
Chapter 7
X-Ray Diffraction Residual Stress Analysis in
Polycrystals

In the previous chapters, the X-ray analysis has been applied to the samples with
the electron density distributed uniformly in a macroscopic volume: the constant
value for XRR analysis and three-dimensional periodic function in case of HRXRD
analysis. These samples are usually grown with a predicted design to realize certain
physical or mechanical properties of a final structure. The natural materials, however,
possess in most cases the mixed structure, consisting of a large number of crystallites
of various shape and size with random distribution over the sample volume. This kind
of physical structure is called a polycrystalline form and it occurs in the majority of
existing samples.

The non-destructive X-ray studies explore the properties of polycrystals, which
influence the macroscopic characteristics of the products made of polycrystalline
materials. There are different methods of X-ray analysis described in numerous
monographs: the powder diffractometry performs the chemical and structural analy-
sis of the material [1] and determines the grain size [2] and microstructural imperfec-
tions, the texture X-ray analysis studies the preferable orientations of the crystallites
[3], X-ray stress analysis evaluates the residual stresses and strains in the samples
[4, 5].

The chapter deals with the residual stress analysis, and the theoretical concepts
described in previous chapters are used here to interpret the X-ray residual stress
measurements. The first section introduces the basic physical definitions used fur-
ther in X-ray stress analysis. The most difficult part of the theoretical interpretation is
a description of the elastic interaction between crystalline grains which influences the
microscopic properties of the crystallites. The second section presents the approxi-
mations and models used for solution of this problem. The third section considers the
powder X-ray diffractometry in a connection with X-ray stress analysis. The forth
section deals with the macroscopically isotropic samples, and the expressions for
X-ray elastic constants are derived. The covariant methods and vector parametriza-
tion of the rotation space group are utilized to simplify the operations with tensors.
Finally, the macroscopically anisotropic material are discussed in the fifth section of
this chapter.
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7.1 X-Ray Stress Measurements

The residual stresses are defined by the distribution of the forces and the moments of
forces, which exist in an equilibrium state in the polycrystals. The stresses influence
the mechanical properties and the fatigue life of a material under external exposure.
The residual stresses are the result of the elastic or plastic deformation of crystallites,
and the distribution of the stress in a volume is distinguished by the several scales,
σ = σI + σI I + σI I I [4]: (i) macroscopic, where the stress σI is averaged over
the large number of grains, (ii) mesoscopic, where σI I is an average stress inside
grain, and (iii) microscopic, where σI I I describes the fluctuation of local stress
inside a crystallite around value σI I . The mechanical properties of the sample are
defined mostly by macro-residual stress σI , the evaluation of which by X-ray stress
measurements involve the calculation of σI I and σI I I as well (Sect. 7.2).

The real microstructure of polycrystals is very complex. For the description of
areas with coherent crystallographic structure, there are different spatial scales and
naming conventions for micro-objects exist: crystallite, subgrain, dislocation cell,
cell-block, grain and others [6]. Depending on the material, these objects have various
relationships. In this chapter, we are not focusing on any particular material and
therefore use the words crystallite and grain as synonyms.

In according to elastic theory [7], the stress tensor σi j (r) in the position r is a
symmetric tensor of a second rank which defines the force density Fi acting on the
square d S j = n j d S as follows:

Fi (r) = σi j (r)n j d S, i, j = 1, 2, 3, (7.1)

where n j are the components of a normal vector to the square d S and the repeating
indices are summed up accordingly.

In general case, the components σi j (r) have different values in different crystal-
lites, however, the averaging over all grains results in a macro-residual stress:

σi j ≡ 〈σi j (r)〉, (7.2)

which has to be evaluated in the most of the practical applications and is a target of
the residual stress analysis.

Thereafter, we consider the basic principles of X-ray diffraction stress analysis
for polycrystals with uniform and isotropic distribution of the crystallites [4, 5, 8].
The stresses σi j in the sample lead to the variation of the interplane distances inside
the crystallites, and the value dhkl for the plane {hkl} depends on the orientation of
grain in a polycrystal (Fig. 7.1).

The linear dimension of the grains in polycrystalline materials is essentially less
than the extinction length of X-rays, and according to (6.77) the X-ray scattering
from a single grain is described by a kinematical diffraction theory. The position of
the diffraction peak for the radiation with the wavelength λ is determined by Bragg
law:

http://dx.doi.org/10.1007/978-3-642-38177-5_6
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Fig. 7.1 X-ray diffraction from polycrystalline sample to measure residual stress inside the sample

2dhkl sin θhkl = λ, (7.3)

where angle θhkl is a Bragg angle for reflection hkl. Assuming the value d(0)
hkl and

Bragg angle θ(0)
hkl are known for the investigated crystal under the non-stressed condi-

tion, the measurement of the position of the diffraction peak θhkl delivers the elastic
deformation of corresponding crystallographic planes:

εhkl = dhkl − d(0)
hkl

d(0)
hkl

≈ −(θhkl − θ
(0)
hkl) cot θ(0)

hkl . (7.4)

This value is a component of the strain tensor εi j (r), which depends on the coordinate
and is connected to the stress tensor by Hooke’s law [7]:

εi j (r) = si jkl(r)σkl(r), (7.5)

where si jkl(r) is a local compliance tensor, which may vary both inside grain and at
the grain boundary (Sect. 7.2). In a primitive model of uniform and isotropic polycrys-
tal consisting of the isotropic grains [5], the averaging over the coordinates in (7.5)
establishes the relationship between the measured average strain tensor εi j = 〈εi j (r)〉
in sample, the evaluated macroscopic stress tensor σi j and the compliance tensor
Si jkl , which is referred to the whole polycrystal but for uniform sample contains two
parameters S1, 1/2S2 [7] only:

εi j = 〈si jkl(r)σkl(r)〉 = Si jklσkl =
[

S1δi jδkl + 1

2
S2
δikδ jl + δilδ jk

2

]
σkl , (7.6)

These parameters are expressed through the Young modulus E and Poisson ratio ν
as:
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Fig. 7.2 The coordinate systems used in X-ray diffraction residual stress analysis in polycrystals

S1 = − ν

E
; 1

2
S2 = 1 + ν

E
. (7.7)

Each of three tensors in (7.6) has a simplified form in various coordinate systems
used for residual stress analysis (Fig. 7.2).

The coordinate system S is related to the sample as a whole, and the axis z(i = 3)

coincides with the normal to the sample surface. In the coordinates S, the components
of the macroscopic stress tensor σi j are initially defined. The laboratory coordinate
system L is set to merge the direction of the axis z′ and reciprocal lattice vector H
of crystallites, corresponding to the Bragg angle 2θhkl . This direction in a system
S is defined by the unit vector y(ψ,φ); Q = Q y ≈ 2π y/d(0)

hkl with angles ψ and
φ (Fig. 7.2). The definition of the vector y is possible by other parameters, which
can be more convenient for interpretation of the measurements from the samples
with preferred orientations, see Sect. 7.3. The experimentally measured strain (7.4)
defines the component of strain tensor εhkl

ψφ = εL
33 in a coordinate system L .

Finally, the crystallographic coordinate system C is defined by the crystallo-
graphic axes of crystallites, and the stiffness tensor is set in this coordinate system.
Assuming the uniform and isotropic sample model (Sect. 7.2), the parameters SC

1 and
SC

2 are equal for all grains and calculated from the crystallographic parameters of a
crystal composing a crystallite. They also coincide with the macroscopic parameter
S1 and S2 of polycrystal in Eq. (7.6).

In isotropic polycrystal, the components of the strain tensor (7.6) in system S are
expressed through the value εL

33 by three components of the rotation operator T̂ ( y)
(Fig. 7.2):

εhkl
ψφ = εL

33 = T3i ( y)εi j Tj3( y), (7.8)

which is the same as vector ( y) is the system S:

T3i ( y) = Ti3( y) = (sinψ cosφ, sinψ sin φ, cosψ). (7.9)
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Using the Eqs. (7.6)–(7.9), the relationship between the measured by X-ray dif-
fraction strains and components of the residual stress tensor is:

εhkl
ψφ = 1

2
S2 sin2 ψ[σ11 cos2 φ+ σ12 sin 2φ+ σ22 sin2 φ− σ33]

+ 1

2
S2 sin 2ψ[σ13 cosφ+ σ23 sin φ] + S1(σ11 + σ22) + σ33(

1

2
S2 + S1).

(7.10)

The Eq. (7.10), named often as fundamental equation of X-ray stress analysis,
contains 6 unknown components of the stress tensor. They can be found as a solu-
tion of the system of linear equations obtained from the measurement of strain at 6
different angles ψ and φ. The values of the diagonal and non-diagonal components
of the strain tensor may differ essentially, and thus even small errors in the measured
positions of the diffraction peaks make the analysis unstable. Therefore, another ana-
lytical methods utilizing the specific features of Eq. (7.10) are used for the treatment
of X-ray data. The most commonly used technique is a sin2 ψ method, introduced
for the first time in [9].

The method is based on the fact, that the boundary conditions of the sample shape
are not essential for uniform and isotropic macroscopic polycrystal. Therefore, the
coordinate system S is approaching the system P of the stress tensor [7], where
σi j = σiδi j ; σi ≡ σi i and thus tensor contains the diagonal elements only. In
this case, the dependence of the function εhkl

ψφ on sin2 ψ at fixed φ is defined by a
straight line (Fig. 7.3a). Thus, the interpolation of several measurements carried out
at different sin2 ψ and φ = 0 and φ = π/2 by a straight line makes it possible to
calculate values σ11 and σ22 from the inclination angles of the line. The intersection
of the line with the ordinate delivers the value σ33.

As follows from (7.10), the presence of non-diagonal components in σi j , i.e. the
deviation in the directions of the axes of S and P systems, leads to the dependence of
εhkl
ψφ on the sign of the calculation angle ψ. This fact results in elliptical form of the

curves εhkl
ψφ (sin2ψ), which allows to calculate the values σ13 and σ23, too (Fig. 7.3b).

For anisotropic and non-uniform polycrystals, the method described above does
not permit to calculate the components of the stress tensor, however, the curves
εhkl
ψφ (sin2ψ) are helpful to investigate qualitatively the distribution of the stresses in

the sample, for example, presence of stress gradient or texture (Fig. 7.3c, d).
The quantitative residual stress analysis in case of essential deviations from sin2 ψ

law assumes the averaging of (7.6) by using microscopic models (microstress) for
separate grains and their elastic interaction (7.2) as well as the consideration of texture
of polycrystalline sample (7.3). In general case, the resulting equations contain a
complicated relationship between the microscopic compliance tensor of separate
grains and components of macroscopic tensor Si jkl referred to the whole sample. In
the framework of macroscopically isotropic model and in the presence of anisotropy
inside grains, the Eq. (7.10) can be used to interpret the experimental data:
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(a) (b)

(c) (d)

Fig. 7.3 Typical shapes of the function εhkl
ψφ (sin2ψ) for the measurement of strain by point detector:

a linear function in case of diagonal stress tensor, b elliptical function in case of non-zero σ13 and
σ23, c oscillating function in the presence of texture, d parabolic function in case of strong gradient
of σi j (z) toward the normal to the sample surface

εhkl
ψφ = 1

2
Shkl

2 sin2 ψ[σ11 cos2 φ+ σ12 sin 2φ+ σ22 sin2 φ− σ33]

+ 1

2
Shkl

2 sin 2ψ[σ13 cosφ+ σ23 sin φ] + Shkl
1 (σ11 + σ22) + σ33

(
1

2
Shkl

2 + Shkl
1

)
.

(7.11)

Here the coefficients Shkl
2 and Shkl

1 depend on the diffraction vector and can be
considered as phenomenological X-ray elastic constants [2] (see Sect. 7.4 for more
details).

There are several improved techniques of X-ray measurements, which optimize
the study of residual stresses in polycrystals. The grazing-incidence X-ray diffraction
(GIXRD) is used for the investigation of stress gradients in surface layers and coatings
[8]. At small incidence angles α near the critical angle of total external reflection αc,
the diffraction peak is formed in the grains located in the depth, which depends on
the incidence angle (Fig. 7.4).

The depth, where 63 % of the full intensity of diffraction peak is formed, is called
informational depth τ and for thick layer it is expressed as [2]:
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Fig. 7.4 In GIXRD geometry,
the incidence αi and exit α f
angles for the reflection hkl
differ from the impinging
angle α and leaving angle
(2θ − α) due to the refraction
effect

τ (α) = sinα sin(2θ − α)

μ[sinα+ sin(2θ − α)] ; μ = 4π

λ
β, (7.12)

where β is an imaginary part of the refraction index n = 1 − δ − iβ (see Chap. 1).
By varying the incidence angle of X-rays, the stress can be measured from differ-
ent distances in-depth from the surface. At the angles comparable with αc, where
sin2 αc = 2δ, the refraction of both incident and exit beams becomes essential
(Fig. 7.4), which results in the angular shift of the diffraction peak at 2θ with respect
to the Bragg angle 2θhkl in formula (7.4). The corrections for refraction change also
the informational depth and have to be accounted for the reconstruction of stress
gradients [10]. The formulas for the corrections are:

2θhkl = αi (α) + α f (α); tanαi = B+(α)

cosα
; tanα f = B+(2θ − α)

cos(2θ − α)
;

τ ′(α) = τ (α)
1

sinαB−(α)
;

B±(α) = 1√
2
[
√

(sin2 α− 2δ)2 + 4β2 ± (sin2 α− 2δ)]1/2. (7.13)

The transition layer at the surface sample caused by roughness (Chap. 3) also
distorts the informational depth and the corresponding corrections have to be applied
for calculation of stress gradients [11].

The Eqs. (7.10) and (7.11) are used above for the experimental geometry, which
measures the shift of diffraction peak at fixed indices (hkl), i.e. by varying the
direction y(ψ) of the diffraction vector Q at fixed length Q. However, these equations
are valid for the case of different indices, when the angle ψhkl is connected to the
Bragg and the incidence angles as:

ψhkl = θhkl − α, (7.14)

and varies from one diffraction peak to another without rotation of sample. This
approach is called multiple hkl stress evaluation and is used in GIXRD geometry to
evaluate stress gradients [10, 12]. The Eq. (7.11) is applied in this case in the form

http://dx.doi.org/10.1007/978-3-642-38177-5_1
http://dx.doi.org/10.1007/978-3-642-38177-5_3
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[12]:

εhkl
φ = 1

2
Shkl

2 [σφ sin2 ψhkl + τφ sin 2ψhkl ] + Shkl
1 (σ11 + σ22);

σφ = σ11 cos2 φ+ σ12 sin 2φ+ σ22 sin2 φ; τφ = σ13 cosφ+ σ23 sin φ. (7.15)

For determination of the values σφ, τφ and (σ11 + σ22) at fixed φ, it is enough
to measure the strain for 3 reflections. However, the equation system obtained can
be badly defined or has no any exact solution due to big difference between σφ and
τφ. Therefore, in practice the multiple measurements are performed and the stress is
calculated by fitting the strain for all reflections on the basis of formula (7.15) [10].

The presented above technique of X-ray diffraction stress measurements is com-
monly used and utilizes a point or linear X-ray detectors, which record the scattered
X-ray signal in the diffraction plane corresponding to the angleψ (Fig. 7.2). Recently
the two-dimensional detectors became popular for residual stress measurements [13].
In that case, the diffraction signal from the uniform polycrystal is exposed as Debye
rings with the radius defined by the reflection (hkl) and with variation of the angle
along the Debye ring between 0 and 2π. The detection of X-ray signal out of the
diffraction plane introduces another degree of freedom in the relative arrangement
of the coordinate systems and this fact requires the modification of the Eq. (7.11) for
residual stress analysis. The derivation of a new equation for two-dimensional data
is done in [13]. This technique offers an extended opportunities for stress analysis in
the samples with large size of grains and highly textured materials.

Independently on the X-ray measurement technique used for stress analysis, the
results are strongly influenced by the selected model of grain interaction and the
distribution of grains in a sample, as reflected in the Hooke’s law (7.5). This important
issue is discussed in the following sections.

7.2 Grain-Interaction Models

The stress and strain inside the single crystallite (grain) are connected by the Hooke’s
law. The Bragg peak, however, is formed by the signals coming from the number of
grains with different rotation angle α (Fig. 7.2). Within this set of grains, there are
different magnitudes of microscopic strain and stress observed, which differ from
the macroscopic values to be evaluated. Therefore, the relation between the strain
εi j (g)(S) in a single grain (coordinate system (S)) having orientation g and the macro-
scopically averaged stress tensor 〈σi j 〉(S) has to be established. This relationship will
help to find the dependence between macroscopic stress in a sample and measured
experimentally by X-ray diffraction strain. Within the framework of linear elasticity
theory, this relationship is expressed as:

ε
(S)
i j (g) = Ai jkl(g)〈σkl〉(S). (7.16)
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The coefficients Ai jkl(g) depend non-linearly on the orientation of grain g and on

the stiffness tensor of grain c(C)
i jkl .

The problem of calculation of macroscopic parameters of the sample consisting
of non-uniform areas has a long history [14]. The determination of averaged elastic,
dielectric, electroconductive and thermoconductive properties have a similar mathe-
matical formulations in linear theory. The elastic properties of polycrystal are found
from the equations of the elastic equilibrium with the boundary conditions:

∂

∂xk
cik jl(r)

∂u j

∂xl
= 0, u(1)

i |� = u(2)
i |�,σ

(1)
i j n j |� = σ

(2)
i j n j |�, (7.17)

where cik jl(r) is a stiffness tensor, which varies from one crystallite to another when r
varies, � is a boundary between regions (1) and (2) with the normal n. The boundary
conditions for electrostatics in media have similar form:

∂

∂xi
εi j (r)

∂φ

∂x j
= 0, φ(1)|� = φ(2)|�, D(1)

j n j |� = D(2)
j n j |�, (7.18)

where εi j is a permittivity, φ is a potential and Di is an electric displacement field. By
substituting εi j for the tensor of electroconductivity and Di for the current density,
we obtain the equations for electroconductive properties of material. By substituting
φ for the temperature and εi j for the tensor of thermal conduction, and Di for the
heat flux, we obtain the equations for thermoconductive properties, and so on. Thus,
the methods developed for one branch of physics can be transformed to another.
With regard to the elastic properties, however, the mathematical background is more
complex due to the involvement of tensors of higher rank and vectors ui instead of
the scalar φ.

There are following approaches to the solution of above-mentioned problem:

• Exact solutions for certain models, for example, the exact solution of the Eq. (7.17)
for adjoined isotropic spheres with similar properties in isotropic surrounding, so
called composite sphere assemblage [15, 14]. The number of these models, which
allow an exact solution is relatively small.

• The methods based on the expansion into series over small parameter. The small
parameter can be concentration of particles in composite material [14, 16], the
anisotropy degree of the crystallites in a sample [17], and so on. In case if the para-
meter is not small, the series can be used for qualitative analysis [18]. An equivalent
formulation of this approach is a chain of the equations Born-Bogolubov-Green-
Kirkwood-Ivone [19].

• The methods for determination of lower and upper boundaries of the macroscopic
parameters [14, 18]. These methods are based on the variation principle: the exact
solution of the Eqs. (7.17) and (7.18) minimizes the energy.

• Self-consistent methods, where the ansatz for (7.17) and (7.18) is constructed
as follows: the interaction between particles is substituted for the interaction of
separate particle with effective media, the properties of which have to be found.
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The effective permittivity has been found by Bruggeman [20] using this method.
For the elastic properties of polycrystalline materials, the self-consistent methods
are based on eigenstrain approach [21], where the Eshelby problem is solved for
the stress initiated by the inclusions [22]. Based on this approach, Kröner proposed
a self-consistent method for calculation of elastic properties of polycrystals known
as Eshelby-Kröner model [23].

• The method based on the simplified models of grain interaction. Instead of solution
of (7.17), the ad hoc assumptions are used for distribution of stresses and strains in
grains [24]. As a result, the boundary conditions (7.17) are broken, however, the
proper selection of model allows to obtain a good fit between experimental data
and theory.

• A numerical solution of (7.17) and (7.18) and further averaging of the prior found
fields. This approach is frequently used for optical properties of metamaterials [25].
In opposite to the artificial metamaterials, where the fragments are designed ini-
tially, the polycrystalline samples obey many random parameters. For the numeri-
cal solution of (7.17), the shape and crystallographic orientation of each crystallite
have to be known. The method of finite elements is proved [26, 27] to show a good
agreement with analytical methods.

Hereafter, we consider the frequently used models and methods for solution of
Eq. (7.16).

7.2.1 Voigt Model

The first grain-interaction model has been proposed by Voigt in 1910 [28]. This
model assumes that all crystallites have the same strain εi j independently on their
orientations. As a result, the microscopic strain equals to the averaged macroscopic
one:

ε
(S)
i j (g) = 〈ε(S)

i j 〉. (7.19)

Thus, the stress tensor in crystallite with orientation g is calculated by formula:

σ
(S)
i j (g) = c(S)

i jkl(g)〈ε(S)
kl 〉, (7.20)

where c(S)
i jkl(g) = T (SC)

i i ′ j j ′kk′ll ′(g)c(C)

i ′ j ′k′l ′ is a stiffness tensor of crystallite with orien-
tation g in coordinate system (S). To derive the relationship (7.16), the macroscopic
stress tensor 〈σi j 〉(S) has to be determined. For determination, the Eq. (7.20) has to
be averaged over crystallite orientations g with respect to the orientation distribution
function (ODF) f (g), (see more detailed discussion on ODF and transformation
T (SC) in the Sect. 7.4):
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〈σ(S)
i j 〉 = C (S)

i jkl〈ε(S)
kl 〉, (7.21)

C (S)
i jkl =

∫
d3g f (g)T (SC)

i i ′ j j ′kk′ll ′(g)c(C)

i ′ j ′k′l ′ .

Using (7.19), (7.21) and (7.16), the following statement is obtained for Voigt model:

AV
i jkl = (C (S)

i jkl)
−1. (7.22)

In this model, the tensor AV
i jkl is independent on the crystallite orientation g, which

results in a linear character of sin2 ψ even in the presence of texture.
The Voigt model is a pretty rough approximation for grain interaction, where the

boundary conditions of the elasticity theory (7.17) are deliberately not satisfied. The
strains are continuous at the boundaries of crystallites, however, the stresses suffer
the discontinuity (7.20). The totally opposite situation occurs in a Reuss model.

7.2.2 Reuss Model

The Reuss model [29] assumes all the crystallites have the same stress σi j indepen-
dently on the orientation. As a result, the microscopic stress of a single crystallite
equals to the macroscopic one averaged over the whole sample:

σ
(S)
i j (g) = 〈σ(S)

i j 〉. (7.23)

The strain tensor of a crystallite with the orientation g is:

ε
(S)
i j (g) = s(S)

i jkl(g)〈σ(S)
i j 〉, (7.24)

where s(S)
i jkl(g) = T (SC)

i i ′ j j ′kk′ll ′(g)s(C)

i ′ j ′k′l ′ is a compliance tensor of crystallite with
orientation g in a coordinate system S. By comparing (7.24) and (7.16), we conclude:

AR
i jkl(g) = s(S)

i jkl(g), (7.25)

where tensor AR
i jkl depends on the crystallite orientation g, which leads to the non-

linearity of sin2 ψ in the presence of texture.
The Reuss model is similarly rough as the Voigt one: the boundary conditions of

the elasticity theory are not fulfilled. In opposite to the Voigt model, the stresses are
continuous at the crystallite boundaries and the strains (7.24) are discontinuous.
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7.2.3 Hashin-Shtrikman Boundaries for Rigidity Modulus

The models of Voigt and Reuss describe the limiting cases of grain interaction. The
microscopic mechanical elastic constants binding 〈σi j 〉 and 〈εi j 〉 are shown in [30]
to satisfy the inequality:

K R ≤ K ≤ K V , G R ≤ G ≤ GV . (7.26)

Here K and G are real values of macroscopic bulk and rigidity moduli, and
K V,R, GV,R are the values found by Voigt and Reuss models.

The result (7.26) can be illustrated by analogue with the electrical conductivity
[16]. In the Reuss model, all grains have equal stress value, which by analogue with
(7.17) and (7.18) corresponds to equal current in all conductors. Thus, the Reuss
model is analogous to the sequential connection of the conductors, which results in
the highest resistance value. The Voigt model corresponds to the equal voltage on all
conductors, and thus is analogous to parallel connection, which gives the minimal
resistance. For any other types of connection, the resulting resistance will have an
intermediate value between the ones mentioned above.

Despite both Voigt and Reuss models are very approximate, the expressions (7.25)
and (7.22) do not depend neither from the grain shape nor from their mutual locations.
Is it possible to obtain more accurate limits and to identify which information about
the crystallites is required for this purpose, we analyze below the Eq. (7.17) following
the work [18].

Let us split stiffness tensor cik jl(r) into sum of constant tensor Cik jl which we
define later and tensor δcik jl(r) which varies from crystallite to crystallite:

cik jl(r) = Cik jl + δcik jl(r). (7.27)

The Eq. (7.17) is then expressed as:

Cik jl
∂2

∂xk∂xl
u j + fi (r) = 0, fi (r) = ∂

∂xk
δcik jl(r)

∂u j

∂xl
. (7.28)

The structure of this equation is similar to one of (6.26): there is a constant differential
operator Cik jl

∂2

∂xk∂xl
analogous to L0 in (6.26) and a fluctuating term. Based on the

Eq. (7.28), we have to find the averaged effective parameters of the physical system,
and therefore use the methods similar to the ones described in the Sect. 6.2, namely
represent (7.28) in an integral form:

ui (r) = ui (r)(0) +
∫

d3r ′Gi j (r, r ′) f j (r ′), (7.29)

Cik jl
∂2

∂xk∂xl
G jm(r, r ′) + δimδ(r − r ′) = 0,

http://dx.doi.org/10.1007/978-3-642-38177-5_6
http://dx.doi.org/10.1007/978-3-642-38177-5_6
http://dx.doi.org/10.1007/978-3-642-38177-5_2
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where Gi j (r, r ′) is a Green function of the elasticity theory [7, 21]; and the arbitrary
solution of the uniform equation ui (r)(0) is chosen to satisfy the boundary conditions
at the border of polycrystal. Then the Green function has to satisfy the condition:

G jm(r, r ′)|r∈� = 0 (7.30)

at the boundary of the polycrystal. By integrating and using (7.29) and (7.30), we
arrive at:

ui (r) = ui (r)(0) −
∫

d3r ′ ∂Gi j (r, r ′)
∂x ′

k
δc jknl(r ′)∂un(r ′)

∂x ′
l

. (7.31)

To calculate the strains, the Eq. (7.31) has to be differentiated:

εi p(r) = εi p(r)(0) −
∫

d3r ′ ∂G(i j (r, r ′)
∂x p)∂x ′

k
δc jknl(r ′)εnl(r ′), (7.32)

where due to the symmetry of the stiffness tensor with respect to the transposition
of indices 1 δc jknl(r ′)∂un

∂x ′
l

= δc jknl(r ′)εnl :

a(i j)bi j = a(i j)b(i j). (7.33)

The expression (7.32) can be written as:

ε = ε(0) − � : δc : ε, (7.34)

where symbol : means the convolution over two indices, and � is an integral operator
[18]:

(�i pjk f )(r) =
∫

d3r ′ ∂G(i j (r, r ′)
∂x p)∂x ′

k
f (r ′). (7.35)

Using this equation, the expression (7.16) can be re-written in an operator form. By
reversing (7.34):

ε = (1 + � : δc)−1 : ε(0), (7.36)

where 1 is a unity tensor of 4th rank. We assume that the strain ε(0) at the boundary of
polycrystal is uniform (the general case is discussed in [18]), then the macroscopic
strain 〈ε〉 is equal to ε(0):

〈ε〉 = ε(0). (7.37)

1 The parenthesis near underlined indices mean the symmetrization operation, a(i j)kl ≡ 1
2 (ai jkl +

a jikl ). In these notations, the symmetry of stiffness tensor relatively the transposition of indices has
a form ci jkl = c(i j)kl = ci j (kl) = c(i jkl), where the latter equality means the symmetry with respect
to the transposition of index pair.
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Applying the Hooke’s law, we obtain for macroscopic values:

〈σ〉 = C M : ε(0), (7.38)

and for microscopic values:
σ = (C + δc) : ε. (7.39)

After averaging (7.39) and using (7.36), the expression for macroscopic stiffness
tensor is:

C M = C + 〈δc : (1 + � : δc)−1〉, (7.40)

and the relationship (7.16) is found to be:

A = (1 + � : δc)−1 : C−1
M . (7.41)

Within the accuracy of approximation (7.17), these expressions are exact. How-
ever, similarly to the case of (6.33), for the calculation of (7.40) and (7.41) the
operators have to be found, which are inverse to the non-local integral operators.
This is a challenging problem, and the models of Voigt, Reuss and Eshelby-Kröner
are the approximate methods to calculate (7.40) and (7.41).

In the same way as in (6.33), the inverse operators can be represented as an
expansion into series, and thus (7.40) is written as:

C M = C + 〈δc〉 − 〈δc : � : δc〉 + . . . (7.42)

The first two terms in (7.42) correspond to the Voigt model, whereas the same
formula, being constructed not from stiffness tensor C but from compliance tensor
S, will correspond to Reuss model. In both approximations, there is no need to know
the shape and mutual arrangement of the crystallites, however, for the calculation of
the subsequent term in the series this information is necessary. Indeed, the operator
� is non-local, and therefore for calculation of the third term in (7.42) the value
〈δc(r1)δc(r2)〉 must be known, which is a correlation function of the second order
for the elastic properties of polycrystal. To calculate further terms in the series, the
correlation functions of higher order must be simulated. In general case, the series
(7.42) is divergent, and the special summation techniques have to be applied for the
final calculation [18].

Using the derived above equations, the expressions for upper and lower limits of
the macroscopic stiffness tensor C M can be obtained. To isolate the operator �, the
equation (7.34) is re-formulated as [18]:

(δc−1 + �) : σ̃ = ε(0), σ̃ = δc : ε. (7.43)

This equation for fluctuating stress parameter σ̃ can be considered as a consequence
of the minimization of the functional:

http://dx.doi.org/10.1007/978-3-642-38177-5_6
http://dx.doi.org/10.1007/978-3-642-38177-5_6
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δF[σ̃]
δσ̃

= 0, F[σ̃] =
∫

d3r
(

σ̃ : δc−1 : σ̃

2
+ σ̃ : � : σ̃

2
− σ̃ : ε(0)

)
. (7.44)

Alternatively, using (7.43) the functional F[σ̃] is:

F[σ̃] = −
∫

d3r
σ̃ : ε(0)

2
=

∫
d3r

(
ε(0) : C : ε

2
− σ : ε(0)

2

)
(7.45)

= V ε(0) : C − C M

2
: ε(0),

where Eq. (7.38) is used and V is a volume of the polycrystal.
As follows from (7.44), the exact solution of (7.43) delivers the extremum of

the functional F[σ̃]. If the value δc−1 is positive definite, 2 the extremum will be a
minimum [18]. For any probe field σ̃probe, the following inequality is satisfied:

F[σ̃probe] ≥ V ε(0) : C − C M

2
: ε(0). (7.46)

By reduction of F[σ̃probe] to the form V ε(0) : Cv

2 : ε(0), the Eq. (7.46) delivers the
upper limit for C M . Using a similar algorithm for the compliance tensor S, in case
of negative definite value δc−1, we obtain [18]:

F[σ̃probe] ≤ V ε(0) : C − C M

2
: ε(0), (7.47)

from where the lower limit for C M is received. To explicitly calculate both limits,
the following probe field is used:

σ̃probe =
∑

n

σ̃n�n(r), (7.48)

where the sum is performed over all grains of polycrystal, and the field inside each
grain is assumed to be constant. The function �n(r) describes the shape of n-th grain:
�n(r) equals to 1 inside grain and to 0 outside. The coefficients σ̃n are determined
by the minimization of the functional F , which for the field (7.48) is:

2 To clarify whether the tensor is positive definite, the special representation (7.121)
is used (see Sect. 7.4). In this representation, the positive definition corresponds to
C = (3κc, 2 min(μc,μ

′
c), 2 min(μc,μ

′
c)), and negative definition to C = (3κc, 2 max(μc,μ

′
c),

2 max(μc,μ
′
c)), respectively.
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F[σ̃n] =
∑

n

Vn
σ̃n : δc−1

n : σ̃n

2
(7.49)

+
∑
n,m

σ̃n : ∫
d3r1d3r2�n(r1)�m(r2)�(r1, r2) : σ̃m

2
−

∑
n

Vnσ̃n : ε(0).

With respect to the coefficients σ̃n , the expression (7.49) is a quadratic form
of type 1

2

∑
n,m anm σ̃nσ̃m + ∑

n bnσ̃n . It can be easily found that the extremum is
1
2

∑
n bnσ̃n

∗, where σ̃n
∗ is a solution of the equation

∑
m anm σ̃m

∗+bn = 0. Applying
these expressions to (7.49), the extremum of the functional is found to be:

F = −1

2

∑
n

Vnσ̃n
∗ : ε(0), (7.50)

Vnδc−1
n : σ̃∗

n +
∑

m

∫
d3r1d3r2�n(r1)�m(r2)�(r1, r2) : σ̃m

∗ = Vnε(0).

As follows from (7.50), due to the operator � the expression for σ̃n
∗ is non-local

and requires the correlation function for the grain shape. The function � is calculated
on the basis of Green function with the boundary conditions (7.30). The functions
� and �∞ calculated for infinite crystal can be connected for fluctuating σ̃. By
neglecting the condition (7.30), the additional term appears in (7.31), which includes
the integral over the surface:

ui (r) = ui (r)(0) (7.51)

−
∫

d3r ′ ∂G∞
i j (r, r ′)
∂x ′

k
σ̃ jk(r ′) +

∫
d2Snk G∞

i j (r, r ′)σ̃ jk(r ′).

In case of uniform boundary conditions, the averaged values 〈σ〉 and 〈ε〉 are also
uniform, and we can assume the value 〈σ̃〉 uniform, too. In the integration of (7.51)
over the surface, the contribution from 〈σ̃〉 is compensated [18]. By using the Gauss
theorem and replacing the displacements by strain, the expression analogous to (7.34)
is obtained:

ε = ε(0) − �∞ : (σ̃ − 〈σ̃〉). (7.52)

Substituting this expression in (7.50) and applying the translational invariance, we
arrive at:

Vnδc−1
n : σ̃n + V

∑
m

∫
d3ρ fnm(ρ)�∞(ρ) : σ̃m

∗ = (7.53)

Vnε(0) + Vn

∫
d3ρ�∞(ρ) : 〈σ̃∗〉,

fnm(ρ) = 1

V

∫
d3r�n(r)�m(r + ρ),



7.2 Grain-Interaction Models 281

where fnm is a correlation function of the grain shape.
In the case of spherically symmetric correlation function fnm(ρ) = fnm(ρ), the

expression (7.53) can be essentially simplified, and the explicit solution is obtained
on the basis of Eshelby tensor. To derive this formula, the Green function of the
infinite media is represented as an expansion through the plane waves, and from
(7.29) follows:

G∞
i j (ρ) =

∫
d3k

Mi j (n)

(2π)3k2 ei kρ, Mi j (n) = (Cik jlnknl)
−1, k = kn, (7.54)

where Mi j (n) is a Chirstoffel tensor (acoustic tensor). Using formula (7.35), the
integral in (7.53) is expressed as:

∫
d3ρ fnm(ρ)�∞

i pjk(ρ) =
∫

d2n
M(i j (n)

(2π)3 n p)nk

∫
ρ2dρk2dk

∫
d2nρ fnm(ρ)eikρnnρ .

(7.55)

The integral over the directions nρ is conveniently calculated in spherical coordinates
with the axis z along n, and further integration over k by using

δ′(x) = 1

π
lim

L→∞

(
L cos Lx

x
− sin Lx

x

)

and integrating over ρ by using

xδ′(x) = −δ(x),

∫ a

0
δ(x)dx = 1

2
Sign(a)

modifies (7.55) to the expression:

∫
d3ρ fnm(ρ)�∞

i pjk(ρ) = Eipjk fnm(0), (7.56)

where

Eipjk = 1

4π

∫
d2nM(i j (n)n p)nk . (7.57)

This simple formula is a consequence of the spherical symmetry fnm(ρ) of the
grains. The similar results is obtained [18, 31] for the grains of elliptical shape, where
the tensor E is:

Eipjk = a1a2a3

4π

∫
d2n

M(i j (n)n p)nk

(n2
1a2

1 + n2
2a2

2 + n2
3a2

3)3/2
, (7.58)

where the coordinate system coincides with the ellipse axes, and a1, a2, a3 are the
lengths of the semi-axes. The dimensionless tensor E : C is called an Eshelby tensor
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[21] which is used for calculation of strain fields for the inclusions inside the sample
[22]. Substituting (7.58) into (7.53) and utilizing the equality fnm(0) = δnm Vn/V ,
the following expression is found:

(δc−1
n + E) : σ̃∗

n − E : 〈σ̃∗〉 = ε(0), (7.59)

from where the relation between the fluctuating stress σ̃∗
n and the average value 〈σ̃∗〉

follows:
σ̃∗

n = Bn : (ε(0) + E : 〈σ̃∗〉), Bn = (δc−1
n + E)−1. (7.60)

By averaging this formula, the connection between 〈σ̃∗〉 and average strain is
obtained:

〈σ̃∗〉 = (1 − 〈B〉 : E)−1 : 〈B〉 : ε(0), 〈B〉 =
∑

n

Vn

V
Bn . (7.61)

The expressions (7.60) and (7.61) connect the fluctuating stresses σ̃∗
n with the

average strain ε(0). Thus, the functional (7.49) minimized on the class of the func-
tions (7.48) can be expressed through the quadratic form of ε(0) according to (7.50).
Comparing this result with the equation (7.46), the upper boundary for macroscopic
stiffness tensor in case of positively defined δc−1

n (or lower boundary in case of
negatively defined δc−1

n ) is:

C H S = C + (1 − 〈B〉 : E)−1 : 〈B〉. (7.62)

These estimates for the boundaries of the macroscopic rigidity modulus have been
proposed by Hashin and Shtrikman [32]. Due to taking into account the correlation
properties of the grains by Eshelby tensor, the boundaries are found to be more
narrow than the ones provided by Voigt and Reuss.

Using the Eq. (7.48) as a model solution of the Eq. (7.17), the relation (7.16)
between the strain in the grain with the orientation g and the macroscopic stress on
the basis of (7.52), (7.62), (7.60), and (7.61), we obtain:

AH S(g) = [1 − E : (B(g) : {1 + E : (C H S − C)} − {C H S − C})] : C−1
H S .

(7.63)

7.2.4 Self-Consistent Model of Eshelby-Kröner

The tensor C in the expressions (7.27)–(7.52) can be chosen in an arbitrary way,
except of the case when using (7.46) and (7.47) the boundaries for macroscopic
stiffness tensor C M have to be determined. In this case, the positive (negative) definite
difference δcn is required for each grain n. To find the model solution of (7.17) or
to minimize the functional (7.44), the tensor C has to be defined. The easiest way
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is to set tensor C equal to the macroscopic stiffness tensor C M , and then (7.37) and
(7.38) are written as:

C = C M , 〈σ〉 = C : 〈ε〉 = C : ε(0) (7.64)

This assumption sets the value of 〈σ̃∗〉 to zero because of:

〈σ〉 = 〈(C + δc) : ε〉 = C : ε(0) + 〈σ̃〉 = C : ε(0). (7.65)

As a next step, we minimize the functional (7.44) on the class of probe functions
(7.48), and again obtain the formulas (7.59)–(7.61). Using (7.60) and (7.43), the
strain of the n-grain is equal to:

εn = δc−1
n : Bn : ε(0) = (1 + E : δcn)−1 : ε(0). (7.66)

The requirement of the average strain from (7.66) to be equal ε(0) leads to the
equation:

〈(1 + E : δcn)−1〉 = 1. (7.67)

This tensor expression is a system of equations for the determination of the compo-
nents of the tensor C . Indeed, the tensor C defines the tensor E through the Eqs. (7.54)
and (7.58), and this relationship is non-linear in general case. The number of indepen-
dent parameters in averaged tensors (the left part of (7.67) and macroscopic tensors
E and C) is equal. For example, the tensors are described by two parameters in case
of macroscopic isotropy (absence of texture), see details in Sect. 7.4. As a result, the
expression (7.67) contains as many independent equations as the number of inde-
pendent components in tensor C. Due to the procedures of convolution in (7.54)
and of integration in (7.58), the relationship between E and C is non-linear and
cumbersome. As a consequence, the system of equations (7.67) is also non-linear.
In a simple case of microscopic isotropy and cubic symmetry of the crystallites, the
formula (7.67) leads to the cubic equation (7.147), see [23, 21].

The equations analogous to (7.67) can be obtained in another ways, for example,
the macroscopic Hooke’s law (7.65) satisfying to 〈σ̃∗〉 = 0 results in the following
equation, according to (7.61):

〈B〉 = 〈(δc−1
n + E)−1〉 = 0. (7.68)

For the crystallites of the same shape having equal Eshelby tensors, the equation
(7.68) is equivalent to (7.162). However, if the tensor E varies from one crystallite
to another E = En , the formulas (7.68) and (7.67) give different results. This situa-
tion occurs in case of morphological texture [33, 34] with the grains of anisotropic
elliptical shape in different orientations.

The relationship (7.16) for the considered model follows directly from (7.66) and
(7.64):

AE K (g) = (1 + E : δc(g))−1 : S. (7.69)
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The frequently used method of the derivation of equation (7.67) is based on the
model of the inclusions inside the infinite matrix [22, 23]. This approach substitutes
the problem of grain interaction by the model of the grain of spherical (elliptical)
shape included into infinite effective media, called matrix. The stiffness tensor of
matrix is assumed to be equal to the stiffness tensor of polycrystal, which has to be
found. To solve this problem, the strain inside n-th grain has to be determined. The
parameter δc(r) in the equation (7.28) has the following form:

δc(r) = δcn�n(r). (7.70)

To determine the strain in n-th grain, the equation (7.28) has to be solved, which
also can be reduced to the formula (7.32). The sample is supposed to be infinite and,
therefore, the Green function of infinite media is admitted. By analogue with (7.54)
and (7.55), the integral is modified to:

(�∞
i pjkδc jklmεlm)(r) =

∫
d2n

M(i j (n)

(2π)3 n p)nk

×
∫

d3r ′δc jklmεlm(r ′)
∫

k2dkeikn(r−r ′). (7.71)

We assume here that the strain inside n-th grain is uniform and the grain has a
spherical shape, and the integral over k is presented in the form of [31]:

∫
k2dkeikn(r−r ′) = −∇2

r

∫
dkeikn(r−r ′) = −∇2

r πδ(n(r − r ′)). (7.72)

The integral over r ′ is easy to calculate in spherical coordinates with the axis z along
the vector n: ∫

d3r ′∇2
r δ(n(r − r ′)) = π(R2 − (nr)2), (7.73)

here R is a radius of grain. The expression obtained has a physical meaning of the
square of disc formed in the space of r ′ by the intersection of the sphere with the
radius R and the plane defined by the equation n(r − r ′) = 0. Finally, for the function
(7.71) we obtain:

(�i pjkδc jklmεlm)(r) =
∫

d2n
M(i j (n)

(2π)3 n p)nkδc jklmεlm

× (−π2)∇2
r (R2 − (nr)2) = E : δc : εn . (7.74)

This formula shows that for the spherical grains the strain inside the grain is uniform.
The dependence on the radius r disappears when the section of the grain by the plane
is a curve of the second order, i.e. sphere and ellipse. By substituting (7.74) into (7.32):

εn = ε(0) − E : δcn : εn . (7.75)
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The formula (7.66) follows immediately from the expression above, that confirms
the equivalence of the approaches based on the variational principle and effective
media.

The expressions similar to (7.75) and (7.66) exist also in the electrostatics, for
example, the external field causes the uniform field in sphere or ellipsoid [35]. The
calculations based on (7.57) result for the sphere with the permittivity ε0 in the
tensor E:

Ei j = 1

3ε0
δi j . (7.76)

The tensor analogous to the tensor Eshelby E : C in this case is equal to 1
3δi j

and it is called the tensor of depolarization or demagnitization in electrostatics and
magnetostatics, respectively [36]. As follows from (7.66), the electric field E1 inside
sphere with permittivity ε1 and the electric field E0 in the media with permittivity
ε0 are connected as [35]:

E1 = 3ε0

2ε0 + ε1
E0. (7.77)

The algorithm of the calculation of the properties of composite random media using
the method of effective media and the expressions (7.77) and (7.67) has been proposed
by Bruggeman [20]. This technique is successfully applied for calculation of optical
properties of the composite and nanostructured materials [16].

7.2.5 Grain Interaction in Thin Film. Vook-Witt and Inverse
Vook-Witt Models

The considered in the previous sections grain interaction was assumed to take a
place in a sample with a large number of grain in all spatial directions. The statistical
methods used for calculation of physical parameters are based on this assumption.
The important class of the investigated by X-ray stress method samples are thin films
and coatings. The number of grains in a lateral direction of film is statistically large
enough, however, in the direction of a surface normal it can be small. The entire
thickness of the film often contains a single grain [5, 37, 38], and thus the system
is rather two-dimensional than three-dimensional. The methods described above are
therefore not applicable for coatings in general case.

The averaging over all directions is no longer possible because of the evident
anisotropy, which complicates the calculation of the Eq. (7.16). For these samples,
the simple phenomenological models of grain interaction are used, which take into
account the difference of physical properties in lateral and normal directions.

The frequently used model of such type is a Vook-Witt model [39, 40], which
adopts the Voigt model in lateral direction (equal strains), and the Reuss model (equal
stresses) in the normal direction. Introducing z axis along the normal to the film, the
strain and stress tensors in n-th grain are expressed as:
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εn =
⎛
⎝ 〈ε11〉 〈ε12〉 ·

〈ε12〉 〈ε22〉 ·
· · ·

⎞
⎠ , σn =

⎛
⎝ · · 〈σ13〉

· · 〈σ23〉
〈σ13〉 〈σ23〉 〈σ33〉

⎞
⎠ , (7.78)

where the symbol · means the component is being not fixed by the model but found
from the elasticity theory.

The strain and stress fields (7.78) can be found from the exact solutions of the
elastic equations (7.17) in a certain geometry of the polycrystal. By considering the
polycrystalline film as a stack of the parallel infinite plates, the Eq. (7.78) satisfies
the boundary conditions (7.17), and the uniform inside the plates strain fields are the
solutions of the differential equation (7.17). To find the relation (7.16) based on the
assumption (7.78), we formulate the Hooke’s law for n-th grain:

σn = cn : εn, (7.79)

which expresses the strain εn and the stress σn in the grain through the average
values 〈ε〉 and 〈σ〉. Keeping in mind the symmetry of the tensors, the formula (7.78)
contains six undefined variables:

εn13, εn23, εn33,σn11,σn12,σn22,

and the relationship (7.79) gives six equations, accordingly.
To present the following expressions in a simple form, the coordinate free covari-

ant notations [38, 41] are introduced instead of the indices. The assumptions (7.78)
can be re-written as [38]:

Π|| : ε = Π|| : 〈ε〉, Π⊥ : σ = Π⊥ : 〈σ〉, Π|| + Π⊥ = 1, (7.80)

where the tensor of 4th rank Π|| means the projection of the 2nd rank tensor on the
plane with the normal n. The projection of the vector onto the plane with the normal
n is performed by the projector t , see (4.20). The projection of the 2nd rank tensor
is then written as:

Π|| : ε = t · ε · t, t = 1 − n ⊗ n, (7.81)

or in the index form [38]:

Π||i jkl =ti(k t jl) (7.82)

=1

2
(δikδ jl + δilδ jk) − 1

2
(δikn j nl + δiln j nk + δ jkni nl + δ jlni nk)

+ ni n j nknl ,

Π⊥i jkl =1

2
(δikδ jl + δilδ jk) − Π||i jkl .

http://dx.doi.org/10.1007/978-3-642-38177-5_4
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Here we took into account the fact of the symmetry of the projected tensors over the
indices k and l, which leads to the symmetrization of the projector, see (7.33). To
explicitly find the tensor (7.16), the Eq. (7.79) is written in the following form:

Π|| : σn + Π⊥ : σn = cn : Π|| : εn + cn : Π⊥ : εn . (7.83)

Using the model (7.78) and Hooke’s law for the averaged values (7.38), the tensor
(7.16) for the n-th grain is:

An = cn : (Π|| : cn − cn : Π⊥)−1 : (cn : Π|| − Π⊥ : C M ). (7.84)

To use (7.84), the macroscopic stiffness tensor CM has to be determined, which
follows from the averaging of (7.84):

(1 + β : Π⊥) : C M =α : Π||, (7.85)

α =〈cn : (Π|| : cn − cn : Π⊥)−1 : cn〉,
β =〈cn : (Π|| : cn − cn : Π⊥)−1〉.

In general, there no operator exists, which is inverse to the projectional one, and in
(7.85) the operator 1+β : Π⊥ also has no inverse one. Thus, the operator CM cannot
be determined from (7.85), and we use for this purpose the expression analogous to
(7.83) with the compliance tensor sn . After some transformations, we obtain formula
analogous to (7.85) but with SM , and using C M = S−1

M obtain:

γ : Π⊥ : C M =(1 + δ : Π||), (7.86)

γ =〈sn : (Π⊥ : sn − sn : Π||)−1 : sn〉,
δ =〈sn : (Π⊥ : sn − sn : Π||)−1〉.

This equation does not define CM unambiguously similarly to (7.85). However,
the operators 1 + β : Π⊥ in (7.85) and γ : Π⊥ in (7.86) are the projectors onto
different subspaces, which complement each other. Therefore, the sum of (7.85) and
(7.86) with arbitrary coefficient k defines the function CM unambiguously:

C M = (1 + β : Π⊥ + kγ : Π⊥)−1 : (α : Π|| + k[1 + δ : Π||]). (7.87)

The expressions (7.84) and (7.87) comprehensively determine the relationship
(7.16). These formulas do not contain the parameters, which describe the correlation
properties of the grain locations, as the tensor E in equations (7.69) and (7.63) does.
In this sense, the Vook-Witt model is similar to the models of Voigt and Reuss: the
mutual influence of grains is not considered, and the resulting expressions depend
only on the fraction of grains with certain orientations and do not depend on the
morphology of the polycrystal. The strain inside the grain is uniform.
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Both Voigt and Reuss models are the limiting cases of grain interaction. The Vook-
Witt model with Voigt approach in a lateral direction and Reuss approach in a normal
one, is also a limiting case of the grain interaction. The reversed case of Vook-Witt
model with Voigt model in a normal and Reuss model in a lateral directions has been
proposed in [37] and is called inverse Vook-Witt model:

Π|| : σ = Π|| : 〈σ〉, Π⊥ : ε = Π⊥ : 〈ε〉. (7.88)

By comparing (7.88) and (7.80), the expressions (7.84)–(7.87) in the models of
Vook-Witt and inverse Vook-Witt differ by the substitution of Π⊥ for Π|| and vice
versa. In opposite to Vook-Witt model, there is no system exists for which the strain
and stress fields found by the inverse Vook-Witt model are the exact solutions [38].

The intermediate cases between Vook-Witt and inverse Vook-Witt models are
proposed in [37] to describe the grain interaction by a linear combination of former
ones. The alternative approach for the intermediate cases is Eshelby-Kröner model for
the elliptical grains [5, 38]. The variable parameter, which makes a balance between
both limiting cases is a ratio of semi-axes of the ellipsoid. Generally speaking, the
model designed for the bulk polycrystal is not applicable to the thin polycrystalline
film. However, in the limiting cases, the Eshelby-Kröner model becomes effectively
two-dimensional. For the oblate ellipsoid (a1 = a2 >> a3, axis z along normal to the
surface), the Eshelby-Kröner model transforms into Vook-Witt model [5] and is an
exact solution. The opposite limiting case of the stretched ellipsoid a1 = a2 << a3
in the Eshelby-Kröner approach coincides with the infinite cylinder model, which
being a two-dimensional model gives different results than the inverse Vook-Witt
one [5].

7.3 Residual Stress Analysis as a Particular Case of Powder
Diffractometry

The real microstructure of the polycrystals is very complex [42]. X-ray diffraction
provides the results of X-ray scattering from a large volume of the sample, and
this fact leads to a contribution of numerous factors into the detected X-ray profile.
The practical data treatment of the recorded X-ray intensities assumes the use of a
simplified sample model parametrized by the effective physical variables [2].

The typical model assumes the polycrystal as consisting of a large number of the
crystalline blocks (grains). Each grain has a certain shape, size and orientation of
the crystallographic lattice, and may contain the defects of a crystallographic lattice,
for instance, dislocations. Due to different reasons (plastic deformation, thermal
expansion, etc.), the polycrystal may have the macroscopic residual stresses.

Using the results of previous chapter, the intensity of the diffracted X-ray radi-
ation from the polycrystal can be calculated. The dynamical effects are neglected
here, because of due to the disorientation of the grains, the typical scale of the cor-
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Fig. 7.5 The sketch for calcu-
lation of the auto-correlation
function of the grain shape
(7.92)

relation function (6.60) given by the correlation length ld is less than the size of the
grain. This estimate is taken with a certain reserve, because of the presence of the
defects diminishes the parameter ld . The size of the grains is essentially less than the
extinction length, and thus the diffraction can be treated as kinematical, according
to (6.77). The general expression for the intensity in this case is (6.83):

I ( Q) =
∫

d3r1d3r2ei( Q−H)(r1−r2)g(r1, r2), (7.89)

here Q = kout − kin is a momentum transfer, g(r1, r2) is a correlation function
of polycrystal, H is a reciprocal lattice vector of the excited reflection. We omitted
the constant coefficients in the expression because of in the most of the cases the
relative intensities are evaluated within a single diffraction profile. The effects of the
instrumental and resolution functions are also neglected, which can be accounted by
the special functions [2]. Assuming the disoriented grains, the correlation function
of the whole system consists of the sum of the correlation functions of the grains:

I ( Q) =
∑

n

∫
d3r1d3r2ei( Q−Hn)(r1−r2)gn(r1, r2)�n(r1)�n(r2). (7.90)

Here the sum is taken over all grains of polycrystal, Hn is a reciprocal lattice vector
corresponding to the average lattice of n-th grain, gn is a correlation function inside
n-th grain, �n(r) is a function describing the shape of n-th grain, which is equal to
unity inside the grain and to zero outside. The defects are supposed to be distributed
uniformly inside the grain, and the influence of the grain shape on the strain field is
neglected. Under these conditions, the correlation function depends on the relative
distance ρ = r1 − r2, and using the integration over the variables r1 and ρ, we
obtain:

I ( Q) =
∑

n

∫
d3ρei( Q−Hn)ρgn(ρ)

∫
d3r1�n(r1)�n(r1 − ρ). (7.91)

http://dx.doi.org/10.1007/978-3-642-38177-5_6
http://dx.doi.org/10.1007/978-3-642-38177-5_6
http://dx.doi.org/10.1007/978-3-642-38177-5_6
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The integral over r1 as a function of the distance ρ is an auto-correlation function
of the grain shape: it is a volume of the intersectional area, which is created by
the original and the shifted by vector ρ grains (Fig. 7.3). According to (6.60), the
correlation function in the presence of several independent types of defects is a
product of correlation functions for each defect type. As follows from (7.91), the
influence of the grain shape can also be represented by a correlation function:

gV (ρ)n = 1

Vn

∫
d3r1�n(r1)�n(r1 − ρ), (7.92)

where Vn is a volume of n-th grain.
The values gn(ρ), gV (ρ)n and Hn vary from grain to grain. However, the grain

shape and volume, the defects inside the grain and the orientation of grain are statis-
tically independent, and these parameters can be averaged separately:

I ( Q) =
∑

n

Vn

∫
d3ρ〈ei( Q−Hn)ρ〉〈gn(ρ)〉〈gV (ρ)n〉. (7.93)

The number of the grains in the sample is usually large and, therefore, the dis-
tribution functions can be introduced for the parameters. For the sake of simplicity,
the distributions of grain shapes [43] and defects [44] are omitted here. The distrib-
ution of the grain orientations (texture) is described by the orientational distribution
function [45] f (g):

f (g)d3g = dVg

V
, (7.94)

where g is a set of three parameters describing the orientation of crystallographic
lattice of grain with respect to the sample, dVg is a total volume of grains, which
have an orientation within the interval g, g + dg and V is a volume of polycrystal.
The isotropic distribution of grains corresponds to f (g) = 1. Taking into account
(7.94) the Eq. (7.92) becomes:

I ( Q) = V
∫

d3ρd3g f (g)ei( Q−H(g))ρg(ρ), (7.95)

where g(ρ) is a product of the averaged correlation functions 〈gn(ρ)〉〈gV (ρ)n〉, the
constant multiplier V is omitted in further calculations.

For the orientation of the grain g (parametrization of the rotation group [46]), the
Euler angles are frequently chosen. In this parametrization, the law of the parameters
composition is quite complex. Therefore we use further the vector parametrization
of the rotation group known as Gibbs vector [41, 46]. In this parametrization, the
rotation is parametrized by the vector c with the direction defined by the axis of
rotation and with the length equals to tan φ/2, where φ is a rotation angle. The
rotation matrix is expressed through c as [41, 46]:

http://dx.doi.org/10.1007/978-3-642-38177-5_6


7.3 Residual Stress Analysis as a Particular Case of Powder Diffractometry 291

Ti j (c) = (1−c2)δi j + 2ci c j + 2εik j ck

1 + c2 , (7.96)

where εik j is the antisymmetric Levi-Cevita pseudo-tensor. The vector parametriza-
tion is outstanding among other parameterizations because of its elegant composition
law, which enables to express two successive rotations with parameters c(1) and c(2)

as a single rotation with the parameter c(12) [41, 46]:

Ti j (c(2))Tjk(c(1)) =Tik(
〈
c(2), c(1)

〉
) = Tik(c(12)), (7.97)

〈
c(2), c(1)

〉
= c(1) + c(2) + c(2) × c(1)

1−c(1)c(2)
.

Additionally, the vector parametrization has the following convenient properties:

Ti j ({0, 0, 0}) = δi j ; T (c)−1 = T (−c). (7.98)

Using this parametrization, the formula (7.95) is written as:

I ( Q) =
∫

d3ρ
d3c

π2(1 + c2)2 f (c)ei( Q−H(c))ρg(ρ). (7.99)

Here 1/π2(1 + c2)2 is a weight function for invariant integration over the rotation
group [41], the corresponding weight function for parametrization through the Euler
angles is sin θ/8π2 [47].

The dependence of the reciprocal lattice vector H(c) from the grain orientation
c is conditioned in the following way. The vector H is defined by Miller indices
in the coordinate system C, and due to the stresses of II type it varies both for
direction and module from grain to grain. Assuming the small magnitude of strains,
the components of vector H (L) corresponding to the average crystallographic lattice
of grain with the orientation c can be represented as:

H(L) =T (c(LC))H(C)(c), H (C)(c) = H(0)(1 − εH (c)) + δH⊥(c), (7.100)

εH (c) = H(0) · ε(c) · H(0)

H(0)2 , δH⊥(c) = ε(c) · H(0) − H (0)εH ,

here H (0) corresponds to a non-deformed lattice, and vector δH⊥(c) is perpendicular
to H(0).

To calculate (7.99), the vectors Q, H and ρ have to be defined in the same
coordinate system, say in the system L . The parameter c in (7.99) then characterizes
the transition from the coordinate system C to the system L , and it is denoted here
c(LC). The grains, which satisfy the Bragg condition H(C)(c) = Q, are characterized
by the parameter c(LC) equals to:
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Fig. 7.6 The sketch for the
coordinate systemα, c(||)

1 , c(||)
2

defined by (7.102) in the
space of the parameters of the
rotation group

c(α) =
〈
tan

α

2
ez,

n × ez

1 + nez

〉
= tan α

2 (n + ez) + n × ez

1 + nez
, (7.101)

where unit vector n is chosen along H(C), the vector y is replaced by the vector ez

from the coordinate system L (Fig. 7.6). The transformation (7.101) has an evident
meaning of the sequences: (i) the rotation around axis n×ez perpendicular to vectors
n and ez is applied, which transfers n into ez , (ii) the rotation at arbitrary angle α
around ez is executed.

To integrate over d3c in (7.99), the new coordinate system with the axis z along
c(α) is introduced in the parameter space c (Fig. 7.6):

c(α, c(||)
1 , c(||)

2 ) = c(α) + c(||)
1 n × ez + c(||)

2 (n + ez) × (n × ez), (7.102)

where variation of the parameter α corresponds to the grains in the Bragg condition,
which differ by various α angles around H|| Q; the crystallites with the parameters
c(||)

1 and c(||)
2 are deviated from the Bragg condition. Using the Eqs. (7.100) and (7.96)

and assuming small strains and deviations from the Bragg angle, the expression (7.99)
in the chosen coordinate system is written as:

I ( yQ) =
∫

dαdc(||)
1 dc(||)

2

π2(1 + c2)2 Jc(α, c(||)
1 , c(||)

2 ) f (c) (7.103)

×
∫

dxdydzei(Q−H0(1−εH (c)))zei H0 K [(x,y),(c(||)
1 ,c(||)

2 )]g(x, y, z).

Here J is a Jacobian of the transformation, K [(x, y), (c(||)
1 , c(||)

2 )] is a bilinear form

on (x, y) and (c(||)
1 , c(||)

2 ), and its coefficients depend on n and are of the order of
unity.

When integrating (7.103) over x and y, the fact of a large width of the texture
ODF, which is broader than the diffraction peak, results in the estimate:

δc(||)
1,2 � 1/Hld . (7.104)
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The largest contribution in (7.103) is made by the values (c(||)
1 , c(||)

2 ) which are less

than 1/Hld and, therefore, all the terms containing (c(||)
1 , c(||)

2 ) can be assumed to

be constant except of the exponent ei H0 K [(x,y),(c(||)
1 ,c(||)

2 )]. This turns the integral over
(c(||)

1 , c(||)
2 ) into delta-function of x, y, and the intensity is proportional to Fourier

image g(0, 0, z), that corresponds to (6.134), see Fig. 6.4.3. Alternatively, to inte-
grate over (c(||)

1 , c(||)
2 ), the integral over x, y can be replaced by a delta-function,

according to criteria (7.104). In other words, the Bragg condition is re-written as
δ( Q − H(c)). The Jacobian, the weight function and other terms cancel each other,
and the expression can be obtained:

I ( yQ) =
∫

dα f (c(α))

∫
dzei(Q−H0(1−εH (c(α))))zg(0, 0, z). (7.105)

Thus, the measured X-ray intensity is a sum of intensities from all grains with the
orientations different by the angle α from the vector H .

The residual stress analysis requires the measurement of the intensity maximum
in the direction y. The position of the maximum of (7.105) is calculated by using a
cumulant expansion:

I ( yQ) =
∫

dα f (c(α))

∫
dzg(0, 0, z)ei(Q−H0)zei H0〈εH 〉ze− 1

2 H2
0 K2z2

e−i 1
6 H3

0 K3z3
. . .

(7.106)

K2 =〈ε2
H 〉 − 〈εH 〉2, K3 = 〈ε3

H 〉 − 3〈ε2
H 〉〈εH 〉 + 2〈εH 〉3,

〈εn
H 〉 =

∫
dα f (c(α))εH (c(α))n∫

dα f (c(α))
.

The correlation function g(0, 0, z) is usually symmetric, and therefore the second
term in the cumulative expansion does not influence the diffraction peak position.
Provided the third and further odd cumulative terms decrease slower than correlation
function, the position of the maximum Qm is defined by the first cumulative term:

Qm = H0(1 − 〈εH 〉). (7.107)

This equation is equivalent of (7.4).
With the known relationship between the strain and the macroscopic residual

stress in the grain, the residual stresses in the sample can be determined on the basis
of (7.107). This basic expression for the X-ray stress analysis has been derived using
several physical assumptions. For the traditional metallic samples these assumptions
are valid in the majority of the cases, however, when analyzing the modern materials
possessing the strong texture or intentionally designed nanoscale structure, the above
described approximations have to be carefully validated.

http://dx.doi.org/10.1007/978-3-642-38177-5_6
http://dx.doi.org/10.1007/978-3-642-38177-5_6
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7.4 Residual Stress in Macroscopically Isotropic Materials.
X-Ray Elastic Constants

The polycrystal is macroscopically isotropic when all crystallite orientations are
equiprobable (absence of texture) and all directions inside macroscopical polycrystal
are equivalent. The mechanical elastic properties are then defined by two parameters,
for example, by bulk and rigidity moduli. The macroscopically isotropic case is
realized in the absence of texture in the models of Voigt, Reuss and Eshelby-Kröner
for spherical grains3. In the models of Vook-Witt and inverse Vook-Witt, even in the
absence of texture there is an anisotropy due to the operators Π⊥ and Π||, which
distinguish the normal direction to the surface.

To determine the stresses by X-ray method, the position of the diffraction peak in
the direction y has to be related to the macroscopic stress 〈σi j 〉(S). As follows from
(7.107), the peak shift defines the value:

{εH ( y)} = 1

2π

∫
dαεH (c(α))) = H(0) · ∫

dαε(c(α)) · H(0)

2πH(0)2 , (7.108)

where the braces mean the averaging over the grains contributing to diffraction. The
connection between the stress and the strain in coordinate system S is given by the
Eq. (7.16). To write the expression (7.108) in the coordinate system S, the fact of
the coincidence of the direction of vector H(0) and y due to the Bragg condition is
used (see also the logic of the derivations from (7.105) to (7.107)). Using (7.16), we
obtain:

{εH ( y)} = yi y j

∫
dαAi jkl(c(α))

2π
〈σkl〉(S), (7.109)

or in indexless form:

{εH ( y)} = y ⊗ y :
∫

dαA(c(α))

2π
: 〈σ〉(S). (7.110)

To perform the integration over the angle α, the components of the 4-th rank
tensor A have to be transformed from the coordinate system C into the system S,
which is done by four times convolution:

A(S)
i jkl = T (SC)

i i ′ T (SC)

j j ′ T (SC)

kk′ T (SC)

ll ′ A(C)

i ′ j ′k′l ′ . (7.111)

The operation requires the transformation of 81 components resulting in the cum-
bersome expressions. To make the results compact, the Voigt notations are used [4],
which take into account the symmetry property ci jkl = c(i j)kl = ci j (kl) = c(i jkl).
In the result, the 4-th rank tensor is represented as symmetric 6 × 6 matrix, which
has 21 component. This number is equal to the number of parameters, required to

3 The statements for Eshelby-Kröner model (7.69) are also valid for Hashin-Strickman model (7.63).
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describe the elastic properties of crystal with a lowest monoclinic symmetry. The
cubic crystal has 3 independent components, and the transformation (7.111) con-
tains the exceeding number of operations in this case. Below the transformation of
(7.111) is described, which takes into account the high symmetry of the tensor [48].
We separate the isotropic part of the tensor, which is not undergoing to the transfor-
mations, and the averaging over the orientations is thus reduced to the truncation of
the anisotropic components.

From the point of view of the group theory, the 4-th rank tensors form the rep-
resentation space of the rotation group, and it can be decomposed into irreducible
representation (IR) spaces [49]. In the case of a lowest triclinic symmetry, the stiffness
(compliance) tensor is decomposed in:

2 IR with weight l =0 (scalars): σs, s = 1, 2 (7.112)

4 IR with weight l =2 (deviators): δd,m, d = 1..4, m = −2, .., 2

1 IR with weight l =4 (nonor): ηm, m = −4, .., 4.

The basis tensors σs, δd,m,ηm can be calculated with the help of the Clebsch-Gordan
coefficients C j,m

j1,m1; j2,m2
starting from the circular vectors:

e(−1) = 1√
2
(−1, i, 0), e(0) = (0, 0,−1), e(1) = 1√

2
(1, i, 0), (7.113)

which are the IR of weight l = 1:

σ1 pqrs =C0,0
1,i ′′;1,m′C

1,m′
1,i ′;0,0C0,0

1,i;1, j e
(i)
p e( j)

q e(i ′)
r e(i ′′)

s = δpqδrs, (7.114)

i, j, i ′, i ′′, m = − 1, 0, 1, p, q, r, s = 1, 2, 3.

The basic tensors (7.112) possess a completeness property (any stiffness or compli-
ance tensor can be expanded using them) and are mutually orthogonal:

σs ::σ∗
s′ =δss′ , δd,m ::δ∗

d ′,m′ = δdd ′δmm′ , ηm ::η∗
m′ = δmm′ , (7.115)

σs ::δ∗
d ′,m′ =0, σs ::η∗

m′ = 0, δd,m ::η∗
m′ = 0,

where the symbol :: means the convolution over 4 indices: a::b∗ = ai jklb∗
i jkl .

The IR decomposition highlights the symmetry properties of the compliance ten-
sor and separates its isotropic and anisotropic parts, e.g. the stiffness tensor for cubic
system has the form:

Ccub =(C11 + 2C12)σ1 + 2√
5
(3 + 2A)C44σ2 + 4(A − 1)C44ηc, (7.116)

ηc =1

4

(
η−4 +

√
14

5
η0 + η4

)
,
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where the Voigt notations are used, A = C11−C12
2C44

is the Zener’s anisotropy factor. In
isotropic case A = 1, the anisotropic part ηc disappears.

The rotation transformation in the subspace of IR of weight l is performed by using
the angular momentum matrices. For the rotation described by the vector parameter c,
the expression is [41]:

T (l)
nn′ =e2cJ arctan c (7.117)

=
l∑

m=−l

Pl
m(−i cJ (l)

nn′/c)

Pl
m(−im)

e−2im arctan c, Pl
m(x) =

l∏
m′=−l,m′ �=m

(x + im′),

where J is the vector (Jx , Jy, Jz) composed of the matrices of angular momentum.
Besides the transformation of tensors from one coordinate system into another, the

multiplication of tensors and the inversion are the important operations for calculation
of the tensor A on the basis of Eqs. (7.22), (7.63) and (7.69). Using the Voigt notations,
these operations are reduced to the multiplication and inversion of 6×6 matrices. This
approach, however, does not take into account the symmetry of the tensor. Using the
expansion (7.112), the tensors σ1,σ2,ηc are shown below to create a closed group
with respect to the operation of multiplication (convolution over two indices), which
is written as:

σ1 σ2 ηc
σ1 σ1 0 0
σ2 0 σ2√

5
ηc√

5
ηc 0 ηc√

5
3σ2

10
√

5
+ ηc

10 .

(7.118)

Thus, for the macroscopically isotropic media consisting of the grains with a cubic
symmetry, the 4-th rank tensor is expanded into tensors σ1,σ2 and ηc:

a = {a1, a2, aη} = a1σ1 + a2σ2 + aηηc. (7.119)

The averaging over the orientations is then reduced to the truncation of anisotropic
part:

〈a〉 = {a1, a2, 0}. (7.120)

The necessity to use the special representation of tensors occurs also for the energy
functionals (7.44) and (7.45). The inequalities (7.47) and (7.46) make the restrictions
to the tensor characteristics determining the system energy and not to the components
of the stiffness tensor. The elastic energy of the unity volume of sample ε : C : ε/2
is a quadratic form with respect to the strain ε. Because of the elastic energy can not
be negative, this quadratic form is always positively defined. To understand which
values are restricted by the inequalities for elastic energy, the Voigt notations are
used and the 6 × 6 stiffness matrix is presented on the basis of eigenvectors:
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〈C〉 =
∑
ν

λνζν, ζν =
∑

i

eν,i ⊗ eν,i , (7.121)

here λν are the eigenvalues, eν,i are the eigenvectors, and the summation over i
corresponds to the degenerated eigenvectors. The positive definition means λν > 0,
and the inequality (7.46) is equivalent to the inequalities for eigenvalues λC

ν ≤ λCM
ν .

Thus, the inequalities (7.47) and (7.46) constrain the eigenvalues of the tensors.
The representation (7.121) is also convenient due to the simplification of the

multiplication table (7.118). For example, using the expansion for the crystals with
a cubic system [18]:

a = (3κ, 2μ, 2μ′) = 3κζ1 + 2μζ2 + 2μ′ζ3, (7.122)

ζ1 = σ1, ζ2 = 2√
5
σ2 + 2ηc, ζ3 = 3√

5
σ2 − 2ηc,

which coincides with the expression (7.121), the analogue of the above table is written
as:

ζ1 ζ2 ζ3
ζ1 ζ1 0 0
ζ2 0 ζ2 0
ζ3 0 0 ζ3

. (7.123)

The relation between the expressions (7.122) and (7.119) is simple:

a = {a1, a2, aη} = (3κ, 2μ, 2μ′) =
(

a1,
a2√

5
+ 3aη

10
,

a2√
5

− aη
5

)
, (7.124)

and the product of the tensors and the inverse tensor are:

a : b = (9κaκb, 4μaμb, 4μ′
aμ

′
b), (7.125)

a−1 = (1/3κ, 1/2μ, 1/2μ′).

The inverse relation between representations is found to be:

a = (3κ, 2μ, 2μ′) = {a1, a2, aη} =
{

3κ,
4μ+ 6μ′

√
5

, 4μ− 4μ′
}

. (7.126)

Thus, the products of the tensors and the inverse tensor are calculated conveniently
using the expression (7.122), and the averaging and the transformation between
different coordinate systems using the expression (7.119) are simplified. The similar
expressions can be constructed for low symmetry tensors, too [50].

As follows from (7.22), (7.25), (7.63) and (7.69), the formula for tensor An for
n-th grain contains the isotropic tensors only (C M and E) and the stiffness tensor
of n-th grain cn . Applying the tensor operations of summation, multiplication and
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inversion for isotropic tensors and tensor cn , the resulting tensor can be presented in
the form of (7.119). The tensor An in the coordinate system C is then written as:

A(C)
n = {A1, A2, Aη}, (7.127)

and for the grains composed of the same material, the formula (7.127) does not depend
on the orientation of the grain. Because of the isotropic tensors σ1 and σ2 are not
modified with the transformations between the coordinate systems, the integral in
(7.110) is calculated as:

∫
dαA(c(α))

2π
= A1σ1 + A2σ2 + Aηηc, ηc = 1

2π

∫
dαT̂

(SC)
(α)ηc, (7.128)

where T̂
(SC)

is the symbol meaning the transformation of the tensor components
either by (7.111) or (7.117).

To calculate the tensor ηc, we use the basis IR with the weight l = 4, where the
transformation is performed by the matrices (7.117). For calculation of (7.117), the
parametric vector c(SC) has to be defined as a function of angle α. The expression
(7.101) presents the transformation from the coordinate system C to the system L ,
and in a way similar to (7.101), the parametric vector c(SL) can be found, which
corresponds to the transition from L to S:

c(SL) = ez × y
1 + ez y

. (7.129)

As a result, the parametric vector c(SC)(α) is obtained as a combination of the sequen-
tial transformations from the system C to the system L , and then from L to S:

c(SC)(α) = 〈c(SL), c(LC)(α)〉 =
〈

ez × y
1 + ez y

, tan
α

2
ez,

n × ez

1 + nez

〉
. (7.130)

In this expression, the only transformation depending on the angle α is the one cor-
responding to the parametric vector tan α

2 ez . This fact helps to calculate the integral
over α, using the diagonal form of the matrix Jz and the formula (7.117):

T (l)
nn′(tan

α

2
ez) = δn,n′e−inα. (7.131)

From this equation, for the matrix of transformation in the space IR with the weight
l = 4, we obtain:

1

2π

∫
dαT̂

(SC)
(α) = T (4)

n0

(
ez × y

1 + ez y

)
T (4)

0n′

(
n × ez

1 + nez

)
, n, n′ = −4, .., 4,

(7.132)
and for ηc the following formula is found:



7.4 Residual Stress in Macroscopically Isotropic Materials. X-Ray Elastic Constants 299

ηc = ηnT (4)
n0

(
ez × y

1 + ez y

)
T (4)

0n′

(
n × ez

1 + nez

)
ηcn′, (7.133)

where the coefficients ηcn′ , defining the value ηc in the expansion over the basis ηn′
in (7.112) are taken from the equation (7.116). To calculate the function (7.110) with
the values (7.128) and (7.133), the direction of vector y in coordinate system S and
the orientation of the reciprocal lattice vector in the system C have to be fixed:

y = (sin(ψ) cos(φ), sin(ψ) sin(φ), cos(ψ)), (7.134)

n = 1

(h2 + k2 + l2)1/2 (h, k, l).

The matrices y⊗ y : σ2 and y⊗ y : ηc are found to be proportional each to other.
The Eq. (7.110) can then be presented in a universal form by using X-ray elastic
constants (XEC), which leads to the Eq. (7.11) with:

S(hkl)
1 = 1

30

(
10A1 − 2

√
5A2 + 3Aη(5� − 1)

)
, (7.135)

1

2
S(hkl)

2 = 1

10

(
2
√

5A2 − 3Aη(5� − 1)
)

,

where the dependence on the Miller indices hkl of the reciprocal lattice vector is
given by the invariant �:

� = h2k2 + h2l2 + k2l2

(
h2 + k2 + l2

)2 . (7.136)

Below we consider XEC for polycrystals of a cubic symmetry for various models
of grain interaction.

7.4.1 Voigt Model

According to (7.21) and (7.22), the tensor (7.116) has to be averaged and then
inversed. Using formula (7.119), the averaging is carried out by (7.120):

〈Ccub〉 =
{

C11 + 2C12,
2(C11 − C12) + 6C44√

5
, 0

}
. (7.137)

By using the relationship (7.122) and the representation (7.124), the inverse tensor
is found with the help of (7.125):

〈Ccub〉−1 =
(

1

C11 + 2C12
,

5

2(C11 − C12 + 3C44)
,

5

2(C11 − C12 + 3C44)

)
.

(7.138)
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In the formula (7.135) for XEC, using the Eqs. (7.119) and (7.126), we obtain the
expression (7.138) in the form of (7.119), and from (7.135):

S1 = 2C44 − C11 − 4C12

2(C11 + 2C12)(C11 − C12 + 3C44)
, (7.139)

1

2
S2 = 5

2(C11 − C12 + 3C44)
.

These expressions are independent on the Bragg reflection hkl.

7.4.2 Reuss Model

The X-ray elastic constants have a simple form if using the components of the
compliance tensor S. The tensor A coincides with the compliance tensor, and in the
form of (7.119) is written as:

A = Scub =
{

S11 + 2S12,
4(S11 − S12) + 3S44

2
√

5
, 2(S11 − S12) − S44

}
. (7.140)

Substituting this equation into (7.135), we obtain:

S(hkl)
1 = S12 + S0�, (7.141)

1

2
S(hkl)

2 = S11 − S12 − 3S0�, S0 = S11 − S12 − S44/2.

7.4.3 Eshelby-Kröner Model

The Voigt and Reuss models are the limiting cases of the grain interaction. The
previous section considered the narrower than those two bounds for the bulk elastic
modules. The transfer of the results obtained in this section to the XEC bounding has
to be done with a caution. The values of XEC are determined by the averaging over
the angle α and not by the averaging over the orientations. As a result, the equation
(7.135) contains the dependence on the anisotropic part and on the Miller indices.

Nevertheless, several general conclusions can be made on the basis of the estimates
for the boundaries of the macroscopic elastic modules. For simple case of rotationally
symmetric biaxial stress state, and from the expression (7.135) for (7.11) we obtain:

{εH (ψ)} =
(

2

3
A1 + (3 sin2 ψ − 2)

2
√

5A2 + 3Aη(1 − 5�)

30

)
σ||. (7.142)
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As follows from the expressions (7.118) and (7.120), the component a1 = 3κ is
not mixed with other components in tensor operations, and for all the models the
equality A1 = 1

C11+2C12
is satisfied. Thus, according to (7.142), the sin2 ψ plots for

all models in case of rotationally symmetric biaxial stress cross the same point at
sin2 ψ = 2/3.

The inclination angle of sin2 ψ plot is defined by the parameters A2 and Aη . Using
the representation (7.122), the following relationship is received:

{εH (ψ)} =
(

2κA + 2

3
(3 sin2 ψ − 2)(μA(1 − 3�) + 3�μ′

A)

)
σ||. (7.143)

The definition (7.136) shows that the inequality is satisfied: 0 ≤ � ≤ 1/3, which
means the values 1 − 3� and 3� are always positive. To determine the limits of the
function sin2 ψ, the variation limits of μA and μ′

A have to be found. Assuming the
strain fields are uniform inside the grain (7.48), the macroscopic compliance tensor
depends on the tensor A as:

S = (3κs, 2μs, 2μs) = 〈A〉 = (3κA,
2

5
(2μA + 3μ′

A),
2

5
(2μA + 3μ′

A)). (7.144)

The boundaries for macroscopic elastic moduli are defined by the boundaries of
parameters κs and μs . As follows from (7.144), the limits for μs determine the
limits of the linear combination 2μA + 3μ′

A, and thus constrain the limits of the
function sin2 ψ only at � = 1/5. However, the models defining the boundaries of
the macroscopic moduli are frequently considered to constrain the sin2 ψ plot, too
(Fig. 7.7).

Within the approximation of strain uniformity inside the grain (7.48) and spherical
symmetry of the correlation function of grains (7.53), the Eshelby-Kröner model

(a) (b)

Fig. 7.7 a sin2 ψ plot for Cu sample possessing the residual stress of 200 MPa, the Bragg (200)

reflection, for the models of Voigt (V) and Reuss (R), and for the boundary models of Hashin-
Strickman (HS) and Eshelby-Kröner (E-K). b The dependence μA at fixed C11 and C12 for the same
models. The models determining the boundaries for macroscopic moduli constrain the parameters
μA and μ′

A; for HS model, the tensor A from (7.63) has been used
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satisfies the equation (7.43), which is due to the self-consistency of the tensor C in
the Eq. (7.67). In the case of macroscopically isotropic media, spherically symmetric
correlation function of grain shape and the cubic symmetry of the crystallites, this
equation can be essentially simplified [21, 23]. In that case, the tensor E is found by
the analytical integration of (7.57), and for the representation (7.122) we obtain:

E =
(

1

3C11
,

2 (4C11 − C12)

15C11 (C11 − C12)
,

2 (4C11 − C12)

15C11 (C11 − C12)

)
(7.145)

=
(

1

3κC + 4μC
,

3κC + 6μC

15κCμC + 20μ2
C

,
3κC + 6μC

15κCμC + 20μ2
C

)
.

To calculate the expression (7.67), the representation (7.122) is used again for
multiplication and inversion of tensors and the representation (7.118) for the aver-
aging. As a result, the following equation is derived:

(
− 3 (κ− κC )

−6κC − 4μC + 3κ
, (7.146)

− 6 (κC + 2μC )
(
3μ′ (κC (μC + 2μ) + 4μμC ) − μ2

C (9κC + 8μC + 4μ)
)

(
9κCμC + 6μκC + 8μ2

C + 12μμC
) (

6κCμ′ + 9κCμC + 12μCμ′ + 8μ2
C

) ,

− 6 (κC + 2μC )
(
3μ′ (κC (μC + 2μ) + 4μμC ) − μ2

C (9κC + 8μC + 4μ)
)

(
9κCμC + 6μκC + 8μ2

C + 12μμC
) (

6κCμ′ + 9κCμC + 12μCμ′ + 8μ2
C

))
= (0, 0, 0),

where the parameters κC and μC characterize the macroscopic tensor C , the parame-
ters κ,μ and μ′ describe the stiffness tensor of the crystallite with a cubic symmetry.
The system (7.146) contains 2 independent equations, and taking into account the
positiveness of values κC ,μC ,κ,μ and μ′, we have:

κC = κ, (7.147)

μ3
C + 1

8
(9κ+ 4μ)μ2

C − 3

8
(κ+ 4μ)μ′μC − 3

4
κμμ′ = 0.

The parameter κC , which has a physical meaning of a bulk modulus, has the same
value for both Voigt and Reuss models, and thus κC = κ is an exact solution. The
cubic equation for μC has a single positive root, and the expression (7.147) defines
comprehensively the tensor C. When tensor C is known, the XEC are found by
substituting (7.69) into (7.135):

S(hkl)
1 = 1

9κ
− a + b�,

1

2
S(hkl)

2 = 3a − 3b�, (7.148)

a = 5 (3κC + 4μC )

6
(

9κCμC + 6μκC + 8μ2
C + 12μμC

) ,

b = − 15
(
μ− μ′) (κC + 2μC ) (3κC + 4μC )(

9κCμC + 6μκC + 8μ2
C + 12μμC

) (
6μ′ (κC + 2μC ) + μC (9κC + 8μC )

) .
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7.5 Residual Stress in Macroscopically Anisotropic Materials.
X-Ray Stress Factors

In the presence of texture or direction-dependent grain interaction, the relation
between strain {εH ( y)} and macroscopic stress in polycrystal can not be presented
by Eq. (7.11). To confirm this fact, the changes implemented by a macroscopic
anisotropy in the equations (7.108) - (7.136) are considered below. The relation-
ship between the strain {εH ( y)} and the macroscopic stress in polycrystal (7.110)
becomes:

{εH ( y)} = y ⊗ y :
∫

dα f (c(α))A(c(α))∫
dα f (c(α))

: 〈σ〉(S). (7.149)

The ODF function f (c) is a function of the orientation of the system C relatively to
the system S. The parametric vector (7.130) depending on the vector y and angles
ψ,φ is an argument of ODF, and the right part of (7.149) may have different kinds
of dependency from the angles ψ and φ. This means the non-linearity of sin2 ψ
plot, and the XEC provided by (7.11) and (7.136) are not sufficient for proper data
interpretation. In this situation, the expression (7.149) is written in the form:

{εH ( y)} = F( y) : 〈σ〉(S), (7.150)

F( y) = y ⊗ y :
∫

dα f (c(SC)(α))A(c(α))∫
dα f (c(SC)(α))

,

and the functions F( y) defined in the coordinate system S are called X-ray stress
factors (XSF).

As follows from (7.150), to calculate XSF, the tensor A, which characterizes
the grain with the orientation c(α), has to be found in the coordinate system S.
For macroscopically isotropic models, the tensor A in the coordinate system C is
equal for all crystallites independently on their orientations. Mathematically it is
a consequence of the fact that the macroscopic tensors C and E are the isotropic
tensors, which are independent on the coordinate system. In the case of macroscop-
ically anisotropic polycrystal, the macroscopic tensors are generally anisotropic. As
a result, to calculate the tensor A, the operations with the anisotropic tensors have
to be carried out in different coordinate systems. The final product of these tensors
is not expressed through the tensors themselves, and the analogue of (7.118) can not
be constructed using a small number of basic elements. Below we discuss the XSF
calculation algorithms for different grain interaction models.

7.5.1 Voigt Model

In accordance with (7.21) and (7.22), the tensor (7.116) has to be averaged and then
inverted. The averaging is carried out with an accounting of ODF as described in
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the Eq. (7.21). After these procedures, the tensor A being equal for all crystallites is
derived in the coordinate system S, and by the reduction of the integral over α the
XSF are:

F( y) = y ⊗ y : 〈c〉−1. (7.151)

Here the value 〈c〉−1 is constant and XSF are independent on hkl. The dependence
on the angles ψ and φ is contained in the term y ⊗ y. As a consequence, the plot
of residual stress versus angles ψ and φ depends quadratically on the trigonometric
functions, but in general case differs from (7.11).

7.5.2 Reuss Model

In the Reuss model, the tensor A is equal to the compliance tensor of a crystallite
(7.25). Because of the expression for the tensor A does not contain the operations
with macroscopic tensors, the expansion (7.119) can be used, which results similarly
to (7.128) in:

F( y) = y ⊗ y :
(

S1σ1 + S2σ2 + Sη

∫
dα f (c(SC)(α))

∫
dαT̂

(SC)
(α)ηc∫

dα f (c(SC)(α))

)
,

(7.152)

S1 = S::σ1 = S11 + 2S12,

S2 = S::σ2 = 4(S11 − S12) + 3S44

2
√

5
, Sη = (A − 1)S44.

This formula can be applied in an analytical form in the important case of the
textured materials described by axial or spherical components [51, 52]. The ODF
in this case is modeled by simple functions describing the grain groups, which have
allocated orientation and the distribution of the directions, for example, ODF in a
form of:

f (cp, c) = NeS cosω, cosω = Tr(T (cp)
−1.T (c)) − 1

2
, (7.153)

here cp is a vector-parameter specifying the primary orientation, N is a normalization
constant, 1/S describes the spread of the directions, Tr is a trace of the matrix. Using
the explicit form of the matrix (7.96), we obtain:

cosω/2 = 1 + ccp√
(1 + c2)(1 + c2

p)
, (7.154)
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and utilizing the expressions for c(SC)(α) in (7.130), the ODF dependence on the
angle α is:

cosω = cos2(θ∗/2) cos(α+ δ + 2 arctan b/a) − sin2(θ∗/2), (7.155)

a = 1 + n y − cpn y√
(1 + c2

p)(n + y)2
, b = cp(n + y)√

(1 + c2
p)(n + y)2

, cos2(θ∗) = nT (cp) y,

tan δ/2 = sin(βB − φ) sin(φB/2) sin(ψ/2)

cos(φB/2) cos(ψ/2) + cos(βB − φ) sin(φB/2) sin(ψ/2)
,

where βB and φB are the angles defining the unity vector in the coordinate system
C along the reciprocal lattice vector (Fig. 7.2).

The analogous relationships can be found for axial components, with ODF:

f (cp, c) = NeS cosω, cosω = f pT (SC)np, (7.156)

where f p is a vector of primary fiber direction in the coordinate system S, np is a
primary fiber vector in the coordinate system C , N is a normalization coefficient, and
1/S defines the characteristic distribution of the directions. By utilizing the explicit
form of the transformation matrix (7.96) and using the expressions for c(SC)(α) in
(7.130), the following formulas are derived:

cosω = cos θy cos θn + sin θy sin θn cos(α+ δ f ), (7.157)

cos θn = nnp, cos θy = f p y, tan δ f = f ⊥n⊥
f ⊥n⊥ez

,

n⊥ = (1 − ez ⊗ ez) · T (
n × ez

1 + nez
) · np,

f ⊥ = (1 − ez ⊗ ez) · T (
y × ez

1 + ez y
) · f p.

In both axial and spherical component cases, the dependence of ODF on the angle
α is expressed as ek1 cos(α+k2). Similar to the Eqs. (7.130)–(7.131), the transformation

matrix T̂
(SC)

(α) in (7.152) has a form einα. By using the equation:

∫ 2π

0
dαek1 cos(α+k2)−imα = 2πeimk2 Im(k1), (7.158)

with Im being a modified Bessel function of m-th order and applying (7.158), (7.157)
and (7.155), we obtain for (7.152):
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F( y) = y ⊗ y :
(

S1σ1 + S2σ2 (7.159)

+ SηηnT (4)
nl

(
ez × y

1 + ez y

)
δll ′

Il(Sω)eilφ

I0(Sω)
T (4)

l ′n′

(
n × ez

1 + nez

)
ηcn′

)
.

Here the notations of (7.133) have been used, and the angles ω,φ for the spherical
components are:

ω = cos2(θ∗/2), φ = δ + 2 arctan b/a,

and for the case of axial components:

ω = sin θy sin θn, φ = δ f .

This formula can be generalized for S tensor of arbitrary symmetry [53].
The expression (7.159) demonstrates the transition from XSF to XEC. From one

hand, the relation between the measured strain and the stress (7.11) takes a place in
a case of the isotropic material. As follows from (7.159) and (7.152), in isotropic
case A = 1, the anisotropic part Sη = 0 disappears along with the term of texture.
From the other hand, in the limit of the isotropic ODF, the value S tends to zero,
the functions Il(Sω) tend to zero, except of I0(Sω), and we obtain the expression
(7.133), which results in (7.11).

7.5.3 Eshelby-Kröner Model

In the presence of texture, the Eq. (7.67) becomes very cumbersome. In opposite to
the isotropic case, where the simple analytical expression (7.145) exists, the relation
between E and C in anisotropic polycrystals is given by cumbersome integrals
(7.57) and (7.58). The averaging procedure involves ODF, which again complicates
the calculations comparing to the isotropic sample, where the equation (7.120) is
valid. As a result, the expressions (7.67) become a system of non-linear equations,
where the analytical solution similar to (7.147) is not possible.

The appropriate solution for the textured polycrystals is a construction of the
iterative procedure based on (7.67) for calculation of the tensor C [33, 34]. For
example, the Eq. (7.66) is re-written as:

ε(0) = ε(0) + [〈(1 + E : δcn)−1〉 − 1] : ε(0), (7.160)

where the second term in the right side equals to zero for the exact solution of (7.67).
By expressing the strain ε(0) through the stress 〈σ〉 using the macroscopic compliance
tensor S = C−1, the following equation is obtained:

S = S + [〈(1 + E : δcn)−1〉 − 1] : S. (7.161)
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Based on this equation, the iterative scheme can be constructed as follows:

S(n+1) = S(n) + f [〈(1 + E(n) : δcn)−1〉 − 1] : S(n), (7.162)

where E(n) is calculated using C(n) = S(n)−1
. The coefficient f is determined

empirically: the small values of f provide the convergence, however, require longer
iterations, whereas the large values of f make the iterations unstable. Using (7.69)
and (7.150), the expression for XSF is:

F( y) = y ⊗ y :
∫

dα f (c(SC)(α))(1 + E : (T̂
(SC)

(α)c − C))−1∫
dα f (c(SC)(α))

: S, (7.163)

with macroscopic tensors E, C, S = C−1 being defined in the coordinate system S
and stiffness tensor of a separate crystallite c being defined in the coordinate system
C .

7.5.4 Vook-Witt and Inverse Vook-Witt Models

Unlike the above discussed models, the Vook-Witt and inverse Vook-Witt models
implement the macroscopic anisotropy in the absence of texture.4 The basic expres-
sions (7.84)–(7.87) contain the anisotropic tensors Π⊥ and Π||, which distinguish
the direction of a surface normal among others (Fig. 7.8 and 7.9).

The presence of texture incorporates another source of a macroscopic anisotropy.
Basing on the formulas (7.150) and (7.84), the following expression is obtained for
XSF:

F( y) = y ⊗ y : (7.164)∫
dα f (c(SC)(α))c(α) : (Π|| : c(α) − c(α) : Π⊥)−1 : (c(α) : Π|| − Π⊥ : C M )∫

dα f (c(SC)(α))
,

c(α) = T̂
(SC)

(α)c.

Here the macroscopic tensors are defined in the coordinate system S, and the stiffness
tensor of a separate crystallite c in a coordinate system C .

4 A similar situation occurs in Eshelby-Kröner model with the elliptical grains possessing a certain
orientation [5].



308 7 X-Ray Diffraction Residual Stress Analysis in Polycrystals

Fig. 7.8 sin2 ψ plot for Cu sample with symmetric biaxial stress 200 MPa, for (420) Bragg reflec-
tion for Voigt (V), Reuss (R), Eshelby-Kröner (E-K), Vook-Witt (VW), and inverse Vook-Witt
(iVW) models. The axial texture with half-width 1/S = 20 degree is included in the simulations,
and f p coincides with the normal np in the direction (111). The dashed line shows the value∫

dα f (c(SC)(α)), which is proportional to the intensity of reflection at fixed ψ and φ

Fig. 7.9 sin2 ψ plot for Cu sample with symmetric biaxial stress 200 MPa and for Bragg reflection
(200) in the absence of texture for Voigt (V), Reuss (R), Eshelby-Kröner (E-K), Vook-Witt (VW)
and inverse Vook-Witt (iVW) models. The morphologic texture inherent in Vook-Witt and inverse
Vook-Witt models leads to the non-linearity even in the absence of the orientational texture
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