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Abstract Logical implications appear in a number of important mixed-integer non-
linear optimal control problems (MIOCPs). Mathematical optimization offers a va-
riety of different formulations that are equivalent for boolean variables, but re-
sult in different relaxations. In this article we give an overview over a variety of
different modeling approaches, including outer versus inner convexification, gener-
alized disjunctive programming, and vanishing constraints. In addition to the tight-
ness of the respective relaxations, we also address the issue of constraint quali-
fication and the behavior of computational methods for some formulations. As a
benchmark, we formulate a truck cruise control problem with logical implications
resulting from gear-choice specific constraints. We provide this benchmark prob-
lem in AMPL format along with different realistic scenarios. Computational re-
sults for this benchmark are used to investigate feasibility gaps, integer feasibility
gaps, quality of local solutions, and well-behavedness of the presented reformula-
tions of the benchmark problem. Vanishing constraints give the most satisfactory
results.
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becoming grand-sons of Martin Grötschel. Michael Jung is a Ph.D. student at Hei-
delberg University supervised by Reinelt and Sager, and expects to become both a
grandson and a grand-grandson of Grötschel in 2013. Another interesting link is the
scientific and personal socialization of all three authors in the realm of Hans Georg
Bock, who, like Grötschel, is a protagonist of the University of Augsburg’s golden
age of applied mathematics in the late eighties.

Mixed-integer optimal control problems (MIOCPs) have been gaining signifi-
cantly increased interest over the last years. This is due to the fact that the underly-
ing processes have a high potential for optimization, while at the same time they are
hard to assess manually due to their combinatorial, nonlinear, and dynamic nature.
Typical examples are the choice of gears in automotive control [26, 40], water or
gas networks [14, 49], traffic flow [23, 32], supply chain networks [29], distributed
autonomous systems [1], and processes in chemical engineering that involve valves
[38, 65]. The truck benchmark problem we present in this article is motivated by
work of [35, 39, 68] on heavy duty trucks. See [59] for an open benchmark li-
brary for MIOCPs. In this article, we are especially interested in switching decisions
that imply constraints. In the interest of readability we focus on the specific prob-
lem class of MIOCPs in ordinary differential equations (ODEs) of the following
form.

Definition 1 (MIOCP) In this contribution a mixed-integer optimal control problem
(MIOCP) refers to the switched system on a fixed time horizon [0, tf] given by

min
x(·),u(·),Y (·) e

(
x(tf)

)

s.t.
∨

i∈{1,...,nω}

⎡

⎣
Yi(t)

ẋ(t) = f (x(t), u(t), vi)

0 ≤ c(x(t), u(t), vi)

⎤

⎦ ∀t ∈ [0, tf],

x(0) = x0,

0 ≤ d
(
x(t), u(t)

) ∀t ∈ [0, tf].

(1)

The logical operator
∨

i∈{1,...,nω} implies that at all times t ∈ [0, tf] exactly one of
the nω possible modes is chosen and is represented here by time-dependent logical
literals Yi(·), 1 ≤ i ≤ nω. The optimal control u : [0, tf] → R

nu is assumed to be
measurable and of bounded variation, the differential states x : [0, tf] → R

nx to be
uniquely determined once a switching regime Y(·) and the controls u(·) are fixed.
The vectors vi ∈ R

nv comprise constant values that are specific for the given mode.
We write Ω := {v1, v2, . . . , vnω }. The objective function e :Rnx → R of Mayer type
and the constraint functions c : Rnx × R

nu × R
nv → R

nc and d : Rnx × R
nu → R

d

are assumed to be sufficiently often continuously differentiable.

For example, in Sect. 2 the vectors vi will denote degrees of efficiency and engine
speed bounds for a particular choice i of the gear. Note that problem class (1) can
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be generalized in many directions to include different objective functionals, multi-
point constraints, algebraic variables, more general hybrid systems, and the likes,
compare [57] for further details and references.

Although the first MIOCPs, namely the optimization of subway trains that are
equipped with discrete acceleration stages, were already solved in the early eighties
for the city of New York [12], the so-called indirect methods used there do not
seem appropriate for generic optimal control problems with underlying nonlinear
dynamic systems and mixed path-control constraints. The discussion of advantages
and disadvantages of indirect approaches is ongoing since the 1980s and beyond
the scope of this paper. See [57] for a discussion of the applicability of dynamic
programming and global maximum principles to MIOCP and further references.

Direct and all-at-once methods, such as Bock’s direct multiple shooting [13, 44]
and direct collocation [5, 9, 10] have emerged as the methods of choice for the
computational solution of many purely continuous optimal control problems. They
are also at the heart of our approach to MIOCP. These approaches have in common
that they result in highly structured nonlinear programs (NLPs). As the focus of this
article is on properties of relaxed MIOCPs, we do not go into details on how these
transformations are carried out, but rather refer the interested reader to [11, 44].
Nevertheless, we need some NLP definitions to illustrate and transfer important
concepts.

Definition 2 (NLP) A nonlinear programming problem (NLP) is given by

min
y∈Rny

E(y) s.t. C(y) = 0, D(y) ≥ 0 (2)

with twice continuously differentiable functions E :Rny → R, C : Rny →R
nC , and

D : Rny → R
nD .

Note that we distinguish between control problems and nonlinear programs by
using lower and upper case letters respectively, and make use of the unusual E for
the objective function to avoid confusion with the right hand side function f (·).

Definition 3 (LICQ) A nonlinear programming problem is said to satisfy the linear
independence constraint qualification (LICQ) in a feasible point ȳ ∈ R

ny if for all
d �= 0 ∈ R

ny it holds that

∇Ci(ȳ)T d �= 0, 1 ≤ i ≤ nC,

∇Di(ȳ)T d �= 0, i ∈ {1 ≤ j ≤ nD : Dj(ȳ) = 0
}
.

(3)

In Sect. 4 we will see that certain constraint formulations do not enjoy the LICQ
property. Thus, we discuss mathematical programs with complementarity structure.
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Definition 4 (MPCC, MPVC) A nonlinear programming problem

min
y∈Rny

E(y)

s.t. G(y) ≥ 0, H(y) ≥ 0, Gi(y) · Hi(y) = 0, 1 ≤ i ≤ nGH ,

(4)

with twice continuously differentiable functions E, G, and H is called a Mathemat-
ical Program with Complementarity Constraints, e.g., [7]. An NLP

min
y∈Rny

E(y) s.t. H(y) ≥ 0, Gi(y) · Hi(y) ≤ 0, 1 ≤ i ≤ nGH , (5)

with twice continuously differentiable functions F , G, and H is called a Mathemat-
ical Program with Vanishing Constraints, see e.g., [2].

MPCCs and MPVCs are known to possess critical points that violate LICQ. Their
computational solution with standard NLP software is prone to numerical difficul-
ties and will often terminate in suboptimal points that possess trivial descent direc-
tions and are not local minimizers of (4) or (5).

Remark 1 (MINLP view of MPVCs) One way to see the difficulty is a look at the
mixed-integer nonlinear program given by

min
y∈Rny ,z∈{0,1}

E(y) s.t. G(y) ≤ zb (6)

with G such that {y ∈ R
ny |G(y) ≤ 0} = {0}. It is closely related to problem (5) as

Hi(y) toggles the constraint on Hi(y) ·Gi(y) in (5) like z does for the constraint on
G(y) − b in (6):

z = 1,G(y) − b ≤ 0 ⇐⇒ Hi(y) > 0,Hi(y) · Gi(y) ≤ 0,

z = 0,G(y) = 0 ⇐⇒ Hi(y) = 0,Hi(y) · Gi(y) = 0.

In this article, we investigate different approaches to reformulate problem (1).
Here, reformulations are optimal control problems that have the same feasible set
and hence the same optimal solution if integrality is required, but have a possibly
different and larger feasible set if the discrete decisions are relaxed. In Sect. 3 we
discuss formulations of the dynamic equations with further references to the liter-
ature. With respect to formulations of the inequalities in the logical disjunctions in
(1), not only tightness of the relaxation is crucial. Also, constraint qualifications may
or may not hold and homotopies might be needed to obtain convergence to local so-
lutions. We refer to this as “well-behavedness” of a relaxation for our benchmark
problem.

There are several reformulations of logical relationships in the literature. Gener-
alized Disjunctive Programming results directly from a logical modeling paradigm.
It generalizes the disjunctive programming approach of [4]. Logical variables are
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usually either incorporated by means of big-M constraints or via a convex hull for-
mulation, see [31, 50, 51, 67]. From a different point of view, disjunctive program-
ming formulations can be interpreted as the result of reformulation-linearization
technique (RLT) steps [64]. For both, the convex hull relaxation uses perspective
functions. Based on this, the use of perspective cuts to strengthen convex MINLP
relaxations has been proposed in various articles, for example [15, 22, 33]. We refer
the reader to [8] for a recent survey on MINLP techniques.

Complementarity (4) and Vanishing Constraints (5) are another way to look at
logical implications. The general concept of nonlinear optimization over noncon-
vex structures is discussed in [62, 63]. For the comparatively young problem class
of MPVCs we refer to [2, 36]. Due to the lack of constraint qualification, various
approaches for the computational solution of MPCCs and MPVCs have been de-
vised and include regularizations [36, 54, 66], smoothing [16, 36], and combinations
thereof; see [24] for an overview. Nonlinear programming for MPCCs is addressed
in [3, 21, 45, 47]. Active set methods tailored to the nonconvex structure are dis-
cussed in [17, 39, 43]. Formulations of MPCCs and MPVCs in optimal control can
be found in [7, 39, 43, 52, 53].

The remainder of this article is organized as follows. In Sect. 2 we describe a
heavy-duty truck cruise control problem based on a dynamic vehicle model that in-
cludes gear shift decisions. This is a prototypical MIOCP with constraints based on
logical implications. In Sect. 3 we explain the partial outer convexification approach
for MIOCPs. We discuss extensions of this approach and different reformulations
arising for the heavy-duty truck model, and numerically assess the advantage of
partial outer convexification over an inner convexification. In Sect. 4 we investigate
reformulations for logical implication constraints. We discuss merits and drawbacks
as well as the consequences arising for underlying NLP solvers. Numerical results
for the heavy-duty truck control problem are presented in Sect. 5.

2 A Cruise Control Problem for a Heavy-Duty Truck

In this section we describe a cruise control problem for a heavy-duty truck, and
model it as a mixed-integer tracking control problem on a prediction horizon.

Typical heavy-duty trucks feature from nμ = 8 to nμ = 24 gears with differ-
ent transmission ratios and efficiencies. The decision on energy-optimal gear shift
strategies under real-time constraints usually requires extensive training on the
driver’s side, is a subject of intense scientific research, and bears considerable po-
tential for savings especially in view of future hybrid engines, e.g., [35, 39, 68].

Controls and Dynamic System We describe a basic ODE truck model as intro-
duced in [68] that is used for all computations. The ODE system of the truck model
comprises three input controls: the indicated engine torque Mind, the engine brakes
torque MEB, and the integer gear choice μ.

The vehicle model involves two differential states, velocity v and accumulated
fuel consumption Q. Traveled distance s is chosen as the independent variable and
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we consider the interval [0, sf]. The first state v(s) denotes velocity (in m/s) and is
determined from the sum of directed torques,

mv(s)v̇(s) = (Macc(s) − Mbrk(s)
)
iA/rstat − Mair(s) − Mroad(s), (7)

depending on the effective accelerating and braking torques Macc, Mbrk as well as on
turbulent and static friction torques Mair, Mroad (all in Nm). Further, iA is the fixed
axle transmission ratio and rstat (in m) is the static tire radius. The second state, fuel
consumption Q(s) (in l/s), is computed from integration over a consumption map

v(s)Q̇(s) = Qfuel
(
neng

(
s,μ(s)

)
,Mind(s)

)
, (8)

depending on engine speed neng and torque Mind. Several terms are computed from
algebraic formulas. The transmitted engine speed neng (in 1/min) depends on the
selected gear μ and is obtained from velocity,

neng
(
s,μ(s)

) := v(s)iAiT
(
μ(s)

)
60/(2πrstat).

The accelerating torque Macc is computed from the ratio iT(μ) and efficiency ηT(μ)

associated with the selected gear μ. Braking torques Mbrk are due to controlled
engine brake torque MEB and internal engine friction torque Mfric,

Macc(s) := iT
(
μ(s)

)
ηT
(
μ(s)

)
Mind(s),

Mbrk(s) := MEB(s) + iT
(
μ(s)

)
Mfric

(
neng

(
s,μ(s)

))
.

Additional braking torques due to turbulent friction Mair, and due to static road
conditions Mroad, are taken into account,

Mair(s) := 1

2
cwAρairv

2(s), Mroad(s) := mg
(
sinγ (s) + fr cosγ (s)

)
.

Here cw is the shape coefficient, A denotes the flow surface (in m2), and ρair the air
density (in kg/m3). Further, m is the vehicle’s mass (in kg), gravity is denoted by g

(in m/s2), γ (s) denotes the road’s slope, and fr is a rolling friction coefficient.

Objective The cost criterion to be minimized on the prediction horizon [0, sf] is
composed of a weighted sum of three different objectives. To simplify notation we
transform the Lagrange terms into a Mayer term by introducing artificial differential
states. First, the deviation of the truck’s velocity from the desired one is penalized,

v(s)Φ̇dev(s) := (v(s) − vdes(s)
)2 (9)

Second, the fuel consumption is found from a fuel consumption rate map Q, see
[39], and depends on the integer gear choice μ(s),

v(s)Φ̇fuel := Q
(
neng

(
s,μ(s)

)
,Mind(s)

)
. (10)
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Third, rapid changes of the engine and brake torques degrade driving comfort,

v(s)Φ̇comf := Ṁ2
ind(s) + Ṁ2

brk(s), (11)

where we approximate the torque derivatives by one-sided finite differences.

Constraints On the prediction horizon mechanical constraints and velocity limits
need to be respected. Beside the bounds on the truck input controls and on the
system’s states for s ∈ [0, sf],

0 ≤ Mind(s), 0 ≤ Mbrk(s) ≤ Mbrk,max, (12)

the truck’s velocity v(s) is subject to velocity limits imposed by law,

v(s) ≤ vlaw(s), s ∈ [0, sf]. (13)

The indicated torque must respect state-dependent upper limits as specified by the
engine characteristics for s ∈ [0, sf]:

Mind(s) ≤ Mind,max
(
neng

(
s,μ(s)

))
. (14)

In addition, the transmitted engine speed neng(s,μ(s)) must stay within prescribed
limits according to the engine’s specification,

neng,min ≤ neng
(
s,μ(s)

)≤ neng,max, s ∈ [0, sf]. (15)

Problem Formulation The MIOC problem formulation for the heavy-duty truck
control problem on the prediction horizon s ∈ [0, sf] reads

min
x(·),u(·),μ(·) λdevΦdev(sf) + λfuelΦfuel(sf) + λcomfΦcomf(sf)

s.t.
∨

i∈{1,...,nμ}

⎡

⎣
μ(s) = i

ODE system (7), (8)
Constraints (14), (15)

⎤

⎦ ∀s ∈ [0, sf],

x(0) = x0,

Constraints (12), (13) ∀s ∈ [0, sf],

(16)

with state vector x(s) = (v,Q,Φdev,Φfuel,Φcomf)(s), continuous control vector
u(s) = (Mind,Mbrk)(s), integer controls μ(s), and initial state information x0. Note
that problem (16) is a MIOCP of form (1), with the gear choice μ(s) that causes
switches in the right hand side as well as in the constraints and the associated vec-
tors vi = (iT(i), ηT(i)) that contain gear-specific values for transmission ratio and
efficiency.
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Logical Implications The modeling and optimization with logical variables has
gained increasing interest, [31, 50]. The main reason is that it provides a modeling
paradigm that is both generic and intuitive, and allows for tailored relaxations and
algorithms.

Logical literals Y ∈ {false, true} can of course be identified with binary variables
zi ∈ {0,1}, or can be used implicitly, as we did in formulation (16),

Yi(t) = true ⇔ μ(t) = i.

It is well known that logical relations and Boolean expressions can be represented
as linear (in)equalities. For example, the implication is represented by

Y1 ⇒ Y2 ⇐⇒ ¬Y1 ∨ Y2 ⇐⇒ 1 − z1 + z2 ≥ 1.

For time-dependent logical literals Y(·), systems of differential equations, and im-
plied constraints the representation is, however, neither straightforward nor unique.

In Sect. 3 we discuss two different formulations for the ODE system and review
recent results. Constraints (14) and (15) are of particular interest in the context of
this article. They represent the logical implication

When gear i is active, gear-specific constraints must hold.

In Sect. 4, we address different mathematical reformulations of this implication and
investigate the tightness of the induced relaxations.

3 Inner and Outer Convexification in MIOC

In this section we investigate two different approaches to reformulate problem (1)
when nc = 0, i.e., when no mode-specific constraints are present and only the right
hand side function of the dynamic system depends on the logical mode choice at
time t . We denote the two approaches by inner convexification and (partial) outer
convexification, depending on how the variables that represent the logical choice
enter the right hand side.

The goal in both cases is identical: a formulation that allows the relaxation of
discrete decisions. The relaxed MIOCPs are purely continuous control problems
that can be solved using, for example, Bock’s direct multiple shooting method or
direct collocation.

Using the truck control problem from Sect. 2, we compare both approaches nu-
merically and explain qualitatively why the outer convexification formulation per-
forms so much better than the inner convexification. We close this section by refer-
ring to related work and extensions.

Inner Convexification For some control problems of type (1) it is possible to
reformulate the time-dependent disjunctions by means of a function g : [1, nω] →
R

nv that can be inserted into the right hand side function f (·) and has the property
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g(i) = vi for i ∈ {1, . . . , nω}. Possibilities are a piecewise linear representation of
the form

g(i + ξi+1) = ξiv
i + ξi+1v

i+1 (17)

with special ordered set type 2 (SOS-2) variables

ξi ∈ [0,1],
∑

i

ξi = 1, ξi �= 0 ⇒ ξj = 0 ∀j �= i, i + 1,

a convex combination

g

(
nω∑

i=1

ξii

)

=
nω∑

i=1

ξiv
i (18)

with special ordered set type 1 (SOS-1) variables ξi ∈ [0,1], ∑i ξi = 1, or fitted
smooth convex functions g(·) as suggested in [25]. Either way, this approach allows
a reformulation of (1) into

Definition 5 (MIOCP after IC Reformulation)

min
x(·),u(·),ψ(·) e

(
x(tf)

)

s.t. ẋ(t) = f
(
x(t), u(t), g(ψ)

) ∀t ∈ [0, tf],
0 ≤ d

(
x(t), u(t)

) ∀t ∈ [0, tf], (19)

x(0) = x0,

ψ(t) ∈ {1, . . . , nω} ∀t ∈ [0, tf].

By construction, problem (19) can be relaxed toward ψ(t) ∈ [1, nω].

Outer Convexification The outer convexification approach (or partial outer con-
vexification, because the convexification applies to the integer controls only, and not
to the rest of the control problem) has been investigated in the context of optimal
control in [56, 60, 61]. It consists of an evaluation of all possible right hand sides,
their multiplication with convex multipliers, and the summation of the products. We
introduce control functions ω : [0, tf] → {0,1}nω as convex multipliers and obtain:

Definition 6 (MIOCP after OC Reformulation)

min
x(·),u(·),ω(·) e

(
x(tf)

)

s.t. ẋ(t) =
nω∑

i=1

ωi(t)f
(
x(t), u(t), vi

) ∀t ∈ [0, tf],

0 ≤ d
(
x(t), u(t)

) ∀t ∈ [0, tf], (20)



396 M.N. Jung, C. Kirches, and S. Sager

x(0) = x0

1 =
nω∑

i=1

ωi(t), ω(t) ∈ {0,1}nω ∀t ∈ [0, tf].

Problem (20) can be relaxed toward ω(t) ∈ [0,1]nω . We use the notation α(t) ∈
[0,1]nω to highlight the difference between the original problem and its continuous
relaxation. In the following we need the notation of

Definition 7 (Fractionality of solutions) The fractionality of binary control func-
tions ω(·) on a time horizon [0, tf] is given by

1

nω

nω∑

i=1

∫ tf

0

(
0.5 − ∥∥ωi(τ ) − 0.5

∥∥)dτ.

Discussion of Inner Versus Outer Convexification Relaxations of reformula-
tion (19) may be faster to solve, as we only have one control function ψ : [0, tf] →
[1, nω] that enters the control problem instead of nω functions ωi : [0, tf] → [0,1] in
(20). Hence, there are less derivatives to be computed and the subproblems arising
in iterations of an interior point or SQP approach are cheaper to solve. Moreover in
(20), the aggregated right hand side function

∑
i f (·, vi) may become more expen-

sive to evaluate. As nω reflects the number of possible combinations and switches,
this number may get large. Note that the linear equality constraint may be used for
elimination of one function at the cost of losing some sparsity.

However, depending on the separability properties of f (·), integer controls often
decouple, leading to a reduced number nω of admissible choices, e.g., [30].

Example 1 (Outer Convexification and Separability) Assume we have

ẋ(t) = f1
(·, v1(t)

)+ f2
(·, v2(t)

)
, v1(t) ∈ Ω1, v2(t) ∈ Ω2.

Then an equivalent reformulation leading to nω = nω1 + nω2 controls instead of
nω = nω1nω2 is given for t ∈ [t0, tf ] by

ẋ(t) =
nω1∑

i=1

f1
(·, vi

1

)
ω1,i (t) +

nω2∑

i=1

f2
(·, vi

2

)
ω2,i (t),

nω1∑

i=1

ω1,i (t) = 1, ω1 ∈ {0,1}nω1 ,

nω2∑

i=1

ω2,i (t) = 1, ω2 ∈ {0,1}nω2 .

In most practical applications the binary control functions enter linearly (such
as valve controls that indicate whether a certain flow term is present or not), or nω

increases linearly with the number of choices (e.g., the gears), or integer controls
decouple. Hence, one can expect a modest (linear) increase in the number of control
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functions. This increase is usually more than outweighed by important advantages
of (20) over (19):

• Not in all cases can a meaningful inner convexification g(·) be found. An exam-
ple are black-box simulators that can only be evaluated for certain modes (integer
values), but not in between. In general, using g(·) for a relaxation may lead to
problems such as divisions by zero, or index changes in the DAE case [6]. Eval-
uating the model only for vectors vi avoids these problems;

• The integer gap between the optimal solutions of (19) and its relaxation may be-
come arbitrarily large [56], whereas the integer gap between the optimal solutions
of (20) and its relaxation is bounded by a multiple of the control discretization
grid size Δt [61].

Finding a tight relaxation of (20) is vitally important for the computational solu-
tion of (1). It allows a decoupling of the MIOCP into a continuous OCP and a
mixed-integer linear programming problem with a huge potential for computational
savings and a posteriori bounds on the gap to the best possible MIOCP solution
[37, 61]. Moreover, the relaxed control problems often have optimal integer solu-
tions, which implies almost arbitrary computational savings when compared to an
OCP-based branch&bound approach to solve (19) to optimality. This has first been
compared in [40] for a benchmark problem posed in [25]. While identical solu-
tions were obtained, a speedup of several orders of magnitude was observed for the
outer convexification approach. Similar behavior can be observed when comparing
to MINLP-based branch&bound. We use the truck control example from Sect. 2 to
reproduce and explain this qualitative result.

Inner and Outer Convexification for Truck Control Optimal solutions by their
very nature tend to exploit constraints as much as possible. In the special case of
vehicle operation and for a fixed acceleration, it is natural that the gear is chosen
that provides the largest torque when compared to all other gears.

In Fig. 1 we show the maximum indicated engine torque Mind,max depending on
the velocity v for two adjacent gear choices μ(·) = i and μ(·) = i + 1. Figure 1
(left) shows

M IC
ind,max(v) = Mind,max

(
neng

(
v(s), ξ i + (1 − ξ)(i + 1)

))
(21)

for ξ = 0.0,0.1, . . . ,1.0, while Fig. 1 (right) shows

MOC
ind,max(v) = αMind,max

(
neng

(
v(s), i

))+(1−α)Mind,max
(
neng

(
v(s), i +1

))
(22)

for α = 0.0,0.1, . . . ,1.0. Apparently, in the particular case of truck control, the re-
laxation of (19) comprises combinations of the state variable v(·) and non-integral
ξ ∈ (0,1) that yield an unphysical, larger value of M IC

ind,max. Conversely, the re-
laxation of (20) is by construction maximal only for α ∈ {0,1}. Thus, one can ex-
pect that optimal solutions of the relaxed version of (20) are integral, whereas solu-
tions of the relaxation of (19) may have non-integral solutions ξ ∈ (0,1). The two
approaches would only coincide if both neng and Mind,max were linear functions
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Fig. 1 Maximum indicated engine torque Mind,max depending on the velocity v for two adjacent
gear choices μ(·) = i and μ(·) = i+1. Left: inner convexification (19). Right: outer convexification
(20). Observe the maximal indicated engine torques for non-integral values of ξ (gray) on the left
hand side, while non-integral values for α (gray) on the right hand side are never better than
integral values (black)

Table 1 Fractionality as in Definition 7, objective function value, and CPU time obtained with
SNOPT/IPOPT for the solution of relaxations of (19) and (20) with different control grids

# Control
intervals

Inner convexification (19) Outer convexification (20)

Fractionality Objective CPU [sec] Fractionality Objective CPU [sec]

40 0.101895 1.01687 1/* 0.073163 1.03315 1/4

80 0.093632 0.99866 6/2 0.010639 1.01265 2/85

160 0.098872 0.98878 28/8 0.000409 1.00030 3/51

320 0.095983 0.98325 */20 0.000820 0.99283 53/365

of vi . The special case of truck control is prototypical for many (in particular time-
optimal) MIOCPs, as often bang-bang solutions are optimal. However, this is not
guaranteed in the general case.

To evaluate this effect, we apply both inner and outer convexification to the truck
control problem (16), however for the time being without the constraints (14)–(15).
For convenience, we use formulation (18) in the following. The effect is strongest
for time- and energy-optimal driving, hence we consider the case where λfuel = 1,
λdev = λcomf = 0 in the uphill setting of Fig. 2.

Table 1 shows numerical results for the cruise control of the heavy-duty truck.
Both the inner and the outer convexification formulations have been relaxed and
solved to local optimality with the active-set solver SNOPT [28] and the interior
point solver IPOPT [69]. The most important findings can be summarized as follows:

• For inner convexification, the fractionality of the optimal relaxed gear choices
αj (·) does not improve for finer discretizations. For the outer convexification
however, it goes to zero as the control discretization grid is equidistantly refined.
The reason is that the optimal control α(·) of (20) is of bang-bang type;

• There is a gap between the lower bound from the relaxed IC solutions and the
best possible integer solution, which is almost attained by the OC formulation;
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• The interior point code IPOPT seems to perform better on inner convexification,
the SQP code SNOPT performs better on outer convexification;

• Both codes run into problems with inner convexification instances.

Although on single instances it may be faster to compute the relaxation of the
inner convexification formulation, it is clear that outer convexification is the method
of choice within a branch and bound framework. This is due to the tighter relaxation
(better bound) in combination with the feature that relaxed solutions are usually
already almost integer feasible if the control discretization grid is chosen adequately.

Extending the Outer Convexification Approach The advantages of outer con-
vexification over inner convexification have stimulated additional research into the
formulation (20). Here, we briefly review significant developments for the reader’s
convenience. First, to fully exploit the beneficial integrality property that has been
exemplified above and that is related to bang–bang solutions in optimal control, di-
rect methods need to be equipped with adaptivity in the control grid discretization
and follow-up transformations into a switching time optimization, [56, 60]. Sec-
ond, so-called sensitivity-seeking or path-constrained arcs (i.e., time periods during
which α(·) is not binary) can be treated with tailored sum up rounding strategies.
This rounding strategy is a constructive part in the proof for the dependence of the
integer gap on the control discretization grid size Δt . Furthermore, it is the optimal
solution to a MILP that minimizes the deviation of a binary control ω(·) from a
relaxed one α(·) with respect to

max
t∈[0,tf]

∥∥∥∥

∫ t

0
ω(τ) − α(τ)dτ

∥∥∥∥.

If additional constraints like a maximum number of switches need to be fulfilled,
tailored branching algorithms can be applied to efficiently solve the constrained
MILP [37]. Third, the numerical algebra to cope with the specific structures induced
by the control functions α(·) can be exploited in the context of SQP approaches
[41, 42]. Finally, an extension to more general MIOCPs is possible, e.g., to multi-
objective problems [48], to differential-algebraic systems [27], and to certain partial
differential equations [34]. For an overview see [57, 58].

4 Constraint Formulations

In this section, we study reformulations for logically implied constraints c(·), i.e.,
nc > 0 in (1). Again, we consider reformulations that are equivalent for integer
control functions and discuss properties of their relaxations. We do this both in
general and for the special case of the constraints (14)–(15) of the heavy-duty truck
model from Sect. 2 that result in

ctruck(v,Mind,μ) =
⎛

⎝
Mind,max(neng(v,μ)) − Mind

neng,max − neng(v,μ)

neng(v,μ) − neng,min

⎞

⎠ . (23)
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In the interest of notational simplicity we omit the lower linear engine speed bound
neng(v,μ) − neng,min in the rest of this section. We note that the function ctruck(·)
has components that are quadratic and linear in iT(μ),

ctruck(v,Mind,μ) =
(

3000 − (3iAiT(μ)v/(πrstat) − 125)2 − Mind
πrstatneng,max/(30iAiT(μ)) − v

)
. (24)

4.1 Inner Convexification of the Constraints

The inner convexification formulation (19) can be augmented in a straightforward
way with constraints

0 ≤ c
(
x(t), u(t), g(ψ)

)

that guarantee that integer feasible solutions ψ ∈ {1, . . . , nω} of (19) are feasible
solutions of (1). Using (18) for g(·) we obtain the following reformulation of the
constraints (14), (15),

0 ≤ 3000 −
(

3iA

(
nω∑

i=1

αiiT(i)

)

v/(πrstat) − 125

)2

− Mind, (25a)

0 ≤ πrstatneng,max

/(

30iA

(
nω∑

i=1

αiiT(i)

))

− v. (25b)

Just as in Sect. 3, the evaluation of convex combinations within a nonlinear func-
tion may give rise to optimality of feasible fractional values, while neighboring
integer values may not be optimal. Hence, the inner convexification approach can
be expected to potentially yield weak relaxations.

4.2 Outer Convexification/One Row Formulation of the
Constraints

The outer convexification reformulation (20) can be applied to the constraint ex-
pression as well. Residuals are evaluated for all possible choices, and the constraint
is imposed on the convex combination of residuals resulting in

0 ≤
nω∑

i=1

αi(t)c
(
x(t), u(t), vi

)
. (26)

This reformulation avoids the problem of evaluation in fractional choices, and en-
sures that all feasible integer points are feasible points of the original MIOCP.
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Remark 2 (LICQ for Outer Convexification) Let (x̄, ū, ᾱ) be a feasible solution of
the relaxation of problem (20), (26) and let the matrix

[∑nω

i=1 ᾱi(t)∇c(·, vi)

∇d(·)
]

:= ∂

∂(x,u)

[∑nω

i=1 ᾱi(t)c(x̄, ū, vi)

d(x̄, ū)

]

of active constraints have full row rank. Drop the upper bounds αi(·) ≤ 1, which
are implicitly implied by αi(·) ≥ 0 and

∑
i αi(·) = 1. Then LICQ is satisfied for the

relaxation of problem (20), (26).

Proof We look at the constraint matrix of all (active) constraints in (·, ᾱ), given by

∂

∂(α1, . . . , αnω , (x,u))

⎡

⎢⎢⎢⎢⎢⎢
⎢
⎣

∑nω

i=1 αi(t)c(·, vi)

d(·)
∑nω

i=1 αi(t) − 1

α1(t)

. . .

αnω(t)

⎤

⎥⎥⎥⎥⎥⎥
⎥
⎦

=

⎡

⎢⎢⎢
⎢⎢⎢⎢
⎣

c(·, v1) · · · c(·, vnnω )
∑nnω

i=1 ᾱi (t)∇c(·, vi)

0 · · · 0 ∇d(·)
1 · · · 1 0
1 0

. . .
...

1 0

⎤

⎥⎥⎥
⎥⎥⎥⎥
⎦

Due to feasibility of ᾱ and the SOS-1 constraint there exists at least one index 1 ≤
i ≤ nω for which αi(t) ≥ 0 is not active. Hence, the bottom nω rows are linearly
independent. The first block of rows may contribute an entry in column i, but by
assumption is linearly independent from the other rows due to the right-most block
of columns, which concludes the proof. �

The same holds true if we eliminate one of the multipliers αi using the SOS-1
constraint, which becomes an inequality constraint. For the heavy-duty truck model,
the torque constraint (14) and the engine speed constraint (15) are reformulated to
read

0 ≤
nμ∑

i=1

αi(t)Mind,max
(
neng

(
v(s), i

))− Mind(s), (27a)

0 ≤ neng,max −
nμ∑

i=1

αi(t)neng
(
v(s), i

)
. (27b)

Note that (25b) and (27b) are identical, as iT(μ) enters linearly.
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As the constraints are summed up, compensatory effects may lead to feasible
residuals for fractional values of the convex multipliers in both cases, as observed in
[39]. For example, a first gear choice leading to an engine speed violating the upper
bound neng,max and a second gear choice in violation of the lower bound neng,min

may form a feasible convex combination in (27b).

4.3 Complementarity Formulation

To address the problem of compensatory effects, [39] proposes to enforce feasibility
individually for each possible choice of the integer control via

0 ≤ αi(t)c
(
x(t), u(t), vi

)
, 1 ≤ i ≤ nnω . (28)

For the heavy-duty truck model, torque and engine speed constraints are

0 ≤ αi(t)
(
Mind,max

(
neng

(
v(s), i

))− Mind(s)
)
, (29a)

0 ≤ αi(t)
(
neng,max − neng

(
v(s), i

))
(29b)

for 1 ≤ i ≤ nμ. It is obvious that optimal solutions with nonzero convex multiplier
αi(t) > 0 are now feasible for αi(t) = 1 as well. Compared to the outer convexifi-
cation formulation, the number of constraints has increased from 4 to 4nμ, though.
More important, due to the structure of the constraints (29a)–(29b), the NLP ob-
tained from discretization of the relaxed convexified MIOCP now is a MPVC in the
form of (5). In the case of equality constraints, we obtain a MPCC, see (4).

4.4 Addressing the Complementarity Formulation

As mentioned in the introduction, MPCCs and MPVCs lose constraint qualification.
This can also be seen directly.

Remark 3 (No LICQ for Complementarity) Let (x̄, ū, ᾱ) be a feasible solution of
the relaxation of problem (20), (28) with

ᾱi(t) = 0, c
(
x̄, ū, vi

)= 0

for at least one 1 ≤ i ≤ nω. Then LICQ is not satisfied.
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Proof We look at the constraint matrix of all constraints in (·, ᾱ), given by

∂

∂(α1, . . . , αnω , (x,u))

⎡

⎢⎢
⎢⎢⎢⎢⎢⎢⎢⎢
⎣

α1(t)c(·, v1)

. . .

αnω(t)c(·, vnω)

d(·)∑nω

i=1 αi(t) − 1
α1(t)

. . .

αnω(t)

⎤

⎥⎥
⎥⎥⎥⎥⎥⎥⎥⎥
⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎢⎢
⎣

c(·, v1) · · · 0 ᾱ1(t)∇c(·, v1)

. . .
...

0 · · · c(·, vnnω ) ᾱnω(t)∇c(·, vnω)

0 · · · 0 ∇d(·)
1 · · · 1 0
1 0

. . .
...

1 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎥⎥
⎦

and note that the rows that correspond to ᾱi(t)c(·, vi) ≥ 0 contain only zeros, lead-
ing to a trivially linear dependent constraint system. �

The constraint system also violates the weaker Mangasarian-Fromovitz con-
straint qualification. However, some cone-based constraint qualifications are sat-
isfied, e.g., [2]. Thus, local minimizers are still KKT points.

Complementarity Pivoting Techniques Computational approaches for solving
MPCCs and MPVCs directly are mentioned in the introduction, but generally rely
on dedicated implementations of complementarity solvers. If one intends to use
existing numerical software, then the complementarity reformulation (28) needs to
be addressed by regularization or smoothing techniques that recover LICQ.

Regularization and Smoothing Techniques These techniques follow the princi-
ple of reformulation of the MPCC or MPVC in violation of LICQ using a parameter
ε > 0 in a way that recovers constraint qualification for ε ∈ (0, ε). Then, conver-
gence of the sequence of local minimizers to a limit point is established for ε → 0.
The assessment of the type of stationarity obtained for the limit point is crucial.
For MIOCP, we find it essential to ask for Bouligand stationarity. Lesser stationar-
ity concepts allow for termination in spurious stationary points that possess trivial
descent directions, thus giving rise to “missed” switches of the integer control.

In the following, an overview over different possible reformulations is given, and
their general form is presented and applied to the particular truck problem.
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Regularization Reformulations Conversely, regularization formulations relax
the feasible set using ε > 0 by requiring

−ε ≤ αi(t) · c(x(t), u(t), vi
)
, 1 ≤ i ≤ nnω (MPVC),

or, in what is sometimes referred to as the lumped formulation,

−ε ≤
nnω∑

i=1

αi(t) · c(x(t), u(t), vi
)
. (30)

For MIOC and in particular for the truck model, the lumped formulation will satisfy
LICQ but amounts to applying outer convexification to the original constraint, see
Sect. 4.2. For the truck model, the first formulation reads

−ε ≤ αi(t) · (Mind,max
(
neng

(
v(s), i

))− Mind(s)
)

(31a)

−ε ≤ αi(t) · (neng,max − neng
(
v(s), i

))
(31b)

NCP Function Reformulations A function φ : R2 → R is called NCP-function
if

φ(a, b) = 0 ⇒ a ≥ 0, b ≥ 0, ab = 0, (MPCC),

φ(a, b) = 0 ⇒ b ≥ 0, ab ≤ 0, (MPVC),

see, e.g., [18] for a survey. For MPCCs the Fischer-Burmeister function

φFB(a, b) := a + b −
√

a2 + b2

may be used, [19]. For MPVC, [36] uses the NCP function

φVC(a, b) = 1

2

(
ab +

√
a2b2 +

√
b2 − b

)
. (32)

Piecewise smooth complementarity functions to replace the complementarity con-
straint in a MPCC are developed in [46], and a one-to-one correspondence between
strongly stationary points and KKT points of the reformulated MPCC is established.
The non-smoothness is shown to not impede the convergence of SQP methods. The
approach however cannot avoid convergence of SQP solvers to spurious stationary
points in the degenerate case. The NCP formulation for the truck model is

0 ≥ φVC(Mind(s) − Mind,max
(
neng

(
v(s), i

))
, αi(t)

)
, (33a)

0 ≥ φVC(neng
(
v(s), i

)− neng,max, αi(t)
)
. (33b)
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Smoothing Reformulations Smoothing reformulations have first been developed
for MPCCs and work by appropriately including a smoothing parameter ε > 0:

0 ≥ φε

(−c
(
x(t), u(t), vi

)
, αi(t)

)
, 1 ≤ i ≤ nnω (MPVC), (34)

with NCP function φ, e.g., φFB
ε (a, b) := a + b − √

a2 + b2 + ε for MPCC and

0 ≥ φVC
ε (a, b) := 1

2

(
ab +

√
a2b2 + ε2 +

√
b2 + ε2 − b

)
(35)

for MPVC. For MPCC, smoothing under an LICQ-type assumption and a sec-
ond order condition has been shown to yield B-stationarity of the limit point. For
MPVC, smoothing is shown in [36] to not yield a satisfactory framework for solving
MPVCs. For the truck model, the smoothing reformulation reads

0 ≥ φVC
ε

(
Mind(s) − Mind,max

(
neng

(
v(s), i

))
, αi(t)

)
, (36a)

0 ≥ φVC
ε

(
neng

(
v(s), i

)− neng,max, αi(t)
)
. (36b)

Smoothing-Regularization Reformulations Smoothing-regularization ap-
proaches combine the concepts of smoothing and regularization to form

ε ≥ φε

(−c
(
x(t), u(t), vi

)
, αi(t)

)
, 1 ≤ i ≤ nnω (MPVC). (37)

For MPVC, using (32), the smoothing-relaxation formulation reads ε ≥ φVC
ε (a, b).

Convergence for ε → 0 to a B-stationary limit point is established under a weak
LICQ-type constraint qualification, assuming existence and asymptotic nondegen-
eracy of a sequence {xε}ε→0 of feasible points for the sequence NLP(ε). LICQ is
shown to be satisfied for all NLP(ε) with ε ∈ (0, ε).

For the truck problem, the smoothing-regularization formulation reads

ε ≥ φVC
ε

(
Mind(s) − Mind,max

(
neng

(
v(s), i

))
, αi(t)

)
, (38a)

ε ≥ φVC
ε

(
neng

(
v(s), i

)− neng,max, αi(t)
)
. (38b)

4.5 Generalized Disjunctive Programming

Based on the work of Balas for integer linear programs, Grossmann and coworkers
developed Generalized Disjunctive Programming (GDP) for mixed-integer nonlin-
ear programs [31]. The problem formulation (1) uses disjunctive notation, hence
it is natural to take the GDP point of view. It is motivated by disjunctions of the
form
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min
y,Y

e(y) +
∑

i∈I

ei

s.t.

⎡

⎣
Yi

gi(y) ≤ 0
ei = γi

⎤

⎦∨
⎡

⎣
¬Yi

Biy = 0
ei = 0

⎤

⎦ ∀i ∈ I (39)

0 ≤ y ≤ U, Φ(Y ) = true, Y ∈ {false, true}|I |

with application in process synthesis where Yi represents presence or absence
of units and y a vector of continuous variables. If a corresponding unit is not
used, the equation Biy = 0 eliminates variables and ei = 0 sets the costs to
zero.

As stated above, logical relations Φ(Y) = true can be translated into constraints
with binary variables z ∈ {0,1}|I |. An interesting question, however, is how the dis-
junctions are formulated. We consider two approaches.

Big-M Using large enough constants M is a well-known technique to model log-
ical relations in combinatorial optimization. For (39), this yields

gi(y) ≤ M(1 − zi), −Mzi ≤ Biy ≤ Mzi, ei = ziγi .

Convex Hull Reformulation A possibly tighter relaxation can be obtained from
the nonlinear convex hull reformulation. It makes use of the perspective of a func-
tion.

Definition 8 (Perspective function) The perspective of a function f : Rn → R is
the function f̂ : Rn+1 → R defined by

f̂ (λ, y) =

⎧
⎪⎨

⎪⎩

λf (y/λ) if λ > 0,

0 if λ = 0, y = 0,

∞ otherwise.

An important property is that if f (·) is convex, then f̂ (·) is also convex. Per-
spectives have been used for strong formulations of MINLPs [15] and have been
gaining increasing interest lately also for the derivation of perspective cuts, e.g.,
[33]. Perspectives can be used to obtain the nonlinear convex hull of a feasible set
as follows:

Definition 9 (Nonlinear Convex Hull) Problem (6) can be equivalently restated as
minimization over all (y,λ) of the nonconvex function

Φ(y,λ) :=

⎧
⎪⎨

⎪⎩

0 if λ = 0, y = 0,

F (y) if λ = 1,G(y) ≤ b,

∞ else.

(40)
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wherein we have assumed w.l.o.g. that Φ(0, λ) = 0. The closure coΦ(y,λ) of the
convex hull of Φ is given by

coΦ(y,λ) =

⎧
⎪⎨

⎪⎩

0 if λ = 0, y = 0,

λF (y/λ) if λ ∈ (0,1],G(y) ≤ λb,

∞ else.

(41)

The convex hull representation of the GDP (39) is then obtained by introduction
of additional variables 0 ≤ λij ≤ 1, λi1 + λi0 = 1 and 0 ≤ vij ≤ λijU , y = vi1 + vi0
and constraints 0 ≥ λi1gi(vi1/λi1), Bivi0 = 0, fi = λi1γi .

Numerical Difficulties For constraint formulations using perspectives usually
LICQ holds. The reason is that unlike in Remark 3, the derivative λ∇vg(v/λ) �= 0
for λ = 0. E.g., for linear constraints g(v) = av + b we have λ∇vg(v/λ) = a.

However, for nonlinear g(·) there are computational challenges due to division by
zero or near-zero values. For ε > 0 sufficiently small λf (y/λ) can be approximated
by (λ + ε)f (y/(λ + ε)), [31], or by (λ)f (y/(λ + ε)), [50], or as proposed in the
Ph.D. thesis of Nicolas Sawaya by ((1 − ε)λ + ε)f (y/((1 − ε)λ + ε)). The results
may depend heavily on the choice of ε and be computationally challenging.

4.6 Generalized Disjunctive Programming for MIOCP

First, we consider the Big-M formulation for GDP. For general constraints c(·) and
SOS-1 variables α(·) we obtain for 1 ≤ i ≤ nnω

M
(
αi(t) − 1

)≤ c
(
x(t), u(t), vi

)
(42)

and thus for the truck constraints (23) for 1 ≤ i ≤ nμ

M
(
αi(t) − 1

) ≤ (Mind,max
(
neng

(
v(s), i

))− Mind(s)
)
, (43a)

M
(
αi(t) − 1

) ≤ (neng,max − neng
(
v(s), i

))
. (43b)

This formulation does not cause LICQ problems and good values for M can be
determined from bounds on v(·). Still, it is expected to give weak relaxations.

Second, we apply the GDP convex hull technique to the MIOCP (1). [50] pro-
posed to lift all variables (controls, differential states, horizon lengths). We describe
one of the many possibilities that stem from a modeler’s freedom to lift only some
of the variables and to use different formulations for the disjunctive constraints.

One first observation is that we can use the convex multiplier functions αi(·)
from outer convexification in place of λ, and let y(·) := (x(·), u(·)). The perspective
formulation for the constraints c(·) then yields

0 ≤ αi(t)c
(
x(t)/αi(t), u(t)/αi(t), v

i
)
, t ∈ [0, tf], i = 1, . . . , nω. (44)

To properly obtain the convex hull, we also apply this procedure to the dynamic
constraint for t ∈ [0, tf], i = 1, . . . , nω:
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0 = αi(t)
(
ẋ(t)/αi(t) − f

(
x(t)/αi(t), u(t)/αi(t), v

i
))

(45a)

= ẋ(t) − αi(t)f
(
x(t)/αi(t), u(t)/αi(t), v

i
)
. (45b)

We introduce disaggregated state derivatives ẋi (·), resulting states xi(·), and disag-
gregated control decision variables ui(·) for all nonlinearly entering controls:

ẋ(t) =
nω∑

i=1

ẋi (t), x(t) =
nω∑

i=1

xi(t), u(t) =
nω∑

i=1

ui(t).

We consider a time discretization of the states of problem (1),

x(tk) := sk, ẋ(t) = f
(
x(t), u(t), v(t)

)
, t ∈ [tk, tk+1], (46a)

sk+1 = x
(
tk+1; tk, sk, u(·), v(·)), 0 ≤ k ≤ N − 1, (46b)

which yields the MIOCP

min
x(·),u(·),Y e(sN)

s.t.
∨

i∈{1,...,nω}

⎡

⎢⎢⎢⎢
⎣

Yik

ẋ(t) = f (x(t), u(t), vi)

x(tk) = sk
sk+1 = x(tk+1; tk, sk, u(·), vi)

0 ≤ c(x(t), u(t), vi)

⎤

⎥⎥⎥⎥
⎦

∀t ∈ [tk, tk+1] (47)

0 ≤ d
(
x(t), u(t)

) ∀t ∈ [tk, tk+1]
with k = 0, . . . ,N − 1, for which the convex hull formulation is, with piecewise
constant controls αi(t) = αik and t ∈ [tk, tk+1] for k = 0, . . . ,N − 1,

min
s,u,α

e(sN)

s.t. ẋi (t) = αikf
(
xi(t)/αik, u

i(t)/αik, v
i
)

xi(tk) = αiksk

sk+1 =
nω∑

i=1

xi
(
tk+1; tk, sk, ui(·)/αik, v

i
)

(48)

0 ≤ αikc
(
xi(t)/αik, u

i(t)/αik, v
i
)

0 ≤ d

(
nω∑

i=1

xi(t),

nω∑

i=1

ui(t)

)

nω∑

i=1

αik = 1, 0 ≤ xi(t) ≤ αikM
s, 0 ≤ ui(t) ≤ αikM

u.
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Note that for the purpose of the disjunctive term controlled by Yik , sk is a constant
when forming the perspective of the initial value constraint. Moreover, as the sk+1
enter linearly, we do not disaggregate them but instead aggregate the IVP results.
Next, we enforce path constraints 0 ≤ xi(·) ≤ αikM

s, c(·) and d(·) in the discretiza-
tion points t = tk only, as is customary in direct optimal control. The respective
constraints of (48) are replaced by

0 ≤ sk ≤ Ms (49a)

0 ≤ αikc
(
sk, u

i(tk)/αik, v
i
)

(49b)

0 ≤ d

(

sk,

nω∑

i=1

ui(tk)

)

. (49c)

We further substitute u by ūi (t) = ui(t)/αik . This poses no problem for αik = 0 due
to the bound ui(t) ≤ αikM

u
k , and yields lifted controls ūi (t) with 0 ≤ ūi (tk) ≤ Mu:

ẋi (t) = αikf
(
xi(t)/αik, ū

i(tk), v
i
)

(50a)

0 ≤ αikc
(
sk, ū

i(tk), v
i
)

(50b)

0 ≤ d

(

sk,

nω∑

i=1

αikū
i(tk)

)

(50c)

Since this formulation still poses numerical difficulties, we go one step further and
modify the problem by aggregating the states over all time steps and not only dur-
ing the shooting intervals. This idea comes from the observation that, except for the
ODE constraint, the xi(·) enter only via their convex combination. Hence, we re-
place xi(t) by αikx(t) and obtain

∑nω

i=1 xi(tk+1) =∑nω

i=1 αikx(tk+1) = x(tk+1) and
thus (51)

min
s,ū,α

e(sN)

s.t. ẋ(t) =
nω∑

i=1

αikf
(
x(t), ūi (t), vi

)

x(tk) = sk

sk+1 = x
(
tk+1; tk, sk, ū(·)) (51)

0 ≤ αikc
(
sk, ū

i(tk), v
i
)

0 ≤ d

(

sk,

nω∑

i=1

αikū
i(t)

)

nω∑

i=1

αik = 1, 0 ≤ sk ≤ Ms, 0 ≤ ūi (t) ≤ Mu
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Table 2 Comparison of constraint reformulations for αi = 1 ⇒ γi ≤ v ≤ Γi and their properties

Name Formulation Advantages Drawbacks

Inner convexification
Section 4.1,
Eqs. (25a)–(25b)

γ (ψ) ≤ v ≤ Γ (ψ)

γ (i) = γi , Γ (i) = Γi

Easy to
formulate very
fast to solve

Integer infeasible,
fractional
evaluations, very
weak relaxation

Outer convexification
Section 4.2,
Eqs. (27a)–(27b)

∑
i αiγi ≤ v ≤∑i αiΓi Evaluation in integer

points, fast to solve
Compensation effects

MPVC
Section 4.3,
Eqs. (29a)–(29b)

αiγi ≤ αiv ≤ αiΓi Guarantees integer
feasibility

CQs violated, needs
tailored methods

MPVC reformulations
Section 4.4,
Eqs. (31a)–(31b),
(36a)–(36b), (38a)–(38b)

Regularization,
smoothing,
combined

Use existing NLP
solvers

Sequence of
problems,
ill-conditioned,
ε-relaxed solution

GDP Big-M
Section 4.5,
Eqs. (43a)–(43b)

γi − M(1 − αi) ≤ v

≤ Γi +M(1 −αi)

CQs, fast Weak relaxation

GDP Convex Hull
Section 4.6, Eq. (51) with
Sect. 4.4,
Eqs. (31a)–(31b)

Disaggregated
controls constraints
as MPVC
(reformulation)

More degrees of
freedom

More variables, in
addition to the
drawbacks of MPVC
(reformulations)

is partial outer convexification of the ODE, uses the vanishing constraint formula-
tion for the constraints, but differs in the disaggregation of the controls ūi (·), which
gives the system more freedom to potentially find a better solution. Note that this
particular way of making use of a GDP formulation needs to be smoothened again,
e.g., using (38a)–(38b). For the application at hand this approach was superior to a
full lifting and the difficult numerical treatment of the constraints that are quadratic
in 1/αi(·).

Table 2 summarizes the reformulations for constraints directly depending on an
integer control that have been discussed in this section.

5 Numerical Results

In this section we illustrate above concepts by applying the different formulations
to the engine speed constraints of the heavy duty truck.

Reproducible Benchmark Implementations We aim to make the heavy-duty
truck cruise control problem available to the community as a MIOCP benchmark
problem. A complete description comprises scenario data for γ (s) and vlaw(s) that
characterizes the route to be traveled, with positioning information s assumed to be
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Algorithm 1: Homotopy method for problems presented in Sect. 4.4 and
Sect. 4.6

1 δ = 0.6, ε∗ = 105

2 while ε∗ > 1e − 3 do
3 ε = δ · ε∗
4 Solve the problem corresponding to ε starting from last solution σ ∗
5 if terminal point infeasible, or cannot restore feasibility of the initial point

then δ = 1.6 · δ else store solution as σ ∗, ε∗ = ε, δ = δ/1.2
6 end

available. It also comprises Mind,max := 3000 − (neng(s,μ(s))− 1250)2/100, Mfric,
Qfuel, neng,min, and neng,max as vehicle- and engine-specific nonlinear data sets. This
data as well as other parameter values, functions, and initial values is available on
the web page [55] and in the thesis [39]. Moreover, this web page includes AMPL
models for all reformulations we use throughout this article.

In the following calculations, we discretize all control problems using an implicit
Euler method with 40 equidistant steps on the horizon [0,1000].
Computational Setup All results were computed on a single core of an Intel Core
i7-2600 CPU with 3.40 GHz and 8 GB memory. IPOPT 3.10.0 and SNOPT 7.2-8
were run with the standard solver options, invoked from AMPL version 20120505.
For the homotopy methods, IPOPT warm start options were added. The homotopy
method starts with a big value for ε to find a solution for the control problem without
vanishing constraints. The last solution σ ∗ is stored together with the correspond-
ing ε∗. ε∗ is then adjusted by a factor δ to obtain a new ε as in Algorithm 1.

Note that also δ > 1 is allowed, since sometimes the last solution cannot be re-
stored even with the same ε due to numerical difficulties.

Discussion of Scenarios We present numerical results for two selected scenarios
in Fig. 2 and Fig. 3. The track’s height profile is shown on top, followed by eight
plots of the relaxed (local) optimal solutions identified by IPOPT for the formula-
tions listed in Table 2. From both scenarios, a clear picture emerges. Inner con-
vexification solutions suffer from significant infeasibility. Outer convexification is
computationally the fastest formulation, and yields reasonable approximations that
in parts suffer from compensatory effects. In contrast, the three vanishing constraint
formulations succeed in yielding feasible solutions for both scenarios. For scenario
2, these solutions are even integer feasible, while for scenario 1 there are at most two
control intervals with fractional gear choices. For the feasible vanishing constraint
solutions, we can also compare the resulting objective functions. Here, the simple
regularized formulations performs best, with the smoothing-regularization and the
plain vanishing constraint formulation tied in second place. The GDP Big-M for-
mulation does not yield feasible solutions, while our convex hull variant of GDP
performs slightly better than outer convexification also in terms of integer feasibil-
ity. It suffers from a high computational runtime, though. The combination of integer
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Fig. 2 Relaxed gear choices αj (reflected by the intensity of gray) and corresponding velocities
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Fig. 3 Relaxed gear choices αj (reflected by the intensity of gray) and corresponding velocities
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control functions, nonlinear constraints, and nonlinear differential equations allows
for a variety of different GDP implementations within a direct multiple shooting or
direct collocation framework and may allow for significant better performance.

6 Future Developments

From the computational results, some evidence can be read in favor of vanishing
constraint formulations. For the case of equality constraints depending on the inte-
ger control, complementarity constraints are obtained. In view of the computational
inefficiency and the remaining infeasibility of homotopy based approaches, it will
be desirable to treat MPCCs and MPVCs in their rigorous formulation of Sect. 4.3,
Eqs. (29a)–(29b) in the future. SLP-EQP methods, first described by [20], can do so
efficiently when the LP subproblem is replaced by the corresponding LPCC [17] or
LPVC. Moreover, they can be shown to identify B-stationary points of such prob-
lems [47]. The efficiency improvements one would gain from such a computational
setup would also make the application to closed-loop mixed-integer control [39]
viable.

It will be interesting to study all constraints in the context of a Branch&Cut
framework. Furthermore a comparison of global solutions would be helpful. As
generic global solvers like COUENNE cannot yet solve the benchmark, a specific
dynamic programming approach seems the best choice.

Overcoming the numerical problems associated with perspective functions and a
better exploitation of the numerical features of the resulting optimal control prob-
lems are yet other challenges.
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