
Chapter 1
Basic Principles of the Interaction of X-Rays
with Matter: Quantum Electrodynamical
Analysis

Microscopic analysis of various processes arising due to the interaction of X-rays
with condensed matter was considered in many papers, especially in the fundamental
monograph [1], where the basic principles of X-ray optics were described. However,
since that time a series of advanced techniques for X-ray structure characteriza-
tion have been actively developed, such as the diffraction near the absorption edges
[2], diffraction in the ferromagnetic materials [3], methods using the high-intensity
radiation from the X-ray laser [4], and others.

Traditionally, the anisotropic correlative effects as well as the nonlinear processes
due to the interaction of the intensive electromagnetic field with media are more
essential in the optical range of wavelengths and there is a huge number of reviews
in this field (for example, [5–8] and references therein). For the analysis of these
processes, the microscopic equations of quantum electrodynamics have to be used,
which imply the quantum properties of both the electromagnetic field and the matter
are taken into account.

At the same time, in the basic books on the X-ray scattering by the inhomogeneous
structures interaction of the radiation with matter is based on the simplest model
where electrons are considered as classical oscillators [9, 10]. However, the progress
in experimental and theoretical physics demands to consider this interaction on the
basis of the first principles of quantum electrodynamics in order to analyze the limits
of the conventional approximations. The main goal of this chapter is the systematic
investigation of these problems.

1.1 Equations of X-Ray Optics

X-rays are the unique instrument for investigation of the structure of materials, and
it is extremely important for the great number of high-technological processes. The
advantages of X-ray applications are conditioned by a series of essential factors:
(i) small wavelength providing the resolution compared with the characteristic size
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2 1 Basic Principles of the Interaction of X-Rays with Matter

of the electron density distribution in atoms; (ii) a weak interaction of X-ray beams
with the matter providing non-destructive characterization of the objects; (iii) simple
and universal form of this interaction which is important for the solution of the
inverse problem when the electron density distribution in the investigated medium is
reconstructed on the basis of the X-ray scattering profiles; (iv) possibility to describe
the evolution of X-ray wave field in a medium on the basis of the perturbation theory
applied directly to the microscopic equations of quantum electrodynamics.

Let us consider the main approximations used on the way from quantum elec-
trodynamics to the macroscopic Maxwell’s equations for electromagnetic field in a
medium [8, 11]. The start point is the Schrödinger equation for the total state vector
|Φ(t) > that corresponds to the whole system, the non-relativistic quantum medium
and the quantized electromagnetic field:

i�
∂

∂t
|Φ(t) >= Ĥ |Φ(t) > (1.1)

with the Hamiltonian that has the following form in the Coulomb gauge (see, for
example, [7]):

Ĥ = ĤM +
Ne∑

j

{
1

2m

[
−2

e0

c
p̂ j Â(r j ) + e2

0

c2 ( Â(r j ))
2

]

− e0�

2mc
σ j Ĥ(r j )

}
+

∑

ks

�ωka+
ksaks ≡ ĤM + ĤM R + ĤR;

ĤM =
Ne∑

j

p̂ j
2

2m
+ Û ({r j });

Â(r) =
∑

ks

√
2π�c2

ωkV
eks[aksei kr + a+

kse−i kr ];

Ĥ(r) = [∇ × Â]; (keks) = 0. (1.2)

Here e0, m are the electron charge and mass, respectively; interaction between X-
ray field and atomic nuclei can be neglected; � is the Plank constant; c is the light
velocity; aks(a

+
ks) is the operator of annihilation (creation) of the photon with the

frequency ωk = ck, wave vector k and polarization eks ; Â(r) and Ĥ(r) are the
operators of the transversal vector potential and magnetic field, correspondingly;
r j , σ j/2 are the coordinate and spin of j th electron; Ne is the total number of
electrons; ĤM is the Hamiltonian of the medium with the potential energy operator
Û ({r j }) which corresponds to the Coulomb interaction between electrons and nuclei
and provides the stable state of medium. Operator ĤM R is the Hamiltonian of the
electron interaction with the quantum field, the term proportional to the magnetic
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field is included in order to consider the anisotropic ferromagnetic materials; ĤR is
the Hamiltonian of a free electromagnetic field.

Conventional approach for description of the interaction between X-rays and
medium corresponds to the Maxwell’s equations for the classical electromagnetic
field coupled with the Schrödinger equation for the electron subsystem. Sometimes
the latter one is also considered in a semiclassical way. This system of equations is
the theoretical basis for so-called X-ray optics approach [1]. It is possible, however,
to deduce these equations directly from the Eq. (1.1) for the state vector of the whole
system if the adiabatic perturbation theory [12] is used, and that allows to define the
limits of the semiclassical approximation. Figure 1.1 represents schematically the
sequence of the transformation that should be done in order to pass from the quantum
electrodynamics to the X-ray optics approach.

The canonical transformation of the field operator [13], being applied to the Hamil-
tonian (1.2), separates the time dependent classical field A(r, t) from the radiation
component ÂR(r) defined by the quantum fluctuations of the electromagnetic field
relatively to the selected classical field [8]:

ÛR(t) =
∏

ks

ecksa+
ks−c∗

ksaks =
∏

ks

ecksa+
ks e−c∗

ksaks e−1/2|uks (t)|2;

cks(t) = uks(t)e
−iωk t ; Û+

R Â(r)ÛR = A(r, t) + ÂR(r);

A(r, t) =
∑

ks

√
2π�c2

ωkV
eks[uksei kr−iωk t + u∗

kse−i kr+iωk t ];

ÂR(r) =
∑

ks

√
2π�c2

ωkV
eks[aksei kr + a+

kse−i kr ]. (1.3)

Fig. 1.1 Schematic repre-
sentation of importance of
different approximations for
light and X-ray optics
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and canonical transformation of other operators in the Eq. (1.1) leads to the following
equations:

ĤR(t) = Û+
R (t)ĤRÛR(t)

= ĤR +
∑

ks

�ωk[a+
kscks(t) + aksc∗

ks(t) + |uks(t)|2];

i�Û+
R
∂

∂t
ÛR = i�

∂

∂t
+ i�

∑

ks

[(u̇ks(t)a
+
kse−iωk t − u̇∗

ks(t)akseiωk t )

−iωk(uks(t)a
+
kse−iωk t + u∗

ks(t)akseiωk t ) − iωk|uks(t)|2

+1

2
(u̇ks(t)u

∗
ks(t) − u̇∗

ks(t)uks(t))]; u̇ks ≡ ∂

∂t
uks . (1.4)

The Schrödinger Eq. (1.1) is then transformed to:

i�
∂

∂t
|Ψ (t) >= Ĥ(t)|Ψ (t) >;

|Φ(t) >= eiφ(t)Û+
R |Ψ (t) >;

φ(t) = 1

2

∑

ks

i�ωk[u̇ks(t)u
∗
ks(t) − u̇∗

ks(t)uks(t)]. (1.5)

Here the time-dependent Hamiltonian Ĥ(t) is a functional of the undefined compo-
nents uks(t) of the classical field in the medium and it has the following form:

Ĥ(t) = ĤM + ĤM R(t) + ĤR;

ĤM R(t) =
Ne∑

j

{
1

2m

[
− 2

e0

c
p̂ j (A(r j , t) + ÂR(r j ))

+e2
0

c2 (A(r j , t) + ÂR(r j ))
2
]

− e0�

2mc
σ j (H(r j , t) + Ĥ R(r j ))

}

−i�
∑

ks

(u̇ks(t)a
+
kse−iωks t − u̇∗

ks(t)akseiωk t ). (1.6)

In the Hamiltonian of interaction ĤM R(t), the part Ĥ c
M R(t) defines the adiabatic

evolution of the quantum medium under the influence of the classical electromagnetic
field with the Fourier components uks(t). Actually, these values define the displaced
equilibrium positions for the quantum oscillators corresponding to the quantized
field modes. Semiclassical approximation is defined by the wave function of the
system with the radiation field being in the ground (vacuum) state relatively to the
new equilibrium positions:

Ĥ (0)(t) = ĤM + Ĥ c
M R(t) + ĤR;



1.1 Equations of X-Ray Optics 5

|Ψ (0)(t) >≡ |Ψc(t) >= |ΨM (t) > |0 >; ĤR |0 >= 0;
i�
∂

∂t
|ΨM (t) >= [ĤM + Ĥ c

M R(t)]|ΨM (t) >;

Ĥ c
M R(t) =

Ne∑

j

{
1

2m
[−2

e0

c
p̂ j A(r j , t)

+e2
0

c2 A2(r j , t)] − e0�

2mc
σ j H(r j , t)

}
. (1.7)

To investigate the stability of this state, the first order approximation relatively to
the radiation field operators [12] has to be considered:

|Ψ (t) >≈ |Ψc(t) > +|Ψ (1)(t) >; < Ψ (1)(t)|Ψc(t) >= 0, (1.8)

where the first order correction includes the excited states of the quantized electro-
magnetic field and it is orthogonal to the zeroth-order state vector. As the result, the
state vector |Ψ (1)(t) > satisfies to the equation:

{
i�
∂

∂t
− Ĥ (0)(t)

}
|Ψ (1)(t) >= Ĥ (1)(t)|Ψ (0)(t) >;

Ĥ (1)(t) =
Ne∑

j

{
− e0

mc
p̂ j ÂR(r j )

+ e2
0

mc2 A(r j , t) ÂR(r j ) − e0�

2mc
σ j Ĥ R(r j ))

}

−i�
∑

ks

(u̇ks(t)a
+
kse−iωk t − u̇∗

ks(t)akseiωk t ). (1.9)

The zeroth order state vector (1.7), being substituted into the Eq. (1.9), make
it possible to calculate its projection onto the state vector < ΨM (t)| defining the
medium evolution in the selected classical field. The quantum radiation processes
are neglected in the zeroth approximation, therefore the normalization condition for
the corresponding state vector is conserved during the time < Ψ (0)(t)|Ψ (0)(t) >=
const :

< ΨM (t)|Ĥ (1)(t)|ΨM (t) > |0 >= 0;
∑

ks

{√
2π�

ωkV
eks J ks(t) + i�u̇ks(t)e

−iωk t
}

a+
ks |0 >= 0;

J ks(t) =< ΨM (t)|
Ne∑

j

J j (t)e
−i kr j |ΨM (t) >;
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J j (t) = e0

m
p̂ j − e2

0

mc
A(r j , t) + i

e0�

2m
[σ j × k]. (1.10)

The zeroth order solution (1.7) will be stable relatively to the quantum fluctuation of
the electromagnetic field if the coefficients at the first power of the creation operator
are equal to zero, i.e. when the Eq. (1.10) is satisfied [12]. Thus, the Fourier compo-
nents of the classical field are expressed through the microscopic current J j (t) of
the electrons in the medium:

u̇ks(t) = i

�

√
2π�

ωkV
eks J ks(t)e

iωks t . (1.11)

Following to the method described in [8], this approximation results in the con-
ventional form of Maxwell’s equations for the transversal classical field. The first
derivative of the vector potential holds:

− 1

c

∂

∂t
A(r, t) =

∑

ks

√
2π�

ωkV
eks{[u̇ksei kr−iωk t + u̇∗

kse−i kr+iωk t ]

+ iωk[uksei kr−iωk t − u∗
kse−i kr+iωk t ]}, (1.12)

and using the expressions (1.10) and (1.11) along with the relation

∑

s

eμkseνks = δμ,ν − kμkν
k2 ≡ tμν,

the first term in (1.12) is transformed to:

< ΨM (t)|
Ne∑

j

∑

k

4π

ωkV
tμν

{[e0

m
p̂ j − e2

0

mc
A(r j , t)

]
sin(k(r − r j ))

+ e0�

2m
([σ j × k] cos(k(r − r j ))

}
ΨM (t)>. (1.13)

The expression (1.13) becomes a zero because of the presence of the odd function
under the sum over k.

The second term in the Eq. (1.12) represents the classical component of the electric
field operator after the transformation (1.3). Thus, the Eq. (1.12) defines the conven-
tional relationship between the vectors of the electric field strength and the vector
potential for the classical transversal field:

− 1

c

∂A(r, t)

∂t
= Et (r, t). (1.14)
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The differentiation of the expression (1.14) results in the following formula for the
derivative of the vector potential:

1

c2

∂2 A(r, t)

∂t2 = −
∑

ks

√
2π�c2

ωkV
eks

{
k2[uksei kr−iωk t + u∗

kse−i kr+iωk t ]

+ i
ωk

c2 [u̇ksei kr−iωk t − u̇∗
kse−i kr+iωk t ]

}
. (1.15)

Finally, the inhomogeneous equation for the vector potential of the classical elec-
tromagnetic field can be found by taking into account the definitions (1.3) and (1.11):

ΔA(r, t) − 1

c2

∂2 A(r, t)

∂t2 = −4π

c
J t (r, t);

J t (r, t) = 1

2
[J1(r, t) + J+

1 (r, t)]; ∇ J t (r, t) = 0;

J1(r, t) =< ΨM (t)|
Ne∑

j

∑

k

tμν
V

{[e0

m
p̂ j − e2

0

mc
A(r j , t)

]
cos(k(r − r j ))

+i
e0�

2m
([σ j × k] sin(k(r − r j ))

}
|ΨM (t)>. (1.16)

Expression (1.16) for the current density can be symmetrized due to commutativity
of the operators under the sum. Equations (1.14) and (1.16) define the propagation of
the transversal classical field in the medium. In the framework of Coulomb gauge, the
longitudinal part of the electrical field El(r, t) is defined as the gradient of the scalar
potential ϕ(r, t) which is the sum of Coulomb potentials V̂ ({r j }) of all charged
particles averaged over the vector state |ΨM (t) > of the medium. This results in the
macroscopic equation [14]:

∇ El(r, t) = 4πρ(r, t); �ϕ(r, t) = −4πρ(r, t);
El(r, t) = −∇ϕ(r, t); ρ(r, t) = e0

∑

j

< ΨM (t)|δ(r − r j )|ΨM (t)>. (1.17)

In the neutral medium the charge density should be represented as a divergence of
the vector that is used to denote as (−P). Then the integral charge over the medium
volume is reduced to the surface integral and equals to zero [14]:

∫
ρ(r, t)dV = −

∫
∇ PdV = −

∮
Pd S = 0. (1.18)

The physical meaning of the vector P follows from the formulas:

∫
rρ(r, t)dV = −

∫
r∇ P =
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−
∮

r(Pd S) +
∫

(P∇)rdV =
∫

PdV . (1.19)

Thus the dipole polarization vector P(r, t) for the electron subsystem can be calcu-
lated microscopically as follows:

P(r, t) = e0

Ne∑

j

< ΨM (t)|r jδ(r − r j )|ΨM (t)>. (1.20)

In general case the polarization vector P(r, t) can be expressed through the average
electron current by means of the following equation:

i
∂P(r, t)

∂t
= e0

2�

Ne∑

j

{< ΨM (t)|[r j Ĥ (0)]δ(r − r j )|ΨM (t) >

+ < ΨM (t)|δ(r − r j )[r j Ĥ (0)]|ΨM (t) >},
r j Ĥ (0) − Ĥ (0)r j = [r j Ĥ (0)], (1.21)

with the Hamiltonian Ĥ (0) defined by formula (1.7). Calculating the commutator in
(1.21), the vector P(r, t) and its Fourier transformation P(r,ω) can be expressed
in the following way:

∂P(r, t)

∂t
= J(r, t); P(r,ω) = i

ω
J(r,ω);

J(r, t) = 1

2
< ΨM (t)|

Ne∑

j

[ Ĵ jδ(r − r j ) + δ(r − r j ) Ĵ j ]|ΨM (t) >;

Ĵ j = e0

m
p̂ j − e2

0

mc
A(r j , t) + e0�

2m
[σ j × ∇r ], (1.22)

with J(r, t) as the average electron current in the medium. In neutral medium the
average current is equal to zero if the external field is absent. Vector potential A(r, t)
is the only characteristic of the field in the Hamiltonian Ĥ (0). Therefore in the con-
sidered case of linear electrodynamics J(r,ω) should be proportional to A(r,ω)

and is represented in the following form (see below Sect. 1.2):

Jμ(r,ω) = ω2

4πc
χ̂(ω)A(ω), (1.23)

with the medium polarizability χ̂(r, r ′,ω), which is the integral tensor operator

(χ̂(ω)A(ω))μ =
∫

d r ′χμ,ν(r, r ′ω)Aν(r ′,ω). (1.24)
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This value can also be expressed as a sum of the operators χ̂t and χ̂l that define the
transversal (1.16) and longitudinal parts of the average current, respectively. Finally,
all physical fields in the medium are expressed through the vector potential:

E(r,ω) = iω

c
A(r,ω) − ∇ϕ(r,ω) = iω

c
[1 − χ̂l(ω)]A(ω);

D(r,ω) = E(r,ω) + 4πP(r,ω) = iω

c
[1 + χ̂t (ω)]A(ω);

H(r,ω) = [∇ × A(r,ω)], (1.25)

where D(r,ω) is the electrical displacement vector. Thus the use of the vector poten-
tial A(r, t) is sufficient for the description of X-ray scattering in condensed media.
The formulas (1.7) and (1.16) construct the system of the coupled Schrödinger-
Maxwell’s equations which is the basis for the description of the field-medium inter-
action in X-ray optics.

In accordance with the analysis above, these equations are applicable when the
off-diagonal matrix elements of the operator Ĥ (1)(t) in (1.9) are negligible for the
processes under consideration. These elements correspond to the transitions between
quasi-energy levels of the medium in the classical field A(r, t) [8], which lead to
the creation of new quanta of the electromagnetic field. The additional shift of the
levels of the quasi-energy caused by these transitions can be evaluated by taking
into account the second order of the adiabatic perturbation theory on the operator
Ĥ (1)(t) [12]. The diamagnetic term ∼ A(r j , t) in the current density (1.16) is known
to define the main contribution to the interaction between X-rays and medium [1].
Therefore, the relative shift of the quasi-energy level ε f caused by the transitions
of the quantum electromagnetic field to the excited one-photon states (quantum
electrodynamics effects) is defined by the following dimensionless parameter:

ξQE D ≈
Ne∑

j

∑

k

∑

f ′

2π�

ωkV

(
e2

0 A(r j , t)

mc

)2 M j
f f ′(k)

|ε f ||�ωk + ε f ′ − ε f | ;

M j
f f ′(k) =< Ψ

f ′
M |ei kr j |Ψ f ′

M >. (1.26)

The characteristic energies of the electrons are essentially less than the energy
of photons |ε f | 	 �ωk if the wavelengths of X-ray range are considered. In this
assumption, the classical field has the amplitude

A0 ≈ c

ω̄
E0,

with E0 as the amplitude of the electric field strength, and ω̄ is the characteristic
frequency of the field, and the parameter (1.26) can be estimated as

ξQE D ≈ 4πe2
0ne

mω̄2 |M̄|2 e2
0 E2

0

2mω̄2|ε f | . (1.27)
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Here ne is the electron density in the medium and the following estimation for the
matrix elements M j

f f ′(k) is used:

∑

k

∑

f ′

M j
f f ′(k)

ω2
k

≈ |M̄|2
ω̄2 .

The first factor in (1.27) has the same value as the X-ray susceptibility of the
medium in the classical Maxwell’s equations [1]. Therefore, the quantum effects
for the electromagnetic field might be essential only if the classical field creates the
medium ponderomotive [15] energy Up = e2

0 E2
0/2mω̄2, which is comparable with

the electron energy |ε f |. This condition can be fulfilled, for instance, in the ultrashort
pulses from the X-ray free-electron laser [4].

1.2 Average Current Density and X-Ray Polarizability

The fundamental principles of the quantum electrodynamic shows that the semiclas-
sical approach based on the solution of the system of coupled Schrödinger-Maxwell’s
equations describes the interaction of X-rays and medium with an accuracy suffi-
cient for the most of the applications. These equations follow from the formulas
(1.7), (1.16):

i�
∂

∂t
|ΨM (t) >= [ĤM + Ĥ c

M R(t)]|ΨM (t) >;

Ĥ c
M R(t) =

Ne∑

j

{
1

2m

[
−2

e0

c
p̂ j A(r j , t)

+e2
0

c2 A2(r j , t)

]
− e0�

2mc
σ j H(r j , t)

}
. (1.28)

ΔA(r, t) − 1

c2

∂2 A(r, t)

∂t2 = −4π

c
J t (r, t); ∇ A(r, t) = 0, (1.29)

where J t is the transversal component of the average current

J(r, t) = 1

2
< ΨM (t)|

Ne∑

j

[ Ĵ jδ(r − r j ) + δ(r − r j ) Ĵ j ]|ΨM (t) >

Ĵ j = e0

m
p̂ j − e2

0

mc
A(r j , t) + e0�

2m
[σ j × ∇r ]. (1.30)
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Further simplification of this system of nonlinear equations is possible due to the
weak interaction of the X-ray wave-field with the medium, which makes possible
the usage of the perturbation theory over the operator Ĥ c

M R(t) for the solution of the
Eq. (1.28). In general case, the medium state vector is defined by the series over the
full set of the eigenfunctions |Ψ f > of the Hamiltonian ĤM :

|ΨM (t) >=
∑

f

C f (t)|Ψ f > e− i
�

E f t ; ĤM |Ψ f >= E f |Ψ f >;

ĤM =
Ne∑

j

p̂2
j

2m
+ U ({r j }); |Ψ f >≡ |Ψ f ({r j })>. (1.31)

Here index f includes the whole set of the quantum numbers of the multi-electron
system in the potential field U ({r j } created by the Coulomb interactions between
the electrons and the nuclei in the medium.

In the text below, the principal assumptions are briefly discussed, which are used in
order to calculate the average current (1.30) on the basis of the solution of Eq. (1.31)
[1]. There is no necessity to use any particular form of the potential field U ({r j } and
wave functions in (1.31), if the problem is considered in the framework of the linear
response theory [16, 17]. The substitution of the expansion (1.31) into the Eq. (1.30)
leads to the formula, which defines the evolution of the coefficients C f (t):

i�
∂C f (t)

∂t
= −

∑

f ′
M f f ′(t)C f ′(t)e

i
�

(E f −E f ′ )t ;

M f f ′(t) =< Ψ f |Ĥ c
M R(t)|Ψ f ′>. (1.32)

The standard "adiabatic switch-off" condition is used here for the interactions within
the limit t → −∞ [16, 17]:

M f f ′(t) → M f f ′(t)eνt ; ν → 0,

and the system is assumed to be in the ground state when the field is absent:

C (0)
f = δ f 0.

Using these approximations in the first order of the perturbation theory, the expres-
sion for C f is obtained:

C f (t) ≈ δ f 0 + i

�

∫ t

−∞
M f 0(t

′)e
i
�

(E f −E0−i�ν)t ′dt ′;

|ΨM (t) >≈ |Ψ0 > e− i
�

E0t
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+ i

�

∑

f �=0

e− i
�

E f t
∫ t

−∞
M f 0(t

′)|Ψ f > e
i
�

(E f −E0−i�ν)t ′dt ′. (1.33)

The formulas (1.33) are then used in the wave function (1.31), and the current (1.30)
can be calculated with an accuracy of the first order on the electromagnetic field. The
average current is supposed to be zero without field and is caused by the transitions
of the system into the excited states:

Jtμ(r, t) =
Ne∑

j,l

∫ t

−∞
< Ψ0|T̂ jl

μλ(r, r ′, t − t ′)Aλ(r ′, t ′)eνt ′dt ′d r ′|Ψ0 >;

T̂ jl
μλ(r, r ′, t − t ′) = − e2

0

mc
{δ(r − r j )δ(r ′ − r j )δ jlδ(t − t ′)δμλ

− im

�

∑

f �=0

e
i
�

(E f −E0)(t ′−t)v̂ j
μδ(r − r j )|Ψ f >< Ψ f |v̂l

λδ(r ′ − rl)

+ im

�
e− i

�
(E f −E0)(t ′−t)v̂l

λδ(r ′ − rl)|Ψ f >< Ψ f |v̂ j
μδ(r − r j )};

v̂ j
μ = 1

m
p̂ j
μ + �

2m
([σ j × ∇r ])μ. (1.34)

The transversal part of the current is appeared because it is proportional to the
transversal vector potential Aλ(r ′,ω).

The substitution of the expression (1.34) into the Maxwell’s Eq. (1.29) demon-
strates that the linear response of the medium is defined by the integral operator
T̂ jl
μλ(r, t − t ′) which has a cumbersome functional dependence on the multi-electron

wave functions:
Ψ f ({r j }) ≡< {r j }|Ψ f >.

Hereinafter, we change to the Fourier representation over the time variable in the
Eq. (1.29):

ΔA(r,ω) + ω2

c2 A(r,ω) = −4π

c
J t (r,ω);

A(r, t) =
∫

dωA(r,ω)e−iωt . (1.35)

The Fourier image of the current holds:

Jtμ(r,ω) = c
Ne∑

j

Ne∑

l

∫
d r ′ < Ψ0|T̂ jl

μλ(r, r ′,ω)Aλ(r ′,ω)|Ψ0 >;

T̂ jl
μλ(r, r ′,ω) = −r0{δ(r − r j )δ(r ′ − rl)δ jlδμλ
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−
∑

f �=0

2(E f − E0)

(E f − E0)2 − (�ω + iν)2

× v̂ j
μδ(r − r j )|Ψ f >< Ψ f |v̂l

λδ(r ′ − rl)}, (1.36)

where r0 = e2
0/mc2 is the classical electron radius. The first term in the operator

T̂ jl
μλ(r, r ′ω) is not related to the transitions of the atoms in the medium to the excited

states, however, it corresponds to the coherent scattering of the electromagnetic field
from the electrons with coordinates {r j }. This process is defined by the amplitude of
the elastic Compton scattering (−r0) of the photon on the free electron at zero angle
[18]. The second term is also defined by the coherent scattering of the electromagnetic
field but this time through the virtual transitions of the electrons to the intermediate
states with the energy E f . In the optical wavelength range, this term solely defines
the contribution to the system linear response. For the X-rays, it becomes essential
near the resonance, when the photon energy almost coincides with the transition
energy E f − E0 ≈ �ω [1], which makes possible the following substitution:

2(E f − E0)

(E f − E0)2 − (�ω + iν)2 ≈ 1

E f − E0 − �ω − iν
.

After the solution of the Eq. (1.35), the dependence of the vector potential
Aλ(r ′, {r j },ω) on the electron coordinates averaged over the state vector |Ψ0 >

has to be taken into account. In order to separate the calculation of the electromag-
netic field from the procedure of the averaging over the electron coordinates, the
relationship below is used. This relationship has been proved in details in the theory
of wave scattering from an arbitrary system with the large number of the scattering
centers [19, 20]:

< Ψ0|T̂ jl
μλ(r, r ′, {r j },ω)Aλ(r ′, {r j },ω)|Ψ0 >=

=< Ψ0|F̂ jl
μλ(r, r ′, {r j },ω)|Ψ0 > Aλ(r ′,ω). (1.37)

Here the renormalized scattering operator F̂ jl
μλ(r, r ′,ω) includes all non-coherent and

inelastic processes at a single scattering center. In particular, such renormalization of
the amplitude for the scattering of the electromagnetic wave by free electron leads to
the complex scattering amplitude with imaginary part defined by the total scattering
cross-section accordingly to the optical theorem:

(−r0) ⇒ f (0); f ′(0) = −r0; f ′′(0) = ω

4πc
σt (ω), (1.38)

where σt is the total cross-section of the Compton scattering of photon by free
electron (Klein-Nishina formula) [21]:



14 1 Basic Principles of the Interaction of X-Rays with Matter

σt (ω) = 2πr2
0

{1 + β

β3 [2β(1 + β)

1 + 2β
− ln(1 + 2β)]

+ ln(1 + 2β)

2β
− 1 + 3β

(1 + 2β)3

}
; β = �ω

mc2 . (1.39)

The renormalization procedure for the part of the scattering operator related to
the intermediate transitions to the excited states is defined by the substitution [20]:

1

E f − E0 − �ω − iν
⇒ 1

E f − E0 − �ω − iΓ f /2
, (1.40)

where Γ f is the total width of the excited state of the system with the energy E f .
Actually, this value includes transitions from the level to all possible states and is
connected with the total cross-section of the inelastic photon scattering at the bound
electrons.

Hereinafter, the medium is considered as an unlimited continuum, which does
not restrict the generality of the further analysis.The most interesting for the appli-
cations, the macroscopic non-homogeneities of real medium (layered structures,
defects, deformed crystals and others), can be described within the framework of
the conventional scattering theory [19]. In this approach, each macroscopic element
of the investigated object is considered as unrestricted and variation of the medium
properties at different parts are considered either as small perturbations (for example,
[22–24]) or by means of the boundary conditions sewing together the solutions of the
Maxwell’s equations for different parts of the medium (for example, [9, 25]). In the
case of the continuous medium, the Fourier representation over the space variables
can be used for the Eqs. (1.35)–(1.37):

k2 A(k,ω) − ω2

c2 A(k,ω) = 4π

c
J t (k,ω);

k A(k,ω) = 0. A(r, t) =
∫

dkdωA(k,ω)ei(kr−ωt), (1.41)

and the linear response function can be written in the form:

Jtμ(k,ω) = c
1

(2π)3

∫
dk′

Ne∑

j

Ne∑

l

F jl
μλ(k, k′ω)Aλ(k′,ω);

F jl
μλ(k, k′ω) = f (0)

{
< Ψ0|ei(k′−k)r j |Ψ0 > δ jlδμλ

−
∑

f �=0

m

E f − E0 − �ω − iΓ f /2

× < Ψ0|v̂ j
μe−i kr j |Ψ f >< Ψ f |v̂l

λei k′rl |Ψ0 >
}

(1.42)
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For further calculation of the average current (1.42), the state vectors |Ψ f > should
be defined as the solutions of the Schrödinger Eq. (1.31) for multi-electron system.
The adiabatic and one-electron approximations are used here, which are explained
in many text books (for example, [26, 27]). The one-electron states are described
by the wave functions which satisfy to the Schrödinger equation with self-consistent
periodic potential and the Bloch theorem:

ψα,κ(r + n) = eiκnψα,κ(r), (1.43)

where n = l1a + l2b + l3c; li = 0,±1,±2, . . . is the vector of translation decom-
posed over the vectors a, b, c of the basic crystal cell. These wave functions corre-
spond to the zone energy spectrum εα(κ), where index α is the number of zone and
κ is the quasi-momentum vector restricted by the first Brillouin zone [26]. The total
number of different quasi-momentum vectors is equal to the number of the basic
cells N due to boundary conditions [27]. All the formulas below can also be applied
to the homogeneous medium in the limits a, b, c → ∞.

Due to the translational symmetry the wave functions can be normalized as fol-
lows:

ψα,κ(r) = 1√
N
ψ̃α,κ(r);

∫
|ψα,κ(r)|2d r =

∫

Ω

|ψ̃α,κ(r)|2d r = 1, (1.44)

where Ω is the volume of the basic cell (V = NΩ).
In the considered representation, the sum over electron coordinates in the expres-

sion (1.42) in the ground state of a crystal is reduced to the summation over the
filled zones taking into account the normalization condition on the total number of
electrons. As for example, for the one-particle operators it means:

I ( Q) =
∑

j

< Ψ0|ei Qr j |Ψ0 >⇒
occ∑

α,κ

gα,κ

∫
ψ∗
α,κ(r)ei Qrψα,κ(r)d r

= 1

N

∑

n

ei Qn
occ∑

α,κ

gα,κ

∫
ei Qr |ψ̃α,κ(r)|2d r;

occ∑

α,κ

∫
gα,κ|ψα,κ(r)|2d r =

occ∑

α,κ

∫

Ω

gα,κ|ψ̃α,κ(r)|2d r = Ne, (1.45)

where gα,κ are the numbers of the filling up (multiplicity of degeneracy) of the energy
levels in zones, gα,κ = 2 in the case of the ideal non-polarized crystal and it varies
within the limits 0 < gα,κ < 2 in solid solutions or crystals with defects, Ne is the
total number of electrons in the crystal.
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The integrations in the matrix elements (1.45) are based on the following rela-
tionships [26]:

∑

n

ei Qn = N
(2π)3

V

∑

H

δ( Q − H);

I ( Q) = (2π)3

V

∑

H

δ( Q − H)

occ∑

α,κ

∫

Ω

gα,κψ̃
∗
α,κ(r)ei H r ψ̃α,κ(r)d r, (1.46)

where H are the crystal reciprocal lattice vectors.
Let us consider in details the main contribution to the average current which is

defined by the non-resonant scattering from electrons and is described by the first
term in the Eq. (1.42). By taking into account the relation (1.46), the current is:

J (e)
tμ (k,ω) = c

1

Ω
f (0)

∑

H

F(H)Aμ(k + H,ω);

F(H) = 1

N

occ∑

α,κ

∫

Ω

gα,κei H r |ψ̃α,κ(r)|2d r. (1.47)

Here F(H) stands for the cell scattering factor of the crystal basic cell, normalized
by the total number Nc of the electrons in the elementary cell:

F(0) = 1

N

occ∑

α,κ

∫

Ω

gα,κ = Ne

N
= Nc. (1.48)

By the definition, the function

ρe(r) = 1

N

occ∑

α,κ

∫

Ω

gα,κ|ψ̃α,κ(r)|2 =
∑

H

F(H)e−i H r (1.49)

describes the space distribution of the electron density in the cell. The transition to
the constant electron density N = 1,Ω → ∞, Ne → ∞, Ne/Ω → ne corresponds
to the homogeneous medium:

J (e)
tμ (k,ω) = cne f (0)Aμ(k,ω). (1.50)

Substituting the average current into the Maxwell’s Eq (1.41), the above equations
are reduced to the commonly used form:

k2 A(k,ω) − ω2

c2

∑

H

ε(e)(H,ω)A(k + H,ω) = 0;
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ε(e)(H,ω) = δH,0 + χ(e)(H,ω); χ(e)(H,ω) = 4πc2

ω2Ω
f (0)F(H), (1.51)

where ε(e)(H,ω) and χ(e)(H,ω) are the Fourier components of the non-resonant
part of the X-ray dielectric constant and susceptibility, respectively. To calculate the
resonant part of the scattering operator in (1.41), the sum over the electron coordinates
is separated into two parts:

Ne∑

j

Ne∑

l

ei(k′rl−kr j ) ⇒
∑

n

ei(k′−k)n
Ñe∑

j

Ñe∑

l

ei(k′rl−kr j )

+
∑

n

∑

n′ �=n

Ñe∑

j

Ñe∑

l

ei(k′(rl+n′)−k(r j +n)), (1.52)

where Ñe includes summation over the electron coordinates in a single basic cell and
the summation over the translation vectors n, n′ transfers it to the whole crystal.

In the framework of the Hartree approximation, the state vector of the system is
defined by the simple product of the one-electron wave functions. In this case, the
nonzero probabilities for the transitions to the excited states ( f ) present only for the
terms with n = n′. The terms with n �= n′ are accounted due to the correlation and
exchange effects which are rather small for the non-relativistic atoms. They may play
an important role, for example, in the resonant X-ray spectroscopy [2], however, in the
majority of applications this contribution to the X-ray susceptibility is neglected [1].

The scattering operator is defined by the transitions to the levels of unfilled energy
bands E0 → εα(κ); E f → εα1(κ1) with the energy width γα1(κ1) that takes into
account various processes of atom decay from the excited state:

F jl(2)

μλ (k, k′ω) ≈ − 1

N 2

∑

n

ei(k′−k)n
occ∑

α,κ

gα,κ

×
∑

α1,κ1

m f (0)Mα1,κ1
α,κ,μ (−k)Mα,κ

α1,κ1,λ
(k′)

εα1(κ1) − εα(κ) − �ω − iγα1(κ1)
. (1.53)

The matrix elements from the operator of the current Mα1,κ1
α,κ,μ (−k) are also reduced

to the integrals over the single basic cell:

Mα1,κ1
α,κ,mu(−k) =

∫

Ω

ψ̃∗
α1,κ1

(r)v̂μe−i kr ψ̃α,κ(r)d r. (1.54)

Using the expression (1.46), the resonant contribution to the average current can be
found:



18 1 Basic Principles of the Interaction of X-Rays with Matter

J (2)
tν (k,ω) = c

1

Ω
f (0)

∑

H

tνμFμ,λ(k, H)Aλ(k + H,ω);

Fμ,λ(k, H) = − 1

N 2

occ∑

α,κ

gα,κ

∑

α1,κ1

m Mα1,κ1
α,κ,μ (−k)Mα,κ

α1,κ1,λ
(k + H)

εα1(κ1) − εα(κ) − �ω − iγα1(κ1)
, (1.55)

which represents the anomalous contribution to the X-ray susceptibility of the crystal
[28]:

k2 Aμ(k,ω) − ω2

c2

∑

H

εt
μ,λ(k, H,ω)Aλ(k + H,ω) = 0;

(k A(k,ω)) = 0;
εt
μ,λ(k, H,ω) = ε(e)(H,ω)δμ,λ + χ

(a)
μ,λ(k, H,ω);

χ
(a)
μ,λ(k, H,ω) = 4πc2

ω2Ω
f (0)Fμ,λ(k, H). (1.56)

1.3 Scattering Factors

The elastic scattering of X-ray radiation from the electrons of a crystal contributes
mainly to the X-ray susceptibility, which is determined from the scattering amplitude
in the formula (1.47):

F(H) = 1

N

occ∑

α,κ

∫

Ω

gα,κei H r |ψ̃α,κ(r)|2d r. (1.57)

If the direct experimental measurement of the scattering amplitude could be pos-
sible, the expansion (1.47) would permit to unambiguously calculate the function
ρe(r) = ∑occ

α,κ gα,κ|ψ̃α,κ(r)|2, which is the main goal of X-ray structure analysis
[29]. However, the measurement of the intensity of the scattered radiation allows
to find the modulus |F(H)| only. The values F(H) are complex in general case,
therefore the theoretical calculation of the scattering amplitude is necessary on the
basis of preliminary model of the electron density which is defined more exactly by
fitting the experimental data by means of iterative retrieval procedure [30].

In the considered here quantum description of the system, the electron density
modeling is based on the choice of some approximation for the wave functions
ψ̃α,κ(r) corresponding to the zone spectrum of the electron in a crystal. In the practi-
cal crystallography [29], the commonly used approach is based on the strong coupling
approximation [31], which neglects the overlapping of the wave functions of elec-
trons from different atoms. This approximation takes into account the fact that the
main contribution to the amplitude is defined by the scattering from the electrons
of the internal shells, the characteristic sizes of which are essentially less than the
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distance between the atoms. Thus, the overlapping of the electron wave functions
from different atoms is exponentially small and the electron density does not depend
on the quasi-wave vector κ:

|ψ̃α,κ(r)|2 → |ψ̃α(r)|2; 1

N

∑

κ

gα,κ = gα, (1.58)

where the values gα define the populations of the electron states in the isolated atoms
of the basic cell.

Introducing the variables Ra and ξa for the coordinates of the atom nucleus in the
basic cell and the set of quantum numbers for the filled electron states in this atom,
respectively, and the sum over the index α includes the summation over both Ra and
ξa , the scattering factor can be represented as follows:

F(H) =
occ∑

Ra ,ξa

gRa ,ξa

∫

Ω

ei H r |ϕξa (r − Ra)|2d r, (1.59)

where ϕξa (r − Ra) are the normalized one-electron wave functions corresponding
to the isolated atom. Within the considered in this chapter accuracy, the limits of
integration in (1.59) can be expanded to the infinite volume. We also introduce the
atomic scattering factors (ASF) Fa(H):

F(H) =
∑

a

Fa(H)ei H Ra ; Fa(H) =
∫

ei H rρa(r)d r;

ρa(r) =
occ∑

ξa

gξa |ϕξa (r)|2. (1.60)

which are directly connected with the electron density ρa(r) of the atom situated in
the point Ra . They are expressed through the one-electron wave functions ϕξa (r) of
the isolated atom and normalized by number of electrons Na in this atom:

Fa(0) = Na;
∑

a

Na = Nc. (1.61)

The accuracy of this approximation is defined by the overlapping integrals Iab

for the wave functions of electrons from different atoms, and the correction to the
scattering factor (1.59) is defined by the parameter:

ΔF(H) ∼ |Iab|; Iab =
∫
ϕ∗
ξa

(r)ϕξb (r − Rb + Ra)d r, b �= a, (1.62)

which is connected with the characteristic width of the one-electron zones [31].
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Another important renormalization of the coherent scattering factors is stipulated
by the oscillations of the atomic nuclei:

Ra = R(0)
a + ζa, (1.63)

where the value ζa describes the deviation of nucleus from the equilibrium positions
R(0)

a . In the quantum solid state theory the parameter ζa is expressed in terms of
operators of the phonon creation and annihilation [32].

The observed value of the scattering factor, being the function of the crystal
temperature T , is defined by the average on the phonon statistical distribution:

F̄(H, T ) = Sp

{
ρ̂ph(T, ζa)

∑

a

Fa(H)ei H(R(0)
a +ζa)

}
. (1.64)

When the phonon spectrum ωp(κ) (p stands for the various branches of the
spectrum) is known, the averaging gives an additional factor, called Debye-Waller,
in the scattering amplitude of each atom [31]:

e−Wa(H,T ).

This factor takes into account the decrease of the elastic scattering amplitude due
to the probability of the inelastic processes of the phonon excitation in a crystal. If
the Boze-Einstein statistics for the phonon distribution is used, this factor can be
represented in the form [32]:

F̄(H, T ) =
∑

a

Fa(H)ei H R(0)
a e−Wa(H,T );

Wa(H, T ) = − �

Ma

∑

μ,ν

Bμ,νHμHν, (1.65)

where Ma is the atomic mass, Hμ, (μ = 1, 2, 3) are the projections of the reciprocal
lattice vector on the basic vectors of the elementary cell; the tensor Bμ,ν does not
depend on the atom but does on the integral characteristics of the crystal:

Bμ,ν = Ω

(2π)3

∑

p

∫
ep
μep

ν

coth βp(κ)

ωp(κ)
dκ; βp = �ωp(κ)

kB T
. (1.66)

The values ep
μ(κ) are the projections of the polarization vector for the phonon branch

p on the basic vectors of the elementary cell; kB is the Boltzmann constant.
Another approximation for the scattering factors used in (1.60) is the calculation

of ASF for isolated atoms [29]. In this approximation, the expansion of the plane
wave [33] is used in formula (1.60):
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ei H r =
∞∑

l ′=0

(i)l ′(2l ′ + 1) jl ′(Hr)Pl ′(cos Ĥ r). (1.67)

The expansion is performed over the spherical Bessel functions jl ′(Hr) and the
Legendre polynomials Pl ′(cos Ĥ r) depending on the angle between the vectors H
and r . Using this model, the ASF is represented in the following form:

Fa(H) = Fis(H) + ΔFan(H);
Fis(H) = 4π

∫
ρ(r)

sin Hr

H
rdr;

ΔFan(H) =
∫ unoccupied∑

ξa

∞∑

l ′=1

gξa |ϕξa (r, θa,φa)|2

× (i)l ′(2l ′ + 1) jl ′(Hr)Pl ′(cos Ĥ r)d r. (1.68)

The completely occupied (closed) electron shells in any atom contributes only
to the spherically symmetric part of the electron density ρ(r), and therefore the
isotropic part Fis(H) of ASF is defined by the scattering from all atomic electrons.
In general case, it exceeds essentially the anisotropic contributionΔFan to ASF which
includes the summation over unfilled shells only. Overlapping of the wave functions
from different atoms in a basic cell is important only for these electrons [29] and the
contribution ΔFan should be taken into account together with the correction ΔF(H)

from the expression (1.62).
Thus, the basic part of the X-ray susceptibility consists of the scattering factor

which is the sum of ASF for the individual atoms. Each ASF is the Fourier image of the
spherically symmetric part of the atomic electron density. Unlike to the expression
(1.68), in the standard X-ray applications, the ASF is usually considered as the
function of the parameter s related to the transmitted scattering wave vector Q as:

Q = k′ − k; Q = 4πs; s = sin θ

λ
, (1.69)

where λ is the radiation wavelength, and 2θ is the scattering angle. The parameter s
is more useful for the practical applications because of with a rather good accuracy
it has a variation range in the limited interval for any atom 0 ≤ s ≤ 6 Ȧ−1. Using
these notations, the ASF is written as:

Fis(H) → F0(s) =
∫ ∞

0
ρ(r)

sin 4πsr

s
rdr. (1.70)

In order to calculate ASF from (1.70), it is necessary to choose the approximation for
the electron density ρ(r) in multi-electron atoms (ions). The most fundamental one
is the Hartree-Fock approximation for the one-electron wave functions [34], when
the wave functions are taken in the form of tables [35]. These tables are not very
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convenient for the practical usage, and it is very difficult to use this approach for
account of various corrections to ASF as well as for the atomic excited states and
variation of the electron configurations for atoms or ions in the external field.

In certain applications, the Thomas-Fermi model for ASF calculation, which
implements the electron density as a universal function in the whole range of the
nucleus charge Za and number of electrons Na [36, 37], is satisfactory [29]. How-
ever, this model does not take into account the shell oscillations of the electron
density and its behavior at small and large distances, and as a result does not provide
a sufficient accuracy for ASF calculation. Therefore, the analytical interpolation of
the Hartree-Fock data directly for the function F0(s) is mostly used. The typical form
of the interpolation is:

F0(s) =
4∑

j=1

a j e
−b j s2 + c, 0 ≤ s ≤ 2,

with a set of the parameters a j , b j , c which are individual for every atom or ion and
are chosen by numerical fitting of the Hartree-Fock data in the interval 0 ≤ s ≤ 2
[38]. By means of several additional parameters, this interpolation was generalized
in work [39] for the interval 2 ≤ s ≤ 6. The results of interpolation are represented
as the tables for the parameters corresponding to all atoms and some ions [29].

This approach is used in various software packages for calculation of the X-ray
susceptibility (for example, [40, 41]). Unfortunately this interpolation does not refer
to the wave functions and hence limits the ability of the physical interpretations.
Moreover, this method does not allow to calculate the above mentioned corrections
to ASF.

Recently a new model for ASF approximation was suggested in the works [42,
43] based on the analytical interpolation of one-electron wave functions by means
of the parameter set, which is interpreted as the effective charges of the electron
shells. This approach makes possible to calculate numerous characteristics of the
isolated atoms (ions) by using the universal analytical formulas, in a similar way as
in Thomas-Fermi model. The accuracy of this approach is comparable with the one
by the Hartree-Fock approximation. Analytical wave functions of the model describe
correctly the shell oscillations and the asymptotic behavior of the electron density
and therefore can be used for the calculation of various corrections to ASF.

As mentioned above, the main approximation for quantitative description of multi-
electron atoms is based on the Hartree-Fock model. All the electrons move in the
field of the self-consistent potential, which is calculated together with the wave func-
tions from the system of integro-differential equations [34]. There exist also other
numerical approaches for calculation of the electron structure of atoms, for exam-
ple, the method of effective potential [44] or suggested recently algorithm for the
direct numerical solution of the Schrödinger equation [45]. However, the analytical
approximations for the atomic wave functions are still of big interest for many appli-
cations [46, 47]. This approximation may be obtained by applying the interpolation
for the numerical results with a number of fitting parameters for each orbital [48].
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There exist effective analytical models for the atoms, which implement the wave
function of each electron as the Coulomb orbital [49] with phenomenological values
of effective charges or quantum defects (for example, [50]). These parameter [42] are
calculated in the framework of the operator method for solution of the Schrödinger
equation and an accurate analytical approximation for ASF is found. However, the
parameters of this approximation are individual for each atom or ion and the addi-
tional pre-calculated tables have to be used. In the paper [43], the generalization of
the shell model was suggested which allows a calculation of the effective charges
for any atom or ion by means of the universal formula. This approach results in the
effective analytical approximation for ASF and gives the possibility to calculate the
above mentioned corrections.

Here we consider briefly the microscopic basis for this model. The one-electron
Hamiltonian of the atom can be written in the following form (the Coulomb system
of units with e = � = m = 1 [49] is used in this paragraph):

Ĥσ =
∑

i

(
p̂2

i

2
− Z − σi

ri

)
. (1.71)

The eigenfunctions and the eigenvalues correspond to the solutions of the
Schrödinger equation for the hydrogen-like atom with different screening constants
σi for every electron. This model was used successfully in the very first papers on the
quantum mechanical description of the atom (for example, [51, 52]). The accurate
Hartree-Fock functions are shown to be very close to the Coulomb functions [48],
however, the model is not widely used as a Thomas-Fermi one for calculation of the
atomic characteristics. The reason is the operator (1.71), which is derived not from
the initial Hamiltonian of atom and thus no method exists to calculate the empiric
parameters σi for the atoms or ions. Different solutions for these problems were sug-
gested, for example, in the paper [53] the operator (1.71) was obtained by means of
virial theorem and in the paper [42] the effective charges were calculated on the basis
of the operator method. However, in both cases the parameters σi were calculated
for each atom and shell by individual numerical algorithm.

Unlike the other approaches, the considered here model defines the values Ze f f for
any electron and any atom (ion) by the universal analytical formula, which depends
on the nucleus charge and occupations of the one-electron quantum levels. To prove
this statement, we start from the Schrödinger equation for the non-relativistic atom
with N -electrons and nucleus charge Z :

ĤAΨΛ(X) = EΛΨΛ(X);

ĤA =
N∑

i=1

(
p̂2

i

2
− Z

ri
) +

N∑

j>i

N−1∑

i=1

Z

|r j − r i | . (1.72)
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Here the state vector depends on 4N variables, which are the electron coordi-
nates and spins X = (x1, x2, . . . xN ); xi = (r i , si ), and the quantum numbers
Λ = (λ1,λ2, . . .λN );λi = (ni , li , mi , si ).

The general scheme of the operator method [54, 55] is used for the solution of
the Eq. (1.72), i.e. as a first step the orthonormalized set of the model functions
ψΛ(X,ΩΛ) depending on the variational parameters ΩΛ has to be chosen. The
different sets ψΛ(X,ΩΛ) should be used for the different quantum numbers Λ [54,
55]. The corresponding to Λ wave function to be found is expanded over the model
functions ψΛ(X,ΩΛ):

ΨΛ(X) = ψΛ(X,ΩΛ) +
∑

Λ′ �=Λ

CΛ′,ΛψΛ′(X,ΩΛ). (1.73)

The energy of this state and the coefficients of the expansion (1.73) are derived from
the system of nonlinear algebraic equations including matrix elements of the initial
Hamiltonian:

EΛ = HΛΛ +
∑

Λ′ �=Λ

HΛΛ′CΛ′,Λ;

HΛ′Λ1 =< ψΛ′(X,ΩΛ)|ĤA|ψΛ1(X,ΩΛ) >;
CΛ′,Λ = −[HΛ′Λ′ − HΛΛ]−1[HΛ′Λ +

∑

Λ1 �=Λ′ �=Λ

HΛ′Λ1CΛ1,Λ]. (1.74)

In according with the reference [54, 55], the successive iterations of the Eq. (1.74) are
converged even for the arbitrary choice of the zero approximation functions ψΛ(X).
Therefore, these functions are chosen here in the form of a simple product of the
one-particle Coulomb orbitals [48]:

ψΛ(X,ΩΛ) =
λmax∏

λi

φλi (Zλi , xi );

φλi (Zλi , xi ) = Cn,l,m Rnl(ri , Zn,l)Ylm(θi ,ϕi )χs;

λi = (n, l, m, s);
λmax∑

λi

1 = N , (1.75)

where Rnl(ri , Zn,l) are the hydrogen-like radial wave functions corresponding to the
charge Zn,l ; Ylm(θi ,ϕi ) are the spherical harmonics and χs are the spin functions of
the electron, Cn,l,m is normalization coefficient.

Similarly to the Thomas-Fermi model, such a choice of the function means that
the exchange interaction is neglected but the Pauli principle is taken into account
because of the quantum numbers of all electrons are different. Parameter λmax is
defined by the number N of the electrons and N �= Z for ions. In accordance
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with [56], this choice of the zeroth order wave functions leads to a good accuracy
for calculation of the atomic characteristics and permits to take analytically into a
account the correlation and exchange corrections.

We choose the quantum numbers λi in accordance with an order of occupations
of one-electron states, and the increasing sequence of the integral numbers (λi →
i; λmax → imax ) is associated with this sequence. Then the zeroth approximation
for energy depends on the set of variational parameters Ò {Zi } and is defined by the
formula:

E (0)
Λ ({Zi }) =

imax∑

i=1

< φλi (Zi , x)|[ p̂2

2
− Z

r
]|φλi (Zi , x) >

+
imax∑

i=1

imax∑

j>i

< φλi (Zi , x1),φλ j (Z j , x2)| 1

|r1 − r2| |φλi (Zi , x1),φλ j (Z j , x2)>.

(1.76)

This expression was used in the paper [54, 55] for the numerical calculation of the
effective charges in the zeroth approximation of the operator method. It is possible
to find analytically the approximate variational solution for these values, too. The
problem only is a right choice of a sufficiently good approximation for the matrix
elements of two-particle operator. Here, the following fact is used: for the hydrogen-
like orbits their average radius is defined mainly by the principal quantum number
and depends weakly on other quantum numbers, and thus the following estimation
gives a very good accuracy:

< φn1,l1,m1,s1 |r |φn1,l1,m1,s1 >	< φn2,l2,m2,s2 |r |φn2,l2,m2,s2 >, if n1 < n2;
< φn1,l1,m1,s1 |r |φn1,l1,m1,s1 >≈< φn2,l2,m2,s2 |r |φn2,l2,m2,s2 >, if n1 = n2. (1.77)

This estimate introduces the following one-particle approximation for the matrix
elements of two-particle operator:

Vλi ,λ j ≡< φλi ,φλ j |
1

|r1 − r2| |φλi ,φλ j >≈< φλ j |
1

r2
|φλ j >, if ni < n j ; (1.78)

Vλi ,λ j ≈ 1

4
[< φλi |

1

r1
|φλi > + < φλ j |

1

r2
|φλ j >], if ni = n j . (1.79)

Formula (1.79) has a simple physical interpretation: for each electron in the atomic
layer with the principal number n j all the electrons from internal layers with n j > ni

give the identical (equal to unity) contributions to the nucleus charge screening that
corresponds to the result of the classical electrodynamics for spherically symmetric
charge distribution. At the same time, each additional electron in the same layer
(with ni = n j ) contributes to the screening with the value equals to 1/2. After
the symmetrization on the coordinates of the electrons in the layer, the coefficient
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in (1.79) becomes equal to 1/4. In this electrostatic approximation, the Hamiltonian
of the zeroth order takes one-particle form. The approximation (1.78)–(1.79) for
the matrix elements can be essentially improved if the dependence of the screening
charge of every electron on its orbital momentum is also taken into account. This
dependence is found in a general form with some undefined numerical coefficients
if the symmetry of the group SO(4, 2) for atomic Hamiltonian is used [57]. Then
the following approximation for the diagonal matrix elements of the two-particle
operator can be used:

V A
λi ,λ j

=
(

1 − α

2(2li + 1)
− β

li (li + 1)

n2
j

)
< φλ j |

1

r2
|φλ j >, ni < n j ; (1.80)

V A
λi ,λ j

= 5

16

[(
1 + 1

6
+ β

li (li + 1)

n2
i

)
< φλi |

1

r1
|φλi >

+
(

1 + 1

6
+ β

l j (l j + 1)

n2
j

)
< φλ j |

1

r2
|φλ j >

]
, ni = n j , (1.81)

with still undefined parameters α and β, which will be discussed below.
Besides, a small modification of the screening coefficient 1/4 → 5/16 for the

electrons in the same layer corresponds to well known variational solution for the
effective charge in two-electron atom [49]. In the result, the following expression
defines the energy of the state with the given set of the quantum numbers in zeroth
approximation of the operator method:

E (0)(Z , N )Λ ≈
∑

λ

gnlms < Rn,l(Zn,l , r)|
[ p̂2

2
− Zn,l

r

]
|Rn,l(Zn,l , r) >=

−
∑

λ

gnlms
Z2

n,l

2n2 ;

Zn,l = Z −
n−1∑

n1=1

n1−1∑

l1=0

l∑

m1=−l

∑

s1=±1

gn1l1m1s1κn,l1

− 5

16

[ n−1∑

l1=0

l∑

m1=−l

∑

s1=±1

gnl1m1s1κ
′
n,l1 − κ′

n,l

]
;

κn,l = 1 − α

2(2l + 1)
− β

l(l + 1)

n2 ; κ′
n,l = 1 + 1

6
+ β

l(l + 1)

n2 ,

∑

λ

≡
nmax∑

n=1

n−1∑

l=0

l∑

m=−l

∑

s=±1

(1.82)
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where the occupation numbers gnlms = 1 for the filled and gnlms = 0 for empty
one-electron states. These numbers are normalized by the condition:

nmax∑

n=1

lmax∑

l=0

l∑

m=−l

∑

s=±1

gnlms = N . (1.83)

In general case, the nonzero values gnlms are defined by the occupations of one-
electron states for the considered atom or ion. Parameter β is calculated uniquely by
satisfying the formula (1.82) to the asymptotic expression for the energy of neutral
atom in the limit Z → ∞ (for example, [58, 59]):

E = −0, 768745Z7/3. (1.84)

In order to find this asymptotic expression, the sums over n, l in formulas (1.82) and
(1.83) have to be replaced by the integrals and the terms with the maximal degree of
Z have to be extracted:

nmax ≈
(

3

2
Z

)1/3

; E (0)(Z , Z) ≈ 9

28
122/3 Z7/3

(
1 + 1

10
β + 1

50
β2

)
. (1.85)

By comparing the formula (1.85) with the expression (1.84) the value β ≈ 0, 417472
is calculated. Thus, the only undefined parameter not depending on Z in the Hamil-
tonian (1.73) is the value α, which makes the correction of the screening value
due to the presence of equivalent electrons. The mean squared radius of atoms
rA = √

< r2 >, being an important for many applications [34], proves to be most
sensitive to the value α parameter. In the considered model the parameter α was
chosen provided the function rA(Z) is the best approximation for the same func-
tion calculated on the basis of Hartree-Fock model [60]. Finally, the value found is
α ≈ 0, 576.

Thus, the wave functions (1.75) with the effective charges calculated from the
analytical formulas (1.82) make it possible to estimate in a simple way and with a
good accuracy the numerous characteristics of atoms and ions with arbitrary Z and
N . Below the comparison is given for some physical values calculated using the
analytical formulas with the numerical results of the Hartree-Fock [60] and Thomas-
Fermi [58, 59] models.

Figure 1.2 shows the dependence of the total energy of the neutral atoms on
the nucleus charge and Fig. 1.3 shows the functions rA(Z) for all mentioned above
models. The relative deviation of the analytical results from the Hartree-Fock model
is not exceeding 3 %.

Figures 1.4 and 1.5 show the radial distributions of the electron density for several
atoms. The analytical approach interpolates well the Hartree-Fock numerical data in
the entire range of the radial coordinate and shows the correct asymptotic behavior
of the density at small and large distances.
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Fig. 1.2 The total energy of
neutral atoms as the func-
tion of nucleus charge solid
line corresponds to operator
method and dashed line to
Hartree-Fock results

Fig. 1.3 Mean squared radius
of neutral atoms as the func-
tion of nucleus charge: solid
line correspond to operator
method and dashed line to
Hartree-Fock results

Figures 1.6 and 1.7 refer to ions of He and Li series, respectively, and demon-
strate the high precision of the ionization potentials I P(Z , N ) = Etot (Z , N ) −
Etot (Z , (N − 1)) calculated in the framework of the considered model.

The considered interpolation for the wave functions delivers the analytical expres-
sions for the isotropic part of ASF (1.70) for any ion or atom. In the one-electron
approximation the isotropic electron density is defined by the population numbers gnl

of the atom or ion shells and the normalized radial wave functions Rnl (Znl , r/aB) cor-
responding to the Coulomb orbitals with the effective charges Znl , aB = 0.529177A
is the Bohr radius:

ρ(r) = 1

4π

∑

nl

gnl |Rnl(Znl , r/aB)|2. (1.86)

The integral (1.70) from this equation can be calculated analytically in the following
form [61]:
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Fig. 1.4 Radial distributions
of the electron densities for
Bi atom: solid line is oper-
ator method; dashed line
is Hartree-Fock model and
dotted line is Thomas-Fermi
model

Fig. 1.5 Radial distributions
of the electron densities for
Fe atom: solid line is oper-
ator method, dashed line
is Hartree-Fock model and
dotted line is Thomas-Fermi
model

F0(s) =
∑

nl

gnl Fnl(ξnl , q); ξnl = 2Znl

n
, q = 4πsaB, (1.87)

where the partial ASF values Fnl(ξnl , q) are defined by the formula:

Fnl(ξnl , q) = −ξ2l+3
nl

(n − l − 1)!(n + l)!
2n

×
n−l−1∑

k=0

n−l−1∑

k=0

ξk+m
nl

(2l + k + 1)!(2l + m + 1)k!m!
d2l+1+k+m

dξ2l+1+k+m

1

ξ2
nl + q2

. (1.88)

The explicit formulas for ASF of atoms from the periodical system is listed in the
paper [42], for example, for atoms of Ne and Ca:
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Fig. 1.6 Absolute values
of the ionization potentials
for He series: solid line is
operator method; stars are
Hartree-Fock results Ve,l ait net op

noit azi noI

Fig. 1.7 Absolute values
of the ionization potentials
for Li series: solid line is
operator method; stars are
Hartree-Fock results
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F10(ξ10, q) = 16Z4
10

(4Z2
10 + q2)2

;

F20(ξ20, q) = Z4
20(Z4

20 − 3q2 Z2
20 + 2q2)

(Z2
20 + q2)4

. (1.89)

The graphical dependence of ASF calculated from formula (1.87) vs parameter
s = sin θ/λ is shown in Fig. 1.8 for the atoms of Si, Ba, Cu and Mn3+ ion. These
simulations approximate the Hartree-Fock numerical values with high accuracy [29].
The formulas above can also be applied for the ions with core in the internal shell,
which is important in the case of the interaction of the femto-second pulses from
X-ray free electron laser (XFEL) with the matter [4]. Figure 1.9 demonstrates a good
coincidence of the analytical results with the numerical ones [62].
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Fig. 1.8 Comparison of ana-
lytical (lines) and numerical
(dots) results for ASF of Si,
Ba, Cu atoms and Mn3+ ion

(a)

(c)

(b)

(d)

Fig. 1.9 Comparison of
analytical (solid line) and
numerical (dotted line) results
for calculation of ASF for
internal shells of ions C with
core hole

The one-electron functions (1.75) accounts for the corrections (1.62) to the scat-
tering factor of the basic cell because of the overlap of the wave functions of electrons
in the external shells from the different atoms. The following procedure for the cal-
culation of this correction in the crystals with the diamond-type basic cell (C; Si; Ge)
can be considered [42]. In order to take into account the influence of the neighboring
atoms, the states with the lowest energies should be found using the linear combina-
tions of the wave functions of 4 electrons from the external shell (n0; n1) from each
atom. As a result, the lowest levels are found to correspond to the collective states,
where all electrons have parallel spins and are described by the following set of the
functions [29]:

ψ1 = 1

2
[Rn0Y00 + Rn1(−

√
2Y11 + Y10)];
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ψ2 = 1

2
[Rn0Y00 + Y11(

√
2Y11 − Y10)];

ψ3 = 1

2
[Rn0Y00 + Rn1(−

√
2Y11 − Y10)];

ψ4 = 1

2
[Rn0Y00 + Rn1(

√
2Y11 + Y10)], (1.90)

where Ylm are the spherical harmonics and Rnl are the radial wave functions of the
external electrons corresponding to the isolated atoms. Thus, the external layer gives
the following contribution to the electron density:

ρn(r) =
4∑

j=1

|ψ j |2 = 1

4π
[R2

n0 + 3|Rn1|2],

that differs from the analogous value in the isolated atom:

ρ(0)
n = 1

2π
[R2

n0 + R2
n1].

Figure 1.10 shows the change of ASF of each atom due to the influence of other
atoms in the elementary cell:

ΔF0(s) = Fn1(ξn1, q) − Fn0(ξn0, q), (1.91)

with n = 2 for C, n = 3 for Si, n = 4 for Ge. In spite of rather small correction
to the absolute value of ASF, it could be essential for the analysis of the forbidden
reflections [63].

The direct approximation for the wave function can also be important for the analy-
sis of the changes in the electron density due to the effect of external or inter-crystal
fields [42]. For instance, the additional Hamiltonian of the spin-orbit interaction for
atoms (C; Si; Ge) in the ground state under the action of the magnetic field Ξ directed
along z axis is defined as [49]:

Fig. 1.10 Correction to ASF
due to the influence of the
neighboring atoms (C - solid
line, Si - dashed line, Ge -
dotted line)
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δ Ĥ = A(L̂ Ŝ) + μB(L̂ z + 2Ŝz)Ξ, (1.92)

where A > 0 is the constant of the spin-orbit interaction for two external p-electrons
with the total orbital L̂ and spin Ŝ momenta, μB is the Bohr magneton. This operator
does not change the effective charges of the radial wave functions but effects on the
angular distribution of the electron density. Eigenfunctions of the operator (1.92)
are defined by its diagonalization with the eigenfunctions of the operators L̂, Ŝ -
|ML , MS >. Then the ground state follows from the following linear combination:

|Φ0 >= c1|1,−1 > +c2|0, 0 > +c3| − 1, 1 >;
c1 = 1√

3

(
1 + ξ − 2

9
ξ2

)
, c2 = 1√

3

(
1 − 5

9
ξ2

)
,

c3 = − 1√
3

(
1 − ξ − 2

9
ξ2

)
; ξ = μBΞ

A
. (1.93)

These wave functions account for the anisotropic part in the electron density and
for the anisotropic contribution (1.68) to ASF which is proportional to the second
Legendre polynomial considered as the function of the angle θ between z axis and
vector H :

ΔFan(H) = −10

9
ξ2 P2(cos θ) fm(s);

fm(s) =
∫ ∞

0
r2 R2

nl(r)(
π

2qr
)1/2 J5/2(qr)dr; q = 4πaBs, (1.94)

where J5/2(qr) is the Bessel function.
Figure 1.11 shows the functions fm(s) for atoms Si and Ge. When the exter-

nal magnetic field is strong, the anisotropic part of ASF is comparable with the
anomalous dispersion corrections and may bring the important information on the
inter-crystalline fields.

Fig. 1.11 ASF correction in
the external magnetic field
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1.4 Numerical Calculation of Debye-Waller Factor

Debye-Waller factor (DWF), see Eq. (1.66), gives an essential contribution to the
X-ray susceptibility. Most of software packages [40, 41] calculate DWF on the basis
of the Debye model for the phonon spectrum [31] and the phenomenological values
of the Debye temperature ΘD of the crystals. However, the experimental value of
ΘD is known for relatively few crystals [29]. When the experimental value of ΘD

is unknown, the average value of the Debye temperatures of the crystals for all
atoms in the basic cell is used without a sufficient theoretical argumentation. Thus,
the development of a method for the evaluation of ΘD for arbitrary crystals is an
actual problem. Moreover, some diffraction experiments require calculations of the
DWF taking into account the anisotropy factors and different branches of the phonon
spectrum. The experimental density of the phonon states [64] are known for only a
few materials; the situation for most crystalline structures however is unclear. Here
we consider the method for simulation of the force matrix for an arbitrary crystal,
which realizes both the evaluation of ΘD and the microscopic calculation of DWF
with good accuracy [42].

In the case, when DWF is characterized by a single parameter ΘD , the harmonic
oscillations of atoms in a crystal cell result in attenuation of the elastic scattering
amplitudes by the value of DWF. In the isotropic approximation, this factor for the
atom with the index p in the crystallographic unit cell is defined by the formula:

e−2Wp = e−Bp(T )s2
. (1.95)

Here s = sin θB
λ and the main contribution to the temperature coefficient B(T ) is

supposed to be introduced by the acoustic branch of the phonon spectrum, so the
result can be presented in the following way [32]:

Wp(T ) = 3h2

2MpκBΘ

∫ 1

0
x coth

(
xΘ

2T

)
dx, (1.96)

where κB is the Boltzmann constant and the Debye temperature is defined by the
expression:

ΘD = �ukD

κB
; kD =

(
6π2

Ω0

)1/3

. (1.97)

This is a result of linear interpolation of the dispersion law for acoustic phonons
ω(k) � uk within the Debye sphere with the radius kD , which depends on the
volume of the unit cell of the crystal Ω0. Thus, in the considered approximation, the
value ΘD or its related sound velocity u is the only parameter influencing DWF.

From the microscopical point of view, the parameter u should be found from the
dispersion equation for the phonon frequencies defined by the harmonic force matrix
of the crystal. Because the approximation of pairwise interactions is satisfactory for
the real density of atoms in crystals [27], a realistic two-particle potential [65] can be



1.4 Numerical Calculation of Debye-Waller Factor 35

used for the construction of the force matrix. The distance between two neighboring
atoms in the crystal cell is different from the equilibrium distance in the molecule
consisting of the same atoms. However, according to the researches in chemical
crystallography, this difference is small due to the fact that the atomic binding in the
crystals is mainly defined by the same external electron shells as in the molecules
[66]. Thus, since a model potential approximates the electron term of two bound
atoms in some neighborhood of the equilibrium distance R0, it can also be used for
finding the force matrix elements at distances corresponding to the atomic positions
within the unit cell of a real crystal. In the approximation of pairwise interaction, the
element of the force matrix is defined by the following formula [27]:

D pq
i j = κpq

[
(Rpq − R0pq)

Rpq
δi j + R0pq

Rpq
n pq

i n pq
j

]
; npq = R pq

Rpq
. (1.98)

Here upper indices in the force matrix enumerate the different atoms in the cell
and lower ones correspond to the atomic shifts from their equilibrium positions
in Cartesian coordinates; κpq and R0pq are the harmonic force constants and the
equilibrium distance in the molecule corresponding to the atom pair with indexes
(pq), respectively; vector R pq is the real distance between these atoms in the crystal
cell.

In this section, we use the Debye interpolation for the phonon spectrum and
neglect the anisotropy effects. This means that the standard dispersion equation for
the acoustical phonon branch [27] should be averaged over all directions in the space
of phonon wave vectors as well as over different directions in the unit cell of the direct
space. If the approximation of the nearest neighbors is used for the force matrix of
the crystal, the average sound velocity can be estimated by the following simple
formula:

u = 2πca0ν̄

3
√

2
; a0 = (Ω0)

1/3; ν̄ = 1

σ

σ∑

p=1

νAp Bp . (1.99)

Here a0 represents the average size of the unit cell; the summation is over all different
pairs of nearest neighbor atoms in the cell, whereσ is a number of such a pair; νAp Bp is
the oscillation frequency in cm−1 for a pair of atoms with the index p; the numerical
coefficient 1/3 in the formula (1.99) is due to averaging over all the directions.
Substituting the expression (1.99) into the definition of Debye temperature (1.97), a
universal correlation between ΘD and ν̄ can be found:

ΘD = hc

3
√

2κB
(6π2)1/3ν̄. (1.100)

The formula (1.100) corresponds to the known interpretation of the Debye temper-
ature of the crystal; its value is proportional to the characteristic phonon frequency.
In a standard unit system the numerical coefficient in the formula (1.100) is close to
unity:
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ΘD[K ] � ν̄[cm−1]. (1.101)

If a recipe for the calculation of the harmonic frequency for any given pair of atoms
is known, then this formula can be used for a simple evaluation of the Debye tem-
perature of an arbitrary crystal. The elastic constant κA describing the interaction
between the identical atoms in two-atomic homo-nuclear molecules and the harmonic
approximation for interatomic potential V (R) are expressed as [67]:

κA = (2πνAc)2 MA,

VA(R) � −E0 + 1

2
κA(R − R0)

2. (1.102)

Here the interatomic potential V (R) corresponds to the ground electron term with
the binding energy E0 at equilibrium distance R0; νA is the principal oscillation
frequency of the homo-nuclear molecule in cm−1 composed from two identical
atoms with the mass MA; c is the velocity of light. Theoretical calculations of the
constant κA ab initio with a spectroscopic accuracy for homo- and hetero-nuclear
molecules requires some complicated quantum-mechanical calculations of electron
terms [68]. However, so-called realistic potentials for atom-atom interaction like the
Lennard-Jones potential, can provide a sufficient accuracy for statistically averaged
macroscopic characteristics of molecular gases [65]:

VA(R) = βA

R12 − αA

R6 . (1.103)

The parameter βA corresponds to the repulsive part of the potential at small distances,
and the constantαA is proportional to the product of squared dipole moments of inter-
acting atoms and simulates the Van der Waals attraction at large distances [49]. The
Lennard-Jones potential does not provide the detailed description of electron terms
in the entire range of the interatomic distance [68], and therefore it can not be used
for precise evaluation of the dissociation energy of the molecule. Nevertheless, it
describes quite well the behavior of real potentials near their minima [65], which are
of special interest for us in the scope of the harmonic approximation. The above men-
tioned characteristics of the harmonic potential are expressed through the constants
αA and βA as

R0A =
[

2βA

αA

]1/6

; E0A = − α2
A

4βA
; κA = 36αA

[
αA

2βA

]4/3

. (1.104)

Actually, the temperature factor in structure amplitudes is the result of statistic aver-
aging and therefore the fine details of the potential are not essential. With analogous
accuracy the values αA and βA can be used for a two-atom potential in order to eval-
uate the Debye temperature. However, the experimental data received both from the
cross-sections and from the oscillation spectra are known for a relatively small set
of different atomic pairs. Therefore the general recipe for the estimation of αAB and
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βAB for arbitrary interacting atoms A and B must be provided. Such a general recipe
can be derived from the scaling dependence of the interaction potential established
in the framework of statistic theory of atom [69]. A repulsive part of the potential for
two different atoms (ions) has been calculated as a geometric average of interaction
potentials V (rep)

A (R) and V (rep)
B (R) taken from the independent pairs AA and B B

of identical atoms:

V (rep)
AB (R) =

√
V (rep)

A (R)V (rep)
B (R). (1.105)

These correlations fitted well the experimental data in a large range of interatomic
distances [69].

Considering the Eq. (1.105) independently for large and small interatomic dis-
tances, the valuesαAB ,βAB for interactions between different atoms can be evaluated
by means of the simple formulas based on the same averages:

βAB � √
βAβB; αAB � √

αAαB . (1.106)

Substituting the Eqs. (1.106) into the formulas (1.103) and (1.104), we deduce
the combinative rules for the evaluation of potential parameters for hetero-nuclear
diatomic molecules:

R0AB = √
R0A R0B; νAB =

[
νAνB

MA + MB

2
√

MA MB

]1/2

;

E0AB = √
E0A E0B; κAB = (2πcνAB)2μAB; μAB = MA MB

MA + MB
, (1.107)

using the experimental data for the homo-nuclear molecules. Here νA and νB are the
principal oscillation frequencies of the molecules A2 and B2; νAB corresponds to the
molecule AB and the difference in the reduced masses for homo- and hetero-nuclear
molecules is taken into account.

Certainly, these combinative rules are semi-phenomenological due to the choice
of the model potential and the lack of a sufficient theoretical ground for the expres-
sion (1.105). The effectiveness and accuracy of these relations can be investigated
by applying them to diatomic molecules with known parameters. Table 1.1 lists all
the necessary parameters for diatomic homo-nuclear molecules from the reference
book [67].

The comparison of the calculated binding energy E0 presented in the table with
the energy of dissociation [67] is rather formal in our context. This is because the
Lennard-Jones potential is not a good model for the electron term for all interatomic
distances. In fact only the parameters ν and R0 are important for the presented model
since they exactly define the behavior of the potential in the harmonic approximation.
The parameters for molecules, marked by the symbol (*), are absent in [67] and
we calculated these values by means of the combinative rules (1.105) based on
experimental data for materials containing these atoms along with other ones.
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Table 1.1 Parameters of diatomic homo-nuclear molecules [67]

Atom ν, cm−1 E0, eV R0, Å

H 4401 4.48 0.74
He 1861 2.36 1.04
Be∗ 1343 13.32 1.39
B 1051 3.02 1.59
C 1854 6.21 1.24
N 2358 9.76 1.10
O 1580 5.12 1.21
F 916 1.60 1.41
Ne 14 0.00 3.10
Na 159 0.72 3.08
Mg 190 0.05 3.89
Al 350 1.55 2.47
Si 510 3.21 2.25
P 780 5.03 1.89
S 726 4.37 1.89
Cl 560 2.48 1.99
Ar 26 0.01 3.76
K 92 0.51 3.90
Ca 241 0.13 4.28
Sc 42 1.65 2.40
Ti∗ 489 1.30 2.17
V∗ 552 2.48 2.09
Cr 475 1.56 2.17
Mn 110 0.23 2.59
Fe 218 1.06 2.04
Co 365 1.69 3.20
Ni 286 2.36 2.96
Cu 264 2.03 2.22
Zn∗ 329 1.78 3.41
Ga∗ 219 1.40 2.43
Ge∗ 336 2.82 2.16
As 429 3.96 2.10
Se 430 3.16 2.17
Br 325 1.97 2.28
Kr 24 0.02 4.03
Rb 57 0.49 3.79
Sr∗ 202 5.82 3.05
Y∗ 282 1.62 –
Zr∗ 423 12.05 8.41
Nb 280 11.89 2.36
Mo 370 4.89 –
Tc – – –
Ru∗ 338 3.41 2.17
Rh∗ 363 2.92 2.09
Pd∗ 91 0.73 3.16

(continued)



1.4 Numerical Calculation of Debye-Waller Factor 39

Table 1.1 (continued)

Atom ν, cm−1 E0, eV R0, Å

Ag 192 1.66 2.59
Cd∗ 164 0.08 4.28
In 142 1.01 2.86
Sn∗ 315 1.99 2.78
Sb 272 3.09 2.34
Te 251 2.68 2.56
I 214 1.54 2.66
Xe 30 0.02 4.36
Cs 29 0.39 4.47
Ba∗ 150 11.26 3.25
La∗ 257 2.50 2.83
Ce∗ 886 2.50 2.74
Pr∗ 240 11.59 –
Nd – 16.02 –
Pm – – –
Sm – 7.20 –
Eu∗ 166 11.43 –
Gd∗ 216 16.84 –
Tb 248 1.32 –
Dy – 13.13 –
Ho 251 0.82 3.11
Er – 14.50 –
Tm – 6.49 –
Yb 162 0.17 2.89
Lu 246 10.11 2.63
Hf 330 13.11 2.44
Ta 365 13.15 2.36
W 385 9.04 –
Re 290 – –
Os 260 – –
Ir 279 6.16 2.36
Pt 218 6.35 2.28
Au 191 2.30 2.47
Hg 36 0.07 3.30
Tl 102 0.90 3.07
Pb 161 0.82 3.03
Bi 156 3.09 3.07
Po 155 1.90 –
Th 249 – –
U 207 7.61 –

Figures 1.12 and 1.13 show the comparison of experimental [67] parameters of
heteronuclear molecules with their theoretical values, calculated according to the
combinative rules of (1.105). X-axis at these pictures represents the experimen-
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tal values and y-axis defines the theoretical values. Thus, ideal correspondence of
experiment and theory should result in situation of all the points on a single straight
line.

To prove the described above theory, about two hundred different molecules
described in [67] have been examined. Despite the large variation in the range of
absolute values for real molecule parameters, the evaluation of these values using
the combinative rules is rather effective: the mean square error is 3 % when estimat-
ing R0 and 8 % for ν. The largest deviation reaches 30 % and are related to a few
molecules with the hydrogen atom, for which the statistical evaluations are not a good
approximation. The formula derived can also be used for a rough estimation of the
dissociation energy; the mean square error for this parameter is about 25 % because
of the above mentioned reasons. The corrections to the parameters considered for
interacting ions can be estimated in the framework of Thomas-Fermi model [69].

Fig. 1.12 Comparison of the
calculated with (1.105) and
experimental values of the
equilibrium distances RAB for
diatomic molecules

Fig. 1.13 Comparison of the
calculated with (1.105) and
experimental values of the
principal frequencies νAB for
diatomic molecules
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Table 1.2 Comparison of the theoretical Θth and experimental Θexp Debye temperatures

Cr ystal Cell Θ
exp
D , K Θ th

D , K ε

min max

Cu f.c.c. 304 342 264 0.101
Ag 212 220 192 0.059
Au 155 190 191 0.051
Ca 220 230 241 0.034
Sr 148 171 202 0.118
Al 375 428 350 0.069
Th 145 170 249 0.225
Pb 68 105 161 0.301
V 300 413 552 0.215
Nb 252 301 280 0.006
Ta 230 245 365 0.212
Ni 375 476 286 0.196
Rh 315 370 363 0.029
Pd 263 280 91 0.498
Ir 285 – 279 0.011
Pt 225 248 218 0.041
Li b.c.c. 277 430 351 0.004
Na 146 180 159 0.012
K 100 163 92 0.177
Rb 58 85 57 0.113
Cs 42 54 29 0.247
Ba 115 – 150 0.132
Cr 405 485 475 0.033
Mo 360 388 370 0.005
W 270 384 385 0.081
Fe 355 467 218 0.307
C Diamond 1800 2242 1854 0.043
Si 505 685 510 0.077
Ge 211 400 336 0.048
Sn 260 – 315 0.096
Be h.c.p. 1000 1376 1343 0.061
Mg 290 342 190 0.249
Zn 200 305 329 0.132
Cd 120 172 164 0.058
La 132 152 257 0.288
Gd 152 – 216 0.174
Tl 96 100 102 0.020
Ti 342 430 489 0.118
Zr 250 288 423 0.223
Hf 213 – 330 0.215
Re 275 310 290 0.004
Co 385 – 365 0.027
Ru 400 426 338 0.100

(continued)
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Table 1.2 (continued)

Cr ystal Cell Θ
exp
D , K Θ th

D , K ε

min max

Os 250 256 260 0.014
B Tetragonal 1250 – 1051 0.086
In 78 129 142 0.157
Sn 163 258 315 0.199
Hg Rhombohedral 37 100 36 0.311
As 224 285 429 0.255
Sb 140 200 272 0.231
Bi 62 120 156 0.263
U Orthorhombic 200 – 207 0.017
Ga 125 240 219 0.091
Br 110 – 325 0.494
I 106 – 214 0.338
LiH B1 815 – 1525 0.303
LiF 650 685 602 0.052
LiCl 463 – 515 0.053
LiBr 387 – 458 0.084
LiI 331 – 411 0.108
NaF 439 – 382 0.069
NaCl 270 300 301 0.027
NaBr 200 243 249 0.058
NaI 151 198 217 0.109
KF 321 333 299 0.058
KCl 218 – 227 0.020
KBr 152 – 178 0.079
KI 115 200 152 0.018
RbF 238 – 260 0.044
RbCl 176 – 187 0.030
RbBr 128 – 136 0.030
RbI 108 – 111 0.014
CsF 184 – 200 0.042
AgCl 130 143 352 0.441
PbS 230 – 414 0.286
PbSe 168 – 278 0.247
PbTe 139 – 203 0.187
MgO 750 890 553 0.194
CsCl B2 166 – 141 0.081
CsBr 119 – 98 0.097
CsI 93.6 – 78 0.091
TlCl 125 – 283 0.387
TlBr 114 – 192 0.255
AgI B3 120 183 203 0.145
GaAs 314 – 306 0.013
GaSb 233 – 248 0.031
ZnS 300 – 504 0.254

εaver = 0.135
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The Table 1.2 gives a comparison between experimental Debye temperatures Θ
exp
D

and values calculated with the formula (1.101). Practically all calculated values of
Θ th

D are within ±10 % of experimentally reported Debye temperatures determined
by different methods [29]. Figure 1.14 is a graphical representation of the Table 1.2
in the coordinates (Θ

exp
D ;Θ th

D ).
The presented method for microscopic simulation of the harmonic potential for

arbitrary pair of atoms gives a recipe for an accurate calculation of DWF. The accuracy
is provided by the optical branches of the phonon spectrum and anisotropy of DWF
in the crystals with the polyatomic unit cell. The anharmonic effects are neglected in
this case and the interaction between atoms in neighboring cells are only taken into
account when calculating DWF.

In general, every force matrix element includes four components (Γ , X, Y, Z),
which are described as follows:

(Γ ): Contribution of the atoms situated in the same unit cell. These elements
of the force matrix are denoted by Γ

α,β
i, j . Here lower indices correspond to usual

Cartesian components (i, j = 1, 2, 3) and upper ones enumerate s atoms in the same
cell (α,β = 1, . . . , s). The unit cell is assumed to consist of s1 atoms of one type, s2
atoms of other type etc., where s1 + s2 + · · · = s. The distance between some atom
with number α1 and all the atoms of the same type in the cell is expressed as:

R11
α1,β1

=
√√√√

3∑

i=1

(xα1
i − xβ1

i )2a2
i ,

where the dimensionless atom coordinates xi are measured in fractions of the corre-
sponding basic vectors ai of the crystal. In the framework of the considered approx-
imation, the only least distances are kept and the number of them defines the coor-
dination number for this type of atoms [27]:

Fig. 1.14 Comparison of
the experimental Θ

exp
D and

calculated Θ th
D values of

the Debye temperatures for
crystals
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l1, 1 ≤ l1 ≤ s1; 1 ≤ α1 ≤ s1; 1 ≤ β1 ≤ l1.

The analogous procedure delivers the distances and the coordination numbers for
atoms of different types:

R pq
αp,βq

, 1 ≤ αp ≤ sp; 1 ≤ βq ≤ l pq ,

where l pq is the number of atoms of the type q closest to the atom of the type p. A
one-cell contribution to elements of the force matrix is calculated by the Eq.(1.98):

Γ
α,β

i, j → Γ
αp,βq

i, j = κpq(x
αp
i − x

αq
i )(x

αp
j − x

αq
j )ai a j [R pq

αp,βq
]−2. (1.108)

Here κpq are the harmonic constants for the interaction between atoms of type p and
q, calculated by means of the Eq. (1.107).

(X,Y,Z): 3 contributions from atoms in neighboring cells. The distance to these
atoms can be found by coordinate translations by one of the basis lattice vectors:

(X R)
pq
αp,βq

=
√

(x
αp
1 − x

βq
1 − 1)2a2

1 + (x
αp
2 − x

βq
2 )2a2

2 + (x
αp
3 − x

βq
3 )2a2

3;

(Y R)
pq
αp,βq

=
√

(x
αp
1 − x

βq
1 )2a2

1 + (x
αp
2 − x

βq
2 − 1)2a2

2 + (x
αp
3 − x

βq
3 )2a2

3;

(Z R)
pq
αp,βq

=
√

(x
αp
1 − x

βq
1 )2a2

1 + (x
αp
2 − x

βq
2 )2a2

2 + (x
αp
3 − x

βq
3 − 1)2a2

3 ,

here the same approximation of the nearest neighbors has been used. If the pair of
atoms of selected type has been already encountered in the group Γ of the initial
cell, then the same pairs in the groups (X R), (Y R), (Z R) are taken into account only
when the inequalities ({S}R)

pq
αp,βq

≤ R pq
αp,βq

, {S} = X, Y, Z are fulfilled. After such
a selection procedure, the additional contributions to the force matrix are calculated
as follows:

X
αp,βq
i, j = κpq(x

αp
i − x

αq
i − δi1)(x

αp
j − x

αq
j − δ j1)ai a j [(X R)

pq
αp,βq

]−2;
Y
αp,βq
i, j = κpq(x

αp
i − x

αq
i − δi2)(x

αp
j − x

αq
j − δ j2)ai a j [(Y R)

pq
αp,βq

]−2;
Z
αp,βq
i, j = κpq(x

αp
i − x

αq
i − δi3)(x

αp
j − x

αq
j − δ j3)ai a j [(Z R)

pq
αp,βq

]−2,

(1.109)

with δi j as the Kronecker symbol.
The next step is the calculation of the phonon eigenfrequencies. Taking into

account a translational symmetry of the crystal in the equations for small atomic
oscillations in the conventional way [27], the equations of motion for the phonon
variables ξ

αp
i (k) and frequencies are:
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Mpω
2ξ
αp
i =

∑

βq , j

Γ
αp,βq

i, j (ξ
αp
i − ξ

βq
j ) +

1

2

∑

βq , j

X
αp,βq
i, j (ξ

αp
i − ξ

βq
j eik1a1) +

1

2

∑

αq , j

X
αq ,βp
i, j (ξ

αp
i − ξ

βq
j e−ik1a1) + T r{}. (1.110)

here the symbol T r{} means that the analogous terms with matrices Y, Z should be
also included, and ki are the projections of the wave vector on the corresponding
basis vectors of the unit cell. We should also note that in general the force matrices
in the equations are not symmetrical on all indices. For example, the element Xα1,βq

defines the interaction between atom of the type 1 in selected cell and atoms of the
type q in the displaced cell. Vice versa, only that atoms of the type q from the basis
cell, which are interacting with atom of the type 1 in the displaced cell, contribute to
the element Xαq ,β1 .

The approximate solution for the Eq. (1.110) is built taking into account the fact,
that the main contribution in the integrals over the phonon energy in the DWF is
defined by the range of small values of k in the vicinity of the extremum of each
phonon zone. The principal character of this contribution can be explained by the
maximum value of the state density because of the phonon group velocity becomes
zero in this range [27], and the exponentials in the Eq. (1.110) can be expanded
into the series by k. Besides, the acoustic branches of the phonon spectrum can be
extracted by using new variables, namely the coordinate of the center of mass of the
cell:

Ri = 1

M

∑

p

Mp

∑

αp

ξ
αp
i ;

where M is the total mass of the cell; Mp is the mass of the atom of the type p, and
the relative coordinates are:

ρ
αp
i = ξ

αp
i − Ri ;

∑

p

Mp

∑

αp

ρ
αp
i = 0.

The last relation means that the number of independent equations is equal to 3(s-1)
but three other components of the variable (for example, with index αp = 1) depend
on the rest and thus can be found from the equation

ρ1
i = − 1

M1

∑

p

Mp

∑

αp �=1

ρ
αp
i . (1.111)

In order to find the motion equation for the center of mass, all the Eq. (1.110) are
summarized by justifying to accuracy O(k2):
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Mω2 Ri = k2
1a2

1

2

∑

p

∑

αp

∑

βq , j

[
X
αp,βq
i, j + X

αq ,βp
i, j

]
R j

+ ik1a1

2

∑

p

∑

αp

∑

βq , j

[X
αp,βq
i, j − X

αq ,βp
i, j ]ρβq

j + T r{}. (1.112)

The equations for the relative variables can be solved in the approximation of the
independent oscillations which is also used in the theory of small vibrations of
molecules [68]. In this case, the coupling of various oscillations is taken into account
only through the coordinate of the mass center. Then the average deviation of each
atom from its equilibrium position is equal to zero relative to the center of mass of
the unit cell. Using this fact, the equations of motion for relative coordinates are as
follows:

Mpω
2ρ
αp
i = −Mpω

2 Ri +
∑

βq , j

[
Γ
αp,βq

i, j + 1

2
(X

αp,βq
i, j + X

αq ,βp
i, j )

]
ρ
αp
j

− ik1a1

2

∑

βq , j

[X
αp,βq
i, j − X

αq ,βp
i, j ]R j + T r{}. (1.113)

Physically the approximation used means that only the average force acting to
selected atom from the side of all neighbors is taken into account. For the case of
small k, the optical frequencies ω(ν)

p ; ν = 1, 2, 3 can be found from the Eq. (1.113).
The number of such optical branches is 3(s − 1) and for atoms of the type p they
degenerate with the multiplicity 3sp (for the first one the multiplicity is 3(s1 − 1)).
These branches of the phonon spectrum are defined by diagonalization of p matrices
of dimension (3×3), which result in the following equations for the eigenfrequencies
and orthonormalized polarization vectors eνi (p):

ω(ν)
p =

√
λνp

Mp
; λνpeνi =

∑

j

D p
i j e

ν
j ;

D p
i j =

∑

βq , j

[
Γ
αp,βq

i, j + 1

2
(X

αp,βq
i, j + X

αq ,βp
i, j ) + T r{}

]
. (1.114)

The acoustic branches then can be found from the Eq. (1.110) by substitution of
the relative coordinates by the center of mass. Then the spectrum of the acoustic
eigenfrequencies is defined by the acoustic 4-rank tensor depending on the force
matrix and the vector k [49]. As a result, there exists an anisotropy of the sound
velocity in different directions of propagation even in cubic crystals. However, by
the definition, the DWF depends on the constant 2-rank tensor which is determined
by the symmetry of the crystal only and does not depend on the vector k [49] because
of the averaging over the k during the integration on the phonon variables. This fact
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allows the use of an averaging procedure over all the directions of k in the dispersion
equation. Mathematically this corresponds to the following substitution:

∫
f [ω(k)]k2dkdΩ �

∫
f [< ω(k) >]k2dkdΩ,

< ω(k) >= √
I ; I = 1

4π

∫
ω2(k)dΩ.

Then the Eq. (1.110) transform to:

Mω2 Ri = k2a2
1

6

∑

p

∑

αp

∑

βq , j

[X
αp,βq
i, j + X

αq ,βp
i, j ]R j

+ k2a2
1

12M1

∑

q

Mq

∑

αp

∑

βq �=1,m

[X
αp,1
i,m − X

1,βp
i,m ]

×
∑

γr ,l

[Dq
ml ]−1

∑

j

[X
βq ,γr
l, j − X

βr ,γq
l, j ]R j

−k2a2
1

12

∑

p

∑

αp �=1

∑

βq ,m

[X
αp,βq
i,m − X

αq ,βp
i,m ]

×
∑

γr ,l

[Dq
ml ]−1

∑

j

[X
βq ,γr
l, j − X

βr ,γq
l, j ]R j + T r{}. (1.115)

and the problem is again reduced to the diagonalization of the symmetrical (3 × 3)

matrix. The solution for the optical frequencies is then found in the form

ωνa (k) = ka0√
M

cν; ν = 1, 2, 3; a0 = (Ω0)
1/3

and defines three acoustical phonon branches. In this parametrization, the normalized
vectors of polarization eνia and eigenvalues cν no longer depend on k:

c2
νeνia =

∑

j

Ai j e
ν
ja;

Ai j = b2
1

6

∑

p

∑

αp

∑

βq , j

[X
αp,βq
i, j + X

αq ,βp
i, j ]

+b2
1

12

∑

q

Mq

∑

αp

∑

βq �=1,m

[X
αp,1
i,m − X

1,βp
i,m ]

×
∑

γr ,l

[Dq
ml ]−1

∑

j

[X
βq ,γr
l, j − X

βr ,γq
l, j ]R j
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−k2b2
1

12

∑

p

∑

αp �=1

∑

βq ,m

[X
αp,βq
i,m − X

αq ,βp
i,m ]

×
∑

γr ,l

[Dq
ml ]−1

∑

j

[X
βq ,γr
l, j − X

βr ,γq
l, j ] + T r{};

bi = ai

a0
. (1.116)

To derive a final formula for DWF, the general definition of the Debye-Waller
factor is used for the atom with number t in the unit cell [29]:

DW Ft = e−∑
i, j Bt

i j qi q j ; Bt
i, j = 2

�
2

Mt
Wi, j . (1.117)

Here the projections of the transmitted wave vector qi should be calculated in the
coordinate system connected with unit cell

qi = 2π

d
li ; d =

[√
l2
1g

2
1 + l2

2g
2
2 + l2

3g
2
3

]−1

,

where d is the interplane distance for the given reflection defined by Miller indices
li ; ni are the minimal integers for this reflection; gi are the standard basis vectors
of the reciprocal lattice. In this definition, tensor Wi j does not depend on the atom
number and is the characteristics of the crystal as a whole [32]:

Wi j = Ω0

2�

∑

(p)

∑

ν

eνi eνj

∫
dk

(2π)3 f (ωνp), (1.118)

where the summation is performed on all optical and acoustic branches and f is the
function of the Bose-Einstein distribution:

f (ω) = 1

ω

[
1 + 2

exp �ω/kB T − 1

]
.

Below we split the general expression for W into two parts related to optical W o and to
acoustic W a oscillations. The above-mentioned expansion on small k corresponds to
the Einstein approximation when the optical frequencies are considered as constants
in the Brillouin zone [27]. Then taking into account the multiplicity of the optical
branches, W o is calculated as:

W o
i j = 1

2�

∑

p

s′
p

∑

ν

eν p
i eν p

j f (ωνp). (1.119)
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The frequencies and vectors of polarization for optical branches have been defined in
the Eq. (1.114). Index s′

p means that the value (s1 − 1) should be substituted instead
of s1 for the atoms of the type 1.

The acoustic contribution to the DWF can be found in the following form

W a
i j = 1

2�

∑

ν

eνiaeνja
Ω0

2π2

∫ kD

0
dk

k
√

M

a0cν

×
[

exp (�ka0cν/kB T
√

M)

exp (�ka0cν/kB T
√

M) − 1

]
; kD =

(
6π2

Ω0

)1/3

. (1.120)

By analogy with Debye temperature, three different parameters are introduced for
each polarization of the acoustic phonons:

Θν = �a0kDcν

kB
√

M
,

and finally the acoustic part of DWF is:

Fig. 1.15 The value Bt (T )

in the Debye-Waller factor
for the atom of (a) As and
(b) Ge in the crystal GaAs
(ΘD = 210K ) as a function of
the temperature. The dashed
line presents the results of
[64], obtained on the basis
of the experimental phonon
spectrum; the solid line is
a calculation by the present
algorithm; the dash-dotted
curve represent the optical
phonon spectrum

(a)

(b)
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W a
i j = 3

2kB

∑

ν

eνiaeνja
1

Θν

∫ 1

0
x dx coth

(
xΘν

2T

)
. (1.121)

The formulas (1.118)–(1.121) establish the algorithm for calculation of the Debye-
Waller factor for X-ray susceptibilities. By this algorithm, the Fourier components
of the susceptibility for crystals are calculated by using the symmetrical tensor W ,
which includes only 6 components in the most general case. To illustrate this result,
the Debye-Wallers factors for the atoms of As and Ga in the crystal GaAs have
been calculated. Figure 1.15 demonstrates a good agreement between the DWF
temperature dependence calculated by proposed method and the phenomenological
dependence found on the basis of the experimental density of the phonon states [64].
The optical part of the DWF, usually not taken into account in the standard program
packages [40, 41], seems to be an important part of the total DWF value, as Fig. 1.15
illustrates, too.
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