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Abstract Steiner trees are constructed to connect a set of terminal nodes in a graph.
This basic version of the Steiner tree problem is idealized, but it can effectively
guide the search for successful approaches to many relevant variants, from both a
theoretical and a computational point of view. This article illustrates the theoretical
and algorithmic progress on Steiner tree type problems on two examples, the Steiner
connectivity and the Steiner tree packing problem.

1 Introduction

The Steiner tree problem (STP) is one of the showcases of combinatorial optimiza-
tion. It deals with finding a best connection of a number of vertices in a network and
can formally be stated as follows:

Given a weighted graph G = (V ,E, c) and a non-empty set of vertices T ⊆ V called ter-
minals, find an edge set S∗ such that (V (S∗), S∗) is a tree of minimal weight that spans T .

The STP is extensively covered in the literature, see [33, 35] for an introduction
and [32] for a state-of-the-art survey on models and solution techniques. Many
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papers claim real-world applications, especially in VLSI-design and wire-routing,
but also in telecommunication and traffic network design. Such applications usu-
ally refer to generalizations of the STP, which still require to connect a number of
terminals, but by more than one tree, by something that is not precisely a tree, a
constrained tree, etc. Such stipulations have always made Steiner trees a lively and
exciting research topic for theoreticians and practitioners alike. Theoretical progress
on the STP will typically serve as a blueprint to approach a particular Steiner tree
problem; this knowledge is supplemented by specific developments, which in turn
can advance the general theory. This is the Martin Grötschel way of optimization.

We illustrate (t)his approach in this article using two examples, the Steiner con-
nectivity problem (SCP) and the Steiner tree packing problem (STPP). The SCP, dis-
cussed in Sect. 2, generalizes the STP by connecting the terminals using a set of
paths instead of edges; this is motivated by line planning problems in public and
rail transit, see [3]. The Steiner connectivity problem serves as an example that of-
ten results can be transferred from the basic Steiner tree problem to a more general
setting, however, not all results and not always in a completely straightforward way.
The STPP, studied in Sect. 3, deals with connecting several sets of terminals by sev-
eral trees that cannot share edges; this models the internal wiring in a chip. The
Steiner tree packing problem is difficult because it integrates a connection and a
packing aspect; it is particularly well suited to illustrate the algorithmic progress of
the last 20 years. However, chips are much larger now and the challenge has also
grown. Steiner trees will therefore remain an exciting topic, at least until Martin
Grötschel’s 100th birthday—can there be a better message?

2 The Steiner Connectivity Problem

Transportation and networks have always been two of Martin Grötschel’s favorite
topics and it was therefore inevitable that at some point he would get involved in a
research project on designing the line system of a public transportation system. Iden-
tifying origin-destination demand points with terminals, and lines with hyperedges,
this leads directly to a hypergraph version of the Steiner tree problem, which we
denote the Steiner connectivity problem, see [4, 23]. How difficult is this? In such
a case, Martin Grötschel will always advocate a thorough investigation with a care-
ful look at details, which can or cannot make a big difference. In particular, when
it comes to graphs, digraphs, and hypergraphs, he becomes furious about “sloppy
notation” that doesn’t distinguish between uv, (u, v), and {u,v}, because results do
not automatically carry over between these cases. Martin Grötschel is correct, and
the ability to seamlessly shift his attention from little details to the grand picture is
without doubt one of his greatest strengths.

A formal description of the Steiner connectivity problem (SCP) is as follows. We
are given an undirected graph G = (V ,E), a set of terminal nodes T ⊆ V , and a
set of elementary paths P in G. The paths have nonnegative costs c ∈ R

P
≥0. The

problem is to find a set of paths P ′ ⊆ P of minimal cost
∑

p∈P ′ cp that connect the
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Fig. 1 Example of a Steiner connectivity problem. Left: A graph with four terminal nodes
(T = {a, d, e, f }) and six paths (P = {p1 = (ab, bc, cd),p2 = (ef,fg),p3 = (ae),p4 = (ef,

f c),p5 = (gd),p6 = (fg,gc, cd)}). Right: A feasible solution with three paths (P ′ = {p3,

p4,p6})

terminals, i.e., such that for each pair of distinct terminal nodes t1, t2 ∈ T there exists
a path q from t1 to t2 in G such that each edge of q is covered by at least one path of
P ′. We can assume w.l.o.g. that every edge is covered by a path, i.e., for every e ∈ E

there is a p ∈ P such that e ∈ p; in particular, G has no loops. Figure 1 gives an
example of a Steiner connectivity problem and a feasible solution. Identifying the
paths P with hyperedges in the hypergraph (V ,P ) leads to an equivalent statement
in terms of hypergraphs, in which the terminals have to be connected by a minimum
cost set of hyperedges.

The Steiner connectivity problem is a good example for an extension study. In-
deed, many results on Steiner trees can be generalized to the hypergraph setting, but
not all, and not all directly. We illustrate this for two cases, namely, the 2-terminal
case, and the “all-terminal case”, where all nodes are terminals. The latter general-
izes spanning trees to “spanning sets”, but, in contrast to the graphical case, is NP-
hard. The first deals with finding a shortest hyperpath; we will see that structural
properties of shortest paths carry over to this situation by proving the companion
theorem to Menger’s theorem for hypergraphs. A further polyhedral and computa-
tional investigation of the Steiner connectivity problem can be found in [4].

2.1 The All-Terminal Case and the Greedy Algorithm

The all-terminal case T = V of the Steiner tree problem is a simple minimum span-
ning tree problem. In the Steiner connectivity setting, however, this case is hard.
This is because of a strong relation between the SCP and the set covering problem
that will be discussed now.

Proposition 1 The Steiner connectivity problem is NP-hard for T = V , even for
unit costs.
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Fig. 2 Top: A Steiner connectivity instance corresponding to a set covering instance with
S = {a, b, c, d, e} and M = ({a, c}, {b, d}, {b, c}, {c, e}, {a, d, e}). Bottom: A minimal solution for
the Steiner connectivity problem corresponding to the minimal cover M′ = ({b, c}, {a, d, e})

Proof We reduce the set covering problem to the all-terminal Steiner connectivity
problem. In a set covering problem we are given a finite set S and a set M ⊆ 2S .
The problem is to find a subset M′ ⊆ M of minimal cardinality |M′| such that for
all s ∈ S there exists an M ∈M′ with s ∈ M .

Given a set covering instance, we define an all-terminal Steiner connectivity in-
stance in a graph G = (V ,E) as follows: The nodes are V = S ∪ {v} = T with v

being one extra node. Let us write V = {s0, s1, s2, . . .}, where v = s0. All nodes are
terminal nodes. We first assume that G is a complete graph and later remove all
edges that are not covered by paths after their construction. For each set M ∈ M
order the elements in M arbitrarily and construct a path beginning in node v and
passing through all nodes of M in the given order, compare with Fig. 2. The cost of
each such path is 1.

It is easy to see that a cover M′ with at most k elements exists if and only if a set
of paths exists that connects V with cost at most k, k ≥ 0. �

Corollary 1 SCP is strongly NP-hard for |T | = |V | − k, k constant.

Proof We add k isolated nodes to the graph G in the proof of Proposition 1. �

Proposition 2 There is no polynomial time α-approximation algorithm for SCP
with α = γ · log |V |, γ ≤ 1, unless P = NP .

Proof The transformation in Proposition 1 is approximation preserving, since there
exists a cost preserving bijection between the solutions of the set covering instance
and its corresponding Steiner connectivity instance. It has been shown that the set
covering problem is not approximable in the sense that there exists no polynomial
time approximation algorithm with approximation factor smaller than logarithmic
(in the number of nodes) unless P = NP , see Feige [10]. �
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The proof of Proposition 1 shows that the set covering problem can be trans-
formed to the all-terminal Steiner connectivity problem. On the other hand, the
all-terminal Steiner connectivity problem can be interpreted as a submodular set
covering problem. Recall that a function z : 2N → R from a set N = {1, . . . , n} to
the reals is submodular if the following inequalities hold:

z(A) + z(B) ≥ z(A ∪ B) + z(A ∩ B) ∀A,B ⊆ N.

The problem

min
S⊆N

{
∑

j∈S

cj : z(S) = z(N)

}

is called the submodular set covering problem if z is a nondecreasing submodular
function. We call this problem integer-valued if z : 2N → Z. Let N = P and define
for P ′ ⊆ P

z
(
P ′) = |V | − number of connected components in

(
V,E

(
P ′)),

where E(P ′) denotes the set of edges covered by the paths in P ′; z(P ′) can be
interpreted as the maximum number of edges in (V ,E(P ′)) containing no cycle.
Note that this definition corresponds to the rank function for an edge set in a graph-
ical matroid, i.e., z(P ′) = rank(E(P ′)), see, e.g., Oxley [31]. The function z is,
therefore, a nondecreasing, integer-valued, submodular set function; this follows
since E(P ′) ⊆ E(P ′′) for P ′ ⊆ P ′′. Note that z(P ′) = z(N) = z(P ) = |V | − 1
means that P ′ connects V . Hence, the Steiner connectivity problem can be seen as
an integer-valued submodular set covering problem. We have z(p) = |p| for p ∈ P
and z(∅) = 0. For such problems, there exists a greedy algorithm that works fairly
well:

Theorem 1 (Wolsey [37], 1982) There is a greedy heuristic that gives an H(k) =∑k
i=1

1
i

approximation guarantee for integer-valued submodular set covering prob-
lems, where k = maxj∈N z({j}) − z(∅).

Such a greedy algorithm therefore also gives an approximation guarantee of
H(k) = ∑k

i=1
1
i

for the all-terminal Steiner connectivity problem if all paths contain
at most k edges. This bound is asymptotically optimal, see Feige [10] and compare
with Proposition 2.

Wolsey’s result generalizes an earlier one of Chvátal [8] who showed that a
greedy algorithm gives an H(k) = ∑k

i=1
1
i

approximation guarantee for the set cov-
ering problem, where k is the largest column sum. Chvátal’s reasoning can be ex-
tended to an elementary proof involving combinatorial counting arguments that are
interesting in their own right. It goes as follows.

The proof analyzes the greedy heuristic in Algorithm 1. This procedure starts
in an initial state in which each single node forms a smallest possible (connected)
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Algorithm 1: Greedy heuristic for the SCP

Input : A connected graph G = (V ,E), a set of paths P with costs c ∈R
P
≥0.

Output: A set of paths P ′ ⊆ P that connects all nodes.

1 B0 := {{v}|v ∈ V }, P 0 := ∅, i := 1

2 while |Bi−1| > 1 do
3 p(i) := arg minp∈P { cp

N(p,i)
: N(p, i) > 0}

4 P ′ := P i := P i−1 ∪ {p(i)}
5 Bi := (Bi−1 \ {b1, . . . , bj }) ∪ {b1 ∪ . . . ∪ bj } with

{b1, . . . , bj } := {b ∈ Bi−1 : p(i) ∈ P ,p(i) ∩ b = ∅}
6 i := i + 1
7 end

component. The algorithm then chooses in each iteration a path that minimizes the
ratio of cost over the number of components that are connected by the path minus
one. These connected components are merged into a new connected component.
The algorithm terminates when everything has been merged into a single connected
component.

We use the following notation. Let Bi be the set of connected components and P i

the set of chosen paths after iteration i of Algorithm 1. Note that in each iteration
at least two connected components are merged, i.e., |Bi | decreases strictly with
increasing i. Let us further denote by

N(p, i) = z
(
P i−1 ∪ {p}) − z

(
P i−1)

= rank
(
E

(
P i−1 ∪ {p})) − rank

(
E

(
P i−1))

= no. of conn. comp. in
(
V,E

(
P i−1))

− no. of conn. comp. in
(
V,E

(
P i−1 ∪ {p}))

the component reduction number of path p and iteration i, i.e., if p were chosen
in iteration i, the total number of connected components would reduce by N(p, i).
Note that N(p, i) is nonincreasing for increasing i, i.e., N(p,1) ≥ . . . ≥ N(p,n)

where n is the last iteration of Algorithm 1. Let P ′ = {p(1), . . . , p(n)}. Algo-
rithm 1 then computes a solution of cost c(P ′) = ∑n

i=1 cp(i). Let, further, Popt =
{o1, . . . , om} be an optimal V -connecting set. Finally, we denote by H(k) = ∑k

i=1
1
i

the sum of the first k terms of the harmonic series.
In order to analyze the greedy algorithm, we derive a lemma concerning the sum

of the component reduction numbers of the optimal paths in iteration i ∈ {1, . . . , n}.
This number is always greater than or equal to the sum of the component reduction
numbers of the paths that are chosen by the greedy algorithm.
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Lemma 1 In Algorithm 1 holds

∑

o∈Popt

N(o, i) ≥
n∑

j=i

N
(
p(j), j

) ∀i = 1, . . . , n. (1)

Proof Consider the right hand side of inequality (1). We get

n∑

j=i

N
(
p(j), j

) = z
(
P i−1 ∪ {

p(i)
}) − z

(
P i−1) + z

(
P i ∪ {

p(i + 1)
}) − z

(
P i

)

+ . . . + z
(
P n−1 ∪ {

p(n)
}) − z

(
P n−1)

= z
(
P n

) − z
(
P i−1) = |V | − 1 − z

(
P i−1)

= no. of conn. comp. in
(
V,E

(
P i−1)) − 1.

The claim then follows since each V -connecting set has to connect all connected
components in (V ,E(P i−1)). �

Proposition 3 The greedy Algorithm 1 gives an H(k) approximation guarantee for
Steiner connectivity problems, where k = maxp∈P |p| is the maximum path length,
i.e.,

c
(
P ′) ≤

∑

p∈Popt

H
(|p|)cp ≤ H(k)c(Popt).

Proof The idea of the proof is as follows. In a first step (assignment), we assign the
path p(i) ∈ P ′ (added to P ′ in iteration i = 1, . . . , n in Algorithm 1) to a subset of
optimal paths O(i) ⊆ Popt. In a second step (bounding), we show that the cost of
path p(i) can be bounded from above by the cost of the paths in O(i). In a third
step (summation), we show that the cost of each path of the optimal solution Popt is
used at most H(k) times in the bounding step.

1. Step: Assignment. Consider Algorithm 2. It assigns to each path p(i), i =
1, . . . , n, of the greedy algorithm (passed in reverse order), a set O(i) ⊆ Popt
of optimal paths. The component reduction value N(p(i), i) for each path p(i),
i = 1, . . . , n, is distributed to the paths o ∈ O(i). To this purpose values υ(o, i)

are computed such that υ(o, i) > 0 ⇔ o ∈ O(i). More precisely, in each iteration
i a set O(i) ⊆ Popt is chosen such that

∑

o∈O(i)

υ(o, i) = N
(
p(i), i

) ∀i = 1, . . . , n. (2)

Here, the values υ(o, i), o ∈ O , i = 1, . . . , n, satisfy the following condition

n∑

j=i

υ(o, j) ≤ N(o, i) ∀o ∈ O(i), i = 1, . . . , n. (3)
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Algorithm 2: Assigning optimal paths to the paths of the greedy algorithm
υ(o, i) := 0,∀o ∈ Popt,∀i = 1, . . . , n

for i = n to 1 do
O(i) := ∅, z := 0
while z < N(p(i), i) do

Choose o ∈ Popt \ O(i) with N(o, i) − ∑n
j=i υ(o, j) > 0

υ(o, i) := min{N(o, i) − ∑n
j=i υ(o, j),N(p(i), i) − z}

z := z + υ(o, i)

O(i) := O(i) ∪ {o}
end

end

Lemma 1 ensures that these values υ(o, i), i = 1, . . . , n, exist.
2. Step: Bounding. Consider the path p(i), i ∈ {1, . . . , n}, in iteration i of Algo-

rithm 1 and the corresponding set O(i) = {o1, . . . , oh} defined in Algorithm 2.
Path p(i) achieves the minimum in the ratio test in Step 3 of Algorithm 1. Using
this fact and equation (2), the cost of p(i) can be bounded as follows

cp(i)

N(p(i),i)
≤ co1

N(o1,i)

...
cp(i)

N(p(i),i)
≤ co1

N(o1,i)

⎫
⎪⎪⎬

⎪⎪⎭

υ(o1, i) times

...
cp(i)

N(p(i),i)
≤ coh

N(oh,i)

...
cp(i)

N(p(i),i)
≤ coh

N(oh,i)

⎫
⎪⎪⎬

⎪⎪⎭

υ(oh, i) times

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

N
(
p(i), i

)
times.

Hence, we have cp(i) ≤ ∑
o∈O(i)

co

N(o,i)
υ(o, i).

3. Step: Summation. We finally consider how often the costs of a path o ∈ Popt
are used in the bounding step. We have N(p, i) ∈ {0,1,2, . . . , |p|}, ∀p ∈ P ,
i = 1, . . . , n, hence, the total cost for a path o ∈ O ⊆ P in the bounding step can
be rewritten as

n∑

i=1

co

N(o, i)
υ(o, i) = co

1
a1 + co

2
a2 + . . . + co

|o|a|o|. (4)

Here, the coefficients

ak =
n∑

i=1
N(o,i)=k

υ(o, i), k = 1, . . . , |o|,
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Fig. 3 Worst case Steiner connectivity example for the greedy algorithm

are sums of the values υ(o, i). Note that N(o, i) is increasing for decreasing i.
Let sk ∈ {1, . . . , n} be the smallest iteration index of Algorithm 1 such that
N(o, sk) = k, k = 1, . . . , |o| (for k = |o| we have sk = 1), if such an index exists.
Then equation (3) implies

ak ≤
k∑

j=1

aj ≤ k, k = 1, . . . , |o|. (5)

This follows immediately if ak = 0, i.e., if N(o, i) = k for all i = 1, . . . , n. Oth-
erwise

k∑

j=1

aj =
k∑

j=1

n∑

i=1
N(o,i)=j

υ(o, i) =
n∑

i=sk

υ(o, i) ≤ N(o, sk) = k.

The term co

k
decreases with increasing k and is maximal for k = 1, and (5) im-

plies a1 ≤ 1. This means that the sum (4) is maximal for a1 = 1. Repeating this
argument for a2, etc., the sum (4) is maximal if all coefficients ak , k = 1, . . . , |o|,
are 1. We then get

n∑

i=1

co

N(o, i)
υ(o, i) ≤ co

1
+ co

2
+ . . . + co

|o| ≤ coH
(|o|).

Putting everything together, we get

c
(
P ′) =

n∑

i=1

cp(i) ≤
n∑

i=1

∑

o∈O(i)

co

N(o, i)
υ(o, i)

υ(o,i)=0 if o/∈O(i)=
∑

o∈Popt

n∑

i=1

co

N(o, i)
υ(o, i) ≤

∑

o∈Popt

H
(|o|)co

≤ H(k)c(Popt). �

Figure 3 shows a worst-case example for the greedy heuristic. We have k paths pi

consisting of one edge with cost cpi
= 1

i
, i = 1, . . . , k, and one path consisting

of k edges with cost cpk+1 = 1 + ε, ε > 0. The greedy algorithm takes the paths
p1, . . . , pk in reverse order at a total cost of H(k). The optimal solution contains
only path pk+1 with a cost of 1 + ε.
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2.2 The 2-Terminal Case and the Companion Theorem to
Menger’s Theorem

The 2-terminal case of the Steiner connectivity problem is to find a shortest set of
paths connecting two given nodes. This is equivalent to finding a shortest hyperpath
in a hypergraph that arises by interpreting paths as hyperedges. This problem can
in turn be transformed into an ordinary shortest path problem in a graph replacing
each path by a clique with edge weights equal to the path weight. In other words,
shortest hyperpaths behave just like shortest paths. Turning to several st-paths, it
is also known that Menger’s theorem, stating that the maximum number of edge
disjoint st-paths equals the minimum number of edges in an st-cut, generalizes
to hypergraphs, see Frank [11]. In the graph case, a further result is known, the
companion theorem to Menger’s theorem, that is obtained by interchanging the roles
of st-paths and st-cuts, see Robacker [36]. Both results together establish paths and
cuts in graphs as a blocking pair, see Fulkerson [12]. We show in this section that
the companion to Menger’s theorem also holds for hypergraphs. More precisely, we
prove the following theorem.

Theorem 2 The minimum cardinality of an st-hyperpath is equal to the maximum
number of hyperedge-disjoint st-hypercuts.

This result does not follow from the above mentioned shortest path transforma-
tion. In fact, we show a stronger result, namely, that the inequality system of the cut
formulation to find a shortest st-hyperpath (or 2-terminal Steiner connecting set) is
totally dual integral. This extends the blocking property of paths and cuts to hyper-
graphs and establishes a complete structural similarity between paths and 2-terminal
Steiner connecting sets.

We use the following notation. Let H = (V ,E) be a connected undirected hyper-
graph with costs ce ∈ R for all hyperedges e ∈ E , and s and t be two different nodes
of H . Consider the following linear program

(SH) min
∑

e∈E

cexe

s.t.
∑

e∈δ(W)

xe ≥ 1 ∀s ∈ W ⊆ V \ {t} (6)

xe ≥ 0 ∀e ∈ E .

Here, we have a variable xe for each hyperedge e ∈ E . For W ⊆ V \ {t}, s ∈ W , an
st-hypercut δ(W) = {e ∈ E |e∩W = ∅, e∩ (V \W) = ∅} is the set of all hyperedges
having at least one node in each shore. The inequality (6) guarantees for each st-
hypercut that the sum of the x-values over all edges in this hypercut is at least 1. We
will see that for nonnegative costs the program (SH) always has an optimal solution
that is an st-hyperpath, i.e., a minimum cost set of hyperedges that connects s and t .
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Algorithm 3: Primal-dual shortest hyperpath algorithm

Input : A connected hypergraph H = (V ,E), costs c ∈ R
E
≥0, s, t ∈ V .

Output: A shortest st-hyperpath x ∈ {0,1}E .
1 d(s) := 0, d(v) := ∞ ∀v ∈ V \{s}, p(v) := s, e(v) := ∅ ∀v ∈ V

2 i := 1, v0 := s, W0 := ∅, yW := 0 ∀W ⊆ V \ {t}, s ∈ W , xe := 0 ∀e ∈ E
3 while t /∈ Wi−1 do
4 v := arg min{d(w)|w ∈ V \ Wi−1}
5 for all f ∈ E \ δ(Wi−1) with v ∈ f do
6 for all w ∈ f \ Wi−1 do
7 if d(w) > d(v) + cf then
8 d(w) := d(v) + cf , p(w) := v, e(w) := f

9 end
10 end
11 end
12 vi := v

13 yWi−1 := d(vi) − d(vi−1)

14 Wi := Wi−1 ∪ {vi}
15 i := i + 1
16 end
17 k := 1, uk := t

18 while uk = s do
19 xe(uk) := 1, uk+1 := p(uk), k := k + 1
20 end

For nonnegative costs, the primal-dual Algorithm 3 computes an optimal integral
solution for program (SH) with xe ≤ 1, ∀e ∈ E . It generalizes Dijkstra’s algorithm to
the hypergraph setting and has a better complexity than the “clique transformation
method” mentioned at the beginning of the section. Its main purpose, however, is to
show that the inequality system of program (SH) is totally dual integral (TDI).

Theorem 3 The inequality system of program (SH) is TDI.

Proof Program (SH) has the following dual

max
∑

W∈W

yW

s.t.
∑

W∈W :e∈δ(W)

yW ≤ ce ∀e ∈ E (7)

yW ≥ 0 ∀W ∈ W ,

where W = {W ⊆ V \{t}|s ∈ W }. If ce < 0 for an e ∈ E then (SH) has no finite solu-
tion since x is not bounded from above; with xe → ∞ we can improve the objective
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arbitrarily. This means that we can assume a nonnegative integer cost vector in the
following. We prove the claim for this case by showing that the primal-dual shortest
hyperpath Algorithm 3 constructs optimal integral solutions x for (SH) and y for (7)
with the same objective value.

The algorithm adds nodes vi to sets Wi−1 = {v1, . . . , vi−1} in the order of in-
creasing distance d(vi) from s = v0 (= v1), i.e., d(vi−1) ≤ d(vi) < ∞, i = 1, . . . , h,
with h being the last iteration of the while loop 3. This produces a sequence of nested
st-hypercuts δ(Wi), i = 1, . . . , h − 1.

We first show that y is a solution of program (7). Lines 2 and 13 imply y ≥ 0. In
fact, the variables yW can take positive values only for W ∈ {W1, . . . ,Wh−1}.

It remains to show that

∑

W∈W :e∈δ(W)

yW ≤ ce ∀e ∈ E . (8)

Let e ∈ E . If vi /∈ e for all i = 1, . . . , h − 1, then e /∈ δ(Wi), i = 1, . . . , h − 1, i.e.,∑
W∈W :e∈δ(W) yW = 0 ≤ ce. Otherwise, let 1 ≤ i < h be the minimal index smaller

than h such that vi ∈ e, i.e., e /∈ δ(Wj ) for 1 ≤ j < i < h but e ∈ δ(Wi), and let
i ≤ � ≤ h − 1 be the maximal index such that e ∈ δ(Wj ) for i ≤ j ≤ �. Then in-
equality (8) becomes

∑

W∈W :e∈δ(W)

yW =
�∑

j=i

yWj
=

�∑

j=i

d(vj+1) − d(vj )

= d(v�+1) − d(vi) ≤ ce.

For the last inequality we distinguish the cases v�+1 ∈ e and v�+1 /∈ e. The first case
follows since vi ∈ e. In the second case, � + 1 = h, i.e., v�+1 = vh = t and there
exists a node w ∈ e with w /∈ Wh−1. Since d(v�+1) = d(t) ≤ d(w) and w,vi ∈ e,
the second case follows analogously.

Now we show that x is a solution of program (SH). Due to the definition of x we
have x ≥ 0. We have to show that

∑

e∈δ(W)

xe ≥ 1 ∀s ∈ W ⊆ V \{t}. (9)

Consider the nodes t = u1, . . . , uk = s computed in the while loop starting in line 18
and an st-hypercut δ(W). Let i be the largest index with ui /∈ W and ui+1 ∈ W .
This index exists since u1 = t /∈ W and uk = s ∈ W . Then we have xe(ui) = 1,
e(ui) ∈ δ(W), and inequality (9) is satisfied.

The objective value of program (7) is

h−1∑

i=1

yWi
=

h−1∑

i=1

d(vi+1) − d(vi) = d(vh) − d(v1) = d(t) − d(s) = d(t).
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Fig. 4 Example for a Grötschel 65-index of 3: The minimum cardinality of a 65-hyperpath
is |{pgray,plightgray,pdotted}| = 3. This equals the maximum number of hyperedge-disjoint
65-hypercuts |{{pgray}, {pblack,pdashed,plightgray}, {pdotted}}| = 3

We, finally, get for the objective value of program (SH)

d(t) = d(u1) = d(u2) + ce(u1) = d(u3) + ce(u2) + ce(u1) = . . .

= d(uk) +
k∑

i=1

ce(ui) = 0 +
∑

e∈E

cexe,

i.e., x and y have the same objective value and are therefore optimal for (SH)
and (7). Since ce is integral, it follows that d(vi) is integral for i = 0, . . . , h. There-
fore, yWi

, i = 1, . . . , h−1, is also integral (line 13). This shows the claim for ce ≥ 0,
e ∈ E . �

Setting c ≡ 1 yields Theorem 2, a combinatorial result on hypergraph connec-
tivity which has, to the best of our knowledge, not been considered before. Denote
the maximum number of hyperedge-disjoint st-hypercuts the Grötschel st-index of
a hypergraph. We can then restate Theorem 2 as follows:

Theorem 4 (Grötschel st-index Theorem) The minimum cardinality of an st-
hyperpath is equal to the Grötschel st-index.

Figure 4 gives an illustration. As this result is derived from a careful analysis
of the hypergraph vs. the graph case, we feel that it fits very well to dedicate this
Theorem to Martin Grötschel on the occasion of his 65th birthday.

Interchanging the roles of st-hyperpaths and st-hypercuts yields Menger’s theo-
rem for hypergraphs, see [11].

Theorem 5 The minimum cardinality of an st-hypercut is equal to the maximum
number of hyperedge-disjoint st-hyperpaths.

Grötschel’s and Menger’s Theorems 4 and 5 are therefore companion theorems
indeed.
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3 The Steiner Tree Packing Problem

When Martin Grötschel came in 1989 to Alexander Martin and suggested the topic
of packing Steiner trees in graphs as a Ph.D. thesis, he became immediately very
curious about it. Martin Grötschel further supported it by saying that this is a topic
for the next decades. He claimed that very few is known when it comes to packing
problems in general, one reason among others is that it is open on how to integrate
and exploit dual information. And he seems to be right until today. We all know that
some progress has been made when it comes to classical packing problems such as
the set packing or the bin packing problem. But for the STPP, when the objects to
be packed have no fixed shape and are flexible in size and structure in dependence
on the other objects to be packed, the problem seems to be harder by orders of mag-
nitudes. None of the successful techniques like preprocessing or heuristics for the
single Steiner tree problem work anymore, and new ideas must be developed. With
very few exceptions, cf. [14–19], the STPP is still open for wonderful discoveries,
supporting once more the great ability of Martin Grötschel to identify future trends
and challenging problems.

The Steiner tree packing problem (STPP) looks at the following situation. In-
stead of having one set of terminals, we have N non-empty disjoint sets T1, . . . , TN ,
called Nets, that have to be “packed” into the graph simultaneously, i.e., the result-
ing edge sets S1, . . . , SN have to be pairwise disjoint. In these applications, G is
usually some sort of 3D grid graph. [19, 20, 27] give detailed explanations of the
modeling requirements in VLSI-design. From a theoretical point of view, much less
is known, see [7, 26].

Three routing models for 2D or 3D grid graphs are of particular interest:

Channel routing: Here, a complete rectangular grid graph is used. The terminals of
the nets are exclusively located on two opposing borders. The size of the routing
area is not fixed in advance. All nets have only two terminals, i.e., |Ti | = 2.

Switchbox routing: We are given a complete rectangular grid graph. The terminals
may be located on all four sides of the graph. Thus, the size of the routing area
is fixed.

General routing: In this case the grid graph may contain holes or have a non-
rectangular shape. The size of the routing area is fixed and the terminals may
be located arbitrarily.

The intersection of the nets is an important issue in Steiner tree packing. Again
three different models are possible:

Manhattan (Fig. 5(a)) Consider some (planar) grid graph. The nets must be routed
in an edge disjoint fashion with the additional restriction that nets that meet at
some node are not allowed to bend at this node, i.e., so-called Knock-knees are
not allowed. This restriction guarantees that the resulting routing can be laid out
on two layers at the possible expense of causing long detours.

Knock-knee (Fig. 5(b)) Again, some (planar) grid graph is given and the task is to
find an edge disjoint routing of the nets. In this model Knock-knees are possible.
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Fig. 5 STPP intersection models. a Manhattan model. b Knock-knee model. c Node disjoint model

Very frequently, the wiring length of a solution is smaller than in the Manhattan
model. The main drawback is that the assignment to layers is neglected.

Node disjoint (Fig. 5(c)) The nets have to be routed in a node disjoint fashion. Since
no crossing of nets is possible in a planar grid graph, this requires a multi-layer
model, i.e., a 3D grid graph.

While channel routing usually involves only a single layer, switchbox and gen-
eral routing problems are typically multi-layer problems. Using the Manhattan and
Knock-knee intersection is a way to reduce the problems to a single layer. Accord-
ingly, the multi-layer models typically use the node disjoint intersection. While the
multi-layer model is well suited to reflect reality, the resulting graphs become quite
large. We consider two possibilities to model multiple layers; a third possibility is
to use a single-layer model with edge capacities greater than one:

k-crossed layers (Fig. 6(a)) A k-dimensional grid graph (i.e., k copies of a grid
graph are stacked on top of each other and corresponding nodes are connected
by perpendicular lines, so-called vias) is given, where k denotes the number of
layers. This is called the k-layer model in [27].

k-aligned layers (Fig. 6(b)) This model is similar to the crossed-layer model, but
in each layer there are only connections in one direction, either east-to-west or
north-to-south. [27] calls this the directional multi-layer model. [26] indicate
that for k = 2 this model resembles the technology used in VLSI-wiring best. It
is mentioned in [2] that current technology can use a much higher number of
layers (20 and more).

Note that for switchbox routing there is a one-to-one mapping between feasible so-
lutions for the Manhattan one-layer model (MOL) and the node disjoint two-aligned-
layer model (TAL), assuming that there are never two terminals on top of each other,
i.e., connected by a via.

For the general routing model, this mapping might not be possible. If a terminal
is within the grid, there is no easy way to decide the correct layer for the terminal in
the two-layer model.

Unfortunately, in the seven “classic” instances given by [6, 9, 29] two terminals
are connected to a single corner in several cases. This stems from the use of connec-
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Fig. 6 STPP modeling taxonomy. a Multi-crossed layers. b Multi-aligned layers. c With connec-
tors

tors, i.e., the terminal is outside the grid and connected to it by a dedicated edge. In
the multi-layer models there has to be an edge from the terminal to all permissible
layers (Fig. 6(c)).

The Knock-knee one-layer model can also be seen as an attempt to approximate
the node disjoint two-crossed-layer model. But mapping between these two mod-
els is not as easy. [5] have designed an algorithm that guarantees that any solution
in the Knock-knee one-layer model can be routed in a node disjoint four-crossed-
layer model, but deciding whether three layers are enough has been shown to be
NP-complete by [28].

For our computational investigations we will use a multicommodity flow formu-
lation [25] that was proposed by [38] for the STP. Given a weighted bidirectional
grid digraph G = (V ,A, c) and sets T1, . . . , TN , N > 0, |Tn| > 0 of terminals, we
arbitrarily choose a root rn ∈ Tn for each n ∈ N := {1, . . . ,N}. Let R = {rn|n ∈ N }
be the set of all roots and T = ⋃

n∈N Tn be the union of all terminals. We intro-
duce binary variables xn

ij for all n ∈ N and (i, j) ∈ A, where xn
ij = 1 if and only if

arc (i, j) ∈ Sn. Additionally, we introduce binary variables yt
ij , for all t ∈ T \R. For

all i ∈ V , we define δ+
i := {(i, j) ∈ A} and δ−

i := {(j, i) ∈ A}. For all t ∈ Tn, n ∈N ,
we define σ(t) := n. The following formulation models all routing choices for any
number of layers, crossed and aligned, with Knock-knee intersection:

min
∑

n∈N

∑

(i,j)∈A

cn
ij x

n
ij (10)

∑

(i,j)∈δ−
j

yt
ij −

∑

(j,k)∈δ+
j

yt
jk

=
⎧
⎨

⎩

1 if j = t

−1 if j = rσ(t)

0 otherwise

⎫
⎬

⎭
for all j ∈ V, t ∈ T \ R (11)

0 ≤ yt
ij ≤ x

σ(t)
ij for all (i, j) ∈ A, t ∈ T \ R (12)

∑

n∈N
(xn

ij + xn
ji) ≤ 1 for all (i, j) ∈ A (13)
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Fig. 7 LP relaxation solution
violates (17)

xn
ij ∈ {0,1} for all n ∈N , (i, j) ∈ A (14)

yt
ij ∈ {0,1} for all t ∈ T \ R, (i, j) ∈ A (15)

To use node disjoint intersection we have to add:

∑

n∈N

∑

(i,j)∈δ−
j

xn
ij ≤

{
0 if j ∈ R

1 otherwise
for all j ∈ V. (16)

3.1 Valid Inequalities

For the node disjoint crossed-layer model there is a class of simple but very effec-
tive cuts, which are introduced in [21]. Consider a STPP problem of two nets, each
has two terminals as in Fig. 7. The flows shown in the picture correspond to an op-
timal solution of the LP relaxation. However, it can be seen that if none of the two
flows (r1, t1) and (r2, t2) leaves the upper layer, they have to cross each other, i.e.,
the node disjoint intersection condition is violated. In the following we construct
cuts, which cut off the fractional solution in Fig. 7.

A pair (s1, t1), (s2, t2) ∈ T × (T \R) are called crossed if these four terminals lie
on the boundary and in the same layer, σ(s1) = σ(t1), σ(s2) = σ(t2), σ(s1) = σ(s2),
and, moreover, the line segments (s1, t1) and (s2, t2) cross each other. Let C be the
set of all crossing pairs and for each node v we denote by vz the layer number of
node v. Then the following inequality is valid for (10):

∑

ij∈A

iz=(r1)z,jz =iz

y
t1
ij + y

t2
ij ≥ 1, ∀(

(r1, t1), (r2, t2)
) ∈ C(R), (17)

where C(R) := {((s1, t1), (s2, t2)) ∈ C|s1, s2 ∈ R}. Equation (17) means that at least
one of the two flows (r1, t1) and (r2, t2) has to leave the layer containing these
terminals.

A triple (r1, t1), (r2, t2), (r3, t3) ∈ R × (T \R) is called a crossing triple if each
two of them are a crossing pair in C(R). Let CT be the set of all crossing triples
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then the following inequality is valid for (10):
∑

ij∈A

iz=(r1)z,jz =iz

y
t1
ij + y

t2
ij + y

t3
ij ≥ 2, ∀(

(r1, t1), (r2, t2), (r3, t3)
) ∈ CT . (18)

This is a direct implication from summing up the three corresponding inequalities
of type (17) taking into account that the variables have to be integral.

Based on the same principle, we can derive more valid cuts involving both vari-
ables x and y. Again, we assume that all terminals lie on the boundary. Let u and v

be two terminals in one layer of a net n and the root of this net does not belong to
the layer containing u and v. If there exist a root r and a terminal t of another net
such that (u, v) and (r, t) cross each other, i.e., ((u, v), (r, t)) ∈ C, then the following
inequality is valid for (10)

∑

ij∈A

jz=tz,jz =iz

yt
ij + xn

ij ≥ 2. (19)

The following valid cut is similar to (19) but two terminal pairs and three ter-
minals of a third net are involved. We consider an arbitrary net n with at least
three terminals and four terminals r1, t1, r2 and t2 of two other nets n1 and n2,
σ(r1) = σ(t1) = n1 = n, σ(r2) = σ(t2) = n2 = n, n1 = n2, with r1, r2 ∈ R. If there
exist three terminals u, v and w of net n lying in the same layer such that

∀{s, t} ⊂ {u,v,w}, s = t : ((s, t), (r1, t1)
) ∈ C or

(
(s, t), (r2, t2)

) ∈ C, (20)

then the following inequality is valid:
∑

ij∈A

jz=(t1)z,jz =iz

y
t1
ij + y

t2
ij + xn

ij ≥ 2. (21)

Since all terminals lie on the boundary, each line segment between two terminals,
which crosses an edge of a “triangle” of three terminals (including the case that they
lie in a line), crosses exactly two edges of this triangle. Therefore, condition (20)
just ensures that the line segments (r1, t1) and (r2, t2) cross the triangle (u, v,w)

in two different pairs of edges. Inequality (21) means that the total number of vias
used by the flows (r1, t1) and (r2, t2) and the net n to enter the layer containing these
terminals is at least two. The proof can be found in [21]. Moreover, one can prove
that, if u, v and w satisfy the above condition and u, v and w do not lie in the same
layer as the root of net n then the following inequality is valid:

∑

ij∈A

jz=(t1)z,jz =iz

y
t1
ij + y

t2
ij + xn

ij ≥ 3. (22)

The proof can also be found in [21].
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The next type of valid inequality does not require any of the terminals to be the
root of the net they belong to. For arbitrary three terminals u1, v1 and w1 of a net
n1, and arbitrary three terminals u2, v2 and w2 of a net n2 = n1, if

∀{s1, t1} ⊂ {u1, v1,w1},∃{s2, t2} ⊂ {u2, v2,w2} : ((s1, t1), (s2, t2)
) ∈ C, (23)

and

∀{s2, t2} ⊂ {u2, v2,w2},∃{s1, t1} ⊂ {u1, v1,w1} : ((s1, t1), (s2, t2)
) ∈ C, (24)

i.e., the two triangles (u1, v1,w1) and (u2, v2,w2) cross each other, then the follow-
ing inequality is valid for (10):

∑

ij∈A

jz=(u1)z,jz =iz

x
n1
ij + x

n2
ij ≥ 2 + δ1 + δ2, (25)

where δi is 1 if the root of net ni does not lie in the same layer as ui , vi and wi , and
0 otherwise.

3.2 Heuristics

As we will see in the following the above described model provides very strong
lower bounds in practice. Nevertheless, current IP solvers often not only fail to solve
the IP model to optimality, it is even very time-consuming to find a feasible solution.

However, based on the special structure of the grid graph we can find optimal
solutions for all of our considered instances in reasonable time. The following is an
extension to [21] and describes the heuristics we developed to improve the solution
of the STPP. The heuristics presented in this section are based on solving the IP of
relaxed problems. There are two kinds of relaxed problems. The first one is also the
STPP problem using the multicommodity flow formulation (10) but on a subgraph
of the original grid graph. The second one is the original multicommodity flow IP
where some variables are fixed based on a given feasible solution of the original
problem. In the following we call these two kinds of heuristics phase 1 and phase 2,
respectively. The solving process of the STPP starts with phase 1 and then executes
phase 2. The two phases of the heuristics are presented in detail below.

3.2.1 Heuristics Phase 1

Computational results show that feasible solutions of the multi-aligned layers can be
found easily if they exist. This motivates us to consider a heuristic process, where
instead of starting solving the original multi-crossed layers model, we solve sev-
eral STP problems corresponding to some sparser underlying grids, e.g., the multi-
aligned layers grid. After each step we obtain a feasible solution. Then we add some
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Algorithm 4: Heuristics phase 1

Step 1: Solve the STPP on the multi-aligned layers grid.

Step 2: Add all missing edges in the set S(l2, r2, b2, t2) to the grid graph in
Step 1. Find a good solution of the STPP on this new grid graph using the
solution of Step 1 as starting solution.

Step 3: Add all missing edges in the set S(l3, r3, b3, t3) to the grid graph in
Step 2. Find a good solution of the STPP on this new grid graph using the
solution of Step 2 as starting solution.

Fig. 8 STPP heuristics phase 1—underlying grid graphs. a Step 1. b Step 2. c Step 3

edges to the grid and resolve the STP problem which corresponds to the new grid,
using the solution from the previous step as a start value for the optimization prob-
lem. The question is which edges should be added in each step. There is no optimal
strategy at the moment. Algorithm 4 describes our implemented algorithm, where
S(l, r, b, t) is the set of all edges lying outside [l,K − r] × [b,L − t], i.e.,

S(k, l) := {
(i, j) ∈ E

∣
∣ (ix, iy), (jx, jy) /∈ [l,K − r] × [b,L − t]},

with (ix, iy) is the coordinate of the vertex i in the layer which it belongs to, [0,K]×
[0,L] is the given grid, and E is the set of edges in the multi-crossed layer model.

Figure 8 demonstrates the grid graphs in the three steps, where the added edges
are dotted.

It is still unknown what is the best way to choose the parameters (l2, r2, b2, t2)

and (l3, r3, b3, t3). For the instances in Sect. 3.3 we choose l2 = r2 = b2 = t2 = 3
for pedabox-2 and l2 = r2 = b2 = t2 = 5 for the other instances. In step 3, to obtain
the parameters l3, r3, b3, t3, we increase the corresponding parameters l2, r2, b2, t2

from step 2 by at most 2. For example, we choose l3 = r3 = 7 and b3 = t3 = 6 for
the instances difficult-2 and more-diff-2.
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Fig. 9 STPP heuristics phase 2—fixing regions

3.2.2 Heuristics Phase 2

Having a feasible solution from heuristics phase 1 we can start the fixing heuristics.
Figure 9 shows an example for the procedure of these heuristics. This figure reads
from left to right and from top to bottom. Let us start with the picture on top left.
We fix the variables corresponding to the edges in the gray region to the values
of the given feasible solution for those variables. Then we solve the IP (10) with
those fixings and obtain a possibly better feasible solution. With the newly obtained
feasible solution we go to the second step described by the second picture in the
top of Fig. 9, where again the fixing area is colored by gray, and so on. The given
feasible solution from the beginning is improved step by step, where each step uses
the best feasible solution obtained in the previous step for fixing. At the moment
there is no common rule for the fixing region and the number of steps. Algorithm 5
presents the pseudo code of phase 2 in our implemented code. We execute four steps
with the sequence of the fixing regions as the four pictures either on the left side or
on the right side of Fig. 9, respectively, as follows. Let K ×L be the size of the grid.
Without loss of generality, we assume that K ≤ L. Otherwise we have to modify the
following definition accordingly by switching the role of K and L. The four fixing
regions are defined as

Fl :=
{

(i, j) ∈ E

∣
∣
∣
∣ iy, jy ≤

⌊
K

pl

⌋}

, l = 1,3

Fl :=
{

(i, j) ∈ E

∣
∣
∣
∣ iy, jy ≥ K −

⌊
K

pl

⌋}

, l = 2,4,

where 3 ≤ p1,p2 ≤ 4 and 5 ≤ p3,p4 ≤ 6 are chosen depending on instances. For
our considered instances, this procedure gives us already optimal solutions. How-
ever, for larger instances, we may need to execute more steps and/or use more types
of fixing regions, e.g., all eight steps in Fig. 9.
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Algorithm 5: Heuristics phase 2

for i = 1 to 4 do
Choose Fi as the fixing region and the solution obtained from phase 1 in
the case i = 1 and from the previous loop i − 1 otherwise as the solution
used for fixing. Find a good solution of the corresponding relaxed problem.

end

Table 1 Results for the Knock-knee-one-layer model

Name Size N |T | B&B Nodes Time [s] LP relaxation Arcs

aug-dense-1 16 × 18 19 59 63 1,649 466.5 469

dense-1 15 × 17 19 59 150 1,199 438.0 441

difficult-1 23 × 15 24 66 1 17 464.0 464

mod-dense-1 16 × 17 19 59 1 29 452.0 452

more-diff-1 22 × 15 24 65 1 12 452.0 452

pedabox-1 15 × 16 22 56 1 7 331.0 331

termintens-1 23 × 16 24 77 1 96 535.0 536

3.3 Computational Results

In this section, we present computational results obtained by generating the inte-
ger program resulting from the directed multicommodity flow formulation with
ZIMPL [24] and then solving it with CPLEX 12.3 for the STPP instances taken
from [30]. All computations are done on a 48 GB RAM dual quad-core Intel Xeon
X5672 at 3.20 GHz with TurboBoost active and Hyperthreading deactivated. Since
the crossed-layer model proved to be much harder to solve, we used all eight cores,
while just one core was utilized for the other models. Still, for the crossed-layer
models we will use minutes as the unit for reporting time, in contrast to seconds
for the other models. As we had expected from earlier experiments, the MCF-Cuts
[1, 34] introduced by CPLEX 12 had no impact on solving the instances. The rea-
son is that the models used in this paper are not capacitated. If not noted otherwise,
CPLEX was used in default mode with integer optimality gap tolerance set to 0.0.

3.3.1 Results for the Knock-Knee One-Layer Model

Table 1 shows the results for the Knock-knee one-layer model. B&B Nodes de-
notes the number of Branch-and-Bound nodes including the root node evaluated by
CPLEX. The column labeled Time shows the consumed CPU time in seconds. LP

relaxation lists the objective function value of the initial LP relaxation of the root
node before any cuts applied by CPLEX. Finally, arcs is the total number of arcs
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used in the optimal solution which for one-layer models is equivalent to the optimal
objective value.

As we can see from the table, the LP relaxation of the flow model is rather strong.
This is in line with other reported results including [22, 30]. Since for difficult-
1, mod-dense-1, more-diff-1, and pedabox-1 the relaxation already provides the
optimal value, it is possible to solve these instances without any branching. For
termintens-1 the relaxation is one below the optimum, but CPLEX is able to push
the lower bound up by generating Gomory rounding and 0–1/2-Chvátal-Gomory
cuts. The number of B&B nodes and therefore the computing time depends very
much on the branching decisions taken. During our experiments the solutions were
always found in the tree and not by heuristics. By using improved settings, like
switching off the heuristics and just trying to move the best bound, the number of
nodes needed for aug-dense-1 and dense-1 can be at least halved.

3.3.2 Results for the Node Disjoint Multi-aligned-layer Model

Table 2 shows results for the node disjoint multi-aligned-layer model. Since this is a
multi-layer model we have to assign costs to the vias. These are given in the column
labeled Via-cost. The column labeled LP relaxation gives the objective value of the
initial LP relaxation. The next three columns list the numbers of vias, “regular” arcs,
and vias+arcs in the optimal solution.

In case of unit via costs, the objective value of the LP relaxation is equal to the ob-
jective value of the optimal integer solution for all instances except for more-diff-2.
The value of the LP relaxation for more-diff-2 is 518.6 (optimal 522). This is weaker
than the value reported in [19], which indicates that some of the strengthening cuts
used by [19] to tighten the undirected partitioning formulation can also be used to
tighten the directed flow formulation. On the other hand, for pedabox-2 the relax-
ation is stronger than reported. The instances where the LP relaxation does not reach
the optimum are different ones from the Knock-knee-one-layer model.

Via Minimization Traditionally via minimization is viewed as a separate prob-
lem after the routing has taken place [13]. Since we work with multi-layer mod-
els, via minimization is part of the routing. As can be seen in Table 2 we tried the
“classical” instances with three different cost settings for the vias. First unit costs
were used to minimize the total number of arcs, including vias. Next, the number
of vias was minimized by setting the cost to 1,000, which dominates the total cost
of all “regular” arcs, ensuring that a global minimum is reached. Finally, the cost
of each via was set to 0.001, effectively minimizing the number of “regular” arcs.
This results in solutions that have the same number of arcs as reported in [19] for
the Manhattan one-layer model.

Interestingly, the number of vias is constant for aug-dense-2, pedabox-2, modi-
fieddense-3, and dense-3. For the other instances, a minimization of the number of
vias always results in detours, i.e., a higher total number of arcs used.
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Table 3 STPP new instances

Name Size N |T | Variables Constrains Non-zeros

Node disjoint two-aligned-layer model

sb80-80 81 × 81 60 158 6,168,636 5,150,535 19,965,324

sb99-99 100 × 100 70 183 10,906,800 9,052,440 35,250,720

Fig. 10 sb80-80

New Instances All the instances presented so far are relatively old and can be
solved in less than 12 minutes with CPLEX. To get an outlook on how far our ap-
proach will take us, we tried some new instances, see Table 3. sb80-80 and sb99-99
are randomly generated switchbox instances. sb80-80 is about 35 times the size of
the largest “classical” instance, and the resulting IP has more than six million vari-
ables and almost twenty million non-zero entries in the constraint matrix. sb99-99
is again about 2 times larger than sb80-80. As discussed in [21] and [25], for sev-
eral instances it was faster to solve the LP relaxations from scratch with the barrier
algorithm than to reoptimize with the dual simplex algorithm. This setting is used
for the new instances with a newer version of CPLEX, namely, CPLEX 12.4.

For sb80-80 the value of the LP relaxation turned out to be equal to the value of
the integer optimal solution, namely 6533, and only one branch and bound node is
needed. CPLEX takes 94,926 seconds to solve the root relaxation and finishes after
94,232 seconds, i.e., 26.18 hours, with the optimal solution, which has 226 vias and
6307 normal arcs, see Fig. 10.

The time for solving the root relaxation of sb99-99 is 356,664 seconds, i.e., 4.13
days. After more than 2 weeks CPLEX cannot either find a feasible solution or prove
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that the problem is infeasible. Gurobi 5.0 also experiences the same difficulty with
this instance.

These computations show the bottleneck of our approach. The resulting IPs are
large and solving their LP relaxations is already very hard. Any improvement in
solving LP will turn out directly to an improvement in our approach.

3.3.3 Results for the Node Disjoint Multi-crossed-layer Model

Finally, we will have a look at the crossed-layer models. For the instances listed in
Table 4, except for dense-3 and mod-dense-3, the heuristics presented in Sect. 3.2
was used to provide CPLEX with a starting solution. For dense-3 and mod-dense-3
CPLEX quickly found solutions. Therefore, employing the heuristics provided no
advantage. For all instances the provided solution turned out to be already optimal.
The time needed to compute these initial solution is given under Heur.

To solve the instances we used 8 threads in opportunistic mode, the total times
needed including the heuristics is reported in column Total as minutes of wall clock
time. The optimization emphasis of CPLEX was set to “optimality”, cut generation
was set “aggressive” for Gomory-, 0–1/2-, and cover-cuts, all other cuts were set to
“moderate”. Furthermore, we explicitly added cuts (17)–(25) presented in Sect. 3.1
to the User-Cut pool of CPLEX.

While it is possible to find reasonable solutions with our heuristics, proving op-
timality is still a hard task. The table is ordered by an increasing difference between
the LP relaxation and the optimum value. As can be seen this is reflected quite well
in the number of B&B nodes needed to prove optimality. While the cuts we pre-
sented in this paper proved quite helpful, the main reason for the long running time
is that solving the node LPs is very time consuming. For example, the number of
B&B nodes that CPLEX needs to solve the instance termintens-2 is merely 3,453.
However, it takes 51.7 hours to solve the problem and 43.3 hours for the first 2,000
nodes.

Figure 11 shows the primal and dual bounds during the solving process of the
instance pedabox-2 with CPLEX using default setting and CPLEX using our heuris-
tics, valid cuts, and variables elimination. Clearly, our approach improves both pri-
mal and dual bounds. For pedabox-2 with unit via-cost, our heuristics found an
optimal solution after 17.8 minutes, while CPLEX alone could not find the optimal
value after more than 80 hours. For this problem our approach (using crossing cuts
and special heuristics) gives a dual bound of value 358.2311 directly after the root
node, while default CPLEX reaches this value only after 46.1 hours and 158,507
nodes. We stop solving with default CPLEX after 83.33 hours and 300,516 nodes,
and obtain a dual bound of 358.7628. This value is already reached by our approach
after 49.6 minutes and 471 nodes.
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Fig. 11 pedabox-2 with unit
via cost—primal and dual
bounds

4 Conclusion and Outlook

The Steiner connectivity and the Steiner tree packing problem are just two exam-
ples of challenging and important questions to find the best possible connection of a
set of terminals in a graph. For such problems chances are good that we can derive
theoretical insights and come up with quite powerful solution algorithms, guided by
our knowledge of the basic case. We are admittedly still working on individual prob-
lem variants, far from anything like a universal solution engine, and, in fact, going
one step further into the direction of industrial models, e.g., in line planning or chip
design, immediately makes things much more difficult, and even more, since prob-
lem sizes of real-world problems are growing fast. But such is life, would Martin
Grötschel say. And he could still come, 20 years after Alexander Martin finished his
thesis, into the office of one of his Ph.D. students and talk enthusiastically about an
interesting and open Steiner problem.
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