

Facets of Combinatorial Optimization

Michael Jünger � Gerhard Reinelt
Editors

Facets of
Combinatorial
Optimization

Festschrift for
Martin Grötschel

Editors
Michael Jünger
Dept. of Computer Science
University of Cologne
Cologne, Germany

Gerhard Reinelt
Dept. of Computer Science
University of Heidelberg
Heidelberg, Germany

ISBN 978-3-642-38188-1 ISBN 978-3-642-38189-8 (eBook)
DOI 10.1007/978-3-642-38189-8
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013942544

Mathematics Subject Classification (2010): 90, 90-06, 90C

© Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of pub-
lication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any
errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect
to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

http://www.springer.com
http://www.springer.com/mycopy

We dedicate this book to Martin Grötschel
on the occasion of his 65th birthday.

Preface

We received our doctoral degrees in the years 1983 and 1984; we are the oldest doc-
toral descendants of Martin Grötschel who celebrated his 65th birthday on Septem-
ber 10, 2013.

In the summer of 2011, with this happy occasion still more than two years in the
future, we wondered what would be a nice birthday present for Martin. We knew
that we were just the first two in a long list of doctoral descendants, but little did we
know then how many there were. (Now we do, see Part III.)

We came up with the idea of organizing a celebration with his doctoral descen-
dants and his closest scientific friends. We started serious work on the project dur-
ing the Oberwolfach Workshop on Combinatorial Optimization in November 2011,
where we also decided to organize a colloquium in his honor at the University of
Cologne on September 13, 2013, and to edit this book that will be presented to him
and all participants during the colloquium.

Many of Martin Grötschel’s doctoral descendants still work in research, in and
outside academia. When we issued a call for contributions on November 24, 2011,
including the sentence “We aim at the highest quality, so please dedicate your best
work in honor of Martin Grötschel!”, we had an overwhelmingly positive response.
The result is Part IV, the core of this book. It is preceded by a personal tribute by
the editors to our mentor (Part I), a contribution by a very special “predecessor”
(Part II), and the doctoral descendant tree 1983–2012 (Part III).

Michael Jünger
Gerhard Reinelt

Cologne, Germany
Heidelberg, Germany
September 2013

vii

Acknowledgements

Preparing this book and organizing the Festkolloquium have been intertwined tasks that
turned out to be much more demanding than we had anticipated when we sketched the ideas
about two years ago. Many people helped us. We would like to express our gratitude to

• Iris Grötschel for advice, photos, and for keeping the secret,
• Bernhard Korte for valuable information on the early days at the Institut für Ökonometrie

und Operations Research of the University of Bonn,
• Dirkje Keiper and Simona Schöneweiß for exploring the archives of the Forschungsinstitut

für Diskrete Mathematik at the University of Bonn for us,
• Teodora Ungureanu for helping us refresh our memories of the days at the Mathematics

Department of the University of Augsburg,
• Uwe and Renate Zimmermann for turning scans of blurred photographs into reasonable

pictures,
• Bill Pulleyblank for reading a preliminary version of the first chapter and providing very

helpful feedback,
• Manfred Padberg for continuous “grandparental” advice before and during the preparation

of this book and his immediate agreement to contribute his latest article to this book,
• Sven Mallach for his help in typesetting Manfred Padberg’s contribution,
• the doctoral descendants who helped getting the doctoral descendant tree right,
• Thomas Möllmann who did not hesitate when we approached him with the demanding task

of turning a mathematician’s tree into a real tree,
• the authors of Part II and Part IV, who patiently dealt with our many requests and strict

deadlines,
• the anonymous referees who supported us with their expert knowledge and gave valuable

advice to the authors,
• Martin Peters of Springer Verlag who supported this book project from the very beginning,
• Ruth Allewelt of Springer Verlag who accompanied us all the way from the early stages to

the final book,
• Frank Holzwarth of Springer Verlag who provided “quick LATEX hacks” whenever needed

in the technical editing,
• Göntje Teuchert for coordinating the organization of the Festkolloquium, and
• Martin Gronemann, Thomas Lange, Sven Mallach, Daniel Schmidt, and Christiane Spisla

for proofreading the book and for their help in the organization of the Festkolloquium.

ix

Contents

Part I Martin Grötschel—Activist in Optimization

Martin Grötschel—The Early Years in Bonn and Augsburg 5
Michael Jünger and Gerhard Reinelt
1 Introduction . 5
2 Bonn . 5
3 Augsburg . 9
4 Conclusion . 19
References . 19

Part II Contribution by a Very Special Predecessor of Martin
Grötschel

Facets and Rank of Integer Polyhedra . 23
Manfred W. Padberg
1 Introduction . 23
2 Normal Form and Classification of Facets 26
3 Irreducible Representations of Facets 30
4 Symmetry of Vertex Figures . 31
5 Symmetry of Edge Figures . 35
6 Rank of Facets and Integer Polyhedra 37
7 The Facial Structure of “Small” STS Polytopes 45
References . 56

Part III Martin Grötschel’s Doctoral Descendants

Martin Grötschel’s Descendants and Their Doctoral Theses 1983–2012 . 63
Michael Jünger and Gerhard Reinelt

Part IV Contributions by Martin Grötschel’s Doctoral Descendants

Constructing Extended Formulations from Reflection Relations 77
Volker Kaibel and Kanstantsin Pashkovich
1 Introduction . 77

xi

xii Contents

2 Polyhedral Relations . 80
3 Reflection Relations . 87
4 Applications . 89

4.1 Reflection Groups . 89
4.2 Huffman Polytopes . 94

5 Conclusions . 99
References . 100

Mirror-Descent Methods in Mixed-Integer Convex Optimization 101
Michel Baes, Timm Oertel, Christian Wagner, and Robert Weismantel
1 Introduction . 101
2 An Algorithm Based on an “Improvement Oracle” 103
3 Two-Dimensional Integer Convex Optimization 109

3.1 Minimizing a Convex Function in Two Integer Variables . . 110
3.2 Finding the k-th Best Point 114

4 Extensions and Applications to the General Setting 120
4.1 Mixed-Integer Convex Problems with One Integer Variable 121
4.2 Mixed-Integer Convex Problems with Two Integer Variables 127
4.3 A Finite-Time Algorithm for Mixed-Integer Convex

Optimization . 129
References . 130

Beyond Perfection: Computational Results for Superclasses 133
Arnaud Pêcher and Annegret K. Wagler
1 Introduction . 134
2 Beyond Perfection . 138

2.1 On Computing the Clique Number 141
2.2 On Computing the Chromatic Number 146
2.3 On Computing the Circular-Clique and Circular-Chromatic

Number . 152
3 Extending the Theta Function to Larger Convex Sets of Matrices . 156
References . 160

From Vertex-Telecenters to Subtree-Telecenters 163
Zaw Win and Cho Kyi Than
1 Introduction . 163
2 Vertex-Centroids and Vertex-Telecenters of a Tree 164
3 Subtree-Centroids and Subtree-Telecenters of a Tree 166
4 A Characterization of Subtree-Telecenters 168
5 Relation Between Subtree-Centroids and Subtree-Telecenters . . . 171

5.1 A Solution Method for Finding a Subtree-Telecenter of a
Given Tree . 172

6 Conclusion . 173
References . 173

Contents xiii

Algorithms for Junctions in Acyclic Digraphs 175
Carlos Eduardo Ferreira and Álvaro Junio Pereira Franco
1 Introduction . 175
2 Concepts and Notation . 176
3 Problem Definition, Literature Overview, and Main Results 178
4 Polynomial Time Algorithms for the s-Junction-k-Pairs Problem . 179
5 An O(m+ k) Time Algorithm for the s-Junction-k-Pairs Problem 180
6 Algorithms . 185
7 Experiments . 190
8 Conclusion . 192
References . 193

Algorithms for Scheduling Sensors to Maximize Coverage Time 195
Rafael da Ponte Barbosa and Yoshiko Wakabayashi
1 Introduction . 195
2 The Problem . 196
3 The Approximation Algorithm for RSC and Its Analysis 199

3.1 Approximation Ratio of the Algorithm 199
4 ILP Formulation for the RSC Problem and Computational Results . 208
5 The RSCP Problem, the Preemptive Variant 210
6 Concluding Remarks . 213
References . 214

How Many Steiner Terminals Can You Connect in 20 Years? 215
Ralf Borndörfer, Nam-Dũng Hoang, Marika Karbstein, Thorsten Koch,
and Alexander Martin
1 Introduction . 215
2 The Steiner Connectivity Problem 216

2.1 The All-Terminal Case and the Greedy Algorithm 217
2.2 The 2-Terminal Case and the Companion Theorem to

Menger’s Theorem . 224
3 The Steiner Tree Packing Problem 228

3.1 Valid Inequalities . 231
3.2 Heuristics . 233
3.3 Computational Results . 236

4 Conclusion and Outlook . 242
References . 242

The Maximum Weight Connected Subgraph Problem 245
Eduardo Álvarez-Miranda, Ivana Ljubić, and Petra Mutzel
1 Introduction . 245
2 The Maximum Weight Connected Subgraph Problem 247
3 MIP Formulations for the MWCS 249

3.1 The Prize-Collecting Steiner Tree Model 249
3.2 Model of Backes et al. 2011 251
3.3 A Model Based on (k, �) Node-Separators 252

xiv Contents

3.4 A Model Based on Generalized Node-Separator Inequalities 253
3.5 Some More Useful Constraints 255

4 Polyhedral Study . 256
4.1 Theoretical Comparison of MIP Models 256
4.2 Facets of the CS Polytope 258

5 Computational Results . 260
5.1 Branch-and-Cut Algorithms 261
5.2 Benchmark Instances . 262
5.3 Algorithmic Performance 263

6 Conclusion . 269
References . 269

Exact Algorithms for Combinatorial Optimization Problems with
Submodular Objective Functions . 271
Frank Baumann, Sebastian Berckey, and Christoph Buchheim
1 Introduction . 271
2 A Cutting Plane Approach . 273
3 A Lagrangean Decomposition Approach 277
4 Applications . 279

4.1 Range Assignment Problems 279
4.2 Risk-Averse Capital Budgeting 283

5 Computational Results . 285
5.1 Symmetric Connectivity 285
5.2 Multicast . 289
5.3 Broadcast . 290
5.4 Risk-Averse Capital Budgeting 290

6 Conclusion . 292
References . 293

A Primal Heuristic for Nonsmooth Mixed Integer Nonlinear Optimization 295
Martin Schmidt, Marc C. Steinbach, and Bernhard M. Willert
1 Introduction . 295
2 A Hierarchy of Optimization Models 297

2.1 Standard Mixed-Integer Nonlinear Problems 297
2.2 From C0-MINLP to C0-MPEC: Complementarity

Constraints . 298
2.3 From C0-MPEC to C2-MPEC: Smoothing 300
2.4 From C2-MPEC to C2-NLP: Regularization 301

3 Relations of the Model Classes 303
4 Application: Gas Network Optimization 305

4.1 Model . 306
4.2 Model Summary . 313
4.3 Numerical Results . 314

5 Summary . 317
References . 318

Contents xv

A New Algorithm for MINLP Applied to Gas Transport Energy Cost
Minimization . 321
Björn Geißler, Antonio Morsi, and Lars Schewe
1 Introduction . 321
2 MINLP-Model . 323

2.1 Network Model . 323
2.2 Pipes . 324
2.3 Resistors . 327
2.4 Valves . 328
2.5 Control Valves . 329
2.6 Compressors . 330
2.7 Combinatorics of Subnetwork Operation Modes 332
2.8 Objective Function . 334

3 Basic MIP-Relaxation . 335
4 Adaptive Refinement of the Relaxation 338
5 Computational Results . 339
6 Discussion . 350
References . 351

Solving k-Way Graph Partitioning Problems to Optimality: The Impact
of Semidefinite Relaxations and the Bundle Method 355
Miguel F. Anjos, Bissan Ghaddar, Lena Hupp, Frauke Liers, and
Angelika Wiegele
1 Introduction . 356
2 Problem Description, Formulations and Relaxations 360
3 Proposed Exact Algorithm . 361

3.1 Computing Upper Bounds 362
3.2 Lower Bound Heuristic 365
3.3 Branching . 366

4 Implementation Details . 368
4.1 Adding Triangle Inequalities 368
4.2 Computing Lower Bounds 369

5 Computational Results . 369
5.1 The Benchmark Sets of Instances 369
5.2 Choosing a Branching Rule 370
5.3 Separating Cliques . 372
5.4 Comparison with SBC . 379
5.5 Comparison with the Orbitopal Fixing Approach of Kaibel

et al. 380
6 Conclusion . 382
References . 384

On Perspective Functions and Vanishing Constraints in Mixed-Integer
Nonlinear Optimal Control . 387
Michael N. Jung, Christian Kirches, and Sebastian Sager
1 Introduction . 387

xvi Contents

2 A Cruise Control Problem for a Heavy-Duty Truck 391
3 Inner and Outer Convexification in MIOC 394
4 Constraint Formulations . 399

4.1 Inner Convexification of the Constraints 400
4.2 Outer Convexification/One Row Formulation of the

Constraints . 400
4.3 Complementarity Formulation 402
4.4 Addressing the Complementarity Formulation 402
4.5 Generalized Disjunctive Programming 405
4.6 Generalized Disjunctive Programming for MIOCP 407

5 Numerical Results . 410
6 Future Developments . 414
References . 414

Scheduling and Routing of Fly-in Safari Planes Using a Flow-over-Flow
Model . 419
Armin Fügenschuh, George Nemhauser, and Yulian Zeng
1 Introduction . 420
2 A Discrete-Time MILP Model . 421

2.1 Instance Data . 422
2.2 The Model Formulation 423

3 A Primal Heuristic . 427
3.1 Test Instances and Computational Results 430

4 Improving the Dual Bound . 432
4.1 Aggregated Weight Variables 432
4.2 Valid Inequalities . 434
4.3 Computational Results . 435

5 A Set Partitioning Formulation 437
6 A Time-Free MILP Model . 440
7 Embedding the Time-Free Model in Branch-and-Bound 443
8 Conclusions and Outlook . 446
References . 446

Mixed Integer Programming: Analyzing 12 Years of Progress 449
Tobias Achterberg and Roland Wunderling
1 Introduction . 449
2 Benchmarking . 451

2.1 The Effect of Performance Variability 454
2.2 Avoiding a Systematic Bias 455

3 MIP Evolution . 456
3.1 Branching . 457
3.2 Cutting Planes . 459
3.3 Presolving . 461
3.4 Primal Heuristics . 464
3.5 Other Advances . 467

4 Parallelism . 470

Contents xvii

4.1 Deterministic Parallel Optimization 470
4.2 Performance Evaluation of Parallel MIP 474

5 Conclusion . 476
References . 479

Progress in Academic Computational Integer Programming 483
Thorsten Koch, Alexander Martin, and Marc E. Pfetsch
1 Introduction . 483
2 Historical Overview . 484

2.1 General Developments Starting in the 1980s 485
2.2 MIP-Solving at ZIB . 486

3 Reproducibility of Computational Results 488
4 How to Measure Performance of Integer Programming Solvers . . 494
5 Measuring Advances in Computational Integer Programming . . . 496
6 Developing Academic Integer Programming Codes 500
References . 503

Part I
Martin Grötschel—Activist

in Optimization

2

Martin Grötschel

3

Breve Curriculum Vitae

Martin Grötschel holds the Chair for Information Technology at the Institute of Mathemat-
ics, Technische Universität Berlin, and is the current President of the Konrad-Zuse-Zentrum
Berlin (ZIB), where he served as Vice President from 1991 until September 2012. From
November 2002 until May 2008 he chaired the DFG Research Center MATHEON “Mathe-
matics for key technologies,” a scientific institution involving over 200 applied mathemati-
cians from the three large Berlin universities and two research institutes.

Martin Grötschel’s main areas of scientific interest are mathematics, optimization and op-
erations research. His special focus over the last 15 years has been on the design of theoret-
ically and practically efficient algorithms for hard combinatorial optimization problems. He
is especially interested in real applications. He has been working with scientists from other
disciplines and, in particular, with engineers and economists from the industry to mathemat-
ically model challenging problems in their respective fields of expertise. He has contributed
to application areas such as telecommunication, chip design and very large scale integration,
production planning and flexible manufacturing, logistics, and planning for public transporta-
tion systems. He has also spearheaded several projects on electronic information and com-
munication.

Before coming to Berlin in 1991, Martin Grötschel was a Professor of Applied Mathe-
matics at the University of Augsburg (1982–1991) and held several visiting positions abroad.
He received his Master’s Degree in Mathematics from Bochum University (1973), and his
doctoral (1977) and postdoctoral degrees (1981) from Bonn University.

Martin Grötschel’s scientific achievements have been recognized with several distinctions
including the John von Neumann Theory Prize (2006), the EURO Gold Medal (2004), the
Leibniz Prize (1995), the Dantzig Prize (1991), the Beckurts Prize (1990), and the Fulkerson
Prize (1982). He is a member of the Berlin-Brandenburg Academy of Sciences and Human-
ities (BBAW), of acatech, the “German Academy of Sciences and Engineering,” and of the
German Academy of Sciences, Leopoldina. He is also a Foreign Associate of the National
Academy of Engineering, USA and a SIAM Fellow. He has received honorary doctorates
from the University of Karlsruhe (2006) and Magdeburg (2008) and the Vietnamese Academy
of Science and Technology (2007). He has written and edited 13 books and published more
than 150 scientific papers. He has been a member of the editorial boards of 16 scientific
journals.

Martin Grötschel has served the academic community in many administrative functions.
He was, e.g., on the Executive Committees of the Mathematical Programming Society (MPS)
and of the German Mathematical Society (DMV), and in 1993–1994, he was President of the
DMV. He has been on the Executive Board of BBAW since 2001 and has been an active
member of the scientific advisory boards of various organizations and institutions (FWF-
Austrian Science Foundation, University of Vienna, Imperial College London, KTH Stock-
holm, ILOG, CWI Amsterdam, CMM Santiago de Chile, BICM Beijing).

After having served as a member-at-large of the Executive Committee of the International
Mathematical Union (IMU) from 1999 to 2006, Martin Grötschel was elected to be the IMU’s
Secretary for the period 2007 to 2010. At the IMU General Assembly in Bangalore in August
2010, he was confirmed in this function for the next four years. Moreover, he has been the
Chairman of the Executive Board at the Einstein Foundation Berlin since June 2011.

(This is a slightly edited version of the “Short CV” taken from Martin Grötschel’s profes-
sional homepage at www.zib.de/groetschel, where many more details can be found.)

www.zib.de/groetschel

Martin Grötschel—The Early Years in Bonn
and Augsburg

Michael Jünger and Gerhard Reinelt

1 Introduction

Martin Grötschel is one of the most influential mathematicians of our time. He has
received numerous honors and serves in a number of key positions in the inter-
national mathematical community. A summary is sketched in the preceding short
curriculum vitae taken from his professional homepage. Numerous scientific and
popular articles recount his achievements and prominent role. These include arti-
cles in respected papers such as DIE ZEIT, Financial Times, Die Welt, and Der
Tagesspiegel. His “scientific facets” will be covered in detail in the rest of this book.

When we first conceived of this chapter, we had a different perspective in mind.
As his first doctoral descendants, we can tell a different story, because we were
actively involved in his early career. This was the time when he developed from
a scientific assistant in Bonn to a full professor in Augsburg. In the following, we
recount some of our memories of this time, with no guarantee for either accuracy or
completeness. Instead, these are the stories that came to mind when we sat together
in Heidelberg and Cologne, preparing this chapter.

2 Bonn

After obtaining his diploma in Mathematics at the University of Bochum in 1973,
Martin started his doctoral studies in Mathematics and Economics at the Institut
für Ökonometrie und Operations Research of the Rheinische Friedrich-Wilhelms-

M. Jünger (B)
Institut für Informatik, Universität zu Köln, Albertus-Magnus-Platz, 50923 Cologne, Germany
e-mail: mjuenger@informatik.uni-koeln.de

G. Reinelt
Institut für Informatik, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 368, 69120
Heidelberg, Germany
e-mail: gerhard.reinelt@informatik.uni-heidelberg.de

M. Jünger, G. Reinelt (eds.), Facets of Combinatorial Optimization,
DOI 10.1007/978-3-642-38189-8_1, © Springer-Verlag Berlin Heidelberg 2013

5

mailto:mjuenger@informatik.uni-koeln.de
mailto:gerhard.reinelt@informatik.uni-heidelberg.de
http://dx.doi.org/10.1007/978-3-642-38189-8_1

6 M. Jünger and G. Reinelt

Fig. 1 Report No. 7416, the first outcome of the collaboration of Martin Grötschel and Manfred
Padberg: Cover (left) and abstract in English, German, and French (right)

Universität Bonn, which would prove to be an excellent choice. The Operations
Research Department, under the leadership of Bernhard Korte, quickly developed
into an internationally renowned center for Mathematics of Operations Research.
Prominent researchers came for colloquium presentations, a visit of a couple of
weeks, a few months, or even an entire sabbatical term. Bernhard Korte created a
stimulating atmosphere in which young scientists could grow and bloom. He also
had good taste when it came to selecting his scientific assistants, and Martin was one
of them. (They first met at a summer school for members of the Deutsche Studien-
stiftung, where Bernhard Korte gave a series of lectures and Martin was one of the
happy students to receive such a renowned stipend.)

We, the authors, were still in high school in 1973, too young to be part of what
was going on in Bonn in 1973 and 1974. We entered the scene as students taking
Operations Research as a minor in our studies of Computer Science in 1975, but this
was early enough to know a little bit about the two preceding years.

In 1974, Manfred Padberg spent six months at the OR Department, and one day,
young Martin (no beard yet) appeared at the door to his office and asked: “Was ist
eigentlich Kombinatorische Optimierung?” (“What is Combinatorial Optimization
anyway?”), to which Manfred replied: “Come in.” Manfred soon got Martin work-
ing on the traveling salesman problem. Everybody in Combinatorial Optimization
knows what followed, but the reader may not know the first technical report on
this unique and fruitful collaboration, namely Report No. 7416 of the Institut für
Ökonometrie und Operations Research’s famous blue preprint series, the cover and
abstract of which are shown in Fig. 1. (For the published version, see [1].)

Martin Grötschel—The Early Years in Bonn and Augsburg 7

Our own early experience in the Bonn OR Department was dominated by our
fascination with Bernhard Korte’s unique, unusual, and entertaining teaching style.
At some point, our minor subject of study interested us so much that we applied
for student assistant positions (“Studentische Hilfskräfte”). The department had a
data station including all the high-tech equipment that Computer Science students
longed for back then. This included a punched card reader not shared by a hundred
but only a dozen or so users, (comparatively) quick results from a noisy line printer,
et cetera. Initially, we really had nothing to do with Martin. Our assignments, such
as implementing basic computer routines like line search in nonlinear programming,
came from Achim Bachem, another young scientific assistant who has also had an
impressive career, but that is a different story. During this period, we tried to follow
the seminars and colloquia offered by the department, sitting in the last row, without
much success. What we clearly remember is that Martin was a critical member of
the team, with pointed questions for those who gave presentations. This was our first
encounter.

A later encounter was less enjoyable: One of our duties was to run around a
table with piles of paper sheets, assemble them into scientific preprints of the blue
Bonn series, and staple them. One issue we remember very clearly: Report No. 7770
(Ref. [2]) seemed to contain nothing but numbers. Later we realized that this was
the distance matrix of the famous TSP instance that would later become known as
“gr120.tsp,” a 120-city instance of German towns, the distances between which had
been taken from the ADAC (Allgemeiner Deutscher Automobil-Club) road map.
Martin’s optimum solution of the TSP for this set of cities set a new world record at
the time, with the help of the aforementioned data station of the IBM mainframe at
the University of Bonn. We later learned that it more or less went like this: Michael
Hahmann (aka James) let IBM’s LP-solver MPSX run on a relaxation and gave the
output to Martin, who plotted it at home that night (armed with only a pencil and
an eraser), did the separation by hand, and handed some new cutting planes (facet
defining for the TSP polytope, of course) to James the next morning. James solved
the stronger relaxation during the day, gave the fractional solution to Martin in the
evening, . . . , and, lo and behold, after 13 iterations (days) an optimum solution was
found.

Then the real excitement started. In 1980, the department acquired an IBM 4331,
and for the first time we could work at an IBM 3270 terminal in time sharing mode
(TSO: “time sharing option” in IBM jargon). Prior to this, computing was done
in batch mode. We had by now received our master/diploma degrees, and we had
been promoted to “Wissenschaftliche Hilfskräfte,” which doubled our (still meager)
salaries, enough to be less dependent on our parents’ support. In 1981, we had al-
ready written our first paper in graph theory, jointly with and under the supervision
of Bill Pulleyblank, who was one of the department’s visiting scientists then, and
whose main collaboration at the same time was with Martin. We remember when
Martin said “We have found plenty of new TSP facets,” referring to the clique tree
inequalities discovered in the course of this collaboration.

One day in 1981, Martin announced: “Jetzt habilitiere ich mich.” (“Now I’ll get
my habilitation.”) This postdoctoral degree was a prerequisite for a professorship

8 M. Jünger and G. Reinelt

Fig. 2 A little book with an
influential statement

then. He produced a monograph within a few weeks, and he got his habilitation
soon afterwards.

Also in 1981, four of the department’s scientific assistants had completed the
little book [3], see Fig. 2, where the following statement is made about the triangu-
lation problem for input-output tables: “Selbst beliebig verfeinerte Verfahrenstech-
niken werden vermutlich nicht dazu führen, daß man das Triangulationsproblem
für wünschenswerte Größenordnungen von Input-Output-Matrizen optimal lösen
kann.” (“Even arbitrarily refined procedures are not likely to lead to the solvabil-
ity of the triangulation problem for input-output matrices of desirable sizes.”)

This economics problem is equivalent to the well known linear ordering prob-
lem. Martin gave us the integer programming relaxation using 3-cycle inequalities
and let us hunt for facets of the linear ordering polytope (and the related acyclic sub-
digraph polytope), but apparently, he didn’t expect much, stating simply: “It’s not
easy.” Nevertheless, we came up with new facet classes rather quickly and he was
impressed. Part of our success was, of course, due to the fact that, to us, the use of
software assistance in the search came rather naturally. By chance, we had written
a computer program that implemented Jack Edmonds’ all-integer version of Gaus-
sian elimination with high-precision arithmetic (an early assignment from Achim
Bachem). Therefore we were able to accurately determine the rank of a 0/1-matrix,
see also [4]. We embedded this into a user-friendly software package that, given an
inequality, gave one of the following replies: “Sorry, the inequality is not valid.” or
“The inequality is valid and induces a face of dimension r ,” or “Congratulations,
you have found a facet!”.

This allowed experimentation and provided many conjectures of generalizations
to facet classes. We also wrote branch&cut software that we called a “cutting plane
algorithm,” avoiding any reference to the “dirty” enumeration part of the software.

Martin Grötschel—The Early Years in Bonn and Augsburg 9

Fig. 3 Talks of Martin Grötschel, Michael Jünger, and Gerhard Reinelt at the ISMP 1982 in Bonn

The technical term “branch&cut” was coined much later by Manfred Padberg and
Giovanni Rinaldi.

On the IBM 4331, we used the programming language PL/I and IBM’s MPSX
software to solve the linear programming relaxations. And we found we could in-
deed solve these triangulation instances that had seemed so hopeless just a year
earlier. This became our ticket to Martin’s world.

We were confident that we had produced enough material for a scientific paper,
but Martin said “One paper? No. Three!” The paper production process was just
amazing for us: We would sit in Martin’s office, equipped with a notepad, a pen-
cil, an eraser, a pair of scissors, and a bottle of glue. Days of writing, cutting and
pasting (in the original sense) followed, and the result was given to Helga Grimm,
the department secretary, who typed it up on an IBM Selectric “golfball” typewriter.
Eventually, these three papers ended up as references [5, 6], and [7]. They were also
the basis of an entire session chaired by Laurence Wolsey on August 24, 1982, at
the International Symposium on Mathematical Programming ISMP 1982 in Bonn,
see Fig. 3.

This date was a turning point for the two of us: These were the first scientific
talks we gave. Later, we produced another paper with computational studies for
economists, the first of that series to appear in print [8].

Of course, for Martin, this was only one of the many findings in a period of great
scientific creativity and success. Most notably, at that same ISMP 1982, he received
the prestigious Fulkerson Prize, jointly with László Lovász and Alexander Schrijver,
for the groundbreaking work on the Ellipsoid Method and its consequences in Com-
binatorial Optimization [9], see Fig. 4.

In late 1982, he accepted a chair in Applied Mathematics at the University of
Augsburg’s newly founded Mathematics Department.

3 Augsburg

As a result of a number of wise decisions made by an external committee, the newly
founded Mathematics Department at the University of Augsburg consisted of an
excellent group of active young professors and their scientific assistants. We were

10 M. Jünger and G. Reinelt

Fig. 4 Ron Graham presents
the Fulkerson Prize to Martin
Grötschel, László Lovász,
and Alexander Schrijver at
the ISMP 1982 in Bonn

lucky to be among the latter almost from the very beginning. When we followed
Martin to Augsburg in early 1983, the student body consisted of about 45 beginners
studying mathematics in their first semester. It is hard to imagine better studying
conditions. In February of 1983, there was a party in the Rosenaustraße, where four
scientific assistants shared a big apartment. Almost the entire Science Faculty (math
only then) from the dean to the students showed up and fitted in.

The chair of Martin consisted of four people, see the first few lines of the faculty
telephone directory of April 1, 1983, in Fig. 5.

“Konnerth Theodora” is now “Ungureanu Teodora.” (Bavarians have the strange
habit of listing the first name after the last name—for ordinary people, not for pro-
fessors.) Teodora was the perfect addition for the one senior and the two junior
scientists of the group. We worked hard in perfect harmony, and had a lot of fun.
The following offers a glimpse into the atmosphere of the time: Both Martin and
Teodora were unhappy with their weight: Teodora a bit too slim, Martin a bit over-
weight. So one day they agreed to work on this and made a contract to keep their
weight sum constant.

While we were working on our doctoral dissertations, Martin’s main scientific
focus was the “GLS book,” which would later become Geometric Algorithms and
Combinatorial Optimization [10]. Consequently, among the many guests we had,

Fig. 5 Excerpt of the Telephone Directory of the Science Faculty of the University of Augsburg
dated April 1, 1983

Martin Grötschel—The Early Years in Bonn and Augsburg 11

two were regularly seen in Martin’s office: Láci Lovász and Lex Schrijver, who
would often come for quiet working sessions with Martin.

The lack of decent computer equipment at the University of Augsburg presented a
problem. Martin fought hard to improve the situation, but initially we had no choice
but to use the computers at the University of Bonn and at the Deutsche Forschungs-
und Versuchsanstalt für Luft- und Raumfahrt (DFVLR), now the Deutsches Zentrum
für Luft- und Raumfahrt (DLR). The latter required frequent trips to Oberpfaffen-
hofen near Munich.

In addition to a computational platform, we wanted decent computer typesetting.
TEX already existed in its second (and final) generation, but there were no easy to
use custom distributions. So we ordered a tape and adapted the software for the
IBM mainframe in Oberpfaffenhofen, and then wrote a driver for the big vector
plotter that we used as an output device. This caught the attention of Hans-Martin
Wacker, the director of the computing center, who asked us to make the installation
available to all users, and we did. But we became more and more tired of all the
traveling and cutting pages from plotter output, so Martin ordered a CADMUS, a
MUNIX workstation from Periphere Computer-Systeme (PCS) in Munich, at a price
of about 50 000 German marks. (“MUNIX” instead of “UNIX” is not a typo!) It was
delivered in October 1983.

We still needed a decent DIN-A4 laser printer, and there was not much choice
then. The Canon LBP-10 (the first desktop laser printer in the world) was the ma-
chine of choice, but its price (roughly 35 000 marks) significantly exceeded the
chair’s budget, so we talked the university computing center into buying one. We
made sure it was ordered from PCS, and when it was delivered, it turned out that
“unfortunately” its interface was only compatible with our CADMUS, so it ended
up in our office.

The tiny CADMUS system (Motorola 68000 processor, 512 kilobytes of main
memory, 60 megabytes of disk space) became our research workhorse. Again, we
implemented TEX and wrote a new output driver, now with convenient DIN-A4
output, and it soon became the typesetting machine for many more mathematicians
at the Augsburg department who were tired of the then still-common typewriters.

This machinery, plus a home-made TEX macro package for books, not only al-
lowed our two doctoral dissertations to be typeset in TEX, but also made possible
the first Springer book to have its manuscript submitted in TEX, namely the ground-
breaking “GLS book” [10]. (LATEX came 2 years later.)

Martin took great care in teaching optimization courses; some of his lecture notes
from the first few years of his tenure in Augsburg are still in circulation today. In
addition to basic mathematics courses, he covered the state of the art in linear, non-
linear, and discrete optimization. His lectures were spiced up with reports on appli-
cations and software demonstrations. As an enthusiastic teacher, he motivated many
students to specialize in Combinatorial Optimization.

In 1983, Yoshiko Wakabayashi, with whom Martin had already worked in São
Paulo and Bonn, came to Augsburg in order to work on her doctoral thesis concern-
ing the aggregation of binary relations, with applications to clustering. She received
her doctoral degree in 1986. In 1984, Karl-Heinz Borgwardt joined the faculty as an

12 M. Jünger and G. Reinelt

Fig. 6 Beer tasting at the home of Martin and Iris Grötschel: Tasting phase (left) and scoring
phase (right), repeated 45 times. Sitting from left to right: Michael Jünger, Martin Grötschel, Jeff
Edmonds, Yoshiko Wakabayashi, Mario Sakumoto, Gerhard Reinelt

associate professor of Mathematical Optimization. Zaw Win came as a doctoral stu-
dent from Yangon, Myanmar, and Martin got him working on the Windy Postman
Problem, a core problem in vehicle routing. His doctoral degree was conferred in
1987. Martin also supervised Eberhard Zehendner, a doctoral student of Computer
Science in our faculty, but outside our working group. He also received his doctoral
degree in 1987.

The atmosphere in our working group was not always entirely serious. The two
pictures in Fig. 6 show a legendary beer tasting party at the home of Martin and Iris
Grötschel. This has been covered in print before, but here is the full truth. With the
ability to triangulate input-output tables, and knowing that marketing people con-
sidered “ranking by aggregation of individual preferences,” which amounts to this
very problem, we decided to determine a ranking of 10 Pilsner type beers. Pairwise
comparison implied that we had to do 45 comparisons, in each of which the two
glasses of each participant were (partially) filled with two different beers unknown
to the drinkers. This meant 90 little portions of beer for each participant. We also
had two cards each, one of which we simultaneously raised in order to indicate our
preferences. See Fig. 6 for the tasting and the scoring phases.

In each round, one of us acted as the waiter/waitress; in the photographed round,
the second author has just served on the left picture, and he is not on the right
picture because he is taking scores. Figure 7 shows scores Martin took when he was
the waiter.

Part of the magic of the Augsburg years was certainly the fact that this was one
of many occasions when we met at the Grötschels’ house. There were many parties
with many visitors, in an atmosphere of warm hospitality.

Martin is well known as a driving force in applying state-of-the-art mathematics
and computer science in industry and commerce and took on a leading position in
such endeavors in the field of Combinatorial Optimization. This emerged during his
time in Augsburg, where his first attempt was to become involved in the routing
of the city garbage collection. Many letters were written and meetings were held,
but in the end, no project was implemented due to conflicting interests among the
city politicians. In retrospect, knowing that his big success in planning transport

Martin Grötschel—The Early Years in Bonn and Augsburg 13

Fig. 7 Martin’s beer tasting
scoring sheet

for handicapped people in Berlin started about a decade later, we are confident that
the Augsburg garbage project would have been implemented and successfully com-
pleted, if Martin had been more experienced in dealing with politicians. He certainly
is now, but back then, he was a beginner. This would soon change, as we shall see
later.

In 1983, Martin had completed a joint paper with Francisco Barahona and Ridha
Mahjoub [11], building on the two other authors’ previous related work. (Teodora
has fond memories of her first assignment on her IBM Selectric.) In the mid eight-
ies, we started serious work on the Maximum Cut Problem, together with Francisco
Barahona, with whom we had established a joint German-Chilean project funded
by the Volkswagen Foundation. Two applications drove us, namely ground state
computations of spin glasses in solid state physics and via minimization in VLSI
layout design. We still could not run branch&cut software on our university’s com-
puters; instead we used IBM mainframes at the Kernforschungsanlage Jülich (now
the Forschungszentrum Jülich) and the University of Bonn, mainly because they had
the LP solver MPSX installed (and let us use it).

We can’t resist a digression on our university computer technology back in the
day: We had no network connection and no email. Despite Martin’s efforts, the
computing center did not see a point in having such a thing. (They considered email
a passing fad that would soon be forgotten.) So data was transferred on the big reels
of tape that you see spinning whenever computers are shown in old movies. Lacking
space in our temporary department home in the Memminger Straße, the computing
center’s tape reader was located in a nearby high school, and we had a “Studentische
Hilfskraft,” one of whose jobs it was to carry reels of tape to the high school and
make sure that the data eventually made its way to our CADMUS. Incidentally, the
studentische Hilfskraft in charge of this was Petra Mutzel, who would later become
one of Martin’s doctoral grandchildren.

14 M. Jünger and G. Reinelt

Fig. 8 TSP contest: Ranking by tour length (left), Martin Grötschel’s tour (right)

Considering Martin’s achievements, then and later in Berlin, it is clear that he
not only has capabilities that go far beyond the normal, but he is also a person
who enjoys challenges of all kinds, takes up new duties and drives new agendas, in
science, and also in scientific administration. His extraordinary gifts as a scientist
had already become apparent before he came to Augsburg; the first glimpses of
his organizational talents emerged in his role as co-organizer of the ISMP 1982 in
Bonn. But in Augsburg, he not only kept up his high scientific productivity, but also
spearheaded the successful development of the new Mathematics Department. At
the age of 35, he became its director and Dean of the Science Faculty.

All this requires a competitive character, and Martin always strove to be the best.
One of the few examples where we (the authors) could beat him was a TSP com-
petition we organized for members and visitors to our working group. It simply
consisted of finding a good tour for drilling 443 holes in a printed circuit board
owned by Martin. (It had been our task to determine the coordinates of the holes
by hand. After correction of a mistake, this resulted later in the well-known TSP
instance “pcb442.tsp”.) Figure 8 shows the results of the competition, along with
Martin’s tour.

A second activity in which we could soundly beat him was computer typing.
Martin was then (is still?) a very slow typist. We teased him by telling him the pass-
word for his account was “Handlungsreisender,” knowing that he hated the German
word for “traveling salesman.” He didn’t know that the first 8 letters were sufficient,
and we grinned behind his back when we watched him slowly entering this long
horrible word.

We know of no third such discipline. We are grateful that he never tried to con-
vince us to compete with him in sports; we would have had no chance whatsoever.

Martin Grötschel—The Early Years in Bonn and Augsburg 15

Martin always made sure that we had enough money for traveling. In combina-
tion with the many visitors to the department this exposed us to the scientific com-
munity from the very beginning of our own productivity. In March 1986, he took
the first author with him to a conference on “Computational Issues in Combinato-
rial Optimization” in Capri, Italy. After our presentation on spin glass ground state
computations and VLSI via minimization, we were approached by Michel Balinski,
who invited us to write an article for Operations Research, and this resulted in [12].
At this event, a young Italian approached the first author and introduced himself
with the simple words: “My name is Giovanni Rinaldi, and I am the Italian version
of Gerhard Reinelt.” This marked the beginning of a life-long friendship with all
three of us.

Via Minimization was the entry point into our first serious industry cooperation.
Martin established valuable contacts with SIEMENS in Munich, where we focused
on VLSI layout design. Although working for profit, the SIEMENS team maintained
high scientific standards. This was ensured by scientists like Ulrich Lauther, Michael
Kolonko, and Michael Hofmeister, who made sure that the best students were hired
after graduation. There were regular meetings; we would visit the team in Munich,
and they would come for colloquium talks in Augsburg. In addition, there were
workshops where theory met practice, so this was an ideal starting point for our
first excursion from the “ivory tower” into the “real world.” We wrote a technical
report on via minimization, mailed it to our scientific friends, but did not yet bother
to submit it to a journal. We were surprised when we received a letter from East
Germany in which we were informed that our “submission” had been accepted for
publication in the Zeitschrift für Angewandte Mathematik und Mechanik! We gladly
accepted, and the deal even included a complimentary Russian abstract, see [13].

In 1985, Gábor Galambos came from Szeged, Hungary, for a semester and
worked on bin packing. In 1986, Klaus Truemper came from Dallas, Texas, as a
Humboldt senior scientist, worked with Martin on cycles in binary matroids, and
gave a lecture series on matroids. Also in 1986, Heinrich Puschmann came from
Santiago de Chile and worked on transporting different kinds of oil in the same
pipeline. In 1987, Leslie Trotter came as a Humboldt senior scientist from Cornell
University, and Günter M. Ziegler joined us as a scientific assistant directly after
receiving his Ph.D. at MIT. In 1988, Enrique Benavent came from Valencia, Spain,
and worked on capacitated arc routing.

A distinctive feature of the mathematics curriculum in Augsburg was the inclu-
sion of practical training in industry and commerce. This required close contacts
between the department’s professors and local industry. One day we went with a
group of students to visit the personal computer production at SIEMENS Augsburg,
where we saw the POSALUX drilling machine for printed circuit boards. While it
was explained to us, Martin immediately realized that minimizing production time
essentially boils down to solving a sequence of instances of the traveling sales-
man problem. So he boldly declared “We can do better.” The answer was “No way,
the machine’s control software already includes an optimization module.” But, of
course, Martin insisted, and an agreement was reached that we would receive a tape

16 M. Jünger and G. Reinelt

Fig. 9 The paths the POSALUX driller would take with the original control (left) and the improved
control (right)

with the data of various printed circuit boards, and if we managed to get improve-
ments of at least 5 %, we’d be invited to the Eckestuben, the only Augsburg restau-
rant with a star rating.

Meanwhile, our dear old CADMUS had been replaced by a network of SUN
workstations, and Martin had succeeded in making email available at the University
of Augsburg. Needless to say, we gained much more than 5 %, see Fig. 9 for the
original and the improved control of the machine, photographed from our new SUN
workstations, i.e., old-fashioned screenshots.

In addition, we were equally successful in designing a better control of a plotter
for the printed circuit board wiring. Our experimental study can be found in [14].
So we were not only invited for a nice dinner at the Eckestuben (where our indus-
try partners could not help smiling when they learned about university professors’
salaries), but also to provide new software that would henceforth be used in the
production at SIEMENS Augsburg.

In 1988, Giovanni Rinaldi came to work with us on maximum cut. Initially,
Giovanni insisted on FORTRAN as the programming language, but eventually we
convinced him that C would be a better choice. Bob Bixby was around, writing a
C program, internally called BIXOPT, for the solution of linear programming prob-
lems. (BIXOPT later became LOPT, then PLEXUS, and finally CPLEX.) So the
late eighties marked the starting point of our first branch&cut framework in C.

A problem with Bob’s new LP software was the lack of an implementation of the
dual simplex algorithm. The package contained only a two-phase primal method.
But in branch&cut, most of the time, dual feasible bases are available. So we asked
Bob about this, and his response was: “Transpose the matrix.” We had no choice but
do this, so the first version of this branch&cut framework contained a simulation
of the dual simplex algorithm. But we kept insisting, of course, and eventually, Bob
gave in. Not only could we replace our simulation with the real thing; his implemen-
tation of the dual simplex algorithm also turned out to be very successful on various
LP benchmarks, and in his talks Bob was always sure to get a smile out of us when
he told the story of its origin.

Martin Grötschel—The Early Years in Bonn and Augsburg 17

Fig. 10 Martin Grötschel’s
group in Augsburg 1989,
from left to right: Michael
Jünger, Atef Abdel-Aziz
Abdel-Hamid, Karl-Heinz
Borgwardt, Alexander
Martin, Günter M. Ziegler,
Doris Zepf, Robert
Weismantel, Martin
Grötschel, Gerhard Reinelt

Fig. 11 Martin Grötschel’s
group in Augsburg with
visitors 1989, from left to
right: Zaw Win, Teodora
Ungureanu, Michael Jünger,
Jack Edmonds, Jean Fonlupt,
Martin Grötschel, Günter
M. Ziegler, Yoshiko
Wakabayashi, Mechthild
Stoer

With third-party funds from the German Science Foundation (DFG) in the con-
text of a priority program on applied optimization and control, along with vari-
ous other sources, the group continued to grow dynamically. Our first Augsburg
students had graduated and joined the various activities: Mechthild Stoer, Robert
Weismantel, Alexander Martin, Doris Zepf (now Tesch) and Petra Bauer. Atef
Abdel-Aziz Abdel-Hamid joined us as a doctoral student from Egypt. The pictures
shown in Fig. 10 and Fig. 11 were both taken in 1989, the second after we had
moved to our new building on the new campus of the University of Augsburg in
September 1989.

Martin had no difficulties supervising this sizeable group of fresh doctoral stu-
dents. Unlike his previous doctoral students, they had been under his influence from
the beginning of their mathematical studies, and had already embraced his special
mixture of mathematics and applications.

Mechthild Stoer worked on the design of reliable networks, a joint project with
Clyde Monma of AT&T Bell Labs. Robert Weismantel and Alexander Martin had
already worked for SIEMENS in Munich as student interns before receiving their

18 M. Jünger and G. Reinelt

Fig. 12 Three scientific
generations in Auerbachs
Keller 1989, from left to
right: Gerhard Reinelt,
Michael Jünger, Martin
Grötschel, Marc Oliver
Padberg, Manfred Padberg

diplomas. Consequently, their doctoral thesis subjects were in VLSI layout design:
placement and routing.

In July 1989, on the occasion of the 14th IFIP Conference on System Modelling
and Optimization, there was a memorable evening in Auerbachs Keller in Leipzig
(immortalized in Goethe’s Faust and still behind the “iron curtain” back then), where
the authors enjoyed a number of beers with their doctoral father Martin Grötschel
and their (inofficial) doctoral grandfather Manfred Padberg who came as a Hum-
boldt senior scientist, see Fig. 12. (The latter certainly claims grandfathership!)

In 1990, Peter Gritzmann joined the faculty as an associate professor, which
strengthened the sizeable group of combinatorial optimizers in Augsburg even fur-
ther. The group of doctoral students grew again, when Carlos Ferreira came from
Brazil.

The last applied project we did with Martin involved robot control in cooper-
ation with the Forschungsinstitut für Anwendungsorientierte Wissensverarbeitung
(FAW) in Ulm. We modeled the task as a shortest Hamiltonian path problem with
precedence constraints, and the work in this area would later turn out to be useful
for various further applications. The project started in 1990, and with Norbert As-
cheuer we got another original first-generation Augsburg student on board. It ended
in 1991, by which time both authors had already left the University of Augsburg for
professorships in Paderborn and Heidelberg.

But 1991 was also the year Martin left Augsburg for Berlin, taking all his re-
maining scientific assistants and doctoral students with him, including the freshly
graduated students Ralf Borndörfer and Andreas Löbel. In collaboration with his
colleagues Karl-Heinz Hoffmann and Hans Georg Bock, he had tried hard to estab-
lish working conditions in Augsburg that would reflect the success and growth of
the application-oriented working groups of the Mathematics Department. An article
in the Augsburger Allgemeine from March 2, 1991, describes the efforts to found
a new institute called the “Institut für mathematische Optimierung und Steuerung
(IMOS)” at the University of Augsburg. Yet this initiative (and formal application)
sparked little or no interest among the authorities in the state capital, Munich. Mar-
tin is cited as having said “Noch diesen Monat oder ich gehe.” (“Either it happens

Martin Grötschel—The Early Years in Bonn and Augsburg 19

this month or I’m going.”), though he still held out hope for at least a provisional
start of such an institute near the university campus: “Wir könnten noch heuer an-
fangen.” (“We could still start this year.”) They couldn’t, so they left Augsburg, as
did Peter Gritzmann in the same year.

This was the end of an exceptionally dynamic and productive period for
application-oriented mathematics in Augsburg. Subsequently the old and new pro-
fessors spread out, and the field took off, especially with regard to Combinatorial
Optimization, where Berlin is now one of the world’s leading centers.

4 Conclusion

We were very lucky for the time we shared! Thanks, dear Martin!

References

1. Grötschel, M., Padberg, M.W.: Lineare Charakterisierungen von Travelling Salesman Proble-
men. Z. Oper.-Res. 21, 33–64 (1977)

2. Grötschel, M.: On the symmetric travelling salesman problem: solution of a 120-city problem.
Math. Program. Stud. 12, 61–77 (1980)

3. Grötschel, M., Bachem, A., Butz, L., Schrader, R.: Input-Output-Analyse bei unternehmens-
größenspezifischen Fragestellungen. Institut für Mittelstandsforschung, Bonn (1981)

4. Padberg, M.W.: Facets and rank of integer polyhedra. In: Facets of Combinatorial Optimiza-
tion: Festschrift for Martin Grötschel. Springer, Berlin (2013)

5. Grötschel, M., Jünger, M., Reinelt, G.: On the acyclic subgraph polytope. Math. Program. 33,
28–42 (1985)

6. Grötschel, M., Jünger, M., Reinelt, G.: Facets of the linear ordering polytope. Math. Program.
33, 43–60 (1985)

7. Grötschel, M., Jünger, M., Reinelt, G.: A cutting plane algorithm for the linear ordering prob-
lem. Oper. Res. 32, 1195–1220 (1984)

8. Grötschel, M., Jünger, M., Reinelt, G.: Optimal triangulation of large real world input-output
matrices. Stat. Hefte 25, 261–295 (1984)

9. Grötschel, M., Lovász, L., Schrijver, A.: The ellipsoid method and its consequences in com-
binatorial optimization. Combinatorica 1(2), 169–197 (1981)

10. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimiza-
tion. Algorithms and Combinatorics, vol. 2. Springer, Berlin (1988)

11. Barahona, F., Grötschel, M., Mahjoub, A.R.: Facets of the bipartite subgraph polytope. Math.
Oper. Res. 10, 340–358 (1985)

12. Barahona, F., Grötschel, M., Jünger, M., Reinelt, G.: An application of combinatorial opti-
mization to statistical physics and circuit layout design. Oper. Res. 36(3), 493–513 (1988)

13. Grötschel, M., Jünger, M., Reinelt, G.: Via minimization with pin preassignments and layer
preference. Z. Angew. Math. Mech. 69(11), 393–399 (1989)

14. Grötschel, M., Jünger, M., Reinelt, G.: Optimal control of plotting and drilling machines:
a case study. Z. Oper.-Res. 35, 61–84 (1991)

Part II
Contribution by a Very Special

Predecessor of Martin Grötschel

22

Scene Institut für Ökonometrie und Operation Research, Rheinische Friedrich-
Wilhelms-Universität Bonn, March 1974

Martin Grötschel “What is combinatorial optimization anyway?”

Manfred Padberg “Come in.”

This scene, which we described in Part I of this book, was instrumental to Martin
Grötschel’s development as a combinatorial optimizer. Of course, he had already
decided to work in this field when he joined Bernhard Korte as a scientific assistant,
yet an initial spark was still needed. And, fortunately, Manfred Padberg was a visit-
ing professor at the institute then, and more than ready to light that fire. So Manfred
is indeed a very special predecessor of Martin.

Manfred Padberg received his diploma (master’s degree) in Mathematics at the
Westfälische-Wilhelms-Universität Münster in 1967, and his doctoral degree at
Carnegie-Mellon University under the supervision of Egon Balas in 1971. After-
wards, while he was a Research Fellow at the Wissenschaftszentrum Berlin, he
spent half a year at the Institut für Ökonometrie und Operation Research, Rheini-
sche Friedrich-Wilhelms-Universität Bonn on Bernhard Korte’s invitation. That set
the stage for the above scene in March 1974.

Afterwards, Manfred Padberg continued his academic career at New York Uni-
versity, serving as an Associate Professor in 1974 and progressing to Full Professor,
Research Professor, and finally Professor Emeritus since 2002, he still remains ac-
tive in the field.

He is one of the most prolific researchers in combinatorial optimization. When
the theory of NP-completeness shook up the world of Theoretical Computer Science
in 1971, the reaction of many researchers was that trying to solve NP-hard combi-
natorial optimization problems to optimality was simply a waste of time. But not
Manfred. His attitude was always: “Let’s try anyway!”. And he did so, most notably,
for the traveling salesman problem, achieving major breakthroughs together with
Martin Grötschel, but later also with Harlan Crowder and still later, with Giovanni
Rinaldi. He has been instrumental in laying the foundations of today’s state of the
art. Certainly, Manfred can take pride in witnessing his visions come true, visions he
had in the early 1970s when many people believed such a thing to be a fool’s errand.

His many contributions to the field and the many honors he has received have
been described elsewhere, most notably in a Festschrift in his honor that appeared
in 2004 in the MPS-SIAM Series on Optimization, entitled “The Sharpest Cut,” and
edited by . . . Martin Grötschel.

When we (the editors) invited Manfred to contribute to this book, he was de-
lighted, immediately accepted the challenge, and gave us his latest work on his
lifetime scientific mission: “Facets and Rank of Integer Polyhedra,” further proof
that Manfred is always good for a surprise—enjoy!

Facets and Rank of Integer Polyhedra

Manfred W. Padberg

Dedicated to Martin Grötschel, my first and best former
doctoral student and a personal friend for almost forty years
now. Ad multos annos, Martin!

Abstract We discuss several methods of determining all facets of “small” polytopes
and polyhedra and give several criteria for classifying the facets into different facet
types, so as to bring order into the multitude of facets as, e.g., produced by the
application of the double description algorithm (DDA). Among the forms that we
consider are the normal, irreducible and minimum support representations of facets.
We study symmetries of vertex and edge figures under permissible permutations that
leave the underlying polyhedron unchanged with the aim of reducing the numerical
effort to find all facets efficiently. Then we introduce a new notion of the rank of
facets and integer polyhedra. In the last section, we present old and new results
on the facets of the symmetric traveling salesman polytope Qn

T with up to n = 10
cities based on our computer calculations and state a conjecture that, in the notion
of rank ρ(P) introduced here, asserts ρ(Qn

T)= n− 5 for all n≥ 5. This conjecture
is supported by our calculations up to n= 9 and, possibly, n= 10.

1 Introduction

Let P ⊆ R
n be any pointed rational polyhedron of Rn and X = (x1 · · · xp), Y =

(y1 · · · yr) be a minimal generator of P . The columns x1, . . . ,xp of X are a list of
the extreme points of P and, likewise, the columns y1, . . . ,yr of Y are a list of the
direction vectors of the extreme rays of P and thus,

x ∈ P ⇐⇒ x =
p∑

i=1

μixi +
r∑

j=1

λjyj for some μi ≥ 0 with
p∑

i=1

μi = 1

and λj ≥ 0,

M.W. Padberg, Professor Emeritus of New York University
OptCom, 17 rue Vendôme, 13007 Marseille, France

M. Jünger, G. Reinelt (eds.), Facets of Combinatorial Optimization,
DOI 10.1007/978-3-642-38189-8_2, © Springer-Verlag Berlin Heidelberg 2013

23

http://dx.doi.org/10.1007/978-3-642-38189-8_2

24 M.W. Padberg

i.e., P = conv(x1, . . . ,xp)+ cone(y1, . . . ,yr) where conv(·) means the convex hull
and cone(·) the conical hull of the respective point sets. For short, we denote by
vertP the set of all extreme points of P and by exrayP the set of the direction
vectors of all extreme rays of P . Rationality of the polyhedron P means that we
assume that both X and Y consist of rational numbers only and “pointed” means that
we assume that p ≥ 1. If Y is void, P is a polytope in R

n rather than a polyhedron.
Given the pointwise description X, Y of P we can determine for “small” n, p and r
an ideal linear description of P by running the double description algorithm (DDA),
see, e.g., [4] or [38], to find a basis (v1, v1

0), . . . , (v
s , vs0) of the lineality space LC

and a minimal generator (vs+1, vs+1
0), . . . , (vs+t , vs+t

0) of the conical part of the
polyhedral cone

C = {(v, v0) ∈R
n+1 : vX − v0e ≤ 0,vY ≤ 0

}
, (1)

where e = (1, . . . ,1) ∈ R
p and 0 the null vector. Defining ai = vi , bi = vi0 for 1 ≤

i ≤ s, bT = (b1, . . . , bs), hi = vs+i , hi = vs+i
0 for 1 ≤ i ≤ t and hT = (h1, . . . , ht)

then

P = {x ∈R
n : Ax = b,Hx ≤ h

}
(2)

is an ideal, i.e., a minimal and complete, linear description of P where A is the
s × n matrix of rank s with rows a1, . . . ,as and H is the t × n matrix with rows
h1, . . . ,ht . By the rationality assumption about X and Y both (A,b) and (H,h) are
matrices of rational numbers and thus, after appropriate scaling, integer numbers.
Moreover, the dimension of P satisfies dimP = n − s. P is full dimensional if
and only if LC = ∅, i.e., if and only if the matrix A is void. If A is nonvoid, then
P is a flat in R

n, otherwise P is a solid. The system of equations Ax = b is an
ideal description of the affine hull aff(P) of P . Every row hx ≤ h0, say, of Hx ≤ h
defines a facet of P , i.e., a face of dimension dimP − 1 of P , and vice versa, for
every facet F of P there exists some row hx ≤ h0 of Hx ≤ h such that F = {x ∈
P : hx = h0}. The linear description (2) of P is quasi-unique: if hx ≤ h0 and gx ≤
g0 are two different representations of some facet F of P then g = λh + μA and
g0 = λh0 +μb for some λ > 0 and μ ∈R

s , while the system of equations Ax = b is
unique modulo nonsingular transformations of Rs . λ > 0 follows because gx−g0 =
λ(hx − h0) < 0 for all x ∈ P − F . The preceding is well known and we refer to
[38] for a detailed treatment of polyhedra in R

n including the double description
algorithm and any unexplained notation used in this paper. There are other methods
to pass from the pointwise description of polyhedra to their ideal linear description
(2) and vice versa, like the Fourier-Motzkin elimination algorithm, see, e.g., [50].
Since I have written most of this paper and carried out the computational work
reported here in Sect. 7—which was around 1996/7—some progress has occurred
in the algorithms for passing from the point-wise description of rational polyhedra
to an ideal linear one and vice versa. I am indebted to Gerd Reinelt [46] for bringing
his work with Thomas Christof to my attention, see [5] and [6–8] as well as the
many references contained therein.

Facets and Rank of Integer Polyhedra 25

If P is a solid, then the ideal description of P is unique up to multiplication of
(H,h) by positive scalars. Thus by scaling the data to be relatively prime integer
numbers a unique ideal linear description of P is obtained. In this case the only
issue that we need to address is how to compute a possible enormous number of
the facets of P . Much of the material in this paper addresses this question and the
question of how to obtain “reasonable” representations by way of linear inequalities
of the facets of flats in R

n.
The polyhedra of interest to us are subsets of Rn+ in the polyhedral case or subsets

of the unit cube of Rn in the polytopal case, but we do not use that here. In either case
one is frequently interested in obtaining an ideal description Hx ≤ h of the facets
of P such that either H ≥ O or H ≤ O provided that such descriptions exist for P .
No matter what sign convention is used in the linear description, one is frequently
interested in finding minimal support representations of the facets of P . If P is flat,
running the DDA to find an ideal linear description (2) of P does not automatically
provide facets of this form. Rather we get a representation of any facet of P modulo
some linear combination of the equations Ax = b. Thus the output of the DDA for
a simple nonnegativity constraint xj ≥ 0 (if it defines a facet of P) can have many
nonzeros and even a nonzero right-hand side. Intersecting the cone (1) with the
nonnegativity constraints v ≥ 0 does not work: the result of running the DDA on the
smaller cone gives all facets of P (if P has a description Hx ≤ h with H ≥ O) plus
typically considerably more inequalities that are valid, but not facet defining.

When we wish to analyze 1,000,000 or more “extreme rays” of the cone (1), we
need to classify the 1,000,000 or more representations of facets produced by DDA
automatically into equivalence classes. Here an “equivalence class” is understood
to be a set of facets of P that are identical in some linear representation of them
modulo linear combinations of the equations Ax = b defining the affine hull of P
and modulo permutations of the indices 1, . . . , n of the components of x ∈ P which
leave the polyhedron unchanged. Since every permutation of 1, . . . , n can be de-
scribed by some n×n permutation matrix Π, a permutation Π leaves P unchanged
if P = {Πx ∈ R

n : x ∈ P }. We call such index permutations permissible for P .
Denote by Π(P) the set of all permissible index permutations for P . Π(P) 	= ∅
since In ∈Π(P), where In is the n× n identity matrix. Let Π ∈Π(P) and ΠT be
the transpose of Π. Since ΠT Π = ΠΠT = In, ΠT ∈ Π(P) for every Π ∈ Π(P).
Moreover, Πa,Πb ∈ Π(P) implies that ΠaΠb ∈ Π(P) and Πa,Πb,Πc ∈ Π(P)

implies that (ΠaΠb)Πc = Πa(ΠbΠc) = ΠaΠbΠc ∈ Π(P). But ΠaΠb 	= ΠbΠa

is possible for Πa,Πb ∈ Π(P) and thus Π(P) is a (nonabelian) group of order at
most n! in general.

Definition 1 Let F 	= F ′ be any two distinct facets of P . If F ′ = {x ∈ P : ΠT x ∈ F }
for some Π ∈ Π(P), then F and F ′ are equivalent under Π(P). κ(P) is the class
number of distinct facets of P that are pairwise not equivalent under Π(P).

Every permissible index permutation corresponds to a linear transformation of
the polyhedron P . More general, affine transformations exist that leave a polyhe-
dron unchanged. This is the case, e.g., for the Boolean quadric polytope QPn, see

26 M.W. Padberg

Fig. 1 Normal form
representation of facets of a
flat polyhedron P ⊆ R

2

Theorem 6 of [37]. Here we study permissible index permutations only, even though
several of the properties that we establish remain true mutatis mutandis for more
general transformations of P .

2 Normal Form and Classification of Facets

The first task of the analysis is to find a “normal form” for the facets of flat polyhedra
P ⊆ R

n that takes care of the multiplicity of the facet representations due to the
equations defining the affine hull of P and that permits us to determine κ(P) and
some unique member of each equivalence class under Π(P).

An inequality fx ≤ f0 is valid for P if P ⊆ {x ∈ R
n : fx ≤ f0}. Let F ⊆ P be any

facet of the polyhedron P . Every valid inequality fx ≤ f0 for P with

F = P ∩ {x ∈ R
n : fx = f0

}

is a representation of F .

Definition 2 ([28]) A representation fx ≤ f0 of a facet F = {x ∈ P : fx = f0} of P
is in normal form if AfT = 0 where aff(P)= {x ∈ R

n : Ax = b}.

Given any representation hx ≤ h0 of a facet F of P we can calculate its nor-
mal form representation by projecting h onto the subspace {x ∈ R

n : Ax = 0} and
adjusting the right-hand side accordingly; see Fig. 1.

Claim 1 Let hx ≤ h0 be any representation of a facet F of P . Then fx ≤ f0 with

f = h
(
In − AT

(
AAT

)−1A
)
, f0 = h0 − hAT

(
AAT

)−1b (3)

is a representation of F in normal form.

Facets and Rank of Integer Polyhedra 27

Claim 2 The normal form representation of a facet F of P is unique up to scaling.

Proof Let gx ≤ g0 be any representation of F and fx ≤ f0 be a normal form rep-
resentation of F . Then we know from the quasi-uniqueness that g = λf + μA,
g0 = λf0 + μb where λ > 0 is a positive scalar and μ ∈ R

s is arbitrary. Suppose
that gx ≤ g0 is also in normal form. Multiplying the equation for g by AT we get
0 = gAT = λfAT + μAAT and thus μ = 0 since fAT = 0 and r(AAT) = s. Thus
(g, g0)= λ(f, f0) for some λ > 0. �

The normal form of the representation of some facet of the polyhedron P ⊆ R
n

takes care—in essence—of the multiplicity of the representations of that facet that
results from the flatness of the polyhedron. For rational polyhedra the remaining
ambiguity can be eliminated by bringing the normal form representations of the
facets of P into integer coefficient form with relatively prime integers.

Definition 3 A normal form representation (f, f0) of a facet of P is in primitive
normal form if the components of (f, f0) are relatively prime integers.

Let fx ≤ f0 and gx ≤ g0 be any two facet-defining inequalities for P in primitive
normal form. Then the facets F and F ′ of P defined by fx ≤ f0 and gx ≤ g0 are
equivalent under Π(P) if and only if f0 = g0 and f = gΠ for some Π ∈Π(P). To
find the class number κ(P) of distinct facet “types” of P we must check all primitive
normal form representations pairwise for equivalence under Π(P). Testing each
pair of inequalities for isomorphism is computationally expensive. This effort can be
reduced by a “preclassification” using criteria that are necessary for the equivalence
under Π(P) of distinct facets of P .

Claim 3 If hx ≤ h0 and gx ≤ g0 define two distinct facets of P that belong to the
same equivalence class with respect to some Π ∈Π(P), then

(i) nvh = nvg and nexh = nexg , where

nvh = ∣∣{x ∈ vertP : hx = h0}
∣∣ and nexh = ∣∣{y ∈ exrayP : hy = 0}∣∣ (4)

and nvg and nexg are defined correspondingly for (g, g0).

(ii) dh = dg , where dh are dg are the distances of the center of gravity xC of P ,
i.e.,

xC = 1

p

p∑

i=1

xi , (5)

from {x ∈ R
n : Ax = b,hx = h0} and {x ∈ R

n : Ax = b,gx = g0}, respectively.
(iii) a0 = b0 and aord = bord , where ax ≤ a0, bx ≤ b0 are the primitive normal

forms of hx ≤ h0, gx ≤ g0 and aord , bord are the vectors obtained from a, b by
ordering their components by increasing value.

28 M.W. Padberg

Proof

(i) Extreme points of P are mapped into extreme points of P for Π ∈Π(P). For
let x ∈ vertP , Π ∈ Π(P) and suppose that z = Πx /∈ vertP . Then there exist
z1 	= z2 ∈ P and 0 <μ< 1 such that z = μz1 +(1−μ)z2. But ΠT ∈Π(P) and
x ∈ vertP . Hence x = ΠT z = μΠT z1 + (1 −μ)ΠT z2 implies ΠT z1 = ΠT z2

and thus z1 = z2, which is a contradiction. We prove likewise that extreme rays
of P are mapped into extreme rays of P for Π ∈Π(P). Thus, since the facets
defined by hx ≤ h0 and gx ≤ g0 are equivalent under Π(P), the respective
counts are equal.

(ii) To calculate d2
h we have to solve

min
{∥∥x − xC

∥∥2 : x ∈ A
}
, (6)

where A = {x ∈ R
n : Ax = b,hx = h0}. It follows that A ⊆ {x ∈ R

n : f1x =
f 1

0 } where (f1, f 1
0) is the normal form of (h, h0). Solving min{‖x − xC‖2 :

f1x = f 1
0 } by the Lagrangean multiplier technique we calculate x∗ = xC −

(f1xC−f 1
0)

‖f1‖2 (f1)T . Since hx − h0 = f1x − f 1
0 for all x ∈ R

n with Ax = b we cal-

culate x∗ ∈ A, because

f1hT = ‖h‖2 − hAT
(
AAT

)−1AhT = ∥∥f1
∥∥2
. (7)

Since A ⊆ {x ∈R
n : f1x = f 1

0 } and x∗ ∈ A it follows that

dh = |hxC − h0|
‖f1‖ and likewise dg = |gxC − g0|

‖f2‖ , (8)

where (f2, f 2
0) is the normal form of (g, g0). Since hx ≤ h0 and gx ≤ g0 belong

to the same equivalence class and the normal form is unique up to scaling,
there exists λ > 0 such that f1 = λf2Π and f 1

0 = λf 2
0 for some Π ∈ Π(P).

Consequently,

p
∣∣hxC − h0

∣∣ =
∣∣∣∣∣

p∑

i=1

(
f1xi − f 1

0

)
∣∣∣∣∣= λ

∣∣∣∣∣

p∑

i=1

(
f2Πxi − f 2

0

)
∣∣∣∣∣

= λ

∣∣∣∣∣

p∑

i=1

(
f2xi − f 2

0

)
∣∣∣∣∣= pλ

∣∣gxC − g0
∣∣.

Since ‖f1‖ = λ‖f2‖ it follows that dh = dg .
(iii) By assumption hx ≤ h0 and gx ≤ g0 belong to the same equivalence class

with respect to Π and their primitive normal forms are unique. Thus a0 = b0

and a = bΠ. Hence if a0 	= b0 or aord 	= bord then Π ∈ Π(P) cannot exist,
contradiction. �

Facets and Rank of Integer Polyhedra 29

Applying Claim 3 to the 1,000,000 or more inequalities (H,h) produced by the
DDA we can partition the system (H,h) into q , say, disjoint subsystems

H1x ≤ h1, H2x ≤ h2, . . . , Hqx ≤ hq, (9)

such that for each row of (Hi ,hi) the criteria of Claim 3 are met. This breaks the
1,000,000 or more rows of (H,h) typically down into “chunks” of 5,000, 10,000,
etc. rows that we need to analyze further.

Example 1 The distance and normal form calculation can be effectively shortened
in most cases when a particular structure is present. To illustrate this for the sym-
metric traveling salesman problem, we can ignore the basis of the lineality space as
calculated by, e.g., the DDA and let A be the node versus edge incidence matrix of
the complete graph having m nodes, say, so that n = m(m− 1)/2 is the number of
variables in the problem. Every permutation of the m nodes of the graph induces
a permissible permutation of the indices 1, . . . , n because re-indexing the nodes of
the graph leaves the associated symmetric traveling salesman (STS) polytope un-
changed. We wish to find the equivalence classes of its facets for such permutations.
We know, see [19], that the affine hull for the symmetric traveling salesman poly-
tope is given by the system of equations Ax = 2 where 2 is a vector of m entries
equal to 2. Thus

AAT = (m− 2)Im + emeTm,
(
AAT

)−1 = 1

m− 2

(
Im − 1

2(m− 1)
emeTm

)
,

where em is a column vector of m entries equal to 1. It follows that (3) and the
calculation of ‖f‖2 simplify to

f = h − 1

m− 2
h∗A + 2(hen)

(m− 1)(m− 2)
eTn ,

f0 = h0 − 2

m− 1
(hen),

(10)

‖f‖2 = ‖h‖2 − 1

m− 2

∥∥h∗∥∥2 + 2

(m− 1)(m− 2)
(hen)2, (11)

where h∗ = hAT is the vector with components h∗
v =∑e∈δ(v) he for all nodes 1 ≤

v ≤m of the graph, δ(v) is the set of edges e of the graph meeting the node v and he
for 1 ≤ e ≤ n are the components of h. Thus the numerical inversion of AAT can be
avoided. Moreover, the gravity center xC of the STS polytope is given by xCe = 2

m−1
for 1 ≤ e ≤ n and so the formula (8) for the squared distance calculation simplifies to

d2
h = (m− 2)(2hen − (m− 1)h0)

2

(m− 1)((m− 1)(m− 2)‖h‖2 − (m− 1)‖h∗‖2 + 2(hen)2)
. (12)

If the components of h are integer, d2
h can thus be computed exactly in rational form.

Multiplying (f, f0) as defined by (10) by (m− 1)(m− 2) and clearing the greatest

30 M.W. Padberg

common divisor we get for integer (h, h0) the unique representation in primitive
normal form of the facet of the STS polytope defined by hx ≤ h0.

Having obtained the partitioning (9) we see at present no other way than to check
the remaining members in each class of (9) pairwise for equivalence under Π(P),
unless there are other affine linear transformations of P that leave P unchanged.
The remaining isomorphism test can be done, e.g., enumeratively on the primitive
normal form representation of the facets of P and is computationally expensive. But
for relatively “small” polyhedra it can be done in reasonable computing times. This
way we can find the class number κ(P) of the distinct types of facets of flat or solid
polyhedra P ⊆ R

n as well as a particular representation for each facet class.

3 Irreducible Representations of Facets

Denote fj for j = 1, . . . , n the n first components of (f, f0) ∈R
n+1.

Definition 4 A representation (f, f0) of a facet of P is in irreducible form if either

(i) f ≥ 0 and |{j ∈ {1, . . . , n} : fj > 0}| is as small as possible or
(ii) f ≤ 0 and |{j ∈ {1, . . . , n} : fj < 0}| is as small as possible or

(iii) |{j ∈ {1, . . . , n} : fj 	= 0}| is as small as possible.

In case (i) of the definition (f, f0) has minimum positive, in case (ii) it has min-
imum negative and in case (iii) minimum support. This concept of irreducibility
of facet representations does not imply uniqueness, but it reduces substantially the
number of ways in which we can represent the facets of flat polyhedra which is, a
priori, a continuum. See Fig. 5 of Sect. 7 where we show 20 different facet types of
the 194,187 facets of the traveling salesman polytope on eight cities in irreducible
nonnegative form (except the four remaining types given by the nonnegativity and
subtour elimination constraints), i.e., κ(P)= 24 in this case. The question is how to
find them (if they exist at all). To do so we have to use the DDA again.

We will discuss only the polytopal case, i.e., when Y is void, but the following
applies mutatis mutandis to the polyhedral case as well. Let (h, h0) be a representa-
tion of some facet F of P and partition X into two matrices X1, X2 such that

hX1 − h0e1 = 0, hX2 − h0e2 < 0, (13)

where e1, e2 are compatible vectors of ones. Consider the polyhedral cone

C+
h = {(w,w0) ∈R

n+1 : wX1 −w0e1 = 0,wX2 −w0e2 ≤ 0,w ≥ 0
}

(14)

and denote by Fh the facet of P defined by hx ≤ h0, i.e.,

Fh = P ∩ {x ∈R
n : hx = h0

}
. (15)

Facets and Rank of Integer Polyhedra 31

If Fh has a representation fx ≤ f0 with f ≥ 0, then (f, f0) ∈ C+
h . Thus any extreme

ray of the conical part of C+
h with minimum positive support is an irreducible rep-

resentation of Fh and can be found by running the DDA with (14) as input. To find
a minimum negative support representation of the facet Fh of P we use the poly-
hedral cone C−

h which is (14) with the constraints wX2 − w0e2 ≤ 0 replaced by
wX2 −w0e2 ≥ 0 and run the DDA.

Since the polyhedron P ⊆ R
n may or may not admit representations of its facets

satisfying either sign restriction, we are lead to consider the cone C±
h which is (14)

but without the constraints w ≥ 0. It is not difficult to show that a minimal generator
for C±

h consists of a basis of its lineality space, i.e., of the rows of the matrix (A,b)
defining the affine hull of the polyhedron P , plus the direction vector given by the
(unique) normal form of the facet of P defined by hx ≤ h0. So this construction does
not help us to find “minimal support” representations of the facets of flat polyhedra.

Consider instead

Ch ={(u,v,w0) ∈R
2n+1 :

uX1 − vX1 −w0e1 = 0,uX2 − vX2 −w0e2 ≤ 0,u ≥ 0,v ≥ 0
}
. (16)

Since the extreme rays of Ch are defined by submatrices of the constraint set of (16)
of rank 2n, it follows from a rank consideration that every extreme ray (u,v,w0) of
Ch with uj 	= vj satisfies either uj = 0 or vj = 0 for all 1 ≤ j ≤ n. Moreover, it fol-
lows also from a rank consideration that every extreme ray of C+

h and every extreme
ray of C−

h defines an extreme ray of Ch. Let fx ≤ f0 be any representation of the
facet Fh of minimal support. Setting u = max{0, f}, v = max{0,−f} and w0 = f0 it
follows that (u,v,w0) ∈ Ch. Consequently, every minimum support representation
of Fh defines an extreme ray of the conical part of Ch. The cone Ch exhibits a lot of
“symmetry” and has many extreme rays.

We can thus find the irreducible representations of any facet Fh of any flat P by
running the DDA with the respective cones C+

h , C−
h , and Ch as input.

In a computer implementation we translate the polyhedron P so that Fh contains
the origin of Rn. Consequently, the “homogenizing” variable w0 in (14) and (16)
can be dropped. Moreover, we need to generate only a single row for the changed
X2 part of the constraint set of, e.g., (16). For the changed X1 part of it we need
only a submatrix of maximal rank. This reduces the size of the input to the DDA
substantially. More precisely, in all three cases exactly dimP constraints plus the
nonnegativity conditions suffice to find an irreducible representation of Fh.

4 Symmetry of Vertex Figures

Given a pointwise description of a polyhedron P ⊆ R
n the numerical effort to find

all facets of P consists of running the DDA, or some similar algorithm, with the
cone (1) as input. E.g., for the symmetric traveling salesman problem with m cities
on a complete graph the number of inequalities in (1) equals p = 1

2 (m − 1)!. For

32 M.W. Padberg

m = 8 we have p = 2,520, for m = 9 we have p = 20,160, for m = 10 we have
p = 181,440 and so forth. Given the current state of computing machinery it is out
of the question to attack this problem directly by analyzing the cone (1) for m≥ 9.
In this section and the next we discuss ways of reducing the computational effort for
general polyhedra and polytopes for which Π(P) 	= {In}.

Definition 5 For x0 ∈ vertP let x1, . . . ,xa be all of its adjacent vertices and
y1, . . . ,yb represent all the extreme rays P such that x0 + λyi for λ ≥ 0 is a 1-
dimensional face of P . The displaced cone with apex at x0

OC
(
x0,P

)=
{

x ∈R
n : x = x0 +

a∑

i=1

λi
(
xi −x0)+

b∑

i=1

μiyi , λi ≥ 0,μi ≥ 0

}
(17)

is the vertex figure (or the outer cone) for P at x0.

Note that our definition of a vertex figure is different from the one frequently
found in the literature on polytopes, see, e.g., [22] or [50]. By construction,
OC(x0,P) ⊃ P , dim OC(x0,P) = dimP and every facet of OC(x0,P) is a facet
of P , but not vice versa since all facets of OC(x0,P) contain x0. Let Π ∈ Π(P)

and x∗ = Πx0. Then x∗ ∈ vertP and we claim that the vertex figure OC(x∗,P) for
P at x∗ is given by

OC
(
x∗,P

)=
{

x ∈R
n : x = x∗ +

a∑

i=1

λi
(
Πxi − x∗)+

b∑

i=1

μiΠyi , λi ≥ 0,μi ≥ 0

}
.

Claim 4 For any x0 	= x1 ∈ P let F(x0,x1) be the face of minimal dimension of P
containing both x0 and x1. Then F(Πx0,Πx1) = {x ∈ R

n : ΠT x ∈ F(x0,x1)} and
dimF(x0,x1)= dimF(Πx0,Πx1) for all Π ∈Π(P).

Proof Let F = F(x0,x1) and likewise ΠF = F(Πx0,Πx1). Since F is a face of P ,
there exists (f, f0) ∈ R

n+1 such that fx = f0 for all x ∈ F and fx < f0 for all x ∈ P ,
x 	∈ F . Since x0,x1 ∈ F and Πx0,Πx1 ∈ΠF it follows from the minimality of ΠF

that ΠF ⊆ {x ∈R
n : (fΠT)x = f0}. Consequently, we have ΠF ⊆ {x ∈ R

n : ΠT x ∈
F } since ΠT x ∈ P for all x ∈ΠF . We conclude likewise that F ⊆ {x ∈ R

n : Πx ∈
ΠF }. Consequently, if ΠT x ∈ F for some x ∈ R

n then Π(ΠT x) = x ∈ ΠF . Thus
ΠF = {x ∈ R

n : ΠT x ∈ F } and the first part follows. Let P = {x ∈ R
n : Hx ≤ h}

be any linear description of P . Since P is pointed we have r(H) = n. Denote by
(HF ,hF) the largest submatrix of (H,h) such that HF x = hF for all x ∈ F . Thus
dimF = n−r(HF). Likewise, let (HΠF ,hΠF) be the largest submatrix (H,h) such
that HΠF x = hΠF for all x ∈ ΠF . By the preceding argument it follows that—
up to row permutations—HΠF = HFΠT and thus dimΠF = dimF since Π is
nonsingular. �

Facets and Rank of Integer Polyhedra 33

Fig. 2 Vertex classes of
polyhedra

Thus the face of minimal dimension of P containing Πx0 and Πx1 is the image
under Π of the face of minimal dimension of P that contains x0 and x1. Thus per-
missible index permutations for P preserve the adjacency of extreme points of P
and hence OC(x∗,P) is the vertex figure for P at x∗ = Πx0 for any Π ∈ Π(P) as
claimed.

Claim 5 Let x0 	= x∗ ∈ vertP be such that x∗ = Πx0 for some Π ∈ Π(P). Then
fx ≤ f0 defines a facet of OC(x0,P) if and only if (fΠT)x ≤ f0 defines a facet of
OC(x∗,P).

Proof Let fx ≤ f0 define a facet of OC(x0,P). Consequently, fx0 = f0 and fx ≤ f0

for all x ∈ P . Hence f0 = fx0 = (fΠT)Πx0 = (fΠT)x∗ and (fΠT)y = fΠT Πx =
fx ≤ f0 for all y ∈ P because y ∈ P implies y = Πx for some x ∈ P . Let x̂ ∈ P be
such that f̂x = f0 and dimF(x0, x̂) = dimP − 1. Since fx ≤ f0 defines a facet of
P such an x̂ ∈ P exists. Then Πx̂ ∈ P and (fΠT)Πx̂ = f̂x = f0. From Claim 4 it
follows that dimF(x∗,Πx̂)= dimP − 1. Thus the inequality (fΠT)x ≤ f0 defines
a facet of OC(x∗,P). The rest follows by symmetry. �

It follows from Claim 5 that we know all facets of OC(x∗,P) if we know all
facets of OC(x0,P) where x∗ = Πx0 for some Π ∈ Π(P). Consequently, if for
every pair x0 	= x∗ ∈ vertP there exists some Π ∈ Π(P) such that x∗ = Πx0, then
all vertex figures of P are identical modulo Π(P). The task of finding all facets of
P is thus reduced to finding all facets of the vertex figure OC(x0,P), where x0 is
some extreme point of P . This observation makes the task of finding an ideal linear
description of P easier from a computational point of view: the number of the facets
of OC(x0,P) is typically considerably smaller than the number of the facets of P .

In general, we cannot expect that for every pair x0 	= x∗ ∈ vertP there exists
some Π ∈Π(P) such that x∗ = Πx0. In Fig. 2 we show a “symmetric” polyhedron

34 M.W. Padberg

where this is not the case. The index permutation

Π =
(

0 1
1 0

)

is permissible for the polyhedron P of Fig. 2 and the extreme points of P fall into
the two vertex classes {(1,5), (5,1)} and {(1,3), (3,1)}, of which it suffices to an-
alyze one representative in each class. More generally, Π(P) partitions the set of
all extreme points into equivalence classes of which it suffices to analyze one rep-
resentative in each class in order to find all the facets of P . If the number of such
equivalence classes is relatively small—as compared, e.g., to the total number of
extreme points of P—then substantial savings in the computational effort for the
problem of finding all the facets of P result. In the case of the Boolean quadric
polytope QPn Π(QPn) induces precisely n vertex classes. However, in this case
there is also a “symmetry theorem”, see [37], that permits one to reduce the study
of the facial structure of QPn to a single vertex figure as well.

For simplicity of exposition we will assume that all extreme points of P fall into
a single equivalence class with respect to Π(P) and that P is a polytope rather than
a polyhedron. The following applies, however, mutatis mutandis to the general case
of pointed polyhedra having several vertex classes as well.

We can thus replace the problem of finding all facets of P by the problem of
finding all the facets of the vertex figure OC(x0,P) at any extreme point x0 of P .
To do so numerically we translate the displaced cone OC(x0,P) with apex at x0 ∈ P

to the origin of Rn and consider instead of OC(x0,P) the cone

CC
(
x0,P

)=
{

x ∈ R
n : x =

a∑

i=1

λi
(
xi − x0), λi ≥ 0

}
. (18)

Now we use, e.g., the double description algorithm DDA to find a linear description
of CC(x0,P). To do so we find a minimal generator of the “polar” cone

PCC
(
x0,P

)= {f ∈ R
n : f
(
xi − x0)≤ 0 for 1 ≤ i ≤ a

}
, (19)

where f ∈ R
n is a row vector and a is the number of extreme points adjacent to x0.

We write PCC0 = PCC(x0,P), for short. The following two facts are well known. If
f ∈ PCC0 belongs to the lineality space of PCC0, then fx = fx0 belongs to the system
of equations describing the affine hull of the polytope P . If f ∈ PCC0 belongs to the
conical part of the minimal generator of PCC0, then fx ≤ fx0 defines a facet of P
that is tight at x0.

These considerations bring about a substantial reduction in the number of rows
of the constraint matrix for the cone PCC0 (19) that is the input for DDA which
reduces the computations to find all facets of P . We illustrate the reduction for the
symmetric traveling salesman problem on m cities: for m = 8 the input cone (1)
has p = 2,520 rows while (19) has a = 730 rows, for m = 9 we have p = 20,160
while a = 3,555, and for m= 10 we have p = 181,440 and a = 19,391. Of course,
we must find all extreme points of the polyhedron that are adjacent to x0 ∈ P and
this is difficult in general. However, it can be done, e.g., enumeratively for “small”

Facets and Rank of Integer Polyhedra 35

polyhedra and all of the previous numbers were computed by a computer program
that we have written for this purpose.

From the numbers that we give for the symmetric traveling salesman polytope it
is clear that with our current computing machinery we can find the linear descrip-
tion of CC(x0,P) for m = 8 at best. We have indeed succeeded to compute the
corresponding linear description on a SUNSPARC 4 computer this way. However,
for m= 9 this is again out of the question—at least at present.

5 Symmetry of Edge Figures

To generalize the previous device that we have used to reduce the computational
effort let us state it as follows: we replace the problem of finding all facets of P by
the problem of finding all facets of P that contain some 0-dimensional face of P ,
namely x0 ∈ vertP . If P has several vertex classes then we do likewise by choosing
some representative in each class. This brings about a substantial reduction in the
size of the problem that we need to solve using the DDA. A further reduction can
be expected if we increase the dimension of the face of P that we require the facets
to contain. So we want to find all facets of P that contain a k-dimensional face of P
that contains x0 where k ≥ 0 is relatively small. For k = 0 we retrieve the previous
trick, for k = 1 we ask for all facets of P that contain an edge μx0 + (1−μ)xi of P ,
where 0 ≤ μ ≤ 1 and xi is some extreme point of P that is adjacent to x0. We can
do likewise for any k ≥ 2. Let us consider the case k = 1 explicitly, since for k ≥ 2
the notation becomes a bit messy.

For k = 1 we replace (17) in the polytopal case by the a displaced cones

ECP

(
x0,x�

)=
{

x ∈R
n : x = x0 +μ

(
x� − x0)+

a∑

�	=i=1

λi
(
xi − x0), λi ≥ 0

}
, (20)

where 1 ≤ �≤ a and μ ∈ R is arbitrary because we want all facets of P containing
the edge μx0 + (1 − μ)x� for 0 ≤ μ ≤ 1 of P and thereby, necessarily, the entire
line μx0 + (1 −μ)x� for all μ ∈ R. By construction, dim ECP (x0,x�)= dimP and
every facet of ECP (x0,x�) defines a facet of P , but not vice versa since the facets
of ECP (x0,x�) all contain both x0 and x�. Of course, to find all the facets of P we
must a priori analyze the displaced cones ECP (x0,x�) for all values of �= 1, . . . , a,
but as we shall see this number can be reduced substantially if Π(P) 	= {In}.

Let us replace
∑a

�	=i=1 λi(x
i − x0) in the definition of ECP (x0,x�) by a list N0

�

of all extreme points of P other than x0 and x�. The xi − x0 with xi not adjacent
to x0 are not extremal in OC(x0,P) nor in EC(x0,x�). This does not change the
displaced cone (20) because ECP (x0,x�)⊇ OC(x0,P)⊇ P . We calculate

ECP

(
x0,x�

)

=
{

x ∈R
n : x = x0 +μ

(
x� − x0)+

∑

i∈N0
�

λi
(
xi − x0), λi ≥ 0

}

36 M.W. Padberg

=
{

x ∈R
n : x = x� +

(
1 −μ−

∑

i∈N0
�

λi

)(
x0 − x�

)+
∑

i∈N0
�

λi
(
xi − x�

)
, λi ≥ 0

}

= ECP

(
x�,x0),

because ν = 1 −μ−∑i∈N0
�
λi runs through all reals when μ ∈ R is arbitrary. This

calculation reflects the fact that the direction in which we traverse the edge of P
defined by x0 and x� is immaterial for the “shape” of ECP (x0,x�). So the displaced
cone (20) is well defined by the edge given by the pair of adjacent extreme points
x0 and x� of P and we call it the edge figure of P relative to x0 and x�.

Shifting the displaced cone (20) to contain the origin we get the cone

ECCP

(
x0,x�

)

=
{

x ∈R
n : x = μ

(
x� − x0)+

a∑

�	=i=1

λi
(
xi − x0), λi ≥ 0,μ ∈R

}
, (21)

which is an infinite “wedge” in R
n, i.e., its lineality space has a dimension of 1.

Moreover, while (21) is a valid pointwise description of ECC� = ECCP (x0,x�), it
is typically far from minimal. By testing each direction vector xi − x0 of ECC�

with 1 ≤ i 	= � ≤ a for extremality in the cone ECC� we can reduce the pointwise
description of ECC� to a minimal one. To keep the notation simple, let us assume
that—after reindexing if necessary—the direction vectors xi − x0 for 1 ≤ i ≤ a(�)

remain. Forming the polar cone like in (19) we thus get

PECP

(
x0,x�

)= {f ∈R
n : f
(
x� − x0)= 0, f

(
xi − x0)≤ 0 for 1 ≤ i ≤ a(�)

}
(22)

as the input cone for the double description algorithm. Its number of rows a(�)+ 1
is typically considerably smaller than the corresponding number for the cone (19),
though a(�) can vary significantly with �. As mentioned above, all of this can be
extended to k-dimensional faces of P that contain x0, where k ≥ 0 is arbitrary. The
cost of the “input preparation” for the corresponding cones to the analyzed by the
DDA increases, but the mechanics of carrying out the analysis are clear.

Using this new trick we can thus replace the single problem (19) by a total of
a typically smaller problems (22) to be analyzed by the DDA and this is the way
it was done by Christof, Jünger and Reinelt [9] who used this methodology for
k = 1 to determine all facets for the symmetric traveling salesman polytope on a
complete graph with m = 8 nodes. But rather than solving the a = 730 problems
that result from the number of extreme points that are adjacent to any given one of
this polytope, they reduced the number of edge figures to be analyzed to a total of
59 and this is how.

Claim 6 Let xa , xb and xc, xd be any two pairs of adjacent extreme points of P
and suppose that xc = Πxa , xd = Πxb for some Π ∈Π(P). Then fx ≤ f0 defines a
facet of ECP (xa,xb) if and only if (fΠT)x ≤ f0 defines a facet of ECP (xc,xd).

Facets and Rank of Integer Polyhedra 37

Proof Let fx ≤ f0 define a facet of ECP (xa,xb). Then fxa = fxb = f0 and fx ≤ f0
for all x ∈ P . Consequently, (fΠT)xc = fxa = f0, (fΠT)xd = fxb = f0 and for any
y ∈ P we get (fΠT)y = fx ≤ f0 since y = Πx for some x ∈ P . Let x̂ ∈ P be such
that f̂x = f0 and dimF(xa, x̂) = dimP − 1, where F(xa, x̂) is the face of smallest
dimension of P containing both xa and x̂. Since fx ≤ f0 defines a facet of P such
an x̂ ∈ P exists. Then Πx̂ ∈ P , (fΠT)Πx̂ = f0 and by Claim 4, dimF(Πx̂,xc) =
dimP − 1. Thus (fΠT)x ≤ f0 defines a facet of ECP (xc,xd) and the rest follows
by symmetry. �

We do not require distinctness of the extreme points xa , xb, xc and xd in Claim 6.
So it may be that xa = xc = x0, say, and let

Π
(
x0)= {Π ∈Π(P) : x0 = Πx0}, (23)

be the permissible permutations for P that leave the extreme point x0 ∈ P invariant.
Since In ∈Π(x0) this set is always nonempty and it forms evidently a subgroup of
Π(P). E.g., for the symmetric traveling salesman polytope every subgroup Π(x0)

has precisely 2m elements where m is the number of nodes of the graph. The 2m
elements in Π(x0) come about by reindexing the nodes of the graph—in both a
forward and backward sense—while maintaining the same order of the nodes as in
the tour x0.

The reduction in the number of cones (22) to be analyzed by the DDA that results
from an application of Claim 6 with the special permutations in Π(x0) can be enor-
mous: for the symmetric traveling salesman problem with m = 8 nodes 59 cones
(edge figures) suffice rather than the 730 original ones (which is exactly the number
analyzed in [9]), for m= 9 we get 216 instead of 3,555 and for m= 10 we get 1,032
cones to analyze instead of the 19,391 original ones. By a complete application of
Claim 6 these numbers can be reduced even further; see Table 5 of Sect. 7.

6 Rank of Facets and Integer Polyhedra

To bring order into the facial structure of polyhedra related to combinatorial opti-
mization problems we introduce next the notions of the “rank” of a facet and of a
polyhedron.

Let F be the family of row vectors (h, h0) ∈ R
n+1 of the matrix (H,h) of an

ideal description (2) of a pointed rational polyhedron P ⊆ R
n. So every (h, h0) ∈F

defines a facet Fh of P via (15) and vice versa, for every facet of P there is some
row of (H,h) that defines it. For simplicity of notation we say that F is ideal for P .
The set

relintP = {x ∈R
n : Ax = b, fx < f0 ∀(f, f0) ∈F

}

is the relative interior of P . As before we denote by vertP the set of extreme points
of P and by exrayP the set of the direction vectors of all extreme rays of P .

38 M.W. Padberg

To make the notion of rank precise we need some knowledge about the facets of
the facets of a polyhedron, i.e., the ridges of the polyhedron P . For (f, f0) ∈ F the
facet

Ff = {x ∈ P : fx = f0}
of P defined by fx ≤ f0 is itself a pointed polyhedron of dimension dimP − 1 in
R
n satisfying vertFf ⊆ vertP and exrayFf ⊆ exrayP . Let

Hf = {(h, h0) ∈ F : dimFf ∩ Fh = dimP − 2
}
, (24)

i.e., (h, h0) ∈ Hf if and only if the facet-defining inequality hx ≤ h0 of P defines
a facet of the polyhedron Ff, and (Hf ,hf) be the matrix of all (h, h0) ∈ Hf . If
dimP < 2 then Hf = ∅ and P = ∅, or P = {x} is a singleton, or P is a line segment
or a halfline in R

n. We define the rank of P to equal −1 in these cases and assume
throughout that dimP ≥ 2 and relintP 	= ∅.

Lemma 1 For every (f, f0) ∈F Hf is ideal for Ff and

Ff = {x ∈ R
n : Ax = b, fx = f0,Hf x ≤ hf

}

is an ideal linear description of Ff.

Proof Suppose dimP ≥ 2 and that Hf is not complete. Then there exists some
facet H of Ff such that H 	= {x ∈ Ff : hx = h0} for all (h, h0) ∈ Hf . Since H is
a facet of Ff there exists some (g, g0) ∈ R

n+1 such that gx ≤ g0 for all x ∈ Ff and
H = {x ∈ Ff : gx = g0}. Let

νx = max

{
gx − g0

f0 − fx
: x ∈ vertP with fx < f0

}
(25)

and νx = −∞ if (25) does not exist.
Let vertP = {x1, . . . ,xp} and exrayP = {y1, . . . ,yr}. Since fx ≤ f0 defines a

facet of P we have fyi ≤ 0 for all 1 ≤ i ≤ r . Moreover, fyi = 0 implies gyi ≤ 0
for any i ∈ {1, . . . , r} since gx ≤ g0 defines the facet H of Ff. If νx > −∞ and
gyi + νxfyi ≤ 0 for 1 ≤ i ≤ r then we claim that hx ≤ h0 where h = g + νxf and
h0 = g0 + νxf0 defines a facet F ′ of P which is different from Ff. By (25)

(
gxi − g0

)≤ νx
(
f0 − fxi

) ∀xi ∈ vertP with fxi < f0

and thus hxi = (g + νxf)xi ≤ g0 + νxf0 = h0 for xi ∈ vertP with fxi < f0. If xi ∈
vertP with fxi = f0 then gxi ≤ g0 and thus hxi ≤ h0 as well. Let x ∈ P . Then
x =∑p

i=1 μixi +∑r
j=1 λjyj for some μi ≥ 0 with

∑p

i=1 μi = 1 and λj ≥ 0. Thus
hx ≤ h0 for all x ∈ P . Since H is a facet of Ff there exist � = dimP − 1 affinely
independent x1, . . . ,x� with xi ∈ Ff and hxi = h0 for 1 ≤ i ≤ �. Let x0 be a vertex of
P for which the maximum in (25) is attained. Then hx0 = h0 and x0,x1, . . . ,x� are
affinely independent because fx0 < f0 and fxi = f0 for i = 1, . . . , �. Thus hx ≤ h0

Facets and Rank of Integer Polyhedra 39

defines a facet of P which is different from Ff and dimFf ∩ Fh = dimP − 2. Since
F is ideal for P , there exists some (f′, f ′

0) ∈ F such that F ′ = {x ∈ P : f′x = f ′
0} =

{x ∈ P : hx = h0}. But

Ff ∩ F ′ = {x ∈ P : fx = f0, f′x = f ′
0

}= {x ∈ P : fx = f0,hx = h0}
= {x ∈ P : fx = f0,gx = g0} =H,

contradicting H 	= {x ∈ Ff : hx = h0} for all (h, h0) ∈ Hf . Thus Hf is complete
for Ff. Suppose that gyi + νxfyi > 0 for some 1 ≤ i ≤ r or that νx = −∞. If νx =
−∞ then fx = f0 for all x ∈ vertP . If fy = 0 for all y ∈ exrayP , then Ff = P which
contradicts dimFf < dimP and thus fyi < 0 for some i ∈ {1, . . . , r}. So suppose
νx > −∞ and gyi + νxfyi > 0 for some i ∈ {1, . . . , r}. If fyi = 0 for all i then
0 < gyi + νxfyi ≤ 0 for some i ∈ {1, . . . , r} is a contradiction because gyi ≤ 0 for
all i in this case as well. Thus fyi < 0 for at least one i ∈ {1, . . . , r} in both subcases
and the scalar

νy = max

{
−gyi

fyi
: fyi < 0,1 ≤ i ≤ r

}

is well defined in the second case. We set ν = max{νx, νy} and claim hx ≤ h0 with
h = g+νf and h0 = g0 +νf0 defines a facet F ′ of P with F ′ 	= Ff. By the definition
of ν

hyi = gyi + νfyi ≤ 0 ∀i ∈ {1, . . . , r} with fyi < 0

and hyi ≤ 0 for all i ∈ {1, . . . , r} with fyi = 0, since gyi ≤ 0 in this case. Thus
hy ≤ 0 for all y ∈ exrayP . Like above, using ν ≥ νx, we show that hx ≤ h0 for all
x ∈ vertP and thus hx ≤ h0 for all x ∈ P . If ν = νx then the claim follows like in
the first case and we are done. If ν = νy let y ∈ exrayP be such that equality in
the definition of νy is attained. Since H is a facet of Ff there exist � = dimP − 1
affinely independent x1, . . . ,x� with xi ∈ Ff and hxi = h0 for 1 ≤ i ≤ �. Moreover,
by construction h(xi +αy)= h0 for 1 ≤ i ≤ � and α ≥ 0. Thus x1, . . . ,x�,x1 +y are
all in P and affinely independent. For suppose not. Then λ0(x1 + y)+∑�

i=1 λix
i =

0 for some nonnull λ0, λ1, . . . , λ� with λ0 +∑�
i=1 λi = 0 and thus λ0 	= 0 since

x1, . . . ,x� are affinely independent. Thus x1 + y =∑�
i=1 λ

′
ix
i for some λ′

1, . . . , λ
′
�

with
∑�

i=1 λ
′
i = 1 and fy = 0 because fxi = f0 for 1 ≤ i ≤ �. This contradicts fy < 0

and we conclude like in the first case that Hf is complete for Ff.
Suppose that Hf is not minimal. Since Hf is complete for Ff there exists

(h, h0) ∈ Hf and a facet H f
h of Ff such that

H f
h = {x ∈ P : Ax = b, fx = f0,hx = h0,g1x = g1

0, . . . ,gkx = gk0
}

for (g1, g1
0), . . . , (g

k, gk0) ∈Hf − (h, h0) and some k ≥ 1. Since dimH f
h = dimP −

2 = n− r(A)− 2 it follows that gi = λiA + αif + βih and gi0 = λib + αif0 + βih0

for some vectors λi and scalars αi and βi , i.e., the (gi , gi0) are linearly dependent
on (A,b), (f, f0) and (h, h0). Let xf and xh be any points in relintFf and relintFh,

40 M.W. Padberg

respectively. It follows from Fh 	= Ff that hxh = h0, fxh < f0, gixh < gi0 and fxf =
f0, hxf < h0, gixf < gi0, for all i = 1, . . . , k. Thus, e.g.,

gixh = λiAxh + αifxh + βihxh = λib + αifxh + βih0 < gi0 = λib + αif0 + βih0.

Consequently, αi(f0 − fxh) > 0 and αi > 0. Multiplying by xf we find likewise that
βi > 0. Consequently, gix = gi0 if and only if fx = f0 and hx = h0 for all x ∈ P .
Thus none of the gix ≤ gi0 defines a facet of P . This contradicts the assumption that
F is ideal for P . �

The last part of the proof of the lemma shows also that every ridge of P is the
intersection of two unique facets of P . A shorter, nonconstructive proof of this fact
is possible using the methods of Chap. 7.2.2 of [38]. The proof given here is useful:
given a pointwise generator of P it describes a lifting procedure to compute facets
of P from the facets of a facet of P .

Definition 6 For every (f, f0) ∈ F we call the polyhedron

P
(
Hf
)= {x ∈R

n : Ax = b, fx ≤ f0,Hf x ≤ hf
}

(26)

the facet figure of P at the facet Ff.

Clearly, P(Hf) 	= ∅, P(Hf) is pointed, the linear description of P(Hf) is ideal,

Ff � P � P
(
Hf
)

and P =
⋂

(f,f0)∈F
P
(
Hf
)
.

Let P ⊆ R
n be an integer polyhedron, i.e., every x ∈ vertP satisfies x ∈ Z

n, and
moreover, relintP 	= ∅. For any such polyhedron let Fmin ⊆ F be such that

Pmin = {x ∈ R
n : Ax = b, fx ≤ f0 ∀(f, f0) ∈Fmin

}
(27)

meets the following two requirements

(i) P = conv(Pmin ∩Z
n)

(ii) P ∩Z
n
� P h

min ∩Z
n ∀(h, h0) ∈ Fmin, where

P h
min = {x ∈R

n : Ax = b, fx ≤ f0 ∀(f, f0) ∈ Fmin − (h, h0)
}

and the containment in (ii) is proper. Given F we can construct Fmin e.g. as fol-
lows: Initially we set Fmin = F . If dropping (h, h0) does not change the convex hull
(i), we drop it from Fmin and continue to do so until every remaining element in
Fmin satisfies (ii). Since |F |<∞ this procedure is finite. By construction we have
dimPmin = dimP , Pmin is pointed, Fmin 	= ∅ since relintP 	= ∅.

We call any subset Fmin ⊆ F satisfying (i) and (ii) a minimal formulation for the
integer polyhedron. Minimal formulations of integer polyhedra need not be unique.

Facets and Rank of Integer Polyhedra 41

An example of nonuniqueness is given by the set packing or vertex packing polytope

VP(G)= conv
({

x ∈ {0,1}|V | : xu + xv ≤ 1 ∀e = (u, v) ∈E
})
,

where G = (V ,E) is a finite undirected graph on n = |V | nodes; see [32, 33, 35–
37]. In this case every minimal “covering” of the edge set E of G by some of its
“cliques” (= maximal complete vertex-induced subgraphs) together with the non-
negativity conditions provides a minimal formulation for the integer polytope and a
unique minimal formulation simply does not exist in the general case. On the other
hand, in many cases of interest to us, such as, e.g., in the case of the symmetric and
asymmetric traveling salesman polytopes, the corresponding minimal formulations
appear to be unique (see Sect. 7).

Given an ideal family F for an integer polyhedron P ⊆ R
n we call

F0 = {(f, f0) ∈ F : (f, f0) belongs to some minimal formulation Fmin of P
}

the rank zero facets of P . It follows that F0 is a uniquely defined subset of F . We
call

P0 = {x ∈ R
n : Ax = b, fx ≤ f0 ∀(f, f0) ∈F0

}

the rank zero formulation of P . In the case of the set packing or vertex packing
polytope

VP(G) = conv
({

x ∈ Z
n : ACx ≤ eC,x ≥ 0

})

= {x ∈ R
n : ACx ≤ eC,AF x ≤ f0,x ≥ 0

}
,

where ACx ≤ eC are all clique constraints, x ≥ 0 are the nonnegativity constraints
and AF x ≤ f0 all other facet-defining inequalities of VP(G) in primitive normal
form. Every clique constraint is of the form

∑
j∈K xj ≤ 1 where K ⊆ V is the

node set of a clique in G. Every row fx ≤ f0 of AF x ≤ f0 consists of relatively
prime integers 0 ≤ fj ≤ f0 for all j ∈ V and f0 ≥ 2. F0 consists of all clique
inequalities of G plus all nonnegativity constraints. [The referee pointed out that a
formal proof is needed that no facet-defining inequality with f0 ≥ 2 belongs to F0.
I agree with the referee, but have at present no such proof. This makes the notion of
rank proposed here, possibly, formulation-dependent. However, I continue to think
that this is not the case.]

If F = F0 then all facets of P have rank zero and we define the rank ρ(P) of
the polyhedron P to be zero. Examples of integer polyhedra of rank zero are the
n-dimensional simplex Sn, the unit hypercube Cn

Sn =
{

x ∈ R
n : x ≥ 0,

n∑

j=1

xj ≤ 1

}
, Cn = {x ∈R

n : 0 ≤ xj ≤ 1 for 1 ≤ j ≤ n
}

and the vertex packing polytope VP(G) = {x ∈ R
n : ACx ≤ eC,x ≥ 0} of a perfect

graph G where AC is defined above, see [33, 34]. There are other examples, e.g.,
polyhedra that are defined with respect to totally unimodular, ideal 0–1 matrices,
etc.

42 M.W. Padberg

If F0 	= F then we proceed inductively as follows. Given ρ + 1 nonempty, pair-
wise disjoint subsets F0, . . . ,Fρ of F we let

Pρ =
{

x ∈ R
n : Ax = b,hx ≤ h0 ∀(h, h0) ∈

ρ⋃

�=0

F�

}
. (28)

A facet of P defined by (f, f0) ∈ F� is a facet of rank � and fx ≤ f0 is a rank
� inequality where 0 ≤ � ≤ ρ. If F = ⋃ρ

�=0 F� then ρ(P) = ρ, i.e., the integer
polyhedron P has rank ρ. Otherwise, let

Fρ+1 =
{
(f, f0) ∈ F −

ρ⋃

�=0

F� :

∃(h, h0) ∈
ρ⋃

�=0

F� s.t. dimFf ∩ Fh = dimP − 2

}
(29)

Theorem 1 If F 	=⋃ρ
�=0 F�, then Fρ+1 	= ∅ and x∗ 	∈ Pρ+1 for all x∗ ∈ vertPρ −

Z
n.

Proof If F 	= ⋃ρ
�=0 F�, then P 	= Pρ and there exists x∗ ∈ vertPρ − Z

n. Since
x∗ ∈ vertPρ there exists (h, h0) ∈⋃ρ

�=0 F� such that hx∗ = h0. If x∗ ∈ Fh, then
x∗ ∈ P since Fh ⊂ P , which contradicts x∗ /∈ P . Consequently, x∗ /∈ Fh and by the
lemma there exists a (f, f0) ∈ Hh such that fx∗ > f0 and thus (f, f0) /∈⋃ρ

�=0 F�,
i.e., (f, f0) ∈Fρ+1. Since x∗ ∈ vertPρ −Z

n is arbitrary, the theorem follows. �

Since |F | < ∞ and since we augment the set
⋃ρ

�=0 F� at every step of the
above inductive process by at least one new element of F , the inductive process
is finite. Hence the rank ρ(P) of every integer polyhedron P ⊆ R

n is some well-
defined finite number. Moreover, the process produces a finite sequence of polyhe-
dra P0,P1, . . . satisfying

P0 � P1 � · · ·� Pρ(P) = P

with the property that all noninteger extreme points x∗ ∈ P� are eliminated from
P�+1 where 0 ≤ � < ρ(P) is arbitrary.

The notion of rank introduced here remains correct for mixed-integer rational
polyhedra P ⊆ R

n. In the case of mixed-integer polyhedra we have a partitioning
of x ∈ R

n into n1, say, “integer” variables ξ ∈ R
n1 and n − n1 “flow” variables

φ ∈ R
n−n1 . The requirement x ∈ Z

n is replaced by ξ ∈ Z
n1 . With the corresponding

notational changes we define the notions of the rank of facets as well as of a mixed-
integer rational polyhedron like above; see [40] and Chaps. 10.2–10.3 of [38] for
details.

In Fig. 3 we show two families of polytopes in R
2 of rank one and two, respec-

tively. The integer polytope on the top is given by

P = conv
{
x ∈ Z

2 : −Mx1 + x2 ≤ 1,Mx1 + x2 ≤ 3M + 1, x2 ≥ 0
}
,

Facets and Rank of Integer Polyhedra 43

Fig. 3 Polytopes in R
2 of

rank one and two

where M ≥ 2 is an arbitrary integer number, and the one on the bottom by

P = conv
{
x ∈ Z

2 : −Mx1 + 2x2 ≤ 2,Mx1 + 2x2 ≤ 7M + 2, x2 ≥ 0
}
,

where M ≥ 3 is an arbitrary odd integer number. The corresponding minimal formu-
lations are the polytopes P0 given by the respective linear programming relaxations
of the two constraint sets shown here and the corresponding subfamily F0 of F is
unique in both cases for the permitted values of the parameter M . The polytope on
the top has three facets of rank 0 and three facets of rank 1, namely x1 ≥ 0, x1 ≤ 3,
and x2 ≤M + 1. The polytope on the bottom has three facets of rank 0 as well. The
inequalities x1 ≥ 0, x1 ≤ 7, −�M/2�x1 + x2 ≤ 2, and �M/2�x1 + x2 ≤ 7�M/2�+ 2
define the four facets of rank 1 of the corresponding polytope while the facet defined
by x2 ≤ 3�M/2� + 2 has a rank of two. The bottom figure also shows the polytopes

44 M.W. Padberg

P0, P1 and P2 = P and their respective containment as an illustration of the second
part of the theorem.

Note 1 Different notions of the rank of an integer polyhedron can be found, e.g., in
the books by Nemhauser and Wolsey (Chap. II.1.2 in [30]) and Schrijver (Chap. 23.4
in [48]). Their concepts are based on the algorithm for integer programming due to
Gomory [16]; see also [15] and [10]. If one uses the Nemhauser and Wolsey notion,
the rank of a facet of a flat integer polyhedron may differ according to its different
representations by linear inequalities which is absolutely undesirable. An example
to this effect are the following three inequalities

a1x := x12 + x13 + x14 + x23 + x25 + x36 ≤ 4

a2x := x12 + x13 + 2x14 + x23 + 2x25 + 2x36 + x45 + x46 + x56 ≤ 8

a3x := x12 − 4x13 + 6x14 − 4x14 + x16 + 6x23 − 4x24 − 4x25

+ x26 + x34 + x35 − 4x36 + x45 − 4x46 + 6x56

≤ 16

which define the same facet of Q6
T , i.e., the symmetric traveling salesman polytope

on 6 cities. Since max{a1x : x ∈ Q6
S} = 4.5, where Q6

S is the relaxation with all sub-
tour elimination constraints, the inequality a1x ≤ 4 gets a rank of 1 in this notion,
since max{a2x : x ∈ Q6

S} = 9, the inequality a2x ≤ 8 has probably a rank of 2 and
since max{a3x : x ∈ Q6

S} = 21 the inequality a3x ≤ 16 has a rank of at least two ac-
cording to this notion. Yet they all define the same facet of Q6

T . Thus the rank of Q6
T

that we get from this concept depends entirely upon the representation of the facets
of Q6

T that we work with. Such an outcome is not possible with the notion of rank
that we propose here because the inductive process does not work with any particu-
lar representation of the facets of P . Schrijver’s notion of rank gets formally around
the representation dependency by choosing a formulation of P and determining the
rank of P relative to the given formulation. In the case of flat polyhedra many dif-
ferent formulations of an integer polyhedron exist and it is not known in what way
the resulting “rank” depends on the formulation. Like the previous one his notion
employs Gomory’s 1958 algorithm which has been known from its beginnings to be
a bad algorithm for integer programs. In either case, if one calculates, for instance,
the rank of the top integer polytopes of Fig. 3 from the textbooks, one finds a rank
of something like M which is absurd and easily explained by the poor convergence
properties of Gomory’s algorithm; see [33]. Except in rare instances, the textbook
notions and the concept of the rank of integer P introduced here will lead to radi-
cally different conclusions about the rank and the complexity of the facial structure
of integer polyhedra; see [40] for more on this.

The reason for the irrelevancy of the textbook notions for the rank of integer poly-
hedra and especially of those related to combinatorial problems can be explained as
follows: Let A be any matrix of rationals of size m× n and of rank m, b a vector of

Facets and Rank of Integer Polyhedra 45

m rationals and

P = conv
{
x ∈ Z

n : Ax = b,x ≥ 0
}⊆ PLP = {x ∈R

n : Ax = b,x ≥ 0
}
.

For any μ ∈ R
m it follows that �μA� ≤ μA where �α� is the largest integer less than

or equal to α and �μA� is the same componentwise. Since x ≥ 0 we get �μA�x ≤
μAx, μAx = μb for all for all x ∈ R

n with Ax = b and thus P ⊆ PLP ⊆ {x ∈
R
n : �μA�x ≤ μb}. But �μA�x ∈ Z and �μA�x ≤ �μb� for all x ∈ Z

n, and any
x ∈ Z

n with �μA�x ≤ μb stops the rounddown of μb to �μb�. Thus, coincidentally,
�μA�x ≤ �μb� for all x ∈ P as well. Hence no particularities of P or of a specific
combinatorial problem are used in the derivation of these “cuts”. To get Gomory’s
classical “fractional” cut, just choose μ = uiB−1 where B is a (feasible) basis for
the associated linear program, ui ∈R

m any ith unit vector such that uiB−1b /∈ Z and
do the algebra or consult [39] or do both. The fact that Gomory’s 1958 cuts worked
for Edmonds’ (1965) matching polytope [13] is absolutely no reason to expect the
same for other combinatorial problems like for vertex packing or traveling salesman
polytopes and even less for general integer polyhedra.

7 The Facial Structure of “Small” STS Polytopes

We have applied the foregoing methodology to analyze the facial structure of sym-
metric traveling salesman (STS) polytopes where the underlying graph is complete
and has up to 10 nodes. As it is usual we denote from now on by n the number
of nodes of the graph and thus the dimension of the space that we work in equals
n(n− 1)/2.

The analysis of “small” STS polytopes has quite some history which begins ap-
parently with work done in the 1950s—see [23, 26] and [31]. These early works
were thoroughly forgotten, though, until Martin Grötschel uncovered them during
an extensive literature search while writing his dissertation around 1975. In the case
of the STS polytope complete descriptions of Qn

T for n≤ 6 and a partial description
for n = 7 were known in the fifties. The case n = 7 was completed by Boyd and
Cunningham [3]. For n = 8 Naddef and Rinaldi [28] obtained among other results
all but 60,480 of the 194,187 facets of this polytope, the complete set was computed
and published by Christof, Jünger, and Reinelt [9]. Until very recently, I believed
that my calculations for n= 9 and n= 10 were new. However, as Gerd Reinelt [46]
pointed out to me, identical results for these two cases, see Table 1, were obtained
independently by him and Christof using a similar methodology, see, e.g., [6, 8].

Similar work has been carried out for the asymmetric traveling salesman poly-
tope, see [2, 14, 27], the multicut polytope, see [12], the linear ordering polytope,
see [21], the minimum cut polyhedron, see [1], the quadratic assignment polytope,
see [25] and [43], and possibly other polytopes or polyhedra as well. All of these
works were concerned with finding explicit “lists” of all facet-defining inequalities
for the respective problems. Here we study the STS polytope with up to 10 nodes.

46 M.W. Padberg

Table 1 The facial structure of the polytopes Qn
T for 3 ≤ n≤ 10

Nodes 3 4 5 6 7 8 9 10 n

Variables 3 6 10 15 21 28 36 45 1
2n(n− 1)

dimQn
T 0 2 5 9 14 20 27 35 1

2n(n− 3)

π(n) 1 3 12 60 360 2,520 20,160 181,440 1
2 (n− 1)!

π0(n) 0 2 10 41 168 730 3,555 19,391 ?

φ(n) 0 3 20 100 3,437 194,187 42,104,442 ≥51,043,900,866 ?

φ0(n) 0 2 10 27 196 2,600 88,911 ≥13,607,980 ?

κ(Qn
T) 0 1 2 4 6 24 192 ≥15,379 ?

ρ(Qn
T) −1 0 0 1 2 3 4 ? ?

diamQn
T 0 1 2 2 2 2 2 2 ≤4

It remains to bring some order into the resulting information about this incredibly
complex family of polytopes; see Table 1.

Let A be the node versus edge incidence matrix of the complete graph G =
(V ,E), say, having n nodes and n(n− 1)/2 edges. As usually, we denote by

Qn
A = {x ∈R

n(n−1)/2 : Ax = 2,0 ≤ x ≤ 1
}

the assignment or 2-matching relaxation of the STS problem. Qn
A has integer and

noninteger extreme points. The incidence vector of every tour in G is an extreme
point of Qn

A, but Qn
A also has integer extreme points that correspond to subtours.

These are ruled out by the subtour elimination constraints (SECs) of Dantzig,
Fulkerson, and Johnson [11]. They give rise to the subtour polytope relaxation of
the STS problem

Qn
S = {x ∈R

n(n−1)/2 : Ax = 2,x(S)≤ |S| − 1 for S ⊂ V with |S| ≥ 2,x ≥ 0
}
,

where x(S) is the sum of all components xe of x such that e is an edge of G with
both endpoints in the set S ⊂ V = {1, . . . , n}.

The polytope Qn
S provides a formulation for the STS problem: every integer ex-

treme point of Qn
S corresponds to the incidence vector of some tour in G and vice

versa. Thus the STS polytope, i.e., the convex hull of the incidence vectors of all
tours in G, satisfies

Qn
T = conv

(
Qn
S ∩Z

n(n−1)/2).

The STS problem consists of minimizing some linear function over the polytope
Qn
T which has a dimension of n(n− 3)/2 for all n≥ 3; see, e.g., [17].
There are 2n − n− 2 possible SECs in a complete graph and not all of them are

needed because x(S)≤ |S| − 1 if and only if x(V − S)≤ |V − S| − 1 for all x ∈Qn
A

and nonempty S ⊂ V . It was shown among other results by Grötschel and Padberg
[17–20] that the SECs define precisely 2n−1 − n − 1 distinct facets of Qn

T for all
n≥ 5. Moreover, the corresponding smaller set of SECs together with the equations
Ax = 2 and the nonnegativity x ≥ 0 suffice to formulate the STS problem correctly.

Facets and Rank of Integer Polyhedra 47

We also showed that the nonnegativity conditions define distinct facets of Qn
T for

all n≥ 5 that are distinct from those defined by the SECs.
For the purpose of a rank analysis of the facets of Qn

T , we take the reduced
set of SECs plus the nonnegativity constraints as the rank zero facets of Qn

T . They
constitute the family F0 and the subtour polytope Qn

S is a minimal formulation FS
min

for Qn
T . It is readily shown using [18, 19] that FS

min satisfies the requirements (27)
of Sect. 6 and thus FS

min ⊆ F0 as defined there. I state that FS
min = F0 and thus that

the STS problem has a unique minimal formulation. [The referee pointed out that
FS

min = F0 needs a formal proof and I agree. However, I will leave such a formal
proof or (or disproof ?) as “food for thought” for the younger talents in our field.]

In Table 1 we summarize the key characteristics of the facial structure of the STS
polytopes Qn

T for 3 ≤ n≤ 10. We use the following notation:

π(n) = the number of tours (extreme points) of Qn
T ,

π0(n) = the number of tours adjacent to any given tour of Qn
T ,

φ(n) = the number of facets of Qn
T ,

φ0(n) = the number of facets that are tight at any given tour of Qn
T ,

κ
(
Qn
T

) = the class number of different facet types of Qn
T ,

ρ
(
Qn
T

) = the rank of Qn
T .

diamQn
T is the diameter of the STS polytope Qn

T , i.e., the maximum over all or-
dered pairs (x,y) of extreme points of Qn

T of the minimum number of edges of
Qn
T that must be traversed to reach x from y. For asymmetric traveling salesman

polytopes we know that the diameter equals two for all n≥ 6, i.e., it is in particular
independent upon the number n of nodes of the underlying directed graph; see [42].
In [20] we conjectured that diamQn

T = 2 for n ≥ 5. For 5 ≤ n ≤ 12 this conjecture
has been verified by way of a computer program; see [49]. Rispoli and Cosares [47]
have shown that diamQn

T ≤ 4 for all n ≥ 5, thus establishing a small upper bound
on the diameter of this family of polytopes that does not depend on the number n of
nodes of the graph.

Facet defining inequalities other than the SECs are known for the STS poly-
tope Qn

T . See [24] for an excellent survey. From a computational point of view the
following r-comb inequalities are the ones that are most frequently used. Let H ⊆ V

and Ti ⊆ V for 1 ≤ i ≤ k be any subsets of nodes satisfying

|H ∩ Ti | ≥ 1, |Ti −H | ≥ 1 for 1 ≤ i ≤ k,

Ti ∩ Tj = ∅ for 1 ≤ i < j ≤ k,

where k ≥ 3 is an odd integer. The configuration C = (H,T1, . . . , Tk) in the graph
G is called a comb in G with H being the “handle” and T1, . . . , Tk the “teeth” of the

48 M.W. Padberg

comb. We partition each Ti into ri ≥ 1 nonempty sets T j
i such that

∣∣H ∩ T
j
i

∣∣≥ 1,
∣∣T j

i −H
∣∣≥ 1 for 1 ≤ j ≤ ri ,

T
j
i ∩ T �

i = ∅ for 1 ≤ j < �≤ ri ,

for all 1 ≤ i ≤ k. Then the r-comb inequality, see [38],

x(H)+
k∑

i=1

(
ri∑

j=1

x
(
T
j
i

)+
∑

1≤�<j≤ri

(
x
(
T �
i ∩H : T j

i −H
)+ x

(
T �
i −H : T j

i ∩H
))
)

≤ |H | +
k∑

i=1

(|Ti | − ri − 1
)+
⌊
k

2

⌋

is a facet defining inequality for Qn
T . If ri = 1 for 1 ≤ i ≤ k, then we have the comb

inequalities that were shown to define facets of Qn
T by Grötschel and Padberg [19].

If r1 = 2, ri = 1 otherwise then we have the chain inequalities of Padberg and Hong
[41]. The assertion that r-comb inequalities are facets defining for Qn

T follows, e.g.,
from the work of Naddef and Rinaldi [29]. The prototype inequalities for r-combs
can be seen in Fig. 5 and Fig. 6. They were known to us in early 1975 including
the only chain inequality that exists for Q8

T . They were found by us empirically by
trying to cut off “fractional” extreme points of LP relaxations that we encountered
in small-scale numerical experimentation. When the comb and chain inequalities
were tested by Martin Grötschel (September 1975) for their facet defining proper-
ties by way of a computer program at the University of Bonn, it turned out that
the dimension of the face of Q8

T defined by the chain inequality (facet type 7 in
Fig. 5) was smaller than required, whereas the comb inequality (in particular the
right-most one in Fig. 6) turned out to be facet defining for Q8

T . As a result we
concentrated our effort on proving comb inequalities to be facet defining for Qn

T ,
but ignored the chain constraints. By the time it was found that the computer pro-
gram used by Grötschel in the rank calculation had a “bug”—to fix the bug was
one of Michael Jünger’s and Gerd Reinelt’s first tasks as research assistants at Bonn
University—we had indeed more or less “forgotten” the chain constraints. They
were shown to be facet defining by Sylvia Boyd and Mark Hartmann around 1990;
see [3].

In Table 2 we summarize the knowledge about the number of facet defining in-
equalities for Qn

T where 6 ≤ n ≤ 10 up to about 1980. The exact number νC(n) of
comb facets of Qn

T , see [19], is given by

νC(n) =
n−3∑

q=3

n−q∑

j=3

min{j,q}∑

k=3
k odd

q∑

p=k

k∑

�=0

k∑

h=0

(−1)�+h

2k!

×
(
n

q

)(
n− q

j

)(
q

p

)(
k

�

)(
k

h

)
(k − �)j (k − h)p.

Facets and Rank of Integer Polyhedra 49

Table 2 Known and unknown facets of Qn
T for 6 ≤ n≤ 10 as of 1980

Nodes 6 7 8 9 10 n

Vars 15 21 28 36 45 1
2n(n− 1)

SECs 25 56 119 246 501 2n−1 − n− 1

Combs 60 2,100 42,840 667,800 8,843,940 νC(n)

φ(n) 100 3,437 194,187 42,104,442 ≥51,043,900,866 ?

100 % 63 % 22 % 1.6 % ≤0.017 % ?

The formula for νC(n) was computed—with the help of Rabe von Randow of
Bonn University—around 1976. Given the enormous number of facet defining in-
equalities that were known to us we began to optimize larger scale instances of sym-
metric traveling salesman problems around that time. With hindsight, it is fair to say
that our ignorance of the true numbers φ(n) for Qn

T was beneficial in this endeavor
because, otherwise, we might have been discouraged to try out numerical experi-
mentation. On the other hand, today instances with 10,000 cities or more have been
optimized using essentially only comb inequalities. It is therefore fair to conjecture
that some facets of Qn

T , such as, e.g., those defined by the r-comb inequalities, are
relatively more important than other ones. Whence our desire to bring some order
into the facial structure of Qn

T by “ranking” its facets.
To arrive at the numbers displayed in all tables (except dimQn

T , π(n) and
diamQn

T), we have written several computer programs. To find the number π0(n)

of adjacent extreme points to a given one, e.g., the one corresponding to the tour
1, . . . , n, we use the CPLEX subroutines in a straightforward enumerative way. Then
each edge of Qn

T is subjected to the symmetry tests of Sect. 4 and Sect. 5 to reduce
the number of edge figures to be analyzed. The output of this part of the overall
program is a “problem file” of edge figures to be analyzed by the double description
algorithm DDA. The facets for each edge figure from the problem file are calculated
in a second program and classified like discussed in Sect. 2. This gives the entries
for φ(n), φ0(n), and κ(Qn

T) of Table 1. Only one representative for each facet type
is generated and stored, the counting of the respective totals φ(n) and φ0(n) is done
in a separate subroutine. This program also calculates the normal form representa-
tion and the minimum positive support representations of each facet type. The rank
analysis is done in a third program that implements the mathematics of Sect. 6 in an
enumerative way.

As always in computer-based calculation we must leave a margin for error due
to possibly remaining “bugs” in the programs. The numbers for Qn

T —except for the
rank ρ(Qn

T) which is a new concept—agree, however, exactly with the previously
published results for 3 ≤ n ≤ 8 and the same programs were used unchanged for
7 ≤ n ≤ 9 to produce all numbers of this paper. For n ≤ 6 all edges of Qn

T (after
the corresponding reductions) were used, while for 7 ≤ n ≤ 9 all edges of Qn

T that
are edges of Qn

A were also excluded from consideration, which has a mathematical
justification.

50 M.W. Padberg

Fig. 4 Irreducible representations of facet types 4, 5, 6 of Q7
T

For n = 10 we computed an initial set of facet types by this procedure as well.
The corresponding edge figures, however, turned out to have more facets than we
could calculate with our computing equipment at the time and so we changed the
procedure as follows. For the initial set of about 2,000 facet types we compute all
facets of each facet and classify them as known and unknown ones. For “unknown”
facets we store a representative which is added to the list of facet types and later
subjected to the same procedure as before. This procedure is then iterated until the
program finds no new unknown facets. Clearly, this procedure need not find all
facets of Q10

T and we believe that Q10
T has indeed more facets than we have found.

In Fig. 4 and Fig. 5 we depict the graphs of the minimal positive support rep-
resentations of the facets of Qn

T having rank 1 or higher for n = 7 and n = 8. The
thickness of each arc corresponds to the numerical value of the respective inequality
in less-than-or-equal-to form and the nonzero coefficients range from 1 to 4. Coef-
ficients of 4 are drawn as heavy dotted lines. Thus Fig. 4 depicts 3,360 and Fig. 5
194,040 distinct facets of Qn

T for n = 7 and n = 8. Figure 6 shows two “comb”
forms of the respective facet types of Q8

T . Note that the facet types 4, 5 and 6 of Q7
T

are “inherited” by Q8
T (types 5, 6 and 12) and that, e.g., the facet type 15 of Q8

T is
obtained by “lifting” facet type 5 of Q7

T .
A more detailed breakdown of the facets of Qn

T for 6 ≤ n ≤ 10 is described be-
low and the numerical experiments (see Table 1 and Table 8) suggest the following
conjecture.

Conjecture 1 ρ(Qn
T)= n− 5 for all n≥ 5.

Let x0 be an extreme point of Qn
T and x1 ∈ Qn

T be an extreme point of Qn
T that is

adjacent to x0 on the polytope Qn
T , i.e., x1 is a neighbor for x0. The face of minimal

dimension of Qn
A, of Qn

S containing both x0 and x1 is denoted by FA(x0,x1) and
FS(x0,x1), respectively. Table 3 and Table 4 show the breakdown of the neighbors
of any extreme point of Qn

T according to the dimensions 1,2,3, . . . of FA(x0,x1)

and FS(x0,x1) for 5 ≤ n≤ 10.
Common to the numbers of the two tables is a “linear” growth of the maximum

dimension of FA(x0,x1) and FS(x0,x1), respectively.

Conjecture 2 Let x0 	= x1 ∈ Qn
T be any two extreme points and FA(x0,x1),

FS(x0,x1) be the face of smallest dimension of Qn
A, of Qn

S , respectively, that
contains both x0 and x1. If n ≥ 5 and dimFA(x0,x1) ≥ n − 3 or n ≥ 7 and
dimFS(x0,x1)≥ n− 5, then x0 and x1 are not adjacent on Qn

T .

Facets and Rank of Integer Polyhedra 51

Fig. 5 Irreducible representations of facet types 5, . . . ,24 of Q8
T

Note 2 I have included Conjecture 2 for the simple reason that it is suggested by
my calculations (see Table 3 and Table 4) and that Papadimitriou’s 1978 result [45]
on the NP-completeness of the problem of checking the adjacency of tours on Qn

T

just goes against my intuition. Ting-Yi Sung and I [44] showed a related negative
statement about the non-polytime solvability of certain TSPs called “traps” to be

52 M.W. Padberg

Fig. 6 Comb forms of facet
types 5 and 9 of Q8

T

Table 3 Adjacency on Qn
T

and Qn
A

n 5 6 7 8 9 10

1 10 29 91 252 894 2,851

2 12 49 318 1,125 6,755

3 28 96 1,224 4,285

4 64 168 4,860

5 144 320

6 320

π0(n) 10 41 168 730 3,555 19,391

Table 4 Adjacency on Qn
T

and Qn
S

n 5 6 7 8 9 10

1 10 41 168 714 3,213 15,531

2 16 234 2,300

3 108 1,340

4 220

π0(n) 10 41 168 730 3,555 19,391

Table 5 Reduction of the
number of edge figures of Qn

T

using Claim 6

n 5 6 7 8 9 10

π0(n) 10 41 168 730 3,555 19,391

σ0(n) 2 7 16 59 216 1,032

ι0(n) 2 4 8 20 42 123

wrong. By refining the work on Conjecture 2 you may be able to prove P =NP or
to invalidate Papadimitriou’s claim. [The referee pointed out that adjacency on Qn

T

is coNP-complete rather than NP-complete.]

Table 5 summarizes the effect of applying Claim 6 of Sect. 5 to reduce the num-
ber of edge figures of Qn

T that have to be analyzed to determine the class number
κ(Qn

T) of distinct facet types of Qn
T . Like above π0(n) is the number of neigh-

bors of any extreme point of Qn
T and thus the number of edge figures to be an-

alyzed a priori, σ0(n) is the number of edge figures that results when Claim 6 is
applied for all permissible index permutations that leave x0 invariant, see (23), and
ι0(n) the number of “nonisomorphic” graphs that result from a full application of
Claim 6.

Facets and Rank of Integer Polyhedra 53

Table 6 Classification of the
facets of Qn

T for 5 ≤ n≤ 8 n κ νκ (n) νκ0 (n) d2
κ (n) dκ (n) nπκ (n) ρκ(n)

5 1 10 5 1
2 0.707 6 0

2 10 5 1
2 0.707 6 0

6 1 15 9 4
15 0.516 36 0

2 15 6 3
5 0.775 24 0

3 10 3 32
45 0.843 18 0

4 60 9 128
105 1.104 9 1

7 1 21 14 1
6 0.408 240 0

2 21 7 2
3 0.816 120 0

3 35 7 5
6 0.913 72 0

4 1,260 70 245
156 1.253 20 1

5 840 42 5
3 1.291 18 1

6 1,260 56 605
372 1.275 16 2

8 1 28 20 4
35 0.338 1,800 0

2 28 8 5
7 0.845 720 0

3 56 8 32
35 0.956 360 0

4 35 4 27
28 0.982 288 0

5 3,360 88 12
7 1.309 66 1

6 3,360 72 256
133 1.387 54 1

7 2,520 52 486
259 1.370 52 1

8 5,040 88 1452
749 1.392 44 1

9 2,520 44 27
14 1.389 44 1

10 5,040 88 529
280 1.375 44 1

11 10,080 160 361
182 1.408 40 1

12 5,040 80 2883
1498 1.387 40 1

13 10,080 152 600
301 1.412 38 1

14 10,080 152 256
133 1.387 38 1

15 3,360 48 289
140 1.437 36 1

16 20,160 264 1587
742 1.462 33 1

17 10,080 124 2
1 1.414 31 1

18 2,520 36 729
364 1.415 36 2

19 20,160 272 4107
2114 1.394 34 2

20 10,080 128 1849
952 1.394 32 2

21 10,080 120 900
427 1.452 30 2

22 20,160 240 2883
1400 1.435 30 2

23 20,160 176 4563
1988 1.515 22 3

24 20,160 176 3025
1344 1.500 22 3

54 M.W. Padberg

Table 7 Facets-of-facets analysis of Qn
T for 6 ≤ n≤ 8

κ 1 2 3 4 TT

1 14 14 6 24 58

2 14 6 4 12 36

3 9 6 15

4 6 3 9

ρκ(6) 0 0 0 1

κ 1 2 3 4 5 6 TT

1 20 20 30 720 480 600 1,870

2 20 10 15 180 120 120 465

3 18 9 4 36 67

4 12 3 1 2 18

5 13 3 3 18

6 10 2 2 2 16

ρκ(7) 0 0 0 1 1 2

κ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 TT

5 19 5 1 1 3 3 3 12 47

6 21 4 3 12 6 6 6 6 6 70

7 20 6 1 4 4 4 16 4 4 8 71

8 18 3 2 4 4 31

9 22 4 1 4 4 4 16 4 59

10 19 3 2 4 28

11 18 3 1 1 4 2 2 31

12 19 3 2 2 2 2 30

13 19 3 1 1 2 2 28

14 18 3 1 1 1 1 4 2 2 33

15 19 3 3 6 31

16 15 4 1 2 2 2 2 2 4 1 3 2 2 42

17 17 5 2 2 2 4 4 4 40

18 16 4 4 8 8 8 48

19 17 2 1 1 1 1 1 2 26

20 17 2 2 1 2 1 1 2 28

21 16 4 2 1 1 2 6 1 4 2 39

22 17 2 1 1 1 1 2 1 26

23 13 4 1 2 1 2 2 25

24 11 4 1 2 1 1 2 22

ρκ(8) 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 3 3

Facets and Rank of Integer Polyhedra 55

Table 8 Breakdown of the facet types and the facets of Qn
T by rank for 5 ≤ n≤ 10

ρ/n 5 6 7 8 9 10

0 2 3 3 4 4 5

1 1 2 13 64 604

2 1 5 83 4,506

3 2 39 6,176

4 2 ?

5 ?

κ(Qn
T) 2 4 6 24 192 ≥15,379

ρ/n 5 6 7 8 9 10

0 20 40 77 147 282 546

1 60 2,100 90,720 6,163,920 ?

2 1,260 63,000 22,150,800 ?

3 40,320 13,063,680 ?

4 725,760 ?

5 ?

φ(n) 20 100 3,437 194,187 42,104,442 ≥51,043,900,866

Table 6 provides more detail on the classification of the facets of Qn
T into equiv-

alence classes for 5 ≤ n≤ 8. The additional notation used is as follows:

νκ(n) = the number of facets of Qn
T of type κ,

νκ0 (n) = the number of facets of type κ that are tight at any given tour,

ρκ(n) = the rank of facet of type κ,

dκ(n) = the Euclidean distance from the center of facet of type κ,

nπκ (n) = the number of tours on facet of type κ,

where 1 ≤ κ ≤ κ(Qn
T). The �n/2� first types of the facets in each table correspond

to the nonnegativity constraints (type 1) and the upper bounds (type 2) followed by
the SECs with increasing |S| ≥ 3.

Table 7 and Table 8 give the results of our rank analysis of the facets of Qn
T

for 5 ≤ n ≤ 9. The top and middle parts of Table 7 give a complete picture for
6 ≤ n≤ 7, while for n= 8 we left out the facets-of-facets analysis for the rank zero
facets of Q8

T . Thus the facets defined by the nonnegativity constraints xe ≥ 0 have a
total of 58 facets for n= 6 (1,870 facets for n= 7). For n= 6 there are 14 facets of
the same type, 14 are upper bounds, 6 are SECs with |S| = 3 and 24 are “matching
constraints” (see the picture in the middle of Fig. 4). The remaining entries in these
tables are interpreted accordingly. TT are the respective totals, i.e., they are equal to

56 M.W. Padberg

the sum of the entries in each row. In Table 8 the rows correspond to rank 0, . . . ,5
and the columns to the number of nodes 5, . . . ,10 of the graph.

Work on ideal linear descriptions of “small” problems related to combinatorial
optimization problems has become much easier with the arrival of software for the
double description algorithm or the Fourier-Motzkin elimination algorithm. In the
early 1970s we had to “guess” some linear inequality by trial and error and then
prove it to be facet-defining (if it was). Now we can use the computer to experi-
ment with educated guesses from the linear description of small instances. As in the
work of Christof and Reinelt [7] we can use the descriptions of small instances for
the optimization of larger instances. We can form conjectures about the problem in
question—like the conjectures above. The observed linearity of the rank ρ(Qn

T) for
n= 5, . . . ,9 suggests to study the facial structure of Qn

T inductively, i.e., to try to de-
termine an ideal linear description of Qn+1

T from the one of Qn
T , to prove or disprove

Conjecture 1, to find an expression, e.g., for φ(n) of the form φ(n+ 1) = g(φ(n))

for n ≥ 5 and some suitable function g() and to continue the work that Martin
Grötschel and I began so many years ago.

Acknowledgements Supported in part by ONR grant N00014-96-0327 and by visits to Cologne
U (1996) and IASI-CNR Rome (1997). This paper was presented in preliminary form in a plenary
session at the XVIth ISMP in August 1997 at the EPFL in Lausanne, Switzerland, under the title
“Facets, Rank of Integer Polyhedra and Other Topics”.

I wish to thank the referee for his constructive criticism.

References

1. Alevras, D.: Small min-cut polyhedra. Math. Oper. Res. 24, 35–49 (1999)
2. Bartels, H.G., Bartels, S.G.: The facets of the asymmetric 5-city traveling salesman problem.

ZOR, Z. Oper.-Res. 33, 193–197 (1989)
3. Boyd, S.C., Cunningham, W.H.: Small traveling salesman polytopes. Math. Oper. Res. 16,

259–271 (1991)
4. Burger, E.: Über homogene lineare Ungleichungssysteme. Z. Angew. Math. Mech. 36, 135–

139 (1956)
5. Christof, T.: Low-dimensional 0/1 polytopes and branch-and-cut in combinatorial optimiza-

tion. Ph.D. thesis, University of Heidelberg, Heidelberg, Germany (1997)
6. Christof, T., Reinelt, G.: Combinatorial optimization and small polytopes. Top 4, 1–64 (1996)
7. Christof, T., Reinelt, G.: Algorithmic aspects of using small instance relaxations in parallel

branch-and-cut. Algorithmica 30, 597–629 (2001)
8. Christof, T., Reinelt, G.: Decomposition and parallelization techniques for enumerating the

facets of 0/1 polytopes. Int. J. Comput. Geom. Appl. 11, 423–437 (2001)
9. Christof, T., Jünger, M., Reinelt, G.: A complete description of the traveling salesman polytope

on 8 nodes. Oper. Res. Lett. 10, 497–500 (2001)
10. Chvátal, V.: Edmonds polytopes and a hierarchy of combinatorial problems. Discrete Math. 4,

305–337 (1973)
11. Dantzig, G.B., Fulkerson, D.R., Johnson, S.M.: Solution of a large-scale travelling salesman

problem. Oper. Res. 2, 393–410 (1954)
12. Deza, M., Grötschel, M., Laurent, M.: Complete descriptions of small multicut polytopes.

In: Applied Geometry and Discrete Mathematics, pp. 221–252. Am. Math. Soc., Providence
(1991)

Facets and Rank of Integer Polyhedra 57

13. Edmonds, J.: Maximum matching and a polyhedron with 0–1 vertices. J. Res. Natl. Bur. Stand.
B, Math. Math. Phys. 69, 67–92 (1965)

14. Euler, R., Verge, H.L.: A complete and irredundant linear description of the asymmetric trav-
eling salesman polytope on 6 nodes. Discrete Appl. Math. 62, 193–208 (1995)

15. Fleischmann, B.: Duale und primale Schnitthyperebenenverfahren in der ganzzahligen lin-
earen Optimierung. Ph.D. thesis, University of Hamburg, Hamburg, Germany (1970)

16. Gomory, R.: An algorithm for integer solutions to linear programs. In: Graves, R.L., Wolfe,
P. (eds.) Recent Advances in Mathematical Programming, pp. 269–302. McGraw-Hill, New
York (1963)

17. Grötschel, M., Padberg, M.W.: Zur Oberflächenstruktur des Travelling Salesman Polytopen.
In: Zimmermann, H.J., Schub, A., Späth, H., Stoer, J. (eds.) Proc. in Operations Research, vol.
4, pp. 207–211. Physica-Verlag, Würzburg (1974)

18. Grötschel, M., Padberg, M.W.: On the symmetric traveling salesman problem. Technical report
7536, OR—Inst. f. Ökonometrie und Operations Research, Bonn, Germany (1975)

19. Grötschel, M., Padberg, M.W.: On the symmetric traveling salesman problem: parts I and II.
Math. Program. 16, 265–302 (1979)

20. Grötschel, M., Padberg, M.W.: Polyhedral theory. In: Lawler, E.L., Lenstra, J.K., Rinnoy Kan,
A.H.G., Shmoys, D.B. (eds.) The Traveling Salesman Problem: A Guided Tour of Combina-
torial Optimization. Wiley, Chichester (1985)

21. Grötschel, M., Jünger, M., Reinelt, G.: Facets of the linear ordering polytope. Math. Program.
33, 43–60 (1985)

22. Grünbaum, B.: Convex Polytopes. Wiley, New York (1967)
23. Heller, I.: On the problem of shortest paths between points. Bull. Am. Math. Soc. 59, 551–552

(1953)
24. Jünger, M., Reinelt, G., Rinaldi, G.: The traveling salesman problem. In: Ball, M.O., Mag-

nanti, T.L., Monma, C.L., Nemhauser, G.L. (eds.) Network Models. Handbooks in Operations
Research and Management Science, vol. 7, pp. 225–330. North-Holland, Amsterdam (1995)

25. Kaibel, V.: Polyhedral combinatorics of the quadratic assignment problem. Ph.D. thesis, Uni-
versity of Cologne, Cologne, Germany (1997)

26. Kuhn, H.: On certain convex polyhedra. Bull. Am. Math. Soc. 61, 557–558 (1955)
27. Kuhn, H.: On asymmetric traveling salesman polytopes. Presented at the 14th Intern. Symp.

on Mathematical Programming (1991)
28. Naddef, D., Rinaldi, G.: The crown inequalities for the symmetric traveling salesman polytope.

Math. Oper. Res. 17, 308–326 (1992)
29. Naddef, D., Rinaldi, G.: The graphical relaxation: a new framework for the symmetric travel-

ing salesman polytope. Math. Program. 58, 53–88 (1993)
30. Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. Wiley, New York

(1988)
31. Norman, R.: On the convex polyhedra of the symmetric traveling salesman problem. Bull.

Am. Math. Soc. 61, 559 (1955)
32. Padberg, M.W.: Essays in integer programming. Ph.D. thesis, Carnegie-Mellon University,

Pittsburgh, PA (1971)
33. Padberg, M.W.: On the facial structure of set packing polyhedra. Math. Program. 5, 199–215

(1973)
34. Padberg, M.W.: Perfect zero-one matrices. Math. Program. 6, 180–196 (1973)
35. Padberg, M.W.: On the complexity of set packing polyhedra. Ann. Discrete Math. 1, 421–434

(1977)
36. Padberg, M.W.: Covering, packing and knapsack problems. Ann. Discrete Math. 4, 265–287

(1979)
37. Padberg, M.W.: The boolean quadric polytope: some characteristics, facets, and relatives.

Math. Program. 45, 139–172 (1989)
38. Padberg, M.W.: Linear Optimization and Extensions. Springer, Berlin (1999)
39. Padberg, M.W.: Classical cuts for mixed-integer programming and branch-and-cut. Math.

Methods Oper. Res. 53, 173–203 (2001). Reprinted in Ann. Oper. Res. 139, 321–352 (2005)

58 M.W. Padberg

40. Padberg, M.W.: The rank of (mixed-) integer polyhedra. Math. Program., Ser. A 137, 593–599
(2011)

41. Padberg, M.W., Hong, S.: On the symmetric traveling salesman problem: a computational
study. Math. Program. 12, 78–107 (1980)

42. Padberg, M.W., Rao, M.: The traveling salesman problem and a class of polyhedra of diameter
two. Math. Program. 7, 32–45 (1980)

43. Padberg, M.W., Rijal, M.: Location, Scheduling, Design and Integer Programming. Kluwer
Academic, Boston (1996)

44. Padberg, M.W., Sung, T.: A polynomial-time solution to Papadimitriou and Steiglitz’s “traps”.
Oper. Res. Lett. 7, 117–125 (1988)

45. Papadimitriou, C.H.: The adjacency relation on the traveling salesman polytope is NP-
complete. Math. Program. 14, 312–324 (1978)

46. Reinelt, G.: Personal communication (2011)
47. Rispoli, F., Cosares, S.: A bound of 4 for the diameter of the symmetric traveling salesman

polytope. SIAM J. Appl. Math. 11, 373–380 (1998)
48. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, Chichester (1986)
49. Sierksma, G., Tijssen, G.: Faces with large diameter on the symmetric traveling salesman

polytope. Oper. Res. Lett. 12, 73–77 (1992)
50. Ziegler, G.: Lectures on Polytopes. Springer, Berlin (1995)

Part III
Martin Grötschel’s Doctoral Descendants

60

It is a cherished academic tradition to honor one’s ancestors as follows: If C is a
doctoral student of P , then P is called the (doctoral) parent and C is called the
(doctoral) child. In this sense, the editors are Martin Grötschel’s oldest children.

We have compiled the tree of Martin Grötschel’s doctoral descendants from 1983
to 2012, i.e., the first 30 years.

It is a special pleasure to start this part of the book with Thomas Möllmann’s
artistic interpretation of this tree. The original painting will be a gift for Martin
Grötschel from his doctoral descendants, and will be presented to him during the
Festkolloquium on September 13, 2013. It shows Martin Grötschel’s

39 children,
74 grandchildren,
24 great-grandchildren, and
2 great-great-grandchildren,

a total of 139 doctoral descendants.
We then break down the tree precisely, just like a computer scientist would.

61

Martin Grötschel’s Descendants and Their
Doctoral Theses 1983–2012

Michael Jünger and Gerhard Reinelt

Abstract We present the tree of Martin Grötschel’s doctoral descendants along
with their doctoral theses from 1983 to 2012, i.e., the first 30 years. Our for-
mat should be self-explanatory: Depth in the hierarchy is indicated by indentation
and color: blue for the 39 , red for the 74 , cyan for the 24

, and magenta for the 2 . The doctoral
thesis titles of these 139 descendants show the many fruits of Martin Grötschel’s
original impetus.

Martin Grötschel (1977)
Polyedrische Charakterisierungen kombinatorischer Optimierungsprobleme

M. Jünger (B)
Institut für Informatik, Universität zu Köln, Albertus-Magnus-Platz, 50923 Cologne, Germany
e-mail: mjuenger@informatik.uni-koeln.de

G. Reinelt
Institut für Informatik, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 368, 69120
Heidelberg, Germany
e-mail: gerhard.reinelt@informatik.uni-heidelberg.de

M. Jünger, G. Reinelt (eds.), Facets of Combinatorial Optimization,
DOI 10.1007/978-3-642-38189-8_3, © Springer-Verlag Berlin Heidelberg 2013

63

mailto:mjuenger@informatik.uni-koeln.de
mailto:gerhard.reinelt@informatik.uni-heidelberg.de
http://dx.doi.org/10.1007/978-3-642-38189-8_3

64 M. Jünger and G. Reinelt

Martin Grötschel’s Descendants and Their Doctoral Theses 1983–2012 65

66 M. Jünger and G. Reinelt

Martin Grötschel’s Descendants and Their Doctoral Theses 1983–2012 67

68 M. Jünger and G. Reinelt

Martin Grötschel’s Descendants and Their Doctoral Theses 1983–2012 69

70 M. Jünger and G. Reinelt

Martin Grötschel’s Descendants and Their Doctoral Theses 1983–2012 71

72 M. Jünger and G. Reinelt

Part IV
Contributions by Martin Grötschel’s

Doctoral Descendants

74

This book is intended as a present for Martin Grötschel from his doctoral descen-
dants, many of whom are still active researchers in academic and industry positions.
When we put out a call for contributions for this book, we issued strict quality
guidelines and tight deadlines.

The response has been delightful. The main and final part of this book contains
these contributions. Every article is coauthored by at least one doctoral descendant.
They could just as well be articles in optimization journals, except the authors were
encouraged to relate their work to Martin, and they were free to acknowledge Mar-
tin’s influence.

The sequence of the articles starts with contributions on the theory of Mathemat-
ical Optimization: Volker Kaibel and Kanstantsin Pashkovich present a framework
for the construction of extended formulations via projections, with an emphasis
on reflection relations. Using convex optimization techniques, Michel Baes, Timm
Oertel, Christian Wagner, and Robert Weismantel reduce the hard core of mixed-
integer convex optimization problems to a certain improvement oracle. Arnaud
Pêcher and Annegret K. Wagler present superclasses of perfect graphs that still al-
low for the polynomial time computation of the clique number and the chromatic
number, using the theta number. Zaw Win and Cho Kyi Than introduce the notions
of the subtree-centroid and subtree-telecenter, and present an efficient algorithm for
computing a subtree-telecenter of a tree. Carlos E. Ferreira and Alvaro J.P. Franco
use a characterization of junctions in acyclic graphs to derive efficient algorithms for
listing target pairs that have a given vertex as a junction. Rafael da Ponte Barbosa
and Yoshiko Wakabayashi study non-preemptive and preemptive versions of the
restricted strip cover problem and present both an improved polynomial time ap-
proximation algorithm for the former and an exact polynomial time algorithm for
the latter.

The following articles combine new theoretical insights with algorithms and ex-
periments: Ralf Borndörfer, Nam-Dũng Hoang, Marika Karbstein, Thorsten Koch,
and Alexander Martin consider the Steiner connectivity problem and the Steiner
tree packing problem and present new results concerning complexity, algorithms,
and computational results. Also in the area of network design, Eduardo Álvarez-
Miranda, Ivana Ljubić, and Petra Mutzel consider the maximum weight connected
subgraph problem; they propose and analyze a new mixed-integer model and out-
perform previous computational experiments on benchmark sets. Frank Baumann,
Sebastian Berckey and Christoph Buchheim present branch&bound algorithms for
combinatorial optimization problems with submodular objective functions, alterna-
tively using a linearization technique and Lagrangean decomposition, and put for-
ward experimental evidence of superiority in wireless network design and mean-risk
optimization. Martin Schmidt, Marc C. Steinbach, and Bernhard M. Willert address
nonsmooth mixed-integer optimization problems and provide approximate smooth
reformulations with complementarity constraints, and present numerical results for
the validation of nominations in gas networks. Björn Geißler, Antonio Morsi, and
Lars Schewe develop a new algorithm for mixed-integer nonlinear optimization
based on the adaptive refinement of a new class of mixed-integer linear relaxations
and demonstrate its potential for gas transport energy cost minimization.

75

We continue with computational studies: Miguel F. Anjos, Bissan Ghaddar, Lena
Hupp, Frauke Liers, and Angelika Wiegele present a computational study of a
semidefinite branch&cut approach for the max k-cut problem based on the bundle
approach that outperforms previous approaches on certain instance classes. Michael
N. Jung, Christian Kirches, and Sebastian Sager deal with mixed-integer nonlin-
ear optimal control, survey various modeling approaches, and give computational
results for a truck cruise control problem with logical implications due to gear con-
straints. Armin Fügenschuh, George Nemhauser, and Yulian Zeng present a mixed-
integer linear optimization formulation of flow-over-flow models driven by the prob-
lem of scheduling and routing fly-in safari planes, along with a heuristic based on
randomized local search, and present an extensive computational study.

The two closing articles are devoted to computational advances in general mixed-
integer linear optimization, the first by scientists working in industry, the second by
scientists working in academia: Tobias Achterberg and Roland Wunderling develop
an unbiased way to analyze benchmark results and apply it to assess the contribu-
tions of the main components in CPLEX 12.5. Thorsten Koch, Alexander Martin,
and Marc E. Pfetsch focus on the reproducibility of computational experiments, in-
vestigate the performance of competing solvers, and demonstrate the development
of the academic solvers SIP and SCIP.

The contributions reflect the “scientific facets” of Martin Grötschel, who has set
standards in theory, computation and applications.

Constructing Extended Formulations
from Reflection Relations

Volker Kaibel and Kanstantsin Pashkovich

Abstract There are many examples of optimization problems whose associated
polyhedra can be described much nicer, and with way less inequalities, by pro-
jections of higher dimensional polyhedra than this would be possible in the orig-
inal space. However, currently not many general tools to construct such extended
formulations are available. In this paper, we develop the framework of polyhedral
relations that generalizes inductive constructions of extended formulations via pro-
jections, and we particularly elaborate on the special case of reflection relations.
The latter ones provide polynomial size extended formulations for several poly-
topes that can be constructed by iteratedly forming convex hulls of polytopes and
(slightly modified) reflections of them at hyperplanes. We demonstrate the use of the
framework by deriving small extended formulations for the G-permutahedra of all
finite reflection groups G (generalizing both Goemans’ extended formulation of the
permutahedron of size O(n logn) and Ben-Tal and Nemirovski’s extended formula-
tion with O(k) inequalities for the regular 2k-gon) and for Huffman-polytopes (the
convex hulls of the weight-vectors of Huffman codes). This work is an extension of
an extended abstract presented at IPCO XV (2011).

1 Introduction

An extension of a polyhedron P ⊆ R
n is some polyhedron Q ⊆ R

d and a linear
projection π : Rd → R

n with π(Q) = P . A description of Q by linear inequali-
ties (and equations) is called an extended formulation for P . Extended formulations
have received quite some interest, as in several cases one can describe polytopes
associated with combinatorial optimization problems much easier by means of ex-
tended formulations than by linear descriptions in the original space. In particular,

V. Kaibel (B)
Fakultät für Mathematik, Otto-von-Guericke Universität Magdeburg, Universitätsplatz 2, 30106
Magdeburg, Germany
e-mail: kaibel@ovgu.de

K. Pashkovich
Dipartimento di Matematica, Universitá del Padova, Via Trieste 63, 35121 Padova, Italy
e-mail: kanstantsin.pashkovich@gmail.com

M. Jünger, G. Reinelt (eds.), Facets of Combinatorial Optimization,
DOI 10.1007/978-3-642-38189-8_4, © Springer-Verlag Berlin Heidelberg 2013

77

mailto:kaibel@ovgu.de
mailto:kanstantsin.pashkovich@gmail.com
http://dx.doi.org/10.1007/978-3-642-38189-8_4

78 V. Kaibel and K. Pashkovich

such extensions Q can have way less facets than the polyhedron P has. For a nice
survey on extended formulations we refer to [5].

Many fundamental questions on the existence of extended formulations with
small numbers of inequalities are open. A particularly prominent one asks whether
there are polynomial size extended formulations for the perfect matching polytopes
of complete graphs (see [11, 18]). In fact, we lack good techniques to bound the
sizes of extended formulations from below, and we also need more tools to construct
extended formulations. This paper makes a contribution into the latter direction.

There are several ways to build extended formulations of polytopes from lin-
ear descriptions or from extended formulations of other ones (see, e.g., [9, 14]).
A particularly simple way is to construct them inductively from extended formula-
tions one has already constructed before. As an example, let for a vector p ∈ R

n+
of processing times and for some σ ∈ S(n) (where S(n) is the set of all bijec-
tions γ : [n] → [n] with [n] = {1, . . . , n}), the completion time vector be the vector
ct(p,σ) ∈R

n with ct(p,σ)j =∑σ(j)

i=1 pσ−1(i) for all j ∈ [n]. Additionally, the com-
pletion time polytope Ppct corresponding to the processing times vector p ∈ R

n+ is
defined as

Ppct = conv
({

ct(p,σ) : σ ∈ S(n)
})
.

By some simple arguments, one can show that Ppct is the image of the polytope

P = Pp̃ct × [0,1]n−1

for p̃ = (p1, . . . , pn−1) ∈R
n−1 under the affine map � : R2n−2 → R

n defined via

�(x)= (x′ + pnx
′′,
〈
p̃,1 − x′′〉+ pn

)

with x = (x′, x′′) and x′, x′′ ∈ R
n−1.

Applying this inductively, one finds that Ppct is a zonotope, i.e., an affine projec-
tion of a cube of dimension n(n− 1)/2 (which had already been proved by Wolsey
in the 1980s [17]). This may appear surprisingly simple viewing the fact that Ppct has
exponentially many facets (see [16]). For the special case of the permutahedron

Pnperm = P1n
ct = conv

{(
γ (1), . . . , γ (n)

) ∈R
n : γ ∈ S(n)

}
,

Goemans [7] found an even smaller extended formulation of size O(n logn), which
we will come back to later.

Let us look again at one step in the inductive construction described above. With
the polyhedron

R = {(x, y) ∈R
2n−2 ×R

n : y = �(x)
}

(1)

the extension derived in such a step reads

Ppct = {y ∈ R
n : (x, y) ∈R for some x ∈ P

}
. (2)

Constructing Extended Formulations from Reflection Relations 79

Thus, we have derived the extended formulation for Ppct by applying in the sense of
(2) the “polyhedral relation” defined in (1) to a polytope P of which we had found
(inductively) an extended formulation before. The goal of this paper is to generalize
this technique of deriving extended formulations by using other “polyhedral rela-
tions” than graphs of affine maps (which R as defined in (1) is). We will introduce
the framework of such general polyhedral relations in Sect. 2, and we are going to
elaborate on one particular type of those, called reflection relations, in Sect. 3. Re-
flection relations provide, for affine halfspaces H≤ ⊆ R

n and polyhedra P ⊆ R
n,

small extended formulations of the convex hull of the union of P ∩ H≤ and the
image of P ∩ H≤ under the orthogonal reflection at the boundary hyperplane of
H≤. They turn out to be quite useful building blocks in the construction of some ex-
tended formulations. We derive general results on reflection relations (Theorem 1)
that allow to construct rather easily extended formulations for some particular ap-
plications (in particular, without explicitly dealing with the intermediate polyhedra
of iterated constructions).

In a first application, we show how to derive, for each polytope P ⊆ R
n that

is contained in (the topological closure of) a fundamental region of a finite reflec-
tion group G on R

n, an extended formulation of the G-permutahedron of P , i.e.,
the convex hull of the union of the polytopes in the orbit of P under the action
of G (Sect. 4.1). These extended formulations have f ′ + O(n logn) + O(n logm)
inequalities, where m is the largest number such that the dihedral group I2(m) ap-
pears in the decomposition of G into irreducible finite reflection groups, and pro-
vided that there is an extended formulation for P with at most f ′ inequalities. In
particular, this generalizes Goemans’ extended formulation of the permutahedron
Pnperm with O(n logn) inequalities [7]. In fact, the starting point of our research was
to give an alternative proof for the correctness of Goemans’ extended formulation
that we would be able to generalize to other constructions. Additionally, we pro-
vide an extended formulation of the cardinality indicating polytope with O(n logn)
inequalities, where the cardinality indicating polytope has as its vertices the 2n+ 1-
dimensional vectors whose first n coordinates are the characteristic vectors of all
sets S ⊆ [n] and the last n + 1 coordinates form the standard unit vector e|S|+1

(a polytope that has been investigated in [12]).
As a second application, we provide an extended formulation with O(n logn) in-

equalities for the convex hull of all weight-vectors of Huffman-codes with n words
(Sect. 4.2). This Huffman-polytope Pnhuff ⊆ R

n is the convex hull of all vectors
(v1, . . . , vn) for which there is a rooted binary tree with n leaves labelled in ar-
bitrary order by 1, . . . , n such that the distance of leaf i from the root equals vi for
all i ∈ [n]. This provides another striking example of the power of extended for-
mulations, as no linear descriptions of Pnhuff in R

n is known so far, and Nguyen,
Nguyen, and Maurras [15] showed that Pnhuff has 2Ω(n logn) facets.

Two well-known results we obtain easily within the framework of reflection rela-
tions are extended formulations with 2�log(m)� + 2 inequalities for regular m-gons
(reproving a result of Ben-Tal and Nemirovski’s [2], see Sect. 4.1.1) and an extended
formulation with 4(n− 1) inequalities of the parity polytope, i.e., the convex hull of

80 V. Kaibel and K. Pashkovich

all v ∈ {0,1}n with an odd number of one-entries (reproving the result of Carr and
Konjevod [3], see Sect. 4.1.4).

We conclude by briefly discussing (Sect. 5) directions for future research on the
further extension of the tools presented in this paper.

All extended formulations described in this paper can also be constructed effi-
ciently, i.e., in a number of steps that is bounded by a polynomial in the size of the
formulation (assuming symbolic encoding of sin(ϕ) and cos(ϕ) in the formulations
of the G-permutahedra for G= I2(m)).

The present paper is an extension of the extended abstract [10] that has been pre-
sented at IPCO XV (2011), Yorktown Heights. The main parts that have been added
concern additional material investigating more closely the concept of an affinely
generated reflection relation (Propositions 2 and 3) and a detailed proof of the cor-
rectness of the extended formulation of the Huffman-polytopes of size O(n logn)
(Theorem 7).

2 Polyhedral Relations

A polyhedral relation of type (n,m) is a non-empty polyhedron ∅ 	=R ⊆ R
n ×R

m.
The image of a subset X ⊆ R

n under such a polyhedral relation R is denoted by

R(X)= {y ∈R
m : (x, y) ∈R for some x ∈X

}
.

Clearly, we have the monotonicity relation R(X)⊆R(X̃) for X ⊆ X̃. Furthermore,
R(X) is a linear projection of R∩ (X×R

m). Thus, images of polyhedra and convex
sets under polyhedral relations are polyhedra and convex sets, respectively.

A sequential polyhedral relation of type (k0, . . . , kr) is a sequence R1, . . . ,Rr ,
where Ri is a polyhedral relation of type (ki−1, ki) for each i ∈ [r]; its length is r .
For such a sequential polyhedral relation, we denote by R =Rr ◦ · · · ◦R1 the set of
all (z0, zr) ∈ R

k0 ×R
kr for which there is some (z1, . . . , zr−1) with (zi−1, zi) ∈ Ri

for all i ∈ [r]. Since R is a linear projection of a polyhedron it is a polyhedral
relation of type (k0, kr) with Rr ◦ · · · ◦R1(X)=Rr(. . .R1(X) . . .) for all X ⊆ R

k0 .
We call R = Rr ◦ · · · ◦R1 the polyhedral relation that is induced by the sequential
polyhedral relation R1, . . . ,Rr . For a polyhedron P ⊆ R

k0 , the polyhedron Q ⊆
R
k0 × · · · ×R

kr defined by

z0 ∈ P and
(
zi−1, zi

) ∈Ri for all i ∈ [r] (3)

satisfies π(Q) = R(P), where π is the projection defined via π(z0, . . . , zr) =
zr . Thus, (3) provides an extended formulation of the polyhedron R(P) with
k0 + · · · + kr variables and f0 + · · · + fr constraints, provided we have linear de-
scriptions of the polyhedra P , R1, . . . ,Rr with f0, f1, . . . , fr constraints, respec-
tively. Of course, one can reduce the number of variables in this extended formu-
lation to dim(Q). In order to obtain useful upper bounds on this number by means
of the polyhedral relations R1, . . . ,Rr , let us denote, for any polyhedral relation

Constructing Extended Formulations from Reflection Relations 81

R ⊆ R
n × R

m, by δ1(R) and δ2(R) the dimension of the non-empty fibers of the
orthogonal projection of aff(R) to the first and second factor of Rn × R

m, respec-
tively. If aff(R) = {(x, y) ∈R

n ×R
m : Ax +By = c}, then δ1(R) = dim(ker(B))

and δ2(R)= dim(ker(A)). With these parameters, we can estimate

dim(Q)≤ min

{
k0 +

r∑

i=1

δ1(Ri), kr +
r∑

i=1

δ2(Ri)

}
.

Remark 1 For a sequential polyhedral relation R1, . . . ,Rr of type (k0, . . . , kr) with
induced polyhedral relation R = Rr ◦ · · · ◦ R1, let fi be the number of facets of
Ri for each i ∈ [r]. If the polyhedron P ⊆ R

k0 has an extended formulation with
k′ variables and f ′ inequalities, then we can construct an extended formulation for
R(P) with min{k′ +∑r

i=1 δ1(Ri), kr +∑r
i=1 δ2(Ri)} variables and f ′ +f1 +· · ·+

fr constraints.

A particularly simple class of polyhedral relations is defined by polyhedra R ⊆
R
n ×R

m with

R = {(x, y) ∈ R
n ×R

m : y = �(x)
}

for some affine map � :Rn → R
m. For these polyhedral relations, a (linear descrip-

tion of a) polyhedron P ⊆ R
n is just an extended formulation of the polyhedron

R(P) via the projection �.
The domain of a polyhedral relation R ⊆ R

n ×R
m is the polyhedron

dom(R)= {x ∈R
n : (x, y) ∈R for some y ∈ R

m
}
.

We clearly have

R(X)=
⋃

x∈X∩dom(R)

R(x)

for all X ⊆ R
n. Note that, for a polytope P = conv(V) with a finite set V ⊆ R

n and
a polyhedral relation R ⊆ R

n ×R
m, in general the inclusion

conv
⋃

v∈V
R(v)⊆R(P) (4)

holds without equality, even in case of P ⊆ dom(R); as for an example you may
consider P = conv{0,2} ⊆ R

1 and R = conv{(0,0), (1,1), (2,0)} with R(P) =
[0,1] and R(0)=R(2)= {0}. Fortunately, one can guarantee equality in (4) (which
makes it much easier to analyze R(P)) for an important subclass of polyhedral re-
lations.

We call a relation R ⊆ R
n ×R

m affinely generated by the family (�f)f∈F , if F
is finite and every �f :Rn → R

m is an affine map such that

R(x)= conv
⋃

f∈F
�f (x)

82 V. Kaibel and K. Pashkovich

holds for all x ∈ dom(R). The maps �f (f ∈ F) are called affine generators of R
in this case. For such a polyhedral relation R and a polytope P ⊆ R

n with P ∩
dom(R)= conv(V) for some V ⊆ R

n, we find

R(P) =
⋃

x∈P∩dom(R)

R(x)=
⋃

x∈P∩dom(R)

conv
⋃

f∈F
�f (x)

⊆ conv
⋃

x∈P∩dom(R)

⋃

f∈F
�f (x)= conv

⋃

v∈V

⋃

f∈F
�f (v)⊆ conv

⋃

v∈V
R(v),

where, due to (4), all inclusions are equations. In particular, we have established the
following result.

Proposition 1 For every polyhedral relation R ⊆ R
n×R

m that is affinely generated
by a finite family (�f)f∈F , and for every polytope P ⊆ R

n, we have

R(P)= conv
⋃

f∈F
�f
(
P ∩ dom(R)

)
. (5)

As we will often deal with polyhedral relations R =Rr ◦· · ·◦R1 that are induced
by a sequential polyhedral relation R1, . . . ,Rr , it would be convenient to be able to
derive affine generators for R from affine generators for R1, . . . ,Rr . This, however,
seems impossible in general, where the difficulties arise from the interplay between
images and domains in a sequence of polyhedral relations. However, one still can
derive a very useful analogue of the inclusion “⊆” in (5).

Lemma 1 If we have R = Rr ◦ · · · ◦ R1 and for each i ∈ [r] the relation Ri is
affinely generated by the finite family (�fi)fi∈Fi , then the inclusion

R(P)⊆ conv
⋃

f∈F
�f
(
P ∩ dom(R)

)

holds for every polyhedron P ⊆ R
n, where F = F1 × · · · × Fr and

�f = �fr ◦ · · · ◦ �f1

for each f = (f1, . . . , fr) ∈ F .

Proof If R(P) is empty then the statement holds trivially. Otherwise, for every
zr ∈ R(P) there is a sequence (z0, z1, . . . , zr) such that z0 ∈ P ∩ dom(R) and
(zi−1, zi) ∈ Ri for all i ∈ [r]. Since every relation Ri is generated by the affine
maps (�fi)fi∈Fi , we conclude that for every i ∈ [r] we have

zi =
∑

fi∈Fi
μ
fi
i �

fi
(
zi−1)

Constructing Extended Formulations from Reflection Relations 83

with some μ
fi
i ≥ 0 for all fi ∈ Fi satisfying

∑
fi∈Fi μ

fi
i = 1. Applying this itera-

tively, we are able to represent zr as

zr =
∑

(f1,...,fr)∈F
μ
f1
1 · · ·μfr

r �
(f1,...,fr)

(
z0),

where all products μf1
1 · · ·μfr

r are non-negative, satisfying

∑

(f1,...,fr)∈F
μ
f1
1 · · ·μfr

r =
(∑

f1∈F1

μ
f1
1

)
· · ·
(∑

fr∈Fr
μ
fr
r

)
= 1.

This shows that zr belongs to conv
⋃

f∈F �f (z0). �

We next provide a geometric characterization of affinely generated polyhedral
relations. It in particular shows why the polyhedral relation R from the example
following (4) is not affinely generated (which it cannot be due to Proposition 1):
The domain of that R is the interval [0,2], but there are two facets of R which
project to the subintervals [0,1] and [1,2], respectively.

Proposition 2 A polyhedral relation R ⊆ R
n ×R

m is affinely generated if and only
if R(x) is a polytope (i.e., bounded) for every x ∈ dom(R) and the following holds
for the projection p : Rn × R

m → R
n onto the first factor of Rn × R

m: For every
face G of R with dim(p(G))= dim(dom(R)) we have p(G)= dom(R).

Proof Applying a suitable projection onto a coordinate subspace of Rn, we find that
it suffices to prove the statement for the case dim(dom(R))= n.

Let us first assume that the polyhedral relation R ⊆ R
n×R

m is affinely generated
by some finite family (�f)f∈F . Clearly, R(x)= conv{�f (x) : f ∈ F } is a polytope
for every x ∈ dom(R). Let G be a face of R with dim(p(G)) = n. We choose a
hyperplane H ⊆ R

n × R
m with G = R ∩H . It suffices to show that there is some

f � ∈ F with
{
x ∈ R

n : (x,�f �

(x)
) ∈H

}= R
n, (6)

because then we have (x,�f
�
(x)) ∈ G for all x ∈ dom(R), which implies p(G) =

dom(R).
Therefore, suppose that no f � satisfying (6) exists, i.e., the affine subspace

{
x ∈R

n : (x,�f (x)) ∈H
}

of R
n has dimension less than n for every f ∈ F . As we have dim(p(G)) = n,

this implies the existence of some x� ∈ p(G) with (x�, �f (x�)) 	∈ G for all f ∈ F ,
contradicting the fact that the face G of R intersects the subsets

{
x�
}×R

(
x�
)= conv

{(
x�,�f

(
x�
)) : f ∈ F

}

of R.

84 V. Kaibel and K. Pashkovich

In order to prove the reverse direction of the statement, let us assume that R(x) is
a polytope for all x ∈ dom(R) and that for every face G of R with dim(p(G)) = n

we have p(G) = dom(R). We have to exhibit a finite set of affine maps generat-
ing R.

If x� is a point in dom(R) and y� is a vertex of the polytope R(x�), then we
denote by G� the smallest face of R containing (x�, y�). We claim that, for every
x ∈ p(G�), there is a unique y with (x, y) ∈ G�. In order to see this, suppose that
there are two different y′ 	= y′′ with (x, y′), (x, y′′) ∈G�. Thus, with ỹ = y′ − y′′ 	=
O the vector (O, ỹ) lies in the linear subspace parallel to aff(G�). Since (x�, y�) is
contained in the relative interior of G� (due to its minimality), there is some ε > 0
with

(
x�, y�

)± ε(O, ỹ) ∈G⊆R,

thus y� ± εỹ ∈R(x�), contradicting the fact that y� is a vertex of R(x�).
Hence, for every face G� of R as defined above, the projection p :G� → p(G�)

has an inverse, which is a restriction of an affine map �G
�

to p(G�). Of course, we
can use such a map �G

�
only as one of the maps in the family to be constructed if

we have p(G�)= dom(R), which, by our assumption, is guaranteed to hold in case
of dim(p(G�)) = n. Therefore, let us denote by G the set of all faces G of R such
that

• G is the face G� defined for some pair (x�, y�) as above and
• dim(p(G))= n.

The second condition here implies that, for every G ∈ G, the affine map �G is de-
fined on the entire polyhedron dom(R) with (x,�G(x)) ∈G⊆R. Thus we have

�G(x) ∈R(x) for all x ∈ dom(R),G ∈ G. (7)

Furthermore, for every x� ∈ dom(R) such that for every vertex y� of R(x�) the face
G� satisfies dim(p(G�))= n, we have

R
(
x�
)= conv

{
�G
(
x�
) :G ∈ G

}
.

As dim(p(G�)) = n can only fail to hold if x� is contained in one of the finitely
many less than n-dimensional images of faces of R under the projection p, we find
that

R(x)= conv
{
�G(x) :G ∈ G

}
(8)

holds for all x ∈ D with some subset D of the n-dimensional polyhedron dom(R)

whose topological closure equals dom(R).
It follows readily from (7) that in (8) the relation ⊇ holds for all x ∈ dom(R).

In order to establish the same for the reverse inclusion, let (x, y) ∈ R and fix some
(x̄, ȳ) ∈R with x̄ ∈D. For every k ∈ {1,2, . . . }, we choose some

(
xk, yk

) ∈ conv
{
(x, y), (x̄, ȳ)

}
with

∥∥(xk, yk
)− (x, y)

∥∥≤ 1

k
and xk ∈D.

Constructing Extended Formulations from Reflection Relations 85

Clearly, we have limk→∞ xk = x and limk→∞ yk = y. For every k ∈ {1,2, . . . }, due
to xk ∈D, there is some multiplier vector λk ∈ R

G+ with

∑

G∈G
λkG = 1 and yk =

∑

G∈G
λkG�

G
(
xk
)
.

As the λk form a bounded sequence, there is some subset K ⊆ {1,2, . . . } such that
the limit

lim
k→∞
k∈K

λk =: λ ∈R
G+

exists with
∑

G∈G λG = 1. Due to the continuity of the affine maps �G we hence
obtain

y = lim
k→∞
k∈K

yk = lim
k→∞
k∈K

∑

G∈G
λkG�

G
(
xk
)=

∑

G∈G
λG�

G(x),

showing that y indeed is contained in the set on the right-hand-side of (8). �

Proposition 2 provides a characterization of those polyhedral relations that are
affinely generated. In particular, it shows that being affinely generated really is a
special feature of a polyhedral relation.

For the purpose of designing an extended formulation for some polytope P , one
often would like to find a polyhedral relation R that is affinely generated by some
specific affine maps such that P is the convex hull of the images of some well-
described polytope in dom(R) under these maps. The following result deals with
the special case of m = n and two affine maps, one of which being the identity
map. It shows that the other map, restricted to the domain of the polyhedral relation
to be constructed, must be of a very special type. The following section will then
demonstrate how for these special types of maps one can indeed construct polyhe-
dral relations with useful domains.

Before we state the result, let us introduce some notation, which will be used
throughout the paper. For a ∈R

n \ {O} and β ∈R, we denote by

H=(a,β)= {x ∈R
n : 〈a, x〉 = β

}

the hyperplane defined by the equation 〈a, x〉 = β and by

H≤(a,β)= {x ∈ R
n : 〈a, x〉 ≤ β

}

the halfspace defined by the inequality 〈a, x〉 ≤ β .

Proposition 3 If � : Rn → R
n is an affine map and R ⊆ R

n × R
n is a polyhedral

relation that is affinely generated by � and the identity map, then � restricted to
dom(R) is a translation, or there exist a, c ∈R

n \ {O} and β ∈ R such that

• dom(R)⊆ H≤(a,β) holds and

86 V. Kaibel and K. Pashkovich

• for every x ∈ dom(R) the vector �(x)− x is parallel to c with

�(x)− x = (〈a, x〉 − β
)
c. (9)

Proof Let R ⊆ R
n × R

n is a polyhedral relation that is affinely generated by the
identity map and an affine map � which on dom(R) is not a translation. We have to
exhibit a, c ∈R

n \ {O} and β ∈R as described in the statement.
First we show that for all x, y ∈ dom(R) the vectors �(x) − x and �(y)− y

are parallel. Indeed, since R is generated by � and the identity map, we have
(x, x), (x,�(x)), (y, y), (y,�(y)) ∈ R. Thus, the one-dimensional polytope R(1

2 ×
(x + y)) contains the points 1

2 (x + y), 1
2 (�(x)+ y), and 1

2 (x + �(y)), implying that
�(x)− x and �(y)− y are linearly dependent.

As the restriction of � to dom(R) is not the identity, we can choose c to be some
non-zero vector �(x) − x with x ∈ dom(R). For simplicity of representation, we
may assume that the vector c is the vector en. Thus, for every point x ∈ dom(R) we
have �(x)i = xi for all i ∈ [n− 1] and �(x)n =∑i∈[n] αixi − β for some numbers
αi ∈R (i ∈ [n]) and β ∈R.

Let a ∈ R
n be the vector defined via ai = αi for all i ∈ [n− 1] and an = αn − 1.

Clearly, with this choice (9) is satisfied. Furthermore, we have a 	= O, because oth-
erwise � would be a translation (by −βen). Hence, it remains to show that dom(R)

is contained in one of the two closed halfspaces into which R
n is divided by the

hyperplane H=(a,β) (if this halfspace is not H≤(a,β), we can just replace c = en
by c = −en and (a,β) by (−a,−β)). Note that a point from dom(R) is contained
in fH=(a,β) if and only if it is mapped to itself by �.

Therefore, suppose that there are x, y ∈ dom(R) with

〈a, x〉< β < 〈a, y〉.
Let 0 < λ< 1 be the scalar with

z= λx + (1 − λ)y ∈ H=(a,β).

We have �(z)= z, thus R(z)= {z} (since R is generated by � and the identity). Due
to (x, x), (y,�(y)) ∈R we obtain (z, λx + (1 − λ)�(y)) ∈R, hence

λx + (1 − λ)�(y)= z= λx + (1 − λ)y,

which (due to λ 	= 1) implies �(y)= y, contradicting y 	∈ H=(a,β). �

The range of the affine maps � left as possibilities in Proposition 3 includes
translations, shearing transformations, and reflections at hyperplanes. For the latter
ones we will explicitly construct polyhedral relations in the next section that will
become quite useful later. This construction could in fact easily be modified to also
work for all other types of affine maps covered by Proposition 3.

For the relation between the concept of affinely generated reflection relations and
a construction method described in [13] see [4].

Constructing Extended Formulations from Reflection Relations 87

3 Reflection Relations

The reflection at H = H=(a,β) is �H : Rn → R
n, where �H (x) is the point with

�H (x)− x ∈ H⊥ lying in the one-dimensional linear subspace H⊥ = {λa : λ ∈R}
that is orthogonal to H and 〈a,�H (x)〉 = 2β−〈a, x〉. The reflection relation defined
by (a,β) is

Ra,β = {(x, y) ∈R
n ×R

n : y − x ∈ (H=(a,β)
)⊥
, 〈a, x〉 ≤ 〈a, y〉 ≤ 2β − 〈a, x〉}

(the definition is invariant against scaling (a,β) by positive scalars). For the half-
space H≤ = H≤(a,β), we also denote RH≤ = Ra,β . The domain of the reflection
relation is dom(Ra,β) = H≤, as (x, y) ∈ Ra,β implies 〈a, x〉 ≤ 2β − 〈a, x〉, thus
〈a, x〉 ≤ β , and furthermore, for each x ∈ H≤(a,β), we obviously have (x, x) ∈
Ra,β . Note that, although (a,β) and (−a,−β) define the same reflection, the re-
flection relations Ra,β and R−a,−β have different domains.

From the constraint y − x ∈ (H=(a,β))⊥ it follows that δ1(Ra,β) = 1 holds.
Thus, we can deduce the following from Remark 1.

Remark 2 If R is induced by a sequential polyhedral relation of type (n, . . . , n) and
length r consisting of reflection relations only, then, for every polyhedron P ⊆ R

n,
an extended formulation of R(P) with n′ + r variables and f ′ + 2r inequalities can
be constructed, provided one has at hands an extended formulation for P with n′
variables and f ′ inequalities.

Proposition 4 For a ∈ R
n \ {O}, β ∈ R and the hyperplane H = H=(a,β), the

reflection relation Ra,β is affinely generated by the identity map and the reflection
�H .

Proof We need to show Ra,β(x) = conv{x,�H (x)} for every x ∈ dom(Ra,β) =
H≤(a,β). Since, for each such x, we have (x, x) ∈ Ra,β(x) and (x,�H (x)) ∈
Ra,β(x), and due to the convexity of Ra,β(x), it suffices to establish the inclusion
“⊆”. Thus, let y ∈ Ra,β(x) be an arbitrary point in Ra,β(x). Due to �H (x)−x ∈H⊥
and y − x ∈ H⊥, both x and �H (x) are contained in the line y + H⊥. From
2β − 〈a, x〉 = 〈a,�H (x)〉 and 〈a, x〉 ≤ 〈a, y〉 ≤ 2β − 〈a, x〉 we hence conclude that
y is a convex combination of x and �H (x). �

Note that for all other affine maps described in Proposition 3 one may construct
a corresponding polyhedral relation in a similar way as done above for reflection
relations.

From Proposition 1 and Proposition 4, one obtains the following result.

Corollary 1 If P ⊆ R
n is a polytope, then we have, for a ∈ R

n \ {O} and β ∈ R

defining the hyperplane H = H=(a,β) and the halfspace H≤ = H≤(a,β),

Ra,β(P)= conv
((
P ∩H≤)∪ �H

(
P ∩H≤)).

88 V. Kaibel and K. Pashkovich

While Corollary 1 describes images under single reflection relations, for analyses
of the images under sequences of reflection relations we define, for each a ∈ R

n \
{O}, β ∈R, H≤ = H≤(a,β), and H = H=(a,β), the map ��(H

≤) :Rn → R
n via

��(H
≤)(y)=

{
y if y ∈H≤

�H (y) otherwise

for all y ∈ R
n, which assigns a canonical preimage to every y ∈ R

n. If R denotes
the polyhedral relation RH

≤
r

◦ · · · ◦ RH
≤
1

, then we have

y ∈R
(
��(H

≤
1) ◦ · · · ◦ ��(H≤

r)(y)
)

(10)

for all y ∈ R
n.

Theorem 1 For R = RH
≤
r

◦ · · · ◦ RH
≤
1

with halfspaces H
≤
1 , . . . ,H≤

r ⊆ R
n and

boundary hyperplanes H1, . . . ,Hr as well as polytopes P,Q ⊆ R
n with Q =

conv(W) for some W ⊆ R
n we have Q= R(P) whenever the following two condi-

tions are satisfied:

1. We have P ⊆Q and �Hi (Q)⊆Q for all i ∈ [r].
2. We have ��(H

≤
1) ◦ · · · ◦ ��(H≤

r)(w) ∈ P for all w ∈W .

Proof From the first condition it follows that the image of P under every com-
bination of maps �Hi lies in Q. Thus, from Lemma 1 we have the inclusion
R(P) ⊆ Q. By the second condition and (10), we have W ⊆ R(P), and hence
Q= conv(W)⊆ R(P) due to the convexity of R(P). �

In order to provide simple examples of extended formulations obtained from
reflection relations, let us define the signing of a polyhedron P ⊆ R

n to be

sign(P)= conv
⋃

ε∈{−,+}n
ε.P ,

where ε.x is the vector obtained from x ∈ R
n by changing the signs of all coordi-

nates i with εi being minus. For x ∈ R
n, we denote by xabs ∈ R

n the vector that is
obtained from x by changing every component to its absolute value.

For the construction below we use the reflection relations R−ek,0, denoted by Sk ,
for all k ∈ [n]. The corresponding reflection σk :Rn → R

n is just the sign change of
the k-th coordinate, given by

σk(x)i =
{

−xi if i = k

xi otherwise

Constructing Extended Formulations from Reflection Relations 89

for all x ∈ R
n. The map which defines the canonical preimage with respect to the

relation Sk is given by

σ�
k (y)i =

{
|yi | if i = k

yi otherwise

for all y ∈ R
n.

Proposition 5 If R is the polyhedral relation Sn ◦ · · · ◦S1 and P ⊆ R
n is a polytope

with vabs ∈ P for each vertex v of P , then we have

R(P)= sign(P).

Proof With Q = sign(P), the first condition of Theorem 1 is satisfied. Further-
more, we have Q = conv(W) with W = {ε.v : ε ∈ {−,+}n, v vertex of P }. As, for
every w ∈ W with w = ε.v for some vertex v of P and ε ∈ {−,+}n, we have
σ�1 ◦ · · · ◦ σ�

n (w) = wabs = vabs ∈ P , also the second condition of Theorem 1 is
satisfied. Hence the claim follows. �

Proposition 5 and Remark 2 imply the following.

Theorem 2 For each polytope P ⊆ R
n with vabs ∈ P for each vertex v of P there is

an extended formulation of sign(P) with n′ + n variables and f ′ + 2n inequalities,
whenever P admits an extended formulation with n′ variables and f ′ inequalities.

4 Applications

4.1 Reflection Groups

A finite reflection group is a group G of finite cardinality that is generated by a
(finite) family �Hi : Rn → R

n (i ∈ I) of reflections at hyperplanes O ∈ Hi ⊆ R
n

containing the origin. We refer to [6, 8] for all results on reflection groups that
we will mention. The set of reflection hyperplanes H ⊆ R

n with �H ∈G (and thus
O ∈H)—called the Coxeter arrangement of G—cuts Rn into open connected com-
ponents, which are called the regions of G. The group G is in bijection with the set
of its regions, and it acts transitively on these regions. If one distinguishes arbitrarily
the topological closure of one of them as the fundamental domain ΦG of G, then,
for every point x ∈ R

n, there is a unique point x(ΦG) ∈ΦG that belongs to the orbit
of x under the action of the group G on R

n.
A finite reflection group G is called irreducible if the set of reflection hyperplanes

cannot be partitioned into two sets H1 and H2 such that the normal vectors of all
hyperplanes in H1 are orthogonal to the normal vectors of all hyperplanes from H2.
According to a central classification result, up to linear transformations, the family

90 V. Kaibel and K. Pashkovich

of irreducible finite reflection groups consists of the four infinite subfamilies I2(m)

(on R
2), An−1, Bn, and Dn (on R

n), as well as six special groups.
For a finite reflection group G on R

n and some polytope P ⊆ R
n the G-permuta-

hedron ΠG(P) of P is the convex hull of the orbit of P under the action of G. In this
subsection, we show for G being one of I2(m), An−1, Bn, or Dn, how to construct an
extended formulation for ΠG(P) from an extended formulation for P . The numbers
of inequalities in the constructed extended formulations will be bounded by f ′ +
O(logm) in case of G= I2(m) and by f ′ + O(n logn) in the other cases, provided
that we have at hands an extended formulation of P with f ′ inequalities.

By the decomposition into irreducible finite reflection groups, one can extend
these constructions to arbitrary finite reflection groups G on R

n, where the result-
ing extended formulations have f ′ + O(n logm) + O(n logn) inequalities, where
m is the largest number such that I2(m) appears in the decomposition of G into
irreducible finite reflection groups.

To see this, let us assume that the set of reflection hyperplanes H can be parti-
tioned into two sets H1 and H2, such that the normal vectors of all hyperplanes in
H1 are orthogonal to the normal vectors of all hyperplanes from H2. Let H1, H2
induce two reflection groups G1, G2. Then, we can represent the G-permutahedron
as

ΠG(P)=ΠG1

(
ΠG2(P)

)
.

Moreover, for every reflection map �H2 , H2 ∈ H2, and for a ∈ R
n, b ∈ R, such that

H1 = H=(a, b), H1 ∈ H1, we have 〈a, x〉 = 〈a,�H2(x)〉 for all x ∈ R
n. Hence, we

can apply Theorem 1 for the polytope ΠG2(P) and the group G1, whenever the
conditions of Theorem 1 hold for the polytope P and for both groups G1 and G2.

4.1.1 The Reflection Group I2(m)

For ϕ ∈ R, let us denote

Hϕ = H=((− sinϕ, cosϕ),0
)

and H≤
ϕ = H≤((− sinϕ, cosϕ),0

)
.

The group I2(m) is generated by the reflections at H0 and Hπ/m. It is the symme-
try group of the regular m-gon with its center at the origin and one of its vertices
at (1,0). The group I2(m) consists of the (finite) set of all reflections �Hkπ/m (for
k ∈ Z) and the (finite) set of all rotations around the origin by angles 2kπ/m (for
k ∈ Z). We choose ΦI2(m) = {x ∈R

2 : x2 ≥ 0, x ∈H
≤
π/m} as the fundamental do-

main.

Proposition 6 If R is the polyhedral relation

RH
≤
2r π/m

◦ · · · ◦ RH
≤
2π/m

◦ RH
≤
π/m

with r = �log(m)� and P ⊆ R
2 is a polytope with v(ΦI2(m)) ∈ P for each vertex v of

P , then we have R(P)=ΠI2(m)(P).

Constructing Extended Formulations from Reflection Relations 91

Proof With Q = ΠI2(m)(P), the first condition of Theorem 1 is satisfied. Fur-
thermore, we have Q = conv(W) with W = {γ.v : γ ∈ I2(m), v vertex of P }. Let
w ∈W be some point with w = γ.v for some vertex v of P and γ ∈ I2(m). Observ-
ing that

�
�(H

≤
π/m) ◦ ��(H≤

2π/m) ◦ · · · ◦ ��(H≤
2r π/m)(w)

is contained in ΦI2(m), we conclude that it equals w(ΦI2(m)) = v(ΦI2(m)) ∈ P . There-
fore, also the second condition of Theorem 1 is satisfied. Hence the claim follows. �

From Proposition 6 and Remark 2, we can conclude the following theorem.

Theorem 3 For each polytope P ⊆ R
2 with v(ΦI2(m)) ∈ P for each vertex v of P

there is an extended formulation of ΠI2(m)(P) with n′ + �log(m)�+ 1 variables and
f ′ + 2�log(m)� + 2 inequalities, whenever P admits an extended formulation with
n′ variables and f ′ inequalities.

In particular, this construction yields extended formulations of regular m-gons
with �log(m)� + 1 variables and 2�log(m)� + 2 inequalities by choosing P =
{(1,0)} in Theorem 3, thus reproving a result due to Ben-Tal and Nemirovski [2].

4.1.2 The Reflection Group An−1

The group An−1 is generated by the reflections at the hyperplanes H=(ek − e�,0)
in R

n for all pairwise distinct k, � ∈ [n]. It is the symmetry group of the (n − 1)-
dimensional (hence the index in the notation An−1) simplex conv{e1, . . . ,en} ⊆
R
n. We choose ΦAn−1 = {x ∈R

n : x1 ≤ · · · ≤ xn} as the fundamental domain. The
orbit of a point x ∈ R

n under the action of An−1 consists of all points which can
be obtained from x by permuting coordinates. Thus the An−1-permutahedron of a
polytope P ⊆ R

n is

ΠAn−1(P)= conv
⋃

γ∈S(n)

γ .P,

where γ.x is the vector obtained from x ∈ R
n by permuting the coordinates accord-

ing to γ .
Let us consider more closely the reflection relation Tk,� = Rek−e�,0 ⊆ R

n ×R
n.

The corresponding reflection τk,� = �Hk,� : Rn →R
n with Hk,� = H=(ek − e�,0) is

the transposition of coordinates k and �, i.e., we have

τk,�(x)i =

⎧
⎪⎨

⎪⎩

x� if i = k

xk if i = �

xi otherwise

92 V. Kaibel and K. Pashkovich

for all x ∈ R
n. The map τ �k,� = ��(Hk,�) : Rn → R

n (assigning canonical preimages)
is given by

τ �k,�(y)=
{
τk,�(y) if yk > y�

y otherwise

for all y ∈ R
n.

A sequence (k1, �1), . . . , (kr , �r) ∈ [n] × [n] with ki 	= �i for all i ∈ [r] is called
a sorting network if

τ �k1,�1
◦ · · · ◦ τ �kr ,�r (y)= ysort

holds for all y ∈R
n, where we denote by ysort ∈ R

n the vector that is obtained from
y by sorting the components in non-decreasing order. Note that we have y(ΦAn−1) =
ysort for all y ∈R

n.

Proposition 7 If R is a polyhedral relation Tkr ,�r ◦ · · · ◦ Tk1,�1 , where the sequence
(k1, �1), . . . , (kr , �r) ∈ [n]×[n] is a sorting network, and P ⊆ R

n is a polytope with
vsort ∈ P for each vertex v of P , then we have R(P)=ΠAn−1(P).

Proof With Q = ΠAn−1(P), the first condition of Theorem 1 is satisfied. Further-
more, we have Q = conv(W) with W = {γ.v : γ ∈ S(n), v vertex of P }. As, for
every w ∈W with w = γ.v for some vertex v of P and γ ∈S(n), we have

τ �k1,�1
◦ · · · ◦ τ �kr ,�r (w)=wsort = vsort ∈ P,

also the second condition of Theorem 1 is satisfied. Hence the claim follows. �

As there are sorting networks of size r = O(n logn) (see [1]), from Proposition 7
and Remark 2 we can conclude the following theorem.

Theorem 4 For each polytope P ⊆ R
n with vsort ∈ P for each vertex v of P

there is an extended formulation of ΠAn−1(P) with n′ + O(n logn) variables and
f ′ + O(n logn) inequalities, whenever P admits an extended formulation with n′
variables and f ′ inequalities.

Note that the sorting networks described in [1] can be computed in time that is
bounded polynomially in n.

Choosing the one-point polytope P = {(1,2, . . . , n)} ⊆ R
n, Theorem 4 yields

basically the same extended formulation with O(n logn) variables and inequalities
of the permutahedron Pnperm =ΠAn−1(P) that has been constructed by Goemans [7]
(see the remarks in the introduction).

Letting G=An−1 act on the first n components of Rn×R
n+1 and choosing P as

the convex hull of the vectors (1i ,On−i ,ei+1) (i ∈ {0,1, . . . , n}), the construction
behind Theorem 4 yields an extended formulation with O(n logn) variables and
inequalities of the cardinality indicating polytope ΠG(P).

Constructing Extended Formulations from Reflection Relations 93

4.1.3 The Reflection Group Bn

The group Bn is generated by the reflections in R
n at the hyperplanes H=(ek +

e�,0), H=(ek − e�,0) and H=(ek,0) for all pairwise distinct k, � ∈ [n]. It is
the symmetry group of both the n-dimensional cube conv{−1,+1}n and the
n-dimensional cross-polytope conv{±e1, . . . ,±en}. We choose ΦBn = {x ∈ R

n :
0 ≤ x1 ≤ · · · ≤ xn} as the fundamental domain. The orbit of a point x ∈ R

n under
the action of Bn consists of all points which can be obtained from x by permuting
its coordinates and changing the signs of some subset of its coordinates. Note that
we have y(ΦBn) = ysort-abs for all y ∈R

n, where ysort-abs = v′sort with v′ = yabs.

Proposition 8 If R is a polyhedral relation Sn ◦ · · · ◦S1 ◦ Tkr ,�r ◦ · · · ◦ Tk1,�1 , where
(k1, �1), . . . , (kr , �r) ∈ [n] × [n] is a sorting network (and the Si are defined as at
the end of Sect. 3) and P ⊆ R

n is a polytope with vsort-abs ∈ P for each vertex v of
P , then we have R(P)=ΠBn(P).

Proof With Q=ΠBn(P), the first condition of Theorem 1 is satisfied. Furthermore,
we have Q = conv(W) with W = {γ.ε.v : γ ∈ S(n), ε ∈ {−,+}n, v vertex of P }.
As, for every w ∈ W with w = γ.ε.v for some vertex v of P and γ ∈ S(n), ε ∈
{−,+}n, we have

τ �k1,�1
◦ · · · ◦ τ �kr ,�r ◦ σ�

1 ◦ · · · ◦ σ�
n (w)=wsort-abs = vsort-abs ∈ P,

also the second condition of Theorem 1 is satisfied. Hence the claim follows. �

As for An−1, we thus can conclude the following from Proposition 8 and Re-
mark 2.

Theorem 5 For each polytope P ⊆ R
n with vsort-abs ∈ P for each vertex v of P

there is an extended formulation of ΠBn(P) with n′ + O(n logn) variables and
f ′ + O(n logn) inequalities, whenever P admits an extended formulation with n′
variables and f ′ inequalities.

4.1.4 The Reflection Group Dn

The group Dn is generated by the reflections in R
n at the hyperplanes H=(ek +

e�,0) and H=(ek − e�,0) for all pairwise distinct k, � ∈ [n]. Thus, Dn is a proper
subgroup of Bn. It is not the symmetry group of a polytope. We choose ΦDn =
{x ∈R

n : |x1| ≤ x2 ≤ · · · ≤ xn} as the fundamental domain. The orbit of a point
x ∈ R

n under the action of Dn consists of all points which can be obtained from
x by permuting its coordinates and changing the signs of an even number of its co-
ordinates. For every x ∈R

n, the point x(ΦDn) arises from xsort-abs by multiplying the
first component by −1 in case x has an odd number of negative components. For
k, � ∈ [n] with k 	= �, we denote the polyhedral relation R−ek−e�,0 ◦ Rek−e�,0 by
Ek,�.

94 V. Kaibel and K. Pashkovich

Proposition 9 If R is a polyhedral relation En−1,n ◦ · · · ◦E1,2 ◦ Tkr ,�r ◦ · · · ◦ Tk1,�1 ,
where (k1, �1), . . . , (kr , �r) ∈ [n] × [n] is a sorting network, and P ⊆ R

n is a poly-
tope with x(ΦDn) ∈ P for each vertex v of P , then we have R(P)=ΠDn(P).

Proof With Q=ΠDn(P), the first condition of Theorem 1 is satisfied. Let us denote
by {−,+}neven the set of all ε ∈ {−,+}n with an even number of components equal
to minus. Then, we have Q= conv(W) with

W = {γ.ε.v : γ ∈S(n), ε ∈ {−,+}neven, v vertex of P
}
.

For k, � ∈ [n] with k 	= �, we define η�k,� = ��(H
≤(ek−e�,0)) ◦ ��(H≤(−ek−e�,0)). For

each y ∈ R
n, the vector η�k,�(y) is the vector y′ ∈ {y, τk,�(y), ρk,�(y), ρk,�(τk,�(y))}

with |y′
k| ≤ y′

�, where ρk,�(y) arises from y by multiplying both components k and �
by −1. As, for every w ∈W with w = γ.ε.v for some vertex v of P and γ ∈ S(n),
ε ∈ {−,+}neven, we have

τ �k1,�1
◦ · · · ◦ τ �kr ,�r ◦ η�1,2 ◦ · · · ◦ η�n−1,n(w)=w(ΦDn) = v(ΦDn) ∈ P,

also the second condition of Theorem 1 is satisfied. Hence the claim follows. �

And again, similarly to the cases An−1 and Bn, we derive the following result
from Proposition 9 and Remark 2.

Theorem 6 For each polytope P ⊆ R
n with v(ΦDn)(v) ∈ P for each vertex v of

P there is an extended formulation of ΠDn(P) with n′ + O(n logn) variables and
f ′ + O(n logn) inequalities, whenever P admits an extended formulation with n′
variables and f ′ inequalities.

If we restrict attention to the polytopes P = {(−1,1, . . . ,1)} ⊆ R
n and P =

{(1,1, . . . ,1)} ⊆ R
n, then we can remove the reflection relations Ti1,j1 , . . . , Tir ,jr

from the construction in Proposition 9. Thus, we obtain extended formulations with
2(n − 1) variables and 4(n − 1) inequalities of the convex hulls of all vectors
in {−1,+1}n with an odd respectively even number of ones. Thus, applying the
affine transformation of R

n given by y �→ 1
2 (1 − y), we derive extended formu-

lations with 2(n − 1) variables and 4(n − 1) inequalities for the parity polytopes
conv{v ∈ {0,1}n :∑i vi odd} and conv{v ∈ {0,1}n :∑i vi even}, respectively. This
reproves a result due to Carr and Konjevod [3]. In fact, one can show that their’s and
our extension are affinely isomorphic to each other.

4.2 Huffman Polytopes

A vector v ∈ R
n (with n ≥ 2) is a Huffman-vector if there is a rooted binary tree

with n leaves (all non-leaf nodes having two children) and a labeling of the leaves

Constructing Extended Formulations from Reflection Relations 95

by 1, . . . , n such that, for each i ∈ [n], the number of arcs on the path from the
root to the leaf labelled i equals vi . Let us denote by Vn

huff the set of all Huffman-
vectors in R

n, and by Pnhuff = conv(Vn
huff) the Huffman polytope. Note that currently

no linear description of Pnhuff in R
n is known. In fact, it seems that such descriptions

are extremely complicated. For instance, Nguyen, Nguyen, and Maurras [15] proved
that Pnhuff has (Ω(n))! facets.

We are going to construct small extended formulations for Huffman polytopes,
where the constructions rely on the following obvious properties.

Observation 1

1. For every γ ∈ S(n)

γ.Vn
huff = Vn

huff.

2. For every v ∈ Vn
huff, there are at least two components of v equal to

max
k∈[n]vk.

3. For every v ∈ Vn
huff and

vi = vj = max
k∈[n]vk

for some pair of distinct i, j , the point

(v1, . . . , vi−1, vi − 1, vi+1, . . . , vj−1, vj+1, . . . , vn)

lies in Vn−1
huff .

4. For every x ∈ Vn−1
huff , the point

(x1, . . . , xn−2, xn−1 + 1, xn−1 + 1)

lies in Vn
huff.

To construct an extended formulation of the Huffman polytope, we need to define
the embedding

Pn−1 = {(x1, . . . , xn−2, xn−1 + 1, xn−1 + 1) : (x1, . . . , xn−1) ∈ Pn−1
huff

}

of Pn−1
huff into R

n.

Proposition 10 If R ⊆ R
n ×R

n (with n≥ 3) is the polyhedral relation

T1,2 ◦ T2,3 ◦ · · · ◦ Tn−2,n−1 ◦ Tn−1,n ◦ T1,2 ◦ T2,3 ◦ · · · ◦ Tn−3,n−2 ◦ Tn−2,n−1, (11)

then we have R(P n−1)= Pnhuff.

96 V. Kaibel and K. Pashkovich

Proof With P = Pn−1 and Q= Pnhuff, the first condition of Theorem 1 is, obviously,
satisfied, what is due to parts (1) and (4) of Observation 1. We have Q = conv(X)
with X = Vn

huff. Furthermore, for every x ∈X and y = τ �(x) with

τ � = τ �n−2,n−1 ◦ τ �n−3,n−2 ◦ · · · ◦ τ �2,3 ◦ τ �1,2 ◦ τ �n−1,n ◦ τ �n−2,n−1 ◦ · · · ◦ τ �2,3 ◦ τ �1,2, (12)

we have

yn = yn−1 = max
i∈[n] xi,

the part (3) of Observation 1 implies τ �(x) ∈ Pn−1. Therefore, the claim follows by
Theorem 1. �

Thus, from Remark 2, we get an extended formulation for Pnhuff with n′ + 2n− 3
variables and f ′ + 4n− 6 inequalities, provided we have an extended formulation
for Pn−1

huff with n′ variables and f ′ inequalities. Since the Huffman polytope P2
huff is

a single point, inductive application of this approach leads to the following result.

Proposition 11 For the Huffman polytope Pnhuff, there is an extended formulation of
size O(n2).

Actually, the Huffman polytope Pnhuff even has an extended formulation of size
O(n logn), but this requires another sorting approach. In order to indicate the nec-
essary modifications, let us denote by Θk the sequence

(k − 2, k − 1), (k − 3, k − 2), . . . , (1,2), (k − 1, k), (k − 2, k − 1), . . . , (1,2)

of index pairs, which are used in (11) and (12). For every sequence

Θ = ((i1, j1), . . . , (ir , jr)
)

of pairs of distinct indices, we define

τ �Θ = τ �i1,j1
◦ · · · ◦ τ �ir ,jr ,

thus τ �Θn
is denoted by τ � in (12). Furthermore, let πk : Rk → R

k−1 be the linear
map defined via

πk(y)= (y1, . . . , yk−2, yk−1 − 1)

for all y ∈ R
k . For the above construction, we need, that for every v ∈ Vn

huff and
every k ≥ 3, the vector

xk = τ �Θk
◦ πk+1 ◦ τ �Θk+1

◦ · · · ◦ πn ◦ τ �Θn
(v) (13)

satisfies

xkk−1 = xkk = max
i∈[k] x

k
i .

Constructing Extended Formulations from Reflection Relations 97

Fig. 1 Illustration of the sequence replacing Θk in order to reduce the size of the extension of
Pnhuff to O(n logn)

It turns out, that this property is preserved, when replacing the sequence Θn by an
arbitrary sorting network, and for every k ≥ 3, the sequence Θk by the sequence

(
ik2 , i

k
1

)
,
(
ik3 , i

k
2

)
, . . . ,

(
ikrk , i

k
rk−1

)
,
(
ikrk−1, i

k
rk−2

)
, . . . ,

(
ik3 , i

k
2

)
,
(
ik2 , i

k
1

)

with

ikt =

⎧
⎪⎨

⎪⎩

k if t = 1

k − 1 if t = 2

ikt−1 − 2t−3 otherwise

and where rk is the maximal t , such that ikt is greater than zero. Denote by Jk the
set of indices, involved in this sorting transformation Θk , i.e.

Jk = {ikt : t ∈ [rk]
}

(see Fig. 1).

Proposition 12 For every 2 ≤ k ≤ n, the Huffman vector xk , defined by (13), is
sorted or the Huffman vector xk has the following form

xkk = · · · = xkk−pk+1 = max
i∈[k] x

k
i

xkk−pk
= · · · = xkk−pk−qk+1 = max

i∈[k] x
k
i − 1

xkk−pk−qk
= · · · = xkk−pk−qk−�k+1 = max

i∈[k] x
k
i

xk1 ≤ · · · ≤ xkk−pk−qk−�k
≤ max

i∈[k] x
k
i − 1,

where the index k − pk − qk + 1 belongs to J k and pk is strictly greater than �k .

Proof The proof is by induction on the number n, i.e. we assume, that if a vector
xk ∈R

k satisfies

xk = τ �Θk
◦ πk+1 ◦ τ �Θk+1

◦ · · · ◦ πm(x)
for a sorted Huffman vector x ∈ R

m, where m< n, then the vector xk satisfies the
claim above.

98 V. Kaibel and K. Pashkovich

If the Huffman vector

yn−1 = πn ◦ τ �Θn
(v)

is sorted, then we can apply the induction assumption for m = n− 1 and the Huff-
man vector

x = τ �Θn−1
◦ πn ◦ τ �Θn

(v).

Otherwise, for the Huffman vector yn−1, we have

yn−1
n−1 = u− 1 and yn−1

1 ≤ · · · ≤ yn−1
n−2 = u,

where u is the maximum value among the coordinates of the Huffman vector xn.
After application of the sorting transformation Θn−1 to yn−1, we get the Huffman
vector xn−1 with

xn−1
n−1 = · · · = xn−1

(n−1)−pn−1+1 = u

xn−1
(n−1)−pn−1

= u− 1

xn−1
(n−1)−pn−1−1 = · · · = xn−1

(n−1)−pn−1−�n−1
= u

xn−1
1 ≤ · · · ≤ xn−1

(n−1)−pn−1−�n−1−1 ≤ u− 1,

where pn−1 = 2i−1 and �n−1 < 2i−1. If the Huffman vector

xn−1 = τ �Θn−1
◦ πn ◦ τ �Θn

(v)

is sorted, i.e. ln−1 = 0, then the induction assumption for m = n− 1 and x = xn−1

finishes the proof. Otherwise, the index (n − 1) − pn−1 belongs to Jn−1, thus the
assumption of proposition holds for k = n− 1.

Let us assume, that for the Huffman vector

xk = τ �Θk
◦ · · · ◦ πn ◦ τ �Θn

(v)

the claim holds. Then, the Huffman vector

yk−1 = πk ◦ τ �Θk
◦ · · · ◦ πn ◦ τ �Θn

(v)

has components

yk−1
k−1 = u− 1

yk−1
k−2 = · · · = yk−1

k−pk+1 = u

yk−1
k−pk

= · · · = yk−1
k−pk−qk+1 = u− 1

yk−1
k−pk−qk

= · · · = yk−1
k−pk−qk−�k+1 = u

xk1 ≤ · · · ≤ xkk−pk−qk−�k
≤ u− 1.

Constructing Extended Formulations from Reflection Relations 99

Obviously, the set of indices Jk−1 is obtained from the set of indices Jk , decreasing
every element by one and excluding the index zero. Hence, the index (k − 1) −
(pk − 1)− qk belongs to the index set Jk−1.

Let us consider the coordinates of yk−1 with indices in Jk−1, i.e. the coordinates
participating in Θk−1. Note that there exists just one u in this sequence before the
u − 1 block, since (k − 1) − (pk − 1) − qk belongs to the indices set Jk−1 and
pk > lk . Clearly, the action of τ �Θk−1

is equivalent to swapping of the first u-value
with the last (u − 1)-value in this sequence of coordinates. Thus after the sorting
transformation τ �Θk−1

the Huffman vector

xk−1 = τ �Θk−1
◦ πk ◦ τ �Θk

◦ · · · ◦ πn ◦ τ �Θn
(v)

has the desired form, and we have lk−1 <pk−1 and (k−1)−pk−1 −qk−1 ∈ J k−1. �

To finish the construction, we have to verify that

xkk−1 = xkk = max
i∈[k] x

k
i

holds for the Huffman vector xk (for k ≥ 3). Obviously, this follows from Proposi-
tion 12, because the inequality pk > �k implies pk ≥ 2, since every Huffman vector
has an even number of maximal elements, i.e. pk + �k has to be even. We obtain the
following theorem, since the number rk is bounded by O(logk) and since there are
sorting networks of size O(n logn).

Theorem 7 For the Huffman polytope Pnhuff, there is an extended formulation of size
O(n logn).

5 Conclusions

We hope to have demonstrated that and how the framework of reflection relations
extends the currently available toolbox for constructing extended formulations. We
conclude with briefly mentioning two directions for future research.

One of the most interesting questions in this context seems to be that for other
polyhedral relations that can be useful for constructing extended formulations. In
particular, what other types of affinely generated polyhedral relations are there?

The reflections we referred to are reflections at hyperplanes. It would be of great
interest to find tools to deal with reflections at lower dimensional subspaces as well.
This, however, seems to be much harder. In particular, it is unclear whether some
concept similar to that of polyhedral relations can help here at all.

Acknowledgements Martin Grötschel is our academic grandfather (Volker Kaibel) and great-
grandfather (Kanstantsin Pashkovich). Next to our deep appreciation of his scientific work and of
his influence on the development of the field of Combinatorial Optimization, Volker Kaibel is in
particular grateful for Martin Grötschel’s great support and for the excellent conditions (except
for occasionally having to prepare PowerPoint-slides) he enjoyed while working at Zuse-Institute

100 V. Kaibel and K. Pashkovich

Berlin in 2005 and 2006. It is a true pleasure to contribute to this volume dedicated to Martin’s
65th birthday.

With respect to the work presented in this paper, we thank Samuel Fiorini, Michel Goemans,
Günter Rote and Dirk Oliver Theis for valuable hints and discussions as well as the referee for all
her or his efforts.

Volker Kaibel acknowledges funding by Deutsche Forschungsgemeinschaft (KA 1616/4-1 Ex-
tended Formulations in Combinatorial Optimization) and Kanstantsin Pashkovich is grateful for
support by the International Max Planck Research School (IMPRS) for Analysis, Design and Op-
timization in Chemical and Biochemical Process Engineering Magdeburg and by the Progetto di
Eccellenza 2008–2009 of the Fondazione Cassa Risparmio di Padova e Rovigo.

References

1. Ajtai, M., Komlós, J., Szemerédi, E.: Sorting in c logn parallel steps. Combinatorica 3(1),
1–19 (1983). doi:10.1007/BF02579338

2. Ben-Tal, A., Nemirovski, A.: On polyhedral approximations of the second-order cone. Math.
Oper. Res. 26(2), 193–205 (2001). doi:10.1287/moor.26.2.193.10561

3. Carr, R.D., Konjevod, G.: Polyhedral combinatorics. In: Greenberg, H. (ed.) Tutorials on
Emerging Methodologies and Applications in Operations Research, Chap. 2, pp. (2-1)–(2-48).
Springer, Berlin (2004)

4. Conforti, M., Pashkovich, K.: The projected faces property and polyhedral relations. http://
arxiv.org/abs/1305.3782 (2013)

5. Conforti, M., Cornuéjols, G., Zambelli, G.: Extended formulations in combinatorial optimiza-
tion. 4OR 8(1), 1–48 (2010). doi:10.1007/s10288-010-0122-z

6. Fomin, S., Reading, N.: Root systems and generalized associahedra. In: Geometric Combina-
torics. IAS/Park City Math. Ser., vol. 13, pp. 63–131. Am. Math. Soc., Providence (2007)

7. Goemans, M.: Smallest compact formulation for the permutahedron. http://www-math.mit.
edu/~goemans/publ.html

8. Humphreys, J.E.: Reflection Groups and Coxeter Groups. Cambridge Studies in Advanced
Mathematics, vol. 29. Cambridge University Press, Cambridge (1990)

9. Kaibel, V., Loos, A.: Branched polyhedral systems. In: Eisenbrand, F., Shepherd, B. (eds.)
Integer Programming and Combinatorial Optimization (Proc. IPCO XIV). LNCS, vol. 6080,
pp. 177–190. Springer, Berlin (2010)

10. Kaibel, V., Pashkovich, K.: Constructing extended formulations from reflection relations.
In: Günlük, O., Woeginger, G. (eds.) Integer Programming and Combinatorial Optimization
(Proc. IPCO XV). LNCS, vol. 6655, pp. 287–300. Springer, Berlin (2011)

11. Kaibel, V., Pashkovich, K., Theis, D.O.: Symmetry matters for the sizes of extended formu-
lations. In: Eisenbrand, F., Shepherd, B. (eds.) Integer Programming and Combinatorial Opti-
mization (Proc. IPCO XIV). LNCS, vol. 6080, pp. 135–148. Springer, Berlin (2010)

12. Köppe, M., Louveaux, Q., Weismantel, R.: Intermediate integer programming representations
using value disjunctions. Discrete Optim. 5(2), 293–313 (2008)

13. Margot, F.: Composition de polytopes combinatoires: une approche par projection. Ph.D. the-
sis, École polytechnique Fédérale de Lausanne (1994)

14. Martin, R.K., Rardin, R.L., Campbell, B.A.: Polyhedral characterization of discrete dynamic
programming. Oper. Res. 38(1), 127–138 (1990). doi:10.1287/opre.38.1.127

15. Nguyen, V.H., Nguyen, T.H., Maurras, J.F.: On the convex hull of Huffman trees. Electron.
Notes Discrete Math. 36, 1009–1016 (2010)

16. Queyranne, M.: Structure of a simple scheduling polyhedron. Math. Program., Ser. A 58(2),
263–285 (1993). doi:10.1007/BF01581271

17. Wolsey, L.A.: Personal communication
18. Yannakakis, M.: Expressing combinatorial optimization problems by linear programs. J. Com-

put. Syst. Sci. 43(3), 441–466 (1991)

http://dx.doi.org/10.1007/BF02579338
http://dx.doi.org/10.1287/moor.26.2.193.10561
http://arxiv.org/abs/1305.3782
http://arxiv.org/abs/1305.3782
http://dx.doi.org/10.1007/s10288-010-0122-z
http://www-math.mit.edu/~goemans/publ.html
http://www-math.mit.edu/~goemans/publ.html
http://dx.doi.org/10.1287/opre.38.1.127
http://dx.doi.org/10.1007/BF01581271

Mirror-Descent Methods in Mixed-Integer
Convex Optimization

Michel Baes, Timm Oertel, Christian Wagner, and Robert Weismantel

Abstract In this paper, we address the problem of minimizing a convex function
f over a convex set, with the extra constraint that some variables must be integer.
This problem, even when f is a piecewise linear function, is NP-hard. We study an
algorithmic approach to this problem, postponing its hardness to the realization of
an oracle. If this oracle can be realized in polynomial time, then the problem can
be solved in polynomial time as well. For problems with two integer variables, we
show with a novel geometric construction how to implement the oracle efficiently,
that is, in O(ln(B)) approximate minimizations of f over the continuous variables,
where B is a known bound on the absolute value of the integer variables. Our al-
gorithm can be adapted to find the second best point of a purely integer convex
optimization problem in two dimensions, and more generally its k-th best point.
This observation allows us to formulate a finite-time algorithm for mixed-integer
convex optimization.

1 Introduction

One of the highlights in the list of publications of Martin Grötschel is his joint
book with László Lovász and Alexander Schrijver on Geometric Algorithms and
Combinatorial Optimization [8]. This book develops a beautiful and general theory
of optimization over (integer) points in convex sets. The generality comes from the
fact that the convex sets under consideration are presented by oracles (membership,

M. Baes · T. Oertel · C. Wagner · R. Weismantel (B)
Department of Mathematics, Institut für Operations Research, ETH Zürich, Rämistrasse 101,
8092 Zürich, Switzerland
e-mail: robert.weismantel@ifor.math.ethz.ch

M. Baes
e-mail: michel.baes@ifor.math.ethz.ch

T. Oertel
e-mail: timm.oertel@ifor.math.ethz.ch

C. Wagner
e-mail: christian.wagner@ifor.math.ethz.ch

M. Jünger, G. Reinelt (eds.), Facets of Combinatorial Optimization,
DOI 10.1007/978-3-642-38189-8_5, © Springer-Verlag Berlin Heidelberg 2013

101

mailto:robert.weismantel@ifor.math.ethz.ch
mailto:michel.baes@ifor.math.ethz.ch
mailto:timm.oertel@ifor.math.ethz.ch
mailto:christian.wagner@ifor.math.ethz.ch
http://dx.doi.org/10.1007/978-3-642-38189-8_5

102 M. Baes, T. Oertel, C. Wagner, and R. Weismantel

separation in different variations, optimization). The algorithms and their efficiency
typically depend on the oracle presentation of the underlying convex set. This is
precisely the theme of this paper as well: we present an algorithmic framework
for solving mixed-integer convex optimization problems that is based on an oracle.
Whenever the oracle can be realized efficiently, then the overall running time of the
optimization algorithm is efficient as well.

One of the results from the book [8] that is perhaps closest to our results is the
following. By B(p, r) we denote a ball of radius r with center p.

Theorem 1 (Theorem 6.7.10 in [8]) Let n be a fixed integer and K ⊆ R
n be any

convex set given by a weak separation oracle and for which there exist r,R > 0 and
p ∈ K with B(p, r) ⊆ K ⊆ B(0,R). There exists an oracle-polynomial algorithm
that, for every fixed ε > 0, either finds an integral point in K +B(0, ε) or concludes
that K ∩Z

n = ∅.

The main distinction between results presented here and results from [8] of such
flavor as Theorem 1 is the way in which the statements are proven. Proofs of sim-
ilar results in [8] basically use a combination of the ellipsoid algorithm [10] and
a Lenstra-type algorithm [11]. Our proof techniques rather rely on methods from
convex optimization.

Let us now make precise our assumptions. We study a general mixed-integer
convex optimization problem of the kind

min
{
f (x̂, y) : (x̂, y) ∈ S ∩ (Zn ×R

d
)}
, (1)

where the function f : Rn+d → R+ ∪ {+∞} is a nonnegative proper convex func-
tion, i.e., there is a point z ∈ R

n+d with f (z) < +∞. Moreover, S ⊆ R
n+d is a

convex set that is defined by a finite number of convex functional constraints, i.e.,
S := {(x, y) ∈ R

n+d : gi(x, y)≤ 0 for 1 ≤ i ≤m}. We denote by 〈·, ·〉 a scalar prod-
uct. The functions gi : Rn+d → R are differentiable convex functions and encoded
by a so-called first-order oracle. Given any point (x0, y0) ∈ R

n+d , this oracle re-
turns, for every i ∈ {1, . . . ,m}, the function value gi(x0, y0) together with a subgra-
dient g′

i (x0, y0), that is, a vector satisfying:

gi(x, y)− gi(x0, y0)≥ 〈g′
i (x0, y0), (x − x0, y − y0)

〉

for all (x, y) ∈R
n+d .

In this general setting, very few algorithmic frameworks exist. The most com-
monly used one is “outer approximation”, originally proposed in [4] and later on
refined in [2, 6, 17]. This scheme is known to be finitely converging, yet there is
no analysis regarding the number of iterations it takes to solve problem (1) up to a
certain given accuracy.

In this paper we present oracle-polynomial algorithmic schemes that are (i)
amenable to an analysis and (ii) finite for any mixed-integer convex optimization
problem. Our schemes also give rise to the fastest algorithm so far for solving
mixed-integer convex optimization problems in variable dimension with at most
two integer variables.

Mirror-Descent Methods in Mixed-Integer Convex Optimization 103

2 An Algorithm Based on an “Improvement Oracle”

We study in this paper an algorithmic approach to solve (1), postponing its hardness
to the realization of an improvement oracle defined below. If this oracle can be
realized in polynomial time, then the problem can be solved in polynomial time as
well. An oracle of this type has already been used in a number of algorithms in other
contexts, such as in [1] for semidefinite problems.

Definition 1 (Improvement Oracle) Let α, δ ≥ 0. For every z ∈ S, the oracle

a. returns ẑ ∈ S ∩ (Zn ×R
d) such that f (ẑ)≤ (1 + α)f (z)+ δ, and/or

b. asserts correctly that there is no point ẑ ∈ S ∩ (Zn ×R
d) for which f (ẑ)≤ f (z).

We denote the query to this oracle at z by Oα,δ(z).

As stressed in the above definition, the oracle might content itself with a feasible
point ẑ satisfying the inequality in a without addressing the problem in b. However,
we do not exclude the possibility of having an oracle that can occasionally report
both facts. In that case, the point ẑ that it outputs for the input point z ∈ S must
satisfy:

f (ẑ)− f̂ ∗ ≤ αf (z)+ δ + (f (z)− f̂ ∗)≤ αf (z)+ δ ≤ αf̂ ∗ + δ,

where f̂ ∗ is the optimal objective value of (1). Thus f (ẑ) ≤ (1 + α)f (z)+ δ, and
it is not possible to hope for a better point of S from the oracle. We can therefore
interrupt the computations and output ẑ as the final result of our method.

In the case where f̂ ∗ > 0 and δ = 0, the improvement oracle might be realized by
a relaxation of the problem of finding a suitable ẑ: in numerous cases, these relax-
ations come with a guaranteed value of α. In general, the realization of this oracle
might need to solve a problem as difficult as the original mixed-integer convex in-
stance, especially when α = δ = 0. Nevertheless, we will point out several situations
where this oracle can actually be realized quite efficiently, even with α = 0.

The domain of f , denoted by domf , is the set of all the points z ∈ R
n+d with

f (z) <+∞. For all z ∈ domf , we denote by f ′(z) an element of the subdifferential
∂f (z) of f . We represent by ẑ∗ = (x̂∗, y∗) a minimizer of (1), and set f̂ ∗ := f (ẑ∗);
more generally, we use a hat (·̂) to designate vectors that have their n first compo-
nents integral by definition or by construction.

Let us describe an elementary method for solving Lipschitz continuous convex
problems on S approximately. Lipschitz continuity of f on S, an assumption we
make from now on, entails that, given a norm ‖ · ‖ on R

n+d , there exists a constant
L> 0 for which:

∣∣f (z1)− f (z2)
∣∣≤ L‖z1 − z2‖

for every z1, z2 ∈ S. Equivalently, if ‖ · ‖∗ is the dual norm of ‖ · ‖, we have
‖f ′(z)‖∗ ≤ L for every f ′(z) ∈ ∂f (z) and every z ∈ domf .

Our first algorithm is a variant of the well-known Mirror-Descent Method (see
Chap. 3 of [13]). It requires a termination procedure, which used alone constitutes
our second algorithm as a minimization algorithm on its own. However, the second

104 M. Baes, T. Oertel, C. Wagner, and R. Weismantel

Algorithm 1: Mirror-Descent Method
Data: z0 ∈ S.
Set ẑ0 := z0, w0 := z0, s0 := 0, and f̂0 := f (ẑ0).
Select sequences {hk}k≥0, {αk}k≥0, {δk}k≥0.
for k = 0, . . . ,N do

Compute f ′(zk) ∈ ∂f (zk) and ρ′(wk) ∈ ∂ρ(wk).
Set sk+1 := sk − hkf

′(zk)− hk‖f ′(zk)‖∗ρ′(wk).
Set wk+1 := arg max{〈sk+1, z〉 − V (z) : z ∈R

n+d}.
Set zk+1 := arg min{‖wk+1 − z‖ : z ∈ S}.
Compute f (zk+1).

if f (zk+1)≥ f̂k then ẑk+1 := ẑk , f̂k+1 := f̂k .
else

Run Oαk+1,δk+1(zk+1).
if the oracle reports a and b then

Terminate the algorithm and return the oracle output from a.
else if the oracle reports a but not b then

Set ẑk+1 as the oracle output and f̂k+1 := min{f (ẑk+1), f̂k}.
else

Run the termination procedure with z0 := zk+1, ẑ0 := ẑk+1,
return its output, and terminate the algorithm.

end
end

end

algorithm requires as input an information that is a priori not obvious to get: a point
z ∈ S for which f (z) is a (strictly) positive lower bound of f̂ ∗.

Let V : Rn+d → R+ be a differentiable σ -strongly convex function with respect
to the norm ‖ · ‖, i.e., there exists a σ > 0 for which, for every z1, z2 ∈ R

n+d , we
have:

V (z2)− V (z1)− 〈V ′(z1), z2 − z1
〉≥ σ

2
‖z2 − z1‖2.

We also use the conjugate V∗ of V defined by V∗(s) := sup{〈s, z〉 − V (z) : z ∈
R
n+d} for every s ∈ R

n+d . We fix z0 ∈ S as the starting point of our algorithm and
denote by M an upper bound of V (ẑ∗). We assume that the solution of the problem
sup{〈s, z〉 − V (z) : z ∈ R

n+d} exists and can be computed easily, as well as the
function ρ(w) := min{‖w− z‖ : z ∈ S} for every w ∈R

n+d , its subgradient, and the
minimizer π(w). In an alternative version of the algorithm we are about to describe,
we can merely assume that the problem max{〈s, z〉 − V (z) : z ∈ S} can be solved
efficiently.

A possible building block for constructing an algorithm to solve (1) is the con-
tinuous optimum of the problem, that is, the minimizer of (1) without the integrality
constraints. Algorithm 1 is essentially a standard procedure meant to compute an

Mirror-Descent Methods in Mixed-Integer Convex Optimization 105

Algorithm 2: Termination procedure

Data: z0 ∈ S with f (z0)≤ f̂ ∗, ẑ0 ∈ S ∩ (Zn ×R
d).

Set l0 := f (z0), u0 := f (ẑ0).
Choose α, δ ≥ 0. Choose a subproblem accuracy ε′ > 0.
for k ≥ 0 do

Compute using a bisection method a point zk+1 = λzk + (1 − λ)ẑk
for 0 ≤ λ≤ 1, for which f (zk+1)− (lk(α + 1)+ uk)/(α + 2) ∈ [−ε′, ε′].
Run Oα,δ(zk+1).
if the oracle reports a and b then

Terminate the algorithm and return the oracle output from a.
else if the oracle reports a but not b then

Set ẑk+1 as the oracle output, lk+1 := lk , uk+1 := min{f (ẑk+1), uk}.
else

Set ẑk+1 := ẑk , lk+1 := f (zk+1), uk+1 := uk .
end

end

approximation of this continuous minimizer, lined with our oracle that constructs
simultaneously a sequence of mixed-integer feasible points following the decrease
of f . Except in the rare case when we produce a provably suitable solution to our
problem, this algorithm provides a point z ∈ S such that f (z) is a lower bound of
f̂ ∗. Would this lower bound be readily available, we can jump immediately to the
termination procedure (see Algorithm 2).

The following proposition is an extension of the standard proof of convergence
of Mirror-Descent Methods. We include it here for the sake of completeness.

Proposition 1 Suppose that the oracle reports a for k = 0, . . . ,N in Algorithm 1,
that is, it delivers an output ẑk for every iteration k = 0, . . . ,N . Then:

1
∑N

k=0 hk

N∑

k=0

hkf (ẑk)

1 + αk
− f

(
ẑ∗
)

≤ M
∑N

k=0 hk
+ 2L2

σ
·
∑N

k=0 h
2
k∑N

k=0 hk
+ 1
∑N

k=0 hk

N∑

k=0

hkδk

1 + αk
.

Proof Since V is σ -strongly convex with respect to the norm ‖ · ‖, its conjugate
V∗ is differentiable and has a Lipschitz continuous gradient of constant 1/σ for the
norm ‖ · ‖∗, i.e., V∗(y)−V∗(x)≤ 〈V ′∗(x), y−x〉+ 1

2σ ‖y−x‖2∗ (see Chap. X in [9]).
Also wk = V ′∗(sk), in view of Theorem 23.5 in [16]. Finally, for every z ∈ S, we can
write ρ(wk)+ 〈ρ′(wk), z−wk〉 ≤ ρ(z)= 0. Thus:

〈
ρ′(wk),wk − ẑ∗

〉≥ ρ(wk)= ∥∥π(wk)−wk

∥∥= ‖zk −wk‖. (2)

106 M. Baes, T. Oertel, C. Wagner, and R. Weismantel

Also, ‖ρ′(wk)‖∗ ≤ 1, because for every z ∈ R
n+d :

〈
ρ′(wk), z−wk

〉 ≤ ρ(z)− ρ(wk)= ∥∥z− π(z)
∥∥− ∥∥wk − π(wk)

∥∥

≤ ∥∥z− π(wk)
∥∥− ∥∥wk − π(wk)

∥∥≤ ‖z−wk‖. (3)

By setting φk := V∗(sk)− 〈sk, ẑ∗〉, we can write successively for all k ≥ 0:

φk+1 = V∗(sk+1)− 〈sk+1, ẑ
∗〉

≤ V∗(sk)+ 〈V ′∗(sk), sk+1 − sk
〉+ 1

2σ
‖sk+1 − sk‖2∗ − 〈sk+1, ẑ

∗〉.

= (V∗(sk)− 〈sk, ẑ∗
〉)+ 〈V ′∗(sk)− ẑ∗, sk+1 − sk

〉+ 1

2σ
‖sk+1 − sk‖2∗

= φk − hk
〈
wk − zk, f

′(zk)
〉+ hk

〈
ẑ∗ − zk, f

′(zk)
〉

− hk
∥∥f ′(zk)

∥∥∗
〈
wk − ẑ∗, ρ′(wk)

〉+ h2
k‖f ′(zk)‖2∗

2σ

∥∥∥∥
f ′(zk)

‖f ′(zk)‖∗
+ ρ′(wk)

∥∥∥∥
2

∗
,

where the inequality follows from the Lipschitz continuity of the gradient of V∗,
and the last equality from the identities V ′∗(sk) = wk , sk+1 − sk = −hkf

′(zk) −
hk‖f ′(zk)‖∗ρ′(wk), and V∗(sk)− 〈sk, ẑ∗〉 = φk . By the definition of the dual norm,
it holds −hk〈wk − zk, f

′(zk)〉 ≤ hk‖f ′(zk)‖∗‖wk − zk‖. Moreover, convexity of f
implies hk〈ẑ∗ − zk, f

′(zk)〉 ≤ f (ẑ∗)−f (zk). Using this in the above expression we
get:

φk+1 ≤ φk + hk
∥∥f ′(zk)

∥∥∗
(‖wk − zk‖ − 〈wk − ẑ∗, ρ′(wk)

〉)

+ hk
(
f
(
ẑ∗
)− f (zk)

)+ h2
k‖f ′(zk)‖2∗

2σ

(∥∥∥∥
f ′(zk)

‖f ′(zk)‖∗

∥∥∥∥∗
+ ∥∥ρ′(wk)

∥∥∗

)2

≤ φk + hk
(
f
(
ẑ∗
)− f (zk)

)+ 2h2
k‖f ′(zk)‖2∗

σ

≤ φk + hk

(
f
(
ẑ∗
)− f (ẑk)− δk

1 + αk

)
+ 2h2

k‖f ′(zk)‖2∗
σ

,

where the second inequality follows from (2) and ‖ρ′(wk)‖∗ ≤ 1, and the third in-
equality from the fact that the oracle reports a. Summing up the above inequalities
from k := 0 to k :=N and rearranging, it follows:

1
∑N

k=0 hk

N∑

k=0

hk(f (ẑk)− δk)

1 + αk
− f

(
ẑ∗
)≤ φ0 − φN+1∑N

k=0 hk
+ 2

∑N
k=0 h

2
k‖f ′(zk)‖2∗

σ
∑N

k=0 hk
.

Note that ‖f ′(zk)‖∗ ≤ L, φ0 = sup{−V (z) : z ∈ R
n+d} ≤ 0, and φN+1 ≥ −V (ẑ∗)≥

−M , yielding the desired result. �

Mirror-Descent Methods in Mixed-Integer Convex Optimization 107

In the special case when αk = α and δk = δ for every k ≥ 0, we can significantly
simplify the above results. According to the previous proposition, we know that:

(
N∑

k=0

hk

)(
f̂N − δ

1 + α
− f̂ ∗

)
=
(

N∑

k=0

hk

)(
min1≤i≤N f (ẑi)− δ

1 + α
− f̂ ∗

)

≤
N∑

k=0

hk(f (ẑk)− δ)

1 + α
−
(

N∑

k=0

hk

)
f̂ ∗

≤ M + 2L2

σ

N∑

k=0

h2
k. (4)

We can divide both sides of the above inequality by
∑N

k=0 hk , then determine the
step-sizes {hk : 0 ≤ k ≤ N} for which the right-hand side is minimized. However,
with this strategy, h0 would depend on N , which is a priori unknown at the first
iteration. Instead, as in [14], we use a step-size of the form hk = c/

√
k + 1 for an

appropriate constant c > 0, independent of N . Note that:

N∑

k=0

1

k + 1
=

N+1∑

k=1

1

k
≤
∫ N+1

1

dt

t
+ 1 = ln(N + 1)+ 1.

If we choose c :=
√

σM

2L2 , the right-hand side of (4) can be upper-bounded by

M ln(N + 1)+ 2M . Finally, since

1

c

N∑

k=0

hk =
N∑

k=0

1√
k + 1

=
N+1∑

k=1

1√
k

≥
∫ N+2

1

dt√
t

= 2
√
N + 2 − 2,

we can thereby conclude that:

f̂N − (1 + α)f̂ ∗ − δ

1 + α
≤ L

√
M

2σ
· ln(N + 1)+ 2√

N + 2 − 1
. (5)

As the right-hand side converges to 0 when N goes to infinity, Algorithm 1 con-
verges to an acceptable approximate solution or calls the termination procedure.

Let us now turn our attention to the termination procedure. We assume here that
the oracle achieves a constant quality, that is, that there exists α, δ ≥ 0 for which
αk = α and δk = δ for every k ≥ 0.

Proposition 2 Assume that f (ẑ0) ≥ f (z0) > 0, and that there is no point ẑ ∈ S ∩
(Zn ×R

d) for which f (z0) > f (ẑ).

(a) The termination procedure cannot guarantee an accuracy better than:

f (ẑ)≤ f̂ ∗ + (2 + α)
(
αf̂ ∗ + (1 + α)ε′ + δ

)
. (6)

108 M. Baes, T. Oertel, C. Wagner, and R. Weismantel

(b) For every ε > 0, the termination procedure finds a point ẑ ∈ S ∩ (Zn × R
d)

satisfying:

f (ẑ)− f̂ ∗ ≤ εf̂ ∗ + (2 + α)
(
αf̂ ∗ + (1 + α)ε′ + δ

)

within

max

{⌈
ln

(
f (ẑ0)− f (z0)

f (z0)ε

)/
ln

(
2 + α

1 + α

)⌉
,0

}

iterations.

Proof Part (a). At every iteration k, there is by construction no ẑ ∈ S∩(Zn×R
d) for

which lk > f (ẑ). Also, f (ẑk)≥ uk ≥ f̂ ∗. For convenience, we denote (1 +α)/(2 +
α) by λ in this proof, and we set Δk := uk − lk for every k ≥ 0.

Suppose first that the oracle finds a new point ẑk+1 ∈ S∩ (Zn×R
d) at iteration k.

Then:

f (ẑk+1)≤ (1 + α)f (zk+1)+ δ ≤ (1 + α)
(
λlk + (1 − λ)uk + ε′)+ δ,

where the first inequality is due to the definition of our oracle and the second one
comes from the accuracy by which our bisection procedure computes zk+1. Observe
that the oracle might return a point ẑk such that f (ẑk) is smaller than the above
right-hand side. In this case, no progress is done. As uk ≤ f (ẑk), this implies:

(λ+ λα)lk + (1 + α)ε′ + δ ≥ (λ+ λα − α)f (ẑk). (7)

Using that f̂ ∗ ≥ lk we get an upper bound of the left-hand side. Rearranging the
terms and replacing λ by its value, we get:

f̂ ∗ + (2 + α)
(
αf̂ ∗ + (1 + α)ε′ + δ

)≥ f (ẑk).

Since all the inequalities in the above derivation can be tight, a better accuracy
cannot be guaranteed with our strategy. Thus, we can output ẑk .

Part (b). Note that we can assume f (ẑ0) − f (z0) > f (z0)ε, for otherwise the
point ẑ0 already satisfies our stopping criterion.

In order to assess the progress of the algorithm, we can assume that the stopping
criterion (7) is not satisfied. As lk+1 = lk in our case where the oracle gives an
output, we get:

Δk+1 = uk+1 − lk

≤ f (ẑk+1)− lk

≤ (1 + α)
(
λlk + (1 − λ)uk + ε′)+ δ − lk

= α2 + α − 1

2 + α
lk + 1 + α

2 + α
uk + (1 + α)ε′ + δ

Mirror-Descent Methods in Mixed-Integer Convex Optimization 109

= 1 + α

2 + α
(uk − lk)+ αlk + (1 + α)ε′ + δ

≤ 1 + α

2 + α
Δk + αf̂ ∗ + (1 + α)ε′ + δ.

Suppose now that the oracle informs us that there is no mixed-integral point with
a value smaller than f (zk+1)≥ λlk + (1−λ)uk −ε′. Then ẑk+1 = ẑk and uk+1 = uk .
We have:

Δk+1 = uk+1 − lk+1 = f (ẑk)− f (zk+1)

≤ uk − (λlk + (1 − λ)uk − ε′)= λΔk + ε′

≤ 1 + α

2 + α
Δk + αf̂ ∗ + (1 + α)ε′ + δ.

The above inequality is valid for every k that does not comply with the stopping
criterion, whatever the oracle detects. Therefore, we get:

ΔN ≤
(

1 + α

2 + α

)N
Δ0 + (2 + α)

(
αf̂ ∗ + (1 + α)ε′ + δ

)
,

and the proposition is proved because f (ẑN)− f̂ ∗ ≤ΔN . �

In the remainder of this paper, we elaborate on possible realizations of our hard
oracle. We proceed as follows. In Sect. 3, we focus on the special case when n= 2
and d = 0. We present a geometric construction that enables us to implement the
improvement oracle in polynomial time. With the help of this oracle we then solve
the problem (1) with n = 2 and d = 0 and obtain a “best point”, i.e., an optimal
point. An adaptation of this construction can also be used to determine a second
and, more generally, a “k-th best point”. These results will be extended in Sect. 4 to
the mixed-integer case with two integer variables and d continuous variables. The
latter extensions are then used as a subroutine to solve the general problem (1) with
arbitrary n and d in finite time.

3 Two-Dimensional Integer Convex Optimization

If n = 1 and d = 0, an improvement oracle can be trivially realized for α = δ = 0.
Queried on a point z ∈ R the oracle returns ẑ := arg min{f (�z�), f (�z�)} if one of
these numbers is smaller or equal to f (z), or returns b otherwise. The first non-
trivial case arises when n= 2 and d = 0. This is the topic of this section.

110 M. Baes, T. Oertel, C. Wagner, and R. Weismantel

3.1 Minimizing a Convex Function in Two Integer Variables

In this section we discuss a new geometric construction that enables us to implement
efficiently the oracle Oα,δ with α = δ = 0, provided that the feasible set is contained
in a known finite box [−B,B]2.

Theorem 2 Let f : R2 → R and gi : R2 → R with i = 1, . . . ,m be convex func-
tions. Let B ∈ N and let x ∈ [−B,B]2 such that gi(x) ≤ 0 for all i = 1, . . . ,m.
Then, in a number of evaluations of f and g1, . . . , gm that is polynomial in ln(B),
one can either

(a) find an x̂ ∈ [−B,B]2 ∩Z
2 with f (x̂)≤ f (x) and gi(x̂)≤ 0 for all i = 1, . . . ,m

or
(b) show that there is no such point.

Note that we do not allow for the function f to take infinite values, in order to
ensure that we can minimize f over the integers of any segment of [−B,B]2 in
O(ln(B)) evaluations of f using a bisection method. Indeed, if a convex function
takes infinite values, it can cost up to O(B) evaluations of f to minimize it on a
segment containing O(B) integer points, as there could be only one of those points
on its domain.

The algorithm that achieves the performance claimed in Theorem 2 is described
in the proof of the theorem. That proof requires two lemmata. We use the following
notation. Let Q⊂ R

2. We denote by vol(Q) the volume of Q, i.e., its Lebesgue mea-
sure. By aff{Q} we denote the smallest affine space containing Q and by conv{Q}
the convex hull of Q. The dimension dim(Q) of Q is the dimension of aff{Q}. The
scalar product we use in this section is exclusively the standard dot product.

Lemma 1 Let K ⊂ R
2 be a polytope with vol(K) < 1

2 . Then dim(conv(K ∩
Z

2))≤ 1.

Proof For the purpose of deriving a contradiction, assume that there exist three
affinely independent points x̂, ŷ, ẑ ∈K ∩Z

2. Then vol(K)≥ vol(conv({x̂, ŷ, ẑ}))=
1
2 |det(x̂ − ẑ, ŷ − ẑ)| ≥ 1

2 . �

Lemma 2 Let u,v,w ∈ R
2 be affinely independent. If

(
conv{u,u+ v,u+ v +w} \ (conv{u+ v,u+ v +w} ∪ {u}))∩Z

2 = ∅,

then the lattice points conv{u,u+ v,u+ v −w} ∩Z
2 lie on at most three lines.

Proof We partition conv{u,u+ v,u+ v−w} into three regions. Then we show that
in each region the integer points must lie on a single line using a lattice covering
argument.

Mirror-Descent Methods in Mixed-Integer Convex Optimization 111

Fig. 1 Partitioning the
triangle in regions

We define the parallelogram P := conv{0, 1
2v,

1
2w,

1
2v + 1

2w}. Further, we set

A1 := u− 1

2
w+P, A2 := u+ 1

2
v−w+P, and A3 := u+ 1

2
v− 1

2
w+P.

Note that conv{u,u+ v,u+ v −w} ⊂ A1 ∪A2 ∪A3 (see Fig. 1). Our assumption
implies that the set u+ 1

2v + P does not contain any integer point except possibly
on the segment u+ v+ conv{0,w}. Therefore, for a sufficiently small ε > 0, the set
(u+ 1

2v − ε(v +w)+ P)∩Z
2 is empty.

Assume now that one of the three regions, say A1, contains three affinely inde-
pendent integer points x̂, ŷ, ẑ. We show below that A1 +Z

2 = R
2, i.e., that P defines

a lattice covering, or equivalently that the set t+P contains at least one integer point
for every t ∈ R

2. This fact will contradict that (u+ 1
2v − ε(v +w)+ P) ∩ Z

2 = ∅
and thereby prove the lemma.

Clearly, the parallelogram Q := conv{x̂, ŷ, ẑ, x̂ − ŷ + ẑ} defines a lattice cov-
ering, as it is full-dimensional and its vertices are integral. We transform Q into a
set Q′ ⊆ A1 for which a ∈ Q′ iff there exists b ∈ Q such that a − b ∈ Z

2. Specif-
ically, we define a mapping T such that Q′ = T (Q) ⊂ A1 and T (Q) + Z

2 = R
2.

Let v⊥ := (−v2, v1)
and w⊥ := (−w2,w1)

#, i.e., vectors orthogonal to v and w.
Without loss of generality (up to a permutation of the names x̂, ŷ, ẑ), we can assume
that 〈x̂,w⊥〉 ≤ 〈ŷ,w⊥〉 ≤ 〈ẑ,w⊥〉. If x̂− ŷ+ ẑ ∈A1 there is nothing to show, so we
suppose that x̂ − ŷ + ẑ /∈A1.

Note that 〈x̂,w⊥〉 ≤ 〈x̂ − ŷ + ẑ,w⊥〉 ≤ 〈ẑ,w⊥〉. Assume first that 〈x̂ − ŷ +
ẑ, v⊥〉 < 〈ẑ, v⊥〉 ≤ 〈x̂, v⊥〉, 〈ŷ, v⊥〉—the strict inequality resulting from the fact
x̂ − ŷ + ẑ /∈A1. We define the mapping T :Q→A1 as follows,

T (l)=

⎧
⎪⎨

⎪⎩

l + ŷ − ẑ, if 〈l, v⊥〉< 〈ẑ, v⊥〉 and 〈l,w⊥〉> 〈x̂ − ŷ + ẑ,w⊥〉,
l − x̂ + ŷ, if 〈l, v⊥〉< 〈ẑ, v⊥〉 and 〈l,w⊥〉 ≤ 〈x̂ − ŷ + ẑ,w⊥〉,
l, otherwise

(see Fig. 2). It is straightforward to show that T (Q) ⊂ A1 and T (Q) + Z
2 = R

2.
A similar construction can easily be defined for any possible ordering of 〈x̂ − ŷ +
ẑ, v⊥〉, 〈ẑ, v⊥〉, 〈x̂, v⊥〉, and 〈ŷ, v⊥〉. �

Remark 1 In each region Ai , the line containing Ai ∩ Z
2, if it exists, can be com-

puted by the minimization of an arbitrary linear function x �→ 〈c, x〉 over Ai ∩ Z
2,

112 M. Baes, T. Oertel, C. Wagner, and R. Weismantel

Fig. 2 Mapping T

with c 	= 0, and the maximization of the same function with the fast algorithm de-
scribed in [5]. If these problems are feasible and yield two distinct solutions, the
line we are looking for is the one joining these two solutions. If the two solutions
coincide, that line is the one orthogonal to c passing through that point.

The algorithm in [5] is applicable to integer linear programs with two variables
and m constraints. The data of the problem should be integral. This algorithm runs
in O(m+ φ), where φ is the binary encoding length of the data.

Proof of Theorem 2 As described at the beginning of this section, a one-dimensional
integer minimization problem can be solved polynomially with respect to the log-
arithm of the length of the segment that the function is optimized over. In the fol-
lowing we explain how to reduce the implementation of the two-dimensional oracle
to the task of solving one-dimensional integer minimization problems. For nota-
tional convenience, we define g(y) := maxi=1,...,m gi(y) for y ∈ R

2 which is again
a convex function.

Let F1, . . . ,F4 be the facets of [−B,B]2. Then [−B,B]2 =⋃4
j=1 conv{x,Fj }.

The procedure we are about to describe has to be applied to every facet F1, . . . ,F4

successively, until a suitable point x̂ is found. Let us only consider one facet F . We
define the triangle T0 := conv{x,F }, whose area is smaller than 2B2.

To find an improving point within T0, we construct a sequence T0 ⊃ T1 ⊃ T2 ⊃
. . . of triangles that all have x as vertex, with vol(Tk+1) ≤ 2

3 vol(Tk), and such that
f (ŷ) > f (x) or g(ŷ) > 0 for all ŷ ∈ (T0 \ Tk) ∩ Z

2. We stop our search if we have
found an x̂ ∈ [−B,B]2 ∩ Z

2 such that f (x̂) ≤ f (x) and g(x̂) ≤ 0, or if the vol-
ume of one of the triangles Tk is smaller than 1

2 . The latter happens after at most
k = �ln(4B2)/ ln(3

2)� steps. Then, Lemma 1 ensures that the integral points of Tk
are on a line, and we need at most O(ln(B)) iterations to solve the resulting one-
dimensional problem.

The iterative construction is as follows. Let Tk = conv{x, v0, v1} be given. We
write vλ := (1 − λ)v0 + λv1 for λ ∈ R and we define the auxiliary triangle T̄k :=
conv{x, v1/3, v2/3}. Consider the integer linear program

min
{〈h, ŷ〉 : ŷ ∈ T̄k ∩Z

2} (8)

Mirror-Descent Methods in Mixed-Integer Convex Optimization 113

Fig. 3 Illustration of Case 2

where h is the normal vector to conv{v0, v1} such that 〈h,x〉 < 〈h,y〉 for every
y ∈ F . We distinguish two cases.

Case 1. The integer linear program (8) is infeasible. Then T̄k ∩ Z
2 = ∅. It re-

mains to check for an improving point within (Tk \ T̄k) ∩ Z
2. By construction, we

can apply Lemma 2 twice (with (u,u+ v−w,u+ v+w) equal to (x, v0, v2/3) and
(x, v1/3, v1), respectively) to determine whether there exists an x̂ ∈ (Tk \ T̄k) ∩ Z

2

such that f (x̂) ≤ f (x) and g(x̂) ≤ 0. This requires to solve at most six one-
dimensional subproblems.

Case 2. The integer linear program (8) has an optimal solution ẑ. If f (ẑ)≤ f (x)

and g(ẑ) ≤ 0, we are done. So we assume that f (ẑ) > f (x) or g(ẑ) > 0. De-
fine H := {y ∈ R

2|〈h,y〉 = 〈h, ẑ〉}, that is, the line containing ẑ that is parallel to
conv{v0, v1}, and denote by H+ the closed half-space with boundary H that con-
tains x. By definition of ẑ, there is no integer point in T̄k ∩ intH+. Further, let
L := aff{x, ẑ}.

Due to the convexity of the set {y ∈ R
2|f (y) ≤ f (x), g(y) ≤ 0} and the fact

that f (ẑ) > f (x) or g(ẑ) > 0, there exists a half-space L+ with boundary L such
that the possibly empty segment {y ∈ H |f (y) ≤ f (x), g(y) ≤ 0} lies in L+ (see
Fig. 3). By convexity of f and g, the set ((Tk \ H+) \ L+) (the lightgray region
in Fig. 3) contains no point y for which f (y) ≤ f (x) and g(y) ≤ 0. It remains to
check for an improving point within ((Tk ∩ H+) \ L+) ∩ Z

2. For that we apply
again Lemma 2 on the triangle conv{z1/3, z1, x} (the darkgray region in Fig. 3),
with z1/3 = H ∩ aff{x, v1/3} and z1 =H ∩ aff{x, v1}. If none of the corresponding
subproblems returns a suitable point x̂ ∈ Z

2, we know that Tk \ L+ contains no
improving integer point. Defining Tk+1 := Tk∩L+, we have by construction f (ŷ) >
f (x) or g(ŷ) > 0 for all ŷ ∈ (Tk \ Tk+1)∩Z

2 and vol(Tk+1)≤ 2
3 vol(Tk).

It remains to determine the half-space L+. If g(ẑ) > 0 we just need to find a point
y ∈H such that g(y) < g(ẑ), or if f (ẑ) > f (x), it suffices to find a point y ∈H such
that f (y) < f (ẑ). Finally, if we cannot find such a point y in either case, convexity
implies that there is no suitable point in Tk \H+; another application of Lemma 2
then suffices to determine whether there is a suitable x̂ in Tk ∩H+ ∩Z

2. �

114 M. Baes, T. Oertel, C. Wagner, and R. Weismantel

The algorithm presented in the proof of Theorem 2 can be adapted to output
a minimizer x̂∗ of f over S ∩ [−B,B]2 ∩ Z

2, provided that we know in advance
that the input point x satisfies f (x)≤ f̂ ∗ (see Algorithm 3). It suffices to store and
update the best value of f on integer points found so far. In this case the termination
procedure is not necessary.

Corollary 1 Let f : R2 → R and gi : R2 → R with i = 1, . . . ,m be convex func-
tions. Let B ∈ N and let x ∈ [−B,B]2 such that gi(x) ≤ 0 for all i = 1, . . . ,m. If
f (x)≤ f̂ ∗, then, in a number of evaluations of f and g1, . . . , gm that is polynomial
in ln(B), one can either

(a) find an x̂ ∈ [−B,B]2 ∩ Z
2 with f (x̂) = f̂ ∗ and gi(x̂) ≤ 0 for all i = 1, . . . ,m

or
(b) show that there is no such point.

Note that line 30 in Algorithm 3 requires the application of Lemma 1. Lines 11,
20 and 24 require the application of Lemma 2.

Remark 2 (Complexity) The following subroutines are used in Algorithm 3.

Line 9 and applications of Lemma 2. A two-dimensional integer linear program
solver for problems having at most four constraints, such as the one described
in [5]. The size of the data describing each of these constraints is in the order
of the representation of the vector x as a rational number, which, in its standard
truncated decimal representation, is in O(ln(B)).
Line 30 and applications of Lemma 2. A solver for one-dimensional integer con-
vex optimization problems. At every iteration, we need to perform at most seven
of them, for a cost of O(ln(B)) at each time.
Lines 18 and 19. Given a segment [a, b] and one of its points z, we need a device
to determine which of the two regions [a, z] or [z, b] intersects a level set defined
by f and g that does not contain z. This procedure has a complexity of O(ln(B))
and only occurs in Case 2 above.

3.2 Finding the k-th Best Point

In this section we want to show how to find the k-th best point, provided that the
k−1 best points are known. A slight variant of this problem will be used in Sect. 4.3
as a subroutine for the general mixed-integer convex problem. In the following, we
describe the necessary extensions of the previous Algorithm 3. Let x̂∗

1 := x̂∗ and
define for k ≥ 2:

x̂∗
k := arg min

{
f (x̂)|x̂ ∈ (S ∩ [−B,B]2 ∩Z

2) \ {x̂∗
1 , . . . , x̂

∗
k−1

}}

to be the k-th best point. Observe that, due to the convexity of f and g1, . . . , gm,
we can always assume that conv{x̂∗

1 , . . . , x̂
∗
k−1} ∩Z

2 = {x̂∗
1 , . . . , x̂

∗
k−1} for all k ≥ 2.

Mirror-Descent Methods in Mixed-Integer Convex Optimization 115

Algorithm 3: Minimization algorithm for 2D problems

Data: x ∈ [−B,B]2 with f (x)≤ f̂ ∗ and gi(x)≤ 0 for all i = 1, . . . ,m.
1 Let F1, . . . ,F4 be the facets of [−B,B]2.

2 Set x̂∗ := 0 and f̂ ∗ := +∞.
3 for t = 1, . . . ,4 do
4 Set F := Ft and define v0, v1 ∈ R

n such that F := conv{v0, v1}.
5 Write h for the vector normal to F pointing outward [−B,B]2.
6 Set T0 := conv{x,F } and k := 0.
7 while vol(Tk)≥ 1

2 do
8 Set T̄k := conv{x, v1/3, v2/3}, with vλ := (1 − λ)v0 + λv1.
9 Solve (P) : min{〈h, ŷ〉 : ŷ ∈ T̄k ∩Z

2}.
10 if (Case 1) (P) is infeasible, then
11 Determine x̂ := arg min{f (ŷ) | ŷ ∈ (Tk \ T̄k)∩Z

2 with g(ŷ)≤ 0}.
12 if x̂ exists and f (x̂) < f̂ ∗ then Set x̂∗ := x̂ and f̂ ∗ := f (x̂).
13 else
14 (Case 2) Let ẑ be an optimal solution of (P).
15 Set H+ := {y ∈R

2 : 〈h,y〉 ≤ 〈h, ẑ〉} and H := ∂H+.
16 Define the points v := aff{x, ẑ} ∩ F and zi =H ∩ conv{x, vi} for

i = 0,1.
17 Denote zλ := (1 − λ)z0 + λz1 for λ ∈ (0,1).
18 if g(ẑ)≤ 0 and there is a y ∈ conv{z0, ẑ} for whichf (y) < f (ẑ) or
19 g(ẑ) > 0 and there is a y ∈ conv{z0, ẑ} for which g(y) < g(ẑ)

then
20 Determine x̂ := arg min{f (ŷ) | ŷ ∈ conv{x, z1/3, z1} ∩Z

2

with g(ŷ)≤ 0}.
21 if x̂ exists and f (x̂) < f̂ ∗ then Set x̂∗ := x̂ and f̂ ∗ := f (x̂).
22 Set v1 := v, Tk+1 := conv{x, v0, v}, and k := k + 1.
23 else
24 Determine x̂ := arg min{f (ŷ) | ŷ ∈ conv{x, z0, z2/3} ∩Z

2

with g(ŷ)≤ 0}.
25 if x̂ exists and f (x̂) < f̂ ∗ then Set x̂∗ := x̂ and f̂ ∗ := f (x̂).
26 Set v0 := v, Tk+1 := conv{x, v, v1}, and k := k + 1.
27 end
28 end
29 end
30 Determine x̂ := arg min{f (ŷ) | ŷ ∈ Tk ∩Z

2 with g(ŷ)≤ 0}.
31 if x̂ exists and f (x̂) < f̂ ∗ then Set x̂∗ := x̂ and f̂ ∗ := f (x̂).
32 end
33 if f̂ ∗ <+∞ then Return x̂∗.
34 else Return “the problem is infeasible”.

116 M. Baes, T. Oertel, C. Wagner, and R. Weismantel

Fig. 4 Illustration of Part (a)

Although this observation appears plausible it is not completely trivial to achieve
this algorithmically.

Lemma 3 Let Πj := {x̂∗
1 , . . . , x̂

∗
j } be the ordered j best points of our problem and

Pj be the convex hull of Πj . Suppose that, for a given k ≥ 2, we have Pk−1 ∩Z
2 =

Πk−1. Let x̂∗
k be a k-th best point.

(a) If f (x̂∗
k) > f̂ ∗, we can replace the point x̂∗

k by a feasible k-th best point ẑ∗k such
that conv{Πk−1, ẑ

∗
k} ∩Z

2 =Πk−1 ∪ {ẑ∗k} in O(1) operations.

(b) If f (x̂∗
k) = f̂ ∗, and if we have at our disposal the ν vertices of Pk−1 ordered

counterclockwise, we can construct such a point ẑ∗k in O(ν ln(B)) operations.

Proof Part (a). Suppose first that f (x̂∗
k) > f̂ ∗, and assume that we cannot set

ẑ∗k := x̂∗
k , that is, that there exists x̂ ∈ (Pk ∩ Z

2) \ Πk . Then x̂ =∑k
i=1 λi x̂

∗
i for

some λi ≥ 0 that sum up to 1. Note that 0 < λk < 1, because x̂ /∈ Pk−1 ∪ {x̂∗
k } by

assumption, and that f (x̂)≥ f (x̂∗
k). We deduce:

0 ≤ f (x̂)− f
(
x̂∗
k

)≤
k∑

i=1

λi
(
f
(
x̂∗
i

)− f
(
x̂∗
k

))≤ 0.

Thus f (x̂) = f (x̂∗
k). Let I := {i : λi > 0} and QI := conv{x̂∗

i : i ∈ I }, so that x̂ ∈
relintQI . Observe that |I | ≥ 2 and that f is constant on QI . Necessarily, QI is a
segment. Indeed, if it were a two-dimensional set, we could consider the restriction
of f on the line � := aff{x̂∗

1 , x̂}: it is constant on the open interval �∩ intQI , but does
not attain its minimum on it, contradicting the convexity of f . Let us now construct
the point ẑ∗k : it suffices to consider the closest point to x̂∗

k in aff{QI } ∩Pk−1, say x̂∗
j ,

and to take the integer point ẑ∗k 	= x̂∗
j of conv{x̂∗

j , x̂
∗
k } that is the closest to x̂∗

j (see
Fig. 4).

Part (b). Suppose now that f (x̂∗
i)= f̂ ∗ for every 1 ≤ i ≤ k, and define

{
ŷ∗

0 ≡ ŷ∗
ν , ŷ

∗
1 , . . . , ŷ

∗
ν−1

}⊆Πk−1

as the vertices of Pk−1, labeled counterclockwise. It is well-known that determining
the convex hull of Pk−1 ∪ {x̂∗

k } costs O(ln(ν)) operations. From these vertices, we
deduce the set {ŷ∗

i : i ∈ J } of those points that are in the relative interior of that
convex hull. Up to a renumbering of the ŷ∗

l ’s, we have J = {1,2, . . . , j − 1}. We
show below that Algorithm 4 constructs a satisfactory point ẑ∗k .

We follow here the notation used in Algorithm 4. At every iteration i, the al-
gorithm constructs from an integer point x̂∗

k (i) an integer point x̂∗
k (i + 1), possibly

identical to x̂∗
k (i). When the algorithm stops, after at most j ≤ ν iterations, the point

ẑ∗k we are looking for is, as we prove it below, the last x̂∗
k (i) we have constructed.

Mirror-Descent Methods in Mixed-Integer Convex Optimization 117

Algorithm 4: Constructing a point ẑ∗k with conv{Πk−1, ẑ
∗
k}∩Z

2 =Πk−1 ∪{ẑ∗k}
Data: x̂∗

k , ŷ
∗
0 , ŷ

∗
1 , . . . , ŷ

∗
j .

Set i := 0 and x∗
k (0) := x∗

k .
while det(x̂∗

k (i)− ŷ∗
i , ŷ

∗
i+1 − ŷ∗

i)≥ 0 do
Set Δi := conv{x̂∗

k (i), ŷ
∗
i , ŷ

∗
i+1} \ aff{ŷ∗

i , ŷ
∗
i+1}.

Set hi a vector orthogonal to aff{ŷ∗
i , ŷ

∗
i+1} such that 〈hi, x̂∗

k (i)− ŷ∗
i 〉> 0.

Set x̂∗
k (i + 1) := arg min{〈hi, x̂〉 : x̂ ∈Δi ∩Z

2}.
Set i := i + 1.

end
Set ẑ∗k := x̂∗

k (i).

Fig. 5 Constructing Pk from
Pk−1: first iterations of
Algorithm 4. The point x̂∗

k (1)
is the same as x̂∗

k (0) because
T0(0) has no other integer
point than x̂∗

k (0). The gray
areas are, as the algorithm
progresses, regions where we
have established that they do
not contain any integer point

Define Tl(i) := conv{x̂∗
k (i), ŷ

∗
l , ŷ

∗
l+1} \ Pk−1 for 0 ≤ l < j (see Fig. 5); the trian-

gle Δi in Algorithm 4 corresponds to Ti(i). Also, the vector hi is orthogonal to the
side aff{ŷ∗

i , ŷ
∗
i+1} of the triangle Ti(i).

118 M. Baes, T. Oertel, C. Wagner, and R. Weismantel

At iteration i, the algorithm considers the triangle Ti(i) if its signed area

1

2
det
(
x̂∗
k (i)− ŷ∗

i , ŷ
∗
i+1 − ŷ∗

i

)

is nonnegative, and finds a point x̂∗
k (i + 1) ∈ Ti(i) such that Ti(i + 1) has only

x̂∗
k (i + 1) as integer point.

We prove by induction on i ≥ 1 that Tl(i) contains only x̂∗
k (i) as integer point

whenever l < i. Consider the base case i = 1. By construction, the triangle T0(1)
contains only x∗

k (1) as integer point, for otherwise x∗
k (1) would not minimize 〈h0, x̂〉

over T0(0)∩Z
2.

Suppose now that the statement is true for i and let l ≤ i. Let us verify that
x̂∗
k (i + 1) is the only integer in Tl(i + 1). We have:

x̂∗
k (i + 1) ∈ Ti(i)⊆ conv

{
x̂∗
k (i), ŷ

∗
0 , . . . , ŷ

∗
i+1

} \ Pk−1 = Ti(i)∪
i−1⋃

l=0

Tl(i).

This last equality represents a triangulation of the possibly non-convex polygon
conv{x̂∗

k (i), ŷ
∗
0 , . . . , ŷ

∗
i+1} \ Pk−1. From the above inclusion, we deduce:

K := conv
{
x̂∗
k (i + 1), ŷ∗

0 , . . . , ŷ
∗
i+1

} \ Pk−1 ⊆ conv
{
x̂∗
k (i), ŷ

∗
0 , . . . , ŷ

∗
i+1

} \ Pk−1.

As Tl(i+1)⊆K for all l ≤ i, the integers of Tl(i+1) are either in
⋃i−1

l=0 Tl(i)∩Z
2,

which reduces to {x̂∗
k (i)} by induction hypothesis, or in Ti(i). Since x̂∗

k (i) ∈ Ti(i),
all the integers in Tl(i+1) must be in Ti(i). But Tl(i+1)∩Ti(i)∩Z

2 = {x̂∗
k (i+1)}

by construction of x̂∗
k (i + 1). The induction step is proved.

It remains to take the largest value that i attains in the course of Algorithm 4
to finish the proof. We need to solve at most ν − 1 two-dimensional integer linear
problems over triangles to compute x̂∗

k . As the data of these problems are integers
bounded by B , the complexity of the minimization solver used to compute x∗

k (i+1)
at every step is bounded by O(ln(B)). The overall complexity of Algorithm 4 is thus
bounded by O(ν ln(B)). �

By Lemma 3, the k-th best point x̂∗
k can be assumed to be contained within

[−B,B]2 \ conv{x̂∗
1 , . . . , x̂

∗
k−1}. This property allows us to design a straightfor-

ward algorithm to compute this point. We first construct an inequality description of
conv{x̂∗

1 , . . . , x̂
∗
k−1}, say 〈ai, x〉 ≤ bi for i ∈ I with |I |<+∞. Then

[−B,B]2 \ conv
{
x̂∗

1 , . . . , x̂
∗
k−1

}=
⋃

i∈I

{
x ∈ [−B,B]2|〈ai, x〉> bi

}
.

As the feasible set is described as a union of simple convex sets, we could apply Al-
gorithm 1 once for each of them. However, instead of choosing this straightforward
approach one can do better: one can avoid treating each element of this disjunction
separately by modifying Algorithm 3 appropriately.

Mirror-Descent Methods in Mixed-Integer Convex Optimization 119

Fig. 6 Triangulation step 1

Fig. 7 Triangulation step 2

Suppose first that k = 2. To find the second best point, we apply Algorithm 3 to
the point x̂∗

1 with the following minor modification: in Line 9, we replace (P) with
the integer linear problem (P ′) : min{〈h, ŷ〉 : ŷ ∈ T̄k ∩ Z

2, 〈h, ŷ〉 ≥ 〈h, x̂1〉 + 1},
where h ∈ Z

2 such that gcd(h1, h2)= 1. This prevents the algorithm from returning
x̂∗

1 again.
Let k ≥ 3. Let ŷ∗

0 , . . . , ŷ
∗
ν−1, ŷ

∗
ν ≡ ŷ∗

0 denote the vertices of Pk−1, ordered coun-
terclockwise (they can be determined in O(k ln(k)) operations using the Graham
Scan [7]). Recall that the point we are looking for is not in Pk−1.

Let us call a triangle with a point ŷ∗
i as vertex and with a segment of the boundary

of [−B,B]2 as opposite side a search triangle (see Fig. 7: every white triangle is
a search triangle). The idea is to decompose [−B,B]2 \ Pk−1 into search triangles,
then to apply Algorithm 3 to these triangles instead of (conv{x,Ft })4t=1.

For each 0 ≤ i < ν, we define Hi := {y ∈ R
2 : det(y− ŷ∗

i , ŷ
∗
i+1 − ŷ∗

i)≥ 0}, so that
Hi ∩Pk−1 = conv{ŷ∗

i , ŷ
∗
i+1}. Consider the regions Ri := ([−B,B]2 ∩Hi)\ intHi−1

(see Fig. 6). Note that Ri contains only ŷ∗
i and ŷ∗

i+1 as vertices of Pk−1. Also, at
most four of the Ri ’s are no search triangles. If Ri is such, we triangulate it into (at
least two) search triangles by inserting chords from ŷ∗

i to the appropriate vertices of
[−B,B]2 (see Fig. 7).

Note that a search triangle can contain two or more integer points of Pk−1. In
order to prevent us from outputting one of those, we need to perturb the search
triangles slightly before using them in Algorithm 3. Let T = conv{ŷ∗

i , b1, b2} be
one of the search triangles, with b1, b2 being points of the boundary of [−B,B]2.

120 M. Baes, T. Oertel, C. Wagner, and R. Weismantel

The triangle T might contain ŷ∗
i+1, say ŷ∗

i+1 ∈ conv{ŷ∗
i , b1}, a point we need to

exclude from T . We modify b1 slightly by replacing it with (1 − ε)b1 + εb2 for an
appropriate positive ε > 0 whose encoding length is O(ln(B)).

So, we apply Algorithm 3 with all these modified search triangles instead
of conv{x,F1}, . . . , conv{x,F4}. A simple modification of Line 9 allows us to
avoid the point ŷ∗

i for ẑ: we just need to replace the linear integer problem
(P) with min{〈h, ŷ〉 : ŷ ∈ T̄k ∩ Z

2, 〈h, ŷ〉 ≥ 〈h, ŷ∗
i 〉 + 1}, where h ∈ Z

2 such that
gcd(h1, h2)= 1. Then, among the feasible integer points found, we return the point
with smallest objective value.

Corollary 2 Let f : R2 → R and gi : R2 → R with i = 1, . . . ,m be convex func-
tions. Let x̂∗

1 , . . . , x̂
∗
k−1 be the k − 1 best points for min{f (x̂) : x̂ ∈ S ∩ [−B,B]2 ∩

Z
2}. Then, in a number of evaluations of f and g1, . . . , gm that is polynomial in

ln(B) and in k, one can either find

(a) a k-th best point, x̂∗
k , or

(b) show that there is no such point.

4 Extensions and Applications to the General Setting

In this section, we extend our algorithm for solving two-dimensional integer convex
optimization problems in order to solve more general mixed-integer convex prob-
lems. The first extension concerns mixed-integer convex problems with two integer
variables and d continuous variables. For those, we first need results about prob-
lems with only one integer variable. We derive these results in Sect. 4.1 where we
propose a variant of the well-known golden search method that deals with convex
functions whose value is only known approximately. To the best of our knowledge,
this variant is new.

In Sect. 4.2, we build an efficient method for solving mixed-integer convex prob-
lems with two integer and d continuous variables and propose an extension of Corol-
lary 2. This result itself will be used as a subroutine to design a finite-time algo-
rithm for mixed-integer convex problems in n integer and d continuous variables in
Sect. 4.3.

In this section, the problem of interest is (1):

min
{
f (x̂, y) : gi(x̂, y)≤ 0 for 1 ≤ i ≤m,(x̂, y) ∈ Z

n ×R
d
}

with a few mild simplifying assumptions. We define the function

g :Rn → R, x �→ g(x) := min
y∈Rd

max
1≤i≤m

gi(x, y).

We assume that this minimization in y has a solution for every x ∈ R
n, making

the function g convex. Let S := {(x, y) ∈ R
n+d : gi(x, y) ≤ 0 for 1 ≤ i ≤ m}. We

Mirror-Descent Methods in Mixed-Integer Convex Optimization 121

assume that the function f has a finite spread

max
{
f (x, y)− f

(
x′, y′) : (x, y), (x′, y′) ∈ S

}

on S and that we know an upper bound Vf on that spread. Observe that, by Lipschitz
continuity of f and the assumption that we optimize over [−B,B]n, it follows Vf ≤
2
√
nBL. Finally, we assume that the partial minimization function:

φ : Rn →R∪ {+∞}, x �→ φ(x) := min
{
f (x, y) : (x, y) ∈ S

}

is convex. As for the function g, this property can be achieved e.g. if for every
x ∈ R

n for which g(x) ≤ 0 there exists a point y such that (x, y) ∈ S and φ(x) =
f (x, y).

Our approach is based on the following well-known identity:

min
{
f (x̂, y) : (x̂, y) ∈ S ∩ (Zn ×R

d
)}= min

{
φ(x̂) : g(x̂)≤ 0, x̂ ∈ Z

n
}
.

For instance, when n = 2, we can use the techniques developed in the previous
section on φ to implement the improvement oracle for f . However, we cannot pre-
sume to know exactly the value of φ, as it results from a minimization problem. We
merely assume that, for a known accuracy γ > 0 and for every x ∈ domφ we can
determine a point yx such that (x, yx) ∈ S and f (x, yx)−γ ≤ φ(x)≤ f (x, yx). De-
termining yx can be, on its own, a non-trivial optimization problem. Nevertheless, it
is a convex problem for which we can use the whole machinery of standard Convex
Programming (see e.g. [3, 14, 15] and references therein).

Since we do not have access to exact values of φ, we cannot hope for an exact
oracle for the function φ, let alone for f . The impact of the accuracy γ on the
accuracy of the oracle is analyzed in the next sections.

4.1 Mixed-Integer Convex Problems with One Integer Variable

The Algorithm 3 uses as indispensable tools the bisection method for solving two
types of problems: minimizing a convex function over the integers of an interval,
and finding, in a given interval, a point that belongs to a level set of a convex func-
tion. In this section, we show how to adapt the bisection methods for mixed-integer
problems. It is well-known that the bisection method is the fastest for minimizing
univariate convex functions over a finite segment (Chap. 1 in [12]).

Let a, b ∈ R, a < b, and ϕ : [a, b] → R be a convex function to minimize on
[a, b] and/or on the integers of [a, b], such as the function φ in the preamble of this
Sect. 4 when n = 1. Assume that, for every t ∈ [a, b], we know a number ϕ̃(t) ∈
[ϕ(t), ϕ(t) + γ]. In order to simplify the notation, we scale the problem so that
[a, b] ≡ [0,1]. The integers of aff{a, b} are scaled to a set of points of the form
t0 + τZ for a τ > 0. Of course, the spread of the function ϕ does not change, but
its Lipschitz constant does, and achieving the accuracy γ in its evaluation must be
reinterpreted accordingly.

In the sequel of this section, we fix 0 ≤ λ0 < λ1 ≤ 1.

122 M. Baes, T. Oertel, C. Wagner, and R. Weismantel

Fig. 8 Lemma 4: the bold
line represents a lower bound
on ϕ in Part (a)

Lemma 4 Under our assumptions, the following statements hold.

(a) If ϕ̃(λ0)≤ ϕ̃(λ1)− γ , then ϕ(λ)≥ ϕ̃(λ0) for all λ ∈ [λ1,1].
(b) If ϕ̃(λ0)≥ ϕ̃(λ1)+ γ , then ϕ(λ)≥ ϕ̃(λ1) for all λ ∈ [0, λ0].

Proof We only prove Part (a) as the proof of Part (b) is symmetric. Thus, let us
assume that ϕ̃(λ0)≤ ϕ̃(λ1)− γ . Then there exists 0 <μ≤ 1 for which λ1 = μλ+
(1 −μ)λ0. Convexity of ϕ allows us to write:

ϕ̃(λ0)≤ ϕ̃(λ1)− γ ≤ ϕ(λ1)≤ μϕ(λ)+ (1 −μ)ϕ(λ0)≤ μϕ(λ)+ (1 −μ)ϕ̃(λ0),

implying ϕ̃(λ0)≤ ϕ(λ) as μ> 0. Figure 8 illustrates the proof graphically. �

If one of the conditions in Lemma 4 is satisfied, we can remove from the interval
[0,1] either [0, λ0[or]λ1,1]. To have a symmetric effect of the algorithm in either
case, we set λ1 := 1 − λ0, forcing λ0 to be smaller than 1

2 . In order to recycle our
work from iteration to iteration, we choose λ1 := 1

2 (
√

5−1), as in the golden search
method: if we can eliminate, say, the interval]λ1,1] from [0,1], we will have to
compute in the next iteration step an approximate value of the objective function at
λ0λ1 and λ2

1. The latter happens to equal λ0 when λ1 = 1
2 (

√
5 − 1).

It remains to define a strategy when neither of the conditions in Lemma 4 is
satisfied. In the lemma below, we use the values for λ0, λ1 chosen above.

Lemma 5 Assume that ϕ̃(λ1)− γ < ϕ̃(λ0) < ϕ̃(λ1)+ γ . We define:

λ0+ := (1 − λ0) · λ0 + λ0 · λ1 = 2λ0λ1,

λ1+ := (1 − λ1) · λ0 + λ1 · λ1 = 1 − 2λ0λ1.

If min{ϕ̃(λ0+), ϕ̃(λ1+)} ≤ min{ϕ̃(λ0) − γ, ϕ̃(λ1) − γ }, then ϕ(t) ≥ min{ϕ̃(λ0+),
ϕ̃(λ1+)} for all t ∈ [0,1] \ [λ0, λ1]. Otherwise, it holds that min{ϕ̃(λ0), ϕ̃(λ1)} ≤
min{ϕ(t) : t ∈ [0,1]} + (κ − 1)γ , where κ := 2

λ0
≈ 5.236.

Proof The first conclusion follows immediately from Lemma 4. The second situa-
tion involves a tedious enumeration, summarized in Fig. 9. We assume, without loss
of generality, that ϕ̃(λ0) ≤ ϕ̃(λ1). The bold lines in Fig. 9 represent a lower bound
on the value of the function ϕ. We show below how this lower bound is constructed
and determine its lowest point. In fact, this lower bound results from six applications
of a simple generic inequality (9) that we establish below, before showing how we
can particularize it to different segments of the interval [0,1].

Mirror-Descent Methods in Mixed-Integer Convex Optimization 123

Fig. 9 Approximate bisection: bold lines represent a lower bound on ϕ in the termination case

Let 0 < t < 1 and let u,v ∈ {λ0, λ0+, λ1+, λ1}. Suppose that we can write v =
μt + (1 − μ)u for a μ ∈]μ0,1] with μ0 > 0. If we can find constants γ−, γ+ ≥ 0
that satisfy

ϕ(v)+ γ+ ≥ ϕ̃(λ0)≥ ϕ(u)− γ−
then we can infer:

μϕ(t)+ (1 −μ)
(
ϕ̃(λ0)+ γ−

)≥ μϕ(t)+ (1 −μ)ϕ(u)≥ ϕ(v)≥ ϕ̃(λ0)− γ+,

and thus:

ϕ(t)− ϕ̃(λ0)≥ γ− − γ+ + γ−
μ

≥ γ− − γ+ + γ−
μ0

. (9)

1. If t ∈]0, λ0], we can take u := λ1 and v := λ0, giving μ0 = 1 − λ0
λ1

= λ0. Then

γ− = γ+ = γ , and ϕ(t)− ϕ̃(λ0)≥ −γ (2
λ0

− 1).
2. If t ∈]λ1,1[, we choose u := λ0 and v := λ1, and by symmetry with the previous

case we obtain μ0 = λ0. Now, γ− = 0 and γ+ = γ , yielding a higher bound than
in the previous case.

3. Suppose t ∈]λ0, λ0+]. Then with u := λ1 and v := λ0+, we get μ0 = λ1−λ0+
λ1−λ0

=
λ1, γ− = γ , γ+ = 2γ , giving as lower bound −γ (3

λ1
− 1), which is higher than

the first one we have obtained.
4. Symmetrically, let us consider t ∈]λ1+, λ1]. With u := λ0 and v := λ1+, we

obtain also μ0 = λ1. As γ− = 0 and γ+ = 2γ , the lower bound we get is larger
than the one in the previous item.

5. Set λ′ := 1
5 (2λ0+ + 3λ1+). If t ∈]λ0+, λ′], we can use u := λ0 and v := λ0+,

so that μ0 = λ0+−λ0
λ′−λ0

= 5λ2
0, γ− = 0, and γ+ = 2γ . Thus, the lower bound is

evaluated as − 2γ
5λ2

0
, which is higher than any of the bounds we have obtained so

far.
6. Finally, if t ∈]λ′, λ1+], we take u := λ1 and v := λ1+, so that γ− = γ , γ+ = 2γ ,

and μ0 = λ1−λ1+
λ1−λ′ = 5λ0

2+λ0
. Hence, we get −γ (

3(2+λ0)
5λ0

− 1)= − 2γ
5λ2

0
for the lower

bound, just as in the previous item.

So, the lower bound for ϕ(t)− ϕ̃(λ0) on [0,1] can be estimated as −γ (2
λ0

− 1) ≈
−4.236γ . �

124 M. Baes, T. Oertel, C. Wagner, and R. Weismantel

In the proof of the following proposition, we present an algorithm that returns a
point x ∈ [0,1] whose function value ϕ(x) is close to min{ϕ(t) : t ∈ [0,1]}.

Proposition 3 There exists an algorithm that finds a point x ∈ [0,1] for which
ϕ̃(x)− (κ − 1)γ ≤ min{ϕ(t) : t ∈ [0,1]} ≤ ϕ(x) in at most 2 +�ln((κ−1)γ

Vϕ
)/ ln(λ1)�

evaluations of ϕ̃, where Vϕ is the spread of ϕ on [0,1].

Proof We start with the interval [0,1] and by evaluating ϕ̃ at λ0 and λ1. If one of
the two conditions in Lemma 4 is satisfied, we can shrink the interval by a factor of
λ0 ≈ 38 % since it suffices to continue either with the interval [0, λ1] or with [λ0,1].
If not, then Lemma 5 applies: if the first condition stated in Lemma 5 is met, then
it suffices to continue with the interval [λ0, λ1] so as to shrink the starting interval
by a factor of 2λ0 ≈ 76 %. Otherwise, any x ∈ [λ0, λ1] satisfies the requirement of
the lemma and we can stop the algorithm. Therefore, either the algorithm stops or
we shrink the starting interval by a factor of at least λ0. Iterating this procedure,
it follows that—if the algorithm does not stop—at every step the length of the re-
maining interval is at most λ1 times the length of the previous interval. Moreover,
by the choice of λ0, the function ϕ̃ is evaluated in two points at the first step, and in
only one point as from the second step in the algorithm. So, at iteration k, we have
performed at most 2 + k evaluations of ϕ̃.

By construction, the minimum t∗ of ϕ lies in the remaining interval Ik of iter-
ation k. Also, the value of ϕ outside Ik is higher than the best value found so far,
say ϕ̃(t̄k). Finally, the size of Ik is bounded from above by λk1. Consider now the
segment I (λ) := (1 − λ)t∗ + λ[0,1], of size λ. Observe that for every λ such that
1 ≥ λ > λk1, the interval I (λ) contains a point that is not in Ik . Therefore,

ϕ̃(t̄k) ≤ max
{
ϕ(t) : t ∈ I (λ)

}≤ (1 − λ)ϕ
(
t∗
)+ λmax

{
ϕ(t) : t ∈ [0,1]}

≤ (1 − λ)ϕ
(
t∗
)+ λ

(
Vϕ + ϕ

(
t∗
))
.

Hence ϕ̃(t̄k) − ϕ(t∗) ≤ λVϕ , and, by taking λ arbitrarily close to λk1, we get
ϕ̃(t̄k)− ϕ(t∗) ≤ λk1Vϕ . If the algorithm does not end prematurely, we need at most

�ln((κ−1)γ
Vϕ

)/ ln(λ1)� iterations to make λk1Vϕ smaller than (κ − 1)γ . �

Remark 3 If we content ourselves with a coarser precision η ≥ (κ−1)γ , we merely
need O(ln(Vϕ/η)) evaluations of ϕ̃.

It is now easy to extend this procedure to minimize a convex function approxi-
mately over the integers of an interval [a, b], or, using our simplifying scaling, over
(t0 + τZ)∩ [0,1] for given t0 ∈ R and τ > 0.

Proposition 4 There exists an algorithm that finds a point x̂ ∈ (t0 + τZ)∩[0,1] for
which:

ϕ̃(x̂)− κγ ≤ min
{
ϕ(t̂) : t̂ ∈ (t0 + τZ)∩ [0,1]}≤ ϕ(x̂)

Mirror-Descent Methods in Mixed-Integer Convex Optimization 125

in less than

min

{
4 +

⌈
ln((κ − 1)γ /Vϕ)

ln(λ1)

⌉
,5 +

⌈
ln(τ)

ln(λ1)

⌉}

evaluations of ϕ̃, where Vϕ is the spread of ϕ on [0,1].

Proof We denote in this proof the points in (t0 + τZ) as scaled integers. To avoid a
trivial situation, we assume that [0,1] contains at least two such scaled integers.

Let us use the approximate bisection method described in the proof of Propo-
sition 3 until the remaining interval has a size smaller than τ , so that it contains
at most one scaled integer. Two possibilities arise: either the algorithm indeed finds
such a small interval Ik , or it finishes prematurely, with a remaining interval Ik larger
than τ .

In the first case, which requires at most 2 + �ln(τ)/ ln(λ1)� evaluations of ϕ̃, we
know that Ik contains the continuous minimizer of ϕ. Hence, the actual minimizer
of ϕ over (t0 + τZ) ∩ [0,1] is among at most three scaled integers, namely the
possible scaled integer in Ik , and, at each side of Ik , the possible scaled integers that
are the closest to Ik . By convexity of ϕ, the best of these three points, say x̂, satisfies
ϕ̃(x̂)− γ ≤ ϕ(x̂)= min{ϕ(t̂) : t̂ ∈ (t0 + τZ)∩ [0,1]}.

In the second case, we have an interval Ik ⊆ [0,1] and a point t̄k that fulfill
ϕ̃(t̄k) ≤ min{ϕ(t) : t ∈ [0,1]} + (κ − 1)γ , which was determined within at most
2+� ln((κ−1)γ /Vϕ)

ln(λ1)
� evaluations of ϕ̃. Consider the two scaled integers t̂− and t̂+ that

are the closest from t̄k . One of these two points constitutes an acceptable output for
our algorithm. Indeed, suppose first that min{ϕ̃(t̂−), ϕ̃(t̂+)} ≤ ϕ̃(t̄k)+ γ . Then:

min
{
ϕ̃(t̂−), ϕ̃(t̂+)

}≤ ϕ̃(t̄k)+ γ ≤ min
{
ϕ(t) : t ∈ [0,1]}+ κγ,

and we are done. Suppose that min{ϕ̃(t̂−), ϕ̃(t̂+)}> ϕ̃(t̄k)+ γ and that there exists
a scaled integer t̂ with ϕ(t̂) < min{ϕ(t̂−), ϕ(t̂+)}. Without loss of generality, let
t̂− ∈ conv{t̂ , t̄k}, that is t̂− = λt̂ + (1 − λ)t̄k , with 0 ≤ λ < 1. We have by convexity
of ϕ:

ϕ(t̂−)≤ λϕ(t̂)+ (1 − λ)ϕ(t̄k) < λϕ(t̂−)+ (1 − λ)
(
ϕ̃(t̂−)− γ

)
,

which is a contradiction because λ < 1 and ϕ̃(t̂−)− γ ≤ ϕ(t̂−). So, it follows that
ϕ(t̂)≥ min{ϕ(t̂−), ϕ(t̂+)} for every t̂ ∈ (t0 + τZ)∩ [0,1], proving the statement. �

In the following we extend the above results to the problem min{ϕ(t) : t ∈
[0,1], g(t) ≤ 0}, where g : [0,1] → R is a convex function with a known spread
Vg . In the case that we have access to exact values of g, an approach for attacking
the problem would be the following: we first determine whether there exists an ele-
ment t̄ ∈ [0,1] with g(t̄) ≤ 0. If t̄ exists, we determine the exact bounds t− and t+
of the interval {t ∈ [0,1], g(t)≤ 0}. Then we minimize the function f over [t−, t+].

The situation where we do not have access to exact values of g or where we can-
not determine the feasible interval [t−, t+] induces some technical complications.

126 M. Baes, T. Oertel, C. Wagner, and R. Weismantel

We shall not investigate them in this paper, except in the remaining of this subsec-
tion in order to appreciate the modification our method needs in that situation: let
us assume, that we have only access to a value g̃(t) ∈ [g(t), g(t) + γ]. In order to
ensure that the constraint g is well-posed we make an additional assumption: either
{t ∈ [0,1] : |g(t)| ≤ γ } is empty, or the quantity min{|g′(t)| : g′(t) ∈ ∂g(t), |g(t)| ≤
γ } is non-zero, and even reasonably large. This ensures that the (possibly empty)
0-level set of g is known with enough accuracy. We denote by θ > 0 a lower bound
on this minimum, and for simplicity assume that θ = 2Nγ for a suitable N ∈ N.

Our strategy proceeds as follows. First we determine whether there exists a point
t̄ ∈ [0,1] for which g(t̄) < 0 by applying the minimization procedure described in
Proposition 3. If this procedure only returns nonnegative values, we can conclude
after at most 2+�ln((κ−1)γ /Vg)/ ln(λ1)� evaluations of g̃ that g(t)≥ −(κ−1)γ ,
in which case we declare that we could not locate any feasible point in [0,1].

Otherwise, if we find a point t̄ ∈ [0,1] with g̃(t̄) < 0, we continue and compute
approximate bounds t− and t+ of the interval {t ∈ [0,1], g(t) ≤ 0}. For that, we
assume g̃(0), g̃(1) ≥ 0. By symmetry, we only describe how to construct t− such
that g̃(t−)≤ 0 and g(t− − η)≥ 0 for an η > 0 reasonably small. Note that g(t)≤ 0
on [t−, t̄] by convexity of g.

In order to compute t−, we adapt the standard bisection method for finding a
root of a function. Note that the function g̃ might not have any root as it might not
be continuous. Our adapted method constructs a decreasing sequence of intervals
[ak, bk] such that g̃(ak) > 0, g̃(bk)≤ 0, and bk+1 −ak+1 = 1

2 (bk−ak). If g̃(ak) > γ ,
we know that g is positive on [0, ak], and we know that there is a root of g on
[ak, bk]. Otherwise, if 0 < g̃(ak)≤ γ and that the interval [ak, bk] has a length larger
or equal to γ

θ
. Given the form of θ , we know that k ≤ N . We claim that for every

0 ≤ t ≤ min{0, ak − γ
θ
} we have g(t)≥ 0, so that we can take η := 2 γ

θ
and t− := bN .

Indeed, assume that g′(ak)≥ θ , then

g̃(bk)≥ g(bk)≥ g(ak)+ g′(ak)(bk − ak) >−γ + θ · γ
θ

≥ 0

giving a contradiction, so we must have g′(ak)≤ −θ . We can exclude the case where
t can only be 0. As claimed, we have

g(t)≥ g(ak)+ g′(ak)(t − ak)≥ −γ + θ(ak − t)≥ 0

as γ
θ

≤ ak − t . This takes �ln(γ
θ
)/ ln(1

2)� evaluations of g̃.
Summarizing this, we just sketched the proof of the following corollary.

Corollary 3 There exists an algorithm that solves min{ϕ(t) : t ∈ [0,1], g(t) ≤ 0}
approximately, in the sense that it finds, if they exist, three points 0 ≤ t− ≤ x ≤ t+ ≤
1 with:

(a) g(t)≤ g̃(t)≤ 0 for every t ∈ [t−, t+],
(b) if t− ≥ 2 γ

θ
, then g(t)≥ 0 for every t ∈ [0, t− − 2 γ

θ
],

(c) if t+ ≤ 1 − 2 γ
θ

, then g(t)≥ 0 for every t ∈ [t+ + 2 γ
θ
,1],

(d) ϕ̃(x)≤ min{ϕ(t) : t ∈ [t−, t+], g(t)≤ 0} + (κ − 1)γ

Mirror-Descent Methods in Mixed-Integer Convex Optimization 127

within at most 3 + � ln((κ−1)γ /Vg)
ln(λ1)

� + 2� ln(γ /θ)
ln(1/2) � evaluations of g̃ and at most 2 +

� ln((κ−1)γ /Vϕ)
ln(λ1)

� evaluations of ϕ̃.

As stressed before above, we assume from now on that we can compute exactly
the roots of the function g on a given interval, so that the segment [t−, t+] in Corol-
lary 3 is precisely our feasible set. This situation occurs e.g. in mixed-integer convex
optimization with one integer variable when the feasible set S ⊂ R×R

d is a poly-
tope.

Remark 4 In order to solve problem (1) with one integer variable, we can extend
Proposition 4 to implement the improvement oracle O0,κγ . We need three assump-
tions: first, S ⊆ [a, b] × R

d with a < b; second, f has a finite spread on the fea-
sible set; and third we can minimize f (x, y) with (x, y) ∈ S and x fixed up to
an accuracy γ . That is, we have access to a value ϕ̃(x) ∈ [ϕ(x),ϕ(x) + γ] with
ϕ(x) := min{f (x, y) : (x, y) ∈ S} being convex.

Given a feasible query point (x, y) ∈ [a, b] × R
d , we can determine correctly

that there is no point (x̂, ȳ) ∈ ((t0 + τZ)∩[0,1])×R
d for which f (x̂, ȳ)≤ f (x, y),

provided that the output x̂ of our approximate bisection method for integers given in
Proposition 4 satisfies ϕ̃(x̂)− κγ > f (x, y). Otherwise, we can determine a point
(x̂, ȳ) for which f (x̂, ȳ)≤ f (x, y)+ κγ . Note that this oracle cannot report a and
b simultaneously.

4.2 Mixed-Integer Convex Problems with Two Integer Variables

We could use the Mirror-Descent Method in Algorithm 1 to solve the generic
problem (1) when n = 2 with z �→ 1

2‖z‖2
2 as function V , so that σ = 1 and

M = 1
2 diam(S)2, where diam(S) = max{‖z − z′‖2 : z, z′ ∈ S}. According to (5),

the worst-case number of iterations is bounded by a multiple of L
√
M/σ =

O(Ldiam(S)), where L is the Lipschitz constant of f . As Vf ≤ Ldiam(S), the
resulting algorithm would have a worst-case complexity of Ω(Vf).

We improve this straightforward approach with a variant of Algorithm 3, whose
complexity is polynomial in ln(Vf). This variant takes into account the fact that we
do not have access to exact values of the partial minimization function φ defined in
the preamble of this section.

Proposition 5 Suppose that we can determine, for every x ∈ R
n with g(x) ≤ 0, a

point yx ∈ R
d satisfying f (x, yx) − γ ≤ min{f (x, y) : (x, y) ∈ S}. Then we can

implement the oracle O0,κγ such that for every (x, y) ∈ S it takes a number of eval-
uations of f that is polynomial in ln(Vf /γ).

Proof We adapt the algorithm described in the proof of Theorem 2 for the function
φ(x) := min{f (x, y) : (x, y) ∈ S}, which we only know approximately. Its available
approximation is denoted by φ̃(x) := f (x, yx) ∈ [φ(x),φ(x)+ γ].

128 M. Baes, T. Oertel, C. Wagner, and R. Weismantel

Let (x, y) ∈ S be the query point and let us describe the changes that the algo-
rithm in Theorem 2 requires. We borrow the notation from the proof of Theorem 2.

The one-dimensional integer minimization problems which arise in the course of
the algorithm require the use of our approximate bisection method for integers in
Proposition 4. This bisection procedure detects, if it exists, a point x̂ on the line of
interest for which φ̃(x̂) = f (x̂, yx̂) ≤ f (x, y)+ κγ and we are done. Or it reports
correctly that there is no integer x̂ on the line of interest with φ(x̂)≤ f (x, y).

In Case 2, we would need to check whether φ(ẑ) ≤ f (x, y). In view of our
accuracy requirement, we only need to check φ̃(ẑ)≤ f (x, y)+ κγ .

We also need to verify whether the line H intersects the level set {x ∈R
2|φ(x)≤

f (x, y)}. We use the following approximate version:

“check whether there is a v ∈ conv{z0, ẑ} for which φ̃(v) < f (x, y)+ (κ − 1)γ ”,

which can be verified using Proposition 3. If such a point v exists, the convexity of
φ forbids any w ∈ conv{ẑ, z1} to satisfy φ(w)≤ f (x, y), for otherwise:

φ̃(ẑ)≤ φ(ẑ)+γ ≤ max
{
φ(v),φ(w)

}+γ ≤ max
{
φ̃(v), φ̃(w)

}+γ < f (x, y)+κγ,

a contradiction. Now, if such a point v does not exist, we perform the same test on
conv{ẑ, z1}. We can thereby determine correctly which side of ẑ on H has an empty
intersection with the level set. �

Similarly as in Corollary 1, we can extend this oracle into an approximate min-
imization procedure, which solves our optimization problem up to an accuracy of
κγ , provided that we have at our disposal a point (x, y) ∈ S such that f (x, y) is a
lower bound on the mixed-integer optimal value.

Let us now modify our method for finding the k-th best point for two-dimensional
problems to problems with two integer and d continuous variables. Here, we aim at
finding—at least approximately—the k-th best fiber x̂∗

k ∈ [−B,B]2, so that:

(
x̂∗
k , y

∗
k

) ∈ arg min
{
f (x, y) : (x, y) ∈ S ∩ ((Z2 \ {x̂∗

1 , . . . , x̂
∗
k−1

})×R
d
)}

for a y∗
k ∈ R

d . We set f̂ ∗[k] := f (x̂∗
k , y

∗
k). The following proposition summarizes the

necessary extensions of Sect. 3.2.

Proposition 6 Let k ≥ 2 and let Πk−1 := {ẑ∗1, . . . , ẑ∗k−1} ⊆ [−B,B]2 ∩Z
2 be points

for which φ(ẑ∗i)≤ f̂ ∗
i + iκγ , g(ẑ∗i)≤ 0 when 1 ≤ i < k and such that conv{Πk−1}∩

Z
2 = Πk−1. In a number of approximate evaluations of f and g1, . . . , gm that is

polynomial in ln(Vf /γ) and k, one can either

(a) find an integral point ẑ∗k ∈ [−B,B]2 for which φ(ẑ∗k) ≤ f̂ ∗[k] + kκγ , g(ẑ∗k) ≤ 0

and conv{Πk−1, ẑ
∗
k} ∩Z

2 =Πk−1 ∪ {ẑ∗k}, or
(b) show that there is no integral point ẑ∗k ∈ [−B,B]2 for which g(ẑ∗k)≤ 0.

Mirror-Descent Methods in Mixed-Integer Convex Optimization 129

Proof If k = 2, we run Algorithm 3 applied to ẑ∗1 with Line 9 replaced by
solving min{〈h, ŷ〉 : ŷ ∈ T̄k ∩ Z

2, 〈h, ŷ〉 ≥ 〈h, ẑ∗1〉 + 1}, where h ∈ Z
2 such that

gcd(h1, h2)= 1. We also need to use approximate bisection methods instead of ex-
act ones. Following the proof of Proposition 5, the oracle finds, if it exists, a fea-
sible point ẑ∗2. Either φ̃(ẑ∗2) ≤ φ̃(ẑ∗1)+ κγ ≤ f̂ ∗[1] + 2κγ ≤ f̂ ∗[2] + 2κγ , or φ̃(ẑ∗2) >
φ̃(ẑ∗1)+ κγ , then φ(ẑ∗2)≤ φ̃(ẑ∗2)≤ f̂ ∗[2] + κγ . Note that, if φ(ẑ∗2) > φ(ẑ∗1)+ κγ , we
can conclude a posteriori that z∗1 corresponds precisely to f ∗[1].

For k ≥ 3, we can define the same triangulation as in Fig. 7. Replicating the
observation sketched above, we generate indeed a feasible point ẑ∗k for which
φ̃(ẑ∗k)≤ f̂ ∗[k] + kκγ .

Lemma 3 is extended as follows. Suppose that there is an integer point x̂ in
conv{Πk−1, ẑ

∗
k} \ (Πk−1 ∪ {ẑ∗k}). Since φ(x)≤ φ̃(x)≤ f̂ ∗[k] + kκγ and g(x)≤ 0 for

every x ∈Πk−1 ∪{ẑ∗k}, we have φ(x̂)≤ f̂ ∗[k] +kκγ and g(x̂)≤ 0 by convexity. Thus,
we can apply Algorithm 4 to find a suitable point ẑ∗k in conv{Πk−1, ẑ

∗
k}. �

4.3 A Finite-Time Algorithm for Mixed-Integer Convex
Optimization

In this section, we explain how to use the results of the previous section in order to
realize the oracle Oα,δ for α ≥ 0, δ > 0 in the general case, i.e., with n ≥ 3 integer
and d continuous variables as in (1).

Let z ∈ S ⊆ [−B,B]n ×R
d be the query point of the oracle. The oracle needs to

find a point ẑ ∈ S ∩ (Zn × R
d) for which f (ẑ) ≤ (1 + α)f (z) + δ (so as to report

a), or to certify that f (z) < f (ẑ) for every ẑ ∈ S ∩ (Zn ×R
d) (so as to report b). To

design such an oracle we have at our disposal a procedure to realize the oracle Oα,δ

for any mixed-integer convex minimization problem of the kind (1) with n= 2. We
propose a finite-time implementation of Oα,δ with α = 0 and δ = κγ . The main idea
is to solve the n-dimensional case iteratively through the fixing of integer variables.
This works as follows. We start by solving approximately the relaxation:

f̂ ∗
12 := min

{
f (x, y) : (x, y) ∈ S ∩ (Z2 ×R

(n−2)+d
)}

with the techniques developed in the previous section. If we can solve the par-
tial minimization problems up to an accuracy of γ ≤ δ/κ , we obtain a point
(û∗

1, û
∗
2, x

∗
3 , . . . , x

∗
n, y

∗) ∈ S with û∗
1, û

∗
2 ∈ Z and for which:

f̃ ∗
12 := f

(
û∗

1, û
∗
2, x

∗
3 , . . . , x

∗
n, y

∗)≤ f̂ ∗
12 + κγ.

As f̂ ∗
12 is a lower bound on the mixed-integer optimal value f̂ ∗, we can make our

oracle output b if f̃ ∗
12 − κγ > f (z). So, assume that f̃ ∗

12 − κγ ≤ f (z).
Then we fix x̂i := û∗

i for i = 1,2 and solve (if k ≥ 4; if k = 3, the necessary
modifications are straightforward)

f̂ ∗
1234 := min

{
f (x, y) : (x, y) ∈ S ∩ ((û∗

1, û
∗
2

)×Z
2 ×R

(n−4)+d
)}
.

130 M. Baes, T. Oertel, C. Wagner, and R. Weismantel

We obtain a point (û∗
1, . . . , û

∗
4, x

∗
5 , . . . , x

∗
n, y

∗) ∈ S with û∗
i ∈ Z for 1 ≤ i ≤ 4 and for

which:

f̃ ∗
1234 := f

(
û∗

1, . . . , û
∗
4, x

∗
5 , . . . , x

∗
n, y

∗)≤ f̂ ∗
1234 + κγ ≤ f̂ ∗ + κγ.

Now, if f̃ ∗
1234 − κγ > f (z), we can make our oracle output b. Thus, we assume that

f̃ ∗
1234 − κγ ≤ f (z) and fix x̂i := û∗

i for 1 ≤ i ≤ 4. Iterating this procedure we arrive
at the subproblem (again, the procedure can easily be modified if n is odd):

min
{
f (x, y) : (x, y) ∈ S ∩ ((û∗

1, . . . , û
∗
n−2

)×Z
2 ×R

d
)}
.

Let (û∗
1, . . . , û

∗
n, y

∗) ∈ Z
n × R

d be an approximate optimal solution. If we cannot
interrupt the algorithm, i.e., if f (û∗

1, . . . , û
∗
n, y

∗) 	≤ (1 + α)f (z) + κγ , we replace
(û∗

n−3, û
∗
n−2) by the second best point for the corresponding mixed-integer convex

minimization problem. In view of Proposition 6, the accuracy that we can guarantee
on the solution is only 2κγ , so the criterion to output b must be adapted accordingly.
Then we proceed with the computation of (û∗

n−1, û
∗
n) and so on.

It is straightforward to verify that this approach results in a finite-time algorithm
for the general case. In the worst case the procedure forces us to visit all integral
points in [−B,B]n. However, in the course of this procedure we always have a fea-
sible solution and a lower bound at our disposal. Once the lower bound exceeds the
value of a feasible solution we can stop the procedure. It is precisely the availability
of both, primal and dual information, that makes us believe that the entire algorithm
is typically much faster than enumerating all the integer points in [−B,B]n.

Acknowledgements We thank the anonymous referee for helpful comments. This work was
partially supported by the German Science Foundation, SFB/Transregio 63 InPROMPT.

References

1. Arora, S., Kale, S.: A combinatorial, primal-dual approach to semidefinite programs [ex-
tended abstract]. In: STOC’07—Proceedings of the 39th Annual ACM Symposium on
Theory of Computing, San Diego, pp. 227–236. ACM, New York (2007). doi:10.1145/
1250790.1250823

2. Bonami, P., Biegler, L., Conn, A., Cornuéjols, G., Grossmann, I., Laird, C., Lee, J., Lodi,
A., Margot, F., Sawaya, N., Wächter, A.: An algorithmic framework for convex mixed integer
nonlinear programs. Discrete Optim. 5(2), 186–204 (2008). doi:10.1016/j.disopt.2006.10.011

3. Conn, A., Gould, N., Toint, P.: Trust-Region Methods. MPS/SIAM Series on Optimization.
SIAM, Philadelphia (2000). doi:10.1137/1.9780898719857

4. Duran, M., Grossmann, I.: An outer-approximation algorithm for a class of mixed-integer
nonlinear programs. Math. Program. 36(3), 307–339 (1986). doi:10.1007/BF02592064

5. Eisenbrand, F., Laue, S.: A linear algorithm for integer programming in the plane. Math. Pro-
gram., Ser. A 102(2), 249–259 (2005). doi:10.1007/s10107-004-0520-0

6. Fletcher, R., Leyffer, S.: Solving mixed integer nonlinear programs by outer approximation.
Math. Program., Ser. A 66(3), 327–349 (1994). doi:10.1007/BF01581153

7. Graham, R.: An efficient algorithm for determining the convex hull of a finite planar set. Inf.
Process. Lett. 1, 132–133 (1972)

http://dx.doi.org/10.1145/1250790.1250823
http://dx.doi.org/10.1145/1250790.1250823
http://dx.doi.org/10.1016/j.disopt.2006.10.011
http://dx.doi.org/10.1137/1.9780898719857
http://dx.doi.org/10.1007/BF02592064
http://dx.doi.org/10.1007/s10107-004-0520-0
http://dx.doi.org/10.1007/BF01581153

Mirror-Descent Methods in Mixed-Integer Convex Optimization 131

8. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Opti-
mization. Algorithms and Combinatorics: Study and Research Texts, vol. 2. Springer, Berlin
(1988)

9. Hiriart-Urruty, J.B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms II: Ad-
vanced Theory and Bundle Methods. Grundlehren der Mathematischen Wissenschaften, vol.
306. Springer, Berlin (1993)

10. Khachiyan, L.: A polynomial algorithm in linear programming. Dokl. Akad. Nauk SSSR 244,
1093–1096 (1979)

11. Lenstra, H. Jr.: Integer programming with a fixed number of variables. Math. Oper. Res. 8(4),
538–548 (1983). doi:10.1287/moor.8.4.538

12. Nemirovski, A.: Efficient methods in convex programming. Lecture notes (1994). www2.isye.
gatech.edu/~nemirovs/Lect_EMCO.pdf

13. Nemirovski, A., Yudin, D.: Problem Complexity and Method Efficiency in Optimization. Wi-
ley, New York (1983)

14. Nesterov, Y.: Introductory Lectures on Convex Optimization. Applied Optimization, vol. 87.
Kluwer Academic, Boston (2004)

15. Nesterov, Y., Nemirovski, A.: Interior-Point Polynomial Algorithms in Convex Program-
ming. Studies in Applied Mathematics, vol. 13. SIAM, Philadelphia (1994). doi:10.1137/
1.9781611970791

16. Rockafellar, R.: The Theory of Subgradients and Its Applications to Problems of Optimiza-
tion: Convex and Non Convex Functions. R & E, vol. 1. Heldermann, Berlin (1981)

17. Viswanathan, J., Grossmann, I.: A combined penalty function and outer-approximation
method for MINLP optimization. Comput. Chem. Eng. 14(7), 769–782 (1990). doi:10.1016/
0098-1354(90)87085-4

http://dx.doi.org/10.1287/moor.8.4.538
http://www2.isye.gatech.edu/~nemirovs/Lect_EMCO.pdf
http://www2.isye.gatech.edu/~nemirovs/Lect_EMCO.pdf
http://dx.doi.org/10.1137/1.9781611970791
http://dx.doi.org/10.1137/1.9781611970791
http://dx.doi.org/10.1016/0098-1354(90)87085-4
http://dx.doi.org/10.1016/0098-1354(90)87085-4

Beyond Perfection: Computational Results
for Superclasses

Arnaud Pêcher and Annegret K. Wagler

“The favorite topics and results of a researcher change over
time, of course. One area that I have always kept an eye on is
that of perfect graphs. These graphs, introduced in the late 50s
and early 60s by Claude Berge, link various mathematical
disciplines in a truly unexpected way: graph theory,
combinatorial optimization, semidefinite programming,
polyhedral and convexity theory, and even information theory.”

Martin Grötschel, Optima, June 1999

Abstract We arrived at the Zuse Institute Berlin, Annegret as doctoral student in
1995 and Arnaud as postdoc in 2001, both being already fascinated from the graph
theoretical properties of perfect graphs. Through encouraging discussions with Mar-
tin, we learned about the manifold links of perfect graphs to other mathematical dis-
ciplines and the resulting algorithmic properties based on the theta number (where
Martin got famous for, together with Laci Lovász and Lex Schrijver).

This made us wonder whether perfect graphs are indeed completely unique and
exceptional, or whether some of the properties and concepts can be generalized to
larger graph classes, with similar algorithmic consequences—the starting point of a
fruitful collaboration. Here, we answer this question affirmatively and report on the
recently achieved results for some superclasses of perfect graphs, all relying on the
polynomial time computability of the theta number. Finally, we give some reasons
that the theta number plays a unique role in this context.

A. Pêcher
Laboratoire Bordelais de Recherche Informatique (LaBRI)/INRIA Sud-Ouest, Université de
Bordeaux, 351 cours de la Libération, 33405 Talence, France
e-mail: arnaud.pecher@labri.fr

A.K. Wagler (B)
Laboratoire d’Informatique, de Modélisation et d’Optimisation des Systèmes (LIMOS)/CNRS,
Université Blaise Pascal (Clermont-Ferrand II), BP 10125, 63173 Aubière Cedex, France
e-mail: annegret.wagler@univ-bpclermont.fr

M. Jünger, G. Reinelt (eds.), Facets of Combinatorial Optimization,
DOI 10.1007/978-3-642-38189-8_6, © Springer-Verlag Berlin Heidelberg 2013

133

mailto:arnaud.pecher@labri.fr
mailto:annegret.wagler@univ-bpclermont.fr
http://dx.doi.org/10.1007/978-3-642-38189-8_6

134 A. Pêcher and A.K. Wagler

1 Introduction

Berge introduced perfect graphs, motivated from Shannon’s problem of finding
the zero-error capacity of a discrete memoryless channel [36]. Shannon observed
that this otherwise difficult problem becomes tractable for graphs G= (V ,E) with
ω(G)= χ(G), where ω(G) is the clique number (denoting the size of a maximum
clique in G), χ(G) the chromatic number (referring to the minimal number of sta-
ble sets covering the node set V) and a clique (resp. stable set) is a set of mutually
adjacent (resp. non-adjacent) nodes.

This motivated Berge [3] to say that G is a perfect graph if and only if

ω
(
G′)= χ

(
G′) for all induced subgraphs G′ ⊆G. (1)

Berge noticed that all examples of perfect graphs also have the property that

α
(
G′)= χ

(
G′) for all induced subgraphs G′ ⊆G, (2)

where α(G) is the stability number (the size of a largest stable set in G) and χ(G)

the clique cover number (denoting the least number of cliques covering V).
Considering the complementary graph G= (V ,V 2 \E) where cliques of G turn

into stable sets of G and, thus, colorings into clique covers, this means that every
complement of a perfect graph G satisfies (2). This let Berge conjecture that a graph
G is perfect if and only if

G is a perfect graph. (3)

Developing the antiblocking theory of polyhedra, Fulkerson launched a massive
attack to this conjecture, see [11, 12], before it was turned to the Perfect Graph
Theorem by Lovász [23], who gave two short and elegant proofs. In addition, Lovász
[22] characterized perfect graphs as those graphs G such that

ω
(
G′)ω

(
G

′)≥ ∣∣G′∣∣ holds for all induced subgraphs G′ ⊆G. (4)

Moreover, Berge observed that all chordless odd cycles C2k+1 with k ≥ 2, called
odd holes, and their complements, the odd antiholes C2k+1, satisfy ω(G) < χ(G).
This motivated Berge’s famous Strong Perfect Graph Conjecture: G is perfect if and
only if

G has no odd hole or odd antihole as induced subgraph. (5)

Many efforts to prove this conjecture stimulated the study of perfect graphs, but
were not successful for over 40 years. Finally, Chudnovsky, Robertson, Seymour,
and Thomas [6] turned this conjecture into the Strong Perfect Graph Theorem.

During the last decades, many fascinating structural properties of perfect graphs
and interesting relationships to other fields of scientific inquiry have been discov-
ered. In particular, the in general hard to compute parameters ω(G), χ(G), α(G)
and χ(G) can be determined in polynomial time if G is perfect by Grötschel, Lovász

Beyond Perfection: Computational Results for Superclasses 135

and Schrijver [15]. The latter result relies on characterizations of the stable set poly-
tope of perfect graphs.

The stable set polytope STAB(G) of a graph G is defined as the convex hull of
the incidence vectors of all stable sets of G. It can be alternatively represented by

STAB(G)= conv

{
x ∈ {0,1}|G| : x(Q)=

∑

i∈Q
xi ≤ 1,Q⊆G clique

}

as a clique and a stable set have clearly at most one node in common and, thus,
all clique constraints x(Q) ≤ 1 are valid for STAB(G). A canonical relaxation of
STAB(G) is, therefore, the clique constraint stable set polytope

QSTAB(G)=
{

x ∈ R
|G|
+ :

∑

i∈Q
xi ≤ 1,Q⊆G clique

}
.

We have STAB(G)⊆ QSTAB(G) for all graphs, but equality for perfect graphs only
[7, 12, 26]: a graph G is perfect if and only if

STAB(G)= QSTAB(G). (6)

Hence, one is tempted to look at the linear relaxation max wT x, x ∈ QSTAB(G)
for determining the weighted stability number α(G,w) for perfect graphs. The fol-
lowing chain of inequalities and equations is typical for integer/linear programming
approaches to combinatorial problems:

α(G,w) = max

{∑

i∈S
wi : S ⊆G stable

}

= max
{
wT x : x ∈ STAB(G)

}

= max
{
wT x : x(Q)≤ 1 ∀cliques Q⊆G,x ≥ 0,x ∈ {0,1}|G|}

≤ max
{
wT x : x(Q)≤ 1 ∀cliques Q⊆G,x ≥ 0

}

= min

{∑

Q⊆G

yQ :
∑

Q&i
yQ ≥wi ∀i ∈G,yQ ≥ 0 ∀cliques Q⊆G

}

≤ min

{∑

Q⊆G

yQ :
∑

Q&i
yQ ≥wi ∀i ∈G,yQ ≥ 0, yQ ∈ Z+ ∀Q⊆G

}

= χ(G,w).

The inequalities come from dropping or adding integrality constraints, one of the
equations is implied by linear programming duality. The last program can be inter-
preted as an integer programming formulation for determining the weighted clique
cover number χ(G,w).

It follows from the Perfect Graph Theorem that equality holds throughout the
whole chain for all 0/1-vectors w if and only if G is perfect. This, in turn, is equiv-

136 A. Pêcher and A.K. Wagler

alent to saying that G is perfect if and only if

the value max
{
wT x : x ∈ QSTAB(G)

}
is integral ∀w ∈ {0,1}|G| (7)

and results of Fulkerson [11] and Lovász [23] imply that this is true for all w ∈ Z
|G|.

This proves particularly that the constraint system defining QSTAB(G) is totally
dual integral for perfect graphs G.

However, maximizing a linear objective function wT x, x ∈ QSTAB(G) in poly-
nomial time does not work in general [17].

For the class of perfect graphs, though, the optimization problem for QSTAB(G)
(and, therefore, for STAB(G)) can be solved in polynomial time—albeit via a detour
involving a geometric representation of graphs introduced by Lovász [24].

Let G = (V ,E) be a graph. An orthonormal representation of G is a sequence
(ui : i ∈ V) of |V | vectors ui ∈ R

N , where N is some positive integer, such that
‖ui‖ = 1 for all i ∈ V and uTi uj = 0 for all ij 	∈ E. Trivially, every graph has
an orthonormal representation: just take all the vectors ui mutually orthogonal in
R

|V |, but also less trivial orthonormal representations exist. For instance, taking an
orthonormal basis B = {e1, . . . , e|V |} of R

|V | and a clique Q of G, we obtain an
orthonormal representation by setting ui = e1 for all i ∈ Q and assigning different
vectors of B −{e1} to all the remaining nodes j ∈G−Q (where ei denotes the i-th
unit vector).

For any orthonormal representation (ui : i ∈ V), ui ∈ R
N of G and any unit-

length vector c ∈R
N , the orthonormal representation constraint (ONRC)

∑

i∈V

(
cT ui

)2
xi ≤ 1

is valid for STAB(G) due to the following reason. For any stable set S of G,
the vectors ui , i ∈ S are mutually orthogonal by construction and, therefore,∑

i∈S(cT ui)2 ≤ 1 follows. We obtain

∑

i∈V

(
cT ui

)2
xSi =

∑

i∈S

(
cT ui

)2

for the incidence vector xS of a stable set S of G (with xSi = 1 if i ∈ S and xSi = 0
otherwise) yielding the validity of the ONRCs for STAB(G).

Moreover, taking an orthonormal representation associated with a clique Q, then
the corresponding orthonormal representation constraint for c = e1 is just the clique
constraint associated with Q (by cT ui = 1 for i ∈ Q and cT uj = 0 otherwise).
Hence, every clique constraint is a special orthonormal representation constraint.

For any graph G= (V ,E), the set

TH(G)= {x ∈ R
V+ : x satisfies all ONRCs

}

is the intersection of infinitely many half-spaces (since G admits infinitely many
orthonormal representations), so TH(G) is a convex set but no polytope in general.
The above remarks imply

Beyond Perfection: Computational Results for Superclasses 137

STAB(G)⊆ TH(G)⊆ QSTAB(G)

and all three convex sets coincide if and only if G is perfect. More precisely,
Grötschel, Lovász and Schrijver [15] showed: G is perfect if and only if

STAB(G)= TH(G) (8)

and if and only if

TH(G)= QSTAB(G). (9)

This result is particularly remarkable since it states that a graph G is perfect if and
only if

the convex set TH(G) is a polytope. (10)

The key property of TH(G) for linear programming was again established by
Grötschel, Lovász, and Schrijver [15]: If w ∈ R

V+ is a vector of node weights, the
optimization problem (with infinitely many linear constraints) max wT x, x ∈ TH(G)
can be solved in polynomial time for any graph G. This deep result rests on the fact
that the value

ϑ(G,w)= max
{
wT x : x ∈ TH(G)

}

can be characterized in many equivalent ways, e.g., as the maximum

• eigenvalue of a certain set of symmetric matrices,
• value of some function involving orthonormal representations,
• value of a semidefinite program,

see [17] for details. As we have α(G,w)= ϑ(G,w) for all perfect graphs G by (8),
this finally implies that the stable set problem can be solved in polynomial time for
perfect graphs.

Therefore, the clique cover number χ(G) = α(G), the chromatic number
χ(G) = χ(G), and the clique number ω(G) = α(G) can be computed in poly-
nomial time for perfect graphs G, even in the weighted versions.

To summarize the above presented results, perfect graphs truly deserve their
name since they have interesting graph-theoretical properties and behave nicely
from an algorithmic point of view. In addition, perfect graphs can be character-
ized in terms of many different concepts (see the above conditions (1)–(10) which
form a part of what Martin Grötschel called his “favorite theorem” in [14]), thereby
establishing links to

• polyhedral theory (G is perfect if and only if certain polyhedra are identical);
• integer programming (a graph G is perfect if and only if certain linear programs

have integral objective values);
• semidefinite programming (a graph is perfect if and only if the feasible region of

a certain semidefinite program is a polytope);

which indeed reflects the importance of perfect graphs in many different fields of
scientific inquiry.

138 A. Pêcher and A.K. Wagler

2 Beyond Perfection

The above considerations show that perfect graphs are a class with an extraordinarily
rich structure. Unfortunately, most graphs are imperfect and do not admit such nice
properties. Thus, it is natural to ask which imperfect graphs are close to perfection
in some sense. Our aim is to generalize the underlying concepts of crucial properties
of perfect graphs and to study possible algorithmic consequences for the resulting
superclasses of perfect graphs.

We arrive at a natural superclass of perfect graphs if we require local perfection:
we call a graph G = (V ,E) neighborhood-perfect if, for every node v of G, its
closed neighborhood N [v] induces a perfect subgraph of G (where N [v] contains v
together with all its neighbors w ∈N(v)= {w ∈ V : vw ∈E}).

Due to the Strong Perfect Graph Theorem [6], being neighborhood-perfect is
equivalent to having neither odd wheels C2k+1 ∗ v nor odd antiwheels C2k+1 ∗ v,
i.e., no odd (anti)holes completely joined to a node v.

Proposition 1 The class of neighborhood-perfect graphs equals the class of odd
wheel- and odd antiwheel-free graphs.

Proof On the one hand, every neighborhood-perfect graph does not contain an odd
wheel C2k+1 ∗ v or odd antiwheel C2k+1 ∗ v, as otherwise N [v] would be not
perfect. On the other hand, every odd wheel- and odd antiwheel-free graph G is
neighborhood-perfect: for all nodes v, N(v) cannot contain an odd hole or odd an-
tihole and, therefore, induces a perfect subgraph of G by the Strong Perfect Graph
Theorem [6]; that no odd (anti)hole contains a universal node implies that also
N(v)∪ {v} =N [v] induces a perfect subgraph of G. �

It turns out that neighborhood-perfect graphs contain two well-known super-
classes of perfect graphs, circular-perfect graphs and rank-perfect graphs, obtained
by generalizing coloring and polyhedral properties of perfect graphs, respectively.

Circular-perfect graphs are introduced by Zhu [46] as superclass of perfect
graphs on the base of the following more general coloring concept due to Vince [40].
For positive integers k ≥ 2d , a (k, d)-coloring of a graph G= (V ,E) is a mapping
f : V → {0, . . . , k− 1} such that for each edge uv of G, d ≤ |f (u)−f (v)| ≤ k− d

holds. The circular-chromatic number is

χc(G)= min

{
k

d
:G has a (k, d)-coloring

}

and satisfies χc(G) ≤ χ(G), as a (k,1)-circular coloring is a usual coloring with k

colors. In addition, it is known by [40] that χ(G)= �χc(G)� for any graph G.
As generalizations of cliques, circular-cliques Kk/d with k ≥ 2d nodes 0, . . . ,

k−1 and edges ij if and only if d ≤ |i− j | ≤ k−d are considered. In fact, circular-
cliques include all cliques Kk/1, antiholes Kk/2, and odd holes K2t+1/t . Note that
they are also known as antiwebs in the literature [37, 43].

Beyond Perfection: Computational Results for Superclasses 139

The circular-clique number is

ωc(G)= max

{
k

d
:Kk/d is an induced subgraph of G,gcd(k, d)= 1

}

and ω(G) ≤ ωc(G) holds as Kk/1 is a usual clique. It is also known from [46] that
ω(G)= �ωc(G)� for any graph G.

In addition, ωc(G) is always a lower bound for χc(G) by [4] which implies

ω(G)= ⌊ωc(G)
⌋≤ ωc(G)≤ χc(G)≤ ⌈χc(G)

⌉= χ(G). (11)

A graph G is circular-perfect [46] if each induced subgraph G′ ⊆ G satisfies
χc(G

′) = ωc(G
′). By definition, every perfect graph is circular-perfect as we have

everywhere equality in (11). All circular-cliques are circular-perfect as well by [46].
Two further classes of circular-perfect graphs are found by Bang, Jensen and Huang
[2] and Pêcher and Wagler [28]. So circular-perfect graphs form a proper superclass
of the class of perfect graphs. On the other hand, circular-perfect graphs are a sub-
class of neighborhood-perfect graphs by Zhu [46], since every circular-perfect graph
G satisfies the property that N [v] induces a perfect subgraph for every node v. This
can also be inferred from the fact that odd wheels and odd antiwheels are minimally
not circular-perfect, see [28, 45].

Rank-perfect graphs are introduced in [42] in order to obtain a superclass of
perfect graphs by relaxing their polyhedral characterization (6). Accordingly, we
have STAB(G)⊂ QSTAB(G) for all imperfect graphs G, and additional constraints
are needed to obtain all facets of STAB(G). As natural generalization of the clique
constraints describing QSTAB(G), we consider rank constraints

x
(
G′)=

∑

i∈G′
xi ≤ α

(
G′)

associated with arbitrary induced subgraphs G′ ⊆ G. By the choice of the right
hand side α(G′), rank constraints are obviously valid for STAB(G) such that the
rank constraint stable set polytope

RSTAB(G)=
{

x ∈R
|G|
+ :

∑

i∈G′
xi ≤ α

(
G′),G′ ⊆G

}

is a further linear relaxation of STAB(G). As clique constraints are special rank
constraints (namely exactly those with α(G′)= 1), we immediately obtain

STAB(G)⊆ RSTAB(G)⊆ QSTAB(G).

A graph G is rank-perfect by [42] if and only if STAB(G)= RSTAB(G) holds.
By definition, rank-perfect graphs include all perfect graphs (where rank con-

straints associated with cliques suffice). In general, by restricting the facet set to rank
constraints associated with certain subgraphs only, several well-known graph classes

140 A. Pêcher and A.K. Wagler

are defined, e.g., t-perfect [7] and h-perfect graphs [17] (where rank constraints as-
sociated with edges and odd cycles resp. cliques and odd holes are required). As
further generalization, a graph G is called a-perfect if and only if rank constraints
associated with circular-cliques suffice to describe STAB(G). All circular-cliques
are a-perfect by [43] and a further class of a-perfect graphs was found in [44]. Hence,
rank-perfect graphs form a proper superclass of perfect graphs. On the other hand,
rank-perfect graphs are indeed a subclass of neighborhood-perfect graphs. The proof
is elementary and does not make use of the Strong Perfect Graph Theorem.

Proposition 2 Rank-perfect graphs are neighborhood-perfect.

Proof Consider a rank-perfect graph G and assume to the contrary that there is a
node v in G such that N [v] is imperfect. Then N [v] contains a minimal imperfect
subgraph G′ (i.e., G′ is imperfect, but all its proper induced subgraphs are perfect).
As no minimal imperfect graph has a universal node, v 	∈ V (G′) follows and, there-
fore, v is completely joined to G′.

By Padberg [26], every minimal imperfect graph G′ induces the full rank facet
x(G′)≤ α(G′) of STAB(G′), and the complete join G′ ∗ v gives rise to a facet

α
(
G′)xv + x

(
G′)≤ α

(
G′)

of STAB(G′ ∗ v). As any minimal imperfect graph G′ has stability number α(G′)≥
2 (only cliques have stability number 1), the above inequality is a non-rank con-
straint. Hence, G contains a non-rank facet producing subgraph G′ ∗ v, and any
lifting of the above inequality to a facet of STAB(G) remains non-rank. So, no node
of a rank-perfect graph contains a minimal imperfect graph in its (closed) neighbor-
hood. �

A further well-known subclass of neighborhood-perfect graphs, the quasi-line
graphs, are defined as those graphs where the neighborhood of any node can be
split into two cliques. Quasi-line graphs are neighborhood-perfect by definition, but
not a superclass of perfect graphs (since no quasi-line graph contains a claw, that is
a stable set of size three completely joined to a node, but the claw is perfect).

Remark 1 Note that all three studied subclasses of neighborhood-perfect graphs are
pairwise incomparable.

Circular-perfect graphs contain a family of graphs (obtained from a K4 by sub-
dividing all edges incident to one of its nodes) which are not rank-perfect [8] and
not quasi-line (since they contain a claw); see Fig. 1a for the smallest such graph.

Rank-perfect graphs contain a family of t-perfect graphs (obtained from certain
cyclic concatenations of odd holes, called flowers) which are minimally not circular-
perfect by [20, 33] and not quasi-line (since they contain claws); see Fig. 1b for the
smallest such graph.

Quasi-line graphs contain all complements of circular-cliques (called webs)
which are almost all not rank-perfect by [27] and contain a family K3p+1,4 of mini-
mally not circular-perfect graphs by [28]; the smallest not rank-perfect web is K25,6

Beyond Perfection: Computational Results for Superclasses 141

Fig. 1 a A circular-perfect
graph which is neither
rank-perfect nor quasi-line.
b A t-perfect graph which is
neither circular-perfect nor
quasi-line

which contains K16,4 and K37,4 is the smallest web which is not rank-perfect and
minimally not circular-perfect.

It is shown in [29] that the strong optimization problem over QSTAB(G) can be
solved in polynomial time for G neighborhood-perfect. This implies for a circular-
perfect graph G with neighborhood-perfect complement that ω(G), ωc(G), χc(G)
and χ(G) can be computed in polynomial time, see [29]. This applies to all circular-
perfect graphs where the complement is circular-perfect, rank-perfect or quasi-line.

Moreover, in [34], it is shown that for claw-free circular-perfect graphs ω(G),
ωc(G), χc(G) and χ(G) can be computed in polynomial time.

We generalize these results by techniques relying on the polynomial time com-
putability of the theta number.

We first address the problem of determining the clique number for neighborhood-
perfect graphs G via computing ϑ(G). Next, we discuss how the chromatic num-
ber can be obtained for circular-perfect graphs G via computing ϑ(G). Finally, we
present both a closed formula for computing the theta number of circular-cliques
and consequences for computing circular-clique and -chromatic number for circular-
perfect graphs.

2.1 On Computing the Clique Number

In this subsection, we extend the polynomial time computability of the weighted
clique number for perfect graphs to the larger class of neighborhood-perfect graphs.

For that, we take advantage of the fact that every maximal clique Q of a graph
G is contained in the closed neighborhood N [v] of some node v. We denote by Gv

the subgraph of G induced by N [v]. For every neighborhood-perfect graph G, all
these subgraphs Gv are perfect by definition, so that their clique number equals the
theta-value of their complement by [15]. This implies:

Corollary 1 For any neighborhood-perfect graph G= (V ,E) and any weight vec-
tor w ∈ Q

|V |
+ , the weighted clique number ω(G,w) is computable in polynomial

time by

ω(G,w)= max
{
ϑ(Gv,w) :Gv =N [v], v ∈ V

}
.

This result applies to all neighborhood-perfect graphs, including rank-perfect
and circular-perfect graphs as two superclasses of perfect graphs, as well as quasi-
line graphs. Note that for the latter, only the polynomial time computability of the

142 A. Pêcher and A.K. Wagler

weighted stability number has been widely studied so far, see e.g. [10, 25] and ref-
erences therein.

Although ω(G,w) can be determined in polynomial time that way, it requires as
many computations of ϑ(Gv,w) as G has nodes. Next, we consider the unweighted
clique number ω(G) and exhibit an easier way to obtain it for circular-perfect and
a-perfect graphs by a single computation of ϑ(G) based on the following idea.

For all graphs G, we have ω(G) ≤ ϑ(G) by STAB(G) ⊆ TH(G), but the gap
between the two parameters can be large in general. If however, we can identify
graphs G where the two parameters are sufficiently close such that

ω(G)= ⌊ϑ(G)⌋

holds, the polynomial time computability of their clique number would follow.
The circular-clique number ωc(G) satisfies the desired property of being close

to the clique number, since it is known from [46] that ω(G) = �ωc(G)� holds for
any graph G. Determining ωc(G) is clearly NP-hard in general and can be done by
optimizing over a suitable polytope. For that, we introduced in [29] the circular-
clique polytope

CLIc(G)= conv
{
1/α(K)xK :K ⊆G prime circular-clique

}

where xK denotes the incidence vector of K ⊆ G, and a circular-clique Kk/d is
prime if gcd(k, d) = 1 holds. It is immediate to see that ωc(G) = max1T x, x ∈
CLIc(G). In [31, 33], we examined further properties of CLIc(G) and showed that

STAB(G)⊆ CLIc(G)⊆ QSTAB(G)

holds for any graph G which implies

ω(G)≤ ωc(G)≤ ωf (G) (12)

where ωf (G)= max1T x, x ∈ QSTAB(G) is the fractional clique number.
Hence, both parameters ϑ(G) and ωc(G) are sandwiched between ω(G) and

ωf (G), but are incomparable in general. For instance, consider the 5-hole C5 =
K5/2 and the 5-wheel W5 =K5/2 ∗K1, then we have

√
5 = ϑ(C5) < ωc(C5)= 5

2
but 3 = ωc(W5) < ϑ(W 5)= √

5 + 1.

However, satisfying ωc(G)= ωf (G) is a sufficient condition for a graph G to have

ω(G)≤ ϑ(G)≤ ωc(G)= ωf (G) (13)

which implies ω(G)= �ϑ(G)� by ω(G)= �ωc(G)�.
In the next two paragraphs, we first provide the proof for the inequality chain

(12) and, combining it with further facts, conclude that ω(G) = �ϑ(G)� holds
for all circular-perfect graphs. Then we present the characterization of a-perfect
graphs from [31, 33] as the graphs G with CLIc(G) = QSTAB(G) and conclude
that ω(G)= �ϑ(G)� also holds for all a-perfect graphs.

Beyond Perfection: Computational Results for Superclasses 143

2.1.1 About the Circular-Clique Polytope and the Clique Number of
Circular-Perfect Graphs

In order to show that the circular-clique polytope CLIc(G) is sandwiched between
STAB(G) and QSTAB(G), we use the general relation of facets and extreme points
of the latter two polytopes. This proof gives an understanding why the circular-
clique polytope has to be defined with respect to prime circular-cliques only. Note
that we consider all facets of the stable set polytope in a normalized form, scaled to
have right hand side equal to one.

Theorem 1 Consider a non-empty subgraph G′ ⊆ G and a weight vector a ∈
[0,1]|G| with 0 < ai ≤ 1 for i ∈ G′, ai = 0 otherwise. The vector a is an extreme
point of QSTAB(G) if and only if aT x ≤ 1 is a facet of STAB(G

′
).

Proof If. Suppose that G contains a subgraph G
′

such that aT x ≤ 1 is a facet
of STAB(G

′
) with 0 < ai ≤ 1 for i ∈ G

′
. Then there exist n′ = |G′| stable sets

S′
1, . . . , S

′
n′ of G

′
such that we have for their incidence vectors aT xS

′
i = 1 for

1 ≤ i ≤ n′ and xS
′
1 , . . . ,xS

′
n′ are linearly independent.

These stable sets clearly correspond to n′ cliques Q′
1, . . . ,Q

′
n′ of G′. For any

such clique Q′
i , choose a maximal clique Qi ⊆G with Qi ⊇Q′

i . The vector x′ with
x′
i = ai for i ∈G′ and x′

i = 0 otherwise is a point of QSTAB(G) as for every maxi-

mal clique Q of G, Q∩G′ is a stable set of G
′

and so
∑

i∈Q x′
i ≤∑i∈Q∩G′ x′

i ≤ 1.
Furthermore x′ satisfies the n′ clique constraints associated with the maximal
cliques Q1, . . . ,Qn′ at equality, as

x′(Qi)=
∑

j∈Q′
i⊆Qi

aj = aT xQ
′
i = aT xS

′
i = 1

holds by the choice of G′. Furthermore, x′ satisfies the n − n′ = |G \ G′| non-
negativity constraints −x′

j = 0 ∀j 	∈G′ with equality. Hence, x′ lies in the intersec-
tion of n = |G| facets of QSTAB(G). In order to show that x′ is an extreme point
it remains to ensure that these facets are linearly independent. For that, construct an
(n × n)-matrix A as follows: Let the first n′ columns of A correspond to nodes in
G′ and the last n − n′ columns to nodes in G \ G′. Choose further the incidence
vectors of the cliques Q1, . . . ,Qn′ as first n′ rows and the incidence vectors of the
non-negativity constraints −x′

j = 0 ∀j 	∈G′ as last n− n′ rows, i.e.

A=
(
A1 A2

0 Id

)
. (14)

As the submatrix A1 corresponds to the independent cliques Q′
1, . . . ,Q

′
n′ of G′, the

whole matrix A is invertible due to its block structure. Thus, x′ is indeed an extreme
point of QSTAB(G).

144 A. Pêcher and A.K. Wagler

Only if. Suppose conversely that a with 0 < ai ≤ 1 for i ∈ G
′

and ai = 0 oth-
erwise is an extreme point of QSTAB(G). Then a satisfies n linearly indepen-
dent facets of QSTAB(G) with equality. Among them are clearly the n − n′ non-
negativity constraints −aj = 0 ∀j 	∈ G′. As QSTAB(G) has only two types of
facets, a satisfies also n′ maximal clique facets with equality, say the clique con-
straints associated with the maximal cliques Q1, . . . ,Qn′ of G. Let Q′

i =Qi ∩G′,
then

a(Qi)=
∑

j∈Qi

aj =
∑

j∈Q′
i⊆Qi

aj = aT xQ
′
i = 1

follows by the choice of the vector a. Clearly, the cliques Q′
1, . . . ,Q

′
n′ of G′ corre-

spond to stable sets S′
1, . . . , S

′
n′ of G

′
and aT xS

′
i = 1 holds for 1 ≤ i ≤ n′.

By construction, aT x ≤ 1 is valid for STAB(G
′
). In order to show that it defines

a facet, it remains to verify that xS
′
1 , . . . ,xS

′
n′ are linearly independent. For that,

construct an (n × n)-matrix A as above, choosing the nodes in G′ and in G \ G′
as first n′ and last n− n′ columns, respectively, the incidence vectors of the cliques
Q1, . . . ,Qn′ as first n′ and the unit vectors corresponding to −aj = 0 ∀j 	∈ G′ as
last n− n′ rows, see again (14).

As a is an extreme point, the matrix A is invertible. In order to show invertibility
for the submatrix A1, we subtract, for each 1-entry in A2, the corresponding unit
vector in (0, Id). That way, we turn A2 into a matrix with 0-entries only but maintain
all entries in A1.

This shows that the rows of A1 are linearly independent and, therefore, the in-
cidence vectors of the cliques Q′

1, . . . ,Q
′
n′ of G′ respectively of the corresponding

stable sets S′
1, . . . , S

′
n′ in G

′
. Therefore, aT x ≤ 1 is indeed a facet of STAB(G

′
). �

Hence, Theorem 1 establishes a 1–1-correspondence between extreme points of
QSTAB(G) and facet-inducing subgraphs of G. On the other hand, the circular-
clique polytope CLIc(G) is the convex hull of the normalized incidence vectors of
all prime circular-cliques in G. Together, this shows that CLIc(G) is sandwiched
between the stable set polytope and the clique constraint stable set polytope of the
complement and we obtain the relations for the corresponding graph parameters:

Lemma 1 For all graphs G, we have STAB(G) ⊆ CLIc(G) ⊆ QSTAB(G) and,
thus, ω(G)≤ ωc(G)≤ ωf (G) holds.

Proof By definition, STAB(G) has only (integral) extreme points corresponding
to cliques of G and, by Theorem 1, QSTAB(G) has extreme points correspond-
ing to all facet-inducing subgraphs of G. As, by definition, the extreme points of
CLIc(G) correspond to prime circular-cliques of G only, STAB(G) ⊆ CLIc(G) ⊆
QSTAB(G) follows. Consequently, ω(G)≤ ωc(G)≤ ωf (G) holds. �

The relations of usual, circular and fractional chromatic number are studied by
Deuber and Zhu [9] who established χf (G)≤ χc(G)≤ χ(G) for any G. Coupling

Beyond Perfection: Computational Results for Superclasses 145

Lemma 1 with this result by LP-duality implies for all graphs G

ω(G)≤ ωc(G)≤ ωf (G)= χf (G)≤ χc(G)≤ χ(G). (15)

Combining (15) with the definition of circular-perfect graphs verifies (13) for this
class by ωc(G)= χc(G) and we conclude:

Corollary 2 If G is circular-perfect, then ω(G)= �ϑ(G)�.

2.1.2 Computing the Clique Number for a-Perfect Graphs

The key to compute the clique number for a-perfect graphs is to characterize them
as the graphs G with CLIc(G)= QSTAB(G).

The rank constraint x(Kk/d) ≤ α(Kk/d) = d associated with a circular-clique
Kk/d ⊆ G is clearly valid for STAB(G) and defines a facet if and only if Kk/d is
prime [39]. For a graph G= (V ,E), let

ASTAB(G)= {x ∈R
|G|
+ : x(Kk/d)≤ d,Kk/d ⊆G,gcd(k, d)= 1

}
.

By construction, we have STAB(G)⊆ RSTAB(G)⊆ ASTAB(G)⊆ QSTAB(G) in
general, and a graph G is a-perfect if and only if STAB(G)= ASTAB(G) holds.

To establish that the circular-clique polytope CLIc(G) coincides with QSTAB(G)
for a-perfect graphs, we show that ASTAB(G) and CLIc(G) are antiblockers.

A polyhedron P ⊂ R
n+ is of antiblocking type if x ∈ P and 0 ≤ x′ ≤ x implies

x′ ∈ P . For any polyhedron P , its antiblocker abl(P) is defined by

abl(P) := {y ∈ R
n+ : yT x ≤ 1 ∀x ∈ P

}
.

Fulkerson [11, 12] showed that if P is of antiblocking type, then abl(P) is of an-
tiblocking type as well and abl(abl(P))= P .

Note that this concept applies to all convex sets, e.g. to the Theta-body TH(G).
A famous result of Grötschel, Lovász and Schrijver [17] is that TH(G) is the an-
tiblocker of TH(G). The most prominent pair of antiblocking polytopes is the stable
set polytope STAB(G) of a graph G and the clique constraint stable set polytope
QSTAB(G) of its complement G by [11, 12]. It turns out that also ASTAB(G) and
CLIc(G) form an antiblocking pair. Note that also the empty set is considered to be
a circular-clique; thus CLIc(G) contains the origin and is a polytope of antiblocking
type. By construction, ASTAB(G) is clearly of antiblocking type.

Theorem 2 For any graph G, we have CLIc(G)= abl(ASTAB(G)).

Proof Let x be any point of abl(CLIc(G)) and H any induced circular-clique of G.
By definition of CLIc(G), the point 1/α(H)xH belongs to CLIc(G). This shows
that xT (1/α(H)xH) ≤ 1 holds, thus

∑
i∈H xi ≤ α(H) follows, and x is a point of

ASTAB(G). This implies abl(CLIc(G))⊆ ASTAB(G).

146 A. Pêcher and A.K. Wagler

Conversely, let x be an arbitrary point of ASTAB(G). If x does not belong to
abl(CLIc(G)), then there is a point y in CLIc(G) such that xT y > 1. For some k, let
H1, . . . ,Hk be induced circular-cliques of G, and λ1, . . . , λk be k positive multipli-
ers such that y =∑i=1,...,k λi/α(Hi)xHi and

∑
i=1,...,k λi = 1 holds. Then we ob-

tain xT y =∑i=1,...,k λi/α(Hi)xT xHi . From xT xHi ≤ α(Hi) for every i = 1, . . . , k
follows xT y ≤ 1, a contradiction. Hence, every point of ASTAB(G) belongs to
abl(CLIc(G)) which shows ASTAB(G)⊆ abl(CLIc(G)).

Together, we have ASTAB(G) = abl(CLIc(G)), and abl(ASTAB(G)) =
CLIc(G) implies the assertion. �

The previous theorem enables us to show:

Theorem 3 We have CLIc(G)= QSTAB(G) if and only if G is a-perfect.

Proof By definition, a graph G is a-perfect if and only if STAB(G)= ASTAB(G).
As it is known from [12] that the antiblocker of STAB(G) equals QSTAB(G), we
infer that CLIc(G) = QSTAB(G) holds if and only if G is a-perfect, since the an-
tiblocker of ASTAB(G) equals CLIc(G) for any graph by Theorem 2. �

Consequently, we have ωc(G)= ωf (G) for a-perfect graphs and conclude:

Corollary 3 If G is a-perfect, then ω(G)= �ϑ(G)�.

As ϑ(G) can be computed in polynomial time for any graph G by [15] with
arbitrary precision ε > 0, provided ε has polynomial space encoding, we have:

Corollary 4 For any a-perfect graph G, we can compute its clique number ω(G)
in polynomial time.

Proof Let n be the number of nodes of G. There is a circular-clique Kk/d ⊆G with
ωc(G)= k/d and k, d ≤ n. From ω(G)≤ ωc(G) < ω(G)+1 and k, d ≤ n, we infer
ωc(G)≤ ω(G)+ 1 − 1

n
. Hence, since G is a-perfect, we have

ω(G)≤ ϑ(G)≤ ωf (G)≤ ω(G)+ 1 − 1

n
.

Let ε = 1
2n and ϑ denote the output of a semi-definite program computing ϑ(G)

with precision ε. Thus ω(G)− 1
2n ≤ ϑ ≤ ω(G)+ 1 − 1

2n . Therefore ω(G) is either
the closest integer to ϑ if ϑ is within 1

2n of an integer, or equal to �ϑ�. �

2.2 On Computing the Chromatic Number

Our aim is to address the question whether the polynomial time computability of the
chromatic number can be extended to graphs with similarly nice coloring properties

Beyond Perfection: Computational Results for Superclasses 147

as perfect graphs. We consider graph classes G whose members G satisfy the best
possible bound on the chromatic number for graph classes containing imperfect
graphs, namely

ω(G)≤ χ(G)≤ ω(G)+ 1. (16)

For such graphs G ∈ G, ω(G) ≤ ϑ(G) ≤ χ(G) ≤ ω(G) + 1 holds, hence χ(G) =
�ϑ(G)� follows for ϑ(G) 	∈ Z. However, if ϑ(G) ∈ Z holds, three cases

ω(G) <
⌊
ϑ(G)

⌋= χ(G)

ω(G) = ⌊ϑ(G)⌋< χ(G)

ω(G) = ⌊ϑ(G)⌋= χ(G)

are possible and the difficulty is to decide which of them indeed occurs in order to
compute χ(G) in polynomial time for all graphs G ∈ G.

For instance, the Kneser graph G6,2 has one node for each 2-element subset of
{1, . . . ,6} and an edge between two nodes if the corresponding subsets are disjoint.
The graph G6,2 satisfies (16), but ϑ(G6,2) is integral and we have

ω(G6,2)= 3 = ϑ(G6,2) < χ(G6,2)= 4.

In the next paragraph, we present the results from [30, 32] where this method is
applied to a superclass of perfect graphs satisfying (16), the circular-perfect graphs.
Afterward, we briefly discuss whether similar techniques can be used to compute
the chromatic number for other graph classes in polynomial time as well.

2.2.1 Computing the Chromatic Number of Circular-Perfect Graphs

For applying the aforementioned approach to compute χ(G) for circular-perfect
graphs G, we note that such graphs indeed satisfy the bound (16) for their chromatic
number. For that, recall that for any graph inequality chain (11) holds which implies
for all circular-perfect graphs G

ω(G)= ⌊ωc(G)
⌋≤ ωc(G)= χc(G)≤ ⌈χc(G)

⌉= χ(G)

and, thus, clearly (16) follows. So circular-perfect graphs admit almost as nice col-
oring properties as perfect graphs.

Since a circular-perfect graph is (ω(G)+ 1)-colorable as G satisfies (16), com-
puting χ(G) amounts to testing whether or not χ(G)= ω(G). By Corollary 2, χ(G)
can be approximated in polynomial time with a gap of at most 1. If ϑ(G) 	∈ Z holds,
then χ(G) = �ϑ(G)� clearly follows, it remains to clarify which of the possible
values χ(G) ∈ {ϑ(G),ϑ(G)+ 1} is attained if ϑ(G) ∈ Z.

For that, the following lemma is crucial. We say that a graph G is homomorphic
to a graph H if there is a map f from the node set of G to the node set of H ,
preserving adjacency: if ij is an edge of G then f (i)f (j) is an edge of H .

148 A. Pêcher and A.K. Wagler

Lemma 2 If G is homomorphic to H then ϑ(G)≤ ϑ(H).

Proof Let U(G) denote the set of all orthonormal representations of G and let U be
the set of vectors of unit length. We have by definition of ϑ(G) that

ϑ(G)= min
(ui)∈U(G)

min
c∈U max

i

1

(cT ui)2
.

Let h be a homomorphism from G into H . Let (vi) be an orthonormal representation
of H and c ∈ U such that ϑ(H) = maxi 1

(cT vi)
2 . For every i ∈ V (G) let ui = vh(i).

If ij is an edge of G then h(i)h(j) is an edge of H and so ui ⊥ uj . Thus (ui) is an
orthonormal representation of G. This implies

ϑ(G)≤ max
i∈V (G)

1

(cT ui)2
≤ max

i∈V (H)

1

(cT vi)2
≤ ϑ(H). �

Lemma 2 implies the following key property of circular-perfect graphs:

Corollary 5 If G is circular-perfect and χc(G)= p/q , then ϑ(G)= ϑ(Kp/q).

Proof In a circular-perfect graph G, there exists an induced circular-clique Kp/q ⊆
G with ωc(G) = p/q = χc(G). Having χc(G) = p/q means that G is homomor-
phic to Kp/q , hence ϑ(G) ≤ ϑ(Kp/q) holds by Lemma 2. On the other hand,
Kp/q ⊆G clearly implies ϑ(Kp/q)≤ ϑ(G). �

Since every circular-clique Kp/q is homomorphic to every circular-clique Kp′/q ′
such that p/q ≤ p′/q ′ [4], we further obtain:

Corollary 6 If p/q ≤ p′/q ′ then ϑ(Kp/q)≤ ϑ(Kp′/q ′).

In addition, Grötschel, Lovász and Schrijver established in [16] the bound

ϑ(G) > α(G)+ 1/nn (17)

for the stability number of any minimal imperfect graph G. According to [22]
and [26], every minimal imperfect graph G is partitionable, i.e., there are integers
p,q ≥ 2 such that |V (G)| = pq + 1 holds, and for each node v of G, the graph
G \ {v} admits a partition into p cliques of cardinality q as well as a partition into q
stable sets of cardinality p. Since the proof in [16] to show inequality (17) for mini-
mal imperfect graphs makes only use of properties satisfied by general partitionable
graphs, we conclude:

Lemma 3 ([16]) For any partitionable graph G with n nodes, we have that ϑ(G) >
α(G)+ 1/nn holds.

Beyond Perfection: Computational Results for Superclasses 149

Since Kp/q is partitionable if p = 1 (mod q), the previous lemma implies that
ϑ(Kp/q) ≥ ω(Kp/q) + 1/pp . Though this is enough for our purpose, we take ad-
vantage of the circulant structure of circular-cliques in the next lemma to provide a
better distance to the clique number:

Lemma 4 For a circular-clique Kp/q with gcd(p, q)= 1, we have ϑ(Kp/q) > ω+
1

2p4 where ω = �p/q� denotes its clique number.

Proof The proof relies on the following formula for ϑ(G) of any graph G= (V ,E),
as a semidefinite program [24]:

ϑ(G)=max

{ ∑

(x,y)∈V 2

B(x, y) : B ∈ R
V×V ,B ' 0,

∑

x∈V
B(x, x)= 1 ∀x ∈ V,B(x, y)= 0 ∀xy ∈E

}
(18)

where B ' 0 denotes that B is a symmetric, positive semidefinite matrix.
Let S be the circulant matrix whose top row is (si)i=0,...,p−1 with si = 1 if i = kq

for some 0 ≤ k < ω, and 0 otherwise. S is the incidence matrix of some maximal
stable sets of Kp/q . The eigenvalues of S are λ0, . . . , λp−1 with

λi =
∑

0≤k<ω
ζ ikq

for every 0 ≤ i ≤ p − 1 where ζ = e2iπ/p .
Let C = SST . For every edge ij of Kp/q , the entry C(i, j) of C is equal to 0.

Furthermore C is circulant and has therefore the same eigenvectors than S. It follows
that the eigenvalues of C are ω2 and μ1, . . . ,μp−1 with μi = λiλp−i = |λi |2 for
every 1 ≤ i ≤ p − 1. Notice that for every 1 ≤ i ≤ p − 1,

|λi | =
∣∣∣∣
1 − ζ iωq

1 − ζ q

∣∣∣∣

follows. Thus |λi | ≥ |1 − ζ iωq |/2 and so |λi | ≥ (1 − cos(2π/p))/2. From 1 −
cos(x)≥ x2/2−x4/24 for every x ≥ 0, we get |λi |> 1/p2 for every 1 ≤ i ≤ p−1.
Hence |μi | > 1/p4 follows for every 0 ≤ i ≤ p − 1. The trace of C is equal to pω

and the sum of the entries of its first row is equal to ω+ 2(1 +· · ·+ (ω− 1)), which
is ω2. Hence the sum of the entries of S is equal to pω2.

Let D = p3

p4ω−1
(C− 1

p4 I), I being the identity p×p-matrix. D is a semi-definite

matrix, with trace 1, and such that D(i, j)= 0 for every edge ij of Kp/q .
Hence, due to the formula (18), we indeed obtain

ϑ(Kp/q)≥
∑

i,j

D(i, j)≥ p3

p4ω− 1

(
pω2 − 1

p3

)
>ω+ 1

2p4
.

�

150 A. Pêcher and A.K. Wagler

We are now ready to prove the following:

Theorem 4 For a circular-perfect graph G with n nodes, we have

χ(G)= ⌈ϑ(G)⌉

and, if ω(G) < χ(G), also ω(G)+ 1
2n4 < ϑ(G) < ω(G)+ (1 − 1

n
).

Proof For a circular-perfect graph G, we have ω(G)≤ ϑ(G)≤ χ(G)≤ ω(G)+ 1.
Thus, if ϑ(G) 	∈ Z then clearly χ(G) = �ϑ(G)� follows. If ω(G) = χ(G) then
χ(G)= �ϑ(G)� is obvious. Hence we may assume that ω(G) 	= χ(G). It is enough
to establish that ϑ is not integral to prove that χ(G) = �ϑ(G)�. We are going to
prove the stronger statement: ω(G)+ 1

2n4 < ϑ(G) < ω+ (1 − 1
n
).

Since ω(G) < χ(G), ω(G) < ωc(G) follows and there are integers p and q 	= 0,
gcd(p, q)= 1, p,q ≤ n, such that Kp/q ⊆G with ωc(G)= p/q > ω(G)= ω, i.e.,
Kp/q is homomorphic to G. From Lemma 2 and Lemma 4, we get

ω < ω+ 1

2n4
< ϑ(Kp/q)≤ ϑ(G).

We have χc(G) = ωc(G) = p/q ≤ ω + (1 − 1/q) and ϑ(G) ≤ χf (G) ≤ χc(G) ≤
ω+ (1 − 1/q) indeed follows. �

In order to use the fact that ω(G)= �ϑ(G)� and χ(G)= �ϑ(G)� holds to com-
pute ω(G) and χ(G) for a circular-perfect graph in polynomial time, the difficulty
is to decide algorithmically whether ϑ(G) is integral or not. This can be done by
Algorithm 1 below which implies:

Corollary 7 If G is circular-perfect then ω(G) and χ(G) are computable in poly-
nomial time by Algorithm 1.

Proof Let G be a circular-perfect graph with n nodes and ε = 1/(2n4). Computing
ϑ = ϑ(G) with an error of at most ε/2 is polynomial in n. Denote this value by ϕ.
If ϕ is within distance ε/2 of an integer z, then due to Theorem 4, ω(G)= χ(G)=
z and so ϑ = z. Hence Algorithm 1 is a polynomial time algorithm with correct
output, up to line 10. If ϕ is not within distance ε/2 of an integer then ϑ is not an
integer. Thus ω(G) < ϑ < χ(G)≤ ω(G)+ 1 and so χ(G)= ω(G)+ 1: the output
given by the line 12 is correct. �

2.2.2 Why This Approach Does not Always Work for Other Classes

We briefly address the question whether the same approach to compute χ(G) in
polynomial time can be applied to other graph classes G whose members satisfy
(16). The difficulty is to handle the case if ϑ(G) ∈ Z, and we notice that this situation

Beyond Perfection: Computational Results for Superclasses 151

Algorithm 1: An algorithm to compute clique and chromatic number of circu-
lar perfect graphs

Input : a circular perfect graph G with n nodes
Output: clique number ω and chromatic number χ of G

1 Let ε = 1
2n4

2 Compute ϑ(G) with precision ε/2 and denote this value by ϕ

3 if ϕ − �ϕ�< ε/2 then
4 Let ω = �ϕ� and χ = ω

5 return ω,χ

6 end
7 if �ϕ� − ϕ < ε/2 then
8 Let ω = �ϕ� and χ = ω

9 return ω,χ

10 end
11 Let ω = �ϕ� and χ = ω+ 1
12 return ω,χ

cannot be resolved for two prominent classes with the studied property, line graphs
and planar graphs.

A line graph is a graph G = L(H) such that there is a graph H whose edges
correspond to the nodes of G where two nodes of G are adjacent if the correspond-
ing edges in H are. By construction, the clique number ω(G) equals the maximum
degree Δ(H) (if H has a node of degree ≥ 3); hence the clique number of a line
graph can be easily computed in polynomial time. The chromatic number χ(G)
equals the edge chromatic number γ (H). A famous result of Vizing [41] shows
that γ (H) ∈ {Δ(H),Δ(H)+ 1} holds for all simple graphs H , but deciding which
of the two values is attained is NP-complete [18]. Hence, line graphs indeed sat-
isfy (16), but determining χ(G) is equivalent to edge color general graphs and thus
NP-complete. With our approach, we can determine χ(G) for line graphs G with
ϑ(G) 	∈ Z, but the case with ϑ(G) ∈ Z remains open.

For a planar graph G, we have ω(G)≤ 4 by Kuratowski [21] and thus the clique
number of planar graphs can be clearly computed in polynomial time. If ω(G)= 2,
then χ(G) = 2 holds if G is bipartite and χ(G) = 3 otherwise. If ω(G) = 4, then
χ(G)= 4 follows from the famous Four-Color-Theorem [35]. If, however, ω(G)=
3, then χ(G) ∈ {3,4} holds and it is NP-complete to decide which of the two values
is attained [13]. With our approach, we can decide this for planar graphs G with
3 < ϑ(G) < 4, but the case with ϑ(G)= 3 remains open.

To conclude, computing χ(G) in polynomial time with the help of the presented
approach for circular-perfect graphs G strongly relies on some key properties of
circular-perfect graphs (see Corollary 5), whereas the same procedure does not suc-
ceed for the two above graph classes G, unless P =NP .

152 A. Pêcher and A.K. Wagler

2.3 On Computing the Circular-Clique and Circular-Chromatic
Number

In this subsection, we give an overview of the main arguments from [1] to extend the
polynomial time computability of the chromatic number to the circular-chromatic
number of circular-perfect graphs. In contrary to perfect graphs, ϑ(G) does not give
directly the result as, in general, ωc(G) and χc(G) are not integers, neither ϑ(G)
is sandwiched between the two parameters. To bypass this difficulty, we make use
of Corollary 5 that for every graph G with n nodes such that ωc(G) = χc(G) =
k/d , we have ϑ(G) = ϑ(Kk/d), where k, d ≤ n. Hence, to ensure the polynomial
time computability of χc(G), it is sufficient to prove that the values ϑ(Kk/d) with
k, d ≤ n are all distinct and separated by at least ε for some ε with polynomial space
encoding.

The proof is a joint work with Christine Bachoc and Alain Thiery [1]: we first
established a closed formula for the theta number of the complements of circular-
cliques Kk/d . Then we proved that the values are well-separated.

2.3.1 A Closed Formula

There are very few families of graphs for which an explicit formula for the theta
number is known. As of complements of circular-cliques, Lovász solved the case of
cycles (d = 2) in [24] and Brimkov et al. proved in [5] that, for d = 3 and k odd,

ϑ(Kk/3)= k

(
1 − 1/2 − cos((2π/k)�k/3�)− cos((2π/k)(�k/3� + 1))

(cos((2π/k)�k/3�)− 1)(cos((2π/k)(�k/3� + 1))− 1)

)
.

The Chebyshev polynomials, denoted by (T�)�≥0, are defined by this property:
T�(cos(θ)) = cos(�θ). They can be iteratively computed by the relation T�+1(x) =
2xT�(x)− T�−1(x) and the first terms are T0 = 1, T1 = x.

Since circular-cliques are circulant graphs (since their adjacency matrices are
circulant matrices) and the set of optimal matrices for (18) is convex, there is an
optimal circulant matrix for (18), and we may reformulate the semidefinite program
(18) as the linear program given below:

Proposition 3 Let k0 := �k/2�. We have:

ϑ(Kk/d)=max

{
kf0 : fj ≥ 0,

k0∑

j=0

fj = 1,

k0∑

j=0

fjTj

(
cos

(
2�π

k

))
= 0,1 ≤ �≤ d − 1

}
(19)

Beyond Perfection: Computational Results for Superclasses 153

and by duality:

ϑ(Kk/d)=min

{
kg0 :

d−1∑

�=0

g� ≥ 1,

d−1∑

�=0

g�Tl

(
cos

(
2jπ

k

))
≥ 0,1 ≤ j ≤ k0

}
. (20)

To solve the linear program (19), we exhibit a candidate for an optimal solution
which is feasible for this linear program and its dual. We give an interpretation of
this element in terms of the coefficients of Lagrange interpolation polynomials on
the basis of Chebyshev polynomials.

We choose as candidate the vector whose non-zero entries are the unique solution
of the linear system:

⎛

⎜⎜⎜⎝

1 1 1 1
1 T1(a1) · · · Td−1(a1)
...

...
...

...

1 T1(ad−1) · · · Td−1(ad−1)

⎞

⎟⎟⎟⎠

︸ ︷︷ ︸
M

⎛

⎜⎜⎜⎝

f0
f ∗

1
...

f ∗
d−1

⎞

⎟⎟⎟⎠=

⎛

⎜⎜⎜⎝

1
0
...

0

⎞

⎟⎟⎟⎠ .

Solving this linear system amounts to inverting the matrix M : We assume for
the rest of this subsection that gcd(k, d)= 1. Then the real numbers an are pairwise
distinct. Consider the Lagrange polynomials associated to (a0, . . . , ad−1):

Ln(y) :=
d−1∏

s=0
s 	=n

(
y − as

an − as

)
.

Now we have two bases for the space of polynomials of degree at most equal to
d − 1: the Chebyshev basis {T0, . . . , Td−1} and the Lagrange basis {L0, . . . ,Ld−1}.
We introduce the two d × d matrices T = (τ�,n) and L= (λn,�) such that

T�(y)= τ�,0L0(y)+ τ�,1L1(y)+ · · · + τ�,d−1Ld−1(y) 0 ≤ �≤ d − 1

and

Ln(y)= λn,0T0(y)+ λn,1T1(y)+ · · · + λn,d−1Td−1(y) 0 ≤ n≤ d − 1.

Obviously, M = T as, for every 0 ≤ n ≤ q − 1, τ�,n = T�(an) and T L = LT = Id .
In particular, the d-tuple (λ0,0, λ1,0, . . . , λd−1,0) satisfies the equations:

d−1∑

n=0

λn,0T�(an)= δ�,0, 0 ≤ �≤ d − 1.

154 A. Pêcher and A.K. Wagler

Summarizing the above results, our candidate for an optimal solution of (19) is
therefore: f ∗ = (f ∗

0 , . . . , f
∗
k0
) defined by

{
f ∗
j = λn,0 for j = �nk

d
�, n= 0, . . . , d − 1

f ∗
j = 0 otherwise.

The main difficulty of the proof is to verify that f ∗ is indeed optimal for (19) (see [1]
for the details). The objective value is equal to kλ0,0. So we have ϑ(Kk/d)= kλ0,0.
We recall that:

L0(y)= λ0,0T0(y)+ λ0,1T1(y)+ · · · + λ0,d−1Td−1(y). (21)

If we plug in (21) the value y = cn and sum up for n= 0, . . . , d − 1, taking account
of T0 = 1 and

∑d−1
n=0 Tj (cn)=∑d−1

n=0 cos(2jnπ/d)= 0 for 1 ≤ j ≤ d−1, we obtain
the closed formula:

Theorem 5 Let d ≥ 2, k ≥ 2d , with gcd(k, d)= 1. Let, for 0 ≤ n≤ d − 1,

cn := cos

(
2nπ

d

)
, an := cos

(⌊
nk

d

⌋
2π

k

)
.

Then

ϑ(Kk/d)= k

d

d−1∑

n=0

d−1∏

s=1

(
cn − as

1 − as

)
. (22)

2.3.2 Separating the Values

It remains to establish that the values ϑ(Kk/d) are well separated:

Theorem 6 Let p,p′, q, q ′ ≤ n such that p
q

	= p′
q ′ . Let Δ= |ϑ(Kp′/q ′)− ϑ(Kp/q)|.

Then there is a constant c > 0 such that

Δ≥ c−n5
.

The proof is in two steps

(1) Δ 	= 0
(2) if Δ 	= 0 then Δ≥ c−n5

for some c > 0

and involves some algebraic number theory: we now recall some basic terminology
and results needed to sketch the proof.

For every k, let ζk = exp2iπ/k , and let Φ be the Euler function, Q(ζk) denote the
cyclotomic field (the smallest complex field containing ζk). For every x ∈ Q(ζk), let

Beyond Perfection: Computational Results for Superclasses 155

polmin(x) ∈ Q[X] be the minimal polynomial of x: x is called an algebraic integer
if polmin(x) ∈ Z[X]. Then Q(ζk) is a vector space over Q whose dimension is
Φ(k) (hence at most k) and the set of algebraic integers is a ring. If K and L are
two cyclotomic fields s.t. L is an extension of K , let Gal(L/K) = Aut(L/K) be
the Galois group of L over K , TraceLK(x) =∑σ∈Gal(L/K) σ (x) be the trace of any

element x of L, NormL
K(x)=∏σ∈Gal(L/K) σ (x) be the norm of any element x of L.

Let σi be the automorphism of Q(ζk) s.t. σi(ζk)= ζ ik (i coprime with k).
Then Gal(Q(ζk)) = {σi, (i, k) = 1}, TraceLK is linear and for every element x of

L, TraceLK(x) ∈K . For every x ∈ Q(ζk), polmin(x)=∏σ∈Gal(Q(ζk)/Q)(X − σ(x)).
We are now ready to outline the proof: assume by contradiction that Δ = 0.

Thus ϑ(Kp/q) = ϑ(Kp′/q ′) = ϑ for some p
q
<

p′
q ′ and for every a

b
∈ [p

q
,
p′
q ′],

ϑ(Ka/b)= ϑ .

Take a
b

∈ [p
q
,
p′
q ′] such that b is prime and b is coprime with a and a+1. We have

Gal(Q(ζab)/Q(ζa)) = {σi,1 ≤ i ≤ b − 1} since a and b are coprime. For every i,
σi(cos(2π/b))= cos(2iπ/b) as cos(2iπ/b)= 1

2 (ζ
ia
ab+ζ ab−ia

ab)= σi(
1
2 (ζb+ζ b−1

b)).

Hence (setting A0(x)= 2b−1∏b−1
i=1 (x − cos(2iπ/b)) and L0(X)=A0(X)/A0(1)):

ϑ(Ka/b) = a

b

(
1 +

∑

i=1,...,b−1

L0
(
σi
(
cos(2π/b)

)))

= a

b

(
1 +

∑

i=1,...,b−1

σi
(
L0
(
cos(2π/b)

)))

= a

b

(
1 + TraceQ(ζab)

Q(ζa)

(
L0
(
cos(2π/b)

)))
.

Thus ϑ ∈ Q(ζa) and likewise ϑ ∈ Q(ζa+1). Hence ϑ ∈ Q(ζa) ∩ Q(ζa+1) = Q.
Then, a short computation of the norm of ϑ in a suitable cyclotomic field shows
that ϑ is integer. Theorem 4 implies that a/b is integer: a contradiction. Therefore
Δ 	= 0.

Recall that Δ = |ϑ(Kp′/q ′) − ϑ(Kp/q)| with p,p′, q, q ′ ≤ n. Let ai =
cos(� ip

q
� 2π
p
), a′

i = cos(� ip′
q ′ � 2π

p′), and let α = qq ′∏q−1
i=1 (2 − 2ai)

∏q ′−1
i=1 (2 − 2a′

i)Δ.
Notice that α is an algebraic integer of Q(ζpp′qq ′) and deg(polmin(α))≤ qq ′pp′ ≤
n4. Furthermore, for every σ ∈ Gal(Q(α)), |σ(α)| ≤ 4nn3. Since α 	= 0 and α is an
algebraic integer, we have |∏σ∈Aut(Q(α)) σ (α)| ≥ 1.

Hence, |α| ≥∏σ∈Aut(Q(α)),σ 	=Id
1

|σ(α)| ≥ (1
4nn3

)n4
and, thus Δ ≥ c−n5

for some
positive real c:

Theorem 7 For every circular-perfect graph, circular-clique and circular-
chromatic number are computable in polynomial time.

156 A. Pêcher and A.K. Wagler

3 Extending the Theta Function to Larger Convex Sets of
Matrices

The proof that the chromatic number of perfect graphs is computable in polynomial
time relies on three main properties of the theta function. Denote by fϑ the function
defined by fϑ(G)= ϑ(G) for every graph G, then fϑ satisfies the three assertions:

(P1) fϑ is computable in polynomial time for every graph G;
(P2) fϑ is monotonic with respect to homomorphism: if G is homomorphic to H

then fϑ(G)≤ fϑ(H);
(P3) fϑ is strictly monotonic on cliques: for every integer i ≥ 1, fϑ(Ki) <

fϑ(Ki+1) and the difference has a polynomial space encoding.

In this section, we shall call fθ , “the theta function”, though it is actually the
usual theta function applied to the complement of the input graph.

Notice that the key property to prove that the circular-chromatic number of
circular-perfect graphs is computable in polynomial time was to extend property
P3 to the whole set of circular-cliques (Theorem 6):

(P ′
3) fϑ is strictly monotonic on circular-cliques: for every pair of rational p/q and

p′/q ′ such that p/q < p′/q ′, fϑ(Kp/q) < fϑ(Kp′/q ′) and the difference has a
polynomial space encoding.

The function fϑ is not the unique function satisfying properties P1, P2 and P3,
as for instance, some of its variants, such as the vectorial chromatic number [19]
and the strong vectorial chromatic number [38], also satisfy these three properties.

The purpose of this subsection is to investigate “how unique” the theta function
is, by considering a more general setting, based on some convex supersets of SDP
matrices.

Let {0,1} ⊆ X ⊆ R. For every graph G = (V ,E) with at least one edge, denote
by n its number of nodes and by fX(G) the value 1 − 1

s
where s is the optimum of

the following program:

min s

s.t. ∃M ∈MX

M is symmetric

Mii = 1, ∀i ∈ V

Mij = s, ∀ij ∈E

where MX is defined as the following set of matrices:

MX = {M ∈R
V×V , s.t. uTMu ≥ 0,∀u ∈XV

}
.

If G does not have any edge, we let fX(G)= 1. If M is a matrix of MX , we say
that M is feasible. A feasible matrix which yields the value fX(G) is called optimal.

Here are some basic observations, for every graph G:

Beyond Perfection: Computational Results for Superclasses 157

Table 1 Some numerical
result for fX ,
X ∈ {{0,1}, {−1,0,1},
{−2,−1,0,1,2},R}

{0,1} {−1,0,1} {−2,−1,0,1,2} R

C9 =K9/4 2 2.061 2.064

C7 =K7/3 2 2.103 2.1096 2.1099

C5 =K5/2 2 2.200 2.231 2.236

K8/3 2 2.333 2.343

K11/4 2 2.3996 2.408

K10/3 3 3.125 3.167

C7 =K7/2 3 3.222 3.294 3.318

K11/3 3 3.400 3.452

C9 =K9/2 4 4.231 4.360

Petersen 2 2.5 2.5 2.5

Petersen 4 4 4 4

C5 + 1 multiplied
node

2 2.210526 2.236

• fR(G) = ϑ(G) (Lovász’s theta function), and thus fR is computable in polyno-
mial time with given accuracy;

• if X ⊆X′ then MX′ ⊆ MX and thus fX(G)≤ fX′(G);
• for every λ ∈ R

+, fλX(G)= fX(G) as MλX = MX .

Table 1 presents some numerical values fX(G) for some small graphs G and the
sets X in {{0,1}, {−1,0,1}, {−2,−1,0,1,2},R}.

Lemma 5 MX is a convex cone and a superset of the set of semi-definite positive
matrices of size n× n.

Proof MX is a superset of SDP matrices as the set of SDP matrices of size n× n

is equal to MR. Let M and N be two elements of MX and let λ, μ be two positive
reals. For every u ∈XV , we have uT (λM +μN)u = λuTMu +μuT Nu ≥ 0, hence
λM +μN is in MX . �

We first compute the value fX for cliques:

Lemma 6 fX(Ki)= i for every i.

Proof Let Ms be the matrix with all main diagonal entries equal to 1 and all other
entries equal to s. Ms ∈M{0,1} if and only if j + j (j − 1)s ≥ 0 for every 1 ≤ j ≤ i

(j being the number of 1-entries in a vector u ∈XV), and thus if and only if s ≥ −1
i−1 .

Hence f{0,1}(Ki)= i.
The result follows from i = f{0,1}(Ki)≤ fX(Ki)≤ fR(Ki)= ϑ(Ki)= i. �

Lemma 7 If H is a subgraph of G then fX(H)≤ fX(G).

158 A. Pêcher and A.K. Wagler

Proof If H is a spanning subgraph of G then fX(H)≤ fX(G) as the program asso-
ciated to H is formed by a subset of the constraints building the program associated
to G (since the set of edges of H is a subset of the edges of G).

Hence we may assume without loss of generality that H is an induced subgraph
of G. Let W denote the set of nodes of H . Let M∗ be an optimal matrix for G.
Let u ∈ XW . We extend u to the vector u∗ ∈ XV by adding 0-entries for indices in
V \W . Let M be the matrix of RW×W defined by Mi,j = M∗

i,j for every i, j ∈ W .

We have uTMu = u∗TM∗u∗ ≥ 0. Thus M is a feasible matrix for H and therefore
fX(H)≤ fX(G). �

This implies the so-called sandwich-property:

Corollary 8 For every graph G, ω(G)≤ fX(G)≤ ϑ(G)≤ χ(G).

Proof Due to Lemma 6 and Lemma 7, we have ω(G) ≤ fX(G). Furthermore,
fX(G)≤ ϑ(G) by definition of MX . �

Lemma 8 For every graph G, fR+(G)= ω(G).

Proof Let G be a graph with n nodes.
Due to the Lemmas 6 and 7, we have ω(G)≤ fX(G) for every subset X ∈R.
We first prove that f[0,1](G)= ω(G).
Let s = −1

ω(G)−1 and M be the n× n matrix, with all diagonal entries equal to 1,

Mij = s whenever ij is an edge of G, and Mij = n2 otherwise.
Let u ∈ [0,1]V and let H be the set of nodes of G given by positive entries of u.

If G[H] is a clique then uTMu ≥ 0 holds, as the submatrix of M with rows and
columns corresponding to H is a semi-definite positive matrix.

If G[H] is not a clique then uTMu =∑i,j∈H uiujMij ≥ n2s + n2 ≥ 0. Hence
f[0,1](G)≤ ω(G) and therefore f[0,1](G)= ω(G).

To complete the proof, we establish that M[0,1] = MR+ . Obviously MR+ ⊆
M[0,1]. If M[0,1] is not contained by MR+ then there is a matrix M of M[0,1] and
a vector u of R+V such that uTMu < 0. Let m be an upper bound of the absolute
entries of u. Then 1

m
uTM 1

m
u < 0, a contradiction as 1

m
u belongs to [0,1]V .

Thus M[0,1] = MR+ and so fR+(G)= f[0,1](G)= ω(G). �

As an obvious consequence of Lemma 8, we get:

Corollary 9 f{0,1} is NP-hard to compute.

Multiplying a node v of a graph G means to replace v by a stable set S such that
all nodes in S have the same neighbors inG as the original node v. Thus, multiplying
a node of a graph G gives a homomorphically equivalent graph H . Hence if X is a
set of reals such that fX satisfies the monotonic property P2, then fX(G)= fX(H).
Thus f{−1,0,1} does not satisfy P2 as multiplying a node of a C5 yields a different

Beyond Perfection: Computational Results for Superclasses 159

value (see Table 1). Therefore, additional constraints are needed for sets X in order
to ensure that property P2 is fulfilled. We next show that being closed with respect
to addition is such a sufficient condition:

Lemma 9 Assume that X is closed with respect to addition. If G is homomorphic
to H then fX(G)≤ fX(H) (monotonic property).

Proof Due to Lemma 7, it is sufficient to prove that fX(G)≤ fX(H) if H is a graph
obtained from G by identifying two non-adjacent nodes i and j of G into one single
node i. Let M be an optimal matrix for H .

Let N be the matrix obtained from M by duplicating the row of index i, and
denote the index of the new row by j .

Let O be the matrix of RV (G)×V (G) obtained from N by duplicating the column
of index i and denote by j the index of the new column.

Let u ∈XV (G) and define u∗ ∈XV (H) by u∗
a = ua if a 	= i and u∗

i = ui + uj .
From Ou =Nu∗ and uT N = u∗TM , we get uT Ou = u∗TMu∗ ≥ 0. Hence M is

a feasible matrix for G: fX(G)≤ fX(H). �

Due to Lemma 8, the base set X has to have one negative element, say −1, in
order to get a function fX which is different from the clique number. If we apply
the requirement of the previous lemma to get a function satisfying the monotonic
property then X contains all integers. We next establish that this implies that fX has
to be the theta function:

Lemma 10 If Z ⊆X or [−1,1] ⊆X then fX(G)= ϑ(G) for every graph G.

Proof We are going to prove that

MZ = M[−1,1] = MR.

We obviously have MR ⊆ MZ. Conversely, let M be any matrix of MZ. Let
u ∈ Q

V and m be an integer such that mu ∈ Z
V . Then we have muTMmu ≥ 0,

hence uTMu ≥ 0 and so M ∈ MQ. Let u ∈ R
V and pick a sequence of rational

vectors ui which converge to u. Since for every i, uTi Mui ≥ 0, we get uTMu ≥ 0,
by taking the limit. Hence M ∈ MR.

We obviously have MR ⊆ M[−1,1]. Conversely, let M be any matrix of M[−1,1].
Let u ∈ R

V distinct of 0 and denote by l the maximum absolute value of an entry
of u. Hence 1

l
uTM 1

l
u ≥ 0, and thus uTMu ≥ 0. Hence M ∈ MR. �

Our study seems to indicate that the clique number function and the theta function
are the only functions in our setting that satisfy the monotonic requirement with
respect to homomorphism (property P2). Hence in this sense, the theta function is
really unique, since it is also computable in polynomial time (property P1).

As of the sandwich property, we point out that it holds even if the monotonic
property is not satisfied (Corollary 8): there are many different functions fX in be-
tween the clique and the chromatic numbers, all of them being a lower bound for
the theta function.

160 A. Pêcher and A.K. Wagler

For further works, it is worth to notice that the numerical values presented in
Table 1 suggest that the function f{−1,0,1} gives already good lower bounds for the
theta function. In particular, it would be interesting to use this to provide a better
gap and a simpler proof for the theta number of circular-cliques (Lemma 4).

References

1. Bachoc, C., Pêcher, A., Thiery, A.: On the theta number of powers of cycle graphs. Combina-
torica (to appear)

2. Bang-Jensen, J., Huang, J.: Convex-round graphs are circular-perfect. J. Graph Theory 40,
182–184 (2002)

3. Berge, C.: Färbungen von Graphen, deren sämtliche bzw. deren ungerade Kreise starr sind.
Wiss. Z., Martin-Luther-Univ. Halle-Wittenb., Math.-Nat.wiss. Reihe 10, 114–115 (1961)

4. Bondy, J., Hell, P.: A note on the star chromatic number. J. Graph Theory 14, 479–482 (1990)
5. Brimkov, V., Codenotti, B., Crespi, V., Leoncini, M.: On the Lovász number of certain circular

graphs. Lect. Notes Comput. Sci. 1767, 291–305 (2000)
6. Chudnovsky, M., Robertson, N., Seymour, P., Thomas, R.: The strong perfect graph theorem.

Ann. Math. 164, 51–229 (2006)
7. Chvátal, V.: On certain polytopes associated with graphs. J. Comb. Theory, Ser. B 18, 138–154

(1975)
8. Coulonges, S., Pêcher, A., Wagler, A.: Characterizing and bounding the imperfection ratio for

some classes of graphs. Math. Program., Ser. A 118, 37–46 (2009)
9. Deuber, W., Zhu, X.: Circular coloring of weighted graphs. J. Graph Theory 23, 365–376

(1996)
10. Faenza, Y., Oriolo, G., Stauffer, G.: An algorithmic decomposition of claw-free graphs leading

to an O(n3)-algorithm for the weighted stable set problem. In: Proceedings of SODA, pp. 630–
646 (2011)

11. Fulkerson, D.: Blocking and antiblocking pairs of polyhedra. Math. Program. 1, 168–194
(1971)

12. Fulkerson, D.: Anti-blocking polyhedra. J. Comb. Theory, Ser. B 12, 50–71 (1972)
13. Garey, M., Johnson, D., Stockmeyer, L.: Some simplified NP-complete graph problems.

Theor. Comput. Sci. 1, 237–267 (1976)
14. Grötschel, M.: My favorite theorem: characterizations of perfect graphs. Optima 62, 2–5

(1999)
15. Grötschel, M., Lovász, L., Schrijver, A.: The ellipsoid method and its consequences in com-

binatorial optimization. Combinatorica 1(2), 169–197 (1981)
16. Grötschel, M., Lovász, L., Schrijver, A.: Polynomial algorithms for perfect graphs. In: Topics

on Perfect Graphs. North-Holland Math. Stud., vol. 88, pp. 325–356 (1984)
17. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimiza-

tion. Springer, Berlin (1988)
18. Holyer, I.: The NP-completeness of edge-colouring. SIAM J. Comput. 10, 718–720 (1981)
19. Karger, D., Motwani, R., Sudan, M.: Approximate graph coloring by semidefinite program-

ming. J. ACM 45, 246–265 (1998)
20. Kuhpfahl, J., Wagler, A., Wagner, C.: Circular-imperfection of triangle free graphs. Electron.

Notes Discrete Math. 29, 163–167 (2007)
21. Kuratowski, K.: Sur le problème des courbes gauches en topologie. Fundam. Math. 15, 271–

283 (1930)
22. Lovász, L.: A characterization of perfect graphs. J. Comb. Theory, Ser. B 13, 95–98 (1972)
23. Lovász, L.: Normal hypergraphs and the perfect graph conjecture. Discrete Math. 2, 253–267

(1972)
24. Lovász, L.: On the Shannon capacity of a graph. IEEE Trans. Inf. Theory 25(1), 1–7 (1979)

Beyond Perfection: Computational Results for Superclasses 161

25. Oriolo, G., Stauffer, G., Ventura, P.: Stable sets in claw-free graphs: recent achievements and
future challenges. Optima 86, 2–5 (2011)

26. Padberg, M.: Perfect zero-one matrices. Math. Program. 6, 180–196 (1974)
27. Pêcher, A., Wagler, A.: Almost all webs are not rank-perfect. Math. Program., Ser. B 105(2–

3), 311–328 (2006)
28. Pêcher, A., Wagler, A.: On classes of minimal circular-imperfect graphs. Discrete Appl. Math.

156, 998–1010 (2008)
29. Pêcher, A., Wagler, A.: On the polynomial time computability of the circular-chromatic num-

ber for some superclasses of perfect graphs. Electron. Notes Discrete Math. 35, 53–58 (2009)
30. Pêcher, A., Wagler, A.: Clique and chromatic number of circular-perfect graphs. Electron.

Notes Discrete Math. 36, 199–206 (2010)
31. Pêcher, A., Wagler, A.: Computing the clique number of a-perfect graphs in polynomial time.

Electron. Notes Discrete Math. 38, 705–710 (2011)
32. Pêcher, A., Wagler, A.: Computing clique and chromatic number of circular-perfect graphs in

polynomial time. Math. Program., Ser. A (2012). doi:10.1007/s10107-012-0512-4
33. Pêcher, A., Wagler, A.: Computing the clique number of a-perfect graphs in polynomial time.

Eur. J. Comb. (to appear)
34. Pêcher, A., Zhu, X.: Claw-free circular-perfect graphs. J. Graph Theory 65, 163–172 (2010)
35. Robertson, N., Sanders, D.P., Seymour, P.D., Thomas, R.: The four colour theorem. J. Comb.

Theory, Ser. B 70, 2–44 (1997)
36. Shannon, C.E.: The zero-error capacity of a noisy channel. IRE Trans. Inf. Theory 2, 8–19

(1956)
37. Shepherd, F.B.: Applying Lehman’s theorem to packing problems. Math. Program. 71, 353–

367 (1995)
38. Szegedy, M.: A note on the number of Lovász and the generalized Delsarte bound. In: Pro-

ceedings of the 35th Annual Symposium on Foundations of Computer Science, pp. 36–39
(1994)

39. Trotter, L.E. Jr.: A class of facet producing graphs for vertex packing polyhedra. Discrete
Math. 12, 373–388 (1975)

40. Vince, A.: Star chromatic number. J. Graph Theory 12, 551–559 (1988)
41. Vizing, V.: Vertex colorings with given colors. Diskretn. Anal. 29, 3–10 (1976) (in Russian)
42. Wagler, A.: Rank-perfect and weakly rank-perfect graphs. Math. Methods Oper. Res. 95, 127–

149 (2002)
43. Wagler, A.: Antiwebs are rank-perfect. 4OR 2, 149–152 (2004)
44. Wagler, A.: On rank-perfect subclasses of near-bipartite graphs. 4OR 3, 329–336 (2005)
45. Xu, Y.: Minimally circular-imperfect graphs with a major vertex. Discrete Math. 301, 239–242

(2005)
46. Zhu, X.: Circular perfect graphs. J. Graph Theory 48(1–3), 186–209 (2005)

http://dx.doi.org/10.1007/s10107-012-0512-4

From Vertex-Telecenters to Subtree-Telecenters

Zaw Win and Cho Kyi Than

Abstract Let T be a tree and v a vertex in T . It is well-known that the branch-
weight of v is defined as the maximum number of vertices in the components of
T − v and that a vertex of T with the minimum branch-weight is called a vertex-
centroid of T . Mitchell (Discrete Math. 24:277–280, 1978) introduced a type of
a central vertex called the telephone center or the vertex-telecenter of a tree and
showed that v is a vertex-centroid of T if and only if it is a vertex-telecenter of T .
In this paper we introduce the notions of the subtree-centroid and the subtree-
telecenter of a tree which are natural extensions of the vertex-centroid and the
vertex-telecenter, and generalize two theorems of Mitchell (Discrete Math. 24:277–
280, 1978) in the extended framework of subtree-centroids and subtree-telecenters.
As a consequence of these generalized results we also obtain an efficient solution
method which computes a subtree-telecenter of a tree.

1 Introduction

On one day of the summer 1984, the first author of this paper (who was then study-
ing the German language at the Goethe Institute in Göttingen and had to study at the
University of Augsburg as a DAAD scholar under the supervision of Prof. Dr. Mar-
tin Grötschel) wrote the first letter to his supervisor introducing himself, informing
of his arrival in Germany and also with a request of some mathematics literature to
learn in advance in Göttingen before studying at the University of Augsburg. Just
after a few days, the first author happily and thankfully received a packet of some
research papers on Combinatorial Optimization sent by Prof. Dr. Martin Grötschel.
It is the first one of so many generous supports, kind encouragements, warm helps
and insightful academic enlightenments given by Prof. Dr. Martin Grötschel to the
first author till now. After studying the research papers mentioned above, the sub-
ject of Combinatorial Optimization has become the most favorite research area of

Z. Win (B) · C.K. Than
Department of Mathematics, University of Yangon, Yangon 11041, Myanmar
e-mail: zawwinbur@gmail.com

C.K. Than
e-mail: chokyi34@gmail.com

M. Jünger, G. Reinelt (eds.), Facets of Combinatorial Optimization,
DOI 10.1007/978-3-642-38189-8_7, © Springer-Verlag Berlin Heidelberg 2013

163

mailto:zawwinbur@gmail.com
mailto:chokyi34@gmail.com
http://dx.doi.org/10.1007/978-3-642-38189-8_7

164 Z. Win and C.K. Than

the first author under the wonderful guidance and supervision of Prof. Dr. Martin
Grötschel. Now we, the authors would like to pay a great homage to Prof. Dr. Martin
Grötschel, the doctoral father and grandfather of ours with the following work on a
certain combinatorial optimization problem.

2 Vertex-Centroids and Vertex-Telecenters of a Tree

Many location problems in networks encountered in practice deal with the task of
finding positions, for one or more servicing facilities, which will be the best with
respect to some desired criteria. These problems can be usually modeled as those
of finding subgraphs of a given graph which are most central with respect to a cer-
tain centrality measure. In the literature there are several measures of centrality of
vertices in graphs and a well-known one is the branch-weight of a vertex of a tree
whose origin dates back to Jordan [2].

Definition 1 Let T be a tree with the vertex set V (T) and the edge set E(T), and
let v ∈ V (T). Suppose that T − v consists of k components T1, T2, . . . , Tk which
are subtrees of T and called branches of v. The branch-weight of v, denoted b(v),
is defined by

b(v)= max
1≤i≤k

∣∣V (Ti)
∣∣.

Thus b(v) is the maximum number of vertices in the branches of v. A vertex v ∈
V (T) is called a vertex-centroid of T if b(v)≤ b(w) for all w in V (T), i.e., if v has
the minimum branch-weight.

Example 1 Consider the tree T shown in Fig. 1. T − v1 consists of five components
Ti , 1 ≤ i ≤ 5 as shown in Fig. 2. By definition the branch-weight of the vertex v1 is

b(v1) = max
1≤i≤5

∣∣V (Ti)
∣∣

= ∣∣V (T5)
∣∣

= 5.

Similarly we can find that

b(v3) = b(v4)= b(v5)= b(v7)= b(v8)= b(v10)= b(v13)= b(v15)= 14,

b(v9) = b(v12)= b(v14)= 13, b(v2)= b(v6)= 12, b(v11)= 10.

Thus the vertex-centroid of T , i.e., the vertex with the minimum branch-weight
is v1.

More information on the vertex-centroids of a tree can be found in Buckley and
Harary [1], Jordan [2], Reid [4] and Zelinka [7].

From Vertex-Telecenters to Subtree-Telecenters 165

Fig. 1 A tree T

Fig. 2 T − v1

Mitchell [3] introduced the following concept of the vertex-telecenter of a tree
and proved the equivalence of the vertex-centroids and the vertex-telecenters.

Definition 2 Let T be a tree, v be a vertex in T and suppose that T − v consists of
k components T1, T2, . . . , Tk , i.e., v has k branches T1, T2, . . . , Tk .

A set S = {x, y} of two vertices x and y in T such that x ∈ V (Ti), y ∈ V (Tj),
1 ≤ i ≤ k, 1 ≤ j ≤ k and i 	= j is called a call through v; two calls S1 and S2 through
v are said to be disjoint if S1 and S2 have no common vertex, the largest possible
number of disjoint calls through v is called the switch-board number of v and is
denoted by sb(v). A vertex z in T with the maximum switch-board number is called
a vertex-telecenter of T .

Example 2 Consider the tree T shown in Fig. 1 and the graph T − v1 of Fig. 2
comprised of five branches Ti , 1 ≤ i ≤ 5. It can be checked that a largest possible
collection of disjoint calls through the vertex v1 is, for example,

{{v2, v5}, {v3, v6}, {v4, v11}, {v7, v12}, {v8, v13}, {v9, v14}, {v10, v15}
}

consisting of 7 disjoint calls and so the switch-board number of v1 is sb(v1) = 7.
Similarly we can calculate that

166 Z. Win and C.K. Than

sb(v3) = sb(v4)= sb(v5)= sb(v7)= sb(v8)= sb(v10)= sb(v13)= sb(v15)= 0,

sb(v9) = sb(v12)= sb(v14)= 1, sb(v2)= sb(v6)= 2, sb(v11)= 4.

Thus the vertex-telecenter of T , i.e., the vertex with the maximum switch-board
number is v1.

For the vertex-centroids and vertex-telecenters, Mitchell [3] proved the following
two theorems.

Theorem 1 Let T be a tree, v ∈ V (T), T −v consist of k components T1, T2, . . . , Tk
and suppose that |V (T1)| ≤ |V (T2)| ≤ · · · ≤ |V (Tk)|. Then v is a vertex-telecenter
of T if and only if |V (Tk)| ≤∑k−1

i=1 |V (Ti)| + 1.

Theorem 2 A vertex v in a tree T is a vertex-centroid of T if and only if it is a
vertex-telecenter of T .

3 Subtree-Centroids and Subtree-Telecenters of a Tree

In this section we introduce the notions of the subtree-centroid and the subtree-
telecenter of a tree which are natural extensions of the vertex-centroid and the
vertex-telecenter respectively.

Definition 3 Let T be a tree, n be a positive integer with n < |V (T)|, T ′ a subtree
of T with n vertices and let T − T ′ consist of k components T1, T2, . . . , Tk . We
denote the branch-weight of T ′ by b(T ′) and define it by

b
(
T ′)= max

1≤i≤k
∣∣V (Ti)

∣∣.

We will call T1, T2, . . . , Tk the branches of T ′ and hence the branch-weight b(T ′)
of T ′ is the maximum number of vertices in the branches of T ′.

Among the subtrees of T with n vertices, a subtree T ∗ with the minimum branch-
weight is called a subtree-centroid of T with n vertices. By this definition, a vertex-
centroid is a subtree-centroid with one vertex.

Definition 4 Let the tree T , the positive integer n, the subtree T ′ and the compo-
nents T1, T2, . . . , Tk be as in Definition 3. A set S = {x, y} of two vertices in T such
that x ∈ V (Ti), y ∈ v(Tj), 1 ≤ i ≤ k, 1 ≤ j ≤ k and i 	= j is called a call through
T ′; two calls S1 and S2 through T ′ are disjoint if S1 ∩ S2 = ∅; and the largest possi-
ble number of disjoint calls through T ′ is called the switch-board number of T ′ and
denoted by sb(T ′). Among the subtrees of T with n vertices, a subtree T ∗ with the
maximum switch-board number is called a subtree-telecenter of T with n vertices.
By this definition, a vertex-telecenter of T is a subtree-telecenter with one vertex.

Example 3 Consider the tree T shown in Fig. 3 and let T ′ be the subtree of T
induced by the vertex set {d, e, f, k}.

From Vertex-Telecenters to Subtree-Telecenters 167

Fig. 3 A tree T

Fig. 4 T − T ′

Figure 4 shows the graph T − T ′ consisting of four components Ti , 1 ≤ i ≤ 4.
We can see that the branch-weight of T ′ is

b
(
T ′) = max

1≤i≤4

∣∣V (Ti)
∣∣

= ∣∣V (T1)
∣∣

= ∣∣V (T4)
∣∣

= 3.

A largest possible collection of disjoint calls through T ′ is, for instance,

{{a, l}, {b,m}, {c,n}, {g, i}, {h, j}}

consisting of five calls and thus the switch-board number of T ′ is sb(T ′)= 5.
It can also be verified that T ′ is a subtree-centroid as well as a subtree-telecenter

of T with four vertices.

Thwe [5] and Win and Thwe [6] studied the subtree-centroids of a tree from
theoretical and algorithmic points of view.

168 Z. Win and C.K. Than

4 A Characterization of Subtree-Telecenters

In this section we shall present a characterization of subtree-telecenters with a given
number of vertices of a tree. For this purpose we first prove some lemmas.

Lemma 1 Let T be a tree, n be a positive integer with n < |V (T)| and T ′ be a
subtree of T with n vertices. Then

sb
(
T ′)≤

⌊ |V (T)| − n

2

⌋
.

Here �x� denotes the largest integer not larger than x.

Proof To obtain a call through T ′ we have to pair up two vertices of V (T − T ′)
lying in distinct components. Therefore the largest possible number of disjoint calls
through T ′ is at most � |V (T−T ′)|

2 �, and hence

sb
(
T ′)≤

⌊ |V (T − T ′)|
2

⌋
=
⌊ |V (T)| − n

2

⌋
. �

Lemma 2 Let T be a tree, n be a positive integer with n < |V (T)|, T ′ be a subtree
of T with n vertices, T − T ′ consist of k components T1, T2, . . . , Tk and suppose
that |V (T1)| ≤ |V (T2)| ≤ · · · ≤ |V (Tk)|. If |V (Tk)| ≤∑k−1

i=1 |V (Ti)| + 1, then

sb
(
T ′)=

⌊ |V (T)| − n

2

⌋
.

Proof Suppose that the vertices in
⋃k

i=1 V (Ti) have been paired up to obtain a
largest possible collection C of disjoint calls through T ′ and let U be the set of
vertices of

⋃k
i=1 V (Ti) which are left unpaired by C. Then all the vertices of U lie

in the same subtree Tj with 1 ≤ j ≤ k, otherwise, by pairing up two vertices of U
lying in distinct subtrees Ti , we will have a collection of disjoint calls through T ′
that is larger than C, and this is a contradiction. We will next show that |U | = 0
or 1. To this end, suppose that |U | ≥ 2 and x, y are two vertices in U . By the given
inequality, we have

∣∣V (Tj)
∣∣ ≤

k∑

i=1,i 	=j

∣∣V (Ti)
∣∣+ 1

∣∣V (Tj)
∣∣− 1 ≤

k∑

i=1,i 	=j

∣∣V (Ti)
∣∣

∣∣V (Tj)
∣∣− 2 <

k∑

i=1,i 	=j

∣∣V (Ti)
∣∣.

From Vertex-Telecenters to Subtree-Telecenters 169

From this inequality and the fact that all vertices in
⋃k

i=1,i 	=j V (Ti) have been paired
up by C, it follows that there must exist a call {p,q} through T ′ in C such that
p ∈ V (T�), q ∈ V (Tm), � 	= j and m 	= j . Now, by deleting the call {p,q} from C

and adding two new calls {x,p} and {q, y} to C, we have a collection of disjoint
calls through T ′ which is larger than C and this is a contradiction. Thus we must
have |U | = 0 or 1. If |U | = 0, then |V (T)| − n is even and

sb
(
T ′)= |V (T)| − n

2
=
⌊ |V (T)| − n

2

⌋
.

If |U | = 1, then |V (T)| − n is an odd integer, say 2r + 1, and

sb
(
T ′) = r

=
⌊

2r + 1

2

⌋

=
⌊ |V (T)| − n

2

⌋
.

This completes our proof. �

Lemma 3 Let T be a tree, n be a positive integer with n < |V (T)|, T ′ be a subtree
of T with n vertices, T − T ′ consist of k components T1, T2, . . . , Tk and suppose
that |V (T1)| ≤ |V (T2)| ≤ · · · ≤ |V (Tk)|. If |V (Tk)|>∑k−1

i=1 |V (Ti)| + 1, then

sb
(
T ′)=

k−1∑

i=1

∣∣V (Ti)
∣∣<
⌊ |V (T)| − n

2

⌋
.

Proof Since every call through T ′ contains at least one vertex of
⋃k−1

i=1 V (Ti), we
have

sb
(
T ′)≤

k−1∑

i=1

∣∣V (Ti)
∣∣.

By the given inequality we can also construct
∑k−1

i=1 |V (Ti)| disjoint calls through
T ′ by pairing up each vertex of

⋃k−1
i=1 V (Ti) with a vertex of V (Tk). So we have

sb
(
T ′)=

k−1∑

i=1

∣∣V (Ti)
∣∣.

Next, the given inequality and the fact that

∣∣V (T)
∣∣− n=

k−1∑

i=1

∣∣V (Ti)
∣∣+ ∣∣V (Tk)

∣∣

170 Z. Win and C.K. Than

imply that

∣∣V (T)
∣∣− n ≥

k−1∑

i=1

∣∣V (Ti)
∣∣+
(
k−1∑

i=1

∣∣V (Ti)
∣∣+ 2

)

= 2
k−1∑

i=1

∣∣V (Ti)
∣∣+ 2

and hence we have

|V (T)| − n

2
≥

k−1∑

i=1

∣∣V (Ti)
∣∣+ 1

⌊ |V (T)| − n

2

⌋
≥

k−1∑

i=1

∣∣V (Ti)
∣∣+ 1

>

k−1∑

i=1

∣∣V (Ti)
∣∣

= sb
(
T ′).

So, the lemma is proved. �

Lemma 4 Let T be a tree and n be a positive integer with n < |V (T)|. Then there
exists a subtree T ′ of T with the following properties:

(i) |V (T ′)| = n,
(ii) T −T ′ consists of k components T1, T2, . . . , Tk for some positive integer k with

|V (T1)| ≤ |V (T2)| ≤ · · · ≤ |V (Tk)| and
(iii) |V (Tk)| ≤∑k−1

i=1 |V (Ti)| + 1.

Proof Obviously there are subtrees T ′ satisfying conditions (i) and (ii). Among
these subtrees choose a subtree T ′ which minimizes the difference

∣∣V (Tk)
∣∣−

k−1∑

i=1

∣∣V (Ti)
∣∣.

If possible, suppose that T ′ does not satisfy the condition (iii). Then we will have

∣∣V (Tk)
∣∣≥

k−1∑

i=1

∣∣V (Ti)
∣∣+ 2

∣∣V (Tk)
∣∣− 1 ≥

k−1∑

i=1

∣∣V (Ti)
∣∣+ 1.

(1)

From Vertex-Telecenters to Subtree-Telecenters 171

Let x be a vertex in Tk which is nearest to T ′, y be a pendant vertex of T ′ which is
not the nearest to Tk and let T ∗ be the subtree of T obtained from T ′ by adding the
vertex x and deleting the vertex y. Evidently |V (T ∗)| = n. Suppose that T − T ∗
consists of � components T ∗

1 , T
∗
2 , . . . , T

∗
� such that |V (T ∗

1)| ≤ |V (T ∗
2)| ≤ · · · ≤

|V (T ∗
�)|. It is not difficult to see from inequality (1) that

∣∣V
(
T ∗
�

)∣∣≤ ∣∣V (Tk)
∣∣− 1.

This implies that

∣∣V
(
T ∗
�

)∣∣−
�−1∑

i=1

∣∣V
(
T ∗
i

)∣∣ = ∣∣V (T ∗
�

)∣∣− (∣∣V (T)∣∣− n− ∣∣V (T ∗
�

)∣∣)

≤ ∣∣V (Tk)
∣∣− 1 − (∣∣V (T)∣∣− n− ∣∣V (Tk)

∣∣+ 1
)

= ∣∣V (Tk)
∣∣− 1 − (∣∣V (T)∣∣− n− ∣∣V (Tk)

∣∣)− 1

= ∣∣V (Tk)
∣∣−

k−1∑

i=1

∣∣V (Ti)
∣∣− 2

<
∣∣V (Tk)

∣∣−
k−1∑

i=1

∣∣V (Ti)
∣∣.

This is a contradiction to our choice of T ′. Therefore T ′ satisfies the condition (iii)
and the lemma is proved. �

From these lemmas we immediately obtain the following characterization of
subtree-telecenters of a tree which is an extension of Theorem 1.

Theorem 3 Let T be a tree, n be a positive integer with n < |V (T)|, T ′ be a subtree
of T with n vertices, T − T ′ consist of k components T1, T2, . . . , Tk and |V (T1)| ≤
|V (T2)| ≤ · · · ≤ |V (Tk)|. Then T ′ is a subtree-telecenter of T with n vertices if
and only if |V (Tk)| ≤∑k−1

i=1 |V (Ti)| + 1. Moreover the switch-board number of the
subtree-telecenter T ′ is

sb
(
T ′)=

⌊ |V (T)| − n

2

⌋
.

5 Relation Between Subtree-Centroids and Subtree-Telecenters

In this section we will show that Theorem 2 can be only partially extended to the
generalized framework of subtree-centroids and subtree-telecenters. First we have
the following result.

172 Z. Win and C.K. Than

Theorem 4 Let T be a tree, n be a positive integer with n < |V (T)| and T ′ a
subtree of T . If T ′ is a subtree-centroid of T with n vertices, then T ′ is a subtree-
telecenter of T with n vertices.

Proof Let T ′ be a subtree-centroid of T with n vertices, T − T ′ consist of k com-
ponents T1, T2, . . . , Tk and |V (T1)| ≤ |V (T2)| ≤ · · · ≤ |V (Tk)|. Obviously b(T ′) =
|V (Tk)|. If possible, suppose that T ′ is not a subtree-telecenter of T . Then, by The-
orem 3

∣∣V (Tk)
∣∣ ≥

k−1∑

i=1

∣∣V (Ti)
∣∣+ 2

∣∣V (Tk)
∣∣− 1 ≥

k−1∑

i=1

∣∣V (Ti)
∣∣+ 1.

Now, by constructing a subtree T ∗ as in the proof of Lemma 4, we will have
∣∣V
(
T ∗)∣∣= n

and

b
(
T ∗)< b

(
T ′).

Since this is a contradiction to the fact that T ′ is a subtree-centroid of T , we con-
clude that T ′ is a subtree-telecenter of T . �

The converse of Theorem 4 is not true. This is illustrated with the following
example.

Example 4 Consider the tree T shown in Fig. 3. Let T ′ be the subtree of T in-
duced by the vertex set {d, e, f, k}, and T ′′ be the subtree induced by the vertex
set {d, e, k, �}. It is easy to check that T ′ is a subtree-centroid as well as a subtree-
telecenter of T consisting of four vertices and having b(T ′)= 3 and sb(T ′)= 5. On
the other hand T ′′ is a subtree-telecenter but not a subtree-centroid of T consisting
of four vertices since it can be verified that b(T ′′)= sb(T ′′)= 5.

As a consequence of Theorem 4 and a known algorithm for finding a subtree-
centroid with a given number of vertices of a tree, we obtain a simple and fast
method of computing a subtree-telecenter with a given number of vertices of a tree.

5.1 A Solution Method for Finding a Subtree-Telecenter of a
Given Tree

Thwe [5] suggested an efficient solution procedure which produces a subtree-
centroid with a given number of vertices of a given tree. Since, by Theorem 4,
every subtree-centroid with a given number of vertices is a subtree-telecenter with

From Vertex-Telecenters to Subtree-Telecenters 173

Algorithm 1: An algorithm for finding a subtree-telecenter of a given tree
Input : a tree T , and a positive integer n with n < |V (T)|
Output: a subtree-telecenter T ′ of T with n vertices

T ′ := T

P (T ′) := the set of pendant vertices of T ′
w(v) := 1 for each v ∈ V (T ′)
deg(v) := the degree of v in T ′ for each v ∈ V (T ′)
while |V (T ′)|> n do

Choose a vertex vi ∈ P(T ′) such that w(vi)= minv∈P(T ′) w(v)
ui := the vertex in T ′ adjacent to vi
w(ui) :=w(ui)+w(vi)

deg(ui) := deg(ui)− 1
if deg(ui)= 1 then

P(T ′) := (P (T ′) \ {vi})∪ {ui}
else

P(T ′) := P(T ′) \ {vi}
end
T ′ := T ′ \ {vi}

end
Output the subtree T ′ which is a subtree-telecenter of T with n vertices.

the same number of vertices, we can apply the algorithm of Thwe [5] (Algorithm 1)
to obtain a subtree-telecenter with a given number of vertices of a tree.

6 Conclusion

We have introduced the notions of the subtree-centroid and subtree-telecenter of a
tree, gave a characterization of the subtree-telecenters with a given number of ver-
tices and presented some relationships between the subtree-centroids and subtree-
telecenters of a tree for the unweighted case, i.e., for the case of trees whose vertices
have no weights. It may be interesting to carry out a similar study on the trees whose
vertices are weighted.

Acknowledgements Our deepest gratitude goes to Prof. Dr. Martin Grötschel for his guided
optimal traveling research-person tour through the world of combinatorial optimization. We are
also very thankful to the referee and editors whose comments and suggestions have improved the
readability of the paper.

References

1. Buckley, F., Harary, F.: Distance in Graphs. Addison-Wesley, Redwood City (1990)

174 Z. Win and C.K. Than

2. Jordan, C.: Sur les assemblages de lignes. J. Reine Angew. Math. 70, 185–190 (1869)
3. Mitchell, S.L.: Another characterization of the centroid of a tree. Discrete Math. 24, 277–280

(1978)
4. Reid, K.B.: Centroids to centers in trees. Networks 21, 11–17 (1991)
5. Thwe, A.M.: Medians and branch weight centroids in graphs. Dissertation, Department of

Mathematics, University of Yangon (2007)
6. Win, Z., Thwe, A.M.: Some extensions of Zelinka’s theorem on medians and centroids of trees.

Research report 1, Department of Mathematics, University of Yangon (2010)
7. Zelinka, B.: Medians and peripherians of trees. Arch. Math. 4, 87–95 (1968)

Algorithms for Junctions in Acyclic Digraphs

Carlos Eduardo Ferreira and Álvaro Junio Pereira Franco

Abstract Given targets u and v in a digraph D, we say that a vertex s is a junc-
tion of u and v if there are in D internally vertex-disjoint directed paths from s

to u and from s to v. In this paper, we show how to characterize junctions in
acyclic digraphs. We also consider the following problem and derive an efficient
algorithm to solve it. Given an acyclic digraph D, a vertex s in D and k pairs of
targets {u1, v1}, . . . , {uk, vk}, determine the pairs of targets {ui, vi} for which s is a
junction. This problem arises in an application brought to our attention by an anthro-
pologist. In this application the digraph represents the genealogy of an ethnic group
in Brazilian Amazon region, and the pairs of targets are individuals that are married.
We apply our algorithm to find all the junctions of k pairs of targets on those kinship
networks. Experiments have shown that our algorithm had a good performance for
the inputs considered. Some results are described in this paper.

1 Introduction

This work has been prepared for publication in a special issue in honor of Martin
Grötschel. In some sense, many characteristics of Grötschel’s works are presented
here. First, it was motivated by a real world application brought to us by a friend
from the Anthropology Department. Both working with interdisciplinary subjects
and real applications are in the main stream of Martin Grötschel’s work. Also, es-
pecially in the early years of his brilliant career, Grötschel was interested in graph
theoretical problems for which he could provide good characterizations and pro-
pose efficient algorithms to solve them. An interesting example of such a problem
is in [16]. In that work Grötschel provided an ear decomposition for strongly con-
nected digraphs with no cut vertices (also known as strong blocks). This result is

C.E. Ferreira (B) · Á.J.P. Franco
Instituto de Matemática e Estatística, Rua do Matão, 1010, Cidade Universitária, 05508-090, São
Paulo, SP, Brazil
e-mail: cef@ime.usp.br

Á.J.P. Franco
e-mail: alvaro@ime.usp.br

M. Jünger, G. Reinelt (eds.), Facets of Combinatorial Optimization,
DOI 10.1007/978-3-642-38189-8_8, © Springer-Verlag Berlin Heidelberg 2013

175

mailto:cef@ime.usp.br
mailto:alvaro@ime.usp.br
http://dx.doi.org/10.1007/978-3-642-38189-8_8

176 C.E. Ferreira and Á.J.P. Franco

useful to prove tight bounds on the number of arcs and on the in-degree and out-
degree of at least two vertices of a minimal strong block.

We are interested in solving a simple path problem on digraphs. Consider an
acyclic digraph D, a vertex s in D and k pairs of targets {u1, v1}, . . . , {uk, vk}. The
problem we want to solve is to determine the pairs of targets {ui, vi} for which there
exist in D paths from s to ui and from s to vi that are internally vertex-disjoint.

This problem has been brought to us by an anthropologist. In Anthropology
terms, the acyclic digraph represents a kinship network and the pair of targets are
marriages. The individuals for which the disjoint paths exist are in “alliance posi-
tion”, meaning that the marriage joins people that are, in some sense, related (see
dal Poz and Silva [11]). In the application one is interested in finding all such indi-
viduals in alliance position for all the marriages. If we can solve the problem posed
above, it is not difficult to list them all.

In this paper, we will focus on the path problem described above. Soon, we are
going to see how it could be solved in polynomial time using a max-flow algorithm.
Also other approaches can be used as the Suurballe and Tarjan’s algorithm [20], or
by means of dominator trees. Our contribution is a simple linear time algorithm to
solve the problem which can be implemented easily. We use this algorithm to show
some results.

2 Concepts and Notation

In this text a digraph is simple, weakly connected, and acyclic. The number of ver-
tices is n, the number of arcs is m, and a path is always directed and simple. Given
an acyclic digraph D and vertices s and t in D we say that s is a parent of t (or t
is a child of s), when there exists an arc s → t in D. We denote the set of parents
of a vertex u in D by δ−

D(u) and the set of children of a vertex u in D by δ+
D(u).

We say that s is an ancestor of t or t is a descendant of s when there exists a path
from s to t in D. A path in D is a sequence P = v1v2 . . . vk of vertices of D such
that vi → vi+1 is an arc in D for i = 1, . . . , k− 1. A subpath of P from vertex vi to
vertex vj is denoted by P [vi, vj], where i ≤ j . A concatenation of two paths P and
Q is denoted by PQ. In some cases we denote a simple vertex as a path.

A vertex s in a digraph D is a junction of a pair of targets u and v in D if there
exist paths from s to u and from s to v that are internally vertex-disjoint. A vertex s
in D is a lowest common ancestor, LCA for short, of a pair of targets u and v, if it
is a junction and there is no path on D from s to s′ for every other junction s′ of
the pair {u,v}. If D is a rooted tree, then junctions and LCAs are the same vertices
and given a pair of targets u and v in D the LCA is unique. On the other hand,
in digraphs, acyclic or not, we can have several different LCAs or junctions for a
certain pair of targets. Note that LCAs are junctions, but the converse is not always
true.

Let J (u, v) denote the set of vertices in D that are junctions of the pair of targets
u and v. The sets J (u, v) and J (v,u) are equal. We write s ∈ J (u, v) if s is a

Algorithms for Junctions in Acyclic Digraphs 177

Fig. 1 The vertices in bold are LCAs and junctions of some pair of vertices

junction of the pair of targets u and v. We consider s to be a junction of pairs of
targets s and u for every vertex u such that there is a path from s to u. Such pairs of
targets are called degenerated. Analogously, LCA(u, v) denotes the set of LCAs of
the pair of targets u and v. If we want to specify the digraph D we are working on,
then we write LCAD(u, v). When D is a rooted tree, we abuse the language writing
s = LCAD(u, v). Let Ds denote the digraph induced by the descendants of s in D.
A depth first spanning tree T s of Ds , DFST for short, is a rooted spanning tree of
Ds with root in s obtained by a depth-first search algorithm. Sometimes, we work
on a subtree T s′ of a DFST T s , where s′ is the root of T s′ and s′ is a descendant of
s in T s .

A representative-junction(u, v) query asks for a junction in D for given targets u
and v. An all-junctions(u, v) query asks for all junctions in D for given targets u
and v. Conversely, a representative-LCA(u, v) query asks for an LCA in D for given
targets u and v. An all-LCAs(u, v) query asks for the all LCA in D for given targets
u and v. All these previous queries return one or more vertices of D (LCAs or
junctions). When the digraph D is a rooted tree, an LCA(u, v) query returns the
unique LCA of u and v in D. A special kind of query is the s-junction(u, v) query
that asks whether a given vertex s is a junction of given targets u and v. Figure 1
illustrates a rooted tree, an acyclic digraph, and the lowest common ancestors and
junctions of some pairs of targets.

178 C.E. Ferreira and Á.J.P. Franco

3 Problem Definition, Literature Overview, and Main Results

For an acyclic digraphD, a vertex s in D and k pairs of targets {u1, v1}, . . . , {uk, vk},
we want to determine for which pairs s is a junction. This problem is called s-
junction-k-pairs problem. We solve it in two steps. First we preprocess Ds creating
data structures able to answer whether or not s is a junction for any possible pair of
targets in Ds . Then we answer the s-junction(ui, vi) query for i = 1, . . . , k. Similar
approaches are presented in many works in the literature on this problem or some
related problems. For instance, Aho, Hopcroft and Ullman [2] have shown how
to preprocess rooted trees in O(nα(n)) time, where α(n) is the inverse Ackermann
function. After preprocessing, an LCA query is answered in constant time. Harel and
Tarjan [17] have shown how to preprocess rooted trees in O(n) time and to answer
an LCA query in constant time. Other similar works on rooted trees are Berkman
and Vishkin [6], Nykänen and Ukkonen [18] and Wen [22].

Bender, Farach-Colton, Pemmasani, Skiena and Sumazin [5] have defined the
all-pairs-representative-lca problem, i.e., given an acyclic digraph D, find for any
pair of vertices u and v in D a representative LCA. They showed how to preprocess
an acyclic digraph D in Õ(n2.68635) time and then, answer a representative-LCA
query in constant time. We say that f (n) = Õ(g(n)) if there is a constant c such
that f (n) = O(g(n) logc n). Later, Czumaj, Kowaluk and Lingas [10] have shown
how to preprocess D in O(n2.575) time, and Eckhardt, Mühling and Nowak [12] in
O(n2 logn) expected time.

The all-pairs-all-lcas problem asks how to preprocess efficiently a given acyclic
digraph D such that an all-LCAs query spends O(k′) time for any given pair of tar-
gets u and v in D, where k′ is the size of LCA(u, v). Baumgart, Eckhardt, Griebsch,
Kosub and Nowak [4] have shown how to preprocess D in O(min{n2m,n3.575})
time. Eckhardt, Mühling and Nowak [12] have shown how to preprocess D in
O(n3 log logn) expected time and O(n3.3399) time (worst case).

Yuster [24] showed how to preprocess an acyclic digraph so that a representative-
junction(u, v) query is done in constant time for any pair of targets u and v. This
problem is known as all-pairs-representative-junction problem. Note that any al-
gorithm that solves all-pairs-representative-lca could be used to solve all-pairs-
representative-junction. Yuster [24] has shown how to preprocess the digraph in
Õ(nω) time, where ω < 2.3727 (see Williams [23]) is the exponent of the fast
Boolean matrix multiplication.

A problem involving junctions is also treated by Tholey [21]. In his paper the
author considers the following problem. Given an acyclic digraph D, two vertices
s1 and s2 and k pairs of targets {u1, v1}, . . . , {uk, vk} one wants to decide for each
pair {ui, vi} whether there exist vertex (or arc) disjoint paths from s1 to ui (or vi)
and from s2 to vi (resp. ui). The author proposes a modification of the data structure
due to Suurballe and Tarjan [20] that can be implemented in O(n log2 n + (m +
k) log2+(m+k)/(n+k) n) time and, with it, the queries can be answered in constant
time.

Motivated by our application in Anthropology, we define the k-pairs-all-
junctions problem as follows. Given an acyclic digraph D, and k pairs of targets
{u1, v1}, . . . , {uk, vk}, we want to preprocess efficiently D so that for any pair

Algorithms for Junctions in Acyclic Digraphs 179

Fig. 2 Each vertex in the first
line is a junction of every pair
of vertices in the second one.
Thus, to list all the junctions
of all Ω(n2) pairs would
spend Ω(n3) time

{ui, vi}, the all-junctions(ui, vi) query can be answered in O(k′) time where k′
is the size of J (ui, vi).

Consider an acyclic digraph D, a vertex s and k pairs of targets. Our main result
is an O(m+ k) time algorithm to solve the s-junction-k-pairs problem. Using this
algorithm one can solve the k-pairs-all-junctions problem by solving the s-junction-
k-pairs problem for all s in D listing (or storing) s for a given pair of targets ui
and vi , if s belongs to J (ui, vi). This can be done in O(n(m+ k)) time. An inter-
esting use of our algorithm is its application to solve the k-pairs-all-lcas problem.
Given an acyclic digraph D and k pairs of targets, we first find all junctions of the
k given pairs of targets in D and then determine the transitive closure D′ of D. The
vertex s is an LCA for u and v if and only if for any junction s′, s′ 	= s, the arc
s → s′ is not in D′. Using the fact above we can solve the k-pairs-all-lcas prob-
lem in O(n(m+ k)+ nω + n2k), where O(nω) is the time for calculating transitive
closure of D (ω is again the exponent of the fast Boolean matrix multiplication). If
k = o(n1.3399), then our simple approach for k-pairs-all-lcas is faster than the best
algorithm (worst case) known for solving this problem due to Eckhardt, Mühling
and Nowak [12].

To finish this section, we observe that any algorithm that aims at listing all junc-
tions of all possible pairs of targets must spend Ω(n3) time, in the worst case. To see
that, consider the simple example in Fig. 2 and observe that all n2 pairs of vertices
in the second row have n junctions in the first row, which assures the lower bound.

4 Polynomial Time Algorithms for the s-Junction-k-Pairs
Problem

In this section, we describe briefly three simple approaches to solve the s-junction-k-
pairs problem in polynomial time. The reader that is not familiar with the algorithms
and data structures in this section may refer to the following texts [1, 15, 20].

The first approach makes use of a well-known reduction from a vertex-disjoint
to an arc-disjoint path problem and runs a max-flow algorithm. Given an acyclic
digraph D we first construct a new acyclic digraph D′

i , for a fixed pair of targets ui
and vi , as follows. Create two new vertices v′ and v′′ and one arc v′ → v′′ in D′

i

for each vertex v in D and one arc u′′ → v′ in D′
i for each arc u → v in D. Now,

consider a new vertex t ′ and two new arcs u′′
i → t ′ and v′′

i → t ′. At last, set the
capacity equal to 2 for arc s′ → s′′ and capacity equal to 1 for all remaining arcs.
We use a max-flow algorithm to determine the value of a maximum value flow from
s′ to t ′ in D′

i . If this value is 2, there exist vertex-disjoint paths in D from s to ui and

180 C.E. Ferreira and Á.J.P. Franco

from s to vi . This approach can be implemented by using, for example, Goldberg’s
and Tarjan’s algorithm [15], in O(knm log(n2/m)) time.

The second approach also uses a reduction from a vertex-disjoint to an arc-
disjoint path problem and afterward runs Suurballe and Tarjan’s algorithm [20].
Given a digraph G with non-negative arc costs and a vertex s in G, Suurballe and
Tarjan’s algorithm consists of finding, for each target v, a pair of arc-disjoint paths
from s to v where the sum of the cost of both paths is minimum. In this case, we con-
struct an acyclic digraph D′. For each vertex v in D, we have in D′ two vertices v′
and v′′ and one arc v′ → v′′. For each arc u → v in D, create an arc u′′ → v′ in
D′. Also, for each pair of targets {ui, vi} create a vertex t ′i and two arcs u′′

i → t ′i
and v′′

i → t ′i . We set all costs of the arcs in D′ to 1. Observe that if there exist two
internally arc-disjoint paths from s′′ to t ′i in D′, then there exist vertex-disjoint paths
from s to ui and from s to vi in the original digraph. Suurballe and Tarjan’s algo-
rithm solves this problem on D′ in O(m′ log1+m′/n′ n′) time, where n′ and m′ are
the number of vertices and arcs of D′.

The third approach uses a data structure named dominator trees (see Aho and
Ullman, [1]) and a data structure for answering LCA queries in rooted trees. First we
construct a dominator tree T rooted in s in linear time considering the digraph Ds .
This can be done using, for example, Georgiadis and Tarjan’s algorithm [14]. After
that, we construct a data structure for LCA queries in linear time. Lastly, LCA(ui, vi)
queries are performed, for i = 1, . . . , k. We know that s is a junction of the pair ui, vi
in D if and only if s = LCAT (ui, vi). The structures used to construct a dominator
tree (see Appendix C in [3]) and for answering dynamic LCA queries in rooted trees
(see Cole and Hariharan, [8]) are rather intricate.

5 An O(m + k) Time Algorithm for the s-Junction-k-Pairs
Problem

In the next sections we present two algorithms to solve the s-junction-k-pairs prob-
lem. The first one is a dynamic programming algorithm that has cubic runtime. The
second one is a recursive linear time algorithm. A time complexity analysis and
correctness proofs for the algorithms are presented. To start we pose the following
recurrence.

Lemma 1 Let T s1 and T s2 be subtrees of a DFST T s , where s1 and s2 are children
of s in T s and let z = LCAT s (u, v). Then, s is a junction of u and v if and only if
one of the following cases applies.

1. If u is equal to s or v is equal to s.
2. If u is in T s1 and v is in T s2 .
3. If u and v are in the same subtree (say T s1), z is not equal to u neither v and or

s is a junction of z and u, or s is a junction of z and v.
4. If u and v are in the same subtree (say T s1), z is equal to u (or v) and s is a

junction of z and t for some t in δ−
D(v) (or δ−

D(u)) and t different from z.

Algorithms for Junctions in Acyclic Digraphs 181

Fig. 3 A DFST and a cycle composed by the paths from y to v′, from v′ to x, from x to u′ and
from u′ to y. This cannot occur in an acyclic digraph

Proof If the first case applies, then, by our definition of degenerated pair, s is a
junction of the pair. For the second case observe that the paths in the DFST are a
certificate for the fact that s is a junction. The third case is proven by Lemma 2 and
Corollary 1. The last case is proven by Lemma 3.

Now, consider that no cases apply, i.e., {u,v} is not a degenerated pair, u and v

are in the same subtree and condition 3 and 4 are false. Then, s cannot be a junction
of u and v. �

Before we prove Lemmas 2 and 3, and Corollary 1, note the following properties.
Consider a DFST T s of D, a child s1 of s in T s and a path P from s to u in D,
where u is a descendant of s1 in T s . Suppose that x is the first vertex in P which is
in the subtree T s1 . Thus, all vertices of the path P [x,u] belong to the subtree T s1

of T s . Additionally, note that if s is a junction of targets u and v and the targets
u and v are in T s1 , then there exists a pair of internally vertex-disjoint paths in D

from s to u and from s to v, such that all internal vertices from one of them are
in T s1 . We can prove this by contradiction. Consider two internally vertex-disjoint
paths in D, P from s to u and Q from s to v (see Fig. 3). Suppose that both P

and Q do not have all vertices in T s1 . Consider the first vertices x of P and y

of Q that belong to T s1 . We know that the paths P [x,u] and Q[y, v] are internal
to T s1 . Take the path P ′ from s1 to x in T s1 . If there is no common vertex in the
paths P ′ and Q[y, v], then the paths sP ′P [x,u] and Q are internally vertex-disjoint
paths and all internal vertices of one of them are in T s1 . So, P ′ and Q[y, v] have
at least a common vertex. Let v′ be the common vertex in these paths nearest to v.
Analogously, take the path Q′ from s1 to y in T s1 . If it is disjoint to P [x,u], then the
paths sQ′Q[y, v] and P are internally vertex-disjoint paths and all internal vertices
of one of them are in T s1 . Therefore, Q′ and P [x,u] have at least a common vertex.
Let u′ be the common vertex nearest to u. Thus, we find a cycle with the paths from
y to v′, from v′ to x, from x to u′ and from u′ to y. This is a contradiction, since D

182 C.E. Ferreira and Á.J.P. Franco

Fig. 4 A DFST and new internally vertex-disjoint paths—Lemma 2 Case 1. One of them includes
vertex z= LCAT s (u, v)

is an acyclic digraph. Therefore, all internal vertices of P or Q are in T s1 . And now
we can prove the following lemma.

Lemma 2 Let u and v be targets in the subtree T s1 of T s , where s1 is a child of s
in T s . Call z the LCA of u and v in T s and consider that z is not equal to u or v.
Vertex s is a junction of the pair of targets u and v if and only if z belongs to a pair
of internally vertex-disjoint paths from s to u or from s to v.

Proof Since s is a junction of u and v, take a pair of internally vertex-disjoint
paths P from s to u and Q from s to v. Suppose all internal vertices of P are
in the subtree T s1 and Q has an external arc entering the subtree T s1 . Consider R
to be the path from s to z in T s . Let P ′ and Q′ be the paths in T s from z to u and
from z to v, respectively (see Fig. 4(a)). Here it is really important to note that, by
the construction of T s , any path that passes through a vertex in Q′ (P ′) and then
passes through a vertex in P ′ (Q′) cannot come back to Q′ (P ′). Let us divide the
proof in two cases:

Case 1. There is no vertex of Q in R. If Q is also disjoint of P ′, then the
paths RP ′ and Q are internally vertex-disjoint (see Fig. 4(b)). If there is some ver-
tex of Q in P ′, then consider x to be the common vertex in Q and P ′ nearest to z.
So, the paths Q[s, x]P ′[x,u] and RQ′ are internally vertex-disjoint (see Fig. 4(c)).

Case 2. There are vertices of Q in R. In this case, R could intersect with P , Q or
even both. From all vertices from R that are in P or Q, consider that y is the nearest
vertex to z. Without loss of generality consider that y is in Q (the case when y is
in P is symmetric).

Case 2.1. There is no vertex of P in Q′. Then, the following paths are internally
vertex-disjoint: P and Q[s, y]R[y, z]Q′ (see Fig. 5(b)).

Algorithms for Junctions in Acyclic Digraphs 183

Fig. 5 A DFST and new internally vertex-disjoint paths—Lemma 2 Case 2. One of them includes
vertex z= LCAT s (u, v). The vertex y ∈Q is the nearest to z in (P ∪Q)∩R

Case 2.2. There are some vertices of P in Q′. Consider x, the common vertex
in P and Q′ nearest to z. Then, the following paths are internally vertex-disjoint:
Q[s, y]R[y, z]P ′ and P [s, x]Q′[x, v] (see Fig. 5(c)).

Therefore, if s is a junction of the pair of targets u and v, then there exists a pair
of internally vertex-disjoint paths with z belonging to one of them. This ends the
first part of the proof.

The converse is trivial. By definition, s is a junction of the pair of targets u and v
if there is a pair of internally vertex-disjoint paths, regardless of z belonging to one
of them. �

A consequence of Lemma 2 is the following corollary.

Corollary 1 Let u and v be targets in the subtree T s1 of T s , where s1 is a child of s
in T s . Call z the LCA of u and v in the subtree T s1 and consider that z is not equal
to u or v. Vertex s is a junction of the pair of targets u and v if and only if s is a
junction of targets z and u or s is a junction of targets z and v.

Proof Take a pair of vertex-disjoint paths P from s to u and Q from s to v such
that z is in P or Q as given by Lemma 2. If z is in Q, then the paths Q[s, z] and
P are internally vertex-disjoint. So, s is a junction of targets z and u. If z is in P ,
then the paths P [s, z] and Q are internally vertex-disjoint. So, s is a junction of
targets z and v.

To prove the converse, take a pair of vertex-disjoint paths P from s to z and Q

from s to v. Consider P ′ and Q′ the paths on T s from z to u and from z to v,
respectively. Once more, we divide the proof into two cases:

Case 1. There is no vertex of Q in P ′. So, the paths PP ′ and Q are internally
vertex-disjoint (see Fig. 6(b)).

184 C.E. Ferreira and Á.J.P. Franco

Fig. 6 A DFST and new internally vertex-disjoint paths—Corollary 1 Cases 1 and 2

Case 2. There are some vertices ofQ in P ′. AsD is an acyclic digraph, there is no
inner vertex of P in P ′. Let x be the nearest common vertex of z in Q and P ′. Thus,
the paths Q[s, x]P ′[x,u] and PQ′ are internally vertex-disjoint (see Fig. 6(c)).

With a similar proof we can show that it is possible to construct a pair of vertex-
disjoint paths from s to u and from s to v when we take a pair of vertex-disjoint
paths from s to u and from s to z. So, if s is a junction of targets z and u or s is a
junction of targets z and v, then s is a junction of targets u and v. �

The previous corollary characterizes s as a junction of the pair of targets u,v
when the LCA of u and v in T s is not equal to them. In the next lemma we consider
the case where the LCA is equal to one of the targets.

Lemma 3 Let z and u be targets in a subtree T s1 of T s and let z be a proper
ancestor of u in T s , i.e., z is the LCA of z and u in T s and z is not equal to u. Vertex
s is a junction of targets z and u if and only if s is a junction of targets z and t , for
some t in δ−

D(u) and t different from z.

Proof To prove the first part we take two internally vertex-disjoint paths Q from s

to z and P from s to u. Consider the last vertex t before u in P . We know that t is
in δ−

D(u) since it is a parent of u in D and t is different from z as Q and P are
vertex-disjoint paths. Therefore, the path P [s, t] and Q are vertex-disjoint, and then
s is a junction of targets z, t .

To prove the converse, we consider two internally vertex-disjoint paths P from s

to t and Q from s to z. If u is in P , then the subpath P [u, t] plus the arc t → u is
a cycle. But D is an acyclic digraph. Thus, u is not in P . If u is in Q, then u is a
proper ancestor of z. By assumption, z is a proper ancestor of u. Thus, we can again
produce a cycle contradicting the fact that D is an acyclic digraph. Then, also u is
not in Q. As t is different from z, we can use the arc t → u extending the path P

Algorithms for Junctions in Acyclic Digraphs 185

Fig. 7 There are Ω(n) vertices in the path from xi to yi and in T yi . There is an arc linking
any vertex from this path to any proper descendant of yi (represented by the large dashed arcs
linking large vertices). For a quadratic number of pairs of proper descendant of yi , the dynamic
programming algorithm earlier described processes Ω(n) arcs. In this case the total time spent is
Ω(n3)

and constructing two internally vertex-disjoint paths P plus the arc t → u and Q.
So, s is a junction of targets z and u. �

6 Algorithms

A binary matrix Ms
n×n is a natural way to represent all pairs of targets that have

a vertex s as a junction. Vertex s is a junction of a pair u and v if and only if
Ms(u, v)= 1. Using Ms and the recurrence presented in Lemma 1, a dynamic
programming algorithm naturally arises. It uses a topological order of D to fill
in matrix Ms. First, it initializes Ms = 0. After that, for each vertex u in D,
Ms(s,u)=Ms(u, s)= 1. And finally, for each pair u,v in D such that u precedes v
in the topological order, let z= LCAT s (u, v). Do Ms(u, v)=Ms(v,u)= 1 if z= s

(this implies u ∈ T s1 and v ∈ T s2); or if z 	= u and (Ms(z,u)= 1 or Ms(z, v)= 1);
or if z = u and Ms(z, t) = 1 for some t ∈ δ−

D(v). Unfortunately, this naive algo-
rithm could spend Ω(n3) time. As seen in Fig. 7, many arcs could be looked at by a
quadratic number of pairs of vertices.

However, we can provide a better solution to the problem. We first show a com-
pact representation of matrix Ms using an unidimensional array. The algorithm
(SJKP) that solves the s-junction-k-pairs problem has two phases:

Phase 1. Construct in O(m) time a partition Bs of the set of vertices of Ds that
obeys the following property: Two targets u and v are in different subset of Bs

if and only if s is a junction of u and v.

186 C.E. Ferreira and Á.J.P. Franco

Phase 2. Solve in O(1) time the s-junction(ui, vi) query for i = 1, . . . , k.

The total time spent by SJKP is O(m + k). We have seen that a matrix repre-
sentation can be used to solve problems involving LCAs and junctions. If a matrix
representation is required, then it could be obtained in O(n2) time.

Next we show how to solve Phase 1. The data structure used to represent the
partition Bs as previously described is an array r , similar to a structure to represent
disjoint subsets (see Cormen, Leiserson, Rivest and Stein [9]). Each set of Bs has
a representative vertex, and for those vertices r(v) = v. For the remaining vertices
r(v) points to another vertex in the same set of the partition. These links lead to
the representative vertex of each set. The algorithm starts constructing a DFST T s

of Ds . The array r is then initialized such that each vertex v points to its parent in
T s , and the root vertex s has r(s)= s. It represents a partition with a single set and
s as representative. During the construction of T s each vertex v becomes a label
post(v) with the index of the vertex in a post-order traversal of T s . Also the values
minpost(v) are set with the minimum post-order value of a vertex in the subtree
T v of T s . It is not difficult to construct a DFST and maintain those values. The
interested reader can refer to Sedgewick [19]. The algorithm to solve Phase 1 is
recursive. In each call it receives a representative vertex z and sets values of r for
vertices in subtree T z of T s correctly. The initial calls to the recursive algorithm are
done on each child sj of s in T s , r(sj) = sj and z = sj . In each recursive call the
following cases are analyzed:

Case 1: T z has only one vertex. Nothing must be set in array r .
Case 2: T z has at least two vertices. Let w be the vertex such that post(w) =

post(z)− 1. Observe that w must be initially a child of z. Consider all vertices t
in δ−

D(w). If, for some of those vertices, r(z) 	= r(t) (i.e., s is a junction of the
z and t) we can set w as a representative, solve the problem recursively for the
subtree T w and set w, after the end of the recursive call, to minpost(w)− 1. In
the other case, r(z) = r(t) for all t in δ−

D(w), then (by Lemma 3) we can set
r(w) to z and update w to the vertex with post-order value equal to post(w)− 1.
This is done until w is set outside T z, i.e., post(w) < minpost(z).

Note that the Phase 1 of the SJKP algorithm explores each arc in Ds at most
twice. So, its time complexity is linear in m.

Now we prove that the algorithm is correct. Note that r(u) is changed at most
once for all u in Ds . The recursion considers a path in T z from z to w. Let Z denote
such a path. Note that, for all w′ in Z, r(w′)= z. So we have to prove that s is not a
junction of targets w′ and w′′ for all w′ and w′′ in Z. It can be proven if we assume
that s is not a junction of targets z and w′ for all w′ in Z.

Lemma 4 If s is not a junction of targets z and w′ for all w′ in Z, then s is not a
junction of targets w′ and w′′ for all w′ and w′′ in Z.

Proof Proof by contradiction. Suppose that s is a junction of targets w′ and w′′
where w′ and w′′ are in Z. Consider P and Q, the internally vertex-disjoint paths
from s to w′ and from s to w′′, respectively. Consider the path R in T s from s to z.

Algorithms for Junctions in Acyclic Digraphs 187

Consider the vertices of R that are common to P or Q, and let z′ be a such vertex
nearest to z. Suppose that z′ is in Q (the other case, when z′ is in P , is analogous).
Then, the paths Q[s, z′]R[z′, z] and P are internally vertex-disjoint. Therefore, s is
a junction of targets z and w′, a contradiction. �

Consider again the path Z in T z from z to w. Now, suppose that s is not a
junction of targets z and w′ for all w′ in Z different from w however s is a junction
of targets z and w. From the previous procedure, r(u) is different from r(v) for all
targets u in T z \ T w and v in T w . It implies that s is a junction of targets u and v.
The next lemma proves it in two steps.

Lemma 5 If s is not a junction of targets z and w′ for all w′ in Z different from w

and s is a junction of targets z and w, then

a. s is a junction of targets w′ and w for all w′ in Z; and
b. s is a junction of targets u and v for all targets u in T z \ T w and v in T w .

Proof

a. Consider paths P from s to w and Q from s to z that are internally vertex-
disjoint. We know that the only common vertex in Q and Z is z, since Z contains
descendants of z and Q contains ancestors of z. Note also that the only common
vertex in P and Z is w. If it is not the case, then s is a junction of targets z

and w′ for some w′ different from w in Z, opposing our assumption. So we can
extend the path Q using the path Z from z up to any w′ in Z and then s is a
junction of targets w′ and w because the paths QZ[z,w′] and P are internally
vertex-disjoint, for any w′ in Z.

b. Take u in T z \ T w and v in T w . Let w′′ be the LCA in T s of targets u and v. By
Lemma 5(a), we have, in particular, that s is a junction of w′′ and w. Therefore,
there exist internally vertex-disjoint paths P from s to w′′ and Q from s to w.
Note that we can extend the path Q adding the path on T w from w to v and this
new path, denoted by R, does not intersect P or Q \ {w}. Otherwise, there would
be an ancestor and descendant vertex of w. Thus, the only common vertex in R

and P is s. Therefore, we have that s is a junction of w′′ and v. If u is equal to
w′′, then we are done. If u is different from w′′, then by Corollary 1, we have
that s is a junction of u and v. �

Still following the algorithm, we can easily prove some properties on vertex z

and the vertices that are not in subtree T z.

Proposition 1 Consider a call to the recursive procedure where initially z = si for
some child si of s in T s . In any recursive call (with z as parameter) derived from
this initial call, the following assertions are true:

• Vertex z is a representative,
• For all vertices x ∈ T si \ T z, r(z) 	= r(x).

188 C.E. Ferreira and Á.J.P. Franco

Proof The first assertion is true as in the first call z = si is a representative and be-
fore any recursive call of the procedure passing w as parameter, we make r(w)=w.

The second assertion is true as for any vertex v ∈ T s , r(v) points to a representa-
tive that is its ancestor in T s . By the first assertion, r(z)= z. But the vertex z is not
an ancestor of x. Therefore, r(z) 	= r(x). �

Now we are going to prove the correctness of the recursive procedure.

Lemma 6 Consider a call to the recursive procedure where initially z is set to some
child si of s in T s . For all vertices u and v in T si such that min{post(u),post(v)} ≥
post(w)+ 1 the assertions are true:

• r(u) and r(v) point to a representative,
• s is a junction of targets u and v if and only if r(u) 	= r(v).

Proof The former assertion is true since r(w) points either to z or to w (when it is
a representative).

Finally, the last assertion is proven by induction on the number of comparisons
“post(w) ≥ minpost(z)” done. In the first comparison we have z = si and w is the
child of the greatest post-order value, post(w)= post(si)− 1. This means that si is
the unique vertex in T si with post-order value greater than post(w). The vertex s

is not a junction of the pair of targets si and si and r(si) = si . Now suppose that
this assertion is true in the i-th comparison post(w)≥ minpost(z), and let us prove
that this assertion remains true in the next comparison. Consider the path Z in T z

from z to w in the i-th comparison. This path was considered in iterations before.
By the order that the vertices are being processed and Lemma 3, we know that s is
not a junction of targets z and w′ for all w′ in Z different from w. We know that,
min{post(z),post(t)} ≥ post(w)+ 1, for z and for all t in δ−

D(w). Thus the assertion
is true for the pair of targets z and t , and therefore s is a junction of z and t if and
only if r(z) 	= r(t). Applying Lemma 3 we have two possibilities:

Case 1. s is not a junction of targets z and t , for all t in δ−
D(w). So, r(z) = r(t),

for all t in δ−
D(w) and by Lemma 3, s is not a junction of targets z and w. In this case,

the algorithm sets r(w)= z. Take x in T si with post(x)≥ post(w)+ 1. Consider y
to be the LCA in T s of targets w and x (possibly x = y). Let us show that exactly
before we update w to the next vertex, s is a junction of targets x and w if and
only if r(x) 	= r(w). Suppose x in T si \ T z. Then, y is some vertex in the path
from si to z in T si and, by the second assertion in Proposition 1, r(y) 	= r(z) and
r(x) 	= r(z)= z= r(w). Therefore, we have to show that s is a junction of targets x
and w. We have that s is a junction of targets y and z since r(y) 	= r(z). As D is an
acyclic digraph, we know that s is a junction of targets y and w because we can use
the path from z to w in T si . If y = x, then we are done. Otherwise, by Corollary 1,
we have that s is a junction of targets x and w. Now suppose x is in T z. So vertex y
is in Z, i.e., the LCA in T s of w and x is in Z (possibly x = y).

Case 1.1. s is not a junction of targets x and z. In this case, r(x) = r(z). More-
over, r(w)= z= r(z)= r(x). So we have to show that s is not a junction of targets
x and w. As mentioned, s is not a junction of targets z and w′, where w′ is in Z. By

Algorithms for Junctions in Acyclic Digraphs 189

Lemma 4, in particular s is not a junction of targets y and w and r(y)= r(w). Thus,
if x = y, then s is not a junction of targets x and w. If x 	= y, then by induction s

is not a junction of targets y and x as r(y) = r(w)= r(x). Finally, by Corollary 1,
s is not a junction of targets x and w because s is not a junction of targets y and w,
and y and x.

Case 1.2. s is a junction of targets x and z. Then, r(x) 	= r(z). Moreover, r(w)=
z = r(z) 	= r(x). So we have to show that s is a junction of targets x and w. As y
is in Z, we know that s is not a junction of targets z and y. Then our assertion says
r(z)= r(y). So, r(y)= r(z) 	= r(x). It means that s is a junction of targets y and x.
By Corollary 1, s is a junction of targets x and w.

After that, the algorithm updates w to be the vertex with post-order value equal
to post(w)− 1 and then our assertion is restored.

Case 2. s is a junction of targets z and t , for some t in δ−
D(w). So, r(z) 	= r(t),

for some t in δ−
D(w) and by Lemma 3, s is a junction of targets z and w. In this case,

we set r(w) = w. Take x ∈ T si with post(x) ≥ post(w)+ 1. We are going to show
that exactly before we perform the recursive call, s is a junction of targets x and w

if and only if r(x) 	= r(w). As w is not an ancestor of x in T s and r(x) points to
a representative that is its ancestor in T s , we have r(x) 	= r(w). Thus, we have to
show that s is a junction of targets x and w. If x is in T z \ T w , then Lemma 5(b)
ensures that s is a junction of targets x and w. If x is in T si \ T z, then y, the lowest
common ancestor of targets x and w in T s , is a vertex in the path from si to z in T si

(possibly x = y). By the second assertion in Proposition 1, r(y) 	= r(z). Thus, s is
a junction of targets y and z, and we can use the path from z to w in T si to obtain
that s is a junction of targets y and w. If x = y, then we are done. If x 	= y, then,
by Corollary 1, s is a junction of targets x and w. After the recursive call, we have
that s is a junction of targets u and v if and only if r(u) 	= r(v) for all targets u and
v in T si , and the post-order values of vertices u and v are greater than or equal to
the post-order value of the vertex minpost(w). After that, we set w to be the vertex
with post-order value equal to minpost(w) − 1 and then our assertion is restored.

�

Now consider Phase 2, i.e., we want to solve in O(1) time an s-junction(ui, vi)
query for i = 1, . . . , k. It is easily done by verifying the values of array r , and re-
membering that s is a junction of ui and vi if and only if r(ui) 	= r(vi). Now we can
state the following result.

Theorem 1 Given an acyclic digraph D with n vertices and m arcs, and a vertex s
in D, we can construct a data structure for disjoint sets in time O(m), and answer
in constant time for any pair of targets u and v in D, if s is a junction of targets
u and v. Moreover, after such construction, all k pairs of vertices that have s as a
junction can be printed out in O(k) time.

We have solved the s-junction-k-pairs problem in linear time. Observe that
we can further solve the k-pairs-all-junctions problem in O(n(m + k)) time and
O(m+ k) space if we use the results of Theorem 1 for each s in D and we print out
all the junctions during the process.

190 C.E. Ferreira and Á.J.P. Franco

Fig. 8 Statistical information about the number of marriages with a fixed number of junctions for
the Enawenê-Nawês, Arara, Irantxe-Myky and Deni kinship networks

7 Experiments

Let us consider again our application in Anthropology brought to our attention by
some friends from that department. Given a kinship network D, and k marriages
{u1, v1}, . . . , {uk, vk} between individuals in D, one wants to list for each mar-
riage {ui, vi} all the individuals that are junctions of ui and vi . This is the k-pairs-
all-junctions problem. Four real kinship networks from Brazilian Amazon region
were available for these experiments. The Enawenê-Nawês network has 789 ver-
tices (individuals), 1368 arcs (parental relationship) and 170 marriages, the Arara
network has 105 vertices, 197 arcs and 48 marriages, the Irantxe-Myky network has
618 vertices, 1003 arcs and 177 marriages and the Deni network has 788 vertices,
1380 arcs and 308 marriages. The anthropologists previously solved this problem
initially by hand and, when it became impossible, they developed a “kinship ma-
chine” [11] using a database system to answer those queries. This machine could
only solve the Enawenê-Nawês instance, and therefore they looked for help in the
Computer Science Department. Our approach was able to find all junctions of the k
given marriages for all the kinship networks available. We implemented it in C++

Algorithms for Junctions in Acyclic Digraphs 191

Fig. 9 Statistical information about individuals that participate most as a junction of marriages for
the Enawenê-Nawês, Arara, Irantxe-Myky and Deni kinship networks

and the resulting code is available on request. We ran the experiments on a 32-
bit Ubuntu 12.04 machine with 8 GB of RAM and a Intel Core i7-2640M CPU
(2.80 GHz × 4). All the instances were solved instantaneously and the time and
space spent were insignificant. In Fig. 8 there are four charts. A number in the x-
axis means a fixed number of junctions (0 ≤ x ≤ n) and a number in the y-axis
means a fixed number of pairs (0 ≤ y ≤ k). It gives us an idea of how many mar-
riages a certain number of junctions has. For instance, in the Enawenê-Nawês chart
162 marriages do not have junctions and 8 marriages have 2 junctions. It implies that
almost all Enawenê-Nawês marriages do not link relatives. This is also the case for
Irantxe-Myky and, in some extent, for Arara. For Deni, however, some marriages
have up to 13 junctions. It has some anthropological implication due to how are the
taboos or marriage preferences in those societies.

In Fig. 9 we present another statistical information. A number in the x-axis means
an individual in the network (0 ≤ x ≤ n − 1) and a number in the y-axis means a
fixed number of pairs (0 ≤ y ≤ k). It gives us an idea of how many times an individ-
ual appears as a junction of marriages, i.e., how often some individual is in alliance
position. We ordered the x-axis in decreasing order of number of marriages. We did

192 C.E. Ferreira and Á.J.P. Franco

Fig. 10 Arara kinship network. Note a junction 4 (second vertex in the second level) for the mar-
riage 45 (second vertex in the third level) and 57 (in the middle of the fifth level)

not consider individuals that are not a junction. For instance, in the Enawenê-Nawês
chart only four individuals are junctions. Individuals 0 and 1 are junctions of 6 mar-
riages, and individuals 2 and 3 are junctions of 2 marriages. In the Deni network,
there are at least 50 individuals that are junctions of marriages and there are two
individuals that are junctions of more than 70 marriages. Again, we observe that the
Enawenê-Nawês presents a simpler pattern, while the Irantxe-Myky and the Deni
are more complexes. It also corroborates some conjectures of the anthropologists
on the behavior of those groups.

Figure 10 presents one of those networks. It has been done with support of the
Open Graph Drawing Framework with optimization (OGDF with CPLEX 12.1.0)
[7]. As an example, we can see in Fig. 10 a good drawing of the Arara kinship
network.

8 Conclusion

We showed how to solve in linear time the following path problem on digraphs.
Given an acyclic digraph D, a vertex s and k pairs of targets {u1, v1}, . . . , {uk, vk},
determine the pairs of targets {ui, vi} for which there exist paths from s to ui and
from s to vi in D that are internally vertex-disjoint. If such paths exist for a pair of
targets, vertex s is called a junction of such a pair. This problem (called s-junction-k-
pairs problem) was used to solve a related problem that stems from some application
in Anthropology (k-pairs-all-junctions problem). Given an acyclic digraph D, and
k pairs of targets {u1, v1}, . . . , {uk, vk}, preprocess D so that for any pair {ui, vi}, a

Algorithms for Junctions in Acyclic Digraphs 193

query for all junctions of ui and vi can be answered in the time of the number of
junctions of ui and vi . We applied our approach to solve the k-pairs-all-junctions
problem for four real kinship networks: Enawenê-Nawês, Arara, Irantxe-Myky and
Deni. Our approach worked very well on all four networks. At last, some statistical
information concerning those kinship networks were presented. This is an ongoing
collaboration. Other interesting problems arise on kinship networks such as search-
ing for the so-called k-rings [13] or simulation of networks based on anthropological
premises (incest taboo, crossing cousin preference, etc).

Acknowledgements C.E. Ferreira is supported by CNPq (Proc. 302736/10-7 and 477203/12-4).
A.J.P. Franco is supported by CAPES (Proc. 33002010176P0). We want to thank Professor Marcio
Ferreira da Silva (Anthropology Department, University of São Paulo) who brought this problem
(and other related to kinship networks) to our attention and provided us the data used in these
experiments. We also thank the anonymous referees for their constructive comments.

References

1. Aho, A.V., Ullman, J.D.: The Theory of Parsing, Translation, and Compiling. Vol. I: Parsing.
Prentice-Hall Series in Automatic Computation. Prentice-Hall, Englewood Cliffs (1972)

2. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: On finding lowest common ancestors in trees. SIAM
J. Comput. 5(1), 115–132 (1976)

3. Alstrup, S., Harel, D., Lauridsen, P.W., Thorup, M.: Dominators in linear time. SIAM J. Com-
put. 28(6), 2117–2132 (1999)

4. Baumgart, M., Eckhardt, S., Griebsch, J., Kosub, S., Nowak, J.: All-pairs ancestor problems
in weighted dags. In: Chen, B., Paterson, M., Zhang, G. (eds.) ESCAPE. Lecture Notes in
Computer Science, vol. 4614, pp. 282–293. Springer, Berlin (2007)

5. Bender, M.A., Farach-Colton, M., Pemmasani, G., Skiena, S., Sumazin, P.: Lowest com-
mon ancestors in trees and directed acyclic graphs. J. Algorithms 57(2), 75–94 (2005). doi:
10.1016/j.jalgor.2005.08.001

6. Berkman, O., Vishkin, U.: Finding level-ancestors in trees. J. Comput. Syst. Sci. 48(2), 214–
230 (1994). doi:10.1016/S0022-0000(05)80002-9

7. Chimani, M., Gutwenger, C., Jünger, M., Klau, G.W., Klein, K., Mutzel, P.: The open graph
drawing framework (OGDF). In: Handbook of Graph Drawing and Visualization. CRC Press,
Boca Raton (2013)

8. Cole, R., Hariharan, R.: Dynamic LCA queries on trees. SIAM J. Comput. 34(4), 894–923
(2005). doi:10.1137/S0097539700370539

9. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn.
MIT Press, Cambridge (2009)

10. Czumaj, A., Kowaluk, M., Lingas, A.: Faster algorithms for finding lowest common an-
cestors in directed acyclic graphs. Theor. Comput. Sci. 380(1–2), 37–46 (2007). doi:
10.1016/j.tcs.2007.02.053

11. dal Poz, J., da Silva, F.M.: Maqpar: a homemade tool for the study of kinship networks. Vibrant
6(2), 29–51 (2009)

12. Eckhardt, S., Mühling, A.M., Nowak, J.: Fast lowest common ancestor computations in dags.
In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA. Lecture Notes in Computer Science, vol.
4698, pp. 705–716. Springer, Berlin (2007)

13. Ferreira, C.E., Franco, Á.J.P.: Finding rings in genealogies: computational complexity and
algorithms. In preparation

14. Georgiadis, L., Tarjan, R.E.: Finding dominators revisited: extended abstract. In: Proceedings
of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA’04, pp. 869–
878. SIAM, Philadelphia (2004)

http://dx.doi.org/10.1016/j.jalgor.2005.08.001
http://dx.doi.org/10.1016/S0022-0000(05)80002-9
http://dx.doi.org/10.1137/S0097539700370539
http://dx.doi.org/10.1016/j.tcs.2007.02.053

194 C.E. Ferreira and Á.J.P. Franco

15. Goldberg, A.V., Tarjan, R.E.: A new approach to the maximum flow problem. In: Proceedings
of the Eighteenth Annual ACM Symposium on Theory of Computing, STOC’86, pp. 136–146.
ACM, New York (1986). doi:10.1145/12130.12144

16. Grötschel, M.: On minimal strong blocks. J. Graph Theory 3, 213–219 (1979)
17. Harel, D., Tarjan, R.E.: Fast algorithms for finding nearest common ancestors. SIAM J. Com-

put. 13(2), 338–355 (1984). doi:10.1137/0213024
18. Nykänen, M., Ukkonen, E.: Finding lowest common ancestors in arbitrarily directed trees. Inf.

Process. Lett. 50(6), 307–310 (1994). doi:10.1016/0020-0190(94)00050-6
19. Sedgewick, R.: Algorithms in C—Part 5: Graph Algorithms, 3rd edn. Addison-Wesley, Read-

ing (2002)
20. Suurballe, J.W., Tarjan, R.E.: A quick method for finding shortest pairs of disjoint paths. Net-

works 14(2), 325–336 (1984). doi:10.1002/net.3230140209
21. Tholey, T.: Finding disjoint paths on directed acyclic graphs. In: Kratsch, D. (ed.) WG. Lecture

Notes in Computer Science, vol. 3787, pp. 319–330. Springer, Berlin (2005)
22. Wen, Z.: New algorithms for the LCA problem and the binary tree reconstruction problem.

Inf. Process. Lett. 51(1), 11–16 (1994). doi:10.1016/0020-0190(94)00058-1
23. Williams, V.V.: Multiplying matrices faster than Coppersmith-Winograd. In: Proceedings of

the 44th Symposium on Theory of Computing, STOC’12, pp. 887–898. ACM, New York
(2012). doi:10.1145/2213977.2214056

24. Yuster, R.: All-pairs disjoint paths from a common ancestor in Õ(nω) time. Theor. Comput.
Sci. 396(1–3), 145–150 (2008). doi:10.1016/j.tcs.2008.01.032

http://dx.doi.org/10.1145/12130.12144
http://dx.doi.org/10.1137/0213024
http://dx.doi.org/10.1016/0020-0190(94)00050-6
http://dx.doi.org/10.1002/net.3230140209
http://dx.doi.org/10.1016/0020-0190(94)00058-1
http://dx.doi.org/10.1145/2213977.2214056
http://dx.doi.org/10.1016/j.tcs.2008.01.032

Algorithms for Scheduling Sensors to Maximize
Coverage Time

Rafael da Ponte Barbosa and Yoshiko Wakabayashi

Abstract We study a one-dimensional sensor cover problem, known as the Re-
stricted Strip Cover (RSC) problem, defined as follows. We are given an interval U
of the real line, and a set of n sensors, each of which covers some subinterval of
U and is powered with a battery of limited duration. The RSC problem consists in
finding a scheduling of the sensors (that is, an assignment of the activating times
of the given sensors) so that the whole interval U is covered for as long as possi-
ble. We investigate two variants of this problem: one denoted simply as RSC, the
non-preemptive variant; and the other, denoted as RSCP, the preemptive variant. In
the first, each sensor can be activated at most once and it remains on through the
duration of its battery. In the second variant, preemption is allowed, that is, each
sensor can be activated and deactivated many times along the duration of its battery.
Buchsbaum, Efrat, Jain, Venkatasubramanian and Yi showed that RSC is NP-hard
and designed an O(log logn)-approximation algorithm. More recently, Gibson and
Varadarajan presented a greedy-like algorithm which they proved to have approx-
imation ratio at most 5. We prove that the approximation ratio of this algorithm
is 4, and exhibit an instance showing that this ratio analysis is tight. We also show
an integer programming formulation for this problem and present some computa-
tional results obtained with the implementation of this approach. For the same set
of instances, we compute the quality of the solution found by the approximation
algorithm. For the preemptive variant RSCP, we present an exact polynomial-time
algorithm.

1 Introduction

Martin Grötschel has visited the University of São Paulo, Brazil, many times. His
first visit happened in 1977, a year after he obtained his doctoral degree, when he

R. da Ponte Barbosa (B) · Y. Wakabayashi
Instituto de Matemática e Estatística, Universidade de São Paulo, Rua do Matão, 1010, Cidade
Universitária, 05508-090, São Paulo, SP, Brazil
e-mail: rafaelb@ime.usp.br

Y. Wakabayashi
e-mail: yw@ime.usp.br

M. Jünger, G. Reinelt (eds.), Facets of Combinatorial Optimization,
DOI 10.1007/978-3-642-38189-8_9, © Springer-Verlag Berlin Heidelberg 2013

195

mailto:rafaelb@ime.usp.br
mailto:yw@ime.usp.br
http://dx.doi.org/10.1007/978-3-642-38189-8_9

196 R. da Ponte Barbosa and Y. Wakabayashi

was interested in the study of the polytope associated with the TSP problem. He
conjectured that hypohamiltonian digraphs and also hypotraceable digraphs would
induce facets of the asymmetric TSP polytope. To establish this, he was interested
in finding such digraphs, whose existence was not known at that time. This is the
first problem M. Grötschel proposed to Y. Wakabayashi, and this is how their col-
laboration started. He was right: after finding infinite families of such digraphs, it
was possible to prove that many of them indeed induce facets of the asymmetric TSP
polytope. Five years later, Y. Wakabayashi went to Germany for her doctoral studies
under his supervision. That was in the end of 1982, when M. Grötschel was already
leaving the University of Bonn for a Lehrstuhl at the University of Augsburg.

The years in Augsburg were very exciting: M. Jünger and G. Reinelt were al-
ready there, working on the acyclic subgraph and the linear ordering problems. The
cutting plane methods were flourishing, and it was a privilege to have as advisor
the expert in this topic. This was also when the book “Geometric Algorithms and
Combinatorial Optimization” was in preparation, and therefore L. Lovász and A.
Schrijver were visiting quite often, making those years very special. This unique
environment in Augsburg and the research produced there shaped the careers of
many. Y. Wakabayashi is grateful for having had the chance of being there at that
time, and feels privileged for the continued friendship of more than 30 years.

The first author, R. da Ponte Barbosa, obtained his M.Sc. degree at the Uni-
versity of São Paulo, in 2011, under the supervision of the second author. Now,
on the occasion of the 65th birthday of M. Grötschel, both congratulate him, most
wholeheartedly, for all his achievements and profound contributions to the area of
combinatorial optimization and much beyond.

2 The Problem

The problem we focus here was introduced by Buchsbaum, Efrat, Jain, Venkatasub-
ramanian and Yi [3] as the sensor cover problem. We consider the one-dimensional
case, known as the RESTRICTED STRIP COVER (RSC) problem, and study the non-
preemptive and the preemptive variants. The first, we denote simply as RSC, and
the second, as RSCP.

We start with the non-preemptive variant. An informal definition of the problem
RSC is the following.

Suppose we have a fence to be monitored and a set of sensors placed at various
fixed locations, each one with a battery of limited duration. Knowing the battery
duration of each sensor and which is the section of the fence each sensor covers, in
the RSC problem the objective is to schedule the time each sensor has to be turned
on so that the fence is fully monitored for as long as possible. In this variant, once a
sensor is turned on, it remains on through the duration of its battery. See an example
in Fig. 1.

We present now a formal definition of the RSC problem, and introduce all con-
cepts that are needed to present the main results of this paper. We adopt (most of)

Algorithms for Scheduling Sensors to Maximize Coverage Time 197

Fig. 1 An instance of the
Restricted Strip Cover
problem, in which sensor s1
has duration 3, sensors s2 and
s3 have duration 2, and
sensors s4 and s5 have
duration 1

the notation and terminology that were used by Buchsbaum et al. [3] and Gibson
and Varadarajan [7].

An instance of the RSC problem consists of an interval U = {1, . . . ,m} of the
real line, a set of sensors S = {s1, s2, . . . , sn}, and for each sensor s in S, a positive
integer d(s) and a range R(s) = {l(s), l(s) + 1, . . . , r(s)}, which is a subinterval
of U . The value d(s), called the duration of sensor s, is the amount of time the
sensor s remains on (once it is turned on). For simplicity, we assume that such an
instance consists of a pair (U,S).

For each i in R(s), we say that s is live at i. Note that we may assume w.l.o.g.
that m≤ 2n because n sensors give rise to at most 2n distinct subinterval endpoints.

A schedule A of a set of sensors S is an assignment of a start time t (s), which
is a positive integer, to each sensor s in a subset of sensors in S. With respect to a
schedule A, a sensor s is said to be active at times {t (s), t (s)+ 1, . . . , t (s)+ d(s)−
1}. A point i ∈U is said to be covered at time t > 0 if there is some sensor live at i
and active at time t . Further, we say that an interval of U is covered at time t if all
points in U are covered at time t .

The duration of a schedule A at a point i is defined as

M(A, i)= max
{
t : for all t ′ ≤ t,∃s ∈A that covers i at time t ′

}
,

and the duration of a schedule A is defined as M(A)= mini M(A, i).
The RSC problem can now be stated as the problem of finding a maximum dura-

tion schedule for a given instance (U,S).
The load at a point i ∈ U , denoted as L(i), is the sum of the duration of every

sensor that is live at i, that is, L(i) =∑s∈S,s live at i d(s). The load of an instance
(U,S) is defined as L(U,S)= mini L(i). We denote by OPT(U,S) the duration of
an optimal schedule for the instance (U,S). When (U,S) is clear from the context,
we write simply L and OPT, instead of L(U,S) and OPT(U,S). Clearly, L is an
upper bound for OPT, that is, OPT ≤ L. This bound will be used in the analysis of
the approximation algorithm to be presented in Sect. 3.

The RSC problem can be viewed as a problem of covering a largest possible re-
gion using rectangles that may be slided only vertically. This way of viewing the
RSC problem helps in devising an algorithm for it. For that, consider that each sen-
sor s is a rectangle of base |R(s)| and height d(s), and think that initially each

198 R. da Ponte Barbosa and Y. Wakabayashi

Fig. 2 A schedule in which
sensors s2 and s5 are turned
on at time 1; sensor s4 at
time 2; sensors s1 and s3 at
time 3, covering the whole
fence for four time units

rectangle s is placed (in the plane) in such a way that its base is parallel to a hori-
zontal line segment that has length |U |, and occupies the subinterval R(s) of U . We
may think that initially all rectangles are placed in (the horizontal) level 1. In this
way, an assignment of start time t (s) to a sensor s corresponds to a placement of the
rectangle representing s with its basis aligned with the horizontal level (height) t .
Thus the problem consists in sliding vertically the given rectangles so as to obtain
a rectangular region with basis U and maximum height, fully contained in their
union. Figure 2 illustrates this concept for the instance in Fig. 1 and the schedule:
t (s1)= 3, t (s2)= 1, t (s3)= 3, t (s4)= 2, t (s5)= 1.

The RSC problem was introduced in 2007 by Buchsbaum et al. [3]. These au-
thors showed that this problem is NP-hard by exploring a similarity with the DY-
NAMIC STORAGE ALLOCATION problem [2, 6], and presented a non-constant ratio
approximation algorithm for it. In 2008, in an e-print [4] submitted to the ARXIV,
these authors showed an O(log logn)-approximation algorithm for this problem.
They also presented a (2 + ε)-approximation algorithm for the case all sensors have
ranges of the same length, and showed that when all sensors have the same duration
there is a simple greedy algorithm that finds an optimal solution.

In 2009, Gibson and Varadarajan [7] presented a 5-approximation algorithm for
the RSC problem. It is a rather simple algorithm that can be implemented to run in
O(n2) time.

In Sect. 3, we describe the algorithm of Gibson and Varadarajan, and present a
more detailed analysis of this algorithm, proving that its approximation ratio is, in
fact, 4. We also exhibit instances showing that the ratio analysis we present is tight.
Our analysis starts similar to that presented by Gibson and Varadarajan, but it has an
additional part which proves that two certain situations cannot occur simultaneously.
The proof of this additional part is crucial to obtain the better approximation ratio,
and also to show that the ratio cannot be improved.

In Sect. 4 we present an integer programming formulation for the RSC problem
and report on some computational results obtained with this approach.

In Sect. 5, we consider the RSCP problem, the preemptive version of the problem
RSC. For this problem we present a rather simple exact polynomial-time algorithm.

A preliminary version of this paper appeared in a volume of LNCS dedicated to
LATIN 2012 [5]. This paper presents complete proofs and an additional part on the
preemptive variant, which has not been presented elsewhere.

Algorithms for Scheduling Sensors to Maximize Coverage Time 199

Fig. 3 Interval [i, j]
corresponding to the deepest
uncovered “valley”

3 The Approximation Algorithm for RSC and Its Analysis

In this section we describe the algorithm designed by Gibson and Varadarajan [7]
for the RSC problem and analyze its performance. Before, we introduce some defi-
nitions and conventions.

We denote by A the current schedule of the algorithm at any stage of its execu-
tion. In the construction of a schedule A, whenever a start time t (s) > 0 is assigned
to a sensor s, we say that s is scheduled or assigned to A and write A ← A ∪ {s}.
Thus, a schedule A is seen as a subset of sensors (together with a start time of each
sensor in A). A sensor not assigned to A is unassigned.

With respect to a schedule A, and a position i ∈ U , we say that an unassigned
sensor s dominates i to the right if s is live at i and has the largest r(s) among all
unassigned sensors live at i. In case of a tie, we take the sensor that has the smallest
l(s). Further ties may be broken arbitrarily, but we will assume that the sensor with
the smallest index is taken, so that we may refer to the sensor that dominates i

to the right, and also to the schedule returned by the algorithm. The sensor that
dominates i to the left is defined analogously (in a symmetric way). We also define
M(A,0)=M(A,m+ 1)= ∞.

The main idea behind the algorithm of Gibson and Varadarajan is the following.
At each iteration, for a time t—corresponding to the lowest uncovered level—the
algorithm considers the first uncovered point i and the largest point j such that
[i, j] is uncovered. The interval [i, j] defines (geometrically) a “deepest valley”
considering all the sensors which have been assigned so far, as illustrated in Fig. 3.
For such [i, j], an unassigned sensor s that dominates i to the right is considered.
(If such a sensor does not exist, then the algorithm halts.) If s is live at j and the
left side of the valley (position i − 1) is lower than its right side (position j + 1), as
shown in Fig. 3, then a sensor s′ that dominates j to the left is selected; otherwise,
s is selected.

The method is more formally described in Algorithm 1.

3.1 Approximation Ratio of the Algorithm

We present now a proof that the algorithm RSC-GV is, in fact, a polynomial-time
4-approximation for the RSC problem. The first part of the analysis is similar to

200 R. da Ponte Barbosa and Y. Wakabayashi

Algorithm 1: RSC-GV

Input : a pair (U,S)
Output: a schedule A of S

1 t ← 0
2 A← ∅; M(A)= 0
3 while TRUE do
4 t ←M(A)+ 1
5 i ← the leftmost uncovered point at time t
6 j ← max{j ′ ∈U : [i, j ′] is uncovered at time t}
7 s ← the sensor that dominates i to the right /* s is right going */
8 if s does not exist then
9 break

10 end
11 if s is live at j and M(A, i − 1) <M(A, j + 1) then
12 s′ ← the sensor that dominates j to the left /* s′ is left going */
13 A←A∪ {s′}; t (s′)← t

14 else
15 A←A∪ {s}; t (s)← t

16 end
17 end
18 return A

the one presented by the authors in [7]. For completeness and ease of reading, we
reproduce two lemmas, stated in the sequel, both given in the aforementioned paper.

Lemma 1 (Gibson and Varadarajan, 2009) Let A be the schedule returned by the al-
gorithm RSC-GV applied to an instance (U,S). Let s′ and s′′ be two distinct sensors
that were assigned to A. If R(s′′) is strictly contained in R(s′), then s′′ is assigned
to A after s′, and furthermore, t (s′′)≥ t (s′)+ d(s′).

Proof At some point of the execution of the algorithm RSC-GV, let s′ and s′′ be two
distinct unassigned sensors such that R(s′′) is strictly contained in R(s′). In each
iteration, the algorithm chooses an unassigned sensor that dominates some position,
say i, to the left or to the right.

Consider the iteration at which the algorithm assigns sensor s′′ to A, and let
i ∈ R(s′′) be the point that is considered in this moment (to be dominated to the
right or to the left). Since both s′ and s′′ are live at i, if s′ has not been assigned to
A, then s′ has to be chosen before s′′ because of the definition of domination. This
way, s′ will be assigned to A before s′′ and the algorithm will not consider another
sensor to dominate any point in R(s′′) until after time t (s′)+ d(s′). �

For any point i ∈U and time t > 0, we define coverage(i, t) to be the number of
sensors that cover i at time t in a schedule returned by the algorithm RSC-GV. We

Algorithms for Scheduling Sensors to Maximize Coverage Time 201

define the MaxCoverage of a schedule A, denoted MaxCoverage(A), as the value
max{coverage(i, t) : i ∈U and t > 0}. The duration of a schedule A is related to the
MaxCoverage(A) as follows.

Lemma 2 (Gibson and Varadarajan, 2009) Let A be a schedule returned by the
algorithm RSC-GV. If MaxCoverage(A)≤ c, then M(A)≥ OPT/c.

Proof Let (U,S) be an instance of the RSC problem, and let A be the schedule
returned by the algorithm RSC-GV when applied to (U,S). At the end of the execu-
tion, there is a point i′ ∈ U such that M(A, i′)=M(A), and furthermore, there are
no unassigned sensors that are live at i′. Thus, cM(A) = cM(A, i′) ≥ L(i′) ≥ L ≥
OPT, and therefore, M(A)≥ OPT/c. �

Gibson and Varadarajan proved that the algorithm RSC-GV returns a schedule A
such that MaxCoverage(A)≤ 5, showing this way the ratio 5 achieved by this algo-
rithm. We will prove that MaxCoverage(A) ≤ 4, by doing a more careful analysis,
based on the times and the intervals for which the sensors are scheduled. For that,
we need a few more definitions.

At each iteration, for a time t , the algorithm considers an uncovered point i and
a largest point j such that [i, j] is uncovered (see steps 5 and 6). The interval [i, j]
defines (geometrically) a “deepest valley” considering all the sensors which have
been assigned so far, as illustrated in Fig. 3. For such [i, j], an unassigned sensor
s that dominates i is chosen and assigned to A. In this case we say that [i, j] is an
interval for which s is scheduled, and we also say that s is assigned to A because
of [i, j]. Such a sensor s is called right going if it was chosen to dominate i to the
right (see steps 7 and 15). Analogously, we say that s is left going if it was chosen
to dominate j to the left (see steps 12 and 13). If a point i was not covered at time
t (s) before some sensor s was scheduled, but is covered by s at time t (s) (when s

is assigned to A), we say that s closes i at time t (s). We denote by A′
s the schedule

constructed by the algorithm immediately before scheduling sensor s.
In what follows, we adopt the following convention: if a sensor is called sp , then

[ip, jp] denotes the interval for which sp is scheduled.
We call attention to the concept of the interval for which a sensor is scheduled,

as it plays an important role in the proof of the next result. Although this concept
is present in the algorithm, in the proof of Gibson and Varadarajan it is not used
directly. We believe it helps clarifying the proofs. Claim 1 and Claim 2 stated in
the proof of the next result were proved by Gibson and Varadarajan, in a different
way. In fact, the inequalities derived in the end of these claims are not explicitly
mentioned by these authors, but here they are needed in the proof of Claim 3.

In Fig. 4, we represent the structure of the proof of Theorem 1, which gives
the approximation ratio of algorithm RSC-GV. We call attention to the fact that the
assumptions and terminology used in the proof of Lemma 3 is shared by all claims
indicated in the figure. An arrow (resp. dashed arrow) between two boxes indicates
that the statement (resp. a subcase) mentioned in the source box is used in the proof
of the destination box.

202 R. da Ponte Barbosa and Y. Wakabayashi

Fig. 4 Structure of the proof
of Theorem 1

Lemma 3 If A is a schedule returned by the algorithm RSC-GV, then we have
MaxCoverage(A)≤ 4.

Proof Let (U,S) be an instance for the RSC problem and let A be the schedule re-
turned by the algorithm RSC-GV when applied to (U,S). Consider an arbitrary point
i ∈U and an arbitrary time t , 0 < t ≤M(A). We shall prove that coverage(i, t)≤ 4.

Denote by s0 the first sensor that covers i at time t . By convention, [i0, j0] is the
interval for which s0 is scheduled. Now classify any other sensor sp that covers i at
time t into the following four types:

• Type LL: if [ip, jp] is to the LEFT of i and sp is LEFT going;
• Type LR: if [ip, jp] is to the LEFT of i and sp is RIGHT going;
• Type RL: if [ip, jp] is to the RIGHT of i and sp is LEFT going;
• Type RR: if [ip, jp] is to the RIGHT of i and sp is RIGHT going.

The main ingredients of the proof are the following three claims.

Claim 1 At most two sensors of types LL or LR are assigned to A.

Proof Let s1 and s2 be the two first sensors of type LL or LR that are scheduled after
s0. Suppose s2 is scheduled after s1. Consider the two possible cases for sensor s1,
illustrated in Fig. 5.

Case (a): Sensor s1 is of type LL.
We recall that [i1, j1] denotes the interval for which s1 is scheduled. As s1 is

left going (dominates j1 to the left), we have l(s1) ≤ l(s2). Thus, i2 ∈ [l(s2), i] ⊆
[l(s1), i]. In this case, note that the interval [i2, j2] can only be considered after time
t (s1) + d(s1) − 1 (that is, only when sensor s1 is not active anymore). Therefore,

Fig. 5 Cases (a), (b1) and (b2), respectively

Algorithms for Scheduling Sensors to Maximize Coverage Time 203

t (s2) > t . But then, s2 does not cover i at time t , a contradiction. This means that
after a sensor of type LL, no sensor of type LL or LR is scheduled.

Case (b): Sensor s1 is of type LR.
In this case, since s1 is right going (dominates i1 to the right), and is live at i,

then it is live at j1, and therefore (as it is scheduled in step 15) we have

M
(
A′
s1
, i1 − 1

)≥M
(
A′
s1
, j1 + 1

)
.

If i1 = 1, then clearly i2 lies in the interval [i1, l(s0)]. In this case, after schedul-
ing s1, the interval [i1, i] is entirely covered at time t . So, the algorithm will only
consider a sensor of type LL or LR after time t . Thus, t (s2) > t . But then, s2 does
not cover i at time t , a contradiction.

Let us assume that i1 > 1. In this case, the point i1 −1 is covered by some sensor,
say sy , at time M(A′

s1
, i1 − 1). Note that, l(s2) > l(sy) (resp. l(s1) > l(sy)), other-

wise we would have a contradiction to Lemma 1, as we would have R(sy)⊂ R(s2)

(resp. R(sy)⊂R(s1)) and s2 (resp. s1) would have been assigned to A before sy .
Given a scheduled sensor s, define h(s) := t (s)+d(s)−1, that is, the time when

the battery of s becomes discharged. Let us analyze two subcases.
Subcase (b1): j1 + 1 = l(s0).
We know that h(sy) ≥ h(s0) (because s1 is right going). In this case, after s1

is assigned to A, all positions in the interval [l(sy), i] are covered at time t . As
l(s2) > l(sy), the algorithm can consider a position i2 ∈ [l(s2), l(s0)] only after sen-
sor s1 is not active anymore, and therefore after time t . In this case, s2 does not
cover i at time t , a contradiction.

Subcase (b2): j1 + 1 < l(s0).
Let sx be the sensor assigned to A before s1, such that j1 + 1 = l(sx) and t (sx) <

t(s1) ≤ t (sx) + d(sx) − 1 (that is, in the moment s1 was assigned to A, sensor sx
was still active).

Now consider the assignment of s2. If s2 is of type LL, using an argument anal-
ogous to that of case (a) we can conclude that no other sensor of type LL or LR is
assigned to A. So, assume now that s2 is of type LR.

Note that i2 > l(sy) (as we have seen that l(s2) > l(sy)). Likewise, note also that
l(s1) > l(sy).

If h(s1)≤ h(sy), then t ≤ h(sy). Thus, as we have seen that i2 > l(sy), it follows
that t (s2) > t . But then, s2 does not cover i at time t , a contradiction.

Assume now that h(s1) > h(sy). Since s2 covers i at time t , then [i2, j2] lies in
the interval [l(sy), l(s1)].

We argue that j2 + 1 = l(s1). Let sq be the last sensor scheduled before s2 such
that jq + 1 = l(s1). We claim (and prove in the sequel) that s2 is only assigned after
the end of the execution of sq and, therefore, j2 + 1 = l(s1). Note that if there is no
such sq , the statement is vacuously true.

If sq was chosen to be left going, we must have t (s2) > h(sq), by reasoning as
in case (a). Otherwise, if sq was chosen to be right going, we have M(A′

sq
, iq −

1)≥M(A′
sq
, jq + 1)= h(s1)≥ t . Note that, after the assignment of sq , the interval

[iq − 1, i] is completely covered until time h(sq). Hence, t (s2) > h(sq).

204 R. da Ponte Barbosa and Y. Wakabayashi

It follows that j2 + 1 = l(s1). In this case, M(A′
s2
, i2 − 1) ≥ M(A′

s2
, j2 + 1)

(because s2 is right going). Since s2 is live at all points in [i1, j1], because of the
priority given to s1, we conclude that r(s2) < r(s1).

Now suppose there is a third sensor, say s3, that is of type LL or LR and is the next
of this type assigned after s2. Suppose i2 > 1 and let sr be the sensor that covers the
point i2 − 1 at time M(A′

s2
, i2 − 1) (if i2 = 1, it is immediate that s3 does not exist).

If h(s2)≤ h(sr), using arguments similar to those used above, we can conclude that
no sensor assigned after s2 can cover i at time t . So, suppose h(s2) > h(sr). Since
h(sr) > h(s1) and t ≤ h(s1), we have that h(sr) > t . Since [i3, j3] has to lie in the
interval [l(sr), l(s2)], it is immediate that s3 cannot cover i at time t .

Summarizing what we have proved in the subcase (b2), when there are sensors
s1 of type LR and s2 of type LL or LR (covering i at time t), we have proved that
there is a sensor sx such that the following holds:

l(s1) < l(sx) and r(s1) < r(sx). (1)

This completes the proof of Claim 1. �

Claim 2 At most two sensors of types RL or RR are assigned to A.

Proof (Sketch only). Let s3 and s4 be the first sensors of type RR or RL that are
scheduled after s0. Suppose s3 is scheduled before s4. Analogously to Claim 1, we
analyze two cases:

Case (c): Sensor s3 is of type RR.
In this case, we conclude that no sensor of type RR or RL can be assigned after s3.
Case (d): Sensor s3 is of type RL.
Subcase (d1): i3 − 1 = r(s0).
In this subcase the conclusion is like in case (c).
Subcase (d2): i3 − 1 > r(s0).
Analogously to subcase (b2), we can prove that after the assignment of sensor s4,

no other sensor of type RL or RR is assigned. Moreover, in this subcase we have that
there is a sensor sw such that, t (s1)≤ t (sw)+ d(sw)− 1, and the following holds:

l(sw) < l(s3) and r(sw) < r(s3). (2)

This ends the sketch of the proof of Claim 2. �

Claim 3 The subcase (b2), in the proof of Claim 1, and the subcase (d2), in the
proof of Claim 2, cannot occur together.

Proof Suppose, by contradiction, that both subcases occur. Consider the sensors s1,
s2 and sx (resp. s3, s4 and sw) that we have mentioned in the analysis of subcase
(b2) (resp. (d2)) which satisfy the inequalities (1) and (2). From these inequalities,
and the hypothesis that s1, . . . , s4 cover i at time t , we conclude that

r(sx) > i > l(sw). (3)

Algorithms for Scheduling Sensors to Maximize Coverage Time 205

Fig. 6 Sensor ŝ� and its
relation to sx and s0, as stated
in Claim 4

On the other hand, the following claim (proved later) holds.

Claim 4 There exists a sensor ŝ� such that

(1) l(sx)≤ l(ŝ�) < l(s0) and r(sx)≤ r(ŝ�) < r(s0); and
(2) t (ŝ�)≤ t (s0)≤ t (ŝ�)+ d(ŝ�)− 1.

Putting into words, Claim 4 states that there is a sensor ŝ� such that: (1) l(ŝ�) is
between l(sx) and l(s0), and r(ŝ�) is between r(sx) and r(s0); and (2) sensor s0 is
activated at some time while ŝ� is active.

Note that it may happen that sx is activated before s0 and, in this situation (case
illustrated in Fig. 6(a)), we can consider ŝ� to be sx , a case for which Claim 4 holds.
Otherwise, there is a sensor ŝ� as stated in Claim 4 (case illustrated in Fig. 6(b)).

Analogously to the existence of sensor ŝ� (related to sx and s0), as stated in
Claim 4, we claim there is a sensor ŝr related to sw and s0 in the following way.

Claim 5 There exists a sensor ŝr such that

(1) l(s0) < l(ŝr)≤ l(sw) and r(s0) < r(ŝr)≤ r(sw); and
(2) t (ŝr) < t(s0)≤ t (ŝr)+ d(ŝr)− 1.

Thus, s0 must be scheduled after ŝ� and ŝr have been scheduled, but before the
end of their execution. From this fact and the conditions in Claim 4 and Claim 5, it
follows that

r(sx)≤ r(ŝ�) < i0 ≤ j0 < l(ŝr)≤ l(sw), (4)

as the interval [i0, j0] is not covered at time t (s0) in the schedule A′
s0

(because
it is closed by s0). We have, therefore, a contradiction to the inequality (3). This
completes the proof of Claim 3. �

From Claims 1, 2 and 3, we conclude that coverage(i, t)≤ 4. �

We prove now Claim 4. The proof of Claim 5 is analogous.

Proof of Claim 4 We know that t (s0)≤ t (s1)≤ t (sx)+ d(sx)− 1. If t (sx)≤ t (s0),
then sx satisfies the conditions required for ŝ�, and therefore the claim holds (taking
ŝ� = sx). Let us then assume that t (s0) < t(sx).

Let s′ be the first sensor scheduled after s0 such that l(sx) ≤ l(s′) < l(s0) and
t (s′) < t(s0)+d(s0)−1, and furthermore, there exists a sensor s′′ such that j ′′+1 =
l(s′) and t (s′) < t(s′′)≤ t (s′)+d(s′)−1, where [i′′, j ′′] is the interval for which s′′

206 R. da Ponte Barbosa and Y. Wakabayashi

was scheduled. We know that there exists at least one such s′, as by the hypotheses,
sx and s1 satisfy the conditions required for s′ and s′′, respectively.

Let [i′, j ′] be the interval for which s′ was scheduled. (Note that j ′ ≤ l(s0).)
Since l(s′′) < l(s′), and s′ is scheduled before s′′, we conclude that s′ was scheduled
because it is right going (as s′′ is live at any position in the interval [i′, j ′]). Also,
note that t > t (s′)+ d(s′)− 1, since s′ is live at i but does not cover i at time t .

Suppose j ′ + 1 = l(s0). In this case, M(A′
s′ , i

′ − 1) ≥ M(A′
s′ , j

′ + 1) =
M(A′

s′ , l(s0)) ≥ t > t (s′) + d(s′) − 1, where t is the time we have fixed in the
beginning of the proof of Lemma 3. Under these conditions, we would have
t (s′′) > t(s′)+ d(s′)− 1, a contradiction with our choice of s′ and s′′.

Thus, j ′ + 1 < l(s0). In this case, there is some sensor ŝ� such that j ′ + 1 = l(ŝ�)

and t (ŝ�) < t(s′)≤ t (ŝ�)+ d(ŝ�)− 1.
Note, however, that if ŝ� is scheduled after s0, then it contradicts the choice of s′.

Thus, we conclude that ŝ� is scheduled before s0 and its execution ends after the
schedule of s0. Furthermore, we have that l(sx)≤ l(ŝ�) < l(s0). From this, we con-
clude that r(sx) ≤ r(ŝ�) < r(s0), for otherwise we would have a contradiction to
Lemma 1. �

Theorem 1 The algorithm RSC-GV is a polynomial-time 4-approximation algo-
rithm for the RSC problem. Furthermore, its ratio analysis is tight.

Proof The approximation ratio follows immediately from Lemma 2 and Lemma 3.
As mentioned by Gibson and Varadarajan, the algorithm has polynomial running
time. Indeed, the loop starting at line 3 is executed at most n times, as one sensor
is scheduled in each iteration. Each iteration can be implemented to run in time
O(n+m)=O(n), since we can assume that m≤ 2n. Therefore, the algorithm runs
in time O(n2).

In order to see that the ratio analysis is tight, consider first the instance of the RSC
problem shown in Fig. 7, together with the corresponding output A of the algorithm
RSC-GV and an optimal schedule. Note that the gray rectangles are also sensors (s12
to s31, except for s22).

As we can see, M(A)= 5, but OPT = L= 12. Furthermore, for i = 11 we have
coverage(i,5) = 4 in the schedule A (see Fig. 7(top part)). This example suggests
how to construct other instances for which the “maximally covered region” becomes
much larger than the remaining regions in the solution output by the algorithm. For
that, it suffices to scale appropriately the durations of the sensors. More specifically,
consider the instance I (k), parameterized by an integer k ≥ 1, defined as follows
(the instance shown in Fig. 7 corresponds to k = 1).

U = [1,20]; S = {s1, . . . , s31};
R(s1)= [1,16], d(s1)= 1;
R(s2)= [17,20], d(s2)= 4;
R(s3)= [1,6], d(s3)= 1;
R(s4)= [7,13], d(s4)= 2;
R(s5)= [9,16], d(s5)= k + 3;
R(s6)= [1,4], d(s6)= 2;
R(s7)= [5,12], d(s7)= k + 2;

Algorithms for Scheduling Sensors to Maximize Coverage Time 207

Fig. 7 Top: The schedule
output by the algorithm
RSC-GV. Bottom: An optimal
schedule

R(s8)= [1,2], d(s8)= k;
R(s9)= [3,11], d(s9)= k;
R(s10)= [11,18], d(s10)= k;
R(s11)= [19,20], d(s11)= k; and
R(s11+j)= [j, j], d(s11+j)= 4k + 8, for 1 ≤ j ≤ 20 such that j 	= 11.

The algorithm RSC-GV schedules the sensors precisely in the increasing order of
their indices, that is, from s1 to s21 (the remaining sensors are not scheduled). Note
that for the instance I (k) the point i = 11 is covered by the sensors s5, s7, s9 and s10
from time 5 to 5 + k− 1. With respect to Lemma 3, sensor s5 plays the role of s0 in
the proof; and the remaining sensors that cover point i are the sensors s7, which is
of type LR; s9, which is of type LR; and s10, which is of type RR.

208 R. da Ponte Barbosa and Y. Wakabayashi

Note that M(A)= k + 4 and OPT = L= 4k + 8. Thus, the approximation ratio
is (4k + 8)/(k + 4)= 4 − 8/(k + 4). Hence, for a sufficiently large value of k, this
ratio can get arbitrarily close to 4, showing that the ratio 4 is tight. �

4 ILP Formulation for the RSC Problem and Computational
Results

We present now an integer programming formulation for the RSC problem, an ap-
proach not yet treated in the literature.

First, consider the sets I = {1,2, . . . ,m}, J = {1,2, . . . ,L} and S = {1,2, . . . , n}.
For the variables, we have yi,j ∈ {0,1}, for all i ∈ I and j ∈ J , which is 1 if point i
is covered by some sensor in time j , and is 0 otherwise. We have zs,j ∈ {0,1}, for
all s ∈ S and j ∈ J , which is 1 if sensor s is turned on at time j , and is 0 otherwise.
Further, we have the variable M ∈ Z, which indicates the value of the solution. The
proposed IP formulation is the following.

max M

s.t.
∑

j

zs,j ≤ 1 ∀s ∈ S (5)

yi,j ≤
∑

s:i∈R(s)

j∑

k=j−d(s)+1

zs,k ∀i ∈ I,∀j ∈ J (6)

yi,j+1 ≤ yi,j ∀i ∈ I,∀j ∈ J\{L} (7)

M ≤
∑

j

yi,j ∀i ∈ I (8)

yi,j ∈ {0,1} ∀i ∈ I,∀j ∈ J

zs,j ∈ {0,1} ∀s ∈ S,∀j ∈ J

M ∈ Z

Constraints (5) express that each sensor can only be turned on once. Constraints
(6) state that a point i is only covered in time j if there is some sensor on at that
time. Constraints (7) assure point i is only covered in time j + 1 if that point is
covered in time j . Finally, constraints (8) guarantee that M is the minimum, taken
over all points i, of the total time position i is covered.

We now show some preliminary computational results obtained with the imple-
mentation of the model proposed.

The instances were generated from instances of the Strip Packing problem, a
minimization problem that consists in packing rectangles into a strip of fixed width
and unbounded height. These instances were obtained from the OR-LIBRARY [1].

The first 18 instances shown in Table 1 were obtained in the following way.
Given an instance for the Strip Packing problem with strip width m′, we translate

Algorithms for Scheduling Sensors to Maximize Coverage Time 209

Table 1 Computational
results obtained with the ILP
formulation for the RSC
problem

n m L Lmax OPT RSC-GV Ratio Time (sec.)

24 10 27 52 27 22 1.23 0.26

23 10 20 60 20 17 1.18 0.10

19 10 27 59 27 24 1.13 0.24

35 7 47 118 47 32 1.47 1.35

34 7 61 109 61 48 1.28 2.54

30 7 64 110 64 43 1.49 0.96

34 15 56 191 56 36 1.56 15.04

35 15 59 185 59 58 1.02 1.61

35 15 83 180 83 58 1.44 31.89

49 30 50 181 50 45 1.12 13.41

64 30 62 164 62 52 1.20 94.22

65 30 68 179 68 61 1.12 159.70

85 45 73 166 73 69 1.06 493.30

96 45 57 309 57 47 1.22 120.59

81 45 62 179 62 57 1.09 192.48

115 60 74 252 0 61 – TLE

113 60 85 239 85 63 1.35 1518.52

113 60 80 238 80 75 1.07 1381.26

47 10 67 92 67 43 1.56 15.50

40 10 49 110 49 48 1.03 1.06

46 10 58 110 58 50 1.16 4.80

65 7 127 204 127 90 1.42 134.31

64 7 143 199 143 112 1.28 223.52

62 7 153 206 153 103 1.49 354.96

77 15 152 316 152 96 1.59 1165.65

77 15 164 349 164 144 1.14 1290.11

73 15 149 336 149 144 1.04 782.95

179 30 126 879 – 86 – TLE

383 30 206 6745 – 136 – TLE

120 30 156 322 – 121 – TLE

167 45 196 343 – 129 – TLE

364 45 160 2121 – 92 – TLE

173 45 173 350 – 120 – TLE

234 60 189 432 – 151 – TLE

226 60 226 423 – 176 – TLE

225 60 222 405 – 170 – TLE

210 R. da Ponte Barbosa and Y. Wakabayashi

each rectangle as a sensor s in our instance of the RSC. In order to get uniform load
distribution, we use the following procedure to set l(s). We choose l(s) uniformly
at random between 1 and m=m′/2. If r(s) > m, we “break” s into two sensors s1
and s2, both with duration d(s), but one with l(s1) = l(s) and r(s1) = m and the
other with l(s2) = 1 and r(s2) = w − (m− l(s1)+ 1), where w is the width of the
original sensor s. In order to derive larger instances, we duplicated each rectangle
and used the same procedure. These instances correspond to the other 18 instances
in Table 1.

The implementation was done using IBM ILOG CPLEX Optimizer. Table 1
shows the time (in seconds) our code took to find an optimal solution for the in-
stances (generated as above mentioned) with the indicated values of n, m, L and
Lmax, where Lmax = maxi L(i). We note that all instances for which an optimal so-
lution was found have optimum value equal to L. Table 1 also shows the value of
the solutions found by the algorithm RSC-GV and the approximation ratios for these
instances.

For each execution, we have set a time limit of 1800 seconds. In the table, “TLE”
stands for “Time Limit Exceeded”, which means that the program was aborted after
that amount of time and could not find a solution.

The computational experiments show that, for instances with n up to 100 (and
nL up to 7000), optimal solutions could be found within 1800 seconds. As we can
see, in general, the time spent increases as nL increases, what is natural, as the
number of constraints is O(nL). The largest time, 1518 seconds, occurred for nL=
113 · 85 = 9605 and m= 60. For these randomly generated instances, we conclude
that this model can be useful when nL is not too large.

Having found the optimal solutions for some of these instances, we could an-
alyze experimentally the performance of the algorithm RSC-GV. We note that its
performance ratios on these instances range from 1.02 to 1.59, being on the average
1.26: a performance that can be considered very good.

5 The RSCP Problem, the Preemptive Variant

In this section, we present an exact polynomial-time algorithm for the preemptive
version of RSC, called RSC-PREEMPTIVE.

Buchsbaum et al. [3] stated that

For RSC, a simple algorithm based on maximum flow yields an optimal preemptive schedule
in polynomial time.

However, such algorithm has not been shown by these authors.
As we will see, the algorithm RSC-PREEMPTIVE is quite simple, and does not re-

quire the use of a maximum flow algorithm. We will prove that it produces a sched-
ule of duration L. For a better understanding of the algorithm, the reader should see
first some definitions and a brief description of the main idea behind it.

Let (U,S) be an instance of RSCP, and L the load of (U,S). We say that a set of
sensors C ⊆ S is a cover of U if for every i ∈ U there is a sensor s in C such that

Algorithms for Scheduling Sensors to Maximize Coverage Time 211

Algorithm 2: RSC-PREEMPTIVE

Input : a pair (U,S), where S is ordered (as mentioned on the bottom of this
page)

Output: a schedule of S

1 if L= 0 then
2 return ∅ /* L is the load of (U,S) */
3 else
4 C ← ∅
5 i ← 1
6 while i ≤m do
7 /* C is not a minimal cover of U */
8 Let s be the last sensor in S which is live at i
9 Let C′ := {s′ ∈ C : l(s′) > l(s)} /* set of redundant sensors */

10 C ← C \C′ ∪ {s}
11 i ← r(s)+ 1
12 end
13 h← mins∈C{d(s)} /* h= h(C) is the height of the cover C */
14 for every sensor s in C do
15 d(s)← d(s)− h

16 if d(s)= 0 then
17 S ← S \ {s}
18 end
19 end
20 end
21 L← L− h

22 return (C,h)∪ RSC-PREEMPTIVE(U,S)

i ∈R(s). A sensor s in C is called redundant if for every i in R(s), there is a sensor
s′ in C such that i ∈ R(s′). We say that a cover C is minimal if C does not contain
redundant sensors. Further, we say that a subinterval U ′ of U is a critical region if
L(i) = L, for every position i in U ′. We say that two sensors s and s′ overlap if
R(s)∩R(s′) 	= ∅.

The main idea of the algorithm RSC-PREEMPTIVE consists in finding first a min-
imal cover C (that satisfies certain properties), then identifying the smallest among
the durations of all sensors in C, say h, and scheduling (simultaneously) all sensors
in C, letting them turned on for the period of time h. Next, it updates the duration
of the sensors in C and repeats the process with the new instance, until there is no
minimal cover.

In the Algorithm RSC-PREEMPTIVE (Algorithm 2), we consider that the given
instance (U,S) is such that U = {1,2, . . . ,m} and the set S of sensors is sorted
according to the following criterion: in non-decreasing order of l(·) and, in case of
tie, in non-decreasing order of r(·).

212 R. da Ponte Barbosa and Y. Wakabayashi

We note that the union of pairs (C,h) returned by the algorithm indicate which
sensors are activated and when they are deactivated, defining this way the sched-
ule for the input (U,S). We prove in the following that the algorithm produces an
optimal schedule.

Theorem 2 The algorithm RSC-PREEMPTIVE returns a schedule of duration L.

Proof Let (U,S) be the instance given to the algorithm. Note that the algorithm is
recursive and halts only when it receives an input with load equal to zero.

Throughout this proof, L denotes the load of the original instance (U,S). Sup-
pose L > 0. Note that, if L > 0 then, after executing steps 5–11, the set C con-
structed by the algorithm is a minimal cover of U . The minimality is assured by the
removal of the sensors, done in the step 10 of the algorithm.

Denote by C1, . . . ,Ck the minimal covers found by the algorithm, in the order
they were constructed. Denote by h(Ci) the height h of the cover Ci , that is, h(Ci)=
mins∈Ci

d(s) (see step 13).
Note that L is decreased (of h(Ci)) each time a new cover Ci is found. We shall

prove that
∑k

j=1 h(Cj)= L, by induction on k.
If k = 1, then after finding C1, the algorithm does not find any other cover. This

means that the load is zero in the second recursive call of the algorithm. Thus, there
is a position i ∈U at which only one sensor (of the original set S) of duration h(C1)

is live. In this case, L≤ L(i)= h(C1), and therefore, h(C1)= L, as h(C1)≤ L.
Now suppose that k > 1. Consider the first iteration in which the cover C1 is

constructed. Let h := h(C1). We shall prove that the new instance (U,S′), obtained
after updating S (steps 14 to 19 of the algorithm), has load L′ equal to L− h. For
that, it suffices to show the following two properties (of the cover C1):

(1) There is no overlap of sensors in C1 in critical regions; and
(2) If i is a position in which an overlap of sensors in C1 occur, then L(i)≥ L+ h.

As C1 is a minimal cover, each position in U is covered by at most two sensors
in C1.

To show (1), suppose that there is an overlap of two sensors s1 and s2 of C1 in
a position i that belongs to a critical region. Suppose l(s1) < l(s2). Let i′ ∈ R(s2)

be the first position (smallest integer) where there is no overlap of sensors in C1,
that is, s2 is the only sensor in C1 which covers i′. There must be at least one such
position, otherwise C1 would have redundant sensors.

By the choice of s2, every sensor of S live at i′ is also live at i. This way,
L(i)≥ L(i′)+ d(s1) > L, where the last inequality follows from the fact that d(s1)

is nonzero. By the definition of critical region, however, L(i)= L. Thus, we have a
contradiction, and this concludes the proof of property (1).

Now we shall prove (2), using a reasoning similar to the one presented to prove
(1). Let i ∈ U be a position in which there is an overlap of two sensors s1 and
s2 of C1. By (1), we know that i does not belong to a critical region. Suppose
l(s1) < l(s2); and let i′ ∈ R(s2) be the first position where there is no overlap of
sensors of C1.

Algorithms for Scheduling Sensors to Maximize Coverage Time 213

By the choice of s2, every sensor in S live at i′ is also live at i. Therefore, we
have

L(i) ≥ L
(
i′
)+ d(s1)

≥ L
(
i′
)+ h as h= h(C1)= min

s∈C1
d(s)

≥ L+ h
(
as L

(
i′
)≥ L

)
.

The properties (1) and (2) guarantee that, after the assignment of the sensors in
the cover C1, the new instance (U,S′), obtained after removing from S the sen-
sors in the cover C1 and updating the durations of the sensors in C1, has total load
L′ = L− h. By the induction hypothesis,

∑k
j=2 h(Ci)= L− h. Thus, we have that

∑k
j=1 h(Ci)= L, and, therefore, the algorithm returns a schedule of duration L. �

From the previous theorem and the analysis of the algorithm RSC-PREEMPTIVE,
we have the following result.

Corollary 1 The algorithm RSC-PREEMPTIVE finds an exact optimal solution for
the RSCP problem, the preemptive version of RSC, in quadratic time.

Proof The sorting of the n sensors in S takes time O(n logn). In each iteration
(in which a new cover is found), the algorithm removes at least one sensor (steps
14–19). Then, there are at most n calls to the algorithm.

Note that the construction of a cover takes time O(n), as each sensor in the sorted
set of (at most n) sensors is checked at most once and can be selected only once.
Therefore, each iteration runs in time O(n). Hence, the algorithm returns a schedule
in time O(n2).

By Theorem 2, the algorithm finds a schedule with duration L. Since L is an
upper bound for OPT, we conclude that the algorithm finds an optimal solution. �

6 Concluding Remarks

As we have shown, the algorithm RSC-GV is a 4-approximation for the RSC prob-
lem, and its ratio analysis cannot be improved. This is a rather simple algorithm, so
it is a challenge to devise as simple algorithms with better bounds. It would also be
interesting to prove a non-trivial inapproximability bound for this problem.

It can be shown that the RSC problem admits no FPTAS (fully polynomial time
approximation scheme), or that it cannot be approximated within a factor better than
L

L−1 , unless P = NP. These inapproximability results can be derived by a reduction
from the 3-PARTITION problem (known to be NP-complete in the strong sense). For
that, one can use the reduction shown by L. Stockmeyer to prove that the DYNAMIC

STORAGE ALLOCATION problem is NP-complete (see in [4] the reduction provided
by Garey and Johnson [6]).

214 R. da Ponte Barbosa and Y. Wakabayashi

The possibility of a PTAS for the RSC problem is not discarded. It would be
interesting to settle this.

As far as the integer programming formulation for the RSC problem, we note
that it has O(nL) constraints, a number that can be exponential in the input size. In
view of this, we found it surprising that instances up to n= 100 sensors (and nL up
to 7000) could be solved within 1800 seconds. Finding valid inequalities to use as
cuts in the implementation can be of interest as they may accelerate the process. It
would be interesting to investigate the possibility of finding an ILP formulation of
size polynomial in the input.

As for the preemptive variant, we have shown an exact algorithm that runs in
quadratic time. The algorithm is simple, does not require finding maximum flows,
and can be easily implemented.

Acknowledgements The authors thank the referee for the valuable comments and suggestions.
They also thank FAPESP (Proc. 2009/03589-0), CNPq (Proc. 475064-2010-0, 303987/2010-3,
477203/2012-4) and Project USP MaCLinC/NUMEC for the partial support obtained.

References

1. Beasley, J.:. OR library. people.brunel.ac.uk/~mastjjb/jeb/info.html
2. Buchsbaum, A., Karloff, H., Kenyon, C., Reingold, N., Thorup, M.: OPT versus LOAD

in dynamic storage allocation. SIAM J. Comput. 33(3), 632–646 (2004). doi:10.1137/
S0097539703423941

3. Buchsbaum, A., Efrat, A., Jain, S., Venkatasubramanian, S., Yi, K.: Restricted strip covering
and the sensor cover problem. In: Proceedings of the 18th Annual ACM Symposium on Discrete
Algorithms, pp. 1056–1065. SIAM, Philadelphia (2007)

4. Buchsbaum, A., Efrat, A., Jain, S., Venkatasubramanian, S., Yi, K.: Restricted strip covering
and the sensor cover problem. E-print (2008). arXiv:cs/0605102

5. da Ponte Barbosa, R., Wakabayashi, Y.: A better approximation ratio and an IP formulation for
a sensor cover problem. In: LATIN 2012: Theoretical Informatics. Lecture Notes in Comput.
Sci., vol. 7256, pp. 49–60. Springer, Berlin (2012)

6. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-
Completeness. A Series of Books in the Mathematical Sciences. Freeman, San Francisco
(1979)

7. Gibson, M., Varadarajan, K.: Decomposing coverings and the planar sensor cover problem.
In: Proceedings of the 50th Annual IEEE Symposium on Foundations of Computer Science,
pp. 159–168 (2009)

people.brunel.ac.uk/~mastjjb/jeb/info.html
http://dx.doi.org/10.1137/S0097539703423941
http://dx.doi.org/10.1137/S0097539703423941
http://arxiv.org/abs/arXiv:cs/0605102

How Many Steiner Terminals Can You Connect
in 20 Years?

Ralf Borndörfer, Nam-Dũng Hoang, Marika Karbstein, Thorsten Koch,
and Alexander Martin

Abstract Steiner trees are constructed to connect a set of terminal nodes in a graph.
This basic version of the Steiner tree problem is idealized, but it can effectively
guide the search for successful approaches to many relevant variants, from both a
theoretical and a computational point of view. This article illustrates the theoretical
and algorithmic progress on Steiner tree type problems on two examples, the Steiner
connectivity and the Steiner tree packing problem.

1 Introduction

The Steiner tree problem (STP) is one of the showcases of combinatorial optimiza-
tion. It deals with finding a best connection of a number of vertices in a network and
can formally be stated as follows:

Given a weighted graph G = (V ,E, c) and a non-empty set of vertices T ⊆ V called ter-
minals, find an edge set S∗ such that (V (S∗), S∗) is a tree of minimal weight that spans T .

The STP is extensively covered in the literature, see [33, 35] for an introduction
and [32] for a state-of-the-art survey on models and solution techniques. Many

R. Borndörfer (B) · M. Karbstein · T. Koch
Konrad-Zuse-Zentrum für Informationstechnik Berlin, Takustr. 7, 14195 Berlin, Germany
e-mail: borndoerfer@zib.de

M. Karbstein
e-mail: karbstein@zib.de

T. Koch
e-mail: koch@zib.de

N.-D. Hoang
Faculty of Mathematics, Mechanics, and Informatics, Vietnam National University, 334 Nguyen
Trai, Hanoi, Vietnam
e-mail: hoangnamdung@hus.edu.vn

A. Martin
Department Mathematik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstr. 11,
91058 Erlangen, Germany
e-mail: alexander.martin@math.uni-erlangen.de

M. Jünger, G. Reinelt (eds.), Facets of Combinatorial Optimization,
DOI 10.1007/978-3-642-38189-8_10, © Springer-Verlag Berlin Heidelberg 2013

215

mailto:borndoerfer@zib.de
mailto:karbstein@zib.de
mailto:koch@zib.de
mailto:hoangnamdung@hus.edu.vn
mailto:alexander.martin@math.uni-erlangen.de
http://dx.doi.org/10.1007/978-3-642-38189-8_10

216 R. Borndörfer, N.-D. Hoang, M. Karbstein, T. Koch, and A. Martin

papers claim real-world applications, especially in VLSI-design and wire-routing,
but also in telecommunication and traffic network design. Such applications usu-
ally refer to generalizations of the STP, which still require to connect a number of
terminals, but by more than one tree, by something that is not precisely a tree, a
constrained tree, etc. Such stipulations have always made Steiner trees a lively and
exciting research topic for theoreticians and practitioners alike. Theoretical progress
on the STP will typically serve as a blueprint to approach a particular Steiner tree
problem; this knowledge is supplemented by specific developments, which in turn
can advance the general theory. This is the Martin Grötschel way of optimization.

We illustrate (t)his approach in this article using two examples, the Steiner con-
nectivity problem (SCP) and the Steiner tree packing problem (STPP). The SCP, dis-
cussed in Sect. 2, generalizes the STP by connecting the terminals using a set of
paths instead of edges; this is motivated by line planning problems in public and
rail transit, see [3]. The Steiner connectivity problem serves as an example that of-
ten results can be transferred from the basic Steiner tree problem to a more general
setting, however, not all results and not always in a completely straightforward way.
The STPP, studied in Sect. 3, deals with connecting several sets of terminals by sev-
eral trees that cannot share edges; this models the internal wiring in a chip. The
Steiner tree packing problem is difficult because it integrates a connection and a
packing aspect; it is particularly well suited to illustrate the algorithmic progress of
the last 20 years. However, chips are much larger now and the challenge has also
grown. Steiner trees will therefore remain an exciting topic, at least until Martin
Grötschel’s 100th birthday—can there be a better message?

2 The Steiner Connectivity Problem

Transportation and networks have always been two of Martin Grötschel’s favorite
topics and it was therefore inevitable that at some point he would get involved in a
research project on designing the line system of a public transportation system. Iden-
tifying origin-destination demand points with terminals, and lines with hyperedges,
this leads directly to a hypergraph version of the Steiner tree problem, which we
denote the Steiner connectivity problem, see [4, 23]. How difficult is this? In such
a case, Martin Grötschel will always advocate a thorough investigation with a care-
ful look at details, which can or cannot make a big difference. In particular, when
it comes to graphs, digraphs, and hypergraphs, he becomes furious about “sloppy
notation” that doesn’t distinguish between uv, (u, v), and {u,v}, because results do
not automatically carry over between these cases. Martin Grötschel is correct, and
the ability to seamlessly shift his attention from little details to the grand picture is
without doubt one of his greatest strengths.

A formal description of the Steiner connectivity problem (SCP) is as follows. We
are given an undirected graph G = (V ,E), a set of terminal nodes T ⊆ V , and a
set of elementary paths P in G. The paths have nonnegative costs c ∈ R

P
≥0. The

problem is to find a set of paths P ′ ⊆ P of minimal cost
∑

p∈P ′ cp that connect the

How Many Steiner Terminals Can You Connect in 20 Years? 217

Fig. 1 Example of a Steiner connectivity problem. Left: A graph with four terminal nodes
(T = {a, d, e, f }) and six paths (P = {p1 = (ab, bc, cd),p2 = (ef,fg),p3 = (ae),p4 = (ef,

f c),p5 = (gd),p6 = (fg,gc, cd)}). Right: A feasible solution with three paths (P ′ = {p3,

p4,p6})

terminals, i.e., such that for each pair of distinct terminal nodes t1, t2 ∈ T there exists
a path q from t1 to t2 in G such that each edge of q is covered by at least one path of
P ′. We can assume w.l.o.g. that every edge is covered by a path, i.e., for every e ∈E

there is a p ∈ P such that e ∈ p; in particular, G has no loops. Figure 1 gives an
example of a Steiner connectivity problem and a feasible solution. Identifying the
paths P with hyperedges in the hypergraph (V ,P) leads to an equivalent statement
in terms of hypergraphs, in which the terminals have to be connected by a minimum
cost set of hyperedges.

The Steiner connectivity problem is a good example for an extension study. In-
deed, many results on Steiner trees can be generalized to the hypergraph setting, but
not all, and not all directly. We illustrate this for two cases, namely, the 2-terminal
case, and the “all-terminal case”, where all nodes are terminals. The latter general-
izes spanning trees to “spanning sets”, but, in contrast to the graphical case, is NP-
hard. The first deals with finding a shortest hyperpath; we will see that structural
properties of shortest paths carry over to this situation by proving the companion
theorem to Menger’s theorem for hypergraphs. A further polyhedral and computa-
tional investigation of the Steiner connectivity problem can be found in [4].

2.1 The All-Terminal Case and the Greedy Algorithm

The all-terminal case T = V of the Steiner tree problem is a simple minimum span-
ning tree problem. In the Steiner connectivity setting, however, this case is hard.
This is because of a strong relation between the SCP and the set covering problem
that will be discussed now.

Proposition 1 The Steiner connectivity problem is NP-hard for T = V , even for
unit costs.

218 R. Borndörfer, N.-D. Hoang, M. Karbstein, T. Koch, and A. Martin

Fig. 2 Top: A Steiner connectivity instance corresponding to a set covering instance with
S = {a, b, c, d, e} and M = ({a, c}, {b, d}, {b, c}, {c, e}, {a, d, e}). Bottom: A minimal solution for
the Steiner connectivity problem corresponding to the minimal cover M′ = ({b, c}, {a, d, e})

Proof We reduce the set covering problem to the all-terminal Steiner connectivity
problem. In a set covering problem we are given a finite set S and a set M ⊆ 2S .
The problem is to find a subset M′ ⊆ M of minimal cardinality |M′| such that for
all s ∈ S there exists an M ∈M′ with s ∈M .

Given a set covering instance, we define an all-terminal Steiner connectivity in-
stance in a graph G = (V ,E) as follows: The nodes are V = S ∪ {v} = T with v

being one extra node. Let us write V = {s0, s1, s2, . . .}, where v = s0. All nodes are
terminal nodes. We first assume that G is a complete graph and later remove all
edges that are not covered by paths after their construction. For each set M ∈ M
order the elements in M arbitrarily and construct a path beginning in node v and
passing through all nodes of M in the given order, compare with Fig. 2. The cost of
each such path is 1.

It is easy to see that a cover M′ with at most k elements exists if and only if a set
of paths exists that connects V with cost at most k, k ≥ 0. �

Corollary 1 SCP is strongly NP-hard for |T | = |V | − k, k constant.

Proof We add k isolated nodes to the graph G in the proof of Proposition 1. �

Proposition 2 There is no polynomial time α-approximation algorithm for SCP
with α = γ · log |V |, γ ≤ 1, unless P = NP .

Proof The transformation in Proposition 1 is approximation preserving, since there
exists a cost preserving bijection between the solutions of the set covering instance
and its corresponding Steiner connectivity instance. It has been shown that the set
covering problem is not approximable in the sense that there exists no polynomial
time approximation algorithm with approximation factor smaller than logarithmic
(in the number of nodes) unless P = NP , see Feige [10]. �

How Many Steiner Terminals Can You Connect in 20 Years? 219

The proof of Proposition 1 shows that the set covering problem can be trans-
formed to the all-terminal Steiner connectivity problem. On the other hand, the
all-terminal Steiner connectivity problem can be interpreted as a submodular set
covering problem. Recall that a function z : 2N → R from a set N = {1, . . . , n} to
the reals is submodular if the following inequalities hold:

z(A)+ z(B)≥ z(A∪B)+ z(A∩B) ∀A,B ⊆N.

The problem

min
S⊆N

{
∑

j∈S
cj : z(S)= z(N)

}

is called the submodular set covering problem if z is a nondecreasing submodular
function. We call this problem integer-valued if z : 2N → Z. Let N = P and define
for P ′ ⊆ P

z
(
P ′)= |V | − number of connected components in

(
V,E

(
P ′)),

where E(P ′) denotes the set of edges covered by the paths in P ′; z(P ′) can be
interpreted as the maximum number of edges in (V ,E(P ′)) containing no cycle.
Note that this definition corresponds to the rank function for an edge set in a graph-
ical matroid, i.e., z(P ′) = rank(E(P ′)), see, e.g., Oxley [31]. The function z is,
therefore, a nondecreasing, integer-valued, submodular set function; this follows
since E(P ′) ⊆ E(P ′′) for P ′ ⊆ P ′′. Note that z(P ′) = z(N) = z(P) = |V | − 1
means that P ′ connects V . Hence, the Steiner connectivity problem can be seen as
an integer-valued submodular set covering problem. We have z(p)= |p| for p ∈ P
and z(∅) = 0. For such problems, there exists a greedy algorithm that works fairly
well:

Theorem 1 (Wolsey [37], 1982) There is a greedy heuristic that gives an H(k) =∑k
i=1

1
i

approximation guarantee for integer-valued submodular set covering prob-
lems, where k = maxj∈N z({j})− z(∅).

Such a greedy algorithm therefore also gives an approximation guarantee of
H(k)=∑k

i=1
1
i

for the all-terminal Steiner connectivity problem if all paths contain
at most k edges. This bound is asymptotically optimal, see Feige [10] and compare
with Proposition 2.

Wolsey’s result generalizes an earlier one of Chvátal [8] who showed that a
greedy algorithm gives an H(k)=∑k

i=1
1
i

approximation guarantee for the set cov-
ering problem, where k is the largest column sum. Chvátal’s reasoning can be ex-
tended to an elementary proof involving combinatorial counting arguments that are
interesting in their own right. It goes as follows.

The proof analyzes the greedy heuristic in Algorithm 1. This procedure starts
in an initial state in which each single node forms a smallest possible (connected)

220 R. Borndörfer, N.-D. Hoang, M. Karbstein, T. Koch, and A. Martin

Algorithm 1: Greedy heuristic for the SCP

Input : A connected graph G= (V ,E), a set of paths P with costs c ∈R
P
≥0.

Output: A set of paths P ′ ⊆ P that connects all nodes.

1 B0 := {{v}|v ∈ V }, P 0 := ∅, i := 1

2 while |Bi−1|> 1 do
3 p(i) := arg minp∈P { cp

N(p,i)
:N(p, i) > 0}

4 P ′ := P i := P i−1 ∪ {p(i)}
5 Bi := (Bi−1 \ {b1, . . . , bj })∪ {b1 ∪ . . .∪ bj } with

{b1, . . . , bj } := {b ∈ Bi−1 : p(i) ∈ P ,p(i)∩ b 	= ∅}
6 i := i + 1
7 end

component. The algorithm then chooses in each iteration a path that minimizes the
ratio of cost over the number of components that are connected by the path minus
one. These connected components are merged into a new connected component.
The algorithm terminates when everything has been merged into a single connected
component.

We use the following notation. Let Bi be the set of connected components and P i

the set of chosen paths after iteration i of Algorithm 1. Note that in each iteration
at least two connected components are merged, i.e., |Bi | decreases strictly with
increasing i. Let us further denote by

N(p, i) = z
(
P i−1 ∪ {p})− z

(
P i−1)

= rank
(
E
(
P i−1 ∪ {p}))− rank

(
E
(
P i−1))

= no. of conn. comp. in
(
V,E

(
P i−1))

− no. of conn. comp. in
(
V,E

(
P i−1 ∪ {p}))

the component reduction number of path p and iteration i, i.e., if p were chosen
in iteration i, the total number of connected components would reduce by N(p, i).
Note that N(p, i) is nonincreasing for increasing i, i.e., N(p,1) ≥ . . . ≥ N(p,n)

where n is the last iteration of Algorithm 1. Let P ′ = {p(1), . . . , p(n)}. Algo-
rithm 1 then computes a solution of cost c(P ′) =∑n

i=1 cp(i). Let, further, Popt =
{o1, . . . , om} be an optimal V -connecting set. Finally, we denote by H(k)=∑k

i=1
1
i

the sum of the first k terms of the harmonic series.
In order to analyze the greedy algorithm, we derive a lemma concerning the sum

of the component reduction numbers of the optimal paths in iteration i ∈ {1, . . . , n}.
This number is always greater than or equal to the sum of the component reduction
numbers of the paths that are chosen by the greedy algorithm.

How Many Steiner Terminals Can You Connect in 20 Years? 221

Lemma 1 In Algorithm 1 holds

∑

o∈Popt

N(o, i)≥
n∑

j=i

N
(
p(j), j

) ∀i = 1, . . . , n. (1)

Proof Consider the right hand side of inequality (1). We get

n∑

j=i

N
(
p(j), j

) = z
(
P i−1 ∪ {p(i)})− z

(
P i−1)+ z

(
P i ∪ {p(i + 1)

})− z
(
P i
)

+ . . .+ z
(
P n−1 ∪ {p(n)})− z

(
P n−1)

= z
(
P n
)− z

(
P i−1)= |V | − 1 − z

(
P i−1)

= no. of conn. comp. in
(
V,E

(
P i−1))− 1.

The claim then follows since each V -connecting set has to connect all connected
components in (V ,E(P i−1)). �

Proposition 3 The greedy Algorithm 1 gives an H(k) approximation guarantee for
Steiner connectivity problems, where k = maxp∈P |p| is the maximum path length,
i.e.,

c
(
P ′)≤

∑

p∈Popt

H
(|p|)cp ≤H(k)c(Popt).

Proof The idea of the proof is as follows. In a first step (assignment), we assign the
path p(i) ∈ P ′ (added to P ′ in iteration i = 1, . . . , n in Algorithm 1) to a subset of
optimal paths O(i) ⊆ Popt. In a second step (bounding), we show that the cost of
path p(i) can be bounded from above by the cost of the paths in O(i). In a third
step (summation), we show that the cost of each path of the optimal solution Popt is
used at most H(k) times in the bounding step.

1. Step: Assignment. Consider Algorithm 2. It assigns to each path p(i), i =
1, . . . , n, of the greedy algorithm (passed in reverse order), a set O(i) ⊆ Popt
of optimal paths. The component reduction value N(p(i), i) for each path p(i),
i = 1, . . . , n, is distributed to the paths o ∈ O(i). To this purpose values υ(o, i)
are computed such that υ(o, i) > 0 ⇔ o ∈O(i). More precisely, in each iteration
i a set O(i)⊆ Popt is chosen such that

∑

o∈O(i)

υ(o, i)=N
(
p(i), i

) ∀i = 1, . . . , n. (2)

Here, the values υ(o, i), o ∈O , i = 1, . . . , n, satisfy the following condition

n∑

j=i

υ(o, j)≤N(o, i) ∀o ∈O(i), i = 1, . . . , n. (3)

222 R. Borndörfer, N.-D. Hoang, M. Karbstein, T. Koch, and A. Martin

Algorithm 2: Assigning optimal paths to the paths of the greedy algorithm
υ(o, i) := 0,∀o ∈ Popt,∀i = 1, . . . , n

for i = n to 1 do
O(i) := ∅, z := 0
while z < N(p(i), i) do

Choose o ∈ Popt \O(i) with N(o, i)−∑n
j=i υ(o, j) > 0

υ(o, i) := min{N(o, i)−∑n
j=i υ(o, j),N(p(i), i)− z}

z := z+ υ(o, i)

O(i) :=O(i)∪ {o}
end

end

Lemma 1 ensures that these values υ(o, i), i = 1, . . . , n, exist.
2. Step: Bounding. Consider the path p(i), i ∈ {1, . . . , n}, in iteration i of Algo-

rithm 1 and the corresponding set O(i) = {o1, . . . , oh} defined in Algorithm 2.
Path p(i) achieves the minimum in the ratio test in Step 3 of Algorithm 1. Using
this fact and equation (2), the cost of p(i) can be bounded as follows

cp(i)
N(p(i),i)

≤ co1
N(o1,i)

...
cp(i)

N(p(i),i)
≤ co1

N(o1,i)

⎫
⎪⎪⎬

⎪⎪⎭
υ(o1, i) times

...
cp(i)

N(p(i),i)
≤ coh

N(oh,i)

...
cp(i)

N(p(i),i)
≤ coh

N(oh,i)

⎫
⎪⎪⎬

⎪⎪⎭
υ(oh, i) times

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

N
(
p(i), i

)
times.

Hence, we have cp(i) ≤∑o∈O(i)
co

N(o,i)
υ(o, i).

3. Step: Summation. We finally consider how often the costs of a path o ∈ Popt
are used in the bounding step. We have N(p, i) ∈ {0,1,2, . . . , |p|}, ∀p ∈ P ,
i = 1, . . . , n, hence, the total cost for a path o ∈O ⊆ P in the bounding step can
be rewritten as

n∑

i=1

co

N(o, i)
υ(o, i)= co

1
a1 + co

2
a2 + . . .+ co

|o|a|o|. (4)

Here, the coefficients

ak =
n∑

i=1
N(o,i)=k

υ(o, i), k = 1, . . . , |o|,

How Many Steiner Terminals Can You Connect in 20 Years? 223

Fig. 3 Worst case Steiner connectivity example for the greedy algorithm

are sums of the values υ(o, i). Note that N(o, i) is increasing for decreasing i.
Let sk ∈ {1, . . . , n} be the smallest iteration index of Algorithm 1 such that
N(o, sk)= k, k = 1, . . . , |o| (for k = |o| we have sk = 1), if such an index exists.
Then equation (3) implies

ak ≤
k∑

j=1

aj ≤ k, k = 1, . . . , |o|. (5)

This follows immediately if ak = 0, i.e., if N(o, i) 	= k for all i = 1, . . . , n. Oth-
erwise

k∑

j=1

aj =
k∑

j=1

n∑

i=1
N(o,i)=j

υ(o, i)=
n∑

i=sk

υ(o, i)≤N(o, sk)= k.

The term co
k

decreases with increasing k and is maximal for k = 1, and (5) im-
plies a1 ≤ 1. This means that the sum (4) is maximal for a1 = 1. Repeating this
argument for a2, etc., the sum (4) is maximal if all coefficients ak , k = 1, . . . , |o|,
are 1. We then get

n∑

i=1

co

N(o, i)
υ(o, i)≤ co

1
+ co

2
+ . . .+ co

|o| ≤ coH
(|o|).

Putting everything together, we get

c
(
P ′)=

n∑

i=1

cp(i) ≤
n∑

i=1

∑

o∈O(i)

co

N(o, i)
υ(o, i)

υ(o,i)=0 if o/∈O(i)=
∑

o∈Popt

n∑

i=1

co

N(o, i)
υ(o, i)≤

∑

o∈Popt

H
(|o|)co

≤H(k)c(Popt). �

Figure 3 shows a worst-case example for the greedy heuristic. We have k paths pi
consisting of one edge with cost cpi = 1

i
, i = 1, . . . , k, and one path consisting

of k edges with cost cpk+1 = 1 + ε, ε > 0. The greedy algorithm takes the paths
p1, . . . , pk in reverse order at a total cost of H(k). The optimal solution contains
only path pk+1 with a cost of 1 + ε.

224 R. Borndörfer, N.-D. Hoang, M. Karbstein, T. Koch, and A. Martin

2.2 The 2-Terminal Case and the Companion Theorem to
Menger’s Theorem

The 2-terminal case of the Steiner connectivity problem is to find a shortest set of
paths connecting two given nodes. This is equivalent to finding a shortest hyperpath
in a hypergraph that arises by interpreting paths as hyperedges. This problem can
in turn be transformed into an ordinary shortest path problem in a graph replacing
each path by a clique with edge weights equal to the path weight. In other words,
shortest hyperpaths behave just like shortest paths. Turning to several st-paths, it
is also known that Menger’s theorem, stating that the maximum number of edge
disjoint st-paths equals the minimum number of edges in an st-cut, generalizes
to hypergraphs, see Frank [11]. In the graph case, a further result is known, the
companion theorem to Menger’s theorem, that is obtained by interchanging the roles
of st-paths and st-cuts, see Robacker [36]. Both results together establish paths and
cuts in graphs as a blocking pair, see Fulkerson [12]. We show in this section that
the companion to Menger’s theorem also holds for hypergraphs. More precisely, we
prove the following theorem.

Theorem 2 The minimum cardinality of an st-hyperpath is equal to the maximum
number of hyperedge-disjoint st-hypercuts.

This result does not follow from the above mentioned shortest path transforma-
tion. In fact, we show a stronger result, namely, that the inequality system of the cut
formulation to find a shortest st-hyperpath (or 2-terminal Steiner connecting set) is
totally dual integral. This extends the blocking property of paths and cuts to hyper-
graphs and establishes a complete structural similarity between paths and 2-terminal
Steiner connecting sets.

We use the following notation. Let H = (V ,E) be a connected undirected hyper-
graph with costs ce ∈ R for all hyperedges e ∈ E , and s and t be two different nodes
of H . Consider the following linear program

(SH) min
∑

e∈E

cexe

s.t.
∑

e∈δ(W)

xe ≥ 1 ∀s ∈W ⊆ V \ {t} (6)

xe ≥ 0 ∀e ∈ E .

Here, we have a variable xe for each hyperedge e ∈ E . For W ⊆ V \ {t}, s ∈ W , an
st-hypercut δ(W)= {e ∈ E |e∩W 	= ∅, e∩ (V \W) 	= ∅} is the set of all hyperedges
having at least one node in each shore. The inequality (6) guarantees for each st-
hypercut that the sum of the x-values over all edges in this hypercut is at least 1. We
will see that for nonnegative costs the program (SH) always has an optimal solution
that is an st-hyperpath, i.e., a minimum cost set of hyperedges that connects s and t .

How Many Steiner Terminals Can You Connect in 20 Years? 225

Algorithm 3: Primal-dual shortest hyperpath algorithm

Input : A connected hypergraph H = (V ,E), costs c ∈ R
E
≥0, s, t ∈ V .

Output: A shortest st-hyperpath x ∈ {0,1}E .
1 d(s) := 0, d(v) := ∞ ∀v ∈ V \{s}, p(v) := s, e(v) := ∅ ∀v ∈ V

2 i := 1, v0 := s, W0 := ∅, yW := 0 ∀W ⊆ V \ {t}, s ∈W , xe := 0 ∀e ∈ E
3 while t /∈Wi−1 do
4 v := arg min{d(w)|w ∈ V \Wi−1}
5 for all f ∈ E \ δ(Wi−1) with v ∈ f do
6 for all w ∈ f \Wi−1 do
7 if d(w) > d(v)+ cf then
8 d(w) := d(v)+ cf , p(w) := v, e(w) := f

9 end
10 end
11 end
12 vi := v

13 yWi−1 := d(vi)− d(vi−1)

14 Wi :=Wi−1 ∪ {vi}
15 i := i + 1
16 end
17 k := 1, uk := t

18 while uk 	= s do
19 xe(uk) := 1, uk+1 := p(uk), k := k + 1
20 end

For nonnegative costs, the primal-dual Algorithm 3 computes an optimal integral
solution for program (SH) with xe ≤ 1, ∀e ∈ E . It generalizes Dijkstra’s algorithm to
the hypergraph setting and has a better complexity than the “clique transformation
method” mentioned at the beginning of the section. Its main purpose, however, is to
show that the inequality system of program (SH) is totally dual integral (TDI).

Theorem 3 The inequality system of program (SH) is TDI.

Proof Program (SH) has the following dual

max
∑

W∈W

yW

s.t.
∑

W∈W :e∈δ(W)

yW ≤ ce ∀e ∈ E (7)

yW ≥ 0 ∀W ∈ W ,

where W = {W ⊆ V \{t}|s ∈W }. If ce < 0 for an e ∈ E then (SH) has no finite solu-
tion since x is not bounded from above; with xe → ∞ we can improve the objective

226 R. Borndörfer, N.-D. Hoang, M. Karbstein, T. Koch, and A. Martin

arbitrarily. This means that we can assume a nonnegative integer cost vector in the
following. We prove the claim for this case by showing that the primal-dual shortest
hyperpath Algorithm 3 constructs optimal integral solutions x for (SH) and y for (7)
with the same objective value.

The algorithm adds nodes vi to sets Wi−1 = {v1, . . . , vi−1} in the order of in-
creasing distance d(vi) from s = v0 (= v1), i.e., d(vi−1)≤ d(vi) <∞, i = 1, . . . , h,
with h being the last iteration of the while loop 3. This produces a sequence of nested
st-hypercuts δ(Wi), i = 1, . . . , h− 1.

We first show that y is a solution of program (7). Lines 2 and 13 imply y ≥ 0. In
fact, the variables yW can take positive values only for W ∈ {W1, . . . ,Wh−1}.

It remains to show that

∑

W∈W :e∈δ(W)

yW ≤ ce ∀e ∈ E . (8)

Let e ∈ E . If vi /∈ e for all i = 1, . . . , h − 1, then e /∈ δ(Wi), i = 1, . . . , h − 1, i.e.,∑
W∈W :e∈δ(W) yW = 0 ≤ ce. Otherwise, let 1 ≤ i < h be the minimal index smaller

than h such that vi ∈ e, i.e., e /∈ δ(Wj) for 1 ≤ j < i < h but e ∈ δ(Wi), and let
i ≤ � ≤ h − 1 be the maximal index such that e ∈ δ(Wj) for i ≤ j ≤ �. Then in-
equality (8) becomes

∑

W∈W :e∈δ(W)

yW =
�∑

j=i

yWj
=

�∑

j=i

d(vj+1)− d(vj)

= d(v�+1)− d(vi)≤ ce.

For the last inequality we distinguish the cases v�+1 ∈ e and v�+1 /∈ e. The first case
follows since vi ∈ e. In the second case, � + 1 = h, i.e., v�+1 = vh = t and there
exists a node w ∈ e with w /∈ Wh−1. Since d(v�+1) = d(t) ≤ d(w) and w,vi ∈ e,
the second case follows analogously.

Now we show that x is a solution of program (SH). Due to the definition of x we
have x ≥ 0. We have to show that

∑

e∈δ(W)

xe ≥ 1 ∀s ∈W ⊆ V \{t}. (9)

Consider the nodes t = u1, . . . , uk = s computed in the while loop starting in line 18
and an st-hypercut δ(W). Let i be the largest index with ui /∈ W and ui+1 ∈ W .
This index exists since u1 = t /∈ W and uk = s ∈ W . Then we have xe(ui) = 1,
e(ui) ∈ δ(W), and inequality (9) is satisfied.

The objective value of program (7) is

h−1∑

i=1

yWi
=

h−1∑

i=1

d(vi+1)− d(vi)= d(vh)− d(v1)= d(t)− d(s)= d(t).

How Many Steiner Terminals Can You Connect in 20 Years? 227

Fig. 4 Example for a Grötschel 65-index of 3: The minimum cardinality of a 65-hyperpath
is |{pgray,plightgray,pdotted}| = 3. This equals the maximum number of hyperedge-disjoint
65-hypercuts |{{pgray}, {pblack,pdashed,plightgray}, {pdotted}}| = 3

We, finally, get for the objective value of program (SH)

d(t) = d(u1)= d(u2)+ ce(u1) = d(u3)+ ce(u2) + ce(u1) = . . .

= d(uk)+
k∑

i=1

ce(ui) = 0 +
∑

e∈E

cexe,

i.e., x and y have the same objective value and are therefore optimal for (SH)
and (7). Since ce is integral, it follows that d(vi) is integral for i = 0, . . . , h. There-
fore, yWi

, i = 1, . . . , h−1, is also integral (line 13). This shows the claim for ce ≥ 0,
e ∈ E . �

Setting c ≡ 1 yields Theorem 2, a combinatorial result on hypergraph connec-
tivity which has, to the best of our knowledge, not been considered before. Denote
the maximum number of hyperedge-disjoint st-hypercuts the Grötschel st-index of
a hypergraph. We can then restate Theorem 2 as follows:

Theorem 4 (Grötschel st-index Theorem) The minimum cardinality of an st-
hyperpath is equal to the Grötschel st-index.

Figure 4 gives an illustration. As this result is derived from a careful analysis
of the hypergraph vs. the graph case, we feel that it fits very well to dedicate this
Theorem to Martin Grötschel on the occasion of his 65th birthday.

Interchanging the roles of st-hyperpaths and st-hypercuts yields Menger’s theo-
rem for hypergraphs, see [11].

Theorem 5 The minimum cardinality of an st-hypercut is equal to the maximum
number of hyperedge-disjoint st-hyperpaths.

Grötschel’s and Menger’s Theorems 4 and 5 are therefore companion theorems
indeed.

228 R. Borndörfer, N.-D. Hoang, M. Karbstein, T. Koch, and A. Martin

3 The Steiner Tree Packing Problem

When Martin Grötschel came in 1989 to Alexander Martin and suggested the topic
of packing Steiner trees in graphs as a Ph.D. thesis, he became immediately very
curious about it. Martin Grötschel further supported it by saying that this is a topic
for the next decades. He claimed that very few is known when it comes to packing
problems in general, one reason among others is that it is open on how to integrate
and exploit dual information. And he seems to be right until today. We all know that
some progress has been made when it comes to classical packing problems such as
the set packing or the bin packing problem. But for the STPP, when the objects to
be packed have no fixed shape and are flexible in size and structure in dependence
on the other objects to be packed, the problem seems to be harder by orders of mag-
nitudes. None of the successful techniques like preprocessing or heuristics for the
single Steiner tree problem work anymore, and new ideas must be developed. With
very few exceptions, cf. [14–19], the STPP is still open for wonderful discoveries,
supporting once more the great ability of Martin Grötschel to identify future trends
and challenging problems.

The Steiner tree packing problem (STPP) looks at the following situation. In-
stead of having one set of terminals, we have N non-empty disjoint sets T1, . . . , TN ,
called Nets, that have to be “packed” into the graph simultaneously, i.e., the result-
ing edge sets S1, . . . , SN have to be pairwise disjoint. In these applications, G is
usually some sort of 3D grid graph. [19, 20, 27] give detailed explanations of the
modeling requirements in VLSI-design. From a theoretical point of view, much less
is known, see [7, 26].

Three routing models for 2D or 3D grid graphs are of particular interest:

Channel routing: Here, a complete rectangular grid graph is used. The terminals of
the nets are exclusively located on two opposing borders. The size of the routing
area is not fixed in advance. All nets have only two terminals, i.e., |Ti | = 2.

Switchbox routing: We are given a complete rectangular grid graph. The terminals
may be located on all four sides of the graph. Thus, the size of the routing area
is fixed.

General routing: In this case the grid graph may contain holes or have a non-
rectangular shape. The size of the routing area is fixed and the terminals may
be located arbitrarily.

The intersection of the nets is an important issue in Steiner tree packing. Again
three different models are possible:

Manhattan (Fig. 5(a)) Consider some (planar) grid graph. The nets must be routed
in an edge disjoint fashion with the additional restriction that nets that meet at
some node are not allowed to bend at this node, i.e., so-called Knock-knees are
not allowed. This restriction guarantees that the resulting routing can be laid out
on two layers at the possible expense of causing long detours.

Knock-knee (Fig. 5(b)) Again, some (planar) grid graph is given and the task is to
find an edge disjoint routing of the nets. In this model Knock-knees are possible.

How Many Steiner Terminals Can You Connect in 20 Years? 229

Fig. 5 STPP intersection models. a Manhattan model. b Knock-knee model. c Node disjoint model

Very frequently, the wiring length of a solution is smaller than in the Manhattan
model. The main drawback is that the assignment to layers is neglected.

Node disjoint (Fig. 5(c)) The nets have to be routed in a node disjoint fashion. Since
no crossing of nets is possible in a planar grid graph, this requires a multi-layer
model, i.e., a 3D grid graph.

While channel routing usually involves only a single layer, switchbox and gen-
eral routing problems are typically multi-layer problems. Using the Manhattan and
Knock-knee intersection is a way to reduce the problems to a single layer. Accord-
ingly, the multi-layer models typically use the node disjoint intersection. While the
multi-layer model is well suited to reflect reality, the resulting graphs become quite
large. We consider two possibilities to model multiple layers; a third possibility is
to use a single-layer model with edge capacities greater than one:

k-crossed layers (Fig. 6(a)) A k-dimensional grid graph (i.e., k copies of a grid
graph are stacked on top of each other and corresponding nodes are connected
by perpendicular lines, so-called vias) is given, where k denotes the number of
layers. This is called the k-layer model in [27].

k-aligned layers (Fig. 6(b)) This model is similar to the crossed-layer model, but
in each layer there are only connections in one direction, either east-to-west or
north-to-south. [27] calls this the directional multi-layer model. [26] indicate
that for k = 2 this model resembles the technology used in VLSI-wiring best. It
is mentioned in [2] that current technology can use a much higher number of
layers (20 and more).

Note that for switchbox routing there is a one-to-one mapping between feasible so-
lutions for the Manhattan one-layer model (MOL) and the node disjoint two-aligned-
layer model (TAL), assuming that there are never two terminals on top of each other,
i.e., connected by a via.

For the general routing model, this mapping might not be possible. If a terminal
is within the grid, there is no easy way to decide the correct layer for the terminal in
the two-layer model.

Unfortunately, in the seven “classic” instances given by [6, 9, 29] two terminals
are connected to a single corner in several cases. This stems from the use of connec-

230 R. Borndörfer, N.-D. Hoang, M. Karbstein, T. Koch, and A. Martin

Fig. 6 STPP modeling taxonomy. a Multi-crossed layers. b Multi-aligned layers. c With connec-
tors

tors, i.e., the terminal is outside the grid and connected to it by a dedicated edge. In
the multi-layer models there has to be an edge from the terminal to all permissible
layers (Fig. 6(c)).

The Knock-knee one-layer model can also be seen as an attempt to approximate
the node disjoint two-crossed-layer model. But mapping between these two mod-
els is not as easy. [5] have designed an algorithm that guarantees that any solution
in the Knock-knee one-layer model can be routed in a node disjoint four-crossed-
layer model, but deciding whether three layers are enough has been shown to be
NP-complete by [28].

For our computational investigations we will use a multicommodity flow formu-
lation [25] that was proposed by [38] for the STP. Given a weighted bidirectional
grid digraph G = (V ,A, c) and sets T1, . . . , TN , N > 0, |Tn| > 0 of terminals, we
arbitrarily choose a root rn ∈ Tn for each n ∈ N := {1, . . . ,N}. Let R = {rn|n ∈ N }
be the set of all roots and T =⋃n∈N Tn be the union of all terminals. We intro-
duce binary variables xnij for all n ∈ N and (i, j) ∈ A, where xnij = 1 if and only if
arc (i, j) ∈ Sn. Additionally, we introduce binary variables ytij , for all t ∈ T \R. For

all i ∈ V , we define δ+
i := {(i, j) ∈A} and δ−

i := {(j, i) ∈A}. For all t ∈ Tn, n ∈N ,
we define σ(t) := n. The following formulation models all routing choices for any
number of layers, crossed and aligned, with Knock-knee intersection:

min
∑

n∈N

∑

(i,j)∈A
cnij x

n
ij (10)

∑

(i,j)∈δ−
j

ytij −
∑

(j,k)∈δ+
j

ytjk

=
⎧
⎨

⎩

1 if j = t

−1 if j = rσ(t)
0 otherwise

⎫
⎬

⎭ for all j ∈ V, t ∈ T \R (11)

0 ≤ ytij ≤ x
σ(t)
ij for all (i, j) ∈A, t ∈ T \R (12)

∑

n∈N
(xnij + xnji)≤ 1 for all (i, j) ∈A (13)

How Many Steiner Terminals Can You Connect in 20 Years? 231

Fig. 7 LP relaxation solution
violates (17)

xnij ∈ {0,1} for all n ∈N , (i, j) ∈A (14)

ytij ∈ {0,1} for all t ∈ T \R, (i, j) ∈A (15)

To use node disjoint intersection we have to add:

∑

n∈N

∑

(i,j)∈δ−
j

xnij ≤
{

0 if j ∈R

1 otherwise
for all j ∈ V. (16)

3.1 Valid Inequalities

For the node disjoint crossed-layer model there is a class of simple but very effec-
tive cuts, which are introduced in [21]. Consider a STPP problem of two nets, each
has two terminals as in Fig. 7. The flows shown in the picture correspond to an op-
timal solution of the LP relaxation. However, it can be seen that if none of the two
flows (r1, t1) and (r2, t2) leaves the upper layer, they have to cross each other, i.e.,
the node disjoint intersection condition is violated. In the following we construct
cuts, which cut off the fractional solution in Fig. 7.

A pair (s1, t1), (s2, t2) ∈ T × (T \R) are called crossed if these four terminals lie
on the boundary and in the same layer, σ(s1)= σ(t1), σ(s2)= σ(t2), σ(s1) 	= σ(s2),
and, moreover, the line segments (s1, t1) and (s2, t2) cross each other. Let C be the
set of all crossing pairs and for each node v we denote by vz the layer number of
node v. Then the following inequality is valid for (10):

∑

ij∈A
iz=(r1)z,jz 	=iz

y
t1
ij + y

t2
ij ≥ 1, ∀((r1, t1), (r2, t2)

) ∈ C(R), (17)

where C(R) := {((s1, t1), (s2, t2)) ∈ C|s1, s2 ∈ R}. Equation (17) means that at least
one of the two flows (r1, t1) and (r2, t2) has to leave the layer containing these
terminals.

A triple (r1, t1), (r2, t2), (r3, t3) ∈ R × (T \R) is called a crossing triple if each
two of them are a crossing pair in C(R). Let CT be the set of all crossing triples

232 R. Borndörfer, N.-D. Hoang, M. Karbstein, T. Koch, and A. Martin

then the following inequality is valid for (10):
∑

ij∈A
iz=(r1)z,jz 	=iz

y
t1
ij + y

t2
ij + y

t3
ij ≥ 2, ∀((r1, t1), (r2, t2), (r3, t3)

) ∈ CT . (18)

This is a direct implication from summing up the three corresponding inequalities
of type (17) taking into account that the variables have to be integral.

Based on the same principle, we can derive more valid cuts involving both vari-
ables x and y. Again, we assume that all terminals lie on the boundary. Let u and v

be two terminals in one layer of a net n and the root of this net does not belong to
the layer containing u and v. If there exist a root r and a terminal t of another net
such that (u, v) and (r, t) cross each other, i.e., ((u, v), (r, t)) ∈ C, then the following
inequality is valid for (10)

∑

ij∈A
jz=tz,jz 	=iz

ytij + xnij ≥ 2. (19)

The following valid cut is similar to (19) but two terminal pairs and three ter-
minals of a third net are involved. We consider an arbitrary net n with at least
three terminals and four terminals r1, t1, r2 and t2 of two other nets n1 and n2,
σ(r1)= σ(t1)= n1 	= n, σ(r2)= σ(t2)= n2 	= n, n1 	= n2, with r1, r2 ∈ R. If there
exist three terminals u, v and w of net n lying in the same layer such that

∀{s, t} ⊂ {u,v,w}, s 	= t : ((s, t), (r1, t1)
) ∈ C or

(
(s, t), (r2, t2)

) ∈ C, (20)

then the following inequality is valid:
∑

ij∈A
jz=(t1)z,jz 	=iz

y
t1
ij + y

t2
ij + xnij ≥ 2. (21)

Since all terminals lie on the boundary, each line segment between two terminals,
which crosses an edge of a “triangle” of three terminals (including the case that they
lie in a line), crosses exactly two edges of this triangle. Therefore, condition (20)
just ensures that the line segments (r1, t1) and (r2, t2) cross the triangle (u, v,w)

in two different pairs of edges. Inequality (21) means that the total number of vias
used by the flows (r1, t1) and (r2, t2) and the net n to enter the layer containing these
terminals is at least two. The proof can be found in [21]. Moreover, one can prove
that, if u, v and w satisfy the above condition and u, v and w do not lie in the same
layer as the root of net n then the following inequality is valid:

∑

ij∈A
jz=(t1)z,jz 	=iz

y
t1
ij + y

t2
ij + xnij ≥ 3. (22)

The proof can also be found in [21].

How Many Steiner Terminals Can You Connect in 20 Years? 233

The next type of valid inequality does not require any of the terminals to be the
root of the net they belong to. For arbitrary three terminals u1, v1 and w1 of a net
n1, and arbitrary three terminals u2, v2 and w2 of a net n2 	= n1, if

∀{s1, t1} ⊂ {u1, v1,w1},∃{s2, t2} ⊂ {u2, v2,w2} : ((s1, t1), (s2, t2)
) ∈ C, (23)

and

∀{s2, t2} ⊂ {u2, v2,w2},∃{s1, t1} ⊂ {u1, v1,w1} : ((s1, t1), (s2, t2)
) ∈ C, (24)

i.e., the two triangles (u1, v1,w1) and (u2, v2,w2) cross each other, then the follow-
ing inequality is valid for (10):

∑

ij∈A
jz=(u1)z,jz 	=iz

x
n1
ij + x

n2
ij ≥ 2 + δ1 + δ2, (25)

where δi is 1 if the root of net ni does not lie in the same layer as ui , vi and wi , and
0 otherwise.

3.2 Heuristics

As we will see in the following the above described model provides very strong
lower bounds in practice. Nevertheless, current IP solvers often not only fail to solve
the IP model to optimality, it is even very time-consuming to find a feasible solution.

However, based on the special structure of the grid graph we can find optimal
solutions for all of our considered instances in reasonable time. The following is an
extension to [21] and describes the heuristics we developed to improve the solution
of the STPP. The heuristics presented in this section are based on solving the IP of
relaxed problems. There are two kinds of relaxed problems. The first one is also the
STPP problem using the multicommodity flow formulation (10) but on a subgraph
of the original grid graph. The second one is the original multicommodity flow IP
where some variables are fixed based on a given feasible solution of the original
problem. In the following we call these two kinds of heuristics phase 1 and phase 2,
respectively. The solving process of the STPP starts with phase 1 and then executes
phase 2. The two phases of the heuristics are presented in detail below.

3.2.1 Heuristics Phase 1

Computational results show that feasible solutions of the multi-aligned layers can be
found easily if they exist. This motivates us to consider a heuristic process, where
instead of starting solving the original multi-crossed layers model, we solve sev-
eral STP problems corresponding to some sparser underlying grids, e.g., the multi-
aligned layers grid. After each step we obtain a feasible solution. Then we add some

234 R. Borndörfer, N.-D. Hoang, M. Karbstein, T. Koch, and A. Martin

Algorithm 4: Heuristics phase 1

Step 1: Solve the STPP on the multi-aligned layers grid.

Step 2: Add all missing edges in the set S(l2, r2, b2, t2) to the grid graph in
Step 1. Find a good solution of the STPP on this new grid graph using the
solution of Step 1 as starting solution.

Step 3: Add all missing edges in the set S(l3, r3, b3, t3) to the grid graph in
Step 2. Find a good solution of the STPP on this new grid graph using the
solution of Step 2 as starting solution.

Fig. 8 STPP heuristics phase 1—underlying grid graphs. a Step 1. b Step 2. c Step 3

edges to the grid and resolve the STP problem which corresponds to the new grid,
using the solution from the previous step as a start value for the optimization prob-
lem. The question is which edges should be added in each step. There is no optimal
strategy at the moment. Algorithm 4 describes our implemented algorithm, where
S(l, r, b, t) is the set of all edges lying outside [l,K − r] × [b,L− t], i.e.,

S(k, l) := {(i, j) ∈E
∣∣ (ix, iy), (jx, jy) /∈ [l,K − r] × [b,L− t]},

with (ix, iy) is the coordinate of the vertex i in the layer which it belongs to, [0,K]×
[0,L] is the given grid, and E is the set of edges in the multi-crossed layer model.

Figure 8 demonstrates the grid graphs in the three steps, where the added edges
are dotted.

It is still unknown what is the best way to choose the parameters (l2, r2, b2, t2)

and (l3, r3, b3, t3). For the instances in Sect. 3.3 we choose l2 = r2 = b2 = t2 = 3
for pedabox-2 and l2 = r2 = b2 = t2 = 5 for the other instances. In step 3, to obtain
the parameters l3, r3, b3, t3, we increase the corresponding parameters l2, r2, b2, t2
from step 2 by at most 2. For example, we choose l3 = r3 = 7 and b3 = t3 = 6 for
the instances difficult-2 and more-diff-2.

How Many Steiner Terminals Can You Connect in 20 Years? 235

Fig. 9 STPP heuristics phase 2—fixing regions

3.2.2 Heuristics Phase 2

Having a feasible solution from heuristics phase 1 we can start the fixing heuristics.
Figure 9 shows an example for the procedure of these heuristics. This figure reads
from left to right and from top to bottom. Let us start with the picture on top left.
We fix the variables corresponding to the edges in the gray region to the values
of the given feasible solution for those variables. Then we solve the IP (10) with
those fixings and obtain a possibly better feasible solution. With the newly obtained
feasible solution we go to the second step described by the second picture in the
top of Fig. 9, where again the fixing area is colored by gray, and so on. The given
feasible solution from the beginning is improved step by step, where each step uses
the best feasible solution obtained in the previous step for fixing. At the moment
there is no common rule for the fixing region and the number of steps. Algorithm 5
presents the pseudo code of phase 2 in our implemented code. We execute four steps
with the sequence of the fixing regions as the four pictures either on the left side or
on the right side of Fig. 9, respectively, as follows. Let K×L be the size of the grid.
Without loss of generality, we assume that K ≤ L. Otherwise we have to modify the
following definition accordingly by switching the role of K and L. The four fixing
regions are defined as

Fl :=
{
(i, j) ∈E

∣∣∣∣ iy, jy ≤
⌊
K

pl

⌋}
, l = 1,3

Fl :=
{
(i, j) ∈E

∣∣∣∣ iy, jy ≥K −
⌊
K

pl

⌋}
, l = 2,4,

where 3 ≤ p1,p2 ≤ 4 and 5 ≤ p3,p4 ≤ 6 are chosen depending on instances. For
our considered instances, this procedure gives us already optimal solutions. How-
ever, for larger instances, we may need to execute more steps and/or use more types
of fixing regions, e.g., all eight steps in Fig. 9.

236 R. Borndörfer, N.-D. Hoang, M. Karbstein, T. Koch, and A. Martin

Algorithm 5: Heuristics phase 2

for i = 1 to 4 do
Choose Fi as the fixing region and the solution obtained from phase 1 in
the case i = 1 and from the previous loop i − 1 otherwise as the solution
used for fixing. Find a good solution of the corresponding relaxed problem.

end

Table 1 Results for the Knock-knee-one-layer model

Name Size N |T | B&B Nodes Time [s] LP relaxation Arcs

aug-dense-1 16 × 18 19 59 63 1,649 466.5 469

dense-1 15 × 17 19 59 150 1,199 438.0 441

difficult-1 23 × 15 24 66 1 17 464.0 464

mod-dense-1 16 × 17 19 59 1 29 452.0 452

more-diff-1 22 × 15 24 65 1 12 452.0 452

pedabox-1 15 × 16 22 56 1 7 331.0 331

termintens-1 23 × 16 24 77 1 96 535.0 536

3.3 Computational Results

In this section, we present computational results obtained by generating the inte-
ger program resulting from the directed multicommodity flow formulation with
ZIMPL [24] and then solving it with CPLEX 12.3 for the STPP instances taken
from [30]. All computations are done on a 48 GB RAM dual quad-core Intel Xeon
X5672 at 3.20 GHz with TurboBoost active and Hyperthreading deactivated. Since
the crossed-layer model proved to be much harder to solve, we used all eight cores,
while just one core was utilized for the other models. Still, for the crossed-layer
models we will use minutes as the unit for reporting time, in contrast to seconds
for the other models. As we had expected from earlier experiments, the MCF-Cuts
[1, 34] introduced by CPLEX 12 had no impact on solving the instances. The rea-
son is that the models used in this paper are not capacitated. If not noted otherwise,
CPLEX was used in default mode with integer optimality gap tolerance set to 0.0.

3.3.1 Results for the Knock-Knee One-Layer Model

Table 1 shows the results for the Knock-knee one-layer model. B&B Nodes de-
notes the number of Branch-and-Bound nodes including the root node evaluated by
CPLEX. The column labeled Time shows the consumed CPU time in seconds. LP

relaxation lists the objective function value of the initial LP relaxation of the root
node before any cuts applied by CPLEX. Finally, arcs is the total number of arcs

How Many Steiner Terminals Can You Connect in 20 Years? 237

used in the optimal solution which for one-layer models is equivalent to the optimal
objective value.

As we can see from the table, the LP relaxation of the flow model is rather strong.
This is in line with other reported results including [22, 30]. Since for difficult-
1, mod-dense-1, more-diff-1, and pedabox-1 the relaxation already provides the
optimal value, it is possible to solve these instances without any branching. For
termintens-1 the relaxation is one below the optimum, but CPLEX is able to push
the lower bound up by generating Gomory rounding and 0–1/2-Chvátal-Gomory
cuts. The number of B&B nodes and therefore the computing time depends very
much on the branching decisions taken. During our experiments the solutions were
always found in the tree and not by heuristics. By using improved settings, like
switching off the heuristics and just trying to move the best bound, the number of
nodes needed for aug-dense-1 and dense-1 can be at least halved.

3.3.2 Results for the Node Disjoint Multi-aligned-layer Model

Table 2 shows results for the node disjoint multi-aligned-layer model. Since this is a
multi-layer model we have to assign costs to the vias. These are given in the column
labeled Via-cost. The column labeled LP relaxation gives the objective value of the
initial LP relaxation. The next three columns list the numbers of vias, “regular” arcs,
and vias+arcs in the optimal solution.

In case of unit via costs, the objective value of the LP relaxation is equal to the ob-
jective value of the optimal integer solution for all instances except for more-diff-2.
The value of the LP relaxation for more-diff-2 is 518.6 (optimal 522). This is weaker
than the value reported in [19], which indicates that some of the strengthening cuts
used by [19] to tighten the undirected partitioning formulation can also be used to
tighten the directed flow formulation. On the other hand, for pedabox-2 the relax-
ation is stronger than reported. The instances where the LP relaxation does not reach
the optimum are different ones from the Knock-knee-one-layer model.

Via Minimization Traditionally via minimization is viewed as a separate prob-
lem after the routing has taken place [13]. Since we work with multi-layer mod-
els, via minimization is part of the routing. As can be seen in Table 2 we tried the
“classical” instances with three different cost settings for the vias. First unit costs
were used to minimize the total number of arcs, including vias. Next, the number
of vias was minimized by setting the cost to 1,000, which dominates the total cost
of all “regular” arcs, ensuring that a global minimum is reached. Finally, the cost
of each via was set to 0.001, effectively minimizing the number of “regular” arcs.
This results in solutions that have the same number of arcs as reported in [19] for
the Manhattan one-layer model.

Interestingly, the number of vias is constant for aug-dense-2, pedabox-2, modi-
fieddense-3, and dense-3. For the other instances, a minimization of the number of
vias always results in detours, i.e., a higher total number of arcs used.

238 R. Borndörfer, N.-D. Hoang, M. Karbstein, T. Koch, and A. Martin

Ta
bl

e
2

R
es

ul
ts

fo
r

th
e

no
de

di
sj

oi
nt

m
ul

ti-
al

ig
ne

d-
la

ye
r

m
od

el

N
am

e
Si

ze
N

|T
|

B
&

B
N

od
es

T
im

e
[s

]
V

ia
-c

os
t

L
P

re
la

xa
tio

n
V

ia
s

A
rc

s
V

ia
s+

A
rc

s

au
g-

de
ns

e-
2

16
×

18
19

59
1

32
1

50
4.

0
35

46
9

50
4

au
g-

de
ns

e-
2

16
×

18
19

59
1

20
10

00
35
,4

69
.0

35
46

9
50

4

au
g-

de
ns

e-
2

16
×

18
19

59
1

67
0.

00
1

46
9.

03
5

35
46

9
50

4

di
ffi

cu
lt-

2
23

×
15

24
66

1
23

1
52

6.
0

56
47

0
52

6

di
ffi

cu
lt-

2
23

×
15

24
66

7
18

1
10

00
50
,3

10
.2

72
7

51
48

4
53

5

di
ffi

cu
lt-

2
23

×
15

24
66

1
50

0.
00

1
46

8.
83

63
63

46
9

53
2

m
or

e-
di

ff
-2

22
×

15
24

65
5

11
3

1
51

8.
60

61
46

1
52

2

m
or

e-
di

ff
-2

22
×

15
24

65
37

70
5

10
00

50
,2

76
.8

46
5

53
48

1
53

4

m
or

e-
di

ff
-2

22
×

15
24

65
1

38
0.

00
1

46
0.

99
17

61
46

1
52

2

pe
da

bo
x-

2
15

×
16

22
56

1
10

1
39

0.
0

47
34

3
39

0

pe
da

bo
x-

2
15

×
16

22
56

11
34

10
00

45
,8

85
.1

33
3

47
34

3
39

0

pe
da

bo
x-

2
15

×
16

22
56

14
78

0.
00

1
34

1.
46

01
47

34
3

39
0

te
rm

in
te

ns
-2

23
×

16
24

77
1

28
1

59
6.

0
59

53
7

59
6

te
rm

in
te

ns
-2

23
×

16
24

77
1

31
10

00
55
,5

62
.0

55
56

2
61

7

te
rm

in
te

ns
-2

23
×

16
24

77
1

28
0.

00
1

53
7.

05
9

59
53

7
59

6

de
ns

e-
3

15
×

17
19

59
1

30
1

47
1.

0
35

43
6

47
1

de
ns

e-
3

15
×

17
19

59
1

21
10

00
35
,4

36
.0

35
43

6
47

1

de
ns

e-
3

15
×

17
19

59
1

44
0.

00
1

43
6.

03
5

35
43

6
47

1

m
od

-d
en

se
-3

16
×

17
19

59
1

24
1

48
5.

0
35

45
0

48
5

m
od

-d
en

se
-3

16
×

17
19

59
1

26
10

00
35
,4

50
.0

35
45

0
48

5

m
od

-d
en

se
-3

16
×

17
19

59
1

33
0.

00
1

45
0.

03
5

35
45

0
48

5

How Many Steiner Terminals Can You Connect in 20 Years? 239

Table 3 STPP new instances

Name Size N |T | Variables Constrains Non-zeros

Node disjoint two-aligned-layer model

sb80-80 81 × 81 60 158 6,168,636 5,150,535 19,965,324

sb99-99 100 × 100 70 183 10,906,800 9,052,440 35,250,720

Fig. 10 sb80-80

New Instances All the instances presented so far are relatively old and can be
solved in less than 12 minutes with CPLEX. To get an outlook on how far our ap-
proach will take us, we tried some new instances, see Table 3. sb80-80 and sb99-99
are randomly generated switchbox instances. sb80-80 is about 35 times the size of
the largest “classical” instance, and the resulting IP has more than six million vari-
ables and almost twenty million non-zero entries in the constraint matrix. sb99-99
is again about 2 times larger than sb80-80. As discussed in [21] and [25], for sev-
eral instances it was faster to solve the LP relaxations from scratch with the barrier
algorithm than to reoptimize with the dual simplex algorithm. This setting is used
for the new instances with a newer version of CPLEX, namely, CPLEX 12.4.

For sb80-80 the value of the LP relaxation turned out to be equal to the value of
the integer optimal solution, namely 6533, and only one branch and bound node is
needed. CPLEX takes 94,926 seconds to solve the root relaxation and finishes after
94,232 seconds, i.e., 26.18 hours, with the optimal solution, which has 226 vias and
6307 normal arcs, see Fig. 10.

The time for solving the root relaxation of sb99-99 is 356,664 seconds, i.e., 4.13
days. After more than 2 weeks CPLEX cannot either find a feasible solution or prove

240 R. Borndörfer, N.-D. Hoang, M. Karbstein, T. Koch, and A. Martin

that the problem is infeasible. Gurobi 5.0 also experiences the same difficulty with
this instance.

These computations show the bottleneck of our approach. The resulting IPs are
large and solving their LP relaxations is already very hard. Any improvement in
solving LP will turn out directly to an improvement in our approach.

3.3.3 Results for the Node Disjoint Multi-crossed-layer Model

Finally, we will have a look at the crossed-layer models. For the instances listed in
Table 4, except for dense-3 and mod-dense-3, the heuristics presented in Sect. 3.2
was used to provide CPLEX with a starting solution. For dense-3 and mod-dense-3
CPLEX quickly found solutions. Therefore, employing the heuristics provided no
advantage. For all instances the provided solution turned out to be already optimal.
The time needed to compute these initial solution is given under Heur.

To solve the instances we used 8 threads in opportunistic mode, the total times
needed including the heuristics is reported in column Total as minutes of wall clock
time. The optimization emphasis of CPLEX was set to “optimality”, cut generation
was set “aggressive” for Gomory-, 0–1/2-, and cover-cuts, all other cuts were set to
“moderate”. Furthermore, we explicitly added cuts (17)–(25) presented in Sect. 3.1
to the User-Cut pool of CPLEX.

While it is possible to find reasonable solutions with our heuristics, proving op-
timality is still a hard task. The table is ordered by an increasing difference between
the LP relaxation and the optimum value. As can be seen this is reflected quite well
in the number of B&B nodes needed to prove optimality. While the cuts we pre-
sented in this paper proved quite helpful, the main reason for the long running time
is that solving the node LPs is very time consuming. For example, the number of
B&B nodes that CPLEX needs to solve the instance termintens-2 is merely 3,453.
However, it takes 51.7 hours to solve the problem and 43.3 hours for the first 2,000
nodes.

Figure 11 shows the primal and dual bounds during the solving process of the
instance pedabox-2 with CPLEX using default setting and CPLEX using our heuris-
tics, valid cuts, and variables elimination. Clearly, our approach improves both pri-
mal and dual bounds. For pedabox-2 with unit via-cost, our heuristics found an
optimal solution after 17.8 minutes, while CPLEX alone could not find the optimal
value after more than 80 hours. For this problem our approach (using crossing cuts
and special heuristics) gives a dual bound of value 358.2311 directly after the root
node, while default CPLEX reaches this value only after 46.1 hours and 158,507
nodes. We stop solving with default CPLEX after 83.33 hours and 300,516 nodes,
and obtain a dual bound of 358.7628. This value is already reached by our approach
after 49.6 minutes and 471 nodes.

How Many Steiner Terminals Can You Connect in 20 Years? 241

Ta
bl

e
4

R
es

ul
ts

fo
r

th
e

no
de

di
sj

oi
nt

m
ul

ti-
cr

os
se

d-
la

ye
r

m
od

el

N
am

e
Si

ze
N

|T
|

H
eu

r
[m

]
To

ta
l[

m
]

B
&

B
N

od
es

L
P

re
la

xa
tio

n
V

ia
s

A
rc

s
V

ia
s+

A
rc

s

de
ns

e-
3

15
×

17
19

59
–

55
77

46
1.

80
62

30
43

4
46

4

m
od

-d
en

se
-3

16
×

17
19

59
–

88
12

1
47

6.
90

78
28

45
1

47
9

au
g-

de
ns

e-
2

16
×

18
19

59
10

8
26

9
22

7
49

2.
62

60
29

46
9

49
8

pe
da

bo
x-

2
15

×
16

22
56

18
11

2
3,

02
7

35
3.

42
75

26
33

6
36

2

di
ffi

cu
lt-

2
23

×
15

24
66

28
82

2
2,

21
4

49
2.

54
17

39
46

4
50

3

te
rm

in
te

ns
-2

23
×

16
24

77
97

3,
10

3
3,

45
3

57
3.

19
81

46
53

8
58

4

m
or

e-
di

ff
-2

22
×

15
24

65
60

30
,7

27
24
,7

13
48

1.
19

91
38

45
5

49
3

242 R. Borndörfer, N.-D. Hoang, M. Karbstein, T. Koch, and A. Martin

Fig. 11 pedabox-2 with unit
via cost—primal and dual
bounds

4 Conclusion and Outlook

The Steiner connectivity and the Steiner tree packing problem are just two exam-
ples of challenging and important questions to find the best possible connection of a
set of terminals in a graph. For such problems chances are good that we can derive
theoretical insights and come up with quite powerful solution algorithms, guided by
our knowledge of the basic case. We are admittedly still working on individual prob-
lem variants, far from anything like a universal solution engine, and, in fact, going
one step further into the direction of industrial models, e.g., in line planning or chip
design, immediately makes things much more difficult, and even more, since prob-
lem sizes of real-world problems are growing fast. But such is life, would Martin
Grötschel say. And he could still come, 20 years after Alexander Martin finished his
thesis, into the office of one of his Ph.D. students and talk enthusiastically about an
interesting and open Steiner problem.

Acknowledgements We thank an anonymous referee and the editors for helpful comments and
suggestions that improved the presentation of this paper. The work of Marika Karbstein was sup-
ported by the DFG Research Center MATHEON “Mathematics for key technologies”.

References

1. Achterberg, T., Raack, C.: The MCF-separator—detecting and exploiting multi-commodity
flows in MIPs. Math. Program. Comput. 2, 125–165 (2010)

2. Boit, C.: Personal communication (2004)
3. Borndörfer, R., Karbstein, M.: A direct connection approach to integrated line planning and

passenger routing. In: Delling, D., Liberti, L. (eds.) 12th Workshop on Algorithmic Ap-
proaches for Transportation Modelling, Optimization, and Systems. OpenAccess Series in
Informatics (OASIcs), vol. 25, pp. 47–57. Schloss Dagstuhl–Leibniz-Zentrum für Informatik,
Wadern (2012)

4. Borndörfer, R., Karbstein, M., Pfetsch, M.E.: The Steiner connectivity problem. Math. Pro-
gram., Ser. A (2012). doi:10.1007/s10107-012-0564-5

http://dx.doi.org/10.1007/s10107-012-0564-5

How Many Steiner Terminals Can You Connect in 20 Years? 243

5. Brady, M.L., Brown, D.J.: VLSI routing: four layers suffice. In: Preparata, F.P. (ed.) Advances
in Computing Research: VLSI Theory, vol. 2, pp. 245–258. Jai Press, London (1984)

6. Burstein, M., Pelavin, R.: Hierarchical wire routing. IEEE Trans. Comput.-Aided Des. Integr.
Circuits Syst. 2, 223–234 (1983)

7. Chopra, S.: Comparison of formulations and a heuristic for packing Steiner trees in a graph.
Ann. Oper. Res. 50, 143–171 (1994)

8. Chvátal, V.: A greedy heuristic for the set-covering problem. Math. Oper. Res. 4(3), 233–235
(1979)

9. Coohoon, J.P., Heck, P.L.: BEAVER: a computational-geometry-based tool for switchbox
routing. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 7, 684–697 (1988)

10. Feige, U.: A threshold of lnn for approximating set-cover. In: Proceedings of the 28th ACM
Symposium on Theory of Computing, pp. 314–318 (1996)

11. Frank, A.: Connections in Combinatorial Optimization. Oxford University Press, Oxford
(2011)

12. Fulkerson, D.R.: Blocking and anti-blocking pairs of polyhedra. Math. Program. 1, 168–194
(1971)

13. Grötschel, M., Jünger, M., Reinelt, G.: Via minimization with pin preassignments and layer
preference. Z. Angew. Math. Mech. 69(11), 393–399 (1989)

14. Grötschel, M., Martin, A., Weismantel, R.: Optimum path packing on wheels: the consecutive
case. Comput. Math. Appl. 31, 23–35 (1996)

15. Grötschel, M., Martin, A., Weismantel, R.: Packing Steiner trees: a cutting plane algorithm
and computational results. Math. Program. 72, 125–145 (1996)

16. Grötschel, M., Martin, A., Weismantel, R.: Packing Steiner trees: further facets. Eur. J. Comb.
17, 39–52 (1996)

17. Grötschel, M., Martin, A., Weismantel, R.: Packing Steiner trees: polyhedral investigations.
Math. Program. 72, 101–123 (1996)

18. Grötschel, M., Martin, A., Weismantel, R.: Packing Steiner trees: separation algorithms. SIAM
J. Discrete Math. 9, 233–257 (1996)

19. Grötschel, M., Martin, A., Weismantel, R.: The Steiner tree packing problem in VLSI design.
Math. Program. 78(2), 265–281 (1997)

20. Held, S., Korte, B., Rautenbach, D., Vygen, J.: Combinatorial optimization in VLSI design. In:
Chvátal, V. (ed.) Combinatorial Optimization—Methods and Applications. NATO Science for
Peace and Security Series—D: Information and Communication Security, vol. 31, pp. 33–96
(2011)

21. Hoàng, N.D., Koch, T.: Steiner tree packing revisited. Math. Methods Oper. Res. 76(1), 95–
123 (2012)

22. Jørgensen, D.G., Meyling, M.: Application of column generation techniques in VLSI design.
Master’s thesis, Department of Computer Science, University of Copenhagen (2000)

23. Karbstein, M.: Line planning and connectivity. Ph.D. thesis, TU Berlin (2013)
24. Koch, T.:. ZIMPL. zimpl.zib.de
25. Koch, T.: Rapid mathematical programming. Ph.D. thesis, Technische Universität Berlin

(2004)
26. Korte, B., Prömel, H.J., Steger, A.: Steiner trees in VLSI-layout. In: Korte, B., Lovász, L.,

Prömel, H.J., Schrijver, A. (eds.) Paths, Flows, and VLSI-Layout. Springer, Berlin (1990)
27. Lengauer, T.: Combinatorial Algorithms for Integrated Circuit Layout. Wiley, New York

(1990)
28. Lipski, W.: On the structure of three-layer wireable layouts. In: Preparata, F.P. (ed.) Advances

in Computing Research: VLSI Theory, vol. 2, pp. 231–244. Jai Press, London (1984)
29. Luk, W.K.: A greedy switch-box router. Integration 3, 129–149 (1985)
30. Martin, A.: Packen von Steinerbäumen: Polyedrische Studien und Anwendungen. Ph.D. the-

sis, Technische Universität Berlin (1992)
31. Oxley, J.G.: Matroid Theory. Oxford University Press, Oxford (1992)
32. Polzin, T.: Algorithms for the Steiner problem in networks. Ph.D. thesis, Universität des Saar-

landes (2003)

http://zimpl.zib.de

244 R. Borndörfer, N.-D. Hoang, M. Karbstein, T. Koch, and A. Martin

33. Prömel, H., Steger, A.: The Steiner Tree Problem. Vieweg, Wiesbaden (2002)
34. Raack, C., Koster, A.M.C.A., Orlowski, S., Wessäly, R.: On cut-based inequalities for capac-

itated network design polyhedra. Networks 57(2), 141–156 (2011)
35. Raghavan, S., Magnanti, T.: Network connectivity. In: Dell’Amico, M., Maffioli, F., Martello,

S. (eds.) Annotated Bibliographies in Combinatorial Optimization, pp. 335–354. Wiley,
Chichester (1997)

36. Robacker, J.T.: Min-Max theorems on shortest chains and disjunct cuts of a network. Research
Memorandum RM-1660, The RAND Corporation, Santa Monica, CA (1956)

37. Wolsey, L.A.: An analysis of the greedy algorithm for the submodular set covering problem.
Combinatorica 2(4), 385–393 (1982)

38. Wong, R.T.: A dual ascent approach for Steiner tree problems on a directed graph. Math.
Program. 28, 271–287 (1984)

The Maximum Weight Connected Subgraph
Problem

Eduardo Álvarez-Miranda, Ivana Ljubić, and Petra Mutzel

Abstract The Maximum (Node-) Weight Connected Subgraph Problem (MWCS)
searches for a connected subgraph with maximum total weight in a node-weighted
(di)graph. In this work we introduce a new integer linear programming formulation
built on node variables only, which uses new constraints based on node-separators.
We theoretically compare its strength to previously used MIP models in the literature
and study the connected subgraph polytope associated with our new formulation. In
our computational study we compare branch-and-cut implementations of the new
model with two models recently proposed in the literature: one of them using the
transformation into the Prize-Collecting Steiner Tree problem, and the other one
working on the space of node variables only. The obtained results indicate that the
new formulation outperforms the previous ones in terms of the running time and in
terms of the stability with respect to variations of node weights.

1 Introduction

The Maximum (Node-) Weight Connected Subgraph Problem (MWCS) is the prob-
lem of finding a connected subgraph with maximum total weight in a node-weighted
(di)graph. It belongs to the class of network design problems and has applications

E. Álvarez-Miranda
Dipartimento di Ingegneria dell’Energia Elettrica e dell’Informazione, Università di Bologna,
Viale Risorgimento 2, 40136 Bologna, Italy
e-mail: e.alvarez@unibo.it

I. Ljubić (B)
Institut für Statistik und Operations Research, Universität Wien, Brünnerstraße 72, 1210 Vienna,
Austria
e-mail: ivana.ljubic@univie.ac.at

P. Mutzel
Fakultät für Informatik, Technische Universität Dortmund, Otto-Hahn-Straße 14, 44227
Dortmund, Germany
e-mail: petra.mutzel@tu-dortmund.de

M. Jünger, G. Reinelt (eds.), Facets of Combinatorial Optimization,
DOI 10.1007/978-3-642-38189-8_11, © Springer-Verlag Berlin Heidelberg 2013

245

mailto:e.alvarez@unibo.it
mailto:ivana.ljubic@univie.ac.at
mailto:petra.mutzel@tu-dortmund.de
http://dx.doi.org/10.1007/978-3-642-38189-8_11

246 E. Álvarez-Miranda, I. Ljubić, and P. Mutzel

in various different areas such as forestry, wildlife preservation planning, systems
biology, computer vision, and communication network design.

Lee and Dooly [23] introduced a cardinality-constrained version of the problem
for building a designed fiber-optic communication network over time, where the
given node weights reflect their degree of importance. They defined the maximum-
weight connected graph problem for an undirected graph with given node weights,
in which they search the connected subgraph of maximum weight consisting of ex-
actly a predescribed number of nodes. The same problem version was considered
already in [18] (the authors called it Connected k-Subgraph Problem) for a Norwe-
gian off-shore oil-drilling application.

Another application arises in the area of systems biology [1, 8, 26]. Yamamoto
et al. [26] suggest the cardinality-constrained MWCS in order to detect core source
components in gene networks, which seem to be responsible for the difference be-
tween normal cells and mutant cells. The input graphs are constructed from gene
regulation networks combined with gene expression data provided as node weights.
Maximum weight connected subgraphs are considered to be good candidates for
these core source components. A directed version of the MWCS has been con-
sidered in Backes et al. [1], where the most deregulated connected subnetwork in
regulatory pathways with the highest sum of node scores (arising from expression
data) is searched. In their model, they call a subgraph connected if all the nodes are
reachable from one node, also called the root in the subgraph. The detected roots
are likely to be the molecular key-players of the observed deregulation.

A budgeted version arises in conservation planning, where the task is to select
land parcels for conservation to ensure species viability, also called corridor design
(see, e.g. [7]). Here, the nodes of the graph do not only have node weights associated
with the habitat suitability but also some costs, and the task is to design wildlife
corridors that maximize the suitability with a given limited budget. Also in forest
planning, the MWCS arises as a subproblem, e.g., for designing a contiguous site
for a natural reserve or for preserving large contiguous patches of mature forest [3].

A surprising application of the MWCS arises in activity detection in video se-
quences. Here, a 3D graph is constructed from a video in which the nodes corre-
spond to local video subregions and the edges to their proximity in time and space.
The node weights correspond to the degree of activity of interest, and so the maxi-
mum weight connected subgraph corresponds to the portion of the video that maxi-
mizes a classifier’s score [4].

All the above mentioned applications have in common that the MWCS arises
with node weights only. In many papers, the MWCS has been solved by transform-
ing the given instance to the Prize-Collecting Steiner Tree Problem. Here, the given
graph has non-negative node weights and negative edge costs, and the task is to
find a maximum weight subtree, where the weight is computed as the sum of the
node and edge weights in the subtree. The Prize-Collecting Steiner Tree Problem
has been studied intensively in the literature (see, e.g., [20, 24]), and the publicly
available branch-and-cut (B&C) code of [24] is used in many recent applications to
solve the underlying problems to optimality.

However, in their recent work, Backes et al. [1] attack the MWCS directly, which
has the advantage to avoid variables for the arcs. The authors suggest a new integer

The Maximum Weight Connected Subgraph Problem 247

linear programming formulation based on node variables only. The intention of our
research was to study the MWCS straightly, and to suggest tight MIP formulations
that improve the MIP models from the literature in theory and practice.

Our Contribution We propose a new MIP model for the MWCS based on the
concept of node-separators in digraphs. We provide a theoretical and computational
comparison of the new model with other models recently used in the literature.
We show that the new model has the advantage of using only node variables while
preserving the tight LP bounds of the Prize-Collecting Steiner Tree (PCStT) model.
Furthermore, we study the connected subgraph polytope and show under which con-
ditions the newly introduced inequalities are facet defining. In an extensive compu-
tational study, we compare different MIP models on a set of benchmark instances
used in systems biology and on an additional set of network design instances. The
obtained results indicate that the new formulation outperforms the previous ones in
terms of the running time and in terms of the stability with respect to variations of
node weights.

Relation to Martin Grötschel’s Work Martin Grötschel is well-known for his
research on network design problems, which has influenced a large body of work in
the field in the past three and a half decades. Already early in his career in 1977, he
has provided a complete and non-redundant linear description of the spanning ar-
borescence problem [14]. In his seminal papers [15–17], jointly with Clyde Monma
and Mechthild Stoer, he has studied polyhedra arising from network design prob-
lems with low- and with high-connectivity constraints. In his work, also Steiner cuts
are used, which also appear in a directed version in our PCStT MIP model. Many
recent papers on designing telecommunication networks, UMTS radio networks,
broadband virtual private networks, and cellular phone networks were motivated by
the results obtained by Martin Grötschel and his colleagues.

The paper is organized as follows. Section 2 contains a formal definition of the
MWCS and some complexity results. The following sections provide four different
MIP formulations and polyhedral studies. Our B&C algorithm and the practical
experiments are discussed in Sect. 5.

2 The Maximum Weight Connected Subgraph Problem

In this section we formally introduce the MWCS for directed graphs and discuss
some complexity results.

Definition 1 (The Maximum Weight Connected Subgraph Problem, MWCS) Given
a digraph G = (V ,A), |V | = n, with node weights p : V → Q, the MWCS is the
problem of finding a connected subgraph T = (VT ,AT) of G, that maximizes the
score p(T)=∑v∈VT pv and such that there exists a node i ∈ VT (called root or key
player) such that every other node j ∈ VT can be reached from i by a directed path
in T .

248 E. Álvarez-Miranda, I. Ljubić, and P. Mutzel

The MWCS in undirected graphs is to find a connected subgraph T that maxi-
mizes the score p(T). However, if G= (V ,E) is an undirected graph, without loss
of generality we will consider its bidirected counterpart (V ,A) where A is obtained
by replacing each edge by two oppositely directed arcs. Hence, it is sufficient to
present results that hold for digraphs (which are more general), and the correspond-
ing results for undirected graphs can be easily derived from them. We assume that in
our MWCS instances always positive and negative node weights are present, other-
wise, the solution would be trivial. Observe that any feasible solution of the MWCS
contains a tree with the same solution value. Hence it is equivalent to search a max-
imum node-weighted tree in the given graph.

Furthermore, it can be distinguished between the rooted and unrooted MWCS,
i.e., a root node r can be pre-specified or not. In this paper we will concentrate on
the unrooted MWCS, or simply the MWCS in the rest of the paper.

Regarding the complexity of the MWCS, it has been shown that the problem is
NP-hard (in the supplementary documentation of the paper by [19], the authors pro-
vide an NP-hardness proof sketched by R. Karp). Since it is possible to translate the
problem to the Prize-Collecting Steiner tree problem, all its polynomially solvable
cases carry over to the MWCS. E.g., the PCStT is solvable in polynomial time for
the graph class of bounded treewidth [2].

Furthermore, one can show that the following result holds even when the MWCS
is defined on undirected graphs:

Proposition 1 It is NP-hard to approximate the optimum of the MWCS within any
constant factor 0 < ε < 1.

Proof For a given MWCS instance, let APP be the objective function value of an
approximate solution, and let OPT be the optimal solution value. Recall that for
a given constant 0 < ε < 1, a given problem can be approximated within factor ε
if and only if APP/OPT ≥ ε, for any problem instance. To prove this result for
the MWCS it is sufficient to make a reduction from the SAT problem that works
similarly to the one given in [9] (cf. Theorem 4.1). By doing so, we can show that for
a given formula φ for SAT, we can build an instance G of the MWCS in polynomial
time, such that: (i) if φ is a yes-instance, then the optimal MWCS solution on G has
value ε(1 + ε3), and (ii) if φ is a no-instance, then the optimal MWCS solution on
G has value ε2. �

Some applications consider the cardinality-constrained MWCS, where the task is
to find a connected subgraph with K nodes. Hochbaum and Pathria [18] have shown
that this problem version is NP-hard even if all node weights are 0 or 1 and the graph
is either bipartite or planar. For trees and for complete layered DAGs, it is solvable in
polynomial time via dynamic programming [18, 22]. Observe that for this problem
version, the node weights can be assumed to be all positive, and the maximization
variant and the minimization variant are equivalent. Goldschmidt [13] noted that
no approximation algorithm is known with a factor better than O(K), and such an
algorithm is almost trivial to find. The cardinality-constrained MWCS (and also the

The Maximum Weight Connected Subgraph Problem 249

MWCS) can be solved by translating it into the edge-weighted version, which has
been studied as the k-Minimum Spanning Tree Problem (k-MST) or k-Cardinality
Tree Problem in the literature (see, e.g., [6, 10]).

3 MIP Formulations for the MWCS

In this section we revise three MIP models for the MWCS recently presented in the
literature, and propose a novel approach based on the concept of node-separators in
digraphs.

The MIP formulations considered in this paper are based on the observation that
if there is a path between i and any other node in T = (VT ,AT), then we will
search for a subgraph which is an arborescence rooted at i ∈ VT . In our models,
two types of binary variables will be used to describe a feasible MWCS solution
T = (VT ,AT): binary variables yi associated to nodes i ∈ V will be set to one iff
i ∈ VT , and additional binary variables xi will be set to one iff the node i ∈ V is the
key player, i.e., if it is used as the root of the arborescence.

Notation and Preliminaries A set of vertices S ⊂ V (S 	= ∅) and its complement
S = V \R induce two directed cuts: (S,S)= δ+(S)= {(i, j) ∈A | i ∈ S, j ∈ S} and
(S,S) = δ−(S) = {(i, j) ∈ A | i ∈ S, j ∈ S}. When there is an ambiguity regarding
the graph in which the directed cut is considered, we will sometimes write δG in-
stead of only δ to specify that the cut is considered with respect to graph G. For a
set C ⊂ V , let D−(C) denote the set of nodes outside of C that have ingoing arcs
into C, i.e., D−(C)= {i ∈ V \C | ∃(i, v) ∈A,v ∈ C}.

A digraph G is called strongly connected (or simply, strong) if for any two dis-
tinct nodes k and � from V , there exists a (k, �) path in G. A node i is a cut point in
a strong digraph G if there exists a pair of distinct nodes k and � from V such that
there is no (k, �) path in G− i.

For two distinct nodes k and � from V , a subset of nodes N ⊆ V \ {k, �} is called
(k, �) node-separator if and only if after eliminatingN from V there is no (k, �) path
in G. A separator N is minimal if N \ {i} is not a (k, �) separator, for any i ∈N . Let
N (k, �) denote the family of all (k, �) separators. Obviously, if ∃(k, �) ∈A or if � is
not reachable from k, we have N (k, �) = ∅. Let N� =⋃k 	=�N (k, �) be the family
of all node separators with respect to � ∈ V that we will refer to as �-separators.

For binary variables a ∈ {0,1}|F |, we denote by a(F ′) the sum
∑

i∈F ′ ai for any
subset F ′ ⊆ F .

3.1 The Prize-Collecting Steiner Tree Model

In [8] the authors observed that the MWCS on undirected graphs is equivalent to
the Prize-Collecting Steiner Tree Problem (PCStT), in the sense that there exists

250 E. Álvarez-Miranda, I. Ljubić, and P. Mutzel

a transformation from the MWCS into the PCStT such that each optimal solution
of the PCStT on the transformed graph corresponds to an optimal MWCS solution
from the original graph. Recall that, given an undirected graph H = (VH ,EH) with
non-negative node weights p̃v and non-negative edge costs c̃e, the PCStT is the
problem of finding a subtree TH of H that maximizes the function

∑
v∈TH p̃v −∑

e∈TH c̃e, i.e., the difference between the collected node prizes and edge costs. The
transformation from the MWCS into the PCStT is given as follows: Given an input
graph G of the MWCS we set H := G and w = minv∈V pv (note, that w < 0). In
order to get non-negative node weights, we set p̃v := pv − w for all v ∈ V and
c̃e = −w, for all e ∈ E. This transformation also works for digraphs, i.e., if H is a
digraph, the PCStT consists of finding a subarborescence of H (rooted at some node
i ∈ V) that maximizes the given objective function. The transformation is correct,
since any feasible solution is an arborescence, which has indegree 1 for every node,
and the weight transformations neutralize each other.

We now present the MIP model proposed in [24] for the PCStT that is used
for solving the MWCS after transforming it into the PCStT (see [8]). Consider a
transformation from a (directed or undirected) PCStT instance into a rooted digraph
Gd = (Vd,Ad) that works as follows: If the input graph G = (V ,E) is undirected,
then we create the arc set A by bidirecting each edge. In any case we now have
a directed graph G = (V ,A). The vertex set Vd = V ∪ {r} contains the nodes of
the input graph G and an artificial root vertex r . We add new arcs from the root
r to nodes v whose out-degree is non-empty in order to get the arc set Ad i.e.,
Ad = A ∪ {(r, v) | v ∈ V and δ+(v) 	= ∅}. All arc weights are set to the weights of
their undirected counterparts, and the weight of an arc (r, v) ∈Ad is set to w.

In the graph Gd , a subgraph Td = (VTd ,ATd) that forms a directed tree rooted
at r is called a rooted Steiner arborescence. It is a feasible solution of the PCStT if
the out-degree of the root is equal to one. To model feasible Steiner arborescences
in Gd , we will use two types of binary variables: (a) binary variables yi introduced
above associated to all nodes i ∈ V , and (b) binary variables zij , such that zij = 1
if arc (i, j) belongs to a feasible Steiner arborescence Td and zij = 0 otherwise, for
all (i, j) ∈Ad .

The set of constraints that characterizes the set of feasible solutions of the un-
rooted PCStT is given by:

z
(
δ−(i)

) = yi, for all i ∈ V \ {r} (1)

z
(
δ−(S)

) ≥ yk, for all S ⊆ V \ {r}, k ∈ S (2)

z
(
δ+(r)

) = 1 (3)

The in-degree constraints (1) guarantee that the in-degree of each vertex of the tree
is equal to one. The directed cut constraints (2) ensure that there is a directed path
from the root r to each costumer k such that yk = 1. The equality (3) makes sure
that the artificial root is connected to exactly one of the nodes. Thus, the MWCS

The Maximum Weight Connected Subgraph Problem 251

can be formulated using the following model that we will denote by (PCStT):

max

{∑

v∈V
(pv −w)yv +

∑

(i,j)∈Ad

wzij | (y, z) satisfies (1)–(3), (y, z) ∈ {0,1}n+|Ad |
}
.

The (PCStT) model uses node and arc variables (y and z) given that it relies on
an equivalence with the PCStT. However, considering Definition 1 it seems more
natural to find a formulation based only in the space of y variables since no arc
costs are involved. In the next section we will discuss several models that enable
elimination of arc variables in the MIP models.

3.2 Model of Backes et al. 2011

Recently, in [1] a new MIP model for the MWCS is introduced which avoids the
explicit use of arc variables. Let C denote the family of all directed cycles in G. The
new model, that we will denote by (CYCLE), reads as follows:

x(V) = 1 (4)

xi ≤ yi, for all i ∈ V (5)

y
(
D−(i)

) ≥ yi − xi, for all i ∈ V (6)

y(C)− x(C)− y
(
D−(C)

) ≤ |C| − 1, for all C ∈ C (7)

(x,y) ∈ {0,1}2n (8)

Inequalities (4) make sure that one node is selected as a root, and inequalities (5)
state that if the node is chosen as a root, it has to belong to the solution. Constraints
(6) are the in-degree constraints—they ensure that for each node which is not the
root, at least one of the incoming neighbors needs to be taken into the solution. In
a directed acyclic graph, in-degree constraints are sufficient to guarantee connec-
tivity, but in general, imposing only the in-degree constraints may allow solutions
that consist of several disconnected components. To avoid this, cycle constraints (7)
are added to guarantee connectivity. These constraints make sure that whenever all
nodes from a cycle are taken in a solution, and none of them is set as the root, at
least one of the neighboring nodes from D−(C) has to be taken as well.

Observation 1 Constraints (7) are redundant for those C ∈ C such that C ∪
D−(C)= V .

To see this, observe that using the root constraint (4), the cycle constraints (7)
can be rewritten as follows:

y(C)≤ y
(
D−(C)

)+ |C| − 1 + x(C)= y
(
D−(C)

)+ |C| − x
(
D−(C)

)
,

252 E. Álvarez-Miranda, I. Ljubić, and P. Mutzel

Fig. 1 An example showing that the LP bounds of the (CYCLE) model can be as bad as O(n).
The labels of nodes represent their weights: M > 0 and L*M

which is always satisfied by the model due to constraints (5) and yi ≤ 1, for all
i ∈ V .

In this model an artificial root node r is not explicitly introduced. However, it
is not difficult to see that for any feasible MWCS solution there is a one-to-one
mapping between variables zri introduced above and the variables xi , for all i ∈ V .

The following result shows that the (CYCLE) model provides very weak upper
bounds, in general.

Lemma 1 Given an instance of the MWCS, let OPT be the value of the optimal
solution, and let UB be the upper bound obtained by solving the LP relaxation of
the (CYCLE) model. Then, there exist MWCS instances for which UB/OPT ∈O(n).

Proof Consider an example given in Fig. 1. The variables of the LP relaxation of
the (CYCLE) model are set as follows: yi = xi = 0 for the nodes i with negative
weights; yi = 1/2 and xi = 0 for the nodes i in the 2-cycles, and xi = yi = 1 for
the node in the center. There are Kn = (n− 1)/3 ∈O(n) branches in this graph. We
have UB =KnM + 2M and OPT = 2M , which concludes the proof. �

3.3 A Model Based on (k, �) Node-Separators

We now present an alternative approach to model the MWCS in the space of (x,y)
variables that relies on the constraints that have been recently used by [11] and [3]
to model connectivity in the context of sheet metal design and forest planning, resp.
Notice that for an arbitrary pair of distinct nodes (k, �) in G, if � is taken into the
solution and k is chosen as root, then either (i) there is a direct arc from k to �, or

The Maximum Weight Connected Subgraph Problem 253

(ii) at least one node from any (k, �) separator N ∈ N (k, �) has to be taken into the
solution. The latter fact can be stated using the following inequalities that we will
refer to as node-separator constraints:

y(N)− x(N)≥ y� + xk − 1, for all k, � ∈ V,� 	= k,N ∈N (k, �). (9)

If the nodes k and � are connected by an arc, then N (k, �) = ∅, in which case we
need to consider the in-degree inequalities (6) to make sure k is connected to �.
Thus, we can formulate the unrooted MWCS as

(CUT)k,� max

{∑

v∈V
pvyv | (x,y) satisfies (4)–(6), (9) and (x,y) ∈ {0,1}2n

}
.

Inequalities (9) can be separated in polynomial time in a support graph that splits
nodes into arcs. Given a fractional solution (x̃, ỹ), for each pair of nodes (k, �)

such that ỹ� + x̃k − 1 > 0 we generate a graph Gk� in which all nodes i 	= k, � are
replaced by arcs. Arc capacities are then set to 1, except for the arcs associated to
nodes, whose capacities are set to ỹi − x̃i . If the maximum flow that can be sent from
k to � in Gk� is less than ỹ� + x̃k − 1 > 0, we have detected a violated inequality of
type (9).

Using the root constraint (4), inequalities (9) can also be reformulated as follows:

y(N)≥ y� + x
(
N ∪ {k})− 1 ⇒ y(N)+ x

(
V \ (N ∪ {k, l}))≥ y� − x�,

which can be interpreted as follows: If node � is in the solution and it is not the root,
then for each k ∈ V such that N (k, �) 	= ∅ and each N ∈ N (k, �), either one of the
nodes from N is part of the solution, or none of the nodes from N ∪ {k} is chosen
as the root node.

Inequalities (9) are quite intuitive, however they are not facet defining. In the
next section we will show how the (k, �) node-separator constraints can be lifted to
obtain facet defining inequalities.

3.4 A Model Based on Generalized Node-Separator Inequalities

Observe that the inequality (9) can be lifted as follows: Assume that N ∈ N (k, �)

also separates another node k′ 	= k from �. Since at most one node can be set as a
root, the right-hand side of (9) can be increased as follows: y(N) − x(N) ≥ y� +
xk + xk′ − 1. In fact, this motivates us to introduce a generalized family of node-
separator inequalities, that can be obtained by a parallel lifting of (9).

Generalized Node-Separator Inequalities Let � be an arbitrary node in V and
let N ∈N� be an arbitrary �-separator. Let WN,� be the set of nodes i such that there
is a directed (i, �)-path in G−N . More formally:

WN,� = {i ∈ V \N | ∃(i, �) path P in G−N
}∪ {�}.

254 E. Álvarez-Miranda, I. Ljubić, and P. Mutzel

Then, for any feasible MWCS solution, the following has to be satisfied: if node �
is part of a solution, then either the root of the solution is in WN,�, or, otherwise,
at least one of the nodes from N has to be taken. Hence, the following inequalities,
that we will refer to as generalized node-separator inequalities, are valid for the
MWCS:

y(N)+ x(WN,�)≥ y�, for all � ∈ V,N ∈ N� (gNSep)

Notice that the in-degree inequalities (6) are a subfamily of (gNSep): The in-degree
inequality can be rewritten as

∑
j∈D−(�) yj + x� ≥ y�, i.e., they are a special case

of the generalized node-separator cuts for N = D−(�) in which case WN,� = {�}.
In order to see that (gNSep) are lifted inequalities (9), notice that (gNSep) can be
rewritten as follows:

y(N)− x(N)≥ y� + x
(
V \ (N ∪WN,�)

)− 1, for all � ∈ V,N ∈ N�.

Together with this observation this proves that the following model is a valid MIP
formulation for the MWCS:

(CUT) max

{∑

v∈V
pvyv | (x,y) satisfies (4)–(5), (gNSep) and (x,y) ∈ {0,1}2n

}
.

Proposition 2 Generalized node-separator inequalities can be separated in poly-
nomial time.

Proof Consider an auxiliary support graph in which the nodes are splitted as fol-
lows: each node i ∈ V is replaced by an arc (i1, i2). All ingoing arcs into i are
now connected to i1, all outgoing arcs from node i are now connected to i2. In other
words, we create a graph G′ = (V ′,A′) such that V ′ = {i1 | i ∈ V }∪{i2 | i ∈ V }∪{r}
(r is an artificial root), A′ = {(i2, j1) | (i, j) ∈ A} ∪ {(i1, i2) | i ∈ V } ∪ {(r, i1) | i ∈
V }. For a given fractional solution (x̃, ỹ) arc capacities in G′ are defined as:

capuv =

⎧
⎪⎨

⎪⎩

ỹi , if u= i1, v = i2, i ∈ V,

x̃i , if u= r, v = i1, i ∈ V,

1, otherwise.

(10)

We calculate the maximum flow on G′ between r and (�1, �2) in G′ for a node � such
that ỹ� > 0. To check whether there are violated inequalities of type (gNSep), it only
remains to show that (i) every minimum cut (S,S) in G′ such that the corresponding
flow is less than ỹ� corresponds to a (gNSep) inequality for the given � ∈ V and
some N ∈ N�, or (ii) that a corresponding violated (gNSep) cut can be generated
from (S,S) in polynomial time. Observe that any minimum cut (S,S) in G′ which
is smaller than ỹ� can be represented as union of arcs adjacent to the root, plus union
of arcs of type (i1, i2). Hence, each (S,S) cut implies the following inequalities:

∑

(r,j)∈δ−(S)
xj +

∑

(i1,i2)∈δ−(S)
yi ≥ y�. (11)

The Maximum Weight Connected Subgraph Problem 255

We can now define a partitioning (U,N,W) of the node set V such that:

W = {i ∈ V | i1, i2 ∈ S}, N = {i ∈ V | i1 	∈ S, i2 ∈ S}, U = V \ (W ∪N).

Rewriting the inequality (11), we obtain: x(W)+ y(N) ≥ y�. Observe that U 	= ∅.
Indeed, if U = ∅ thenN∪W = V , but then we have x(N)+y(W)≥ x(V)= 1 ≥ ỹ�,
i.e., such cuts will never be violated. Hence, given the proper partition (U,N,W),
the set N is obviously a (k, �) separator for any k ∈ U (after removing (r, i1) arcs
from G′, the arcs (i1, i2) ∈ δ−(S) are arc-separators that separate U from the rest of
the graph). If W contains only nodes that can reach � in G−N , then inequality (11)
belongs to the (gNSep) family. Otherwise we reverse all arcs in G−N and perform
a breadth-first search from �. All nodes that can be reached from � (notice that they
cannot belong to U), by definition, determine the set WN,�. If the original cut (11)
was violated, the new one with the left-hand side equal to y(N)+ x(WN,�) will be
violated as well. �

3.5 Some More Useful Constraints

In this section we present additional constraints that are useful for practically solving
MWCS instances.

Connected Component Inequalities In some applications of the MWCS, a K-
cardinality constraint is imposed:

∑
i∈V yi = K . For a given node k ∈ V , let Pk

contain all the nodes that are further than K − 1 hops away from k. In that case, the
following inequalities are valid for the MWCS:

xk + y� ≤ 1, for all � ∈ Pk. (12)

Rewriting the connected component cuts, we obtain:
∑

j 	=k

xj ≥ y�, for all � ∈ Pk,

these constraints can be further strengthened by down lifting the coefficients of the
left-hand side. Whenever node � is in the solution, then either � is the root, or the root
cannot be more than K − 1 hops away from �. Let W� be the set of such potential
root nodes including �. We have

x(W�)≥ y�, for all � ∈ V.

Out-degree Inequalities The following set of inequalities state that whenever a
node i such that pi ≤ 0 is taken into a solution, this is because it leads us to another
node with positive weights:

y
(
D+(i)

)≥ yi, for all i ∈ V s.t. pi ≤ 0. (13)

Observe that these constraints are not valid if K-cardinality constraints are imposed.

256 E. Álvarez-Miranda, I. Ljubić, and P. Mutzel

Symmetry-Breaking Inequalities In case the input graph is undirected, there
exist many equivalent optimal solutions with different orientations. In order to break
those symmetries, we can impose the following constraint that chooses the node
with the smallest index to be the root of the subgraph:

xj + yi ≤ 1, for all i < j. (14)

4 Polyhedral Study

Let P denote the connected subgraph (CS) polytope in the space of (x,y) variables:

P = conv
{
(x,y) ∈ {0,1}2n | (x,y) satisfies (4), (5), (gNSep)

}
.

In this section we compare the proposed MIP formulations with respect to their qual-
ity of LP bounds and we show that, under certain conditions, the newly introduced
generalized node-separator inequalities are facet defining for the CS polytope.

4.1 Theoretical Comparison of MIP Models

Let PLP(·) denote the polytope of the LP relaxations of the MIP models presented
above obtained by replacing integrality conditions by 0 ≤ xi, yi ≤ 1, for all i ∈ V ,
and let vLP(·) be the optimal LP values of the associated MIP relaxations. For
the PLP(PCStT) polytope, we set Proj(x,y)(PLP(PCStT))= {(x,y) ∈ {0,1}2n | xi =
zri and (y, z) ∈PLP(PCStT)}. We can show that:

Proposition 3

1. We have

Proj(x,y)
(
PLP(PCStT)

)= PLP(CUT)� PLP(CUTk�)

and

PLP(CUT)� PLP(CYCLE).

2. Moreover, there exist MWCS instances such that

vLP(CYCLE)/vLP(CUT) ∈O(n).

3. The polytopes PLP(CYCLE) and PLP(CUTk�) are not comparable.

Proof 1. Proj(x,y)(PLP(PCStT))= PLP(CUT):
We first show that Proj(x,y)(PLP(PCStT)) ⊆ PLP(CUT). Let (ŷ, ẑ) be a feasible

solution for the relaxation of the PCStT model, we will show that the solution (x̂, ŷ)
such that x̂i = ẑri belongs to PLP(CUT). Let � ∈ V be an arbitrary node such that

The Maximum Weight Connected Subgraph Problem 257

ŷ� > 0, choose some N ∈ N� and consider the associated WN,� ⊂ V . Let Gd be
the corresponding directed instance of the PCStT with the root r (cf. Sect. 3.1).
Consider now a cut (Wd,Wd) in Gd where Wd =N ∪WN,�. We have: δ−

Gd
(Wd)=

{(r, i) ∈Ad | i ∈WN,�}∪Rest, where Rest = {(j, i) ∈Ad | j ∈Wd, i ∈N}. Observe
that Rest ⊆ δ−

Gd
(N)⊆⋃i∈N δ−

Gd
(i). Therefore, we have:

ŷ(N)=
∑

i∈N
ẑ
(
δ−
Gd
(i)
)≥ ẑ

(
δ−
Gd
(N)
)≥ ẑ(Rest). (15)

Since (Wd,Wd) is a Steiner cut in Gd , it holds that ẑ(δ−
Gd
(Wd))≥ ŷ�. This, together

with (15) implies:

ŷ(N)+ x̂(WN,�)≥ ẑ(Rest)+ x̂(WN,�)= ẑ
(
δ−
Gd
(Wd)

)≥ ŷ�.

To show that PLP(CUT)⊆ Projy(PLP(PCStT)) consider an LP solution (y̌, x̌) ∈
PLP(CUT). We will construct a solution (ŷ, ẑ) ∈ PLP(PCStT) such that y̌ = ŷ and
ẑrj = x̌j , for all j ∈ V . On the graph G′ (see Proof of Proposition 2) with arc ca-
pacities of (i1, i2) set to y̌i for each i ∈ V , arc capacities of (r, j1) set to x̌j , and
capacities set to 1 for the remaining arcs, we are able to send y̌� units of flow from
the root r to every �1 ∈ V ′ such that y̌� > 0. Let f k

ij denote the amount of flow of
commodity k, associated with k1 ∈ V ′, sent along an arc (i, j) ∈ A′. Let f be the
minimal feasible multi-commodity flow on G′ (i.e., the effective capacities on G′
used to route the flow cannot be reduced without violating the feasibility of this
flow). We now define the values of (ŷ, ẑ) as follows: ẑrj = x̌j , for all j ∈ V and

ẑij =
{

maxk∈V f k
i2j1

, i, j ∈ V

maxk∈V f k
rj1
, i = r, j ∈ V

for all (i, j) ∈A;

ŷi = ẑ
(
δ−(i)

)
, for all i ∈ V.

Obviously, the constructed solution (ŷ, ẑ) is feasible for the (PCStT) model and, due
to the assumption that f is minimal feasible, it follows that y̌ = ŷ and x̌ is equivalent
to ẑ.

PLP(CUT)� PLP(CYCLE):
Let (x̂, ŷ) be an arbitrary point from PLP(CUT). In order to prove that (x̂, ŷ) ∈

PLP(CYCLE) we only need to show that constraints (7) are satisfied (recall that
in-degree inequalities (6) are contained in (gNSep)). Given the Observation 1, it is
sufficient to consider cycles C such that C ∪D−(C)⊂ V . Since for any such cycle
C the set D−(C) defines a separator for any node � ∈ C, from constraints (gNSep)
we have that ŷ(D−(C)) + x̂(C) ≥ ŷ�. For the remaining nodes j ∈ C, j 	= k, we
apply the bounds 1 ≥ ŷj . Summing up together these |C| inequalities, we obtain
(7).

2. Consider the example given in Fig. 1 for which the (CUT) model finds the
optimal solution.

258 E. Álvarez-Miranda, I. Ljubić, and P. Mutzel

Fig. 2 An example showing that PLP(CUTk�) 	⊆ PLP(CYCLE). The LP solution
y4 = y5 = y6 = 1, y1 = y2 = y3 = x1 = x2 = 1/2 is feasible for the (CUTk�) model and
infeasible for (CYCLE)

3. The example given in Fig. 1 shows an instance for which the LP solution is
feasible for the (CYCLE) and infeasible for the (CUTk�) model. The example given
in Fig. 2 shows an instance for which the LP solution is feasible for the (CUTk�)

and infeasible for the (CYCLE) model. �

4.2 Facets of the CS Polytope

In this section we establish under which conditions some of the presented inequali-
ties are facet defining for the CS polytope.

Lemma 2 If G is a strong digraph, then the dimension of the polytope P is
dim(P)= 2n− 1.

Proof We will construct the set of 2n feasible, affinely independent solutions as
follows: Since G is strong, we can find n spanning arborescences by choosing each
i ∈ V as a root. That way, we build n affinely independent solutions. In addition,
consider n single node solutions (for each i ∈ V), in which we have xi = yi = 1
and all remaining xj = yj = 0, for all j 	= i. The matrix obtained by merging the
characteristic vectors of these solutions has full rank 2n. �

Lemma 3 Trivial inequalities xi ≥ 0 are facet defining if G is strong and i is not a
cut point in G.

Proof Consider a family T of spanning arborescences on the set V \ {i} in which
each j 	= i is taken once as a root. This is possible because G− i remains a strong
digraph. There are n − 1 such solutions, and they are affinely independent. Add
now to T single node solutions, for each j ∈ V \ {i}. Finally, add to T a spanning
arborescence in G with a root j 	= i. The matrix associated to incidence vectors
from T has full rank 2n− 1. �

Lemma 4 Trivial inequalities yi ≤ 1 are facet defining if G is strong.

The Maximum Weight Connected Subgraph Problem 259

Proof Consider a spanning arborescence T rooted at i. We will then apply a pruning
technique in order to generate n affine independent feasible MWCS solutions. We
start with T in which case y consists of all ones. We iteratively remove one by one
leaves from T , until we end up with a single root node i. Thereby, we generate a
family T of n affinely independent solutions. We then add to T n − 1 solutions
obtained by choosing a spanning arborescence rooted at j , for all j 	= i. The matrix
associated to incidence vectors from T , has full rank 2n− 1. �

Notice that yi ≥ 0 are not facet defining inequalities because yi = 0 implies
xi = 0. Similarly, xi ≤ 1 do not define facets of P because they are dominated by
xi ≤ yi .

Lemma 5 Coupling inequalities yi ≥ xi are facet defining if G is strong and i is
not a cut point in G.

Proof Construct a family T of n affinely independent solutions by applying pruning
to a spanning arborescence rooted at i. Add then to T additional n−1 arborescences
on the set V \{i} in which each j 	= i is taken once as a root (this is possible because
G− i remains strong). The matrix associated to incidence vectors from T , has full
rank 2n− 1. �

Proposition 4 Given � ∈ V and N ∈N�, the associated (gNSep) inequality is facet
defining if G is strong, N is a minimal �-separator and the subgraph induced by
WN,� (|WN,�| ≥ 2) is strong.

Proof We prove the result by the indirect method. Let F(�,N)= {(x,y) ∈ {0,1}2n |
y(N)+ x(WN,�)= y�}. Consider a facet defining inequality of the form ax + by ≥
a0. We will show that if all points in F(�,N) satisfy

ax + by = a0, (16)

then (16) is a positive multiple of (gNSep). Consider �′ ∈ W , �′ 	= �. A path from
� to �′, completely contained in WN,� and rooted at � exists in G (WN,� is strong)
and it is a feasible MWCS solution that belongs to F(�,N). Let (x1,y1) be the
characteristic vector of this path. A subpath obtained after removing �′ from this
path, also rooted at �, is another feasible solution from F(�,N), and let (x2,y2)

be the corresponding characteristic vector. We have: ax1 + by1 − ax2 − by2 = 0.
Therefore we have b′

� = 0, for all �′ ∈ W , �′ 	= �. Consider now a node k ∈ U =
V \ (N ∪ WN,�). To show that bk = 0, for all k ∈ U , we distinguish the following
cases:

(1) If D−(k) ∩ U 	= ∅, then there exists an arc (k′, k), k′ ∈ U that builds a feasi-
ble MWCS solution B from F(�,N). Also, the single node solution B ′ = {k′}
belongs to F(�,N). After subtracting the equations (16) with the substituted
characteristic vectors of B and B ′, we obtain bk = 0.

260 E. Álvarez-Miranda, I. Ljubić, and P. Mutzel

(2) If there exists an arc (i, k) ∈ A for some i ∈ N , then, consider a path P from i

to � that does not cross N ∪U (such P exists because N is minimal) and a path
P ′ = P ∪ {(i, k)}, in both of them we set i as root. Both P and P ′ belong to
F(�,N). After subtracting the equations (16) with the substituted characteristic
vectors of P and P ′, we obtain bk = 0.

(3) Finally, if there exists an arc (j, k) ∈ A for some j ∈WN,�, we consider a path
Q from � to j in WN,� (such path exists because WN,� is strong) and a path
Q′ = Q ∪ {(j, k)}. Both Q and Q′ belong to F(�,N). After subtracting the
equation (16) with the substituted characteristic vectors of Q and Q′, we obtain
bk = 0. Hence, the equation (16) can be rewritten as ax +∑i∈N∪{�} bixi = a0.
Notice that a single node solution {k} belongs to F(�,N), for each k ∈U . By
plugging the associated vector into (16), it follows that ak = a0, for all k ∈U .
Consider now two spanning arborescences in WN,�, one rooted at �, the other
rooted at arbitrary �′ 	= � (this is possible, because WN,� is strong). After sub-
tracting the equation (16) with the substituted characteristic vectors of those
two arborescences, we obtain a�′ = a� = α, for all �′ ∈ WN,�. Since N ∈ N�

and it is minimal, for each i ∈ N there exist k ∈ U such that there exist a path
Pk from k to � that crosses N exactly at the node i. Let P ′

k be a subpath of Pk
from i to �. Both paths belong to F(�,N) and after subtracting the associated
equations (16), it follows that ai = ak , and hence ai = a0, for all i ∈N .

So far, (16) can be rewritten as a0x(WN,�)+ αx(WN,�)+∑i∈N∪{k} biyi = a0.
After plugging in the characteristic vector of P ′

k into this equation, it follows that
a0 +bi +b� = a0, and therefore we have bi = −b� = β , for all i ∈N . Equation (16)
becomes now a0x(WN,�) + αx(WN,�) + βy(N) − βy� = a0. Notice that solution
{�} also belongs to F(�,N), which implies that α − β = a0. Finally, substituting a0
in the previous equation, and using the equation (4), x(V)= 1, we end up with the
following form of (16):

β
[−x(WN,�)+ y(N)− y� = −1

]
,

which together with equation (4) concludes the proof. �

5 Computational Results

For testing the computational performance of the presented formulations we have
considered both directed and undirected MWCS instances. The (CYCLE) model
of Backes et al. [1] has been developed for directed graphs (regulatory networks)
with K-cardinality constraints, i.e., any feasible solution has to be comprised by
exactly K nodes (for a given K > 1). Executables of this implementation are avail-
able online (see [12]). For the (PCStT) and (CUT) models we have developed our
own B&C implementations that work with and without cardinality constraints. The
real-world instances used in [1] require K-cardinality constraints. Therefore, in the
part of our computational study conducted on digraphs, we impose cardinality con-
straints for all three models, (PCStT), (CUT) and (CYCLE). For the other set of

The Maximum Weight Connected Subgraph Problem 261

instances we take the size of the unconstrained optimal solution (obtained by the
(CUT) model) and provide the corresponding value of K as input to the (CYCLE)
model.

In the following, we describe (i) components of the designed B&C algorithms
and some implementation details, (ii) a testbed used for the experiments, and (iii)
an extensive analysis of the obtained results.

5.1 Branch-and-Cut Algorithms

Separation of Inequalities For the (PCStT) model, connectivity inequalities (2)
are separated within the B&C framework by means of the maximum flow algorithm
given by [5]. The separation problem is solved on a support graph whose arc capac-
ities are given by the current LP value of z variables. We randomly select a terminal
v ∈ V such that pv > 0 and yv > 0, and calculate the maximum flow between the
artificial root and v, and insert the corresponding constraint (2), if violated.

For the (CUT) formulation, the separation of (gNSep) is performed by solving
the maximum flow problems as described in the proof of Proposition 2, with arc
capacities given by (10).

In all cases, instead of adding a single violated cut per iteration, we use nested,
back-flow and minimum cardinality cuts (see also [21, 24]) to add as many violated
cuts as possible. We restrict the number of inserted cuts within each separation call-
back to 25.

Primal Heuristic Our primal heuristic finds feasible solutions using the informa-
tion available from the current LP solution in a given node of the branch-and-bound
tree. Although we develop two different B&C algorithms, derived from two MIP
models, the embedded primal heuristics are based on the same idea. We select a
subset of potential “key-players” (nodes with a positive outgoing degree and with
sufficiently large y values) and run a restricted breadth-first search (BFS) from each
of them. Out of the constructed connected components, i.e., feasible solutions of the
MWCS, we select the one with the largest total weight.

MIP Initialization We initialize the (PCStT) model with the root out-degree con-
straints (3). For the undirected MWCS, we also add symmetry-breaking constraints
(similar to (14)) and inequalities zji + zij ≤ yi , for all e : {i, j} ∈ E since they
avoid too frequent calls of the maximum flow procedure. For the variants where
no cardinality constraint is defined, we also include the flow-balance constraints:
z(δ−(i)) ≤ z(δ+(i)), for all i ∈ V such that pi ≤ 0. These constraints ensure that a
node with non-positive weight can not be a leaf in an optimal PCStT solution.

We initialize the (CUT) model with the constraints (4), (5), (6). For the cases
where no cardinality constraint is imposed, the out-degree constraints (13) are also
included. Finally, the symmetry-breaking constraints (14) are added for the undi-
rected case.

262 E. Álvarez-Miranda, I. Ljubić, and P. Mutzel

Implementation The proposed approaches were implemented using CPLEX™
12.3 and Concert Technology. All CPLEX parameters were set to their default val-
ues, except the following ones: (i) CPLEX cuts were turned off, (ii) CPLEX heuris-
tics were turned off, (iii) CPLEX preprocessing was turned off, (iv) the time limit
was set to 1800 seconds (except for the instances from [1]), and (v) higher branch-
ing priorities were given to y variables, in the case of the (PCStT) models, and to
x variables, in the case of the (CUT) model. All the experiments were performed
on a Intel Core2 Quad 2.33 GHz machine with 3.25 GB RAM, where each run was
performed on a single processor.

5.2 Benchmark Instances

We have considered two sets of benchmark instances arising from applications in
systems biology and from network design.

Systems Biology Instances We have considered instances used in [8] and [1].
In [8], only a single protein-protein interaction network is considered. The in-
stance is presented as an undirected graph comprised by 2034 nodes (proteins) and
8399 edges (interactions). The considered protein-protein interaction network cor-
responds to a well studied human one and the protein scores come from a lymphoma
microarray dataset (LYMPH). The instance is available at [25].

In [1], six instances of regulatory networks, i.e., directed graphs, were consid-
ered. These instances have the same underlying network (KEGG human regulatory
network of protein complexes), which is a graph comprised by 3917 nodes and
133 310 arcs. The differences between the six benchmark instances of this set are
the scores associated to the proteins (or protein complexes) which depend on the
pathogenic process under consideration. All the instances are available online (see
[12]). For providing a valid comparison with the method proposed in [1], it is neces-
sary to impose cardinality constraints to the solutions. Values K ∈ {10,11, . . . ,25}
are considered. This leads to 16 different instances for each of the six different score
settings.

Network Design Instances These are Euclidean random instances which are gen-
erated as proposed by Johnson, Minkoff, and Phillips in their paper on the Prize-
Collecting Steiner Tree Problem [20]. The topology of these instances is similar
to street networks. First, n nodes are randomly located in a unit Euclidean square.
A link between two nodes i and j is established if the Euclidean distance dij be-
tween them is no more than α/

√
n, for a fixed α > 0. To generate node weights,

we performed the following procedure: δ % of the nodes are randomly selected to
be associated with non-zero weights. Out of them, ε % are associated with a weight
taken uniformly randomly from [−10,0] and the remaining ones are associated with
a weight taken uniformly randomly from [0,10].

When generating these instances we do not impose whether links are directed or
not. When reading the input files we define if the link between i and j corresponds

The Maximum Weight Connected Subgraph Problem 263

Fig. 3 Box plots of log10-values of the running times [sec] (instances from [1], K ∈ {10, . . . ,25})

to an edge e : {i, j} or to an arc a : (i, j). This allows us to use the same set of
instances for both, the directed and the undirected case.

For the computational experiments we considered n ∈ {500,750,1000,1500},
α ∈ {0.6,1.0}, δ ∈ {0.25,0.50,0.75}, ε ∈ {0.25,0.50,0.75}. This leads to 18 in-
stances for each fixed value of n.

5.3 Algorithmic Performance

MWCS on Digraphs We consider the instances GSE13671, GDS1815, HT-29-8,
HT-29-24, HT-116-8, HT-116-24 from [1] and our randomly generated instances.

In Fig. 3, using the box plots we show the log10-values of the running times
for the three approaches considering all instances of [1] and all values of K . There
are 16 × 6 = 96 problems in total for each approach. The values marked with an
asterisk correspond to the log10-values of the mean running time (shown as the
label next to the asterisk). The values marked with symbol × correspond to the
log10-values of the maximum running times (the label next to it shows the name of
the instance, K , and the running time). The obtained results indicate that, for this
group of instances, the approach with the worst performance is (PCStT), since most
of the running times are at least one order of magnitude larger than the ones of the
other two approaches. When comparing (CUT) and (CYCLE), one can observe that
the distribution of the running times of the (CYCLE) model has a larger dispersion
(the box is wider) and its outliers are almost one order of magnitude larger than the
maximum running times of the (CUT) model. In a few cases however the (CYCLE)
model solves some instances faster than the (CUT) model (which can be seen from
the minimum values and the values in the first-quartile). Overall, the mean value of
the running times of the (CUT) model is 22 seconds, which is almost three times

264 E. Álvarez-Miranda, I. Ljubić, and P. Mutzel

Table 1 Average values for instances from [1] (K ∈ {10, . . . ,25})
Instance δ ε (PCStT) (CUT) (CYCLE)

Time (sec) #(2) Time (sec) #(gNSep) Time (sec) #(7)

GSE13671 0.89 0.73 176.11 1206 17.85 97 341.95 3754

GDS1815 0.92 0.64 878.63 3565 46.09 225 37.95 1264

HT-29-8 0.92 0.66 2846.36 5400 22.03 182 14.17 178

HT-29-24 0.92 0.61 196.56 1292 11.40 61 60.59 1330

HT-116-8 0.92 0.54 623.10 2214 15.26 108 3.21 129

HT-116-24 0.92 0.55 237.78 1149 19.82 93 4.19 130

Average 826.42 2471 22.07 128 77.01 1131

smaller than the mean running time of the (CYCLE) model (77 seconds). The value
of the maximum running time of the (CUT) model is 193 seconds, which is more
than 10 times smaller than the maximum running time of the (CYCLE) model (2245
seconds, reached for K = 18 for the instance GSE13671, see Fig. 3). The fact that
the box of the (CUT) model is considerably narrower than the box of the (CYCLE)
model, indicates that the (CUT) approach is more robust regarding the variation of
the scores of protein complexes and the value of K .

In Table 1 we report for each instance from [1] the average values (over all
K ∈ {10, . . . ,25}) of the running times and the average number of cuts added for
each of the (PCStT), (CUT) and (CYCLE) models (cf. columns Time (sec), #(2),
#(gNSep) and #(7), respectively). In column δ we show the fraction of nodes with
a score different than 0 and in column ε the fraction of them with a negative score.
The results indicate that the performance of the (CYCLE) model strongly depends
on the instances under consideration (the average running times of GSE13671 are
two orders of magnitude larger that the ones of HT-116-8), which also explains the
dispersion shown in Fig. 3. Likewise, for the (PCStT) model, the average running
time for the instance HT-29-8 is an order of magnitude larger than for the instance
GSE13671. In contrast to the unstable performance of (PCStT) and (CYCLE) mod-
els, the (CUT) model seems to be more independent on the type of considered in-
stances. From the same table we may conclude that the number of cuts needed to
prove the optimality is one order of magnitude smaller for the (CUT) model than for
the other two models. This means that the (gNSep) cuts are more effective in closing
the gap than the (7) and (2) cuts. Regarding δ and ε, it seems that the (CUT) model
is not sensitive to their values, while the (CYCLE) model performs better when ε is
smaller.

For the set of Euclidean network instances, running times of the (CUT) and
(CYCLE)model are given in Fig. 4(a) and Fig. 4(b), respectively (for many instances
we reached the time-limit for the (PCStT) model, so we do not consider it here).
This time we group instances according to different combinations of (δ, ε) values.
Each box contains 16 × 8 = 128 values obtained for the settings: K ∈ {10, . . . ,25},

The Maximum Weight Connected Subgraph Problem 265

Fig. 4 Dependence of the running times on the (δ, ε) settings. a Influence of δ and ε on the
performance of the (CUT) model (random instances, K ∈ {10, . . . ,25}). b Influence of δ and ε on
the performance of the (CYCLE) model (random instances, K ∈ {10, . . . ,25})

n ∈ {500,750,1000,1500} and α ∈ {0.6,1.0}. Comparing Fig. 4(a) and Fig. 4(b) we
observe that although the average running times (marked with asterisk) of the (CUT)
model are in general one order of magnitude smaller than those of the (CYCLE)
model, both of them present a similar pattern: (i) For a given δ, the increase of ε
from 0.25 to 0.75 produces a worsening of the algorithmic performance. This wors-
ening is visible not only in the increase of the running times, but also in their higher
dispersion (wider boxes and more outliers). Increasing ε (for a fixed δ), means that
a larger proportion of nodes has a negative weight; since our goal is to find a con-
nected component of exactly K nodes the more nodes with negative weight, the

266 E. Álvarez-Miranda, I. Ljubić, and P. Mutzel

Fig. 5 Performance profile of running times on random undirected instances

more difficult is the task of reaching the “attractive” nodes that lead to a better solu-
tion. (ii) On the other hand, increasing δ from 0.25 to 0.75 produces an improvement
of the algorithmic performance, i.e., the more nodes with non-zero weights, the eas-
ier the problems. One possible reason for this could be the symmetries induced by
a large portion of nodes with zero weight (as it is the case for δ = 0.25). Hence, by
decreasing this portion (i.e., increasing δ) the cutting-planes that are added through
the separation become more effective, and the primal heuristic is able to find more
diverse, and eventually better, incumbent solutions.

MWCS on Undirected Graphs For this computational comparison we do not
impose cardinality constraints. In order to be able to perform a comparison with the
(CYCLE) model that requires a digraph G and K as its input, we run the (CYCLE)
model with (i) G transformed into a digraph, and (ii) with the value of K set to be
the size of the optimal unconstrained MWCS solution (obtained by, e.g., the (CUT)
model). For these graphs we impose a time limit of 1800 seconds. Figure 5 shows
the performance profile of the three approaches regarding the total running time.
Figure 6 shows the performance profile of the achieved gaps within this time limit.
We observe that also in the case of undirected graphs, the (CUT) approach sig-
nificantly outperforms the (CYCLE) and the (PCStT) approach: While the (CUT)
approach produces solutions of less than 1 % of gap in almost 100 % of the in-
stances, the (PCStT) approach produces solutions with more than 15 % of gap in
more than 40 % of the instances. The (CYCLE) approach solves about 50 % of in-
stances to optimality, with most of the gaps of the unsolved instances being below
15 %.

In Table 2 we provide more details on these results. Each row corresponds to a
fixed value of n, with 18 different instances obtained by varying δ, ε and α. Column
#NOpt indicates how many out of those 18 instances were not solved to optimality
within the imposed time limit of 1800 seconds. For a given n, and for each of the

The Maximum Weight Connected Subgraph Problem 267

Fig. 6 Performance profile of final gaps (%) on random undirected instances

three approaches we additionally report on the following values: the average run-
ning time (cf. column Time (sec)); the average gap of those instances that were not
solved to optimality (cf. column Gap (%)), and the average number of inserted cut-
ting planes (cf. columns #(2), #(gNSep), #(7), respectively). These results show that
the (CUT) model is by far more effective than the (CYCLE) model for this group of
instances. The average running times of the (CUT) model are one order of magni-
tude smaller than those of the (PCStT) and (CYCLE) model. All but four instances
can be solved by the (CUT) model to optimality, while in the case of the (CYCLE)
and (PCStT) model, 29 and 42 instances remain unsolved, respectively. The number
of cutting planes of type (gNSep) needed to close the gap is one order magnitude
smaller than the number of cuts of type (7) or (2).

So far, it seems clear that for the considered instances the (CUT) model sig-
nificantly outperforms the (PCStT) approach. However for the LYMPH instance
studied in [8], for which δ = 1.0 and ε = 0.97, the (PCStT) model takes only 3.19
seconds to find the optimal solution while the (CYCLE) model takes 15.56 seconds,
and the (CUT) model 50.70 seconds. The optimal solution, whose objective value
is 70.2, is comprised by 37 nodes with positive weight and 9 with negative weight.
It is not easy to derive a concrete answer of why, for this particular instance, the
(PCStT) model is faster than the (CUT) model. The following two factors could be
responsible for this behavior: (i) the sparsity of the graph (the number of edges is
approximately four times the number of nodes, while in random instances this ratio
is almost 10) which means that the number of z variables is not too large, and (ii)
there are significantly less symmetries due to the fact that there are no nodes with
zero weight. These factors might explain why, in this particular case, it becomes
easier to solve the problem with the Prize-Collecting Steiner Tree reformulation,
rather than directly looking for a connected component that maximizes the objec-
tive function.

268 E. Álvarez-Miranda, I. Ljubić, and P. Mutzel

Ta
bl

e
2

A
ve

ra
ge

va
lu

es
fo

r
di

ff
er

en
tv

al
ue

s
of
n

(r
an

do
m

in
st

an
ce

s,
α

∈{
0.

6,
1.

0},
δ
,
ε

∈{
0.

25
,
0.

50
,
0.

75
},1

8
pr

ob
le

m
s

fo
r

ea
ch

n
)

#n
od

es
#a

rc
s

(P
C

St
T
)

(C
U

T
)

(C
Y

C
L

E
)

T
im

e
(s

ec
)

G
ap

(%
)

#(
2)

#N
O

pt
T

im
e

(s
ec

)
G

ap
(%

)
#(

gN
Se

p)
#N

O
pt

T
im

e
(s

ec
)

G
ap

(%
)

#(
7)

#N
O

pt

50
0

45
58

67
7

>
15

10
55

5
15

–
69

0
61

5
5.

50
42

89
6

75
0

70
21

12
43

>
15

15
52

11
10

8
1.

27
99

1
47

1
2.

64
17

21
4

10
00

91
08

13
04

>
15

19
55

12
15

0
0.

29
20

1
1

99
0

6.
76

31
76

9

15
00

14
09

5
15

26
>

15
20

21
14

45
3

2.
08

37
3

2
10

86
10
.5

5
21

39
10

The Maximum Weight Connected Subgraph Problem 269

6 Conclusion

Our work was motivated by the wide range of applications of the MWCS and a
recent work of Backes et al. [1] who were the first ones to propose a MIP model
for the MWCS derived on the set of node variables only. In this paper we were
able to provide a tight MIP model that outperforms the model from [1] both the-
oretically and computationally. The new model also works on the space of node
variables and is valid for all previously studied variants of the MWCS (cardinality
constrained, budget constrained and undirected/directed one). We have studied the
CS polytope and we have shown that the newly introduced family of generalized
node-separator inequalities is facet defining. Our computational study has shown
that the new approach outperforms the previously proposed ones, in particular if the
inputs are digraphs with non-empty subsets of zero-weight nodes.

Acknowledgements We are deeply thankful to Christina Backes from the Department of Human
Genetics, Saarland University, who helped in the understanding and interpretation of the regulatory
network instances considered in this paper. This research is partially conducted during the research
stay of Ivana Ljubić at the TU Dortmund, supported by the APART Fellowship of the Austrian
Academy of Sciences. This support is greatly acknowledged. Eduardo Álvarez-Miranda thanks the
Institute of Advanced Studies of the Università di Bologna from where he is a Ph.D. Fellow.

References

1. Backes, C., Rurainski, A., Klau, G., Müller, O., Stöckel, D., Gerasch, A., Küntzer, J., Maisel,
D., Ludwig, N., Hein, M., Keller, A., Burtscher, H., Kaufmann, M., Meese, E., Lenhof, H.:
An integer linear programming approach for finding deregulated subgraphs in regulatory net-
works. Nucleic Acids Res. 1, 1–13 (2011)

2. Bateni, M., Chekuri, C., Ene, A., Hajiaghayi, M., Korula, N., Marx, D.: Prize-collecting
Steiner problems on planar graphs. In: Randall, D. (ed.) Proceedings of the Twenty-Second
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2011, San Francisco, CA,
USA, January 23–25, pp. 1028–1049 (2011)

3. Carvajal, R., Constantino, M., Goycoolea, M., Vielma, J., Weintraub, A.: Imposing connectiv-
ity constraints in forest planning models. Oper. Res. (2013). doi:10.1287/opre.2013.1183

4. Chen, C.Y., Grauman, K.: Efficient activity detection with max-subgraph search. In: 2012
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Providence, RI,
USA, June 16–21, pp. 1274–1281 (2012)

5. Cherkassky, B.V., Goldberg, A.V.: On implementing push-relabel method for the maximum
flow problem. Algorithmica 19, 390–410 (1994)

6. Chimani, M., Kandyba, M., Ljubic, I., Mutzel, P.: Obtaining optimal k-cardinality trees fast.
ACM J. Exp. Algorithmics 14, 5 (2009)

7. Dilkina, B., Gomes, C.: Solving connected subgraph problems in wildlife conservation. In:
Lodi, A., Milano, M., Toth, P. (eds.) CPAIOR. LNCS, vol. 6140, pp. 102–116. Springer, Berlin
(2010)

8. Dittrich, M., Klau, G., Rosenwald, A., Dandekar, T., Müller, T.: Identifying functional mod-
ules in protein-protein interaction networks: an integrated exact approach. Bioinformatics 24,
i223–i231 (2008)

9. Feigenbaum, J., Papadimitriou, C.H., Shenker, S.: Sharing the cost of multicast transmissions.
J. Comput. Syst. Sci. 63(1), 21–41 (2001)

http://dx.doi.org/10.1287/opre.2013.1183

270 E. Álvarez-Miranda, I. Ljubić, and P. Mutzel

10. Fischetti, M., Hamacher, H.W., Jørnsten, K., Maffioli, F.: Weighted k-cardinality trees: com-
plexity and polyhedral structure. Networks 24(1), 11–21 (1994)

11. Fügenschuh, A., Fügenschuh, M.: Integer linear programming models for topology optimiza-
tion in sheet metal design. Math. Methods Oper. Res. 68(2), 313–331 (2008)

12. genetrail.bioinf.uni-sb.de/ilp/. Accessed 10 September 2012
13. Goldschmidt, O., Hochbaum, D.S.: k-edge subgraph problems. Discrete Appl. Math. 74(2),

159–169 (1997)
14. Grötschel, M.: Polyedrische Charakterisierungen Kombinatorischer Optimierungsprobleme.

Mathematical Systems in Economics, vol. 36. Verlag Anton Hain, Meisenheim am Glan
(1977)

15. Grötschel, M., Monma, C.L.: Integer polyhedra arising from certain network design problems
with connectivity constraints. SIAM J. Discrete Math. 3(4), 502–523 (1990)

16. Grötschel, M., Monma, C.L., Stoer, M.: Facets for polyhedra arising in the design of commu-
nication networks with low-connectivity constraints. SIAM J. Optim. 2(3), 474–504 (1992)

17. Grötschel, M., Monma, C.L., Stoer, M.: Polyhedral and computational investigations for
designing communication networks with high survivability requirements. Oper. Res. 43(6),
1012–1024 (1995)

18. Hochbaum, D.S., Pathria, A.: Node-optimal connected k-subgraphs. Manuscript, UC Berkeley
(1994)

19. Ideker, T., Ozier, O., Schwikowski, B., Siegel, A.: Discovering regulatory and signalling cir-
cuits in molecular interaction networks. Bioinformatics 18(Suppl. 1), s233–s240 (2002)

20. Johnson, D.S., Minkoff, M., Phillips, S.: The prize-collecting Steiner tree problem: theory and
practice. In: Proceedings of the 11th ACM-SIAM Symposium on Discrete Algorithms, SODA
2000, San Francisco, CA, USA, 9–11 January, pp. 760–769 (2000)

21. Koch, T., Martin, A.: Solving Steiner tree problems in graphs to optimality. Networks 32,
207–232 (1998)

22. Lee, H., Dooly, D.R.: Algorithms for the constrained maximum-weight connected graph prob-
lem. Nav. Res. Logist. 43, 985–1008 (1996)

23. Lee, H., Dooly, D.: Decomposition algorithms for the maximum-weight connected graph
problem. Nav. Res. Logist. 45, 817–837 (1998)

24. Ljubić, I., Weiskircher, R., Pferschy, U., Klau, G., Mutzel, P., Fischetti, M.: An algorithmic
framework for the exact solution of the prize-collecting Steiner tree problem. Math. Program.,
Ser. B 105, 427–449 (2006)

25. www.planet-lisa.net/. Accessed 10 September 2012
26. Yamamoto, T., Bannai, H., Nagasaki, M., Miyano, S.: Better decomposition heuristics for the

maximum-weight connected graph problem using betweenness centrality. In: Gama, J., Costa,
V., Jorge, A., Brazdil, P. (eds.) Discovery Science. LNCS, vol. 5808, pp. 465–472. Springer,
Berlin (2009)

http://genetrail.bioinf.uni-sb.de/ilp/
http://www.planet-lisa.net/

Exact Algorithms for Combinatorial
Optimization Problems with Submodular
Objective Functions

Frank Baumann, Sebastian Berckey, and Christoph Buchheim

Abstract Many combinatorial optimization problems have natural formulations
as submodular minimization problems over well-studied combinatorial structures.
A standard approach to these problems is to linearize the objective function by
introducing new variables and constraints, yielding an extended formulation. We
propose two new approaches for constrained submodular minimization problems.
The first is a linearization approach that requires only a small number of additional
variables. We exploit a tight polyhedral description of this new model and an ef-
ficient separation algorithm. The second approach uses Lagrangean decomposition
to create two subproblems which are solved with polynomial time algorithms; the
first subproblem corresponds to the objective function while the second consists of
the constraints. The bounds obtained from both approaches are then used in branch
and bound-algorithms. We apply our general results to problems from wireless net-
work design and mean-risk optimization. Our experimental results show that both
approaches compare favorably to the standard techniques.

1 Introduction

Many combinatorial optimization problems can be naturally modeled as an integer
program in which the objective function is not linear but submodular. Submodular-
ity is a property of set functions. Given a set S, a function f : 2S → R is called
submodular, if for each pair of subsets A,B ⊆ S the property

F. Baumann · C. Buchheim (B)
Fakultät für Mathematik, Technische Universität Dortmund, Vogelpothsweg 87, 44227 Dortmund,
Germany
e-mail: christoph.buchheim@tu-dortmund.de

F. Baumann
e-mail: frank.baumann@tu-dortmund.de

S. Berckey
INFORM Institut für Operations Research und Management GmbH, Pascalstr. 23, 52076 Aachen,
Germany
e-mail: sebastian.berckey@inform-software.com

M. Jünger, G. Reinelt (eds.), Facets of Combinatorial Optimization,
DOI 10.1007/978-3-642-38189-8_12, © Springer-Verlag Berlin Heidelberg 2013

271

mailto:christoph.buchheim@tu-dortmund.de
mailto:frank.baumann@tu-dortmund.de
mailto:sebastian.berckey@inform-software.com
http://dx.doi.org/10.1007/978-3-642-38189-8_12

272 F. Baumann, S. Berckey, and C. Buchheim

f (A∪B)+ f (A∩B)≤ f (A)+ f (B)

holds. It is easy to see that the class of submodular functions comprises the class of
linear set functions. Submodularity can be interpreted as diminishing returns: to see
this consider the equivalent definition

f
(
A∪ {x})− f (A)≥ f

(
B ∪ {x})− f (B),

for A ⊆ B ⊆ S and x /∈ B . Including the element x into a larger set generates less
additional profit. A simple example of a submodular function is the maximum func-
tion. Given a weight ws for each element s of S, the function

f (A)= max
s∈A ws

returns the weight of the heaviest element in the subset.
It is an important property of submodular functions that they can be minimized

efficiently if the set of feasible solutions is not restricted. The first strongly polyno-
mial time algorithm for submodular function minimization (SFM) was proposed by
Grötschel et al. [13], using the ellipsoid method. The problem of finding a combina-
torial algorithm was open for more than a decade. It was finally resolved indepen-
dently by Schrijver [28] and Iwata et al. [16]. Since then, several fully combinatorial
algorithms were devised [15, 26].

In the presence of linear constraints, however, the problem often becomes NP-
hard. This is the case even if optimizing a linear objective function subject to the
same constraints is easy. In this paper we consider such combinatorial optimization
problems of the form

minf (x)
s.t. x ∈X ⊂ {0,1}S, (1)

where f : 2S → R is a submodular function on a set S. Without loss of generality
we can assume f (∅)≥ 0. We associate each binary variable xi with an element of S.
The set X contains all feasible solutions of the problem. In this paper, we generally
assume that a linear objective function can be optimized over X in polynomial time
or, equivalently, that the separation problem for P := convX is polynomially solv-
able. From a practical point of view, the methods proposed can also be applied to
problems where the linear optimization problem over X can be solved sufficiently
fast or where a tight polyhedral description of P is known.

Commonly, model (1) is either solved directly, as a nonlinear integer program,
or it is reformulated as an integer linear program (ILP). ILP models have the advan-
tage that they are well studied and state-of-the-art solvers are extremely efficient.
A downside of considering an extended linear formulation is that the linearization
often can only be achieved by introducing a large number of new variables and
linear constraints to the model, reducing the advantage of using linear solvers con-
siderably. Additionally, such reformulations often not only affect the objective func-
tion but also the original constraints, obscuring or even destroying the combinatorial
structure of the problem.

Submodular Combinatorial Optimization 273

In this paper, we aim at generic approaches for submodular combinatorial opti-
mization problems. We present two such general techniques: a polyhedral approach
using a compact linear model in Sect. 2 and a Lagrangean decomposition approach
in Sect. 3. The first approach relies on efficient separation algorithms for the under-
lying combinatorial problem. In combination with an efficient separation algorithm
for a polyhedron corresponding to the submodular objective function, we obtain a
strong polyhedral description for Problem (1). On contrary, in the Lagrangian ap-
proach the two subproblems are solved directly. Here we use the existence of ef-
ficient algorithms for SFM and for the linear version of Problem (1). Indeed, the
assumptions made in both approaches are equivalent: by a well-known result of
Grötschel et al. [13], the existence of efficient separation algorithms implies the
existence of efficient optimization algorithms and vice versa.

In Sect. 4, we describe how to apply our results to range assignment problems and
a problem from portfolio optimization, risk-averse capital budgeting. We present
computational results and compare the effectiveness of the proposed techniques to
existing state-of-the-art algorithms in Sect. 5.

An extended abstract covering some of the results presented in this paper has
appeared in the proceedings of ISCO 2010 [4].

2 A Cutting Plane Approach

In the following, we study the polyhedral structure of submodular combinatorial op-
timization problems. We describe a class of linear inequalities that gives a complete
description of the corresponding polyhedron in the unconstrained case and a corre-
sponding efficient separation algorithm. Combined with the polyhedral description
of the set of feasible solutions X we obtain an LP-relaxation of Problem (1).

Starting from the unconstrained nonlinear model

minf (x)
s.t. x ∈ {0,1}S

we introduce a single new variable y ∈ R to replace the objective function. Clearly,
the resulting model

miny
s.t. y ≥ f (x)

x ∈ {0,1}S
y ∈ R

is equivalent to the original one, since we consider a minimization problem. Now
consider the convex hull of feasible points:

Pf = conv
{
(x, y) ∈ {0,1}S ×R | y ≥ f (x)

}
.

274 F. Baumann, S. Berckey, and C. Buchheim

The polyhedron Pf is the epigraph of the so-called Lovász-extension of f . The
following result by Edmonds [9] and Lovász [19] gives a complete polyhedral de-
scription of Pf .

Theorem 1 Let |S| = n and let f : 2S → R be a submodular function with
f (∅)≥ 0. Then the separation problem for Pf can be solved in O(n logn) time.
The facets of Pf are either induced by trivial inequalities 0 ≤ xi ≤ 1, i ∈ S, or by
an inequality a#x ≤ y with

aσ(i) = f (Si)− f (Si−1) ∀i ∈ {1, . . . , n}, (2)

where σ : {1, . . . , n} → S is any bijection and Si = {σ(j) | j ∈ {1, . . . , i}}.
In the presence of constraints the above theorem does not yield a complete poly-

hedral description anymore, but it still provides strong dual bounds on the LP-
relaxation, as we will see later. The number of facets of Pf is exponential in n= |S|,
but the separation problem can be solved efficiently by a simple greedy algorithm.
Indeed, violation of the trivial facets is checked in linear time. The following algo-
rithm produces a candidate for a separating hyperplane:

Given a fractional point (x�, y�) ∈ [0,1]S × R, sort the elements of S in non-
increasing order according to their value in x�. Starting with the empty set, itera-
tively construct a chain of subsets ∅ = S0 ⊂ S1 ⊂ · · · ⊂ Sn = S by adding the ele-
ments in this order. The potentially violated inequality a#x ≤ y is then constructed
by setting ai = f (Si)− f (Si−1). Obviously this algorithm constructs an inequality
of the form (2) that is most violated by the given fractional point (x�, y�). Either
this inequality is a separating hyperplane or none such exists. A formal description
of this separation procedure is given in Algorithm 1.

In many applications the submodular objective function f can be written as a
conic combination of other submodular functions fi , i.e., we have

f =
k∑

i=1

αifi, α1, . . . , αk ≥ 0, f1, . . . , fk submodular.

This situation can be exploited by modeling each function fi separately, introduc-
ing a new continuous variable yi modeling fi(x) for each i ∈ {1, . . . , k}. Such an
approach could be preferable if, e.g., the values fi(x) are used at other points in the
model or if the functions fi have much smaller domains than f . In the latter case,
the total number of inequalities needed to describe the unconstrained problem can
be reduced significantly.

We obtain

min
k∑

i=1

αiyi

s.t. yi ≥ fi(x) for all i ∈ {1, . . . , k}
x ∈ {0,1}S
y ∈R

k.

(3)

Submodular Combinatorial Optimization 275

Algorithm 1: Separation Algorithm for Pf
Input : a fractional solution (x�, y�)= (x�1, . . . , x

�
n, y

�)

Output: a hyperplane a#x ≤ y separating (x�, y�) from Pf , if one exists

Sort the elements of S into a list {l1, . . . , ln} by non-increasing value of x�

i ← 1
S0 ← ∅
repeat

Si ← Si−1 ∪ {li}
ai = f (Si)− f (Si−1)

i ← i + 1
until i = n

if y� < a#x� then
return a

else
return no constraint found

end

Our next aim is to show that the separation algorithm detailed above can still be
used to generate a complete description for Problem (3). First note that Theorem 1
yields a complete description of the polytope Pfi for each i ∈ {1, . . . , k}. For the
following, define

P =
⋂

i∈{1,...,k}
Pfi ,

where each Pfi is trivially extended from {0,1}S ×R to {0,1}S ×R
k . We will show

that each vertex (x, y) of P satisfies x ∈ {0,1}S and yi = fi(x), and hence is feasible
for Problem (3). In other words, the separation problem corresponding to (3) can be
reduced to the single separation problems for each Pfi .

Lemma 1 For any submodular function f : {0,1}S → R and j ∈ S, there is a sub-
modular function g : {0,1}S\{j} →R such that {x ∈ Pf | xj = 0} = Pg .

Proof For x ∈ {0,1}S\{j}, let x̄ be its extension to {0,1}S , setting x̄j = 0. Defining
g(x)= f (x̄) yields the desired submodular function. �

Lemma 2 For any submodular function f : {0,1}S → R and j ∈ S, there is a sub-
modular function g : {0,1}S\{j} → R such that {x ∈ Pf | xj = 1} = ej + Pg , where
ej denotes the unit vector corresponding to xj .

Proof For x ∈ {0,1}S\{j}, let x̄ be its extension to {0,1}S , setting x̄j = 1. Defining
g(x)= f (x̄) yields the desired submodular function. �

276 F. Baumann, S. Berckey, and C. Buchheim

Lemma 3 If (x, y) ∈ P with x ∈ (0,1)S , then (x, y) is not a vertex of P .

Proof Let the all-ones vector in R
S be denoted by 1S and choose ε > 0 such that

x ± ε1S ∈ [0,1]S . Define c ∈R
k by ci = fi(S)− fi(∅) and consider

z1 = (x − ε1S, y − εc), z2 = (x + ε1S, y + εc).

As (x, y) = 1
2 (z1 + z2), it suffices to show z1, z2 ∈ P . This reduces to showing

(x± ε1S, yi ± εci) ∈ Pfi for all i ∈ {1, . . . , k}. By Theorem 1, the polyhedron Pfi is
completely described by trivial inequalities and by inequalities of the type a#x ≤ yi
with

aσ(j) = fi(Sj)− fi(Sj−1) ∀j ∈ {1, . . . , n}
where σ : {1, . . . , n} → S is any bijection and Sj = {σ(1), . . . , σ (j)}. We obtain in
particular that a#1S = fi(S)−fi(∅)= ci . As (x, y) ∈ P and therefore (x, yi) ∈ Pfi ,
we derive

a#(x ± ε1S)= a#x ± εa#1S ≤ yi ± εci .

Hence z1, z2 ∈ Pfi . �

Theorem 2 The vertices of P are exactly the points (x, y) ∈ {0,1}S ×R
k with yi =

fi(x) for all i ∈ {1, . . . , k}.

Proof It is clear that every such point is a vertex of P . We show that every vertex
(x′, y′) of P is of this form. Since yi is not bounded from above, every vertex must
satisfy yi = fi(x) for all i ∈ {1, . . . , k}. Now assume that at least one component of
x′ is fractional. Define

S0 = {j ∈ S | x′
j = 0

}
, S1 = {j ∈ S | x′

j = 1
}
, T = S \ {S0 ∪ S1}

and consider the face

F = {(x, y) ∈ P | xj = 0 for all j ∈ S0, xj = 1 for all j ∈ S1
}

=
k⋂

i=1

{
(x, y) ∈ Pfi | xj = 0 for all j ∈ S0, xj = 1 for all j ∈ S1

}
.

By Lemma 1 and Lemma 2, the polyhedron F is an intersection of polyhedra
1S1 + Pgi for suitable submodular functions gi : {0,1}T → R. Since x′

i ∈ (0,1) for

all i ∈ T , the point (x′ − 1S1, y
′) is not a vertex of

⋂k
i=1 Pgi by Lemma 3. It follows

that (x′, y′) is not a vertex of F and hence not a vertex of P . �

Note that the last theorem can also be shown in a more general context [11]. It
implies that the polyhedron Pf is a projection of P , given by the linear transforma-
tion y :=∑k

i=1 αiyi . Moreover, it follows that each facet of P is obtained from a

Submodular Combinatorial Optimization 277

facet of one of the polyhedra Pfi . In particular, the separation problem for (3) can be
reduced to the respective separation problems for each polyhedron Pfi as follows:
to separate a point x� from the polytope Pf it is sufficient to check if x� violates any
of the inequalities characterizing the polyhedra Pfi . This can be done by applying
Algorithm 1 to each Pfi in turn.

So far we have only considered unconstrained submodular optimization prob-
lems. Recall that the original Problem (1) was given as

minf (x)
s.t. x ∈X ⊂ {0,1}S,

where X is the set of feasible solutions. The problem can thus be formulated as

miny
s.t. (x, y) ∈ (X ×R)∩ Pf ⊂ {0,1}S ×R.

In this case our results remain applicable but do not necessarily give a complete
polyhedral description of the problem anymore. Even if the complete linear de-
scription of X (or an exact separation algorithm for X) is available, the combination
of the inequalities describing X and Pf in general does not yield a full description
of the intersection (X × R) ∩ Pf . For an exact algorithm the generation of cutting
planes can be embedded into a branch and bound-approach. In each node of the
branch and bound-tree the LP-relaxation is solved. If the solution is fractional, the
separation routines for X and Pf are used to generate cutting planes. This process
is iterated until the solution is integral or no more violated inequalities are found. In
this case a branching step on one of the binary variables is performed.

3 A Lagrangean Decomposition Approach

In this section we avoid the linearization of the submodular objective function and
capitalize on the existence of polynomial time algorithms for SFM in the uncon-
strained case. We use Lagrangean decomposition to separate the objective function
from its constraints. For this purpose we add a new variable set x2 of the same size
as the original variable set to Problem (1):

minf (x1)

s.t. x1 = x2

x1 ∈ {0,1}S
x2 ∈X ⊂ {0,1}S.

(4)

Next we eliminate the coupling constraint x1 = x2 by Lagrangean relaxation and
then decompose the problem into two parts which are separately solvable. We obtain

Z(λ)= minf (x1)− λT x1 + minλT x2

s.t. x1 ∈ {0,1}S s.t. x2 ∈X ⊂ {0,1}S. (5)

278 F. Baumann, S. Berckey, and C. Buchheim

It is well known that Z(λ) is a lower bound of Problems (1) and (4) for every
Lagrangean multiplier λ ∈ R

S . The second part of (5) is an integer linear prob-
lem which is assumed to be solvable in polynomial time in our context. The term
−λT x1 is modular, hence for fixed λ the first part is an unconstrained submodular
minimization problem. As mentioned earlier several efficient combinatorial algo-
rithms for SFM have been proposed [15, 26]. Therefore Lagrangean decomposition
enables us to calculate dual bounds for Problem (1) in polynomial time for given
Lagrangean multipliers λ ∈R

S . To obtain the best dual bound from the Lagrangean
decomposition we can use the so-called Lagrangean dual, i.e. the maximum over all
possible Lagrangean multipliers:

ZD := maxZ(λ)
s.t. λ ∈R

S

Z(λ) is a concave function in λ and can be maximized using the subgradient method.
To apply this method we need a supergradient of Z(λ) for all λ ∈R

S .

Lemma 4 For a given point λ� ∈ R
S , let x�1 and x�2 be minimizers of the two com-

ponents of (5), respectively. Then x�2 − x�1 is a supergradient of Z in λ�.

Proof Z(λ) is concave and for λ ∈ R
S we have

Z
(
λ�
)+ (λ− λ�

)T (
x�2 − x�1

)= f
(
x�1
)+ λT

(
x�2 − x�1

)≥Z(λ). �

These dual bounds can replace the LP-based bounds in the branch and bound-
approach described in Sect. 2. Furthermore, the second part of Problem (5) yields
feasible solutions of Problem (1), which can be used to compute upper bounds.

The following theorem states that the best lower bound obtainable by Lagrangean
relaxation in our setting is the same as the LP bound discussed in Sect. 2. However,
the Lagrange approach might allow a faster computation of this bound in practice,
depending on the problem structure. We investigate this in Sect. 5.

Theorem 3 Let ZD be defined as above, then

ZD = miny
s.t. (x, y) ∈ Pf

x ∈ convX.

Proof We can rewrite (4) as

miny
s.t. x1 = x2

y ≥ f (x1)

x1 ∈ {0,1}S
x2 ∈X ⊂ {0,1}S.

Submodular Combinatorial Optimization 279

By a general result for Lagrangean relaxation [12], ZD is the minimum of y over
the intersection of the two sets conv{(x, y) | y ≥ f (x), x ∈ {0,1}S} = Pf and
conv{(x, y) | x ∈X} = (convX)×R. �

4 Applications

4.1 Range Assignment Problems

As a first application we study a class of problems from wireless network design,
so-called range assignment problems. When designing an ad-hoc wireless network
one main objective is to minimize transmission costs subject to certain requirements
concerning the network topology. In traditional wired networks, these transmission
costs are roughly proportional to the length of all connections installed, so that the
aim is to minimize the total length of all connections. In wireless networks, the
transmission costs depend on the transmission ranges assigned to the nodes. The
main difference lies in the so-called multicast advantage: if a node v reaches an-
other node w, then it also reaches each node u that is closer to v than w, at no
additional cost. Accordingly, the objective function of range assignment problems,
i.e. the overall transmission power of the network needed to establish the specified
connections, is nonlinear as a function of the connections.

Range assignment problems have been studied intensively in recent years and
several exact algorithms have been proposed. Fuchs [10] showed that the prob-
lem of finding a minimum-power connected network with bidirectional links (the
symmetric connectivity problem) is NP-hard. Althaus et al. [1, 2] proposed an ILP
formulation for this problem which is based on a linear extended formulation. For
each node of the network they introduce a new binary variable for each value the
transmission power of the node can take in an optimal solution and express the ob-
jective function in terms of these new variables. Montemanni and Gambardella [22]
apply a very similar technique, modeling the transmission power levels of the nodes
incrementally, as the sum of artificial binary variables. A comparison of different
formulations for the symmetric connectivity problem can be found in [24]. Note
that all models mentioned above are extended linear formulations of the original
problem and do not exploit the submodularity of the objective function directly. We
do not know of any approach in the literature that needs only a constant number of
artificial variables.

A second important variant of the range assignment problem is the minimum
power multicast problem. Here the objective is to construct a network that allows
unidirectional communication from a designated source node to a set of receiving
nodes. All nodes of the network, including the receiving stations, can function as
relay nodes, thereby passing on a signal on its way from the source node to the
receivers. Special cases are the unicast problem and the broadcast problem. In the
former, communication is directed to a single receiving node; in the latter, all nodes
except the source are addressed. The general minimum power multicast problem

280 F. Baumann, S. Berckey, and C. Buchheim

is NP-hard [10]. The unicast problem, on the other hand, is efficiently solvable.
With only a single receiving station the problem reduces to finding a shortest path
through the directed network from the source to the destination node. The linear
variant of the broadcast problem is also known as the optimum branching problem.
Several authors independently presented efficient algorithms to compute an optimal
solution [5, 6, 8].

Many of the algorithms for the symmetric connectivity case can be easily adapted
to multicasting. Additionally, Leggieri et al. [18] investigate the multicasting prob-
lem specifically and present a set covering formulation, as well as preprocess-
ing techniques to reduce the problem size [25]. There are also flow-based ILP-
formulations. One example can be found in the paper by Min et al. [21]. In the same
paper the authors present two exact iterative algorithms which use LP-relaxations
to compute lower bounds. An overview over existing IP models for the multicast
problem can be found in [7].

We model the general range assignment problem in graph theoretic terms. The
communication stations correspond to the set of nodes V of the graph, potential
links between the stations to the set of weighted edges E. For the symmetric connec-
tivity problem, the graph G= (V ,E, c) is undirected with edge costs c, for the mul-
ticast problem it is directed. The objective is to compute a subset of the edges such
that certain restrictions on the topology of the network are satisfied and the overall
transmission costs are minimal. Common to both models is the objective function:
given a subset of edges, for each node only the most expensive incident/outgoing
edge is taken into account. Summing up these values gives the overall costs. Asso-
ciating a binary variable xvw to each edge e = (v,w) ∈ E, the objective function
can be written as

f (x)=
∑

v∈V
max{cvwxvw | vw ∈E}. (6)

A central property of this objective function is that it is submodular:

Theorem 4 For each v ∈ V and for arbitrary c ∈R
E , the function

fv(x)= max{cvwxvw | vw ∈E}
is submodular. In particular, the function f (x)=∑v∈V fv(x) is submodular.

Proof By definition, fv is submodular if

fv(A∪B)+ fv(A∩B)≤ fv(A)+ fv(B)

for arbitrary sets A,B ⊆E. We distinguish two cases:

(a) if fv(A)≥ fv(B), then fv(A∪B)= fv(A) and fv(A∩B)≤ fv(B)

(b) if fv(A)≤ fv(B), then fv(A∪B)= fv(B) and fv(A∩B)≤ fv(A)

In both cases, it follows that fv(A∪B)+ fv(A∩B)≤ fv(A)+ fv(B). Finally, the
function f is submodular, because it is a conic combination of submodular func-
tions. �

Submodular Combinatorial Optimization 281

The desired network topology is described by a set of feasible vectors X. Com-
bining objective function and constraints, the general IP formulation for range as-
signment problems reads

min
∑

v∈V
max{cvwxvw | vw ∈E}

s.t. x ∈X.

(7)

4.1.1 The Standard Model

As mentioned earlier, the standard linearization for this model found in the wireless
networking literature is due to Althaus et al. [1]. They introduce new binary vari-
ables which model the possible values of the nonlinear terms in optimal solutions
and add constraints linking the original variables to the new ones. The resulting
problem reads

min
∑

vw∈E
cvwyvw

s.t.
∑

vw∈E
yvw ≤ 1 for all v ∈ V

∑

cvu≥cvw
yvu ≥ xvw for all vw ∈E

x ∈X

y ∈ {0,1}E.

(8)

In this model, the binary variable yvw is thus set to one if and only if the transmission
power of node v is just enough to reach node w. Note that, depending on the network
topology described byX, the first set of constraints can be strengthened to equations.
This is the case when all feasible edge-induced subgraphs are connected. In this
case, each node has to reach at least one other node. In general, this is not true, so
that for some v all variables yvw can be zero. The number of variables in this model
is 2|E|.

A closely related model appearing in the literature [23] uses binary variables in
an incremental way: again, a variable y′

vw ∈ {0,1} is used for each pair of nodes v
and w, now set to one if and only if node v can reach node w. It is easy to see that
the two models are isomorphic by the transformation

y′
vw =

∑

cvu≥cvw
yvu.

Because of this, the two models are equivalent from a polyhedral point of view and
it suffices to consider the first model in the following.

282 F. Baumann, S. Berckey, and C. Buchheim

4.1.2 New Mixed-Integer Models

The general formulation for range assignment problems we gave above is already
very similar to the model we studied in Sect. 2. We can now introduce a single
artificial variable y ∈ R to move the objective function into the constraints. The
corresponding model is

miny

s.t. y ≥
∑

v∈V
max{cvwxvw | vw ∈E}

x ∈X

y ∈ R.

(9)

From Theorem 4 we know that the objective is submodular; this means that Theo-
rem 1 is applicable and we have an efficient separation algorithm for (9).

Theorem 4 showed that in the case of range assignment problems the objective
function is not only submodular itself but also the sum of submodular functions. We
can thus use the slightly larger mixed-integer model (3), which in our application
reads

min
∑

v∈V
yv

s.t. yv ≥ fv(x) for all v ∈ V

x ∈X

y ∈ R
V .

(10)

We know from Theorem 2 that we can again separate efficiently when ignoring the
problem-specific constraint x ∈X.

4.1.3 Polyhedral Relations

In the following, we investigate the polyhedral properties of the standard model and
the new mixed-integer models. First, we show how the corresponding polyhedra are
related to each other. For this, let P1(X), P2(X), and P3(X) denote the polyhedra
given as the convex hulls of feasible solutions in the models (8), (9), and (10), re-
spectively. Note that P1(X) is a convex hull of binary vectors, so in particular it is
a polytope and all its integral points are vertices. On the other hand, the polyhedra
P2(X) and P3(X) are unbounded by definition. It is easy to see that P3(X) arises
from the convex hull of

{
(x, y) ∈X ×R

V | yv = max{cvwxvw | vw ∈E} ∀v ∈ V
}

by adding arbitrary nonnegative multiples of unit vectors for the variables yv . Simi-
larly, P2(X) arises from the convex hull of

Submodular Combinatorial Optimization 283

{
(x, y) ∈X ×R

∣∣∣ y =
∑

v∈V
max{cvwxvw | vw ∈E}

}

by adding arbitrary nonnegative multiples of the unit vector for y.

Theorem 5 The convex hull of all vertices of P3(X) is a projection of an integer
subpolytope of P1(X).

Proof Consider the projection π1 given by

yv :=
∑

vw∈E
cvwyvw.

Let (x, y) ∈ X × R
V be a vertex of P3(X). Then yv = max{cvwxvw | vw ∈E} for

all v ∈ V . Thus setting yvw = 1 for exactly one w with yv = cvw yields a vertex of
P1(X) that is mapped to (x, y) under π1. �

In Sect. 2, we have shown that P2(X) is a projection of the polyhedron P3(X),
so that Theorem 5 also holds if P3(X) is replaced by P2(X). These results show
that for every reasonable objective function the optimal faces of all three polyhedra
are projections of each other. The first model can thus be considered an extended
formulation of the second and third one, and the third model can be considered an
extended formulation of the second.

Note that in general P1(X) contains vertices that are not mapped to the convex
hull of vertices of P2(X) or P3(X). These vertices cannot be optimal for any of the
considered objective functions.

4.2 Risk-Averse Capital Budgeting

As a second application we study the risk-averse capital budgeting problem. In port-
folio theory an important concept is to not only consider the expected return when
choosing a set of investments but also take into account the risk associated with in-
vestments. Such mean-risk optimization problems can be modeled using stochastic
objective functions. Potential investment decisions are represented by independent
random variables that have an associated mean value μ as well as a variance σ 2.
The mean value stands for the expected return of the investments, σ 2 models the
uncertainty inherent in the investment, i.e. the risk that the real return deviates from
the expected. The case of continuous variables is well studied whereas the case of
discrete variables has received relatively little attention yet.

We concentrate on the risk-averse capital budgeting problem with binary vari-
ables [3]. In this variant of the mean-risk optimization problem a set of possible
investments characterized by their costs, expected return values and variances and
a number ε are given as input. The number ε > 0 characterizes the level of risk

284 F. Baumann, S. Berckey, and C. Buchheim

the investor is willing to take. Investment decisions are binary, this means one can
choose to make a certain investment or not. The only constraint in the risk-averse
capital budgeting problem is a limit on the available budget. An optimal solution of
the problem is a set of investment decisions and a solution value z. The choice of
investments guarantees that with probability 1 − ε the portfolio will return at least a
profit of z.

The corresponding nonlinear IP-model is

z= max
∑

i∈I
μixi −

√
1 − ε

ε

∑

i∈I
σ 2
i x

2
i

s.t.
∑

i∈I
aixi ≤ b

x ∈ {0,1}I ,
where I is the set of available investments, ai the cost of investment i ∈ I , and b the
amount of capital that can be invested. The vector μ represents the expected returns
of the investments and σ 2 the variance of the expected returns.

To apply the polyhedral results from Sect. 2 we need to rewrite the above model
as a minimization problem and show that the objective function is submodular. Note
that since the x-variables are binary we have x2

i = xi . The problem now reads

z= −min−
∑

i∈I
μixi +

√
1 − ε

ε

∑

i∈I
σ 2
i xi

s.t.
∑

i∈I
aixi ≤ b

x ∈ {0,1}I .

(11)

The first part of the objective function

f (A)= −
∑

i∈A
μi +

√
1 − ε

ε

∑

i∈A
σ 2
i

is obviously modular. The second part is the composition of a nondecreasing modu-
lar function and a nondecreasing concave function. It is easy to prove submodularity
for a slightly more general class of functions:

Theorem 6 Let f : R → R be a concave function and g : 2S → R a submodular
function on the set S. If both f and g are nondecreasing, the composition

h : 2S →R, h(A)= f
(
g(A)

)

is submodular and nondecreasing.

Submodular Combinatorial Optimization 285

Proof The composition f ◦ g obviously is nondecreasing. To see that it is submod-
ular, note that

A∩B ⊆ B ⊆A∪B ⇒ g(A∩B)≤ g(B)≤ g(A∪B)

⇒ ∃t ∈ [0,1] : g(B)= tg(A∩B)+ (1 − t)g(A∪B).

We have

f
(
g(A)

) ≥ f
(
g(A∪B)+ g(A∩B)− g(B)

)

= f
(
tg(A∪B)+ (1 − t)g(A∩B)

)

≥ tf
(
g(A∪B)

)+ (1 − t)f
(
g(A∩B)

)

= f
(
g(A∪B)

)+ f
(
g(A∩B)

)

− (tf (g(A∩B)
)+ (1 − t)f

(
g(A∪B)

))

≥ f
(
g(A∪B)

)+ f
(
g(A∩B)

)− f
(
tg(A∩B)+ (1 − t)g(A∪B)

)

= f
(
g(A∪B)

)+ f
(
g(A∩B)

)− f
(
g(B)

)
,

since f is concave. �

Corollary 1 The objective function of model (11) is submodular.

Corollary 1 shows that we can address the risk-averse capital budgeting problem
(11) by the techniques described above.

5 Computational Results

In the following, we report results of branch and bound-algorithms based on the cut-
ting plane approach of Sect. 2 and the Lagrangean approach of Sect. 3, respectively.
For the implementation, we use the exact optimization software library SCIL [29].
The LP-relaxations at each node of the enumeration tree are solved with CPLEX
12.1. The subgradient method for the Lagrangean relaxation approach is imple-
mented using the ConicBundle library v0.3.8 [14]. To calculate the subgradients, i.e.
to optimize the second partial problem, we used an implementation of Edmonds’
algorithm [31] for the broadcast problem and the Boost Graph Library 1.46.1 for
graph modeling and basic graph algorithms [30].

All experiments were run on a 2.6 GHz AMD Opteron 252 processor. We set a
time limit of one hour for each instance.

5.1 Symmetric Connectivity

As mentioned earlier the symmetric connectivity problem is a range assignment
problem on an undirected graph G. To establish a connection between nodes u

286 F. Baumann, S. Berckey, and C. Buchheim

and v, the transmission range of node u must be large enough to reach node v

and vice versa. The set X in the general nonlinear model (1) specializes to the set of
spanning subgraphs of G.

In this case, all three IP-formulations (8), (9), and (10) can be significantly
strengthened. First of all, the set X can be restricted to the set of spanning trees in G
without loss of generality. This is equivalent to introducing an additional constraint∑

e∈E xe = |V | − 1. This stronger formulation does not change the optimum of our
problem but improves the quality of the bounds obtained from the LP-relaxations
and thus reduces running time. In our experiments we used the subtour formulation
of the spanning tree polytope.

Another way to strengthen the model is related to the fact that in a connected
subgraph (on at least two nodes) each node has at least one incident edge. For the
standard model, this means that the constraints

∑
uv∈E yuv ≤ 1 can be strengthened

to equations
∑

uv∈E yuv = 1, for all u ∈ V . In the mixed-integer models (9) and (10)
we can eliminate one variable from each maximum term. As the transmission power
for each node v has to be at least the smallest weight cmin

v of the incident edges, this
constant can be extracted from the corresponding maximum term. The constraints
of model (10) become

yv ≥ cmin
v + max

{(
cvw − cmin

v

)
xvw | vw ∈E

}
for all v ∈ V,

so that at least one entry in the maximum can be removed. In the compact model
(9), the constraint that bounds the overall transmission power from below can be
strengthened analogously. Both replacements lead to stronger LP-relaxations if the
separation algorithms derived in Sect. 2 are now applied to the remaining maximum
terms.

Turning to the Lagrangean relaxation approach, the structure of the set X, i.e. the
set of all spanning trees, allows to apply fast combinatorial algorithms like Kruskal’s
[17] or Prim’s [27] to the second problem in (5). The first problem is a special
submodular function minimization problem. Even though currently no specialized
combinatorial algorithm for this kind of submodular function is available in the case
of undirected graphs, there exists one for directed graphs first described by Miller
[20]. The algorithm is based on the fact that for directed graphs the minimization of
the corresponding submodular function can be decomposed into |V | smaller mini-
mization problems

∑

v∈V
min

x∈{0,1}δ(v)

(
max
e∈δ(v)

{cexe} −
∑

e∈δ(v)
λexe

)
,

where δ(v) = {vw ∈ E | w ∈ V }. This is due to the fact that each variable xvw ap-
pears in only one of the minima and the variables are not linked by any constraints.
The partial problems can be solved by Algorithm 2, which for each e ∈ δ(v) com-
putes the optimal solution x satisfying xe = 1 and xf = 0 for cf > ce.

We mention that Algorithm 2 can also be implemented to run in linear time after
sorting the coefficients ce; the latter can be done in a preprocessing step, as it does
not depend on the Lagrangean multipliers λ. To take advantage of this algorithm

Submodular Combinatorial Optimization 287

Algorithm 2: Solution of partial problem

Input : objective function fv(x) := maxe∈δ(v){cexe} −∑e∈δ(v) λexe
Output: optimal solution of minx∈{0,1}δ(v) fv
x� ← 0
opt ← 0
for e ∈ δ(v) do

x ← 0
sum ← ce
for f ∈ δ(v) do

if cf ≤ ce and λf > 0 then
xf ← 1
sum ← sum − λf

end
end
if sum < opt then

opt ← sum
x� ← x

end
end
return x�

we will consider a directed version of the symmetric connectivity problem. To gain
an equivalent directed formulation we double the variables and introduce new con-
straints xvw = xwv for all vw ∈ E, where E is now the set of all directed edges
between nodes in V . These new constraints will become part of the second problem
in (5), so that a spanning tree algorithm can still be applied to the corresponding
undirected graph where the weights (Lagrangean multipliers) of two edges vw and
wv are summed up.

As an alternative, one could use an algorithm for general submodular function
minimization or a linear programming approach to solve the first problem in (5)
directly on the undirected instance. However, experiments show that the directed and
the undirected models give similar bounds, while the computation of the Lagrangean
dual is much faster when Algorithm 2 can be applied. The following results for the
Lagrangean decomposition approach are therefore based on the directed version of
the symmetric connectivity problem.

To speed up the subgradient method, we use a warm start approach, using the best
Lagrangean multipliers from the corresponding parent node as starting points. This
leads to a much lower number of iterations in general. Note that in most instances
over 50 % of the total time was spent in the root node to compute a good initial set
of Lagrangean multipliers.

We generated random range assignment instances by randomly placing points
on a 10000 × 10000 grid, as proposed in [1]. For each size, 50 instances were

288 F. Baumann, S. Berckey, and C. Buchheim

Table 1 Results for the symmetric connectivity range assignment problem

n Subs LPs/LCs tsep/s ttot /s # solved

Standard IP model (8)

10 29.48 32.20 0.00 0.08 50

15 1147.96 1217.28 0.18 12.28 50

20 4048.22 4461.83 3.63 114.65 46

25 2248.40 2513.51 4.35 117.99 43

MIP model (10)

10 23.28 70.70 0.01 0.08 50

15 823.04 2597.38 0.98 7.29 50

20 2820.51 11049.13 16.17 100.79 45

25 3353.15 14001.85 45.21 281.17 41

Lagrangean decomposition

10 18.84 282.26 – 0.63 50

15 180.00 3007.10 – 20.43 50

20 749.83 11871.20 – 106.39 48

25 1668.22 26067.50 – 324.14 41

created. The transmission power needed for node u to reach node v was chosen
as d(u, v)2, where d(u, v) is the Euclidean distance between u and v. Table 1
summarizes our results for the symmetric connectivity problem. The first column
shows the size of the instances, the second the average number of subproblems
computed in the branch and cut-tree. The column LPs/LCs contains the average
number of linear programs solved (for the cutting plane approach) and the aver-
age number of times the Lagrangean function Z(λ) was evaluated (for the decom-
position approach), respectively. The average overall time needed to solve the in-
stance is denoted by ttot /s. For the cutting plane approach we also state the time
spent on separation (tsep/s). The last column shows how many of the 50 instances
of each size could be solved within the time limit of one hour. For the compu-
tation of averages only instances that could be solved to optimality were consid-
ered.

We do not list results for the compact model (9). It turned out that this model is
not competitive. Because only a single inequality of the description of the objective
function can be separated per iteration, the number of LPs grows quickly in com-
parison to the other models. The medium-sized model (10) gives the best results
for instances up to 15 nodes, also compared to the Lagrangean decomposition ap-
proach. The number of subproblems is significantly smaller than for the standard
model, which compensates for the larger number of LPs. For instance size 20 the
decomposition approach performs best. For the largest instances the standard model
gives the best results, because the time spent per node in the other models becomes
too large. It is remarkable that several instances could not be solved at all within

Submodular Combinatorial Optimization 289

Table 2 Results for the multicast range assignment problem with |T | = � n−1
2 �

n Subs LPs tsep/s ttot /s # solved

Standard IP model (8)

10 32.68 57.10 0.00 0.08 50

15 117.92 241.84 0.09 0.93 50

20 2991.52 6444.50 8.43 71.18 50

25 5773.97 27788.03 64.02 383.07 39

MIP model (10)

10 28.92 111.92 0.01 0.10 50

15 88.24 556.38 0.28 1.14 50

20 951.32 7815.54 11.39 33.28 50

25 5650.17 73373.59 208.51 571.88 46

the time limit, whereas the average solution time for the other instances is relatively
small and only grows moderately with the instance size.

5.2 Multicast

We next investigate the min-power multicast problem. Recall that its objective is to
send signals wirelessly from a designated source node to a set of receiving stations
at minimum cost. Transmissions are unidirectional and all stations can relay signals
through the network. Treating this problem as a graph optimization problem, there
obviously is a one-to-one correspondence between feasible solutions and Steiner ar-
borescences in the directed graph. The multicast advantage can again be expressed
by (6), this time for directed graphs. We used a separation routine for the cut formu-
lation of the Steiner arborescence polytope to model the network topology in both
cutting plane models.

The given connectivity constraints can again be used to strengthen the LP-based
formulations, however to a lesser extent than in the symmetric case. Only the fact
that at least one edge has to leave the source node provides a way to strengthen the
models.

Table 2 shows the results for the multicast problem. The number of terminal
nodes is �n−1

2 �. As mentioned before the decomposition approach is not applica-
ble here, because there is no efficient algorithm for the Steiner tree problem. We
used the same instances as for the symmetric connectivity problem. The source and
terminal nodes were determined randomly. For this kind of problem exploiting the
submodularity of the objective function clearly pays off. While for small instances
both models give similar results, the better polyhedral description in the MIP model
significantly reduces running times for larger instances. 46 of the largest instances
could be solved to proven optimality within the time limit of one hour, compared to
39 with the standard model.

290 F. Baumann, S. Berckey, and C. Buchheim

Table 3 Results for the broadcast range assignment problem

n Subs LPs/LCs tsep/s ttot /s # solved

Standard IP model (8)

10 36.16 45.02 0.00 0.09 50

15 167.24 243.04 0.07 1.31 50

20 1519.40 2801.68 4.24 36.53 50

25 7117.19 16238.07 32.57 375.87 43

MIP model (10)

10 32.88 120.70 0.02 0.12 50

15 142.52 776.78 0.43 1.79 50

20 1051.76 8796.32 13.79 42.87 50

25 6101.98 69896.47 200.10 598.74 43

Lagrangean decomposition

10 25.72 350.14 – 0.53 50

15 447.32 3674.34 – 7.08 50

20 2437.36 20767.40 – 55.22 50

25 32657.40 245163.00 – 875.73 44

5.3 Broadcast

Since the problem of finding a minimal Steiner arborescence is NP-hard the La-
grangean decomposition approach is inefficient for general multicast problems.
However, the set of feasible solutions for the broadcast problem corresponds to
the set of s-arborescences, for which the minimization problem can be solved in
polynomial time [8]. The first problem in (5) can then again be solved by the al-
gorithm described for the symmetric connectivity problem. Table 3 shows that the
Lagrangean decomposition approach is able to solve the highest number of the large
instances, while remaining competitive for the smaller instances. The MIP approach
is slowed down by the large number of LPs and the resulting high number of calls
to the separation routines.

5.4 Risk-Averse Capital Budgeting

In contrast to the range-assignment problem presented before, no linear model for
this problem is known. Atamtürk and Narayanan [3] present a solution approach
that solves the above model using second-order cone programming embedded in a
branch and bound-algorithm. They use the inequalities of Theorem 1 to strengthen
the relaxation in each node of the enumeration tree. Table 4 shows our results for
the risk-averse capital budgeting problem. We solved the set of random instances

Submodular Combinatorial Optimization 291

Table 4 Results for the risk-averse capital budgeting problem

n ε Subs LPs Time/s

25 0.10 52.60 147.00 0.07

0.05 43.40 182.40 0.10

0.03 21.40 151.80 0.06

0.02 6.20 74.60 0.03

0.01 4.60 37.60 0.02

50 0.10 145.40 409.80 0.14

0.05 107.80 528.00 0.15

0.03 67.00 409.40 0.12

0.02 77.80 634.60 0.20

0.01 19.00 513.00 0.20

100 0.10 210.60 625.60 0.28

0.05 132.20 852.40 0.42

0.03 251.40 2276.00 1.21

0.02 252.60 2015.80 1.19

0.01 205.00 4877.40 3.34

200 0.10 315.40 1041.60 0.91

0.05 387.80 2012.60 1.78

0.03 323.40 2928.20 2.78

0.02 415.40 4644.60 5.10

0.01 407.00 18369.20 29.35

300 0.10 623.80 3103.40 3.86

0.05 324.60 2377.20 3.10

0.03 391.40 3475.80 4.81

0.02 411.40 6940.00 11.24

0.01 364.20 20375.60 59.27

400 0.10 682.20 2884.40 4.83

0.05 990.60 9454.00 16.33

0.03 1094.60 12793.20 23.64

0.02 311.40 6138.20 12.83

0.01 2409.40 56058.00 165.37

n ε Subs LPs Time/s

500 0.10 515.00 1847.80 3.93

0.05 1083.40 6768.60 14.38

0.03 895.00 8714.00 20.61

0.02 1479.00 20914.60 54.44

0.01 2420.60 73099.80 267.04

600 0.10 907.00 3295.80 8.34

0.05 1277.80 7710.80 20.65

0.03 658.20 6830.40 20.38

0.02 2207.40 28467.80 96.58

0.01 1378.60 38536.80 197.85

700 0.10 1531.40 7823.20 23.47

0.05 1064.20 6240.80 19.90

0.03 1391.80 18167.40 65.54

0.02 1970.20 32083.20 135.11

0.01 1616.60 51970.80 336.48

800 0.10 922.20 3778.20 13.20

0.05 1648.60 11625.00 43.78

0.03 1623.80 14574.20 59.50

0.02 1612.60 22405.00 98.44

0.01 2330.20 83383.80 553.18

900 0.10 690.20 1710.80 7.03

0.05 456.60 1715.60 7.53

0.03 1049.40 5700.20 27.65

0.02 3505.80 20868.00 117.43

0.01 6004.60 120758.40 929.79

1000 0.10 1601.40 3730.20 17.77

0.05 1313.80 4198.80 21.11

0.03 480.60 2496.60 14.31

0.02 1968.20 12609.60 77.33

0.01 2925.40 71134.20 636.85

from [3], which have between 25 and 100 variables. The larger instances with up to
1000 variables were generated using the same method as for the smaller instances.
The expected returns μ and the costs a are independent random numbers between
0 and 100. The variances σ are chosen as the expected returns multiplied by an
independent random number between 0 and 1. The available budget is 1

2

∑
i∈I ai .

292 F. Baumann, S. Berckey, and C. Buchheim

This ensures the existence of feasible solutions and at the same time excludes the
trivial case where the budget is large enough to make all investments.

We generated five instances of each size and solved each instance for the values
of ε given in the table. All values given (number of subproblems, number of linear
programs and the running time in seconds) are averages over these five instances.

It can be observed that the value of ε has a strong impact on the running times.
For decreasing ε the problem becomes harder to solve. This was already observed
in [3]. A direct comparison of our results with the results for the second-order cone
programming approach in [3] shows that the number of nodes in the branch and
bound-tree is much smaller when our MIP model is used. It is also remarkable that
in our model the number of violated inequalities separated is much higher.

As can be seen from Table 4, we were able to solve instances of size 50 in 0.2
seconds on average. The times reported in [3] for the same instances vary between
2 and 79 seconds for different values of ε. Also for n = 100 our algorithm is sig-
nificantly faster for all values of ε. While with the second-order cone programming
approach only instances of up to 100 variables could be solved within half an hour,
our cutting plane approach easily solves instances of size 1000. Especially remark-
able is the fact that the number of subproblems grows only moderately with the
instance size.

We did not apply the Lagrangean relaxation approach to risk-averse capital bud-
geting problems, as we do not know of any fast algorithm for solving the first prob-
lem of the decomposition (5) in this case. Using a general purpose submodular func-
tion minimizer did not yield satisfactory results.

6 Conclusion

We propose two exact algorithms for solving combinatorial optimization problems
with submodular objective functions. Both approaches are tailored for problems
that become tractable whenever the submodular objective function is replaced by
a linear function. Our algorithms are based on a branch and bound-scheme, where
bounds are computed by either a cutting plane approach or by Lagrangean relax-
ation. The performance of both approaches depends on the underlying problem
structure and on the given submodular objective function. If the latter can be min-
imized very efficiently (ignoring the problem constraints), as is typically the case
for range assignment problems, the Lagrangean approach turns out to be very ef-
fective. The LP-based approach is applicable to general submodular functions; it
yields a flexible and fast solution method, as demonstrated by our results for the
risk-averse capital budgeting problem. Our experiments show that treating the ob-
jective function and the underlying constraints separately still yields tight relax-
ations.

Submodular Combinatorial Optimization 293

References

1. Althaus, E., Calinescu, G., Mandoiu, I.I., Prasad, S., Tchervenski, N., Zelikovsky, A.: Power
efficient range assignment in ad-hoc wireless networks. In: WCNC’03, pp. 1889–1894 (2003)

2. Althaus, E., Calinescu, G., Mandoiu, I.I., Prasad, S., Tchervenski, N., Zelikovsky, A.: Power
efficient range assignment for symmetric connectivity in static ad hoc wireless networks.
Wirel. Netw. 12(3), 287–299 (2006)

3. Atamtürk, A., Narayanan, V.: Polymatroids and mean-risk minimization in discrete optimiza-
tion. Oper. Res. Lett. 36(5), 618–622 (2008)

4. Baumann, F., Buchheim, C.: Submodular formulations for range assignment problems. In:
Haouari, M., Mahjoub, A.R. (eds.) Proceedings of ISCO 2010. ENDM, vol. 36, pp. 239–246
(2010)

5. Bock, F.: An algorithm to construct a minimum directed spanning tree in a directed network.
In: Developments in Operations Research, pp. 29–44 (1971)

6. Chu, Y., Liu, T.: On the shortest arborescence of a directed graph. Sci. Sin. 14, 1396–1400
(1965)

7. Das, A.K., Marks, R.J., El-Sharkawi, M., Arabshahi, P., Gray, A.: Minimum power broadcast
trees for wireless networks: integer programming formulations. In: INFOCOM 2003, vol. 2,
pp. 1001–1010 (2003)

8. Edmonds, J.: Optimum branchings. J. Res. Natl. Bur. Stand. B, Math. Math. Phys. 71B, 233–
240 (1967)

9. Edmonds, J.: Submodular functions, matroids, and certain polyhedra. In: Jünger, M., Reinelt,
G., Rinaldi, G. (eds.) Combinatorial Optimization—Eureka, You Shrink! LNCS, vol. 2570,
pp. 11–26. Springer, Berlin (2003)

10. Fuchs, B.: On the hardness of range assignment problems. Networks 52(4), 183–195 (2008)
11. Fujishige, S.: Submodular Functions and Optimization, 2nd edn. Annals of Discrete Mathe-

matics, vol. 58. Elsevier, Amsterdam (2005)
12. Geoffrion, A.M.: Lagrangean relaxation for integer programming. Math. Program. Stud. 2,

82–114 (1974)
13. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimiza-

tion. Algorithms and Combinatorics, vol. 2. Springer, Berlin (1988)
14. Helmberg, C.: The ConicBundle library for convex optimization. www-user.tu-chemnitz.de/

~helmberg/ConicBundle (2011)
15. Iwata, S., Orlin, J.B.: A simple combinatorial algorithm for submodular function minimiza-

tion. In: Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA’09, pp. 1230–1237 (2009)

16. Iwata, S., Fleischer, L., Fujishige, S.: A combinatorial, strongly polynomial-time algorithm
for minimizing submodular functions. In: Proceedings of the Thirty-Second Annual ACM
Symposium on Theory of Computing, STOC’00, pp. 97–106. ACM, New York (2000)

17. Kruskal, J.B. Jr.: On the shortest spanning subtree of a graph and the traveling salesman prob-
lem. Proc. Am. Math. Soc. 7(1), 48–50 (1956)

18. Leggieri, V., Nobili, P., Triki, C.: Minimum power multicasting problem in wireless networks.
Math. Methods Oper. Res. 68, 295–311 (2008)

19. Lovász, L.: Submodular functions and convexity. In: Mathematical Programming: The State
of the Art (Bonn, 1982), pp. 235–257. Springer, Berlin (1983)

20. Miller, P.: Exakte und heuristische Verfahren zur Lösung von Range-Assignment-Problemen.
Master’s thesis, Universität zu Köln (2010)

21. Min, M., Prokopyev, O., Pardalos, P.: Optimal solutions to minimum total energy broadcasting
problem in wireless ad hoc networks. J. Comb. Optim. 11, 59–69 (2006)

22. Montemanni, R., Gambardella, L.M.: Minimum power symmetric connectivity problem in
wireless networks: a new approach. In: MWCN, pp. 497–508 (2004)

23. Montemanni, R., Gambardella, L.M.: Exact algorithms for the minimum power symmetric
connectivity problem in wireless networks. Comput. Oper. Res. 32, 2891–2904 (2005)

http://www-user.tu-chemnitz.de/~helmberg/ConicBundle
http://www-user.tu-chemnitz.de/~helmberg/ConicBundle

294 F. Baumann, S. Berckey, and C. Buchheim

24. Montemanni, R., Gambardella, L.M., Das, A.: Mathematical models and exact algorithms for
the min-power symmetric connectivity problem: an overview. In: Wu, J. (ed.) Handbook on
Theoretical and Algorithmic Aspects of Sensor, Ad Hoc Wireless, and Peer-to-Peer Networks,
pp. 133–146. CRC Press, Boca Raton (2006)

25. Nobili, P., Oprea, S., Triki, C.: Preprocessing techniques for the multicast problem in wireless
networks. In: MTISD 2008, pp. 131–134 (2008)

26. Orlin, J.B.: A faster strongly polynomial time algorithm for submodular function minimiza-
tion. Math. Program., Ser. A 118(2), 237–251 (2007)

27. Prim, R.: Shortest connection networks and some generalizations. Bell Syst. Tech. J. 36, 1389–
1401 (1957)

28. Schrijver, A.: A combinatorial algorithm minimizing submodular functions in strongly poly-
nomial time. J. Comb. Theory, Ser. B 80, 346–355 (2000)

29. SCIL—symbolic constraints in integer linear programming (2011). scil-opt.net
30. Siek, J.G., Lee, L., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference

Manual (C++ In-Depth Series). Addison-Wesley, Reading (2001)
31. Sjölund, E., Tofigh, A.: Edmonds’ algorithm (2010). edmonds-alg.sourceforge.net

http://scil-opt.net
http://edmonds-alg.sourceforge.net

A Primal Heuristic for Nonsmooth Mixed
Integer Nonlinear Optimization

Martin Schmidt, Marc C. Steinbach, and Bernhard M. Willert

Abstract Complex real-world optimization tasks often lead to mixed-integer non-
linear problems (MINLPs). However, current MINLP algorithms are not always
able to solve the resulting large-scale problems. One remedy is to develop problem
specific primal heuristics that quickly deliver feasible solutions. This paper presents
such a primal heuristic for a certain class of MINLP models. Our approach features a
clear distinction between nonsmooth but continuous and genuinely discrete aspects
of the model. The former are handled by suitable smoothing techniques; for the latter
we employ reformulations using complementarity constraints. The resulting math-
ematical programs with equilibrium constraints (MPEC) are finally regularized to
obtain MINLP-feasible solutions with general purpose NLP solvers.

1 Introduction

Mixed-integer nonlinear optimization is a highly versatile tool for modeling appli-
cation problems in many areas: it covers both discrete aspects of decision mak-
ing and nonlinear real-world phenomena. However, state-of-the-art algorithms for
mixed-integer nonlinear problems (MINLPs) are still far from offering the reliabil-
ity, performance and robustness of solvers for mixed-integer linear problems (MIPs)
or nonlinear optimization problems (NLPs). As a consequence, hard MINLPs
that cannot be solved directly are frequently tackled by one of the following ap-
proaches:

1. MIP-based approach: Nonlinearities are replaced by local linearizations or by
piecewise linear global approximations. This yields MIP models for which the

M. Schmidt · M.C. Steinbach (B) · B.M. Willert
Institut für Angewandte Mathematik, Leibniz Universität Hannover, Welfengarten 1, 30167
Hannover, Germany
e-mail: mcs@ifam.uni-hannover.de

M. Schmidt
e-mail: mschmidt@ifam.uni-hannover.de

B.M. Willert
e-mail: willert@ifam.uni-hannover.de

M. Jünger, G. Reinelt (eds.), Facets of Combinatorial Optimization,
DOI 10.1007/978-3-642-38189-8_13, © Springer-Verlag Berlin Heidelberg 2013

295

mailto:mcs@ifam.uni-hannover.de
mailto:mschmidt@ifam.uni-hannover.de
mailto:willert@ifam.uni-hannover.de
http://dx.doi.org/10.1007/978-3-642-38189-8_13

296 M. Schmidt, M.C. Steinbach, and B.M. Willert

number of discrete variables is often drastically increased due to the linearization
techniques; see, e.g., [8, 24, 28, 42] and the references therein.

2. NLP-based approach: Discrete aspects are reformulated with continuous vari-
ables and constraints or approximated to obtain an NLP model; see Sect. 2.2 for
a brief literature review.

Both approaches offer specific advantages and suffer from inherent drawbacks. The
MIP approach shows its strength if the MINLP is dominated by discrete variables
and incorporates only a few nonlinear constraints. This will typically lead to a
slight increase of the number of discrete variables only. Moreover, standard MIP
solvers deliver global solutions (of the linearized problem). The NLP approach is
often superior for MINLPs with only few discrete variables but a large number of
nonlinear constraints, but in general it delivers only local minima. From a numer-
ical point of view, the MIP approach tends to be more robust in terms of start-
ing points, scaling of the problem, etc., whereas the NLP approach can be very
fast.

Of course, ultimately one would like to solve hard MINLP models directly. An
essential and generally difficult subtask of dedicated MINLP algorithms consists in
finding (approximately) feasible solutions to obtain upper bounds. In this paper we
present a primal heuristic for that purpose. It is inspired by the NLP-based approach
sketched above, and we will refer to it as the MPEC-based approach. The MINLP
models that can be handled have the key property that their (moderate number of)
discrete aspects possess equivalent reformulations with problem-specific comple-
mentarity constraints, yielding nonlinear mathematical programs with equilibrium
constraints (MPEC). The MPECs are finally regularized by standard techniques
so that they can be solved by NLP algorithms. The goal is to deliver approximate
MINLP-feasible solutions quickly (or to fail quickly).

Our approach aims at large-scale optimization models arising in real-life applica-
tions. Such models frequently involve nonsmooth constraints (continuous but only
piecewise C2) that can be converted to smooth (C2-)constraints with artificial dis-
crete variables to identify the smoothness domains. Solving MINLP models of this
type tends to be extremely hard: algorithms have been observed to spend a lot of
time (or fail) to get the artificial discrete “decisions” right, without making any
progress toward a minimum. An important aspect of the approach proposed here
lies in avoiding this (inappropriate) modeling of nonsmooth constraints. Instead
we consider C0-MINLPs and employ suitable smoothing techniques to obtain C2-
constraints. A precursor of this approach has been successfully applied in operative
planning of water networks [4, 5]. In the application part of this paper (Sect. 4)
we demonstrate that the proposed MPEC-based approach delivers approximately
MINLP-feasible solutions and hence can be used as a primal heuristic in MINLP
solver frameworks.

The motivation for the techniques developed here originates in several applica-
tion projects from gas and water management, on which the second author worked
as a PostDoc in the research group of Martin Grötschel at Zuse Institute Berlin
(ZIB). Previous results of this work include [4, 5] and [12, 13, 40]. The application

A Primal Heuristic for Nonsmooth Mixed Integer Nonlinear Optimization 297

example presented in Sect. 4 will address a problem from a current joint project with
the research group of Martin Grötschel.

The paper is organized as follows. Section 2 gives a formal definition of the
problem classes arising in the reformulation of nonsmooth mixed-integer nonlinear
problems as smoothed and regularized NLP models. In Sect. 3 the relations between
these models are discussed. As a proof of concept the real-world application of
validation of nominations in gas transport networks is presented in Sect. 4. Finally
we give a brief summary in Sect. 5.

2 A Hierarchy of Optimization Models

Here the reformulation of a given nonsmooth MINLP is presented step by step in or-
der to discuss certain properties of the models and to explain some model transition
techniques. The sequence of reformulations finally leads to an NLP model.

In all models we denote constraints by c. A vector of constraints is indexed with
a corresponding index set. For instance, cE := (ci)i∈E , is the vector of all equality
constraints; cI the vector of inequality constraints. Frequently we use superindices
to indicate the semantics of constraints. A superindex d marks nonsmooth con-
straints, s marks smoothed constraints and r marks constraints that result from
regularization techniques for MPECs. Constraints without superindex are always
assumed to be twice continuously differentiable. Continuous variables are referred
to as x and discrete ones as z. Objective functions are denoted by f .

2.1 Standard Mixed-Integer Nonlinear Problems

The general MINLP model is given by

min
x,z

f (x, z) (1a)

s.t. cE(x, z)= 0, cI (x, z)≥ 0, (1b)

x ∈R
nx , z ∈ Z

nz . (1c)

Instead of z ∈ Z
nz we may have z ∈ {0,1}nz , i.e., z is further restricted to be binary.

The objective f and constraints c = (cE, cI) are assumed to be twice continuously
differentiable.

As discussed in the introduction, many applications do not satisfy the smooth-
ness assumption. While jump discontinuities are properly handled by mixed-integer
techniques involving artificial discrete variables and additional (big-M) constraints,
this approach typically yields unnecessarily hard MINLPs when applied to nons-
mooth but continuous functions. Therefore we consider the refined problem class
C0-MINLP defined by

298 M. Schmidt, M.C. Steinbach, and B.M. Willert

min
x,z

f (x, z) (2a)

s.t. cE(x, z)= 0, cI (x, z)≥ 0, (2b)

cdE(x, z)= 0, cdI (x, z)≥ 0, (2c)

x ∈R
nx , z ∈ Z

nz . (2d)

Here we split the constraints into smooth and nonsmooth ones: c = (cE, cI) ∈ C2,
cd = (cdE, c

d
I) ∈ C0 and piecewise C2. For the objective we still assume f ∈ C2

without loss of generality: nonsmooth terms can always be moved to the constraints
cd . Problem (2a)–(2d) will be the basis of the following sequence of reformulations.

2.2 From C0-MINLP to C0-MPEC: Complementarity Constraints

The primary difficulties in the C0-MINLP (2a)–(2d) are the discrete variables z

and the nonsmooth constraints cd . In this section, we reformulate (2a)–(2d) with
continuous variables and additional (smooth) constraints to obtain an equivalent
problem without discrete variables. The original nonsmooth constraints cd will be
kept in this step.

Typical reformulation approaches [21, 39] make use of so called NCP-functions
(see [41] for an overview). In particular, the Fischer–Burmeister function is used to
restrict a continuous variable x ∈ R to B := {0,1} or to B̃ := {0}∪[1,∞). However,
since NCP-functions are nonsmooth we prefer an alternative approach that works
directly with complementarity constraints [1]. Ultimately it is based on the trivial
fact that

x(x − 1)= 0 ⇐⇒ x ∈ B. (3)

Since this formulation is very ill-behaved numerically, a lifted version with an ad-
ditional continuous variable y is usually preferred, yielding the standard MPEC
formulation

xy = 0, x, y ≥ 0. (4)

Here, the cases x = 0, y > 0 and x > 0, y = 0 correspond to x = 0 and x = 1, re-
spectively, but the improved numerical behavior comes at the price of an undecided
third state, x = y = 0.

Fortunately, many applications with discrete alternatives share a property that can
be exploited in a more useful way: the alternatives can be represented as subsets of
a space of continuous variables. Formally, let A be some model aspect with a finite
set of states A1, . . . ,Aa that correspond to constraint sets for some vector xA ∈R

nA ,

cE,Ai
(xA)= 0, cI,Ai

(xA)≥ 0, i = 1, . . . , a. (5)

Then aspect A has a generic MINLP formulation as part of (1a)–(1c) or (2a)–(2d),
using binary variables

A Primal Heuristic for Nonsmooth Mixed Integer Nonlinear Optimization 299

zA = (zAi
)ai=1 ∈ {0,1}a (6)

together with big-M and SOS-1 constraints,

ME,Ai
(1 − zAi

)− cE,Ai
(xA)≥ 0, i = 1, . . . , a, (7a)

ME,Ai
(1 − zAi

)+ cE,Ai
(xA)≥ 0, i = 1, . . . , a, (7b)

MI,Ai
(1 − zAi

)+ cI,Ai
(xA)≥ 0, i = 1, . . . , a, (7c)

a∑

i=1

zAi
= 1, zAi

∈ {0,1}, i = 1, . . . , a. (7d)

An equivalent general disjunctive programming formulation [17, 32] is given by

a∨

i=1

⎛

⎝
zAi

= 1
cE,Ai

(xA)= 0
cI,Ai

(xA)≥ 0

⎞

⎠ . (8)

For the following we need the key concept of non-disjunctive states: states whose
constraint sets overlap. The formal definition involves characteristic functions.

Definition 1 Let A be a model aspect with states Ai , i = 1, . . . , a, represented by
variables and constraints as in (5) and (6).

1. A function χAi
:RnA → R is called a characteristic function of state Ai if

χAi
(x)= 0 if cE,Ai

(x)= 0 and cI,Ai
(x)≥ 0,

χAi
(x) > 0 else.

(9)

2. Two states Ai and Aj are called non-disjunctive if there exists x ∈R
nA such that

χAi
(x)= χAj

(x)= 0. (10)

In what follows we only consider C0-MINLP models where all discrete aspects
have two non-disjunctive states and refer to this class as 2-state-C0-MINLP. As a
direct consequence of the above definition, we can then state the following Lemma.

Lemma 1 Let A1, A2 be non-disjunctive states of a model aspect A that is modeled
with variables (xA, zA) and constraint sets cE,Ai

, cI,Ai
, i = 1,2. Let χAi

denote
corresponding characteristic functions. Then the MINLP model of A can be equiv-
alently replaced by the MPEC model

χA1(xA)χA2(xA)= 0. (11)

Proof Let x∗
A be a solution of the reformulated MPEC model and let χA1(x

∗
A)= 0.

Then it follows with (9) that cE,A1(x
∗
A) = 0 and cI,A1(x

∗
A) ≥ 0. By setting zA1 = 1

and zA2 = 0 we have constructed a feasible solution to (7a)–(7d). The case
χA2(x

∗
A)= 0 and the reverse direction are analogous. �

300 M. Schmidt, M.C. Steinbach, and B.M. Willert

Now, an equivalent reformulation of the general 2-state-C0-MINLP model as a
C0-MPEC model according to Lemma 1 can be written

min
x∈Rnx

f (x) (12a)

s.t. cE(x)= 0, cI (x)≥ 0, (12b)

cdE(x)= 0, cdI (x)≥ 0, (12c)

φi(x)ψi(x)= 0, i = 1, . . . , p, (12d)

φi(x),ψi(x)≥ 0, i = 1, . . . , p. (12e)

Here φi,ψi : Rnx → R are the complementarity constraint pairings constructed
from characteristic functions and p is the number of 2-state model aspects Ai ,

φi = χAi,1 , ψi = χAi,2 , i = 1, . . . , p. (13)

Note that the “undecided third state” of (4) does not pose a problem here: the crucial
property of non-disjunctive states is that their continuous variables can be identical.

2.3 From C0-MPEC to C2-MPEC: Smoothing

This section addresses the remaining major difficulty of (12a)–(12e): the nonsmooth
constraints cd . Quite often the nonsmoothness arises from the absolute value func-
tion or from functions that can be expressed in terms of it, like min(x, y) and
max(x, y).

As already mentioned, first-order discontinuities should not be modeled by ar-
tificial discrete variables in the current context; the constraints cd should rather be
replaced with sufficiently smooth approximations cs . We use approximations that
depend on a smoothing parameter, cs(x; τ)≈ cd(x) with τ > 0, satisfying at least a
pointwise approximation property:

∀x: lim
τ→0

cs(x; τ)= cd(x). (14)

This provides control over the approximation quality by adjusting the smoothing
parameter τ . For the nonsmooth functions mentioned above we actually have uni-
formly convergent approximations,

|x| ≈ v(x; τ)=
√
x2 + τ , (15)

min(x, y)≈ y − 1

2

(
v(x − y; τ)− (x − y)

)
, (16)

max(x, y)≈ y + 1

2

(
v(x − y; τ)+ (x − y)

)
. (17)

Of course, the value of τ should not be chosen too small because this would intro-
duce numerical instabilities and ill-conditioning. Unfortunately there is no general

A Primal Heuristic for Nonsmooth Mixed Integer Nonlinear Optimization 301

rule for choosing parameters like τ ; they have to be tuned separately for each model.
Moreover, one often needs problem specific smoothing techniques. We will give an
example for an application in gas network optimization in Sect. 4.

The smoothed C0-MPEC model (12a)–(12e) will be referred to as C2-MPEC; it
reads

min
x∈Rnx

f (x) (18a)

s.t. cE(x)= 0, cI (x)≥ 0, (18b)

csE(x; τ)= 0, csI (x; τ)≥ 0, (18c)

φi(x)ψi(x)= 0, i = 1, . . . , p, (18d)

φi(x),ψi(x)≥ 0, i = 1, . . . , p. (18e)

2.4 From C2-MPEC to C2-NLP: Regularization

We now have to solve the smooth MPEC model (18a)–(18e). It is well-known that
standard NLP constraint qualifications, such as the Mangasarian–Fromowitz con-
straint qualification (MFCQ) or the linear independence constraint qualification
(LICQ), do not hold at any feasible point of the MPEC. To apply standard NLP
algorithms without losing their good convergence properties, various regularization
schemes have therefore been developed. There are basically three groups of existing
schemes:

1. relaxation schemes,
2. penalization schemes,
3. smoothing schemes.

The common idea of all regularization schemes is to replace the MPEC constraints
(18d) and (18e) with NLP constraints that depend on a regularization parameter μ.
Then one solves a sequence NLP(μk) with μk → 0 whose solutions converge to an
MPEC solution under suitable assumptions.

One of the first regularization schemes is the relaxation scheme of Scholtes [38],
which relaxes the complementarity constraints (18d) to

φi(x)ψi(x)≤ μ, i = 1, . . . , p. (19)

This yields a regularized problem NLP(μ) with feasible set F(μ), such that the orig-
inal MPEC-feasible set is F(0) and F(μ0) ⊂ F(μ) for all μ > μ0 ≥ 0. If NLP(μ)
is to be solved by an interior point method, the relaxation (19) has the drawback
that it lacks strict interior points in the limit. DeMiguel et al. address this problem
in [10] by additionally relaxing the nonnegativity constraints (18e) to

φi(x),ψi(x)≥ −θ, i = 1, . . . , p. (20)

302 M. Schmidt, M.C. Steinbach, and B.M. Willert

They propose a method that drives either θ or μ to zero in the limit but not both.
Penalization schemes remove the complementarity constraints completely from

the constraints set and introduce a weighted penalty term in the objective instead.
Thus (18d) is dropped from (18a)–(18e), and (18a) is replaced with

f (x)+ 1

μ
Π
(
φ(x),ψ(x)

)
. (21)

Theoretical results for a general class of penalty functions Π can be found in [19].
In particular, these results include the concrete instance

Π
(
φ(x),ψ(x)

)=
p∑

i=1

φi(x)ψi(x) (22)

that is most frequently used in practice.
Other regularization approaches use nonsmooth reformulations of the comple-

mentarity constraints φi(x)ψi(x)= 0, such as

min
{
φi(x),ψi(x)

}= 0, (23)

and employ nonsmooth optimization techniques to solve the resulting problem.
Finally there are smoothing techniques using modified NCP-functions like the

perturbed Fischer–Burmeister function (first proposed in [14]),

ζ(φ,ψ; τ)= φ +ψ −
√
φ2 +ψ2 + τ = 0. (24)

In what follows, we concentrate on relaxation and penalization schemes since
these performed best on the application problem presented below. Both approaches
of regularizing the MPEC model (18a)–(18e) yield a C2-NLP that satisfies a stan-
dard constraint qualification and can be written in the general form

min
x∈Rnx

f (x)+ g(x;μ) (25a)

s.t. cE(x)= 0, cI (x)≥ 0, (25b)

csE(x; τ)= 0, csI (x; τ)≥ 0, (25c)

crE(x;μ)= 0, crI (x;μ)≥ 0, (25d)

φi(x),ψi(x)≥ −θ, i = 1, . . . , p. (25e)

For the relaxation scheme (19), possibly extended by (20), crE vanishes and we have
g = 0, θ ≥ 0, crI (x;μ) = (φi(x)ψi(x) − μ)

p

i=1. The penalization scheme (21) has
g(x;μ)= 1

μ
Π(φ(x),ψ(x)), θ = 0, and crE(x;μ), crI (x;μ) are not needed. Defining

c̄E := (cE, c
s
E, c

r
E), c̄I := (cI , c

s
I , c

r
I , φ,ψ) and f̄ := f + g now yields the (param-

A Primal Heuristic for Nonsmooth Mixed Integer Nonlinear Optimization 303

eterized) standard NLP formulation

min
x∈Rnx

f̄ (x;μ)

s.t. c̄E(x; τ,μ)= 0, c̄I (x; τ,μ)≥ 0.
(26)

In the context of our primal heuristic a final remark is in order. Since we are pri-
marily interested in finding feasible solutions of the original MINLP quickly rather
than solving the approximating MPEC with high accuracy, we do not attempt to
solve an entire sequence NLP(μk) with μk → 0. Instead we take a more aggressive
approach and try to solve only a single instance NLP(μ) where the parameter μ> 0
is fixed at a carefully chosen problem-specific value.

3 Relations of the Model Classes

This section briefly highlights basic theoretical relations between the models pre-
sented in the last section. We focus on feasible points and not on optimality and
stationarity because our main topic here is the primal heuristic.

The first result gives a relation between feasible points of the original model
2-state-C0-MINLP and its first reformulation C0-MPEC.

Lemma 2 Let P be a 2-state-C0-MINLP in the form (2a)–(2d) and let Q be a
reformulation asC0-MPEC in the form (12a)–(12e). Then for everyQ-feasible point
x∗
Q there exists a P -feasible point (x∗

P , z
∗
P). Conversely, if there is no Q-feasible

point, P is also infeasible. Thus, there is a one-to-one correspondence of feasible
points between 2-state-C0-MINLP models and their C0-MPEC reformulations.

Proof The claim follows directly from Definition 1 and Lemma 1. �

To obtain binary decisions z∗P from x∗
Q the complementarity constraints of C0-

MPEC are evaluated at the solution x∗
Q. Then the states are determined according to

Definition 1 and (4). If a complementarity constraint is biactive, i.e. both character-
istic functions evaluate to zero, the discrete state is arbitrary.

The second transition step, from C0-MPEC to C2-MPEC, has a genuinely heuris-
tic flavor: pointwise convergence of the smoothing functions for τ → 0 does not
necessarily imply any useful convergence of C2-MPEC-feasible sets to C0-MPEC-
feasible sets. Moreover, the smoothing parameter τ is not driven to zero but has to
be fixed at some positive value. For complex application problems one will typically
try problem-specific smoothings and parameter tuning anyway, and the smoothing
error is often smaller than other model inaccuracies. If the overall heuristic still fails,
one simply has to rely on computationally more expensive rigorous methods.

The properties of the transition from C2-MPEC to C2-NLP depend on the reg-
ularization scheme being used. We will discuss penalization and relaxation in the

304 M. Schmidt, M.C. Steinbach, and B.M. Willert

following. To this end, some basic MPEC theory is needed [19, 35, 38] and we
consider the standard MPEC formulation:

min
x

f (x) (27a)

s.t. cE(x)= 0, cI (x)≥ 0, (27b)

φi(x)ψi(x)= 0, i = 1, . . . , p, (27c)

φi(x),ψi(x)≥ 0, i = 1, . . . , p. (27d)

Definition 2 We say that the MPEC linear independence constraint qualification
holds for an MPEC-feasible point x if and only if the standard LICQ holds for the
entire constraints system with the exception of complementarity constraints (27c):

cE(x)= 0, cI (x)≥ 0, φi(x)≥ 0, ψi(x)≥ 0. (28)

For the following, we define several sets of active indices,

Ac(x)= {i ∈ I : ci(x)= 0
}
, (29a)

Aφ(x)= {i ∈ {1, . . . , p} : φi(x)= 0
}
, (29b)

Aψ(x)= {i ∈ {1, . . . , p} :ψi(x)= 0
}
. (29c)

The next theorem extends standard first-order KKT conditions for NLP to MPEC.
A proof can be found in [35].

Theorem 1 Let x∗ be a minimizer of (27a)–(27d) and let MPEC-LICQ hold at x∗.
Then there exist dual variables λ∗

E ∈ R
|E|, λ∗

I ∈ R
|I | and γ ∗

φ , γ
∗
ψ ∈R

p so that

∇f ∗ − ∇c∗T
E λ∗

E − ∇c∗T
I λ∗

I − ∇φ∗T γ ∗
φ − ∇ψ∗T γ ∗

ψ = 0, (30a)

c∗
E = 0, c∗

I ≥ 0, φ∗
i ≥ 0, ψ∗

i ≥ 0, (30b)

φ∗
i = 0 or ψ∗

i = 0, i = 1, . . . , p, (30c)

c∗
i λ

∗
Ii

= 0, i ∈ I, φ∗
i γ

∗
φi

= 0 and ψ∗
i γ

∗
ψi

= 0, i = 1, . . . , p, (30d)

λ∗
Ii

≥ 0, i = 1, . . . , p, (30e)

γ ∗
φi

≥ 0, γ ∗
ψi

≥ 0, i ∈ A∗
φ ∩A∗

ψ. (30f)

The superindex ∗ indicates function evaluation at x∗. Condition (30a) corre-
sponds to standard dual feasibility, (30b) and (30c) cover primal feasibility of (27a)–
(27d), and (30d) is the standard complementarity of inequalities and their multi-
pliers. Finally (30e) and (30f) correspond to nonnegativity of the multipliers of in-
equality constraints. Note that the last condition is only required for so called corner
pairings [23], i.e. complementarity pairings satisfying φi(x

∗)=ψi(x
∗)= 0.

Theorem 1 is the basis of MPEC stationarity concepts [35]:

A Primal Heuristic for Nonsmooth Mixed Integer Nonlinear Optimization 305

Definition 3 Let x∗ be MPEC-feasible, i.e. (30b) and (30c) hold, and assume that
there exist dual variables λ∗

E , λ∗
I , γ ∗

φ , γ ∗
ψ satisfying (30a)–(30e). Then x∗ is called

1. strongly stationary if in addition (30f) holds,
2. C-stationary if in addition γ ∗

φi
γ ∗
ψi

≥ 0.

After these preparations we can discuss the main convergence results of MPEC
regularization schemes for μ→ 0.

For the relaxation scheme (19) it is shown in [38] that the sequence of stationary
points of the relaxed MPECs converge to C-stationary points if the MPEC-LICQ
condition holds in the limit. In [18] it is shown that this scheme in fact converges to
C-stationary points under the milder assumption of MPEC-MFCQ.

Theoretical results for the penalization scheme can be found in [19]. For the
penalty objective (21) in particular, convergence to C-stationary points is obtained
if MPEC-LICQ holds in the limit.

Stronger convergence results can be proved under stronger assumptions such as
the weak second order necessary condition or upper level strict complementarity. In
particular, both schemes deliver MPEC-feasible accumulation points in these cases,
which is sufficient for our purpose of constructing a primal heuristic.

4 Application: Gas Network Optimization

The techniques just presented are now applied as a primal heuristic for a planning
problem in gas transport. We model the gas network as a directed graph G= (V,A).
The node set V consists of entries V+, exits V− and junctions V0, and the arc set A
consists of pipes Api, resistors Are, valves Ava, control valves Acv and compressor
groups Acg. A nomination defines the amounts of all flows that are supplied or dis-
charged by entry and exit customers. In addition, a nomination determines bounds
for the gas pressure as well as specific values of certain gas quality parameters.

We address a problem referred to as validation of nominations (NoVa), which
is to decide whether a given nomination can be served by some feasible stationary
network operation. Because of discrete decisions at active elements (status of valves,
control valves and compressor groups) and the mostly nonlinear and partly non-
smooth physical models of network elements this task leads to a nonsmooth MINLP
feasibility problem. If successful, our heuristic will thus deliver solutions directly.

Various related problems of the gas transport industry have been addressed in
the literature. In [6, 29, 44] one finds first (often heuristic) attempts at mixed-
integer nonlinear optimization, addressing single compressor groups under fixed
operating conditions. Later research incorporates more detailed physical models
[3, 45], and more recently also additional discrete aspects and network elements
[7]. For large-scale real-world network models MIP-driven approaches have been
developed in [9, 25, 26, 31] together with problem-specific heuristic enhancements
[27]. NLP-oriented investigations include [2, 33, 34] for stationary optimization,

306 M. Schmidt, M.C. Steinbach, and B.M. Willert

[12, 13, 40] for the transient case and [11] where specific MIP and NLP ap-
proaches are compared. The work presented here results from the large industry
project ForNe that aims at developing mathematical methods for all kinds of net-
work planning problems. Publications in preparation related to the ForNe project
include [15, 20, 30, 36, 37]. ForNe is funded by Open Grid Europe GmbH. The
scientific project partners are Friedrich-Alexander Universität Erlangen-Nürnberg,
Konrad Zuse Zentrum für Informationstechnik Berlin (ZIB), Universität Duisburg-
Essen, Weierstraß Institut für Angewandte Analysis und Stochastik (WIAS), Hum-
boldt Universität zu Berlin, Technische Universität Darmstadt and Leibniz Univer-
sität Hannover.

4.1 Model

In this section, the C0-MINLP model of the NoVa problem is presented along with
the smoothed MPEC reformulation C2-MPEC. As we wish to obtain results quickly,
we use a reasonably simplified model rather than the highly detailed model devel-
oped in [36]. For instance, the model presented is isothermal, i.e. all temperatures
are considered constant. If an approximate solution with correct discrete decisions
is found, the accuracy of the continuous variables can still be increased by an extra
optimization run with a refined model. On the other hand, real-world instances may
contain discrete aspects of global nature like interdependencies of decisions that can
currently not be handled by the model.

We introduce every network element model separately and show that the discrete
decisions lead to a 2-state-C0-MINLP in the form (2a)–(2d). The notation is similar
to the previous sections except that subindices now refer to network elements or sets
thereof. For instance, xi denotes the variables of the component model of node i,
and cApi denotes the constraints of the component models of all pipes.

4.1.1 Nodes

Every node i ∈ V has a gas pressure variable with simple bounds, pi ∈ [p−
i , p

+
i].

The flows at node i satisfy a mass balance equation

0 = cflow
i (x)=

∑

a∈δ−
i

qa −
∑

a∈δ+
i

qa + di, (31)

where di is the externally supplied flow:

di ≥ 0 for i ∈ V+, di = 0 for i ∈V0, di ≤ 0 for i ∈ V−. (32)

The complete (smooth) node model reads

0 = ci (x)= cflow
i (x), xi = pi. (33)

A Primal Heuristic for Nonsmooth Mixed Integer Nonlinear Optimization 307

4.1.2 Pipes

Gas dynamics in pipes a = ij ∈ Api are properly described by the Euler equations
for compressible fluids: a PDE system involving mass, momentum and energy bal-
ances. Consider a cylindrical pipe with diameter D, cross-sectional area A, rough-
ness k and slope s ∈ [−1,+1] (the tangent of the inclination angle). For the isother-
mal and stationary case considered here, the mass balance (continuity equation)
yields constant mass flow q along the pipe, the energy equation is not needed, and
we are left with the stationary momentum equation

∂p

∂x
+ q2

A2
∂x

1

ρ
+ gρs + λ(q)

|q|q
2A2Dρ

= 0. (34)

Here g denotes gravitational acceleration, and the friction coefficient λ(q) is given
in terms of the Reynolds number Re(q): for laminar flow by the law of Hagen–
Poiseuille,

λHP(q)= 64

Re(q)
, Re(q)= D

Aη
|q|, |q| ≤ qcrit (35)

and for turbulent flow by the empirical implicit model of Prandtl–Colebrook,

1√
λPC(q)

= −2 log10

(
2.51

Re(q)
√
λPC(q)

+ k

3.71D

)
, |q|> qcrit. (36)

The state quantities pressure p, density ρ and temperature T in (34) are coupled by
an equation of state; we use the thermodynamical standard equation

ρ = ρ(p,T)= p

Rsz(p,T)T
, (37)

where Rs is the specific gas constant. The compressibility factor z(p,T) is given
by an empirical model; here we use a formula of the American Gas Association
(AGA),

z(p,T)= 1 + 0.257
p

pc
− 0.533

p/pc

T /Tc
, (38)

where pc and Tc denote the pseudocritical gas pressure and temperature.
The ODE (34) essentially yields the pressure loss along pipe a, for which various

approximation formulas exist. We use a quadratic approximation of Weymouth type,

0 = c
p-loss
a (x)= p2

j −
(
p2
i −Λaza,mλaqa|qa|e

Sa − 1

Sa

)
e−Sa , (39)

0 = c
slope
a (x)= Saza,m − 2Lag

RsT
sa. (40)

308 M. Schmidt, M.C. Steinbach, and B.M. Willert

The coefficient Λa and inclination variable Sa depend on pipe data like length La

and slope sa , and on an approximate mean value za,m of the compressibility factor,

0 = cz-mean
a (x)= za,m − z(pa,m,T), (41)

0 = c
p-mean
a (x)= pa,m − 2

3

(
pi + pj − pjpj

pi + pj

)
. (42)

The friction variable λa in c
p-loss
a (39) has to satisfy the nonsmooth constraint

0 = cHPPC
a (x)= λa −

{
λHP(qa), qa ≤ qcrit,

λPC(qa), qa > qcrit.
(43)

The complete pipe model then reads

0 = ca(x)=

⎛

⎜⎜⎜⎜⎜⎜⎝

c
p-loss
a (x)

c
p-mean
a (x)

cz-mean
a (x)

cHPPC
a (x)

c
slope
a (x)

⎞

⎟⎟⎟⎟⎟⎟⎠
, xa =

⎛

⎜⎜⎜⎜⎝

qa
za,m
pa,m
λa
Sa

⎞

⎟⎟⎟⎟⎠
. (44)

4.1.3 Pipe Model Reformulation: Smoothing

The pipe model is discontinuous at qa = qcrit due to cHPPC
a , and second-order dis-

continuous at qa = 0 due to the term qa|qa| in c
p-loss
a . We replace the term λaqa|qa|

in (39) and constraint (43) by a new variable φa defined by a smooth constraint,

0 = c
p-loss-s
a (x)= p2

j −
(
p2
i −Λaza,mφa

eSa − 1

Sa

)
e−Sa , (45)

0 = cHPPC-s
a (x)= φa − raqa

(√
q2
a + e2

a + ba + ca√
q2
a + d2

a

)
. (46)

This provides an asymptotically correct second-order approximation of λaqa|qa| if
the parameters ra , ba , ca , da , ea are suitably chosen [4, 36]. In summary, we obtain
the smooth pipe model

0 = csmooth
a (x)=

⎛

⎜⎜⎜⎜⎜⎜⎝

c
p-loss-s
a (x)

c
p-mean
a (x)

cz-mean
a (x)

cHPPC-s
a (x)

c
slope
a (x)

⎞

⎟⎟⎟⎟⎟⎟⎠
, xsmooth

a =

⎛

⎜⎜⎜⎜⎝

qa
za,m
pa,m
φa
Sa

⎞

⎟⎟⎟⎟⎠
. (47)

A Primal Heuristic for Nonsmooth Mixed Integer Nonlinear Optimization 309

4.1.4 Resistors

Resistors a = ij ∈ Ars are fictitious network elements modeling the approximate
pressure loss across gadgets, partly closed valves, filters, etc. The pressure loss has
the same sign as the mass flow and is either assumed to be (piecewise) constant,

0 = c
p-loss-lin
a (x)= pi − pj − ξa sign(qa), (48)

or (piecewise) quadratic according to the law of Darcy–Weisbach,

0 = c
p-loss-nl
a (x)= pi − pj − 8ζa

π2D4
a

qa|qa|
ρa,k

. (49)

Here ζa is the resistance coefficient and ρa,k is the inflow gas density according to
the equation of state (37),

0 = cdens-in
a (x)= ρa,k − ρ(pk,T) with k :=

{
i, qa ≥ 0,

j, qa < 0.
(50)

The compressibility factor z has to be evaluated at the inflow node as well,

0 = cz-in
a (x)= za,k − z(pk, T). (51)

In summary, the piecewise constant resistor model (a ∈ Alin-rs) reads

0 = ca(x)= c
p-loss-lin
a (x), xa = qa, (52)

and the piecewise quadratic resistor model (a ∈ Anonlin-rs) reads

0 = ca(x)=
⎛

⎜⎝
c

p-loss-nl
a (x)

cdens-in
a (x)

cz-in
a (x)

⎞

⎟⎠ , xa =
⎛

⎝
qa
za,k
ρa,k

⎞

⎠ . (53)

4.1.5 Resistor Model Reformulation: Smoothing

The resistor models (52) and (53) are nonsmooth because of three reasons:

1. the discontinuous sign function in (48),
2. the second-order discontinuous term |qa|qa in (49),
3. the direction dependence of the inflow gas density ρa,k in (49).

Note that items 1 and 3 violate the assumptions made so far. However, resistors play
a minor role in the NoVa problem and it suffices to include a coarse approximation
in the model, so we just proceed with a problem-specific smoothing.

310 M. Schmidt, M.C. Steinbach, and B.M. Willert

In the piecewise constant resistor model, we use the identity sign(x) = x/|x|
together with the standard smoothing of |x|. For a ∈ Alin-rs this yields

0 = csmooth
a (x)= c

p-loss-lin-s
a (x)= pi − pj − ξa

qa√
q2
a + τ

. (54)

The same approximation of the absolute value function is applied to the piecewise
quadratic resistor model (49):

0 = c
p-loss-nl-s
a (x)= pi − pj − 8ζa

π2D4
a

qa
√
q2
a + τ

ρa,k
. (55)

Finally, the direction dependence of the inflow gas density ρa,k is addressed by using
the mean density

0 = cdens-mean
a (x)= ρa,m − 1

2
(ρa,in + ρa,out). (56)

As a consequence, we need to evaluate the equation of state and the compressibility
factor at both nodes i and j ,

cdens-in
a = ρa,in − ρ(pi, T), cdens-out

a = ρa,out − ρ(pj , T), (57)

cz-in
a = za,in − z(pi, T), cz-out

a = za,out − z(pj , T). (58)

This yields for a ∈ Anonlin-rs the smoothed model

0 = csmooth
a (x)=

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

c
p-loss-nl-s
a (x)

cdens-in
a (x)

cdens-out
a (x)

cdens-mean
a (x)

cz-in
a (x)

cz-out
a (x)

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

, xsmooth
a =

⎛

⎜⎜⎜⎜⎜⎜⎝

qa
za,in
za,out
ρa,in
ρa,out
ρa,m

⎞

⎟⎟⎟⎟⎟⎟⎠
. (59)

4.1.6 Valves

Valves a = ij ∈ Avl have two discrete states: open and closed. Across open valves,
the pressures are identical and the flow is arbitrary within its technical bounds,

pj = pi, qa ∈ [q−
a , q

+
a

]
. (60)

Closed valves block the gas flow and the pressures are arbitrary within their bounds,

qa = 0, pi ∈ [p−
i , p

+
i

]
, pj ∈ [p−

j ,p
+
j

]
. (61)

A Primal Heuristic for Nonsmooth Mixed Integer Nonlinear Optimization 311

This behavior can be modeled with one binary variable za ∈ {0,1} together with
big-M constraints:

0 ≤ cflow-lb
a (x, z)= qa − zaq

−
a , (62)

0 ≤ cflow-ub
a (x, z)= −qa + zaq

+
a , (63)

0 ≤ c
p-coupl-1
a (x, z)=Ma,1(1 − za)− pj + pi, (64)

0 ≤ c
p-coupl-2
a (x, z)=Ma,2(1 − za)− pi + pj . (65)

The resulting valve MINLP model reads

0 ≤ ca(x, z)=

⎛

⎜⎜⎜⎜⎝

cflow-lb
a (x, z)

cflow-ub
a (x, z)

c
p-coupl-1
a (x, z)

c
p-coupl-2
a (x, z)

⎞

⎟⎟⎟⎟⎠
, xa = qa. (66)

4.1.7 Valve Model Reformulation: Complementarity Constraints

It is easily seen that (66) directly fits into the concept of 2-state model aspects.
Here, the model aspect valve has the two states A1 = open and A2 = closed. They
are non-disjunctive if 0 ∈ [q−

a , q
+
a] and [p−

i , p
+
i]∩[p−

j ,p
+
j] 	= ∅. The characteristic

functions are

χ
open
a (x)= pj − pi, χclosed

a (x)= qa. (67)

According to Sect. 2, the 2-state-MINLP model (66) can be equivalently reformu-
lated using a complementarity constraint:

0 = cmpec
a (x)= cvl-state

a (x)= χ
open
a (x)χclosed

a (x), x
mpec
a = qa. (68)

It offers two advantages: no binary variables are required and the number of con-
straints reduces from four to one.

4.1.8 Control Valves

Control valves a = ij ∈ Acv are used to decrease the gas pressure in a technically
prescribed direction (which we define as the graph direction i → j). They possess
three discrete states: active, bypass and closed. An active control valve reduces the
inflow pressure by a certain amount,

pj = pi −Δpa, Δpa ∈ [Δp−
a ,Δp

+
a

]
, qa ∈ [q−

a , q
+
a

]∩R+. (69)

A closed control valve acts like a closed regular valve, leading to the simple state
model (61). A control valve in bypass mode acts like an open regular valve, with

312 M. Schmidt, M.C. Steinbach, and B.M. Willert

arbitrary flow direction and without decreasing the pressure, cf. (60). Our complete
mixed-integer linear model is based on the variable vector xa = (qa,Δpa)

T and
za = (z1,a, z2,a)

T , where z1,a defines if the control valve is open (z1,a = 1) or closed
(z1,a = 0) and z2,a defines if it is active (z2,a = 1) or not (z2,a = 0). In terms of the
constraints

0 ≤ c
flow-lb-open
a (x, z)= qa − za,1q

−
a , (70a)

0 ≤ c
flow-ub-open
a (x, z)= −qa + za,1q

+
a , (70b)

0 ≤ cflow-lb-active
a (x, z)= qa − (1 − za,2)q

−
a , (70c)

0 ≤ c
p-coupl-1
a (x, z)=Ma,1(1 − za,1)+Δp+

a za,2 − (pi − pj), (70d)

0 ≤ c
p-coupl-2
a (x, z)=Ma,2(1 − za,1)−Δp−

a za,2 − (pj − pi), (70e)

0 ≤ cconsistent-states
a (x, z)= za,1 − za,2, (70f)

the resulting mixed-integer model then becomes

0 ≤ ca(x, z)=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c
flow-lb-open
a (x, z)

c
flow-ub-open
a (x, z)

cflow-lb-active
a (x, z)

c
p-coupl-1
a (x, z)

c
p-coupl-2
a (x, z)

cconsistent-states
a (x, z)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, xa =
(
qa
Δpa

)
, za =

(
z1,a
z2,a

)
.

(71)

4.1.9 Control Valve Model Reformulation: Complementarity Constraints

For our reformulation, we require Δp−
a = 0. However, this appears to be a moderate

restriction in practice: it holds in all cases we have encountered. With this, we can
model control valves as a model aspect with two non-disjunctive states A1 = open
and A2 = closed and the characteristic functions

χ
open
a (x)= pj − pi +Δpa, χclosed

a (x)= qa. (72)

The state open can then be distinguished in active or bypass depending on the value
of Δpa . Thus, we have the MPEC reformulation

0 = ccv-state
a (x)= χ

open
a (x)χclosed

a (x). (73)

In addition, the restriction to nonnegative flows in the active state is modeled as

0 ≤ ccv-active-flow
a (x)=Δpaqa. (74)

A Primal Heuristic for Nonsmooth Mixed Integer Nonlinear Optimization 313

The complete MPEC type control valve model now reads

0 = cmpec
a,E (x)= ccv-state

a (x), 0 ≤ cmpec
a,I (x)= ccv-active-flow

a (x),

xa =
(
qa
Δpa

)
.

(75)

4.1.10 Compressor Groups

Compressor groups a = ij ∈ Acg typically consist of several compressor units of
different types that can be combined in various configurations to increase the gas
pressure; see [36] and the upcoming publications [15, 20, 30].

For our primal heuristic we use a substantially simplified model where compres-
sor groups can work in the same states as control valves: open, closed and active.
The only difference is the sign of the pressure control variable Δpa in the character-
istic function (72). Thus we have sign changes in (70d) and (70e), yielding adapted
mixed-integer and MPEC formulations corresponding to (71) and (75), respectively.

4.2 Model Summary

In the preceding sections, we have described components of gas transport networks,
both as nonsmooth nonlinear mixed-integer models and, if necessary, as smooth
MPEC reformulations. Now we combine the components into complete models.

The complete feasibility problem in C0-MINLP form reads

∃?(x, z): cE(x)= 0, cI (x, z)≥ 0, (76)

where

cE(x, z)=

⎛

⎜⎜⎝

cV(x)
cApi(x)

cAlin-rs(x)

cAnonlin-rs(x)

⎞

⎟⎟⎠ , cI (x, z)=
⎛

⎝
cAva(x, z)

cAcv(x, z)

cAcg(x, z)

⎞

⎠ (77)

and

x = (xV, xApi , xAlin-rs, xAnonlin-rs, xAva, xAcv , xAcg), z= (zAva , zAcv , zAcg). (78)

Note that the equality constraints do not contain any discrete aspects in our
case. Here, nonsmooth aspects arise in all passive elements: cApi(x), cAlin-rs(x),
cAnonlin-rs(x). Discrete decisions (with “genuine” binary variables) arise in the ac-
tive elements: cAva(x, z), cAcv(x, z), cAcg(x, z). The node model cV(x) is smooth
and will be kept in its original form.

314 M. Schmidt, M.C. Steinbach, and B.M. Willert

Collecting all smoothed and complementarity constrained components yields the
following C2-MPEC model:

∃?x: s.t. cE(x)= 0, cI (x)≥ 0, (79)

where

cE(x)=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cV(x)

csmooth
Api

(x)

csmooth
Alin-rs

(x)

csmooth
Anonlin-rs

(x)

cmpec
Ava

(x)

cmpec
Acv,E

(x)

cmpec
Acg,E

(x)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, cI (x)=
(

cmpec
Acv,I

(x)

cmpec
Acg,I

(x)

)
(80)

and

x = (xV, xsmooth
Api

, xAlin-rs, x
smooth
Anonlin-rs

, x
mpec
Ava

, x
mpec
Acv

, x
mpec
Acg

)
. (81)

Finally, the C2-MPEC model (79) is regularized by any of the techniques from
Sect. 2. The reformulation is generic except for one aspect. Some of the complemen-
tarity constraint pairings in cE(x) do not have to be nonnegative as in the standard
MPEC (27a)–(27d). For instance, this can happen for flow variables with a negative
lower bound. In this case we square the corresponding functions so that condition
(9) in Definition 1 is satisfied. We denote the regularization of (79) by C2-NLP.

The primal heuristic for our concrete application actually involves additional
problem-specific steps. As already mentioned in Sect. 4.1.10, we use an idealized
compressor group model that disregards individual compressor units. Solutions of
the above C2-NLP (stage-1) are therefore refined by solving a second NLP (stage-2)
that incorporates discrete decisions of individual compressor units by a special con-
vexification approach; see [20] for details. If both stages are successful, we finally
check the stage-2 feasible solution with a highly accurate validation NLP [36] to
decide whether it is sufficiently accurate to be used in practice. Full details of these
and other aspects of the application problem will be given in the future papers
[15, 20, 30, 36, 37].

4.3 Numerical Results

We have tested the primal heuristic on the northern high-calorific gas network of our
industry partner Open Grid Europe GmbH. The network model contains 452 pipes,
9 resistors, 35 valves, 23 control valves and 6 compressor groups. Gas is supplied at
31 entry nodes and discharged at 129 exit nodes. The intermediate C2-MPEC mod-
els are regularized by penalization; the resulting NLP models are formulated with

A Primal Heuristic for Nonsmooth Mixed Integer Nonlinear Optimization 315

Table 1 Success rate of
primal heuristic on NoVa test
sets

Test set Size Success rate (%)

stage-1 stage-2 NLP

SN2 3 882 100.0 90.34 72.1

SN3 4 077 100.0 85.45 65.0

SN4 4 227 99.97 88.24 59.0

Expert 40 100.0 47.50 30.0

the modeling language GAMS v23.8.2 [16] and solved with the interior point code
Ipopt v3.10 [43] on a Desktop PC with an Intel i7 920 CPU and 12 GB RAM. The
C++ software framework LaMaTTO++ [22] is used to implement the models and to
interface the problem data. LaMaTTO++ is a framework for modeling and solving
mixed-integer nonlinear programming problems on networks. It was originally de-
veloped by the working groups of Jens Lang and Alexander Martin and is now being
used and extended within the ForNe project.

The test set includes some 12 000 NoVa instances of four different types: the
sets SN i, i = 2,3,4, and Expert. SN i, i = 2,3,4, are automatically generated
nominations. The generation process depends on the current set of contracts with
supplying and discharging customers and historical data about nominated entry and
exit capacities. The three sets of nominations mainly differ in how the contracts are
modeled within the generation process. The sets SN i are of increasing degree of
difficulty (see [20] for full details). The set Expert contains 40 manually designed
nominations from our industry partner that are intended to represent hard instances.

The success rates are given in Table 1. The first column states the name of the
NoVa test set and the second column gives the number of instances in the set. The
following three columns show the percentage of instances that have successfully
passed stage-1, stage-2, and the final validation NLP, respectively. Table 2 offers
statistics of the CPU times of successful runs. For both stages and the validation
NLP, the minimum, maximum and average CPU times of the different test sets are
displayed. Similarly, Table 3 shows the minimum, maximum and average numbers
of iterations of the successful instances. The maximum allowed number of iterations
was set to 3 000.

In addition, the profiles in Fig. 1 and Fig. 2 display the distribution of the required
iterations and CPU time. More formally, if P denotes one of the test sets and if tp ,

Table 2 Min, max, and average Ipopt CPU time (seconds) of primal heuristic on NoVa test sets

Test set stage-1 stage-2 NLP

min max avg min max avg min max avg

SN2 1.8 26.3 7.5 0.3 65.5 1.0 0.8 11.7 1.1

SN3 2.0 27.6 10.3 0.2 51.6 1.1 0.5 4.0 1.4

SN4 2.3 28.6 10.5 0.3 50.4 1.2 0.9 5.3 2.1

Expert 5.0 40.8 11.4 0.9 4.7 2.0 1.1 1.7 1.3

316 M. Schmidt, M.C. Steinbach, and B.M. Willert

Table 3 Min, max, and average Ipopt iterations of primal heuristic on NoVa test sets

Test set stage-1 stage-2 NLP

min max avg min max avg min max avg

SN2 74 913 263.4 11 2 345 39.0 22 256 31.2

SN3 78 969 365.2 6 3 000 44.3 11 62 33.6

SN4 90 996 371.0 13 1 700 46.7 25 68 34.4

Expert 157 692 322.1 29 137 61.9 28 40 31.4

Fig. 1 Profiles of Ipopt
iterations in stages 1, 2, and
validation NLP on test set
SN3

p ∈ P , is the considered performance measure for problem p (here: the number
of iterations or the CPU time), the plots show the graph τ �→ 100|{p ∈ P : tp ≤
τ }|/|P |. Thus, the graphs display the percentage of feasible instances that need at
most τ iterations (or τ seconds) to be solved. The displayed data represents stage-1,
stage-2 and the validation NLP on test set SN3. The profiles of the remaining test
sets look essentially similar.

We see that stage-1 is successful on all instances but one, in spite of the smooth-
ings, MPEC regularization and other approximations that are involved. This is pri-
marily due to the model simplifications employed here, in particular the idealized
compressor group model. With the detailed compressor group model in stage two,
discrete decisions for individual compressor units are found for 85 % to 90 % of
the statistical nominations and for less than half of the expert nominations. Finally,
59 % to 72 % of all statistical nominations and 30 % of the expert nominations pass
the high-accuracy validation NLP.

It is apparent how the success rate slowly decreases with increasing difficulty of
the test sets (see Table 1). In particular, the expert nominations really prove to be
hard from stage-2 on. This is because of the central role of the compressor units:
in hard cases they have to be operated close to their limits, and a highly accurate

A Primal Heuristic for Nonsmooth Mixed Integer Nonlinear Optimization 317

Fig. 2 Profiles of Ipopt CPU
time (seconds) in stages 1, 2,
and validation NLP on test set
SN3

model is required to distinguish feasible and infeasible operating points. To lower
the risk of missing feasible solutions early on, we therefore use increasingly restric-
tive compressor models in the successive stages.

A further reason of failure can occur in case of approximately biactive comple-
mentarity constraints, i.e. complementarity constraints with small non-zero values
of both characteristic functions. Infeasible discrete decisions may then be deduced;
for instance, a valve may be considered to be closed although a very small flow is
actually required.

A comparison of the CPU times and iterations shows that most of the computa-
tional effort is spent on stage-1, taking about 10 s, while stage-2 and the validation
NLP roughly require another second each. This indicates that the simplified stage-1
model is still reasonably hard (it encompasses the major difficulties) and that stage-2
can actually be considered as a refinement step. The profile plots support this inter-
pretation, since the stage-1 curves are located significantly to the right of both the
stage-2 and the validation NLP curves.

5 Summary

We have proposed a general reformulation technique as a primal heuristic for a
certain class of nonsmooth mixed-integer nonlinear optimization problems. Our
approach explicitly distinguishes discrete aspects and nonsmooth but continuous
aspects. The former are handled with complementarity constraints; the latter are
handled by generic or problem-specific smoothing techniques. Additional regular-
izations are applied to obtain a smooth and regular nonlinear optimization problem
that can be solved by standard NLP solvers to produce (approximately) feasible so-
lutions of the underlying nonsmooth MINLP efficiently. As a proof of concept, we
have successfully applied our heuristic to the problem of validation of nominations
in real-life gas networks.

318 M. Schmidt, M.C. Steinbach, and B.M. Willert

Acknowledgements This work has been funded by the Federal Ministry of Economics and
Technology owing to a decision of the German Bundestag. We would next like to thank our in-
dustry partner Open Grid Europe GmbH and the project partners in the ForNe consortium. The
authors are also indebted to an anonymous referee whose comments and suggestions greatly im-
proved the quality of the paper. Finally, the second author would like to express his gratitude for the
challenging and stimulating scientific environment and the personal support that Martin Grötschel
provided to him as a PostDoc in his research group at ZIB, and for the continued fruitful coopera-
tion that he is now experiencing as a ZIB Fellow with his own research group at Leibniz Universität
Hannover. We dedicate this paper to Martin Grötschel on the occasion of his 65th birthday.

References

1. Baumrucker, B.T., Renfro, J.G., Biegler, L.T.: MPEC problem formulations and solution
strategies with chemical engineering applications. Comput. Chem. Eng. 32(12), 2903–2913
(2008)

2. Borraz-Sánchez, C., Ríos-Mercado, R.Z.: A hybrid meta-heuristic approach for natural gas
pipeline network optimization. In: Blesa, M., Blum, C., Roli, A., Sampels, M. (eds.) Hybrid
Metaheuristics. Lecture Notes in Computer Science, vol. 3636, pp. 54–65. Springer, Berlin
(2005). doi:10.1007/11546245_6

3. Boyd, E.A., Scott, L.R., Wu, S.: Evaluating the quality of pipeline optimization algorithms.
In: Pipeline Simulation Interest Group 29th Annual Meeting, Tucson, AZ, paper 9709 (1997)

4. Burgschweiger, J., Gnädig, B., Steinbach, M.C.: Optimization models for operative
planning in drinking water networks. Optim. Eng. 10(1), 43–73 (2009). doi:10.1007/
s11081-008-9040-8

5. Burgschweiger, J., Gnädig, B., Steinbach, M.C.: Nonlinear programming techniques for op-
erative planning in large drinking water networks. Open Appl. Math. J. 3, 14–28 (2009). doi:
10.2174/1874114200903010014

6. Carter, R.G.: Compressor station optimization: computational accuracy and speed. In: Pipeline
Simulation Interest Group 28th Annual Meeting, paper 9605 (1996)

7. Cobos-Zaleta, D., Ríos-Mercado, R.Z.: A MINLP model for a problem of minimizing fuel
consumption on natural gas pipeline networks. In: Proc. XI Latin-Ibero-American Conference
on Operations Research, paper A48-01, pp. 1–9 (2002)

8. Dantzig, G.B.: On the significance of solving linear programming problems with some integer
variables. Econometrica 28(1), 30–44 (1960). www.jstor.org/stable/1905292

9. de Wolf, D., Smeers, Y.: The gas transmission problem solved by an extension of the simplex
algorithm. Manag. Sci. 46(11), 1454–1465 (2000)

10. DeMiguel, A.V., Friedlander, M.P., Nogales, F.J., Scholtes, S.: A two-sided relaxation scheme
for mathematical programs with equilibrium constraints. SIAM J. Optim. 16(1), 587–609
(2005). doi:10.1109/TIT.2005.860448

11. Domschke, P., Geißler, B., Kolb, O., Lang, J., Martin, A., Morsi, A.: Combination of nonlin-
ear and linear optimization of transient gas networks. INFORMS J. Comput. 23(4), 605–617
(2011). doi:10.1287/ijoc.1100.0429

12. Ehrhardt, K., Steinbach, M.C.: KKT systems in operative planning for gas distribution net-
works. Proc. Appl. Math. Mech. 4(1), 606–607 (2004)

13. Ehrhardt, K., Steinbach, M.C.: Nonlinear optimization in gas networks. In: Bock, H.G.,
Kostina, E., Phu, H.X., Rannacher, R. (eds.) Modeling, Simulation and Optimization of Com-
plex Processes, pp. 139–148. Springer, Berlin (2005)

14. Fischer, A.: A special Newton-type optimization method. Optimization 24(3–4), 269–284
(1992). doi:10.1080/02331939208843795

15. Fügenschuh, A., Geißler, B., Gollmer, R., Hayn, C., Henrion, R., Hiller, B., Humpola, J.,
Koch, T., Lehmann, T., Martin, A., Mirkov, R., Morsi, A., Römisch, W., Rövekamp, J.,

http://dx.doi.org/10.1007/11546245_6
http://dx.doi.org/10.1007/s11081-008-9040-8
http://dx.doi.org/10.1007/s11081-008-9040-8
http://dx.doi.org/10.2174/1874114200903010014
http://www.jstor.org/stable/1905292
http://dx.doi.org/10.1109/TIT.2005.860448
http://dx.doi.org/10.1287/ijoc.1100.0429
http://dx.doi.org/10.1080/02331939208843795

A Primal Heuristic for Nonsmooth Mixed Integer Nonlinear Optimization 319

Schewe, L., Schmidt, M., Schultz, R., Schwarz, R., Schweiger, J., Stangl, C., Steinbach, M.C.,
Willert, B.M.: Mathematical optimization for challenging network planning problems in un-
bundled liberalized gas markets. Technical report ZR 13-13, ZIB (2013)

16. GAMS—A Users Guide. Redwood City (1988)
17. Grossmann, I.E.: Review of nonlinear mixed-integer and disjunctive programming techniques.

Optim. Eng. 3(3), 227–252 (2002). doi:10.1023/A:1021039126272
18. Hoheisel, T., Kanzow, C., Schwartz, A.: Theoretical and numerical comparison of relaxation

methods for mathematical programs with complementarity constraints. Preprint 299, Institute
of Mathematics, University of Würzburg (2010)

19. Hu, X.M., Ralph, D.: Convergence of a penalty method for mathematical programming with
complementarity constraints. J. Optim. Theory Appl. 123, 365–390 (2004)

20. Koch, T., Bargmann, D., Ebbers, M., Fügenschuh, A., Geißler, B., Geißler, N., Gollmer, R.,
Gotzes, U., Hayn, C., Heitsch, H., Henrion, R., Hiller, B., Humpola, J., Joormann, I., Kühl,
V., Lehmann, T., Leövey, H., Martin, A., Mirkov, R., Möller, A., Morsi, A., Oucherif, D.,
Pelzer, A., Pfetsch, M.E., Schewe, L., Römisch, W., Rövekamp, J., Schmidt, M., Schultz,
R., Schwarz, R., Schweiger, J., Spreckelsen, K., Stangl, C., Steinbach, M.C., Steinkamp, A.,
Wegner-Specht, I., Willert, B.M., Vigerske, S. (eds.): From Simulation to Optimization: Eval-
uating Gas Network Capacities. In preparation

21. Kraemer, K., Marquardt, W.: Continuous reformulation of MINLP problems. In: Diehl,
M., Glineur, F., Jarlebring, E., Michiels, W. (eds.) Recent Advances in Optimization
and Its Applications in Engineering, pp. 83–92. Springer, Berlin (2010). doi:10.1007/
978-3-642-12598-0_8

22. LaMaTTO++. www.mso.math.fau.de/edom/projects/lamatto.html
23. Leyffer, S., López-Calva, G., Nocedal, J.: Interior methods for mathematical programs with

complementarity constraints. SIAM J. Optim. 17, 52–77 (2004)
24. Markowitz, H.M., Manne, A.S.: On the solution of discrete programming problems. Econo-

metrica 25(1), 84–110 (1957). www.jstor.org/stable/1907744
25. Martin, A., Möller, M.: Cutting planes for the optimization of gas networks. In: Bock, H.G.,

Kostina, E., Phu, H.X., Rannacher, R. (eds.) Modeling, Simulation and Optimization of Com-
plex Processes, pp. 307–329. Springer, Berlin (2005)

26. Martin, A., Möller, M., Moritz, S.: Mixed integer models for the stationary case of gas
network optimization. Math. Program., Ser. B 105(2–3), 563–582 (2006). doi:10.1007/
s10107-005-0665-5

27. Martin, A., Mahlke, D., Moritz, S.: A simulated annealing algorithm for transient opti-
mization in gas networks. Math. Methods Oper. Res. 66(1), 99–115 (2007). doi:10.1007/
s00186-006-0142-9

28. Meyer, R.R.: Mixed integer minimization models for piecewise-linear functions of a single
variable. Discrete Math. 16(2), 163–171 (1976). doi:10.1016/0012-365X(76)90145-X

29. Osiadacz, A.: Nonlinear programming applied to the optimum control of a gas compressor
station. Int. J. Numer. Methods Eng. 15(9), 1287–1301 (1980). doi:10.1002/nme.1620150902

30. Pfetsch, M.E., Fügenschuh, A., Geißler, B., Geißler, N., Gollmer, R., Hiller, B., Humpola,
J., Koch, T., Lehmann, T., Martin, A., Morsi, A., Rövekamp, J., Schewe, L., Schmidt, M.,
Schultz, R., Schwarz, R., Schweiger, J., Stangl, C., Steinbach, M.C., Vigerske, S., Willert,
B.M.: Validation of nominations in gas network optimization: models, methods, and solutions.
Technical report ZR 12-41, ZIB (2012)

31. Pratt, K.F., Wilson, J.G.: Optimization of the operation of gas transmission systems. Trans.
Inst. Meas. Control 6(5), 261–269 (1984). doi:10.1177/014233128400600411

32. Raman, R., Grossmann, I.E.: Modeling and computational techniques for logic based integer
programming. Comput. Chem. Eng. 18(7), 563–578 (1994)

33. Ríos-Mercado, R.Z., Wu, S., Scott, L.R., Boyd, A.E.: A reduction technique for natural gas
transmission network optimization problems. Ann. Oper. Res. 117, 217–234 (2002)

34. Ríos-Mercado, R.Z., Kim, S., Boyd, A.E.: Efficient operation of natural gas transmission sys-
tems: a network-based heuristic for cyclic structures. Comput. Oper. Res. 33(8), 2323–2351
(2006). doi:10.1016/j.cor.2005.02.003

http://dx.doi.org/10.1023/A:1021039126272
http://dx.doi.org/10.1007/978-3-642-12598-0_8
http://dx.doi.org/10.1007/978-3-642-12598-0_8
http://www.mso.math.fau.de/edom/projects/lamatto.html
http://www.jstor.org/stable/1907744
http://dx.doi.org/10.1007/s10107-005-0665-5
http://dx.doi.org/10.1007/s10107-005-0665-5
http://dx.doi.org/10.1007/s00186-006-0142-9
http://dx.doi.org/10.1007/s00186-006-0142-9
http://dx.doi.org/10.1016/0012-365X(76)90145-X
http://dx.doi.org/10.1002/nme.1620150902
http://dx.doi.org/10.1177/014233128400600411
http://dx.doi.org/10.1016/j.cor.2005.02.003

320 M. Schmidt, M.C. Steinbach, and B.M. Willert

35. Scheel, H., Scholtes, S.: Mathematical programs with complementarity constraints: stationar-
ity, optimality and sensitivity. Math. Oper. Res. 25, 1–22 (2000)

36. Schmidt, M., Steinbach, M.C., Willert, B.M.: High detail stationary optimization models for
gas networks—part 1: model components. IfAM preprint 94, Inst. of Applied Mathematics,
Leibniz Universität Hannover (2012, submitted)

37. Schmidt, M., Steinbach, M.C., Willert, B.M.: High detail stationary optimization models for
gas networks—part 2: validation and results (2013, in preparation)

38. Scholtes, S.: Convergence properties of a regularization scheme for mathematical programs
with complementarity constraints. SIAM J. Optim. 11(4), 918–936 (2001)

39. Stein, O., Oldenburg, J., Marquardt, W.: Continuous reformulations of discrete-continuous
optimization problems. Comput. Chem. Eng. 28(10), 1951–1966 (2004)

40. Steinbach, M.C.: On PDE solution in transient optimization of gas networks. J. Comput. Appl.
Math. 203(2), 345–361 (2007). doi:10.1016/j.cam.2006.04.018

41. Sun, D., Qi, L.: On NCP-functions. Computational optimization—a tribute to Olvi Mangasar-
ian, part II. Comput. Optim. Appl. 13(1–3), 201–220 (1999). doi:10.1023/A:1008669226453

42. Vielma, J.P., Nemhauser, G.L.: Modeling disjunctive constraints with a logarithmic number
of binary variables and constraints. In: Lodi, A., Panconesi, A., Rinaldi, G. (eds.) Integer Pro-
gramming and Combinatorial Optimization. Lecture Notes in Computer Science, vol. 5035,
pp. 199–213. Springer, Berlin (2008). doi:10.1007/978-3-540-68891-4_14

43. Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search
algorithm for large-scale nonlinear programming. Math. Program. 106(1), 25–57 (2006).
doi:10.1007/s10107-004-0559-y

44. Wright, S., Somani, M., Ditzel, C.: Compressor station optimization. In: Pipeline Simulation
Interest Group 30th Annual Meeting, paper 9805 (1998)

45. Wu, S., Ríos-Mercado, R.Z., Boyd, A.E., Scott, L.R.: Model relaxations for the fuel cost
minimization of steady-state gas pipeline networks. Technical report TR-99-01, University
of Chicago (1999)

http://dx.doi.org/10.1016/j.cam.2006.04.018
http://dx.doi.org/10.1023/A:1008669226453
http://dx.doi.org/10.1007/978-3-540-68891-4_14
http://dx.doi.org/10.1007/s10107-004-0559-y

A New Algorithm for MINLP Applied to Gas
Transport Energy Cost Minimization

Björn Geißler, Antonio Morsi, and Lars Schewe

Abstract In this article, we present a new algorithm for the solution of noncon-
vex mixed-integer nonlinear optimization problems together with an application
from gas network optimization, the gas transport energy cost minimization prob-
lem. Here, the aim is to transport gas through the network at minimum operating
cost. The proposed algorithm is based on the adaptive refinement of a new class of
MIP-relaxations and has been developed within an industry project on gas network
optimization. Since therefore the implementation is not as general as it could be,
our computational results are restricted to instances from gas network optimization
at this point of time. However, as these problems are real-world applications and
turn out to be rather hard to solve with the aid of state-of-the-art MINLP-solvers we
believe that our computational results reveal the potential of this new approach and
motivate further research on the presented techniques.

1 Introduction

In Martin Grötschel’s work, the development of the theory of mixed-integer linear
programming was always pushed forward in tandem with the solution of application
problems. A rich source for such problems was the design of networks, with the
primary application being the design of communication networks [9–13].

In this article, we build on the vast improvements in the understanding and al-
gorithmic tractability of mixed-integer linear programs. This solid foundation on
which we build would not be available without the work of Martin Grötschel and
his coauthors.

B. Geißler (B) · A. Morsi · L. Schewe
Department Mathematik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstr. 11,
91058 Erlangen, Germany
e-mail: bjoern.geissler@math.uni-erlangen.de

A. Morsi
e-mail: antonio.morsi@math.uni-erlangen.de

L. Schewe
e-mail: lars.schewe@math.uni-erlangen.de

M. Jünger, G. Reinelt (eds.), Facets of Combinatorial Optimization,
DOI 10.1007/978-3-642-38189-8_14, © Springer-Verlag Berlin Heidelberg 2013

321

mailto:bjoern.geissler@math.uni-erlangen.de
mailto:antonio.morsi@math.uni-erlangen.de
mailto:lars.schewe@math.uni-erlangen.de
http://dx.doi.org/10.1007/978-3-642-38189-8_14

322 B. Geißler, A. Morsi, and L. Schewe

The problem we consider, though a rather special mixed-integer nonlinear pro-
gram, offers interesting structure regularly found in other problems. We aim at op-
timizing flow in a natural gas network with supplies and demands. The problem
structure then is essentially determined by conservation laws from physics, tailored
to the commodity natural gas. The objective is to route the gas through the network
with the help of compressors such that the energy cost for the operation of the com-
pressors is minimized. An essential simplification we will make here is to consider
the stationary case as in e.g. [22, 30]. This is justified in so far as it can be of interest
for planning purposes of a network operator to get good solutions for the general
supply/demand scenario without taking into account transient fluctuations.

We propose an algorithm for the solution of nonconvex mixed-integer nonlinear
optimization problems, i.e., optimization problems of the form below, where even
after relaxing the integrality restrictions the remaining nonlinear problem remains
nonconvex. This property precludes the use of standard branch-and-bound tech-
niques as the underlying nonlinear optimization problem is already hard to solve
on its own. The general thrust of our approach is to reformulate the problem in such
a way that we replace the difficult nonconvexities in the original problem with com-
paratively well-understood nonconvexities, namely integrality restrictions. In short,
we reformulate the mixed-integer nonlinear problem as mixed-integer linear prob-
lem. We have already shown such a reformulation [8] that was a proper relaxation
of the underlying mixed-integer nonlinear program. The main problem of this ap-
proach was, however, that we had to fix the precision of the relaxation a priorily
and, thus, had to compute a relaxation of the problem that achieves this bound over
the whole domain. In this article, we show how to extend this approach to be able
to refine the given problem adaptively. This allows us to start with a rather coarse
relaxation of the underlying problem and to refine the relaxation only where needed.

Optimization problems in the design and operation of natural gas networks have
already been considered in the optimization and the engineering literature since the
1960s. Specifically, the minimization of operating costs has been an active topic of
research. For a thorough overview over the literature we refer to the survey [29] and
to the overviews in [16] and [28].

There are a variety of possible solution approaches to general mixed-integer non-
linear programming problems. For an excellent overview we refer to [33]. The al-
gorithm described in [17] is probably closest to our approach. The main difference
is that there the nonconvexities are not expressed via integrality restrictions but are
instead tackled mainly via branching.

We compare our approach to two state-of-the-art general mixed-integer nonlinear
programming solvers: Baron [32] and SCIP [1, 21, 33]. Both use the same general
solving paradigm: Spatial branch-and-bound using linear programming relaxations.
They differ in the way the LP relaxations of the problems are built.

We will first discuss a mixed-integer nonlinear programming model for the gas
transport energy cost minimization problem. The next section is then devoted to
describe the basic relaxation approach from [8]. Building on that, we will describe
our adaptive approach and conclude with computational results on real-world test
instances.

A MINLP Algorithm for Gas Transport 323

Fig. 1 Technical symbols of the network components

2 MINLP-Model

In this section, we derive an MINLP model for the Gas Transport Energy Cost Min-
imization Problem. The model we give is an extended version of the model that is
used to model the problem of validating a nomination, i.e. a vector of supplies and
demands. For a more thorough introduction we refer to [16] or [28]. The difficulty
of the problem has two sources: Nonconvex nonlinear constraints and integrality
constraints. The former are mainly needed to model the physics of the gas flow in
the pipes, the compressors, and the resistors. The integrality constraints are needed
to model switching behavior introduced through valves and furthermore through
restrictions on the possible operation modes of subnetworks. As all of these com-
ponents have a non-negligible influence on the solution of the problem, we have to
model it as a mixed-integer nonlinear programming problem and cannot get by with
a simpler model.

2.1 Network Model

We model a gas network by means of a directed finite graph G= (V,A). The set A
of arcs is partitioned into the set AP of pipes, the set AS of shortcuts, the set AR

of resistors, the set AV of valves, the set ACV of control valves and the set ACS of
compressors. Each control valve a ∈ACV is part of a so-called control valve station
and each compressor a ∈ACS is part of a so-called compressor station. Compressor
stations and control valve stations are series-parallel subgraphs of G. We denote the
set of control valve stations by HCV and the set of compressor stations by HCS .
Compressor and control valve stations have pairwise disjoint arc sets, i.e., for all
S,S′ ∈ HCV ∪ HCS with S 	= S′, we have A(S) ∩ A(S′) = ∅. A summary of the
technical symbols of the components is given in Fig. 1.

The set V of nodes consists of the set VS of entries, the set VD of exits and the set
VI of intersection points of segments, which are neither entries nor exits. Entries are
considered as gas delivering points and exits reflect gas demands, specified by the
quantities flow and pressure. In the following, the gas flow on an arc a = (i, j) ∈ A
is denoted by qa and the pressure at a node v ∈ V is denoted by pv . We associate
positive gas flow with flow in arc direction, i.e., if gas flows from node i to node j ,
we have qa ≥ 0 and if gas flows from node j to node i we have qa < 0. Gas flow and
pressure are the most important variables. In our model, pressure is measured in bar
and gas flow is given in thousands of standard cubic meters, which is the most com-
monly used unit for flow in gas economy. One standard cubic meter of gas denotes

324 B. Geißler, A. Morsi, and L. Schewe

the quantity of gas, which has a volume of one cubic meter under standard condi-
tions, i.e., at 1.01325 bar, 0 ◦C and 0 % of humidity according to ISO 2533 or DIN
1343. Nevertheless, in the remainder of this section, we assume all physical values
given in coherent SI units [3], in order to avoid confusing constants in the formulas,
which are due to unit conversions. In our model, we do not distinguish between dif-
ferent gas mixtures. All parameters depending on the chemical composition of the
gas are considered constant.

For each node v ∈ V of the network, we assume minimal and maximal pressure
values p−

v and p+
v , the height hv of the node in terms of meters above mean sea

level and a lower and upper bound d−
v and d+

v on the demand dv in terms of gas
flow as given. To model a node, we bound the pressure variable pv and the demand
flow variable dv from below and above.

p−
v ≤ pv ≤ p+

v ∀v ∈ V, (1)

d−
v ≤ dv ≤ d+

v ∀v ∈ V . (2)

Further, the first law of Kirchhoff must hold. This physical law ensures that the
amount of gas flowing into a node v is equal to the amount of gas flowing away
from v minus the amount of gas taken out of the network at v.

∑

e∈δ−(v)
qe −

∑

e∈δ+(v)
qe = dv ∀v ∈ V . (3)

We remark that according to our definition of different node types d−
v is non-

negative for exits v ∈ VD , d+
v is non-positive for entries v ∈ VS and d−

v = d+
v = 0

for intersection points v ∈ VI .
For each arc a ∈ A of the network, we assume lower and upper bounds q−

a , q+
a

for the gas flow to be given and bound the corresponding flow variables.

q−
a ≤ qa ≤ q+

a ∀a ∈A. (4)

We proceed with a detailed description of each type of network arc starting with
pipes.

2.2 Pipes

Pipes are the main components of a gas network. A pipe a = (i, j) ∈ AP is spec-
ified by its length La , diameter Da and the roughness ka of the pipe wall. In our
model, we assume all pipes to be straight and of cylindrical shape. Gas flow in such
a pipe is governed by the system of Euler equations supplemented by a suitable
equation of state. Since pipes in Germany are typically at least one meter beneath
the ground, it is reasonable to assume the temperature T to be constant. In such a sit-
uation, isothermal flow is an appropriate model. Taking into account a non-ideal gas

A MINLP Algorithm for Gas Transport 325

behavior, the relevant equations reduce to the continuity and momentum equation,
together with the equation of state for real gases [4]. The continuity equation

∂ρ

∂t
+ ∂ρv

∂x
= 0 (5)

states that the rate of change of gas density ρ in time is proportional to the mass flow

M = ρ0q (6)

across the pipe boundaries. Here,

v = ρ0

Aa

q

ρ
(7)

denotes the velocity of the gas, where Aa = D2
aπ

4 is the cross sectional area of the
pipe and ρ0 the gas density under standard conditions.

Since our model is intended to be used from a planner’s perspective, where in
contrast to, e.g., real-time optimal control problems for gas networks transient ef-
fects can be safely neglected. Here, a stationary model for the gas flow, where all
time derivatives are zero, is reasonable.

In this case the continuity equation simplifies to

∂ρv

∂x
= ρ0

Aa

∂q

∂x
= 0 ⇔ ∂q

∂x
= 0 (8)

meaning that gas flow is constant within a pipe. The momentum equation

∂ρv

∂t
+ ∂ρv2

∂x
+ ∂p

∂x
+ gρ

dh

dx
+ λa

2Da

ρ|v|v = 0 (9)

relates all forces acting on gas particles to each other. Here, g denotes the constant
acceleration due to gravity, dh

dx
is the slope of the pipe and λa is the so-called friction

factor. Investigating the addends on the left-hand side of the momentum equation
from left to right, the first term represents the flow rate change over time. The sec-
ond term is the so-called impact pressure, followed by the pressure gradient. The
fourth term represents the impact of gravitational forces, which are influenced by
the slope of the pipe. Finally, the last term is the most important one. It represents
the friction forces acting on the gas particles due to rough pipe walls. These forces
are responsible for the major part of pressure drop within pipes. To calculate the
friction factor λa , we use the formula of Nikuradse [27]

λa =
(

2 log10

(
Da

ka

)
+ 1.138

)−2

, (10)

which is suitable for large Reynolds numbers. Since we want to perform optimiza-
tion on large transport networks, where we typically have to deal with highly turbu-
lent flows, Nikuradse’s formula matches our requirements [25]. Moreover, for the

326 B. Geißler, A. Morsi, and L. Schewe

derivation of an algebraic pressure loss equation, we have to introduce the equation
of state linking gas pressure and density

ρ = ρ0z0T0

p0

p

z(p,T)T
. (11)

Here, T0 and p0 are the standard temperature and standard pressure. The com-
pressibility factor (also called z-factor) z(p,T) characterizes the deviation of a real
gas from ideal gas. The compressibility factor under standard conditions is denoted
by z0. The z-factor depends on gas pressure and temperature. Since there is no exact
formula to compute the z-factor, we use the so-called Papay Formula

z(p,T)= 1 − 3.52pre
−2.26Tr + 0.247p2

r e
−1.878Tr (12)

in our model, which is suitable for pressures up to 150 bar [18]. The relative pressure
pr = p

pc
and the relative temperature Tr = T

Tc
are calculated using the pseudocritical

pressure pc and the pseudocritical temperature Tc. Below the pseudocritical temper-
ature, a gas may be liquefied under pressure. Above the pseudocritical temperature,
this is impossible. At the pseudocritical point (Tc,pc) in a pressure-temperature
phase diagram, differences between the aggregate phases vanish. Altogether this
enables us to derive an algebraic equation from the Momentum Equation (9) that
describes pressure loss along a pipe.

p2
j =
(
p2
i −Λa|qa|qa e

Sa − 1

Sa

)
e−Sa ∀a ∈ AP . (13)

The constants used in Eq. (13) are given by

Sa = 2g(hj − hi)
ρ0z0T0

p0zmT
, (14)

Λa =
(

4

π

)2
Laλaρ0p0zmT

D5
az0T0

, and (15)

zm = z

(min{p−
i , p

−
j } + max{p+

i , p
+
j }

2
, T

)
, (16)

for each pipe a = (i, j) ∈ AP . For a derivation of Eq. (13), we refer to [2, 19].
A specialized type of pipe with negligible pressure loss are so-called shortcuts.

Shortcuts do not exist in reality, but are widely used by practitioners to obtain more
descriptive network models. Moreover, they are numerically more stable than using
very short pipes and less error prune for the modeler than using pipes with length
La = 0 for that purpose. The explicit introduction of shortcuts also has the major
advantage to easily separate between pipes that introduce additional complexity and
shortcuts which actually do not affect the complexity. To model a shortcut, we just
require the pressure values at its endpoints to be equal

pi = pj ∀(i, j) ∈AS. (17)

A MINLP Algorithm for Gas Transport 327

2.3 Resistors

Besides pipes and shortcuts a gas network contains further passive, i.e., non-
controllable elements like measuring stations, filtration plants, gas-preheaters and
gas-coolers. The only property of these facilities, relevant for our model is that due
to their viscous drag, they cause a loss of pressure. In the following, we subsume all
these elements under the term resistor.

The set of resistors AR = ARv ∪ ARf
is further subdivided into the set ARv

of resistors with variable, i.e., flow dependent pressure drop and the set ARf
of

resistors causing a fixed loss of pressure.
Each resistor with variable pressure loss a = (i, j) ∈ ARv is given together with

its drag factor ξa and diameter Da . According to [18], the pressure loss caused by
such a resistor is given by

pi − pj =
⎧
⎨

⎩
ca

q2
a z(pi ,Ti)

pi
for q ≥ 0

−ca
q2
a z(pj ,Tj)

pj
for q ≤ 0

∀a = (i, j) ∈ARv , (18)

and with ca = 8ρ0p0
π2z0T0

ξaT

D4
a

. Similar to the case of pipes, we assume constant temper-

ature Ta = T , for a = (i, j), and approximate the z-factors z(pi, Ti) and z(pj , Tj)

by a mean z-factor zm as defined in Eq. (16). Since pressure loss depends on the
flow direction, we introduce a binary variable oa ∈ {0,1} indicating whether there is
a flow in the opposite direction of a or not. Thus the variable oa should be equal to
zero, if gas flows in direction of the arc a, i.e., qa > 0, and the variable oa should be
set to one if gas flows in the opposite direction, i.e., qa < 0. To reflect the pressure
loss according to (18) we add

p2
i − p2

j + |Δa|Δa = 2cazm|qa|qa, (19)

Δa = pi − pj , (20)

pi − pj ≤ (p+
i − p−

j

)
(1 − oa), (21)

pj − pi ≤ (p+
j − p−

i

)
oa, (22)

q+
a (1 − oa) ≥ qa, and (23)

q−
a oa ≤ qa (24)

to our model. Here, Δa can be considered as an auxiliary variable for pressure loss.
For each resistor with constant pressure loss a = (i, j) ∈ ARf

, pressure loss
equals an a priori given constant Δa , if there is a non-negligible positive flow
qa ≥ qε through the resistor. If there is a non-negligible negative flow qa ≤ −qε ,
then pressure loss is equal to −Δa . For an absolute flow value less than qε pressure
loss is a linear interpolation between those two values −Δa and Δa . In particular,
there is no pressure loss if the flow is zero. The pressure loss equation for resistors

328 B. Geißler, A. Morsi, and L. Schewe

with fixed pressure loss is summarized by

pi − pj =

⎧
⎪⎨

⎪⎩

Δa for q ≥ qε

Δa + Δa

qε
(q − qε) for qε ≥ q ≥ −qε

−Δa for q ≤ −qε

∀a = (i, j) ∈ARf
. (25)

To model the relationship according to (25), in the most general form, i.e., for
q−
a < −qε and q+

a < qε , we use a univariate piecewise linear function with four
breakpoints (q−

a ,−Δa), (−qε,−Δa), (qε,Δa), (q+
a ,Δa). The parameter qε > 0 in-

dicates an almost zero flow and is typically chosen as 10−2. The piecewise linear
function is then modeled using the incremental model, which means to introduce
auxiliary continuous variables δa,1, δa,2, δa,3 and binary variables za,1, za,2 and link
them with additional constraints

qa = q−
a + (qε − q−

a

)
δa,1 + 2qεδa,2 + (q+

a − qε
)
δa,3, (26)

Δij = −Δa + 2Δaδa,2, (27)

δa,2 ≤ za,1 ≤ δa,1, (28)

δa,3 ≤ za,2 ≤ δa,2, (29)

δa,1 ≤ 1, (30)

δa,3 ≥ 0. (31)

2.4 Valves

The simplest type (at least from a discrete point of view) of controllable elements in
a gas network is a valve. Valves can either be open or closed. An open valve causes
no pressure drop, while a closed valve restricts gas from passing. The pressures at
the end nodes of the valve are decoupled in this case.

To model the state of a valve a = (i, j) ∈ AV , we introduce a switching variable
sa ∈ {0,1}. The variable sa is equal to one, if and only if the valve is open. A valve
is represented in our model as follows:

q+
a sa ≥ qa, (32)

q−
a sa ≤ qa, (33)

(
p+
j − p−

i

)
sa + pj − pi ≤ p+

j − p−
i , (34)

(
p+
i − p−

j

)
sa + pi − pj ≤ p+

i − p−
j . (35)

A MINLP Algorithm for Gas Transport 329

Fig. 2 A control valve station

2.5 Control Valves

For example, when gas is transported from a large conveyor pipeline into a regional
subnetwork, it is necessary to reduce pressure manually. For that purpose, control
valves are usually located at such transition points.

Just like a valve, a control valve can be either closed or open. When it is closed,
gas cannot pass and the pressure values at its incident nodes are decoupled. With
an open control valve, pressure can be reduced within a given range [Δ−

a ,Δ
+
a]. As

in case of a valve, we introduce a binary variable sa ∈ {0,1} for all control valves
a = (i, j) ∈ACV , to model whether it is open or closed. To reflect the properties of
control valves in our model, we add the following constraints:

q+
a sa ≥ qa ∀a = (i, j) ∈ACV , (36)

q−
a sa ≤ qa ∀a = (i, j) ∈ACV , (37)

(
p+
j − p−

i +Δ−
a

)
sa + pj − pi ≤ p+

j − p−
i ∀a = (i, j) ∈ACV , (38)

(
p+
i − p−

j −Δ+
a

)
sa + pi − pj ≤ p+

i − p−
j ∀a = (i, j) ∈ACV . (39)

We remark that control valves are unidirectional elements, i.e., q−
a ≥ 0 and that it is

only possible to reduce pressure in flow direction. Moreover, in real-world networks
(and not necessarily in our model) a control valve is always located within a so-
called control valve station.

A control valve station S ∈H is a series-parallel subgraph of G that consists of a
parallel circuit of a valve (bypass valve) and a series circuit of a valve (inlet valve),
a resistor (inlet resistor), a control valve, a resistor (outlet resistor) and a valve (out-
let valve). Such a subgraph is depicted in Fig. 2. Pressure drop due to vicious drag
of fittings and facilities like, e.g., gas pre-heaters at the inlet and outlet of a con-
trol valve is represented by the inlet and outlet resistor. The bypass valve is used
to transport gas without pressure reduction in both directions. The inlet and outlet
valves are used since each active control valve requires a minimum inlet pressure
p−
S,in and a maximum outlet pressure p+

S,out. Altogether a control valve station has
three valid states. It might be active, which means the bypass valve is closed, the
inlet and outlet valves and the control valve are open. It might be in bypass, which
means that the inlet and outlet valves are closed and the bypass valve is open. Fi-
nally, the station might be closed, which means that all three valves are closed. Not

330 B. Geißler, A. Morsi, and L. Schewe

all combinations of these states are valid. They are subject to further restrictions. In
larger subnetworks, e.g., plants with multiple compressors and valves, only a subset
of possible states can actually be used. These further restrictions are discussed in
Sect. 2.7.

2.6 Compressors

Since pressure gets lost due to friction, a large gas transport network needs to con-
tain some kind of facilities to compensate for pressure losses. Those facilities are
called compressors. In reality, the operating range of a compressor is defined by its
characteristic diagram, which is given by a set of curves obtained by (bi)quadratic
least squares fits from measured data points. Here, as in [5, 22, 24, 26], we restrict
ourselves to a so-called idealized compressor model, where we describe the operat-
ing range of a compressor by an approximation of its characteristic diagram in terms
of bounds for the compression ratio, pressure increase, and power consumption. The
process of compression is considered adiabatic. Adiabatic compression means that
no heat transfer between the gas and its surroundings takes place [23].

We assume each compressor a = (i, j) ∈ ACS to be given together with its adi-
abatic efficiency ηad,a . According to [26], the power Pa a compressor consumes to
bring a certain amount of gas to a higher pressure level is given by

Pa = caTiz(pi, Ti)

((
pj

pi

)γ
− 1

)
qa ∀a = (i, j) ∈ ACS, (40)

with ca = ρ0R
γηad,am

and γ = κ−1
κ

. Here, the adiabatic exponent κ is the ratio of heat
capacity at constant pressure to heat capacity at constant volume, m is the molec-
ular weight of gas and R is the universal gas constant. Again, we assume constant

temperature Ti = T , substitute z(pi, Ti) by an approximation z̃i = z(
p−
i +p+

i

2 , T),
and add the continuous variables Pa for the compressors’ power together with the
constraints

Pa,1 = p
γ

j , (41)

Pa,2 = p
−γ

i , (42)

Pa,3 = Pa,1Pa,2, (43)

1

caT z̃i
Pa = qa(Pa,3 − 1), (44)

for all a = (i, j) ∈ACS to our model. The auxiliary continuous variables Pa,1, Pa,2,
Pa,3 are here used to express the trivariate power function by a recursive composi-
tion of univariate and bivariate nonlinear subexpressions. Just like a control valve,
a compressor may be either closed or open. If it is closed, no gas flows through
the compressor and the pressures at its inlet and outlet are decoupled. Obviously,

A MINLP Algorithm for Gas Transport 331

a closed compressor cannot increase pressure and therefore consumes no power.
Whenever a compressor is open, it consumes power while it increases the pressure
of gas flowing in arc direction, i.e., pj ≥ pi and qa ≥ 0. Flow against the direction
of a compressor arc is impossible.

In order to model the different states of a compressor, we introduce a binary vari-
able sa for each compressor a ∈ACS , where sa = 1 means that a is open and sa = 0
means that a is closed. Besides the set of equations for the power consumption (41)–
(44), the following constraints are added to our model to describe the approximated
characteristic diagram together with the combinatorial aspects of a compressor:

qa ≥ saq
−
a ∀a ∈ ACS, (45)

qa ≤ saq
+
a ∀a ∈ ACS, (46)

Pa ≥ saP
−
a ∀a ∈ ACS, (47)

Pa ≤ saP
+
a ∀a ∈ ACS, (48)

pj − pi ≥ Δ−
a sa + (p−

j − p+
i

)
(1 − sa) ∀a = (i, j) ∈ ACS, (49)

pj − pi ≤ Δ+
a sa + (p+

j − p−
i

)
(1 − sa) ∀a = (i, j) ∈ ACS, (50)

pj ≥ r−
a pi − (1 − sa)

(
r−
a p

+
i + p−

j

) ∀a = (i, j) ∈ACS, (51)

pj ≤ r+
a pi − (1 − sa)

(
r+
a p

−
i − p+

j

) ∀a = (i, j) ∈ACS. (52)

Here, P−
a and P+

a are bounds for the power consumption of an active compressor.
The minimum and maximum pressure increases are denoted by Δ−

a and Δ+
a . Fi-

nally, the compression ratio is bounded by r−
a ≤ pj

pi
≤ r+

a , whenever the compressor
is running. Similar to control valves, a compressor is not a stand-alone element.
Typically, a couple of compressors, together with a bypass valve allowing backward
flow, form a so-called compressor station.

Likewise a control valve station, a compressor station S = (V(S),A(S)) ∈ HCS

is a series-parallel subgraph of G. It consists of a parallel circuit of a valve (bypass
valve) and a series circuit of a valve (inlet valve), a resistor (inlet resistor), a parallel
circuit of one or more configurations, a resistor (outlet resistor), and a valve (outlet
valve). A configuration again is a series composition of a valve, one or more com-
pressor stages, and a valve. Finally, a compressor stage is a parallel composition
of one or more compressors. An example of a compressor station with two config-
urations is given in Fig. 3. One configuration consists of a single stage with two
parallel compressors, while the second configuration has two stages, with a single
compressor unit in each of them.

Also, exactly as in case of a control valve station, each compressor station
S ∈HCS is given together with a minimum inlet pressure p−

S,in and a maximum

outlet pressure p+
S,out. Whenever any configuration in CS is active, pressure at the

tail node of the inlet resistor must not fall below p−
S,in and pressure at the head node

of the outlet resistor must not exceed p+
S,out. Again, we do not enforce these restric-

332 B. Geißler, A. Morsi, and L. Schewe

Fig. 3 A compressor station with two configurations

tions by additional constraints, but rather use them to strengthen the corresponding
variable bounds. This is possible due to the existence of the inlet and outlet valves.

A compressor station is either closed, in bypass mode, or exactly one of its con-
figurations is active. In turn, a compressor is active if and only if the configuration
it is contained in is active. These decisions are again subject to further restrictions,
which are detailed in the next section.

2.7 Combinatorics of Subnetwork Operation Modes

We have seen that with compressor and control valve stations, there are subgraphs of
gas networks forming kind of functional units. In addition, a number of compressor
(stations), control valve (stations) or valves may form so-called decision groups.
Roughly speaking, a decision group can be considered as a set of network elements
sharing the property that each single element can be opened and closed, but not all
combinations of open and closed elements are possible. These restrictions usually
are given by practitioners to avoid solutions which are not practically realizable due
to technical restrictions or which are not reasonable according to the current contract
situation. A third reason for introducing a decision group is symmetry breaking,
like in the trivial example with two parallel valves. These two valves can be in four
different switching states, but from a physical point of view it makes no difference
whether one valve is open and the other one is closed or whether both valves are
open. Thus, it would be reasonable to introduce a decision group containing both
valves, where only two switching states are allowed, namely that both valves are
closed and for example both valves are open.

Formally, we denote the set of decision groups by G and every decision group
consists of a number of control valves, compressors and valves, together with a set
of admissible switching states, i.e., each decision group D = (n,B) ∈ G, is a tuple,
where n = (n1, . . . , nkD) with ni ∈ ACV ∪ ACS ∪ AV , for i = 1, . . . , kD , is a vec-
tor containing the respective network elements and B = (b1, . . . ,blD) ⊂ {0,1}kD
is a sequence of binary decision vectors describing the possible switching states

A MINLP Algorithm for Gas Transport 333

of the elements in n. We further introduce the index sets ND
0 (j) := {i : bij = 0}

containing the indices i of binary decision vectors, where nj has to be closed
if decision i is chosen and the set ND

1 (j) := {i : bij = 1} contains the indices
i of binary decision vectors, where nj has to be open, if decision i is chosen
for i = 1, . . . , lD and j = 1, . . . , kD . Here, bij denotes the j -th component of bi .
To model restrictions on the decisions, we introduce binary variables bDi ∈ {0,1}
for each D ∈ G and i = 1, . . . , lD and extend our model by the following con-
straints:

snj ≤
∑

i∈ND
1 (j)

bDi ∀D ∈ G, j ∈AD
V ∪AD

CV ∪AD
CS, (53)

(1 − snj) ≤
∑

i∈ND
0 (j)

bDi ∀D ∈ G, j ∈AD
V ∪AD

CV ∪AD
CS. (54)

Here, AD
V := {1, . . . , kD} ∩ {k : nk ∈ AV } is the set of valves belonging to decision

group D. The set AD
CV := {1, . . . , kD} ∩ {k : nk ∈ ACV } contains all control valves

belonging to decision group D and analogously AD
CS := {1, . . . , kD} ∩ {k : nk ∈

ACS} is the set of all compressors of decision group D for all D ∈ G. Constraints
(53) state that each valve, control valve, or compressor nj can only be open if a
decision is chosen in which it is allowed to be open. Inequalities (54) cause that a
valve, control valve, or compressor can only be closed if a decision is chosen, where
it is allowed to be closed. Finally, exactly one decision has to be chosen per decision
group,

lD∑

i=1

bDi = 1 ∀D ∈ G. (55)

With the aid of these groups it is then also possible to enforce the valid states of
control valve stations, namely to be closed, active, or in bypass. Therefore we just
introduce a single decision group DS = (nS,BS) for each such station S ∈ HCV ,
where nS consists of the bypass valve, the inlet and outlet valve, and the control
valves of the station. The only allowable binary states of these four elements are then
BS = {(0,0,0,0), (0,1,1,1), (1,0,0,0)}. The first binary vector reflects the closed
state of the station, the second one the active state, and the third one represents the
bypass mode of the station.

Similarly, the valid states of a compressor station graph S ∈ HCS are modeled by
a decision group DS = (nS,BS). Recall that a compressor station might be closed,
in bypass, or exactly one of its configurations is active. If a configuration is active,
all compressors contained in that configuration are active and the inlet and outlet
valves of the configuration are open. In the following, we denote the number of
configurations of a compressor station by mS . To reflect these states the vector nS

334 B. Geißler, A. Morsi, and L. Schewe

of the decision group consists of the bypass valve, the inlet and outlet valves of the
station, and the inlet and outlet valves and compressors of each configuration. The
set of admissible binary vectors is then given by

BS ={(0,0,0, . . . ,0),

(1,0,0,0, . . . ,0︸ ︷︷ ︸
config 1

, . . . ,0, . . . ,0︸ ︷︷ ︸
config mS

),

(0,1,1,1, . . . ,1︸ ︷︷ ︸
config 1

, . . . ,0, . . . ,0︸ ︷︷ ︸
config mS

),

. . . ,

(0,1,1,0, . . . ,0︸ ︷︷ ︸
config 1

, . . . ,1, . . . ,1︸ ︷︷ ︸
config mS

)
}
,

representing the states that the station is closed, in bypass mode, or exactly one of
its configuration is active.

2.8 Objective Function

We would like to find a control, which is optimal in the sense of practical interest.
Practitioners are interested in finding an operating cost minimal control. Operating
costs arise due to energy costs caused by active compressors. Thus we assume that
for each compressor a ∈ ACS an energy cost coefficient ca ≥ 0 is given. The most
obvious form is to just use ca = 1 and minimize the overall power consumption of
the compressors. In general, energy costs may vary from compressor to compressor
due to different types of drives. For example, so-called turbo compressors are usu-
ally driven by gas turbines, whereas piston compressors are typically shipped with
electric or gas driven motors. With such given energy cost coefficients the objective
is to minimize the overall energy costs:

min
∑

a∈ACS

caPa

subject to

(P,p,q,d, s,o,b) satisfies

(1)–(4), (13), (17), (19)–(24), (26)–(39), (41)–(55).

(P)

For the sake of clarity we explicitly remark that due to the finiteness of all variables
bounds the Gas Transport Energy Cost Minimization Problem (P) is bounded by
definition.

A MINLP Algorithm for Gas Transport 335

3 Basic MIP-Relaxation

In this section, we will introduce a framework for the construction of MIP-
relaxations of the MINLP-model for the problem introduced in Sect. 2. The basis of
our discussion is the approach described in [8], which we review here for complete-
ness.

We will first construct piecewise linear approximations for each nonlinearity
present in the system of constraints of Problem (P). In a second step we will show
how to construct an MIP-model from such an approximation which constitutes a
proper relaxation of the underlying MINLP. In addition, we will explain how to
make these MIP-relaxations comply to any a priori given bound ε > 0 on the ap-
proximation error.

As starting point for our considerations, we assume the following situation: Let
D ⊆ R

d and f : D → R be some continuous function. Further, let φ : P → R be
a piecewise linear approximation of f over some convex polytope P ⊆ D. We as-
sume φ to interpolate f on the vertices of some triangulation of P . Thus, for a
triangulation with simplex set S , we can define affine functions φi : x → aTi x + bi
for each simplex Si ∈ S with φi(x)= f (x) for every vertex x of Si such that we can
write φ(x)= φi(x) for x ∈ Si . To construct such an approximation satisfying some
a priori given error bound, we suggest Algorithm 1.

It is easy to see that Algorithm 1 always terminates with a triangulation S that
corresponds to a piecewise linear function φ, that interpolates f on the vertices of S .
Since the projection of S onto the space of the x-variables yields a triangulation of
P and since the error bound ε is satisfied for any S ∈ S , the function φ approximates
f such that the approximation error is less than or equal to ε for every x ∈ P .

So once we are able to control the approximation error within a simplex, we
are able to control the overall approximation error. What remains unclear is how to
compute maxx∈Si |f (x)− φi(x)| together with a point, where the maximum error is
attained. For explaining how this can be done, we denote the maximum interpolation
error of a function f over a simplex S by ε(f,S)= max{εu(f,S), εo(f,S)}, where
εu(f,S)= max{f (x)− φ(x) : x ∈ S} and εo(f,S)= max{φ(x)− f (x) : x ∈ S} are
the maximum underestimation and the maximum overestimation of f by its linear
interpolation φ at the vertices of S.

Since the maximum overestimation εo(f,S) of f over S with respect to φ is
equal to the maximum underestimation εu(−f,S) of −f over S with respect to
−φ, we only show how to compute the maximum overestimation in the remainder
of this section. To this end, we introduce the notion of a convex underestimating
function.

Definition 1 The elements of U(f,S) := {μ : S → R : μ convex and μ(x) ≤
f (x),∀x ∈ S} are called convex underestimators of f over S and the function
vexS[f] : S → R, defined as vexS[f](x) := sup{μ(x) : μ ∈ U(f,S)} is called the
convex envelope of f over S.

Obviously, vexS[f] is the tightest convex underestimator of f over S. Accord-
ing to Theorem 1 [6, 8], the maximum overestimation εo(f,S) can be computed

336 B. Geißler, A. Morsi, and L. Schewe

Algorithm 1: Adaptive piecewise linear interpolation

Input : A convex polytope P ⊂ D ⊆ R
d , a continuous function

f : D ⊂ R
d → R, and an upper bound ε > 0 for the approximation

error.

Output: A triangulation S of P corresponding to a piecewise linear
interpolation φ of f over P with φ(x)= f (x) for all vertices x of
simplices in S and φ = φi for Si ∈ S and i = 1, . . . , n.

Set V = {x ∈R
d : x is a vertex of P};

Construct an initial triangulation S of V and the corresponding piecewise
linear interpolation φ of f with φ(x)= φi(x) for x ∈ Si for all Si ∈ S ;

while ∃Si ∈ S , Si unmarked do

if maxx∈Si |f (x)− φi(x)|> ε then

Add a point where the maximum error is attained to V ;
Set S ← S \ {Si};
Update S w.r.t. V ;

else
Mark Si ;

end
end

return S

by solving a convex optimization problem in d variables once vexS[f] is known.
Again, from [6] we known that this is indeed the case for all nonlinearities occur-
ring in the MINLP-model from Sect. 2.

Theorem 1 Let Mo := {x ∈ S : φ(x)− f (x) = εo(f,S)} be the set of global max-
imizers for the overestimation of f by φ over S and let No := {x ∈ S : φ(x) −
vexS[f](x) = εo(vexS[f], S)} be the set of global maximizers for the overestima-
tion of the convex envelope of f by φ over S. Then we get εo(f,S)= εo(vexS[f], S)
and No = conv(Mo).

It has also been shown in [6, 8] that a point, where the maximum overestimation
is attained can be computed by solving at most d convex optimization problems in
dimension less than or equal to d .

So once Algorithm 1 has been terminated with a triangulation S = {S1, . . . , Sn},
we are ready to replace each nonlinear expression y = f (x) from (P) by the mixed-
integer linear constraint set (56)–(62) that is a slightly modified version of the well-

A MINLP Algorithm for Gas Transport 337

known incremental model for piecewise linear functions [6, 8, 20].

x = xS1
0 +

n∑

i=1

d∑

j=1

(
xSij − xSi0

)
δ
Si
j , (56)

y = y
Si
0 +

n∑

i=1

d∑

j=1

(
y
Si
j − y

Si
0

)
δj + e, (57)

d∑

j=1

δ
Si
j ≤ 1, for i = 1, . . . , n, (58)

d∑

j=1

δ
Si+1
j ≤ zi, for i = 1, . . . , n− 1, (59)

zi ≤ δ
Si
d , for i = 1, . . . , n− 1, (60)

δ
Si
j ≥ 0, for i = 1, . . . , n and j = 1, . . . , d, (61)

zi ∈ {0,1}, for i = 1, . . . , n− 1. (62)

The main difference to the traditional incremental model lies in the fact that an
extra variable e is added to the right-hand side of Eq. (57). This additional variable
is intended to express the approximation errors, which can be achieved by adding
the inequalities

εu(f,S1)+
n−1∑

i=1

zi
(
εu(f,Si+1)− εu(f,Si)

) ≥ e, (63)

−εo(f,S1)−
n−1∑

i=1

zi
(
εo(f,Si+1)− εo(f,Si)

) ≤ e. (64)

Note that for every feasible solution to the constraints (56)–(64) there is some index
j with zi = 1 for all i < j and zi = 0 for all i ≥ j . This means that all terms εu(f,Si)
on the left-hand side of (63) and all terms εo(f,Si) on the left-hand side of (64) with
i 	= j either cancel out or are multiplied by 0. Therefore, we get −εo(f,Sj) ≤ e ≤
εu(f,Sj) as desired.

The projection of the polytope described by (56)–(64) onto the (x, y)-hyperplane
can be interpreted as a piecewise polyhedral envelope of the graph of f . An illus-
trative example for the case of the expression c|q|q appearing in the pressure loss
equations for pipes is given in Fig. 4. The feasible set of the MIP-relaxation is given
by the union of the parallelograms depicted with dotted lines.

338 B. Geißler, A. Morsi, and L. Schewe

Fig. 4 MIP-relaxation of
c|q|q with c = 0.25 on
[−4,4] with 5 breakpoints

4 Adaptive Refinement of the Relaxation

In order to solve Problem (P) our idea is to first construct some initial MIP-
relaxation as described in Sect. 3 which satisfies some a-priori given (poten-
tially coarse) error bound. After that, we compute optimal solutions to a sequence
(Πi)i∈Z+ of successively refined MIP-relaxations until all nonlinear constraints are
satisfied up to the desired accuracy ε > 0. These steps are summarized in Algo-
rithm 2.

SinceΠi is a relaxation of P , Algorithm 2 never detects infeasibility erroneously.
Moreover, for ε → 0, Algorithm 2 converges to a global optimum of P if one exists
[6, 7].

The detailed steps necessary to perform the local refinement of the approxi-
mations depend on the chosen triangulation algorithm. For the computations pre-
sented in Sect. 5 we applied an incremental algorithm for Delaunay triangula-
tions [31]. The refinement step in iteration i is performed such that all simplices
S with a distance min{‖xiopt − y‖2 : y ∈ S}< δ are refined by adding an element of
arg max{|f (x)− φS(x)| : x ∈ S} to the set of breakpoints, i.e., to the vertices of the
triangulation. Here φs denotes the linear interpolation of f on the vertices of S and
δ > 0. Fur further details we again refer to [6, 7].

In addition, we try to further enhance the performance of Algorithm 2 by ap-
plying a heuristic procedure to obtain high quality feasible solutions as early as
possible. To this end, we set up an auxiliary NLP-model every time the upper bound
of the current MIP-relaxation improves. The NLP-model is constructed from the un-
derlying MINLP by fixing the integer variables to their respective values in the new
incumbent solution of the current MIP-relaxation. This auxiliary NLP is thereafter
solved with an algorithm for convex nonlinear programming. Thus, whenever the
NLP-solver converges to a feasible point which has an objective value that is lower

A MINLP Algorithm for Gas Transport 339

Algorithm 2: Adaptive refinement of MIP-relaxations
Input : An instance P of Problem (P) and an upper ε > 0 on the absolute

constraint violation.
Output: If there exists a point which satisfies all constraints of Problem (P) up

to ε, an optimal solution to Problem (P) is returned. Otherwise
infeasibility is reported.

1 Compute an initial MIP-relaxation Π0 of P ;
2 Solve Π0;
3 Set i ← 0;
4 while Problem Πi has an optimal solution xiopt with finite objective value do
5 if xiopt satisfies all constraints of Problem P up to ε then
6 return xiopt ;
7 else
8 Find the set F of nonlinear constraints which are violated by xiopt by

more than ε;
9 Construct Πi+1 by refining the approximations of f ∈F locally

around xiopt ;
10 end
11 i ← i + 1;
12 end
13 return “P is infeasible”;

than the one of the best feasible solution found so far, a new incumbent solution for
the MINLP has been found.

Finally Algorithm 2 is preceded by a bound strengthening procedure, where the
bounds of the flow- and pressure variables are propagated according to the flow
conservation constraints (3) and according to the natural interval extension of the
nonlinear pressure loss equations (13), (18), (25). Further details on these prepro-
cessing steps are again given in [6].

5 Computational Results

In this section we describe the computational results obtained for three test instances
of the gas transport energy cost minimization problem. We investigate one rather
small network, a medium-sized network, and one large real-world instance. An
overview of the sizes of the networks is given in Table 3. Schematic plots of the
network topologies are given in Figs. 5, 6, 7, where entries are depicted as discs and
exits are drawn as circles.

The first test network is given in Fig. 5. It consists of thirteen pipes and three
compressor stations CS1, CS2, and CS3. Altogether 1,348,000 m3/h of gas have to

340 B. Geißler, A. Morsi, and L. Schewe

Fig. 5 The first test network

Fig. 6 The second test network

be transported from the two entries S1 and S2 located to the left to the four cus-
tomers represented by the exits T1, T2, T3, and T4. In front of exit T3, a control
valve station CV is located in order to reduce pressure if necessary. Compressor sta-
tion CS1 can be operated in three different configurations, while both other stations
CS2 and CS3 only have a single configuration. Gas is at a pressure level of at most
70 bar at the entries, while it has to be delivered to the exits T1 and T2 with at least
62 bar and to T3 and T4 with at least 70 bar. Pressure at exit T2 must also not exceed
63 bar.

A MINLP Algorithm for Gas Transport 341

Fig. 7 The third test network

Our second test network is made up of the most important transport pipelines
of Open Grid Europe’s northern German network for the transport of high caloric
natural gas. Besides some minor simplifications, only a couple of regional subnets
have been cut off from the real network in order to create this test instance (cf.
Fig. 7). With 69 pipes, 67 shortcuts, 8 resistors, 3 compressor stations and 7 control
valve stations it already has a considerable degree of complexity. Gas is fed into the
network at 26 entries and customers withdraw gas from the network at 14 exits.

Compressor station CS1 can be operated in 14 different configurations. For the
compressor stations CS2 and CS3 on the right-hand side of Fig. 6 we have to choose
between two distinct configurations. The nomination considered for the second test
network is given in Table 1. All nodes for which no data is provided in the table nei-

342 B. Geißler, A. Morsi, and L. Schewe

Table 1 The nomination considered for the second test network

v p− p+ d

T1 43 56 8056

T2 2 85 96698

T3 2 85 241509

T4 75 82 529532

T5 72 85 141345

T6 75 82 1070961

T7 2 85 19772

T8 41 85 52015

T9 65 78 15317

T10 65 78 137653

T11 71 85 418477

v p− p+ d

T12 16 69 35964

T13 67 80 157166

T14 1 121 338487

S1 66 79 −232710

S6 1 122 −396757

S14 2 90 −141976

S15 2 90 −257181

S18 2 91 −100031

S19 78 91 −1530962

S23 2 82 −275755

S24 44 57 −327580

ther feed in nor withdraw gas in the considered nomination. In Table 1 the columns
labeled p− and p+ contain the lower and upper bounds for the pressure values at
the respective nodes in bar. The columns labeled with d contain the demands of the
nodes in terms of m3/h.

Our third test network is given in Fig. 7. It is the complete northern German
network for the transport of high caloric gas of the Open Grid Europe GmbH. It
consists of 452 pipes, 98 shortcuts, 9 resistors, 23 control valve stations, 6 compres-
sor stations and 34 valves. Gas is fed into the network at 31 entries and customers
have the possibility to withdraw gas at 129 exits. The overall length of the pipelines
is approximately 1,241 km. The nomination considered for this network is given in
Table 2. The basic properties of the three test networks are summarized in Table 3.

To solve these problems we employ Algorithm 2 from Sect. 4 and compare our
results with those obtained from the state-of-the-art general purpose MINLP-solvers
Baron 10.2.0 [32] and SCIP 2.1.1 [1, 21, 33].

All computations presented in this section are carried out using at most 4 cores
of a machine with two six core AMD Opteron™2435 processors with 64 GB of
main memory. The installed Linux operating system is Debian Squeeze with kernel
version 2.6.32-5-amd64. As MIP-solver within Algorithm 2 we use Gurobi 5.0 [14],
where all parameters are set to their default values. The occurring NLP-problems
are solved with Ipopt 3.10 [34, 35] with ma27 [15] as linear solver. The number of
Ipopt iterations is limited to 300. We compare our results to those obtained from the
MINLP-solvers Baron 10.2.0 [32] and SCIP 2.1.1 [1, 21, 33].

For all computations, we employ a time limit of 2 hours. In Algorithm 2, we
choose 10.0 bar as upper bounds for the initial linearization errors for the pressure
loss equations and 10 MW for the equations describing the power consumption of
the compressors. The parameter controlling the refinement step is set to δ = 10−6.
The maximal constraint violation is set to ε = 10−4.

The results obtained with SCIP, Baron, and Algorithm 2 for the three test in-
stances are given in Table 4. The columns labeled lb(x) and ub(x) contain the best

A MINLP Algorithm for Gas Transport 343

Table 2 The nomination considered for the third test network

v p− p+ d

T1 1 122 149935

T2 2 86 156454

T3 41 68 108800

T4 2 86 1213451

T5 2 86 138000

T6 3 8 15525

T7 2 86 284

T8 2 86 47

T9 2 8 2470

T10 5 9 2624

T11 5 9 3890

T12 2 86 1223

T13 3 9 177

T14 5 9 177

T15 2 9 102

T16 5 9 324

T17 5 9 8120

T18 5 9 33

T19 5 9 1425

T20 5 9 3790

T21 5 9 2739

T22 5 9 3035

T23 2 5 907

T24 2 5 71

T25 2 5 2090

T26 2 5 215

T27 2 5 233

T28 2 5 629

T29 2 41 3340

T30 6 41 1149

T31 6 41 2193

T32 2 8 1012

v p− p+ d

T33 2 8 2325

T34 11 41 116

T35 2 41 652

T36 4 41 2634

T37 2 41 36

T38 2 41 107

T39 2 695 3322

T40 9 51 561

T41 26 51 19678

T42 16 51 25

T43 36 69 9608

T44 2 69 11031

T45 2 69 448

T46 2 51 8200

T47 2 85 87347

T48 2 71 33483

T49 51 74 6775

T50 41 68 68713

T51 41 85 5823

T52 74 81 7362

T53 2 85 14352

T54 41 85 165022

T55 41 85 28650

T56 16 69 14385

T57 2 86 1259051

S1 2 86 −46268

S2 2 86 −1213451

S3 2 86 −1347

S4 2 86 −3281

S5 2 50 −204090

S6 2 50 −489212

S7 2 84 −1616521

Table 3 Numbers of network elements and overall pipe length of the three test networks

Net |VS | |VD | |VI | |AP | |AS | |ACS | |ACV | |AV | |AR | ∑
a∈AP

La

1 2 4 11 13 1 3 1 0 0 620 km

2 3 5 16 20 4 3 1 0 1 820 km

3 31 129 432 452 98 6 23 34 9 1241 km

344 B. Geißler, A. Morsi, and L. Schewe

Table 4 Results obtained with SCIP, Baron and Algorithm 2 after 2 hours

Net lb(SCIP) lb(Baron) lb(MIP) ub(SCIP) ub(Baron) ub(MIP) gp(SCIP) gp(Baron) gp(MIP)

1 456.23 467.85 462.45 467.85 467.85 467.85 2.55 % 0.00 % 1.17 %

2 1484.10 1259.02 1529.78 1571.16 1610.67 1568.68 5.87 % 27.93 % 2.54 %

3 0.00 0.00 453.79 – – 517.96 ∞ ∞ 14.10 %

Fig. 8 Bounds for the 1st net (SCIP)

Fig. 9 Bounds for the 1st net (Baron)

lower bound and the best feasible solution obtained from solver x after 7200 sec-
onds. The entries of the last three columns are the relative optimality gaps, which
have been computed as (ub − lb)/lb.

For the small test network Baron was able to prove optimality of a solution with
objective value 467.85 within 7 s. Although all three approaches find the optimal
solution within a second (cf. Figs. 8, 9, 10), SCIP and our new approach are not able
to prove optimality within the time limit. However, the lower bound obtained from
Algorithm 2 is slightly better than the lower bound obtained from SCIP. We believe

A MINLP Algorithm for Gas Transport 345

Fig. 10 Bounds for the 1st net (Algorithm 2)

Fig. 11 Bounds for the 2nd net (SCIP)

that the very short running time of Baron in this case results from the application
of a variety of bound strengthening techniques, which are not yet implemented in
our new algorithm. For the two larger test networks none of the three algorithms
was able to prove optimality of a solution but the best lower and upper bounds are
obtained with Algorithm 2. For the large real-world instance neither SCIP nor Baron
were able to even find a feasible solution and both were not able to push the lower
bound significantly above the trivial lower bound of zero within the time limit. In
contrast, with our new approach significantly tighter lower bounds were obtained
rather quickly. A more detailed view on how the lower and upper bounds evolve
over time is given in Figs. 8–16 for all test instances and solvers. A comparative
view on the evolution of the relative optimality gaps is presented in Figs. 17, 18, 19.

One important detail to point out is the seemingly piecewise constant develop-
ment of the lower bound during a run of Algorithm 2. This is mainly due to the fact
that we cold-start the MIP-solver after each iteration and can thus not benefit from
all the information inherent to the branch-and-bound tree computed in the preceding
iteration. At this point, there is clearly space for improvements. However, the lower
bounds obtained from Algorithm 2 are systematically better than those obtained

346 B. Geißler, A. Morsi, and L. Schewe

Fig. 12 Bounds for the 2nd net (Baron)

Fig. 13 Bounds for the 2nd net (Algorithm 2)

Fig. 14 Bounds for the 3rd net (SCIP)

A MINLP Algorithm for Gas Transport 347

Fig. 15 Bounds for the 3rd net (Baron)

Fig. 16 Bounds for the 3rd net (Algorithm 2)

Fig. 17 Gap for the 1st net

348 B. Geißler, A. Morsi, and L. Schewe

Fig. 18 Gap for the 2nd net

Fig. 19 Gap for the 3rd net

from SCIP and despite for the small test network the same holds in comparison
with Baron. Moreover, we are able to determine feasible solutions even for the large
real-world instance and better feasible solutions for the medium-sized instance. We
believe that the latter is mainly possible due to the tightness of the employed type of
MIP-relaxations. Since these relaxations are nonconvex, they are potentially tighter
than any existing convex relaxation and we do not have to rely on (spatial) branch-
ing alone to obtain high accuracy solutions in regions of interest. This is due to
the fact that the nonconvexities are modeled via integrality restrictions only. Thus,
also polyhedral techniques could be exploited to determine a feasible assignment,
especially for the discrete variables of the underlying MINLP.

Finally, we would like to give insight into the complexity of the MIP-relaxation
models solved during the iterations of Algorithm 2. For the first network this is sum-
marized in Table 5. For the two other networks the same information is given in Ta-
ble 6 and Table 7. Here, the i-th row corresponds to the i-th iteration of Algorithm 2,
i.e., to the solution of a single MIP-relaxation. The iteration number is given in the
first column. In iteration 0 the initial MIP-relaxation is solved. The second column

A MINLP Algorithm for Gas Transport 349

Table 5 Log of Algorithm 2
on the 1st net i ref bins reals cons nodes sec

0 0 56 379 812 1 1

1 17 82 423 890 36 3

2 15 106 465 962 5128 6

3 15 134 515 1046 7580 8

4 15 172 581 1160 123092 28

5 13 194 619 1226 45709 19

6 14 219 664 1301 103132 36

7 14 244 709 1376 30377 12

8 10 268 753 1448 65018 30

9 13 296 805 1532 222502 73

10 8 315 842 1589 221772 82

11 10 338 887 1658 243782 90

12 8 363 936 1733 712089 342

13 8 382 973 1790 2457946 980

14 6 397 1002 1835 596648 263

15 8 418 1043 1898 1102106 503

16 7 435 1076 1949 365960 159

17 7 453 1110 2003 887336 420

18 4 463 1130 2033 2172757 1235

19 4 475 1154 2069 >4533060 >2889

contains the number of nonlinear expressions, whose piecewise polyhedral outer
approximations have been refined in the end of iteration i. The three subsequent
columns contain the number of binary and continuous variables and the number of
linear constraints of the respective MIP-relaxation, while the last two columns show
the number of branch-and-bound nodes and the number of seconds needed to solve
the i-th MIP-relaxation.

Clearly, with each iteration a number of refinement steps are performed and thus
the number of rows and columns is strictly increasing with the iteration number.
As one might expect, the number of branch-and-bound nodes as well as the num-
ber of seconds needed to solve the MIP-relaxations also tends to increase with
the number of iterations. However, the number of refinement steps is mainly de-
creasing from iteration i to i + 1 such that the number of additional rows and
columns tends to decrease with i. The latter shows an extremely favorable prop-
erty of Algorithm 2. Although in early iterations, where the global optimum of a
(rather coarse) relaxation is typically far away from an optimum of the underlying
MINLP, a lot of refinement steps are performed, after a while the optimum of the
relaxation approaches an MINLP-optimum and the remaining refinements are typ-
ically performed in the neighborhood of this point. From there on the number of
rows and columns of the MIP-relaxations do not increase significantly anymore. Of

350 B. Geißler, A. Morsi, and L. Schewe

Table 6 Log of Algorithm 2
on the 2nd net i ref bins reals cons nodes sec

0 0 292 2027 4070 818 10

1 73 367 2104 4295 1242 10

2 74 442 2181 4520 2057 12

3 79 525 2272 4769 3960 33

4 75 606 2361 5012 6992 42

5 75 683 2440 5243 12281 53

6 68 759 2524 5471 4671 37

7 69 832 2605 5690 4178 56

8 64 900 2681 5894 17423 104

9 55 961 2750 6077 17061 68

10 49 1014 2811 6236 19045 115

11 35 1055 2860 6359 55620 179

12 51 1107 2914 6515 53281 186

13 30 1143 2960 6623 107601 447

14 24 1175 3002 6719 175484 554

15 53 1231 3062 6887 43167 239

16 47 1279 3112 7031 453691 1554

17 23 1308 3153 7118 33625 225

18 39 1349 3198 7241 973103 2721

19 13 1368 3225 7298 >62765 >535

Table 7 Log of Algorithm 2
on the 3rd net i ref bins reals cons nodes sec

0 0 907 4487 9848 302932 1523.61

1 221 1142 4738 10553 72778 735.76

2 216 1367 4979 11228 323738 2694.89

3 207 1582 5210 11873 >291328 >2242.0

course one might construct problems where it takes arbitrary long to arrive at this
point, but at least for the problems considered here this does not seem to be the
case.

6 Discussion

The computational results obtained with our algorithm are extremely encouraging:
Our approach outperforms the state-of-the-art MINLP-solvers Baron and SCIP on
the two larger problems. We stress that we did not incorporate any problem specific

A MINLP Algorithm for Gas Transport 351

knowledge in the algorithm so far to keep the comparison with the solvers fair. We
also have not yet implemented more refined preprocessing techniques except for a
straight-forward bound strengthening.

In our view, the problem we studied has special structure that makes it par-
ticularly amenable to our approach. Most of the nonlinear functions that appear
are low-dimensional. The pressure loss equation for pipes also can be seen to be
convex on one half of the real line and concave on the other. This also makes
the problem comparatively well-structured. We also note that the problem is far
more difficult than just checking the feasibility of a nomination, the so-called
nomination validation problem [28]. The main additional difficulty is the descrip-
tion of the compressors, especially their power requirement (40). We, neverthe-
less, think that the approach outlined here can be generalized to other problems,
which we will tackle in future work. The hope is generally that we will, in the fu-
ture, identify a large class of mixed-integer nonlinear problems, that is solvable in
practice. The way will involve looking at special cases and general insight about
the structure of the problems, just as in the case of mixed-integer linear prob-
lems.

Acknowledgements The authors are grateful to Alexander Martin for fruitful discussions and
comments. We thank our industry partner Open Grid Europe GmbH and the other partners of the
ForNe project. The work was partially funded by the German Federal Ministry of Economics and
Technology under grant number 0328006B.

References

1. Achterberg, T.: Constraint integer programming. Ph.D. thesis, TU Berlin (2007)
2. Bales, P.: Hierarchische Modellierung der Eulerschen Flussgleichungen in der Gasdynamik.

Master’s thesis, Technische Universität Darmstadt (2005)
3. Bureau International des Poids et Mesures: The International System of Units (SI), 8th edn.

(2006)
4. Domschke, P., Geißler, B., Kolb, O., Lang, J., Martin, A., Morsi, A.: Combination of nonlin-

ear and linear optimization of transient gas networks. INFORMS J. Comput. 23(4), 605–617
(2011)

5. Ehrhardt, K., Steinbach, M.C.: Nonlinear optimization in gas networks. In: Bock, H.G.,
Kostina, E., Phu, H.X., Ranacher, R. (eds.) Modeling, Simulation and Optimization of Com-
plex Processes, pp. 139–148. Springer, Berlin (2005)

6. Geißler, B.: Towards globally optimal solutions of MINLPs by discretization techniques with
applications in gas network optimization. Ph.D. thesis, FAU Erlangen-Nürnberg (2011)

7. Geißler, B., Martin, A., Morsi, A., Schewe, L.: Solving MINLPs using adaptively refined MIPs
(2012, to be published)

8. Geißler, B., Martin, A., Morsi, A., Schewe, L.: Using piecewise linear functions for solving
MINLPs. In: Lee, J., Leyffer, S. (eds.) Mixed Integer Nonlinear Programming. The IMA Vol-
umes in Mathematics and Its Applications, vol. 154, pp. 287–314. Springer, New York (2012)

9. Grötschel, M., Monma, C., Stoer, M.: Polyhedral approaches to network survivability. In:
Reliability of Computer and Communication Networks, New Brunswick, NJ, 1989. DIMACS
Ser. Discrete Math. Theoret. Comput. Sci., vol. 5, pp. 121–141. Am. Math. Soc., Providence
(1991)

352 B. Geißler, A. Morsi, and L. Schewe

10. Grötschel, M., Monma, C.L., Stoer, M.: Computational results with a cutting plane algorithm
for designing communication networks with low-connectivity constraints. Oper. Res. 40(2),
309–330 (1992). doi:10.1287/opre.40.2.309

11. Grötschel, M., Monma, C.L., Stoer, M.: Facets for polyhedra arising in the design of commu-
nication networks with low-connectivity constraints. SIAM J. Optim. 2(3), 474–504 (1992).
doi:10.1137/0802024

12. Grötschel, M., Monma, C.L., Stoer, M.: Design of survivable networks. In: Network Models.
Handbooks Oper. Res. Management Sci., vol. 7, pp. 617–672. North-Holland, Amsterdam
(1995). doi:10.1016/S0927-0507(05)80127-6

13. Grötschel, M., Monma, C.L., Stoer, M.: Polyhedral and computational investigations for
designing communication networks with high survivability requirements. Oper. Res. 43(6),
1012–1024 (1995). doi:10.1287/opre.43.6.1012

14. Gurobi Optimization, Inc.: Gurobi Optimizer Reference Manual. Version 5.0. Gurobi Opti-
mization, Inc., Houston, TX, USA (2010)

15. HSL: a collection of Fortran codes for large scale scientific computation (2011). www.hsl.rl.
ac.uk

16. Koch, T. (ed.): From simulation to optimization: evaluating gas network capacities (2012, in
preparation)

17. Leyffer, S., Sartenaer, A., Wanufelle, E.: Branch-and-refine for mixed-integer nonconvex
global optimization. Technical report ANL/MCS-P1547-0908, Mathematics and Computer
Science Division, Argonne National Laboratory (2008)

18. LIWACOM Informations GmbH and SIMONE Research Group s.r.o.: Gleichungen und Meth-
oden. Benutzerhandbuch (2004)

19. Lurie, M.V.: Modeling of Oil Product and Gas Pipeline Transportation. Wiley-VCH, Wein-
heim (2008)

20. Markowitz, H.M., Manne, A.S.: On the solution of discrete programming problems. Econo-
metrica 25, 84–110 (1957)

21. Martin, A.: Integer programs with block structure. Habilitation treatise, Zuse Institute Berlin
(1999)

22. Martin, A., Möller, M., Moritz, S.: Mixed integer models for the stationary case of gas network
optimization. Math. Program., Ser. B 105, 563–582 (2006)

23. Menon, E.: Gas Pipeline Hydraulics. Taylor & Francis, Boca Raton (2005)
24. Möller, M.: Mixed integer models for the optimisation of gas networks in the stationary case.

Ph.D. thesis, Technische Universität Darmstadt (2004)
25. Moody, L.: Friction factors for pipe flow. Trans. Am. Soc. Mech. Eng. 66(8), 671–677 (1944)
26. Moritz, S.: A mixed integer approach for the transient case of gas network optimization. Ph.D.

thesis, Technische Universität Darmstadt (2007)
27. Nikuradse, J.: Strömungsgesetze in rauhen Rohren. Forschungsheft auf dem Gebiete des In-

genieurwesens. VDI-Verlag, Düsseldorf (1933)
28. Pfetsch, M.E., Fügenschuh, A., Geißler, B., Geißler, N., Gollmer, R., Hiller, B., Humpola,

J., Koch, T., Lehmann, T., Martin, A., Morsi, A., Rövekamp, J., Schewe, L., Schmidt, M.,
Schultz, R., Schwarz, R., Schweiger, J., Stangl, C., Steinbach, M.C., Vigerske, S., Willert,
B.M.: Validation of nominations in gas network optimization: models, methods, and solutions.
Technical report ZR 12-41, ZIB (2012)

29. Ríos-Mercado, R.Z., Borraz-Sánchez, C.: Optimization problems in natural gas transmission
systems: a state-of-the-art survey. Technical report ZR 12-41, ZIB (2012)

30. Ríos-Mercado, R.Z., Wu, S., Scott, L.R., Boyd, E.A.: A reduction technique for natural gas
transmission network optimization problems. Ann. Oper. Res. 117(1), 217–234 (2002)

31. Shewchuk, J.: Triangle: engineering a 2D quality mesh generator and Delaunay triangulator.
In: First ACM Workshop on Applied Computational Geometry (1996)

32. Tawarmalani, M., Sahinidis, N.V.: A polyhedral branch-and-cut approach to global optimiza-
tion. Math. Program. 103(2), 225–249 (2005)

33. Vigerske, S.: Decomposition in multistage stochastic programming and a constraint integer
programming approach to mixed-integer nonlinear programming. Ph.D. thesis, Humboldt-

http://dx.doi.org/10.1287/opre.40.2.309
http://dx.doi.org/10.1137/0802024
http://dx.doi.org/10.1016/S0927-0507(05)80127-6
http://dx.doi.org/10.1287/opre.43.6.1012
http://www.hsl.rl.ac.uk
http://www.hsl.rl.ac.uk

A MINLP Algorithm for Gas Transport 353

Universität zu Berlin (2012). www.math.hu-berlin.de/~stefan/diss.pdf
34. Wächter, A., Biegler, L.T.: Line search filter methods for nonlinear programming: motivation

and global convergence. SIAM J. Optim. 16(1), 1–31 (2005)
35. Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algo-

rithm for large-scale nonlinear programming. Math. Program., Ser. A 106, 25–57 (2006)

http://www.math.hu-berlin.de/~stefan/diss.pdf

Solving k-Way Graph Partitioning Problems
to Optimality: The Impact of Semidefinite
Relaxations and the Bundle Method

Miguel F. Anjos, Bissan Ghaddar, Lena Hupp, Frauke Liers, and Angelika
Wiegele

Abstract This paper is concerned with computing global optimal solutions for
maximum k-cut problems. We improve on the SBC algorithm of Ghaddar, Anjos
and Liers in order to compute such solutions in less time. We extend the design prin-
ciples of the successful BiqMac solver for maximum 2-cut to the general maximum
k-cut problem. As part of this extension, we investigate different ways of choosing
variables for branching. We also study the impact of the separation of clique inequal-
ities within this new framework and observe that it frequently reduces the number
of subproblems considerably. Our computational results suggest that the proposed
approach achieves a drastic speedup in comparison to SBC, especially when k = 3.
We also made a comparison with the orbitopal fixing approach of Kaibel, Peinhardt
and Pfetsch. The results suggest that, while their performance is better for sparse
instances and larger values of k, our proposed approach is superior for smaller k
and for dense instances of medium size. Furthermore, we used CPLEX for solv-

M.F. Anjos
Canada Research Chair in Discrete Nonlinear Optimization in Engineering, GERAD, École
Polytechnique de Montréal, Montréal, QC, Canada H3C 3A7
e-mail: anjos@stanfordalumni.org

B. Ghaddar
Centre for Operational Research and Analysis, Defence Research and Development Canada,
Department of National Defence, 101 Colonel By Drive, Ottawa, ON, Canada K1A 0K2
e-mail: bghaddar@uwaterloo.ca

L. Hupp · F. Liers (B)
Department Mathematik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstr. 11,
91058 Erlangen, Germany
e-mail: frauke.liers@math.uni-erlangen.de

L. Hupp
e-mail: lena.hupp@math.uni-erlangen.de

A. Wiegele
Institut für Mathematik, Alpen-Adria-Universität Klagenfurt, Universitätsstr. 65-67, 9020
Klagenfurt, Austria
e-mail: angelika.wiegele@aau.at

M. Jünger, G. Reinelt (eds.), Facets of Combinatorial Optimization,
DOI 10.1007/978-3-642-38189-8_15, © Springer-Verlag Berlin Heidelberg 2013

355

mailto:anjos@stanfordalumni.org
mailto:bghaddar@uwaterloo.ca
mailto:frauke.liers@math.uni-erlangen.de
mailto:lena.hupp@math.uni-erlangen.de
mailto:angelika.wiegele@aau.at
http://dx.doi.org/10.1007/978-3-642-38189-8_15

356 M.F. Anjos, B. Ghaddar, L. Hupp, F. Liers, and A. Wiegele

ing the ILP formulation underlying the orbitopal fixing algorithm and conclude that
especially on dense instances the new algorithm outperforms CPLEX by far.

1 Introduction

The impact of Martin Grötschel on the field of optimization is hard to overstate.
His work combines mathematics and computer science by both aiming to develop a
deep mathematical understanding of the structure of a problem and then turning this
understanding into high-performance algorithms.

We are delighted to have the opportunity to contribute to this Festschrift on the
occasion of Martin Grötschel’s 65th birthday. Liers is an academic grandchild of
Grötschel via Michael Jünger, while Hupp is a doctoral student of Liers and is thus
on the way to become a descendant of Grötschel. We also mention that the research
collaboration between Liers and Anjos began when Jünger hosted Anjos as a post-
doctoral fellow in Köln, and that Ghaddar is an academic child of Anjos.

It is fitting that this paper proposes an effective exact algorithm for the maximum
k-cut problem that combines a semidefinite relaxation with polyhedral insights and
state-of-the-art bundle algorithms. Grötschel, together with several of his academic
descendents, was among the first to study graph partitioning and its application in
areas such as physics and VLSI. This is but one of the important classes of NP-hard
problems on which he has had a lasting impact. Furthermore, together with Lovász
and Schrijver, Grötschel proposed the first polynomial-time algorithm for solving
semidefinite optimization problems, namely the ellipsoid method. While it is not
competitive in practice, it remains the only truly proven polynomial-time algorithm
for solving semidefinite problems.

Yet another aspect in which this paper follows the inspiration of Martin Grötschel
is in the iterative addition of cutting planes. Again with Lovász and Schrijver,
Grötschel pioneered the fundamental principle of the equivalence of separation and
optimization. He undertook polyhedral studies of exact linear optimization formu-
lations of various NP-hard problems, including the traveling salesman problem, the
maximum-cut problem and linear ordering problems. In this way, he laid solid foun-
dations for modern exact branch-and-bound algorithms.

The maximum k-cut (max-k-cut) problem is a graph partitioning problem con-
cerned with finding an optimal k-way partitioning of the set of nodes of an undi-
rected simple graph with weights on the edges. An edge is cut if its endpoints are in
different sets of the partition, and a partition is also called a cut of the graph. Thus,
the weight of a cut is equal to the sum of the weights on the edges cut by its cor-
responding partition. There are a number of different versions of graph partitioning
problems in the literature, depending on the number of sets allowed in a partition, on
the types of edge weights allowed, and on the possible presence of additional side
constraints such as restrictions on the number of nodes allowed in each partition.
Most versions are known to be NP-hard. Graph partitioning problems have myriad
applications in areas as varied as telecommunications network planning [18], VLSI
circuit design [6], sports scheduling [19, 44], and statistical physics [37].

Solving k-Way Graph Partitioning Problems to Optimality 357

The special case of max-k-cut with k = 2 is known as the max-cut problem.
The max-cut problem has been extensively studied; in particular, it is known to be
equivalent to quadratic unconstrained binary optimization. Among the numerous
references for max-cut, we point out Barahona and Mahjoub [5], Deza and Laurent
[15], and Boros and Hammer [9]. A prominent application of max-cut is in deter-
mining energy-minimum states, i.e., ground states, of Ising spin glasses. The first
exact branch-and-cut approach for its solution was presented in [6] and developed
further in [37]. Extending the number of shores to k > 2, maximum k-cuts need to
be computed when determining ground states of Potts glasses. In the physics litera-
ture, ground states are usually computed heuristically, but more reliable conclusions
can be drawn by analyzing exact solutions.

The max-k-cut problem is sometimes also called the minimum k-partition prob-
lem by noting that maximizing the k-cut is equivalent to minimizing the sum of the
weights of the edges connecting nodes in the same partition. It was studied in [11]
by Chopra and Rao who identified several valid and facet-defining inequalities for
the k-partition polytope. Further results can be found in Chopra and Rao [12] and
Deza, Grötschel, and Laurent [16].

Armbruster et al. [4] consider the minimum bisection problem, where k = 2 and
the number of nodes in both partitions has to be less than a given value F ≤ n

2 . The
case F = �n2 � corresponds to a minimum equipartition problem since the sizes of
both partitions then have to be (as close as possible to) equal. Alternatively, this
latter constraint added to the max-cut problem gives the equicut problem, which can
be motivated by an application to Coulomb glasses in theoretical physics. Motivated
by this application, Anjos et al. [3] recently proposed an enhanced branch-and-cut
algorithm for equicut based on an approach proposed by Brunetta et al. [10].

More generally, the k-way equipartition problem is a minimum k-partition prob-
lem with the additional constraint that the k partitions have to be of the same size.
Mitchell [43] applied a branch-and-cut algorithm based on linear programming (LP)
to the k-way equipartition problem with application to a sports league realignment
problem. Lisser and Rendl [39] considered an application of k-way equipartition in
telecommunications and investigated both semidefinite and linear relaxations of the
problem with iterative cutting plane algorithms.

Strong approximation guarantees have been obtained for several of these NP-
hard problems. A famous example is the randomized approximation algorithm for
max-cut proposed by Goemans and Williamson [23] that uses a semidefinite pro-
gramming (SDP) relaxation. Frieze and Jerrum [21] extended the approach of Goe-
mans and Williamson to max-k-cut and obtained a polynomial-time approximation
algorithm and a corresponding rounding technique. In particular, they proved the
existence of constants αk , k ≥ 2, such that

E
(
w(Vk)

)≥ αkw
(
V∗
k

)

where w(Vk) =∑1≤r<s≤k
∑

i∈Vr ,j∈Vs wij , V∗
k determines an optimal cut, and E

denotes the expected value. For small values of k, the best-known lower bounds
for these constants are given by de Klerk et al. [14]. The improved SDP relaxation

358 M.F. Anjos, B. Ghaddar, L. Hupp, F. Liers, and A. Wiegele

for max-cut of Anjos and Wolkowicz [2] provides very tight bounds for max-cut
and perfectly captures the faces of dimension 1 of the cut polytope [1]. This ability
to capture portions of the structure of the underlying polytope was proved for the
whole Lasserre hierarchy by Laurent [32]. Eisenblätter [18] used an SDP relaxation
for the minimum k-partition problem and proved that all the feasible solutions for
the SDP problem cannot violate the (facet-defining) triangle and clique inequalities
for the k-partition polytope by more than a small amount, thus showing that an SDP
relaxation can closely approximate the structure of the k-partition polytope.

Our interest is in computing global optimal solutions for max-k-cut problems.
Computationally speaking, SDP relaxations often yield stronger bounds than LP
relaxations. However, this strength usually comes at the expense of long running
times. Thus, it is not clear beforehand whether linear or semidefinite relaxations
lead to best performance.

For max-cut, sparse instances can usually be solved efficiently with LP-based
methods for large graphs. The web-based Spin Glass Server [50] is especially de-
signed for fast solutions of instances defined on grids that arise in statistical physics
[37]. For instance, for a two-dimensional lattice with L≤ 80 and periodic boundary
conditions, one ground-state computation takes less than two minutes on average
on a SUN Opteron (2.2 GHz) machine; for 1202 lattices the computation takes 28
minutes [38]. On the other hand, SDP-based methods perform better for dense in-
stances of max-cut [45]. The SDP-based web server BiqMac [7] can solve max-cut
instances with arbitrary structure with up to 100 vertices [47].

For the k-way equipartition problem, the LP-based branch-and-cut algorithm of
Mitchell [43] found the optimal solution for the NFL realignment problem where
k = 8 and n= 32, whereas a percentage gap of less than 2.5 % was given for graphs
of sizes 100 to 500. Lisser and Rendl [39] found that for graph sizes ranging from
100 to 900 vertices and for k = 5 and k = 10, the SDP approach produced a gap
between 4–6 % from the optimal solution and had overall better performance than
the LP approach.

For sparse instances of minimum bisection, the computational results of Arm-
bruster et al. [4] suggest that SDP relaxations are superior to the corresponding LP
relaxations. On the other hand, Anjos et al. [3] compared basic LP and SDP re-
laxations for the equicut problem, and found that linear bounds can be competitive
with the semidefinite ones and can be computed much faster. While their results
appear to contradict the above observations, it is important to note that they focus
on dense instances coming from the physics application, and that their specialized
relaxation includes constraints that are not valid for the minimum bisection polytope
in general.

In this paper, we focus on max-k-cut for k ≥ 3. Our motivation is that while
effective computational procedures that yield globally optimal solution for arbitrary
instances with up to 100 vertices and sparse graphs of considerably larger sizes
have been implemented for the k = 2 case, to the best of our knowledge, most of the
procedures proposed in the literature either cannot be applied for general k, provide
no guarantee of global optimality, or enforce additional constraints.

Solving k-Way Graph Partitioning Problems to Optimality 359

Among the exceptions, Kaibel, Peinhardt and Pfetsch [29, 30] applied a
symmetry-breaking method called orbitopal fixing (OF) to graph partitioning prob-
lems within an LP-based branch-and-cut. Symmetry arises in graph partition prob-
lems because different feasible solutions may represent the same partition. The fea-
sible set of the problem can thus be partitioned into orbits so that all the solutions
in an orbit represent the same partition. This structure is exploited by OF through
choosing one representative solution from each orbit, namely the lexicographically
maximal one, and the branching and pruning steps are adjusted to restrict the enu-
meration to only such solutions. This is a specialization to partition problems of the
isomorphism pruning technique of Margot [40, 41]. The authors present results for
the minimum k-partition problem in sparse graphs with up to 50 nodes and a few
hundred edges [29].

Another exception is the SDP-based branch-and-cut algorithm for the minimum
k-partition problem proposed by Ghaddar, Anjos and Liers [22]. Their SBC algo-
rithm combines the SDP relaxation proposed by Eisenblätter [18] with valid inequal-
ities for the k-partition polytope and with a novel iterative clustering heuristic (ICH)
that finds feasible solutions using the SDP optimal solution. The computational re-
sults reported in [22] show that ICH consistently provides feasible solutions that are
better than those obtained using the hyperplane rounding techniques of Goemans
and Williamson (for k = 2) and of Frieze and Jerrum (for k ≥ 3). Ghaddar et al.
presented results showing that SBC computes globally optimal solutions for dense
graphs with up to 60 nodes, for (sparse) grid graphs with up to 100 nodes, and for
different values of k ≥ 3.

In this paper, we combine the approach of Ghaddar et al. with the design prin-
ciples of BiqMac [47] to compute globally optimal solutions for max-k-cut more
efficiently. We refer to this new approach as bundleBC. Although straightforward in
principle, this combination raises several challenges, including the following:

• branching decisions may lead to subproblems that are infeasible or that have no
interior (this can be avoided for max-cut by appropriate switching and shrinking
steps);

• a wider variety of cutting planes needs to be generated and managed dynamically;
and

• the constraints of the SDP relaxation itself need to be handled differently, i.e., we
relax the lower bound constraints of the initial SDP relaxation and treat them as
cuts.

Our computational results suggest that bundleBC achieves a drastic speedup in com-
parison to SBC, especially when k = 3. Furthermore, a comparison with the results
reported by Kaibel et al. [29], suggests that for k = 3 and medium-sized dense in-
stances (30 nodes), our approach performs better than their OF approach, whereas
their performance is better for sparse instances and for larger values of k. Addition-
ally, we used CPLEX to evaluate the ILP model underlying the OF approach.

This paper is organized as follows. In Sect. 2, we state the formal definition of
the max-k-cut problem and briefly summarize the relevant formulations and relax-
ations in the literature. The proposed exact algorithm is described in Sect. 3. Sec-
tion 3.1 is concerned with the upper bound computation using a bundle to solve the

360 M.F. Anjos, B. Ghaddar, L. Hupp, F. Liers, and A. Wiegele

SDP relaxations, and Sect. 3.2 describes the heuristic we use for computing lower
bounds. Section 3.3 describes the 6 branching rules that we tested, and how we han-
dle the possibility that branching sometimes yields SDP subproblems that are in-
feasible or that have no interior. Section 4 presents the basic implementation details
of bundleBC. Computational results are reported in Sect. 5. Section 5.1 describes
the benchmark sets of instances that we used, Sect. 5.2 reports the performance of
the 6 branching rules that we considered, and Sect. 5.3 studies the impact of clique
inequalities on the performance of bundleBC. Section 5.4 presents comparisons of
bundleBC with SBC, and Sect. 5.5 compares the performance of bundleBC with the
orbitopal fixing approach and presents the CPLEX results. Section 6 concludes the
paper.

2 Problem Description, Formulations and Relaxations

An instance of the max-k-cut problem is specified by fixing an undirected graph
G = (V ,E) with edge weights wij of the edges, and a positive integer k ≥ 2. The
objective is to find a partition of V into at most k disjoint partitions V1, . . . , Vk such
that the sum of the weights of edges joining different partitions is maximized. We
assume without loss of generality that G is a complete graph (missing edges can be
added with a corresponding weight of zero).

From a semidefinite perspective, the max-k-cut problem can be formulated as:

max
∑

i,j∈V,i<j
wij

(k − 1)(1 −Xij)

k
(1)

s.t. Xii = 1 ∀i ∈ V (2)

Xij ∈
{ −1

k − 1
,1

}
∀i, j ∈ V, i < j (3)

X ' 0,

where Xij = −1
k−1 if vertices i and j are in different partitions, and Xij = 1 if they are

in the same partition. Replacing the binary constraint (3) by −1
k−1 ≤ Xij ≤ 1 results

in a semidefinite relaxation. However, the constraint Xij ≤ 1 can be dropped since
it is enforced implicitly by the constraints Xii = 1 and X ' 0. We end up with the
following SDP relaxation:

(SMkC) max
∑

i,j∈V,i<j
wij

(k − 1)(1 −Xij)

k
(4)

s.t. Xii = 1 ∀i ∈ V (5)

Xij ≥ −1

k − 1
∀i, j ∈ V, i < j (6)

X ' 0

Solving k-Way Graph Partitioning Problems to Optimality 361

or, alternatively, using the Laplace matrix L of the graph and rewriting the con-
straints Xii = 1, we end up with

(SMkC) max
k − 1

2k
〈L,X〉 (7)

s.t. diag(X)= e (8)

Xij ≥ −1

k − 1
∀i, j ∈ V, i < j (9)

X ' 0

with e being the vector of all ones of length |V |. Note that if we fix k = 2 in (SMkC),
we obtain the SDP relaxation used for max-cut by Goemans and Williamson [23].

The relaxation (SMkC) was first used by Frieze and Jerrum [21]; it is the basis of
the SBC algorithm of Ghaddar et al. [22]. In that algorithm, the SDP relaxation was
further tightened by adding valid inequalities. The two types of valid inequalities
used in SBC are the triangle and the clique inequalities. The triangle inequalities are
based on the observation that if any two nodes i and j are in the same partition, and j
and another node k are in the same partition, then also nodes i and k necessarily have
to be in the same partition. For the SDP formulation, the 3

(|V |
3

)
triangle inequalities

have the form:

Xij +Xjh −Xih ≤ 1, (10)

where i, j , and h ∈ V . The
(|V |
k+1

)
clique inequalities ensure that for every subset of

k + 1 nodes, at least two of the nodes must belong to the same partition:

∑

i,j∈Q,i<j

Xij ≥ −k

2
∀Q⊆ V where |Q| = k + 1.

Together with the constraints (10), this implies that there are at most k partitions.

3 Proposed Exact Algorithm

We use a branch-and-bound framework to solve the max-k-cut problem to global
optimality. To set up the framework, the following three issues must be addressed:

• how to obtain upper bounds;
• how to obtain lower bounds, i.e., high-quality cuts; and
• how to branch.

The computation of the upper bounds is the subject of Sect. 3.1. Computing lower
bounds is discussed in Sect. 3.2, and the question how to branch is addressed in
Sect. 3.3. Algorithm 1 gives the steps as they are executed at each node of the
branch-and-bound tree.

362 M.F. Anjos, B. Ghaddar, L. Hupp, F. Liers, and A. Wiegele

Algorithm 1: One node of the branch-and-bound algorithm
1. Initialize γ and solve the problem (SMCbasic) using the oracle. Obtain the

primal matrix X∗ and the upper bound ub.
2. Apply a heuristic to the current X∗ to obtain a k-cut and a lower bound lb.
3. Separate triangle inequalities.
4. While progress is made

a. Do a descent step, i.e., obtain improved ub.
b. If number of descent steps mod10 = 0, apply a heuristic to the current
X∗ and obtain a k-cut and a lower bound lb.

c. If lb ≥ ub then stop: return and fathom node.
d. Remove triangles and cliques if non-binding.
e. Separate triangle and clique inequalities.

5. Apply a heuristic to the current X∗ to obtain a k-cut and a lower bound lb.
6. If lb ≥ ub then stop: return and fathom node.
7. Choose an edge for branching and return.

3.1 Computing Upper Bounds

It is well known that the bounds obtained by the LP relaxation of the ILP formula-
tion are often weaker than the bounds obtained using the SDP relaxation (see e.g.
[18, 22]). However, their computation is usually time consuming. In this work, we
focus on an approach that maintains the strength of the relaxations using a fast ap-
proximation procedure to speed up computing times.

To this end, we make use of the SDP relaxation (SMkC) tightened by facets of
the partition polytope. Specifically, we use triangle and clique inequalities. Solving
the resulting relaxation is not trivial because the number of inequalities (for large
graphs) is too large and the SDP problem becomes intractable for interior point
methods. Thus, we need an alternative machinery to obtain this bound, namely a
dynamic version of the bundle method.

3.1.1 Bundle Methods

The bundle method was first proposed by Lemarechal [35], and later on further
investigated and refined by several authors, e.g., [31, 36, 49]. It has been developed
for finding the approximate minimizer of a non-smooth convex function f (γ) over
γ ∈ Rn. In order to apply the bundle method, it is necessary to be able to obtain
for any given γ the function value f (γ) and a subgradient g ∈ ∂f (γ). We assume
that an oracle is available to return these values (see Sect. 3.1.3 for the specifics of
the oracle that we use). This information is collected for different γ s in a so-called
“bundle” and used to construct a minorizing cutting plane model f̂ of f .

Solving k-Way Graph Partitioning Problems to Optimality 363

To find a new value of γ , the displacement from the current point γ̂ is penalized
by adding a term proportional to ‖γ − γ̂ ‖ to the cutting plane model f̂ . Thus, the
bundle algorithm requires minimizing

f̂ (γ)+ 1

2σ
‖γ − γ̂ ‖ (11)

with σ being some suitably chosen weight. Solving this problem is done by solving a
sequence of convex quadratic problems of “small” dimension, i.e. dimension equal
to the size of the bundle. The minimizer gives a new trial point γ̃ for which the
oracle supplies the function value and a subgradient. This new information is added
to the bundle and used to improve the cutting plane model. Then the whole process
is repeated until the subgradient at the current point is sufficiently close to zero.

The bundle method as a tool for solving SDP problems has already been used
by Poljak and Rendl [46] for solving the basic SDP relaxation for max-cut. Later
on, the spectral bundle method has been introduced [25, 27]. In [24] a variant of the
spectral bundle method is developed that allows adding and deleting cutting planes
on the fly, and convergence of this method is proved.

Here we follow the concept of Fischer et al. [20]. Their idea is to apply the
bundle method to the partial Lagrangian dual function, partial in the sense that only
some of the constraints are dualized and lifted into the objective function by using
Lagrangian multipliers, whereas constraints that are considered to be “easy” are
handled directly inside the oracle. In other words, an oracle call amounts to solving
a semidefinite program having only “easy” constraints.

In contrast to interior point methods, bundle methods are capable of solving
semidefinite programs with a few thousand constraints. The price one pays for this
is in the accuracy of the solution. However, the results in [20] demonstrate that the
bundle algorithm often returns a reasonably accurate approximation.

3.1.2 Conic Bundle

Our aim is to solve the semidefinite program

(SMkCstrengthened) max
(k − 1)

2k
〈L,X〉 (12)

s.t. diag(X)= e (13)

A(X)≤ b (14)

X ' 0

where we collect in A(X) ≤ b all the bound constraints, i.e., Xij ≥ −1
k−1 , for all

i, j ∈ V , i < j , the set of triangle-inequalities and the set of clique-inequalities.
Dualizing all the inequality constraints, we obtain the partial Lagrangian:

L(X;γ)= (k − 1)

2k
〈L,X〉 + γ#(b−A(X)

)= b#γ +
〈
(k − 1)

2k
L−A#(γ),X

〉
,

364 M.F. Anjos, B. Ghaddar, L. Hupp, F. Liers, and A. Wiegele

and the dual functional reads

f (γ) = max
X'0,diag(X)=e

L(X;γ)

= b#γ + max
X'0,diag(X)=e

〈
(k − 1)

2k
L−A#(γ),X

〉
(15)

The number of inequality constraints is too large to handle, even after they are du-
alized. Our approach is to include all the bound constraints, and to add only those
inequalities that are active at the optimum. Since this information is not known at
the beginning, the choice of triangle- and clique-inequalities is updated in the course
of the algorithm, as described below in Sect. 3.1.4.

The function (15) is then minimized over Rn
≥0 using the bundle method. We use

the Conic Bundle software of Helmberg [13]. This implementation of the bundle
method supports the minimization of the function arising from a Lagrangian dual,
as in our case, i.e., it allows to generate primal solutions. Furthermore, it offers the
possibility of adding and removing constraints in the course of the algorithm, as
needed for our purposes.

3.1.3 Oracle

As already mentioned, in each bundle iteration an oracle is called to compute the
function value and a subgradient at the current γ . The function evaluation amounts
to solving the SDP problem

(SMCbasic) max

〈
(k − 1)

2k
L−AT (γ),X

〉

s.t. Xii = 1 ∀i ∈ V

X ' 0.

The optimal solution X̃ of this SDP is then used to compute the function value

f (γ)= b#γ +
〈
(k − 1)

2k
L−A#(γ), X̃

〉

and a subgradient

g(γ)= b−A(X̃).

Note that the cost matrix depends on γ and therefore changes at each iteration. The
feasible set of (SMCbasic) is the so-called elliptope, which has been well studied,
see e.g. [33, 34]. The problem (SMCbasic) can thus be solved efficiently by interior
point methods, even for large dimension. We implemented the primal-dual interior
point method proposed in [28].

After branching, we have to add equality constraints of the form Xij = −1
k−1 to

(SMCbasic), as explained in Sect. 3.3 below. Since the number of these constraints is

Solving k-Way Graph Partitioning Problems to Optimality 365

small, we can still use an interior point method to solve the SDP problem. However,
we may end up with a problem having no interior, for example if we have a k-
clique for which all the edge variables Xij = −1

k−1 . If this happens, we solve the SDP
problem using CSDP [8] since its infeasible interior point algorithm runs well in
this situation.

3.1.4 Adding Valid Inequalities

Once the SDP relaxation (SMkC) is solved, one can look for violated inequalities
and add them to the relaxation, hence improving the upper bound. Triangle and
clique inequalities are added at each iteration of the bundle algorithm and non-
binding inequalities are detected and removed. Looking for violated triangle in-
equalities by complete enumeration is not computationally expensive. We describe
in Sect. 4.1 how we manage the search and addition of violated triangle inequalities.

On the other hand, exact separation of clique inequalities is an NP-hard problem,
and complete enumeration becomes intractable already for small values of k. There-
fore, we use a separation heuristic that generates inequalities that are promising. It
does not necessarily determine a violated inequality whenever one exists, however
the algorithm is fast and yields good bounds.

The clique inequalities that are binding at optimality usually cover the whole
graph, and each vertex in the graph is contained in several different clique inequali-
ties. The separation heuristic is designed to have a similar behavior. For each vertex
v in the graph, the algorithm grows a clique of size k + 1 containing v. Vertices
are added to the cliques in a greedy fashion. In each iteration, a vertex is added to
a clique of size smaller than k + 1 that contributes the smallest amount to the left-
hand side of the corresponding clique inequality. The heuristic is described in detail
in [22]. For a graph with n vertices, this procedure generates n clique inequalities.
Violated ones are added to the problem formulation.

3.2 Lower Bound Heuristic

Using the conic bundle, we can generate approximate primal solutions in the course
of the minimization algorithm. We use a heuristic method to compute a feasible k-
cut from these approximate primal matrices X∗. This way we produce lower bounds
which are useful for fathoming in the branch-and-cut tree.

There are two heuristics for extracting k-cuts from a primal solution X∗. The
first one is the heuristic proposed by Frieze and Jerrum [21] and called FJ in the
following. It works as follows:

1. Compute unit vectors v1, . . . , vn ∈R
n satisfying vTi vj =X∗

ij where i, j ∈ V .
2. Randomly generate k vectors r1, . . . , rk ∈ R

n with their kn components drawn
from independent and identically distributed random variables with a standard
normal distribution with mean 0 and variance 1.

366 M.F. Anjos, B. Ghaddar, L. Hupp, F. Liers, and A. Wiegele

3. Partition V into Vk = {V1, . . . , Vk} according to

Vj = {i : vi · rj ≥ vi · rj ′ , for j 	= j ′} for 1 ≤ j ≤ k.

The second heuristic is called ICH. It was proposed by Ghaddar et al. [22] and
used in their SBC algorithm. ICH works by aggregating information from X∗ cor-
responding to subgraphs of G. Specifically, ICH sums the X∗

ij values on the edges

between each of the
(
n
k

)
subsets of k vertices, then sorts the resulting list of val-

ues, and places a subset of k vertices all in the same partition (or all in different
partitions) when the sum is one of the largest values (or one of the smallest). The
intuition behind this approach is that aggregated information is more reliable than
single elements of data.

The implementation of the lower bound computation is described in Sect. 4.2
below.

3.3 Branching

The final ingredient of a branch-and-bound algorithm is how to subdivide the set of
feasible solutions. It is well known that part of the success of a branch-and-bound
algorithm depends on the choice of the branching variable Xij .

3.3.1 Branching Rules

We use the information in the solution X∗ of the SDP relaxation of the current node
to choose a branching variable X∗

ij . We adapt the rules R1–R4 of [26] for max-cut
in order to derive different choices for branching variables.

There are two important differences with respect to the max-cut case in [26]
that we must address. First, while for max-cut the entries in X∗ are all in the in-
terval [−1,1], the SDP relaxation (SMkC) restricts the entries in X∗ to the interval
[− 1

k−1 ,1]. Second, since we dualize the bound constraints X∗
ij ≥ − 1

k−1 , some val-
ues of X∗

ij may lie outside this interval. We considered different ways to deal with
these differences.

Rules R1 and R3 are adapted most easily. Rule R1 chooses the “most decided”
variable, i.e., we simply branch on the edge ij that is closest to − 1

k−1 or to 1. By
choosing an edge that seems to be already decided, the hope is that for the opposite
decision the node will be fathomed quickly. This results in a deep but narrow branch-
and-bound tree.

Rule R3 branches on the variable that is “least decided”, i.e., we branch on the
edge ij for which X∗

ij is closest to the middle of the interval [− 1
k−1 ,1]. If all the

variables are either nearly 1 or less than or equal to − 1
k−1 , we choose ij corre-

sponding to the minimum value of X∗
ij . By branching on the most undecided edge,

we hope that the upper bounds will improve quickly.

Solving k-Way Graph Partitioning Problems to Optimality 367

Rules R1 and R3 do not distinguish between the variables with values outside the
interval [− 1

k−1 ,1] and the others.
Rules R2 and R4 are more elaborate. Instead of working with individual entries,

these rules are based on the closeness of the rows of the matrix X∗ to {− 1
k−1 ,1}

vectors.
Rule R2 looks for the two rows i′ and j ′ that are closest to a {− 1

k−1 ,1} vector. Let

m denote the middle of the interval [− 1
k−1 ,1]. The branching edge i′, j ′ is chosen

as

i′ = argmin
1≤i≤n

n∑

r 	=i,r=1

(
(1 −m)− ∣∣X∗

ir −m
∣∣)2

j ′ = argmin
1≤j≤n,j 	=i′

n∑

r 	=j,r=1

(
(1 −m)− ∣∣X∗

jr −m
∣∣)2.

Rule R4 looks for rows i′ and j ′ such that i′ is closest to a {− 1
k−1 ,1} vector

whereas j ′ is farthest from being feasible. Here i′ and j ′ are chosen such that

i′ = argmin
1≤i≤n

n∑

r 	=i,r=1

(
(1 −m)− ∣∣X∗

ir −m
∣∣)2

j ′ = argmin
1≤j≤n

n∑

r 	=j,r=1

(
X∗
jr −m

)2
.

Concerning the variables that are outside the interval [− 1
k−1 ,1], we investigated

two options for each of R2 and R4. The first option is to treat them just like the others
(this corresponds to our rules R2 and R4). The second option for R2 is our rule
R2a according to which we do not consider these variables as branching candidates
unless all the variables inside the feasible interval are equal to 1 or − 1

k−1 . When this
is the case, rule R2a selects the variable outside the interval with the smallest value.

Similarly, rule R4a works just as R4 but first considers only variables with values
in the interval [− 1

k−1 ,1] as candidates. If all those variables are already equal to 1

or − 1
k−1 , R4a selects the variable X∗

ij with the smallest value.

3.3.2 Shrinking and SDP Relaxations Without Interior

In the case where we fix Xi′j ′ = 1 at a particular node of the branch and bound tree,
the resulting problem is equivalent to maximum k-cut of dimension n − 1. Hence
we can shrink the graph, i.e., we reduce the graph size by eliminating the vertex j ′.
The Laplacian matrix L̃ for the shrunken graph has entries l̃ij , i, j ∈ {1, . . . , n}\{j ′},

368 M.F. Anjos, B. Ghaddar, L. Hupp, F. Liers, and A. Wiegele

as follows:

l̃ij =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

lij if i, j 	= i′

lii′ + lij ′ if i 	= i′, j = i′

li′j + lj ′j if i = i′, j 	= i′

li′i′ + 2li′j ′ + lj ′j ′ if i, j = i′

When we fix Xij = −1
k−1 , we cannot shrink the graph immediately, but we could

shrink the graph as soon as there is a k-clique with all the values on its edges fixed
to −1

k−1 . However, performing this shrinking would require either expensive clique
searches or more than two branches at each node of the branch-and-bound tree. Nei-
ther possibility is attractive, and moreover good cuts found on the shrunken graph
cannot be extended to the original graph in a straightforward way. Therefore we omit
these shrinkings, but as a consequence the SDP relaxation to be solved by the oracle
may have no interior. When this happens, we solve the relaxations using CSDP [8]
as mentioned earlier in Sect. 3.1.3.

4 Implementation Details

In this section, we explain how we set various parameters for the overall algorithm.
We used the Conic Bundle with its default settings. In particular, the relative pre-

cision requirement for successful termination was set to the default value of 10−5.
The following subsections describe the preliminary experiments we performed to

decide on a strategy for adding triangle inequalities and possibly clique inequalities,
and a heuristic for computing lower bounds. In principle, there are several different
parameter values and their combinations to test. We focused on the instances on
complete graphs with Gaussian or bimodal distribution, and always averaged over
five instances of the same size. In the course of our experiments we found that the
resulting settings also worked well for the other types of graphs.

4.1 Adding Triangle Inequalities

In the course of the bundle iterations, we have to find a good set of triangle in-
equalities to add. Since enumeration of all triangle inequalities is cheap, we do this
after every descent step of the bundle algorithm. The tolerance for considering an
inequality as violated is 10−3, and we build a heap of (at most) 5000 most-violated
triangle inequalities.

Then we want to add m violated inequalities. We experimented with doing this
in three different ways:

• selecting m inequalities randomly among the 5000;
• selecting the m

2 most violated ones and m
2 randomly from the remaining;

Solving k-Way Graph Partitioning Problems to Optimality 369

• selecting the m most violated.

It turned out that none of these options clearly stood out from the others, though the
second option seemed to be slightly better. Thus, we chose the second strategy for
our algorithm.

As for the choice of m, we ran experiments with m= 500 and m= 1000. Again,
there was no clear winner, but m= 500 was slightly better so we chose this value.

4.2 Computing Lower Bounds

As mentioned in Sect. 3.2, we have two candidates for computing lower bounds,
namely the heuristics ICH and FJ. While the computational results for minimum
k-partition in [22] suggest that ICH consistently provides better k-cuts than FJ, its
running times are much longer. For this reason, and because we want to solve large
instances of max-k-cut, we choose to use FJ.

We experimented with how often to run the heuristic at each node of the branch-
and-bound tree. While calling the heuristic often is time-consuming, not having a
good lower bound at hand can cause the tree to be much larger. We tried three
different settings for the frequency of the heuristic calls at each node:

• after every descent step;
• after every 10th descent step;
• only at the beginning and at the end.

The computational results did not give strong evidence that one of the above men-
tioned options is better than the others. The second setting improved slightly over
the others, therefore this was our choice for our algorithm.

5 Computational Results

Our 32-Bit executables were run on 2.3 GHz Intel Xeon processors with 32 GB
memory. For each instance, we allowed a maximum CPU time of 10 hours. We
refer to our new algorithm as bundleBC.

5.1 The Benchmark Sets of Instances

We used the following sets of instances for our computational results:

Set A To have instances with varying number of vertices, we generated graphs with
|V | ranging from 10,20, . . . ,50. Edges are chosen randomly such that we yield
graphs with edge densities 25 % , 50 %, and 100 %. The weights on the edges are

370 M.F. Anjos, B. Ghaddar, L. Hupp, F. Liers, and A. Wiegele

randomly chosen, either following a Gaussian or a bimodal ±1 distribution. For
each combination of |V | and edge density, we generated 5 different instances
and we always report averages over the 5 instances with the same values of |V |,
edge density, and weight distribution.

Set B We also considered the instances from [42] for our numerical experiments.
The first two classes of instances consist of complete graphs. Edge weights are
either chosen as |i − j | for edge (i, j), or are drawn randomly in {0,1, . . . ,9}.
A different class of instances stems from an application in physics in which
energy-minimum states of so-called Potts glasses need to be determined. In
this application, instances are regular two- or three-dimensional grids with edge
weights that are either Gaussian distributed around zero having variance one,
or they are taken from {±1}, where 50 % of the weights are negative. These
instances were generated using rudy graph generator [48].
The name of an instance encodes its size followed by the distribution of the
weights and the random seed that initializes rudy. E.g., the instance 2g_3_93
denotes a two-dimensional grid with Gaussian distributed weights of size 32 and
random seed 93, whereas instance 3pm_234_234 denotes a three-dimensional
grid with ±1 weights of size 2 × 3 × 4 and random seed 234.

Set C Finally, we take the set of instances from [29]. They generate instances
with |V | = 30 and different number of edges m, namely m = 200 (sparse),
m = 300 (medium), and m = 400 (dense). Furthermore, they consider graphs
with |V | = 50 and m = 560. Edges are chosen uniformly at random until the
specified number of edges is reached. The weights on these edges are drawn
independently and uniformly at random from {1, . . . ,1000}. For each |V | and
each edge density three instances are generated.

The values of k were chosen as k = 3 and k = 5. For instances from [42]
we tested additionally k = 7, and for the instances from [29] we consider k ∈
{3,6,9,12} to allow a comparison with the results in [29].

5.2 Choosing a Branching Rule

We implemented the six branching rules R1, R2, R2a, R3, R4, and R4a as they were
explained in Sect. 3.3 and ran experiments using the instances described in Sect. 5.1.
The different types of instances all display a similar behavior; thus we restrict our
presentation to the results on the instances of benchmark set A.

We use performance profiles as proposed by Dolan and Moré [17] to facilitate the
comparison of the branching rules. We set up our profiles as follows. Let P be the
set of parameters we want to compare (for example the set of all different branching
rules) and let I be the set of instances for which we ran our experiments with the
different parameter settings p ∈ P . For each instance i and parameter p ∈ P the
performance ratio for the running time is calculated as

PRtime
i,p = RunningTimei,p

min{RunningTimei,p : p ∈ P } ,

Solving k-Way Graph Partitioning Problems to Optimality 371

and the performance ratio for the number of subproblems is obtained as

PRsub
i,p = # subproblemsi,p

min{# subproblemsi,p : p ∈ P } .

If an instance i could not be solved for parameter setting p within the given time
limit of 10 h = 36,000 s then we set PRtime

i,p = PRtime
max and PRsub

i,p = PRsub
max for suit-

ably large values. (The specific choice of these does not affect the resulting profiles.)
Our performance profiles are defined by the empirical distribution function

F(pr)= P
(
i ∈ I : log2(PRi,p)≤ pr

)

where we use a log2 scale for ease of visualization.
Unlike the observations in Sect. 4.1 and Sect. 4.2, we found that the choice of

branching rule has a strong influence on the computing times. Indeed the CPU times
sometimes differ by more than two orders of magnitude between different rules.
The main observation is that branching rule R2a is best, and that R2 is usually the
second best. This dominance of R2a and R2 is independent of the size of the graph,
its density, and the value of k. On the other hand, R1 usually leads to the worst
performance.

The performance profiles of the CPU time for the different options of choosing a
branching variable are shown in Fig. 1. The top figures represent the time compar-
ison for complete graphs, the bottom figures for graphs with 25 % and 50 % edge
density. Figures on the left refer to k = 3, figures on the right to k = 5.

These results demonstrate that the impact of the different branching strategies is
greater for k = 3 than for k = 5. In other words, for k = 5 the lines in the profile are
closer to each other. Considering complete graphs versus graphs with edge densities
25 % and 50 %, the performance profiles indicate that the branching strategy has a
greater impact on the run time for complete graphs.

The number of nodes in the branch-and-bound tree is clearly related to the time
needed for solving the problem. However, since in each iteration of the bundle algo-
rithm we obtain a valid upper bound, we may be able to stop the bound computation
after very few bundle iterations. This usually happens if an edge seems to be already
decided whether it is cut or not: the opposite decision should lead to fathoming the
node quickly. Therefore, a larger number of nodes in the branch-and-bound tree may
still lead to shorter overall run times if the bound computation can be stopped early
in many of the nodes.

We looked at the influence of the different branching strategies on the number of
nodes in the branch-and-bound tree. The performance profiles are given in Fig. 2.
We do not observe any significant differences in the performance profiles showing
the CPU time (Fig. 1) and those referring to the number of nodes in the branch-
and-bound tree (Fig. 2). Indeed, R2a is again the best performer and R2 is usually
second best. Concerning the different characteristics of the problem, once more the
impact of the branching rule is greater for k = 3 than for k = 5, and is less evident
for instances having edge density 25 % and 50 %.

For all subsequent results, we fixed the branching rule to R2a because it usually
gives the best results.

372 M.F. Anjos, B. Ghaddar, L. Hupp, F. Liers, and A. Wiegele

Fig. 1 Performance profiles for the 6 branching rules with respect to the running times for com-
plete graphs (top profiles: a k = 3, edge density 100 %; b k = 5, edge density 100 %) and graphs
with edge density 25 % and 50 % (bottom profiles: c k = 3, edge densities 25 % and 50 %; d k = 5,
edge densities 25 % and 50 %). Edge weights follow a Gaussian or a bimodal distribution

5.3 Separating Cliques

In this section, we study the impact of clique separation on the performance of
bundleBC. We first compared bundleBC with and without clique separation for
k = 3,5 for the benchmark set A of randomly generated graphs with varying edge
density. The performance profiles comparing the CPU time and the number of nodes
in the branch-and-bound tree for the entire benchmark set A are presented in Fig. 3.

For the bimodal instances we report detailed results in Table 1 and Table 2. (De-
tailed results for the instances with Gaussian distributed weights with clique sep-
aration turned on are reported in Table 4 of Sect. 5.5, where they are used for the
comparison with the results from an integer LP model.) Table 1 and Table 2 report
the average CPU time (in seconds) and the average number of subproblems (# subs)
for solving the instances to optimality. The results in each line correspond to the

Solving k-Way Graph Partitioning Problems to Optimality 373

Fig. 2 Performance profiles for the 6 branching rules with respect to the number of nodes in the
branch-and-bound tree for complete graphs (top profiles: a k = 3, edge density 100 %; b k = 5,
edge density 100 %) and graphs with edge density 25 % and 50 % (bottom profiles: c k = 3, edge
densities 25 %, 50 %; d k = 5, edge densities 25 %, 50 %). Edge weights follow a Gaussian or a
bimodal distribution

average over five different instances or over those instances that could be solved
within the time limit. The columns entitled nrinst report the number of instances
that could be solved within the time limit.

The profiles in Fig. 3 show that, while run times do not differ significantly, the
number of subproblems is smaller when clique separation is turned on. These re-
sults are explained by the fact that a subproblem takes longer to solve when clique
separation is turned on than when it is turned off. However, investing this additional
CPU time may pay off if the bounds are sufficiently tighter to reduce the number
of subproblems, and hence the running time of the algorithm. This effect is particu-
larly observable for the bimodal instances in Table 1 and Table 2. We see there that
in most cases the number of subproblems is considerably reduced by using clique
separation, and the computational time may also improve, especially for instances
with edge density 25 % and 50 %. Moreover, there is one instance (of type |V | = 40

374 M.F. Anjos, B. Ghaddar, L. Hupp, F. Liers, and A. Wiegele

Fig. 3 Performance profiles concerning clique separation with respect to running time (top pro-
files: a CPU time, k = 3; b CPU time, k = 5) and the number of subproblems (bottom profiles:
c Number of subproblems, k = 3; d Number of subproblems, k = 5) for the entire benchmark
set A

with 50 % edge density) that can only be solved within the time limit when clique
separation is used.

We also compared bundleBC with and without clique separation for k = 3,5,7
for the benchmark set B from [42]. The detailed results are reported in Table 3.
These results support the same conclusions, namely that the number of subproblems
is often reduced when clique separation is turned on, and the computational time
frequently improved. Furthermore, three of the instances can only be solved within
the time limit if clique separation is turned on (data_2g_8_37, data_2g_8_648, and
data_random_40_k=3).

In summary, there are several instances for which the number of subproblems
is not improved by the use of cliques in bundleBC. Although the heuristic separa-
tion of cliques is fast, for these cases the overall running time is obviously longer
than without using cliques. On the other hand, for several instances the separation
of cliques reduces the number of subproblems considerably. Furthermore, certain

Solving k-Way Graph Partitioning Problems to Optimality 375

Table 1 Results for instances of benchmark set A with 100 % edge density and edge weights
following a bimodal distribution

|V | k Without cliques With cliques

Time (sec) # subs nrinst Time (sec) # subs nrinst

10 3 0.0 1.0 5 0.0 1.0 5

20 3 0.6 3.4 5 2.2 4.2 5

30 3 35.6 45.0 5 35.6 29.4 5

40 3 377.2 225.4 5 728.4 279.8 5

50 3 12,925.0 4,340.2 5 10,758.8 2,467.4 5

10 5 0.0 1.0 5 0.0 1.0 5

20 5 7.0 14.6 5 9.0 14.6 5

30 5 818.6 666.2 5 640.8 473.8 5

40 5 28,198.0 12,076.0 2 23,435.0 9,457.0 2

Table 2 Results for instances of benchmark set A with varying edge density (25 % and 50 %) and
edge weights following a bimodal distribution

|V | Edge density
in %

k Without cliques With cliques

Time (sec) # subs nrinst Time (sec) # subs nrinst

10 50 3 0.0 1.0 5 0.0 1.0 5

20 25 3 0.0 1.4 5 0.0 1.4 5

20 50 3 0.8 3.0 5 0.2 2.2 5

30 25 3 9.4 5.8 5 8.8 3.8 5

30 50 3 26.2 28.2 5 22.4 15 5

40 25 3 169.4 60.6 5 151.6 37.8 5

40 50 3 479.0 221.0 5 846.8 185.4 5

50 25 3 3,326.6 722.2 5 2,201.6 352.6 5

50 50 3 8,851.6 2,630.6 5 8,277.8 1,519.8 5

10 50 5 0.0 1.0 5 0.0 1.0 5

20 25 5 0.2 1.4 5 0.0 1.4 5

20 50 5 8.8 13.4 5 14.4 19.4 5

30 25 5 18.4 9.4 5 13.2 5.8 5

30 50 5 513.6 368.2 5 321.6 209.8 5

40 25 5 3,242.8 1,033.8 5 2,865.8 804.6 5

40 50 5 6,844.5 2,092.0 2 18,451.3 5,151.7 3

50 25 5 427.0 47.0 1 1,480.0 185.0 1

50 50 5 – – 0 – – 0

376 M.F. Anjos, B. Ghaddar, L. Hupp, F. Liers, and A. Wiegele

Ta
bl

e
3

N
um

be
r

of
su

bp
ro

bl
em

s
an

d
ru

nn
in

g
tim

es
fo

r
so

lv
in

g
th

e
in

st
an

ce
s

of
be

nc
hm

ar
k

se
t

B
to

op
tim

al
ity

us
in

g
bu

nd
le

B
C

fo
r
k

=
3,
k

=
5,

an
d
k

=
7.

In
st

an
ce

s
th

at
co

ul
d

no
tb

e
so

lv
ed

to
op

tim
al

ity
w

ith
in

th
e

tim
e

lim
it

ar
e

in
di

ca
te

d
by

–

In
st

an
ce

W
ith

ou
tc

liq
ue

s
W

ith
cl

iq
ue

s

k
=

3
k

=
5

k
=

7
k

=
3

k
=

5
k

=
7

C
PU

#
su

bs
C

PU
#

su
bs

C
PU

#
su

bs
C

PU
#

su
bs

C
PU

#
su

bs
C

PU
#

su
bs

da
ta

_2
g_

3_
93

0
11

0
25

1
45

0
11

0
25

0
43

da
ta

_2
g_

4_
16

4
0

3
5

60
1

1
7

1
21

16
35

9
18

1,
05

9

da
ta

_2
g_

5_
25

2
7

17
29

3
3

6
47

38
57

8
7

da
ta

_2
g_

6_
36

6
19

27
6

5
19

1
81

6
45

24
13

37
11

da
ta

_2
g_

6_
66

25
15

24
5

77
87

35
30

21
77

23
72

21

da
ta

_2
g_

6_
70

1
7

17
6

3
5

3
9

47
21

13
6

3

da
ta

_2
g_

7_
10

34
13

3
38

8
85

83
3

24
3

33
7

18
6

39
17

7
23

da
ta

_2
g_

7_
49

1
6

3
22
,6

61
17
,3

39
–

–
5

3
5,

72
4

3,
62

3
–

–

da
ta

_2
g_

7_
77

27
7

12
7

29
56

7
91

44
17

19
3

29
52

11

da
ta

_2
g_

8_
37

79
2

47
1,

97
9

26
1

–
–

11
1

9
2,

35
5

23
1

30
,3

70
6,

70
3

da
ta

_2
g_

8_
64

8
38

1
29

14
1

7
–

–
10

4
5

3,
03

5
38

9
16

9
9

da
ta

_2
g_

8_
88

28
7

2,
59

5
25

3
39

3
33

39
7

89
7

1,
43

9
11

3

da
ta

_2
g_

9_
81

9
21

4
9

1,
12

8
27

12
,8

74
62

7
38

0
17

1,
10

6
39

15
0

5

da
ta

_2
g_

9_
92

11
1,

76
8

75
52

3
13

2,
41

8
65

16
9

5
2,

24
6

51
11
,6

07
69

1

da
ta

_2
g_

10
_1

00
1

10
6

5
–

–
–

–
18

2
7

–
–

–
–

da
ta

_2
g_

10
_8

24
10

4
5

–
–

–
–

20
1

11
–

–
–

–

da
ta

_2
pm

_4
_4

4
0

1
1

0
0

1
0

1
0

1
0

1

Solving k-Way Graph Partitioning Problems to Optimality 377

Ta
bl

e
3

(C
on

ti
nu

ed
)

In
st

an
ce

W
ith

ou
tc

liq
ue

s
W

ith
cl

iq
ue

s

k
=

3
k

=
5

k
=

7
k

=
3

k
=

5
k

=
7

C
PU

#
su

bs
C

PU
#

su
bs

C
PU

#
su

bs
C

PU
#

su
bs

C
PU

#
su

bs
C

PU
#

su
bs

da
ta

_2
pm

_5
_5

5
0

1
0

1
0

1
0

1
0

1
0

1

da
ta

_2
pm

_6
_6

6
16

5
10

3
7

1
11

3
11

3
11

3

da
ta

_2
pm

_7
_7

77
1

1
11

5
17

93
13

0
1

26
6

29
56

7

da
ta

_2
pm

_8
_8

88
25

4
21

49
3

21
30

9
11

11
6

7
24

5
11

30
3

13

da
ta

_2
pm

_9
_9

99
57

6
21

7,
21

5
33

7
3,

36
9

12
7

78
9

29
2,

50
7

51
96

3
23

da
ta

_3
g_

23
4_

23
4

0
3

28
47

4
5

0
3

6
7

1
3

da
ta

_3
g_

24
4_

24
4

16
15

11
7

9
7

20
11

19
17

45
43

da
ta

_3
g_

33
3_

33
3

1
5

10
7

21
25

0
3

26
21

13
11

da
ta

_3
g_

33
4_

33
4

23
27

84
27

51
9

16
19

40
13

36
11

da
ta

_3
g_

34
4_

34
4

4
13

45
6

11
9

66
5

4
13

48
5

89
7

da
ta

_3
g_

44
4_

44
4

19
8

7
97

9
37

1,
67

8
81

22
2

11
1,

54
8

73
86

8
29

da
ta

_3
pm

_2
34

_2
34

0
1

0
1

0
1

0
1

0
1

0
1

da
ta

_3
pm

_2
44

_2
44

3
1

6
1

29
7

3
1

6
1

12
7

da
ta

_3
pm

_3
33

_3
33

3
7

0
1

0
1

0
3

0
1

0
1

da
ta

_3
pm

_3
34

_3
34

39
13

15
6

19
81

9
8

3
14

1
35

91
27

da
ta

_3
pm

_4
44

_4
44

11
,0

94
88

7
11
,9

55
34

1
11
,3

15
30

3
23
,6

67
87

5
12
,9

56
42

9
9,

84
3

42
3

da
ta

_3
pm

_3
44

_3
44

16
0

21
1,

61
8

20
5

1,
24

0
19

1
10

2
13

2,
26

9
34

9
2,

49
3

41
3

378 M.F. Anjos, B. Ghaddar, L. Hupp, F. Liers, and A. Wiegele

Ta
bl

e
3

(C
on

ti
nu

ed
)

In
st

an
ce

W
ith

ou
tc

liq
ue

s
W

ith
cl

iq
ue

s

k
=

3
k

=
5

k
=

7
k

=
3

k
=

5
k

=
7

C
PU

#
su

bs
C

PU
#

su
bs

C
PU

#
su

bs
C

PU
#

su
bs

C
PU

#
su

bs
C

PU
#

su
bs

da
ta

_3
pm

_3
45

_3
45

16
2

11
3,

78
7

30
3

57
6

41
62

5
53

90
9

39
72

4
57

da
ta

_c
liq

ue
_2

0
0

1
0

1
3

21
0

1
0

1
1

9

da
ta

_c
liq

ue
_3

0
0

1
4

7
15

41
0

1
3

7
5

15

da
ta

_c
liq

ue
_4

0
1

3
20

13
3

5
1

3
6

5
13

17

da
ta

_c
liq

ue
_5

0
9

9
4

3
44

27
2

3
17

9
76

45

da
ta

_c
liq

ue
_6

0
3

3
7

3
91

33
4

3
9

3
79

29

da
ta

_c
liq

ue
_7

0
36

11
17

3
15

2
31

20
7

78
13

27
6

53

da
ta

_r
an

do
m

_2
0_

k=
3

0
11

1
1

9
51

0
3

0
1

13
67

da
ta

_r
an

do
m

_3
0_

k=
2

39
27

5
61

4
3,

23
1

34
0

1,
11

1
32

21
7

58
8

2,
67

3
26

9
82

5

da
ta

_r
an

do
m

_3
0_

k=
3

32
31

7
1,

00
9

5,
67

1
94

4
3,

33
9

10
73

93
2

3,
99

1
1,

10
4

3,
32

7

da
ta

_r
an

do
m

_4
0_

k=
2

25
5

1,
49

3
–

–
2,

88
9

5,
74

7
13

0
52

1
–

–
4,

99
4

9,
65

3

da
ta

_r
an

do
m

_4
0_

k=
3

29
14

5
9,

05
7

23
,8

77
–

–
32

13
7

7,
92

5
18
,2

43
32
,1

68
57
,4

89

da
ta

_r
an

do
m

_5
0_

k=
2

2,
60

6
8,

26
7

–
–

–
–

5,
24

8
14
,3

37
–

–
–

–

da
ta

_r
an

do
m

_5
0_

k=
3

5,
24

8
14
,3

37
–

–
–

–
3,

96
3

10
,7

41
–

–
–

–

Solving k-Way Graph Partitioning Problems to Optimality 379

instances can only be solved within the time limit if clique separation is used. We
conclude that it is beneficial to use clique separation in bundleBC, and we use it for
all subsequent computations.

5.4 Comparison with SBC

In this section, we present some comparisons of the performance of bundleBC with
that of SBC [22]. For this purpose, we use the results in Table 3 where we solved
the instances of benchmark set B to optimality for k = 3, k = 5, and k = 7 using
bundleBC. In contrast to SBC, we now solve the SDP-relaxations approximately in
a shorter time using a bundle method. It is therefore interesting to compare SBC and
bundleBC in terms of the quality of the bounds as well as the CPU times necessary
to compute them. We use the percentage gap calculated with respect to the value of
the best known primal solution prim as the ratio

gap =
∣∣∣∣
bound at root − prim

prim

∣∣∣∣.

We first comment on the quality of the bounds and the running times of bundleBC
at the root node only, i.e., before any branching is done. The root node bounds for
SBC are typically zero or close to zero for two- and three-dimensional grids so that
branching rarely takes place [22]. However, their computation can take very long.
For example, it took SBC more than ten hours to reach a gap of 1 % at the root node
for an instance with k = 3 on a 102 grid with Gaussian distributed edge weights
(Table 5 in [22]), while bundleBC solved the instances from [42] defined on 102

grids to optimality within at most 4 minutes and needing only up to 11 subproblems
(see Table 3). Hence, while the bounds computed by bundleBC are weaker than
those determined by SBC, their calculation is much faster and this makes them
more useful within a branch-and-bound procedure.

Turning to the solution of instances to optimality, we recall from [22] that SBC
almost never has to branch. However, several instances could not be solved within
24 hours of computation time. While it is not surprising that bundleBC branches
more often than SBC, bundleBC gains from the fact that the number of subproblems
is often in the order of several hundreds only for this set of instances. Because
computing one subproblem is much faster for bundleBC than for SBC for small k,
bundleBC achieves a drastic speedup over SBC. On the other hand, the instances
get more difficult for bundleBC as k increases, unlike what we observed for SBC
in [22].

380 M.F. Anjos, B. Ghaddar, L. Hupp, F. Liers, and A. Wiegele

Table 4 Results for the instances of benchmark set C

|V | |E| k bundleBC

Time (sec) # subs nrinst

30 200 3 60.6 99.0 3

30 300 3 41.0 102.3 3

30 400 3 13.6 50.3 3

50 560 3 17,497.5 10,167.0 2

30 200 6 472.7 681.0 3

30 300 6 324.3 558.3 3

30 400 6 627.7 1,691.0 3

50 560 6 – – 0

30 200 9 – – 0

30 300 9 1,514.7 2,610.3 3

30 400 9 1,181.3 2,554.3 3

50 560 9 – – 0

30 200 12 – – 0

30 300 12 – – 0

30 400 12 462.0 898.3 3

50 560 12 – – 0

5.5 Comparison with the Orbitopal Fixing Approach of Kaibel et
al.

Kaibel et al. [29] report experimental results on max-k-cut instances for an LP-
based branch-and-cut algorithm using orbitopal fixing (OF). Furthermore, some of
the instances in [42] were addressed in the more recent paper [30]. In particular,
several of the Gaussian distributed instances defined on regular grids were solved
using OF in very short computing times.

We evaluated bundleBC (with clique separation active) on the benchmark set C
of instances from [29]. Our results are reported in Table 4, where the first three
columns indicate for each line the number of nodes (|V |), the number of edges (|E|)
and the value of k of the instances averaged. The subsequent two columns report the
number of subproblems and the CPU time of bundleBC for solving the instances
to optimality. Similarly to what was done in [29], averages were taken over three
instances for each row unless some of the instances could not be solved to optimality
within the time limit, in which case the number of instances over which the average
is taken is denoted in the last column.

We first compare the performance of bundleBC with that reported in [29]. The
instances classified as ‘easy’ in [29] with |V | = 30, |E| = 200 need almost always
zero time with the OF approach for all considered values of k, whereas for bundleBC
not all of these instances are easy. In fact, for k = 9 and k = 12, bundleBC timed out

Solving k-Way Graph Partitioning Problems to Optimality 381

Table 5 Results for instances of benchmark set A with 100 % edge density and edge weights
following a Gaussian distribution

|V | k CPLEX bundleBC

Real time (sec) nrinst Real time (sec) # subs nrinst

10 3 0.03 5 0.0 1.0 5

20 3 17.96 5 4.2 15.8 5

30 3 8,113.31 5 72.4 38.2 5

40 3 – 0 375.6 119.8 5

50 3 – 0 8,228.0 1,582.3 3

10 5 0.14 5 0.2 7.0 5

20 5 6,674.24 3 16.8 37.4 5

30 5 – 0 1,126.8 807.0 5

40 5 – 0 11,489.0 2,919.0 3

on all three instances. On the other hand, for the instances with |V | = 30, |E| = 400
that are denser and more difficult for [29], it is clear that bundleBC needs fewer
subproblems than OF. Moreover, the average number of subproblems for OF are
9,864 (k = 3), 159,298 (k = 6), 70,844 (k = 9), and 2,098 (k = 12). The fact that
for bundleBC these numbers are almost always at least one order of magnitude lower
shows that our bounds are considerably stronger than those generated by OF.

Computation times are trickier to compare because we used different modern
machines from [29]. Nevertheless, it seems that for k = 3 and the medium-sized
instances with 30 nodes our approach performs better than OF, especially for denser
graphs. On the other hand, their performance is better for larger values of k as OF
can exploit symmetries well, while these instances are more difficult for bundleBC.
Finally, we cannot solve the most difficult instances from [29] that can be solved
within several hours of computing time with OF.

Even though we do not have the implementation of the algorithm from [29] at
hand, we implemented their integer LP model with variables xip specifying whether
node i is contained in partition p or not. This formulation is polynomially-sized
in the xip variables. As a comparison with our approach, we solve this integer LP
problem with CPLEX 12.1 using the standard parameter settings and 6 cores per
job. For each job a real time limit of 10 hours was imposed. For larger values of k,
the integer LP model is not effective in practice because of the symmetries that
are present. However, for small values of k such as k = 3 and k = 5, the speedup
achieved by using OF is not so significant and hence the results are likely more
representative of the behavior of OF [29].

We used our benchmark set A of instances to test this model. The results for both
CPLEX and bundleBC on the subset of instances that have Gaussian distributed
edge weights are reported in Table 5 and Table 6, where we average for each row
over 5 instances or the number of instances that finished within the time limit. It
turned out that CPLEX ran out of memory even for relatively small instances; for
example, for an instance with k = 3 and |V | = 40, CPLEX ran out of memory after

382 M.F. Anjos, B. Ghaddar, L. Hupp, F. Liers, and A. Wiegele

Table 6 Results for instances of benchmark set A with varying edge density (25 % and 50 %) and
edge weights following a Gaussian distribution

|V | Edge density
in %

k CPLEX bundleBC

Time (sec) nrinst Time (sec) # subs nrinst

10 50 3 0.02 5 0.0 20.6 5

20 25 3 0.03 5 1.0 17.0 5

20 50 3 1.69 5 4.6 30.6 5

30 25 3 2.61 5 11.4 8.2 5

30 50 3 184.48 5 24.6 18.2 5

40 25 3 95.90 5 108.8 147.8 5

40 50 3 – 0 265.0 455.0 5

50 25 3 9,763.68 3 2,833.4 5,774.2 5

50 50 3 – 0 10,237.6 17,323.8 5

10 50 5 0.03 5 0.4 80.2 5

20 25 5 0.08 5 16.0 174.6 5

20 50 5 7.07 5 4.4 9.4 5

30 25 5 85.94 5 50.6 28.6 5

30 50 5 – 0 124.2 67.8 5

40 25 5 – 0 1,609.2 1,672.2 5

40 50 5 – 0 2,081.6 606.6 5

50 25 5 – 0 3,780.7 24,272.3 3

50 50 5 – 0 – – 0

more than 8000 seconds and still had a gap of 43 %. The results of CPLEX for the
instances with bimodal edge weights have a similar outcome, as shown in Table 7
and Table 8. This is in marked contrast with bundleBC that solved many of these
instances within a few minutes to optimality.

6 Conclusion

We extended the SBC algorithm of Ghaddar, Anjos and Liers for minimum k-
partition using the design principles of the successful BiqMac solver for maximum
2-cut to obtain bundleBC, a new algorithm for computing global optimal solutions
for maximum k-cut problems. As part of this extension, we investigated different
ways of choosing variables for branching. We also studied the impact of the separa-
tion of clique inequalities within this new framework and observed that it frequently
reduces the number of subproblems considerably. The computational results sug-
gest that bundleBC achieves a significant speedup in comparison to SBC, especially
when k = 3. A comparison with the results reported from the application of the OF
technique by Kaibel, Peinhardt and Pfetsch suggests that while their performance

Solving k-Way Graph Partitioning Problems to Optimality 383

Table 7 Results for
instances of benchmark set A
with 100 % edge density and
edge weights following a
bimodal distribution. The
results for solving these
instances with bundleBC are
given in Table 1

|V | k CPLEX

Time (sec) nrinst

10 3 0.03 5

20 3 88.76 5

30 3 6,053.06 5

40 3 – 0

50 3 – 0

10 5 0.26 5

20 5 – 0

30 5 – 0

40 5 – 0

Table 8 Results for
instances of benchmark set A
with varying edge density
(25 % and 50 %) and edge
weights following a bimodal
distribution. The results for
solving these instances with
bundleBC are given in
Table 2

|V | Edge density
in %

k CPLEX

Time (sec) nrinst

10 50 3 0.02 5

20 25 3 0.05 5

20 50 3 2.40 5

30 25 3 4.48 5

30 50 3 1,215.32 5

40 25 3 1,504.37 5

40 50 3 – 0

50 25 3 29,817.4 1

50 50 3 – 0

10 50 5 0.04 5

20 25 5 0.27 5

20 50 5 405.55 5

30 25 5 1,624.80 4

30 50 5 4,459.24 1

40 25 5 5,299.18 3

40 50 5 – 0

50 25 5 – 0

50 50 5 – 0

is better for sparse instances and larger values of k, bundleBC is superior for k = 3
and for dense instances of medium size. Solving the ILP formulation for max-k-cut
used by Kaibel, Peinhardt and Pfetsch with CPLEX clearly demonstrates the advan-
tage of our semidefinite approach. The strength of bundleBC is especially evident
on dense instances and small values of k.

384 M.F. Anjos, B. Ghaddar, L. Hupp, F. Liers, and A. Wiegele

Acknowledgements We are grateful to Vera Schmitz for providing us with her implementation
of a generic branch-and-bound procedure and to Andreas Schmutzer for help with various aspects
of the implementation. We thank Brian Borchers and Christoph Helmberg for support with CSDP
and Conic Bundle respectively. We thank an anonymous referee for detailed criticism that helped
improve the paper. We also thank Matthias Peinhardt for providing us with data for the instances
from [29]. Finally we acknowledge the financial support of the German Science Foundation under
contract Li 1675/1 and of the Natural Sciences and Engineering Research Council of Canada.

References

1. Anjos, M.F., Wolkowicz, H.: Geometry of semidefinite max-cut relaxations via matrix ranks.
J. Comb. Optim. 6(3), 237–270 (2002)

2. Anjos, M.F., Wolkowicz, H.: Strengthened semidefinite relaxations via a second lifting for the
max-cut problem. Discrete Appl. Math. 119(1–2), 79–106 (2002)

3. Anjos, M.F., Liers, F., Pardella, G., Schmutzer, A.: Engineering branch-and-cut algorithms for
the equicut problem. Cahier du GERAD G-2012-15, GERAD, Montreal, QC, Canada (2012).
In: Fields Institute Communications on Discrete Geometry and Optimization. Springer, Berlin
(2013, to appear)

4. Armbruster, M., Fügenschuh, M., Helmberg, C., Martin, A.L.: LP and SDP branch-and-cut
algorithms for the minimum graph bisection problem: a computational comparison. Math.
Program. Comput. 4(3), 275–306 (2012)

5. Barahona, F., Mahjoub, A.: On the cut polytope. Math. Program. 36, 157–173 (1986)
6. Barahona, F., Grötschel, M., Jünger, M., Reinelt, G.: An application of combinatorial opti-

mization to statistical physics and circuit layout design. Oper. Res. 36, 493–513 (1988)
7. BiqMac solver. biqmac.uni-klu.ac.at. Accessed 07 June 2012
8. Borchers, B.: CSDP, a C library for semidefinite programming. Optim. Methods Softw.

11/12(1–4), 613–623 (1999)
9. Boros, E., Hammer, P.: The max-cut problem and quadratic 0–1 optimization: polyhedral as-

pects, relaxations and bounds. Ann. Oper. Res. 33, 151–180 (1991)
10. Brunetta, L., Conforti, M., Rinaldi, G.: A branch-and-cut algorithm for the equicut problem.

Math. Program., Ser. B 78(2), 243–263 (1997)
11. Chopra, S., Rao, M.R.: The partition problem. Math. Program. 59, 87–115 (1993)
12. Chopra, S., Rao, M.R.: Facets of the k-partition problem. Discrete Appl. Math. 61, 27–48

(1995)
13. Conic Bundle Library. www-user.tu-chemnitz.de/~helmberg/ConicBundle/. Accessed 28 Oc-

tober 2011
14. de Klerk, E., Pasechnik, D., Warners, J.: On approximate graph colouring and max-k-cut al-

gorithms based on the ϑ -function. J. Comb. Optim. 8(3), 267–294 (2004)
15. Deza, M., Laurent, M.: Geometry of Cuts and Metrics. Algorithms and Combinatorics.

Springer, Berlin (1997)
16. Deza, M., Grötschel, M., Laurent, M.: Complete descriptions of small multicut polytopes. In:

Applied Geometry and Discrete Mathematics—The Victor Klee Festschrift, pp. 205–220, Am.
Math. Soc., Providence (1991)

17. Dolan, E., Moré, J.: Benchmarking optimization software with performance profiles. Math.
Program., Ser. A, 91(2), 201–213 (2002)

18. Eisenblätter, A.: The semidefinite relaxation of the k-partition polytope is strong. In: Proceed-
ings of the 9th International IPCO Conference on Integer Programming and Combinatorial
Optimization. Lecture Notes in Computer Science, vol. 2337, pp. 273–290. Springer, Berlin
(2002)

19. Elf, M., Jünger, M., Rinaldi, G.: Minimizing breaks by maximizing cuts. Oper. Res. Lett.
31(5), 343–349 (2003)

http://biqmac.uni-klu.ac.at
http://www-user.tu-chemnitz.de/~helmberg/ConicBundle/

Solving k-Way Graph Partitioning Problems to Optimality 385

20. Fischer, I., Gruber, G., Rendl, F., Sotirov, R.: Computational experience with a bundle ap-
proach for semidefinite cutting plane relaxations of max-cut and equipartition. Math. Pro-
gram., Ser. B 105(2–3), 451–469 (2006)

21. Frieze, A., Jerrum, M.: Improved approximation algorithms for max k-cut and max bisection.
Algorithmica 18, 67–81 (1997)

22. Ghaddar, B., Anjos, M.F., Liers, F.: A branch-and-cut algorithm based on semidefinite pro-
gramming for the minimum k-partition problem. Ann. Oper. Res. 188(1), 155–174 (2011)

23. Goemans, M., Williamson, D.: New 3
4 -approximation algorithms for the maximum satisfia-

bility problem. SIAM J. Discrete Math. 7(4), 656–666 (1994)
24. Helmberg, C.: A cutting plane algorithm for large scale semidefinite relaxations. In: The

Sharpest Cut. MPS/SIAM Ser. Optim., pp. 233–256. SIAM, Philadelphia (2004)
25. Helmberg, C., Kiwiel, K.C.: A spectral bundle method with bounds. Math. Program., Ser. A

93(2), 173–194 (2002)
26. Helmberg, C., Rendl, F.: Solving quadratic (0,1)-problems by semidefinite programs and cut-

ting planes. Math. Program., Ser. A 82(3), 291–315 (1998)
27. Helmberg, C., Rendl, F.: A spectral bundle method for semidefinite programming. SIAM J.

Optim. 10(3), 673–696 (2000) (electronic)
28. Helmberg, C., Rendl, F., Vanderbei, R.J., Wolkowicz, H.: An interior-point method for

semidefinite programming. SIAM J. Optim. 6(2), 342–361 (1996)
29. Kaibel, V., Peinhardt, M., Pfetsch, M.: Orbitopal fixing. In: Fischetti, M., Williamson, D. (eds.)

Integer Programming and Combinatorial Optimization. Lecture Notes in Computer Science,
vol. 4513, pp. 74–88. Springer, Berlin (2007)

30. Kaibel, V., Peinhardt, M., Pfetsch, M.: Orbitopal fixing. Discrete Optim. 8(4), 595–610 (2011)
31. Kiwiel, K.C.: Methods of Descent for Nondifferentiable Optimization. Lecture Notes in Math-

ematics, vol. 1133. Springer, Berlin (1985)
32. Laurent, M.: Semidefinite relaxations for max-cut. In: The Sharpest Cut. MPS/SIAM Ser.

Optim., pp. 257–290. SIAM, Philadelphia (2004)
33. Laurent, M., Poljak, S.: On a positive semidefinite relaxation of the cut polytope. Linear Al-

gebra Appl. 223/224, 439–461 (1995)
34. Laurent, M., Poljak, S.: On the facial structure of the set of correlation matrices. SIAM J.

Matrix Anal. Appl. 17(3), 530–547 (1996)
35. Lemaréchal, C.: Bundle methods in nonsmooth optimization. In: Nonsmooth Optimization,

Proc. IIASA Workshop, Laxenburg, 1977. IIASA Proc. Ser., vol. 3, pp. 79–102. Pergamon,
Oxford (1978)

36. Lemaréchal, C., Nemirovskii, A., Nesterov, Y.: New variants of bundle methods. Math. Pro-
gram., Ser. B 69(1), 111–147 (1995)

37. Liers, F., Jünger, M., Reinelt, G., Rinaldi, G.: Computing exact ground states of hard Ising spin
glass problems by branch-and-cut. In: New Optimization Algorithms in Physics, pp. 47–68.
Wiley, New York (2004)

38. Liers, F., Lukic, J., Marinari, E., Pelissetto, A., Vicari, E.: Zero-temperature behavior of the
random-anisotropy model in the strong-anisotropy limit. Phys. Rev. B 76(17), 174423 (2007)

39. Lisser, A., Rendl, F.: Telecommunication clustering using linear and semidefinite program-
ming. Math. Program. 95, 91–101 (2003)

40. Margot, F.: Pruning by isomorphism in branch-and-cut. Math. Program., Ser. A, 94(1), 71–90
(2002)

41. Margot, F.: Exploiting orbits in symmetric ILP. Math. Program., Ser. B, 98(1–3), 3–21 (2003)
42. Max-k-cut instances. www.eng.uwaterloo.ca/~bghaddar/Publications.htm. Accessed 10

March 2011
43. Mitchell, J.: Branch-and-cut for the k-way equipartition problem. Technical report, Depart-

ment of Mathematical Sciences, Rensselaer Polytechnic Institute (2001)
44. Mitchell, J.E.: Realignment in the National Football League: did they do it right? Nav. Res.

Logist. 50(7), 683–701 (2003)
45. Palagi, L., Piccialli, V., Rendl, F., Rinaldi, G., Wiegele, A.: Computational approaches to max-

cut. In: Handbook on Semidefinite, Conic and Polynomial Optimization. Internat. Ser. Oper.

http://www.eng.uwaterloo.ca/~bghaddar/Publications.htm

386 M.F. Anjos, B. Ghaddar, L. Hupp, F. Liers, and A. Wiegele

Res. Management Sci., vol. 166, pp. 821–847. Springer, New York (2012)
46. Poljak, S., Rendl, F.: Solving the max-cut problem using eigenvalues. Discrete Appl. Math.

62(1–3), 249–278 (1995). doi:10.1016/0166-218X(94)00155-7
47. Rendl, F., Rinaldi, G., Wiegele, A.: Solving max-cut to optimality by intersecting semidefinite

and polyhedral relaxations. Math. Program. 121, 307–335 (2010)
48. Rinaldi, G.: Rudy. www-user.tu-chemnitz.de/~helmberg/rudy.tar.gz. Accessed 07 April 2010
49. Schramm, H., Zowe, J.: A version of the bundle idea for minimizing a nonsmooth func-

tion: conceptual idea, convergence analysis, numerical results. SIAM J. Optim. 2(1), 121–152
(1992)

50. Spin-glass server. www.informatik.uni-koeln.de/ls_juenger/research/sgs/index.html. Accessed
07 June 2012

http://dx.doi.org/10.1016/0166-218X(94)00155-7
http://www-user.tu-chemnitz.de/~helmberg/rudy.tar.gz
http://www.informatik.uni-koeln.de/ls_juenger/research/sgs/index.html

On Perspective Functions and Vanishing
Constraints in Mixed-Integer Nonlinear Optimal
Control

Michael N. Jung, Christian Kirches, and Sebastian Sager

Abstract Logical implications appear in a number of important mixed-integer non-
linear optimal control problems (MIOCPs). Mathematical optimization offers a va-
riety of different formulations that are equivalent for boolean variables, but re-
sult in different relaxations. In this article we give an overview over a variety of
different modeling approaches, including outer versus inner convexification, gener-
alized disjunctive programming, and vanishing constraints. In addition to the tight-
ness of the respective relaxations, we also address the issue of constraint quali-
fication and the behavior of computational methods for some formulations. As a
benchmark, we formulate a truck cruise control problem with logical implications
resulting from gear-choice specific constraints. We provide this benchmark prob-
lem in AMPL format along with different realistic scenarios. Computational re-
sults for this benchmark are used to investigate feasibility gaps, integer feasibility
gaps, quality of local solutions, and well-behavedness of the presented reformula-
tions of the benchmark problem. Vanishing constraints give the most satisfactory
results.

1 Introduction

Sebastian Sager (in 2006, [56]) and Christian Kirches (in 2010, [39]) received their
Ph.D.s from Heidelberg University under the supervision of Gerhard Reinelt, thus

M.N. Jung · C. Kirches
Interdisziplinäres Zentrum für Wissenschaftliches Rechnen, Ruprecht-Karls-Universität
Heidelberg, Im Neuenheimer Feld 368, 69120 Heidelberg, Germany

M.N. Jung
e-mail: michael.jung@iwr.uni-heidelberg.de

C. Kirches
e-mail: christian.kirches@iwr.uni-heidelberg.de

S. Sager (B)
Institut für Mathematische Optimierung, Otto-von-Guericke-Universität Magdeburg,
Universitätsplatz 2, 02-224, 39106 Magdeburg, Germany
e-mail: sager@ovgu.de

M. Jünger, G. Reinelt (eds.), Facets of Combinatorial Optimization,
DOI 10.1007/978-3-642-38189-8_16, © Springer-Verlag Berlin Heidelberg 2013

387

mailto:michael.jung@iwr.uni-heidelberg.de
mailto:christian.kirches@iwr.uni-heidelberg.de
mailto:sager@ovgu.de
http://dx.doi.org/10.1007/978-3-642-38189-8_16

388 M.N. Jung, C. Kirches, and S. Sager

becoming grand-sons of Martin Grötschel. Michael Jung is a Ph.D. student at Hei-
delberg University supervised by Reinelt and Sager, and expects to become both a
grandson and a grand-grandson of Grötschel in 2013. Another interesting link is the
scientific and personal socialization of all three authors in the realm of Hans Georg
Bock, who, like Grötschel, is a protagonist of the University of Augsburg’s golden
age of applied mathematics in the late eighties.

Mixed-integer optimal control problems (MIOCPs) have been gaining signifi-
cantly increased interest over the last years. This is due to the fact that the underly-
ing processes have a high potential for optimization, while at the same time they are
hard to assess manually due to their combinatorial, nonlinear, and dynamic nature.
Typical examples are the choice of gears in automotive control [26, 40], water or
gas networks [14, 49], traffic flow [23, 32], supply chain networks [29], distributed
autonomous systems [1], and processes in chemical engineering that involve valves
[38, 65]. The truck benchmark problem we present in this article is motivated by
work of [35, 39, 68] on heavy duty trucks. See [59] for an open benchmark li-
brary for MIOCPs. In this article, we are especially interested in switching decisions
that imply constraints. In the interest of readability we focus on the specific prob-
lem class of MIOCPs in ordinary differential equations (ODEs) of the following
form.

Definition 1 (MIOCP) In this contribution a mixed-integer optimal control problem
(MIOCP) refers to the switched system on a fixed time horizon [0, tf] given by

min
x(·),u(·),Y (·) e

(
x(tf)

)

s.t.
∨

i∈{1,...,nω}

⎡

⎣
Yi(t)

ẋ(t)= f (x(t), u(t), vi)

0 ≤ c(x(t), u(t), vi)

⎤

⎦ ∀t ∈ [0, tf],

x(0)= x0,

0 ≤ d
(
x(t), u(t)

) ∀t ∈ [0, tf].

(1)

The logical operator
∨

i∈{1,...,nω} implies that at all times t ∈ [0, tf] exactly one of
the nω possible modes is chosen and is represented here by time-dependent logical
literals Yi(·), 1 ≤ i ≤ nω. The optimal control u : [0, tf] → R

nu is assumed to be
measurable and of bounded variation, the differential states x : [0, tf] → R

nx to be
uniquely determined once a switching regime Y(·) and the controls u(·) are fixed.
The vectors vi ∈ R

nv comprise constant values that are specific for the given mode.
We write Ω := {v1, v2, . . . , vnω }. The objective function e :Rnx → R of Mayer type
and the constraint functions c : Rnx × R

nu × R
nv → R

nc and d : Rnx × R
nu → R

d

are assumed to be sufficiently often continuously differentiable.

For example, in Sect. 2 the vectors vi will denote degrees of efficiency and engine
speed bounds for a particular choice i of the gear. Note that problem class (1) can

On Perspectives and Vanishing Constraints in MIOC 389

be generalized in many directions to include different objective functionals, multi-
point constraints, algebraic variables, more general hybrid systems, and the likes,
compare [57] for further details and references.

Although the first MIOCPs, namely the optimization of subway trains that are
equipped with discrete acceleration stages, were already solved in the early eighties
for the city of New York [12], the so-called indirect methods used there do not
seem appropriate for generic optimal control problems with underlying nonlinear
dynamic systems and mixed path-control constraints. The discussion of advantages
and disadvantages of indirect approaches is ongoing since the 1980s and beyond
the scope of this paper. See [57] for a discussion of the applicability of dynamic
programming and global maximum principles to MIOCP and further references.

Direct and all-at-once methods, such as Bock’s direct multiple shooting [13, 44]
and direct collocation [5, 9, 10] have emerged as the methods of choice for the
computational solution of many purely continuous optimal control problems. They
are also at the heart of our approach to MIOCP. These approaches have in common
that they result in highly structured nonlinear programs (NLPs). As the focus of this
article is on properties of relaxed MIOCPs, we do not go into details on how these
transformations are carried out, but rather refer the interested reader to [11, 44].
Nevertheless, we need some NLP definitions to illustrate and transfer important
concepts.

Definition 2 (NLP) A nonlinear programming problem (NLP) is given by

min
y∈Rny

E(y) s.t. C(y)= 0, D(y)≥ 0 (2)

with twice continuously differentiable functions E :Rny → R, C : Rny →R
nC , and

D : Rny → R
nD .

Note that we distinguish between control problems and nonlinear programs by
using lower and upper case letters respectively, and make use of the unusual E for
the objective function to avoid confusion with the right hand side function f (·).

Definition 3 (LICQ) A nonlinear programming problem is said to satisfy the linear
independence constraint qualification (LICQ) in a feasible point ȳ ∈ R

ny if for all
d 	= 0 ∈ R

ny it holds that

∇Ci(ȳ)
T d 	= 0, 1 ≤ i ≤ nC,

∇Di(ȳ)
T d 	= 0, i ∈ {1 ≤ j ≤ nD :Dj(ȳ)= 0

}
.

(3)

In Sect. 4 we will see that certain constraint formulations do not enjoy the LICQ
property. Thus, we discuss mathematical programs with complementarity structure.

390 M.N. Jung, C. Kirches, and S. Sager

Definition 4 (MPCC, MPVC) A nonlinear programming problem

min
y∈Rny

E(y)

s.t. G(y)≥ 0, H(y)≥ 0, Gi(y) ·Hi(y)= 0, 1 ≤ i ≤ nGH ,

(4)

with twice continuously differentiable functions E, G, and H is called a Mathemat-
ical Program with Complementarity Constraints, e.g., [7]. An NLP

min
y∈Rny

E(y) s.t. H(y)≥ 0, Gi(y) ·Hi(y)≤ 0, 1 ≤ i ≤ nGH , (5)

with twice continuously differentiable functions F , G, and H is called a Mathemat-
ical Program with Vanishing Constraints, see e.g., [2].

MPCCs and MPVCs are known to possess critical points that violate LICQ. Their
computational solution with standard NLP software is prone to numerical difficul-
ties and will often terminate in suboptimal points that possess trivial descent direc-
tions and are not local minimizers of (4) or (5).

Remark 1 (MINLP view of MPVCs) One way to see the difficulty is a look at the
mixed-integer nonlinear program given by

min
y∈Rny ,z∈{0,1}

E(y) s.t. G(y)≤ zb (6)

with G such that {y ∈ R
ny |G(y) ≤ 0} = {0}. It is closely related to problem (5) as

Hi(y) toggles the constraint on Hi(y) ·Gi(y) in (5) like z does for the constraint on
G(y)− b in (6):

z= 1,G(y)− b ≤ 0 ⇐⇒ Hi(y) > 0,Hi(y) ·Gi(y)≤ 0,

z= 0,G(y)= 0 ⇐⇒ Hi(y)= 0,Hi(y) ·Gi(y)= 0.

In this article, we investigate different approaches to reformulate problem (1).
Here, reformulations are optimal control problems that have the same feasible set
and hence the same optimal solution if integrality is required, but have a possibly
different and larger feasible set if the discrete decisions are relaxed. In Sect. 3 we
discuss formulations of the dynamic equations with further references to the liter-
ature. With respect to formulations of the inequalities in the logical disjunctions in
(1), not only tightness of the relaxation is crucial. Also, constraint qualifications may
or may not hold and homotopies might be needed to obtain convergence to local so-
lutions. We refer to this as “well-behavedness” of a relaxation for our benchmark
problem.

There are several reformulations of logical relationships in the literature. Gener-
alized Disjunctive Programming results directly from a logical modeling paradigm.
It generalizes the disjunctive programming approach of [4]. Logical variables are

On Perspectives and Vanishing Constraints in MIOC 391

usually either incorporated by means of big-M constraints or via a convex hull for-
mulation, see [31, 50, 51, 67]. From a different point of view, disjunctive program-
ming formulations can be interpreted as the result of reformulation-linearization
technique (RLT) steps [64]. For both, the convex hull relaxation uses perspective
functions. Based on this, the use of perspective cuts to strengthen convex MINLP
relaxations has been proposed in various articles, for example [15, 22, 33]. We refer
the reader to [8] for a recent survey on MINLP techniques.

Complementarity (4) and Vanishing Constraints (5) are another way to look at
logical implications. The general concept of nonlinear optimization over noncon-
vex structures is discussed in [62, 63]. For the comparatively young problem class
of MPVCs we refer to [2, 36]. Due to the lack of constraint qualification, various
approaches for the computational solution of MPCCs and MPVCs have been de-
vised and include regularizations [36, 54, 66], smoothing [16, 36], and combinations
thereof; see [24] for an overview. Nonlinear programming for MPCCs is addressed
in [3, 21, 45, 47]. Active set methods tailored to the nonconvex structure are dis-
cussed in [17, 39, 43]. Formulations of MPCCs and MPVCs in optimal control can
be found in [7, 39, 43, 52, 53].

The remainder of this article is organized as follows. In Sect. 2 we describe a
heavy-duty truck cruise control problem based on a dynamic vehicle model that in-
cludes gear shift decisions. This is a prototypical MIOCP with constraints based on
logical implications. In Sect. 3 we explain the partial outer convexification approach
for MIOCPs. We discuss extensions of this approach and different reformulations
arising for the heavy-duty truck model, and numerically assess the advantage of
partial outer convexification over an inner convexification. In Sect. 4 we investigate
reformulations for logical implication constraints. We discuss merits and drawbacks
as well as the consequences arising for underlying NLP solvers. Numerical results
for the heavy-duty truck control problem are presented in Sect. 5.

2 A Cruise Control Problem for a Heavy-Duty Truck

In this section we describe a cruise control problem for a heavy-duty truck, and
model it as a mixed-integer tracking control problem on a prediction horizon.

Typical heavy-duty trucks feature from nμ = 8 to nμ = 24 gears with differ-
ent transmission ratios and efficiencies. The decision on energy-optimal gear shift
strategies under real-time constraints usually requires extensive training on the
driver’s side, is a subject of intense scientific research, and bears considerable po-
tential for savings especially in view of future hybrid engines, e.g., [35, 39, 68].

Controls and Dynamic System We describe a basic ODE truck model as intro-
duced in [68] that is used for all computations. The ODE system of the truck model
comprises three input controls: the indicated engine torque Mind, the engine brakes
torque MEB, and the integer gear choice μ.

The vehicle model involves two differential states, velocity v and accumulated
fuel consumption Q. Traveled distance s is chosen as the independent variable and

392 M.N. Jung, C. Kirches, and S. Sager

we consider the interval [0, sf]. The first state v(s) denotes velocity (in m/s) and is
determined from the sum of directed torques,

mv(s)v̇(s)= (Macc(s)−Mbrk(s)
)
iA/rstat −Mair(s)−Mroad(s), (7)

depending on the effective accelerating and braking torques Macc, Mbrk as well as on
turbulent and static friction torques Mair, Mroad (all in Nm). Further, iA is the fixed
axle transmission ratio and rstat (in m) is the static tire radius. The second state, fuel
consumption Q(s) (in l/s), is computed from integration over a consumption map

v(s)Q̇(s)=Qfuel
(
neng

(
s,μ(s)

)
,Mind(s)

)
, (8)

depending on engine speed neng and torque Mind. Several terms are computed from
algebraic formulas. The transmitted engine speed neng (in 1/min) depends on the
selected gear μ and is obtained from velocity,

neng
(
s,μ(s)

) := v(s)iAiT
(
μ(s)

)
60/(2πrstat).

The accelerating torque Macc is computed from the ratio iT(μ) and efficiency ηT(μ)

associated with the selected gear μ. Braking torques Mbrk are due to controlled
engine brake torque MEB and internal engine friction torque Mfric,

Macc(s) := iT
(
μ(s)

)
ηT
(
μ(s)

)
Mind(s),

Mbrk(s) := MEB(s)+ iT
(
μ(s)

)
Mfric

(
neng

(
s,μ(s)

))
.

Additional braking torques due to turbulent friction Mair, and due to static road
conditions Mroad, are taken into account,

Mair(s) := 1

2
cwAρairv

2(s), Mroad(s) :=mg
(
sinγ (s)+ fr cosγ (s)

)
.

Here cw is the shape coefficient, A denotes the flow surface (in m2), and ρair the air
density (in kg/m3). Further, m is the vehicle’s mass (in kg), gravity is denoted by g

(in m/s2), γ (s) denotes the road’s slope, and fr is a rolling friction coefficient.

Objective The cost criterion to be minimized on the prediction horizon [0, sf] is
composed of a weighted sum of three different objectives. To simplify notation we
transform the Lagrange terms into a Mayer term by introducing artificial differential
states. First, the deviation of the truck’s velocity from the desired one is penalized,

v(s)Φ̇dev(s) := (v(s)− vdes(s)
)2 (9)

Second, the fuel consumption is found from a fuel consumption rate map Q, see
[39], and depends on the integer gear choice μ(s),

v(s)Φ̇fuel :=Q
(
neng

(
s,μ(s)

)
,Mind(s)

)
. (10)

On Perspectives and Vanishing Constraints in MIOC 393

Third, rapid changes of the engine and brake torques degrade driving comfort,

v(s)Φ̇comf := Ṁ2
ind(s)+ Ṁ2

brk(s), (11)

where we approximate the torque derivatives by one-sided finite differences.

Constraints On the prediction horizon mechanical constraints and velocity limits
need to be respected. Beside the bounds on the truck input controls and on the
system’s states for s ∈ [0, sf],

0 ≤Mind(s), 0 ≤Mbrk(s)≤Mbrk,max, (12)

the truck’s velocity v(s) is subject to velocity limits imposed by law,

v(s)≤ vlaw(s), s ∈ [0, sf]. (13)

The indicated torque must respect state-dependent upper limits as specified by the
engine characteristics for s ∈ [0, sf]:

Mind(s)≤Mind,max
(
neng

(
s,μ(s)

))
. (14)

In addition, the transmitted engine speed neng(s,μ(s)) must stay within prescribed
limits according to the engine’s specification,

neng,min ≤ neng
(
s,μ(s)

)≤ neng,max, s ∈ [0, sf]. (15)

Problem Formulation The MIOC problem formulation for the heavy-duty truck
control problem on the prediction horizon s ∈ [0, sf] reads

min
x(·),u(·),μ(·) λdevΦdev(sf)+ λfuelΦfuel(sf)+ λcomfΦcomf(sf)

s.t.
∨

i∈{1,...,nμ}

⎡

⎣
μ(s)= i

ODE system (7), (8)
Constraints (14), (15)

⎤

⎦ ∀s ∈ [0, sf],

x(0)= x0,

Constraints (12), (13) ∀s ∈ [0, sf],

(16)

with state vector x(s) = (v,Q,Φdev,Φfuel,Φcomf)(s), continuous control vector
u(s)= (Mind,Mbrk)(s), integer controls μ(s), and initial state information x0. Note
that problem (16) is a MIOCP of form (1), with the gear choice μ(s) that causes
switches in the right hand side as well as in the constraints and the associated vec-
tors vi = (iT(i), ηT(i)) that contain gear-specific values for transmission ratio and
efficiency.

394 M.N. Jung, C. Kirches, and S. Sager

Logical Implications The modeling and optimization with logical variables has
gained increasing interest, [31, 50]. The main reason is that it provides a modeling
paradigm that is both generic and intuitive, and allows for tailored relaxations and
algorithms.

Logical literals Y ∈ {false, true} can of course be identified with binary variables
zi ∈ {0,1}, or can be used implicitly, as we did in formulation (16),

Yi(t)= true ⇔ μ(t)= i.

It is well known that logical relations and Boolean expressions can be represented
as linear (in)equalities. For example, the implication is represented by

Y1 ⇒ Y2 ⇐⇒ ¬Y1 ∨ Y2 ⇐⇒ 1 − z1 + z2 ≥ 1.

For time-dependent logical literals Y(·), systems of differential equations, and im-
plied constraints the representation is, however, neither straightforward nor unique.

In Sect. 3 we discuss two different formulations for the ODE system and review
recent results. Constraints (14) and (15) are of particular interest in the context of
this article. They represent the logical implication

When gear i is active, gear-specific constraints must hold.

In Sect. 4, we address different mathematical reformulations of this implication and
investigate the tightness of the induced relaxations.

3 Inner and Outer Convexification in MIOC

In this section we investigate two different approaches to reformulate problem (1)
when nc = 0, i.e., when no mode-specific constraints are present and only the right
hand side function of the dynamic system depends on the logical mode choice at
time t . We denote the two approaches by inner convexification and (partial) outer
convexification, depending on how the variables that represent the logical choice
enter the right hand side.

The goal in both cases is identical: a formulation that allows the relaxation of
discrete decisions. The relaxed MIOCPs are purely continuous control problems
that can be solved using, for example, Bock’s direct multiple shooting method or
direct collocation.

Using the truck control problem from Sect. 2, we compare both approaches nu-
merically and explain qualitatively why the outer convexification formulation per-
forms so much better than the inner convexification. We close this section by refer-
ring to related work and extensions.

Inner Convexification For some control problems of type (1) it is possible to
reformulate the time-dependent disjunctions by means of a function g : [1, nω] →
R
nv that can be inserted into the right hand side function f (·) and has the property

On Perspectives and Vanishing Constraints in MIOC 395

g(i) = vi for i ∈ {1, . . . , nω}. Possibilities are a piecewise linear representation of
the form

g(i + ξi+1)= ξiv
i + ξi+1v

i+1 (17)

with special ordered set type 2 (SOS-2) variables

ξi ∈ [0,1],
∑

i

ξi = 1, ξi 	= 0 ⇒ ξj = 0 ∀j 	= i, i + 1,

a convex combination

g

(
nω∑

i=1

ξii

)
=

nω∑

i=1

ξiv
i (18)

with special ordered set type 1 (SOS-1) variables ξi ∈ [0,1], ∑i ξi = 1, or fitted
smooth convex functions g(·) as suggested in [25]. Either way, this approach allows
a reformulation of (1) into

Definition 5 (MIOCP after IC Reformulation)

min
x(·),u(·),ψ(·) e

(
x(tf)

)

s.t. ẋ(t)= f
(
x(t), u(t), g(ψ)

) ∀t ∈ [0, tf],
0 ≤ d

(
x(t), u(t)

) ∀t ∈ [0, tf], (19)

x(0)= x0,

ψ(t) ∈ {1, . . . , nω} ∀t ∈ [0, tf].

By construction, problem (19) can be relaxed toward ψ(t) ∈ [1, nω].

Outer Convexification The outer convexification approach (or partial outer con-
vexification, because the convexification applies to the integer controls only, and not
to the rest of the control problem) has been investigated in the context of optimal
control in [56, 60, 61]. It consists of an evaluation of all possible right hand sides,
their multiplication with convex multipliers, and the summation of the products. We
introduce control functions ω : [0, tf] → {0,1}nω as convex multipliers and obtain:

Definition 6 (MIOCP after OC Reformulation)

min
x(·),u(·),ω(·) e

(
x(tf)

)

s.t. ẋ(t)=
nω∑

i=1

ωi(t)f
(
x(t), u(t), vi

) ∀t ∈ [0, tf],

0 ≤ d
(
x(t), u(t)

) ∀t ∈ [0, tf], (20)

396 M.N. Jung, C. Kirches, and S. Sager

x(0)= x0

1 =
nω∑

i=1

ωi(t), ω(t) ∈ {0,1}nω ∀t ∈ [0, tf].

Problem (20) can be relaxed toward ω(t) ∈ [0,1]nω . We use the notation α(t) ∈
[0,1]nω to highlight the difference between the original problem and its continuous
relaxation. In the following we need the notation of

Definition 7 (Fractionality of solutions) The fractionality of binary control func-
tions ω(·) on a time horizon [0, tf] is given by

1

nω

nω∑

i=1

∫ tf

0

(
0.5 − ∥∥ωi(τ)− 0.5

∥∥)dτ.

Discussion of Inner Versus Outer Convexification Relaxations of reformula-
tion (19) may be faster to solve, as we only have one control function ψ : [0, tf] →
[1, nω] that enters the control problem instead of nω functions ωi : [0, tf] → [0,1] in
(20). Hence, there are less derivatives to be computed and the subproblems arising
in iterations of an interior point or SQP approach are cheaper to solve. Moreover in
(20), the aggregated right hand side function

∑
i f (·, vi) may become more expen-

sive to evaluate. As nω reflects the number of possible combinations and switches,
this number may get large. Note that the linear equality constraint may be used for
elimination of one function at the cost of losing some sparsity.

However, depending on the separability properties of f (·), integer controls often
decouple, leading to a reduced number nω of admissible choices, e.g., [30].

Example 1 (Outer Convexification and Separability) Assume we have

ẋ(t)= f1
(·, v1(t)

)+ f2
(·, v2(t)

)
, v1(t) ∈Ω1, v2(t) ∈Ω2.

Then an equivalent reformulation leading to nω = nω1 + nω2 controls instead of
nω = nω1nω2 is given for t ∈ [t0, tf] by

ẋ(t) =
nω1∑

i=1

f1
(·, vi1

)
ω1,i (t)+

nω2∑

i=1

f2
(·, vi2

)
ω2,i (t),

nω1∑

i=1

ω1,i (t) = 1, ω1 ∈ {0,1}nω1 ,

nω2∑

i=1

ω2,i (t)= 1, ω2 ∈ {0,1}nω2 .

In most practical applications the binary control functions enter linearly (such
as valve controls that indicate whether a certain flow term is present or not), or nω
increases linearly with the number of choices (e.g., the gears), or integer controls
decouple. Hence, one can expect a modest (linear) increase in the number of control

On Perspectives and Vanishing Constraints in MIOC 397

functions. This increase is usually more than outweighed by important advantages
of (20) over (19):

• Not in all cases can a meaningful inner convexification g(·) be found. An exam-
ple are black-box simulators that can only be evaluated for certain modes (integer
values), but not in between. In general, using g(·) for a relaxation may lead to
problems such as divisions by zero, or index changes in the DAE case [6]. Eval-
uating the model only for vectors vi avoids these problems;

• The integer gap between the optimal solutions of (19) and its relaxation may be-
come arbitrarily large [56], whereas the integer gap between the optimal solutions
of (20) and its relaxation is bounded by a multiple of the control discretization
grid size Δt [61].

Finding a tight relaxation of (20) is vitally important for the computational solu-
tion of (1). It allows a decoupling of the MIOCP into a continuous OCP and a
mixed-integer linear programming problem with a huge potential for computational
savings and a posteriori bounds on the gap to the best possible MIOCP solution
[37, 61]. Moreover, the relaxed control problems often have optimal integer solu-
tions, which implies almost arbitrary computational savings when compared to an
OCP-based branch&bound approach to solve (19) to optimality. This has first been
compared in [40] for a benchmark problem posed in [25]. While identical solu-
tions were obtained, a speedup of several orders of magnitude was observed for the
outer convexification approach. Similar behavior can be observed when comparing
to MINLP-based branch&bound. We use the truck control example from Sect. 2 to
reproduce and explain this qualitative result.

Inner and Outer Convexification for Truck Control Optimal solutions by their
very nature tend to exploit constraints as much as possible. In the special case of
vehicle operation and for a fixed acceleration, it is natural that the gear is chosen
that provides the largest torque when compared to all other gears.

In Fig. 1 we show the maximum indicated engine torque Mind,max depending on
the velocity v for two adjacent gear choices μ(·) = i and μ(·) = i + 1. Figure 1
(left) shows

M IC
ind,max(v)=Mind,max

(
neng

(
v(s), ξ i + (1 − ξ)(i + 1)

))
(21)

for ξ = 0.0,0.1, . . . ,1.0, while Fig. 1 (right) shows

MOC
ind,max(v)= αMind,max

(
neng

(
v(s), i

))+(1−α)Mind,max
(
neng

(
v(s), i+1

))
(22)

for α = 0.0,0.1, . . . ,1.0. Apparently, in the particular case of truck control, the re-
laxation of (19) comprises combinations of the state variable v(·) and non-integral
ξ ∈ (0,1) that yield an unphysical, larger value of M IC

ind,max. Conversely, the re-
laxation of (20) is by construction maximal only for α ∈ {0,1}. Thus, one can ex-
pect that optimal solutions of the relaxed version of (20) are integral, whereas solu-
tions of the relaxation of (19) may have non-integral solutions ξ ∈ (0,1). The two
approaches would only coincide if both neng and Mind,max were linear functions

398 M.N. Jung, C. Kirches, and S. Sager

Fig. 1 Maximum indicated engine torque Mind,max depending on the velocity v for two adjacent
gear choices μ(·)= i and μ(·)= i+1. Left: inner convexification (19). Right: outer convexification
(20). Observe the maximal indicated engine torques for non-integral values of ξ (gray) on the left
hand side, while non-integral values for α (gray) on the right hand side are never better than
integral values (black)

Table 1 Fractionality as in Definition 7, objective function value, and CPU time obtained with
SNOPT/IPOPT for the solution of relaxations of (19) and (20) with different control grids

Control
intervals

Inner convexification (19) Outer convexification (20)

Fractionality Objective CPU [sec] Fractionality Objective CPU [sec]

40 0.101895 1.01687 1/* 0.073163 1.03315 1/4

80 0.093632 0.99866 6/2 0.010639 1.01265 2/85

160 0.098872 0.98878 28/8 0.000409 1.00030 3/51

320 0.095983 0.98325 */20 0.000820 0.99283 53/365

of vi . The special case of truck control is prototypical for many (in particular time-
optimal) MIOCPs, as often bang-bang solutions are optimal. However, this is not
guaranteed in the general case.

To evaluate this effect, we apply both inner and outer convexification to the truck
control problem (16), however for the time being without the constraints (14)–(15).
For convenience, we use formulation (18) in the following. The effect is strongest
for time- and energy-optimal driving, hence we consider the case where λfuel = 1,
λdev = λcomf = 0 in the uphill setting of Fig. 2.

Table 1 shows numerical results for the cruise control of the heavy-duty truck.
Both the inner and the outer convexification formulations have been relaxed and
solved to local optimality with the active-set solver SNOPT [28] and the interior
point solver IPOPT [69]. The most important findings can be summarized as follows:

• For inner convexification, the fractionality of the optimal relaxed gear choices
αj (·) does not improve for finer discretizations. For the outer convexification
however, it goes to zero as the control discretization grid is equidistantly refined.
The reason is that the optimal control α(·) of (20) is of bang-bang type;

• There is a gap between the lower bound from the relaxed IC solutions and the
best possible integer solution, which is almost attained by the OC formulation;

On Perspectives and Vanishing Constraints in MIOC 399

• The interior point code IPOPT seems to perform better on inner convexification,
the SQP code SNOPT performs better on outer convexification;

• Both codes run into problems with inner convexification instances.

Although on single instances it may be faster to compute the relaxation of the
inner convexification formulation, it is clear that outer convexification is the method
of choice within a branch and bound framework. This is due to the tighter relaxation
(better bound) in combination with the feature that relaxed solutions are usually
already almost integer feasible if the control discretization grid is chosen adequately.

Extending the Outer Convexification Approach The advantages of outer con-
vexification over inner convexification have stimulated additional research into the
formulation (20). Here, we briefly review significant developments for the reader’s
convenience. First, to fully exploit the beneficial integrality property that has been
exemplified above and that is related to bang–bang solutions in optimal control, di-
rect methods need to be equipped with adaptivity in the control grid discretization
and follow-up transformations into a switching time optimization, [56, 60]. Sec-
ond, so-called sensitivity-seeking or path-constrained arcs (i.e., time periods during
which α(·) is not binary) can be treated with tailored sum up rounding strategies.
This rounding strategy is a constructive part in the proof for the dependence of the
integer gap on the control discretization grid size Δt . Furthermore, it is the optimal
solution to a MILP that minimizes the deviation of a binary control ω(·) from a
relaxed one α(·) with respect to

max
t∈[0,tf]

∥∥∥∥
∫ t

0
ω(τ)− α(τ)dτ

∥∥∥∥.

If additional constraints like a maximum number of switches need to be fulfilled,
tailored branching algorithms can be applied to efficiently solve the constrained
MILP [37]. Third, the numerical algebra to cope with the specific structures induced
by the control functions α(·) can be exploited in the context of SQP approaches
[41, 42]. Finally, an extension to more general MIOCPs is possible, e.g., to multi-
objective problems [48], to differential-algebraic systems [27], and to certain partial
differential equations [34]. For an overview see [57, 58].

4 Constraint Formulations

In this section, we study reformulations for logically implied constraints c(·), i.e.,
nc > 0 in (1). Again, we consider reformulations that are equivalent for integer
control functions and discuss properties of their relaxations. We do this both in
general and for the special case of the constraints (14)–(15) of the heavy-duty truck
model from Sect. 2 that result in

ctruck(v,Mind,μ)=
⎛

⎝
Mind,max(neng(v,μ))−Mind

neng,max − neng(v,μ)

neng(v,μ)− neng,min

⎞

⎠ . (23)

400 M.N. Jung, C. Kirches, and S. Sager

In the interest of notational simplicity we omit the lower linear engine speed bound
neng(v,μ) − neng,min in the rest of this section. We note that the function ctruck(·)
has components that are quadratic and linear in iT(μ),

ctruck(v,Mind,μ)=
(

3000 − (3iAiT(μ)v/(πrstat)− 125)2 −Mind
πrstatneng,max/(30iAiT(μ))− v

)
. (24)

4.1 Inner Convexification of the Constraints

The inner convexification formulation (19) can be augmented in a straightforward
way with constraints

0 ≤ c
(
x(t), u(t), g(ψ)

)

that guarantee that integer feasible solutions ψ ∈ {1, . . . , nω} of (19) are feasible
solutions of (1). Using (18) for g(·) we obtain the following reformulation of the
constraints (14), (15),

0 ≤ 3000 −
(

3iA

(
nω∑

i=1

αiiT(i)

)
v/(πrstat)− 125

)2

−Mind, (25a)

0 ≤ πrstatneng,max

/(
30iA

(
nω∑

i=1

αiiT(i)

))
− v. (25b)

Just as in Sect. 3, the evaluation of convex combinations within a nonlinear func-
tion may give rise to optimality of feasible fractional values, while neighboring
integer values may not be optimal. Hence, the inner convexification approach can
be expected to potentially yield weak relaxations.

4.2 Outer Convexification/One Row Formulation of the
Constraints

The outer convexification reformulation (20) can be applied to the constraint ex-
pression as well. Residuals are evaluated for all possible choices, and the constraint
is imposed on the convex combination of residuals resulting in

0 ≤
nω∑

i=1

αi(t)c
(
x(t), u(t), vi

)
. (26)

This reformulation avoids the problem of evaluation in fractional choices, and en-
sures that all feasible integer points are feasible points of the original MIOCP.

On Perspectives and Vanishing Constraints in MIOC 401

Remark 2 (LICQ for Outer Convexification) Let (x̄, ū, ᾱ) be a feasible solution of
the relaxation of problem (20), (26) and let the matrix

[∑nω
i=1 ᾱi(t)∇c(·, vi)∇d(·)

]
:= ∂

∂(x,u)

[∑nω
i=1 ᾱi(t)c(x̄, ū, v

i)

d(x̄, ū)

]

of active constraints have full row rank. Drop the upper bounds αi(·) ≤ 1, which
are implicitly implied by αi(·)≥ 0 and

∑
i αi(·)= 1. Then LICQ is satisfied for the

relaxation of problem (20), (26).

Proof We look at the constraint matrix of all (active) constraints in (·, ᾱ), given by

∂

∂(α1, . . . , αnω , (x,u))

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

∑nω
i=1 αi(t)c(·, vi)

d(·)∑nω
i=1 αi(t)− 1

α1(t)

. . .

αnω(t)

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

c(·, v1) · · · c(·, vnnω) ∑nnω
i=1 ᾱi (t)∇c(·, vi)

0 · · · 0 ∇d(·)
1 · · · 1 0
1 0

. . .
...

1 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

Due to feasibility of ᾱ and the SOS-1 constraint there exists at least one index 1 ≤
i ≤ nω for which αi(t) ≥ 0 is not active. Hence, the bottom nω rows are linearly
independent. The first block of rows may contribute an entry in column i, but by
assumption is linearly independent from the other rows due to the right-most block
of columns, which concludes the proof. �

The same holds true if we eliminate one of the multipliers αi using the SOS-1
constraint, which becomes an inequality constraint. For the heavy-duty truck model,
the torque constraint (14) and the engine speed constraint (15) are reformulated to
read

0 ≤
nμ∑

i=1

αi(t)Mind,max
(
neng

(
v(s), i

))−Mind(s), (27a)

0 ≤ neng,max −
nμ∑

i=1

αi(t)neng
(
v(s), i

)
. (27b)

Note that (25b) and (27b) are identical, as iT(μ) enters linearly.

402 M.N. Jung, C. Kirches, and S. Sager

As the constraints are summed up, compensatory effects may lead to feasible
residuals for fractional values of the convex multipliers in both cases, as observed in
[39]. For example, a first gear choice leading to an engine speed violating the upper
bound neng,max and a second gear choice in violation of the lower bound neng,min

may form a feasible convex combination in (27b).

4.3 Complementarity Formulation

To address the problem of compensatory effects, [39] proposes to enforce feasibility
individually for each possible choice of the integer control via

0 ≤ αi(t)c
(
x(t), u(t), vi

)
, 1 ≤ i ≤ nnω . (28)

For the heavy-duty truck model, torque and engine speed constraints are

0 ≤ αi(t)
(
Mind,max

(
neng

(
v(s), i

))−Mind(s)
)
, (29a)

0 ≤ αi(t)
(
neng,max − neng

(
v(s), i

))
(29b)

for 1 ≤ i ≤ nμ. It is obvious that optimal solutions with nonzero convex multiplier
αi(t) > 0 are now feasible for αi(t) = 1 as well. Compared to the outer convexifi-
cation formulation, the number of constraints has increased from 4 to 4nμ, though.
More important, due to the structure of the constraints (29a)–(29b), the NLP ob-
tained from discretization of the relaxed convexified MIOCP now is a MPVC in the
form of (5). In the case of equality constraints, we obtain a MPCC, see (4).

4.4 Addressing the Complementarity Formulation

As mentioned in the introduction, MPCCs and MPVCs lose constraint qualification.
This can also be seen directly.

Remark 3 (No LICQ for Complementarity) Let (x̄, ū, ᾱ) be a feasible solution of
the relaxation of problem (20), (28) with

ᾱi(t)= 0, c
(
x̄, ū, vi

)= 0

for at least one 1 ≤ i ≤ nω. Then LICQ is not satisfied.

On Perspectives and Vanishing Constraints in MIOC 403

Proof We look at the constraint matrix of all constraints in (·, ᾱ), given by

∂

∂(α1, . . . , αnω , (x,u))

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1(t)c(·, v1)

. . .

αnω(t)c(·, vnω)
d(·)∑nω

i=1 αi(t)− 1
α1(t)

. . .

αnω(t)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c(·, v1) · · · 0 ᾱ1(t)∇c(·, v1)

. . .
...

0 · · · c(·, vnnω) ᾱnω(t)∇c(·, vnω)
0 · · · 0 ∇d(·)
1 · · · 1 0
1 0

. . .
...

1 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and note that the rows that correspond to ᾱi(t)c(·, vi)≥ 0 contain only zeros, lead-
ing to a trivially linear dependent constraint system. �

The constraint system also violates the weaker Mangasarian-Fromovitz con-
straint qualification. However, some cone-based constraint qualifications are sat-
isfied, e.g., [2]. Thus, local minimizers are still KKT points.

Complementarity Pivoting Techniques Computational approaches for solving
MPCCs and MPVCs directly are mentioned in the introduction, but generally rely
on dedicated implementations of complementarity solvers. If one intends to use
existing numerical software, then the complementarity reformulation (28) needs to
be addressed by regularization or smoothing techniques that recover LICQ.

Regularization and Smoothing Techniques These techniques follow the princi-
ple of reformulation of the MPCC or MPVC in violation of LICQ using a parameter
ε > 0 in a way that recovers constraint qualification for ε ∈ (0, ε). Then, conver-
gence of the sequence of local minimizers to a limit point is established for ε → 0.
The assessment of the type of stationarity obtained for the limit point is crucial.
For MIOCP, we find it essential to ask for Bouligand stationarity. Lesser stationar-
ity concepts allow for termination in spurious stationary points that possess trivial
descent directions, thus giving rise to “missed” switches of the integer control.

In the following, an overview over different possible reformulations is given, and
their general form is presented and applied to the particular truck problem.

404 M.N. Jung, C. Kirches, and S. Sager

Regularization Reformulations Conversely, regularization formulations relax
the feasible set using ε > 0 by requiring

−ε ≤ αi(t) · c(x(t), u(t), vi), 1 ≤ i ≤ nnω (MPVC),

or, in what is sometimes referred to as the lumped formulation,

−ε ≤
nnω∑

i=1

αi(t) · c(x(t), u(t), vi). (30)

For MIOC and in particular for the truck model, the lumped formulation will satisfy
LICQ but amounts to applying outer convexification to the original constraint, see
Sect. 4.2. For the truck model, the first formulation reads

−ε ≤ αi(t) · (Mind,max
(
neng

(
v(s), i

))−Mind(s)
)

(31a)

−ε ≤ αi(t) · (neng,max − neng
(
v(s), i

))
(31b)

NCP Function Reformulations A function φ : R2 → R is called NCP-function
if

φ(a, b)= 0 ⇒ a ≥ 0, b ≥ 0, ab = 0, (MPCC),

φ(a, b)= 0 ⇒ b ≥ 0, ab ≤ 0, (MPVC),

see, e.g., [18] for a survey. For MPCCs the Fischer-Burmeister function

φFB(a, b) := a + b−
√
a2 + b2

may be used, [19]. For MPVC, [36] uses the NCP function

φVC(a, b)= 1

2

(
ab+

√
a2b2 +

√
b2 − b

)
. (32)

Piecewise smooth complementarity functions to replace the complementarity con-
straint in a MPCC are developed in [46], and a one-to-one correspondence between
strongly stationary points and KKT points of the reformulated MPCC is established.
The non-smoothness is shown to not impede the convergence of SQP methods. The
approach however cannot avoid convergence of SQP solvers to spurious stationary
points in the degenerate case. The NCP formulation for the truck model is

0 ≥ φVC(Mind(s)−Mind,max
(
neng

(
v(s), i

))
, αi(t)

)
, (33a)

0 ≥ φVC(neng
(
v(s), i

)− neng,max, αi(t)
)
. (33b)

On Perspectives and Vanishing Constraints in MIOC 405

Smoothing Reformulations Smoothing reformulations have first been developed
for MPCCs and work by appropriately including a smoothing parameter ε > 0:

0 ≥ φε
(−c
(
x(t), u(t), vi

)
, αi(t)

)
, 1 ≤ i ≤ nnω (MPVC), (34)

with NCP function φ, e.g., φFB
ε (a, b) := a + b− √

a2 + b2 + ε for MPCC and

0 ≥ φVC
ε (a, b) := 1

2

(
ab+

√
a2b2 + ε2 +

√
b2 + ε2 − b

)
(35)

for MPVC. For MPCC, smoothing under an LICQ-type assumption and a sec-
ond order condition has been shown to yield B-stationarity of the limit point. For
MPVC, smoothing is shown in [36] to not yield a satisfactory framework for solving
MPVCs. For the truck model, the smoothing reformulation reads

0 ≥ φVC
ε

(
Mind(s)−Mind,max

(
neng

(
v(s), i

))
, αi(t)

)
, (36a)

0 ≥ φVC
ε

(
neng

(
v(s), i

)− neng,max, αi(t)
)
. (36b)

Smoothing-Regularization Reformulations Smoothing-regularization ap-
proaches combine the concepts of smoothing and regularization to form

ε ≥ φε
(−c
(
x(t), u(t), vi

)
, αi(t)

)
, 1 ≤ i ≤ nnω (MPVC). (37)

For MPVC, using (32), the smoothing-relaxation formulation reads ε ≥ φVC
ε (a, b).

Convergence for ε → 0 to a B-stationary limit point is established under a weak
LICQ-type constraint qualification, assuming existence and asymptotic nondegen-
eracy of a sequence {xε}ε→0 of feasible points for the sequence NLP(ε). LICQ is
shown to be satisfied for all NLP(ε) with ε ∈ (0, ε).

For the truck problem, the smoothing-regularization formulation reads

ε ≥ φVC
ε

(
Mind(s)−Mind,max

(
neng

(
v(s), i

))
, αi(t)

)
, (38a)

ε ≥ φVC
ε

(
neng

(
v(s), i

)− neng,max, αi(t)
)
. (38b)

4.5 Generalized Disjunctive Programming

Based on the work of Balas for integer linear programs, Grossmann and coworkers
developed Generalized Disjunctive Programming (GDP) for mixed-integer nonlin-
ear programs [31]. The problem formulation (1) uses disjunctive notation, hence
it is natural to take the GDP point of view. It is motivated by disjunctions of the
form

406 M.N. Jung, C. Kirches, and S. Sager

min
y,Y

e(y)+
∑

i∈I
ei

s.t.

⎡

⎣
Yi

gi(y)≤ 0
ei = γi

⎤

⎦∨
⎡

⎣
¬Yi

Biy = 0
ei = 0

⎤

⎦ ∀i ∈ I (39)

0 ≤ y ≤U, Φ(Y)= true, Y ∈ {false, true}|I |

with application in process synthesis where Yi represents presence or absence
of units and y a vector of continuous variables. If a corresponding unit is not
used, the equation Biy = 0 eliminates variables and ei = 0 sets the costs to
zero.

As stated above, logical relations Φ(Y)= true can be translated into constraints
with binary variables z ∈ {0,1}|I |. An interesting question, however, is how the dis-
junctions are formulated. We consider two approaches.

Big-M Using large enough constants M is a well-known technique to model log-
ical relations in combinatorial optimization. For (39), this yields

gi(y)≤M(1 − zi), −Mzi ≤ Biy ≤Mzi, ei = ziγi .

Convex Hull Reformulation A possibly tighter relaxation can be obtained from
the nonlinear convex hull reformulation. It makes use of the perspective of a func-
tion.

Definition 8 (Perspective function) The perspective of a function f : Rn → R is
the function f̂ : Rn+1 → R defined by

f̂ (λ, y)=

⎧
⎪⎨

⎪⎩

λf (y/λ) if λ > 0,

0 if λ= 0, y = 0,

∞ otherwise.

An important property is that if f (·) is convex, then f̂ (·) is also convex. Per-
spectives have been used for strong formulations of MINLPs [15] and have been
gaining increasing interest lately also for the derivation of perspective cuts, e.g.,
[33]. Perspectives can be used to obtain the nonlinear convex hull of a feasible set
as follows:

Definition 9 (Nonlinear Convex Hull) Problem (6) can be equivalently restated as
minimization over all (y,λ) of the nonconvex function

Φ(y,λ) :=

⎧
⎪⎨

⎪⎩

0 if λ= 0, y = 0,

F (y) if λ= 1,G(y)≤ b,

∞ else.

(40)

On Perspectives and Vanishing Constraints in MIOC 407

wherein we have assumed w.l.o.g. that Φ(0, λ) = 0. The closure coΦ(y,λ) of the
convex hull of Φ is given by

coΦ(y,λ)=

⎧
⎪⎨

⎪⎩

0 if λ= 0, y = 0,

λF (y/λ) if λ ∈ (0,1],G(y)≤ λb,

∞ else.

(41)

The convex hull representation of the GDP (39) is then obtained by introduction
of additional variables 0 ≤ λij ≤ 1, λi1 + λi0 = 1 and 0 ≤ vij ≤ λijU , y = vi1 + vi0
and constraints 0 ≥ λi1gi(vi1/λi1), Bivi0 = 0, fi = λi1γi .

Numerical Difficulties For constraint formulations using perspectives usually
LICQ holds. The reason is that unlike in Remark 3, the derivative λ∇vg(v/λ) 	= 0
for λ= 0. E.g., for linear constraints g(v)= av + b we have λ∇vg(v/λ)= a.

However, for nonlinear g(·) there are computational challenges due to division by
zero or near-zero values. For ε > 0 sufficiently small λf (y/λ) can be approximated
by (λ + ε)f (y/(λ + ε)), [31], or by (λ)f (y/(λ + ε)), [50], or as proposed in the
Ph.D. thesis of Nicolas Sawaya by ((1 − ε)λ+ ε)f (y/((1 − ε)λ+ ε)). The results
may depend heavily on the choice of ε and be computationally challenging.

4.6 Generalized Disjunctive Programming for MIOCP

First, we consider the Big-M formulation for GDP. For general constraints c(·) and
SOS-1 variables α(·) we obtain for 1 ≤ i ≤ nnω

M
(
αi(t)− 1

)≤ c
(
x(t), u(t), vi

)
(42)

and thus for the truck constraints (23) for 1 ≤ i ≤ nμ

M
(
αi(t)− 1

) ≤ (Mind,max
(
neng

(
v(s), i

))−Mind(s)
)
, (43a)

M
(
αi(t)− 1

) ≤ (neng,max − neng
(
v(s), i

))
. (43b)

This formulation does not cause LICQ problems and good values for M can be
determined from bounds on v(·). Still, it is expected to give weak relaxations.

Second, we apply the GDP convex hull technique to the MIOCP (1). [50] pro-
posed to lift all variables (controls, differential states, horizon lengths). We describe
one of the many possibilities that stem from a modeler’s freedom to lift only some
of the variables and to use different formulations for the disjunctive constraints.

One first observation is that we can use the convex multiplier functions αi(·)
from outer convexification in place of λ, and let y(·) := (x(·), u(·)). The perspective
formulation for the constraints c(·) then yields

0 ≤ αi(t)c
(
x(t)/αi(t), u(t)/αi(t), v

i
)
, t ∈ [0, tf], i = 1, . . . , nω. (44)

To properly obtain the convex hull, we also apply this procedure to the dynamic
constraint for t ∈ [0, tf], i = 1, . . . , nω:

408 M.N. Jung, C. Kirches, and S. Sager

0 = αi(t)
(
ẋ(t)/αi(t)− f

(
x(t)/αi(t), u(t)/αi(t), v

i
))

(45a)

= ẋ(t)− αi(t)f
(
x(t)/αi(t), u(t)/αi(t), v

i
)
. (45b)

We introduce disaggregated state derivatives ẋi (·), resulting states xi(·), and disag-
gregated control decision variables ui(·) for all nonlinearly entering controls:

ẋ(t)=
nω∑

i=1

ẋi (t), x(t)=
nω∑

i=1

xi(t), u(t)=
nω∑

i=1

ui(t).

We consider a time discretization of the states of problem (1),

x(tk) := sk, ẋ(t)= f
(
x(t), u(t), v(t)

)
, t ∈ [tk, tk+1], (46a)

sk+1 = x
(
tk+1; tk, sk, u(·), v(·)

)
, 0 ≤ k ≤N − 1, (46b)

which yields the MIOCP

min
x(·),u(·),Y e(sN)

s.t.
∨

i∈{1,...,nω}

⎡

⎢⎢⎢⎢⎣

Yik
ẋ(t)= f (x(t), u(t), vi)

x(tk)= sk
sk+1 = x(tk+1; tk, sk, u(·), vi)

0 ≤ c(x(t), u(t), vi)

⎤

⎥⎥⎥⎥⎦
∀t ∈ [tk, tk+1] (47)

0 ≤ d
(
x(t), u(t)

) ∀t ∈ [tk, tk+1]
with k = 0, . . . ,N − 1, for which the convex hull formulation is, with piecewise
constant controls αi(t)= αik and t ∈ [tk, tk+1] for k = 0, . . . ,N − 1,

min
s,u,α

e(sN)

s.t. ẋi (t)= αikf
(
xi(t)/αik, u

i(t)/αik, v
i
)

xi(tk)= αiksk

sk+1 =
nω∑

i=1

xi
(
tk+1; tk, sk, ui(·)/αik, vi

)
(48)

0 ≤ αikc
(
xi(t)/αik, u

i(t)/αik, v
i
)

0 ≤ d

(
nω∑

i=1

xi(t),

nω∑

i=1

ui(t)

)

nω∑

i=1

αik = 1, 0 ≤ xi(t)≤ αikM
s, 0 ≤ ui(t)≤ αikM

u.

On Perspectives and Vanishing Constraints in MIOC 409

Note that for the purpose of the disjunctive term controlled by Yik , sk is a constant
when forming the perspective of the initial value constraint. Moreover, as the sk+1
enter linearly, we do not disaggregate them but instead aggregate the IVP results.
Next, we enforce path constraints 0 ≤ xi(·)≤ αikM

s, c(·) and d(·) in the discretiza-
tion points t = tk only, as is customary in direct optimal control. The respective
constraints of (48) are replaced by

0 ≤ sk ≤Ms (49a)

0 ≤ αikc
(
sk, u

i(tk)/αik, v
i
)

(49b)

0 ≤ d

(
sk,

nω∑

i=1

ui(tk)

)
. (49c)

We further substitute u by ūi (t)= ui(t)/αik . This poses no problem for αik = 0 due
to the bound ui(t)≤ αikM

u
k , and yields lifted controls ūi (t) with 0 ≤ ūi (tk)≤Mu:

ẋi (t) = αikf
(
xi(t)/αik, ū

i(tk), v
i
)

(50a)

0 ≤ αikc
(
sk, ū

i(tk), v
i
)

(50b)

0 ≤ d

(
sk,

nω∑

i=1

αikū
i(tk)

)
(50c)

Since this formulation still poses numerical difficulties, we go one step further and
modify the problem by aggregating the states over all time steps and not only dur-
ing the shooting intervals. This idea comes from the observation that, except for the
ODE constraint, the xi(·) enter only via their convex combination. Hence, we re-
place xi(t) by αikx(t) and obtain

∑nω
i=1 x

i(tk+1)=∑nω
i=1 αikx(tk+1)= x(tk+1) and

thus (51)

min
s,ū,α

e(sN)

s.t. ẋ(t)=
nω∑

i=1

αikf
(
x(t), ūi (t), vi

)

x(tk)= sk

sk+1 = x
(
tk+1; tk, sk, ū(·)

)
(51)

0 ≤ αikc
(
sk, ū

i(tk), v
i
)

0 ≤ d

(
sk,

nω∑

i=1

αikū
i(t)

)

nω∑

i=1

αik = 1, 0 ≤ sk ≤Ms, 0 ≤ ūi (t)≤Mu

410 M.N. Jung, C. Kirches, and S. Sager

Table 2 Comparison of constraint reformulations for αi = 1 ⇒ γi ≤ v ≤ Γi and their properties

Name Formulation Advantages Drawbacks

Inner convexification
Section 4.1,
Eqs. (25a)–(25b)

γ (ψ)≤ v ≤ Γ (ψ)

γ (i)= γi , Γ (i)= Γi

Easy to
formulate very
fast to solve

Integer infeasible,
fractional
evaluations, very
weak relaxation

Outer convexification
Section 4.2,
Eqs. (27a)–(27b)

∑
i αiγi ≤ v ≤∑i αiΓi Evaluation in integer

points, fast to solve
Compensation effects

MPVC
Section 4.3,
Eqs. (29a)–(29b)

αiγi ≤ αiv ≤ αiΓi Guarantees integer
feasibility

CQs violated, needs
tailored methods

MPVC reformulations
Section 4.4,
Eqs. (31a)–(31b),
(36a)–(36b), (38a)–(38b)

Regularization,
smoothing,
combined

Use existing NLP
solvers

Sequence of
problems,
ill-conditioned,
ε-relaxed solution

GDP Big-M
Section 4.5,
Eqs. (43a)–(43b)

γi −M(1 − αi)≤ v

≤ Γi +M(1 −αi)

CQs, fast Weak relaxation

GDP Convex Hull
Section 4.6, Eq. (51) with
Sect. 4.4,
Eqs. (31a)–(31b)

Disaggregated
controls constraints
as MPVC
(reformulation)

More degrees of
freedom

More variables, in
addition to the
drawbacks of MPVC
(reformulations)

is partial outer convexification of the ODE, uses the vanishing constraint formula-
tion for the constraints, but differs in the disaggregation of the controls ūi (·), which
gives the system more freedom to potentially find a better solution. Note that this
particular way of making use of a GDP formulation needs to be smoothened again,
e.g., using (38a)–(38b). For the application at hand this approach was superior to a
full lifting and the difficult numerical treatment of the constraints that are quadratic
in 1/αi(·).

Table 2 summarizes the reformulations for constraints directly depending on an
integer control that have been discussed in this section.

5 Numerical Results

In this section we illustrate above concepts by applying the different formulations
to the engine speed constraints of the heavy duty truck.

Reproducible Benchmark Implementations We aim to make the heavy-duty
truck cruise control problem available to the community as a MIOCP benchmark
problem. A complete description comprises scenario data for γ (s) and vlaw(s) that
characterizes the route to be traveled, with positioning information s assumed to be

On Perspectives and Vanishing Constraints in MIOC 411

Algorithm 1: Homotopy method for problems presented in Sect. 4.4 and
Sect. 4.6

1 δ = 0.6, ε∗ = 105

2 while ε∗ > 1e− 3 do
3 ε = δ · ε∗
4 Solve the problem corresponding to ε starting from last solution σ ∗
5 if terminal point infeasible, or cannot restore feasibility of the initial point

then δ = 1.6 · δ else store solution as σ ∗, ε∗ = ε, δ = δ/1.2
6 end

available. It also comprises Mind,max := 3000 − (neng(s,μ(s))− 1250)2/100, Mfric,
Qfuel, neng,min, and neng,max as vehicle- and engine-specific nonlinear data sets. This
data as well as other parameter values, functions, and initial values is available on
the web page [55] and in the thesis [39]. Moreover, this web page includes AMPL
models for all reformulations we use throughout this article.

In the following calculations, we discretize all control problems using an implicit
Euler method with 40 equidistant steps on the horizon [0,1000].
Computational Setup All results were computed on a single core of an Intel Core
i7-2600 CPU with 3.40 GHz and 8 GB memory. IPOPT 3.10.0 and SNOPT 7.2-8
were run with the standard solver options, invoked from AMPL version 20120505.
For the homotopy methods, IPOPT warm start options were added. The homotopy
method starts with a big value for ε to find a solution for the control problem without
vanishing constraints. The last solution σ ∗ is stored together with the correspond-
ing ε∗. ε∗ is then adjusted by a factor δ to obtain a new ε as in Algorithm 1.

Note that also δ > 1 is allowed, since sometimes the last solution cannot be re-
stored even with the same ε due to numerical difficulties.

Discussion of Scenarios We present numerical results for two selected scenarios
in Fig. 2 and Fig. 3. The track’s height profile is shown on top, followed by eight
plots of the relaxed (local) optimal solutions identified by IPOPT for the formula-
tions listed in Table 2. From both scenarios, a clear picture emerges. Inner con-
vexification solutions suffer from significant infeasibility. Outer convexification is
computationally the fastest formulation, and yields reasonable approximations that
in parts suffer from compensatory effects. In contrast, the three vanishing constraint
formulations succeed in yielding feasible solutions for both scenarios. For scenario
2, these solutions are even integer feasible, while for scenario 1 there are at most two
control intervals with fractional gear choices. For the feasible vanishing constraint
solutions, we can also compare the resulting objective functions. Here, the simple
regularized formulations performs best, with the smoothing-regularization and the
plain vanishing constraint formulation tied in second place. The GDP Big-M for-
mulation does not yield feasible solutions, while our convex hull variant of GDP
performs slightly better than outer convexification also in terms of integer feasibil-
ity. It suffers from a high computational runtime, though. The combination of integer

412 M.N. Jung, C. Kirches, and S. Sager

Fig. 2 Relaxed gear choices αj (reflected by the intensity of gray) and corresponding velocities

On Perspectives and Vanishing Constraints in MIOC 413

Fig. 3 Relaxed gear choices αj (reflected by the intensity of gray) and corresponding velocities

414 M.N. Jung, C. Kirches, and S. Sager

control functions, nonlinear constraints, and nonlinear differential equations allows
for a variety of different GDP implementations within a direct multiple shooting or
direct collocation framework and may allow for significant better performance.

6 Future Developments

From the computational results, some evidence can be read in favor of vanishing
constraint formulations. For the case of equality constraints depending on the inte-
ger control, complementarity constraints are obtained. In view of the computational
inefficiency and the remaining infeasibility of homotopy based approaches, it will
be desirable to treat MPCCs and MPVCs in their rigorous formulation of Sect. 4.3,
Eqs. (29a)–(29b) in the future. SLP-EQP methods, first described by [20], can do so
efficiently when the LP subproblem is replaced by the corresponding LPCC [17] or
LPVC. Moreover, they can be shown to identify B-stationary points of such prob-
lems [47]. The efficiency improvements one would gain from such a computational
setup would also make the application to closed-loop mixed-integer control [39]
viable.

It will be interesting to study all constraints in the context of a Branch&Cut
framework. Furthermore a comparison of global solutions would be helpful. As
generic global solvers like COUENNE cannot yet solve the benchmark, a specific
dynamic programming approach seems the best choice.

Overcoming the numerical problems associated with perspective functions and a
better exploitation of the numerical features of the resulting optimal control prob-
lems are yet other challenges.

References

1. Abichandani, P., Benson, H., Kam, M.: Multi-vehicle path coordination under communication
constraints. In: American Control Conference, pp. 650–656 (2008)

2. Achtziger, W., Kanzow, C.: Mathematical programs with vanishing constraints: optimality
conditions and constraint qualifications. Math. Program., Ser. A 114, 69–99 (2008)

3. Anitescu, M., Tseng, P., Wright, S.: Elastic-mode algorithms for mathematical programs with
equilibrium constraints: global convergence and stationarity properties. Math. Program., Ser.
A 110, 337–371 (2007)

4. Balas, E.: Disjunctive programming and a hierarchy of relaxations for discrete optimization
problems. SIAM J. Algebr. Discrete Methods 6, 466–486 (1985)

5. Bär, V.: Ein Kollokationsverfahren zur numerischen Lösung allgemeiner Mehrpunktrandwert
aufgaben mit Schalt- und Sprungbedingungen mit Anwendungen in der optimalen Steuerung
und der Parameteridentifizierung. Diploma thesis, Rheinische Friedrich-Wilhelms-Universität
zu Bonn (1983)

6. Barton, P.: The modelling and simulation of combined discrete/continuous processes. Ph.D.
thesis, Department of Chemical Engineering, Imperial College of Science, Technology and
Medicine, London (1992)

7. Baumrucker, B., Biegler, L.: MPEC strategies for optimization of a class of hybrid dynamic
systems. J. Process Control 19(8), 1248–1256 (2009)

On Perspectives and Vanishing Constraints in MIOC 415

8. Belotti, P., Kirches, C., Leyffer, S., Linderoth, J., Luedtke, J., Mahajan, A.: Mixed-integer non-
linear optimization. In: Iserles, A. (ed.) Acta Numerica 2013, vol. 22. Cambridge University
Press, Cambridge (2013). www.optimization-online.org/DB_HTML/2012/12/3698.html

9. Betts, J.: Practical Methods for Optimal Control Using Nonlinear Programming. SIAM,
Philadelphia (2001)

10. Biegler, L.: Solution of dynamic optimization problems by successive quadratic programming
and orthogonal collocation. Comput. Chem. Eng. 8, 243–248 (1984)

11. Biegler, L.: Nonlinear Programming: Concepts, Algorithms, and Applications to Chemical
Processes. Series on Optimization. SIAM, Philadelphia (2010)

12. Bock, H., Longman, R.: Computation of optimal controls on disjoint control sets for minimum
energy subway operation. Adv. Astronaut. Sci. 50, 949–972 (1985)

13. Bock, H., Plitt, K.: A Multiple Shooting algorithm for direct solution of optimal control prob-
lems. In: Proceedings of the 9th IFAC World Congress, pp. 242–247. Pergamon Press, Bu-
dapest (1984)

14. Burgschweiger, J., Gnädig, B., Steinbach, M.: Nonlinear programming techniques for opera-
tive planning in large drinking water networks. Open Appl. Math. J. 3, 1–16 (2009)

15. Ceria, S., Soares, J.: Convex programming for disjunctive optimization. Math. Program. 86,
595–614 (1999)

16. Facchinei, F., Jiang, H., Qi, L.: A smoothing method for mathematical programs with equilib-
rium constraints. Math. Program. 85, 107–134 (1999)

17. Fang, H., Leyffer, S., Munson, T.: A pivoting algorithm for linear programs with complemen-
tarity constraints. Optim. Methods Softw. 87, 89–114 (2012)

18. Ferris, M., Kanzow, C.: Complementarity and related problems: a survey (1998)
19. Fischer, A.: A special Newton-type optimization method. Optimization 24, 269–284 (1992)
20. Fletcher, R., de la Maza, E.S.: Nonlinear programming and nonsmooth optimization by suc-

cessive linear programming. Math. Program. 43(3), 235–256 (1989)
21. Fletcher, R., Leyffer, S.: Solving mathematical programs with complementarity constraints as

nonlinear programs. Optim. Methods Softw. 19(1), 15–40 (2004)
22. Frangioni, A., Gentile, C.: Perspective cuts for a class of convex 0–1 mixed integer programs.

Math. Program., Ser. A 106, 225–236 (2006)
23. Fügenschuh, A., Herty, M., Klar, A., Martin, A.: Combinatorial and continuous models for

the optimization of traffic flows on networks. SIAM J. Optim. 16(4), 1155–1176 (2006)
24. Fukushima, M., Qi, L. (eds.): Reformulation: Nonsmooth, Piecewise Smooth, Semismooth

and Smoothing Methods. Kluwer Academic, Dordrecht (1999)
25. Gerdts, M.: Solving mixed-integer optimal control problems by Branch&Bound: a case study

from automobile test-driving with gear shift. Optim. Control Appl. Methods 26, 1–18 (2005)
26. Gerdts, M.: A variable time transformation method for mixed-integer optimal control prob-

lems. Optim. Control Appl. Methods 27(3), 169–182 (2006)
27. Gerdts, M., Sager, S.: Mixed-integer DAE optimal control problems: necessary conditions

and bounds. In: Biegler, L., Campbell, S., Mehrmann, V. (eds.) Control and Optimization with
Differential-Algebraic Constraints, pp. 189–212. SIAM, Philadelphia (2012)

28. Gill, P., Murray, W., Saunders, M.: SNOPT: an SQP algorithm for large-scale constrained
optimization. SIAM J. Optim. 12, 979–1006 (2002)

29. Göttlich, S., Herty, M., Kirchner, C., Klar, A.: Optimal control for continuous supply network
models. Netw. Heterog. Media 1(4), 675–688 (2007)

30. Gräber, M., Kirches, C., Bock, H., Schlöder, J., Tegethoff, W., Köhler, J.: Determining the op-
timum cyclic operation of adsorption chillers by a direct method for periodic optimal control.
Int. J. Refrig. 34(4), 902–913 (2011)

31. Grossmann, I.: Review of nonlinear mixed-integer and disjunctive programming techniques.
Optim. Eng. 3, 227–252 (2002)

32. Gugat, M., Herty, M., Klar, A., Leugering, G.: Optimal control for traffic flow networks.
J. Optim. Theory Appl. 126(3), 589–616 (2005)

33. Günlük, O., Linderoth, J.: Perspective reformulations of mixed integer nonlinear programs
with indicator variables. Math. Program. 124(1–2), 183–205 (2010)

http://www.optimization-online.org/DB_HTML/2012/12/3698.html

416 M.N. Jung, C. Kirches, and S. Sager

34. Hante, F., Sager, S.: Relaxation methods for mixed-integer optimal control of partial differen-
tial equations. Comput. Optim. Appl. 55(1), 197–225 (2013)

35. Hellström, E., Ivarsson, M., Aslund, J., Nielsen, L.: Look-ahead control for heavy trucks to
minimize trip time and fuel consumption. Control Eng. Pract. 17, 245–254 (2009)

36. Hoheisel, T.: Mathematical programs with vanishing constraints. Ph.D. thesis, Julius-
Maximilians-Universität Würzburg (2009)

37. Jung, M.N., Reinelt, G., Sager, S.: The Lagrangian relaxation for the combinatorial integral
approximation problem. Optim. Methods Softw. (2012, submitted). www.optimization-online.
org/DB_HTML/2012/02/3354.html

38. Kawajiri, Y., Biegler, L.: A nonlinear programming superstructure for optimal dynamic oper-
ations of simulated moving bed processes. Ind. Eng. Chem. Res. 45(25), 8503–8513 (2006)

39. Kirches, C.: Fast Numerical Methods for Mixed-Integer Nonlinear Model-Predictive Control.
Advances in Numerical Mathematics. Springer Vieweg, Wiesbaden (2011)

40. Kirches, C., Sager, S., Bock, H., Schlöder, J.: Time-optimal control of automobile test drives
with gear shifts. Optim. Control Appl. Methods 31(2), 137–153 (2010)

41. Kirches, C., Bock, H., Schlöder, J., Sager, S.: Block structured quadratic programming for the
direct multiple shooting method for optimal control. Optim. Methods Softw. 26(2), 239–257
(2011)

42. Kirches, C., Bock, H., Schlöder, J., Sager, S.: A factorization with update procedures for a
KKT matrix arising in direct optimal control. Math. Program. Comput. 3(4), 319–348 (2011)

43. Kirches, C., Wirsching, L., Bock, H., Schlöder, J.: Efficient direct multiple shooting for non-
linear model predictive control on long horizons. J. Process Control 22(3), 540–550 (2012)

44. Leineweber, D., Bauer, I., Schäfer, A., Bock, H., Schlöder, J.: An efficient multiple shooting
based reduced SQP strategy for large-scale dynamic process optimization (Parts I and II).
Comput. Chem. Eng. 27, 157–174 (2003)

45. Leyffer, S.: Complementarity constraints as nonlinear equations: theory and numerical expe-
rience. In: Optimization with Multivalued Mappings: Theory, Applications, and Algorithms,
pp. 169–208. Springer, Berlin (2006)

46. Leyffer, S., López-Calva, G., Nocedal, J.: Interior methods for mathematical programs with
complementarity constraints. SIAM J. Optim. 17(1), 52–77 (2006)

47. Leyffer, S., Munson, T.: A globally convergent filter method for MPECs. Preprint ANL/MCS-
P1457-0907, Mathematics and Computer Science Division, Argonne National Laboratory, Ar-
gonne, IL, USA (2007)

48. Logist, F., Sager, S., Kirches, C., van Impe, J.: Efficient multiple objective optimal control of
dynamic systems with integer controls. J. Process Control 20(7), 810–822 (2010)

49. Martin, A., Möller, M., Moritz, S.: Mixed integer models for the stationary case of gas network
optimization. Math. Program. 105, 563–582 (2006)

50. Oldenburg, J., Marquardt, W.: Disjunctive modeling for optimal control of hybrid systems.
Comput. Chem. Eng. 32(10), 2346–2364 (2008)

51. Prata, A., Oldenburg, J., Kroll, A., Marquardt, W.: Integrated scheduling and dynamic opti-
mization of grade transitions for a continuous polymerization reactor. Comput. Chem. Eng.
32, 463–476 (2008)

52. Raghunathan, A., Biegler, L.: Mathematical programs with equilibrium constraints (MPECs)
in process engineering. Comput. Chem. Eng. 27, 1381–1392 (2003)

53. Raghunathan, A., Diaz, M., Biegler, L.: An MPEC formulation for dynamic optimization of
distillation operations. Comput. Chem. Eng. 28, 2037–2052 (2004)

54. Ralph, D., Wright, S.J.: Some properties of regularization and penalization schemes for
MPECs. Optim. Methods Softw. 19, 527–556 (2004)

55. Sager, S.: MIOCP benchmark site. mintoc.de
56. Sager, S.: Numerical Methods for Mixed-Integer Optimal Control Problems. Der Andere Ver-

lag, Tönning (2005)
57. Sager, S.: Reformulations and algorithms for the optimization of switching decisions in non-

linear optimal control. J. Process Control 19(8), 1238–1247 (2009)

http://www.optimization-online.org/DB_HTML/2012/02/3354.html
http://www.optimization-online.org/DB_HTML/2012/02/3354.html
http://mintoc.de

On Perspectives and Vanishing Constraints in MIOC 417

58. Sager, S.: On the integration of optimization approaches for mixed-integer nonlinear optimal
control. Habilitation, University of Heidelberg (2011)

59. Sager, S.: A benchmark library of mixed-integer optimal control problems. In: Lee, J., Leyffer,
S. (eds.) Mixed Integer Nonlinear Programming, pp. 631–670. Springer, Berlin (2012)

60. Sager, S., Reinelt, G., Bock, H.: Direct methods with maximal lower bound for mixed-integer
optimal control problems. Math. Program. 118(1), 109–149 (2009)

61. Sager, S., Bock, H., Diehl, M.: The integer approximation error in mixed-integer optimal
control. Math. Program., Ser. A 133(1–2), 1–23 (2012)

62. Scholtes, S.: Convergence properties of a regularization scheme for mathematical programs
with complementarity constraints. SIAM J. Optim. 11, 918–936 (2001)

63. Scholtes, S.: Nonconvex structures in nonlinear programming. Oper. Res. 52(3), 368–383
(2004)

64. Sherali, H.: RLT: a unified approach for discrete and continuous nonconvex optimization. Ann.
Oper. Res. 149, 185–193 (2007)

65. Sonntag, C., Stursberg, O., Engell, S.: Dynamic optimization of an industrial evaporator us-
ing graph search with embedded nonlinear programming. In: Proceedings of the 2nd IFAC
Conference on Analysis and Design of Hybrid Systems (ADHS), pp. 211–216 (2006)

66. Stein, O., Oldenburg, J., Marquardt, W.: Continuous reformulations of discrete-continuous
optimization problems. Comput. Chem. Eng. 28(10), 3672–3684 (2004)

67. Stubbs, R., Mehrotra, S.: Generating convex polynomial inequalities for mixed 0–1 programs.
J. Glob. Optim. 24, 311–332 (2002)

68. Terwen, S., Back, M., Krebs, V.: Predictive powertrain control for heavy duty trucks. In: Pro-
ceedings of IFAC Symposium in Advances in Automotive Control, Salerno, Italy, pp. 451–457
(2004)

69. Wächter, A., Biegler, L.: On the implementation of an interior-point filter line-search algo-
rithm for large-scale nonlinear programming. Math. Program. 106(1), 25–57 (2006)

Scheduling and Routing of Fly-in Safari Planes
Using a Flow-over-Flow Model

Armin Fügenschuh, George Nemhauser, and Yulian Zeng

Abstract The scheduling and routing of small planes for fly-in safaris is a chal-
lenging planning problem. Given a fleet of planes and a set of flight requests with
bounds on the earliest departure and latest arrival times, the planes must be sched-
uled and routed so that all demands are satisfied. Capacity restrictions on the load
and fuel also must be satisfied. Moreover the refueling of the planes, which can
only be done in certain locations, must be scheduled. We present a mixed-integer
linear programming based formulation for this problem. For its solution we develop
a primal heuristic based on randomized local search. We try to enhance the local
search by using exact methods to solve subproblems that only involve a small num-
ber of planes. Using a branch-and-cut solver, the MILP formulation can be solved
to proven optimality only for small instances. To achieve better dual bounds we
present a set partitioning based formulation, where new columns are generated on
demand by heuristics and exact methods. We also present a new formulation where
the time windows are relaxed, and later reintroduced by incumbent branching. Nu-
merical results on real-world instances show that this time-free approach gives the
best results.

A. Fügenschuh (B)
Fakultät für Maschinenbau, Helmut-Schmidt-Universität, Universität der Bundeswehr Hamburg,
Holstenhofweg 85, 22043 Hamburg, Germany
e-mail: fuegenschuh@hsu-hh.de

G. Nemhauser · Y. Zeng
H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology,
755 Ferst Drive NW, Atlanta, GA 30332-0205, USA

G. Nemhauser
e-mail: george.nemhauser@isye.gatech.edu

Y. Zeng
e-mail: yulian@gatech.edu

M. Jünger, G. Reinelt (eds.), Facets of Combinatorial Optimization,
DOI 10.1007/978-3-642-38189-8_17, © Springer-Verlag Berlin Heidelberg 2013

419

mailto:fuegenschuh@hsu-hh.de
mailto:george.nemhauser@isye.gatech.edu
mailto:yulian@gatech.edu
http://dx.doi.org/10.1007/978-3-642-38189-8_17

420 A. Fügenschuh, G. Nemhauser, and Y. Zeng

1 Introduction

Tourism is one of the largest components of the world’s economy, having achieved
astonishing growth rates over the last century. According to the World Tourism Or-
ganization (UNWTO) the number of international arrivals went up from 25 million
in 1950 to 983 million in 2011. With an estimated US$ 1,030 billion, international
tourism receipts had an approximate 6 per cent share of the worldwide exports of
goods and services, and a 30 per cent share when considering the service export mar-
ket only. It is also one of the largest employers in the world with an estimated 100
million employees. For lesser developed countries the income generated by tourism
provides a significant contribution to the gross national product [27]. Our industrial
project partner is a tourism company based in the southern part of Africa. They op-
erate over 50 small planes, such as Beechcraft, Cessna, and Pilatus in five countries.
Their main business is exclusive fly-in safaris. On such safaris their customers are
transported between various remote locations and lodges where they spend a few
hours or days before they are picked up and moved to the next landmark of in-
terest. Long before the tourists arrive the company faces a scheduling and routing
problem: when should the flight requests be served and by which plane. Schedul-
ing planes and tourist requests is a challenging task that currently takes a human
planner several days to do manually. He has to take several restrictions into account.
Naturally the capacity limitations in terms of seats and payload weight of the planes
must not be exceeded. Refueling is a crucial issue. Since most of the “airports” are
in fact nothing more than small runways it must be ensured that the plane always has
enough fuel to reach a destination where refueling is possible. The tourist requests
impose further limitations, such as the number of intermediate stops and the maxi-
mum airtime, which also depend on the price the customers pay for their safari. Most
importantly, earliest departure and latest arrival times have to be obeyed. Taking all
of these factors under consideration, the planner tries to achieve a cheapest possible
solution in terms of operational costs. Our goal is to support the human planner to
achieve better solutions in less time. We accomplished this goal by providing a local
search heuristic, a variation of which is being used by the company.

The air-travel routing and scheduling problem that we present here belongs to
the large class of network design and logistics applications that have been a driving
force behind the development of discrete and combinatorial solution methods since
the early days of our discipline. As a special case it contains one of the most promi-
nent combinatorial problems: the (symmetric) traveling salesman problem (TSP).
Almost six decades ago Dantzig, Fulkerson, and Johnson [7] were able to solve, at
that time, a large-scale instance with 42 cities. It took over 20 years until the 42 cities
record was broken by a young German mathematician who had just left complex
analysis [15] to undertake the solution of difficult real-world problems. Grötschel
was able to solve a 120 cities instance using the valid inequalities he discovered for
the TSP polytope within a branch-and-bound framework [16, 17]. Later Grötschel
and Holland [18] improved this result by solving TSP instances with up to 1,000
cities to optimality. The asymmetric TSP with time-windows (see Ascheuer, Fis-
chetti, and Grötschel [1, 2]) is a generalization of the TSP, which is another special
case of our air-travel routing and scheduling problem.

Scheduling and Routing of Fly-in Safari Planes 421

The air-travel routing and scheduling problem is closely related to an on-demand
air taxi problem considered by Espinoza et al. [9, 10]. Our problem, however, is
more tightly constrained, and seemingly more difficult, primarily because of the
limited number of fueling stations. We are, however, able to obtain feasible solu-
tions by a fast heuristic that includes a greedy construction followed by simple local
search. Then we enhance the local search by solving small subproblems including
only two planes, exactly. Nevertheless those two-plane MILPs are still very difficult
and the remainder of the paper deals with how to solve them. We consider several
approaches. The most promising one removes the time structure of the problem to
obtain a relaxation and then restores the time structure using a branch-and-bound
process. Nevertheless solving these small MILPs only yields minor improvements
and validates the quality of the basic heuristics used in practice.

The remainder of this paper is organized as follows. In Sect. 2 we review the
relevant literature and give a formulation of the air-travel routing and scheduling
problem as a mixed-integer linear program that uses a bi-level flow-over-flow struc-
ture of variables and a time-space network. This model is far too big to solve by
standard mixed-integer programming techniques. In Sect. 3, we give a fast con-
struction and local search heuristic for obtaining primal solutions. A variation of
this heuristic is used by the company. Then to improve the local search capabili-
ties we try to solve small sub-instances exactly. The remainder of the paper deals
with methods for solving these instances. In Sect. 4 we describe aggregation of vari-
ables and valid inequalities to speed up the solution process using a branch-and-cut
solver. We also tried a set partitioning formulation using column generation. Re-
sults on these approaches are reported in Sect. 5. As we will see, these classical
approaches can solve only some of our test instances with two planes, ten airports
and 20 flight requests. A new approach is presented in Sect. 6, which we call the
time-free formulation. This relaxation is embedded in a branch-and-bound search
procedure in Sect. 7. With this approach we obtain better results than with con-
ventional branch-and-cut and column generation approaches and we believe that it
also could be useful for other combinatorial optimization problems on time-space
networks. Further conclusions are given in Sect. 8.

2 A Discrete-Time MILP Model

We give a formulation of the air-travel routing and scheduling problem as an MILP.
Two facts are worth noting about our model. First, it has a bilevel flow-over-flow
structure: There is a “master” flow of planes and a “sub” flow of requests. For both
flows, the classical flow conservation constraints hold. Both flows are coupled by
capacity constraints, so that a sub-flow can only exist on those arcs of the graph
where a master flow of suitable capacity exists. Similar structures occur in several
applications reported in the literature. Wieberneit [29] reviews a number of appli-
cations in service network design for freight transportation. These models typically
have a bi-level structure where “sub”-level variables can only be activated on those

422 A. Fügenschuh, G. Nemhauser, and Y. Zeng

arcs of a network where “master” level variables also take positive values. More
specifically, Fügenschuh, Homfeld, and Schülldorf [13] describe a scheduling prob-
lem for cars in railway freight services where the trains are on the master-level and
the cars on the sub-level. Helmberg and Röhl [19] report a case study of a joint on-
line truck scheduling and inventory management problem for multiple warehouses.
Here pallets can only be transported between warehouses if enough truck capacity
is available. Erera et al. [8] use integer programming based local search for improv-
ing load planning designs in a less-than-truckload freight transportation application.
Barnhart and Shen [3] utilize a bi-level variable structure for a network design prob-
lem for time-critical delivery of logistics services.

Second, our model uses a time-space network formulation, which to the best of
our knowledge was first introduced by Ford and Fulkerson [12] in their analysis of
maximal dynamic flows. Since then, several variants of this basic problem have been
studied, for example, the quickest, minimum cost, or earliest arrival flows, among
many other. For a survey we refer to Kotnyek [21] and the references therein. Many
real-world problems are formulated as time-space network models, see Kennington
and Nicholson [20] for a survey.

2.1 Instance Data

In this section we describe the instance data that is necessary to set up the model.
We denote by P the set of planes, by V the set of airports, and by A ⊆ V ×V the

set of direct trips between two airports. The set of pairs (i, θ), where i ∈ V and θ is
a type of fuel, is denoted by F . R denotes the set of passenger flight requests.

For each plane p ∈ P , the number of seats for passengers is sp , the initial de-
parture airport is Dp and the final arrival airport is Ap , where the plane starts and
ends its tour, the minimum quantity of fuel on board the plane at departure is ϕ

p
,

the maximum quantity of fuel at departure is ϕp , the minimum quantity of fuel on
board of the plane at arrival is ψ

p
, the maximum quantity of fuel at departure is ψp ,

and the required fuel type is ρp .
For each tuple (i, j) ∈ A the air distance is denoted by di,j . It is assumed that

the triangle inequality is satisfied. It is further assumed that all loops (from i to i)
are included in the set A; for such a tuple (i, i) the distance value is 0. For each
tuple (i, θ) ∈ F the fuel availability is denoted by ri,θ ∈ {0,1}, where ri,θ = 1 if and
only if fuel type θ is available at airport i. For each request r ∈ R the given data
consists of the departure airport Dr , the arrival airport Ar , the number of requested
passenger seats sr , the total weight of the request (passengers and luggage) wr ,
and the maximum number of allowed intermediate stops Mr . The maximum detour
allowed for a request in relation to the air distance is denoted by dr .

For a plane p ∈ P on trip (i, j) ∈ A the travel cost is denoted by c
p
i,j . Travel

cost depend on the distance between i and j and the flying cost of plane p per unit
distance. The corresponding fuel consumption is denoted by γ

p
i,j . The maximum

Scheduling and Routing of Fly-in Safari Planes 423

amount of fuel that can be taken during that trip is given by f
p

i,j . It is defined as
the tank’s fuel capacity minus the fuel consumption for the trip from i to j , and the
reserve fuel. The maximum trip payload wp

i,j is defined as the minimum of the max-
imum takeoff payload of plane p at airport i plus the fuel that is consumed during
the trip from i to j and the maximum landing payload for this plane at airport j .
Here the maximum takeoff and landing payload of a plane take into account the
takeoff or landing weight minus the empty weight minus reserve fuel and minus the
weight of the pilot.

In order to set up a discrete time-space network of the scheduling and routing
events we introduce a time discretization. The resolution of time we consider in our
numerical computations is a 5 minute discretization. It is not necessary to consider
smaller time step units because all input time data is aligned to 5 minutes. This
discretization leads to a finite time horizon for each plane p, that is denoted by Tp
and which represents the set of time steps used for this plane. This smallest and
largest element in this set are chosen in such way that the plane is able to reach
any request at its earliest departure time, even if it needs to fly to a refueling airport
before, and that it is able to deliver any request at its latest arrival time, fly to a
refueling airport after that, and finally reach the destination airport where the tour
is finished. The number of travel unit time steps for plane p from i to j is denoted
by δ

p
i,j . It includes the turnover unit time steps at airport j that are necessary to

turn the plane so that it is ready for the next takeoff. For each request r the earliest
departure and latest arrival time steps are derived from the corresponding earliest
departure and latest arrival time data using the same discretization of time. The
requests also have a discrete time horizon, which for request r is defined as the
set Tr .

2.2 The Model Formulation

2.2.1 Variables

To represent the schedule of the planes we introduce variables

∀(i, j) ∈A,p ∈ P, t ∈ Tp : yp,ti,j ∈ {0,1}, (1a)

where y
p,t
i,j = 1 iff plane p flies from i to j and arrives at j at time step t . We

introduce additional binary variables

∀p ∈ P, t ∈ Tp : yp,tdep , y
p,t
arr ∈ {0,1} (1b)

to model the departure resp. arrival of plane p at time step t .
The variables

∀r ∈R, (i, j) ∈Ar ,p ∈ P, t ∈ Tr : xr,p,ti,j ∈ {0,1} (1c)

424 A. Fügenschuh, G. Nemhauser, and Y. Zeng

represent the schedule of the passengers, where xr,p,ti,j = 1 iff all passengers belong-
ing to request r fly from i to j on plane p, arriving at j at time t . Further binary
variables

∀r ∈R,p ∈P, t ∈ Tr : xr,p,tdep , xr,p,tarr ∈ {0,1} (1d)

are introduced to model the departure resp. arrival of request r at time step t using
plane p.

The amount of fuel on plane p ∈ P on the trip (i, j) at the departure at airport i,
arriving at j at time step t is modeled by the continuous variables

∀(i, j) ∈A,p ∈ P, t ∈ Tp : f p,t
i,j ∈R+. (1e)

The amount of fuel on plane p at the first departure and at the last arrival is modeled
by the continuous variables

∀p ∈ P, t ∈ Tp : f p,t
dep , f

p,t
arr ∈R+. (1f)

The weight of plane p at time step t while flying from i to j is modeled by the
continuous variables

∀p ∈P, t ∈ Tp, (i, j) ∈A :wp,t
i,j ∈ R+. (1g)

2.2.2 Objective

The objective is to minimize the operating costs of the planes given by:

∑

(i,j)∈A

∑

t∈T

∑

p∈P
c
p
i,j · yp,ti,j → min. (1h)

2.2.3 Constraints

Scheduling and Routing of Planes Each plane p departs in exactly one time step
at the initial airport:

∀p ∈P :
∑

t∈Tp
y
p,t
dep = 1. (1i)

Plane p arrives in exactly one time step at the final airport:

∀p ∈P :
∑

t∈Tp
yp,tarr = 1. (1j)

For each airport j , plane p and at each time step t the following flow conservation
constraints must hold. These constraints ensure that a plane at j that either comes
from another airport i or is deployed there for the first time is either finishing its

Scheduling and Routing of Fly-in Safari Planes 425

trip, waiting at airport j for one time step, or continues its journey to another airport
k, where it will arrive at a future time step that corresponds to the turnover time and
flight time:

∀j ∈ V,p ∈P, t ∈ Tp :
∑

i:(i,j)∈A
y
p,t
i,j +

{
y
p,t
dep , if j =Dp,

0, else,

=
∑

k:(j,k)∈A
t+δ

p
j,k∈Tp

y
p,t+δ

p
j,k

j,k +
{
y
p,t
arr , if j =Ap,

0, else.
(1k)

Scheduling and Routing of Requests Tourists of request r start their trips at or
after the earliest starting time. For this trip, exactly one plane is selected:

∀r ∈ R :
∑

p∈P

∑

t∈Tr
x
r,p,t
dep = 1. (1l)

They finish their trip no later than the latest arrival time:

∀r ∈ R :
∑

p∈P

∑

t∈Tr
xr,p,tarr = 1. (1m)

Flow conservation constraints must hold for the requests:

∀j ∈ V, r ∈ R, t ∈ Tr ,p ∈P :
∑

i:(i,j)∈Ar

x
r,p,t
i,j +

{
x
r,p,t
dep , if j =Dr,

0, else,

=
∑

k:(j,k)∈Ar

t+δ
p
j,k∈Tr

x
r,p,t+δ

p
j,k

j,k +
{
x
r,p,t
arr , if j =Ar,

0, else.
(1n)

Routing Restrictions for Requests The number of intermediate stops for the
passengers is limited:

∀r ∈R :
∑

(i,j)∈Ar

i 	=j

∑

p∈P

∑

t∈Tr
x
r,p,t
i,j ≤Mr + 1. (1o)

The maximal detour for passengers compared to a direct flight is bounded:

∀r ∈ R :
∑

(i,j)∈Ar

∑

p∈P

∑

t∈Tr
di,j · xr,p,ti,j ≤ dr . (1p)

426 A. Fügenschuh, G. Nemhauser, and Y. Zeng

Coupling of Planes and Requests The plane flows and the request flows are
coupled by seat capacity constraints:

∀(i, j) ∈ A,p ∈ P, t ∈ Tp :
∑

r∈R:(i,j)∈Ar ,t∈Tr
sr · xr,p,ti,j ≤ sp · yp,ti,j , (1q)

hence if a subset of the requests uses a certain path at a certain time in a certain
plane, that plane must use the same path at the very same time, and it must offer
enough seats to carry all of the passengers.

Fuel Consumption and Refueling We introduce a flow conservation formulation
to track the amount of fuel in a plane’s tank. If a plane p does not use a certain trip
(i, j) at time step t , then corresponding the fuel variable cannot take a positive value:

∀(i, j) ∈A,p ∈P, t ∈ Tp : f p,t
i,j ≤ f

p

i,j · yp,ti,j . (1r)

For airports that are non-refueling airports for the plane, the following flow conser-
vation constraint must hold:

∀j ∈ V,p ∈P, t ∈ Tp, rj,ρp = 0 :
∑

i:(i,j)∈A
f
p,t
i,j +

{
f
p,t
dep , if j =Dp,

0, else,

=
∑

k:(j,k)∈A
t+δ

p
j,k∈Tp

(
f
p,t+δ

p
j,k

j,k + γ
p
j,k · yp,t+δ

p
j,k

j,k

)+
{
f
p,t
arr , if j =Ap,

0, else.
(1s)

For airports that are refueling airports for the plane, we have a relaxation of the flow
conservation constraints that allow for a refueling:

∀j ∈ V,p ∈P, t ∈ T , rj,ρp = 1 :
∑

i:(i,j)∈A
f
p,t
i,j +

{
f
p,t
dep , if j =Dp,

0, else,

≤
∑

k:(j,k)∈A
t+δ

p
j,k∈Tp

(
f
p,t+δ

p
j,k

j,k + γ
p
j,k · yp,t+δ

p
j,k

j,k

)+
{
f
p,t
arr , if j =Ap,

0, else.
(1t)

Scheduling and Routing of Fly-in Safari Planes 427

The fuel limits at departure and arrival airports for each plane p must be obeyed:

∀p ∈ P, t ∈ Tp :

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ϕ
p

· yp,tdep ≤ f
p,t
dep ,

f
p,t
dep ≤ ϕp · yp,tdep ,

ψ
p

· yp,tarr ≤ f
p,t
arr ,

f
p,t
arr ≤ψp · yp,tarr .

(1u)

A formulation similar to the one above for fuel consumption was also used by
Ascheuer, Fischetti, and Grötschel [1, 2] in a model for the single-vehicle travel-
ing salesman problem with time-windows. Ascheuer et al. give credit to Maffioli
and Sciomachen [22] resp. van Eijl [28]. In fact, it is much older since it was used
by Gavish and Graves [14] in a model for the vehicle routing problem with time
windows.

Weight Restrictions The maximum takeoff and landing weights for the plane
depends on the performance of the plane and also on the airport (its runway length
and the height of the trees in surrounding forests). The payload weight (passengers
with baggage and fuel) is computed by the following constraints:

∀(i, j) ∈ A,p ∈P, t ∈ Tp :wp,t
i,j =

∑

r∈R:(i,j)∈Ap,t∈Tr
wr · xr,p,ti,j + f

p,t
i,j . (1v)

We have a bound on the plane’s maximum allowable takeoff and landing payload
weight. This bound limits the payload weight at the departure airport and takes into
account the fuel that is burned while traveling to the arrival airport:

∀(i, j) ∈A,p ∈ P, t ∈ Tp :wp,t
i,j ≤w

p
i,j · yp,ti,j . (1w)

3 A Primal Heuristic

The MILP given in Sect. 2 cannot be solved even for obtaining good solutions for
the size of instances needed which have 20 planes and 120 requests per day over a
7 day period. Thus for the practical application, it is necessary to design a primal
heuristic that will hopefully yield good solutions.

We developed and implemented a primal heuristic that tries to generate feasible
solutions. This heuristic mimics in part a human planner who constructs schedules
for planes and requests from scratch, and it has a local search phase to improve
the schedule afterward. The procedure consists of two parts: a construction first
phase and a local search second phase. Both phases use a randomized greedy search
procedure, that inserts a request in the locally best position of the current partial
schedules. Below we describe the details of these heuristic algorithms. Since the
algorithm has random components, it is repeated several times and then the solution
with lowest cost is selected.

428 A. Fügenschuh, G. Nemhauser, and Y. Zeng

Insertion Heuristic The insertion heuristic is a randomized greedy-type algo-
rithm. Given a request and the partially constructed schedules of a set of planes,
it tries to insert the request by selecting two of its trips and inserting the new re-
quest between them. An insertion is valid only if the time window constraints, plane
capacity constraints, intermediate stops constraints, and weight constraints are not
violated. The algorithm enumerates all possible positions for all planes to insert the
request and sets the valid insertions on a list. Finally one insertion from this list is
randomly selected, where cheaper insertions (with respect to the increase of cost in
the objective function) have a higher priority.

Construction Phase The basic idea of the construction phase is to build sched-
ules sequentially by finding the locally best request-plane-pair with respect to some
evaluation measure at each step. At the beginning each plane starts with an empty
schedule. Then the following steps are repeated iteratively until all requests are
scheduled. For each unscheduled request the insertion heuristic is called to iden-
tify the locally best plane to which the request can be assigned. In this way the
locally best request-plane-pair is found. When inserting this request, the increase of
the objective function is the least among all other potential insertions. Whenever the
fuel level of a plane is too low then a trip to the nearest refueling location is inserted.
Requests which then become infeasible because of too many intermediate stops are
removed from the current schedule and have to be re-scheduled again. This might
lead to cycling, so the heuristic terminates without a solution if a given iteration
limit is reached. The pseudocode description of the construction phase is given in
Algorithm 1. It uses Algorithm 2 and Algorithm 3 as subroutines.

Local Search Phase The reinsertion local search procedure starts with given fea-
sible schedules for all requests. It iteratively removes and reinserts requests. In order
to identify one or several requests that are suitable for removing and rescheduling,
it applies different strategies, for example, removing a single request, all requests
of one trip, or requests of several consecutive trips. Requests marked for removal
are randomly selected, where preference is given to those requests that, by some
measure, contribute high cost to the schedule. The removed requests are added to
a list. Then they are re-added to the existing schedules using the same rules as in
the construction phase. When fuel violations occur, a trip to the nearest refueling
airport is scheduled. If this leads to further constraint violations for some requests,
the respective requests are also removed from the schedule and added to the list
of unscheduled requests. When all requests are rescheduled again, if the total cost
has decreased we continue from the new schedule, if not we undo the most recent
changes and continue with the previous schedule. Then we repeat this process from
the beginning of the local search phase until a limit on the number of iterations is
reached. The pseudocode description of the local search phase is given in Algo-
rithm 4.

Scheduling and Routing of Fly-in Safari Planes 429

Algorithm 1: Construction Phase
Data: an instance of the air-travel scheduling problem
Initialize each plane with an empty schedule;
if the plane does not start at a refuel point then

Add one flight to the nearest refuel point
end
while list of requests is not empty do

CurrentRequest ← first element in list of requests;
CandidatePlane ← getCandidatePlaneForRequest(CurrentRequest, Planes);
if CandidatePlane is not Null then

improvement ← true
end
else

improvement ← false
end
ite ← 0;
while improvement is true and ite < MaxIteration do

ite++;
CandidatePlaneCostIncrease ← increase in cost of CandidatePlane schedule after
inserting CurrentRequest;
RemainingRequests ← list of requests;
Remove CurrentRequest from RemainingRequests;
CandidateRequest ← getCandidateRequestForPlane(CandidatePlane,
RemainingRequests);
if CandidateRequest is not Null then

CandidateRequestCostIncrease ← increase in cost of CandidatePlane
schedule after inserting CandidateRequest

end
else

improvement ← false
end
if improvement is true and
LocallyBestRequestScheduleCostIncrease/LocallyBestPlaneScheduleCostIncrease
< CriticalRatio then

CurrentRequest ← CandidateRequest;
CandidatePlane ← getCandidatePlaneForRequest(CurrentRequest, Planes);
if CandidatePlane is not Null then

improvement ← true
end
else

improvement ← false
end

end
else

improvement ← false
end

end
if CurrentRequest is not Null and CandidatePlane is not Null then

Update schedules with CurrentRequest and CandidatePlane
end

end

430 A. Fügenschuh, G. Nemhauser, and Y. Zeng

Algorithm 2: getCandidatePlaneForRequest
Data: a request and a list of planes
Tentatively insert request to the schedule of each plane;
if any feasible schedules are found then

return plane of schedule with smallest increase in cost
end
else

return Null
end

Algorithm 3: getCandidateRequestForPlane
Data: a plane and a list of requests
Tentatively insert each request to the schedule of plane;
if any feasible schedules are found then

return request which leads to the smallest increase in cost
end
else

return Null
end

3.1 Test Instances and Computational Results

We gathered 24 test instances, each of which is defined by a subset of requests
flown on a single day by two planes, see Table 1. By reassigning these requests
to the two planes we aim to re-optimize a given feasible schedule by local search.
The two planes are chosen to have likely opportunities for cost improvements by
switching some requests between them, for example, they operate over the course
of the day in close proximity. The planes are of two different sizes: The Cessna
C206 is a 5-seater with an operating range of about 1,000 km, and the Cessna C208
is a 12-seater with an operating range of about 1,500 km. The instances have be-
tween 8 and 13 airports and between 10 and 23 requests to be scheduled. The size
of the respective time-space mixed-integer linear programs in terms of number of
variables, constraints, and non-zeros are given in the next columns. On average, the
MILPs have 223819 variables (approx. 80 % binary and 20 % continuous), 144678
constraints, and 1069674 non-zero entries in the constraint matrix (which is an aver-
age fill of less than 0.0033%). The objective function values of the primal solutions
found by the heuristic are shown in the right-most column of Table 1.

The primal feasible solutions are used as initial solutions for the branch-and-
bound process. We use IBM ILOG CPLEX 12.4 as our MILP solver on a quad
core Intel Core i7 CPU 870 with 2.93 GHz and 8 MB cache running the Linux

Scheduling and Routing of Fly-in Safari Planes 431

Algorithm 4: Local Search Phase
Data: an instance of the air-travel scheduling problem and a feasible solution
ite ← 0;
improvement ← true;
while improvement is true and ite < MaxIteration do

improvement ← false;
ite++;
RequestsGroup ← empty list;
foreach Schedule in list of schedules do

foreach consecutive three flights do
Put all requests in the flights into a RequestGroup, and add the
RequestGroup to RequestsGroup;

end
end
foreach RequestGroup in RequestsGroup do

Remove all requests in RequestGroup from the list of schedules;
Handle fuel violations if there are any;
foreach Request in RequestGroup do

Reinsert Request into the locally best position;
end
Calculate the operation cost of new schedules;
If there are any requests that failed to be reinserted, add a penalty cost;
if new cost is smaller than old cost then

Accept the new schedule;
improvement ← true;

else
Reject the new schedule;

end
end

end

operating system. Results for this solver are presented in Table 2. It turns out that
the MILP solver is barely able to handle these instances. On average it took almost
300 seconds to solve just the root LP relaxation. The gap between the LP lower
bound and the heuristic upper bound is 22.44 %. For the subsequent branch-and-cut
process a time limit of 3 hours (10800 seconds) was given. Only in five out of the
24 instances was the solver able to start branching. All the other instances got stuck
in the cutting plane phase at the root node. However, the gap could be reduced to
13.04 % by adding these cutting planes, and in three cases optimality of the primal
solution was proven. Moreover, a better primal solution was found for only one
instance, specifically the only one in which more than a few nodes in the tree were
evaluated.

432 A. Fügenschuh, G. Nemhauser, and Y. Zeng

Table 1 Test instances and primal solutions found by the heuristic

Instance Planes
(5s, 12s)

Airports Requests Variables Constraints Non-zeros Primal
solution

BUF-AIV 1, 1 10 11 158926 103350 756684 12614

BUF-ANT 1, 1 12 12 290998 216908 1354526 20724

BUF-BEE 1, 1 12 16 297356 176884 1447721 17633

BUF-BOK 1, 1 10 13 181882 114426 871538 12917

BUF-EGL 0, 2 12 17 351406 199744 1724375 22113

BUF-GNU 0, 2 12 18 299676 144700 1506505 17350

BUF-JKL 1, 1 12 14 296660 193292 1416232 20774

BUF-LEO 0, 2 13 23 505160 254866 2523918 24938

BUF-NAS 0, 2 10 11 161054 106248 767104 15931

BUF-OWL 1, 1 12 13 282794 195232 1334779 16898

BUF-ZEB 0, 2 10 11 157406 101280 752739 15925

EGL-BEE 1, 1 10 11 177190 132344 822825 16653

EGL-GNU 0, 2 9 13 151319 102283 713795 20238

EGL-LEO 0, 2 9 18 204772 123848 985122 19388

GNU-BEE 1, 1 9 12 125110 92942 580597 11311

GNU-JKL 1, 1 9 10 123152 99340 557441 11098

GNU-LEO 0, 2 12 19 358394 204280 1759808 18450

LEO-AIV 1, 1 8 12 129856 101800 589914 13615

LEO-ANT 1, 1 8 13 132508 102220 603641 17381

LEO-BEE 1, 1 11 17 291405 192755 1389432 18890

LEO-BOK 1, 1 9 14 186362 138914 862180 15372

LEO-JKL 1, 1 9 15 182533 128993 852243 17551

LEO-NAS 1, 1 9 12 155494 122560 708084 18231

LEO-OWL 1, 1 9 14 170231 123065 790973 15827

Average 10 14 223819 144678 1069674 17160

4 Improving the Dual Bound

We tried to improve the solution process by aggregating variables, which results in a
more compact formulation (although it has a weaker LP relaxation), and by adding
additional valid inequalities.

4.1 Aggregated Weight Variables

Aggregation of variables is a well-known presolve technique to speed-up the solu-
tion of MILPs (Marchand and Wolsey [23]). Here we apply it to the time and trip
dependent weight variables wp,t

i,j . As a first step we aggregate the trip index (i, j) to

Scheduling and Routing of Fly-in Safari Planes 433

Table 2 Computational results for the discrete time model using the disaggregated time-trip-
dependent weight formulation

Instance Root
time

Obj. val. Gap b&c
time

Nodes Dual bd. Obj. val. Gap

BUF-AIV 267 10682 15.32 % 10800 0 11482 12614 8.97 %

BUF-ANT 444 15116 27.06 % 10800 0 16118 20724 22.22 %

BUF-BEE 636 10721 39.2 % 10800 0 12790 17633 27.47 %

BUF-BOK 257 10862 15.91 % 10800 0 12859 12917 0.45 %

BUF-EGL 455 16790 24.07 % 10800 0 17817 22113 19.42 %

BUF-GNU 499 12135 30.06 % 10800 0 12915 17350 25.56 %

BUF-JKL 1165 13544 34.8 % 10800 0 15371 20774 26.01 %

BUF-LEO 802 19384 22.27 % 10800 0 20057 24938 19.57 %

BUF-NAS 327 10462 34.33 % 10803 0 11098 15931 30.34 %

BUF-OWL 781 12599 25.44 % 10800 0 14050 16898 16.86 %

BUF-ZEB 430 11498 27.8 % 10800 0 12908 15925 18.95 %

EGL-BEE 44 16344 1.85 % 2227 0 16653 16653 0.00 %

EGL-GNU 76 11228 44.52 % 10800 0 16899 20238 16.50 %

EGL-LEO 112 18044 6.93 % 10800 0 19194 19388 1.00 %

GNU-BEE 127 7375 34.8 % 10800 0 10820 11311 4.34 %

GNU-JKL 54 8423 24.1 % 3145 0 11098 11098 0.00 %

GNU-LEO 172 13075 29.13 % 10800 0 14057 18450 23.81 %

LEO-AIV 33 12224 10.21 % 10800 1 13054 13615 4.12 %

LEO-ANT 38 14057 19.13 % 10800 5 16190 17381 6.85 %

LEO-BEE 206 16937 10.39 % 10800 0 17882 18890 5.39 %

LEO-BOK 72 13294 13.52 % 10800 5 14531 15372 5.48 %

LEO-JKL 66 15728 10.39 % 10800 0 17490 17551 0.35 %

LEO-NAS 9 12835 29.6 % 10815 174 12849 18192 29.37 %

LEO-OWL 29 14621 7.62 % 2241 5 15827 15827 0.00 %

Average 296 13249 22.44 % 9768 8 14750 17158 13.04 %

an airport index i introducing variables wp,t
i , and as a second step we also omit the

airport index to obtain a time dependent variable wp,t only.

4.1.1 Time-Airport-Dependent Weight Variables

Instead of variable wp,t
i,j we introduce variables that only depend on the airport i:

∀i ∈ V,p ∈P, t ∈ Tp :wp,t
i ∈R+. (2a)

434 A. Fügenschuh, G. Nemhauser, and Y. Zeng

Now the payload weight (passengers with baggage and fuel) is computed by

∀i ∈ V,p ∈ P, t ∈ Tp :wp,t
i =

∑

r∈R:t∈Tr

∑

j :(i,j)∈Ap

wr · xr,p,ti,j +
∑

j :(i,j)∈A
f
p,t
i,j . (2b)

And as bounds on the payload weight we then get

∀i ∈ V,p ∈P, t ∈ Tp :wp,t
i ≤

∑

j :(i,j)∈A
w
p
i,j · yp,ti,j . (2c)

4.1.2 Time-Dependent Weight Variables

This is the highest aggregation level for the weight variables. Instead of variable
w
p,t
i,j we introduce variables

∀p ∈P, t ∈ Tp :wp,t ∈ R+. (3a)

Then the payload weight (passengers with baggage and fuel) is computed as

∀p ∈P, t ∈ Tp :wp,t =
∑

r∈R:t∈Tr

∑

(i,j)∈Ap

wr · xr,p,ti,j +
∑

(i,j)∈A
f
p,t
i,j , (3b)

and the weight is bounded by

∀p ∈P, t ∈ Tp :wp,t ≤
∑

(i,j)∈A
w
p
i,j · yp,ti,j . (3c)

4.2 Valid Inequalities

Valid inequalities, or cutting planes, are known to speed up the solving of MILPs
(Marchand et al. [24], Cornuejols [6]). We describe additional valid inequalities for
the air-travel routing and scheduling problem, and discuss how much they contribute
to the solution process.

4.2.1 Minimum Fuel Cuts

When landing at airport i each plane p needs at least enough fuel to get from there
to the nearest refueling location. Hence we define the minimum amount of fuel as

mi,p := min
{
γ
p
i,j : (i, j) ∈A, rj,ρp = 1

}
. (4)

This value is used as a lower bound for the amount of fuel:

∀(i, j) ∈A,p ∈P, t ∈ Tp :mi,p · yp,ti,j ≤ f
p,t
i,j . (5)

Scheduling and Routing of Fly-in Safari Planes 435

4.2.2 Minimum Number of Fuel-Stop Cuts

If the amount of fuel that is required at the arrival airport is higher than the amount
at the departure airport, then the plane needs to visit a suitable refueling airport at
least once during its schedule. Therefore it has to arrive at one of these airports,

∀p ∈ P, ϕp − γ
p
Dp,Ap

< ψ
p

:
∑

t∈Tp

∑

(i,j)∈A
i 	=j,rj,ρp=1

y
t,p
i,j ≥ 1 (6)

and it has to leave these airports, unless it is the final destination airport for the
plane:

∀p ∈ P, ϕp − γ
p
Dp,Ap

< ψ
p

:
∑

t∈Tp

∑

(i,j)∈A
i 	=j,ri,ρp=1

y
t,p
i,j +

{∑
t∈Tp y

p,t
arr , if rAp,ρp = 1

0, else,
≥ 1. (7)

4.2.3 Maximum Number of Pickup and Delivery Cuts

The number of stops at non-refueling airports is bounded from above. For the pickup
stops that is,

∀i ∈ V,
∑

(i,θ)∈F
ri,θ = 0 :

∑

j :(i,j)∈A
i 	=j

∑

p∈P

∑

t∈Tp
y
p,t
i,j ≤ ∣∣{p ∈P : i =Dp}∣∣+ ∣∣{r ∈R : i ∈ {Dr,Ar}

∣∣, (8)

and for the delivery stops that is

∀j ∈ V,
∑

(j,θ)∈F
rj,θ = 0 :

∑

i:(i,j)∈A

∑

p∈P

∑

t∈Tp
y
p,t
i,j ≤ ∣∣{p ∈ P : j =Ap}∣∣+ ∣∣{r ∈R : j ∈ {Dr,Ar}

∣∣. (9)

4.3 Computational Results

Computational results for the aggregated weight formulation and all valid inequali-
ties together are shown in Table 3. The time for solving the root LP relaxation went

436 A. Fügenschuh, G. Nemhauser, and Y. Zeng

Table 3 Computational results for the discrete time model using the aggregated time-dependent
weight formulation and all valid inequalities

Instance Root
time

Dual bd. Gap b&c
time

Nodes Dual bd. Obj. val. Gap

BUF-AIV 202 10902 13.57 % 10800 0 11727 12614 7.03 %

BUF-ANT 212 15229 26.51 % 10970 0 15893 20724 23.31 %

BUF-BEE 211 11702 33.64 % 10800 0 15051 17633 14.64 %

BUF-BOK 201 11044 14.5 % 10800 1 11914 12917 7.77 %

BUF-EGL 301 17091 22.71 % 10800 0 17091 22113 22.71 %

BUF-GNU 608 12925 25.5 % 10800 0 13505 17350 22.16 %

BUF-JKL 1187 13934 32.92 % 10800 0 16870 20774 18.79 %

BUF-LEO 771 19377 22.3 % 10800 0 20057 24938 19.57 %

BUF-NAS 153 10933 31.37 % 10875 0 11965 15931 24.90 %

BUF-OWL 880 12521 25.9 % 10800 0 12775 16898 24.40 %

BUF-ZEB 149 11697 26.55 % 10821 0 12597 15925 20.90 %

EGL-BEE 5 16519 0.8 % 422 0 16653 16653 0.00 %

EGL-GNU 82 11555 42.9 % 10818 1 16214 20238 19.88 %

EGL-LEO 43 18970 2.15 % 1744 0 19388 19388 0.00 %

GNU-BEE 56 7323 35.26 % 10800 0 10117 11311 10.56 %

GNU-JKL 58 8620 22.33 % 10800 0 10986 11098 1.01 %

GNU-LEO 307 13394 27.4 % 10899 0 13855 18450 24.91 %

LEO-AIV 24 13033 4.27 % 10800 8 13251 13615 2.67 %

LEO-ANT 88 14748 15.15 % 10800 3 15899 17381 8.53 %

LEO-BEE 184 17118 9.43 % 10800 3 17761 18890 6.03 %

LEO-BOK 91 13908 9.52 % 10800 0 13908 15372 9.52 %

LEO-JKL 99 15891 9.46 % 10870 3 16929 17551 3.55 %

LEO-NAS 4 18076 0.85 % 1005 1 18192 18192 0.00 %

LEO-OWL 16 15135 4.37 % 956 0 15827 15827 0.00 %

Average 247 13819 19.14 % 9191 0 14934 17158 12.20 %

down from 295 seconds to 247 seconds on average, and the root gap improved from
22.44 % to 19.14 %. Still, the solver was only able to finish the cutting plane phase
at the root node (and started the branch-and-bound phase) for a few instances. For
four (instead of three before) instances global optimality was proven, and on average
the integrality gap when reaching the time limit improved from 13.04 % to 12.20 %.
No better primal solutions were found for any instances. From these computational
results we can conclude that solving a standard MILP for these problems does not
yield good solutions in a reasonable amount of time. We next consider a column
generation approach.

Scheduling and Routing of Fly-in Safari Planes 437

5 A Set Partitioning Formulation

Set partitioning formulations are a way to tackle network design problem because
their LP relaxations generally give tighter bounds and frequently good primal so-
lutions can be found efficiently. For example, Borndörfer, Grötschel, and Pfetsch
[5] used a column generation approach for line planning in public transport. Usu-
ally these formulations lead to constraint matrices with a small number of rows but
an exponential number of columns that cannot be generated explicitly. Instead, one
uses a small subset of initial columns and generates more columns on demand by
solving a pricing problem at each iteration. For a general introduction to column
generation in integer programming we refer to Barnhart et al. [4] and for a historical
survey to Nemhauser [25].

Set partitioning problems are integer programming problems of the general form

min cT z

s.t. Az= 1, (10)

z ∈ {0,1}n,
where A ∈ {0,1}m×n and c ∈ R

n+, see [26]. We can reformulate the air-travel
scheduling problem as such a set partitioning problem. The columns of A repre-
sent feasible schedules for a single plane, and the rows of A represent either the
index of the respective request or the index of the respective plane. For example, the
column

request#1 ..
request#2 ..
request#3 ..
request#4 ..

plane#1 ..
plane#2 ..

⎡

⎢⎢⎢⎢⎢⎢⎣

1
0
0
1
0
1

⎤

⎥⎥⎥⎥⎥⎥⎦
(11)

represents a schedule for the second plane which serves requests one and four. Note
that in each column of A exactly one row corresponding to the planes has the en-
try 1, whereas the number of ones in the rows corresponding to the requests can
vary between zero and the number of requests. Moreover, the detailed scheduling
information, that is, the ordering of the requests and the sequence of airports, the
time windows, and the fueling issues, are not stored directly in the column. Only
columns that fulfill all these hard restrictions are allowed to be included in the ma-
trix A. The variable zi ∈ {0,1} specifies if column i is chosen in a solution (zi = 1)
or not (zi = 0). The overall goal of the set partitioning problem is to choose a subset
of columns such that each plane is deployed once, each request is scheduled once,
and the overall cost is minimized.

The number of possible schedules for each plane is too large to set up matrix
A directly, although an optimal solution consists of just a very small number of
columns, that is, only as many columns as planes are chosen. A column generation
approach is used to overcome this difficulty. At the beginning only a few columns

438 A. Fügenschuh, G. Nemhauser, and Y. Zeng

are used to set up an initial matrix A. In our case we transform the solution found
by our primal heuristic into columns for A. Then the LP relaxation of (10) is solved.
Denote by λr for r ∈ R the dual variables of the request rows, and by μp for p ∈ P
the dual variables of the plane rows. The reduced cost rci of a column ai,· of A
representing a feasible schedule is defined as

rci := oci −
∑

r∈R
λrai,r −

∑

p∈P
μpai,p, (12)

where oci are the operational cost of the schedule as defined by (1h). We need to
determine if there exists a new column representing a feasible schedule that still has
negative reduced cost.

This column generation MILP is first solved by a modification of our primal
heuristic. The previous objective function is replaced by (12). If the new schedules
correspond to columns with negative reduced cost then these columns are added to
the matrix A, and the LP relaxation is re-optimized. If no further column with neg-
ative reduced cost is identified then we start searching for columns with a modified
version of the air-travel routing and scheduling model.

This MILP is solved once for each plane p ∈P . Its objective function for a fixed
p is

∑

(i,j)∈A

∑

t∈T
c
p
i,j · yp,ti,j −

∑

r∈R
λrαr −μp → min. (13)

Here αr ∈ {0,1} for each r ∈ R is a new binary variable, where αr = 1 if and only
if request r is transported. The constraints are as before with two exceptions: The
constraints (1l) and (1m) are replaced by

∀r ∈ R :
∑

t∈Tr
x
r,p,t
dep = αr, (14)

and

∀r ∈ R :
∑

t∈Tr
xr,p,tarr = αr, (15)

respectively. All of the other constraints the same, except that the summations or
quantifiers over the set of P are removed, since this column generation MILP is set
up for a fixed p (and has to be repeated for each p separately).

The MILP is then solved until the first feasible solution with a negative objective
function value occurs, if such a solution exists. The vector (αr)r∈R is then added to
matrix A as a new column. If no such vector exists for any p ∈ P then all columns
have non-negative reduced cost and no further “promising” column exists, hence
the column generation method terminates. The objective function value of the set
partitioning LP relaxation then is a lower bound on the objective function value of
the plane scheduling problem. As a heuristic we can then solve the set partitioning
problem to integer optimality which in some cases gives better primal solutions.
However, one cannot expect that this integer solution is a global optimal solution. If

Scheduling and Routing of Fly-in Safari Planes 439

Table 4 Computational results for the column generation approach using heuristic and exact meth-
ods to generate new columns

Instance Heur.
col.

Heur.
time

MIP
col.

MIP
time

Cols. Time Sp. LP
val.

Sp. sol.
val.

Gap

BUF-AIV 37 83 10 37964 47 38047 n.a. 12614 n.a.

BUF-ANT 55 47 0 20000 55 20047 n.a. 20615 n.a.

BUF-BEE 278 134 0 20000 278 20134 n.a. 17633 n.a.

BUF-BOK 49 84 9 34979 58 35062 n.a. 12917 n.a.

BUF-EGL 178 47 0 20000 178 20047 n.a. 21638 n.a.

BUF-GNU 305 166 0 20000 305 20166 n.a. 17350 n.a.

BUF-JKL 172 51 0 20000 172 20051 n.a. 20374 n.a.

BUF-LEO 436 180 0 20000 436 20180 n.a. 24938 n.a.

BUF-NAS 227 99 0 20000 227 20099 n.a. 15122 n.a.

BUF-OWL 77 51 4 35181 81 35233 n.a. 16649 n.a.

BUF-ZEB 155 42 1 27828 156 27870 n.a. 15925 n.a.

EGL-BEE 98 103 14 1589 112 1693 16653 16653 0.00 %

EGL-GNU 122 98 10 39210 132 39309 n.a. 19638 n.a.

EGL-LEO 616 274 8 2648 624 2922 19388 19388 0.00 %

GNU-BEE 103 75 4 25090 107 25164 n.a. 11165 n.a.

GNU-JKL 55 20 0 20000 55 20020 n.a. 11098 n.a.

GNU-LEO 472 178 0 20000 472 20178 n.a. 18450 n.a.

LEO-AIV 71 95 4 985 75 1080 13615 13615 0.00 %

LEO-ANT 149 196 11 26674 160 206870 n.a. 17381 n.a.

LEO-BEE 299 163 3 32867 302 33030 n.a. 18890 n.a.

LEO-BOK 177 95 4 21588 181 21683 n.a. 15372 n.a.

LEO-JKL 175 240 27 39606 202 39846 n.a. 17551 n.a.

LEO-NAS 80 77 1 4 81 81 18192 18192 0.00 %

LEO-OWL 68 54 6 21131 74 21186 n.a. 15827 n.a.

this is desired the column generation process needs to be integrated into a branch-
and-bound process itself, which leads to a branch-and-price method.

The results of the column generation set partitioning reformulation are summa-
rized in Table 4. The heuristic solution is used as the initial columns for matrix A.
The next two columns show the results of the heuristic used for column generation:
The number of columns generated over all iterations, and the CPU time used for the
heuristic. When the heuristic does not find any new columns with negative reduced
cost, the exact MILP is called. In the fourth and fifth column of the table we give
the number of columns found by the MILP and the CPU used to solve the MILPs.
The next two columns show the total number of generated columns and the total
CPU time. If the method terminates and no more columns with negative reduced
cost were found, then it is possible to obtain a meaningful lower bound from solv-
ing the LP relaxation of the set partitioning problem. This happens in four out of

440 A. Fügenschuh, G. Nemhauser, and Y. Zeng

24 cases, including one case for which the previous branch-and-cut approach could
not prove optimality. In these cases the LP relaxation yields a bound that equals the
optimal integer solution, hence it proves the global optimality of the solution. In
three cases out of the four the heuristic primal solution is indeed a global optimal,
and in one case it could be slightly improved. However, in 20 out of 24 cases the
column generation process did not terminate properly, because in these cases the
pricing mixed-integer linear problem could not be solved within a given time limit
of 10,000 seconds (for each of the two planes). Thus there might exist columns with
negative reduced cost, and therefore a lower bound could not be determined from
the set partitioning LP relaxation. Still it is possible to solve this problem to integer
optimality, which in seven of 20 cases gave a better primal feasible solution. The set
partitioning/column generation approach gives slightly better results than trying to
solve the MILP directly. However it still falls short of our goal.

6 A Time-Free MILP Model

A fundamental bottleneck of our air-travel scheduling model, and many other mod-
els based on time-expanded graphs, is the dependency of the model’s size, both in
the number of variables and constraints, on the granularity of the time discretiza-
tion. If the application requires a fine time grid, the model size can be too large to
solve by standard methods because of high running times for solving the node LP
relaxations within the branch-and-bound tree and also a high memory requirement
for storing the tree. One potential way to deal with this problem is to introduce a
variable grid size based on an adaptive time discretization [9, 11]. For example, if it
can be determined that there is no traffic at a certain time in a certain place then the
grid size can be coarsened locally.

We use an extreme case of this approach by expanding the grid size maximally
such that only a single time remains. We can also say that time is totally ignored.
Everything happens simultaneously; there is no information about what happens
earlier or later. With this aggregation we introduce a time-free model for the air-
travel routing and scheduling problem.

Another way of looking at this transformation is projection: The time-free model
is a projection of the time-indexed model onto a lower dimensional time-free sub-
space. Informally this is achieved by deleting the time index t from every variable
and constraint of the model. In Table 5 we summarize the old discrete time and the
new time-free variables.

Note that the y-variables representing the schedules of the planes have not only
lost their time index t , but also either have a different domain or are replaced by a
constant in the time-free model. The yp,ti,j are binary decision variables. Any plane p
can travel several times between airports i and j in a feasible solution. If we restrict
the domain of their time-free counterparts ypi,j to {0,1} then this model would have
no feasible solution in case such multiple i-j -trips are necessary. To avoid this we
enlarge the variables’ domain to Z+, where the variable now represents the number

Scheduling and Routing of Fly-in Safari Planes 441

Table 5 Variables from the
discrete time model and
variables from the time-free
model

Discrete time variable Time-free variable

y
p,t
i,j ∈ {0,1} y

p
i,j ∈ Z+

y
p,t
arr ∈ {0,1} 1 (constant)

y
p,t

dep ∈ {0,1} 1 (constant)

x
r,p,t
i,j ∈ {0,1} x

r,p
i,j ∈ {0,1}

x
r,p,t
arr ∈ {0,1} x

r,p
arr ∈ {0,1}

x
r,p,t

dep ∈ {0,1} x
r,p

dep ∈ {0,1}
f
p,t
i,j ∈ R+ f

p
i,j ∈ R+

f
p,t
arr ∈ R+ f

p
arr ∈ R+

f
p,t

dep ∈ R+ f
p

dep ∈ R+
w
p,t
i,j ∈ R+ w

p
i,j ∈ R+

of trips between i and j for plane p. The y
p,t
arr , yp,tdep are binary decision variables.

At first glance they are replaced by variables yparr, y
p
dep. However, these variables are

always equal to 1 because by constraints (1i) and (1j) it is guaranteed that each plane
departs and arrives. Hence they can be replaced by the constant values 1.

The variables xr,p,ti,j are binary. One could expect that the variables xr,pi,j in the

time-free model would be in Z+ for the same reason as for the y
p
i,j . However, we

still restrict them to be binaries because a request is never transported on the same
arc twice.

After projecting the variables we have to adjust the constraints accordingly. We
reformulate the model by replacing the time-indexed variables by their time-free
counterparts, and by discarding the time index quantifier. We refrain from writing
down the entire model again, and give just one example.

Consider equations (1k). Their time-free counterpart is the family of equations:

∀j ∈ V,p ∈P :
∑

i:(i,j)∈A
y
p
i,j +

{
1, if j =Dp,

0, else,
=

∑

k:(j,k)∈A
y
p
j,k +

{
1, if j =Ap,

0, else.
(16)

Computational results for the time-free model are shown in Table 6. Because of
the missing time index the model instances are much smaller. In all cases the root
LP relaxation was solved within a fraction of a second. The gap between the LP
relaxation as lower bound and the heuristic solution as upper bound is higher than
the corresponding gap for the time-indexed model. All instances could be solved to
proven integer optimality. For 17 instances this took less than one second, and fewer
than 100 branch-and-bound nodes were necessary. On average, all 24 instances were
solved in 6 seconds and needed 522 branch-and-bound nodes each. The average gap
between the integer optimal solutions of the time-free model and the heuristic solu-
tion is 8.32 %. In two cases solving the time-free model proved global optimality of
the heuristic primal solution for the original model with time.

442 A. Fügenschuh, G. Nemhauser, and Y. Zeng

Table 6 Computational results for the time-free model using the disaggregated weight formulation
and all valid inequalities

Instance Vars. Cons. Nzs. Root
time

Dual bd. Gap b&c
time

Nodes Dual bd. Gap

BUF-AIV 2430 1104 12532 0 10820 14.22 % 0 82 12614 0.00 %

BUF-ANT 3820 1534 20150 0 12729 38.58 % 2 29 16317 21.26 %

BUF-BEE 4804 1648 25586 0 10621 39.76 % 17 970 15935 9.63 %

BUF-BOK 2762 1152 14332 0 10595 17.98 % 0 56 12917 0.00 %

BUF-EGL 5050 1674 26970 0 17274 21.88 % 4 470 19363 12.44 %

BUF-GNU 5296 1704 28328 0 12773 26.38 % 40 1467 16175 6.77 %

BUF-JKL 4312 1590 22868 0 13604 34.51 % 45 5115 18849 9.27 %

BUF-LEO 7734 2092 41926 0 18849 24.41 % 4 76 22425 10.08 %

BUF-NAS 2430 1104 12548 0 10927 31.41 % 0 0 15122 5.08 %

BUF-OWL 4066 1562 21510 0 12705 24.81 % 33 3585 16699 1.18 %

BUF-ZEB 2430 1104 12548 0 11807 25.86 % 3 303 14475 9.11 %

EGL-BEE 2430 1102 12532 0 13916 16.43 % 0 0 14842 10.87 %

EGL-GNU 2206 968 11310 0 14339 29.15 % 0 18 16338 19.27 %

EGL-LEO 2866 1078 14836 0 17129 11.65 % 0 9 18113 6.58 %

GNU-BEE 2074 948 10590 0 6407 43.36 % 2 149 9566 15.43 %

GNU-JKL 1810 902 9176 0 6915 37.69 % 1 13 9571 13.76 %

GNU-LEO 5542 1730 29686 0 13368 27.55 % 1 42 17513 5.08 %

LEO-AIV 1612 782 8090 0 12416 8.8 % 0 37 13327 2.11 %

LEO-ANT 1714 802 8626 0 14348 17.45 % 0 46 16391 5.70 %

LEO-BEE 4198 1452 22206 0 14599 22.76 % 1 35 16648 11.91 %

LEO-BOK 2338 990 12002 0 13323 13.33 % 0 14 14422 6.18 %

LEO-JKL 2470 1012 12706 0 13356 23.9 % 0 11 16914 3.63 %

LEO-NAS 1942 924 9898 0 14490 20.52 % 0 0 15929 12.62 %

LEO-OWL 2338 990 12002 0 13745 13.16 % 0 0 15540 1.82 %

Average 3278 1248 17207 0 12961 24.40 % 6 522 15667 8.32 %

We remark that the solution of the time-free model can be a non-simple path,
i.e., it can have cycles. From such a solution it is not obvious how to obtain a cor-
responding solution in the time-space domain. For a given projected solution with
nodes of out-degree greater than one there might exist a huge number of possible
time-expanded simple path traversals. A simple example is shown in Fig. 1. Here
the time-free solution allows for two different traversals.

The situation is even worse, since there exist projected feasible solutions not
having a feasible non-projected counterpart. An example of this situation is given in
Fig. 2. There is a request departing at A and arriving at C. We assume that at most
two intermediate stops are allowed for this request. Then the depicted time-free
solution is feasible, because it requires only one intermediate stop at B . However,

Scheduling and Routing of Fly-in Safari Planes 443

Fig. 1 A time-free solution with cycles having two different time-expanded traversals. The arc
label indicates the ordering of the scheduled trips

Fig. 2 One request from A

to C with at most two
intermediate stops. This is a
feasible time-free solution
that has no feasible
time-expanded counterpart

there is only one time-expanded counterpart. After the plane arrives at B it has to fly
the loop to E, D, and back to B , before it can arrive at C. Now the request would
have four intermediate stops, hence it is not a feasible time-indexed solution. These
examples illustrate that the time-free model indeed is only a relaxation of the time-
indexed model. Getting feasible solutions for the time-indexed problem happens
only rarely.

7 Embedding the Time-Free Model in Branch-and-Bound

In the previous section we showed that given a feasible time-free solution there
could be no feasible time-indexed solutions or many. Our goal then is to find the
least cost time-free solutions that has a corresponding time-indexed solution. We
present a branch-and-bound algorithm that accomplishes this.

Given a time-free solution the inverse reconstruction problem is to decide if there
exists a feasible time-indexed solution which, after projection, corresponds to the
given time-free one. In order to answer this question for a given time-free solution
we make use of the time-indexed model formulation. We set up the variables for
the plane and request routes restricted to those variables that can be projected onto
those variables that are non-zero in the time-free solution. Thus we make sure that
the time-indexed solution (if it exists) is a pre-image of the time-free solution with
respect to the projection function. As a positive side effect the instances are typically
much smaller than the full problem where the trip set usually is the arc set of a com-

444 A. Fügenschuh, G. Nemhauser, and Y. Zeng

plete graph on the airport nodes. We can solve the corresponding MILP problems
within a few seconds. This either gives a proof of infeasibility or a feasible solution.

If the solution of the inverse problem for the integer optimal solution of the time-
free model leads to a feasible solution with times then we are done, since the global
optimal solution to the original problem with time was found. In general, unfortu-
nately, this rarely happens, and the time-free solution turns out to be infeasible when
time is included.

In order to proceed we embed this procedure within a branch-and-bound frame-
work. The time-free reformulation is solved as the master-MILP. When a new in-
cumbent has been found it is checked for time-feasibility by solving a sub-MILP
problem. The solution status of this subproblem is returned to the master-MILP. If
the subproblem is infeasible, the solution to the master-MILP is removed by branch-
ing, which works as follows. Assume that an incumbent solution z∗ is given, where
z is a vector of integer variables with bounds z, z. If for some index i the bounds
are not tight, that is, z

i
< z∗i (or z∗i < zi) then two branches are added to the branch-

and-bound tree. In one branch we add the new bound constraints zi ≤ z∗i − 1 and
in the other we add zi ≥ z∗i (or zi ≤ z∗i and zi ≥ z∗i + 1). Then we solve both child
problems and this branching procedure is repeated unless all bounds are tight, that
is, z= z∗ = z. Then no further branchings are necessary and the node can be pruned.
Note that in one of the two new child problems the same solution would be gener-
ated as in the parent node, since the bounds have not changed between parent and
child.

This branching procedure is implemented in the solver CPLEX as an “incumbent
callback”. An incumbent callback is invoked if an incumbent solution is found at
some node in the branch-and-bound process. Then it’s up to the user to decide if
the incumbent is feasible or not. In our case, we decide this by solving the time-
indexed model as a subproblem until a feasible solution is found (optimality is not
necessary) or a certificate of infeasibility is given.

Some implementation issues need to be resolved in order for this procedure to
run fast. First, CPLEX invokes the callback again, even if the incumbent solution
has already been rejected before. Checking feasibility by setting up and solving a
sub-MILP problem is usually quite fast, but it’s still undesired and time consuming
to check solutions over and over again that already have been checked and rejected
once. To avoid wasting time on chasing infeasible solutions, we implemented a look-
up hash table where all previously found solutions are stored and quickly checked.
Hence the sub-MILP is only computed for new solutions.

Second, the solver’s own heuristics should be switched off. They only produce
solutions for the time-free master-MILP, which are generally infeasible for the time-
indexed problem. Moreover, the heuristics tend to find the same solutions over and
over again, which need to be checked and stored. Heuristics are, on the other hand, a
necessity in solving difficult MILPs fast. So one should have a good primal solution
algorithm for the overall scheduling problem.

Our implementation takes these issues into account. The results are given in Ta-
ble 7. The number of invokings of the incumbent callback is given in column two.
The first check in our incumbent callback is whether the incumbent is new, or has it

Scheduling and Routing of Fly-in Safari Planes 445

Table 7 Computational results for the time-free model with branch-and-bound and incumbent
callback

Instance Inc.
calls

New inc. Inc.
time

b&c
nodes

b&c
time

b&c
dual bd.

Obj. val. Gap

BUF-AIV 1 1 0 26 5 12614 12614 0.00 %

BUF-ANT 45181 6692 1588 77032 10800 16346 20724 21.12 %

BUF-BEE 63974 4739 1000 119151 10800 16251 17633 7.84 %

BUF-BOK 1 1 1 3 7 12917 12917 0.00 %

BUF-EGL 31320 4520 1192 54173 10800 19738 22113 10.74 %

BUF-GNU 72479 3472 484 139054 7577a 16763 17350 3.39 %

BUF-JKL 48329 6895 2127 85298 10800 19138 20774 7.87 %

BUF-LEO 19808 3437 660 32879 10800 22488 24938 9.82 %

BUF-NAS 971 62 13 1839 44 15549 15549 0.00 %

BUF-OWL 7410 339 125 19166 800 16797 16797 0.00 %

BUF-ZEB 2059 94 18 4093 142 14688 14688 0.00 %

EGL-BEE 51922 9514 1505 84959 10800 16447 16653 1.23 %

EGL-GNU 43409 13577 2557 59741 10800 16825 20238 16.86 %

EGL-LEO 51984 5904 1350 92819 8280 19388 19388 0.00 %

GNU-BEE 78156 9733 1849 142767 10800 10282 11311 9.09 %

GNU-JKL 70813 9334 1760 123016 10800 10244 11098 7.70 %

GNU-LEO 34611 3897 1699 61575 8928 17863 17863 0.00 %

LEO-AIV 146 10 4 273 12 13615 13615 0.00 %

LEO-ANT 529 57 18 980 63 16678 16678 0.00 %

LEO-BEE 35778 6122 2374 59502 10800 17306 18870 8.43 %

LEO-BOK 24765 3180 1694 43665 5664.07 15372 15372 0.00 %

LEO-JKL 5249 376 99 10243 440 17551 17551 0.00 %

LEO-NAS 1981 219 82 3528 183 18192 18192 0.00 %

LEO-OWL 81 5 1 153 6 15827 15827 0.00 %

Average 28790 3841 925 50664 5840 16203 17032 4.34 %

a16 GB memory limit reached

been rejected before? The number of new incumbents is shown in the third column.
On average only about 15 % of the incumbent calls stem from new incumbents. The
incumbents are checked by a variant of the discrete-time MILP restricted to the sub-
graph of the incumbent. The time spent on these checkings is given in column four.
On average it takes less than 1/3 second to solve these MILPs. The overall search
procedure is a branch-and-bound approach, where the number of solved nodes and
the CPU time is shown in the next two columns. We gave a time limit of 10800
seconds (3 hours). During this time limit 13 out of 24 instances could be solved to
proven optimality, a substantial increase over the previous approaches. The overall
integrality gap is 4.34 %, again a substantial improvement. It turned out that the

446 A. Fügenschuh, G. Nemhauser, and Y. Zeng

heuristic’s solutions could be improved only slightly on average (from 17160 down
to 17032), but in some cases the improvements are quite significant (for example,
the instances GNU-LEO was improved from 18450 to 17863).

8 Conclusions and Outlook

We introduced the time-free model with incumbent branching as a promising new
method to solve scheduling and routing problems with time constraints. On our test
set it gave better computational results compared to a direct solution of the MILP
formulation using a time-space network approach and a set partitioning/column gen-
eration approach.

Much more can be done with the time-free approach. So far we provided only
feasibility information to the time-free master model within the branch-and-bound
process. If an instance has several planes, and in an incumbent all but one plane
schedule is feasible, then the whole incumbent is declared infeasible. It might be
more efficient to reschedule only those parts of the full schedule that are infeasible,
which can be done by adding appropriate cutting planes.

Finally, we would like to apply the time-free approach to other applications that
have time constraints including vehicle routing and job shop scheduling.

References

1. Ascheuer, N., Fischetti, M., Grötschel, M.: A polyhedral study of the asymmetric traveling
salesman problem with time windows. Networks 36(2), 69–79 (2000)

2. Ascheuer, N., Fischetti, M., Grötschel, M.: Solving the asymmetric travelling salesman prob-
lem with time windows by branch-and-cut. Math. Program., Ser. A 90(3), 475–506 (2001)

3. Barnhart, C., Shen, S.: Logistics service network design for time-critical delivery. Lect. Notes
Comput. Sci. 3616, 86–105 (2005)

4. Barnhart, C., Johnson, E., Nemhauser, G., Savelsbergh, M., Vance, P.: Branch-and-price: col-
umn generation for solving huge integer programs. Oper. Res. 46(3), 316–329 (1998)

5. Borndörfer, R., Grötschel, M., Pfetsch, M.: A column-generation approach to line planning in
public transport. Transp. Sci. 41(1), 123–132 (2007)

6. Cornuejols, G.: Valid inequalities for mixed integer linear programs. Math. Program., Ser. B
112, 3–44 (2008)

7. Dantzig, G., Fulkerson, D., Johnson, S.: Solution of a large scale traveling salesman problem.
Oper. Res. 2(4), 393–410 (1954)

8. Erera, A., Hewitt, M., Savelsbergh, M., Zhang, Y.: Improved load plan design through integer
programming based local search. Technical report 3357, Optimization Online (2012)

9. Espinoza, D., Garcia, R., Goycoolea, M., Nemhauser, G., Savelsbergh, M.: Per-seat, on-
demand air transportation part I: problem description and an integer multicommodity flow
model. Transp. Sci. 42(3), 263–278 (2008)

10. Espinoza, D., Garcia, R., Goycoolea, M., Nemhauser, G., Savelsbergh, M.: Per-seat, on-
demand air transportation part II: local search. Transp. Sci. 42(3), 279–291 (2008)

11. Fischer, F., Helmberg, C.: Dynamic graph generation for large scale operational train
timetabling. Technical report 2011-10, Fakultät für Mathematik, Technische Universität
Chemnitz (2011)

Scheduling and Routing of Fly-in Safari Planes 447

12. Ford, L., Fulkerson, D.: Constructing maximal dynamic flows from static flows. Oper. Res.
6(4), 419–433 (1958)

13. Fügenschuh, A., Homfeld, H., Schülldorf, H.: Single car routing in rail freight transport. In:
Barnhart, C., Clausen, U., Lauther, U., Möhring, R. (eds.) Dagstuhl Seminar Proceedings
09261 (2009)

14. Gavish, B., Graves, S.: The traveling salesman problem and related problems. Technical report
OR 078-78, Operations Research Center, Massachusetts Institute of Technology (1978)

15. Grötschel, M.: Der Satz von Frobenius für konvergente Potenzreihen. Master’s thesis, Ruhr-
Universität Bochum (1973)

16. Grötschel, M.: Polyedrische Charakterisierungen Kombinatorischer Optimierungsprobleme.
Mathematical Systems in Economics, vol. 36. Verlag Anton Hain, Meisenheim am Glan
(1977)

17. Grötschel, M.: On the symmetric travelling salesman problem: solution of a 120-city problem.
Math. Program. Stud. 12, 61–77 (1980)

18. Grötschel, M., Holland, O.: Solution of large-scale symmetric travelling salesman problems.
Math. Program., Ser. A 51(2), 141–202 (1991)

19. Helmberg, C., Röhl, S.: A case study of joint online truck scheduling and inventory manage-
ment for multiple warehouses. Oper. Res. 55(4), 733–752 (2007)

20. Kennington, J., Nicholson, C.: The uncapacitated time-space fixed-charge network flow prob-
lem: an empirical investigation of procedures for arc capacity assignment. ORSA J. Comput.
22(2), 326–337 (2010)

21. Kotnyek, B.: An annotated overview of dynamic network flows. Technical report 4936, Institut
National de Recherche en Informatique et en Automatique (INRIA) (2003)

22. Maffioli, F., Sciomachen, A.: A mixed-integer model for solving ordering problems with side
constraints. Ann. Oper. Res. 69, 277–297 (1997)

23. Marchand, H., Wolsey, L.: Aggregation and mixed integer rounding to solve MIPs. Oper. Res.
49(3), 363–371 (2001)

24. Marchand, H., Martin, A., Weismantel, R., Wolsey, L.: Cutting planes in integer and mixed
integer programming. Discrete Appl. Math. 123, 397–446 (2002)

25. Nemhauser, G.: Column generation for linear and integer programming. In: Grötschel,
M. (ed.) Optimization Stories, pp. 65–73. Deutschen Mathematiker Vereinigung, Bielefeld
(2012)

26. Nemhauser, G., Wolsey, L.: Integer and Combinatorial Optimization. Wiley-Interscience, New
York (1988)

27. UN World Tourism Organization: Tourism facts & figures (2012). www.unwto.org/facts/. Ac-
cessed 18 Sep 2012

28. van Eijl, C.: A polyhedral approach to the delivery man problem. Technical report 95-19, De-
partment of Mathematics and Computer Science, Eindhoven University of Technology (1995).
alexandria.tue.nl/repository/books/440440.pdf. Accessed 31 Jan 2013

29. Wieberneit, N.: Service network design for freight transportation: a review. OR Spektrum 30,
77–112 (2008)

http://www.unwto.org/facts/
http://alexandria.tue.nl/repository/books/440440.pdf

Mixed Integer Programming: Analyzing
12 Years of Progress

Tobias Achterberg and Roland Wunderling

Abstract Back in 2001, Bixby et al. (The Sharpest Cut: The Impact of Manfred
Padberg and His Work, pp. 309–325, 2004) provided an analysis of the performance
impact of the main mixed integer programming features and improvements up to
CPLEX 8.0 for a workshop in honor of Manfred Padberg’s 60th birthday, which was
later published in a Festschrift edited by Martin Grötschel (The Sharpest Cut: The
Impact of Manfred Padberg and His Work, 2004). Now, 12 years later, Grötschel’s
own 65th birthday celebration seems to be the ideal opportunity to provide an update
on the state of affairs.

In this paper, we outline an unbiased way to analyze benchmark results and apply
this scheme to assess the contribution of the main components in CPLEX 12.5 to the
ability to solve MIPs. We highlight some of the more recent features, in particular
the deterministic parallel optimizer.

1 Introduction

Mixed Integer Programming can look back to a grand past and forward to a promis-
ing future, see Bixby [14]. Indeed, Fig. 1 shows the progress of CPLEX versions
from 6.0 to 12.5, which spans the years 1998 to 2012. The data has been computed
using the geometric mean of solution times for the subset of models from our inter-
nal model library that can be solved by at least one of the versions and for which
at least one of the versions takes more than 10 seconds, i.e., the [10,10k] model
bracket described in detail in Sect. 2. The left scale applies to the bars in the chart,
showing the number of problem instances that could not be solved within the time
limit of 10000 seconds. This number decreased from 1152 to 55. The right scale

T. Achterberg (B)
CPLEX Optimization, IBM, Konrad-Zuse-Zentrum für Informationstechnik Berlin, Takustr. 7,
14195 Berlin, Germany
e-mail: achterberg@de.ibm.com

R. Wunderling
CPLEX Optimization, IBM, Liebenauer Hauptstr. 2–6, 8041 Graz, Austria
e-mail: roland.wunderling@at.ibm.com

M. Jünger, G. Reinelt (eds.), Facets of Combinatorial Optimization,
DOI 10.1007/978-3-642-38189-8_18, © Springer-Verlag Berlin Heidelberg 2013

449

mailto:achterberg@de.ibm.com
mailto:roland.wunderling@at.ibm.com
http://dx.doi.org/10.1007/978-3-642-38189-8_18

450 T. Achterberg and R. Wunderling

Fig. 1 Comparison of CPLEX versions 6.0 to 12.5 on 1753 problem instances

corresponds to the total speedup since version 6.0, indicated by the piecewise-linear
curve. This shows a cumulative improvement by a factor of 89.6. The individual
speedup factors listed in the chart reflect the version-to-version performance im-
provement on this test set. Of course, the computations have been conducted on
identical machines, so that hardware speedup is not included in the numbers.

Where do these improvements come from? This is not a novel question, and
answers have been provided before by Bixby et al. [15–17], using CPLEX 6.5
and CPLEX 8.0, respectively. Since MIP solvers consist of an arsenal of features,
they measured the impact of each feature by comparing the performance of the de-
fault solver against turning off each feature individually. The observed performance
degradation provides a reasonable measure for the importance of each feature.

More than 10 years have passed since CPLEX 8.0. The implementation of the
existing ingredients has been improved and new components have been added. It is
therefore interesting to analyze the performance of the current version CPLEX 12.5
using the same approach.

To do so, we first describe our benchmarking methodology. In particular, we
identify a systematic bias that is often introduced when doing performance analysis
and discuss our approach of avoiding it. This methodology is then applied to quan-
tify the impact of the main algorithmic features of CPLEX 12.5. In particular, we
wanted to investigate how their relative importance changed compared to CPLEX
8.0, and if so, why. Indeed, we found consistency as well as discrepancy in the re-
sults. While the measured relative importance of presolve and heuristics have not
changed, we found large discrepancies in the evaluation of cuts. Interestingly, to
a large degree this can be attributed to biases in how benchmarks were conducted
in [17].

Mixed Integer Programming: Analyzing 12 Years of Progress 451

Finally, we analyze the impact of another development that occurred indepen-
dently of MIP during the past decade: multithreaded architectures have turned main-
stream. To continue to take advantage of the ongoing hardware evolution, MIP
solvers had to adopt and did. Current state-of-the-art MIP solvers are parallel al-
gorithms. Moreover, they are deterministic in that running the same solver with the
same data on the same hardware is guaranteed to provide the same solution path and
result. We will describe how determinism is achieved in CPLEX 12.5 and measure
its performance impact.

Both authors of this paper were Ph.D. students of Martin Grötschel and owe him
much regarding their scientific and commercial careers:

Tobias Achterberg: I started taking Martin Grötschel’s classes on optimization be-
cause my father told me “Grötschel is the one”, and indeed, my father was right.
Soon after, I was hired at the Zuse Institute Berlin (ZIB) in Martin Grötschel’s
optimization group, where I prepared my master’s theses and my Ph.D. thesis.
But Martin Grötschel had a significant impact also on my commercial career:
I do not know for sure, but I guess he was pulling some strings so that I was
squeezed into the program of the MIP workshop 2005 at the IMA and could
give a presentation [1]. Ed Rothberg and Zonghao Gu were in the audience and
approached me after my talk; one year later I joined CPLEX.

Roland Wunderling: Martin Grötschel and I joined ZIB at roughly the same time;
he as vice president and I as a physics master student working on computer
graphics with no knowledge of mathematical programming. Also I had no idea
who Martin Grötschel was, or I might have heeded his words of caution, when
I approached him with the proposal to work on the simplex algorithm: “That’s a
tough topic now that CPLEX is around”. Luckily I was naive enough to ignore
him and set out working on SoPlex [59] while eagerly catching up on my learn-
ing by visiting all his fantastic courses. Eventually, I was ready to show Bob
Bixby (was it just a coincidence that Martin Grötschel invited him at that time?)
how SoPlex could beat CPLEX, and soon after I joined CPLEX.

2 Benchmarking

When conducting a quantitative computational performance analysis, the first step
is to define a benchmarking methodology. Especially for MIP this is a challenging
task that is frequently not solved adequately. What makes MIP performance analysis
especially challenging is the great variability in computation time for solving an
individual problem instance, see Koch et al. [36]. Seemingly performance-neutral
changes in the benchmarking setup, such as changing the permutation of variables
or constraints in the model or the starting random seed used by the algorithm, can
turn a model from easily solvable to intractable or vice versa.

Of central importance is the selection of the test set and the number of problems
therein. In particular, the size of the test set is important in order to average out the
effects of performance variability, where geometric means should be used instead

452 T. Achterberg and R. Wunderling

Table 1 Comparison of CPLEX 12.5 and CPLEX 8.0

Bracket Models CPLEX 12.5 CPLEX 8.0 Affected

Tilim Tilim Faster Slower Time Nodes Models Time Nodes

All 2928 87 732 292 1777 4.71 8.04 2741 5.22 9.46

[0,10k] 2843 2 647 292 1777 4.93 8.73 2741 5.22 9.46

[1,10k] 1919 2 647 247 1585 10.30 19.79 1915 10.34 19.92

[10,10k] 1406 2 647 113 1265 21.91 37.29 1404 21.98 37.48

[100,10k] 1043 2 647 46 987 44.55 65.76 1043 44.55 65.76

[1k,10k] 783 2 647 14 767 78.60 106.35 783 78.60 106.35

of arithmetic means to limit the effect of an individual large number. The smaller
the performance difference that should be analyzed, the larger a test set is needed.

The makeup of the test set can also affect the outcome of the benchmarks. It
should provide a good representation of the type of models that the solver will be
used for. This precludes the use of artificially generated models. Also it mandates
to avoid over-representing one type of model in the set, e.g., by using multiple in-
stances coming from the same application.

For pragmatic reasons, such as available computing resources and time, a large
test set may need to be reduced. In this step it is important not to use a criterion
based on data generated by a single solver, but to treat all solvers under consideration
equally. Deviation from this rule can easily introduce a systematic bias of the results
as we will describe in Sect. 2.2 in the context of partitioning the test set into subsets.

The base problem set used in this paper consists of problem instances coming
from a mix of publicly available and commercial sources. We excluded all problem
instances from our model collection that we have never been able to solve to opti-
mality with any version between CPLEX 6.0 and CPLEX 12.5. This left a total of
3189 instances that we used for all MIP performance runs, 138 of which are infea-
sible. To keep the computation time under control, a time limit of 10000 seconds
was used for all the tests. Additionally, we employed a tree memory limit of 6 GB.
If this tree memory limit was hit, we treated the model as if a time limit was hit. We
set the solve time to 10000 seconds and scaled the number of nodes processed for
the problem instance accordingly.

All runs where conducted on a cluster of identical 12 core Intel Xeon CPU E5430
machines running at 2.66 GHz and being equipped with 24 GB of memory.

Table 1 compares the performance of CPLEX version 12.5 against version 8.0,
the last version of CPLEX for which a performance analysis has been published, see
Bixby et al. [17]. Note that CPLEX 12.5 runs in deterministic parallel mode, while
CPLEX 8.0 uses opportunistic parallel mode (as it does not have a deterministic
mode). Each row of the table lists comparative data for subsets of the test set. The
table is organized as follows:

Column 1, “Bracket”, labels subsets of problem instances. The idea is to subdi-
vide the test set into subsets of problem instances with different “hardness”, each
row representing a different such subset. Subset “All” is the set of all models used

Mixed Integer Programming: Analyzing 12 Years of Progress 453

for the first row of data. It excludes only models for which one of the solvers encoun-
tered a failure of some sort or where numerical difficulties lead to different optimal
objective values for the two solvers (which could actually, due to the definition of
feasibility tolerances, both be correct). The labels “[n,10k]” represent the subset of
“All” models for which at least one of the solvers being compared took at least n
seconds to solve and that were solved to optimality within the time limit by at least
one of the solvers.

Column 2, “Models”, shows the number of problem instances in each subset.
Note that only 2928 rather than 3189 problem instances are listed in row “all” due
to the exclusion rules explained above.

Column 3, “Tilim”, gives the number of models in each subset for which a time
(or memory) limit was hit by CPLEX 12.5. It is by design that the numbers in the last
5 rows match, since these models are always included in the corresponding subsets.

Similarly, column 4, gives the number of models in each subset for which CPLEX
8.0 hit a time limit. Comparing these numbers to the corresponding numbers in
column 3 gives a good indication about how many models have been turned from
unsolvable with CPLEX 8.0 to solvable with 12.5. Both versions hit the time limit
on 85 problem instances, but that number could be arbitrarily increased by adding
more intractable models to the base set. However, only two models can be solved
within the time limit by CPLEX 8.0 and not by CPLEX 12.5, whereas CPLEX 12.5
solves 647 models that could not be solved with CPLEX 8.0.

Columns 5, “Faster”, and 6, “Slower”, show the number of problem instances
in each subset that CPLEX 8.0 solved faster and slower than CPLEX 12.5, respec-
tively. For this decision the CPLEX 8.0 solution time of an instance must be 10 %
smaller or larger than the CPLEX 12.5 time, respectively. While CPLEX 12.5 out-
performs version 8.0 most of the time, there remains a significant subset of models
for which the opposite is true. As it turns out, this can in most part be attributed to
performance variability. On certain models, however, some of the algorithms that
have been added to the software do not help and only produce computational over-
head. This is most likely the case for the models that could already be solved easily
without such computations, which explains the fact that in the harder problem sets
CPLEX 8.0 wins much less frequently.

Column 7, “Time” displays the shifted geometric mean of the ratios of solution
times, see Achterberg [2], with a shift of s = 1 second. A value t > 1 in the table
indicates that CPLEX 8.0 is by a factor of t slower (in shifted geometric mean) than
CPLEX 12.5. Indeed, remarkable improvements have been achieved between the
versions, and in this paper we will try to analyze where these come from. Note that
time limit hits are accounted for with a value of 10000 seconds, which introduces
a bias against the solver with fewer timeouts. In fact, using a time limit of 1000
seconds, we would only compute a speedup factor of 10.29 instead of 21.91 for the
models that take at least 10 seconds to solve. Thus, the performance ratios need to
be considered in conjunction with the number of timeouts of each solver.

Column 8, “Nodes”, is similar to the previous column but shows the shifted ge-
ometric mean of the ratios of the number of branch-and-cut nodes needed for the
problems by each solver, using a shift of s = 10 nodes. When a time limit is hit, we

454 T. Achterberg and R. Wunderling

Table 2 Comparison of CPLEX 12.5 using two different random seeds

Bracket Models Seed 1 Seed 2 Affected

Tilim Tilim Faster Slower Time Nodes Models Time Nodes

All 3159 94 112 588 588 1.00 0.99 2284 1.00 0.99

[0,10k] 3082 17 35 588 588 1.00 0.99 2284 1.00 0.99

[1,10k] 1879 17 35 565 558 1.00 0.98 1707 1.00 0.98

[10,10k] 1121 17 35 404 396 1.01 0.98 1067 1.01 0.98

[100,10k] 604 17 35 243 237 1.01 1.01 593 1.01 1.01

[1k,10k] 238 17 35 101 100 1.08 1.07 237 1.08 1.07

use the number of nodes at that point, which again introduces a bias. The numbers
exceed those for the runtime by a factor of 1.5 to 2, indicating that reductions in
search space came at a cost of additional computation.

The last three columns, under the heading “Affected”, repeat some of the infor-
mation for the subset of models in each bracket, where the changes between both
versions had an effect on the solution path. Here, we assume that the solution path
is identical if both the number of nodes and the number of simplex iterations are
identical for the two solvers. Column 9, “Models” shows that almost all problems
in the ≥ 1 second brackets are included, leaving essentially only models unaffected
that could be solved by presolve alone already with CPLEX 8.0.

When you want to condense performance impact into one number such as in
Fig. 1, you have to choose which model bracket to use. Throughout this paper we
selected the [10,10k] bracket, since we wanted to eliminate models that are “easy”
even without a specific feature and thus don’t help assessing its impact. Also with
a lower cutoff the results would be more dampened by the shift we use when com-
puting geometric means. On the other hand we did not want to inflate the measured
effect by using a higher cutoff value.

2.1 The Effect of Performance Variability

Performance variability in MIP is indeed an issue that needs to be considered in the
analysis. One way to assess performance variability is to measure the performance
impact of changing the initial random seed. This affects in particular the choice of
the optimal basis of the initial LP relaxation and many decisions in primal heuristics.
Clearly, this is conceptually a performance neutral change. However, Table 2 shows
that some performance differences can be observed.

Over the entire set of 3159 models, there seems to be a 1 % difference in the
node count. Note that in the benchmarking runs that we regularly conduct during the
CPLEX development process we often see a 1 % difference in time as well. In other
words, performance differences in CPLEX of about 1 % cannot be distinguished
using our test set of 3000 problem instances. As was to be expected, the issue gets

Mixed Integer Programming: Analyzing 12 Years of Progress 455

worse as the sample size decreases. Most notably, the last subset contains only 238
instances and shows what appears to be a substantial performance difference of
8 %. On the one hand, this means that problem sets of this small size are probably
inadequate for reliably measuring performance differences of less than 10 %. On
the other hand, this is also an artifact of our bracket definition, since a significant
fraction of the models in the [1k,10k] bracket feature large variability so that one
solver can solve them easily by luck, while the other solver hits the time limit.
For this reason, we will mostly ignore the [1k,10k] bracket in the discussion of the
results in this paper.

2.2 Avoiding a Systematic Bias

It is important to note that our definition of the subsets of the problem instances de-
pends on the solvers being compared in each table, which implies that, e.g., bracket
[10,10k] contains a slightly different set of models in each table displayed in this
paper. This may seem confusing, but is of central importance to avoid a systematic
bias in the analysis of the data. Given the large performance variability for MIP,
using only data from, say, the reference solver CPLEX 12.5 to define the subsets
would have produced results that can easily be misinterpreted. We will explain this
with the following Gedanken-experiment:

Given a set of problem instances P to be used to compare a new solver B against
a reference solver A, we classify the test set P = E ∪ H into easy models E and
hard ones H , using the solution times from the reference solver A. Assume that the
solution times of solver A for the test set P are uniformly distributed between 0 and
100 seconds such that the solution times for models in E are in (0 s,80 s] while
for H they are in (80 s,100 s]. Using arithmetic means for simplicity, the average
solution time of solver A for set E is 40 seconds and 90 seconds for the hard set H .
To model performance variability, we assume that the timing function just returns a
uniformly distributed random number between 0 and 100 seconds for both solvers.
Thus the expected value for the solution time of solver B is 50 seconds for both sets
E and H . It is a common mistake to conclude that solver B outperforms solver A
on the set of harder models by a factor of 1.8 = 90

50 at the cost of a slight degradation
on the easier models by a factor of 0.8 = 40

50 . The error is in the setup that uses only
the reference solver for defining the subsets.

This is indeed an important issue for analyzing performance for MIP, as can be
seen in Table 3. It shows the results of the same two experiments from Table 2, yet
this time with the error of using only the data from seed 1 to define the subsets of
models. The largest two subsets remain unchanged. The remaining rows, however,
show a completely different situation from before. In fact, disregarding the bias, one
would be tempted to claim seed 2 to be superior to seed 1 by up to 25 % “on harder
models”, even though we saw in the unbiased analysis that the opposite is actually
the case. The biased subset selection puts problem instances for which the reference
solver was unlucky into the “harder” subsets, giving the other solver a good chance

456 T. Achterberg and R. Wunderling

Table 3 Comparison of CPLEX 12.5 using two different random seeds (biased model grouping)

Bracket Models Seed 1 Seed 2 Affected

Tilim Tilim Faster Slower Time Nodes Models Time Nodes

All 3159 94 112 588 588 1.00 0.99 2284 1.00 0.99

[0,10k] 3082 17 35 588 588 1.00 0.99 2284 1.00 0.99

[1,10k] 1848 17 34 565 530 0.99 0.96 1677 0.99 0.95

[10,10k] 1074 17 33 404 351 0.95 0.90 1021 0.94 0.89

[100,10k] 552 17 31 243 188 0.87 0.85 541 0.87 0.85

[1k,10k] 207 17 27 101 70 0.76 0.71 206 0.76 0.71

of doing better on those. Thus, marketing messages about big speedups on “harder”
problems should be taken with much care. The CPLEX marketing made exactly this
mistake until version 11.

In our analysis, we therefore define all test sets and subsets by applying the fil-
tering rules described above, using all runs to be compared. A consequence of this
approach is that the test sets are not identical between comparisons. An extreme
outcome from this can be observed by comparing the speedup of 9.17× between
CPLEX version 8.0 and 12.5 in Fig. 1 to the value of 21.91× for the [10,10k] bracket
in Table 1. What happened? Our [10,10k] filtering rule removes problems for which
none of the versions being considered took less than 10 seconds. Since the versions
prior to CPLEX 8.0 could not solve some of the models within this limit, the test
set used in Fig. 1 contains several additional models that where excluded in Table 1,
where they would have dampened the measured difference. Removing models that
have become “easy” is important to be able to measure the impact of developments
for the problems that matter. However, one needs to keep in mind that speedup fac-
tors between versions cannot be multiplied unless they are based on the same test
set.

3 MIP Evolution

In Sect. 2 we laid out how to conduct and analyze benchmark runs in a sound and
unbiased way. Now, we apply this methodology to assess the performance impact of
the main ingredients of mixed integer programming solvers and some of the recent
improvements to the state-of-the-art.

Most of current MIP solvers are based on the branch-and-bound method, which
first appeared in Markowitz and Manne [43], Eastman [24] and Land and Doig [38]
in the context of integer programming. See Cook [19] for an excellent review on the
history of branch-and-bound.

An additional fundamental building block of modern MIP solvers are cutting
planes, originating in the works of Dantzig, Fulkerson and Johnson [22, 23] and
Gomory [32]. But even though the combination of branch-and-bound and cutting

Mixed Integer Programming: Analyzing 12 Years of Progress 457

planes was already proposed by Markowitz and Manne [43] in 1957, it took more
than 20 years until Crowder, Johnson and Padberg [20], Grötschel, Jünger and
Reinelt [34], van Roy and Wolsey [58] and Padberg and Rinaldi [49, 50] came up
with the first successful implementations of branch-and-cut to solve practical prob-
lems. See Bixby et al. [17] and Cook [19] for more details.

In addition to branch-and-cut, MIP solvers also include preprocessing techniques
to reduce the size and to tighten the formulation of the problem instance at hand,
see, e.g., Savelsbergh [55]. Finally, primal heuristics are employed to find feasible
solutions without having to wait for them to appear as solutions to the LP relaxations
of the branch-and-cut subproblems; see, e.g., Berthold [13] for an overview of MIP
heuristics in SCIP [3, 56] and Raidl and Puchinger [53] and Fischetti and Lodi [27]
for surveys on MIP heuristics and meta-heuristics. Heuristics are very important for
practitioners, who are typically more interested in getting solutions of good quality
as quickly as possible than in finding a provably optimal solution. We will see in
Sect. 3.4 that heuristics are important but not as critical as clever branching, cutting
and presolving for solving a MIP, i.e., for finding an optimal solution and proving
its optimality.

3.1 Branching

Branching is at the core of the exponential worst-case complexity of LP based
branch-and-cut algorithms. The choice how to split a given problem into two or
more subproblems can have a very significant impact on the size of the resulting
search tree and can thus be crucial for being able to solve a given problem instance
in reasonable time.

Bixby et al. [17] report a speedup of 2.9× due to the improvements in the branch-
ing variable selection rule from CPLEX 5.0 to CPLEX 8.0. Depending on the rel-
ative number of integer variables in the problem formulation, CPLEX 5.0 was em-
ploying either most infeasible branching or pseudo-reduced cost branching. To our
knowledge, the latter has never been published, but it is very similar to the active
constraint based branching rules of Patel and Chinneck [51], using the magnitude
of the coefficients and the dual solution value of the rows as weights. CPLEX 8.0
implements the pseudo cost with strong branching initialization rule of Linderoth
and Savelsbergh [40].

Since the release of CPLEX 8.0 in 2002, a number of papers on improving the
branching in MIP solvers have been published. Despite the interest in branching
on hyperplanes, see for example Owen and Mehrotra [48], Mahajan and Ralphs
[41], Karamanov and Cornuéjols [35], the current version 12.5 of CPLEX is still
mostly branching on variables. Nevertheless, the selection of the branching variable
has been improved. It is now a version of hybrid branching, see Achterberg and
Berthold [5]. It uses reliability branching [7] as base line, adjusted by conflict scores
[5] and using pseudo-reduced cost branching [51] and inference branching [2] as
a tie-breaker. Finally, the strong branching initialization of pseudo costs has been

458 T. Achterberg and R. Wunderling

Table 4 Comparison of default (hybrid) branching and standard pseudo cost/strong branching

Bracket Models Default Pseudo-cost branching with SB init Affected

Tilim Tilim Faster Slower Time Nodes Models Time Nodes

All 3155 95 129 467 831 1.11 1.02 2046 1.17 1.04

[0,10k] 3083 23 57 467 831 1.11 1.03 2046 1.17 1.04

[1,10k] 1908 23 57 449 784 1.18 1.10 1621 1.22 1.11

[10,10k] 1160 23 57 314 555 1.29 1.26 1057 1.32 1.29

[100,10k] 633 23 57 193 333 1.42 1.44 608 1.44 1.46

[1k,10k] 283 23 57 89 163 1.84 1.83 280 1.85 1.84

Table 5 Impact of individual branching improvements in CPLEX 12.5 on the [10,10k] bracket

Feature Models Default Modified code Affected

Tilim Tilim Faster Slower Time Nodes Models Time Nodes

No reliability
branching

1106 18 34 202 278 1.05 1.10 706 1.08 1.16

No pseudo-reduced
costs

1142 20 32 371 472 1.06 1.00 1034 1.07 1.00

No non-chimerical
branching

1089 12 24 181 208 1.03 1.03 658 1.04 1.04

Most infeasible
branching

1309 9 475 121 996 8.36 12.61 1194 10.25 16.10

improved by incorporating ideas from non-chimerical branching of Fischetti and
Monaci [28].

The performance improvements due to the additional refinements in the variable
selection strategy can be seen in Table 4. For models in the [10,10k] bracket, using
the plain pseudo-cost branching with strong branching initialization rule is 29 %
slower than the more sophisticated variable selection of CPLEX 12.5. The contribu-
tions of the individual refinements are listed in the first three rows of Table 5, again
using the [10,10k] bracket of the test set. Each of them yields a small performance
improvement.

The results show that some progress has been achieved in branching variable
selection since CPLEX 8.0, but certainly no break-through. The pseudo cost with
strong branching initialization is still competitive with today’s branching rules.
Nevertheless, employing a clever branching rule is critical for LP based branch-
and-bound MIP solvers. As can be seen in the last row of Table 5, using a naive
branching rule like most infeasible branching, the performance degrades by a factor
of more than 8 in the [10,10k] bracket, and many models become unsolvable within
the time limit.

Mixed Integer Programming: Analyzing 12 Years of Progress 459

Table 6 Comparison of default and not using cutting plane separation

Bracket Models Default No cuts Affected

Tilim Tilim Faster Slower Time Nodes Models Time Nodes

All 3148 94 464 586 1229 2.22 7.16 2465 2.77 12.06

[0,10k] 3063 9 379 586 1229 2.27 7.42 2465 2.77 12.06

[1,10k] 1981 9 379 521 1155 3.54 14.86 1837 3.91 18.37

[10,10k] 1335 9 379 314 889 6.11 27.08 1289 6.51 30.46

[100,10k] 883 9 379 167 666 12.47 63.45 870 12.95 67.51

[1k,10k] 577 9 379 68 493 32.34 213.93 575 32.74 217.96

3.2 Cutting Planes

Cutting planes were introduced to CPLEX with version 3.0 in 1994, featuring clique
cuts and knapsack cover cuts. Version 6.5.3, released in 1999, introduced flow cov-
ers, GUB covers and implied bound cuts. It also included a hidden disabled version
of Gomory mixed-integer cuts, which were then made publicly available with ver-
sion 6.6 in 2000. Version 7.0 was released in December 2000 and added disjunc-
tive, mixed integer rounding and flow path cuts, which concluded the “systematic
program . . . to include as many of these [mostly cutting plane] ideas as possible”
(Bixby [14]).

The next addition to the cut arsenal happened in 2007, when zero-half cuts
had been introduced in CPLEX 11.0 following the ideas of Koster, Zymolka and
Kutschka [37]. Finally, CPLEX 12.1 included the multi-commodity network flow
cuts of Achterberg and Raack [6] and incorporated cutting plane filtering as de-
scribed by Achterberg [2]. The latter allowed the more aggressive use of existing
cutting plane separators without cluttering up the LP relaxation too much.

Cutting planes are of major importance to solve mixed integer programs. Table 6
shows the performance degradation of CPLEX 12.5 when cutting planes are dis-
abled. In the [10,10k] bracket of the test set, cutting planes yield a 6.1× speedup.
But more importantly, 379 models cannot be solved without cutting planes within
the time limit of 10000 seconds, while there are only 9 models for which CPLEX
12.5 hits the time limit but disabling cuts allows to solve them. This clearly shows
that there is a substantial fraction of MIP models for which cutting planes are an
indispensable solver ingredient.

Table 7 details the contribution of the individual cutting plane separators, by
comparing defaults against turning off each cutting plane separator individually. It
is interesting to note that mixed integer rounding (MIR) cuts are clearly the most
useful cuts in CPLEX 12.5. This is in contrast to the results of Bixby et al. [17]
for CPLEX 8.0, where Gomory mixed integer cuts were identified to contribute a
speedup of 2.52× and MIR cuts only a speedup of 1.83×. Most likely, this dis-
crepancy has the following two sources. First, Bixby et al. use a different test set,
namely one that consists of only 106 problem instances and that is clearly biased to-
ward models for which cutting planes are critical, see also our discussion in Sect. 5.

460 T. Achterberg and R. Wunderling

Table 7 Impact of individual cutting plane separators in CPLEX 12.5 on the [10,10k] bracket

Feature Models Default Modified code Affected

Tilim Tilim Faster Slower Time Nodes Models Time Nodes

No MIR cuts 1118 9 78 212 341 1.48 1.83 693 1.88 2.64

No Gomory cuts 1130 20 62 358 417 1.28 1.50 956 1.34 1.61

No knapsack
cover cuts

1108 19 47 279 325 1.14 1.27 903 1.18 1.35

No zero-half cuts 1116 17 35 274 276 1.08 1.19 720 1.12 1.31

No implied
bound cuts

1098 11 25 236 288 1.07 1.10 785 1.10 1.15

No flow cover cuts 1100 14 23 214 266 1.06 1.06 626 1.10 1.11

No clique cuts 1104 16 21 184 193 1.04 1.11 490 1.08 1.27

No flow path cuts 1077 1 6 35 44 1.04 1.06 96 1.52 1.85

No MCF cuts 1079 1 6 33 60 1.03 1.03 124 1.25 1.29

No GUB cover cuts 1083 3 10 77 89 1.02 1.05 224 1.12 1.25

Cut-and-branch 1125 22 71 278 403 1.23 1.59 936 1.28 1.75

Second, in CPLEX 8.0 MIR cuts were only generated for constraints (or aggre-
gations of constraints) that contain general integer variables. For binary or mixed
binary constraints, only flow cover cuts had been separated. This strategy has been
changed with the revision of the cut separation framework in CPLEX 12.1.

A second observation from Table 7 is that only MIR and Gomory cuts, and to a
lesser degree knapsack cover cuts, are really essential for the ability to solve MIPs.
Only these provide a significant difference in the number of time limit hits. The
other cut separation procedures are also useful to reduce the solving time, but it
seems that they do not make a big difference when it comes to the question whether
a problem instance can be solved at all.

Even though most of the cutting plane procedures affect a large number of the
problem instances, some of them turn out to be very specialized to certain classes of
models. The flow path cuts, MCF cuts and GUB cover cuts are only used on a small
fraction of the problem instances. On those subsets they do provide a significant
improvement, most notably the 1.5× speedup of flow path cuts for the small set of
96 models on which they apply.

The last row of Table 7 shows the performance impact when CPLEX is run as
a cut-and-branch solver, i.e., when cuts are only separated at the root node but not
in local nodes of the search tree. As can be seen, there is a degradation of 23 %
when node cuts are disabled. Even though there is also a moderate difference in the
number of time limit hits, we conclude that root node cuts are more important.

Mixed Integer Programming: Analyzing 12 Years of Progress 461

Table 8 Comparison of default and not applying presolve

Bracket Models Default No presolving Affected

Tilim Tilim Faster Slower Time Nodes Models Time Nodes

All 3087 94 556 323 1841 3.50 3.97 2915 3.77 4.38

[0,10k] 3002 9 471 323 1841 3.63 4.20 2915 3.77 4.38

[1,10k] 2090 9 471 273 1703 6.27 7.18 2072 6.37 7.31

[10,10k] 1484 9 471 146 1295 11.40 13.19 1479 11.50 13.31

[100,10k] 1022 9 471 78 932 21.95 25.87 1019 22.17 26.12

[1k,10k] 687 9 471 33 648 43.28 49.00 687 43.28 49.00

3.3 Presolving

Presolving, or preprocessing, means to transform a given problem instance P into a
different but equivalent problem instance P ′ that is hopefully easier to solve by the
subsequently invoked solution algorithm.

In CPLEX, presolving capabilities were added with version 2.1 in 1993. It started
with simple reductions like removing fixed variables and redundant constraints, and
presolve was mainly viewed as a convenience feature to relieve the users from hav-
ing to write their models in a most efficient way. The importance of presolve in-
creased significantly with the introduction of matrix generators and modeling lan-
guages, see, e.g., Fourer [30], because a general algebraic model often produces
fixed variables and redundant constraints if applied to a specific data set. Since its in-
troduction, presolve has become more and more complex over the years and evolved
into a very sophisticated and highly important solver component. Nowadays, it not
only removes the garbage from the model formulation, but it also tightens the LP
relaxation and extracts information that is exploited later during the solving process.
See, e.g., Savelsbergh [55] and Achterberg [2] for an overview of the most common
presolving techniques.

As can be seen in Table 8, presolving has a massive impact on CPLEX’ ability
to solve MIPs. When turning presolve off, 471 out of 3002 problem instances be-
come unsolvable within the time limit, while only 9 can be solved for which default
CPLEX fails. Except for the most trivial cases, presolving is almost always able
to simplify or strengthen the problem instances, see the “affected models” column.
Disabling presolve makes the solving process slower in the majority of cases, and
it increases the average solving time for more challenging models (those that take
more than 10 seconds to solve) by more than a factor of 11. Interestingly, this result
is very much in line with the observations in Bixby et al. [17], even though we used
a completely different test set and a much newer CPLEX version.

One can group the MIP presolving techniques into two classes, namely primal
and dual presolve operations. Primal techniques are those that rely on feasibility
arguments. They modify the problem instance in such a way that the set of feasible
solutions is preserved, but either the size of the problem instance is reduced or the LP
relaxation gets tighter. Examples are the removal of fixed variables and redundant

462 T. Achterberg and R. Wunderling

Table 9 Impact of individual presolving techniques in CPLEX 12.5 on the [10,10k] bracket

Feature Models Default Modified code Affected

Tilim Tilim Faster Slower Time Nodes Models Time Nodes

No primal reductions 1412 10 304 178 1161 6.06 5.26 1401 6.12 5.33

No dual reductions 1201 21 93 318 643 1.77 1.93 1171 1.79 1.96

No probing 1173 18 91 338 574 1.56 2.02 1114 1.61 2.09

No node presolving 1144 27 68 287 471 1.24 1.33 992 1.28 1.39

No root node restart 1134 23 35 332 441 1.10 0.95 985 1.12 0.94

No implied set cover
probing

1088 14 22 167 217 1.04 1.06 634 1.07 1.10

No variable gcds 1087 8 7 46 47 1.04 1.08 133 1.39 1.94

No component
analysis

1080 3 6 51 54 1.03 1.05 161 1.26 1.38

Regular Tarjan SCC 1075 0 0 5 34 1.02 1.00 – – –

constraints, bound strengthening, coefficient strengthening, lifting of constraints and
aggregation of variables.

Dual techniques consider optimality. These reductions can eliminate feasible and
even optimal solutions, as long as at least one optimal solution remains in the re-
duced problem, if it exists. Examples are dual fixing, fixings and aggregations based
on symmetry and the removal of parallel and dominated columns.

Table 9 shows the impact of the individual groups of presolve reductions on the
[10,10k] problem bracket. While the contribution of primal presolving techniques
is clearly dominating, the dual reductions also yield a very significant speedup and
have the same general applicability as primal reductions. Again, our results for node
presolving (i.e., applying domain propagation at the each node of the search tree) is
in line with the 1.3× speedup reported by Bixby et al. [17] for CPLEX 8.0.

Root node restarts (see Achterberg [2]) have been added to CPLEX 11.0 and
refined in the subsequent CPLEX 11 and 12 releases. This means to restart the solv-
ing process and apply another round of full presolve when, during the root cut loop,
enough variables have been globally fixed. According to Table 9, root node restarts
yield a 1.1× improvement on average. Interestingly, this does not come from a re-
duction in the number of search tree nodes, which suggests that the main benefit
is the smaller size of the LP relaxations due to the removal of fixed variables and
redundant constraints.

Probing [55] is a very expensive presolving procedure in which one tentatively
fixes binary variables to zero and one and propagates the fixings through the con-
straints. Analyzing the results of the propagation can detect fixed variables, aggre-
gations, tighter bounds, implications, cliques and lifting opportunities to strengthen
the LP relaxation. As can be seen in Table 9, probing contributes a significant per-
formance boost, reducing the solving times by 1.56× on average and the number of
unsolved models by 73.

Mixed Integer Programming: Analyzing 12 Years of Progress 463

Even though probing is not challenging from a theoretical point of view, its im-
plementation is a very serious exercise in high performance data structures and algo-
rithms. It involves a great deal of computational experiments to find the right tuning
of work limits and to identify special cases that have to be treated differently. For
this reason, it is not surprising that probing saw a constant chain of improvements
since its introduction in CPLEX 6.5, in particular throughout all of the CPLEX 11
and 12 releases.

One recent example of a probing extension is what we call implied set cover
probing [10], which is new in CPLEX 12.5. This generalizes the idea of implied
literals detection or hyper-resolution from the SAT community, see Bacchus [12]
and Matsliah, Sabharwal and Samulowitz [45]. Translated to MIP, it basically means
to apply probing on the members of the minimal covers implied by a knapsack
constraint and to observe that at least one member of each cover must be set to
zero. As with probing, the main challenge is to devise an efficient algorithm, which
in particular aborts as early as possible if no reductions can be found for a given
knapsack. Table 9 shows a small speedup of 1.07× on a bit more than half of the
problem instances, which yields an overall speedup of 1.04×.

Another presolving operation for which the implementation can make a big dif-
ference is the strongly connected components analysis using Tarjan’s algorithm [57].
This algorithm is applied on the implications between binary variables, stored im-
plicitly in the clique table. It is used to detect equivalences of binary variables, which
can then be aggregated. Tarjan’s algorithm runs linearly in the size of the input
graph, so it does not seem relevant to improve it for the use inside a MIP solver. But
the issue is that the graph is only defined implicitly through the clique table. Since
every clique in the clique table gives rise to quadratically many edges in the impli-
cation graph, just applying Tarjan’s algorithm on the implicitly given graph yields a
quadratic algorithm in the size of the largest clique. In particular, for large set parti-
tioning models as they arise, for example, in airline crew scheduling applications, a
quadratic run-time can be devastating. The algorithmic trick to get back to a linear
algorithm is based on the observation that after a clique has been visited twice, all
of the descendants of the clique members have already been visited. Thus we can
backtrack in the depth first search process of Tarjan’s algorithm.

Table 9 lists this improvement with a 1.02× overall speedup, which does not
exceed the variability that one can expect from random noise. But algorithmic im-
provements like this are a special case: they do not change the solving path of the
MIP solver, which means that the benchmark results do not suffer from random
noise. Moreover, the overall speedup does not tell the full story here. Namely, for
most of the problem instances, the quadratic overhead of the regular Tarjan algo-
rithm applied to the clique table is marginal, as the cliques are typically short. But
for some problem instances, the impact is significant. For example, the total solving
time for nw05, which is a set partitioning model of an airline application, reduces
from 151.5 to 4.2 seconds. Another example is ivu06-big from MIPLIB 2010 [36],
which is a set partitioning model for duty scheduling in public transportation. Here,
the regular Tarjan algorithm consumes 3543 seconds while our version specialized
to clique-implied graphs finishes in 0.4 seconds.

464 T. Achterberg and R. Wunderling

The variable gcds presolve reduction, the effect of which is listed in Table 9, was
introduced in CPLEX 12.5. It employs reasoning on the greatest common divisor of
coefficients in (implied) equations and thus generalizes the implied integer variable
detection, which has been in the code since CPLEX 6.5. An implied integer variable
is a variable that is declared to be continuous, but which has to take integer values
in any feasible solution. Therefore, such a variable can be treated as integer or con-
tinuous during the solving algorithm as deemed more convenient: for example, it
could be used for branching or to strengthen cut coefficients, but is treated as con-
tinuous in a heuristic. The variable gcd detection in CPLEX 12.5 not only detects
implied integer variables, it can also record the information that a variable x must
always take values x = pz + q with p ∈ R≥0, q ∈ R being constants and z ∈ Z.
Having extracted this information from the problem data, one could of course just
replace x by pz+ q in the model, introducing a new variable z ∈ Z with appropri-
ate bounds. But we observed that this can lead to significant numerical issues and
a performance degradation. Instead, we keep x as is, but modify the algorithms in
CPLEX to exploit the variable gcd relation explicitly. This includes getting tighter
bounds in domain propagation and modifying the cutting plane formulas to derive
stronger cut coefficients. Doing so affects about 12 % of the models in our test set
and yields a 39 % performance improvement on those problem instances compared
to the version that only detects implied integer variables.

The component analysis, which we have added in CPLEX 12.2, has a very similar
performance impact to that of variable gcds. Here, the idea is that if the constraint
matrix of a problem instance decomposes into several independent blocks, then one
can solve them independently and combine the solution vectors. Table 9 shows that
about 15 % of the problem instances are affected. This is pretty surprising, since one
could think that a problem instance that decomposes into multiple blocks points to a
modeling mistake; the problem should have been presented as multiple independent
problems right from the beginning. One has to consider, however, that in many cases
the block structure is only induced by the preceding presolve reductions.

Note that a feasible solution for the full problem is only available if we have a
solution for each of the components. Thus, if one of the components is hard to solve,
the simple approach of just solving each of the smaller components to optimality
before starting to solve the largest component is impractical. One solution would be
to solve the components in parallel and have a master process collect and merge the
individual parts of the solution vector. But since this is, given the potential benefit,
too complicated from the implementation point of view, we just decided to use a
deterministic time limit (see Sect. 4.1.1 below) for the component solves and leave
components that are too difficult for the main MIP solve.

3.4 Primal Heuristics

Branch-and-cut search is a complete procedure designed to find the optimal solution
of a given problem instance or prove infeasibility thereof. In contrast, the goal of

Mixed Integer Programming: Analyzing 12 Years of Progress 465

Table 10 Comparison of default and not using heuristics

Bracket Models Default No heuristics Affected

Tilim Tilim Faster Slower Time First Nodes Models Time First Nodes

All 3154 94 225 779 924 1.28 2.30 2.32 2577 1.35 2.47 2.79

[0,10k] 3075 15 146 779 924 1.28 2.19 2.36 2577 1.35 2.47 2.79

[1,10k] 1920 15 146 677 867 1.50 3.42 2.79 1798 1.55 3.57 2.99

[10,10k] 1194 15 146 354 669 1.95 5.40 3.56 1163 1.99 5.48 3.69

[100,10k] 697 15 146 175 447 2.64 7.75 4.44 689 2.67 7.83 4.51

[1k,10k] 338 15 146 64 253 4.79 11.72 7.90 337 4.81 11.80 7.95

primal heuristics is to find good feasible solutions quickly. Even though heuristics
are optional to solve MIPs, they are a standard ingredient in state-of-the-art MIP
solvers [13, 17]. Embedded in the framework of branch-and-cut primal heuristics
serve two goals:

algorithmic: The earlier good incumbent solutions are available during branch-and-
bound search, the earlier subtrees can be pruned, thus reducing the size of the
search tree.

pragmatic: It is often sufficient in practice to provide a good solution whereas a
proof of optimality may not even be computationally tractable.

CPLEX incorporates a variety of different heuristics, which can be classified into
two categories. Starting heuristics attempt to produce an initial feasible solution. In
contrast, improvement heuristics take as input one or more feasible solutions and try
to find better ones “close by”. Examples for improvement heuristics include 1-opt,
2-opt, local branching [26], RINS [21] and polishing [54]. Starting and improvement
heuristics mutually depend on one another. By definition, an improvement heuristic
needs a solution to work on, which can be provided by a starting heuristic. Start-
ing heuristics often produce solutions of poor quality and thus need improvement
heuristics to turn them into better ones.

Table 10 compares default CPLEX against running without any heuristics. The
first observation is that heuristics influence the optimization in most cases: compare
the “models” and “affected models” columns. When it does not, this is often due
to the simplicity of the model that can be solved by presolve. In fact, more than
93% of the models requiring more than 1 second to solve are affected by heuristics.
Unfortunately, we still observe some cases in which none of our heuristics proves
to be successful even though feasible solutions exist.

Heuristics contribute to the overall performance for solving problems to optimal-
ity by a moderate amount. The magnitude of the effect is in line with the results
reported by Bixby et al. [17], even though since then several new heuristics have
been added. One might be tempted to conclude that heuristics are less important
and need not receive much further attention.

On the other hand, heuristics do play a role in being able to solve models at all.
Disabling heuristics turn 146 models to be unsolvable, while it can only solve 15

466 T. Achterberg and R. Wunderling

Table 11 Impact of heuristic types on the [10,10k] model bracket

Feature Models Default Modified code Affected

Tilim Tilim Faster Slower Time First Nodes Models Time Nodes

No starting 1179 24 81 407 591 1.48 5.47 2.37 1147 1.50 2.42

→ no before-LP 1112 18 32 295 308 1.07 1.78 1.09 779 1.10 1.12

No improvement 1124 8 68 322 421 1.28 1.00 1.51 958 1.32 1.62

→ no RINS 1110 16 64 303 367 1.21 1.00 1.34 920 1.26 1.43

models for which default CPLEX hits the time limit. This highlights the contin-
ued need for additional or improved heuristics that find solutions in cases in which
the current arsenal fails. Doing so is unlikely to yield an overall speedup, but will
expand the applicability of MIP technology.

The need for better heuristics is more obvious when considering the pragmatic
aspect of finding feasible solutions quickly. Unfortunately, our testing methodology
lends itself only to a limited extent to a careful analysis of this aspect. Instead, a
different methodology would be needed such as the primal integral proposed by
Achterberg, Berthold and Hendel [9]. To limit the scope, in this paper we restrict
our analysis to observations that can be made within the given methodology. To this
end, we included column “first” in Table 10 that shows the shifted geometric mean
of the ratio of the time it took to find the first feasible solution in both runs. The
impact of heuristics in this metric is much more pronounced.

The major part of this success can be attributed to a new class of starting heuris-
tics, called before-LP heuristics, that have been first introduced in CPLEX 11.0.
Unlike many starting heuristics the before-LP heuristics do not require a solution of
the LP relaxation as input. Thus, they can be run before the root node LP relaxation
has been solved or (since CPLEX 12.2) in parallel to solving the root LP. More-
over, before-LP heuristics should not solve linear programs using the full problem
relaxation, or they would just duplicate the work for solving the LP relaxation.

CPLEX 12.5 contains the following types of before-LP heuristics:

• Fix-and-propagate successively fixes some variables and propagates their effects
until a feasible solution is found or an incompatible fixing is detected.

• The feasibility recovery heuristic guesses an integer feasible solution, which is
then likely to violate some constraints, and applies local search to recover feasi-
bility.

• The zero-objective heuristic removes the objective function and applies presolve.
If the model becomes small enough, the heuristic attempts to solve it as a sub-
MIP.

• Sub-MIP heuristics fix enough variables such that presolve generates a small
enough a problem to be solved as sub-MIP.

Considering that before-LP heuristics deliberately keep the work low, row 2 in
Table 11 shows that they are remarkably successful at finding an initial feasible so-
lution. About 70 % of the models are affected, and they account for a 78 % improve-
ment in time to the first solution. Moreover, there is a small improvement in time

Mixed Integer Programming: Analyzing 12 Years of Progress 467

to optimality due to before-LP heuristics, but they do not seem to contribute much
to the ability to solve models at all. This is not surprising, since the same heuristics
can also be applied later during the search so that the same or better solutions will
typically be found after processing the root node.

Row 1 in Table 11 shows the impact of turning off all start heuristics, includ-
ing the before-LP heuristics. Clearly, this accounts for the full impact of turning off
heuristics for the time to first solution, since improvement heuristics can by defini-
tion not play a role in this regard. Moreover, general starting heuristics also affect
the overall performance and, more importantly, the ability to solve certain models at
all. They are thus more successful at finding useful feasible solutions than before-LP
heuristics. Not only do they have access to stronger information with LP solutions,
but they are also allotted more time to succeed.

A significant part of the success of starting heuristics for the overall performance
comes from the fact that they produce starting points to be used by improvement
heuristics. The effect of improvement heuristics is measured in row 3 of Table 11. In
fact, turning off improvement heuristics reduces the performance impact of heuris-
tics in general by a considerable margin. RINS proved to be the most successful
among improvement heuristics in CPLEX.

Maybe more surprisingly, improvement heuristics play an important role for be-
ing able to solve models at all. 68 models become unsolvable if improvement heuris-
tics are turned off. This amounts to almost half of the 146 cases from Table 10 for
which heuristics are needed to solve a problem instance. It is thus often only due to
the improvement heuristics that an optimal solution can be found at all.

3.5 Other Advances

Even though branching, cutting plane separation, presolving and primal heuristics
are the main building blocks of a state-of-the-art MIP solver, there are of course
other components that play a significant role. One of them is to deal with sym-
metry in the model. Symmetry detection was introduced to CPLEX with version
7.0 in 2000, but only as a non-default option that would detect symmetries using
a heuristic and generate symmetry breaking constraints in advance on top of the
presolved model. With CPLEX 10.0, released in 2006, we switched to the much
more sophisticated symmetry detection algorithm AUTOM of Puget [52] and exploit
symmetric patterns similarly to 0-setting and orbital branching, see Margot [42]
and Ostrowski et al. [47], respectively. As indicated in the “[10,10k]” bracket of
Table 12, this yields a 91 % performance improvement on the 347 models to which
it applies, leading to an overall speedup of 23 %. Moreover, there are some models
in our test set that cannot be solved within the time limit if symmetry detection is
disabled. Considering that only about 30 % of our models are affected by symmetry,
these are important contributions.

A more recent advancement in CPLEX is the introduction of conflict analysis in
CPLEX 12.3 in 2011, see Achterberg [1, 2]. In default settings, CPLEX analyzes

468 T. Achterberg and R. Wunderling

Table 12 Comparison of default and not exploiting symmetry

Bracket Models Default No symmetry breaking Affected

Tilim Tilim Faster Slower Time Nodes Models Time Nodes

All 3188 98 130 107 252 1.08 1.13 565 1.57 1.99

[0,10k] 3097 7 39 107 252 1.09 1.13 565 1.57 1.99

[1,10k] 1885 7 39 103 246 1.14 1.22 497 1.67 2.10

[10,10k] 1112 7 39 85 186 1.23 1.30 347 1.91 2.30

[100,10k] 587 7 39 53 124 1.36 1.42 219 2.28 2.57

[1k,10k] 238 7 39 25 72 1.78 1.90 115 3.27 3.79

Table 13 Comparison of default and not using conflict analysis

Bracket Models Default No conflict analysis Affected

Tilim Tilim Faster Slower Time Nodes Models Time Nodes

All 3176 97 114 189 300 1.05 1.08 991 1.16 1.28

[0,10k] 3090 11 28 189 300 1.05 1.08 991 1.16 1.28

[1,10k] 1868 11 28 183 297 1.08 1.13 879 1.18 1.30

[10,10k] 1101 11 28 149 241 1.13 1.18 630 1.24 1.33

[100,10k] 586 11 28 104 172 1.22 1.27 388 1.35 1.43

[1k,10k] 233 11 28 48 85 1.42 1.55 181 1.57 1.76

infeasible and bound-exceeding node LPs to derive conflict constraints, which are
then used during node presolve for domain propagation. Long constraints are dis-
carded if the conflict constraint table grows too large. Because CPLEX does not
keep the structure of the search tree as it is done in SCIP, but instead just manages a
flat list of open nodes, sophisticated reverse propagation rules [1] to strengthen the
conflict constraints cannot be applied. Nevertheless, Table 13 shows that over half
of the models in the [10,10k] bracket are affected by conflict analysis, on which a
24 % speedup is achieved. Unfortunately, in contrast to SAT [44], conflict analysis
in CPLEX only helps to solve a few models that are otherwise intractable.

An interesting component that originated from the feasibility pump heuristic of
Fischetti, Glover and Lodi [29] is called pumpreduce, which tries to reduce the
number of fractional variables in the LP solution without sacrificing optimality. To
achieve this, we first fix all structural variables and slack variables with non-zero
reduced costs or dual solution values, respectively, to their current LP values, effec-
tively forcing the solution of subsequent optimizations to stay on the optimal face of
the LP polyhedron. Then, we iteratively modify the objective function and resolve
with the primal simplex algorithm in order to drive the solution to a “more integral”
basis. In its initial version in CPLEX 11.0, pumpreduce was mainly used to improve
the LP solution as a starting point for primal heuristics. After extending the method
in CPLEX 12.1, we discovered that pumpreduce can also be used for cut filtering,
see Achterberg [4]. Namely, we now separate violated cutting planes for the initial

Mixed Integer Programming: Analyzing 12 Years of Progress 469

Table 14 Comparison of default and not using pumpreduce

Bracket Models Default No pump-reduce Affected

Tilim Tilim Faster Slower Time Nodes Models Time Nodes

All 3178 97 116 396 505 1.04 1.06 1517 1.09 1.14

[0,10k] 3101 20 39 396 505 1.04 1.07 1517 1.09 1.14

[1,10k] 1881 20 39 378 481 1.07 1.09 1244 1.12 1.14

[10,10k] 1135 20 39 262 364 1.11 1.15 836 1.16 1.21

[100,10k] 609 20 39 158 231 1.17 1.23 489 1.23 1.30

[1k,10k] 261 20 39 76 117 1.32 1.39 229 1.37 1.46

Table 15 Comparison of default (dynamic search) and traditional branch-and-cut

Bracket Models Default Traditional branch-and-cut Affected

Tilim Tilim Faster Slower Time Nodes Models Time Nodes

All 3159 96 226 493 945 1.30 1.33 2021 1.51 1.55

[0,10k] 3077 14 144 493 945 1.31 1.33 2021 1.51 1.55

[1,10k] 1905 14 144 472 907 1.54 1.69 1615 1.66 1.86

[10,10k] 1193 14 144 312 696 1.98 2.47 1086 2.12 2.70

[100,10k] 700 14 144 169 471 2.85 3.78 671 2.98 4.00

[1k,10k] 349 14 144 65 270 4.91 6.92 346 4.98 7.04

LP solution vector, then apply pumpreduce to find an alternative optimum and fi-
nally apply cut filtering based on this new LP solution. Consequently, cutting planes
that are added to the LP relaxation will now cut off at least two optimal vertices of
the LP polyhedron. The effect of pumpreduce in its current version is listed in Ta-
ble 14. It yields a solid overall improvement of 11 % for the models in the [10,10k]
bracket and also helps to solve a few more problems within the time limit. It affects
about three quarters of the non-trivial problem instances.

Probably the most significant improvement in recent years of CPLEX develop-
ment is the introduction of dynamic search in version 11.0. Dynamic search is not
really a particular feature, but it mainly provides a way to drastically change how
the features collaborate using information gained at runtime: it can restructure the
search tree, modify the presolved model during the search, discard useless cutting
planes or generate more of them, trigger expensive heuristics if needed and so on.
Of course, this comes at a cost as some of those operations can be computation-
ally expensive, but Table 15 shows that the net effect is a significant win. Not only
does the performance improve by almost 2× on the non-trivial models, it also helps
to solve a large number of problem instances that are unsolvable with traditional
branch-and-cut.

470 T. Achterberg and R. Wunderling

4 Parallelism

If you walked into a computer store in 2000 to buy a new computer you would prob-
ably have walked out with a Pentium 4 machine or equivalent. You would not have
labeled it “single-core” since this was the default. Parallel shared memory com-
puters were highly specialized equipment that required special motherboards that
would support more than one CPU, significantly adding to their cost. The situa-
tion changed in 2004 as the first multi-core CPUs where introduced, first by SUN
in their SPARC architecture and (2005) with the Athlon X2 processor by AMD.
Today, single core processors have vanished from the general purpose computing
market. Consequently, exploiting parallelism in state-of-the-art solvers has changed
from being a premium feature to an indispensable requirement.

4.1 Deterministic Parallel Optimization

Branch-and-cut algorithms have the reputation of being embarrassingly parallel,
simply by processing nodes of the search tree concurrently. Consequently, paral-
lel MIP solvers have been around since the 1990s, see, e.g., Boehning, Butler and
Gillett [18], Gendron and Crainic [31], Eckstein [25] and Linderoth [39]. In CPLEX,
parallel MIP was introduced with version 4.0.3 in 1996.

However, using parallel algorithms for solving MIPs came at a price. Not only
was the monetary cost for the hardware and software considerably higher, but the
algorithm performed non-deterministically. This means that two executions of the
same algorithm with the same data on the same machine are not guaranteed to follow
the same solution path and thus can produce different solutions and (often very)
different solving times.

Such non-determinism is caused by random timing differences when executing
a concurrent algorithm. For instance, the decision to process or discard one node
depends on the availability of an incumbent solution that may allow one to prune
it. If such a new incumbent is found by a different processor at a different node,
the exact timing determines if the decision to process a node comes out positive or
negative.

With multi-core machines having become mainstream, such non-determinism is
no longer acceptable in most situations. Having repeatable results is of paramount
importance when developing and debugging applications. Technical support would
become almost impossible if observed behavior cannot be reproduced and software
demonstrations would become risky propositions. In 2007, CPLEX 11.0 was the
first MIP solver to introduce deterministic parallel MIP, which is now standard
among state-of-the art solvers.

4.1.1 Deterministic Clocks, Locks and Signaling

Central to the deterministic parallelization of the CPLEX solvers is the concept of a
deterministic clock, which is characterized by the following features:

Mixed Integer Programming: Analyzing 12 Years of Progress 471

• a value that is monotonically increased with time,
• the increase happens at fine enough granularity,
• the value grows roughly linearly with time and
• the clock speed is roughly independent of the algorithm.

In CPLEX deterministic clocks are implemented as 64-bit integer counters that are
incremented for each memory access [8].

Using the ideas in Olszewski, Ansel and Amarasinghe [46], deterministic clocks
can be used to implement deterministic locks. Locks are used in concurrent compu-
tation to protect access to shared data so as to prevent threads to access data that is
simultaneously modified by another thread. Before accessing such data, a lock must
be acquired. The lock is only granted to one thread, while the other threads have to
wait until the lock is released again. Clearly, without further attention, the order in
which different threads will be granted the lock depends on the timing and is thus in
general non-deterministic.

In order to make locks deterministic, we use a deterministic clock d(t) for every
thread t ∈ 1, . . . , T . When a thread t ′ is created by thread t we assign d(t ′)= d(t).
The determination whether or not to grant access to a lock to thread t is delayed
until the following condition holds:

(∧

t ′<t
d
(
t ′
)
> d(t)

)
∧
(∧

t ′>t
d
(
t ′
)≥ d(t)

)
.

In other words, a lock is only granted to the thread with the lowest deterministic time
using the thread number as tie breaker. If a thread attempts to acquire a lock while
this is not the case, it has to wait in order to give the other threads with lower deter-
ministic time a chance to access the lock before. It is easy to see that this enforces
determinism in the order in which threads will be granted locks. Furthermore, if all
access to shared data is protected with such deterministic locks, the resulting concur-
rent algorithms will execute deterministically (as long as no other non-deterministic
information, such as timing information is being used). This forms the basis for the
CPLEX deterministic parallel solvers. They can be easily run in opportunistic (i.e.,
non-deterministic) mode, simply by switching to regular, non-deterministic locks
instead.

A special class of parallel algorithms used in mathematical programming is
called concurrent optimization. In this setting, different algorithms are available for
solving a problem, yet there is no clear winner among them. Instead, each algo-
rithm works best in some cases, but there is no known predictor for choosing it for
a particular problem instance a priori. With concurrent optimization, a set of com-
peting algorithms are executed concurrently. As soon as the first algorithm finishes,
it terminates the others using a signal. On problems where the execution time of
the algorithms is drastically different, such an algorithm will in practice yield de-
terministic results, but when this condition is violated, non-determinism becomes
a problem. Fortunately, encapsulating the termination signal in a deterministic lock
can overcome this issue. It is equivalent to using deterministic time rather than wall-
clock time to declare a winner.

472 T. Achterberg and R. Wunderling

Table 16 Comparison of deterministic and opportunistic concurrent LP using 12 threads

Bracket Models Deterministic Opportunistic concurrent LP Affected

Tilim Tilim Faster Slower Time Models Time

All 2185 41 39 239 12 0.96 79 0.88

[0,10k] 2147 3 1 239 12 0.96 79 0.88

[1,10k] 658 3 1 225 12 0.89 42 0.82

[10,10k] 324 3 1 149 11 0.85 19 0.72

[100,10k] 135 3 1 78 7 0.78 12 0.66

[1k,10k] 41 3 1 20 2 0.77 8 0.58

Linear Programming is the most prominent example for concurrent optimiza-
tion, with three competing algorithms: the primal and dual simplex algorithms and
the barrier algorithm. While there is no known parallel implementation of the sim-
plex algorithm that scales to many processors, the barrier algorithm lends itself very
well to parallelism. By including the parallel barrier algorithm in the concurrent
optimization, all available threads can be put to good use. As a consequence, the
choice of which other algorithms to include influences the performance of the par-
allel barrier algorithm. In particular, with CPLEX we observed that including the
primal simplex algorithm in the deterministic concurrent LP optimizer would lead
to a deterioration of the overall performance. The primal simplex just does not win
frequently enough to offset the overall performance reduction that barrier would
suffer from using one less parallel thread.

4.1.2 Cost of Determinism

In order to make locks deterministic, we introduce additional potential wait times
during synchronization. It should thus be expected that there is a performance
penalty for achieving determinism, and the obvious question is how large this ef-
fect is.

The first algorithm we analyze is the concurrent LP solver. In Table 16 we com-
pare the performance of the deterministic and opportunistic execution using our
internal LP problem set consisting of 2185 models. We observe a clear performance
degradation of up to 23 % due to determinism. Since the only difference between
the deterministic and opportunistic concurrent LP optimizer is the synchronization
for the termination signal at the end, the performance difference can be directly
attributed to the deterministic lock. The deterministic lock, in turn, can only con-
tribute additional waiting time if the deterministic clock of the dual algorithm and
the barrier algorithm do not progress at the same pace.

For instance, if the barrier algorithm is the winner, but its deterministic clock
ticks faster than the deterministic clock of the dual simplex algorithm, the deter-
ministic lock will delay the signal until the deterministic clock of the dual simplex
algorithm has caught up with the deterministic end time of the barrier algorithm.

Mixed Integer Programming: Analyzing 12 Years of Progress 473

Table 17 Comparison of deterministic (default) and opportunistic parallel MIP

Bracket Models Default Opportunistic parallel MIP Affected

Tilim Tilim Faster Slower Time Nodes Models Time Nodes

All 3162 93 101 1207 310 0.90 0.92 2130 0.86 0.88

[0,10k] 3098 29 37 1207 310 0.90 0.91 2130 0.86 0.88

[1,10k] 1868 29 37 1092 301 0.85 0.88 1666 0.84 0.86

[10,10k] 1107 29 37 635 258 0.86 0.87 1048 0.86 0.86

[100,10k] 603 29 37 329 188 0.88 0.89 589 0.88 0.88

[1k,10k] 249 29 37 128 92 0.98 0.99 247 0.98 0.99

During that time, it can happen that the dual simplex algorithm terminates as well
and thus is declared the “deterministic winner”. Such situations are recognized as
“affected models” in Table 16. This happens only for a small number of problem
instances, which shows that in practice even the opportunistic version of the concur-
rent LP optimizer behaves deterministically on most of the problem instances, but
there is no guarantee.

The measured degradation due to determinism increases with the runtime of the
optimization. This can be explained by the observation that with more time, the in-
accuracies of the deterministic clocks have more time to accumulate. Overall, the
performance difference gives a good measure of the relative accuracy of the deter-
ministic clocks for drastically different algorithms. In this view a difference of 23 %
is surprisingly small, considering the dramatic difference in memory access patterns
between barrier and simplex.

By construction it should be impossible that the deterministic algorithm outper-
forms the opportunistic one. Yet our table shows a hand full of cases where the
opportunistic algorithm is reported to be slower (by at least 10 %). This is mostly
due to wall clock time measurement errors. Only in one instance we observed a
drastic loss of the opportunistic solver due to other reasons: In this case the dual
simplex algorithm was the “deterministic winner”, whereas in opportunistic mode it
was outperformed by barrier. But when the optimal basis from the barrier solution
was copied to the master LP, in the master problem numerical errors triggered a long
simplex run, which extended the 2702 seconds barrier solving time by an additional
6355 seconds.

The effect of determinism of the concurrent LP solver is also part of the “cost of
determinism” for the CPLEX 12.5 MIP solver, which we evaluate in Table 17. The
first observation is that indeed by giving up determinism, up to 15 % of performance
can be gained. Opportunistic parallel is at least 10 % faster than deterministic par-
allel on more than a third of the models in the test set, while it is slower on less
than 10 % of the problem instances. That there is so much variation in the winning
algorithm comes from the performance variability of MIP. In contrast to determinis-
tic concurrent LP optimization, where determinism needs to be enforced only once
at the end, for MIP non-determinism can enter the algorithm at any point and thus
dramatically change the solution path. In fact, most models are affected, with the

474 T. Achterberg and R. Wunderling

Table 18 Comparison of default and not using parallel root node computations

Bracket Models Default No parallel root node Affected

Tilim Tilim Faster Slower Time First Nodes Models Time First Nodes

All 3163 98 112 492 606 1.03 1.09 1.13 1922 1.07 1.14 1.22

[0,10k] 3084 19 33 492 606 1.04 1.08 1.13 1922 1.07 1.14 1.22

[1,10k] 1887 19 33 467 579 1.06 1.14 1.14 1472 1.08 1.18 1.18

[10,10k] 1119 19 33 325 421 1.09 1.21 1.18 964 1.11 1.25 1.22

[100,10k] 601 19 33 193 240 1.11 1.29 1.19 536 1.13 1.33 1.21

[1k,10k] 245 19 33 82 106 1.12 1.29 1.09 226 1.13 1.32 1.10

exception of those that can be solved by presolve or, within limits, those that can be
solved at the root.

In recognition of the fact that deterministic locks are more expensive than reg-
ular ones, our MIP solver synchronizes less frequently in deterministic mode than
in opportunistic mode. As a consequence, information is not shared as frequently
between threads, which in turn adversely impacts the solve process. This can be
observed as a decrease in number of nodes when using opportunistic parallelism.

While deterministic MIP is on average slower than opportunistic MIP, the num-
ber of timeouts does not significantly change between both options. This means that
the performance gain one can obtain from opportunistic parallelism does not pro-
vide a qualitative boost that would allow one to solve problems that are otherwise
unsolvable.

4.2 Performance Evaluation of Parallel MIP

Except for solving the initial root LP relaxation with the concurrent LP optimizer,
the processing of the root node involves the cut loop, which is an inherently sequen-
tial algorithm. Thus computing resources are free to be used for other tasks. Since
version 12.2, CPLEX not only exploits parallelism for processing the branch-and-
cut tree, but is also applying more heuristics while the root node is being processed.
Table 18 shows the impact of doing this. As expected, the main improvement that
can be gained lies in the time to the first feasible solution. It also slightly helps
overall performance, but not to a point that it would allow one to solve many more
models.

The main exploitation of parallelism clearly lies in processing the tree concur-
rently. Table 19 shows the speedups that are achieved by increasing the number of
threads to be used. These measurements include the impact of exploiting root node
parallelism. We observe that the speedup improves with both, the number of threads
as well as the “hardness” of the problem bracket.

However, the total speedup for a larger number of threads appears to be rather
disappointing. While we are not able to fully explain this, we identified the following
contributing factors.

Mixed Integer Programming: Analyzing 12 Years of Progress 475

Ta
bl

e
19

Sc
al

in
g

of
de

te
rm

in
is

tic
pa

ra
lle

lM
IP

us
in

g
se

qu
en

tia
lm

od
e

as
re

fe
re

nc
e

B
ra

ck
et

M
od

el
s

2
th

re
ad

s
4

th
re

ad
s

6
th

re
ad

s
8

th
re

ad
s

10
th

re
ad

s
12

th
re

ad
s

T
im

e
N

od
es

T
im

e
N

od
es

T
im

e
N

od
es

T
im

e
N

od
es

T
im

e
N

od
es

T
im

e
N

od
es

A
ll

31
43

0.
81

1.
03

0.
69

1.
10

0.
65

1.
14

0.
62

1.
17

0.
61

1.
21

0.
60

1.
22

[0
,1

0k
]

30
95

0.
81

1.
02

0.
69

1.
08

0.
64

1.
12

0.
61

1.
15

0.
60

1.
18

0.
59

1.
20

[1
,1

0k
]

19
90

0.
72

1.
06

0.
56

1.
17

0.
50

1.
23

0.
47

1.
28

0.
46

1.
33

0.
44

1.
35

[1
0,

10
k]

13
53

0.
65

1.
05

0.
47

1.
19

0.
41

1.
25

0.
36

1.
31

0.
35

1.
37

0.
34

1.
39

[1
00

,1
0k

]
82

7
0.

62
1.

10
0.

42
1.

25
0.

35
1.

28
0.

30
1.

32
0.

29
1.

40
0.

27
1.

39

[1
k,

10
k]

47
7

0.
65

1.
19

0.
43

1.
41

0.
34

1.
39

0.
28

1.
38

0.
28

1.
52

0.
25

1.
48

476 T. Achterberg and R. Wunderling

• The root node parallelization does not scale well. Thus, the possible parallel
speedup is limited a priori through Amdahl’s Law [11], which describes an upper
bound of the achievable parallel speedup, if parts of an algorithm are not affected
by the parallelization.

• The same is true for the ramp-up phase of the tree search, in which not enough
nodes are available yet for parallel processing.

• We observe that with an increasing number of threads the number of nodes in-
creases as well. The extra computational power from multiple threads is in part
just used to process nodes that turn out to be discardable after the optimal solution
is found.

• Since the sequential code is slower, it also produces more time limit hits. These
are accounted for as 10000 seconds in the geometric mean which biases the re-
sults in favor of the sequential code.

• When 12 threads operate concurrently they all have to access data. This may yield
memory bus contention which could slow down all threads.

In recognition of these effects, we attempted to compute the parallel speedup for the
tree search in isolation with the following approach. First, we excluded all models
for which a time limit was encountered in order to avoid the bias. We further ex-
cluded models that took less than 1000 nodes to solve for any of the solvers in order
to reduce the effect of the ramp-up phase. Finally, we only measured the branch-
and-cut time, i.e., we excluded the presolving and root node time. For the subset of
models in the [10,10k] bracket, this yields a speedup of 6.31× on 12 threads. Taking
into account that the node count also increased by a factor of 1.11, this corresponds
to an increase of a factor of 7 in node throughput, which is still considerably lower
than linear. Given that we processed at least 1000 nodes, the ramp-up phase can only
play a minor role in this.

In order to assess the slowdown due to memory contention we conducted two
additional experiments. First, we ran the sequential solver alone on the machine.
Second, we ran 12 identical copies of the solver concurrently on the same machine.
In the second experiment, we observed a slow down of a factor of 1.31 in geometric
mean, which varied between models in the range of 1 to 3. This variability does not
allow us to estimate the true effect within one process, when data is shared and thus
cache lines can get invalidated between threads. We only measured the effect for our
machines, but in general hardware architecture is certain to also be a limiting factor
in the achievable parallel speedup.

5 Conclusion

We have analyzed the performance impact of the main components of a MIP solver
as implemented in CPLEX 12.5. Table 20 summarizes our key findings and com-
pares the impact of the individual features. To make the comparison meaningful, we
use the same model set for all rows by selecting the [10,10k] problem bracket w.r.t.
all features. Thus, the evaluation is performed on those problem instances for which

Mixed Integer Programming: Analyzing 12 Years of Progress 477

Table 20 Impact of individual solver features on performance on the [10,10k] bracket

Feature Models Default Modified code Affected

Tilim Tilim Faster Slower Time Nodes Models Time Nodes

No presolving 1769 45 500 233 1394 7.57 8.58 1722 8.00 9.14

Most infeasible
branching

1769 45 500 171 1071 4.63 6.53 1440 6.57 10.06

No cutting planes 1769 45 399 459 984 3.75 13.76 1611 4.26 17.64

No parallelism
(12 threads)

1769 45 154 230 1216 2.33 0.73 1604 2.56 0.73

No dynamic
search

1769 45 171 440 808 1.55 1.73 1466 1.70 1.94

No heuristics 1769 45 173 601 756 1.51 2.70 1640 1.57 2.91

No symmetry 1769 45 77 94 229 1.15 1.22 469 1.68 2.10

No conflict
analysis

1769 45 63 173 271 1.09 1.12 824 1.19 1.28

No pumpreduce 1769 45 64 353 434 1.06 1.08 1150 1.11 1.13

at least one of the solvers listed in the table (including default CPLEX 12.5) was able
to solve the model and for which at least one solver took at least 10 seconds. This
problem set is larger than the individual [10,10k] sets used in the previous sections,
which explains the differences in the data.

Note that the degradation value for most infeasible branching stands out, since
branching cannot be turned off like the other features. Turning off branching would
yield a pure cutting plane algorithm with little hope of solving larger models [60].
The degradation factor of 4.63 thus only represents a qualitative statement that the
branching decisions are indeed of upmost importance.

The most important result is captured in the number of additional time limit hits
due to disabling a certain feature. We like to view this as a proxy for differenti-
ating features that are essential for the ability to solve certain models from those
that merely provide a speedup. Among essential features, presolving and branch-
ing are undisputedly the most important, followed by cutting planes. No ranking
can be determined between dynamic search and heuristics: both are equally impor-
tant for solving models. Symmetry is a special case as it is critical only on a much
smaller subset of the models. The additional time limit hits due to disabling sym-
metry detection are smaller by a factor of about 4 compared to dynamic search and
heuristics. But this is in line with the difference in the number of affected models.
Thus, if it applies, symmetry is as important for solving models as dynamic search
and heuristics.

Parallelism needs to be considered separately. Using only 1 rather than 12 threads
effectively reduces by a factor of 12 the allowed computation time. The comparison
of 12 vs 1 thread is thus essentially imposing a 1

12 10000 second time limit, hence
the increase in time limit hits. As we have shown in Sect. 4.2, the speedup due to
parallelism is far from linear, which explains why the number of time limit hits for

478 T. Achterberg and R. Wunderling

the sequential version is in fact surprisingly low. Thus indeed, exploitation of paral-
lelism does not qualify as feature that helps solving more models. It cannot defeat
the combinatorial nature of MIP, but only (moderately) accelerate the computation.

Conflict analysis and pumpreduce do not seem to be key ingredients for solving
the models in our set. Primarily, they only help to improve performance on those
models that can already be solved without the feature.

We also observe a division between the components in terms of their applica-
bility. Presolving, branching, cuts, parallelism, dynamic search and heuristics are
applicable throughout the test set, whereas the remaining features only affect a re-
duced set of models.

It is interesting to note the change in relative importance of cuts when compar-
ing to the results in Bixby et al. [17], where cuts are reported to be five times more
effective than presolve, the second most important factor. In our analysis, the ef-
fectiveness is reversed with presolve coming out as more than twice as effective as
cuts for CPLEX 12.5. Clearly, cuts have not become so much weaker nor presolve
that much stronger. The reason for this discrepancy can be found in the test set that
was used in [17], which included only 106 instances. It was constructed by select-
ing problems that were unsolvable for CPLEX 5.0 but solved relatively easily with
CPLEX 8.0. Therefore, the large degradation when turning off cuts only means that
this is the main feature contributing to making more models solvable by CPLEX 8.0
(which was exactly the purpose of this particular experiment). In fact, cuts were the
main source of improvement in CPLEX 6.5, see Bixby et al. [16]. Interestingly, de-
spite this very special selection of the test set, the results for presolve and heuristics
are roughly in line with our unbiased measurements.

Thus, comparing CPLEX 8.0 with CPLEX 12.5, the impact of heuristics and
presolve apparently did not change much. For cuts let us estimate the improvement
with 2× and for branching with 1.29× taken from Table 4. With these crude esti-
mates, we can gauge the improvement between the two versions using the product
of these contributions and the remaining features in Table 20 (dynamic search, sym-
metry, conflict analysis and pumpreduce). The resulting factor of about 5 to 6 is still
far from the measured speedup of 21.91× in Table 1 for the same model bracket.
While this estimate cannot be expected to be numerically accurate, it clearly points
out that something is missing from the full picture.

The authors claim that the missing link is the “black art of MIP”, or soft features.
Soft features are characterized by exploiting existing features in better ways, rather
than adding new concepts to the arsenal of weapons to attack MIPs. We have already
discussed some soft features, namely root node restarts in Sect. 3.3, cut filtering in
Sect. 3.2 and pumpreduce in Sect. 3.5.

Let us finish by presenting yet another soft feature, which unfortunately cannot
be quantified in the same way as the other components that we discussed. As we
pointed out, many features only affect a subset of models. It is thus important not to
waste time on any feature that may turn out to be irrelevant for a particular model.
More importantly, if a feature is helping to solve a particular model, it should not
be disabled before it has provided its contribution, which may be crucial for solving
the problem instance. The “black art of MIP” consists of dynamic self-tuning of

Mixed Integer Programming: Analyzing 12 Years of Progress 479

the individual algorithms and the relative time allotment between algorithms during
runtime. To do so, CPLEX attempts to measure the effectiveness of each algorithm
to decide which to focus on more or less during the optimization. The deterministic
clock described in Sect. 4.1 plays a central role in the self-tuning of CPLEX, since it
allows one to base tuning decisions on time, without introducing non-determinism.

However, tuning alone will not qualitatively expand the applicability of MIP
technology. Further essential advances are needed. Here “essential” is used to iden-
tify advances without which certain models cannot be solved. Where these are to be
found is left for future research. Reviewing the ideas we analyzed in this paper, they
can be found anywhere: among key features of general applicability, such as cuts or
branching, among features that exploit special structure only available for a subset
of models, such as symmetry, or even among soft features such as dynamic search.

References

1. Achterberg, T.: Conflict analysis in mixed integer programming. Discrete Optim. 4(1), 4–20
(2007)

2. Achterberg, T.: Constraint integer programming. Ph.D. thesis, Technische Universität Berlin
(2007)

3. Achterberg, T.: SCIP: solving constraint integer programs. Math. Program. Comput. 1(1), 1–
41 (2009)

4. Achterberg, T.: LP basis selection and cutting planes. In: Mixed Integer Programming Work-
shop (MIP 2010) (2010)

5. Achterberg, T., Berthold, T.: Hybrid branching. In: van Hoeve, W.J., Hooker, J. (eds.) Inte-
gration of AI and OR Techniques in Constraint Programming for Combinatorial Optimiza-
tion Problems (CPAIOR 2009). Lecture Notes in Computer Science, vol. 5547, pp. 309–311.
Springer, Berlin (2009)

6. Achterberg, T., Raack, C.: The MCF-separator: detecting and exploiting multi-commodity
flow structures in MIPs. Math. Program. Comput. 2(2), 125–165 (2010)

7. Achterberg, T., Koch, T., Martin, A.: Branching rules revisited. Oper. Res. Lett. 33, 42–54
(2005)

8. Achterberg, T., Junglas, D., Wunderling, R.: Deterministic parallelization through atomic task
computation. US Patent US20120311604 A1 (2011)

9. Achterberg, T., Berthold, T., Hendel, G.: Rounding and propagation heuristics for mixed in-
teger programming. In: Klatte, D., Lüthi, H.J., Schmedders, K. (eds.) Operations Research
Proceedings 2011, pp. 71–76. Springer, Berlin (2012)

10. Achterberg, T., Sabharwal, A., Samulowitz, H.: Stronger inference through implied literals
from conflicts and knapsack covers. In: Gomes, C., Sellmann, M. (eds.) Integration of AI
and OR Techniques in Constraint Programming for Combinatorial Optimization Problems
(CPAIOR 2013). Lecture Notes in Computer Science, vol. 5547. Springer, Berlin (2013)

11. Amdahl, G.: Validity of the single processor approach to achieving large-scale computing
capabilities. In: AFIPS Conference Proceedings, vol. 30, pp. 483–485 (1965)

12. Bacchus, F.: Enhancing Davis Putnam with extended binary clause reasoning. In: Eighteenth
National Conference on Artificial Intelligence, pp. 613–619. American Association for Artifi-
cial Intelligence, Menlo Park (2002)

13. Berthold, T.: Primal heuristics for mixed integer programs. Master’s thesis, Technische Uni-
versität Berlin (2006)

14. Bixby, R.E.: A brief history of linear and mixed-integer programming computation. In:
Grötschel, M. (ed.) Optimization Stories, pp. 107–121. Deutsche Mathematiker-Vereinigung,
Bielefeld (2012)

480 T. Achterberg and R. Wunderling

15. Bixby, R.E., Rothberg, E.: Progress in computational mixed integer programming—a look
back from the other side of the tipping point. Ann. Oper. Res. 149(1), 37–41 (2007)

16. Bixby, R.E., Fenelon, M., Gu, Z., Rothberg, E., Wunderling, R.: MIP: theory and practice—
closing the gap. In: Powell, M., Scholtes, S. (eds.) Systems Modelling and Optimization:
Methods, Theory, and Applications, pp. 19–49. Kluwer Academic, Norwel (2000)

17. Bixby, R.E., Fenelon, M., Gu, Z., Rothberg, E., Wunderling, R.: Mixed-integer programming:
a progress report. In: Grötschel, M. (ed.) The Sharpest Cut: The Impact of Manfred Padberg
and His Work. MPS-SIAM Series on Optimization, pp. 309–325. SIAM, Philadelphia (2004)

18. Boehning, R.L., Butler, R.M., Gillett, B.E.: A parallel integer linear programming algorithm.
Eur. J. Oper. Res. 34(3), 393–398 (1988)

19. Cook, W.: Markowitz and Manne + Eastman + Land and Doig = branch and bound. In:
Grötschel, M. (ed.) Optimization Stories, pp. 227–238. Deutsche Mathematiker-Vereinigung,
Bielefeld (2012)

20. Crowder, H., Johnson, E.L., Padberg, M.W.: Solving large scale zero-one linear programming
problems. Oper. Res. 31, 803–834 (1983)

21. Danna, E., Rothberg, E., Le Pape, C.: Exploring relaxation induced neighborhoods to improve
MIP solutions. Math. Program. 102(1), 71–90 (2005)

22. Danzig, G.B., Fulkerson, D.R., Johnson, S.M.: Solution of a large-scale traveling-salesman
problem. Oper. Res. 2, 393–410 (1954)

23. Danzig, G.B., Fulkerson, D.R., Johnson, S.M.: On a linear-programming, combinatorial ap-
proach to the traveling-salesman problem. Oper. Res. 7, 58–66 (1959)

24. Eastman, W.: Linear programming with pattern constraints. Ph.D. thesis, Department of Eco-
nomics, Harvard University, Cambridge, MA, USA (1958)

25. Eckstein, J.: Parallel branch and bound algorithms for general mixed integer programming on
the CM-5. SIAM J. Optim. 4(4), 794–814 (1994)

26. Fischetti, M., Lodi, A.: Local branching. Math. Program. 98(1–3), 23–47 (2003)
27. Fischetti, M., Lodi, A.: Heuristics in mixed integer programming. In: Cochran, J.J. (ed.) Wiley

Encyclopedia of Operations Research and Management Science, vol. 8, pp. 738–747. Wiley,
New York (2011)

28. Fischetti, M., Monaci, M.: Branching on nonchimerical fractionalities. Oper. Res. Lett. 40,
159–164 (2012)

29. Fischetti, M., Glover, F., Lodi, A.: The feasibility pump. Math. Program. 104(1), 91–104
(2005)

30. Fourer, R.: On the evolution of optimization modeling systems. In: Grötschel, M. (ed.) Opti-
mization Stories, pp. 377–388. Deutsche Mathematiker-Vereinigung, Bielefeld (2012)

31. Gendron, B., Crainic, T.G.: Parallel branch-and-bound algorithms: survey and synthesis. Oper.
Res. 42(6), 1042–1066 (1994)

32. Gomory, R.E.: Outline of an algorithm for integer solutions to linear programs. Bull. Am.
Math. Soc. 64, 275–278 (1958)

33. Grötschel, M. (ed.): The Sharpest Cut: The Impact of Manfred Padberg and His Work. MPS-
SIAM Series on Optimization, vol. 4. SIAM, Philadelphia (2004)

34. Grötschel, M., Jünger, M., Reinelt, G.: A cutting plane algorithm for the linear ordering prob-
lem. Oper. Res. 32, 1195–1220 (1984)

35. Karamanov, M., Cornuéjols, G.: Branching on general disjunctions. Math. Program. 128, 403–
436 (2011)

36. Koch, T., Achterberg, T., Andersen, E., Bastert, O., Berthold, T., Bixby, R.E., Danna, E.,
Gamrath, G., Gleixner, A.M., Heinz, S., Lodi, A., Mittelmann, H., Ralphs, T., Salvagnin, D.,
Steffy, D.E., Wolter, K.: MIPLIB 2010. Math. Program. Comput. 3, 103–163 (2011)

37. Koster, A., Zymolka, A., Kutschka, M.: Algorithms to separate {0, 1
2 }-Chvátal-Gomory cuts.

Algorithmica 55, 375–391 (2009)
38. Land, A., Doig, A.: An automatic method of solving discrete programming problems. Econo-

metrica 28, 497–520 (1960)
39. Linderoth, J.T.: Topics in parallel integer optimization. Ph.D. thesis, School of Industrial and

Systems Engineering, Georgia Institute of Technology, Atlanta, GA, USA (1998)

Mixed Integer Programming: Analyzing 12 Years of Progress 481

40. Linderoth, J.T., Savelsbergh, M.W.P.: A computational study of search strategies for mixed
integer programming. INFORMS J. Comput. 11, 173–187 (1999)

41. Mahajan, A., Ralphs, T.: Experiments with branching using general disjunctions. In:
Chinneck, J.W., Kristjansson, B., Saltzman, M.J. (eds.) Operations Research and Cyber-
Infrastructure. Operations Research/Computer Science Interfaces Series, vol. 47, pp. 101–118.
Springer, Berlin (2009)

42. Margot, F.: Pruning by isomorphism in branch-and-cut. Math. Program. 94(1), 71–90 (2002)
43. Markowitz, H.M., Manne, A.S.: On the solution of discrete programming problems. Econo-

metrica 25, 84–110 (1957)
44. Marques-Silva, J.P., Sakallah, K.A.: GRASP: a search algorithm for propositional satisfiabil-

ity. IEEE Trans. Comput. 48, 506–521 (1999)
45. Matsliah, A., Sabharwal, A., Samulowitz, H.: Augmenting clause learning with implied liter-

als. In: Cimatti, A., Sebastiani, R. (eds.) SAT. Lecture Notes in Computer Science, vol. 7317,
pp. 500–501. Springer, Berlin (2012)

46. Olszewski, M., Ansel, J., Amarasinghe, S.: Kendo: efficient deterministic multithreading in
software. ACM SIGPLAN Not. 44(3), 97–108 (2009)

47. Ostrowski, J., Linderoth, J.T., Rossi, F., Smriglio, S.: Orbital branching. Math. Program. 126,
147–178 (2011)

48. Owen, J.H., Mehrotra, S.: Experimental results on using general disjunctions in branch-and-
bound for general-integer linear programs. Comput. Optim. Appl. 20(2), 159–170 (2001)

49. Padberg, M., Rinaldi, G.: Optimization of a 532-city symmetric traveling salesman problem
by branch and cut. Oper. Res. Lett. 6, 1–7 (1987)

50. Padberg, M., Rinaldi, G.: A branch-and-cut algorithm for the resolution of large-scale sym-
metric traveling salesman problems. SIAM Rev. 33, 60–100 (1991)

51. Patel, J., Chinneck, J.W.: Active-constraint variable ordering for faster feasibility of mixed
integer linear programs. Math. Program. 110, 445–474 (2007)

52. Puget, J.F.: Automatic detection of variable and value symmetries. In: van Beek, P. (ed.) CP
2005. Lecture Notes in Computer Science, vol. 3709, pp. 475–489. Springer, Berlin (2005)

53. Raidl, G.R., Puchinger, J.: Combining (integer) linear programming techniques and meta-
heuristics for combinatorial optimization. In: Blum, C., Aguilera, M., Roli, A., Sampels,
M. (eds.) Hybrid Metaheuristics. Studies in Computational Intelligence, vol. 114, pp. 31–62.
Springer, Berlin (2008)

54. Rothberg, E.: An evolutionary algorithm for polishing mixed integer programming solutions.
INFORMS J. Comput. 19, 534–541 (2007)

55. Savelsbergh, M.W.P.: Preprocessing and probing techniques for mixed integer programming
problems. ORSA J. Comput. 6, 445–454 (1994)

56. SCIP: Solving constraint integer programs. scip.zib.de
57. Tarjan, R.E.: Depth-first search and linear graph algorithms. SIAM J. Comput. 1(2), 146–160

(1972)
58. van Roy, T.J., Wolsey, L.A.: Solving mixed integer programming problems with automatic

reformulation. Oper. Res. 35(1), 45–57 (1987)
59. Wunderling, R.: Paralleler und objektorientierter Simplex-Algorithmus. Ph.D. thesis, Techni-

sche Universität Berlin (1996)
60. Zanette, A., Fischetti, M., Balas, E.: Lexicography and degeneracy: can a pure cutting plane

algorithm work? Math. Program. 130(1), 153–176 (2011)

http://scip.zib.de

Progress in Academic Computational Integer
Programming

Thorsten Koch, Alexander Martin, and Marc E. Pfetsch

Abstract This paper discusses issues related to the progress in computational inte-
ger programming. The first part deals with the question to what extent computational
experiments can be reproduced at all. Afterward the performance measurement of
solvers and their comparison are investigated. Then academic progress in solving
mixed-integer programming at the examples of the solver SIP and its successor
SCIP is demonstrated. All arguments are supported by computational results. Fi-
nally, we discuss the pros and cons of developing academic software for solving
mixed-integer programs.

1 Introduction

The field computational integer programming deals with the computational as-
pects of integer and combinatorial optimization. Ever since the paper of Dantzig,
Fulkerson, and Johnson [33] it has been clear that one main goal would be to ac-
tually compute (optimal) solutions and that practical considerations would have a
major influence on the evolution of this field.

This article discusses the developments that have been made in the last 20 years
with and through academic research and software. The main point is to highlight
important issues that arise when implementing, testing, and benchmarking mixed-
integer programming (MIP) software. For concreteness, we use the MIP-solvers SIP

T. Koch (B)
Konrad-Zuse-Zentrum für Informationstechnik Berlin, Takustr. 7, 14195 Berlin, Germany
e-mail: koch@zib.de

A. Martin
Department Mathematik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstr. 11,
91058 Erlangen, Germany
e-mail: alexander.martin@math.uni-erlangen.de

M.E. Pfetsch
Fachbereich Mathematik, Technische Universität Darmstadt, Dolivostr. 15, 64293 Darmstadt,
Germany
e-mail: pfetsch@opt.tu-darmstadt.de

M. Jünger, G. Reinelt (eds.), Facets of Combinatorial Optimization,
DOI 10.1007/978-3-642-38189-8_19, © Springer-Verlag Berlin Heidelberg 2013

483

mailto:koch@zib.de
mailto:alexander.martin@math.uni-erlangen.de
mailto:pfetsch@opt.tu-darmstadt.de
http://dx.doi.org/10.1007/978-3-642-38189-8_19

484 T. Koch, A. Martin, and M.E. Pfetsch

and SCIP as examples, see [67] and [3, 71]. Consequently, this article is written from
the personal perspective and experience of the authors, which allows us to present
more details compared to just a general overview. We believe that many parts will
find their analogies with other solvers (both commercial and academic). All three
authors were involved in the development of SCIP or its ancestor SIP and were or
are still working at the group of Martin Grötschel at the University of Augsburg
and at the Zuse Institute Berlin (ZIB). In fact, the authors are lucky to have lead the
integer programming group for some time.

One main motivation for this article is the growing importance of computer
driven experiments and how to draw scientifically meaningful conclusions from
them in the area of computational integer programming in particular. Indeed, it
seems that the publication standards of papers involving computations have not yet
been fully fixed—in contrast to other physical sciences that are based on exper-
iments. Actually, Hooker [49] called for a new paradigm to evaluate experimental
results obtained on the computer, and Greenberg [42] already discussed standards of
publication—apparently, both without much effect. Our article tries to bring (back)
into focus several issues that one has to be aware of in the context of computational
integer programming.

It seems to be important to note that most issues that we discuss are not primar-
ily of a mathematical nature, but they are necessary to come to scientifically sound
conclusions when evaluating mathematical ideas. Clearly, these topics are at the in-
tersection of different fields like computer science, operations research, engineering,
and mathematics. Consequently, researchers from all these fields—mathematicians,
in particular—have to be aware of the loopholes, traps, and organizational issues
that are related to such computations. We see our article as one contribution in this
direction.

We explicitly mention mathematicians here, because the authors have heard sev-
eral times throughout their careers that implementation would be an issue for engi-
neers/computer scientists and should not be performed by mathematicians. We do
not agree and believe in the interdisciplinary viewpoint stated above.

We begin with a brief historical review of the developments during the last two
decades related to SIP and SCIP in order to put things into a perspective and—in
a sense—to document its achievements. Then we discuss the question whether the
computational experiments that have been performed in the past can be reproduced
at all. This is a topic that is often neglected in the literature and that, we think, de-
serves more attention. The next section deals with our experiences of benchmarking
MIP-solvers. In the final section, we discuss issues related to the development of
academic software in this context.

2 Historical Overview

This section briefly reviews the last 20 to 30 years in computational integer
programming; it focuses on academic developments, and, in particular, those at
ZIB.

Progress in Academic Computational Integer Programming 485

As mentioned above, we decided to largely neglect other (academic) software
developments in this article. The following references give more balanced surveys
on the available software: Atamtürk and Savelsbergh [17], as well as Linderoth and
Lodi [61], give an overview of MIP-solvers, while Linderoth and Ralphs [62] fo-
cus on non-commercial MIP-solvers. For an overview of linear programming (LP)
solvers, see Fourer [39]. More details and a discussion of possible future research
topics can be found in the survey of Lodi [64].

2.1 General Developments Starting in the 1980s

Possibly the first major step for the development of integer programming solvers
was the seminal paper by Crowder, Johnson, and Padberg [31], which introduces
many concepts that are still part of modern MIP-solvers. In the context of combi-
natorial optimization, the development of branch-and-cut (B&C) algorithms turned
out to be very influential, based, e.g., on the article by Grötschel, Jünger, and Reinelt
[43] on the linear ordering problem. From a computational perspective, the paper of
Padberg and Rinaldi [70] on the solution of the traveling salesman problem (TSP)
was a major step. Apart from the introduction of many important components like
the cut pool, it also coined the name “branch-and-cut”. At that time it became com-
mon to look for an NP-hard combinatorial problem, investigate its facets, and then
implement a specialized B&C algorithm to solve it. The algorithms consisted of a
separation procedure for the identified problem-specific facets and valid inequalities
plus some branching scheme.

At ZIB, a large number of specialized B&C solvers were implemented in the late
1990s, e.g., [28, 29, 35, 44, 45, 56, 75], to mention just a few.

People generally implemented their own branch-and-bound framework using one
of the available out-of-the-box LP-solvers like OSL, MINOS, CPLEX, or XPRESS.
General cutting planes like Gomory cuts were not considered to be useful in prac-
tice. For MIP-solving this only changed with the rediscovery of Gomory’s mixed
integer cuts by Balas et al. [18], which made B&C approaches dominant also for
MIP-solving.

The main focus of the B&C algorithms for combinatorial optimization was on
separating, and the number of branch-and-bound nodes that had to be enumerated
was relatively small (or the instance could not be solved anyway due to the computer
standards of the time). This fits well with the statement that branching is a sign of
mathematical defeat, which is attributed to Manfred Padberg.

Several general out-of-the-box MIP-solvers like OSL, XPRESS, or CPLEX ex-
isted, but apart from their versatility, these were inferior to the special implemented
algorithms.

486 T. Koch, A. Martin, and M.E. Pfetsch

2.2 MIP-Solving at ZIB

The work of the integer programming group at ZIB started in the early 1990s, af-
ter Martin Grötschel had moved to Berlin. Beginning in 1992, Cray Research had
funded a project to develop a general parallel B&C framework to solve large combi-
natorial optimization problems. This framework was targeted at the then state-of-the
art distributed memory Cray T3D computer. The project was lead by Christian Hege
and conducted by Roland Wunderling and Martin Grammel. Their assumption was
that the central part of any B&C solver is the simplex algorithm, and therefore the
first goal of the project was to develop a fast parallel distributed memory simplex
algorithm.

When in 1996 Roland Wunderling finished his Ph.D. thesis [76] on the LP-solver
library SoPlex (sequential object-oriented simplex), two things could be concluded:

1. It was possible to write a simplex-based LP-solver that matched the performance
of the commercial implementations at that time.

2. Developing a (distributed memory) parallel simplex-based LP-solver is not an
especially promising idea (see also [24]). The work on the distributed memory
B&C framework ceased even some time before.

One of the main features of SoPlex was the exploitation of the sparsity of the
constraint matrix. In most linear and integer programming problems, the matrix A is
very sparse, see [65]. There are some exceptions in which specialized algorithms for
dense linear algebra computations are needed, see, e.g., [34]; remarkably, this area
never received much attention. Despite the enormous speed-up that linear program-
ming achieved in practice as reported by Bixby [22], there is only a small number
of articles that together seem to contain everything important on how to implement
a simplex based LP-solver: [32, 37, 38, 47, 58, 60, 72, 73].

At the end of the 1990s, the performance of general out-of-the-box MIP-solvers
tremendously improved. One main influencing action was mining the literature, as
Bob Bixby, the founder of CPLEX and Gurobi, called it. At this point a significant
amount of theoretical results, in particular, on cutting planes, had been published
that were not utilized in the out-of-the box (commercial) MIP-solvers. By incor-
porating these insights, it was possible to enormously improve the performance of
general MIP-solvers, and for the first time it became hard to beat them by special
implementations. More and more (practical) problems could be modeled and solved
directly without further programming. As the solvers evolved, it became common
to use them as frameworks for specialized algorithms by only extending the basic
solver, instead of implementing a complete B&C algorithm from scratch.

In 1994, Alexander Martin started to develop the general MIP-solver SIP (Solv-
ing Integer Programs). When he finished his habilitation treatise in 1998, two things
could be concluded:

1. At that time it was possible to write a B&C based MIP-solver that matched
the performance of commercial implementations: SIP was comparable in per-
formance to CPLEX at the time, see [67], although a notable disadvantage was
that it used CPLEX as embedded LP-solver.

Progress in Academic Computational Integer Programming 487

2. It became clear that implementing (shared memory) parallel MIP-solvers had
some potential, but proved to be difficult. The reason for this is that the back-
bone of MIP-solvers was (and still is) the (dual) simplex algorithm. Moreover,
one particular problem was the insufficient memory bandwidth of the available
machines.

When Alexander Martin moved to TU Darmstadt in 2000, Tobias Achterberg and
Thorsten Koch continued the work on SIP at ZIB. In particular, it was interfaced
with SoPlex, making SIP completely available in the source code for the first time.

A main component of MIP-solvers are rules to choose the branching variable in
each node of the tree. One key idea is strong branching, which was invented in the
1990s, see [14, 15, 51]. Before actually branching on some variable, its value is
tested by temporarily fixing the variable to its up and down value and comparing the
resulting LP relaxations. This is obviously time-consuming, but currently the best
choice in terms of the number of branch-and-bound nodes. In 2004, the state-of-
the-art w.r.t. solving time was the so-called pseudo cost branching, an idea that was
already developed in the 1970s, see [19, 63, 67], which tries to “learn” from previ-
ous branching decisions and constructs artificial costs of the variables that hopefully
reflect their merit for branching. In 2005, a dynamic combination of both methods,
the so-called reliability branching, was developed, see [7]. A variation of it is still
state-of-the-art, see Achterberg and Berthold [4]. This was a major step forward,
since the main handicap of pseudo cost branching is that, especially in the begin-
ning when the branching decision is most influential, no additional information is
available, and most infeasible branching was used; this missing information at the
beginning is dynamically supplied by strong branching. As experiments revealed,
most infeasible branching does not perform better than branching randomly.

Around 2003, MIPs were generalized by incorporating concepts from constraint
programming leading to so-called Constraint Integer Programming, see [2] for an
exact definition. This was motivated by an industry project with Infineon on the
verification in chip design. Since it became clear that the basic infrastructure of SIP
was very much tailored toward solving MIPs, Tobias Achterberg began to develop
SCIP (Solving Constraint Integer Programs) as part of his Ph.D. thesis, see [2, 10].
He also extended SCIP by using SAT solving techniques, e.g., restarts and conflict
analysis.

Since then, SCIP has been continuously developed and improved. Apart from
the added functionality with respect to constraint programming, SCIP has been one
of the fastest non-commercial MIP-solvers, see, e.g., Mittelmann [69], and used in
numerous areas—often beyond classical MIP-solving; examples are:

• column generation and decomposition of MIPs [40],
• constraint programming and conflict analysis [1, 3, 9],
• counting solutions [11, 48],
• MIP-solver technology [4, 5, 21],
• mixed-integer nonlinear programming [27, 74],
• pseudo-Boolean optimization [20],
• semidefinite programming [16, 66],
• symmetries in integer programs [52, 53].

488 T. Koch, A. Martin, and M.E. Pfetsch

In 2007, the first version of the ZIB Optimization Suite was released, which in-
tegrated SCIP as CIP-solver, SoPlex as solver for the LP-relaxations, and Zimpl
[54, 55] as modeling environment. The source codes are freely available for aca-
demic usage. Thus, a complete state-of-the-art solver environment is available in
the source code for usage, improvement, and teaching.

In 2012, the third major version of the now called SCIP Optimization Suite has
been released. It integrates, for example, a framework for distributed parallel com-
putations and substantially extended the functionality to solve mixed-integer non-
linear programs.

However, the size of the suite (altogether about 800,000 lines of code) also
demonstrates that computational integer programming has clearly evolved beyond
the point where an individual can just sit down and implement a state-of-the-art
solver as a Ph.D. thesis. A large number of complex and involved components are
needed, and their integration is a major issue. We will discuss this further in Sect. 6.

When looking back over the last 25 years of work on the topic, the question that
comes up is How much progress has been made? There is the well-known article by
Bixby [22] that determines at least a million times speed-up for linear programming
during 15 years and an article by Achterberg and Wunderling [6] investigating the
improvements in MIP solving. Can we make similar conclusions regarding (aca-
demic) integer programming? To answer this question we have to compare the per-
formance of different MIP solvers over time. But in order to compare results, they
have to be available or at least reproducible, an issue addressed in the next section.
The question on how to compare results is then discussed in Sect. 4.

3 Reproducibility of Computational Results

One of the foundations of scientific research is that experiments should be repro-
ducible. The key question is what kind of reproducibility one actually requires. This
generally varies over different natural sciences. The results of an experiment re-
produced by independent researchers with the same or similar material and experi-
mental set-up are generally accepted, where the degree of agreement of the results
depends on the field. However, this is complicated in cases when the investigated
material is destroyed during measurements as it may happen in biology, for in-
stance. In areas that use computers to perform experiments reproducibility has been
discussed for some time, see, e.g., [68, 77]. Clearly, this is highly relevant for com-
putational integer programming. It seems, however, that we have not yet reached
a generally accepted agreement on the kind of reproducibility that is needed or
wanted. One guideline would be that at least the same/similar conclusions could
be drawn from similar experiments—a statement that must be made more precise.
In fact, one goal of this section is to provide an example from computational integer
programming that illustrates the difficulties of reproducibility in this area.

There are four basic options for reproducing results of an algorithmic idea pub-
lished in the literature:

Progress in Academic Computational Integer Programming 489

• use the published results;
• run an old code on old machines;
• recompile and run an old code on new machines, possibly using new libraries;
• reimplement the published method.

Clearly, every option has severe drawbacks: Assuming that a new code is run on
a new computer, it is obviously very difficult to compare running times across dif-
ferent machines. (We do not know of any computational experiment with a new
algorithm that has been run on purpose on a much older machine.) While this might
suffice to get a very crude estimation, there is one major obstacle to this approach:
The sample sizes especially of the older articles are too small for today’s standards.
As it can be seen in [6], one needs several hundred and more instances to actu-
ally be able to measure smaller performance changes. Thus, we actually need to
run the published algorithm on more instances than have been published in order
to derive a sound comparison. Running an old code on old or new machines comes
with complicated technical problems, as we shall illustrate below. This leaves us
to reimplement the published method. But this last option is often practically too
time consuming. One issue is that a reimplementation does not provide any scien-
tific merit. Moreover, it moves the burden of supplying a good implementation of
an algorithmic idea to the one that is performing the comparison. If the old idea
performs badly, it might be due to a bad implementation.

We do not have good solutions for these issues, but in the following we will in-
vestigate how precisely we can reproduce old results and use the particular example
of reproducing results from SIP to highlight the problems involved. Clearly, to pro-
vide a historic perspective like in this paper, only the first three options above are
significant.

As one goal of this article we would like to show the progress achieved in the
field and thus compare results of current solvers with previously published ones.
As reference we will take Table 5.1 given on page 75 of [67], where the results
of solving a set of instances using SIP 1.1 are listed, see the copy in Table 1. Is it
possible to reproduce those results? Our observations concerning this question are:

• The test instances used in the article are still openly available, though there are
no checksums (or similar) available to ensure that they are identical with the ones
used in [67].

• The SIP source code is available. While not mentioned in [67], it seems clear
which precise version of the code was used.

• The program was run on a SUN Ultra Enterprise 3000 with 4 UltraSparc proces-
sors with 167 MHz, 1 GB RAM using Solaris 7. Incidentally, this machine or a
quite similar one is still available at ZIB, because it is planned to be exhibited in
a museum. In a few years it will be very unlikely to find such a machine without
major effort.

• As it turned out, this machine has no compiler installed. Furthermore, it is neither
clear from the description in the article nor the source code which compiler was
used. It seems that some version of the SUN SUNWspro C/C++ compiler had
been applied. Probably it would be possible to locate an old CD with this software

490 T. Koch, A. Martin, and M.E. Pfetsch

Table 1 SIP with default settings; taken from Table 5.1 given on page 75 of [67]

Example B&B Cuts Dual bound Primal bound Time Gap %

lOteams 10370 0 922 924 3600.0 0.217

air03 8 0 340160 340160 6.7 0.000

air04 1220 0 56137 56137 1532.5 0.000

air05 3588 0 26374 26374 1696.8 0.000

arkiOOl 100776 4 7579808.299 7646059.57 3600.1 0.874

bell3a 25146 0 878430.316 878430.316 45.3 0.000

bell5 337394 1 8966406.491 8966406.491 536.7 0.000

blend2 15055 5 7.598985 7.598985 122.4 0.000

cap6000 4323 2578 −2451418.742 −1236924 3604.0 49.543

dano3mip 1 0 576.2316203 – 3710.3 –

danoint 12655 0 62.94058146 70 3600.3 11.216

dcmulti 2637 0 188182 188182 14.6 0.000

dsbmip 867 0 −305.198175 −305.198175 42.7 0.000

egout 222 0 568.1007 568.1007 0.2 0.000

enigma 8002 524 0 0 24.2 0.000

fast0507 234 0 172.2530211 177 3604.8 2.756

fiber 783 372 405935.18 405935.18 16.9 0.000

fixnet6 1669 0 3983 3983 14.6 0.000

flugpl 7976 25 1201500 1201500 4.4 0.000

gen 11 20 112313.3627 112313.3627 0.3 0.000

gesa2 209525 33 25771445.96 25783761.56 3600.0 0.048

gesa2_o 264243 0 25711931.57 25823063.47 3600.0 0.432

gesa3 5297 0 27991042.65 27991042.65 97.1 0.000

gesa3_o 74472 0 27991042.65 27991042.65 1144.7 0.000

gt2 2215 5 21166 21166 3.2 0.000

harp2 23990 15966 −73944202.17 −70801289 3600.1 4.250

khb05250 2637 0 106940226 106940226 16.3 0.000

l1521av 3209 269 4722 4722 93.8 0.000

lseu 303 164 1120 1120 1.1 0.000

misc03 699 14 3360 3360 4.1 0.000

misc06 308 0 12850.86074 12850.86074 4.2 0.000

misc07 35585 0 2810 2810 378.8 0.000

mitre 1286 3865 115155 115155 1125.8 0.000

mod008 884 371 307 307 9.8 0.000

modO1O 237 3 6548 6548 5.6 0.000

Progress in Academic Computational Integer Programming 491

Table 1 (Continued)

Example B&B Cuts Dual bound Primal bound Time Gap %

mod011 6108 0 −54558535.01 −54558535.01 2791.4 0.000

modglob 1000000 0 20652263.27 20763655.71 3495.8 0.539

noswot 1000000 179 −43 −41 2270.7 4.651

nw04 1827 0 16862 16862 732.9 0.000

p0033 77 53 3089 3089 0.1 0.000

p0201 507 136 7615 7615 5.0 0.000

p0282 1345 2308 258411 258411 38.3 0.000

p0548 1610 902 8691 8691 25.3 0.000

p2756 23151 6923 3113.257351 3141 3600.2 0.891

pk1 501934 0 11 11 1581.8 0.000

pp08a 1000000 0 5446.190476 8620 2092.7 58.276

pp08aCUTS 624198 0 6970.027419 7650 3600.0 9.756

qiu 17378 0 −132.873137 −132.873137 2326.5 0.000

qnet1 17694 12 16029.69268 16029.69268 1229.9 0.000

qnet1_o 3806 0 16029.69268 16029.69268 158.6 0.000

rentacar 105 0 30356760.98 30356760.98 53.2 0.000

rgn 2505 315 82.19999924 82.19999924 9.6 0.000

rout 200371 316 1048.991823 1079.19 3600.0 2.879

set1ch 841033 0 39920.71098 67819.5 3600.0 69.886

seymour 1947 0 406.4218572 438 3601.8 7.770

stein27 4666 0 18 18 8.0 0.000

stein45 54077 0 30 30 277.7 0.000

vpm1 1000000 0 19.5 20 1892.6 2.564

vpm2 555712 0 13.75 13.75 1368.7 0.000

Total (59) 8017878 35366 77823.6 226.547

and try to install it. Nevertheless, it is unlikely that we would be able to reproduce
the exact binary.

• SIP used CPLEX 5.0 as its LP-solver, i.e., it needs the CPLEX callable library.
Finding an old CD will not help, since any available license would have expired
for years. In the meantime ILOG, the owner of CPLEX at that time, has been
acquired by IBM. IBM is still in the possession of the source code, but is not
willing to release the code, even in binary form, due to the legal effort required.

We conclude that while it might be technically possible to reproduce the binary
(or something very similar) and run it on a machine similar to the original one, it
would require a lot of effort to do so. Furthermore, there is no way to check whether
we actually succeeded in producing the precise environment under which the tests
where performed in the paper. It seems to be the only possibility to compare the

492 T. Koch, A. Martin, and M.E. Pfetsch

new results with the old log files—which are still available—and those printed in
the article. If there is any mismatch, this could be due to a hundred different reasons,
like a different compiler switch for some subsystem, a different version of a system
library, etc.

Another point is determinism and reproducibility regarding computer hardware.
Computer hardware is not free of errors, e.g., Intel is listing several hundred errors
for their CPUs in so-called Specification Updates on arki.intel.com. It should be
noted though that most of these errors are very rare and need extremely complicated
conditions to appear. Computers and in particular RAM are also prone to errors due
to cosmic rays. While all this might be an issue on large scale super-computers, we
can neglect it on workstation level. Another issue is that modern systems have fea-
tures like NUMA, Hyperthreading, Turbo-Boost, etc. that require careful attention
to ensure reproducible results.

Since we are interested in the algorithmic advances and less in the question
whether the computing machinery got faster, it should suffice to compile the code on
a modern machine, using a modern compiler and get comparable results apart from
the timings. Tobias Achterberg, now at IBM, kindly agreed to do this. He compiled
the original SIP code together with CPLEX 5.0.1 using gcc 4.0.1 on a modern In-
tel Xenon X5260 powered Linux computer. As it turned out, we achieved identical
results regarding the number of branch-and-bound nodes for all but three instances.
Trying to solve the instance mitre the program crashed due to a numerical error
from CPLEX. The runs for the instances lseu and p0033 differ. The most likely ex-
planation is that the LP-solver returned a different optimal basis. Indeed, Intel x86
architecture CPUs do double precision (64 bit) floating point calculations internally
with 80 bit precision. This can lead to different results compared to SPARC CPUs
which use 64 bits throughout. Even though both conform with the IEEE 754 stan-
dard. There are further reasons which might lead to different results. These differ-
ences can be large enough to let the simplex algorithm terminate at a different vertex
of the optimal face. As a consequence, SIP then generated different cuts, which in
turn led to a different number of nodes. The returned objective function value was
the same in all solved cases. Since the original solutions are not available anymore,
we cannot check whether the solutions returned are also the same.

Different to the original runs, the time limit given to SIP was in wall-clock time.
Due to changes in the operating system API, CPU time measurement seemed not
to work correctly (anymore). We also conducted limited experiments concerning
the CPLEX 5.0.1 MIP-solver. Here we experienced that any change of the compiler
options would also change the number of branch-and-bound nodes. And again, there
were problems regarding the time measurement.

Moreover, we tried to link the newly compiled SIP code to more recent versions
of CPLEX. This succeeded only half-way because of changes in the CPLEX API
and behaviors that could not easily be translated back to match the functionality
expected by the SIP code. We found the Version 10.1 (current is 12.5) to be the
best suitable one (later versions had some used functions removed). But also in 10.1
the behavior of some functions has changed. Between Versions 7 and 8, CPLEX
changed the return codes given for the optimization functions. We tried to fix this

http://arki.intel.com

Progress in Academic Computational Integer Programming 493

in the old code, but there seems to be at least one issue for which we do not know a
solution.

SIP could also run using multiple threads in a non-deterministic parallel mode.
Again, we were not able to reliably reproduce the old results. The major rea-
son is that especially in the area of multi-threaded computations the underlying
computational environment changed significantly. Furthermore, in the case of non-
deterministic codes where decisions are taken depending on timings, the reproduc-
tion of results on different hardware is, by construction, hardly possible at all.

One main observation is that the use of closed-source (commercial) libraries is a
major roadblock for reproducibility. If a company goes out of business, the source
code or binary might be lost forever. In any case it is usually difficult to get the old
code. Moreover, licensing problems are critical.

We observe that it is important to save all relevant information of the experiments.
The source code used for experiments should be available including all needed li-
braries, all necessary data and log files. It seems to be useful to also save the binaries.
Table 3 below, for example, was produced using a binary made in 2003. The current
trend to use dynamically linked libraries is disastrous for reproducibility. While a
statically linked program might run still decades later, trying to run a dynamically
linked program later on is often hopeless and even might not produce the same result
due to possibly changed system libraries.

Finally, one might also question whether the originally published results were
correct to begin with. In the current academic system, the review process conducted
by journals usually does not include looking at the code or the experimental data.
Questions similar to the ones above led to the founding of the journal Mathematical
Programming Computation in 2008 published by the Mathematical Optimization
Society, see [30]. A notable feature of the journal is that authors are encouraged to
submit the code and all the data necessary to reproduce the results of the article.
A special group of Technical Editors then recompiles the code and reproduces the
results. Furthermore, the code is reviewed to assess whether it resembles the de-
scription in the paper. Initially, questions were raised whether this will always be
possible. From the experience made in the last years the answer is yes. It was even
possible to rerun and review a code that was designed for a BlueGene supercom-
puter. And in this case, as in many others, the review process helped to substantially
improve the quality and usability of the code submitted. Also the review process
forces the authors to explicitly state the details of all third party codes needed.

The solving of publicly available (benchmark) instances can lead to a certain
competitiveness. As announced on June 28th, 2011 on the website ilk.uvt.nl/icga of
the International Computer Games Association (ICGA), the four times world chess
championship winner program Rybka was banned and disqualified because an in-
vestigation by [59] found the programmer guilty of plagiarizing two other programs.
This also can only happen if the code is not available for reviewing.

Assume you have the source code for the program in question. Furthermore, there
is a script that runs the test and so documents the settings used and the complete log
files for the runs used for the publication. They have to be detailed enough to decide
whether another run was similar/identical. The best situation is if the environment

http://ilk.uvt.nl/icga

494 T. Koch, A. Martin, and M.E. Pfetsch

Table 2 List of MIPLIB versions

Version Name Date Who Reference

1 MIPLIB 1991 Bixby, Boyd, Indovina [25]

2 MIPLIB 2.0 1992 Bixby, Boyd, Indovina [25]

3 MIPLIB 3.0 1996 Bixby, Ceria, McZeal, Savelsbergh [26]

4 MIPLIB 2003 2003 Achterberg, Koch, Martin [8]

5 MIPLIB 2010 2010 Many [57]

that has been used for the publication is still available, i.e., the computer/operating
system and the binary. Given that a static binary was used, it should be possible to
reproduce the experiments easily. Therefore, a static linked binary of the program
should be kept. Once the computer is not available anymore, but at least the archi-
tecture/operating system is still available, chances are relatively good that the binary
will run on a more modern environment. If the architecture/operating system is no
longer available because it is too old, there is a high probability that emulators are
available.

If the binary is not available anymore, it gets more complicated. If the source
code to all used third party libraries is available, it is possible to completely compile
the program again, although maybe not by the same compiler. If the library source
code is not available, there might be (new) versions of the library for the new target
architecture. But APIs change over time and it may be necessary to adjust the source
code of the program. Here it is important that the log files are available and detailed
enough to allow a check whether the program produces similar results.

To summarize here is what you want to keep:

1. source code and makefiles,
2. run scripts and log files,
3. source code for all used non-system libraries, and
4. a static linked binary of the program or as close as you can get to it.

4 How to Measure Performance of Integer Programming Solvers

An obvious question that arises when trying to find better ways to solve integer
programs is how to measure progress. The common solution is to have a publicly
available and accessible library of test instances to compare algorithms and imple-
mentations against. This was started for LPs with the NETLIB by Gay [41] and
then for integer programming with the MIPLIB by Bixby, Boyd, and Indovina [25].
Due to the permanent advances in algorithms and the increase in computer speed,
instances that are difficult in the beginning become easy to be solved over time. Con-
sequently, the test instance libraries have to evolve, dropping “too easy” instances
and adding harder ones. For the MIPLIB this has been done five times by now, as
shown in Table 2.

Progress in Academic Computational Integer Programming 495

The first two authors have been involved in these updates: first in 2003, see [8],
and in the current version in 2010, see [57]. For the first time a consensus of all
major solver developers in industry and academia on the selection of the instances
could be achieved. It was agreed to substantially extend the test set. The effort and
investigations to produce the 5th incarnation of the MIPLIB were substantial. The
reward was a comprehensive instance library that is accepted by researchers world-
wide. Furthermore, it was possible to give a true snapshot of the state-of-the art in
MIP-solvers.

We report on some of the issues related to benchmarking, based on the experi-
ences from the current MIPLIB. A key issue is that people tend to like condensed
information. For measuring performances, be it the speed of a computer or the pub-
lication performance of a researcher, one would like to have a single number to
describe it, since single numbers are easy to compare. Sometimes this is impossible.
Regarding the computation of citation scores for researchers, we refer to [12, 13]
for a discussion why this is not catching the truth. For integer programs it is slightly
easier, both to compute a single number and to show that this number has to be
interpreted very carefully.

It is the central problem to decide which measures to compare and on which
instances. One way is to select a large number of instances by some high-level
argument, for instance, they should be real-world instances or from a mix of ap-
plications. A more detailed description of this can be found in [57]. The selection
of the instances seemed to work quite well, since incidentally the geometric mean
performance of the three top solvers on the benchmark set were nearly equal, while
the maximum difference on a particular instance was a factor greater than 1,000.
This answers the question what such a mean number tells you in case that you have
to solve a particular class of instances: nothing. It reveals that by careful (or sloppy)
selection of the instances it is quite easy to come up with a test set where one solver
is 1,000 times faster than the other. Note the above characteristic makes it easy
for the marketing departments to produce funny comparison numbers. Basically, all
three top commercial solver vendors claim to be faster than the competition, see
[36, 46, 50].

It is even more complicated to compare solvers on instances that one solver can
solve in a given time and the other solver cannot. In many cases it is not possible to
wait until both solvers have solved the instance, e.g., if we have a one-hour time limit
and solver B would need 10,000 times as long, we would have to wait more than a
year. How should these instances be counted? One possibility is to only take those
instances that both solvers can solve. This is quite biased toward the weaker solver:
Imagine a solver that only checks whether the zero solution is feasible on instances
that have no objective function. It will be at least as fast as any other solver and there
is no way to beat it. Another option is to use a time limit and then report this limit as
the solution time. Due to the large differences in solution time the ratio between two
solvers then becomes just a lower bound in favor of the weaker solver. By increasing
the time limit, the ratio will also continue to increase, as long as one solver solves
one instance more. One could also simply not use averaging times and just count the
number of instances that can be solved by a particular solver in a given amount of

496 T. Koch, A. Martin, and M.E. Pfetsch

Fig. 1 MIPLIB 2010 benchmark set, distribution of solving time for 1 and 12 threads

time. The obvious problem is that again the result depends heavily on the particular
time limit and very much on the selected test set.

Figure 1 shows the distribution of solution times for the 89 instances of the
benchmark test set MIPLIB 2010. For each solver the times have been sorted in
ascending order, therefore a specific position of the x-axis does not necessarily
correspond to a particular instance. It can be observed that the instances fall into
basically three categories: easy instances that can be solved within a few minutes,
those instances that cannot be solved at all, and those in between. The criteria for
the benchmark set were, among others, that at least two solvers where able to solve
a particular instance within two hours and that the instance was not too easy. There-
fore, compared to a larger more random set of instances, the amount of easy and
unsolved instances is reduced. But we still can see that the in-between category is
small. By speeding up the solvers using 12 threads this phenomenon becomes more
pronounced, i.e., the in-between group actually shrinks. This is a phenomenon that
can be observed in general. Making the computer faster will just solve those prob-
lems faster that could be solved before, but the number of instances that could not
be solved at all will stay mostly the same.

5 Measuring Advances in Computational Integer Programming

As described in the introduction, the work on the MIP-solvers SIP and SCIP has
now spanned more than 16 years from 1996 to 2012. In the following we give an
impression on the advances of the field during this time.

Progress in Academic Computational Integer Programming 497

Fig. 2 1998 benchmark set, distribution of solving time for different computers and codes

First, Fig. 2 shows the time distribution for the test set used in [67] in 1998. The
results on the UltraSparc CPU were taken from [67] (see Table 1). The results on
the 3333 MHz Intel Xenon X5260 CPU were obtained by recompiling the original
SIP code and linking to CPLEX 5.0.1 using gcc 4.0.1. The picture shows the com-
parison between the old and the new codes. In 1998, SIP could solve 41 out of 59
instances. Instance mitre that could be solved on the UltraSparc now stopped with a
numerical error and was counted as a timeout with 3,600 seconds. For the X5260 we
did not impose the 1,000,000 node limit used in the paper (this limit was probably
set in order to control memory consumption). This affects the results for instances
10teams, 2756, rout, pp08aCUTS, vmp1, gesa2_o—compare Table 1.

The geometric mean of the running time using SIP on the UltraSparc was 40.2
seconds. This is now down to about 1.2 seconds, which gives us a speed-up factor
of roughly 30 between the 167 MHz and the 3333 MHz computer. The clock speed
ratio is about 20, but one should keep in mind that these are two totally different
architectures: UltraSparc is a pure RISC architecture with in-order execution, while
the Xenon is a much more complex out-of-order execution CISC CPU. Moreover,
note that since reading times are included in the time measurement and due to the
slight variations that are always present, fractions of seconds are not measured ac-
curately enough to draw conclusions from it.

It should be noted that in case of instance dano3mip, the optimum is still un-
known, and in case of instance seymour, while it has been solved, none of the com-
mercial solvers is able to solve it within one hour even on 12 threads.

What can be concluded from the comparison of the curves of SIP 1.1 on the
UltraSparc and the X5260 is that basically the same number of instances can be

498 T. Koch, A. Martin, and M.E. Pfetsch

Fig. 3 MIPLIB 2010 benchmark set, performance of different SIP/SCIP versions on the same
computer

solved, but it now only takes 1/30th of the time. This speed-up results in a nearly
rectangular shaped curve for the faster computer for the MIPLIB 2010 case. SIP
1.1 either solves an instance in two minutes, or not at all. The same is essentially
true for the new codes: They are able to solve about ten more instances, but do this
very fast, while a few instances remain which have a solving time close to the time
limit.

Figure 3 shows the performance over time relative to the current version of SCIP.
All results were computed on an Intel Xeon X5672 CPU at 3200 MHz. Note that
due to the time limit of two hours, the maximum slow-down factor compared to the
latest version is five. The time for SIP 1.2 was computed using an old binary. It was
able to solve only 16 out of 87 instances within the time limit and consequently was
rated 4.9 times slower than the current version.

Note that it is unlikely that SIP will solve much more instances when increasing
the time limit. This can be seen by Fig. 2, where SIP on a roughly 30 times faster
machine can only solve 5 instances more.

As mentioned before, the above factor is a lower bound on the real slow-down,
which is likely to be arbitrarily large, because there will be instances which can be
solved with SCIP 2.1 and which might take practically forever using SIP 1.2. In this
sense, the number of solved instances is much more important than the slow-down
factor.

Figure 4 depicts a comparison between contemporary solvers conducted by Hans
Mittelmann (see plato.asu.edu/ftp/milpc.html for the latest results). There are sev-
eral interesting facts to note:

• Because of the one-hour time limit compared to the two-hours in Fig. 3,
SCIP/SoPlex solves 10 instances less. As Fig. 1 shows, the bend in the curve
is more pronounced in the commercial solvers, i.e., the number of in-between in-
stances is bigger for SCIP. Therefore SCIP would benefit more from an increased
time limit as compared to the commercial solvers.

• The speed-up from SCIP using CPLEX as LP-solver instead of SoPlex is just
about 30 %. Given that CPLEX on pure LP benchmarks is much faster than So-

http://plato.asu.edu/ftp/milpc.html

Progress in Academic Computational Integer Programming 499

Fig. 4 MIPLIB 2010 benchmark set, comparison of MIP-solver performance relative to
SCIP/SoPlex

Plex and that solving the LPs takes a considerable amount of the total running
time of a MIP-solver, this is a surprisingly small difference. The reasons for this
are manifold, and we are currently investigating this phenomenon which was also
observed by others, e.g., Bixby [23].

• If two solvers are compared that solve a substantially different number of in-
stances to optimality, the speed-factor is underestimated in favor of the code that
solves less instances. For LPSOLVE and GLPK the factor given in the picture is
meaningless as they solve only 3 or 5 instances, respectively.

We can now make an estimation on the progress in MIP-solving by SIP/SCIP
since 1998. As computed above, the hardware speed-up factor is about 30. The lat-
est version of SCIP/SoPlex is at least five times faster than SIP 1.2/SoPlex. We
assume SIP 1.2 was at least as fast as SIP 1.1. Since SIP 1.1 was run with CPLEX
as LP-solver, we now must also compare relatively to SCIP/CPLEX, which is about
3.5 times slower than Gurobi. This gives us an estimated lower bound on the speed-
up from SIP 1.1/CPLEX on an UltraSparc to Gurobi on a modern PC of about
30 × 5 × 3.5 ≈ 525. Multiplying this number with the average speed-up from mul-
tithreading (approximately a factor of 3) gives an average speed-up of 1.63 times
per year over 15 years or a practical doubling of the MIP-solver performance ev-
ery 18 months. Remember that this is only a lower bound and that the speed-up is
distributed extremely unevenly on the instances.

A more general picture can be drawn from the MIPLIB. In MIPLIB we classify
an instance as easy, if a commercial solver on a high-end PC can solve the instance
within an hour. It is classified as hard if it can be solved by some solver, but not by
every solver, and as unsolved otherwise. People often report or publish if they are
able to solve an instance for the first time. Table 3 lists the number of easy, hard,
and unsolved instances in MIPLIB 2003 and 2010 over time. Note that this includes
also the progress through faster computers.

One has to be cautious regarding the interpretation of these numbers, because part
of the progress results from the library instances used to tune the solver algorithms.
Therefore the progress is probably overstated.

500 T. Koch, A. Martin, and M.E. Pfetsch

Table 3 Number of
instances in each class of
MIPLIB 2003/2010 over time

Date Easy Hard Unsolved

MIPLIB 2003

Start 2003 22 3 35

2004 27 12 21

2005 28 13 19

2006 28 13 19

2007 31 22 7

2008 34 20 6

2009 35 19 6

2010 35 19 6

2011 41 15 4

2012 44 12 4

MIPLIB 2010

05.2011 185 42 134

07.2011 196 33 132

08.2011 202 29 130

01.2012 202 30 129

02.2012 203 40 118

03.2012 204 41 116

04.2012 204 43 114

05.2012 206 42 113

06.2012 208 45 108

07.2012 208 47 106

08.2012 208 50 103

6 Developing Academic Integer Programming Codes

Last but not least, we want to discuss issues related to the development of academic
integer programming codes. We think that such a discussion is important, since we
have the impression that currently researchers may not be aware of several of these
issues or might even disagree over the consequences. Our main question is

Does it still make sense to develop integer programming codes in academia?

Before addressing this question, we point to several organizational obstacles that
have to be dealt with. We dispense with licensing issues here, because this is a
longer topic of its own, and rather focus on code development and publications.

Concerning code development we mentioned above that solver development has
more and more become a team effort. As an example, a new release of SCIP requires
a tremendous amount of work that we briefly mention in the following, as it might
give an example for other projects. SCIP alone contains more than 400,000 lines

Progress in Academic Computational Integer Programming 501

of code and surely contains (possibly many) errors. Thus, a big part of the work
concerns debugging. Bugs are either reported by the users through a web interface
or are found by a significant amount of tests. These bugs might become visible,
because the computed result differs from the known optimum or from a previously
computed value. Bugs can also be found because one of the checkpoints (asserts)
or unit-tests in SCIP is triggered. Some bugs may be due to numerical issues and
thus require longer time to debug. The infrastructure of SCIP helps debugging, but
in total the preparation of a release is spread over the time span of three months and
the work of about four full-time developers.

There is one further aspect that seems to be relevant in this context. It is indis-
pensable to further advance the field teamwork, and this has repercussions on how
research is conducted. Like in physics and other areas, research in computational
integer programming is more and more becoming team-work. Moreover, students
are able to learn how a solver works and are possibly able to join commercial MIP-
solver teams. (This seems to be the employee recruitment strategy in the field.) We
think that all this is only possible through academic research.

With respect to publications, we all know that it is still hard to publish papers
on computational optimization in first class journals. Basically, there is no credit for
the code development work that is involved. It is a fact that still almost all codes
used for publications are not publicly available. This is, actually, the biggest obsta-
cle for reproducibility. The introduction of the journal Mathematical Programming
Computation is a little step in the right direction, but a different way of handling
papers by editors of journals is needed. It is clear that the goal should be that every
code used for computations in a paper should be available for possible reproduction
or even improvement. Moreover, the effort needed for code development should be
taken into account.

We now come back to our initial question: Is there (still) room for academic
solvers in times when the commercial solvers seem to be computationally ahead?

There are several commercial codes available that either serve their purpose as a
stand-alone program or can be used as a B&C framework for individual applications
through callbacks. Clearly, for many applications it suffices to just use a stand-alone
MIP-solver, since this already “finishes the job” in many cases.

It is also a fact that many publications in the field use these commercial solvers
as a B&C framework through callbacks. To quantify this claim, we conducted the
following literature investigation. We checked all articles in the journals Mathemat-
ical Programming A and B (MPA and MPB, resp.) and Mathematical Computation
(MPC) in the years from 2003 (for MPA/MPB) and 2009 (for MPC) to 2012 that
perform computations and use integer programming techniques. Table 4 shows the
results.

Here, we have not counted articles on mixed integer nonlinear programming.
Several articles simply apply a MIP-solver, but have been counted if there is ad-
ditional coding involved. Furthermore, note that double counts in the number of
frameworks are possible, e.g., article [57] on MIPLIB 2010, which compares several
MIP-solvers. Articles that use own implementations to handle subproblems, bounds,
primal heuristics, etc. are listed in “own”. These articles often also use MIP-solvers,
e.g., for solving MIP-subproblems; such articles are counted twice.

502 T. Koch, A. Martin, and M.E. Pfetsch

Table 4 Statistics on articles
in Mathematical
Programming A and B
(MPA/MPB) and
Mathematical Programming
Computation (MPC) that use
MIP-solvers/frameworks
(2003–2012)

Journal # articles

MPA 61

MPB 33

MPC 12

Total 106

Framework # articles

CPLEX 51

XPRESS 9

COIN-OR 14

SCIP 6

ABACUS 4

MINTO 2

CONCORDE 2

Unkown 2

Own 27

It should be clear that these numbers have to be treated with care. However, it
seems to be clear from these numbers that CPLEX is clearly the framework that has
been used the most. Moreover, most of the articles use closed-code frameworks; for
instance, we have: CPLEX+XPRESS = 60 vs. COIN-OR+SCIP+ABACUS = 24
(MINTO/CONCORDE should probably be counted as a closed code, and ABACUS
was a closed code at the time of the publication of some of the articles).

Of course, this dominance of commercial codes has reasons. Some of the argu-
ments for using commercial MIP-solvers are the following:

1. Commercial solvers are highly tuned and, thus, also promise the best perfor-
mance for individual applications.

2. These solvers have to be used as a black-box. Thus, there is no possibility to tune
the implementation of the framework. Consequently, researchers can concentrate
on their own code, which reduces the amount of work needed.

3. Many researchers in the field have developed a code over the years, which is
often based on a particular solver. Thus, changing the framework would require
significant reimplementation effort.

4. One main argument against using such solvers was that licensing was problem-
atic. However, most commercial solvers offer academic licenses today, so this is
currently not an issue.

Ironically, all of these arguments can be turned around and used against using com-
mercial MIP-solvers:

1. The promise of best performance might be wrong, and it is (almost) impossible
to check whether small changes to the system or implementation might lead to

Progress in Academic Computational Integer Programming 503

a still better performance. Moreover, using a black-box solver does not help to
understand why a code is fast.

2. We do not know (completely) what happens in a black-box solver. Thus, it is
scientifically questionable to have significant parts of the code in which we are
not able to determine exactly what happens. More severely, the resulting code
might produce wrong results, since some effects inside the black-box could not
be taken into account.

3. The code basis is not really a scientific issue. Possibly, researchers would be
willing to switch their code bias, if this would promise a significantly improved
performance.

4. Licensing might change (see the comments in Sect. 3).

An additional argument for academic MIP-solvers is that some functionality of
a black-box solver might not be available through its API. Moreover, the usage of
API functions might incur unintended effects—sometimes even if no action should
actually be taken; examples are refactorizations of the basis in the LP-solver or even
removing old basis information or the automatic deactivation of certain algorithmic
components when using callbacks.

All these arguments support the development of academic MIP-solvers or, more
generally, B&C frameworks. However, it is unclear whether academic implementa-
tions for MIP-solving will be able to keep up with the performance of commercial
solvers. Currently, the difference seems to be still acceptable as we have seen in this
paper. Of course, this might change in the future, but predictions are always difficult.
It is our belief that new ideas in the field have to be developed both in academia and
industry—this worked very well in the past. Otherwise, the performance of MIP-
solvers, academic and commercial, will stall.

Acknowledgements We thank all developers of SCIP/SoPlex (for a complete list, see [71]); in
particular, we thank Timo Berthold and Stefan Heinz for preparing Fig. 3 and Fig. 4. Thanks to
Madeline Lips for her help with the literature investigation in Sect. 6. We also thank a referee for
helpful and insightful comments that improved this paper. Last but not least, we are most thankful
to Martin Grötschel. Investing in a long-term project as the development of a general MIP solver
is only possible if you get the time and the trust to do it. Both has been given to all three of us by
Martin Grötschel in an excellent environment at ZIB.

References

1. Achterberg, T.: Conflict analysis in mixed integer programming. Discrete Optim. 4(1), 4–20
(2007)

2. Achterberg, T.: Constraint integer programming. Ph.D. thesis, Technische Universität Berlin
(2007)

3. Achterberg, T.: SCIP: solving constraint integer programs. Math. Program. Comput. 1(1), 1–
41 (2009)

4. Achterberg, T., Berthold, T.: Hybrid branching. In: van Hoeve, W.J., Hooker, J.N. (eds.) In-
tegration of AI and OR Techniques in Constraint Programming for Combinatorial Optimiza-
tion Problems. Lecture Notes in Computer Science, vol. 5547, pp. 309–311. Springer, Berlin
(2009)

504 T. Koch, A. Martin, and M.E. Pfetsch

5. Achterberg, T., Raack, C.: The MCF-separator—detecting and exploiting multi-commodity
flows in MIPs. Math. Program. Comput. 2(2), 125–165 (2010)

6. Achterberg, T., Wunderling, R.: Mixed integer programming: analyzing 12 years of progress.
In: Facets of Combinatorial Optimization: Festschrift for Martin Grötschel. Springer, Berlin
(2013)

7. Achterberg, T., Koch, T., Martin, A.: Branching rules revisited. Oper. Res. Lett. 33, 42–54
(2005)

8. Achterberg, T., Koch, T., Martin, A.: MIPLIB 2003. Oper. Res. Lett. 34(4), 361–372 (2006)
9. Achterberg, T., Brinkmann, R., Wedler, M.: Property checking with constraint integer pro-

gramming. Technical report 07-37, ZIB, Berlin (2007)
10. Achterberg, T., Berthold, T., Koch, T., Wolter, K.: Constraint integer programming: a new

approach to integrate CP and MIP. In: Perron, L., Trick, M.A. (eds.) Integration of AI and OR
Techniques in Constraint Programming for Combinatorial Optimization Problems. Lecture
Notes in Computer Science, vol. 5015, pp. 6–20. Springer, Berlin (2008)

11. Achterberg, T., Heinz, S., Koch, T.: Counting solutions of integer programs using unrestricted
subtree detection. In: Perron, L., Trick, M.A. (eds.) Integration of AI and OR Techniques in
Constraint Programming for Combinatorial Optimization Problems. Lecture Notes in Com-
puter Science, vol. 5015, pp. 278–282. Springer, Berlin (2008)

12. Adler, R., Ewing, J., Taylor, P.: Citation statistics. Technical report, IMU, ICIAM, IMS (2008).
www.mathunion.org/fileadmin/IMU/Report/CitationStatistics.pdf

13. Adler, R., Ewing, J., Taylor, P.: Citation statistics. Not. Am. Math. Soc. 55(8), 968–969 (2008)
14. Applegate, D., Bixby, R.E., Chvátal, V., Cook, W.: Finding cuts in the TSP. Technical report

95-05, DIMACS (1995)
15. Applegate, D.L., Bixby, R.E., Chvatal, V., Cook, W.J.: The Traveling Salesman Problem:

A Computational Study. Princeton University Press, Princeton (2006)
16. Armbruster, M., Fügenschuh, M., Helmberg, C., Martin, A.: LP and SDP branch-and-cut al-

gorithms for the minimum graph bisection problem: a computational comparison. Math. Pro-
gram. Comput. 4(3), 275–306 (2012)

17. Atamtürk, A., Savelsbergh, M.: Integer-programming software systems. Ann. Oper. Res. 140,
67–124 (2005)

18. Balas, E., Ceria, S., Cornuéjols, G., Natraj, N.: Gomory cuts revisited. Oper. Res. Lett. 19, 1–9
(1996)

19. Benichou, M., Gauthier, J.M., Girodet, P., Hentges, G., Ribiere, G., Vincent, O.: Experiments
in mixed-integer programming. Math. Program. 1, 76–94 (1971)

20. Berthold, T., Heinz, S., Pfetsch, M.E.: Nonlinear pseudo-boolean optimization: relaxation or
propagation? In: Kullmann, O. (ed.) Theory and Applications of Satisfiability Testing—SAT
2009. Lecture Notes in Computer Science, vol. 5584, pp. 441–446. Springer, Berlin (2009)

21. Berthold, T., Heinz, S., Pfetsch, M.E., Vigerske, S.: Large neighborhood search beyond MIP.
In: Gaspero, L.D., Schaerf, A., Stützle, T. (eds.) Proceedings of the 9th Metaheuristics Inter-
national Conference (MIC 2011), pp. 51–60 (2011)

22. Bixby, R.E.: Solving real-world linear programs: a decade and more of progress. Oper. Res.
50(1), 3–15 (2002)

23. Bixby, R.E.: Personal communication (2012)
24. Bixby, R.E., Martin, A.: Parallelizing the dual simplex method. INFORMS J. Comput. 12,

45–56 (2000)
25. Bixby, R.E., Boyd, E.A., Indovina, R.R.: MIPLIB: a test set of mixed integer programming

problems. SIAM News 25, 16 (1992)
26. Bixby, R.E., Ceria, S., McZeal, C., Savelsbergh, M.: An updated mixed integer programming

library: MIPLIB 3.0. Optima 58, 12–15 (1998)
27. Bley, A., Gleixner, A., Koch, T., Vigerske, S.: Comparing MIQCP solvers to a specialised al-

gorithm for mine production scheduling. In: Bock, H.G., Phu, H.X., Rannacher, R., Schlöder,
J.P. (eds.) Modeling, Simulation and Optimization of Complex Processes: Proceedings of
the Fourth International Conference on High Performance Scientific Computing, March 2–
6, 2009, Hanoi, Vietnam pp. 25–40. Springer, Berlin (2009)

http://www.mathunion.org/fileadmin/IMU/Report/CitationStatistics.pdf

Progress in Academic Computational Integer Programming 505

28. Borndörfer, R.: Aspects of set packing, partitioning, and covering. Ph.D. thesis, Technische
Universität Berlin (1998)

29. Borndörfer, R., Ferreira, C.E., Martin, A.: Decomposing matrices into blocks. SIAM J. Optim.
9, 236–269 (1998)

30. Cook, W., Koch, T.: Mathematical programming computation: a new MPS journal. Optima
78, 1, 7, 8, 11 (2008)

31. Crowder, H., Johnson, E.L., Padberg, M.W.: Solving large-scale zero-one linear programming
problems. Oper. Res. 31(5), 803–834 (1983)

32. Dantzig, G.: Linear Programming and Extensions. Princeton University Press, Princeton
(1963)

33. Dantzig, G., Fulkerson, R., Johnson, S.: Solution of a large-scale traveling-salesman problem.
Oper. Res. 2, 393–410 (1954)

34. Eckstein, J., Boduroǧlu, I.I., Polymenakos, L.C., Goldfarb, D.: Data-parallel implementations
of dense simplex methods on the connection machine CM-2. ORSA J. Comput. 7(4), 402–416
(1995)

35. Ferreira, C.E., Martin, A., Weismantel, R.: Solving multiple knapsack problems by cutting
planes. SIAM J. Optim. 6(3), 858–877 (1996)

36. FICO: www.fico.com/en/FIResourcesLibrary/Xpress_7.2_Benchmarking_2773FS.pdf
(2012). Accessed May 2012

37. Forrest, J.J., Goldfarb, D.: Steepest-edge simplex algorithms for linear programming. Math.
Program. 57, 341–374 (1992)

38. Forrest, J., Tomlin, J.: Updated triangular factors of the basis of maintain sparsity in the prod-
uct form simplex method. Math. Program. 2, 263–278 (1972)

39. Fourer, R.: Linear programming—software survey. OR/MS Today 38(3) (2011)
40. Gamrath, G., Lübbecke, M.: Experiments with a generic Dantzig-Wolfe decomposition for

integer programs. In: Festa, P. (ed.) Experimental Algorithms. Lecture Notes in Computer
Science, vol. 6049, pp. 239–252. Springer, Berlin (2010)

41. Gay, M.: Electronic mail distribution of linear programming test problems. Math. Program.
Soc. COAL Bull. 13, 10–12 (1985). www.netlib.org/netlib/lp

42. Greenberg, H.J.: Computational testing: why, how and how much. ORSA J. Comput. 2(1),
94–96 (1990)

43. Grötschel, M., Jünger, M., Reinelt, G.: A cutting plane algorithm for the linear ordering prob-
lem. Oper. Res. 32(6), 1195–1220 (1984)

44. Grötschel, M., Monma, C.L., Stoer, M.: Polyhedral and computational investigations for
designing communication networks with high survivability requirements. Oper. Res. 43(6),
1012–1024 (1995)

45. Grötschel, M., Martin, A., Weismantel, R.: Packing Steiner trees: a cutting plane algorithm
and computational results. Math. Program., Ser. A 72(2), 125–145 (1996)

46. Gurobi Inc.: www.gurobi.com/products/gurobi-optimizer/prior-versions (2012). Accessed
May 2012

47. Harris, P.M.J.: Pivot selection methods of the DEVEX LP code. Math. Program. 5, 1–28
(1973)

48. Heinz, S., Sachenbacher, M.: Using model counting to find optimal distinguishing tests. In:
van Hoeve, W.J., Hooker, J.N. (eds.) Integration of AI and OR Techniques in Constraint Pro-
gramming for Combinatorial Optimization Problems. Lecture Notes in Computer Science,
vol. 5547, pp. 117–131. Springer, Berlin (2009)

49. Hooker, J.N.: Needed: an empirical science of algorithms. Oper. Res. 42, 201–212 (1994)
50. IBM—CPLEX: www-01.ibm.com/software/integration/optimization/cplex-optimization-

studio/cplex-optimizer/cplex-performance/ (2012). Accessed May 2012
51. ILOG CPLEX: Reference Manual (1997). www.cplex.com
52. Januschowski, T., Pfetsch, M.E.: Branch-cut-and-propagate for the maximum k-colorable sub-

graph problem with symmetry. In: Achterberg, T., Beck, J.C. (eds.) Proceedings of the 8th
International Conference, CPAIOR 2011. Lecture Notes in Computer Science, vol. 6697, pp.
99–116. Springer, Berlin (2011)

http://www.fico.com/en/FIResourcesLibrary/Xpress_7.2_Benchmarking_2773FS.pdf
http://www.netlib.org/netlib/lp
http://www.gurobi.com/products/gurobi-optimizer/prior-versions
http://www-01.ibm.com/software/integration/optimization/cplex-optimization-studio/cplex-optimizer/cplex-performance/
http://www-01.ibm.com/software/integration/optimization/cplex-optimization-studio/cplex-optimizer/cplex-performance/
http://www.cplex.com

506 T. Koch, A. Martin, and M.E. Pfetsch

53. Kaibel, V., Peinhardt, M., Pfetsch, M.E.: Orbitopal fixing. Discrete Optim. 8(4), 595–610
(2011)

54. Koch, T.: ZIMPL user guide. Technical report 01-20, Konrad-Zuse-Zentrum für Information-
stechnik Berlin, Berlin (2001)

55. Koch, T.: Rapid mathematical programming. Ph.D. thesis, Technische Universität Berlin
(2004)

56. Koch, T., Martin, A.: Solving Steiner tree problems in graphs to optimality. Networks 32,
207–232 (1998)

57. Koch, T., Achterberg, T., Andersen, E., Bastert, O., Berthold, T., Bixby, R.E., Danna, E.,
Gamrath, G., Gleixner, A.M., Heinz, S., Lodi, A., Mittelmann, H., Ralphs, T., Salvagnin, D.,
Steffy, D.E., Wolter, K.: MIPLIB 2010. Math. Program. Comput. 3, 103–163 (2011)

58. Kostina, E.: The long step rule in the bounded-variable dual simplex method: numerical ex-
periments. Math. Methods Oper. Res. 55, 413–429 (2002)

59. Lefler, M., Hyatt, R., Williamson, H.: ICGA Panel Members: Rybka investigation and sum-
mary of findings for the ICGA. Technical report, International Computer Games Association
(2011). ilk.uvt.nl/icga/investigation/Rybka_disqualified_and_banned_by_ICGA.rar

60. Lembke, C.E.: The dual method of solving the linear programming problem. Nav. Res. Logist.
Q. 1, 36–47 (1954)

61. Linderoth, J.T., Lodi, A.: MILP software. In: Cochran, J. (ed.) Wiley Encyclopedia of Opera-
tions Research and Management Science, vol. 5, pp. 3239–3248. Wiley, New York (2011)

62. Linderoth, J.T., Ralphs, T.K.: Noncommercial software for mixed-integer linear programming.
In: Karlof, J. (ed.) Integer Programming: Theory and Practice. Operations Research Series, pp.
253–303. CRC Press, Boca Raton (2005)

63. Linderoth, J.T., Savelsbergh, M.W.P.: A computational study of search strategies for mixed
integer programming. INFORMS J. Comput. 11, 173–187 (1999)

64. Lodi, A.: MIP computation. In: Jünger, M., Liebling, T., Naddef, D., Nemhauser, G., Pul-
leyblank, W., Reinelt, G., Rinaldi, G., Wolsey, L. (eds.) 50 Years of Integer Programming
1958–2008, pp. 619–645. Springer, Berlin (2009)

65. Luce, R., Tebbens, J.D., Liesen, J., Nabben, R., Grötschel, M., Koch, T., Schenk, O.: On the
factorization of simplex basis matrices. Technical report 09-24, Zuse Institute Berlin, Berlin
(2009)

66. Mars, S., Schewe, L.: SDP-package for SCIP. Technical report, TU Darmstadt (2012)
67. Martin, A.: Integer programs with block structure. Habilitation thesis, Technische Universität

Berlin (1998)
68. McGeoch, C.C.: A Guide to Experimental Algorithmics. Cambridge University Press, Cam-

bridge (2012)
69. Mittelmann, H.: Decision tree for optimization software: benchmarks for optimization soft-

ware (2003). plato.asu.edu/bench.html
70. Padberg, M., Rinaldi, G.: A branch-and-cut algorithm for the resolution of large-scale sym-

metric traveling salesman problems. SIAM Rev. 33, 60–100 (1991)
71. SCIP: Solving constraint integer programs. scip.zib.de
72. Suhl, L.M., Suhl, U.H.: Computing sparse LU factorizations for large-scale linear program-

ming bases. ORSA J. Comput. 2(4), 325–335 (1990)
73. Suhl, L.M., Suhl, U.H.: A fast LU update for linear programming. Ann. Oper. Res. 43(1–4),

33–47 (1993)
74. Vigerske, S.: Decomposition of multistage stochastic programs and a constraint integer

programming approach to mixed-integer nonlinear programming. Ph.D. thesis, Humboldt-
Universität zu Berlin (2012)

75. Wessäly, R.: Dimensioning survivable capacitated networks. Ph.D. thesis, Technische Univer-
sität Berlin (2000)

76. Wunderling, R.: Paralleler und objektorientierter Simplex-Algorithmus. Ph.D. thesis, Technis-
che Universität Berlin (1996)

77. Yale Law School Roundtable on Data and Code Sharing: School Roundtable on Data and
Code Sharing: Reproducible research. Comput. Sci. Eng. 12, 8–13 (2010)

http://ilk.uvt.nl/icga/investigation/Rybka_disqualified_and_banned_by_ICGA.rar
http://plato.asu.edu/bench.html
http://scip.zib.de

	Facets of Combinatorial Optimization
	Preface
	Acknowledgements
	Contents

	Part I: Martin Grötschel-Activist in Optimization
	Martin Grötschel-The Early Years in Bonn and Augsburg
	1 Introduction
	2 Bonn
	3 Augsburg
	4 Conclusion
	References

	Part II: Contribution by a Very Special Predecessor of Martin Grötschel
	Facets and Rank of Integer Polyhedra
	1 Introduction
	2 Normal Form and Classiﬁcation of Facets
	3 Irreducible Representations of Facets
	4 Symmetry of Vertex Figures
	5 Symmetry of Edge Figures
	6 Rank of Facets and Integer Polyhedra
	7 The Facial Structure of "Small" STS Polytopes
	References

	Part III: Martin Grötschel's Doctoral Descendants
	Martin Grötschel's Descendants and Their Doctoral Theses 1983-2012

	Part IV: Contributions by Martin Grötschel's Doctoral Descendants
	Constructing Extended Formulations from Reﬂection Relations
	1 Introduction
	2 Polyhedral Relations
	3 Reﬂection Relations
	4 Applications
	4.1 Reﬂection Groups
	4.1.1 The Reﬂection Group I2(m)
	4.1.2 The Reﬂection Group An-1
	4.1.3 The Reﬂection Group Bn
	4.1.4 The Reﬂection Group Dn

	4.2 Huffman Polytopes

	5 Conclusions
	References

	Mirror-Descent Methods in Mixed-Integer Convex Optimization
	1 Introduction
	2 An Algorithm Based on an "Improvement Oracle"
	3 Two-Dimensional Integer Convex Optimization
	3.1 Minimizing a Convex Function in Two Integer Variables
	3.2 Finding the k-th Best Point

	4 Extensions and Applications to the General Setting
	4.1 Mixed-Integer Convex Problems with One Integer Variable
	4.2 Mixed-Integer Convex Problems with Two Integer Variables
	4.3 A Finite-Time Algorithm for Mixed-Integer Convex Optimization

	References

	Beyond Perfection: Computational Results for Superclasses
	1 Introduction
	2 Beyond Perfection
	2.1 On Computing the Clique Number
	2.1.1 About the Circular-Clique Polytope and the Clique Number of Circular-Perfect Graphs
	2.1.2 Computing the Clique Number for a-Perfect Graphs

	2.2 On Computing the Chromatic Number
	2.2.1 Computing the Chromatic Number of Circular-Perfect Graphs
	2.2.2 Why This Approach Does not Always Work for Other Classes

	2.3 On Computing the Circular-Clique and Circular-Chromatic Number
	2.3.1 A Closed Formula
	2.3.2 Separating the Values

	3 Extending the Theta Function to Larger Convex Sets of Matrices
	References

	From Vertex-Telecenters to Subtree-Telecenters
	1 Introduction
	2 Vertex-Centroids and Vertex-Telecenters of a Tree
	3 Subtree-Centroids and Subtree-Telecenters of a Tree
	4 A Characterization of Subtree-Telecenters
	5 Relation Between Subtree-Centroids and Subtree-Telecenters
	5.1 A Solution Method for Finding a Subtree-Telecenter of a Given Tree

	6 Conclusion
	References

	Algorithms for Junctions in Acyclic Digraphs
	1 Introduction
	2 Concepts and Notation
	3 Problem Deﬁnition, Literature Overview, and Main Results
	4 Polynomial Time Algorithms for the s-Junction-k-Pairs Problem
	5 An O(m + k) Time Algorithm for the s-Junction-k-Pairs Problem
	6 Algorithms
	7 Experiments
	8 Conclusion
	References

	Algorithms for Scheduling Sensors to Maximize Coverage Time
	1 Introduction
	2 The Problem
	3 The Approximation Algorithm for RSC and Its Analysis
	3.1 Approximation Ratio of the Algorithm

	4 ILP Formulation for the RSC Problem and Computational Results
	5 The RSCP Problem, the Preemptive Variant
	6 Concluding Remarks
	References

	How Many Steiner Terminals Can You Connect in 20 Years?
	1 Introduction
	2 The Steiner Connectivity Problem
	2.1 The All-Terminal Case and the Greedy Algorithm
	2.2 The 2-Terminal Case and the Companion Theorem to Menger's Theorem

	3 The Steiner Tree Packing Problem
	3.1 Valid Inequalities
	3.2 Heuristics
	3.2.1 Heuristics Phase 1
	3.2.2 Heuristics Phase 2

	3.3 Computational Results
	3.3.1 Results for the Knock-Knee One-Layer Model
	3.3.2 Results for the Node Disjoint Multi-aligned-layer Model
	Via Minimization
	New Instances

	3.3.3 Results for the Node Disjoint Multi-crossed-layer Model

	4 Conclusion and Outlook
	References

	The Maximum Weight Connected Subgraph Problem
	1 Introduction
	Our Contribution
	Relation to Martin Grötschel's Work

	2 The Maximum Weight Connected Subgraph Problem
	3 MIP Formulations for the MWCS
	Notation and Preliminaries
	3.1 The Prize-Collecting Steiner Tree Model
	3.2 Model of Backes et al. 2011
	3.3 A Model Based on (k,l) Node-Separators
	3.4 A Model Based on Generalized Node-Separator Inequalities
	Generalized Node-Separator Inequalities

	3.5 Some More Useful Constraints
	Connected Component Inequalities
	Out-degree Inequalities
	Symmetry-Breaking Inequalities

	4 Polyhedral Study
	4.1 Theoretical Comparison of MIP Models
	4.2 Facets of the CS Polytope

	5 Computational Results
	5.1 Branch-and-Cut Algorithms
	Separation of Inequalities
	Primal Heuristic
	MIP Initialization
	Implementation

	5.2 Benchmark Instances
	Systems Biology Instances
	Network Design Instances

	5.3 Algorithmic Performance
	MWCS on Digraphs
	MWCS on Undirected Graphs

	6 Conclusion
	References

	Exact Algorithms for Combinatorial Optimization Problems with Submodular Objective Functions
	1 Introduction
	2 A Cutting Plane Approach
	3 A Lagrangean Decomposition Approach
	4 Applications
	4.1 Range Assignment Problems
	4.1.1 The Standard Model
	4.1.2 New Mixed-Integer Models
	4.1.3 Polyhedral Relations

	4.2 Risk-Averse Capital Budgeting

	5 Computational Results
	5.1 Symmetric Connectivity
	5.2 Multicast
	5.3 Broadcast
	5.4 Risk-Averse Capital Budgeting

	6 Conclusion
	References

	A Primal Heuristic for Nonsmooth Mixed Integer Nonlinear Optimization
	1 Introduction
	2 A Hierarchy of Optimization Models
	2.1 Standard Mixed-Integer Nonlinear Problems
	2.2 From C0-MINLP to C0-MPEC: Complementarity Constraints
	2.3 From C0-MPEC to C2-MPEC: Smoothing
	2.4 From C2-MPEC to C2-NLP: Regularization

	3 Relations of the Model Classes
	4 Application: Gas Network Optimization
	4.1 Model
	4.1.1 Nodes
	4.1.2 Pipes
	4.1.3 Pipe Model Reformulation: Smoothing
	4.1.4 Resistors
	4.1.5 Resistor Model Reformulation: Smoothing
	4.1.6 Valves
	4.1.7 Valve Model Reformulation: Complementarity Constraints
	4.1.8 Control Valves
	4.1.9 Control Valve Model Reformulation: Complementarity Constraints
	4.1.10 Compressor Groups

	4.2 Model Summary
	4.3 Numerical Results

	5 Summary
	References

	A New Algorithm for MINLP Applied to Gas Transport Energy Cost Minimization
	1 Introduction
	2 MINLP-Model
	2.1 Network Model
	2.2 Pipes
	2.3 Resistors
	2.4 Valves
	2.5 Control Valves
	2.6 Compressors
	2.7 Combinatorics of Subnetwork Operation Modes
	2.8 Objective Function

	3 Basic MIP-Relaxation
	4 Adaptive Reﬁnement of the Relaxation
	5 Computational Results
	6 Discussion
	References

	Solving k-Way Graph Partitioning Problems to Optimality: The Impact of Semideﬁnite Relaxations and the Bundle Method
	1 Introduction
	2 Problem Description, Formulations and Relaxations
	3 Proposed Exact Algorithm
	3.1 Computing Upper Bounds
	3.1.1 Bundle Methods
	3.1.2 Conic Bundle
	3.1.3 Oracle
	3.1.4 Adding Valid Inequalities

	3.2 Lower Bound Heuristic
	3.3 Branching
	3.3.1 Branching Rules
	3.3.2 Shrinking and SDP Relaxations Without Interior

	4 Implementation Details
	4.1 Adding Triangle Inequalities
	4.2 Computing Lower Bounds

	5 Computational Results
	5.1 The Benchmark Sets of Instances
	5.2 Choosing a Branching Rule
	5.3 Separating Cliques
	5.4 Comparison with SBC
	5.5 Comparison with the Orbitopal Fixing Approach of Kaibel et al.

	6 Conclusion
	References

	On Perspective Functions and Vanishing Constraints in Mixed-Integer Nonlinear Optimal Control
	1 Introduction
	2 A Cruise Control Problem for a Heavy-Duty Truck
	Controls and Dynamic System
	Objective
	Constraints
	Problem Formulation
	Logical Implications

	3 Inner and Outer Convexiﬁcation in MIOC
	Inner Convexiﬁcation
	Outer Convexiﬁcation
	Discussion of Inner Versus Outer Convexiﬁcation
	Inner and Outer Convexiﬁcation for Truck Control
	Extending the Outer Convexiﬁcation Approach

	4 Constraint Formulations
	4.1 Inner Convexiﬁcation of the Constraints
	4.2 Outer Convexiﬁcation/One Row Formulation of the Constraints
	4.3 Complementarity Formulation
	4.4 Addressing the Complementarity Formulation
	Complementarity Pivoting Techniques
	Regularization and Smoothing Techniques
	Regularization Reformulations
	NCP Function Reformulations
	Smoothing Reformulations
	Smoothing-Regularization Reformulations

	4.5 Generalized Disjunctive Programming
	Big-M
	Convex Hull Reformulation
	Numerical Difﬁculties

	4.6 Generalized Disjunctive Programming for MIOCP

	5 Numerical Results
	Reproducible Benchmark Implementations
	Computational Setup
	Discussion of Scenarios

	6 Future Developments
	References

	Scheduling and Routing of Fly-in Safari Planes Using a Flow-over-Flow Model
	1 Introduction
	2 A Discrete-Time MILP Model
	2.1 Instance Data
	2.2 The Model Formulation
	2.2.1 Variables
	2.2.2 Objective
	2.2.3 Constraints
	Scheduling and Routing of Planes
	Scheduling and Routing of Requests
	Routing Restrictions for Requests
	Coupling of Planes and Requests
	Fuel Consumption and Refueling
	Weight Restrictions

	3 A Primal Heuristic
	Insertion Heuristic
	Construction Phase
	Local Search Phase
	3.1 Test Instances and Computational Results

	4 Improving the Dual Bound
	4.1 Aggregated Weight Variables
	4.1.1 Time-Airport-Dependent Weight Variables
	4.1.2 Time-Dependent Weight Variables

	4.2 Valid Inequalities
	4.2.1 Minimum Fuel Cuts
	4.2.2 Minimum Number of Fuel-Stop Cuts
	4.2.3 Maximum Number of Pickup and Delivery Cuts

	4.3 Computational Results

	5 A Set Partitioning Formulation
	6 A Time-Free MILP Model
	7 Embedding the Time-Free Model in Branch-and-Bound
	8 Conclusions and Outlook
	References

	Mixed Integer Programming: Analyzing 12 Years of Progress
	1 Introduction
	2 Benchmarking
	2.1 The Effect of Performance Variability
	2.2 Avoiding a Systematic Bias

	3 MIP Evolution
	3.1 Branching
	3.2 Cutting Planes
	3.3 Presolving
	3.4 Primal Heuristics
	3.5 Other Advances

	4 Parallelism
	4.1 Deterministic Parallel Optimization
	4.1.1 Deterministic Clocks, Locks and Signaling
	4.1.2 Cost of Determinism

	4.2 Performance Evaluation of Parallel MIP

	5 Conclusion
	References

	Progress in Academic Computational Integer Programming
	1 Introduction
	2 Historical Overview
	2.1 General Developments Starting in the 1980s
	2.2 MIP-Solving at ZIB

	3 Reproducibility of Computational Results
	4 How to Measure Performance of Integer Programming Solvers
	5 Measuring Advances in Computational Integer Programming
	6 Developing Academic Integer Programming Codes
	References

