recall how to construct from a grammar program the
canonical LR(0) collection. An LR(0) parse item (item, for short) is a func-
tion definition with a dot · at some position on the right-hand side. An item
indicates how much of a sequence of operations has been performed at a cer-
tain point during the evaluation of a grammar program. For example, the item
snoc−1 → cons? (2 1) · nil? nil! indicates that we have successfully performed
a pattern matching cons? and a permutation (2 1), and that we hope to find
a value nil on the top of the stack. We group items together into LR(0) item
sets (item sets, for short) which represent the set of all possible operations that
a computation can take at a certain point during evaluation. For a grammar
program G with the collection I of its item sets, to calculate the collection IG
of all reachable item sets, we introduce two relations, shift and reduce, which
correspond to determining the parse action in LR(0) parsing:

shift. I1 �a I2 if I2 = {f → α1 a · α2 | f → α1 · a α2 ∈ closure(I1)}
reduce. I ↪→ f if f → α · ∈ closure(I)

where a ∈ F ∪ Op and the function closure : I → I and its auxiliary function
cls : I × F → I are defined as follows:

– closure(I) = cls(I, ∅),
– cls(∅, F) = ∅, and
– cls(I, F) = I ∪ cls({f → · α | f → α ∈ G, f ∈ F ′}, F ∪ F ′) where F ′ = {f |

f ′ → α1 · f α2 ∈ I, f �∈ F}.

The shift relation �a with an operation a transforms item set I1 to item set I2
under a, the reduce relation ↪→ is to return from item set I after n operations of
function f were shifted, and closure(I) calculates a new item set I of grammar
program G. Intuitively, item f → α1 · a α2 ∈ closure(I) indicates that, at some
point during evaluation of program G, we may perform operation a. The closure
calculation terminates since there are only a finite number of different items for
every grammar program. The set of all reachable item sets of G, the canonical
collection IG, is defined as follows: IG = {I | I0 �∗ I} where main(G) denotes
the main (or considered) function of G, start is a fresh non-terminal symbol, I0
= {start→ · main(G)}, and �∗ is the reflexive and transitive closure of �. The
set IG is finite since there are only a finite number of different item sets.

As mentioned before, at the end of Step 1, we examine whether there is a con-
flict in the collection or not — if there is no conflict, we proceed to Step 2. In this
paper, we focus on shift/shift conflicts only since such conflicts are much more
important for the determinization method than other conflicts (shift/reduce and
reduce/reduce conflicts). We say that a grammar program G causes a shift/shift

164 M. Niwa, N. Nishida, and M. Sakai

I0 = { start → · snoc−1 }

I1 =

{
snoc−1 → cons? · (2 1) nil? nil!
snoc−1 → cons? · (2 1) snoc−1 (3 1 2) cons!

}

I2 =

{
snoc−1 → cons? (2 1) · nil? nil!
snoc−1 → cons? (2 1) · snoc−1 (3 1 2) cons!

}

I3 = { snoc−1 → cons? (2 1) nil? · nil! }
I4 = { snoc−1 → cons? (2 1) nil? nil! · }

...
I8 = { start → snoc−1 · }

I0 �snoc−1
I8 I1 �(2 1) I2 I2 �nil? I3 I3 �nil! I4 . . . I8 ↪→1 start

I0 �cons? I1 I2 �snoc−1

I5 I2 �cons? I1

Fig. 1. The item sets of Gsnoc−1 and their shift and reduce relations

conflict if its collection causes two shift relations I �a1 I1 and I �a2 I2 such
that a1, a2 ∈ Op, a1 �= a2, and neither a1 nor a2 is a matching operator — if
an item set has two or more shift actions labeled with atomic operations, all of
them must be matching operations. For instance, I �nil! I ′ and I �cons? I ′′ are
in shift/shift conflict, while I �nil? I ′ and I �cons? I ′′ are not.

Example 5. Consider the grammar program Gsnoc−1 in Example 4 again. The
item sets and their shift and reduce relations are illustrated in Fig. 1. Since this
collection is conflict-free, we proceed to Step 2 of the determinization method,
transforming the grammar programGsnoc−1 into the following grammar program:

G′
snoc−1 =

⎧⎨
⎩

(C) snoc−1 → cons? (2 1) f
(D) f → nil? nil!
(E) f → cons? (2 1) f (3 1 2) cons!

⎫⎬
⎭

where f is a non-terminal symbol introduced by means of the code generation.
The arity and coarity of snoc−1 are 1 and 2, resp., since the arity and coarity
of snoc are 2 and 1, resp. Solving the (in)equalities in Footnote 5, we deter-
mine that both the arity and coarity of f are 2. We have that FCT ({(C)}) =
{ snoc−1(cons(x, v)) → (z, y)⇐ f(v, x) � (z, y) } since

Fct(cons? (2 1) f, [x1], [], ∅) = Fct((2 1) f, [x, v], [], {x1 #→ cons(x, v)})
= Fct(f, [v, x], [], {x1 #→ cons(x, v)})
= Fct([], [z, y], [f(v, x) � (z, y)], {x1 #→ cons(x, v)})
= ([z, y], [f(v, x) � (z, y)], {x1 #→ cons(x, v)})

The rewrite rule snoc−1(cons(x, v)) → (z, y) ⇐ f(v, x) � (z, y) is simplified to
snoc−1(cons(x, v)) → f(v, x). We also have that

– FCT ({(D)}) = { f(nil, y)→ (nil, y) }, and
– FCT ({(E)}) = { f(cons(x, v), y) → (cons(y, z), w)⇐ f(v, x) � (z, w) }.

Improving Determinization of Grammar Programs for Program Inversion 165

Therefore, the resulting grammar program G′
snoc−1 is translated back into the

following non-overlapping DCTRS:

R′
snoc−1 = FCT (G′

snoc−1)

=

⎧⎨
⎩

snoc−1(cons(x, v))→ f(v, x)
f(nil, y)→ (nil, y)

f(cons(x, v), y)→ (cons(y, z), w) ⇐ f(v, x) � (z, w)

⎫⎬
⎭

One may think that transformations of context-free grammars into Greibach
normal forms (GNF) are sufficient for determinization. For example, G′

snoc−1

in Example 5 is easily converted into GNF. Roughly speaking, LRinv converts
grammar programs into a grammar in GNF (and then minimizes the grammar),
but not all the transformations of context-free grammars into GNF are useful
for determinizing grammar programs.

As seen in Example 5, we always succeed in determinizing conflict-free gram-
mar programs. On the other hand, the determinization method fails for all
grammar programs with conflicts. Viewed in this light, a necessary condition
to succeed in determinizing by this method is that grammar programs do not
cause any conflict. However, the non-existence of shift/shift conflicts requires the
resulting grammar programs to be of a restricted form:

f → α c1? α1 . . . f → α cn? αn

where α ∈ Op∗ and c1, . . . , cn are pairwise different. The grammar program
above is translated back into the following rewrite rules:

f(p1, . . . , pi, c1(. . .), . . .) → r1 . . . f(p1, . . . , pi, cn(. . .), . . .) → rn

It is clear that not all deterministic grammar programs and non-overlapping
DCTRSs are in these forms. For example, the following grammar program causes
a shift/shift conflict, and thus, the program is not of the form above:

{
f → (2 1) cons? suc? (2 1) cons? cons! (2 1) cons! (2 1) cons!
f → suc? (2 1) cons? (2 1) nil? nil! (2 1) cons! (2 1) cons!

}

This grammar program is deterministic since the corresponding TRS is non-
overlapping, where f is assumed to be binary:

{
f(x, cons(suc(y), cons(z1, z2)))→ cons(x, cons(y, cons(z1, z2)))

f(suc(x), cons(y, nil))→ cons(x, cons(y, nil))

}

Note that exchanging the arguments of f is not a solution to transform the TRS
to the form mentioned above.

Roughly speaking, shift/shift conflicts are not crucial for the determinization
method while the non-existence of shift/shift conflicts ensures in advance that
the determinization method succeeds. In the next section, we show a grammar
program which can be determinized by the code generation (Step 2) although
the grammar program causes shift/shift conflicts.

166 M. Niwa, N. Nishida, and M. Sakai

5 Semi-determinization of Grammar Programs with
Shift/Shift Conflicts

In this section, by means of two examples, we observe what happens in applying
the code generation (Step 2) to grammar programs causing shift/shift conflicts.

Example 6. Consider the following TRS, a variant of unbin shown in [15]:8

Runbin2 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

unbin2(x)→ ub(x, nil)
ub(suc(zero), y)→ y

ub(suc(suc(x)), y)→ ub(suc(x), inc(y))
inc(nil)→ cons(0, nil)

inc(cons(0, y))→ cons(1, y)
inc(cons(1, y))→ cons(0, inc(y))

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

where C = { nil/0, cons/2, 0/0, 1/0, zero/0, suc/1, . . . } and F = { unbin2/1/1,
ub/2/1, inc/1/1 }. The function unbin2 converts positive natural numbers rep-
resented as suc(zero), suc(suc(zero)), suc(suc(suc(zero))), . . . into binary-numeral
expressions nil, cons(0, nil), cons(1, nil), . . .9 This TRS is translated and inverted
to the following grammar program:

Gunbin2−1 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

unbin2−1 → ub−1 (2 1) nil?

ub−1 → zero! suc!
ub−1 → ub−1 suc? (2 1) inc−1 (2 1) suc! suc!
inc−1 → cons? 0? nil? nil!
inc−1 → cons? 1? 0! cons!
inc−1 → cons? 0? inc−1 1! cons!

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

This grammar program corresponds to the following DCTRS:

Runbin2−1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

unbin2−1(x)→ y ⇐ ub−1(x) � (y, nil)

ub−1(x)→ (suc(zero), x)
ub−1(x)→ (suc(suc(y)), inc−1(z)) ⇐ ub−1(x) � (suc(y), z)

...

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

This conditional TRS is not operationally terminating [19] since ub−1(x) is called
in the conditional part of the third rule which defines ub−1(x). The item sets and
their shift relations for Gunbin2−1 are illustrated in Fig. 2. For item set I1, we have
two shift relations I1 �(2 1) I3 and I1 �suc? I4. These relations cause a shift/shift
conflict. Therefore, we cannot proceed to the code generation (Step 2). However,

8 All the examples shown in [15] are mentioned in [27] and they can be found in
http://www.trs.cm.is.nagoya-u.ac.jp/repius/.

9 To make unbin2 simpler, following the original unbin in [15], we use this coding
instead of the usual style cons(0, nil) (as 0), cons(1, nil) (as 1), cons(1, cons(0, nil)) (as
2), . . .

Improving Determinization of Grammar Programs for Program Inversion 167

I0 = { start → · unbin2−1 }

I1 =

{
unbin2−1 → ub−1 · (2 1) nil?

ub−1 → ub−1 · suc? (2 1) inc−1 (2 1) suc! suc!

}

I2 = { ub−1 → zero! · suc! }
I3 = { unbin2−1 → ub−1 (2 1) · nil? }
I4 = { ub−1 → ub−1 suc? · (2 1) inc−1 (2 1) suc! suc! }

...

I0 �unbin2−1

I22 I0 �zero! I2 I0 �ub−1

I1 I1 �(2 1) I3 I1 �suc? I4 . . .

Fig. 2. The item sets of Gunbin2−1 and their shift relations

by ignoring the shift/shift conflict and by proceeding to the code generation, we
obtain the following grammar program:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

unbin2−1 → zero! suc! f
f → (2 1) nil?
f → suc? (2 1) cons? g (2 1) suc! suc! f
g→ 0? h
g→ 1? 0! cons!
h→ nil? nil!
h→ cons? g 1! cons!

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

This grammar program is translated back into the following non-overlapping and
terminating TRS:

R′
unbin2−1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

unbin2−1(x)→ f(suc(zero), x)
f(x, nil)→ x

f(suc(x), cons(y, z))→ f(suc(suc(x)), g(y, z))
g(0, y)→ h(y)
g(1, y)→ cons(0, y)
h(nil)→ nil

h(cons(y, z))→ cons(1, g(y, z))

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

This DCTRS is desirable as an inverse of unbin2. Note that (operational) ter-
mination of the examples in this paper was proved by the termination tools
AProVE 1.2 [6] and VMTL [32].

In Example 6, by ignoring shift/shift conflicts, we succeeded in determinizing
Gunbin2−1 . However, not for all grammar programs causing shift/shift conflicts,
such a determinization method succeeds in converting the programs into deter-
ministic ones.

Example 7. Consider the following TRS, a variant of unbin2 in Example 6:

Runbin3 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

unbin3(x)→ ub(x, cons(0, nil))
ub(suc(zero), y)→ y

ub(suc(suc(x)), y)→ ub(suc(x), inc(y))
...

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

168 M. Niwa, N. Nishida, and M. Sakai

This TRS is inverted and translated back into the following overlapping DCTRS:

Runbin3−1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

unbin3−1(x)→ z ⇐ ub−1(x) � (z, cons(0, nil))
ub−1(x)→ (suc(zero), x)
ub−1(x)→ (suc(suc(y), inc−1(z))⇐ ub−1(x) � (suc(y), z)

...

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

This DCTRS is not operationally terminating. The corresponding grammar pro-
gram causes a shift/shift conflict, but we ignore the shift/shift conflict, proceed-
ing to the code generation. Then, we obtain the following grammar program:

G′
unbin3−1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

unbin3−1 → zero! suc! f
f → (2 1) cons? 0? nil?
f → suc? (2 1) cons? g (2 1) suc! suc! f
g→ 0? h
g→ 1? 0! cons!
h→ nil? nil!
h→ cons? g 1! cons!

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

This grammar program corresponds to the following TRS:

R′
unbin3−1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

unbin3−1(x)→ f(suc(zero), x)
f(x, cons(0, nil))→ x

f(suc(x), cons(y, z)))→ f(suc(suc(x)), g(y, z))
g(0, y)→ h(y)
g(1, y)→ cons(0, y)
h(nil)→ nil

h(cons(y, z))→ cons(1, g(y, z))

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

This TRS is still overlapping but terminating. The determinization method
fails to produce a non-overlapping DCTRS but transforms a non-operationally-
terminating DCTRS to an operationally terminating DCTRS. Therefore, pro-
ceeding to the code generation regardless shift/shift conflicts is meaningful for
this example even though it fails to produce a non-overlapping system.

It can be easily decided whether a DCTRS is non-overlapping, i.e., whether a
grammar program is deterministic. For this reason, it is not so important to
check the non-existence of shift/shift conflicts in advance. Therefore, we do not
have to take care of shift/shift conflicts.

The determinization method with ignoring shift/shift conflicts is no longer a
determinization (see Example 7). We call such a method semi-determinization.
Our semi-determinization method is summarized as follows: given a grammar
program G, (1) we compute the collection of item sets of G, and (2) if the
collection has neither shift/reduce nor reduce/reduce conflicts, then we apply
the code generation to G.

Improving Determinization of Grammar Programs for Program Inversion 169

6 Elimination of Infeasible Sequences

For a grammar program G defining f , the language L(G, f) may contain infea-
sible sequence (e.g., nil! cons?). In such cases, by removing function definitions
that produce infeasible sequences only, we sometimes succeed in determinizing
the grammar program. In this section, we first formalize infeasibility. Then, as
a post-process of the semi-determinization method, we propose a method to
eliminate infeasible definitions from unfolded grammar programs.

We first formalize the notion of infeasibility for atomic-operation sequences
and function definitions.

Definition 8. Let G be a grammar program. An atomic-operation sequence α
∈ Op∗ is called feasible if there exist sequences �t, �u ∈ T (C)∗ such that (α,�t) →∗

G

([], �u); otherwise, α is infeasible. A function definition f → α′ ∈ G is called
infeasible if α′ contains an infeasible sequence.

Note that it is decidable whether an atomic-operation sequence is infeasible or
not: we adapt narrowing [14] to computation of atomic-operation sequences as
follows:

– ([c!]@α, [u1, . . . , un]@ s) � (α, [c(u1, . . . , un)]@ s),
– ([c!]@α, [u1, . . . , ui]@X) � (α, [c(u1, . . . , ui, xi+1, . . . , xn)]@ Y),
– ([c?]@α, [c(u1, . . . , un)]@ s) � (α, [u1, . . . , un]@ s),
– ([c?]@α, [x]@ s) � (α, [x1, . . . , xn]@ s),
– ([c?]@α,X) � (α, [x1, . . . , xn]@ Y),
– ([(i1 . . . in)]@α, [u1, . . . , un]@ s) � (α, [ui1 , . . . , uin]@ s),
– ([(i1 . . . in)]@α, [u1, . . . , ui]@X) � (α, [u′

i1 , . . . , u
′
in]@ Y), where u′

j = uj if
j ≤ i, and otherwise, u′

j = xj ,

where c/n ∈ C, i < n, x is a variable, x1, . . . , xn, y are fresh variables, X is
a variable to represent a sequence, and Y is a fresh variable to represent a
sequence. Note that, given a variable X , a �-derivation starting from (α,X)
is a naive analysis for the capability of the execution of α. Note also that � is
a deterministic and terminating reduction. An atomic-operation sequence α is
feasible iff (α,X) � ([], �u) for some sequence �u ∈ T (C,V).

Example 9. Let us consider the grammar program G′
unbin3−1 in Example 7 again.

The language L(G′
unbin3−1 , f) contains the following sequence:

suc? (2 1) cons? 0? nil? nil! (2 1) suc! suc! (2 1) cons? . . .

In the execution of this sequence, the term nil is generated by nil! and examined
by the second occurrence of cons?. This can be seen in the following derivation:

(suc? (2 1) cons? 0? nil? nil! (2 1) suc! suc! (2 1) cons? . . . , X)
�+ (cons? . . . , [nil, suc(suc(x1))]@ Y)

This examination fails, and thus, the above sequence is infeasible.

170 M. Niwa, N. Nishida, and M. Sakai

Infeasible function definitions are useless for grammar programs since they
are never used in completed computations ([f],�t) →∗

G ([], �u). For this reason,
we may eliminate infeasible function definitions from grammar programs.

Definition 10. Let G and G′ be grammar programs defining f/n/m ∈ F . We
say that G and G′ are semantically equivalent w.r.t. f if for all terms t1, . . . , tn,
u1, . . . , um, ([f], [t1, . . . , tn]) →∗

G ([], [u1, . . . , um]) iff ([f], [t1, . . . , tn]) →∗
G′ ([],

[u1, . . . , um]).

We denote the set of feasible atomic-operation sequences in L(G, f) by Lfe(G, f).

Proposition 11. Let G and G′ be grammar programs defining f/n/m ∈ F .
Then, G and G′ are semantically equivalent w.r.t. f if Lfe(G, f) = Lfe(G

′, f).

The converse of Proposition 11 does not hold in general. For example, G = {f →
0? cons?} and G′ = {f → (2 1) cons? (3 1 2) 0?} are semantically equivalent,
but Lfe(G, f) �= Lfe(G

′, f). By definition, the following theorem holds.

Theorem 12. Let G be a grammar program such that G = G′ & {g → α}
and g → α is infeasible. Then, for any function f defined in G, Lfe(G, f) =
Lfe(G

′, f). That is, G and G′ are semantically equivalent w.r.t. f .

Consider G′
unbin3−1 in Example 7 again. Although L(G′

unbin3−1 , f) contains in-
feasible sequences, there is no infeasible function definition in G′

unbin3−1 . Thus,
unfortunately, we cannot drop any function definitions. Roughly speaking, any
infeasible sequence is of the form α1 c1! α2 c2? α3, where c1 �= c2 and the term
generated by c1! is examined by c2?. From the viewpoint of DCTRSs obtained
from grammar programs, constructor application operations correspond to gen-
erated constructors in the right-hand side of the rewrite rule, and constructor
matching operations correspond to pattern matching in the left-hand side. Thus,
in general, infeasible sequences do not appear explicitly in function definitions
even if the language contains infeasible sequences. This means that we rarely
find infeasible definitions in initial grammar programs. However, by unfolding
function definitions, infeasible definitions sometimes appear explicitly.

Example 13. Let us consider the grammar programG′
unbin3−1 in Example 7 again.

The first and second definitions of f are overlapping.

(1) f → (2 1) cons? 0? nil?
(2) f → suc? (2 1) cons? g (2 1) suc! suc! f

Now, we focus on the second one since the first one has no function call in the
right-hand side. Let us unfold the leftmost function call g:

(2a) f → suc? (2 1) cons? 0? h (2 1) suc! suc! f
(2b) f → suc? (2 1) cons? 1? 0! cons! (2 1) suc! suc! f

The definition (2a) and the first definition (1) of f are still overlapping, while
the definition (2b) is no longer overlapping with any other definitions (1) and
(2a). Let us unfold the leftmost function call h in (2a):

(2a-i) f → suc? (2 1) cons? 0? nil? nil! (2 1) suc! suc! f
(2a-ii) f → suc? (2 1) cons? 0? cons? g 1! cons! (2 1) suc! suc! f

Improving Determinization of Grammar Programs for Program Inversion 171

Again, the definition (2a-i) and the first definition (1) of f are still overlapping,
while the definition (2a-ii) is no longer overlapping with any other definitions
(1), (2b), and (2a-i). Let us unfold the leftmost function call f in (2a-i):

(2a-i-1) f → suc? (2 1) cons? 0? nil? nil! (2 1) suc! suc! (2 1) cons? 0? nil?
(2a-i-2) f → suc? (2 1) cons? 0? nil? nil! (2 1) suc! suc! suc? (2 1) cons? 0?

nil? nil! (2 1) suc! suc! f
(2a-i-3) f → suc? (2 1) cons? 0? nil? nil! (2 1) suc! suc! suc? (2 1) cons? 0?

cons? g 1! cons! (2 1) suc! suc! f

Finally, all of the definitions (2a-i-1), (2a-i-2), and (2a-i-3) are infeasible (see
Example 9), and thus, we obtain the following grammar program:

G′′
unbin3−1 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

unbin3−1 → zero! suc! f
f → (2 1) cons? 0? nil?
f → suc? (2 1) cons? 0? cons? g 1! cons! (2 1) suc! suc! f
f → suc? (2 1) cons? 1? 0! cons! (2 1) suc! suc! f
...

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

G′′
unbin3−1 is translated into the following non-overlapping and terminating TRS:

R′′
unbin3−1 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

unbin3−1(x)→ f(suc(zero), x)
f(x, cons(0, nil))→ x

f(suc(x), cons(0, cons(y, z)))→ f(suc(suc(x)), cons(1, g(y, z)))
f(suc(x), cons(1, y))→ f(suc(suc(x)), cons(0, y))

...

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

This TRS is desirable as an inverse of unbin3.

In the rest of this section, we formalize a way of unfolding function definitions
and how to eliminate infeasible definitions from unfolded grammar programs.

Definition 14. Let G be a grammar program and f → α1 g α2 be a function
definition in G such that α1 is an atomic-operation sequence. We define Unfold
as follows: UnfoldG(f → α1 g α2) = {f → α1 β α2 | g → β ∈ G}. Note that
UnfoldG(f → α) = {f → α} if α does not contain any function call. We extend
UnfoldG to grammar programs in order to unfold overlapping definitions:

Unfold(G) = (G \G′) ∪
⋃

f→α∈G′ UnfoldG(f → α)

where G′ is the maximum subset of G such that each definition in G′ is overlap-
ping with another definition in G. Note that no definition in G\G′ is overlapping
with any other definition in G. We define a function RmInfe that eliminates in-
feasible definitions from unfolded grammar programs:

RmInfe(G) = {f → α ∈ Unfold(G) | f → α is not infeasible}

We define the k times application of RmInfe as RmInfek: RmInfe0(G) = G and
RmInfek(G) = RmInfe(RmInfek−1(G)) for k > 0.

172 M. Niwa, N. Nishida, and M. Sakai

It is almost impossible to know what k is enough to obtain deterministic grammar
programs or whether such k exists. Thus, we heuristically specify k in advance
and try to obtain deterministic grammar programs. One of the heuristics is the
number of function definitions. Of course, we may stop applying RmInfe before
applying it k times if we obtain a deterministic grammar program.

Example 15. Consider G′
unbin3−1 and G′′

unbin3−1 in Examples 7 and 9 again. We
have that RmInfe3(G

′
unbin3−1) = G′′

unbin3−1 .

Finally, we show correctness of RmInfe.

Theorem 16. Let G be a grammar program. Then, for any f ∈ F , G and
RmInfe(G) are semantically equivalent w.r.t. f , and thus, for any k ≥ 0, G and
RmInfek(G) are semantically equivalent w.r.t. f .

Proof. This theorem follows from Theorem 12 and the following facts:

– for all grammar programsG1 andG2, if L(G1, f) = L(G2, f), then Lfe(G1, f)
= Lfe(G2, f), and

– for any function definition g → α ∈ G and for any symbol f ′ ∈ F , L(G, f ′)
= L((G \ {g → α}) ∪ UnfoldG(g → α), f ′). "!

7 Conclusion and Future Work

In this paper, we have adapted translations between functional and grammar
programs to rewriting systems, and have shown that the semi-determinization
method succeeds for some grammar programs causing shift/shift conflicts. We
have also shown that the semi-determinization method converts some gram-
mar programs whose corresponding DCTRSs are not terminating, into ones
whose corresponding DCTRSs are terminating. Moreover, we have proposed the
method to eliminate infeasible sequences from unfolded grammar programs. We
have shown that the method converts some grammar programs into determin-
istic ones. By using the method as a post-process of the semi-determinization
method, we made the original inversion method LRinv strictly more powerful.
We will implement a tool to deal with grammar programs, and then we will in-
troduce both LRinv and the method in this paper to the tool. As future work, we
will characterize the difference between grammar programs for which the semi-
determinization succeeds/fails to generate deterministic programs, clarifying a
sufficient condition for producing deterministic grammar programs.

The method of eliminating infeasible sequences from unfolded grammar pro-
grams looks similar to the computation of more specific versions shown in [28].
However, the method is a bit different from the MSV transformation in [28],
e.g., the MSV transformation converts R′

unbin3−1 in Example 7 into the following
TRS which is different from R′′

unbin3−1 in Example 13:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

unbin3−1(x)→ f(suc(zero), x)
f(x, cons(0, nil))→ x

f(suc(x), cons(0, cons(y, z)))→ f(suc(suc(x)), g(0, cons(y, z)))
f(suc(x), cons(1, y))→ f(suc(suc(x)), g(1, y))

...

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

Improving Determinization of Grammar Programs for Program Inversion 173

For a given rewrite rule, the MSV transformation produces some instances of the
given rewrite rule — the transformation does not unfold the rewrite rule. On the
other hand, our method unfolds the rewrite rule — the method instantiates the
rule and proceeds the execution of the right-hand side. Viewed in this light, the
results of our method and the MSV transformation are different. However, they
looks equivalent in the sense of (semi-)determinization. One of the advantages
of our method over the MSV transformation is simpleness since our method is
simpler than the MSV transformation and since grammar programs are more
abstract than rewriting systems — grammar programs have no variables and
the semantics is defined as a simple stack machine. On the other hand, our
method is not applicable to rewriting systems with erasing rules while the MSV
transformation is applicable to them. We will compare the method in this paper
with the MSV transformation, from a theoretical point of view.

As comparison of program inversion, we should compare LRinv combined with
both our semi-determinization method and the elimination method of infeasible
definitions, with other inversion methods (e.g., [27]). In general, the resulting
programs of the inversion methods are different. For this reason, it is very difficult
to compare the inversion methods from a theoretical point of view. Thus, we will
compare the inversion methods by means of the performance to the benchmarks
shown in several papers on program inversion.

Acknowledgements. We thank the anonymous reviewers very much for their
helpful comments and suggestions to improve this paper.

References

1. Abramov, S.M., Glück, R.: Principles of inverse computation in a functional lan-
guage. In: APLAS 2000, pp. 141–152 (2000)

2. Abramov, S., Glück, R.: The universal resolving algorithm: Inverse computation in
a functional language. In: Backhouse, R., Oliveira, J.N. (eds.) MPC 2000. LNCS,
vol. 1837, pp. 187–212. Springer, Heidelberg (2000)

3. Abramov, S.M., Glück, R.: The universal resolving algorithm and its correctness:
inverse computation in a functional language. Sci. Comput. Program. 43(2-3), 193–
229 (2002)

4. Almendros-Jiménez, J.M., Vidal, G.: Automatic partial inversion of inductively
sequential functions. In: Horváth, Z., Zsók, V., Butterfield, A. (eds.) IFL 2006.
LNCS, vol. 4449, pp. 253–270. Springer, Heidelberg (2007)

5. Dershowitz, N., Mitra, S.: Jeopardy. In: Narendran, P., Rusinowitch, M. (eds.)
RTA 1999. LNCS, vol. 1631, pp. 16–29. Springer, Heidelberg (1999)

6. Giesl, J., Schneider-Kamp, P., Thiemann, R.: AProVE 1.2: Automatic termination
proofs in the dependency pair framework. In: Furbach, U., Shankar, N. (eds.)
IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 281–286. Springer, Heidelberg (2006)

7. Glück, R., Kawabe, M.: A program inverter for a functional language with equality
and constructors. In: Ohori, A. (ed.) APLAS 2003. LNCS, vol. 2895, pp. 246–264.
Springer, Heidelberg (2003)

8. Glück, R., Kawabe, M.: A method for automatic program inversion based on LR(0)
parsing. Fundam. Inform. 66(4), 367–395 (2005)

174 M. Niwa, N. Nishida, and M. Sakai

9. Glück, R., Kawabe, M.: Revisiting an automatic program inverter for Lisp. SIG-
PLAN Notices 40(5), 8–17 (2005)

10. Glück, R., Kawada, Y., Hashimoto, T.: Transforming interpreters into inverse inter-
preters by partial evaluation. In: Proceedings of Partial Evaluation and Semantics-
based Program Manipulation, pp. 10–19. ACM Press (2003)

11. Gries, D.: The Science of Programming. Springer, Heidelberg (1981)
12. Harrison, P.G.: Function inversion. In: Proceedings of the IFIP TC2 Workshop on

Partial Evaluation and Mixed Computation, pp. 153–166. North-Holland (1988)
13. Harrison, P.G., Khoshnevisan, H.: On the synthesis of function inverses. Acta

Inf. 29(3), 211–239 (1992)
14. Hullot, J.M.: Canonical forms and unification. In: Bibel, W., Kowalski, R. (eds.)

CADE 1980. LNCS, vol. 87, pp. 318–334. Springer, Heidelberg (1980)
15. Kawabe, M., Futamura, Y.: Case studies with an automatic program inversion sys-

tem. In: Proceedings of the 21st Conference of Japan Society for Software Science
and Technology, 6C-3, pp. 1–5 (2004)

16. Kawabe, M., Glück, R.: The program inverter LRinv and its structure. In:
Hermenegildo, M.V., Cabeza, D. (eds.) PADL 2005. LNCS, vol. 3350, pp. 219–
234. Springer, Heidelberg (2005)

17. Khoshnevisan, H., Sephton, K.M.: InvX: An automatic function inverter. In: Der-
showitz, N. (ed.) RTA 1989. LNCS, vol. 355, pp. 564–568. Springer, Heidelberg
(1989)

18. Korf, R.E.: Inversion of applicative programs. In: Proceedings of the 7th Interna-
tional Joint Conference on Artificial Intelligence, pp. 1007–1009. William Kauf-
mann (1981)

19. Lucas, S., Marché, C., Meseguer, J.: Operational termination of conditional term
rewriting systems. Inf. Process. Lett. 95(4), 446–453 (2005)

20. Matsuda, K., Mu, S.-C., Hu, Z., Takeichi, M.: A grammar-based approach to invert-
ible programs. In: Gordon, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 448–467.
Springer, Heidelberg (2010)

21. McCarthy, J.: The inversion of functions defined by Turing machines. In: Automata
Studies, pp. 177–181. Princeton University Press (1956)

22. Nagashima, M., Sakai, M., Sakabe, T.: Determinization of conditional term rewrit-
ing systems. Theor. Comput. Sci. 464, 72–89 (2012)

23. Nishida, N., Sakai, M.: Completion after program inversion of injective functions.
In: Proceedings of the 8th International Workshop on Reduction Strategies in
Rewriting and Programming. ENTCS, vol. 237, pp. 39–56 (2009)

24. Nishida, N., Sakai, M., Sakabe, T.: Generation of inverse computation programs
of constructor term rewriting systems. The IEICE Trans. Inf. & Syst. J88-D-I(8),
1171–1183 (2005) (in Japanese)

25. Nishida, N., Sakai, M., Sakabe, T.: Partial inversion of constructor term rewriting
systems. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 264–278. Springer,
Heidelberg (2005)

26. Nishida, N., Sakai, M., Sakabe, T.: Soundness of unravelings for conditional term
rewriting systems via ultra-properties related to linearity. Logical Methods in Com-
puter Science 8(3), 1–49 (2012)

27. Nishida, N., Vidal, G.: Program inversion for tail recursive functions. In: Schmidt-
Schauß, M. (ed.) RTA 2011. LIPIcs, vol. 10, pp. 283–298. Schloß Dagstuhl–Leibniz-
Zentrum für Informatik (2011)

28. Nishida, N., Vidal, G.: Computing more specific versions of conditional rewrit-
ing systems. In: Albert, E. (ed.) LOPSTR 2012. LNCS, vol. 7844, pp. 137–154.
Springer, Heidelberg (2013)

Improving Determinization of Grammar Programs for Program Inversion 175

29. Ohlebusch, E.: Advanced topics in term rewriting. Springer, Heidelberg (2002)
30. Romanenko, A.: The generation of inverse functions in Refal. In: Proceedings of the

IFIP TC2 Workshop on Partial Evaluation and Mixed Computation, pp. 427–444.
North-Holland (1988)

31. Romanenko, A.: Inversion and metacomputation. In: Proceedings of the Sympo-
sium on Partial Evaluation and Semantics-Based Program Manipulation, pp. 12–
22. ACM Press (1991)

32. Schernhammer, F., Gramlich, B.: VMTL–A modular termination laboratory. In:
Treinen, R. (ed.) RTA 2009. LNCS, vol. 5595, pp. 285–294. Springer, Heidelberg
(2009)

33. Schneider-Kamp, P., Giesl, J., Serebrenik, A., Thiemann, R.: Automated termi-
nation proofs for logic programs by term rewriting. ACM Trans. on Comput.
Log. 11(1), 1–52 (2009)

34. Secher, J.P., Sørensen, M.H.: From checking to inference via driving and dag gram-
mars. In: Proceedings of Partial Evaluation and Semantics-Based Program Manip-
ulation, pp. 41–51. ACM Press (2002)

A Framework for Guided Test Case Generation

in Constraint Logic Programming

José Miguel Rojas1 and Miguel Gómez-Zamalloa2

1 Technical University of Madrid, Spain
2 DSIC, Complutense University of Madrid, Spain

Abstract. Performing test case generation by symbolic execution on
large programs becomes quickly impracticable due to the path explosion
problem. A common limitation that this problem poses is the genera-
tion of unnecessarily large number of possibly irrelevant or redundant
test cases even for medium-size programs. Tackling the path explosion
problem and selecting high quality test cases are considered major chal-
lenges in the software testing community. In this paper we propose a
constraint logic programming-based framework to guide symbolic execu-
tion and thus test case generation towards a more relevant and poten-
tially smaller subset of paths in the program under test. The framework
is realized as a tool and empirical results demonstrate its applicability
and effectiveness. We show how the framework can help to obtain high
quality test cases and to alleviate the scalability issues that limit most
symbolic execution-based test generation approaches.

Keywords: Constraint Logic Programming, Guided Test Case Gener-
ation, Software Testing, Symbolic Execution, Trace-abstraction.

1 Introduction

Testing remains a mostly manual stage within the software development pro-
cess [4]. Test Case Generation (TCG) is a research field devoted to the au-
tomation of a crucial part of the testing process, the generation of input data.
Symbolic Execution is nowadays one of the predominant techniques to automate
the generation of input data. It is the underlying technique of several popular
testing tools, both in academia and software industry [4].

Symbolic execution [10] executes a program with the contents of variables
being symbolic formulas over the input arguments rather than concrete values.
The outcome is a set of equivalence classes of inputs, each of them consisting of
the constraints that characterize a set of feasible concrete executions of a program
that takes the same path. A test suite is the set of test cases obtained from such
path constraints by symbolically executing a program using a particular coverage
criterion. Concrete instantiations of the test cases can be generated to obtain
actual test inputs for the program, amenable for further validation by testing
tools.

In spite of its popularity, it is well known that symbolic execution of large
programs can become quickly impracticable due to the large number and the size

E. Albert (Ed.): LOPSTR 2012, LNCS 7844, pp. 176–193, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Guided TCG in CLP 177

of paths that need to be explored. This issue is considered a major challenge in
the fields of symbolic execution and TCG [12]. Furthermore, a common limitation
of TCG by symbolic execution is that it tends to produce an unnecessarily large
number of test cases even for medium-size programs.

In previous work [1, 8], we have developed a glass-box Constraint Logic Pro-
gramming (CLP)-based approach to TCG for imperative object-oriented pro-
grams, which consists of two phases: First, the imperative program is translated
into an equivalent CLP program by means of partial evaluation [7]. Second,
symbolic execution is performed on the CLP-translated program, controlled by
a termination criterion (in this context also known as coverage criterion), rely-
ing on CLP’s constraint solving facilities and its standard evaluation mechanism,
with extensions for handling dynamic memory allocation.

In this paper we develop a framework to guide symbolic execution in CLP-
based TCG, dubbed Guided TCG. Guided TCG can serve different purposes.
It can be used to discover bugs in a program, to analyze reachability of certain
parts of a program, to lead symbolic execution to stress more interesting parts of
the program, etc. This paper targets selective and unit testing. Selective testing
aims at testing only specific paths of a program. Unit testing is a widely used
software engineering methodology, where units of code (e.g. methods) are tested
in isolation to validate their correctness. Incorporating the notion of selection
criteria in our TCG framework represents one step towards fully supporting both
unit and integration testing, a different methodology, where all the pieces of a
system must be tested as a single unit.

Our Guided TCG is a heuristics that aims at steering symbolic execution,
and thus TCG, towards specific program paths to generate more relevant test
cases and filter less interesting ones with respect to a given selection criterion.
The goal is to improve on scalability and efficiency by achieving a high degree
of control over the coverage criterion and hence avoiding the exploration of
unfeasible paths. In particular, we develop two instances of the framework: one
for covering all the local paths of a method, and the other to steer TCG towards
a selection of program points in the program under test. Both instances have
been implemented and we provide experimental results to substantiate their
applicability and effectiveness.

The structure of the paper is as follows. Section 2 conveys the essentials
of our CLP-based approach to TCG. Section 3 introduces the framework for
guided TCG. Section 4 presents an instantiation of the framework based on trace-
abstractions and targeting structural coverage criteria. Section 5 reports on the
implementation and empirical evaluation of the approach. Section 6 discusses a
complementary strategy to further optimize the framework. Finally, Section 7
situates our work in the existing research space, sketches ongoing and future
work and concludes.

2 CLP-Based Test Case Generation

Our CLP-based approach to TCG for imperative object-oriented programs es-
sentially consists of two phases: (1) the program is translated into an equivalent

178 J.M. Rojas and M. Gómez-Zamalloa

CLP counterpart through partial evaluation; and (2) symbolic execution is per-
formed on the CLP-translated program by relying on the CLP standard evalu-
ation mechanisms. Details on the methodology can be found elsewhere [1, 7, 8].

2.1 CLP-Translated Programs

All features of the imperative object-oriented program under test are covered by
its equivalent executable CLP-translated counterpart. Essentially, there exists
a one-to-one correspondence between blocks in the control flow of the original
program and rules in the CLP counterpart:

Definition 1 (CLP-translated Program). A CLP-translated program con-
sists of a set of predicates, each of them defined by a set of mutually exclusive
rules of the form m(I, O,Hi, Ho, E, T) : −[Ḡ,]b1, . . . , bn., such that:

(i) I and O are the (possibly empty) lists of input and output arguments.
(ii) Hi and Ho are the input and output heaps.
(iii) E is an exception flag indicating whether the execution of m ends normally

or with an uncaught exception.
(iv) If predicate m is defined by multiple rules, the guards in each one contain

mutually exclusive conditions. We denote by mk the k−th rule defining m.
(v) Ḡ is a sequence of constraints that act as execution guards on the rule.
(vi) b1, . . . , bn is a sequence of instructions, including arithmetic operations,

calls to other predicates, and built-ins operations to handle the heap.
(vii) T is the trace term for m of the form m(k, 〈Tci , . . . , Tcm〉), where k is

the index of the rule and Tci, . . . , Tcm are free logic variables representing
the trace terms associated to the subsequence ci, . . . , cm of calls to other
predicates in b1, . . . , bn.

Notice that the trace term T is a not a cardinal element in the translated pro-
gram, but rather a supplementary argument with a central role in this paper.

2.2 Symbolic Execution

CLP-translated programs are symbolically executed using the standard CLP
execution mechanism with special support for the use of dynamic memory [8].

Definition 2 (Symbolic Execution). Let M be a method, m be its corre-
sponding predicate from its associated CLP-translated program P , and P ′ be the
union of P and a set of built-in predicates to handle dynamic memory. The
symbolic execution of m is the CLP derivation tree, denoted as Tm, with root
m(I, O,Hi, Ho, E, T) and initial constraint store θ = {} obtained using P ′.

2.3 Test Case Generation

The symbolic execution tree of programs containing loops or recursion is in
general infinite. To guarantee termination of TCG it is therefore essential to
impose a termination criterion that makes the symbolic execution tree finite:

Guided TCG in CLP 179

Definition 3 (Finite symbolic execution tree, test case, and TCG). Let
m be the corresponding predicate for a method M in a CLP-translated program
P , and let C be a termination criterion.

– T C
m is the finite and possibly incomplete symbolic execution tree of m with root

m(I, O,Hi, Ho, E, T) w.r.t. C. Let B be the set of the successful (terminating)
branches of T C

m.
– A test case for m w.r.t. C is a tuple 〈θ, T 〉, where θ and T are, resp., the

constraint store and the trace term associated to one branch b ∈ B.
– TCG is the process of generating the set of test cases associated to all branches

in B.

Each test case produced by TCG represents a class of inputs that will follow
the same execution path, and its trace is the sequence of rules applied along
such path. In a subsequent step, it is possible to produce actual values from the
obtained constraint stores (e.g., by using labeling mechanisms in standard clpfd
domains) therefore obtaining concrete and executable test cases. However, this is
not an issue of this paper and we will comply with the above abstract definition
of test case.

Example 1. Fig. 1 shows a Java program consisting of three methods: lcm cal-
culates the least common multiple of two integers, gcd calculates the greatest
common divisor of two integers, and abs returns the absolute value of an inte-
ger. The right side of the figure shows the equivalent CLP-translated program.
Observe that each Java method corresponds to a set of CLP rules, e.g., method
lcm is translated into predicates lcm, cont, check and div. The translation pre-
serves the control flow of the program and transforms iteration into recursion
(e.g. method gcd). Note that the example has been chosen deliberately small
and simple to ease comprehension. For readability, the actual CLP code has
been simplified, e.g., input and output heap arguments are not shown, since
they do not affect the computation. Our current implementation [2] supports
full sequential Java.

Coverage Criteria. By Def. 3, so far we have been interested in covering all
feasible paths of the program under test w.r.t. a termination criterion. Now,
our goal is to improve on efficiency by taking into account a selection criterion
as well. First, let us define a coverage criterion as a pair of two components
〈TC, SC〉. TC is a termination criterion that ensures finiteness of symbolic
execution. This can be done either based on execution steps or on loop iterations.
In this paper, we adhere to loop-k, which limits to a threshold k the number of
allowed loop iterations and/or recursive calls (of each concrete loop or recursive
method). SC is a selection criterion that steers TCG to determine which paths
of the symbolic execution tree will be explored. In other words, SC decides
which test cases the TCG must produce. In the rest of the paper we focus on
the following two coverage criteria:

– all-local-paths: It requires that all local execution paths within the method
under test are exercised up to a loop-k limit. This has a potential interest in
the context of unit testing, where each method must be tested in isolation.

180 J.M. Rojas and M. Gómez-Zamalloa

int lcm(int a,int b) {
if (a < b) {

int aux = a;

a = b;

b = aux;

}
int d = gcd(a,b);

try {
return abs(a*b)/d;

} catch (Exception e) {
μ© return -1;

}
}
int gcd(int a,int b) {

int res;

while (b != 0) {
res = a%b;

a = b;

b = res;

}
return abs(a);

}
int abs(int a) {

if (a >= 0)

κ© return a;

else

return -a;

}

lcm([A,B],[R], , ,E,lcm(1,[T])) :-

A #>= B, cont([A,B],[R], , ,E,T).

lcm([A,B],[R], , ,E,lcm(2,[T])) :-

A #<= B, cont([B,A],[R], , ,E,T).

cont([A,B],[R], , ,E,cont(1,[T,V])) :-

gcd([A,B],[G], , ,E,T),

check([A,B,G],[R], , ,E,V).

check([A,B,G],[R], , ,E,check(1,[T,V])) :-

M #= A*B, abs([M],[S], , ,E,T),

div([S,G],[R], , ,E,V).

check([A,B,G],[R], , ,exc,check(2,[])).

div([A,B],[R], , ,ok,div(1,[])) :-

B #\= 0, R #= A/B.

div([A,0],[-1], , ,exc caught,div(2,[])). μ©

gcd([A,B],[D], , ,E,gcd(1,[T])) :-

loop([A,B],[D], , ,E,T).

loop([A,0],[F], , ,E,loop(1,[T])) :-

abs([A],[F], , ,E,T).

loop([A,B],[E], , ,G,loop(2,[T])) :-

B #\= 0, body([A,B],[E], , ,G,T).

body([A,B],[R], , ,E,body(1,[T])) :-

B #\= 0, M #= A mod B,

loop([B,M],[R], , ,E,T).

body([A,0],[R], , ,exc,body(2,[])).

abs([A],[A], , ,ok,abs(1,[])) :- A #>= 0. κ©
abs([A],[-A], , ,ok,abs(2,[])) :- A #< 0.

Fig. 1. Motivating Example: Java (left) and CLP-translated (right) programs

– program-points(P): Given a set of program points P, it requires that all of
them are exercised by at least one test case up to a loop-k limit. Intuitively,
this criterion is the most appropriate choice for bug-detection and reacha-
bility verification purposes. A particular case of it is statement coverage (up
to a limit), where all statements in a program or method must be exercised.

3 A Generic Framework for Guided TCG

The TCG framework as defined so far has been used in the context of cover-
age criteria only consisting of a termination criterion. In order to incorporate a
selection criterion, one can employ a post-processing phase where only the test
cases that are sufficient to satisfy the selection criterion are selected by look-
ing at their traces. This is however not an appropriate solution in general due
to the exponential explosion of the paths that have to be explored in symbolic
execution.

In what follows, we develop a methodology where the TCG process is driven
towards satisfying the selection criterion, stressing to avoid as much as possible

Guided TCG in CLP 181

the generation of irrelevant and/or redundant paths. The key idea that allows
us to guide the TCG process is to use the trace terms of our CLP-translated
program as input arguments. Let us observe also that we could either supply
fully or partially instantiated traces, the latter ones represented by including
free logic variables within the trace terms. This allows guiding, completely or
partially, the symbolic execution towards specific paths.

Definition 4 (trace-guided TCG). Given a method M , a termination cri-
terion TC, and a (possibly partial) trace π, trace-guided TCG generates the set
of test cases with traces, denoted tgTCG(M,TC, π), obtained for all successful
branches in T TC

m with root m(Argsin,Argsout,Hin,Hout,E,π). We also define the
firstOf-tgTCG(M,TC, π) to be the set corresponding to the leftmost successful
branch in T TC

m .

Observe that the TCG guided by one trace either generates: (a) exactly one test
case if the trace is complete and corresponds to a feasible path, (b) none if it
is unfeasible, or, (c) possibly several test cases if it is partial. In this case the
traces of all test cases are instantiations of the partial trace.

Now, relying on trace-guided TCG and on the existence of a trace generator
we define a generic scheme of guided TCG.

Definition 5 (guided TCG). Given a method M ; a coverage criterion CC =
〈TC, SC〉; and a trace generator TraceGen, that generates, on demand and one
by one, (possibly partial) traces according to CC. Guided TCG is defined as the
following algorithm:

������ M, 〈TC,SC〉, TraceGen

TestCases = {}
��	
� TraceGen has more traces and TestCases does not satisfy SC

Invoke TraceGen to generate a new trace in Trace

TestCases ← TestCases ∪ firstOf-tgTCG(M,TC,Trace)
������� TestCases

The intuition is as follows: The trace generator generates a trace satisfying SC
and TC. If the generated trace is feasible, then the first solution of its trace-
guided TCG is added to the set of test cases. The process finishes either when
SC is satisfied, or when the trace generator has already generated all possible
traces allowed by TC. If the trace generator is complete (see below), this means
that SC cannot be satisfied within the limit imposed by TC.

Example 2. Let us consider the TCG for method lcm with program-points for
points μ© and κ© as selection criterion. Observe the correspondence of these
program points in both the Java and CLP code of Fig. 1. Let us assume that
the trace generator starts generating the following two traces:

t1 : lcm(1,[cont(1,[G,check(1,[A,div(2,[])])])])

t2 : lcm(2,[cont(1,[G,check(1,[A,div(2,[])])])])

182 J.M. Rojas and M. Gómez-Zamalloa

The first iteration does not add any test case since trace t1 is unfeasible. Trace
t2 is proved feasible and a test case is generated. The selection criterion is now
satisfied and therefore the process finishes. The obtained test case is shown in
Example 7.

On Soundness, Completeness and Effectiveness: Intuitively, a concrete
instantiation of the guided TCG scheme is sound if all test cases it generates
satisfy the coverage criterion, and complete if it never reports that the coverage
criterion is not satisfied when it is indeed satisfiable. Effectiveness is related to
the number of iterations the algorithm performs. Those three features depend
solely on the trace generator. We will refer to trace generators as being sound,
complete or effective. The intuition is that a trace generator is sound if every
trace it generates satisfies the coverage criterion, and complete if it produces
an over-approximation of the set of traces satisfying it. Effectiveness is related
to the number of unfeasible traces it generates, the larger the number, the less
effective the trace generator.

4 Trace Generators for Structural Coverage Criteria

In this section we present a general approach for building sound, complete and
effective trace generators for structural coverage criteria by means of program
transformations. We then instantiate the approach for the all-local-paths and
program-points coverage criteria and proposes Prolog implementations of the
guided TCG scheme for both of them. Let us first define the notion of trace-
abstraction of a program which will be the basis for defining our trace generators.

Definition 6 (trace-abstraction of a program). Given a CLP-translated
program with traces P , its trace-abstraction is obtained as follows: for every rule
of P , (1) remove all atoms in the body of the rule except those corresponding to
rule calls, and (2) remove all arguments from the head and from the surviving
atoms of (1) except the last one (i.e., the trace term).

Example 3. Fig. 2 shows the trace-abstraction of our CLP-translated program
of Fig. 1. Let us observe that it essentially corresponds to its control-flow graph.

The trace-abstraction can be directly used as a trace-generator as follows: (1)
Apply the termination criterion in order to ensure finiteness of the process. (2)
Select, in a post-processing, those traces that satisfy the selection criterion. Such
a trace generator produces on backtracking a superset of the set of traces of the
program satisfying the coverage criterion. Note that this can be done as long as
the criteria are structural. The obtained trace generator is by definition sound
and complete. However, it can be very ineffective and inefficient due to the large
number of unfeasible and/or unnecessary traces that it can generate. In the
following, we develop two concrete, and more effective, schemes for the all-local-
paths and program-points coverage criteria. In both cases, this is done by taking
advantage of the notion of partial traces and the implicit information on the
concrete coverage criteria.

Guided TCG in CLP 183

lcm(lcm(1,[T])) :- cont(T).

lcm(lcm(2,[T])) :- cont(T).

cont(cont(1,[T,V])) :- gcd(T), check(V).

check(check(1,[T,V])) :- abs(T), div(V).

check(check(2,[])).

div(div(1,[])).

div(div(2,[])).

gcd(gcd(1,[T])) :- loop(T).

loop(loop(1,[T])) :- abs(T).

loop(loop(2,[T])) :- body(T).

body(body(1,[T])) :- loop(T).

body(body(2,[])).

abs(abs(1,[])).

abs(abs(2,[])).

Fig. 2. Trace-abstraction

lcm(lcm(1,[T])) :- cont(T).

lcm(lcm(2,[T])) :- cont(T).

cont(cont(1,[G,T])) :- check(T).

check(check(1,[A,T])) :- div(T).

check(check(2,[])).

div(div(1,[])).

div(div(2,[])).

lcm(1,[cont(1,[G,check(1,[A,div(1,[])])])])

lcm(1,[cont(1,[G,check(1,[A,div(2,[])])])])

lcm(1,[cont(1,[G,check(2,[])])])

lcm(2,[cont(1,[G,check(1,[A,div(1,[])])])])

lcm(2,[cont(1,[G,check(1,[A,div(2,[])])])])

lcm(2,[cont(1,[G,check(2,[])])])

Fig. 3. Slicing of method lcm for all-local-paths criterion

4.1 An Instantiation for the all-local-paths Coverage Criterion

Let us start from the trace-abstraction program and apply a syntactic program
slicing which removes from it the rules that do not belong to the considered
method.

Definition 7 (slicing for all-local-paths coverage criterion). Given a trace-
abstraction program P and an entry method M :

1. Remove from P all the rules that do not belong to method M .
2. For all remaining rules in P , remove from their bodies all the calls to rules

which are not in P .

The obtained sliced trace-abstraction, together with the termination criterion,
can be used as a trace generator for the all-local-paths criterion for a method. The
generated traces will have free variables in those trace arguments that correspond
to the execution of other methods, if any.

Example 4. Fig. 3 shows on the left the sliced trace-abstraction for method lcm.
On the right is the finite set of traces that is obtained from such trace-abstraction
for any loop-K termination criterion. Observe that the free variables G, resp. A,
correspond to the sliced away calls to methods gcd and abs.

184 J.M. Rojas and M. Gómez-Zamalloa

Let us define the predicates: computeSlicedProgram(M), that computes the sliced
trace-abstraction for methodM as in Def. 7; generateTrace(M,TC,Trace), that
returns in its third argument, on backtracking, all partial traces computed using
such sliced trace-abstraction, limited by the termination criterion TC; and
traceGuidedTCG(M,TC,Trace,TestCase), which computes on backtracking the
set tgTCG(M,Trace,TC) in Def. 4, failing if the set is empty, and instantiating on
success TestCase and Trace (in case it was partial). The guided TCG scheme in
Def. 5, instantiated for the all-local-paths criterion, can be implemented in Prolog
as follows:

(1) guidedTCG(M,TC) :-

(2) computeSlicedProgram(M),

(3) generateTrace(M,TC,Trace),

(4) once(traceGuidedTCG(M,Trace,TC,TestCase)),

(5) assert(testCase(M,TestCase,Trace)),

(6) fail.

(7) guidedTCG(,).

Intuitively, given a (possibly partial) trace generated in line (3), if the call in
line (4) fails, then the next trace is tried. Otherwise, the generated test case
is asserted with its corresponding trace which is now fully instantiated (in case
it was partial). The process finishes when generateTrace/3 has computed all
traces, in which case it fails, making the program exit through line (7).

Example 5. The following test cases are obtained for the all-local-paths criterion
for method lcm:

Constraint store Trace

{A>=B} lcm(1,[cont(1,[gcd(1,[loop(1,[abs(1,[])])]),

check(1,[abs(1,[]),div(1,[])])])])

{A=B=0,Out=-1} lcm(1,[cont(1,[gcd(1,[loop(1,[abs(1,[])])]),

check(1,[abs(1,[]),div(2,[])])])])

{B>A} lcm(2,[cont(1,[gcd(1,[loop(1,[abs(1,[])])]),

check(1,[abs(1,[]),div(1,[])])])])

This set of three test cases achieves full code and path coverage on method
lcm and is thus a perfect choice in the context of unit-testing. In contrast, the
original, non-guided, TCG scheme with loop-2 as termination criterion produces
nine test cases.

4.2 An Instantiation for the program-points Coverage Criterion

Let us first consider a simplified version of the program-points criterion so that
only one program point is allowed, denoted as program-point. Starting again
from the trace-abstraction program, we apply a syntactic bottom-up program
slicing algorithm to filter away all the paths in the program that do not visit the
program point of interest.

Guided TCG in CLP 185

Definition 8 (slicing for program-point coverage criterion). Given a trace-
abstraction program P , a program point of interest pp, and an entry method M ,
the sliced program P ′ is computed as follows:

1. Initialize P ′ to be the empty program, and a set of clauses L with the clause
corresponding to pp.

2. For each c in L which is not the clause for M , add to L all clauses in P
whose body has a call to the predicate of clause c, and iterate until the set L
stabilizes.

3. Add to P ′ all clauses in L.
4. Remove all calls to rules which are not in P ′ from the bodies of the rules in P ′.

The obtained sliced program, together with the termination criterion, can be
used as a trace generator for the program-point criterion. The generated traces
can have free variables representing parts of the execution which are not related
(syntactically) to the paths visiting the program point of interest.

lcm(lcm(1,[T])) :- cont(T).

lcm(lcm(2,[T])) :- cont(T).

cont(cont(1,[G,T])) :- check(T).

check(check(1,[A,T])) :- div(T).

div(div(2,[])). μ©

lcm(1,[cont(1,[G,check(1,[A,div(2,[])])])])

lcm(2,[cont(1,[G,check(1,[A,div(2,[])])])])

Fig. 4. Slicing for program-point coverage criterion with pp= μ© from Fig. 1

Example 6. Fig. 4 shows on the left the sliced trace-abstraction program (us-
ing Def. 8) for method lcm and program point μ© from Fig. 1, i.e. the return

statement within the catch block. On the right of the same figure, the traces
obtained from such slicing using loop-2 as termination criterion.

Consider again predicates computeSlicedProgram/2, generateTrace/4 and
traceGuidedTCG/4 with the same meaning as in Section 4.1, but being the first
two now based on Def. 8 and extended with the program-point argument PP.
The guided TCG scheme in Def. 5, instantiated for the program-points criterion,
can be implemented in Prolog as follows:

(1) guidedTCG(M,[],TC) :- !.

(2) guidedTCG(M,[PP|PPs],TC) :-

(3) computeSlicedProgram(M,PP),

(4) generateTrace(M,PP,TC,Trace),

(5) once(traceGuidedTCG(M,Trace,TC,TestCase)), !,

(6) assert(testCase(M,TestCase,Trace)),

(7) removeCoveredPoints(PPs,Trace,PPs’),

(8) guidedTCG(M,PPs’,TC).

(9) guidedTCG(M,[PP|],TC) :- .

186 J.M. Rojas and M. Gómez-Zamalloa

Intuitively, given the first remaining program point of interest PP (line 2), a trace
generator is computed and used to obtain a (possibly partial) trace that exercises
PP (lines 3–4). Then, if the call in line 5 fails, another trace for PP is requested
on backtracking. When there are not more traces (i.e., line 4 fails) the process
finishes through line 9 reporting that PP is not reachable within the imposed
TC. If the call in line 5 succeeds, the generated test case is asserted with its
corresponding trace (now fully instantiated in case it was partial), the remaining
program points which are covered by Trace are removed obtaining PPs’ (line
7), and the process continues with PPs’. Note that a new sliced program is
computed for each program point in PPs’. The process finishes through line 1

when all program points have been covered.
The above implementation is valid for the general case of program-points cri-

teria with any finite set size. The trace generator, instead, has been deliberately
defined for just one program point since this way the program slicing can be
more aggressive, hence eluding the generation of unfeasible traces.

Example 7. The following test case is obtained for the program-points criterion
for method lcm and program points μ© and κ©:

Constraint store Trace

{A=B=0,Out=-1} lcm(1,[cont(1,[gcd(1,[loop(1,[abs(1,[])])]),

check(1,[abs(1,[]),div(2,[])])])])

This particular case exemplifies specially well how guided TCG can reduce the
number of produced test cases through adequate control of the selection criterion.

5 Experimental Evaluation

We have implemented the guided TCG schemes for both all-local-paths and
program-points coverage criteria as proposed in Section 4, and integrated them
within PET [2,8], an automatic TCG tool for Java bytecode, which is available at
http://costa.ls.fi.upm.es/pet. In this section we report on some experi-
mental results which aim at demonstrating the applicability and effectiveness
of guided TCG. The experiments have been performed using as benchmarks
a selection of classes from the net.datastructures library [9], a well-known li-
brary of algorithms and data-structures for Java. In particular, we have used
as “methods-under-test” the most relevant public methods of the classes Node-
Sequence, SortedListPriorityQueue, BinarySearchTree and HeapPriorityQueue,
abbreviated respectively as Seq, PQ, BST and HPQ.

Table 1 aims at demonstrating the effectiveness of the guided TCG scheme for
the all-local-paths coverage criterion. This is done by comparing it to standard
way of implementing the all-local-paths coverage criterion, i.e., first generating
all paths up to the termination criterion using standard TCG by symbolic execu-
tion, and then applying a filtering so that only the test cases that are necessary to
meet the all-local-paths selection criterion are kept. Each row in the table corre-
sponds to the TCG of one method using standard TCG vs. using guided TCG.

http://costa.ls.fi.upm.es/pet

Guided TCG in CLP 187

Table 1. Experimental results for the all-local-paths criterion

Method Info Standard TCG Guided TCG

Class.Name BCs Tt T N CC Tg Ng CCg GT/UT

Seq.elemAt 98 45 18 24 100% 9 5 100% 6/1
Seq.insertAt 220 85 41 39 100% 14 6 100% 8/2
Seq.removeAt 187 76 35 36 100% 10 4 100% 5/1
Seq.replaceAt 163 66 35 36 100% 9 4 100% 5/1
PQ.insert 357 144 148 109 100% 10 3 100% 4/1
PQ.remove 158 69 8 12 100% 20 7 100% 15/8
BST.addAll 260 125 1491 379 100% 22765 18 100% 151/133
BST.find 228 113 76 62 100% 82 5 100% 7/2
BST.findAll 381 178 1639 330 100% 1266 4 100% 6/2
BST.insert 398 184 2050 970 100% 1979 9 100% 18/9
BST.remove 435 237 741 365 98% 3443 26 98% 204/178
HPQ.insert 322 132 215 43 100% 26 5 100% 6/1
HPQ.remove 394 174 1450 40 100% 100 8 100% 19/11

For each method we provide: The number of reachable bytecode instructions
(BCs) and the time of the translation of Java bytecode to CLP (Tt), including
parsing and loading all reachable classes ; the time of the TCG process (T), the
number of generated test cases before the filtering (N), and the code coverage
achieved using standard TCG (CC); and the time of the TCG process (Tg), the
number of generated test cases (Ng), the code coverage achieved (CCg), and
the number of generated/unfeasible traces using guided TCG (GT/UT). All
times are in milliseconds and are obtained as the arithmetic mean of five runs
on an Intel(R) Core(TM) i5-2300 CPU at 2.8GHz with 8GB of RAM, running
Linux Kernel 2.6.38. The code coverage measures, given a method, the percent-
age of its bytecode instructions which are exercised by the obtained test cases.
This is a common measure in order to reason about the quality of the obtained
test cases. As expected, the code coverage is the same in both approaches, and
so is the number of obtained test cases. Otherwise, this would indicate a bug in
the implementation.

Let us observe that the gains in time are significant for most benchmarks
(column T vs. column Tg). There are however three notable exceptions for
methods PQ.remove, BST.addAll and BST.remove, for which the guided TCG
scheme behaves worse than the standard one, especially for BST.addAll. This
happens in general when the control-flow of the method is complex, hence caus-
ing the trace generator to produce an important number of unfeasible traces (see
last column). Interestingly, these cases could be statically detected using a sim-
ple syntactic analysis which looks at the control flow of the method. Therefore
the system could automatically decide which methodology to apply. Moreover,
Section 6 presents a trace-abstraction refinement that will help in improving
guided TCG for programs whose control-flow is determine mainly by integer

188 J.M. Rojas and M. Gómez-Zamalloa

Table 2. Experimental results for the program-points criterion

Method Info Standard TCG Guided TCG

Class.Name T N CC Tg Ng CCg GT/UT

Seq.elemAt 9 10 100% 6 3 100% 3/0
Seq.insertAt 39 36 100% 8 3 100% 3/0
Seq.removeAt 19 16 100% 8 3 100% 3/0
Seq.replaceAt 19 16 100% 8 3 100% 3/0
PQ.insert 149 109 100% 9 3 100% 3/0
PQ.remove 9 12 100% 5 3 100% 3/0
BST.addAll 1501 379 100% 284 2 100% 4/2
BST.find 77 62 100% 10 3 100% 3/0
BST.findAll 1634 330 100% 8 3 100% 3/0
BST.insert 2197 969 100% 35 3 100% 3/0
BST.remove 238 104 98% 61 3 98% 28/25
HPQ.insert 209 43 100% 24 3 100% 3/0
HPQ.remove 1385 38 100% 15 3 100% 3/0

linear constraints. Other classes of programs, e.g. BST.addAll, require a more
sophisticated analysis, since their control-flow are strongly determined by object
types and dynamic dispatch information. This discussion and further refinement
is left out of the scope of this paper.

Table 2 aims at demonstrating the effectiveness of the guided TCG scheme
for the program-points coverage criterion. For this aim, we have implemented
the support in the standard TCG scheme to check the program-points selection
criterion dynamically while the test cases are generated, in such a way that the
process terminates when all program points are covered. Note that, in the worst
case this will require generating the whole symbolic execution tree, as the stan-
dard TCG does. Table 2 compares the effectiveness of this methodology against
that of the guided TCG scheme. Again, each row in the table corresponds to the
TCG of one method using standard TCG vs. using guided TCG, providing for
both schemes the time of the TCG process (T vs Tg), the number of generated
test cases (N vs Ng), the code coverage achieved (CC vs CCg), and the number
of generated/unfeasible traces using guided TCG (GT/UT). We have selected
three program points for each method with the aim of covering as much code as
possible. In all cases, such selection of program points allows obtaining the same
code coverage as with the standard TCG even without the selection criterion
(i.e. 100% coverage for all methods except 98% for BST.remove because of dead
code). Let us observe that the gains in time are huge (column T vs. column Tg),
ranging from one to two orders of magnitude, except for the simplest methods,
for which the gain, still being significant, is not so notable. These results are
witnessed by the low number of unfeasible traces that are obtained (column
GT/UT), hence demonstrating the effectiveness of the trace-generator defined
in Section 4.2.

Guided TCG in CLP 189

Overall, we believe our experimental results support our initial claims about
the potential interest of guiding symbolic execution and TCG by means of trace-
abstractions. With the exception of some particular cases that deserve further
study, our results demonstrate that we can achieve high code coverage with-
out having to explore many unfeasible paths, with the additional advantage of
discovering high quality (less in number and better selected) test cases.

6 Trace-Abstraction Refinement

As the above experimental results suggest, there are still cases where the trace-
abstraction as defined in Def. 6 may still compromise the effectiveness of the
guided TCG, because of the generation of too many unfeasible paths. This sec-
tion discusses a complementary strategy to further optimize the framework. In
particular, we propose a heuristics that aims to refine the trace-abstraction with
information taken from the original program that will help reduce the number
of unfeasible paths at symbolic execution. The goal is to reach a balanced level
of refinement in between the original program (full refinement) and the trace-
abstraction (empty refinement). Intuitively, the more information we include,
the less unfeasible paths symbolic execution will explore, but the more costly it
becomes.

The refinement algorithm consists of two steps: First, in a fixpoint analysis
we approximate the instantiation mode of the variables in each predicate of
the CLP-translated program. In other words, we infer which variables will be
constrained or assigned a concrete value at symbolic execution time. In a second
step, by program transformation, the trace-abstraction is enriched with clause
arguments corresponding to the inferred variables, and with those goals in which
they are involved.

6.1 Approximating Instantiation Modes

We develop a static analysis, similar to [5, 6], to soundly approximate the in-
stantiation mode of the input argument variables in the program at symbolic
execution time. The analysis is implemented as a fixpoint computation over the
simple abstract domain {static, dynamic}. Namely, dynamicmeans that nothing
was inferred about a variable and it will therefore remain a free unconstrained
variable during symbolic execution; and static means that the variable will unify
with a concrete value or will be constrained during symbolic execution. The anal-
ysis’s result is a set of assertions in the form 〈P,V〉 where P is a predicate name
and V is the set of variables in P , each associated with an abstract value from
the domain.

This analysis receives as input a CLP-translated program and a set of initial
entries (predicate names). An event queue Q is initialized with this set of initial
entries. The algorithm starts to process the events of Q until no more events
are scheduled. In each iteration, an event p is removed from Q and processed as
follows: Retrieve previously stored information ψ ≡ 〈p,V〉 if any exists; else set
ψ ≡ 〈p, ∅〉. For each rule r defining p, a new Vr is obtained by evaluating the

190 J.M. Rojas and M. Gómez-Zamalloa

body of r. The joint operation on the underlying abstract domain is performed
to obtain V ′ ⇐ joint(V ,Vr). If V �≡ V ′ then set V ⇐ V ′ and reschedule every
predicate that calls p; else, if ψ′ ≡ ψ there is no need to recompute the calling
predicates and the algorithm continues. That will ensure backward propagation
of approximated instantiation modes. To propagate forward, the evaluation of r
will schedule one event per call within its body. The process continues until a
fixpoint is reached.

6.2 Constructing the Trace-Abstraction Refinement

This is a syntactic program transformation step of the refinement. It takes as
input the original CLP-program and the instantiation information inferred in
the first step and outputs a trace-abstraction refinement program. For each rule
r of a predicate p in the program, the algorithm retrieves 〈p,V〉. We denote Vs

the projection of all variables in V whose inferred abstract value is static. The
algorithm adds to the trace-abstraction refinement a new rule r′ whose list of
arguments is Vs. The body of r′ is constructed by traversing the body b1, . . . , bn
of r and including 1) all guards and arithmetic operations bi involving Vs, and
2) all calls to other predicates, with the corresponding projection of Vs over the
arguments of the calls.

Example 8. Consider the Java example of Fig. 5 (left side). Function power

implements a exponentiation algorithm for positive integer exponents. Its CLP
counterpart is shown at the right of the figure. The instantiation modes inferred
by the first stage of our algorithm is presented at the right-bottom part of the
figure. One can observe that variable B (the base of the exponentiation) remains
dynamic all along the program, because it is never assigned any concrete value
nor constrained by any guard. On the other hand, variable E’s final abstract
value is static, since it is constrained by 0 and the also static variable I in rules
if and loop. The following is the refined trace-abstraction that our algorithm
constructs:

power([E],power(1,[T])) :- if([E],T).

if([E],if(1,[])) :- E #< 0.

if([E],if(2,[T])) :- E #>= 0, loop([E,1],T).

loop([E,I],loop(1,[])) :- I #> E.

loop([E,I],loop(2,[T])) :- I #=< E, Ip #= I+1, loop([E,Ip],T).

To illustrate how the trace-abstraction refinement can improve on effectiveness of
the guided TCG, let us observe method arraypower. It iterates over the elements
of an input array a and calls function power to update all even positions of the
array by raising their values to the power of the integer input argument e. We
report on the following performance results for this example and a coverage
criterion 〈loop-2, {}〉:

– Standard non-guided TCG (i.e., full refinement) generates 11 test cases.
– Trace-abstraction guided TCG with the empty refinement generates 497 pos-

sibly (un)feasible traces.

Guided TCG in CLP 191

void arraypower(int a[],int e) {
int i=0;

int n=a.length;

for (i=0; i<n; i++)

if (i%2==0)

a[i]=power(a[i],e);

}
int power(int b, int e) {

if (e >= 0) {
int pow = 1;

while (i <= e) {
pow *= b;

i++;

}
return pow;

} else return -1;

}

power([B,E],[R], , ,F,power(1,[T])) :-

if([B,E],[R], , ,F,T).

if([B,E],[-1], , ,F,if(1,[])) :-

E #< 0.

if([B,E],[R], , ,F,if(2,[T])) :-

E #>= 0), loop([B,E,1,1],[R], , ,F,T).

loop([B,E,I,P],[P], , ,ok,loop(1,[])) :-

I #> E.

loop([B,E,I,P],[R], , ,F,loop(2,[T])) :-

I #=< E, Pp #= P*B, Ip #= I+1,

loop([B,E,Ip,Pp],[R], , ,F,T).

Inferred instantiation modes:
〈power, {B= dynamic,E= static}〉
〈if, {B= dynamic,E= static}〉
〈loop, {B= dynamic,E= static,

I= static,P= dynamic}〉

Fig. 5. Trace-abstraction refinement

– Trace-abstraction guided TCG with our trace-abstraction refinement reduces
the number of possibly (un)feasible traces to 161.

These preliminary yet promising results, suggest the potential integrability of
the trace-abstraction refinement algorithm presented in this section within the
general guided TCG framework developed in this paper. The refinement is com-
plementary to the slicings schemes presented in Section 4 without any modifica-
tion. Unfortunately, the slicings could produce a loss of important information
added by the refinement. This could be however improved by means of simple
syntactic analyses on the sliced parts of the program. A deeper study of these
issues remains as future work.

7 Related Work and Conclusions

Previous work also uses abstractions to guide symbolic execution and TCG by
several means and for different purposes. Fundamentally, abstraction aims to
reduce large data domains of a program to smaller domains [11]. One of the
most relevant to ours is [3], where predicate abstraction, model checking and
SAT-solving are combined to produce abstractions and generate test cases for
C programs, with good code coverage, but depending highly on an initial set
of predicates to avoid infeasible program paths. Rugta et al. [13] also proposes
to use an abstraction of the program in order to guide symbolic execution and
prune the execution tree as a way to scale up. Their abstraction is an under-
approximation which tries to reduce the number of test cases that are generated
in the context of concurrent programming, where the state explosion is in general
problematic.

192 J.M. Rojas and M. Gómez-Zamalloa

The main contribution of this paper is the development of a methodology
for Guided TCG that allows to guide the process of test generation towards
achieving more selective and interesting structural coverage. Implicit is the im-
provement in the scalability of TCG by guiding symbolic execution by means
of trace-abstractions, since we gain more control over the symbolic execution
state space to be explored. Moreover, whereas the main goal of our CLP-based
TCG framework has been the exhaustive testing of programs, our new Guided
TCG framework unveil new potential applications areas. Namely, the all-local-
paths and program-points Guided TCG schemes we have presented in this paper,
enable us to explore on the automation of other interesting software testing prac-
tices, such as selective and unit testing, goal-oriented testing and bug detection.

The effectiveness and applicability of Guided TCG is substantiated by an im-
plementation within the PET system (http://costa.ls.fi.upm.es/pet), and
encouraging experimental results. Nevertheless, our current and future work in-
volves a more thorough experimental evaluation of the framework and the explo-
ration of the new application areas in software testing. In a different line, a par-
ticularly challenging goal has been triggered which consists in developing static
analysis techniques to achieve optimal refinement levels of the trace-abstraction
programs. Last but not least, we plan to further study the generalization and
integration of other interesting coverage criteria to our Guided TCG framework.

Acknowledgments. This work was funded in part by the Information & Com-
munication Technologies program of the European Commission, Future and
Emerging Technologies (FET), under the ICT-231620 HATS project, by the
Spanish Ministry of Science and Innovation (MICINN) under the TIN2008-
05624, TIN2012-38137 and PRI-AIBDE-2011-0900 projects, by UCM-BSCH-
GR35/10-A-910502 grant and by the Madrid Regional Government under the
S2009TIC-1465 PROMETIDOS-CM project.

References

1. Albert, E., Gómez-Zamalloa, M., Puebla, G.: Test Data Generation of Bytecode
by CLP Partial Evaluation. In: Hanus, M. (ed.) LOPSTR 2008. LNCS, vol. 5438,
pp. 4–23. Springer, Heidelberg (2009)

2. Albert, E., Cabañas, I., Flores-Montoya, A., Gómez-Zamalloa, M., Gutiérrez, S.:
jPET: an Automatic Test-Case Generator for Java. In: Proc. of WCRE 2011. IEEE
Computer Society (2011)

3. Ball, T.: Abstraction-guided test generation: A case study. Technical Report MSR-
TR-2003-86, Microsoft Research (2003)

4. Cadar, C., Godefroid, P., Khurshid, S., Pǎsǎreanu, C., Sen, K., Tillmann, N.,
Visser, W.: Symbolic execution for software testing in practice: preliminary as-
sessment. In: Proc. of ICSE 2011. ACM (2011)

5. Craig, S.-J., Gallagher, J.P., Leuschel, M., Henriksen, K.S.: Fully Automatic
Binding-Time Analysis for Prolog. In: Etalle, S. (ed.) LOPSTR 2004. LNCS,
vol. 3573, pp. 53–68. Springer, Heidelberg (2005)

6. Debray, S.K.: Static inference of modes and data dependencies in logic programs.
ACM Trans. Program. Lang. Syst. 11(3), 418–450 (1989)

http://costa.ls.fi.upm.es/pet

Guided TCG in CLP 193

7. Gómez-Zamalloa, M., Albert, E., Puebla, G.: Decompilation of Java Bytecode to
Prolog by Partial Evaluation. Information and Software Technology 51(10), 1409–
1427 (2009)

8. Gómez-Zamalloa, M., Albert, E., Puebla, G.: Test Case Generation for Object-
Oriented Imperative Languages in CLP. Theory and Practice of Logic Program-
ming, ICLP 2010 Special Issue 10(4-6) (2010)

9. Goodrich, M., Tamassia, R., Zamore, E.: The net.datastructures package,
http://net3.datastructures.net

10. King, J.C.: Symbolic Execution and Program Testing. Communications of the
ACM 19(7), 385–394 (1976)

11. Lakhnech, Y., Bensalem, S., Berezin, S., Owre, S.: Incremental verification by
abstraction. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp.
98–112. Springer, Heidelberg (2001)

12. Pǎsǎreanu, C.S., Visser, W.: A survey of new trends in symbolic execution for
software testing and analysis. Int. J. Softw. Tools Technol. Transf. 11(4), 339–353
(2009)

13. Rungta, N., Mercer, E.G., Visser, W.: Efficient testing of concurrent programs
with abstraction-guided symbolic execution. In: Păsăreanu, C.S. (ed.) SPIN 2009.
LNCS, vol. 5578, pp. 174–191. Springer, Heidelberg (2009)

http://net3.datastructures.net

Simplifying the Verification of Quantified Array

Assertions via Code Transformation�

Mohamed Nassim Seghir and Martin Brain

University of Oxford

Abstract. Quantified assertions pose a particular challenge for auto-
mated software verification tools. They are required when proving even
the most basic properties of programs that manipulate arrays and so are
a major limit for the applicability of fully automatic analysis. This paper
presents a simple program transformation approach based on induction
to simplify the verification task. The techniques simplifies both the pro-
gram and the assertion to be verified. Experiments using an implemen-
tation of this technique show a significant improvement in performance
as well as an increase in the range of programs that can be checked fully
automatically.

1 Introduction

Arrays are a primitive data-structure in most procedural languages, so it is vi-
tal for verification tools to be able to handle them. Most of the properties of
interest for array manipulating programs are stated in terms of all elements
of the array. For example, all elements are within a certain range, all elements
are not equal to a target value or all elements are in ascending order. Han-
dling quantified assertions is thus a prerequisite for supporting reasoning about
arrays. Proving them requires reasoning combining quantified assertions and
loops. Unfortunately, handling the combination of loops and quantified asser-
tions is difficult and poses considerable practical challenges to most of the exist-
ing automatic tools such as SLAM [1], BLAST [11], MAGIC [5], ARMC [18]
and SATABS [6]. One approach requires the user provides loop invariants [2,7].
This is undesirable as writing loop invariants is a skilled, time intensive and
error prone task. This paper aims to give a simple program transformation ap-
proach for handling some combinations of loops and quantified assertions, which
include text book examples as well as real world examples taken from the Linux
operating system kernel and the Xen hypervisor.

Transforming the program and assertions before applying existing verification
techniques is a common and effective technique. It has a number of pragmatic ad-
vantages; it is often simple to implement, fast to use, re-uses existing technology
and can be adapted to a wide range of tools. We present an approach that either
removes loops or quantifiers and thus reduces the problem to a form solvable by
existing tools. For example, if loops can be removed then decision procedures for

� Supported by the EU FP7 STREP PINCETTE (projectID ICT-257647) project.

E. Albert (Ed.): LOPSTR 2012, LNCS 7844, pp. 194–212, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Simplifying the Verification of Quantified Array Assertions 195

quantified formulas [4] can be applied to the loop-free code. If quantifiers can
be removed then the previously mentioned automatic tools can be used as they
are quite efficient in handling quantifier-free assertions. This work builds on the
results presented in [19]; giving a formal basis for the technique, in particular:

1. Defining recurrent fragments and shows how they can be used to build in-
ductive proofs of quantified assertions.

2. Giving an algorithm for locating recurrent fragments and transforming the
program so that the resulting code is simpler than the original one.

3. Proving the soundness of the program transformation algorithm.
4. Illustrating how our approach extends naturally to multidimensional arrays

and describing a scheme for handling loop sequences.

2 Overview

We illustrate our method by considering two sorting algorithms (insertion sort
and selection sort) which represent challenging examples for automatic verifica-
tion tools.

2.1 Pre-recursive Case (insertion sort)

Let us consider the insertion sort example illustrated in Figure 1(a). This program
sorts elements of array a in the range [0..n[. We want to verify the assertion
specified at line 18, which states that elements of array a are sorted in ascending
order. Let us call L the outer while loop of example (a) in Figure 1 together
with the assignment at line 4 which just precedes the loop. We also call ϕ the
assertion at line 18. In the notation L(1, n) the first parameter represents the
initial value of the loop iterator i and the second parameter is its upper bound
(here upper bound means strictly greater). Also ϕ(n) denotes the parameterized
form of ϕ through n. In a Floyd-Hoare style [12], the verification task is expressed
as a Hoare triple

{} L(1, n) {ϕ(n)} (1)

In (1) the initial value 1 for the loop iterator is fixed but its upper bound n
can take any value. To prove (1) via structural induction on the iterator range,
where the well-founded order is range inclusion, it suffices to use induction on
n. We proceed as follows

– prove that {} L(1, 1) {ϕ(1)} holds
– assume {} L(1, n− 1) {ϕ(n− 1)} and prove
{} L(1, n) {ϕ(n)}

By unrolling the outer while loop in Figure 1(a) backward, we obtain the code
in Figure 1(b). One can observe that the code fragment from line 4 to 16 in
Figure 1(b) represents L(1, n−1), we call it the recurrent fragment. If we denote
by C the remaining code, i.e., from line 18 to 26 in Figure 1(b), then the Hoare
triple (1) is rewritten to

{} L(1, n− 1); C {ϕ(n)}.

196 M.N. Seghir and M. Brain

1 void insertion sort (int a [], int n)
2 {
3 int i , j , index;
4 i = 1;
5 while(i < n)
6 {
7 index = a[i];
8 j = i;
9 while ((j > 0) && (a[j−1] > index))

10 {
11 a[j] = a[j−1];
12 j = j − 1;
13 }
14 a[j] = index;
15 i++;
16 }
17
18 assert(∀ x y. (0 ≤ x < n
19 ∧ 0 ≤ y < n
20 ∧ x < y)
21 ⇒ a[x] ≤ a[y]);
22 }

1 void insertion sort (int a [], int n)
2 {
3 int i , j , index;
4 i = 1;
5 while(i < n−1)
6 {
7 index = a[i];
8 j = i;
9 while ((j > 0) && (a[j−1] > index))

10 {
11 a[j] = a[j−1];
12 j = j − 1;
13 }
14 a[j] = index;
15 i++;
16 }
17
18 index = a[n−1];
19 j = n−1;
20 while ((j > 0) && (a[j−1] > index))
21 {
22 a[j] = a[j−1];
23 j = j − 1;
24 }
25 a[j] = index;
26 i = n;
27
28 assert(∀ x y. (0 ≤ x < n
29 ∧ 0 ≤ y < n
30 ∧ x < y)
31 ⇒ a[x] ≤ a[y]);
32 }

(a) (b)

Fig. 1. Insertion sort program (a) and the corresponding pre-recursive form (b)

{} L(1, n− 1) {ϕ(n− 1)} {ϕ(n− 1)} C {ϕ(n)}
{} L(1, n− 1); C {ϕ(n)}

Fig. 2. Hoare’s rule of composition

Hoare’s rule of composition can be applied in this context following the scheme
illustrated in Figure 2. The first (left) premise of the rule represents the induction
hypothesis, thus, assumed to be valid. It suffices then to prove the second premise
to conclude the validity of (1). Hence, the verification problem in Figure 1(a) is
reduced to the one illustrated in Figure 3, in addition to the verification of the
basic case {} L(1, 1) {ϕ(1)} which is trivial. The assumption at line 1 in Figure 3
represents the postcondition of the induction hypothesis. One can clearly see that
the final code is much simpler than the original one. We start with a loop having
two levels of nesting and we end up with a code containing a loop that has just
one level of nesting, which means less loop invariants (fixed points) to compute.

Simplifying the Verification of Quantified Array Assertions 197

1 assume(∀ x y. (0 ≤ x,y < n−1 ∧ x < y) ⇒ a[x] ≤ a[y]);
2
3 index = a[n−1];
4 j = n−1;
5 while ((j > 0) && (a[j−1] > index))
6 {
7 a[j] = a[j−1];
8 j = j − 1;
9 }

10 a[j] = index;
11 i = n;
12
13 assert(∀ x y. (0 ≤ x,y < n ∧ x < y) ⇒ a[x] ≤ a[y]);

Fig. 3. Result obtained by replacing the code fragment of the induction hypothesis
with the corresponding post condition (which is here used as assumption)

2.2 Post-recursive Case (selection sort)

Now, we consider the example selection sort which is illustrated in Figure 4(a).
Initially, instead of the two assignments at lines 5 and 6, we had just a single
assignment i := 0. Also in the assertion at line 23 we had 0 instead of k. We
introduced the fresh variable k to allow the application of induction on the
iterator initial value as will be illustrated.

As previously, we write L(k, n) to denote the outer loop together with the
assignment at line 6 in Figure 4(a). Unlike the previous example, here by un-
rolling L(k, n) backward, the remaining (first) n− 1 iterations do not represent
L(k, n − 1). In fact, the iterator j of the inner loop in L(k, n) has n as upper
bound in the first n−1 iterations of L(k, n), whereas j has n−1 as upper bound
in L(k, n − 1). However, by unrolling L(k, n) forward, we obtain the code in
Figure 4(b). The code portion from line 20 to 35 represents L(k + 1, n). In this
case, the recursion occurs at the end, i.e., L(k, n) = C;L(k + 1, n), where C is
the code fragment from line 5 to 18 in Figure 4(b).

For both L(k, n) and L(k + 1, n) the iterator upper bound n is fixed, but the
iterator initial value varies (k and k+1). Thus, this time we apply induction on
the iterator initial value. Hence, we prove the basic case {} L(n, n) {ϕ(n)}, then
we assume that {} L(k + 1, n) {ϕ(k + 1)} holds and prove {} L(k, n) {ϕ(k)}.
Replacing L(k, n) with C;L(k + 1, n) in the last formula, we obtain

{} C;L(k + 1, n) {ϕ(k)} (2)

By introducing the assumption ϕ(k+1) resulting from the induction hypothesis
into (2), we get

{} C;L(k + 1, n) ; assume(ϕ(k + 1)) {ϕ(k)} (3)

By moving the assumption into the postcondition in (3), we obtain

{} C;L(k + 1, n) {ϕ(k + 1)⇒ ϕ(k)}.

198 M.N. Seghir and M. Brain

1 void selection sort (int a [], int n)
2 {
3 int i , j , k, s ;
4
5 k = 0;
6 i = k;
7 while(i < n)
8 {
9 s = i;

10 for(j = i+1; j < n; ++j)
11 {
12 if (a[j] < a[s])
13 {
14 s = j;
15 }
16 }
17 t = a[i];
18 a[i] = a[s];
19 a[s] = t;
20 i++;
21 }
22
23 assert(∀ x y. (k ≤ x < n
24 ∧ k ≤ y < n
25 ∧ x < y)
26 ⇒ a[x] ≤ a[y]);
27 }

1 void selection sort (int a [], int n)
2 {
3 int i , j , k, s ;
4
5 k = 0;
6 i = k;
7 s = k;
8
9 for(j = i+1; j < n; ++j)

10 {
11 if (a[j] < a[s])
12 {
13 s = j;
14 }
15 }
16 t = a[k];
17 a[k] = a[s];
18 a[s] = t;
19
20 i = k + 1;
21 while(i < n)
22 {
23 s = i;
24 for(j = i+1; j < n; ++j)
25 {
26 if (a[j] < a[s])
27 {
28 s = j;
29 }
30 }
31 t = a[i];
32 a[i] = a[s];
33 a[s] = t;
34 i++;
35 }
36
37 assert(∀ x y. (k ≤ x < n
38 ∧ k ≤ y < n
39 ∧ x < y)
40 ⇒ a[x] ≤ a[y]);
41 }

(a) (b)

Fig. 4. Selection sort (a) and the corresponding post-recursive form (b)

The last formula is simply written

{} L(k, n) {ϕ(k + 1)⇒ ϕ(k)}.

We have

ϕ(k) ≡ ∀x y.(k ≤ x < n ∧ k ≤ y < n ∧ x < y)⇒ a[x] ≤ a[y]

Simplifying the Verification of Quantified Array Assertions 199

and

ϕ(k + 1) ≡ ∀x y.(k + 1 ≤ x < n ∧ k + 1 ≤ y < n ∧ x < y)⇒ a[x] ≤ a[y].

The formula ϕ(k) can be split into two conjuncts ϕ(k) ≡ ϕ(k + 1) ∧ ϕ′(k) such
that

ϕ′(k) ≡ ∀y. k + 1 ≤ y < n ⇒ a[k] ≤ a[y]

thus

ϕ′(k) ⇒ (ϕ(k + 1)⇒ ϕ(k)).

Meaning that it suffices to prove

{} C;L(k + 1, n) {ϕ′(k)}.

By repeating the steps applied to (2) we get

{} C;L(k + 1, n) {ϕ′(k + 1)⇒ ϕ′(k)}.

One can check that the final postcondition ϕ′(k+1)⇒ ϕ′(k) is simply equivalent
to a[k] ≤ a[k + 1]. We start with an assertion having two universally quantified
variables and end up with an assertion which is quantifier-free. Many existing
automatic tools can handle quantifier-free assertions. This time the simplification
does not affect the code but weakens the target assertion. Here the application of
induction is slightly different from the previous (pre-recursive) case. We assume
that the target property ϕ(k) holds for k+ 1 (k+ 1 ≤ n− 1) and prove it for k.
We can always apply the classical reasoning scheme by rewriting k + 1 to n− p
(p is fresh) as n is fixed. We then apply induction on p: we assume that ϕ(p)
holds for p (p ≥ 1) and prove it for p+ 1.

Question: based on which criterion, we transform loops to pre- or post-recursive
form? An answer to this question is given in section 4.

3 Preliminaries

3.1 Loops in Canonical Form

In our study, we consider loops L having one of the forms illustrated in Fig-
ure 5(a) and Figure 5(b). We say that they are in canonical form. The variable
i is an iterator, it is incremented (decremented) by one at each loop iteration.
In Figure 5(a), variable l represents the iterator initial value and variable u rep-
resents its upper bound (strictly greater). In Figure 5(b), variable u represents
the iterator initial value and l its lower bound (strictly less). The iterator i is
not modified within the loop body B. If l and u are not numerical constants,
they are also not modified within B.

200 M.N. Seghir and M. Brain

i := l;
while(i < u)
{

B;
i := i+ 1;

}

i := u;
while(i > l)
{

B;
i := i− 1;

}

(a) (b)

Fig. 5. Canonical form for loops

3.2 Notations

Given the loop L in canonical form, L.i refers to the loop iterator and L.s
is the iterator sign, it can be ”+” (increase) or ”−” (decrease). The notation
L(t, b) represents a parameterization of L with the iterator initial value t and
the iterator bound b (upper or lower). The iterator range is abstractly given by
[t..b[. This range is not oriented, which means that t is not necessarily less than b.
We just know that the left element of the range is the initial value and the right
one is the bound. E.g., [5..0[models the range which is concretely defined by
]0..5]. The body B of the loop L is denoted by L.B. We have the generic operator
next which takes the loop L and a value n for the iterator L.i as parameters and
returns the next value of the iterator. I.e., next(L, n) = n + 1 if L.i increases
and next(L, n) = n − 1 if L.i decreases. We also have the generic operator prev
which computes the previous value of the loop iterator. Note that next(L, x) for
x �∈ [t..b[is not defined as well as prev(L, x) for x �∈]t..b]. Finally, the projection
of loop L on the range [i′..b′[, such that [i′..b′[⊆ [i..b[, is denoted by L([i′..b′[). It
represents the execution of L when the loop iterator takes its values in the range
[i′..b′[. Note that for a given loop L(i, b), L(i′, b′) is different from L([i′..b′[). The
first notation represents the loop obtained by replacing each occurrence of the
symbols i and b with i′ and b′ respectively, which means that changes induced by
the substitution can also affect the loop body L.B. However, the loop projection
is simply the iterative execution of the loop body L.B such that L.i ranges in
[i′..b′[.

3.3 Array Quantified Assertions

Let us have the following grammar for predicates

pred ::= pred ∧ pred | pred ∨ pred | ¬pred | e > e | e = e
e ::= int | id | int ∗ e | id[i] | e+ e
i ::= int | id | int ∗ i | i+ i | i, i

In the grammar above, id stands for an identifier and int represents an integer
constant.

Simplifying the Verification of Quantified Array Assertions 201

We consider universally quantified assertions ϕ of the form

ϕ ≡ ∀x1, . . . , xk ∈ [l..u[. ψ(x1, . . . , xk) (4)

such that ψ is generated via the above grammar under the condition that each
of the variables x1, . . . , xk must occur in an expression generated by the last rule
(head i) of the grammar. In other words, there must be at least one occurrence of
each of the variables x1, . . . , xk in the index expression of an array that appears
in ψ.

4 Source-to-Source Transformation

As seen in Section 2, the base of our program transformation is finding the
recurrent fragment. In what follows, we formalize a criterion for identifying the
recurrent fragment and thus transforming loops to pre- or post-recursive forms.
We also present an algorithm which is based on the proposed criterion to soundly
transform verification tasks.

4.1 Recurrent Fragments

Given a loop L(t, b) whose iterator has the range [t..b[of length |b − t|, our
goal is to identify the code fragment X in L(t, b) such that ∃ t′, b′ ∈ [t..b[,
X = L(t′, b′) and |b′− t′| = |b− t|−1. It means that (t′, b′) is either (next(L, t), b)
or (t, prev(L, b)), which implies that X is either L[next(L, t)..b[or L[t..prev(L, b)[.
Thus, the relation between L(t, b) and X follows one of the forms in (5)

L(t, b) =

⎧⎨
⎩
C; X
or

X ; C
(5)

where C is a code fragment and “;” is the sequencing operator. We call X the
recurrent fragment.

Let us consider the case where X = L(next(L, t), b), it means that the iterator
L.i in X ranges over [next(L, t)..b[. The code fragment in L(t, b) that potentially
matches with X can only be the last |b− t| − 1 iterations, which corresponds to
L([next(L, t)..b[) the projection of L(t, b) on [next(L, t)..b[. In this case, we have
L(t, b) = C;L(next(L, t), b) such that C corresponds to the initial iteration where
the loop iterator L.i is equal to t. It remains now to check whether the equation
below holds

L(next(L, t), b) = L([next(L, t)..b[) (6)

The code portions corresponding to the left and right side of the above equation
are respectively represented in Figure 6(a) and Figure 6(b).

The symbol �� in Figure 6(a) and Figure 6(b) represents a relational operator
which can be either ” < ” or ” > ”, depending on whether the loop iterator is
increasing or decreasing. We want to find the condition under which the piece
of code in Figure 6(a) and the one in Figure 6(b) are equivalent. A possible

202 M.N. Seghir and M. Brain

L.i := next(L, t);
while(L.i �� b)
{

B[next(L, t)/t];
L.i := next(L,L.i);

}

L.i := next(L, t);
while(L.i �� b)
{

B;
L.i := next(L,L.i);

}

(a) (b)

Fig. 6. Code fragments corresponding to L(next(L, t), b) (left) and L([next(L, t)..b[)
(right)

condition for equivalence is that t is equal to next(L, t) the value with which
it is replaced (Figure 6(a)). However, we know that the equality t = next(L, t)
is not possible, thus, we go for a stronger condition and simply choose identity
as equivalence relation between programs. It means that the code fragments in
Figure 6(a) and Figure 6(b) must be syntactically identical. This requires that
changes induced by the substitution in Figure 6(a) must not affect the loop
body, i.e., B[next(L, t)/t] = B. This is only true if B does not contain t. Hence a
sufficient condition for the transformation to post-recursive form is given by the
following proposition which is valid by construction.

Proposition 1. (Transformation condition) L(t, b) is transformable to post-
recursive form if the variable t representing the symbolic initial value of the
loop iterator does not appear in L.B the body of L(t, b).

A similar reasoning is applied to show that the loop L(t, b) is transformable
to pre-recursive form under the condition that the variable b representing the
symbolic bound of the loop iterator must not appear in the body L.B of the loop
L(t, b).

4.2 Transformation Algorithm

Based on the previous result (proposition 1) concerning the criterion for loop
transformation, we present algorithm Transform (Algorithm 1) which takes a
Hoare triple (verification task) H as argument and returns another Hoare triple
H ′, such that, if H ′ is proven to be valid then H is valid. The algorithm may
also returnH unchanged if neither the pre- nor the post-recursive transformation
criterion is fulfilled. The induction is applied either on the iterator initial value
t or its bound b. Therefore we first test, at line 1 of the algorithm, whether
ϕ contains at least one of the symbols t or b, if not then the Hoare triple is
not transformed. Function Ids takes an expression as parameter and returns the
set of symbols in that expression. If the test at line 4 of the algorithm is true,
the loop L is transformed to the pre-recursive form. In this case the reasoning
scheme presented in section 2.1 is applied. The induction is then performed on
the iterator bound b, that is why we have the additional condition (at line 4)

Simplifying the Verification of Quantified Array Assertions 203

that b must not be a numerical constant. Following the reasoning scheme of
section 2.1, the code fragment in the returned Hoare triple represents the last
iteration of the loop, i.e., the loop iterator is assigned prev(L, b) (line 5) which is
concretely b− 1 if the iterator is increasing or b+ 1 if the iterator is decreasing.
The precondition of the Hoare triple in both cases is simply the post condition of
the induction hypothesis, i.e., b in ϕ is replaced with prev(L, b). If the criterion for
the transformation to post-recursive form is true (line 6), the reasoning scheme
illustrated in section 2.2 is applied. In this case, the code in the Hoare triple
remains unchanged but the postcondition is weakened using the postcondition
of the induction hypothesis. This is illustrated in the return statements at line
7. Here the induction is applied on the initial value t of the iterator which must
not be a numerical constant (line 6).

Back to the example of Figure 1(a), i represents an increasing iterator for
the outer loop, its upper bound n does not appear in the loop body, thus, the
obtained result (Figure 1(b)) corresponds to the return statement at line 5 of
algorithm Transform. Concerning the example of Figure 4(a), the upper bound
n of iterator i appears in the loop body, thus, the loop cannot be transformed to
pre-recursive form. However the initial value k for i does not appear in the loop
body, thus, the loop is transformed to post-recursive form (line 7 of algorithm
Transform).

Algorithm 1. Transform

Input: { } L(t, b) {ϕ} Hoare triple
Output: Hoare triple
if b
∈ Ids(ϕ) ∧ t
∈ Ids(ϕ) then1

return ({ } L(t, b) {ϕ});2

end3

if ((b
∈ Ids(L.B)) ∧ (b is not constant) ∧ (b ∈ ϕ)) then4

return ({ϕ[prev(L, b)/b]} L.i := prev(L, b); L.B {ϕ});5

else if ((t
∈ Ids(L.B)) ∧ (t is not constant) ∧ (t ∈ ϕ)) then6

return ({ } L(t, b) {ϕ[next(L, t)/t] ⇒ ϕ});7

else8

return ({ } L(t, b) {ϕ});9

end10

Proposition 2. (Soundness) Let us have the Hoare triple H = { } L(t, b) {ϕ}
and H ′ = Transform(H). If H ′ is true for |b−t| ≥ 1 then H is true for |b−t| ≥ 1,
i.e., whenever H ′ is proven to be valid then H is also valid.

Proof. Let us first consider the case where the loop iterator is increasing and the
loop is transformable to pre-recursive form. According to the assumption, H ′ is
true for |b− t| = 1, thus H ′ holds for b = t+1, i.e., {} L.i := t; L.B {ϕ[t+1/b]}.
We also know that H ′ is valid for an arbitrary b (|b − t| ≥ 1) such that

H ′ = {ϕ[b− 1/b]} L.i := b− 1; L.B {ϕ}

204 M.N. Seghir and M. Brain

thus, all the following Hoare triples are valid

H ′
1 = {ϕ[t+ 1/b]} L.i := t+ 1; L.B {ϕ[t+ 2/b]}

.
H ′

b−2−t = {ϕ[b− 2/b]} L.i := b− 2; L.B {ϕ[b− 1/b]}
H ′

b−1−t = {ϕ[b− 1/b]} L.i := b− 1; L.B {ϕ}

in addition to
H ′

0 = {} L.i := t; L.B {ϕ[t+ 1/b]}.
According to Hoare’s rule of composition, we have

H ′
0 H ′

1 . . . H ′
b−2−t H ′

b−1−t

{} L.i := t; L.B ;L.i := t+ 1; L.B . . . L.i := b − 1; L.B {ϕ}

The conclusion of the rule represents { } L(t, b) {ϕ}, which is H . Hence, H is
valid if H ′ is valid. In a similar way, we can prove the case where the iterator
decreases.

Now, we assume that H is transformable to post-recursive form and the iter-
ator is decreasing, i.e., H ′ = { } L(t, b) {ϕ[t− 1/t]⇒ ϕ}.

The Hoare triple H ′ is assumed to be valid for an arbitrary value of t s.t.,
|b−t| ≥ 1, thus we have { } L(t−1, b) {ϕ[t−2/t]⇒ ϕ[t−1/t]} and we know that
(according to post-recursive form) L(t, b) = L.i := t; L.B; L(t− 1, b), hence

{ } L(t, b) {(ϕ[t− 2/t]⇒ ϕ[t− 1/t]) ∧ (ϕ[t − 1/t]⇒ ϕ)}

By reiterating the previous rewriting step (for post-recursive form)

L(t, b) = L.i := t; L.B; . . . ; L.i := b + 1; L.B

taking into account the assumption that H ′ holds for |b− t| = 1 i.e.,

{ } L.i := b+ 1; L.B {ϕ[b+ 1/t]}

we obtain
{ } L(t, b) {ϕ′}

such that

ϕ′ ≡ ϕ(b + 1/t) ∧ (ϕ[b+ 1/t]⇒ ϕ[b + 2/t]) ∧ . . . ∧ (ϕ[t− 1/t]⇒ ϕ).

Via modus ponens we obtain ϕ′ ⇒ ϕ, thus { } L(t, b) {ϕ} which means that H
is valid. Analogically, we can prove the case where the iterator increases. "!

4.3 Multidimensional Case

Our approach extends naturally to multidimensional arrays. To illustrate this,
we use the example matrix init which is shown in Figure 7(a). The procedure
matrix init takes three arguments: the matrix (array) a, the number of matrix

Simplifying the Verification of Quantified Array Assertions 205

1 void matrix init(int a [][], int n, int m)
2 {
3
4 int i , j ;
5 for(i = 0; i < m; ++i)
6 {
7 for(j = 0; j < n; ++j)
8 {
9 a[i][j] = 0;

10 }
11 }
12
13 assert(∀ x y. (0 ≤ x < m
14 ∧ 0 ≤ y < n)
15 ⇒ a[x][y] = 0);
16 }

1 assume(∀ x y. (0 ≤ x < m−1
2 ∧ 0 ≤ y < n)
3 ⇒ a[x][y] = 0);
4
5 for(j = 0; j < n; ++j)
6 {
7 a[m−1][j] = 0;
8 }
9

10 assert(∀ x y. (0 ≤ x < m
11 ∧ 0 ≤ y < n)
12 ⇒ a[x][y] = 0);

(a) (b)

1 assume(∀ x y. (0 ≤ x < m−1
2 ∧ 0 ≤ y < n)
3 ⇒ a[x][y] = 0);
4
5 assume(∀ x y. (0 ≤ x < m
6 ∧ 0 ≤ y < n−1)
7 ⇒ a[x][y] = 0);
8
9 a[m−1][n−1] = 0;

10
11 assert(∀ x y. (0 ≤ x < m
12 ∧ 0 ≤ y < n)
13 ⇒ a[x][y] = 0);

(c)

Fig. 7. Simple matrix initialization program (a) and the corresponding two successive
pre-recursive form transformations (b) and (c)

rows m and the number of matrix columns n. The outer loop in the procedure
ranges over matrix rows, while the inner one ranges over elements of each row
and initializes every element to 0. The assertion at line 13 states that the el-
ements (0, 0)..(m − 1, n − 1) of the matrix are indeed initialized to 0. We can
unroll the outer loop and apply the same reasoning used for the first example
(Figure 1(a)). We choose the variable m to parametrize the code and the as-
sertion, and transform the program to pre-recursive form. We obtain the result
illustrated in Figure 7(b). This result can itself be transformed again by consid-
ering the code portion from line 5 to 12 (Figure 7(b)) and reiterating the process,
however this time the program fragment as well as the assertion are parametrized
by n. As result, we obtain the code fragment from line 5 to 13 in Figure 7(c). By
adopting the reasoning scheme used in the first example, where the precondition

206 M.N. Seghir and M. Brain

of the Hoare triple is empty (true), the assumption (in Figure 7(b)) is ignored
despite its relevance to the target assertion. Obviously, the assumption at line 5
in Figure 7(c) is too weak to prove the assertion. To avoid such a loss of infor-
mation regarding the initial state, we propagate the precondition of the source
Hoare triple to the resulting one by adopting the following reasoning scheme

{ψ} L(t, n− 1) {ϕ(n− 1) ∧ ψ} {ϕ(n− 1) ∧ ψ} C {ϕ(n)}
{ψ} L(t, n− 1); C {ϕ(n)}

Compared to the previous case (Figure 2), here we have the additional precon-
dition ψ in the postcondition of the first premise of the rule. The induction
hypothesis guarantees that ϕ(n − 1) is valid but does not say anything about
the validity of ψ as postcondition. Thus, under the assumption that the validity
of ψ is not affected by the execution of L(t, n − 1), it suffices to prove that the
second premise {ϕ(n − 1) ∧ ψ} C {ϕ(n)} is valid to conclude the validity of
the original verification task, namely {ψ} L(t, n) {ϕ(n)}. Back to our exam-
ple of Figure 7(b), we can see that the assumption is not affected by the code
portion (line 5 to 8) as all array elements modified by the code have m − 1 as
first index while the assumption is about array elements whose first index is less
than m − 1. Hence, the assumption is preserved in the final result (at line 1)
in Figure 7(c) and the second assumption (line 5) is the one coming from the
induction hypothesis in the second transformation step. By combining the two
assumptions, we can prove the target assertion. The question now is how to show
that some quantified precondition is not affected by a given piece of code. For
this we introduce the notion of array access separation.

Array Access Separation and Precondition Propagation. Given two ar-
ray access (expressions) a[i1, . . . , ik] at program location �1 and a[j1, . . . , jk] at
program location �2, we say that both access are separated if it exits a, b, c, d
and x such that 1 ≤ x ≤ k, and the assertions a ≤ ix ≤ b and c ≤ jx ≤ d are
valid at locations �1 and �2 respectively, and [a..b] ∩ [c..d] = ∅. For each index
expression we can compute the interval in which it ranges using a lightweight
interval analysis [23]. However in practice the loop iterator often appears as
array index, thus its interval is simply the iterator range.

Given a quantified array assertion ϕ of the form (4), we say that a piece of
code C does not affect ϕ if

– Each expression a[j1, . . . , jk] appearing as left hand side of an assignment in
C and each expression a[i1, . . . , ik] in ϕ are separated.

– Each simple variable x representing the left hand side of an assignment in C
does not appear in ϕ.

Using the concept of array access separation, we propose a new version of the
transformation algorithm (Algorithm 2). We first make call to the previous trans-
formation algorithm (line 1). The precondition in the original Hoare triple is then
propagated to the result if it is not affected by the code (line 2 and 3), otherwise
we just get the Hoare triple which is obtained via the first transformation algo-
rithm (Transform). The proof of the soundness of this algorithm, more precisely

Simplifying the Verification of Quantified Array Assertions 207

Algorithm 2. TransformAndPropagate

Input: {ψ} L(t, b) {ϕ} Hoare triple
Output: Hoare triple
Let { } C {ϕ′} = Transform({ } L(t, b) {ϕ});1

if (L(t, b) does not affect ψ)) then2

return ({ψ} C {ϕ′});3

else4

return ({ } C {ϕ′});5

the first case (line 3), is exactly similar to the one of Transform. It suffices just
to include ψ in each pre- and postcondition of any Hoare triple used in the proof
as ψ always holds (not affected).

Discussion. An assertion ϕ can be affected by an assignment of the form ∗x = e
even if ∗x does not appear in ϕ. This is due to potential aliases that x may
have. In this case, one can use Morris’ axiom of assignment to make side effects
explicit through a case split with respect to potential aliasing cases. E.g., if ∗x
and y are potential aliases, i.e, x may point to y, we explicitly add the statement
if(x == &y) y = e after the assignment ∗x = e.

4.4 Loop Sequences

In some instances we have sequences of loops followed by assertions, i.e.,
L1(t1, b1); . . . ;Lk(tk, bk) {ϕ}, and the assertion does not only depend on the final
loop (Lk) but also on other loops preceding it. Under some conditions we can
still transform the original program to obtain a simpler one.

Pre-recursive Case. The original program can be transformed to pre-recursive
form if the following conditions are fulfilled

1. The iterator interval is the same for all loops, thus we have L1(t, b), . . . ,
Lk(t, b).

2. All loops are transformable to pre-recursive form.
3. For every m, s.t., 1 ≤ m < k and for every n, s.t., m < n ≤ k, the code

fragments Lm.i := prev(Lm, b);Lm.B and Ln(t, prev(Ln, b)) are commuta-
tive. Two code fragments C1 and C2 are commutative if for any state s the
execution of either C1;C2 or C2;C1 starting at s gives the same state s′.
This is the case if every (a) two array access a1 and a2 in C1 and C2 where
one of them is a write are separated, and (b) if there is a write to a variable
x in one fragment, then x must not appear in the second one.

To illustrate the transformation result, let us consider the following Hoare triple
which fulfills the first condition

{} L1(t, b); . . . ;Lk(t, b) {ϕ} (7)

208 M.N. Seghir and M. Brain

As all loops have the same parametrization, we can simply write

{} (L1; . . . ;Lk)(t, b) {ϕ} (8)

Assuming that all loops are transformable to pre-recursive form and that the
iterator is increasing, (8) is rewritten to

{} L1(t, b − 1);L1.i := b− 1;L1.B; . . . ;Lk(t, b− 1);Lk.i := b− 1;Lk.B {ϕ}.

Under the commutativity assumption, we obtain

{} (L1; . . . ;Lk)(t, b − 1)︸ ︷︷ ︸
recurrent fragment

;L1.i := b− 1;L1.B; . . . ;Lk.i := b− 1;Lk.B {ϕ}.

Using a reasoning analogous to the one applied for the pre-recursive case (sec-
tion 2.1), we obtain the final verification task where the code part is composed
of the last iterations from each loop

{ϕ[b− 1/b]} L1.i := b− 1;L1.B; . . . ;Lk.i := b− 1;Lk.B {ϕ}.

The transformation for the case where the iterator is decreasing is straightfor-
ward, it suffices just to replace b− 1 with b+ 1 in the last result.

Post-recursive Case. For the post-recursive case, the conditions are slightly
different:

1. The iterator interval is the same for all loops, i.e., L1(t, b), . . . ,Lk(t, b).
2. All loops are transformable to post-recursive form.
3. For every m, s.t., 1 ≤ m < k and for every n, s.t., m < n ≤ k, the code

fragments Lm(next(Lm, t), b) and Ln.i := t;Ln.B are commutative.

For illustration, let us now assume that all loops are transformable to post-
recursive form and the iterator is increasing. Under conditions 1 and 3, for-
mula (8) is transformed to

{} L1.i := t;L1.B; . . . ;Lk.i := t;Lk.B ; (L1; . . . ;Lk)(t+ 1, b)︸ ︷︷ ︸
recurrent fragment

{ϕ}.

Following the reasoning scheme applied in section 2.2, we obtain

{} L1(t, b); . . . ;Lk(t, b) {ϕ[t+ 1/t]⇒ ϕ}.

For the case where the iterator decreases, we just replace t+ 1 with t− 1 in the
postcondition of the Hoare triple above.

5 Implementation and Experiments

We have implemented our transformation technique in the software model checker
ACSAR [20]. We recall the previously obtained results [19] to show the practical

Simplifying the Verification of Quantified Array Assertions 209

performance enhancement that our approach can bring. Moreover, this transfor-
mation allows to verify challenging examples which are out of the scope of many
automatic verification tools, in particular sorting algorithms.

Table 1. Experimental results for academic and industrial examples

Program Transform Time (s)
S T

string copy PS/PR• 0.39 0.41

scan PS/PR• 0.27 0.14

array init PS/PR• 0.50 0.13

loop1 PS/PR• 0.51 0.21

copy1 PS/PR• 0.70 0.23

num index PS/PR• 0.68 0.21

dvb net feed stop∗ PS/PR• 3.41 0.30

cyber init∗ PS•/PR 9.47 5.60

perfc copy info∗∗ PS/PR• 10.57 1.50

do enoprof op∗∗ PS/PR• 8.9 0.54

selection sort PS 409.87 173.50

insertion sort PR - 145.60

bubble sort PS - 188.90

The results of our experiments are illustrated in Table 1. The column “Trans-
form” indicates the type of transformation which is applicable, “PR” stands for
pre-recursive and “PS” stands for post-recursive. If both transformations are
applicable, we choose the one that delivers the best results and mark it with
the superscript • as illustrated in the table. The column “Time” is divided into
two columns “S” which stands for the simple (our previous [21]) approach and
“T” which represents the modular approach based on code transformation. Our
benchmarks are classified in three categories. The first category (upper part
of the table) concerns academic examples taken from the literature. The sec-
ond class of examples covers typical use of arrays in real world system code.
The programs are code fragments taken from the Linux kernel (superscript ∗)
and drivers code as well as the Xen hypervisor1 code (superscript ∗∗). The last
category of benchmarks (sorting algorithms), represents the most challenging
examples in terms of complexity. The selection sort example is handled by both
approaches (simple and modular). However, the difference in terms of execu-
tion time is considerable. For bubble sort and insertion sort, the simple technique
seems to diverge as it is unable to terminate within a fixed time bound. However,
the modular approach is able to handle both examples in a fairly acceptable time
regarding the complexity of the property. To the best of our knowledge, apart

1 A hypervisor is a software that permits hardware virtualization. It allows multiple
operating systems to run in parallel on a computer. The Xen hypervisor is available
at http://www.xen.org/

http://www.xen.org/

210 M.N. Seghir and M. Brain

from the method presented in [22], no other technique in the literature can han-
dle all these three sorting examples automatically. Please refer to [19] for more
details about our experimental study.

6 Related Work

The verification of array quantified assertions received a lot of consideration in
recent years. Various ideas and techniques have been developed to verify such
properties. However, the idea of performing modular reasoning based on asser-
tion or code decomposition has not yet been addressed. Moreover, the modu-
larity aspect is orthogonal to issues investigated by methods discussed in this
section, indeed our technique can also be combined with these methods. Lahiri
and Bryant proposed an extension of predicate abstraction to compute uni-
versally quantified invariants [15]. Their technique is based on index predicates
which are predicates that contain free index variables. These index variables are
implicitly universally quantified at each program location. In a later work, they
described heuristics for inferring index predicates using counterexamples [16].
This approach requires the implementation of adequate predicate transformers.
Our method reuses the existing domain of quantifier-free predicates, therefore, it
does not require the implementation of specialized domain transformers. In the
same category, Jhala and McMillan proposed range predicates [13]: predicates
that refer to an implicitly quantified variable that ranges over array intervals.
An axiom-based algorithm is applied to infer new range predicates as Craig
interpolants for the spurious counterexamples. This approach does not handle
properties that require quantification over more than one variable. Our approach
does not have this restriction. Template-based techniques [3,9,22] consist of pro-
viding templates that fix the form of potential invariants. The analysis then
searches for an invariant that instantiates the template parameters. Srivastava
and Gulwani combined this approach with predicate abstraction to verify prop-
erties of arrays with alternating quantifiers [22]. Such properties are out of the
scope for our method. However, finding the appropriate template is itself a com-
plicated task, therefore, the template is in general manually provided. Automatic
methods to discover relevant templates have not yet been proposed. Recently,
a new family of interesting methods based on first-order theorem provers has
emerged. McMillan proposed an approach for the computation of universally
quantified interpolants by adapting a saturation prover [17]. The technique pre-
sented by Kovacs and Voronkov allows the generation of first-order invariants
over arrays that contain alternations of quantifiers [14]. Their analysis is based
on extracting predicates that encode array updates within a loop. A saturation-
based theorem prover is applied to these predicates to infer quantified invariants.
The current state of these methods is still limited due to the lack of support for
arithmetic theories in the underlying theorem provers. Abstract interpretation
has also received its part of interest in the verification of quantified assertions.
Gopan et al. [8] proposed an idea based on partitioning an array into several sym-
bolic intervals and associating a symbolic variable to each interval. Halbwachs

Simplifying the Verification of Quantified Array Assertions 211

and Péron extended this technique by allowing relational properties between
abstract variables which are associated to array intervals [10]. Despite restric-
tions, their technique seems to handle several interesting properties. However,
as for many abstract interpretation based methods, their approach requires the
implementation of the appropriate abstract domain as well as the corresponding
abstract transformers. This makes their approach less flexible to integrate in
state of the art software verification tools.

7 Conclusion

Improving the ability of tools to check quantified properties over arrays is a key
issue in automated program verification. This paper defines the concept of re-
current fragments and shows, for the case of loops, how the recurrence scheme
can be lifted to give an automatic inductive proof. Pattern matching can then
be used to locate suitable loops and thus simplify the verification task. An algo-
rithm based on this idea shows that it can be implemented as a source-to-source
translation making it low cost (as no fixed points are computed) and allowing it
to be used as a front-end for a variety of tools. Experimental results show that
this reduces verification time and allows us to verify challenging programs which
were out of scope for previous methods. Although this work focuses on simple
loop iteration schemes and syntactic matching, the idea of recurrent fragments
and linking the code structure to the induction scheme is much wider. Future
work includes the implementation of the presented scheme for handling sequences
of loops, having more flexible and robust matching, handling wider ranges of it-
eration patterns and generalizing recurrent fragments to handle recursive and
parametric program fragments.

References

1. Ball, T., Rajamani, S.K.: The SLAM project: debugging system software via static
analysis. In: POPL, pp. 1–3 (2002)

2. Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: A
modular reusable verifier for object-oriented programs. In: de Boer, F.S., Bon-
sangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp.
364–387. Springer, Heidelberg (2006)

3. Beyer, D., Henzinger, T.A., Majumdar, R., Rybalchenko, A.: Invariant synthesis for
combined theories. In: Cook, B., Podelski, A. (eds.) VMCAI 2007. LNCS, vol. 4349,
pp. 378–394. Springer, Heidelberg (2007)

4. Bradley, A.R., Manna, Z., Sipma, H.B.: What’s decidable about arrays? In: Emer-
son, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 427–442.
Springer, Heidelberg (2006)

5. Chaki, S., Clarke, E.M., Groce, A., Jha, S., Veith, H.: Modular verification of
software components in C. In: ICSE, pp. 385–395 (2003)

6. Clarke, E., Kroning, D., Sharygina, N., Yorav, K.: SATABS: SAT-based predicate
abstraction for ANSI-C. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS,
vol. 3440, pp. 570–574. Springer, Heidelberg (2005)

212 M.N. Seghir and M. Brain

7. Dahlweid, M., Moskal, M., Santen, T., Tobies, S., Schulte, W.: Vcc: Contract-based
modular verification of concurrent C. In: ICSE Companion, pp. 429–430 (2009)

8. Gopan, D., Reps, T.W., Sagiv, S.: A framework for numeric analysis of array
operations. In: POPL, pp. 338–350 (2005)

9. Gulwani, S., McCloskey, B., Tiwari, A.: Lifting abstract interpreters to quantified
logical domains. In: POPL, pp. 235–246 (2008)

10. Halbwachs, N., Péron, M.: Discovering properties about arrays in simple programs.
In: PLDI, pp. 339–348 (2008)

11. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: POPL,
pp. 58–70 (2002)

12. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun.
ACM 12(10), 576–580 (1969)

13. Jhala, R., McMillan, K.L.: Array abstractions from proofs. In: Damm, W., Her-
manns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 193–206. Springer, Heidelberg
(2007)

14. Kovács, L., Voronkov, A.: Finding loop invariants for programs over arrays using a
theorem prover. In: Chechik, M., Wirsing, M. (eds.) FASE 2009. LNCS, vol. 5503,
pp. 470–485. Springer, Heidelberg (2009)

15. Lahiri, S.K., Bryant, R.E.: Constructing quantified invariants via predicate abstrac-
tion. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 267–281.
Springer, Heidelberg (2004)

16. Lahiri, S.K., Bryant, R.E.: Indexed predicate discovery for unbounded system ver-
ification. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 135–147.
Springer, Heidelberg (2004)

17. McMillan, K.L.: Quantified invariant generation using an interpolating saturation
prover. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963,
pp. 413–427. Springer, Heidelberg (2008)

18. Podelski, A., Rybalchenko, A.: ARMC: The logical choice for software model check-
ing with abstraction refinement. In: Hanus, M. (ed.) PADL 2007. LNCS, vol. 4354,
pp. 245–259. Springer, Heidelberg (2007)

19. Seghir, M.N.: An assume guarantee approach for checking quantified array asser-
tions. In: Johnson, M., Pavlovic, D. (eds.) AMAST 2010. LNCS, vol. 6486, pp.
226–235. Springer, Heidelberg (2011)

20. Seghir, M.N., Podelski, A.: ACSAR: Software model checking with transfinite re-
finement. In: Bošnački, D., Edelkamp, S. (eds.) SPIN 2007. LNCS, vol. 4595, pp.
274–278. Springer, Heidelberg (2007)

21. Seghir, M.N., Podelski, A., Wies, T.: Abstraction refinement for quantified array
assertions. In: Palsberg, J., Su, Z. (eds.) SAS 2009. LNCS, vol. 5673, pp. 3–18.
Springer, Heidelberg (2009)

22. Srivastava, S., Gulwani, S.: Program verification using templates over predicate
abstraction. In: PLDI, pp. 223–234 (2009)

23. Zaks, A., Yang, Z., Shlyakhter, I., Ivancic, F., Cadambi, S., Ganai, M.K., Gupta,
A., Ashar, P.: Bitwidth reduction via symbolic interval analysis for software model
checking. IEEE Trans. on CAD of Integrated Circuits and Systems 27(8), 1513–
1517 (2008)

Proving Properties of Co-logic Programs

with Negation by Program Transformations

Hirohisa Seki�

Dept. of Computer Science, Nagoya Inst. of Technology,
Showa-ku, Nagoya, 466-8555 Japan

seki@nitech.ac.jp

Abstract. A framework for unfold/fold transformation of (constraint)
co-logic programs has been proposed recently, which can be used to prove
properties of co-logic programs, thereby allowing us to reason about in-
finite sequences of events such as behavior of reactive systems. The main
problem with this approach is that only definite co-logic programs are
considered, thus representing a rather narrow class of co-logic programs.
In this paper we consider ”negation elimination”, a familiar program
transformation method, tailored to co-logic programs; given a program
for predicate p(X), negation elimination derives a program which com-
putes its negation ¬p(X), when the program satisfies certain conditions.
We show that negation elimination can be used for co-logic programs,
and its application is correct under the alternating fixpoint semantics
of co-logic programs. We show by examples how negation elimination,
when incorporated into the previous framework for unfold/fold transfor-
mation, allows us to represent and reason about a wider class of co-logic
programs. We also discuss the difference between negation elimination
applied to co-logic programs and the conventional negative unfolding
applied to stratified programs.

1 Introduction

Co-logic programming (co-LP) is an extension of logic programming recently
proposed by Gupta et al. [5] and Simon et al. [22,23], where each predicate
in definite programs is annotated as either inductive or coinductive, and the
declarative semantics of co-logic programs is defined by an alternating fixpoint
model: the least fixpoints for inductive predicates and the greatest fixpoints for
coinductive predicates. Predicates in co-LP are defined over infinite structures
such as infinite trees or infinite lists as well as finite ones, and co-logic programs
allow us to represent and reason about properties of programs over such infinite
structures. Co-LP therefore has interesting applications to reactive systems and
verifying properties such as safety and liveness in model checking and so on.

A framework for unfold/fold transformation of (constraint) co-logic programs
has been proposed recently [20]. The main problem with this approach is that

� This work was partially supported by JSPS Grant-in-Aid for Scientific Research (C)
24500171 and the Kayamori Foundation of Information Science Advancement.

E. Albert (Ed.): LOPSTR 2012, LNCS 7844, pp. 213–227, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

214 H. Seki

only definite co-logic programs are considered, thus representing a rather narrow
class of co-logic programs.

In this paper we consider ”negation elimination”, a familiar program trans-
formation method, tailored to co-logic programs. Given a program for predi-
cate p(X), negation elimination derives a program which computes its negation
¬p(X), when the program satisfies certain conditions. Sato and Tamaki [18] first
proposed a negation elimination method for definite programs, where they called
it the “negation technique”. We show that the negation technique can be used for
co-logic programs, and its application is correct under the alternating fixpoint
semantics of co-logic programs.

One of the motivations of this paper is to further study the applicability
of techniques based on unfold/fold transformation not only to program develop-
ment originally due to Burstall and Darlington [1], but also for proving properties
of programs, which goes back to Kott [9] in functional programs. We show by
examples how negation elimination, when incorporated into the previous frame-
work for unfold/fold transformation, allows us to represent and reason about a
wider class of co-logic programs. We also discuss the difference between negation
elimination applied to co-logic programs and the conventional negative unfolding
applied to stratified programs.

The organization of this paper is as follows. In Section 2, we summarise some
preliminary definitions on co-logic programs and the previous framework for
our unfold/fold transformation of co-logic programs. In Section 3, we present
negation elimination for co-logic programs. In Section 4, we explain by examples
how our transformation-based verification method proves properties of co-logic
programs. Finally, we discuss about the related work and give a summary of this
work in Section 5.1

Throughout this paper, we assume that the reader is familiar with the basic
concepts of logic programming, which are found in [10].

2 A Framework for Transforming Co-logic Programs

In this section, we recall some basic definitions and notations concerning co-
logic programs. The details and more examples are found in [5,22,23]. We also
explain some preliminaries on constraint logic programming (CLP) (e.g., [8] for
a survey), and our framework for transformation of co-LP.

Since co-logic programming can deal with infinite terms such as infinite lists or
trees like f(f(. . .)) as well as finite ones, we consider the complete (or infinitary)
Herbrand base [10,7], denoted by HB∗

P , where P is a program. Fig. 1 (left) shows
an example of unfolding, one of basic transformations in our transformation
system. The unfolding rule introduces a constraint consisting of equations X =
Y ∧ Y = [a|X], which shows the necessity of dealing with infinite terms. The
theory of equations and inequations in this case is studied by Colmerauer [3].

1 Due to space constraints, we omit most proofs and some details, which will appear
in the full paper.

Proving Properties of Co-logic Programs with Negation 215

Pk : p ← q(X, [a|X]) (1)

q(Y, Y) ← r(Y) (2)

Unfold :

Pk+1 = (Pk \ {(1)}) ∪ {(3)},
p ← c � r(Y) (3)

where

c ≡(X = Y ∧ Y = [a|X])

P ′
k :p ← X1 = X,X2 = [a|X] � q(X1, X2) (1′)

q(Y1, Y2) ← Y1 = Y2, Y1 = Y3 � r(Y3) (2′)

Unfold :

P ′
k+1 = (P ′

k \ {(1′)}) ∪ {(3′)},

p ← c′ � r(Y3) (3′)

where

c′ ≡(X1 = X ∧ X2 = [a|X] ∧ X1 = Y1∧
X2 = Y2 ∧ Y1 = Y2 ∧ Y1 = Y3)

Fig. 1. Example of Unfolding (left) and its CLP form (right)

Throughout this paper, we assume that there exists at least one constant and
one function symbol of arity ≥ 1, thus HB∗

P is non-empty.
Fig. 1 (right) shows the counterparts to the clauses in the figure (left) in

standard CLP form. In general, let γ : p(t̃0) ← p1(t̃1), . . . , pn(t̃n) be a (logic
programming) clause, where t̃0, . . . , t̃n are tuples of terms. Then, γ is mapped
into the following pure CLP clause:

p(x̃0)← x̃0 = t̃0 ∧ x̃1 = t̃1 ∧ · · · ∧ x̃n = t̃n � p1(x̃1), . . . , pn(x̃n),

where x̃0, . . . , x̃n are tuples of new and distinct variables, and � means conjunc-
tion (“∧”). We will use the conventional representation of a (logic programming)
clause as a shorthand for a pure CLP clause, for the sake of readability.

In the following, for a CLP clause γ of the form: H ← c�B1, . . . , Bn, the head
H and the body B1, . . . , Bn are denoted by hd(γ) and bd(γ), respectively. We
call c the constraint of γ. A conjunction c �B1, . . . , Bn is said to be a goal (or a
query). The predicate symbol of the head of a clause is called the head predicate
of the clause.

The set of all clauses in a program P with the same predicate symbol p in
the head is called the definition of p and denoted by Def (p, P). We say that a
predicate p depends on a predicate q in P , iff either (i) p = q, (ii) there exists
in P a clause of the form: p(. . .) ← c � B such that predicate q occurs in B or
(iii) there exists a predicate r such that p depends on r in P , and r depends
on q in P . The extended definition [14] of p in P , denoted by Def ∗(p, P), is the
conjunction of the definitions of all the predicates on which p depends in P .

2.1 Syntax and Semantics of Co-logic Programs

A co-logic program is a constraint definite program, where predicate symbols are
annotated as either inductive or coinductive.2 Let P be the set of all predicates
in a co-logic program P , and we denote by P in (Pco) the set of inductive (coin-
ductive) predicates in P , respectively. There is one restriction on co-LP, referred

2 We call an atom, A, an inductive (a coinductive) atom when the predicate of A is
an inductive (a coinductive) predicate, respectively.

216 H. Seki

to as the stratification restriction: Inductive and coinductive predicates are not
allowed to be mutually recursive. An example which violates the stratification
restriction is {p← q; q ← p}, where p is inductive, while q is coinductive. When
P satisfies the stratification restriction, it is possible to decompose the set P of
all predicates in P into a collection (called a stratification) of mutually disjoint
sets P0, . . . ,Pr (0 ≤ r), called strata, so that, for every clause

p(x̃0) ← c � p1(x̃1), . . . , pn(x̃n),

in P , we have that σ(p) ≥ σ(pi) if p and pi have the same inductive/coinductive
annotations, and σ(p) > σ(pi) otherwise, where σ(q) = i, if the predicate symbol
q belongs to Pi. The following is an example of co-logic programs.

Example 1. [23]. Suppose that predicates member and drop are annotated as
inductive, while predicate comember is annotated as coinductive.

member (H, [H |])←
member (H, [|T]) ← member(H,T)

drop(H, [H |T], T)←
drop(H, [|T], T1) ← drop(H,T, T1)

comember (X,L)← drop(X,L,L1), comember (X,L1)

The definition of member is a conventional one, and, since it is an inductive
predicate, its meaning is defined in terms of the least fixpoint. Therefore, the
prefix ending in the desired element H must be finite. The similar thing also
holds for predicate drop.

On the other hand, predicate comember is coinductive, whose meaning is
defined in terms of the greatest fixpoint (see the next section). Therefore, it is
true if and only if the desired element X occurs an infinite number of times in
the list L. Hence it is false when the element does not occur in the list or when
the element only occurs a finite number of times in the list. "!

Semantics of Co-logic Programs. The declarative semantics of a co-logic
program is a stratified interleaving of the least fixpoint semantics and the great-
est fixpoint semantics.

In this paper, we consider the complete Herbrand base HB∗
P as the set of

elements in the domain of a structure D (i.e., a complete Herbrand interpretation
[10]).

Given a structure D and a constraint c, D |= c denotes that c is true under
the interpretation for constraints provided by D. Moreover, if θ is a ground
substitution (i.e., a mapping of variables on the domain D, namely, HB∗

P in this
case) and D |= cθ holds, then we say that c is satisfiable, and θ is called a solution
(or ground satisfier) of c, where cθ denotes the application of θ to the variables
in c. We refer to [3] for an algorithm for checking constraint satisfiability.

Let P be a co-logic program with a stratification P0, . . . ,Pr (0 ≤ r). Let
Πi (0 ≤ i ≤ r) be the set of clauses whose head predicates are in Pi. Then,
P = Π0 ·∪ . . . ·∪Πr. Similar to the “immediate consequence operator” TP in the

Proving Properties of Co-logic Programs with Negation 217

literature, our operator TΠ,S assigns to every set I of ground atoms a new set
TΠ,S(I) of ground atoms as

TΠ,S(I) = {A ∈ HB∗
Π | there is a ground substitution θ and a clause in Π

H ← c � B1, · · · , Bn, n ≥ 0, such that

(i) A = Hθ, (ii) θ is a solution of c, and

(iii) for every 1 ≤ i ≤ n, either Biθ ∈ I or Biθ ∈ S}.
In the above, the atoms in S are treated as facts. S is intended to be a set of
atoms whose predicate symbols are in lower strata than those in the current
stratum Π . We consider TΠ,S to be the operator defined on the set of all subsets

of HB∗
Π , ordered by standard inclusion. Next, two subsets T ↑α

Π,S and T ↓α
Π,S of the

complete Herbrand base are defined as:

T ↑0
Π,S = φ and T ↓0

Π,S = HB∗
Π ;

T ↑n+1
Π,S = TΠ,S(T

↑n
Π) and T ↓n+1

Π,S = TΠ,S(T
↓n
Π,S) for a successor ordinal n;

T ↑α
Π,S = ∪z<αT

↑z
Π,S and T ↓α

Π,S = ∩z<αT
↓z
Π,S , for a limit ordinal α.

Finally, the model M(P) of a co-logic program P = Π0 ·∪ . . . ·∪Πr is defined

inductively as follows: First, for the bottom stratum Π0, let M(Π0) = T ↑ω
Π0,∅, if

P0 is inductive; gfp(TΠ0,∅) otherwise.
Next, for k > 0, let:

M(Πk) =

{
T ↑ω
Πk,Mk−1

, if Pi is inductive,

gfp(TΠk,Mk−1
), if Pi is coinductive.

where Mk−1 is the model of lower strata than Πk, i.e., Mk−1 = ∪k−1
i=0 M(Πi).

Then, the model of P is M(P) = ∪r
i=0M(Πi), the union of all models M(Πi).

2.2 Transformation Rules for Co-logic Programs

We first explain our transformation rules, and then give some conditions imposed
on the transformation rules which are necessary for correctness of transforma-
tion. Our transformation rules are formulated in the framework of CLP, following
that by Etalle and Gabbrielli [4].

A sequence of programs P0, . . . , Pn is said to be a transformation sequence
with a given initial program P0, if each Pk+1 (0 ≤ k ≤ n− 1) is obtained from
Pk by applying one of the following transformation rules R1-R4.

Our motivation of this paper is to use program transformation rules for prov-
ing properties of a given system represented in a co-logic program P0. We thus
assume that there exist two kinds of predicate symbols appearing in a trans-
formation sequence: base predicates and defined predicates. A base predicate is
defined in P0, and it is intended to represent the structure and the behaviours of
the given system. Its definition is therefore assumed to remain unchanged during
program transformation. On the other hand, a defined predicate, which is in-
troduced by the following definition introduction rule, is intended to represent a

218 H. Seki

property of the given system such as safety and liveness properties. Its definition
will be changed during program transformation so that its truth value in M(Pn)
will be easily known.

R1. Definition Introduction. Let δ be a clause of the form: newp(X̃)← c�B,
where (i) newp is a defined predicate symbol not occurring in Pk, (ii) c is a
constraint, and (iii) B is a conjunction of atoms whose predicate symbols are
all base predicates appearing in P0. Moreover, δ satisfies the following conditon
called the annotation rule: newp is annotated as inductive iff there exists at
least one inductive atom in B, while newp is annotated as coinductive iff every
predicate symbol occurring in B is annotated as coinductive.

By definition introduction, we derive from Pk the new program Pk+1 = Pk ∪
{δ}. For n ≥ 0, we denote by Defsn the set of clauses introduced by the definition
introduction rule during the transformation sequence P0, . . . , Pn. In particular,
Defs0 = ∅.

As mentioned above, the role of the predicate annotations such as “base” and
“defined” is to specify the conditions for applying our transformation rules; they
are orthogonal to the predicate annotations of “inductive” and “coinductive”,
which are used to represent the intended semantics of each predicate in co-
logic programs. In particular, since the definition of newp(X̃) is non-recursive,
its meaning is determined only by the base predicates B in Pk, irrelevant of
whether its annotation is inductive or coinductive. However, some application
of transformation rules to δ could possibly derive a clause in Pn (n > k) of
the form: newp(X̃) ← newp(X̃). Then, the annotation of predicate newp will
matter, which is determined according to the above-mentioned annotation rule.

Our transformation rules include two basic rules: unfolding (R2) and folding
(R3). They are the same as those in Etalle and Gabbrielli [4], which are CLP
counterparts of those by Tamaki and Sato [24] for definite programs, so we omit
these definitions here;

The following replacement rule allows us to make simple the definition of a
defined predicate. The notion of useless predicates is originally due to Pettorossi
and Proietti [14], where the rule is called clause deletion rule.

R4. Replacement Rule. We consider the following two rules depending on
the annotation of a predicate.

–The set of the useless inductive predicates of a program P is the maximal
set U of inductive predicates of P such that a predicate p is in U if, for the
body of each clause of Def (p, P), it has an inductive atom whose predicate
is in U . By applying the replacement rule to Pk w.r.t. the useless inductive
predicates in Pk, we derive the new program Pk+1 from Pk by removing the
definitions of the useless inductive predicates.

–Let p(t̃) be a coinductive atom, and γ be a clause (modulo variance �) in
Pk of the form: p(t̃) ← p(t̃). By applying the replacement rule to Pk w.r.t.
p(t̃), we derive from Pk the new program Pk+1 = (Pk \ {γ}) ∪ {p(t̃)←}.

Proving Properties of Co-logic Programs with Negation 219

2.3 Correctness of the Transformation Rules

In order to preserve the alternating fixpoint semantics of a co-logic program, we
will impose some conditions on the application of folding rule. The conditions
on folding are given depending on whether the annotation of the head predicate
newp of a folded clause is inductive or not.

First, let newp be an inductive head predicate of a clause δ introduced by rule
R1 (definition introduction). We call an inductive predicate p primitive, if, for
some coinductive predicate q on which newp depends in P0∪{δ}, q depends on p
in P0; put simply, newp depends on an inductive predicate p through some coin-
ductive predicate q. We denote by Ppr the set of all the primitive predicates, i.e.,
Ppr = {p ∈ P in | ∃δ ∈ Defsn∃q ∈ Pco , newp is the head predicate of δ s.t. newp
depends on q in P0∪{δ}, and q depends on p in P0.}. We call an inductive pred-
icate p non-primitive, if it is not primitive. We call an atom with non-primitive
(primitive) predicate symbol a non-primitive (primitive) atom, respectively.

Let P0, . . . , Pn be a transformation sequence, and δ be a clause first introduced
by rule R1 in Defs i (0 ≤ i ≤ n), Then, we mark it “not TS-foldable”. Let γ be
a clause in Pk+1 (0 ≤ k < n). γ inherits its mark when γ is not involved in
the derivation from Pk to Pk+1. γ is marked “TS-foldable”, only if γ is derived
from β ∈ Pk by unfolding β of the form: A ← c � H,G w.r.t. H and H is a
non-primitive inductive atom. Otherwise, γ inherits the mark of β. Similarly, γ
inherits the mark of β, if γ is derived from β ∈ Pk by folding.

When there are no coinductive predicates in P0∪Defsn, the above TS-foldable
condition coincides with the one by Tamaki-Sato [24].

Next, let newp be an coinductive defined predicate of a clause δ introduced
by rule R1. The next notion is due to [21], which is originally introduced to give
a condition on folding to preserve the finite failure set.

Let P0, . . . , Pn be a transformation sequence, and δ be a clause first introduced
by rule R1 in Defs i (0 ≤ i ≤ n). Then, each atom in the body bd(δ) is marked
inherited in δ. Let γ be a clause in Pk+1 (0 ≤ k < n). When γ is not involved in
the derivation from Pk to Pk+1, each atom B in bd(γ) is marked inherited , if so
is it in γ in Pk. Otherwise, i.e., suppose that γ is derived by applying to some
clause β in Pk either unfolding rule or folding rule. Then, each atom B in bd(γ)
is marked inherited , if it is not an atom introduced to bd(γ) by that rule, and it
is marked inherited in β in Pk. Moreover, the application of folding is said to be
fair , if there is no folded atom in bd(β) which is marked inherited. Intuitively, an
atom marked inherited is an atom such that it was in the body of some clause
in Defs i (0 ≤ i ≤ n), and no unfolding has been applied to it.

We are now in a position to state the conditions imposed on folding and the
correctness of our transformation rules.

Conditions on Folding. Let P0, . . . , Pn be a transformation sequence. Suppose
that Pk (0 < k ≤ n) is derived from Pk−1 by folding γ ∈ Pk−1. The application
of folding is said to be admissible if the following conditions are satisfied:
(1)Pk satisfies the stratification restriction,
(2)if hd(γ) is an inductive atom, then γ is marked “TS-foldable” in Pk−1, and
(3)if hd(γ) is a coinductive atom, then the application of folding is fair. "!

220 H. Seki

Proposition 1. Correctness of Transformation [20]
Let P0 be an initial co-logic program, and P0, . . . , Pn (0 ≤ n) a transformation
sequence, where every application of folding is admissible. Then, the transfor-
mation sequence is correct, i.e., M(P0 ∪Defsn) = M(Pn). "!

3 Negation Elimination in Co-logic Programs

To deal with a negative literal in a goal, we use the negation technique by Sato
and Tamaki [18], a method for negation elimination for definite programs. The
negation technique is a procedure to derive a set S′ of definite clauses from a
given definite program S such that (i) each predicate symbol p in S has one-
to-one correspondence with a new predicate symbol, not p, in S′ with the same
arity, and (ii) for any ground atom p(t̃) and not p(t̃),

M(S) |= ¬p(t̃) iff M(S′) |= not p(t̃) (∗)
If S′ satisfies the above conditions, it is called a complementary program of
S. In [18], S is a definite program, and M(S) is its least Herbrand model. In
the following, we show the negation technique for co-logic programs under the
alternating fixpoint semantics.

We explain the negation technique by using an example for saving space.
Consider drop in Example 1, and let S be the definition of drop. We will derive
the definition of not drop (not d for short) by applying the following steps:

(Step 1) Consider the completed definition of drop. In this case, we have:

drop(A,B,C) ↔ (∃H,T)(〈A,B,C〉 = 〈H, [H |T], T 〉) ∨
(∃H,X, T, T1)(〈A,B,C〉 = 〈H, [X |T], T1〉 ∧ drop(H,T, T1))

(1)

We denote by Ṽ = t̃1 (Ṽ = t̃2) the first (second) equation in (1), respectively.

(Step 2) Negate both sides of the completed definition, and every negative oc-
currence ¬p(t̃) is replaced by not p(t̃). In this case, we have:

not d(A,B,C) ↔ (∀H,T)(Ṽ �= t̃1) ∧ (∀H,X, T, T1)(Ṽ �= t̃2 ∨ not d(H,T, T1))
(2)

(Step 3) Transform every conjunct on the right-hand side of the result of (Step
2) which is of the form: (∀X̃)(〈Ã �= t̃〉 ∨ not p1(t̃1) ∨ · · · ∨ not pm(t̃m)) (m ≥ 1)
to (∀X̃)〈Ã �= t̃〉∨ (∃X̃)(〈Ã = t̃〉∧not p1(t̃1))∨· · ·∨ (∃X̃)(〈Ã = t̃〉∧not pm(t̃m)).

Note that, when some clause in S has an existential variable, this transformation
is not valid. In this case we obtain from (2):

not d(A,B,C) ↔ (∀H,T)(Ṽ
= t̃1) ∧
{(∀H,X, T, T1)(Ṽ
= t̃2) ∨ (∃H,X, T, T1)(Ṽ = t̃2 ∧ not d(H,T, T1))}

(3)

Proving Properties of Co-logic Programs with Negation 221

(Step 4) Transform the right-hand side to a disjunctive form. In this case, we
obtain from (3):

not d(A,B,C) ↔ ((∀H,T)(Ṽ �= t̃1) ∧ (∀H,X, T, T1)(Ṽ �= t̃2)) ∨
{(∀H,T)(Ṽ �= t̃1) ∧ (∃H,X, T, T1)(Ṽ = t̃2 ∧ not d(H,T, T1))}

(4)

(Step 5) Transform the completed definition given as the result of (Step 4) to
a set of clauses, and then simplify constraints assuming that each predicate p is
typed. Annotate the derived predicate as “coinductive” (resp. “inductive) if the
annotation of the original predicate is inductive (resp. coinductive). In this case,
we obtain from (4), assuming that B and C are lists:

not drop(A, [], C) ←
not drop(H, [X |T], T1)← X �= H, not drop(H,T, T1)

not drop(H, [H |T], T1)← T �= T1, not drop(H,T, T1)

not drop is annotated as “coinductive”, since predicate drop is inductive.
(Step 6) Apply to all predicates in Def ∗(p, S) (Step 1) to (Step 5), and let S′ is
the set of the resulting clauses. We call S′ the result of the negation technique
applied to p in S.

The above transformations themselves are exactly the same as those in the orig-
inal negation technique [18] for definite programs; the only difference is the ne-
cessity of predicate annotations in (Step 5). In the original negation technique,
an extra condition such as the finiteness of SLD-tree for p(t̃) is necessary to
obtain a complementary program, while such a condition is not needed here.

Proposition 2. Correctness of the Negation Technique
Let S be a co-logic program. If every clause in S has no existential variable, then
the procedure of the negation technique (Step 1) to (Step 6) gives a complemen-
tary co-logic program S′, i.e., for any ground term t̃,

M(S) |= ¬p(t̃) iff M(S′) |= not p(t̃).

Proof. (Sketch) Let S′ be the definition of not drop obtained in (Step 5) in the
above. Since the general case will be shown similarly, we explain an outline of
the proof that S′ is a complementary program of S (i.e., the definition of drop).

We first note that, when S satisfies the stratification restriction, then so does
S′. Let I ′ be the greatest fixpoint gfp(S′) of S′, noting that not drop is annotated
as coinductive. Since I ′ is a fixpoint, it satisfies the IFF-definition of (4), and it
also satisfies (3) and (2) in turn. We define:

I = {drop(t̃) | not drop(t̃) �∈ I ′. t̃ is a sequence of ground terms.}
Then, we can show that I satisfies (1) and is the least fixpoint model of S. "!

Remark 1. In [18], Sato and Tamaki described an extension of the negation
technique to the case where a clause in S has an existential variable. Namely,
even when there are clauses with existential variables, (Step 3) in the negation
technique is still valid, if the clauses have a functional part [18]: that is, let

222 H. Seki

γ be a clause in P of the form: p0(X) ← p1(X,Y), . . . , pm(X,Y). Then, we
say that γ with an existential variable Y has a functional part p1 iff p1(X,Y)
defines a partial function from X to Y (that is, whenever M(P) |= p1(a, b) and
M(P) |= p1(a, b

′), then b = b′ holds for any ground terms a, b, b′).
This is also true in co-logic programs, and we show it by the following example.

The definition of predicate comember in Ex. 1 has an existential variable (i.e.,
L1); we cannot apply the negation technique to ¬comember(X,L). Moreover, it
does not have a functional part, since drop(X,L,L1) does not define a partial
function. Instead, we consider the following definition of comember ′:

1. comember ′(X,L)← drop′(X,L,L1), comember ′(X,L1)
2. drop ′(H, [H |T], T)←
3. drop ′(H, [H1|T], T1) ← H �= H1, drop

′(H,T, T1)

where drop′(X,L,L1) now defines a partial function from (X,L) to L1.
Applying the negation technique to ¬comember ′(X,L) and simple unfold/fold

transformations, we obtain the following clauses:

4. not comem(X,L)← not d(X,L)
5. not comem(X,L)← drop ′(X,L,L1), not comem(X,L1)
6. not d(H, []) ←
7. not d(H, [H1|T])← H �= H1, not d(H,T)

where we denote not comemember ′ by not comem for short, and not d is a
coinductive predicate. We will use this in Example 3. "!
In conventional program transformation for logic programs, negative unfolding
([14,19] for example) is applied to a negative literal in the body of a clause. The
following example will show the difference between the negation technique in
co-LP and negative unfolding in (locally) stratified programs, which reflects the
differences underlying the two different semantics.

Example 2. Consider the following stratified program P0 = {1, 2, 3}:
1. p ← ¬q(X)
2. q(X)← q(X)
3. q(X)← r

4. p ← ¬q(X),¬r (neg. unfold 1)
5. p ← p,¬r (fold 4)

We first consider a wrong transformation sequence [14]: we apply to clause 1
negative unfolding w.r.t. ¬q(X), followed by folding the resulting clause. Let
P2 = (P0 \{1})∪{5}. Then, we have that PERF (P0) |= p, while PERF (P2) �|= p.
Thus, the above transformation does not preserve the perfect model semantics;
put somewhat simply, folding immediately after negative unfolding is not allowed
as noted in [14].

Next, we consider the use of the negation technique in unfold/fold transfor-
mation of co-LP. We apply the negation technique to ¬q(X) in P0, obtaining
P ′
0 = {1′, 2′, 3′}:
1′. p ← not q(X)
2′. not q(X)← not q(X), not r
3′. not r ←

4′. p ← not q(X), not r (unfold 1′)
5′. p ← p, not r (fold 4′)

The annotations of not q(X) and not r are coinductive, since the semantics
of q(X) and r are given by the least fixpoints in the perfect model semantics.

Proving Properties of Co-logic Programs with Negation 223

1. state(s0, [s0, is1|T]) ← enter ,work , state(s1, T)
2. state(s1, [s1|T]) ← exit , state(s2, T)
3. state(s2, [s2|T]) ← repeat , state(s0, T)
4. state(s0, [s0|T]) ← error , state(s3, T)
5. state(s3, [s3|T]) ← repeat , state(s0, T)
6. work ← work 9. exit ←
7. work ← 10. repeat ←
8. enter ← 11. error ←

Fig. 2. Example: a self-correcting system [22]

On the other hand, we consider p a defined predicate, annotated “coinductive”
according to the annotation rule (R1). Then, we consider the above transfor-
mation sequence: we apply to clause 1′ unfolding w.r.t. not q(X), followed by
folding the resulting clause. Let P ′

2 = (P ′
0 \ {1′}) ∪ {5′}. Then, we have that

M(P ′
2) |= p. The above transformation thus preserves the alternating fixpoint

semantics. "!

The above example suggests that the negation technique in co-LP, when used
with unfold/fold transformations, would circumvent a restriction imposed on the
use of negative unfolding, thereby making amenable to subsequent transforma-
tions, which will hopefully lead to a successful proof.

4 Proving Properties of Co-logic Programs with Negation

In this section, we explain by examples how negation elimination in Sect. 3 will
be utilized to prove properties of co-logic programs.

Let P be a co-logic program and prop be a predicate specifying a property
of interest which is defined in terms of the predicates in P . Then, in order to
check whether or not M(P) |= ∃Xprop(X), our transformation-based verifica-
tion method is simple: we first introduce a defined predicate f defined by clause δ
of the form: f ← prop(X), where the annotation of predicate f is determined ac-
cording to the annotation rule in R1. We then apply the transformation rules for
co-logic programs given in Sect. 2.2 to P0 = P as an initial program, construct-
ing a transformation sequence P0, P1 = P0 ∪ {δ}, . . . , Pn so that the truth value
of f in M(Pn) will be easily known. In particular, if the definition of f in Pn−1

consists of a single self-recursive clause f ← f , we will apply the replacement
rule to it, obtaining Pn from Pn−1, where Def (f, Pn) = ∅ (i.e., M(Pn) |= ¬f) if
f is inductive, Def (f, Pn) = {f ←} (i.e., M(Pn) |= f) otherwise.

The first example due to [22] is on proving a liveness property of a self-
correcting system in Fig. 2.

Example 3. Let Ps be the clauses 1 − 11 in Fig. 2, which encodes the self cor-
recting system in the figure. The system consists of four states s0, s1, s2 and s3.
It starts in state s0, enters state s1, performs a finite amount of work in state s1.
This inner loop state in s1 is denoted by is1 (clause 1). The system then exits

224 H. Seki

to state s2. From state s2 the system transitions back to state s0, and repeats
the entire loop again, an infinite number of times. However, the system might
encounter an error, causing a transition to state s3; corrective action is taken,
returning back to s0 (this can also happen infinitely often).

The above system uses two different kinds of loops: an outermost infinite loop
and an inner finite loop. The outermost infinite loop is represented by coinductive
predicate state, while the inner finite loop is represented by inductive predicate
work . The program Ps satisfies the stratification restriction.

Suppose that we want to prove a property of the system, ensuring that the
system must traverse through the work state s2 infinitely often. The counterex-
amples to the property can be specified as: ∃T state(s0, T),¬comember(s2, T),
meaning that the state s2 is not present infinitely often in the infinite list T .

To express the counterexample, we first introduce the following clause:
12. f ← state(s0, T), not comem(s2, T)
where f is an inductive defined predicate, and not comem is an inductive pred-
icate defined in Remark 1. Let P0 be Ps together with the extended definition
of not comem . Then, we can consider the following transformation sequence:

13. f ← state(s0, T ′), not d(s2, T ′) (unfold+ 12)
14. g ← state(s0, T), not d(s2, T) (def. intro.), g ∈ Pco

15. f ← g (fold 13)
16. g ← state(s0, T ′), not d(s2, T ′) (unfold+ 14)
17. g ← g (fold 14)
18. g ← (replacement 17)
19. f ← (unfold 15)

This means that M(P0 ∪ {12, 14}) |= f , which implies that there exists a coun-
terexample to the original property; in fact, T = [s0, s3|T] satisfies the body of
clause 12.

In the previous approach [20], we introduced a predicate absent(X,T) in ad-
vance, which corresponds to ¬comember (X,T). Then, we perform a sequence of
transformations similar to the above. By contrast, we derive predicate
not comem(X,T) here by using the negation technique. The current approach
is therefore more amenable to automatic proof of properties of co-LP. "!
Example 4. Adapted from [16]. We consider regular sets of infinite words over a
finite alphabet. These sets are denoted by ω-regular expressions whose syntax is
defined as follows:

e ::= a | e1e2 | e1 + e2 | eω with a ∈ Σ (regular expressions)
f ::= eω | e1eω2 | f1 + f2 (ω-regular expressions)

Given a regular (or an ω-regular) expression r, by L(r) we indicate the set of all
words in Σ∗ (or Σω, respectively) denoted by r. In particular, given a regular
expression e, we have that L(eω) = {w0w1 · · · ∈ Σω | for i ≥ 0, wi ∈ L(e) ⊆ Σ∗}.

Now we introduce a co-logic program, called Pf , which defines the predicate ω-
acc such that for any ω-regular expression f , for any infinite word w, ω-acc(f, w)
holds iff w ∈ L(f). The ω-program Pf consists of the clauses in Fig. 3, together
with the clauses defining the predicate symb, where symb(a) holds iff a ∈ Σ.
Clauses 1-6 specify that, for any finite word w and regular expression e, acc(e, w)

Proving Properties of Co-logic Programs with Negation 225

1. acc(E, [E]) ← symb(E)
2. acc(E1E2, X) ←

app(X1, X2, X), acc(E1, X1), acc(E2, X2)
3. acc(E1 + E2, X) ← acc(E1, X)
4. acc(E1 + E2, X) ← acc(E2, X)
5. acc(E∗, []) ←
6. acc(E∗, X) ←

app(X1, X2, X), acc(E,X1), acc(E
∗, X2)

7. ω-acc(F1 + F2, X) ← ω-acc(F1, X)
8. ω-acc(F1 + F2, X) ← ω-acc(F2, X)
9. ω-acc(Eω, X) ←

app(X1, X2, X), acc(E,X1), ω-acc(Eω, X2)
10. app([], Y, Y) ←
11. app([S|X], Y, [S|Z]) ← app(X, Y,Z)

Fig. 3. Example: A Program Pf Which Accepts ω-languages

holds iff w ∈ L(e). Similarly, clauses 7-9 specify that, for any infinite word w
and ω-regular expression f , ω-acc(f, w) holds iff w ∈ L(f). The annotation of
ω-acc is coinductive, while the other predicates are inductive.

Now, let us consider the ω-regular expressions f1 ≡def aω and f2 ≡def (b∗a)ω .
The following two clauses:

12. expr1(X)← ω-acc(aω, X)
13. expr2(X)← ω-acc((b∗a)ω, X)

together with program Pf , define the predicates expri (i = 1, 2) such that, for
every infinite word w, expri(w) holds iff w ∈ L(fi). Moreover, we introduce
predicate not expr2(X) defined as: for any ground term t,

14. M(Pf ∪ {13}) |= ¬expr2(t) iff M(Pf ∪ {13}) |= not expr2(t).

If we introduce a clause:

15. not contained(X)← expr1(X), not expr2(X),

then we have that L(f1) ⊆ L(f2) iff M(Pf ∪{12, 13, 14, 15}) �|= ∃Xnot contained
(X). We note that the negation technique is not applicable to ω-acc(Eω, T);
clause 9 has existential variables and, unlike the previous example, it does not
have a functional part. The definition of not ω-acc is therefore not given in
an explicit clausal form at this moment. Instead, we will apply the negation
technique ’on the fly’ in the following.

To check the above containment, we introduce the following clause:

16. g ← not contained(X)

where g is an inductive predicate. We can then consider the following transfor-
mation sequence:

17. g ← ω-acc(aω, X), not ω-acc((b∗a)ω, X) (unfold+ 16)
18. g1 ← ω-acc(aω , X), not ω-acc((b∗a)ω, X) (def. intro.), g ∈ P in

19. g ← g1 (fold 17)
20. g1 ← ω-acc(aω , T), not ω-acc((b∗a)ω, [a|T]) (unfold+ 18)

From Pf and a goal ω-acc((b∗a)ω, [a|T]), we get the following resultant [11]:
ω-acc((b∗a)ω, [a|T])← ω-acc((b∗a)ω , T).
Since the above clause does not contain an existential variable, we have now
from the negation technique:

21. not ω-acc((b∗a)ω, [a|T])← not ω-acc((b∗a)ω, T)

Using the above clause, we continue the above-mentioned transformation:

226 H. Seki

22. g1 ← ω-acc(aω , T), not ω-acc((b∗a)ω, T) (unfold 20)
23. g1 ← g1 (fold 22)
24. def. of g1 (clause 23) removed (replacement 23)
25. clause 19 removed (unfold 19)

This means that M(Pf ∪ {12, 13, 14, 15}) �|= g, namely L(f1) ⊆ L(f2).
The above example is originally due to Pettorossi, Proietti and Senni [16],

where (i) the given problem is encoded in an ω-program P , a locally stratified
program on infinite lists, then (ii) their transformation rules in [16] are applied
to P , deriving a monadic ω-program T , and finally (iii) the decision procedure
in [15] is applied to T to check whether or not PERF (T) |= ∃Xprop(X).

On the other hand, our approach uses co-LP, which allows us to make the
representation more succinct, about the half the lines of the ω-program in this
particular example. "!

5 Related Work and Concluding Remarks

We have shown that negation elimination based on the negation technique (NT)
can be used to co-logic programs, and its application is correct under the alter-
nating fixpoint semantics of co-logic programs. In co-LP, NT allows us to derive
a complementary program under a weaker condition than in the original NT
for definite programs. We have explained in Sect. 4 how NT, when incorporated
into the previous framework for unfold/fold transformation, allows us to rep-
resent and reason about a wider class of co-logic programs which our previous
framework [20] cannot deal with.

Simon et al. [22] have proposed an operational semantics, co-SLD resolution, for
co-LP, which has been further extended byMin and Gupta [12] to co-SLDNF reso-
lution. On the other hand, as explained in Example 3, NT derives a programwhich
simulates failed computations of a given program.When NT is applicable, our ap-
proach is simpler than co-SLDNFresolution in thatwe candowithout an extra con-
trolling mechanism such as a positive/negative context in co-SLDNF resolution.

Pettorossi, Proietti and Senni [16] have proposed another framework for
transformation-based verification based on ω-programs, which can also represent
infinite computations.As explained inExample 4, our approach canprove the given
property in a simpler and more succinct manner, as far as this particular example
is concerned. However, the detailed comparison between our approach based on
co-logic programs and their approach based on ω-programs is left for future work.

One direction for future work is to extend the current framework to allow amore
general class of co-logic programs.Gupta et al. [6], for example, have discussed such
an extension, where they consider co-LP without the stratification restriction.

Acknowledgement. The author would like to thank anonymous reviewers for
their constructive and useful comments on the previous version of the paper.

References

1. Burstall, R.M., Darlington, J.: A Transformation System for Developing Recursive
Programs. J. ACM 24(1), 144–167 (1977)

2. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press (1999)

Proving Properties of Co-logic Programs with Negation 227

3. Colmerauer, A.: Prolog and Infinite Trees. In: Logic Programming, pp. 231–251.
Academic Press (1982)

4. Etalle, S., Gabbrielli, M.: Transformations of CLP Modules. Theor. Comput. Sci.,
101–146 (1996)

5. Gupta, G., Bansal, A., Min, R., Simon, L., Mallya, A.: Coinductive logic pro-
gramming and its applications. In: Dahl, V., Niemelä, I. (eds.) ICLP 2007. LNCS,
vol. 4670, pp. 27–44. Springer, Heidelberg (2007)

6. Gupta,G., Saeedloei, N.,DeVries, B.,Min,R.,Marple, K.,Kluźniak,F.: Infinite com-
putation, co-induction and computational logic. In: Corradini, A., Klin, B., Ĉırstea,
C. (eds.) CALCO 2011. LNCS, vol. 6859, pp. 40–54. Springer, Heidelberg (2011)

7. Jaffar, J., Stuckey, P.: Semantics of infinite tree logic programming. Theoretical
Computer Science 46, 141–158 (1986)

8. Jaffar, J., Maher, M.J.: Constraint Logic Programming: A Survey. J. Log. Pro-
gram. 19/20, 503–581 (1994)

9. Kott, L.: Unfold/fold program transformations. In: Algebraic Methods in Seman-
tics, pp. 411–434. Cambridge University Press (1985)

10. Lloyd, J.W.: Foundations of Logic Programming, 2nd edn. Springer (1987)
11. Lloyd, J.W., Shepherdson, J.C.: Partial Evaluation in Logic Programming. J. Logic

Programming 11, 217–242 (1991)
12. Min, R., Gupta, G.: Coinductive Logic Programming with Negation. In: De

Schreye, D. (ed.) LOPSTR 2009. LNCS, vol. 6037, pp. 97–112. Springer, Heidelberg
(2010)

13. Pettorossi, A., Proietti, M.: Transformation of Logic Programs: Foundations and
Techniques. J. Logic Programming 19/20, 261–320 (1994)

14. Pettorossi, A., Proietti, M.: Perfect Model Checking via Unfold/Fold Transforma-
tions. In: Palamidessi, C., Moniz Pereira, L., Lloyd, J.W., Dahl, V., Furbach, U.,
Kerber, M., Lau, K.-K., Sagiv, Y., Stuckey, P.J. (eds.) CL 2000. LNCS (LNAI),
vol. 1861, pp. 613–628. Springer, Heidelberg (2000)

15. Pettorossi, A., Proietti, M., Senni, V.: Deciding Full Branching Time Logic by
Program Transformation. In: De Schreye, D. (ed.) LOPSTR 2009. LNCS, vol. 6037,
pp. 5–21. Springer, Heidelberg (2010)

16. Pettorossi, A., Proietti, M., Senni, V.: Transformations of logic programs on infinite
lists. Theory and Practice of Logic Programming 10, 383–399 (2010)

17. Przymusinski, T.C.: On the Declarative and Procedural Semantics of Logic Pro-
grams. J. Automated Reasoning 5(2), 167–205 (1989)

18. Sato, T., Tamaki, H.: Transformational Logic Program Synthesis. In: Proc. FGCS
1984, Tokyo, pp. 195–201 (1984)

19. Seki, H.: On Inductive and Coinductive Proofs via Unfold/fold Transformations.
In: De Schreye, D. (ed.) LOPSTR 2009. LNCS, vol. 6037, pp. 82–96. Springer,
Heidelberg (2010)

20. Seki, H.: Proving Properties of Co-logic Programs by Unfold/Fold Transforma-
tions. In: Vidal, G. (ed.) LOPSTR 2011. LNCS, vol. 7225, pp. 205–220. Springer,
Heidelberg (2012)

21. Seki, H.: Unfold/Fold Transformation of Stratified Programs. Theoretical Com-
puter Science 86, 107–139 (1991)

22. Simon, L., Mallya, A., Bansal, A., Gupta, G.: Coinductive Logic Programming.
In: Etalle, S., Truszczyński, M. (eds.) ICLP 2006. LNCS, vol. 4079, pp. 330–345.
Springer, Heidelberg (2006)

23. Simon, L.E.: Extending Logic Programming with Coinduction, Ph.D. Dissertation,
University of Texas at Dallas (2006)

24. Tamaki, H., Sato, T.: Unfold/Fold Transformation of Logic Programs. In: Proc.
2nd Int. Conf. on Logic Programming, pp. 127–138 (1984)

Program Analysis and Manipulation

to Reproduce Learners’ Erroneous Reasoning

Claus Zinn

Department of Computer Science
University of Konstanz

Box D188, 78457 Konstanz, Germany
claus.zinn@uni-konstanz.de

Abstract. Pedagogical research shows that learner errors are seldom
random but systematic. Good teachers are capable of inferring from
learners’ input the erroneous procedure they are following, and use the
result of such deep cognitive diagnoses to repair its incorrect parts. We
report a method for the automatic reconstruction of such erroneous pro-
cedures based on learner input and the analysis and manipulation of
logic programs. The method relies on an iterative application of two al-
gorithms: an innovative use of algorithmic debugging to identify learner
errors by the analysis of (initially) correct (sic) Prolog-based procedures,
and a subsequent program manipulation phase where errors are intro-
duced into (initially) correct procedures. The iteration terminates with
the derivation of an erroneous procedure that was followed by the learner.
The procedure, and its step-wise reconstruction, can then be used to in-
form remedial feedback.

1 Introduction

The diagnosis of learner input is central for the provision of effective scaffolding
and remedial feedback in intelligent tutoring systems. A main insight is that
errors are rarely random, but systematic. Either learners have acquired an erro-
neous procedure, which they execute in a correct manner, or learners attempt
to execute a correct procedure but encounter an impasse when executing one of
its steps. To address the impasse, learners are known to follow a small set of re-
pair strategies such as skipping the step in question, or backing-up to a previous
decision point where performing the step can be (erroneously) avoided.

Effective teaching depends on deep cognitive diagnosis of such learner be-
haviour to identify erroneous procedures or learners’ difficulties with executing
correct ones. State-of-the-art intelligent tutoring systems, however, fail to give a
full account of learners’ erroneous skills. In model tracing tutors (e.g., the Lisp
tutor [2]; the Algebra Tutor [4]), appropriately designed user interfaces and tu-
tor questions invite learners to provide their answers in a piecemeal fashion. It
is no longer necessary to reproduce a student’s line of reasoning from question
to (final) answer; only the student’s next step towards a solution is analyzed,

E. Albert (Ed.): LOPSTR 2012, LNCS 7844, pp. 228–243, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Breaking Correct Programs 229

and immediate feedback is given. Model tracing tutors thus keep learners close
to ideal problem solving paths, hence preventing learners to fully exhibit er-
roneous behaviour. Constraint-based tutors (e.g., the SQL tutor [7]) perform
student modelling based on constraints [9]. Here, diagnostic information is not
derived from an analysis of learner actions but of problem states the student ar-
rived at. With no representation of actions, the constraint-based approach makes
it hard to identify and distinguish between the various (potentially erroneous)
procedures learners follow to tackle a given problem.

None of the two approaches attempt to explain buggy knowledge or skills.
There is no explicit and machine-readable representation to mark deviations of
an expert rule from the buggy skill; and also, there is no mechanism for au-
tomatically deriving buggy skills from correct ones. In this paper, we report a
method capable of reconstructing erroneous procedures from expert ones. The
method is based on an iterative analysis and manipulation of logic programs.
It relies on an innovative use of algorithmic debugging to identify learner error
by the analysis of (initially) correct (sic) Prolog-based procedures (modelling
expert skills), and a subsequent program manipulation to introduce errors into
the correct procedure to finally produce the erroneous procedure followed by
the learner. The method extends our previous work [14] by having algorithmic
debugging now qualify the irreducible disagreement with its cause, i.e., by spec-
ifying those elements in the learner’s solution that are missing, incorrect, or
superfluous. Moreover, we have defined and implemented a perturbation algo-
rithm that can use the new information to transform Prolog programs into ones
that can reproduce the observed error causes.

The remainder of the paper is structured as follows. Sect. 2 introduces the
domain of instruction (multi-column subtraction), typical errors and how they
manifest themselves in this domain, and our previous work on adapting Shapiro’s
algorithmic debugging to support diagnosis in intelligent tutoring systems. Sect. 3
first describes our new extension to Shapiro’s technique; it then explains how
we interleave the extended form of algorithmic debugging with automatic code
perturbation, and how this method can be used iteratively to track complex
erroneous behaviour. In Sect. 4, we give examples to illustrate the effectiveness
of the method. In Sect. 5, we discuss related work, and Sect. 6 lists future work
and concludes.1

2 Background

Our approach to cognitive diagnosis of learner input is applicable for any kind
of domain that can be encoded as a logic program. For illustration purposes, we
focus on the well-studied example domain of multi-column subtraction.

1 For our research, we have chosen basic school arithmetics, a subject that most ele-
mentary schools teach in 3rd. and 4th. grade. In the paper, we use the terms “pupil”,
“learner” and “student” to refer to a school child.

230 C. Zinn

subtract(PartialSum, Sum) :-
length(PartialSum, LSum),
mc_subtract(LSum, PartialSum, Sum).

mc_subtract(_, [], []).
mc_subtract(CurrentColumn, Sum, NewSum) :-

process_column(CurrentColumn, Sum, Sum1),
shift_left(CurrentColumn, Sum1, Sum2, ProcessedColumn),
CurrentColumn1 is CurrentColumn - 1,
mc_subtract(CurrentColumn1, Sum2, SumFinal),
append(SumFinal, [ProcessedColumn], NewSum).

process_column(CurrentColumn, Sum, NewSum) :-
last(Sum, LastColumn), allbutlast(Sum,RestSum),
subtrahend(LastColumn, S), minuend(LastColumn, M),
S > M, !,
add_ten_to_minuend(CurrentColumn, M, M10),
CurrentColumn1 is CurrentColumn - 1,
decrement(CurrentColumn1, RestSum, NewRestSum),
take_difference(CurrentColumn, M10, S, R),
append(NewRestSum,[(M10, S, R)],NewSum).

process_column(CurrentColumn, Sum, NewSum) :-
last(Sum, LastColumn), allbutlast(Sum,RestSum),
subtrahend(LastColumn, S), minuend(LastColumn, M),
% S =< M,
take_difference(CurrentColumn, M, S, R),
append(RestSum,[(M, S, R)], NewSum).

shift_left(_CurrentColumn, SumList, RestSumList, Item) :-
allbutlast(SumList, RestSumList),
last(SumList, Item).

add_ten_to_minuend(_CC, M, M10) :- irreducible, M10 is M + 10.
take_difference(_CC, M, S, R) :- irreducible, R is M - S.

decrement(CurrentColumn, Sum, NewSum) :- irreducible,
last(Sum, (M, S, R)), allbutlast(Sum, RestSum),
M == 0, !,
CurrentColumn1 is CurrentColumn - 1,
decrement(CurrentColumn1, RestSum, NewRestSum),
NM is M + 10, NM1 is NM - 1,
append(NewRestSum, [(NM1, S, R)], NewSum).

decrement(CurrentColumn, Sum, NewSum) :- irreducible,
last(Sum, (M, S, R)), allbutlast(Sum, RestSum),
% \+ (M == 0),
M1 is M - 1,
append(RestSum, [(M1, S, R)], NewSum).

minuend((M, _S, _R), M). subtrahend((_M, S, _R), S). irreducible.

Fig. 1. Multi-column subtraction in Prolog

Breaking Correct Programs 231

2.1 Multi-column Subtraction

Fig. 1 gives an implementation of multi-column subtraction in Prolog. Sums are
processed column by column, from right to left. The predicate subtract/2 deter-
mines the sum’s length and passes the arguments to mc subtract/3, which imple-
ments the recursion.2 The predicate process column/3 gets a partial sum, processes
its right-most column and takes care of borrowing (add ten to minuend/3) and pay-
back (decrement/3) actions. Sums are encoded as Prolog lists of columns, where a
column is represented as 3-element term (M, S, R) representing minuend, subtra-
hend, and result cell.3 The program code implements the decomposition method.
If the subtrahend S is larger than the minuend M, then M is increased by 10 (borrow)
before the difference between M and S is taken. To compensate, the minuend in the
column left to the current one is decreased by one (pay-back).

2.2 Error Analysis in Multi-column Subtraction

While some errors may be caused by a simple oversight (usually, pupils are able
to correct such errors as soon as they see them), most errors are systematic errors
(those keep re-occurring again and again). It is the systematic errors that we aim
at diagnosing as they indicate a pupil’s wrong understanding about some subject
matter. Fig. 2 lists the top four errors of the Southbay study. [11, Chapter 10];
the use of squares is explained below.

5 2 �4
- 2 9 8

= 3 7 4

(a) smaller-from-
larger

3 �
4 1 0 14

- 1 8 7

= 2 2 7

(b) stops-borrow-
at-zero

7
8 �
9 10 14

- 2 3 7

= 5 7 7

(c) borrow-
across-zero

�
3 12

- 1 7

= 2 5

(d) borrow-no-
decrement

Fig. 2. The top four most frequent subtraction errors, see [11]

Errors can be classified according to the following scheme: errors of omission
– forget to do something; errors of commission – doing the task incorrectly;
and sequence errors – doing the task not in the right order. These errors oc-
cur because learners may have acquired an incorrect procedure, or they “know”
the correct procedure but are unable to execute it. In [11], VanLehn explains
the origin of errors in terms of impasses and repairs. According to his theory,
an impasse occurs when an individual fails to execute a step in a procedure;
to overcome the impasse, a meta-level activity – a repair action – is performed

2 Note that the variable CurrentColumn is not required to specify our algorithm for
multi-column subtraction; it is rather necessary for the mechanisation of the Oracle
(see below), and thus passed on as argument to most of the predicates.

3 The predicates append/3 (append two lists), last/2 (get last list element), and
allbutlast/2 (get all list elements but the last) are defined as usual.

232 C. Zinn

4 6 3
- 2 5 1

=
(a)

8 3 5
- 2 1 8

=
(b)

7 0 2
- 3 4 7

=
(c)

8 0 7
- 2 0 8

=
(d)

6 0 4
- 8 7

=
(e)

Fig. 3. Exercises on multi-column subtraction [5, page 59f]

to cope with the impasse. While some repairs result in correct outcomes, oth-
ers result in buggy procedures. Consider the error exhibited in Fig. 2(a). In
VanLehn’s theory, this can be explained as follows. The learner cannot perform
a complete borrow action; to cope with this impasse, a repair is executed by
“backing-up” to a situation where no borrowing is required: the smaller number
is always subtracted from the larger number. In Fig. 2(d), the same impasse is
encountered with a different repair. The borrow is executed, with correct differ-
ences computed for all columns, but the corresponding decrements (paybacks)
are omitted. In Fig. 2(b,c), the learner does not know how to borrow from zero.
In (b), this is repaired by a “no-op”, that is, a null operation with no effect: for
minuends equal to zero, the decrement operation is simply omitted (note that
the learner performed a correct borrow/payback pair in the other columns). In
(c), the learner repairs the situation by borrowing from the hundreds rather than
the tens column; this can be modelled as “partial no-op”.

An accurate diagnosis of a learner’s competences can only be obtained when
the learner’s performance is observed and studied across a well-designed set
of exercises demanding the full set of domain skills. Fig. 3 depicts exercises
taken from a German textbook on third grade school mathematics [5]. While
none of the errors given in Fig. 2 show-up in the exercise Fig. 3(a), the errors
borrow-no-decrement and smaller-from-larger are observable in each of the tests
Fig. 3(b)–3(e). The exercises Fig. 3(c)–3(e) can be used to check for the bugs
stops-borrow-at-zero or borrow-across-zero, but also for others not listed here.

In the sequel, given a learner’s performance across a set of exercises, we aim to
diagnose his errors by reconstructing their underlying erroneous procedures au-
tomatically using algorithmic debugging and program transformation techniques.
Our innovative method relies only on expert programs and learner answers.

2.3 Shapiro’s Algorithmic Debugging

Shapiro’s algorithmic debugging technique for logic programming prescribes a
systematic manner to identify bugs in programs [10]. In the top-down variant,
the program is traversed from the goal clause downwards. At each step during
the traversal of the program’s AND/OR tree, the programmer is taking the role
of the oracle, and answers whether the currently processed goal holds or not. If
the oracle and the buggy program agree on a goal, then algorithmic debugging
passes to the next goal on the goal stack. If the oracle and the buggy program
disagree on the result of a goal, then this goal is inspected further. Eventually an
irreducible disagreement will be encountered, hence locating the program’s clause

Breaking Correct Programs 233

where the buggy behavior is originating from. Shapiro’s algorithmic debugging
method extends, thus, a simple meta-interpreter for logic programs.

Shapiro devised algorithmic debugging to systematically identify bugs in in-
correct programs. Our Prolog code for multi-column subtraction in Fig. 1, how-
ever, presents the expert model, that is, a presumably correct program. Given
that cognitive modelling seeks to reconstruct students’ erroneous procedure by
an analysis of their problem-solving behavior, it is hard to see – at least at first
sight – how algorithmic debugging might be applicable in this context. There is,
however, a simple, almost magical trick, which we first reported in [14]. Shapiro’s
algorithm can be turned on its head: instead of having the Oracle specifying how
the assumed incorrect program should behave, we take the expert program to
take the role of the buggy program, and the role of the Oracle is filled by students’
potentially erroneous answers. An irreducible disagreement between program be-
havior and student answer then pinpoints students’ potential misconception(s).

An adapted version of algorithmic debugging for the tutoring context is given
in [14]. Students can “debug” the expert program in a top-down fashion. Only
clauses declared as being on the discussion table are subjected to Oracle ques-
tioning so that rather technical steps (such as last/2 and allbutlast/2) do not
need to be discussed with learners. Moreover, a Prolog clause whose body starts
with the subgoal irreducible/2 is subjected to Oracle questioning; but when
program and Oracle disagree on such a clause, this disagreement is irreducible
so that the clause’s (remaining) body is not traversed. In [14], we have also
shown how we can relieve learners from answering questions. The answers to all
questions posed by algorithmic debugging are automatically reconstructed from
pupils’ exercise sheets, given their solution to a subtraction problem. With the
mechanisation of the Oracle, diagnoses are obtained automatically.

3 Combining Algorithmic Debugging with Program
Manipulation

Our goal is to reconstruct learners’ erroneous procedures by only making use
of an expert program (encoding the skills to be learned) and learners’ perfor-
mances when solving exercises. For this, the expert program is transformed in an
iterative manner until a buggy program is obtained that reproduces all observed
behaviour. The program transformation is informed by the results of algorithmic
debugging as the source of the irreducible disagreement points to the part in the
program that requires perturbation. To better inform program transformation,
we augment algorithmic debugging to also return the nature of the disagreement.

3.1 Causes of Disagreements

Whenever expert and learner disagree on a goal, one of the following cases holds:

– the learner solution misses parts that are present in the expert solution, e.g.,
a result cell in the multi-column subtraction table has not been filled out;

234 C. Zinn

– the learner solution has incorrect parts with regard to the expert solution,
e.g., a result cell is given a value, albeit an incorrect one; and

– the learner solution has superfluous parts not present in the expert solution,
e.g., the learner performed a borrowing operation that was not necessary.

We have extended our variant of algorithmic debugging, and its cooperating
mechanised Oracle, to enrich irreducible disagreements with their nature (miss-
ing, incorrect, or superfluous). Moreover, we have extended algorithmic debug-
ging to record all agreements until irreducible disagreements are encountered.
The program perturbation code has access to these past learner performances
and uses this information to steer its perturbation strategy.

3.2 Main Algorithm

Fig. 4 gives a high-level view of the algorithm for the reconstruction of learners’
erroneous procedure. The function ReconstructErroneousProcedure/3 is recur-
sively called until a program is obtained that reproduces learner behaviour, in
which case there are no further disagreements. Note that multiple perturbations
may be required to reproduce single bugs, and that multiple bugs are tackled by
iterative applications of algorithmic debugging and code perturbation.

1: function ReconstructErroneousProcedure(Program,Problem,Solution)
2: (Disagr,Cause) ← AlgorithmicDebugging(Program,Problem,Solution)
3: if Disagr = nil then
4: return Program
5: else
6: NewProgram ← Perturbation(Program,Disagr,Cause)
7: ReconstructErroneousProcedure(NewProgram,Problem, Solution)
8: end if
9: end function

10: function Perturbation(Program,Clause, Cause)
11: return chooseOneOf(Cause)
12: DeleteCallToClause(Program,Clause)
13: DeleteSubgoalOfClause(Program,Clause)
14: ShadowClause(Program,Clause)
15: SwapClauseArguments(Program,Clause)
16: end function

Fig. 4. Pseudo-code: compute variant of Program to reproduce a learner’s Solution

The irreducible disagreement resulting from the algorithmic debugging phase
locates the code pieces where perturbations must take place; its cause determines
the kind of perturbation. The function Perturbation/3 can invoke various kinds
of transformations: the deletion of a call to the clause in question, or the deletion
of one of its subgoals, or the shadowing of the clause in question by a more spe-
cialized instance, or the swapping of the clause’ arguments. These perturbations
reproduce errors of omission and commission, and reflect the repair strategies

Breaking Correct Programs 235

learners use when encountering an impasse. Future transformations may involve
the consistent change of recursion operators (reproducing sequence errors), and
the insertion of newly created subgoals to extend the body of the clause in
question (reproducing irreducible disagreements with cause superfluous).

The generic program transformations that we have implemented require an
annotation of the expert program clauses with mode annotations, marking their
arguments as input and output arguments. Our algorithm for clause call deletion,
for instance, traverses a given program until it identifies a clause whose body
contains the clause in question; once identified, it removes the clause in question
from the body and replaces all occurrences of its output argument by its input
argument in the adjacent subgoals as well as in the clause’s head, if present.
Then, DeleteCallToClause/2 returns the modified program.

3.3 Problem Sets

A befitting diagnosis of a learner’s knowledge and potential misconceptions re-
quires an analysis of his actions across a set of exercises. Our code for algorithmic
debugging and code perturbation is thus called for each exercise of a test set.
We start the diagnosis process with the expert program; the program will get
perturbated whenever there is a disagreement between program and learner be-
haviour. At the end of the test set, we obtain a program that mirrors learner
performance across all exercises. As we will see, some perturbations might seem
ad hoc; here, the program is perturbated with base clauses that only reproduce
behavior specific to a given exercise. A post-processing step is thus invoked to
generalize over exercise-specific perturbations.

Note that we expect learners to exhibit a problem-solving behaviour that is
consistent across exercises. To simulate this idealized behaviour – and to test our
approach – we have hand-coded buggy variations of the multi-column subtrac-
tion routine to reproduce the top-ten errors of the Southbay study [11, Chapter
10]. Consistent learner behaviour is thus simulated by executing these buggy
routines. We use the following “driver” predicate to diagnose learners:

1: Program ← ExpertProcedure
2: for all Problem of the test set do
3: Solution ← BuggyProcedure(Problem)
4: Program ← ReconstructErroneousProcedure(Program,Problem, Solution)

 side effect: agreements and disagreements are recorded and used.
5: end for
6: GeneralisedProgram ← Generalise(Program)

4 Examples

We now explain our approach for the typical errors given in Fig. 2.

4.1 Simple Omission Error: Omit Call to Clause in Question

In Fig. 2(d), the learner forgets to honor the pay-back operation, following the
borrowing that happened in the first (right-most) column. The execution of the

236 C. Zinn

adapted version of algorithmic debugging produces the following dialogue (with
all questions automatically answered by the mechanised Oracle):

algorithmic_debugging(subtract([(3, 1, S1), (2, 7, S2)],

[(3, 1, 2), (12, 7, 5)],

IrreducibleDisagreement).

do you agree that the following goal holds:

subtract([(3, 1, R1), (2, 7, R2)],

[(2, 1, 1), (12, 7, 5)])

|: no.

do you agree that the following goal holds:

mc_subtract(2, [(3, 1, R1), (2, 7, R2)],

[(2, 1, 1), (12, 7, 5)])

|: no.

process_column(2,[(3, 1, R1), (2, 7, R2)],[(2, 1, R1), (12, 7, 5)])

|: no.

add_ten_to_minuend(2, 2, 12)

|: yes.

decrement(1, [(3, 1, R1)], [(2, 1, R1)])

|: no.

=> IrreducibleDisagreement=(decrement(1,[(3,1, R1), (2,1, R1)]),

missing)

With the indication of error (the location is marked by � in Fig. 2(d)), program
transformation now attempts various manipulations to modify the expert pro-
gram. Given the cause “missing”, the perturbation heuristics chooses to delete
the call to the indicated program clause, which succeeds: in the body of the first
clause of process column/3, we eliminate its subgoal decrement(CurrentColumn1,
RestSum, NewRestSum) and subsequently replace its output variable NewRestSum

with its input variable RestSum.4 With this program manipulation, we achieve
the intended effect; the resulting buggy program reproduces the learner’s answer;
both program and learner agree on the top subtract/2 goal.

4.2 Complex Error of Omission and Commission

An iterative execution of algorithmic debugging and program manipulation to
the problem in Fig. 2(a) shows how a complex error is attacked step by step.

First Run. Running algorithmic debugging on the expert program and the
learner’s solution concludes the dialogue (now omitted) with the disagreement

add_ten_to_minuend(3, 4, 14)

4 The subgoal introducing CurrentColumn1 becomes obsolete, and is removed too.

Breaking Correct Programs 237

and the cause “missing”. The code perturbation algorithm makes use of Delete-
CallToClause/2 to delete the subgoal add ten to minuend/3 from the first program
clause of process column/3; the single occurrence of its output variable M10 is re-
placed by its input variable M in the subsequent calls to take difference/4 and
append/3.

Second Run. Algorithmically debugging the modified program yields

decrement(2, [(5, 2, R3), (2, 9, R2)], [(5, 2, R3), (1, 9, R2)])

a disagreement with cause “missing”. Again, DeleteCallToClause/2 is invoked,
now to delete the subgoal decrement/3 from the first clause of process column/3.
The occurrence of its output variable NewRestSum in the subsequent call to ap-

pend/3 is replaced by its decrement/3 input variable RestSum; also the subgoal
introducing CurrentColumn1 is deleted. With these changes, we obtain a new
program that is closer in modelling the learner’s erroneous behaviour.

Third Run. Re-entering algorithmic debugging with the modified expert program
now yields an irreducible agreement in the ones column with cause “incorrect”:

take_difference(3, 4, 8, 4)

A mere deletion of a call to the clause in question is a bad heuristics as the
result cell must obtain a value; moreover, past learner performances on the same
problem test set indicate that the learner successfully executed instances of the
skill take difference/4. We must thus perturbate the clause’s body, or shadow
the clause with an additional, more specialized clause. A simple manipulation to
any of the clause’s subgoals fails to achieve the intended effect. To accommodate
the result provided by the learner, we shadow the existing clause with:

take_difference(_CC, 4, 8, 4) :- irreducible.

Note that this new clause can be taken directly from the Oracle’s analysis. While
the new clause covers the learner’s input, it is rather specific.

Fourth Run. We now obtain an irreducible disagreement in the tens column:

take_difference(2, 2, 9, 7)

with cause “incorrect”. Similar to the previous run, we add another clause for
take difference/4 to capture the learner’s input:

take_difference(_CC, 2, 9, 7) :- irreducible.

With these changes to the expert program, we now obtain a buggy program that
entirely reproduces the learner’s solution in Fig. 2(a).

238 C. Zinn

Generalization. When we run the driver predicate with the buggy learner simu-
lation “smaller-from-larger” for the exercises given in Fig. 3, we obtain a buggy
program which includes the following base clauses for take difference/4:

take_difference(3, 5,8,3). take_difference(3, 2,7,5).

take_difference(2, 0,4,4). take_difference(2, 7,8,1).

take_difference(2, 4,7,3). take_difference(2, 0,8,8).

complementing the existing general clause (see Fig. 1).
We use the inductive logic program Progol [8] to yield a more general definition

for taking differences. For this, we construct an input file for Progol in which we
re-use the mode declarations used to annotate the expert program. Progol’s back-
ground knowledge is defined in terms of the subtraction code (see Fig. 1), and
Progol’s positive examples are the base cases given above. Moreover, the expert’s
view on the last two irreducible disagreements, namely, take difference(4,8,-

4) and take difference(2,9,-7) are taken as negative examples to support the
generalisation of the learner’s take difference/3 clause.5

Running Progol (version 4.2) on the input file yields a new first clause of
taking differences that generalizes its base cases. Taken together, we obtain:

take_difference(A,B,C) :- leq(A,B), sub(B,A,C).

take_difference(A,B,C) :- irreducible, C is A-B.

4.3 Error Analysis: Stops-Borrow-at-Zero and Borrow-across-Zero

The solutions given in Fig. 2(b) and Fig. 2(c) indicate two different repair strate-
gies when encountering the impasse “unable to borrow from zero”. We give a
detailed discussion for the first, and an abridged one for the second error type.

Error: Stops-Borrow-at-Zero. A first run of algorithmic debugging returns
the following irreducible disagreement in the tens column with the cause “incor-
rect”:

decrement(2, [(4, 1, R1), (0, 8, R2)], [(3, 1, R1), (9, 8, R2)]).

Note that the learner is executing the decrement/3 operation successfully in the
hundreds (and in prior exercises with minuends different from zero). A program
perturbation other than the deletion of the call to decrement/3 – as in the previ-
ous two examples – is needed. The clause decrement/3 must thus be called, but
its corresponding clause body altered. For this, code perturbation calls Delete-

SubgoalOfClause/2, which first locates the correct clause in question, given the
irreducible disagreement. Given that the minuend of the last column is zero,

5 At the time of writing, the input file for the ILP system is crafted manually. For
technical reasons, we remove the argument CurrentColumn from all clauses; also we
added to Progol’s background knowledge the clauses: sub(X, Y, Z) :- Z is X -

Y. and leq(X,Y) :- X =< Y. They also appear in Progol’s modeb declarations.

Breaking Correct Programs 239

the first clause of decrement/3 is selected. The perturbation DeleteSubgoalOf-

Clause/2 now tries repairs to mirror those of the learner. Either the decrement/3

step is skipped entirely, or some of its subgoals are deleted.
The error stops-borrow-at-zero can be reproduced with an entire “no-op”.

The following steps are carried out to modify the body of the respective decre-

ment/3 clause: (i) the input argument of the clause is mapped to its output
argument; (ii) all clauses rendered superfluous by this perturbation are removed
(see discussion of borrow-across-zero); and (iii) the existing first clause of decre-
ment/3 is replaced by the new perturbated version, which is:

decrement(CurrentColumn, Sum, Sum) :- irreducible,

last(Sum, (M, S, R)), allbutlast(Sum, RestSum),

M == 0, !.

The modified program reproduces the observed learner behaviour.

Error: Borrow-across-Zero. The error borrow-across-zero follows the main
line of perturbation than the previous error. But rather than repairing the im-
passe with a “no-op”, an output argument different from the input argument is
constructed. For this, one or more steps that are involved in its construction are
deleted. Similar to the last error example, a dependency network of variables is
created and exploited, as we now explain.

In the given clause, the output argument is NewSum; it has an occurrence in
append/3, where it depends on the variables NewRestSum as well as NM1, S, and R,
which are all input variables, given the mode declaration of append/3. To modify
NewSum, we consider all subgoals that feature the aforementioned input variables
as output variables. Consider NM1, which is constructed by the subgoal NM1 is

NM - 1. When we delete this subgoal, and replace the occurrence of NM1 by NM

in append/3, we obtain a program that reproduces the error don’t-decrement-

zero, see [11, page 226].6 Another call to DeleteSubgoalOfClause/2 is required to
obtain borrow-across-zero. Now, as the variable NM depends on the value of M,
we can replace the occurrence of NM in append/3 by M to yield the intended effect.

4.4 Summary

In all examples, algorithmic debugging correctly indicated the program clause
that required manipulation (this is not always the case, see future work on mul-
tiple models). Moreover, the cause of the disagreement as well as prior learner
performances correctly informed the perturbation actions. Note that our pertur-
bations DeleteCallToClause/2 and DeleteSubgoalOfClause/2 mirror the repair
strategies that learners perform when encountering an impasse; they often omit
or only partially execute steps relevant to the impasse. Our approach proved
to be a general, effective, and also computationally inexpensive method. In this

6 When we only delete the recursive call in the body of decrement/3, we obtain
borrow-from-zero, the fifth most frequent learner error.

240 C. Zinn

paper, we have illustrated the method being able to reproduce the top five sub-
traction errors of the Southbay study, which together account for 45% of all
errors in this study.

5 Related Work

There is only little research in the intelligent tutoring systems community that
builds upon logic programming and meta-level reasoning techniques. In [1], Beller
& Hoppe use a fail-safe meta-interpreter to identify student error. A Prolog
program, modelling the expert knowledge for doing subtraction, is executed by
instantiating its output parameter with the student answer. While standard
Prolog interpretation would fail, a fail-safe meta-interpreter can recover from
execution failure, and can also return an execution trace. Beller & Hoppe then
formulate error patterns which they then match against the execution trace;
each successful match is indicating a plausible student bug.

In Looi’s “Prolog Intelligent Tutoring System” [6], Prolog programs written
by students are debugged with the help of the automatic derivation of mode
specifications, dataflow and type analysis, and heuristic code matching between
expert and student code. Looi also makes use of algorithmic debugging tech-
niques borrowed from Shapiro [10] to test student code with regard to termina-
tion, correctness and completeness. The Oracle is mechanised by running expert
code that most likely corresponds to given learner code, and simple code per-
turbations are carried out to correct erroneous program parts.

Most closely related to our research is the work of Kawai et al. [3]. Expert
knowledge is represented as a set of Prolog clauses, and Shapiro’s Model Inference
System (MIS) [10], following an inductive logic programming (ILP) approach, is
used to synthesize learners’ (potentially erroneous) procedure from expert know-
ledge and student answers. Once the procedure to fully capture learner behaviour
is constructed, Shapiro’s Program Diagnosis System (PDS), based upon stan-
dard algorithmic debugging, is used to identify students’ misconceptions, that
is, the bugs in the MIS-constructed Prolog program.

While Kawai et al. use similar logic programming techniques, there are sub-
stantial differences to our approach. By turning Shapiro’s algorithm on its head,
we are able to identify the first learner error with no effort – for this, Kawai
et al. require an erroneous procedure, which they need to construct first using
ILP.7 To analyse a learner’s second error, we overcome the deviation between ex-
pert behaviour and learner behaviour by introducing the learner’s error into the
expert program. This “correction” is performed by small perturbations within
existing code, or by the insertion of elements of little code size. We believe these
changes to the expert program to be less complex than the synthesis of entire
erroneous procedures by inductive methods alone.

7 Moreover, in our approach, given the mechanization of the Oracle, no questions need
to be answered by the learner.

Breaking Correct Programs 241

6 Future Work and Conclusion

In our approach, an irreducible disagreement corresponds to an erroneous as-
pect of a learner answer not covered by the expert program (or a perturbated
version thereof). We have seen that most program transformations are clause
or goal deletions, mirroring the repair strategies of learners when encountering
an impasse. We have also seen an example where program perturbation meant
complementing existing program clauses with more specialized instances. We
demonstrated the successful use of Progol to perform a post-processing general-
ization step to capture learner performance in a general manner.

Our perturbation algorithm could profit from program splicing [12]. Once
algorithmic debugging has located an irreducible disagreement between expert
performance and learner performance, the respective clause could serve as a
slicing criterion for the computation of a subprogram (the program slice), whose
execution may have an effect on the values of the clause’s arguments. The pro-
gram slice could support or replace the variable dependency network we use.

At the time of writing, the input files to Progol are manually written. In
the future, we aim at obtaining a better understanding of Progol’s inductive
mechanism and its tweaking parameter to generate the input file automatically,
and to better integrate Progol into the program perturbation process. In the light
of [3], we are also considering a re-implementation of Shapiro’s MIS and follow-
up work to better integrate inductive reasoning into our approach. This includes
investigating the generation of system-learner interactions to obtain additional
positive or negative examples for the induction process. These interactions must
not distract students from achieving their learning goals; ideally, they can be
integrated into a tutorial dialogue that is beneficial to student learning.

In practise, the analysis of learner performances across a set of test exercises
may sometimes yield multiple diagnoses. Also, some learners may show an in-
consistent behaviour (which we have idealised in this paper). In the future, we
would like to investigate the automatic generation of follow-up exercises that
can be used to disambiguate between several diagnoses, and to address observed
learner inconsistencies.

Expert models with representational requirements or algorithmic structure
different to the subtraction algorithm given in Fig. 1 might prove beneficial for
errors not discussed here. At the time of writing, we have implemented four
different subtraction methods: the Austrian method, its trade-first variant, the
decomposition method, and an algorithm that performs subtraction from left
to right. We have also created variants to these four methods (with differences
in sequencing subgoals, or the structure of clause arguments). When a learner
follows a subtraction method other than the decomposition method, we are likely
to give a wrong diagnosis of learner action whenever the decomposition method
is the only point of reference to expert behaviour. To improve the quality of
diagnosis, it is necessary to compare learner performance to multiple models.
We have developed a method to identify the algorithm the learner is most likely
following. The method extends algorithmic debugging by counting the number
of agreements before and after the first irreducible disagreement; also, the “code

242 C. Zinn

size” that is being agreed upon is taken into account (for details, see [13]). In the
future, we will combine the choice of expert model (selecting the model closest
to observed behaviour) with the approach presented in this paper.

Once an erroneous procedure has been constructed by an iterative application
of algorithmic debugging and automatic code perturbation, it will be necessary
to use the procedure as well as its construction history to inform the generation
of remedial feedback. Reconsider our example Fig. 2(a), where the learner al-
ways subtracted the smaller from the larger digit. Its construction history shows
that the following transformations to the correct subtraction procedure were
necessary to reproduce the learners’ erroneous procedure: (i) deletion of the goal
add ten to minuend/3, (ii) deletion of the goal decrement/3, (iii) shadowing of the
goal take difference/4 with more specialized instances, and (iv) a generaliza-
tion step. Some reasoning about the four elements of the construction history is
necessary to translate the perturbations into a compound diagnosis to generate
effective remediation. For this, we would like to better link the types of disagree-
ments obtained from algorithmic debugging and the class of our perturbations
with the kinds of impasses and repair strategies of VanLehn’s theory [11].

There is good evidence that a sound methodology of cognitive diagnosis in
intelligent tutoring can be realized in the framework of declarative programming
languages such as Prolog. In this paper, we reported on our work to combine
an innovative variant of algorithmic debugging with program transformation to
advance cognitive diagnosis in this direction.

Acknowledgments. Thanks to the reviewers whose comments helped im-
prove the paper. Our work is funded by the German Research Foundation (ZI
1322/2/1).

References

1. Beller, S., Hoppe, U.: Deductive error reconstruction and classification in a logic
programming framework. In: Brna, P., Ohlsson, S., Pain, H. (eds.) Proc. of the
World Conference on Artificial Intelligence in Education, pp. 433–440 (1993)

2. Corbett, A.T., Anderson, J.R., Patterson, E.J.: Problem compilation and tutoring
flexibility in the lisp tutor. In: Intell. Tutoring Systems, Montreal (1988)

3. Kawai, K., Mizoguchi, R., Kakusho, O., Toyoda, J.: A framework for ICAI systems
based on inductive inference and logic programming. New Generation Computing 5,
115–129 (1987)

4. Koedinger, K.R., Anderson, J.R., Hadley, W.H., Mark, M.A.: Intelligent tutoring
goes to school in the big city. Journal of Artificial Intelligence in Education 8(1),
30–43 (1997)

5. Maier, P.H.: Der Nussknacker. Schülerbuch 3. Schuljahr. Klett Verlag (2010)
6. Looi, C.-K.: Automatic debugging of Prolog programs in a Prolog Intelligent Tu-

toring System. Instructional Science 20, 215–263 (1991)
7. Mitrović, A.: Experiences in implementing constraint-based modeling in SQL-

tutor. In: Goettl, B.P., Halff, H.M., Redfield, C.L., Shute, V.J. (eds.) ITS 1998.
LNCS, vol. 1452, pp. 414–423. Springer, Heidelberg (1998)

8. Muggleton, S.: Inverse Entailment and Progol. New Generation Computing Jour-
nal (13), 245–286 (1995)

Breaking Correct Programs 243

9. Ohlsson, S.: Constraint-based student modeling. Journal of Artificial Intelligence
in Education 3(4), 429–447 (1992)

10. Shapiro, E.Y.: Algorithmic Program Debugging. ACM Distinguished Dissertations.
MIT Press (1983); Thesis (Ph.D.) – Yale University (1982)

11. VanLehn, K.: Mind Bugs: the origin of procedural misconceptions. MIT Press
(1990)

12. Weiser, M.: Program Slicing. IEEE Trans. Software Eng. 10(4), 352–357 (1984)
13. Zinn, C.: Identifying the closest match between program and user behaviour (un-

published manuscript), http://www.inf.uni-konstanz.de/~zinn
14. Zinn, C.: Algorithmic debugging to support cognitive diagnosis in tutoring systems.

In: Bach, J., Edelkamp, S. (eds.) KI 2011. LNCS, vol. 7006, pp. 357–368. Springer,
Heidelberg (2011)

http://www.inf.uni-konstanz.de/~zinn

Author Index

Brain, Martin 194

Christiansen, Henning 17

Dandois, Céline 35
De Angelis, Emanuele 51

Emmes, Fabian 1

Fioravanti, Fabio 51
Fuhs, Carsten 1

Giesl, Jürgen 1
Gómez-Zamalloa, Miguel 176
Gupta, Gopal 122

Insa, David 71

Kencana Ramli, Carroline Dewi Puspa
89

Mantel, Heiko 106
Marple, Kyle 122

Nielson, Flemming 89
Nielson, Hanne Riis 89
Nishida, Naoki 137, 155
Niwa, Minami 155

Petit, Matthieu 17
Pettorossi, Alberto 51
Proietti, Maurizio 51

Rojas, José Miguel 176

Sakai, Masahiko 155
Samulowitz, Horst 2
Schneider-Kamp, Peter 1
Schrijvers, Tom 2
Seghir, Mohamed Nassim 194
Seki, Hirohisa 213
Silva, Josep 71
Ströder, Thomas 1
Stuckey, Peter J. 2
Sudbrock, Henning 106

Tack, Guido 2
Theil Have, Christian 17
Tomás, César 71
Torp Lassen, Ole 17

Vanhoof, Wim 35
Vidal, Germán 137

Wuille, Pieter 2

Zinn, Claus 228

	Cover
	Title
	Preface
	Organization
	Table of Contents
	Symbolic Evaluation Graphsand Term Rewriting — A General Methodology for Analyzing Logic Programs
	Reference

	An Introduction to Search Combinators
	Introduction
	Status Quo
	Contributions
	Approach

	High-Level Search Language
	Basic Heuristics
	Combinators
	State Access and Manipulation

	Modular Combinator Design
	The Message Protocol
	Basic Setup
	Combinator Composition

	Modular Combinator Implementation
	Dynamic Composition
	Static Composition
	Further Implementations

	Conclusion
	References

	A Declarative Pipeline Languagefor Complex Data Analysis
	Introduction
	Syntax and Informal Semantics of BANpipe
	Defining Programs and Modules

	Declarative Semantics of BANpipe
	Operational Semantics
	Bottom-Up Operational Semantics with Memoization
	Operational Semantics for Incremental Change Propagation
	A Parallel Operational Semantics

	Types and Type Inference for BANpipe Scripts
	Examples
	A Basic Gene Prediction Pipeline
	Self-training

	Implementation
	Task Invocation
	File Maintenance
	Semantics

	Related Work
	Conclusions
	References

	Semantic Code Clones in Logic Programs
	Introduction
	Defining Semantic Clones
	Approximating Semantic Clones
	Basic Definitions
	A First Instantiation of R
	Towards a More Involved Instantiation of R
	Return to Clone Pairs

	Refactoring and Ongoing Work
	References

	Specialization with Constrained Generalizationfor Software Model Checking
	Introduction
	A CLP Interpreter for a Simple Imperative Language
	Specialization-Based Software Model Checking
	The Specialization Strategy
	Constrained Generalization
	Experimental Evaluation
	Related Work and Conclusions
	References

	Enhancing Declarative Debuggingwith Loop Expansion and Tree Compression
	Introduction
	Related Work
	Preliminaries
	Execution Trees Optimization
	When to Apply Tree Compression
	Loop Expansion

	Correctness
	Implementation
	Conclusions
	References

	XACML 3.0 in Answer Set Programming
	Background
	XACML 3.0
	Abstract Syntax of XACML 3.0
	XACML 3.0 Formal Semantics
	XACML Combining Algorithms

	Transforming XACML Components into Logic Programs
	Preliminaries
	XACML Components Transformation into Logic Programs
	Combining Algorithm Transformation

	Relation between XACML-ASP and XACML 3.0 Semantics
	ASP Semantics
	XACML Semantics Based on ASP Semantics

	Analysis XACML Policies Using Answer Set Programming
	Query Generator
	Gap-Free Analysis
	Property Analysis

	Related Work
	Conclusion and Future Work
	References

	Types vs. PDGs in Information Flow Analysis
	Introduction
	Type-Based Information Flow Analyses
	Execution Model and Security Property
	The Type-Based Information Flow Analysis by Hunt and Sands

	PDG-Based Information Flow Analyses
	Control Flow Graphs
	The PDG-Based Information Flow Analysis by Wasserrab et al

	Comparing the Type- and the PDG-Based Analysis
	Information Flow Analysis of Multi-threaded Programs
	A Type-Based Analysis for Multi-threaded Programs
	A Novel PDG-Based Analysis for Multi-threaded Programs

	Related Work
	Conclusion
	References

	Galliwasp: A Goal-Directed Answer Set Solver
	Introduction
	Goal-Directed Answer Set Programming
	OLON Rules and Ordinary Rules
	Coinductive Execution

	The Galliwasp System
	Order of Rules and Goals
	Improving Execution Efficiency

	System Architecture of Galliwasp
	Compiler
	Interpreter

	Performance Results
	Related and Future Work
	Conclusion
	References

	Computing More Specific Versionsof Conditional Rewriting Systems
	Introduction
	Preliminaries
	More Specific Conditional Rewrite Systems
	Computing More Specific Versions
	Conclusion and Future Work
	References

	Improving Determinization of GrammarPrograms for Program Inversion
	Introduction
	Preliminaries
	Rewriting Systems
	Grammar Programs

	Translation between DCTRSs and Grammar Programs
	Overview of LRinv
	Semi-determinization of Grammar Programs with Shift/Shift Conflicts
	Elimination of Infeasible Sequences
	Conclusion and Future Work
	References

	A Framework for Guided Test Case Generationin Constraint Logic Programming
	Introduction
	CLP-Based Test Case Generation
	CLP-Translated Programs
	Symbolic Execution
	Test Case Generation

	A Generic Framework for Guided TCG
	Trace Generators for Structural Coverage Criteria
	An Instantiation for the all-local-paths Coverage Criterion
	An Instantiation for the program-points Coverage Criterion

	Experimental Evaluation
	Trace-Abstraction Refinement
	Approximating Instantiation Modes
	Constructing the Trace-Abstraction Refinement

	Related Work and Conclusions
	References

	Simplifying the Verification of Quantified ArrayAssertions via Code Transformation
	Introduction
	Overview
	Pre-recursive Case (insertion_sort)
	Post-recursive Case (selection_sort)

	Preliminaries
	Loops in Canonical Form
	Notations
	Array Quantified Assertions

	Source-to-Source Transformation
	Recurrent Fragments
	Transformation Algorithm
	Multidimensional Case
	Loop Sequences

	Implementation and Experiments
	Related Work
	Conclusion
	References

	Proving Properties of Co-logic Programswith Negation by Program Transformations
	Introduction
	A Framework for Transforming Co-logic Programs
	Syntax and Semantics of Co-logic Programs
	Transformation Rules for Co-logic Programs
	Correctness of the Transformation Rules

	Negation Elimination in Co-logic Programs
	Proving Properties of Co-logic Programs with Negation
	Related Work and Concluding Remarks
	References

	Program Analysis and Manipulationto Reproduce Learners’ Erroneous Reasoning
	Introduction
	Background
	Multi-column Subtraction
	Error Analysis in Multi-column Subtraction
	Shapiro's Algorithmic Debugging

	Combining Algorithmic Debugging with Program Manipulation
	Causes of Disagreements
	Main Algorithm
	Problem Sets

	Examples
	Simple Omission Error: Omit Call to Clause in Question
	Complex Error of Omission and Commission
	Error Analysis: Stops-Borrow-at-Zero and Borrow-across-Zero
	Summary

	Related Work
	Future Work and Conclusion
	References

	Author Index

