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Preface

X-rays have been proven to be a powerful and reliable tool in studying a large
diversity of micro- and nanoscale objects. The wavelength of X-rays is a perfect fit to
the typical sizes of basic structures used in all modern technologies and science:
crystallographic lattice in semiconductor thin films; biological molecules in protein
crystallography; nanoscale objects like quantum dots and quantum wires in opto-
electronics; and many others. This fact initiated the intensive development of var-
ious measurement techniques and instrumentation to satisfy the large variety of
requirements coming from scientific and industrial communities. Information on the
intrinsic structure of samples is further obtained from the detailed analysis of the
scattered and detected X-ray intensities, which demands robust theoretical methods
for data interpretation. The experimental data obtained from modern X-ray equip-
ment contains a large amount of information hidden in the fine structure of the
measured X-ray spectra. This fine structure became measurable due to the essential
progress in the development of X-ray optics, detectors, and X-ray sources. Expla-
nation of some effects observed in conventional laboratory X-ray measurements
requires fundamental investigations which are on the leading edge of a modern
science. From another perspective, the application of X-ray methods in production
processes requires highly automated and robust analytical tools. Thus, the growing
complexity of both experiments and structure of the samples constantly stimulates
the further development of the theoretical methods for data analysis.

There are multiple X-ray techniques used for sample evaluation, each of which
is suitable for different kinds of the structures. For example X-ray Bragg
diffraction probes samples possessing a crystallographic structure and character-
izes the structure on a broad scale, from micro-crystallites in polycrystalline
materials to the properties of coherent epitaxial samples averaged over large areas.
For the latter case of epitaxial structures, X-ray diffraction in a high-resolution
mode is used. The information obtained from X-ray diffraction patterns recon-
structs the sample morphology, helps in structure determination and phase iden-
tification, and may comprise such parameters as crystallinity, mosaicity,
crystallographic lattice mismatch, lattice strain status, residual stresses, lattice
defects, and many others. The specular X-ray reflectivity characterizes surface and
subsurface amorphous or crystalline layers in view of their electron density pro-
files, layer thicknesses, and interface roughness. The X-ray small-angle scattering
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method exposes valuable information on the distribution and characteristics of the
non-uniformities inside or on the surface of the sample. In grazing-incidence
mode, this technique explores the lateral surface structure of the studied speci-
mens. The pair-distribution function method permits us to obtain the interatomic
distances for amorphous, crystalline, and quasi-crystalline materials. The impor-
tant trend in recent decades is the simultaneous usage of several techniques for
characterization, which deliver comprehensive and concise information on the
sample structure. However, this approach requires consistent theoretical models of
data interpretation for each technique used. This monograph covers the main X-ray
techniques used in the material researches, including high-resolution X-ray dif-
fraction, specular and off-specular X-ray reflectivity, grazing-incidence small-
angle X-ray scattering, and residual stress analysis. This book presents the unified
microscopic approach for a theoretical description of experimental data obtained
by various techniques and thus can be used both as a guidance for the development
of new interpretation methods in X-ray analysis and as a handbook for students
studying the theory of condensed matter and interaction of radiation with the solid
state matter.

In addition to the practical aspect of data analysis, the interaction of X-rays with
matter plays an important and fundamental role by demonstrating the effectiveness
of quantum electrodynamics and scattering theory for the investigation of mac-
roscopic systems. The Hamiltonian describing the interaction of X-rays with atoms
has a simple form and contains a small physical parameter proportional to the ratio
of the amplitude of Compton scattering of photon on the free electron to the
average interatomic distance. As a result, the macroscopic Maxwell’s equation for
transmission of X-rays in a medium can be derived from first principles after
averaging the exact equations of quantum electrodynamics over the microstates of
electrons, and without the use of phenomenological material equations. The
deduced effective potential of the interaction of X-rays with matter is small enough
to successfully use the mathematical methods of the perturbation theory for the
scattering problem. This fundamental property of the X-ray optics is not suffi-
ciently covered in the existing literature, and the aim of this book is to illuminate
all the theoretical details of the interaction of X-rays with nanoscale objects. The
manifestation of the mentioned property of X-ray optics is observed in high-
resolution experiments, which are intensively used for the study of thin films and
nano-objects possessing a complex structure.

The monograph consists of seven chapters dedicated to different application
techniques and fundamental aspects of X-ray scattering from atomic systems. In
the Chap. 1, the equations of X-ray optics describing the propagation of a classic
wave field in a medium are derived from the Schrödinger equation for the system,
which takes into account the quantum properties of both atomistic medium and
electromagnetic field. Numerous approximations are discussed, which are used in
analytical methods for X-ray optics including calculation of X-ray polarizability.
The important aspects of the theory of X-ray scattering from macroscopic objects
are considered in the Chap. 2. The relations between the temporal scattering theory
of real experiments and the stationary scattering theory with boundary conditions
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used in the data interpretation are established. The method of the distorted-wave
Born approximation (DWBA) widely used in scattering theory is presented for
different sample structures and experimental geometries. The Chap. 3 deals with
the method of X-ray reflectivity (XRR) from the multilayered samples with rough
interfaces. The theoretical profiles of the specularly reflected X-ray intensity are
calculated on the basis of a self-consistent approach for the transition layers at the
boundaries of lamellae. The original method of eigenwaves is derived, which
simplifies and accelerates the calculation of XRR intensities from the periodic
multilayered structures. The basic principles of the high-resolution X-ray dif-
fraction (HRXRD) from the perfect crystalline samples are explained in the
Chap. 4. The critical issues of HRXRD are discussed in the details: the transition
from kinematical to dynamical theory of X-ray diffraction, the method of eigen-
waves for superlattices, the grazing-incidence diffraction (GID), the diffraction
from surface nanostructures, and others. The Chap. 5 is dedicated to X-ray diffuse
scattering from imperfect surfaces and interfaces. The statistical approach is used
to account for the fluctuations of the macroscopic parameters of the sample on the
basis of DWBA method. The analysis of the accuracy delivered by different zero
approximations for DWBA is performed for the geometry of XRR and grazing-
incidence small-angle X-ray scattering (GISAXS) techniques, which are both
intensively used for morphology characterization of modern surface nanostruc-
tures. X-ray diffraction from the crystals with defects is presented in the Chap. 6,
where the attention is paid to the formation and relation between coherent dif-
fraction intensity and diffuse scattering intensity, which is caused by scattering
from the statistical ensemble of crystallographic defects. The statistical theory of
X-ray diffraction in imperfect crystals is derived, which is applicable for GID case
also. The analytical method for simulation of diffuse X-ray peaks caused by the
defects is described. This method is applicable for an arbitrary density of the
defects existing in the crystal and is comparable in accuracy to the timeconsuming
Monte-Carlo calculations. Finally, the Chap. 7 is devoted to the important appli-
cation of X-rays for residual stress analysis in solid bulk materials, coatings, and
polycrystalline samples. The various models of grain interaction are discussed with
regard to their applicability limits, and the covariant method of X-ray intensity
averaging over the grain distribution is proposed.

The authors are indebted to Prof. V. G. Baryshevsky and Prof. L. I. Komarov
for cooperation and innumerable scientific discussions over the years devoted to
quantum theory of interaction between radiation and matter.

We also thank all our colleagues in numerous software projects, especially
A. Kozlovski, A. Zhylik and M. Rusetsky, who assisted us with the numerical
simulations and interpretations of experimental data. We are also thankful to
Dr. T. Ulyanenkova for valuable support in the proof reading of the manuscript.

Minsk, Belarus Andrei Benediktovitch
Minsk, Belarus Ilya Feranchuk
Karlsruhe, Germany Alexander Ulyanenkov
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Chapter 1
Basic Principles of the Interaction of X-Rays
with Matter: Quantum Electrodynamical
Analysis

Microscopic analysis of various processes arising due to the interaction of X-rays
with condensed matter was considered in many papers, especially in the fundamental
monograph [1], where the basic principles of X-ray optics were described. However,
since that time a series of advanced techniques for X-ray structure characteriza-
tion have been actively developed, such as the diffraction near the absorption edges
[2], diffraction in the ferromagnetic materials [3], methods using the high-intensity
radiation from the X-ray laser [4], and others.

Traditionally, the anisotropic correlative effects as well as the nonlinear processes
due to the interaction of the intensive electromagnetic field with media are more
essential in the optical range of wavelengths and there is a huge number of reviews
in this field (for example, [5–8] and references therein). For the analysis of these
processes, the microscopic equations of quantum electrodynamics have to be used,
which imply the quantum properties of both the electromagnetic field and the matter
are taken into account.

At the same time, in the basic books on the X-ray scattering by the inhomogeneous
structures interaction of the radiation with matter is based on the simplest model
where electrons are considered as classical oscillators [9, 10]. However, the progress
in experimental and theoretical physics demands to consider this interaction on the
basis of the first principles of quantum electrodynamics in order to analyze the limits
of the conventional approximations. The main goal of this chapter is the systematic
investigation of these problems.

1.1 Equations of X-Ray Optics

X-rays are the unique instrument for investigation of the structure of materials, and
it is extremely important for the great number of high-technological processes. The
advantages of X-ray applications are conditioned by a series of essential factors:
(i) small wavelength providing the resolution compared with the characteristic size

A. Benediktovitch et al., Theoretical Concepts of X-Ray Nanoscale Analysis, 1
Springer Series in Materials Science 183, DOI: 10.1007/978-3-642-38177-5_1,
© Springer-Verlag Berlin Heidelberg 2014



2 1 Basic Principles of the Interaction of X-Rays with Matter

of the electron density distribution in atoms; (ii) a weak interaction of X-ray beams
with the matter providing non-destructive characterization of the objects; (iii) simple
and universal form of this interaction which is important for the solution of the
inverse problem when the electron density distribution in the investigated medium is
reconstructed on the basis of the X-ray scattering profiles; (iv) possibility to describe
the evolution of X-ray wave field in a medium on the basis of the perturbation theory
applied directly to the microscopic equations of quantum electrodynamics.

Let us consider the main approximations used on the way from quantum elec-
trodynamics to the macroscopic Maxwell’s equations for electromagnetic field in a
medium [8, 11]. The start point is the Schrödinger equation for the total state vector
|Φ(t) > that corresponds to the whole system, the non-relativistic quantum medium
and the quantized electromagnetic field:

i�
∂

∂t
|Φ(t) >= Ĥ |Φ(t) > (1.1)

with the Hamiltonian that has the following form in the Coulomb gauge (see, for
example, [7]):

Ĥ = ĤM +
Ne∑

j

{
1

2m

[
−2

e0

c
p̂ j Â(r j )+ e2

0

c2 ( Â(r j ))
2

]

− e0�

2mc
σ j Ĥ(r j )

}
+

∑

ks

�ωka+
ksaks ≡ ĤM + ĤM R + ĤR;

ĤM =
Ne∑

j

p̂ j
2

2m
+ Û ({r j });

Â(r) =
∑

ks

√
2π�c2

ωkV
eks[aksei kr + a+

kse−i kr ];

Ĥ(r) = [∇ × Â]; (keks) = 0. (1.2)

Here e0,m are the electron charge and mass, respectively; interaction between X-
ray field and atomic nuclei can be neglected; � is the Plank constant; c is the light
velocity; aks(a

+
ks) is the operator of annihilation (creation) of the photon with the

frequency ωk = ck, wave vector k and polarization eks ; Â(r) and Ĥ(r) are the
operators of the transversal vector potential and magnetic field, correspondingly;
r j , σ j/2 are the coordinate and spin of j th electron; Ne is the total number of
electrons; ĤM is the Hamiltonian of the medium with the potential energy operator
Û ({r j })which corresponds to the Coulomb interaction between electrons and nuclei
and provides the stable state of medium. Operator ĤM R is the Hamiltonian of the
electron interaction with the quantum field, the term proportional to the magnetic
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field is included in order to consider the anisotropic ferromagnetic materials; ĤR is
the Hamiltonian of a free electromagnetic field.

Conventional approach for description of the interaction between X-rays and
medium corresponds to the Maxwell’s equations for the classical electromagnetic
field coupled with the Schrödinger equation for the electron subsystem. Sometimes
the latter one is also considered in a semiclassical way. This system of equations is
the theoretical basis for so-called X-ray optics approach [1]. It is possible, however,
to deduce these equations directly from the Eq. (1.1) for the state vector of the whole
system if the adiabatic perturbation theory [12] is used, and that allows to define the
limits of the semiclassical approximation. Figure 1.1 represents schematically the
sequence of the transformation that should be done in order to pass from the quantum
electrodynamics to the X-ray optics approach.

The canonical transformation of the field operator [13], being applied to the Hamil-
tonian (1.2), separates the time dependent classical field A(r, t) from the radiation
component ÂR(r) defined by the quantum fluctuations of the electromagnetic field
relatively to the selected classical field [8]:

ÛR(t) =
∏

ks

ecksa+
ks−c∗

ksaks =
∏

ks

ecksa+
ks e−c∗

ksaks e−1/2|uks (t)|2;

cks(t) = uks(t)e
−iωk t ; Û+

R Â(r)ÛR = A(r, t)+ ÂR(r);

A(r, t) =
∑

ks

√
2π�c2

ωkV
eks[uksei kr−iωk t + u∗

kse−i kr+iωk t ];

ÂR(r) =
∑

ks

√
2π�c2

ωkV
eks[aksei kr + a+

kse−i kr ]. (1.3)

Fig. 1.1 Schematic repre-
sentation of importance of
different approximations for
light and X-ray optics
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and canonical transformation of other operators in the Eq. (1.1) leads to the following
equations:

ĤR(t) = Û+
R (t)ĤRÛR(t)

= ĤR +
∑

ks

�ωk[a+
kscks(t)+ aksc∗

ks(t)+ |uks(t)|2];

i�Û+
R
∂

∂t
ÛR = i�

∂

∂t
+ i�

∑

ks

[(u̇ks(t)a
+
kse−iωk t − u̇∗

ks(t)akseiωk t )

−iωk(uks(t)a
+
kse−iωk t + u∗

ks(t)akseiωk t )− iωk|uks(t)|2

+1

2
(u̇ks(t)u

∗
ks(t)− u̇∗

ks(t)uks(t))]; u̇ks ≡ ∂

∂t
uks . (1.4)

The Schrödinger Eq. (1.1) is then transformed to:

i�
∂

∂t
|Ψ (t) >= Ĥ(t)|Ψ (t) >;

|Φ(t) >= eiφ(t)Û+
R |Ψ (t) >;

φ(t) = 1

2

∑

ks

i�ωk[u̇ks(t)u
∗
ks(t)− u̇∗

ks(t)uks(t)]. (1.5)

Here the time-dependent Hamiltonian Ĥ(t) is a functional of the undefined compo-
nents uks(t) of the classical field in the medium and it has the following form:

Ĥ(t) = ĤM + ĤM R(t)+ ĤR;

ĤM R(t) =
Ne∑

j

{
1

2m

[
− 2

e0

c
p̂ j (A(r j , t)+ ÂR(r j ))

+e2
0

c2 (A(r j , t)+ ÂR(r j ))
2
]

− e0�

2mc
σ j (H(r j , t)+ Ĥ R(r j ))

}

−i�
∑

ks

(u̇ks(t)a
+
kse−iωks t − u̇∗

ks(t)akseiωk t ). (1.6)

In the Hamiltonian of interaction ĤM R(t), the part Ĥ c
M R(t) defines the adiabatic

evolution of the quantum medium under the influence of the classical electromagnetic
field with the Fourier components uks(t). Actually, these values define the displaced
equilibrium positions for the quantum oscillators corresponding to the quantized
field modes. Semiclassical approximation is defined by the wave function of the
system with the radiation field being in the ground (vacuum) state relatively to the
new equilibrium positions:

Ĥ (0)(t) = ĤM + Ĥ c
M R(t)+ ĤR;
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|Ψ (0)(t) >≡ |Ψc(t) >= |ΨM (t) > |0 >; ĤR |0 >= 0;
i�
∂

∂t
|ΨM (t) >= [ĤM + Ĥ c

M R(t)]|ΨM (t) >;

Ĥ c
M R(t) =

Ne∑

j

{
1

2m
[−2

e0

c
p̂ j A(r j , t)

+e2
0

c2 A2(r j , t)] − e0�

2mc
σ j H(r j , t)

}
. (1.7)

To investigate the stability of this state, the first order approximation relatively to
the radiation field operators [12] has to be considered:

|Ψ (t) >≈ |Ψc(t) > +|Ψ (1)(t) >; < Ψ (1)(t)|Ψc(t) >= 0, (1.8)

where the first order correction includes the excited states of the quantized electro-
magnetic field and it is orthogonal to the zeroth-order state vector. As the result, the
state vector |Ψ (1)(t) > satisfies to the equation:

{
i�
∂

∂t
− Ĥ (0)(t)

}
|Ψ (1)(t) >= Ĥ (1)(t)|Ψ (0)(t) >;

Ĥ (1)(t) =
Ne∑

j

{
− e0

mc
p̂ j ÂR(r j )

+ e2
0

mc2 A(r j , t) ÂR(r j )− e0�

2mc
σ j Ĥ R(r j ))

}

−i�
∑

ks

(u̇ks(t)a
+
kse−iωk t − u̇∗

ks(t)akseiωk t ). (1.9)

The zeroth order state vector (1.7), being substituted into the Eq. (1.9), make
it possible to calculate its projection onto the state vector < ΨM (t)| defining the
medium evolution in the selected classical field. The quantum radiation processes
are neglected in the zeroth approximation, therefore the normalization condition for
the corresponding state vector is conserved during the time < Ψ (0)(t)|Ψ (0)(t) >=
const :

< ΨM (t)|Ĥ (1)(t)|ΨM (t) > |0 >= 0;
∑

ks

{√
2π�

ωkV
eks J ks(t)+ i�u̇ks(t)e

−iωk t
}

a+
ks |0 >= 0;

J ks(t) =< ΨM (t)|
Ne∑

j

J j (t)e
−i kr j |ΨM (t) >;
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J j (t) = e0

m
p̂ j − e2

0

mc
A(r j , t)+ i

e0�

2m
[σ j × k]. (1.10)

The zeroth order solution (1.7) will be stable relatively to the quantum fluctuation of
the electromagnetic field if the coefficients at the first power of the creation operator
are equal to zero, i.e. when the Eq. (1.10) is satisfied [12]. Thus, the Fourier compo-
nents of the classical field are expressed through the microscopic current J j (t) of
the electrons in the medium:

u̇ks(t) = i

�

√
2π�

ωkV
eks J ks(t)e

iωks t . (1.11)

Following to the method described in [8], this approximation results in the con-
ventional form of Maxwell’s equations for the transversal classical field. The first
derivative of the vector potential holds:

− 1

c

∂

∂t
A(r, t) =

∑

ks

√
2π�

ωkV
eks{[u̇ksei kr−iωk t + u̇∗

kse−i kr+iωk t ]

+ iωk[uksei kr−iωk t − u∗
kse−i kr+iωk t ]}, (1.12)

and using the expressions (1.10) and (1.11) along with the relation

∑

s

eμkseνks = δμ,ν − kμkν
k2 ≡ tμν,

the first term in (1.12) is transformed to:

< ΨM (t)|
Ne∑

j

∑

k

4π

ωkV
tμν

{[e0

m
p̂ j − e2

0

mc
A(r j , t)

]
sin(k(r − r j ))

+ e0�

2m
([σ j × k] cos(k(r − r j ))

}
ΨM (t)>. (1.13)

The expression (1.13) becomes a zero because of the presence of the odd function
under the sum over k.

The second term in the Eq. (1.12) represents the classical component of the electric
field operator after the transformation (1.3). Thus, the Eq. (1.12) defines the conven-
tional relationship between the vectors of the electric field strength and the vector
potential for the classical transversal field:

− 1

c

∂A(r, t)

∂t
= Et (r, t). (1.14)
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The differentiation of the expression (1.14) results in the following formula for the
derivative of the vector potential:

1

c2

∂2 A(r, t)

∂t2 = −
∑

ks

√
2π�c2

ωkV
eks

{
k2[uksei kr−iωk t + u∗

kse−i kr+iωk t ]

+ i
ωk

c2 [u̇ksei kr−iωk t − u̇∗
kse−i kr+iωk t ]

}
. (1.15)

Finally, the inhomogeneous equation for the vector potential of the classical elec-
tromagnetic field can be found by taking into account the definitions (1.3) and (1.11):

ΔA(r, t)− 1

c2

∂2 A(r, t)

∂t2 = −4π

c
J t (r, t);

J t (r, t) = 1

2
[J1(r, t)+ J+

1 (r, t)]; ∇ J t (r, t) = 0;

J1(r, t) =< ΨM (t)|
Ne∑

j

∑

k

tμν
V

{[e0

m
p̂ j − e2

0

mc
A(r j , t)

]
cos(k(r − r j ))

+i
e0�

2m
([σ j × k] sin(k(r − r j ))

}
|ΨM (t)>. (1.16)

Expression (1.16) for the current density can be symmetrized due to commutativity
of the operators under the sum. Equations (1.14) and (1.16) define the propagation of
the transversal classical field in the medium. In the framework of Coulomb gauge, the
longitudinal part of the electrical field El(r, t) is defined as the gradient of the scalar
potential ϕ(r, t) which is the sum of Coulomb potentials V̂ ({r j }) of all charged
particles averaged over the vector state |ΨM (t) > of the medium. This results in the
macroscopic equation [14]:

∇ El(r, t) = 4πρ(r, t); �ϕ(r, t) = −4πρ(r, t);
El(r, t) = −∇ϕ(r, t); ρ(r, t) = e0

∑

j

< ΨM (t)|δ(r − r j )|ΨM (t)>. (1.17)

In the neutral medium the charge density should be represented as a divergence of
the vector that is used to denote as (−P). Then the integral charge over the medium
volume is reduced to the surface integral and equals to zero [14]:

∫
ρ(r, t)dV = −

∫
∇ PdV = −

∮
Pd S = 0. (1.18)

The physical meaning of the vector P follows from the formulas:

∫
rρ(r, t)dV = −

∫
r∇ P =
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−
∮

r(Pd S)+
∫
(P∇)rdV =

∫
PdV . (1.19)

Thus the dipole polarization vector P(r, t) for the electron subsystem can be calcu-
lated microscopically as follows:

P(r, t) = e0

Ne∑

j

< ΨM (t)|r jδ(r − r j )|ΨM (t)>. (1.20)

In general case the polarization vector P(r, t) can be expressed through the average
electron current by means of the following equation:

i
∂P(r, t)

∂t
= e0

2�

Ne∑

j

{< ΨM (t)|[r j Ĥ (0)]δ(r − r j )|ΨM (t) >

+ < ΨM (t)|δ(r − r j )[r j Ĥ (0)]|ΨM (t) >},
r j Ĥ (0) − Ĥ (0)r j = [r j Ĥ (0)], (1.21)

with the Hamiltonian Ĥ (0) defined by formula (1.7). Calculating the commutator in
(1.21), the vector P(r, t) and its Fourier transformation P(r,ω) can be expressed
in the following way:

∂P(r, t)

∂t
= J(r, t); P(r,ω) = i

ω
J(r,ω);

J(r, t) = 1

2
< ΨM (t)|

Ne∑

j

[ Ĵ jδ(r − r j )+ δ(r − r j ) Ĵ j ]|ΨM (t) >;

Ĵ j = e0

m
p̂ j − e2

0

mc
A(r j , t)+ e0�

2m
[σ j × ∇r ], (1.22)

with J(r, t) as the average electron current in the medium. In neutral medium the
average current is equal to zero if the external field is absent. Vector potential A(r, t)
is the only characteristic of the field in the Hamiltonian Ĥ (0). Therefore in the con-
sidered case of linear electrodynamics J(r,ω) should be proportional to A(r,ω)
and is represented in the following form (see below Sect. 1.2):

Jμ(r,ω) = ω2

4πc
χ̂(ω)A(ω), (1.23)

with the medium polarizability χ̂(r, r ′,ω), which is the integral tensor operator

(χ̂(ω)A(ω))μ =
∫

d r ′χμ,ν(r, r ′ω)Aν(r ′,ω). (1.24)
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This value can also be expressed as a sum of the operators χ̂t and χ̂l that define the
transversal (1.16) and longitudinal parts of the average current, respectively. Finally,
all physical fields in the medium are expressed through the vector potential:

E(r,ω) = iω

c
A(r,ω)− ∇ϕ(r,ω) = iω

c
[1 − χ̂l(ω)]A(ω);

D(r,ω) = E(r,ω)+ 4πP(r,ω) = iω

c
[1 + χ̂t (ω)]A(ω);

H(r,ω) = [∇ × A(r,ω)], (1.25)

where D(r,ω) is the electrical displacement vector. Thus the use of the vector poten-
tial A(r, t) is sufficient for the description of X-ray scattering in condensed media.
The formulas (1.7) and (1.16) construct the system of the coupled Schrödinger-
Maxwell’s equations which is the basis for the description of the field-medium inter-
action in X-ray optics.

In accordance with the analysis above, these equations are applicable when the
off-diagonal matrix elements of the operator Ĥ (1)(t) in (1.9) are negligible for the
processes under consideration. These elements correspond to the transitions between
quasi-energy levels of the medium in the classical field A(r, t) [8], which lead to
the creation of new quanta of the electromagnetic field. The additional shift of the
levels of the quasi-energy caused by these transitions can be evaluated by taking
into account the second order of the adiabatic perturbation theory on the operator
Ĥ (1)(t) [12]. The diamagnetic term ∼ A(r j , t) in the current density (1.16) is known
to define the main contribution to the interaction between X-rays and medium [1].
Therefore, the relative shift of the quasi-energy level ε f caused by the transitions
of the quantum electromagnetic field to the excited one-photon states (quantum
electrodynamics effects) is defined by the following dimensionless parameter:

ξQE D ≈
Ne∑

j

∑

k

∑

f ′

2π�

ωkV

(
e2

0 A(r j , t)

mc

)2 M j
f f ′(k)

|ε f ||�ωk + ε f ′ − ε f | ;

M j
f f ′(k) =< Ψ

f ′
M |ei kr j |Ψ f ′

M >. (1.26)

The characteristic energies of the electrons are essentially less than the energy
of photons |ε f | 	 �ωk if the wavelengths of X-ray range are considered. In this
assumption, the classical field has the amplitude

A0 ≈ c

ω̄
E0,

with E0 as the amplitude of the electric field strength, and ω̄ is the characteristic
frequency of the field, and the parameter (1.26) can be estimated as

ξQE D ≈ 4πe2
0ne

mω̄2 |M̄|2 e2
0 E2

0

2mω̄2|ε f | . (1.27)
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Here ne is the electron density in the medium and the following estimation for the
matrix elements M j

f f ′(k) is used:

∑

k

∑

f ′

M j
f f ′(k)

ω2
k

≈ |M̄|2
ω̄2 .

The first factor in (1.27) has the same value as the X-ray susceptibility of the
medium in the classical Maxwell’s equations [1]. Therefore, the quantum effects
for the electromagnetic field might be essential only if the classical field creates the
medium ponderomotive [15] energy Up = e2

0 E2
0/2mω̄2, which is comparable with

the electron energy |ε f |. This condition can be fulfilled, for instance, in the ultrashort
pulses from the X-ray free-electron laser [4].

1.2 Average Current Density and X-Ray Polarizability

The fundamental principles of the quantum electrodynamic shows that the semiclas-
sical approach based on the solution of the system of coupled Schrödinger-Maxwell’s
equations describes the interaction of X-rays and medium with an accuracy suffi-
cient for the most of the applications. These equations follow from the formulas
(1.7), (1.16):

i�
∂

∂t
|ΨM (t) >= [ĤM + Ĥ c

M R(t)]|ΨM (t) >;

Ĥ c
M R(t) =

Ne∑

j

{
1

2m

[
−2

e0

c
p̂ j A(r j , t)

+e2
0

c2 A2(r j , t)

]
− e0�

2mc
σ j H(r j , t)

}
. (1.28)

ΔA(r, t)− 1

c2

∂2 A(r, t)

∂t2 = −4π

c
J t (r, t); ∇ A(r, t) = 0, (1.29)

where J t is the transversal component of the average current

J(r, t) = 1

2
< ΨM (t)|

Ne∑

j

[ Ĵ jδ(r − r j )+ δ(r − r j ) Ĵ j ]|ΨM (t) >

Ĵ j = e0

m
p̂ j − e2

0

mc
A(r j , t)+ e0�

2m
[σ j × ∇r ]. (1.30)
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Further simplification of this system of nonlinear equations is possible due to the
weak interaction of the X-ray wave-field with the medium, which makes possible
the usage of the perturbation theory over the operator Ĥ c

M R(t) for the solution of the
Eq. (1.28). In general case, the medium state vector is defined by the series over the
full set of the eigenfunctions |Ψ f > of the Hamiltonian ĤM :

|ΨM (t) >=
∑

f

C f (t)|Ψ f > e− i
�

E f t ; ĤM |Ψ f >= E f |Ψ f >;

ĤM =
Ne∑

j

p̂2
j

2m
+ U ({r j }); |Ψ f >≡ |Ψ f ({r j })>. (1.31)

Here index f includes the whole set of the quantum numbers of the multi-electron
system in the potential field U ({r j } created by the Coulomb interactions between
the electrons and the nuclei in the medium.

In the text below, the principal assumptions are briefly discussed, which are used in
order to calculate the average current (1.30) on the basis of the solution of Eq. (1.31)
[1]. There is no necessity to use any particular form of the potential field U ({r j } and
wave functions in (1.31), if the problem is considered in the framework of the linear
response theory [16, 17]. The substitution of the expansion (1.31) into the Eq. (1.30)
leads to the formula, which defines the evolution of the coefficients C f (t):

i�
∂C f (t)

∂t
= −

∑

f ′
M f f ′(t)C f ′(t)e

i
�
(E f −E f ′ )t ;

M f f ′(t) =< Ψ f |Ĥ c
M R(t)|Ψ f ′>. (1.32)

The standard "adiabatic switch-off" condition is used here for the interactions within
the limit t → −∞ [16, 17]:

M f f ′(t) → M f f ′(t)eνt ; ν → 0,

and the system is assumed to be in the ground state when the field is absent:

C (0)
f = δ f 0.

Using these approximations in the first order of the perturbation theory, the expres-
sion for C f is obtained:

C f (t) ≈ δ f 0 + i

�

∫ t

−∞
M f 0(t

′)e
i
�
(E f −E0−i�ν)t ′dt ′;

|ΨM (t) >≈ |Ψ0 > e− i
�

E0t
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+ i

�

∑

f �=0

e− i
�

E f t
∫ t

−∞
M f 0(t

′)|Ψ f > e
i
�
(E f −E0−i�ν)t ′dt ′. (1.33)

The formulas (1.33) are then used in the wave function (1.31), and the current (1.30)
can be calculated with an accuracy of the first order on the electromagnetic field. The
average current is supposed to be zero without field and is caused by the transitions
of the system into the excited states:

Jtμ(r, t) =
Ne∑

j,l

∫ t

−∞
< Ψ0|T̂ jl

μλ(r, r ′, t − t ′)Aλ(r ′, t ′)eνt ′dt ′d r ′|Ψ0 >;

T̂ jl
μλ(r, r ′, t − t ′) = − e2

0

mc
{δ(r − r j )δ(r ′ − r j )δ jlδ(t − t ′)δμλ

− im

�

∑

f �=0

e
i
�
(E f −E0)(t ′−t)v̂ j

μδ(r − r j )|Ψ f >< Ψ f |v̂l
λδ(r

′ − rl)

+ im

�
e− i

�
(E f −E0)(t ′−t)v̂l

λδ(r
′ − rl)|Ψ f >< Ψ f |v̂ j

μδ(r − r j )};

v̂ j
μ = 1

m
p̂ j
μ + �

2m
([σ j × ∇r ])μ. (1.34)

The transversal part of the current is appeared because it is proportional to the
transversal vector potential Aλ(r ′,ω).

The substitution of the expression (1.34) into the Maxwell’s Eq. (1.29) demon-
strates that the linear response of the medium is defined by the integral operator
T̂ jl
μλ(r, t − t ′) which has a cumbersome functional dependence on the multi-electron

wave functions:
Ψ f ({r j }) ≡< {r j }|Ψ f>.

Hereinafter, we change to the Fourier representation over the time variable in the
Eq. (1.29):

ΔA(r,ω)+ ω2

c2 A(r,ω) = −4π

c
J t (r,ω);

A(r, t) =
∫

dωA(r,ω)e−iωt . (1.35)

The Fourier image of the current holds:

Jtμ(r,ω) = c
Ne∑

j

Ne∑

l

∫
d r ′ < Ψ0|T̂ jl

μλ(r, r ′,ω)Aλ(r ′,ω)|Ψ0 >;

T̂ jl
μλ(r, r ′,ω) = −r0{δ(r − r j )δ(r ′ − rl)δ jlδμλ
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−
∑

f �=0

2(E f − E0)

(E f − E0)2 − (�ω + iν)2

× v̂ j
μδ(r − r j )|Ψ f >< Ψ f |v̂l

λδ(r
′ − rl)}, (1.36)

where r0 = e2
0/mc2 is the classical electron radius. The first term in the operator

T̂ jl
μλ(r, r ′ω) is not related to the transitions of the atoms in the medium to the excited

states, however, it corresponds to the coherent scattering of the electromagnetic field
from the electrons with coordinates {r j }. This process is defined by the amplitude of
the elastic Compton scattering (−r0) of the photon on the free electron at zero angle
[18]. The second term is also defined by the coherent scattering of the electromagnetic
field but this time through the virtual transitions of the electrons to the intermediate
states with the energy E f . In the optical wavelength range, this term solely defines
the contribution to the system linear response. For the X-rays, it becomes essential
near the resonance, when the photon energy almost coincides with the transition
energy E f − E0 ≈ �ω [1], which makes possible the following substitution:

2(E f − E0)

(E f − E0)2 − (�ω + iν)2
≈ 1

E f − E0 − �ω − iν
.

After the solution of the Eq. (1.35), the dependence of the vector potential
Aλ(r ′, {r j },ω) on the electron coordinates averaged over the state vector |Ψ0 >

has to be taken into account. In order to separate the calculation of the electromag-
netic field from the procedure of the averaging over the electron coordinates, the
relationship below is used. This relationship has been proved in details in the theory
of wave scattering from an arbitrary system with the large number of the scattering
centers [19, 20]:

< Ψ0|T̂ jl
μλ(r, r ′, {r j },ω)Aλ(r ′, {r j },ω)|Ψ0 >=

=< Ψ0|F̂ jl
μλ(r, r ′, {r j },ω)|Ψ0 > Aλ(r

′,ω). (1.37)

Here the renormalized scattering operator F̂ jl
μλ(r, r ′,ω) includes all non-coherent and

inelastic processes at a single scattering center. In particular, such renormalization of
the amplitude for the scattering of the electromagnetic wave by free electron leads to
the complex scattering amplitude with imaginary part defined by the total scattering
cross-section accordingly to the optical theorem:

(−r0) ⇒ f (0); f ′(0) = −r0; f ′′(0) = ω

4πc
σt (ω), (1.38)

where σt is the total cross-section of the Compton scattering of photon by free
electron (Klein-Nishina formula) [21]:
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σt (ω) = 2πr2
0

{1 + β

β3 [2β(1 + β)

1 + 2β
− ln(1 + 2β)]

+ ln(1 + 2β)

2β
− 1 + 3β

(1 + 2β)3

}
; β = �ω

mc2 . (1.39)

The renormalization procedure for the part of the scattering operator related to
the intermediate transitions to the excited states is defined by the substitution [20]:

1

E f − E0 − �ω − iν
⇒ 1

E f − E0 − �ω − iΓ f /2
, (1.40)

where Γ f is the total width of the excited state of the system with the energy E f .
Actually, this value includes transitions from the level to all possible states and is
connected with the total cross-section of the inelastic photon scattering at the bound
electrons.

Hereinafter, the medium is considered as an unlimited continuum, which does
not restrict the generality of the further analysis.The most interesting for the appli-
cations, the macroscopic non-homogeneities of real medium (layered structures,
defects, deformed crystals and others), can be described within the framework of
the conventional scattering theory [19]. In this approach, each macroscopic element
of the investigated object is considered as unrestricted and variation of the medium
properties at different parts are considered either as small perturbations (for example,
[22–24]) or by means of the boundary conditions sewing together the solutions of the
Maxwell’s equations for different parts of the medium (for example, [9, 25]). In the
case of the continuous medium, the Fourier representation over the space variables
can be used for the Eqs. (1.35)–(1.37):

k2 A(k,ω)− ω2

c2 A(k,ω) = 4π

c
J t (k,ω);

k A(k,ω) = 0. A(r, t) =
∫

dkdωA(k,ω)ei(kr−ωt), (1.41)

and the linear response function can be written in the form:

Jtμ(k,ω) = c
1

(2π)3

∫
dk′

Ne∑

j

Ne∑

l

F jl
μλ(k, k′ω)Aλ(k′,ω);

F jl
μλ(k, k′ω) = f (0)

{
< Ψ0|ei(k′−k)r j |Ψ0 > δ jlδμλ

−
∑

f �=0

m

E f − E0 − �ω − iΓ f /2

× < Ψ0|v̂ j
μe−i kr j |Ψ f >< Ψ f |v̂l

λei k′rl |Ψ0 >
}

(1.42)
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For further calculation of the average current (1.42), the state vectors |Ψ f > should
be defined as the solutions of the Schrödinger Eq. (1.31) for multi-electron system.
The adiabatic and one-electron approximations are used here, which are explained
in many text books (for example, [26, 27]). The one-electron states are described
by the wave functions which satisfy to the Schrödinger equation with self-consistent
periodic potential and the Bloch theorem:

ψα,κ(r + n) = eiκnψα,κ(r), (1.43)

where n = l1a + l2b + l3c; li = 0,±1,±2, . . . is the vector of translation decom-
posed over the vectors a, b, c of the basic crystal cell. These wave functions corre-
spond to the zone energy spectrum εα(κ), where index α is the number of zone and
κ is the quasi-momentum vector restricted by the first Brillouin zone [26]. The total
number of different quasi-momentum vectors is equal to the number of the basic
cells N due to boundary conditions [27]. All the formulas below can also be applied
to the homogeneous medium in the limits a, b, c → ∞.

Due to the translational symmetry the wave functions can be normalized as fol-
lows:

ψα,κ(r) = 1√
N
ψ̃α,κ(r);

∫
|ψα,κ(r)|2d r =

∫

Ω

|ψ̃α,κ(r)|2d r = 1, (1.44)

where Ω is the volume of the basic cell (V = NΩ).
In the considered representation, the sum over electron coordinates in the expres-

sion (1.42) in the ground state of a crystal is reduced to the summation over the
filled zones taking into account the normalization condition on the total number of
electrons. As for example, for the one-particle operators it means:

I (Q) =
∑

j

< Ψ0|ei Qr j |Ψ0 >⇒
occ∑

α,κ

gα,κ

∫
ψ∗
α,κ(r)e

i Qrψα,κ(r)d r

= 1

N

∑

n

ei Qn
occ∑

α,κ

gα,κ

∫
ei Qr |ψ̃α,κ(r)|2d r;

occ∑

α,κ

∫
gα,κ|ψα,κ(r)|2d r =

occ∑

α,κ

∫

Ω

gα,κ|ψ̃α,κ(r)|2d r = Ne, (1.45)

where gα,κ are the numbers of the filling up (multiplicity of degeneracy) of the energy
levels in zones, gα,κ = 2 in the case of the ideal non-polarized crystal and it varies
within the limits 0 < gα,κ < 2 in solid solutions or crystals with defects, Ne is the
total number of electrons in the crystal.
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The integrations in the matrix elements (1.45) are based on the following rela-
tionships [26]:

∑

n

ei Qn = N
(2π)3

V

∑

H

δ(Q − H);

I (Q) = (2π)3

V

∑

H

δ(Q − H)
occ∑

α,κ

∫

Ω

gα,κψ̃
∗
α,κ(r)e

i H r ψ̃α,κ(r)d r, (1.46)

where H are the crystal reciprocal lattice vectors.
Let us consider in details the main contribution to the average current which is

defined by the non-resonant scattering from electrons and is described by the first
term in the Eq. (1.42). By taking into account the relation (1.46), the current is:

J (e)tμ (k,ω) = c
1

Ω
f (0)

∑

H

F(H)Aμ(k + H,ω);

F(H) = 1

N

occ∑

α,κ

∫

Ω

gα,κei H r |ψ̃α,κ(r)|2d r. (1.47)

Here F(H) stands for the cell scattering factor of the crystal basic cell, normalized
by the total number Nc of the electrons in the elementary cell:

F(0) = 1

N

occ∑

α,κ

∫

Ω

gα,κ = Ne

N
= Nc. (1.48)

By the definition, the function

ρe(r) = 1

N

occ∑

α,κ

∫

Ω

gα,κ|ψ̃α,κ(r)|2 =
∑

H

F(H)e−i H r (1.49)

describes the space distribution of the electron density in the cell. The transition to
the constant electron density N = 1,Ω → ∞, Ne → ∞, Ne/Ω → ne corresponds
to the homogeneous medium:

J (e)tμ (k,ω) = cne f (0)Aμ(k,ω). (1.50)

Substituting the average current into the Maxwell’s Eq (1.41), the above equations
are reduced to the commonly used form:

k2 A(k,ω)− ω2

c2

∑

H

ε(e)(H,ω)A(k + H,ω) = 0;
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ε(e)(H,ω) = δH,0 + χ(e)(H,ω); χ(e)(H,ω) = 4πc2

ω2Ω
f (0)F(H), (1.51)

where ε(e)(H,ω) and χ(e)(H,ω) are the Fourier components of the non-resonant
part of the X-ray dielectric constant and susceptibility, respectively. To calculate the
resonant part of the scattering operator in (1.41), the sum over the electron coordinates
is separated into two parts:

Ne∑

j

Ne∑

l

ei(k′rl−kr j ) ⇒
∑

n

ei(k′−k)n
Ñe∑

j

Ñe∑

l

ei(k′rl−kr j )

+
∑

n

∑

n′ �=n

Ñe∑

j

Ñe∑

l

ei(k′(rl+n′)−k(r j +n)), (1.52)

where Ñe includes summation over the electron coordinates in a single basic cell and
the summation over the translation vectors n, n′ transfers it to the whole crystal.

In the framework of the Hartree approximation, the state vector of the system is
defined by the simple product of the one-electron wave functions. In this case, the
nonzero probabilities for the transitions to the excited states ( f ) present only for the
terms with n = n′. The terms with n �= n′ are accounted due to the correlation and
exchange effects which are rather small for the non-relativistic atoms. They may play
an important role, for example, in the resonant X-ray spectroscopy [2], however, in the
majority of applications this contribution to the X-ray susceptibility is neglected [1].

The scattering operator is defined by the transitions to the levels of unfilled energy
bands E0 → εα(κ); E f → εα1(κ1) with the energy width γα1(κ1) that takes into
account various processes of atom decay from the excited state:

F jl(2)
μλ (k, k′ω) ≈ − 1

N 2

∑

n

ei(k′−k)n
occ∑

α,κ

gα,κ

×
∑

α1,κ1

m f (0)Mα1,κ1
α,κ,μ (−k)Mα,κ

α1,κ1,λ
(k′)

εα1(κ1)− εα(κ)− �ω − iγα1(κ1)
. (1.53)

The matrix elements from the operator of the current Mα1,κ1
α,κ,μ (−k) are also reduced

to the integrals over the single basic cell:

Mα1,κ1
α,κ,mu(−k) =

∫

Ω

ψ̃∗
α1,κ1

(r)v̂μe−i kr ψ̃α,κ(r)d r. (1.54)

Using the expression (1.46), the resonant contribution to the average current can be
found:
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J (2)tν (k,ω) = c
1

Ω
f (0)

∑

H

tνμFμ,λ(k, H)Aλ(k + H,ω);

Fμ,λ(k, H) = − 1

N 2

occ∑

α,κ

gα,κ
∑

α1,κ1

m Mα1,κ1
α,κ,μ (−k)Mα,κ

α1,κ1,λ
(k + H)

εα1(κ1)− εα(κ)− �ω − iγα1(κ1)
, (1.55)

which represents the anomalous contribution to the X-ray susceptibility of the crystal
[28]:

k2 Aμ(k,ω)− ω2

c2

∑

H

εt
μ,λ(k, H,ω)Aλ(k + H,ω) = 0;

(k A(k,ω)) = 0;
εt
μ,λ(k, H,ω) = ε(e)(H,ω)δμ,λ + χ

(a)
μ,λ(k, H,ω);

χ
(a)
μ,λ(k, H,ω) = 4πc2

ω2Ω
f (0)Fμ,λ(k, H). (1.56)

1.3 Scattering Factors

The elastic scattering of X-ray radiation from the electrons of a crystal contributes
mainly to the X-ray susceptibility, which is determined from the scattering amplitude
in the formula (1.47):

F(H) = 1

N

occ∑

α,κ

∫

Ω

gα,κei H r |ψ̃α,κ(r)|2d r. (1.57)

If the direct experimental measurement of the scattering amplitude could be pos-
sible, the expansion (1.47) would permit to unambiguously calculate the function
ρe(r) = ∑occ

α,κ gα,κ|ψ̃α,κ(r)|2, which is the main goal of X-ray structure analysis
[29]. However, the measurement of the intensity of the scattered radiation allows
to find the modulus |F(H)| only. The values F(H) are complex in general case,
therefore the theoretical calculation of the scattering amplitude is necessary on the
basis of preliminary model of the electron density which is defined more exactly by
fitting the experimental data by means of iterative retrieval procedure [30].

In the considered here quantum description of the system, the electron density
modeling is based on the choice of some approximation for the wave functions
ψ̃α,κ(r) corresponding to the zone spectrum of the electron in a crystal. In the practi-
cal crystallography [29], the commonly used approach is based on the strong coupling
approximation [31], which neglects the overlapping of the wave functions of elec-
trons from different atoms. This approximation takes into account the fact that the
main contribution to the amplitude is defined by the scattering from the electrons
of the internal shells, the characteristic sizes of which are essentially less than the
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distance between the atoms. Thus, the overlapping of the electron wave functions
from different atoms is exponentially small and the electron density does not depend
on the quasi-wave vector κ:

|ψ̃α,κ(r)|2 → |ψ̃α(r)|2; 1

N

∑

κ

gα,κ = gα, (1.58)

where the values gα define the populations of the electron states in the isolated atoms
of the basic cell.

Introducing the variables Ra and ξa for the coordinates of the atom nucleus in the
basic cell and the set of quantum numbers for the filled electron states in this atom,
respectively, and the sum over the index α includes the summation over both Ra and
ξa , the scattering factor can be represented as follows:

F(H) =
occ∑

Ra ,ξa

gRa ,ξa

∫

Ω

ei H r |ϕξa (r − Ra)|2d r, (1.59)

where ϕξa (r − Ra) are the normalized one-electron wave functions corresponding
to the isolated atom. Within the considered in this chapter accuracy, the limits of
integration in (1.59) can be expanded to the infinite volume. We also introduce the
atomic scattering factors (ASF) Fa(H):

F(H) =
∑

a

Fa(H)ei H Ra ; Fa(H) =
∫

ei H rρa(r)d r;

ρa(r) =
occ∑

ξa

gξa |ϕξa (r)|2. (1.60)

which are directly connected with the electron density ρa(r) of the atom situated in
the point Ra . They are expressed through the one-electron wave functions ϕξa (r) of
the isolated atom and normalized by number of electrons Na in this atom:

Fa(0) = Na;
∑

a

Na = Nc. (1.61)

The accuracy of this approximation is defined by the overlapping integrals Iab

for the wave functions of electrons from different atoms, and the correction to the
scattering factor (1.59) is defined by the parameter:

ΔF(H) ∼ |Iab|; Iab =
∫
ϕ∗
ξa
(r)ϕξb (r − Rb + Ra)d r, b �= a, (1.62)

which is connected with the characteristic width of the one-electron zones [31].
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Another important renormalization of the coherent scattering factors is stipulated
by the oscillations of the atomic nuclei:

Ra = R(0)a + ζa, (1.63)

where the value ζa describes the deviation of nucleus from the equilibrium positions
R(0)a . In the quantum solid state theory the parameter ζa is expressed in terms of
operators of the phonon creation and annihilation [32].

The observed value of the scattering factor, being the function of the crystal
temperature T , is defined by the average on the phonon statistical distribution:

F̄(H, T ) = Sp

{
ρ̂ph(T, ζa)

∑

a

Fa(H)ei H(R(0)a +ζa)

}
. (1.64)

When the phonon spectrum ωp(κ) (p stands for the various branches of the
spectrum) is known, the averaging gives an additional factor, called Debye-Waller,
in the scattering amplitude of each atom [31]:

e−Wa(H,T ).

This factor takes into account the decrease of the elastic scattering amplitude due
to the probability of the inelastic processes of the phonon excitation in a crystal. If
the Boze-Einstein statistics for the phonon distribution is used, this factor can be
represented in the form [32]:

F̄(H, T ) =
∑

a

Fa(H)ei H R(0)a e−Wa(H,T );

Wa(H, T ) = − �

Ma

∑

μ,ν

Bμ,νHμHν, (1.65)

where Ma is the atomic mass, Hμ, (μ = 1, 2, 3) are the projections of the reciprocal
lattice vector on the basic vectors of the elementary cell; the tensor Bμ,ν does not
depend on the atom but does on the integral characteristics of the crystal:

Bμ,ν = Ω

(2π)3
∑

p

∫
ep
μep

ν

coth βp(κ)

ωp(κ)
dκ; βp = �ωp(κ)

kB T
. (1.66)

The values ep
μ(κ) are the projections of the polarization vector for the phonon branch

p on the basic vectors of the elementary cell; kB is the Boltzmann constant.
Another approximation for the scattering factors used in (1.60) is the calculation

of ASF for isolated atoms [29]. In this approximation, the expansion of the plane
wave [33] is used in formula (1.60):
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ei H r =
∞∑

l ′=0

(i)l
′
(2l ′ + 1) jl ′(Hr)Pl ′(cos Ĥ r). (1.67)

The expansion is performed over the spherical Bessel functions jl ′(Hr) and the
Legendre polynomials Pl ′(cos Ĥ r) depending on the angle between the vectors H
and r . Using this model, the ASF is represented in the following form:

Fa(H) = Fis(H)+ΔFan(H);
Fis(H) = 4π

∫
ρ(r)

sin Hr

H
rdr;

ΔFan(H) =
∫ unoccupied∑

ξa

∞∑

l ′=1

gξa |ϕξa (r, θa,φa)|2

× (i)l ′(2l ′ + 1) jl ′(Hr)Pl ′(cos Ĥ r)d r. (1.68)

The completely occupied (closed) electron shells in any atom contributes only
to the spherically symmetric part of the electron density ρ(r), and therefore the
isotropic part Fis(H) of ASF is defined by the scattering from all atomic electrons.
In general case, it exceeds essentially the anisotropic contributionΔFan to ASF which
includes the summation over unfilled shells only. Overlapping of the wave functions
from different atoms in a basic cell is important only for these electrons [29] and the
contributionΔFan should be taken into account together with the correctionΔF(H)
from the expression (1.62).

Thus, the basic part of the X-ray susceptibility consists of the scattering factor
which is the sum of ASF for the individual atoms. Each ASF is the Fourier image of the
spherically symmetric part of the atomic electron density. Unlike to the expression
(1.68), in the standard X-ray applications, the ASF is usually considered as the
function of the parameter s related to the transmitted scattering wave vector Q as:

Q = k′ − k; Q = 4πs; s = sin θ

λ
, (1.69)

where λ is the radiation wavelength, and 2θ is the scattering angle. The parameter s
is more useful for the practical applications because of with a rather good accuracy
it has a variation range in the limited interval for any atom 0 ≤ s ≤ 6 Ȧ−1. Using
these notations, the ASF is written as:

Fis(H) → F0(s) =
∫ ∞

0
ρ(r)

sin 4πsr

s
rdr. (1.70)

In order to calculate ASF from (1.70), it is necessary to choose the approximation for
the electron density ρ(r) in multi-electron atoms (ions). The most fundamental one
is the Hartree-Fock approximation for the one-electron wave functions [34], when
the wave functions are taken in the form of tables [35]. These tables are not very
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convenient for the practical usage, and it is very difficult to use this approach for
account of various corrections to ASF as well as for the atomic excited states and
variation of the electron configurations for atoms or ions in the external field.

In certain applications, the Thomas-Fermi model for ASF calculation, which
implements the electron density as a universal function in the whole range of the
nucleus charge Za and number of electrons Na [36, 37], is satisfactory [29]. How-
ever, this model does not take into account the shell oscillations of the electron
density and its behavior at small and large distances, and as a result does not provide
a sufficient accuracy for ASF calculation. Therefore, the analytical interpolation of
the Hartree-Fock data directly for the function F0(s) is mostly used. The typical form
of the interpolation is:

F0(s) =
4∑

j=1

a j e
−b j s2 + c, 0 ≤ s ≤ 2,

with a set of the parameters a j , b j , c which are individual for every atom or ion and
are chosen by numerical fitting of the Hartree-Fock data in the interval 0 ≤ s ≤ 2
[38]. By means of several additional parameters, this interpolation was generalized
in work [39] for the interval 2 ≤ s ≤ 6. The results of interpolation are represented
as the tables for the parameters corresponding to all atoms and some ions [29].

This approach is used in various software packages for calculation of the X-ray
susceptibility (for example, [40, 41]). Unfortunately this interpolation does not refer
to the wave functions and hence limits the ability of the physical interpretations.
Moreover, this method does not allow to calculate the above mentioned corrections
to ASF.

Recently a new model for ASF approximation was suggested in the works [42,
43] based on the analytical interpolation of one-electron wave functions by means
of the parameter set, which is interpreted as the effective charges of the electron
shells. This approach makes possible to calculate numerous characteristics of the
isolated atoms (ions) by using the universal analytical formulas, in a similar way as
in Thomas-Fermi model. The accuracy of this approach is comparable with the one
by the Hartree-Fock approximation. Analytical wave functions of the model describe
correctly the shell oscillations and the asymptotic behavior of the electron density
and therefore can be used for the calculation of various corrections to ASF.

As mentioned above, the main approximation for quantitative description of multi-
electron atoms is based on the Hartree-Fock model. All the electrons move in the
field of the self-consistent potential, which is calculated together with the wave func-
tions from the system of integro-differential equations [34]. There exist also other
numerical approaches for calculation of the electron structure of atoms, for exam-
ple, the method of effective potential [44] or suggested recently algorithm for the
direct numerical solution of the Schrödinger equation [45]. However, the analytical
approximations for the atomic wave functions are still of big interest for many appli-
cations [46, 47]. This approximation may be obtained by applying the interpolation
for the numerical results with a number of fitting parameters for each orbital [48].
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There exist effective analytical models for the atoms, which implement the wave
function of each electron as the Coulomb orbital [49] with phenomenological values
of effective charges or quantum defects (for example, [50]). These parameter [42] are
calculated in the framework of the operator method for solution of the Schrödinger
equation and an accurate analytical approximation for ASF is found. However, the
parameters of this approximation are individual for each atom or ion and the addi-
tional pre-calculated tables have to be used. In the paper [43], the generalization of
the shell model was suggested which allows a calculation of the effective charges
for any atom or ion by means of the universal formula. This approach results in the
effective analytical approximation for ASF and gives the possibility to calculate the
above mentioned corrections.

Here we consider briefly the microscopic basis for this model. The one-electron
Hamiltonian of the atom can be written in the following form (the Coulomb system
of units with e = � = m = 1 [49] is used in this paragraph):

Ĥσ =
∑

i

(
p̂2

i

2
− Z − σi

ri

)
. (1.71)

The eigenfunctions and the eigenvalues correspond to the solutions of the
Schrödinger equation for the hydrogen-like atom with different screening constants
σi for every electron. This model was used successfully in the very first papers on the
quantum mechanical description of the atom (for example, [51, 52]). The accurate
Hartree-Fock functions are shown to be very close to the Coulomb functions [48],
however, the model is not widely used as a Thomas-Fermi one for calculation of the
atomic characteristics. The reason is the operator (1.71), which is derived not from
the initial Hamiltonian of atom and thus no method exists to calculate the empiric
parameters σi for the atoms or ions. Different solutions for these problems were sug-
gested, for example, in the paper [53] the operator (1.71) was obtained by means of
virial theorem and in the paper [42] the effective charges were calculated on the basis
of the operator method. However, in both cases the parameters σi were calculated
for each atom and shell by individual numerical algorithm.

Unlike the other approaches, the considered here model defines the values Ze f f for
any electron and any atom (ion) by the universal analytical formula, which depends
on the nucleus charge and occupations of the one-electron quantum levels. To prove
this statement, we start from the Schrödinger equation for the non-relativistic atom
with N -electrons and nucleus charge Z :

ĤAΨΛ(X) = EΛΨΛ(X);

ĤA =
N∑

i=1

(
p̂2

i

2
− Z

ri
)+

N∑

j>i

N−1∑

i=1

Z

|r j − r i | . (1.72)
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Here the state vector depends on 4N variables, which are the electron coordi-
nates and spins X = (x1, x2, . . . xN ); xi = (r i , si ), and the quantum numbers
Λ = (λ1,λ2, . . .λN );λi = (ni , li ,mi , si ).

The general scheme of the operator method [54, 55] is used for the solution of
the Eq. (1.72), i.e. as a first step the orthonormalized set of the model functions
ψΛ(X,ΩΛ) depending on the variational parameters ΩΛ has to be chosen. The
different sets ψΛ(X,ΩΛ) should be used for the different quantum numbers Λ [54,
55]. The corresponding to Λ wave function to be found is expanded over the model
functions ψΛ(X,ΩΛ):

ΨΛ(X) = ψΛ(X,ΩΛ)+
∑

Λ′ �=Λ
CΛ′,ΛψΛ′(X,ΩΛ). (1.73)

The energy of this state and the coefficients of the expansion (1.73) are derived from
the system of nonlinear algebraic equations including matrix elements of the initial
Hamiltonian:

EΛ = HΛΛ +
∑

Λ′ �=Λ
HΛΛ′CΛ′,Λ;

HΛ′Λ1 =< ψΛ′(X,ΩΛ)|ĤA|ψΛ1(X,ΩΛ) >;
CΛ′,Λ = −[HΛ′Λ′ − HΛΛ]−1[HΛ′Λ +

∑

Λ1 �=Λ′ �=Λ
HΛ′Λ1CΛ1,Λ]. (1.74)

In according with the reference [54, 55], the successive iterations of the Eq. (1.74) are
converged even for the arbitrary choice of the zero approximation functions ψΛ(X).
Therefore, these functions are chosen here in the form of a simple product of the
one-particle Coulomb orbitals [48]:

ψΛ(X,ΩΛ) =
λmax∏

λi

φλi (Zλi , xi );

φλi (Zλi , xi ) = Cn,l,m Rnl(ri , Zn,l)Ylm(θi ,ϕi )χs;

λi = (n, l,m, s);
λmax∑

λi

1 = N , (1.75)

where Rnl(ri , Zn,l) are the hydrogen-like radial wave functions corresponding to the
charge Zn,l ; Ylm(θi ,ϕi ) are the spherical harmonics and χs are the spin functions of
the electron, Cn,l,m is normalization coefficient.

Similarly to the Thomas-Fermi model, such a choice of the function means that
the exchange interaction is neglected but the Pauli principle is taken into account
because of the quantum numbers of all electrons are different. Parameter λmax is
defined by the number N of the electrons and N �= Z for ions. In accordance
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with [56], this choice of the zeroth order wave functions leads to a good accuracy
for calculation of the atomic characteristics and permits to take analytically into a
account the correlation and exchange corrections.

We choose the quantum numbers λi in accordance with an order of occupations
of one-electron states, and the increasing sequence of the integral numbers (λi →
i; λmax → imax ) is associated with this sequence. Then the zeroth approximation
for energy depends on the set of variational parameters Ò {Zi } and is defined by the
formula:

E (0)Λ ({Zi }) =
imax∑

i=1

< φλi (Zi , x)|[ p̂2

2
− Z

r
]|φλi (Zi , x) >

+
imax∑

i=1

imax∑

j>i

< φλi (Zi , x1),φλ j (Z j , x2)| 1

|r1 − r2| |φλi (Zi , x1),φλ j (Z j , x2)>.

(1.76)

This expression was used in the paper [54, 55] for the numerical calculation of the
effective charges in the zeroth approximation of the operator method. It is possible
to find analytically the approximate variational solution for these values, too. The
problem only is a right choice of a sufficiently good approximation for the matrix
elements of two-particle operator. Here, the following fact is used: for the hydrogen-
like orbits their average radius is defined mainly by the principal quantum number
and depends weakly on other quantum numbers, and thus the following estimation
gives a very good accuracy:

< φn1,l1,m1,s1 |r |φn1,l1,m1,s1 >	< φn2,l2,m2,s2 |r |φn2,l2,m2,s2 >, if n1 < n2;
< φn1,l1,m1,s1 |r |φn1,l1,m1,s1 >≈< φn2,l2,m2,s2 |r |φn2,l2,m2,s2 >, if n1 = n2. (1.77)

This estimate introduces the following one-particle approximation for the matrix
elements of two-particle operator:

Vλi ,λ j ≡< φλi ,φλ j |
1

|r1 − r2| |φλi ,φλ j >≈< φλ j |
1

r2
|φλ j >, if ni < n j ; (1.78)

Vλi ,λ j ≈ 1

4
[< φλi |

1

r1
|φλi > + < φλ j |

1

r2
|φλ j >], if ni = n j . (1.79)

Formula (1.79) has a simple physical interpretation: for each electron in the atomic
layer with the principal number n j all the electrons from internal layers with n j > ni

give the identical (equal to unity) contributions to the nucleus charge screening that
corresponds to the result of the classical electrodynamics for spherically symmetric
charge distribution. At the same time, each additional electron in the same layer
(with ni = n j ) contributes to the screening with the value equals to 1/2. After
the symmetrization on the coordinates of the electrons in the layer, the coefficient
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in (1.79) becomes equal to 1/4. In this electrostatic approximation, the Hamiltonian
of the zeroth order takes one-particle form. The approximation (1.78)–(1.79) for
the matrix elements can be essentially improved if the dependence of the screening
charge of every electron on its orbital momentum is also taken into account. This
dependence is found in a general form with some undefined numerical coefficients
if the symmetry of the group SO(4, 2) for atomic Hamiltonian is used [57]. Then
the following approximation for the diagonal matrix elements of the two-particle
operator can be used:

V A
λi ,λ j

=
(

1 − α

2(2li + 1)
− β

li (li + 1)

n2
j

)
< φλ j |

1

r2
|φλ j >, ni < n j ; (1.80)

V A
λi ,λ j

= 5

16

[(
1 + 1

6
+ β

li (li + 1)

n2
i

)
< φλi |

1

r1
|φλi >

+
(

1 + 1

6
+ β

l j (l j + 1)

n2
j

)
< φλ j |

1

r2
|φλ j >

]
, ni = n j , (1.81)

with still undefined parameters α and β, which will be discussed below.
Besides, a small modification of the screening coefficient 1/4 → 5/16 for the

electrons in the same layer corresponds to well known variational solution for the
effective charge in two-electron atom [49]. In the result, the following expression
defines the energy of the state with the given set of the quantum numbers in zeroth
approximation of the operator method:

E (0)(Z , N )Λ ≈
∑

λ

gnlms < Rn,l(Zn,l , r)|
[ p̂2

2
− Zn,l

r

]
|Rn,l(Zn,l , r) >=

−
∑

λ

gnlms
Z2

n,l

2n2 ;

Zn,l = Z −
n−1∑

n1=1

n1−1∑

l1=0

l∑

m1=−l

∑

s1=±1

gn1l1m1s1κn,l1

− 5

16

[ n−1∑

l1=0

l∑

m1=−l

∑

s1=±1

gnl1m1s1κ
′
n,l1 − κ′

n,l

]
;

κn,l = 1 − α

2(2l + 1)
− β

l(l + 1)

n2 ; κ′
n,l = 1 + 1

6
+ β

l(l + 1)

n2 ,

∑

λ

≡
nmax∑

n=1

n−1∑

l=0

l∑

m=−l

∑

s=±1

(1.82)
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where the occupation numbers gnlms = 1 for the filled and gnlms = 0 for empty
one-electron states. These numbers are normalized by the condition:

nmax∑

n=1

lmax∑

l=0

l∑

m=−l

∑

s=±1

gnlms = N . (1.83)

In general case, the nonzero values gnlms are defined by the occupations of one-
electron states for the considered atom or ion. Parameter β is calculated uniquely by
satisfying the formula (1.82) to the asymptotic expression for the energy of neutral
atom in the limit Z → ∞ (for example, [58, 59]):

E = −0, 768745Z7/3. (1.84)

In order to find this asymptotic expression, the sums over n, l in formulas (1.82) and
(1.83) have to be replaced by the integrals and the terms with the maximal degree of
Z have to be extracted:

nmax ≈
(

3

2
Z

)1/3

; E (0)(Z , Z) ≈ 9

28
122/3 Z7/3

(
1 + 1

10
β + 1

50
β2

)
. (1.85)

By comparing the formula (1.85) with the expression (1.84) the value β ≈ 0, 417472
is calculated. Thus, the only undefined parameter not depending on Z in the Hamil-
tonian (1.73) is the value α, which makes the correction of the screening value
due to the presence of equivalent electrons. The mean squared radius of atoms
rA = √

< r2 >, being an important for many applications [34], proves to be most
sensitive to the value α parameter. In the considered model the parameter α was
chosen provided the function rA(Z) is the best approximation for the same func-
tion calculated on the basis of Hartree-Fock model [60]. Finally, the value found is
α ≈ 0, 576.

Thus, the wave functions (1.75) with the effective charges calculated from the
analytical formulas (1.82) make it possible to estimate in a simple way and with a
good accuracy the numerous characteristics of atoms and ions with arbitrary Z and
N . Below the comparison is given for some physical values calculated using the
analytical formulas with the numerical results of the Hartree-Fock [60] and Thomas-
Fermi [58, 59] models.

Figure 1.2 shows the dependence of the total energy of the neutral atoms on
the nucleus charge and Fig. 1.3 shows the functions rA(Z) for all mentioned above
models. The relative deviation of the analytical results from the Hartree-Fock model
is not exceeding 3 %.

Figures 1.4 and 1.5 show the radial distributions of the electron density for several
atoms. The analytical approach interpolates well the Hartree-Fock numerical data in
the entire range of the radial coordinate and shows the correct asymptotic behavior
of the density at small and large distances.
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Fig. 1.2 The total energy of
neutral atoms as the func-
tion of nucleus charge solid
line corresponds to operator
method and dashed line to
Hartree-Fock results

Fig. 1.3 Mean squared radius
of neutral atoms as the func-
tion of nucleus charge: solid
line correspond to operator
method and dashed line to
Hartree-Fock results

Figures 1.6 and 1.7 refer to ions of He and Li series, respectively, and demon-
strate the high precision of the ionization potentials I P(Z , N ) = Etot (Z , N ) −
Etot (Z , (N − 1)) calculated in the framework of the considered model.

The considered interpolation for the wave functions delivers the analytical expres-
sions for the isotropic part of ASF (1.70) for any ion or atom. In the one-electron
approximation the isotropic electron density is defined by the population numbers gnl

of the atom or ion shells and the normalized radial wave functions Rnl (Znl , r/aB) cor-
responding to the Coulomb orbitals with the effective charges Znl , aB = 0.529177A
is the Bohr radius:

ρ(r) = 1

4π

∑

nl

gnl |Rnl(Znl , r/aB)|2. (1.86)

The integral (1.70) from this equation can be calculated analytically in the following
form [61]:
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Fig. 1.4 Radial distributions
of the electron densities for
Bi atom: solid line is oper-
ator method; dashed line
is Hartree-Fock model and
dotted line is Thomas-Fermi
model

Fig. 1.5 Radial distributions
of the electron densities for
Fe atom: solid line is oper-
ator method, dashed line
is Hartree-Fock model and
dotted line is Thomas-Fermi
model

F0(s) =
∑

nl

gnl Fnl(ξnl , q); ξnl = 2Znl

n
, q = 4πsaB, (1.87)

where the partial ASF values Fnl(ξnl , q) are defined by the formula:

Fnl(ξnl , q) = −ξ2l+3
nl

(n − l − 1)!(n + l)!
2n

×
n−l−1∑

k=0

n−l−1∑

k=0

ξk+m
nl

(2l + k + 1)!(2l + m + 1)k!m!
d2l+1+k+m

dξ2l+1+k+m

1

ξ2
nl + q2

. (1.88)

The explicit formulas for ASF of atoms from the periodical system is listed in the
paper [42], for example, for atoms of Ne and Ca:
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Fig. 1.6 Absolute values
of the ionization potentials
for He series: solid line is
operator method; stars are
Hartree-Fock results Ve,l ait net op

noit azi noI

Fig. 1.7 Absolute values
of the ionization potentials
for Li series: solid line is
operator method; stars are
Hartree-Fock results
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F10(ξ10, q) = 16Z4
10

(4Z2
10 + q2)2

;

F20(ξ20, q) = Z4
20(Z

4
20 − 3q2 Z2

20 + 2q2)

(Z2
20 + q2)4

. (1.89)

The graphical dependence of ASF calculated from formula (1.87) vs parameter
s = sin θ/λ is shown in Fig. 1.8 for the atoms of Si, Ba, Cu and Mn3+ ion. These
simulations approximate the Hartree-Fock numerical values with high accuracy [29].
The formulas above can also be applied for the ions with core in the internal shell,
which is important in the case of the interaction of the femto-second pulses from
X-ray free electron laser (XFEL) with the matter [4]. Figure 1.9 demonstrates a good
coincidence of the analytical results with the numerical ones [62].
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Fig. 1.8 Comparison of ana-
lytical (lines) and numerical
(dots) results for ASF of Si,
Ba, Cu atoms and Mn3+ ion

(a)

(c)

(b)

(d)

Fig. 1.9 Comparison of
analytical (solid line) and
numerical (dotted line) results
for calculation of ASF for
internal shells of ions C with
core hole

The one-electron functions (1.75) accounts for the corrections (1.62) to the scat-
tering factor of the basic cell because of the overlap of the wave functions of electrons
in the external shells from the different atoms. The following procedure for the cal-
culation of this correction in the crystals with the diamond-type basic cell (C; Si; Ge)
can be considered [42]. In order to take into account the influence of the neighboring
atoms, the states with the lowest energies should be found using the linear combina-
tions of the wave functions of 4 electrons from the external shell (n0; n1) from each
atom. As a result, the lowest levels are found to correspond to the collective states,
where all electrons have parallel spins and are described by the following set of the
functions [29]:

ψ1 = 1

2
[Rn0Y00 + Rn1(−

√
2Y11 + Y10)];
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ψ2 = 1

2
[Rn0Y00 + Y11(

√
2Y11 − Y10)];

ψ3 = 1

2
[Rn0Y00 + Rn1(−

√
2Y11 − Y10)];

ψ4 = 1

2
[Rn0Y00 + Rn1(

√
2Y11 + Y10)], (1.90)

where Ylm are the spherical harmonics and Rnl are the radial wave functions of the
external electrons corresponding to the isolated atoms. Thus, the external layer gives
the following contribution to the electron density:

ρn(r) =
4∑

j=1

|ψ j |2 = 1

4π
[R2

n0 + 3|Rn1|2],

that differs from the analogous value in the isolated atom:

ρ(0)n = 1

2π
[R2

n0 + R2
n1].

Figure 1.10 shows the change of ASF of each atom due to the influence of other
atoms in the elementary cell:

ΔF0(s) = Fn1(ξn1, q)− Fn0(ξn0, q), (1.91)

with n = 2 for C, n = 3 for Si, n = 4 for Ge. In spite of rather small correction
to the absolute value of ASF, it could be essential for the analysis of the forbidden
reflections [63].

The direct approximation for the wave function can also be important for the analy-
sis of the changes in the electron density due to the effect of external or inter-crystal
fields [42]. For instance, the additional Hamiltonian of the spin-orbit interaction for
atoms (C; Si; Ge) in the ground state under the action of the magnetic field Ξ directed
along z axis is defined as [49]:

Fig. 1.10 Correction to ASF
due to the influence of the
neighboring atoms (C - solid
line, Si - dashed line, Ge -
dotted line)
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δ Ĥ = A(L̂ Ŝ)+ μB(L̂ z + 2Ŝz)Ξ, (1.92)

where A > 0 is the constant of the spin-orbit interaction for two external p-electrons
with the total orbital L̂ and spin Ŝ momenta, μB is the Bohr magneton. This operator
does not change the effective charges of the radial wave functions but effects on the
angular distribution of the electron density. Eigenfunctions of the operator (1.92)
are defined by its diagonalization with the eigenfunctions of the operators L̂, Ŝ -
|ML ,MS >. Then the ground state follows from the following linear combination:

|Φ0 >= c1|1,−1 > +c2|0, 0 > +c3| − 1, 1 >;
c1 = 1√

3

(
1 + ξ − 2

9
ξ2

)
, c2 = 1√

3

(
1 − 5

9
ξ2

)
,

c3 = − 1√
3

(
1 − ξ − 2

9
ξ2

)
; ξ = μBΞ

A
. (1.93)

These wave functions account for the anisotropic part in the electron density and
for the anisotropic contribution (1.68) to ASF which is proportional to the second
Legendre polynomial considered as the function of the angle θ between z axis and
vector H :

ΔFan(H) = −10

9
ξ2 P2(cos θ) fm(s);

fm(s) =
∫ ∞

0
r2 R2

nl(r)(
π

2qr
)1/2 J5/2(qr)dr; q = 4πaBs, (1.94)

where J5/2(qr) is the Bessel function.
Figure 1.11 shows the functions fm(s) for atoms Si and Ge. When the exter-

nal magnetic field is strong, the anisotropic part of ASF is comparable with the
anomalous dispersion corrections and may bring the important information on the
inter-crystalline fields.

Fig. 1.11 ASF correction in
the external magnetic field
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1.4 Numerical Calculation of Debye-Waller Factor

Debye-Waller factor (DWF), see Eq. (1.66), gives an essential contribution to the
X-ray susceptibility. Most of software packages [40, 41] calculate DWF on the basis
of the Debye model for the phonon spectrum [31] and the phenomenological values
of the Debye temperature ΘD of the crystals. However, the experimental value of
ΘD is known for relatively few crystals [29]. When the experimental value of ΘD

is unknown, the average value of the Debye temperatures of the crystals for all
atoms in the basic cell is used without a sufficient theoretical argumentation. Thus,
the development of a method for the evaluation of ΘD for arbitrary crystals is an
actual problem. Moreover, some diffraction experiments require calculations of the
DWF taking into account the anisotropy factors and different branches of the phonon
spectrum. The experimental density of the phonon states [64] are known for only a
few materials; the situation for most crystalline structures however is unclear. Here
we consider the method for simulation of the force matrix for an arbitrary crystal,
which realizes both the evaluation of ΘD and the microscopic calculation of DWF
with good accuracy [42].

In the case, when DWF is characterized by a single parameter ΘD , the harmonic
oscillations of atoms in a crystal cell result in attenuation of the elastic scattering
amplitudes by the value of DWF. In the isotropic approximation, this factor for the
atom with the index p in the crystallographic unit cell is defined by the formula:

e−2Wp = e−Bp(T )s2
. (1.95)

Here s = sin θB
λ and the main contribution to the temperature coefficient B(T ) is

supposed to be introduced by the acoustic branch of the phonon spectrum, so the
result can be presented in the following way [32]:

Wp(T ) = 3h2

2MpκBΘ

∫ 1

0
x coth

(
xΘ

2T

)
dx, (1.96)

where κB is the Boltzmann constant and the Debye temperature is defined by the
expression:

ΘD = �ukD

κB
; kD =

(
6π2

Ω0

)1/3

. (1.97)

This is a result of linear interpolation of the dispersion law for acoustic phonons
ω(k) � uk within the Debye sphere with the radius kD , which depends on the
volume of the unit cell of the crystalΩ0. Thus, in the considered approximation, the
value ΘD or its related sound velocity u is the only parameter influencing DWF.

From the microscopical point of view, the parameter u should be found from the
dispersion equation for the phonon frequencies defined by the harmonic force matrix
of the crystal. Because the approximation of pairwise interactions is satisfactory for
the real density of atoms in crystals [27], a realistic two-particle potential [65] can be
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used for the construction of the force matrix. The distance between two neighboring
atoms in the crystal cell is different from the equilibrium distance in the molecule
consisting of the same atoms. However, according to the researches in chemical
crystallography, this difference is small due to the fact that the atomic binding in the
crystals is mainly defined by the same external electron shells as in the molecules
[66]. Thus, since a model potential approximates the electron term of two bound
atoms in some neighborhood of the equilibrium distance R0, it can also be used for
finding the force matrix elements at distances corresponding to the atomic positions
within the unit cell of a real crystal. In the approximation of pairwise interaction, the
element of the force matrix is defined by the following formula [27]:

D pq
i j = κpq

[
(Rpq − R0pq)

Rpq
δi j + R0pq

Rpq
n pq

i n pq
j

]
; npq = R pq

Rpq
. (1.98)

Here upper indices in the force matrix enumerate the different atoms in the cell
and lower ones correspond to the atomic shifts from their equilibrium positions
in Cartesian coordinates; κpq and R0pq are the harmonic force constants and the
equilibrium distance in the molecule corresponding to the atom pair with indexes
(pq), respectively; vector R pq is the real distance between these atoms in the crystal
cell.

In this section, we use the Debye interpolation for the phonon spectrum and
neglect the anisotropy effects. This means that the standard dispersion equation for
the acoustical phonon branch [27] should be averaged over all directions in the space
of phonon wave vectors as well as over different directions in the unit cell of the direct
space. If the approximation of the nearest neighbors is used for the force matrix of
the crystal, the average sound velocity can be estimated by the following simple
formula:

u = 2πca0ν̄

3
√

2
; a0 = (Ω0)

1/3; ν̄ = 1

σ

σ∑

p=1

νAp Bp . (1.99)

Here a0 represents the average size of the unit cell; the summation is over all different
pairs of nearest neighbor atoms in the cell, whereσ is a number of such a pair; νAp Bp is
the oscillation frequency in cm−1 for a pair of atoms with the index p; the numerical
coefficient 1/3 in the formula (1.99) is due to averaging over all the directions.
Substituting the expression (1.99) into the definition of Debye temperature (1.97), a
universal correlation between ΘD and ν̄ can be found:

ΘD = hc

3
√

2κB
(6π2)1/3ν̄. (1.100)

The formula (1.100) corresponds to the known interpretation of the Debye temper-
ature of the crystal; its value is proportional to the characteristic phonon frequency.
In a standard unit system the numerical coefficient in the formula (1.100) is close to
unity:
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ΘD[K ] � ν̄[cm−1]. (1.101)

If a recipe for the calculation of the harmonic frequency for any given pair of atoms
is known, then this formula can be used for a simple evaluation of the Debye tem-
perature of an arbitrary crystal. The elastic constant κA describing the interaction
between the identical atoms in two-atomic homo-nuclear molecules and the harmonic
approximation for interatomic potential V (R) are expressed as [67]:

κA = (2πνAc)2 MA,

VA(R) � −E0 + 1

2
κA(R − R0)

2. (1.102)

Here the interatomic potential V (R) corresponds to the ground electron term with
the binding energy E0 at equilibrium distance R0; νA is the principal oscillation
frequency of the homo-nuclear molecule in cm−1 composed from two identical
atoms with the mass MA; c is the velocity of light. Theoretical calculations of the
constant κA ab initio with a spectroscopic accuracy for homo- and hetero-nuclear
molecules requires some complicated quantum-mechanical calculations of electron
terms [68]. However, so-called realistic potentials for atom-atom interaction like the
Lennard-Jones potential, can provide a sufficient accuracy for statistically averaged
macroscopic characteristics of molecular gases [65]:

VA(R) = βA

R12 − αA

R6 . (1.103)

The parameter βA corresponds to the repulsive part of the potential at small distances,
and the constantαA is proportional to the product of squared dipole moments of inter-
acting atoms and simulates the Van der Waals attraction at large distances [49]. The
Lennard-Jones potential does not provide the detailed description of electron terms
in the entire range of the interatomic distance [68], and therefore it can not be used
for precise evaluation of the dissociation energy of the molecule. Nevertheless, it
describes quite well the behavior of real potentials near their minima [65], which are
of special interest for us in the scope of the harmonic approximation. The above men-
tioned characteristics of the harmonic potential are expressed through the constants
αA and βA as

R0A =
[

2βA

αA

]1/6

; E0A = − α2
A

4βA
; κA = 36αA

[
αA

2βA

]4/3

. (1.104)

Actually, the temperature factor in structure amplitudes is the result of statistic aver-
aging and therefore the fine details of the potential are not essential. With analogous
accuracy the values αA and βA can be used for a two-atom potential in order to eval-
uate the Debye temperature. However, the experimental data received both from the
cross-sections and from the oscillation spectra are known for a relatively small set
of different atomic pairs. Therefore the general recipe for the estimation of αAB and
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βAB for arbitrary interacting atoms A and B must be provided. Such a general recipe
can be derived from the scaling dependence of the interaction potential established
in the framework of statistic theory of atom [69]. A repulsive part of the potential for
two different atoms (ions) has been calculated as a geometric average of interaction
potentials V (rep)

A (R) and V (rep)
B (R) taken from the independent pairs AA and B B

of identical atoms:

V (rep)
AB (R) =

√
V (rep)

A (R)V (rep)
B (R). (1.105)

These correlations fitted well the experimental data in a large range of interatomic
distances [69].

Considering the Eq. (1.105) independently for large and small interatomic dis-
tances, the valuesαAB ,βAB for interactions between different atoms can be evaluated
by means of the simple formulas based on the same averages:

βAB � √
βAβB; αAB � √

αAαB . (1.106)

Substituting the Eqs. (1.106) into the formulas (1.103) and (1.104), we deduce
the combinative rules for the evaluation of potential parameters for hetero-nuclear
diatomic molecules:

R0AB = √
R0A R0B; νAB =

[
νAνB

MA + MB

2
√

MA MB

]1/2

;

E0AB = √
E0A E0B; κAB = (2πcνAB)

2μAB; μAB = MA MB

MA + MB
, (1.107)

using the experimental data for the homo-nuclear molecules. Here νA and νB are the
principal oscillation frequencies of the molecules A2 and B2; νAB corresponds to the
molecule AB and the difference in the reduced masses for homo- and hetero-nuclear
molecules is taken into account.

Certainly, these combinative rules are semi-phenomenological due to the choice
of the model potential and the lack of a sufficient theoretical ground for the expres-
sion (1.105). The effectiveness and accuracy of these relations can be investigated
by applying them to diatomic molecules with known parameters. Table 1.1 lists all
the necessary parameters for diatomic homo-nuclear molecules from the reference
book [67].

The comparison of the calculated binding energy E0 presented in the table with
the energy of dissociation [67] is rather formal in our context. This is because the
Lennard-Jones potential is not a good model for the electron term for all interatomic
distances. In fact only the parameters ν and R0 are important for the presented model
since they exactly define the behavior of the potential in the harmonic approximation.
The parameters for molecules, marked by the symbol (*), are absent in [67] and
we calculated these values by means of the combinative rules (1.105) based on
experimental data for materials containing these atoms along with other ones.
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Table 1.1 Parameters of diatomic homo-nuclear molecules [67]

Atom ν, cm−1 E0, eV R0, Å

H 4401 4.48 0.74
He 1861 2.36 1.04
Be∗ 1343 13.32 1.39
B 1051 3.02 1.59
C 1854 6.21 1.24
N 2358 9.76 1.10
O 1580 5.12 1.21
F 916 1.60 1.41
Ne 14 0.00 3.10
Na 159 0.72 3.08
Mg 190 0.05 3.89
Al 350 1.55 2.47
Si 510 3.21 2.25
P 780 5.03 1.89
S 726 4.37 1.89
Cl 560 2.48 1.99
Ar 26 0.01 3.76
K 92 0.51 3.90
Ca 241 0.13 4.28
Sc 42 1.65 2.40
Ti∗ 489 1.30 2.17
V∗ 552 2.48 2.09
Cr 475 1.56 2.17
Mn 110 0.23 2.59
Fe 218 1.06 2.04
Co 365 1.69 3.20
Ni 286 2.36 2.96
Cu 264 2.03 2.22
Zn∗ 329 1.78 3.41
Ga∗ 219 1.40 2.43
Ge∗ 336 2.82 2.16
As 429 3.96 2.10
Se 430 3.16 2.17
Br 325 1.97 2.28
Kr 24 0.02 4.03
Rb 57 0.49 3.79
Sr∗ 202 5.82 3.05
Y∗ 282 1.62 –
Zr∗ 423 12.05 8.41
Nb 280 11.89 2.36
Mo 370 4.89 –
Tc – – –
Ru∗ 338 3.41 2.17
Rh∗ 363 2.92 2.09
Pd∗ 91 0.73 3.16

(continued)
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Table 1.1 (continued)

Atom ν, cm−1 E0, eV R0, Å

Ag 192 1.66 2.59
Cd∗ 164 0.08 4.28
In 142 1.01 2.86
Sn∗ 315 1.99 2.78
Sb 272 3.09 2.34
Te 251 2.68 2.56
I 214 1.54 2.66
Xe 30 0.02 4.36
Cs 29 0.39 4.47
Ba∗ 150 11.26 3.25
La∗ 257 2.50 2.83
Ce∗ 886 2.50 2.74
Pr∗ 240 11.59 –
Nd – 16.02 –
Pm – – –
Sm – 7.20 –
Eu∗ 166 11.43 –
Gd∗ 216 16.84 –
Tb 248 1.32 –
Dy – 13.13 –
Ho 251 0.82 3.11
Er – 14.50 –
Tm – 6.49 –
Yb 162 0.17 2.89
Lu 246 10.11 2.63
Hf 330 13.11 2.44
Ta 365 13.15 2.36
W 385 9.04 –
Re 290 – –
Os 260 – –
Ir 279 6.16 2.36
Pt 218 6.35 2.28
Au 191 2.30 2.47
Hg 36 0.07 3.30
Tl 102 0.90 3.07
Pb 161 0.82 3.03
Bi 156 3.09 3.07
Po 155 1.90 –
Th 249 – –
U 207 7.61 –

Figures 1.12 and 1.13 show the comparison of experimental [67] parameters of
heteronuclear molecules with their theoretical values, calculated according to the
combinative rules of (1.105). X-axis at these pictures represents the experimen-
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tal values and y-axis defines the theoretical values. Thus, ideal correspondence of
experiment and theory should result in situation of all the points on a single straight
line.

To prove the described above theory, about two hundred different molecules
described in [67] have been examined. Despite the large variation in the range of
absolute values for real molecule parameters, the evaluation of these values using
the combinative rules is rather effective: the mean square error is 3 % when estimat-
ing R0 and 8 % for ν. The largest deviation reaches 30 % and are related to a few
molecules with the hydrogen atom, for which the statistical evaluations are not a good
approximation. The formula derived can also be used for a rough estimation of the
dissociation energy; the mean square error for this parameter is about 25 % because
of the above mentioned reasons. The corrections to the parameters considered for
interacting ions can be estimated in the framework of Thomas-Fermi model [69].

Fig. 1.12 Comparison of the
calculated with (1.105) and
experimental values of the
equilibrium distances RAB for
diatomic molecules

Fig. 1.13 Comparison of the
calculated with (1.105) and
experimental values of the
principal frequencies νAB for
diatomic molecules
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Table 1.2 Comparison of the theoretical Θth and experimental Θexp Debye temperatures

Cr ystal Cell Θ
exp
D , K Θ th

D , K ε

min max

Cu f.c.c. 304 342 264 0.101
Ag 212 220 192 0.059
Au 155 190 191 0.051
Ca 220 230 241 0.034
Sr 148 171 202 0.118
Al 375 428 350 0.069
Th 145 170 249 0.225
Pb 68 105 161 0.301
V 300 413 552 0.215
Nb 252 301 280 0.006
Ta 230 245 365 0.212
Ni 375 476 286 0.196
Rh 315 370 363 0.029
Pd 263 280 91 0.498
Ir 285 – 279 0.011
Pt 225 248 218 0.041
Li b.c.c. 277 430 351 0.004
Na 146 180 159 0.012
K 100 163 92 0.177
Rb 58 85 57 0.113
Cs 42 54 29 0.247
Ba 115 – 150 0.132
Cr 405 485 475 0.033
Mo 360 388 370 0.005
W 270 384 385 0.081
Fe 355 467 218 0.307
C Diamond 1800 2242 1854 0.043
Si 505 685 510 0.077
Ge 211 400 336 0.048
Sn 260 – 315 0.096
Be h.c.p. 1000 1376 1343 0.061
Mg 290 342 190 0.249
Zn 200 305 329 0.132
Cd 120 172 164 0.058
La 132 152 257 0.288
Gd 152 – 216 0.174
Tl 96 100 102 0.020
Ti 342 430 489 0.118
Zr 250 288 423 0.223
Hf 213 – 330 0.215
Re 275 310 290 0.004
Co 385 – 365 0.027
Ru 400 426 338 0.100

(continued)
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Table 1.2 (continued)

Cr ystal Cell Θ
exp
D , K Θ th

D , K ε

min max

Os 250 256 260 0.014
B Tetragonal 1250 – 1051 0.086
In 78 129 142 0.157
Sn 163 258 315 0.199
Hg Rhombohedral 37 100 36 0.311
As 224 285 429 0.255
Sb 140 200 272 0.231
Bi 62 120 156 0.263
U Orthorhombic 200 – 207 0.017
Ga 125 240 219 0.091
Br 110 – 325 0.494
I 106 – 214 0.338
LiH B1 815 – 1525 0.303
LiF 650 685 602 0.052
LiCl 463 – 515 0.053
LiBr 387 – 458 0.084
LiI 331 – 411 0.108
NaF 439 – 382 0.069
NaCl 270 300 301 0.027
NaBr 200 243 249 0.058
NaI 151 198 217 0.109
KF 321 333 299 0.058
KCl 218 – 227 0.020
KBr 152 – 178 0.079
KI 115 200 152 0.018
RbF 238 – 260 0.044
RbCl 176 – 187 0.030
RbBr 128 – 136 0.030
RbI 108 – 111 0.014
CsF 184 – 200 0.042
AgCl 130 143 352 0.441
PbS 230 – 414 0.286
PbSe 168 – 278 0.247
PbTe 139 – 203 0.187
MgO 750 890 553 0.194
CsCl B2 166 – 141 0.081
CsBr 119 – 98 0.097
CsI 93.6 – 78 0.091
TlCl 125 – 283 0.387
TlBr 114 – 192 0.255
AgI B3 120 183 203 0.145
GaAs 314 – 306 0.013
GaSb 233 – 248 0.031
ZnS 300 – 504 0.254

εaver = 0.135
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The Table 1.2 gives a comparison between experimental Debye temperaturesΘexp
D

and values calculated with the formula (1.101). Practically all calculated values of
Θ th

D are within ±10 % of experimentally reported Debye temperatures determined
by different methods [29]. Figure 1.14 is a graphical representation of the Table 1.2
in the coordinates (Θexp

D ;Θ th
D ).

The presented method for microscopic simulation of the harmonic potential for
arbitrary pair of atoms gives a recipe for an accurate calculation of DWF. The accuracy
is provided by the optical branches of the phonon spectrum and anisotropy of DWF
in the crystals with the polyatomic unit cell. The anharmonic effects are neglected in
this case and the interaction between atoms in neighboring cells are only taken into
account when calculating DWF.

In general, every force matrix element includes four components (Γ , X, Y, Z),
which are described as follows:

(Γ ): Contribution of the atoms situated in the same unit cell. These elements
of the force matrix are denoted by Γ α,β

i, j . Here lower indices correspond to usual
Cartesian components (i, j = 1, 2, 3) and upper ones enumerate s atoms in the same
cell (α,β = 1, . . . , s). The unit cell is assumed to consist of s1 atoms of one type, s2
atoms of other type etc., where s1 + s2 + · · · = s. The distance between some atom
with number α1 and all the atoms of the same type in the cell is expressed as:

R11
α1,β1

=
√√√√

3∑

i=1

(xα1
i − xβ1

i )
2a2

i ,

where the dimensionless atom coordinates xi are measured in fractions of the corre-
sponding basic vectors ai of the crystal. In the framework of the considered approx-
imation, the only least distances are kept and the number of them defines the coor-
dination number for this type of atoms [27]:

Fig. 1.14 Comparison of
the experimental Θexp

D and
calculated Θ th

D values of
the Debye temperatures for
crystals
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l1, 1 ≤ l1 ≤ s1; 1 ≤ α1 ≤ s1; 1 ≤ β1 ≤ l1.

The analogous procedure delivers the distances and the coordination numbers for
atoms of different types:

R pq
αp,βq

, 1 ≤ αp ≤ sp; 1 ≤ βq ≤ l pq ,

where l pq is the number of atoms of the type q closest to the atom of the type p. A
one-cell contribution to elements of the force matrix is calculated by the Eq.(1.98):

Γ
α,β

i, j → Γ
αp,βq

i, j = κpq(x
αp
i − x

αq
i )(x

αp
j − x

αq
j )ai a j [R pq

αp,βq
]−2. (1.108)

Here κpq are the harmonic constants for the interaction between atoms of type p and
q, calculated by means of the Eq. (1.107).

(X,Y,Z): 3 contributions from atoms in neighboring cells. The distance to these
atoms can be found by coordinate translations by one of the basis lattice vectors:

(X R)pq
αp,βq

=
√
(x
αp
1 − x

βq
1 − 1)2a2

1 + (x
αp
2 − x

βq
2 )2a2

2 + (x
αp
3 − x

βq
3 )2a2

3;

(Y R)pq
αp,βq

=
√
(x
αp
1 − x

βq
1 )2a2

1 + (x
αp
2 − x

βq
2 − 1)2a2

2 + (x
αp
3 − x

βq
3 )2a2

3;

(Z R)pq
αp,βq

=
√
(x
αp
1 − x

βq
1 )2a2

1 + (x
αp
2 − x

βq
2 )2a2

2 + (x
αp
3 − x

βq
3 − 1)2a2

3 ,

here the same approximation of the nearest neighbors has been used. If the pair of
atoms of selected type has been already encountered in the group Γ of the initial
cell, then the same pairs in the groups (X R), (Y R), (Z R) are taken into account only
when the inequalities ({S}R)pq

αp,βq
≤ R pq

αp,βq
, {S} = X,Y, Z are fulfilled. After such

a selection procedure, the additional contributions to the force matrix are calculated
as follows:

X
αp,βq
i, j = κpq(x

αp
i − x

αq
i − δi1)(x

αp
j − x

αq
j − δ j1)ai a j [(X R)pq

αp,βq
]−2;

Y
αp,βq
i, j = κpq(x

αp
i − x

αq
i − δi2)(x

αp
j − x

αq
j − δ j2)ai a j [(Y R)pq

αp,βq
]−2;

Z
αp,βq
i, j = κpq(x

αp
i − x

αq
i − δi3)(x

αp
j − x

αq
j − δ j3)ai a j [(Z R)pq

αp,βq
]−2,

(1.109)

with δi j as the Kronecker symbol.
The next step is the calculation of the phonon eigenfrequencies. Taking into

account a translational symmetry of the crystal in the equations for small atomic
oscillations in the conventional way [27], the equations of motion for the phonon
variables ξ

αp
i (k) and frequencies are:
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Mpω
2ξ
αp
i =

∑

βq , j

Γ
αp,βq

i, j (ξ
αp
i − ξ

βq
j )+

1

2

∑

βq , j

X
αp,βq
i, j (ξ

αp
i − ξ

βq
j eik1a1)+

1

2

∑

αq , j

X
αq ,βp
i, j (ξ

αp
i − ξ

βq
j e−ik1a1)+ T r{}. (1.110)

here the symbol T r{} means that the analogous terms with matrices Y, Z should be
also included, and ki are the projections of the wave vector on the corresponding
basis vectors of the unit cell. We should also note that in general the force matrices
in the equations are not symmetrical on all indices. For example, the element Xα1,βq

defines the interaction between atom of the type 1 in selected cell and atoms of the
type q in the displaced cell. Vice versa, only that atoms of the type q from the basis
cell, which are interacting with atom of the type 1 in the displaced cell, contribute to
the element Xαq ,β1 .

The approximate solution for the Eq. (1.110) is built taking into account the fact,
that the main contribution in the integrals over the phonon energy in the DWF is
defined by the range of small values of k in the vicinity of the extremum of each
phonon zone. The principal character of this contribution can be explained by the
maximum value of the state density because of the phonon group velocity becomes
zero in this range [27], and the exponentials in the Eq. (1.110) can be expanded
into the series by k. Besides, the acoustic branches of the phonon spectrum can be
extracted by using new variables, namely the coordinate of the center of mass of the
cell:

Ri = 1

M

∑

p

Mp

∑

αp

ξ
αp
i ;

where M is the total mass of the cell; Mp is the mass of the atom of the type p, and
the relative coordinates are:

ρ
αp
i = ξ

αp
i − Ri ;

∑

p

Mp

∑

αp

ρ
αp
i = 0.

The last relation means that the number of independent equations is equal to 3(s-1)
but three other components of the variable (for example, with index αp = 1) depend
on the rest and thus can be found from the equation

ρ1
i = − 1

M1

∑

p

Mp

∑

αp �=1

ρ
αp
i . (1.111)

In order to find the motion equation for the center of mass, all the Eq. (1.110) are
summarized by justifying to accuracy O(k2):



46 1 Basic Principles of the Interaction of X-Rays with Matter

Mω2 Ri = k2
1a2

1

2

∑

p

∑

αp

∑

βq , j

[
X
αp,βq
i, j + X

αq ,βp
i, j

]
R j

+ ik1a1

2

∑

p

∑

αp

∑

βq , j

[X
αp,βq
i, j − X

αq ,βp
i, j ]ρβq

j + T r{}. (1.112)

The equations for the relative variables can be solved in the approximation of the
independent oscillations which is also used in the theory of small vibrations of
molecules [68]. In this case, the coupling of various oscillations is taken into account
only through the coordinate of the mass center. Then the average deviation of each
atom from its equilibrium position is equal to zero relative to the center of mass of
the unit cell. Using this fact, the equations of motion for relative coordinates are as
follows:

Mpω
2ρ
αp
i = −Mpω

2 Ri +
∑

βq , j

[
Γ
αp,βq

i, j + 1

2
(X

αp,βq
i, j + X

αq ,βp
i, j )

]
ρ
αp
j

− ik1a1

2

∑

βq , j

[X
αp,βq
i, j − X

αq ,βp
i, j ]R j + T r{}. (1.113)

Physically the approximation used means that only the average force acting to
selected atom from the side of all neighbors is taken into account. For the case of
small k, the optical frequencies ω(ν)p ; ν = 1, 2, 3 can be found from the Eq. (1.113).
The number of such optical branches is 3(s − 1) and for atoms of the type p they
degenerate with the multiplicity 3sp (for the first one the multiplicity is 3(s1 − 1)).
These branches of the phonon spectrum are defined by diagonalization of p matrices
of dimension (3×3), which result in the following equations for the eigenfrequencies
and orthonormalized polarization vectors eνi (p):

ω(ν)p =
√
λνp

Mp
; λνpeνi =

∑

j

D p
i j e

ν
j ;

D p
i j =

∑

βq , j

[
Γ
αp,βq

i, j + 1

2
(X

αp,βq
i, j + X

αq ,βp
i, j )+ T r{}

]
. (1.114)

The acoustic branches then can be found from the Eq. (1.110) by substitution of
the relative coordinates by the center of mass. Then the spectrum of the acoustic
eigenfrequencies is defined by the acoustic 4-rank tensor depending on the force
matrix and the vector k [49]. As a result, there exists an anisotropy of the sound
velocity in different directions of propagation even in cubic crystals. However, by
the definition, the DWF depends on the constant 2-rank tensor which is determined
by the symmetry of the crystal only and does not depend on the vector k [49] because
of the averaging over the k during the integration on the phonon variables. This fact
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allows the use of an averaging procedure over all the directions of k in the dispersion
equation. Mathematically this corresponds to the following substitution:

∫
f [ω(k)]k2dkdΩ �

∫
f [< ω(k) >]k2dkdΩ,

< ω(k) >= √
I ; I = 1

4π

∫
ω2(k)dΩ.

Then the Eq. (1.110) transform to:

Mω2 Ri = k2a2
1

6

∑

p

∑

αp

∑

βq , j

[X
αp,βq
i, j + X

αq ,βp
i, j ]R j

+ k2a2
1

12M1

∑

q

Mq

∑

αp

∑

βq �=1,m

[X
αp,1
i,m − X

1,βp
i,m ]

×
∑

γr ,l

[Dq
ml ]−1

∑

j

[X
βq ,γr
l, j − X

βr ,γq
l, j ]R j

−k2a2
1

12

∑

p

∑

αp �=1

∑

βq ,m

[X
αp,βq
i,m − X

αq ,βp
i,m ]

×
∑

γr ,l

[Dq
ml ]−1

∑

j

[X
βq ,γr
l, j − X

βr ,γq
l, j ]R j + T r{}. (1.115)

and the problem is again reduced to the diagonalization of the symmetrical (3 × 3)
matrix. The solution for the optical frequencies is then found in the form

ωνa (k) = ka0√
M

cν; ν = 1, 2, 3; a0 = (Ω0)
1/3

and defines three acoustical phonon branches. In this parametrization, the normalized
vectors of polarization eνia and eigenvalues cν no longer depend on k:

c2
νeνia =

∑

j

Ai j e
ν
ja;

Ai j = b2
1

6

∑

p

∑

αp

∑

βq , j

[X
αp,βq
i, j + X

αq ,βp
i, j ]

+b2
1

12

∑

q

Mq

∑

αp

∑

βq �=1,m

[X
αp,1
i,m − X

1,βp
i,m ]

×
∑

γr ,l

[Dq
ml ]−1

∑

j

[X
βq ,γr
l, j − X

βr ,γq
l, j ]R j
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−k2b2
1

12

∑

p

∑

αp �=1

∑

βq ,m

[X
αp,βq
i,m − X

αq ,βp
i,m ]

×
∑

γr ,l

[Dq
ml ]−1

∑

j

[X
βq ,γr
l, j − X

βr ,γq
l, j ] + T r{};

bi = ai

a0
. (1.116)

To derive a final formula for DWF, the general definition of the Debye-Waller
factor is used for the atom with number t in the unit cell [29]:

DW Ft = e−∑
i, j Bt

i j qi q j ; Bt
i, j = 2

�
2

Mt
Wi, j . (1.117)

Here the projections of the transmitted wave vector qi should be calculated in the
coordinate system connected with unit cell

qi = 2π

d
li ; d =

[√
l2
1g

2
1 + l2

2g
2
2 + l2

3g
2
3

]−1

,

where d is the interplane distance for the given reflection defined by Miller indices
li ; ni are the minimal integers for this reflection; gi are the standard basis vectors
of the reciprocal lattice. In this definition, tensor Wi j does not depend on the atom
number and is the characteristics of the crystal as a whole [32]:

Wi j = Ω0

2�

∑

(p)

∑

ν

eνi eνj

∫
dk
(2π)3

f (ωνp), (1.118)

where the summation is performed on all optical and acoustic branches and f is the
function of the Bose-Einstein distribution:

f (ω) = 1

ω

[
1 + 2

exp �ω/kB T − 1

]
.

Below we split the general expression for W into two parts related to optical W o and to
acoustic W a oscillations. The above-mentioned expansion on small k corresponds to
the Einstein approximation when the optical frequencies are considered as constants
in the Brillouin zone [27]. Then taking into account the multiplicity of the optical
branches, W o is calculated as:

W o
i j = 1

2�

∑

p

s′
p

∑

ν

eν p
i eν p

j f (ωνp). (1.119)
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The frequencies and vectors of polarization for optical branches have been defined in
the Eq. (1.114). Index s′

p means that the value (s1 − 1) should be substituted instead
of s1 for the atoms of the type 1.

The acoustic contribution to the DWF can be found in the following form

W a
i j = 1

2�

∑

ν

eνiaeνja
Ω0

2π2

∫ kD

0
dk

k
√

M

a0cν

×
[

exp (�ka0cν/kB T
√

M)

exp (�ka0cν/kB T
√

M)− 1

]
; kD =

(
6π2

Ω0

)1/3

. (1.120)

By analogy with Debye temperature, three different parameters are introduced for
each polarization of the acoustic phonons:

Θν = �a0kDcν

kB
√

M
,

and finally the acoustic part of DWF is:

Fig. 1.15 The value Bt (T )
in the Debye-Waller factor
for the atom of (a) As and
(b) Ge in the crystal GaAs
(ΘD = 210K ) as a function of
the temperature. The dashed
line presents the results of
[64], obtained on the basis
of the experimental phonon
spectrum; the solid line is
a calculation by the present
algorithm; the dash-dotted
curve represent the optical
phonon spectrum

(a)

(b)
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W a
i j = 3

2kB

∑

ν

eνiaeνja
1

Θν

∫ 1

0
x dx coth

(
xΘν
2T

)
. (1.121)

The formulas (1.118)–(1.121) establish the algorithm for calculation of the Debye-
Waller factor for X-ray susceptibilities. By this algorithm, the Fourier components
of the susceptibility for crystals are calculated by using the symmetrical tensor W ,
which includes only 6 components in the most general case. To illustrate this result,
the Debye-Wallers factors for the atoms of As and Ga in the crystal GaAs have
been calculated. Figure 1.15 demonstrates a good agreement between the DWF
temperature dependence calculated by proposed method and the phenomenological
dependence found on the basis of the experimental density of the phonon states [64].
The optical part of the DWF, usually not taken into account in the standard program
packages [40, 41], seems to be an important part of the total DWF value, as Fig. 1.15
illustrates, too.
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Chapter 2
The Theory of X-Ray Scattering
from Macroscopical Objects

Nowadays the X-rays are widely used for non-destructive quantitative and qualitative
characterization of the materials used in modern electronics, optics, semiconductor
industry, lasers, sensors, and many other applications on micro- and nano-level. Most
of the X-ray techniques are based on the investigation of the spectra of the elastic
scattering of X-ray radiation, when the photon frequencies ω of the incident and the
scattered beams are equal, and thus the wave vectors of the incident beam (k0) and
the scattered beam (k1) are connected as:

|k0| = |k1| = k0 = ω

c
= 2π

λ
,

where λ is a wavelength of X-ray radiation and c is the speed of light.
Thus, the information on the sample structure (electron density distribution) is

contained solely in the profile of the angular distribution of the scattered X-ray
radiation. The final goal of each X-ray method is the solution of the inverse scat-
tering problem, i.e. determination of the sample structure from the scattered X-ray
intensity profile. In the real applications, however, the intermediate stage delivering
the solution of direct scattering problem is necessary, which includes the theoret-
ical calculation (modeling) of the profile of the scattered X-ray intensity on the
basis of microscopical model for the studied sample. In this chapter, the theoreti-
cal approaches used for the solution of the direct problem of X-ray scattering from
microscopical samples, and the methods used for the solution of this problem on the
basis of Maxwell’s equations are considered.

2.1 The Stationary and Temporal Approaches to X-Ray
Scattering Process

In Chap. 1, the physical principles of X-ray optics under the condition of elastic scat-
tering of X-rays in continuous media have been discussed. In the reality, however, the
physical samples have a certain dimension and may consist of microscopical objects
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Fig. 2.1 Schematic represen-
tation of the scattering process
in stationary theory

Fig. 2.2 Schematic represen-
tation of the scattering process
in temporal theory
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with various characteristics. To obtain the information on the investigated structure of
sample, the inverse scattering problem has to be resolved: to determine the relation-
ship between the X-ray intensity recorded by detector and the specifics of the X-ray
interaction with investigated material during the transmission of radiation through
the object. According to the formal scattering theory [1], there are two principal
formulations of this task, which differ by the conditions for the Maxwell’s equation
for the wave fields. The first formulation corresponds to the stationary scattering
theory, represented in Fig. 2.1. The incident beam is considered as monochromatic
plane wave with infinite front, and the scattered wave at a large distance from the
scatterer is described by the spherical wave with the amplitude depending on the
scattering angle 2θ. This approach is utilized in the majority of monographs and
handbooks dedicated to X-ray methods (for example, [2–6]) to establish the relation
between the solutions of Maxwell’s equations in continuous media and the wave
field of the scattered X-ray radiation.

In real experiments, however, the quasi-monochromatic X-ray beams are used,
which have limited duration and spatial distribution. These physical conditions cor-
respond to the temporal theory of scattering [1], which is schematically shown in
Fig. 2.2. The aim of this chapter is to establish a relationship between the results
obtained in both approaches, and the analysis of the applicability conditions for
them.
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Within the stationary theory, the Maxwell’s equations for the vector potential
determining the scattering of the wave field from the sample are obtained from the
general Eq. (1.56) for infinite medium (the formulas below assume the summation
over the repeating Cartesian indices):

(k2 − k2
0)Aμ(k,ω)− k2

0

∑

H

χμν(k, H,ω)Aν(k + H,ω) = 0;

(k A(k,ω)) = 0;
χμν(k, H,ω) = χ(e)(H,ω)δμν + χ(a)μν (k,H,ω), (2.1)

where the contributions of Compton χ(e) and resonant χ(a) scattering are defined by
formulas (1.51) and (1.56), respectively. Let us assume the shape of the sample as
follows: S(r) = 1, if the point r belongs to the sample, and S(r) = 0 for the points
in vacuum. If the sample under investigation consists of several elements possessing
different microscopical characteristics, then each element has a specific shape func-
tion Sb(r), X-ray polarizability χ(b)μν and the set of the reciprocal space vectors Hb.
For convenience reason, Eq. (2.1) is transformed into coordinate representation:

Aμ(r,ω) =
∫

Aμ(k,ω)ei kr dk; (∇ A(r,ω)) = 0;
(Δ+ k2

0)Aμ(r,ω)+ V̂μν(r)Aν(r,ω) = 0, (2.2)

with the potential V̂μ,ν(r) of the interaction of the sample with radiation, which is
the integral operator:

V̂μν(r,ω)Aν(r,ω)

≡ k2
0

∑

b

Sb(r)
∑

Hb

∫
χ(b)μν (r − r1, Hb,ω)Aν(r1,ω)e

i Hb r1 d r1;

χμν(r − r1, Hb,ω) =
∫
χμν(k, Hb,ω)e

i k(r−r1)dk

= χ(e)(Hb,ω)δμνδ(r − r1)+
∫
χ(a)μν (k, Hb,ω)e

i k(r−r1)dk. (2.3)

In the next step, the expression for the Green function G(0)
μν (r − r ′, k0) of the

Helmholtz equation [7] is used:

(Δ+ k2
0)G

(0)
μν (r − r ′, k0) = δμνδ(r − r ′);

G(0)
μν (r − r ′, k0) = − δμν

eik0|r−r ′|

4π|r − r ′| , (2.4)

and the solutions of Maxwell’s equation in vacuum are defined (V̂ = 0):

http://dx.doi.org/10.1007/978-3-642-38177-5_1
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http://dx.doi.org/10.1007/978-3-642-38177-5_1
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(Δ+ k2
0)A

(0)
k,s(r,ω)) = 0; (∇ A(0)k,s(r,ω)) = 0;

A(0)k0,s
(r,ω)) = e(s)ei k0 r ; k0 = k0n; (e(s)k0) = 0; s = 1, 2. (2.5)

Here the unity vector n defines the direction of the propagation, and the unity
vectors e(s), (e(1)e(2)) = 0 define two orthogonal polarizations of the incident wave
(Fig. 2.1). Equation (2.2) is then transformed into integral form:

Aμ,s(r,ω, k0) = e(s)μ ei k0 r +
∫

eik0|r−r ′|

4π|r − r ′| V̂μν(r ′)Aν,s(r ′,ω)d r ′. (2.6)

The expression (2.6) describes the distribution of the wave field for an arbitrary
ratio between the distance to the observation point |r| and the linear dimension
of the sample L , which is assumed to be not essentially exceeding the absorption
length of X-ray radiation |r ′| ≤ La ∼ 10−2 ÷ 10−3cm (Fig. 2.1). Using the optical
representation [8], there are two limiting cases in this distribution : (i) r ≤ La ,
which corresponds to the Fresnel diffraction (near-field or diffraction zone), and
(ii) r � La , which corresponds to the Fraunhofer diffraction (far-field or wave
zone). There exists also an approach, which uses the rational Fourier transformation
continuously connecting these both limiting cases [9].

In the case of Fresnel diffraction, the resulting intensity of the scattered radiation
depends both on the scatterer characteristics and the distance between the radiation
source, the sample, and the detector. For some applications, this scheme allows to
obtain the supplementary information on the shape of the sample, however, this
requires a high flux X-ray radiation from synchrotron sources [10]. At the laboratory
conditions, the distances between the sample and the detector are |r| ∼ 10÷100 cm,
|r| � |r ′| ∼ La , therefore the Fraunhofer diffraction is realized, and the scattered
intensity distribution is determined by the sample properties and not by the position
of the X-ray source or detector. In this case, the asymptotic expansion for the Green
function can be used:

eik0|r−r ′|

|r − r ′| ≈ eik0r

r
e−i k1r ′

[
1 + O

(
k0a2

r

)]
; k1 = k0

r
r
, (2.7)

where a is a characteristic linear size of the scattered volume of the sample. As a
result, the wave field (2.6) is decomposed into superposition of the plane wave and
the diverging spherical wave, which is used as boundary condition for the stationary
scattering theory (Fig. 2.1):

As(r,ω, k0) = e(s)ei k0 r + T (s)(k0, k1)
eik0r

4πr
;

T (s)μ (k0, k1) =
∫

e−i k1r ′
V̂μν(r ′)Aν,s(r ′,ω)d r ′, (2.8)



2.1 The Stationary and Temporal Approaches to X-Ray Scattering Process 57

where T (s)(k0, k1) defines the amplitude of the vector potential of the scattered wave
field. Taking into account the relation between the vector potential and the magnitude
of the electric and magnetic fields [5]

Es(r,ω) = −i
ω

c
As(r,ω); Hs(r,ω) = [∇ As(r,ω)],

and standard definition of the Poynting vector for the energy flux density of the
electromagnetic field we obtain:

S = c

4π
[Es(r,ω)Hs(r,ω)]. (2.9)

Then the differential cross-section of the radiation with certain polarization into
solid angle d� and in the vicinity of direction k1 is delivered by the ratio of the
energy flux of the scattered into the detector aperture r2d� wave to the energy flux
density of the incident wave:

dσ(s)

d�
= r2 (k1 Ssc)

(k0 S0)
= 1

(4π)2
sin2 θ1s |T (s)(k0, k1)|2; θ1s = ̂k1T (s). (2.10)

Because of the elastic scattering satisfies the condition |k0| = |k1|, the expression
obtained depends only on the direction of incident k0 = k0n0 and scattered k1 =
k0n1 waves. This dependence is conveniently parametrized by the scattering angle
2θ and the momentum transfer q:

2θ = k̂1k; q = k1 − k; q2 = 4k2
0 sin2 θ. (2.11)

Within the framework of the stationary theory, the expression (2.10) is used for
the calculation of the observed profiles of the scattered X-ray intensity (see, for
example, [4]).

How this result is related to the real experiments (Fig. 2.2), when both the incident
and the scattered beams are not described by plane or spherical waves and have a
certain spatial and temporal dimension? The applicability condition for the stationary
theory and the relation between both approaches follows from the formal scattering
theory [1], based on the solution of the Eq. (1.16) for time-dependent vector potential
A(r, t). This equation is represented in the form, similar to the one of Eq. (2.2):

(
Δ− 1

c2

∂2

∂t2

)
Aμ(r, t)+ V̂μν(r, t)Aν(r, t) = 0;

(∇ A(r, t)) = 0, (2.12)

with operator V̂μ,ν(r, t):

http://dx.doi.org/10.1007/978-3-642-38177-5_1
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V̂μν(r, t)Aν(r, t) ≡ − 1

c2

∂2

∂t2

∑

b

Sb(r)

×
∑

Hb

∫
χ(b)μν (r − r1, Hb, t − t1)Aν(r1, t1)e

i Hb r1 d r1dt1;

χμν(r, H, t) =
∫
χμν(k, H,ω)ei(kr−ωt)dkdω. (2.13)

Due to the linearity, the solution for Eq. (2.12) is obtained as the superposition of
the solutions for the stationary Maxwell’s Eq. (2.6) with the coefficients C (s)

λμ (k,ω)
to be found:

Aμ(r, t) =
∑

s

∫
dkdωC (s)(k,ω)Aμ,s(r,ω, k)e−iωt . (2.14)

The coefficients of the expansion in Eq. (2.14) have to be found from the initial
conditions:

Aλ(r, t)|t=0 = A(0)λ (r), (2.15)

where A(0)λ (r) is a vector potential, corresponding to the wave field of the beam
conditioned by the monochromators and slits (collimators), see Fig. 2.2. The most
prominent advantage of X-ray techniques is their non-destructive character in the
majority of applications when using standard incoherent sources of X-rays. The
usage of the coherent X-ray radiation from X-ray lasers [11] leads to the destruction
of the investigated object, and the analysis of X-ray scattering in this case requires
special methods [12], which are not considered in this book. Thus, the structure of
the function A(0)λ (r) is considered below in the assumption of the incoherent X-ray
beam. Each X-ray photon corresponds to the the wave packet created by the optical
beam path after the X-ray source. The vector potential of the wave field of the beam
in vacuum is expressed as a product of the wave packets of the unique photons:

A(0)μ (r) =
∑

s=1,2

∫
dkdωe(s)μ (k)G

(s)(k − k0)δ(k − ω/c)ei k(r−ra)

=
∑

s=1,2

∫
dnk

ω2dω

c2 e(s)μ (k)G
(s)((nk − n0), (ω − ω0))e

ink (r−ra)ω/c

(2.16)

Here nk is the unity vector along the direction of the wave vector k, |k| = ω/c, the
phase e−ink raω/c corresponds to the wave packet of photon with index a, the values
G(s)((nk − n0), (ω−ω0)) define the probability amplitudes for the plane wave with
frequency ω, wave vector k = nkω/c and polarization e(s)μ (k) in the wave packet.
In the typical experiment, the function G(s) is distributed around the frequency ω0
of the monochromator n0, k0 = n0ω/c. The dispersions of the frequency Δω and
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the direction of the wave vector Δn are conditioned by the monochromator and
slit (collimator), respectively (Fig. 2.3a). The single photon wave packet (2.16) is
represented as follows:

A(0)μ (r) =
∑

s=1,2

ei k0(r−ra)e(s)μ (k0)F
(s)(r − ra)

F (s)(r) = c
∫

dq⊥dqzG(s)(q⊥, qz)e
iqr ;

q⊥ =ω0

c
(nk − n0); qz = 1

c
(ω − ω0); z ‖ k0. (2.17)

The function F (s)(r) describes the spatially localized wave packet with the length
Δz ≈ c

Δω in the direction of X-ray beam and with the width Δr⊥ ≈ c
ω0|Δn| in the

perpendicular direction (Fig. 2.3b).
The energy flux of the photon beam (2.9) consisting of wave packets (2.17) is

calculated by neglecting the term ∼ | ∇F (s)

k0 F (s)
| ≈ |Δn|:

S0 = ω2
0

4π

∑

a,s

∑

b,s′
k0(e(s)∗e(s

′))F (s)(r − ra)F
(s′)∗(r − rb)e

i k0(ra−rb), (2.18)

where the summation is performed over the initial coordinates of all wave packets of
single photons. By averaging over the coordinates of the particles within the beam,
the expression (2.18) is transformed to:

S0 = ρ2
phω

2
0

4π

∑

s

∑

s′
k0(e(s)∗e(s

′))

×
∫

d r1d r ′
1 F (s)(r − r1)F

(s′)∗(r − r ′
1)e

i k0(r1−r ′
1)g(r1, r ′

1), (2.19)

| - |n n0

- 0

0

G ( - , - )s 0 0n n

n

r
z||n

|F ( - )|s ar r 2

z=c/

r =c/ n

(a) (b)

Fig. 2.3 a The probability density |G(s)(k − k0), (ω−ω0))|2 in the coordinates of variables of the
incident beam: the frequency ω, the incidence angle α. b The function |F (s)(r)|2, describing the
distribution of the wave field intensity in the coordinate space
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where ρph is the photon density within the beam; the function g(r1, r ′
1) accounts all

possible correlations in the distribution caused by the properties of X-ray source.
Moreover, the beam might be partially coherent, when the wave packets corre-
sponding to different photons are overlapped, and the averaging of the phase factor
exp{i k0r1} over the distribution of the particles within the beam results in non-zero
value. These conditions are satisfied for high flux beams, used in modern free electron
X-ray lasers [11, 13]. In the laboratory experiments considered in this monograph,
the correlation of photons in the beam is not essential for the description of the scat-
tering problem. This statement is valid, if the overlapping of the wave packets is
negligible in the expression (2.17), and the following inequalities are fulfilled:

|za − zb| ≥ Δz; |(ra − rb)⊥| ≥ Δr⊥, (2.20)

restricting the photon density value inside the beam:

ρph ≈ |za − zb|−1|(ra − rb)⊥|−2 ≤ ω2
0

c3 Δω|Δn|2. (2.21)

These inequalities correspond to the following condition for the brightness B [11]
of X-ray source:

B ≤ 7.2 1025Δω

ω0

ΔαxΔαy

λ3
0

[
ph

mm2s mrad2 0.1%bandwidth

]
, (2.22)

where λ0 = 2πc/ω0 is the wavelength of X-ray radiation in Å, Δαx ,Δαy are the
angular width of the beam in radians in the direction perpendicular to the propa-
gation direction. In modern laboratory X-ray instruments used for non-destructive
characterization, the condition (2.22) is fulfilled, and the energy flux of the incident
beam is:

S0 = ω2
0

4π

∑

a,s

k0|F (s)(r − ra)|2 ≈ k0ρph
ω2

0

4π

∑

s

∫
d ra |F (s)(r − ra)|2 (2.23)

and corresponds to the propagation of non-overlapping wave packets of single pho-
tons. In the absence of correlations, the summation over all photons can be replaced
by the integration with the photon density ρph .

The initial condition (2.15) has to be fulfilled for each wave packet independently,
which makes possible the calculation of the coefficients (2.14) by using (2.15) and
the orthogonality of the solutions (2.6) for the stationary Maxwell’s equations:
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C (s)(k,ω) =
∫

d r
∫

dqdω′ ∑

s′
A∗
μ,s(r,ω, k)

× e(s
′)

μ (q)G(s′)(q − k0)δ(q − ω′/c)eiq(r−ra)

= G(s(k − k0)δ(k − ω/c)

+
∫

d r
∫

d r ′
∫

dqdω′ ∑

s′

∫
e(s

′)
μ (q)G(s′)(q − k0)δ(q − ω′/c)

× eiq(r−ra)
e−ik|r−r ′|

4π|r − r ′| V̂ ∗
μν(r

′)A∗
ν,s(r

′,ω) ≡ C1 + C2 .

(2.24)

The second term in the expression above takes into account a possible influence of
the scattering potential on the formation of the wave packet. By integrating over r ,
this term is written as:

C2 =
∫

d r ′
∫

dqdω′ ∑

s′

∫
e(s

′)
μ (q)G(s′)(q − k0)δ(q − ω′/c)

× eiq(r ′−ra)

q2 − k2 V̂ ∗
μν(r

′)A∗
ν,s(r

′,ω)

≈
∫

d r ′ ei k0(r ′−ra)

k2
0 − k2

e(s
′)

μ (k0)F
(s)(r ′ − ra)V̂

∗
μν(r

′)A∗
ν,s(r

′,ω). (2.25)

The value ∼ V̂ ∗
μν(ra) contributes to the process in the case of long-range scattering

potential [14], which has a non-zero magnitude at the position of X-ray source. For
the X-ray scattering processes considered here, this contribution in (2.24) can be
neglected. The coefficients found are then substituted in (2.14), that results in:

Aμ(r, t) =
∑

s

∫
dkdωe−iωt

{
G(s)(k − k0)e

−i kraδ(k − ω/c)

× [
e(s)μ (k)e

i kr +
∫

d r ′ eik|r−r ′|

4π|r − r ′| V̂μν(r ′)Aν,s(r ′,ω)
]}

≡ A(0)μ (r, t)+ A(1)μ (r, t). (2.26)

The first term in this expression:

A(0)μ (r, t) =
∑

s

∫
dkdωe−iωtδ

(
k − ω

c

)
G(s)(k − k0)e

(s)
μ ei k(r−ra)

=
∑

s=1,2

ei k0(r−ra)−iω0t e(s)μ (k0)F
(s)(z − za − ct, (r − ra)⊥), (2.27)



62 2 The Theory of X-Ray Scattering from Macroscopical Objects

describes the propagation of free wave packet corresponding to the photons, which
did not undergo the scattering at the time t localized near the point r(t) = ra + ctn0
(Fig. 2.4).

The second term in the expression (2.26) describes the distribution of the scattered
wave field in the space. In the limits of large distances from the scatterer r � r ′,
the asymptotic (2.8) can be used for the solution of the stationary problem, which
results in the following equation:

A(1)μ (r, t) ≈
∑

s

∫
dkdωT (s)μ

(
k, k

r
r

) eikr

4πr

× e−iωt−i kraδ
(

k − ω

c

)
G(s)(k − k0)

=
∑

s=1,2

e−i(k0 ra−iω0t)T̂ (s)μ (k0, k1)
eik0r

4πr
F (s)[(r − ct)n0 − ra]. (2.28)

This expression describes the wave field as a spherical segment (Fig. 2.4) with the
radius r(t) = c(t − t0); t0 = (n0ra)/c and thickness Δr ≈ c/Δω, and centered
at the position of the scatterer. The calculation of the energy flux transmitted by the
scattered wave field (2.28) and the summation over the coordinates ra is carried out
similarly to Eqs. (2.9) and (2.23):

S(s)sc ≈ k1ρph

(4πr)2
sin2 θ1s |T (s)(k0, k1)|2

∫
d ra |F (s)[(r − ct)n0 − ra]|2. (2.29)

The differential cross-section of the scattered intensity, being calculated as the
ratio of the flux density of the scattered radiation to the flux density of the incident
photons, is found to be equal to:

Fig. 2.4 The transformation of a single-photon wave packet during the scattering process
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dσ(s)

dΩ
= r2 (k1 Ssc)

(k0 S0)
= 1

(4π)2
sin2 θ1s |T (s)(k0, k1)|2

×
∫

d ra |F (s)[(r − ct)n0 − ra]|2∫
d ra |F (s)(r − ra − ctn0)|2 . (2.30)

In a standard X-ray experiment with the laboratory sources, the temporal length of
the photon beam is considerably larger then the duration of the single-photon wave
packet, therefore the integrals in the expression (2.30) are canceled, and the formula
for the cross-section in the temporal scattering theory coincides with the result (2.10)
for the stationary scattering theory provided the condition (2.21) for the flux density
of photons is fulfilled.

2.2 Approximate Methods for the Solution of Stationary
Scattering Problem

The intensity of the scattered X-ray radiation registered by the detector, being nor-
malized to the intensity of the incident radiation, is defined by the differential cross-
section of the scattering from the sample of finite dimension, and is given by the
formula (2.10):

dσ(s)

d�
= 1

(4π)2
sin2 θ1s |T (s)(k0, k1)|2; θ1s = ̂k1T (s), (2.31)

with the amplitude T (s)(k0, k1), which is calculated within the framework of the
stationary scattering theory:

T (s)μ (k0, k1) =
∫

e−i k1r ′
V̂μν(r ′)Aν,s(r ′,ω)d r ′. (2.32)

The amplitude of the scattering depends on the vector potential Aν,s(r ′,ω), which
in turn is found from the integral Eq. (2.8). Provided that the scattering potential is
weak, the iteration method can be used for the solution of this equation, which result
in the Born series for the vector potential:

Aμ,s(r,ω, k0) = A(0)μ,s + A(1)μ,s + . . .

≡ e(s)μ ei k0 r +
∫

eik0|r−r ′|

4π|r − r ′| V̂μν(r ′)e(s)ν ei k0 r ′
d r ′ + . . . . (2.33)

As a result, the scattering amplitude in the first order of Born approximation is:

T (s)μ,B(k0, k1) =
∫

d re−i k1r V̂μν(r)e(s)ν ei k0 r . (2.34)
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Using the definition (2.3) for the scattering potential, the expression for the cross-
section of X-ray scattering in Born approximation, called also kinematical scattering
theory, is written as:

T (s)μ,B(k0, k1) = k2
0

∑

b

∫
d re−i k1r Sb(r)

×
∑

Hb

∫
d r1χ

(b)
μν (r − r1, Hb,ω)e

(s)
ν ei(k0+Hb)r1

= k2
0

∑

b

∑

Hb

∫
d r Sb(r)e−i(q−Hb)r

× [e(s)μ χ
(e)
b (Hb,ω)+ χ

(a)
μν,b(k0 + Hb, Hb,ω)e

(s)
ν ];

dσ(s)

d�
≈ 1

(4π)2
sin2 θ1s |T (s)B (k0, k1)|2, (2.35)

where q = k1 − k0, χ(e)b ;χ(a)μν,b are the Compton and resonant contributions into
the sample polarizability, defined by formulas (1.51) and (1.56), respectively. The
Eq. (2.35) for the scattering cross-section is valid under the condition of the con-
vergence of the perturbation series for the vector potential (2.33). This condition
implements the restrictions for the linear dimension of microscopical elements of
the investigated sample [5]:

Lb < Lext
b ≡ c

ω|χ(e)b (0,ω)|
, (2.36)

where the value Lext
b is called an extinction length.

For the monochromatic radiation used in most of laboratory X-ray experiments,
the observed X-ray intensity is parametrized by four angular variables. These vari-
ables define the unity vectors n0 = c

ω k0 and n1 = c
ω k1, which in turn define the

directions of the propagation of the incident and scattered waves, respectively. Thus,
in general case the scattering is described by the 4-dimensional hyper-surface in the
space of these variables. The modern diffractometers (Fig. 2.5) allows to vary the
mutual positions of the sample, X-ray source and detector in broad limits, and repre-
sent the X-ray measurement results as one-dimensional (profiles) or two-dimensional
(maps) sections of this hyper-surface.

The different application areas of X-ray structure analysis utilize various sec-
tions of the hyper-surface (scattering geometry) and different models for investi-
gated structures to analyze the measured data. The Born approximation is a basic
one for numerous applications, and it requires the averaging of the expression (2.35)
over the characteristics Sb, Hb,χ

(b) of the microstructure of investigated object. The
replacement of the averaging of the recorded X-ray intensity during the experiment,
which occurs in real X-ray experiment, by the averaging over the statistical ensem-
ble of sample microstructure parameters corresponds to the ergodic hypothesis [5].

http://dx.doi.org/10.1007/978-3-642-38177-5_1
http://dx.doi.org/10.1007/978-3-642-38177-5_1
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Fig. 2.5 Modern multi-purpose X-ray diffractometer SmartLab© (Rigaku Corporation) for non-
destructive investigation of material structure

The mentioned averaging depends on the correlation properties of microstructure
parameters and is specific for each unique application.

The most widely used applications of X-ray analysis based on the Born approx-
imation and listed below are of their own the large domains of X-ray science with
a long publication record. Therefore, the only references to the monographs and the
critical reviews are given in the list, without detailed introduction in these applications
(some of them are discussed in the next chapters).

• Powder X-ray diffraction: phase identification and crystal structure determination
of powders and polycrystalline materials [15].

• Structure analysis and determination of organic and biological objects [16].
• X-ray residual stress and texture analysis in polycrystals [17, 18].
• Small-angle X-ray scattering: shape and distribution determination of the

nano-sized objects [19].
• Pair-distribution function determination of crystalline, polycrystalline and amor-

phous materials [20].

The applicability limits of the kinematical scattering theory can be essentially
extended by using the distorted-wave Born approximation (DWBA) [1]. The princi-
pal idea of this approach is based on the possibility to find an exact solution of the
stationary Maxwell’s Eq. (2.8) for some models of the scattering potential. Denoting
the model potential as V̂ (M)

μν (r) and assuming the known solutions of the stationary
Maxwell’s equations, the following expressions can be used as a start point:

(Δ+ k2
0 + V̂ (M)

μν (r))A(±)k,ν,s(r,ω) = 0;

A(±)k,μ,s(r,ω) = e(s)μ ei kr+
∫

d r ′ e±ik0|r−r ′|

4π|r − r ′| V̂ (M)
μν (r ′)A(±)k,μ,s(r

′,ω). (2.37)
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There exist two sets of solutions, which correspond to the ingoing and outgoing
spherical waves at large distances from the scatterer. These solutions are connected
by a simple relationship [7]:

A(−)k,μ,s(r,ω) = [A(+)−k,μ,s(r,ω)]∗, (2.38)

and both are used for the sequential approximations of DWBA. When the complete
set of the solutions for (2.37) is known, the Green function can be found [21]:

(Δ+ k2
0)G

(M)
μν (r, r ′)+ V̂ (M)

μλ (r)G(M)
λν (r, r ′) = δμνδ(r − r ′). (2.39)

To establish the DWBA scheme for the Fraunhofer diffraction, the asymptotic for
the Green function at r � r ′ is enough instead of the concise expression (2.37). This
asymptotic is calculated from Eq. (2.39) in the integral form using the formula (2.4)
for Green function of the Helmholtz equation:

G(M)
μν (r, r ′) = G(0)

μν (r − r ′, k0)

−
∫

d r1G(0)
μλ(r − r1, k0)V̂

(M)
λη (r1)G

(M)
ην (r1, r ′);

G(0)
μν (r − r ′, k0) = −δμν eik0|r−r ′|

4π|r − r ′| . (2.40)

As a next step, the iteration scheme for the solution of Eq. (2.40) is constructed:

G(M)
μν (r, r ′) = G(0)

μν (r − r ′, k0)

−
∫

d r1G(0)
μλ(r − r1, k0)V̂

(M)
λη (r1)G

(0)
ην (r1 − r ′, k0)+ · · · ,

(2.41)

and the asymptotic expansion (2.7) for function G(0)
μν (r − r ′, k0) is used at r � r ′:

G(M)
μν (r, r ′) ≈ −δμν eik0r

4πr
e−i k1r ′

− δμλ
eik0r

4πr

∫
d r1e−i k1r1 V̂ (M)

λη (r1)δην
eik0|r1−r ′|

4π|r − r ′| + · · · ;

k1 = k0
r
r
. (2.42)

The fact of the preservation of the wave field in the transverse direction with the
accuracy ∼ |χ0|2 < 10−10 [2] is taken here into account, too. Therefore, the only
transverse part is selected in (2.42), which is carried out [22] by the substitution of
the Kronecker symbols by transverse tensor tμ,ν(k):
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tμ,ν(k) = δμν − kμkν
k2 =

∑

s

e(s)μ (k)e
(s)
ν (k). (2.43)

The function of the wave field distribution with certain polarization is represented
as:

G(M,s)
μν (r, r ′) ≈ −e(s)μ (−k1)

eik0r

4πr

[
e(s)ν (−k1)e

−i k1r ′

+
∫

d r1e(s)λ (−k1)e
−i k1r1 V̂ (M)

λν (r1)
eik0|r1−r ′|

4π|r − r ′|
]

+ . . . . (2.44)

The asymptotic expression for Green function follows from the formula (2.43) and
definition of the function A(−)k,μ,s(r,ω) in formula (2.37):

G(M,s)
μν (r, r ′) ≈ −e(s)μ (k1)

eik0r

4πr
[A(−)k,ν,s(r,ω)]∗

= −e(s)μ (−k1)
eik0r

4πr
A(+)−k,ν,s(r,ω). (2.45)

The iteration scheme for the solution of the stationary Maxwell’s equation is con-
structed as follows:

(Δ+ k2
0 + V̂ (M)

μν (r)+ V̂μν(r))Ak,ν,s(r,ω) = 0, (2.46)

which assumes the consideration of the additional scattering potential V̂μν(r)within
the limits of the perturbation theory. Using the definition (2.39), Eq. (2.46) in the
integral form reads:

Ak,μ,s(r,ω) = A(+)k,μ,s(r,ω)−
∫

d r ′G(M,s)
μλ (r, r ′)V̂ (M)

λν (r ′)Ak,μ,s(r
′,ω)

≈ A(+)k,μ,s(r,ω)−
∫

d r ′G(M,s)
μλ (r, r ′)V̂λρ(r ′)A(+)k,ρ,s(r

′,ω)+ · · ·
(2.47)

In the same way as in Born approximation (2.33), the plane and spherical waves
are distinguished in (2.47) by using (2.8) and (2.45):

Fig. 2.6 The choice of the
potential in case of DWBA for
diffuse X-ray scattering from
rough surfaces and interfaces
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Ak,μ,s(r,ω) ≈ e(s)μ (k0)e
i k0 r + eik0r

4πr
×

[ ∫
d r ′e−i k1r ′

V̂ (M)
μν (r ′)A(+)k,ν,s(r

′,ω)

+
∫

d r ′e(s)μ (−k1)A
(+)
−k1,ν,s

(r ′,ω)V̂νρ(r ′)A(+)k,ρ,s(r
′,ω)+ · · ·

]
.

(2.48)

Finally, the expression for the scattering amplitude in DWBA approximation is found,
which generalize the formula (2.34):

T (s)μ,DW B A(k0, k1) =
∫

d r ′e−i k1r ′
V̂ (M)
μν (r ′)A(+)k,ν,s(r

′,ω)

+
∫

d r ′e(s)μ (−k1)A
(+)
−k1,ν,s

(r ′,ω)V̂νρ(r ′)A(+)k,ρ,s(r
′,ω),

(2.49)

and permits to calculate the scattering cross-section in correspondence with (2.31).
The necessity of usage of the waves A(+)−k1,ν,s

for the calculation of the matrix ele-
ment with perturbation operator is known also in optics, where they are used for the
description of the electromagnetic radiation from the atoms in refractive media (reci-
procity theorem [8]). The scattering potential V̂ (M) and the perturbation potential V̂
are chosen in dependence on the application, and here several examples are given
for some recognized X-ray techniques:

• Diffuse X-ray scattering from the surface and interface roughness [23]. The poten-
tial V̂ (M) represents the sample with ideally plane surface/interface, and V̂ defines
the scattering potential of the roughness (Fig. 2.6).

• Grazing-incidence small-angle X-ray scattering (GISAXS) from the nano-objects
located on the surface or embedded in the bulk samples [24]. The potential V̂ (M)

corresponds to the ideally uniform sample, and V̂ describes the nano-objects
(Fig. 2.7).

• X-ray dynamical diffraction theory in crystals [3]. This theory utilizes the two-
wave approximation, which corresponds to the selection of V̂ (M) in the form of
the scattering potential of the perfect crystal (1.51) with accounting of only two
Fourier components of X-ray polarizability χ(0,ω);χ(H,ω). The potential V̂
defines the scattering potential of various defects inside the crystal [25] (Fig. 2.8).

Fig. 2.7 Scattering potential
of DWBA for GISAXS appli-
cation

http://dx.doi.org/10.1007/978-3-642-38177-5_1
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Fig. 2.8 X-ray dynamical
diffraction theory as zeroth
approximation of DWBA
for the description of X-ray
scattering from crystal defects
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Chapter 3
X-Ray Reflectivity

The general calculation of the scattered from the sample X-ray intensity requires
the solution of the Eq. (2.1). However, the geometry of the experiment has to be
also taken into account, because of the mutual arrangement of the X-ray source, the
sample and the detector as well as the shape of the sample influence the observed
results. Depending on the experimental geometry, X-rays can be used for probing of
different properties of the investigated sample, and there are numerous experimental
setups, which realize various X-ray application techniques. The special case of the
experimental geometry, which is proved to be effective for investigation of the sample
surface and subsurface layers is X-ray specular reflectivity or simply X-ray reflectivity
(XRR) that is the main goal of this chapter.

3.1 Experiment Geometry and Basic Parameters of XRR

In this case the incident and reflected waves constitute the grazing angles with the
sample surface (Fig. 3.1).

We define here the coordinate system x, y by the sample surface (horizontal plane)
and by the axis z as an inward normal to this surface. By the definition, in the X-ray
specular reflectivity the interaction of the incident radiation with the elements of the
scattered potential Sb(r) in formula (2.2) involves solely a zeroth harmonics of X-ray
polarizability (1.56), which is proportional to the electron density ne of the sample
element:

εμ,λ(k, 0,ω) = ε(e)(0,ω)δμ,λ + χ(a)μ,λ(k, 0,ω);

ε(e)(0,ω) = 1 + χ(e)(0,ω); χ(e)(0,ω) = 4πc2

ω2 f (0)ne;
f (0) = f ′(0)+ i f ′′(0); f ′(0) = −r0; f ′′(0) = ω

4πc
σt (ω), (3.1)

where σt is a cross-section of the elastic Compton scattering (1.39).
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Fig. 3.1 The experimental
geometry in the case of X-ray
reflectivity
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The anomalous contribution χ(a)μ,λ(k, 0,ω) into X-ray polarizability is described
by formula (1.56). In general case, it is a tensor depending both on the frequency
and the direction of the vector k. However, the interaction of X-ray radiation with
atoms of the sample is dominated by the scattering from atom’s inner shells, which
have a spherically symmetric electron density distribution. Therefore, in the most of
the practical applications the anisotropy of X-ray polarizability can be ignored [1]
and the scalar refractive index for the description of the scattering properties of the
uniform media is used.

n2(ω) = ε(ω) = 1 + χ(ω); n(ω) ≡ 1 + β + iδ ≈ 1 + 1

2
χ(ω);

β = 2πc2

ω2 ne[ f ′(0)+Δ f ′(ω)], δ = 2πc2

ω2 ne[ f ′′(0)+Δ f ′′(ω)]. (3.2)

The main contribution to the real part of the refractive index is given by the value
n′ = 1 + β < 1;β < 0, and thus for X-rays the uniform media is optically less
dense than vacuum, which results in a wave phase velocity vph = c/(1 + β) > c
[2]. At the same time, the group velocity of the X-ray beam in the media is less than
the speed of light.

vgr = c[ d

dω
(ωn′)]−1 ≈ c(1 + β) < c. (3.3)

The values Δ f ′(ω) and Δ f ′′(ω) are the real and imagine parts of the correction
for anomalous dispersion, respectively. These values become essential at the charac-
teristic frequencies, which are close to the absorption edges of the atoms composing
the media [1]. The characteristic frequencies are defined by the energies of electron
ionization for different shells of the atom. The correction for the anomalous disper-
sion can be calculated by using formula (1.56) and one of the approximation for the
wave function of the electrons in the atom [1], however, in practice the databases
are used for this purpose, which utilize the experimentally measured cross-sections
of X-ray radiation from the atoms (for example, [3]). The typical dependence of the
anomalous dispersion correction on the frequency is shown in Fig. 3.2.

http://dx.doi.org/10.1007/978-3-642-38177-5_1
http://dx.doi.org/10.1007/978-3-642-38177-5_1
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Fig. 3.2 Frequency dependence of the correction for the anomalous dispersion near the K-edge of
the silicon atom and L-edge of the germanium atom

The calculation of the scattered X-ray intensity and the analysis of the experimen-
tal data for XRR has been presented in numerous monographs (see, for example,
[4–7]). Therefore, we make an emphasis in this chapter to the theoretical aspects
of the solution of the scattering problem in XRR geometry and some specific cases
discussed in recent publications [8–16]).

The calculation of X-ray scattering from the ideally smooth surface corresponding
to the plane z = 0 (Fig. 3.1) is a basis for the further analysis of the reflection from
the imperfect samples. In most cases, this problem is reduced to the solution of
the one-dimensional wave equation assuming the infinite size of the sample in the
directions (x, y). However, real samples have always a finite size and therefore we
present here an analysis based on the scattering theory utilizing the DWBA approach
considered in the previous chapter (2.37). The results of this analysis are used in
next sections for the description of X-ray scattering from imperfect surfaces. The
scattering potential has the form, following from the relation (3.2) and the definition
(2.3) (see Fig. 3.1):

V (M)(r,ω) = k2
0χ(ω)H(z), (3.4)

and the perturbation potential depends on the sample size in lateral plane and the
X-ray beam size:

V (r,ω) = −k2
0χ(ω)S(r);

S(r) = H(z)

[
1 − H

(
L̃ x

2
− x

)
H

(
L̃ x

2
+ x

)
H

(
L̃ y

2
− y

)
H

(
L̃ y

2
+ y

)]
.

(3.5)
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The sample with the surface at z = 0 and the edges Lx , L y is considered here. The
shape function is defined by the Heaviside functions (H(u) = 1, u > 0; H(u) =
0, u < 0), where the value L̃ x is chosen as minimal from Lx and L(b)x /sin θ, and
L̃ y = min{L y, L(b)y }. Here L(b)x , L(b)y are the linear dimensions of the cross-section
of the incident beam, and L̃ x,y defines the beam spot on the plane z = 0 (Fig. 3.1).
First of all, we consider the solution with the potential (3.4), and the Maxwell’s
equation (2.37) is transformed to:

(Δ+ k2
0[1 + χ(ω)H(z)])A(+)k,s (r,ω) = 0, (3.6)

with the boundary condition for the wave impinging the sample:

A(+)k,s (r,ω) ≈ e(s)(k) ei(kx x+kz z); z → −∞; s = 1, 2 (3.7)

The coordinate system is positioned in the way that the plane y = 0 coincides
with the plane of the beam incidence composed by the vector k and the normal

N to the sample surface, i.e. ky = 0, kx = k0 cos θ, kz =
√

k2
0 − k2

x = k0 sin θ.

The polarization vector e(1)(k) lies in the incidence plane (π-polarization), e(2)(k)
is perpendicular to the incidence plane (σ-polarization), see Fig. 3.3.
The variables in the Eq. (3.6) are separated and the general solution is represented as
a combination of plane waves (Fig. 3.3):

A(+)1,s = e(s)(k) ei(kx x+kz z) + R(s)e(s)(k′) ei(k′
x x+k′

z z), z < 0

A(+)2,s = T (s)e(s)(km) ei(kxm x+kzm z) z > 0;
k′

x = k0 cos θ′, k′
z = −k0 sin θ′; kxm = k0n cos θ1, kzm =

√
k2

0n2 − k2
xm, (3.8)

with undefined amplitudes R(s), T (s). The coefficient at the reflected wave within
media R(s)m is equal to zero due to the asymptotic condition for A(+)k,s caused by the

Fig. 3.3 Wave propagation
sketch for the X-ray scattering
process from the surface

http://dx.doi.org/10.1007/978-3-642-38177-5_2
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absence of the convergent waves far from the sample. As the next step, the continuity
condition for the lateral components of the electrical and magnetic fields [17] is used
at the boundary of two media (z = 0):

E1,τ |z=0 = E2,τ |z=0; H1,τ |z=0 = H2,τ |z=0. (3.9)

Using the relationship (2.9) between wave fields and vector potential, the boundary
conditions for functions (3.8) for σ-polarization are written as:

A1,y |z=0 = A2,y |z=0; ∂

∂z
A1,y |z=0 = ∂

∂z
A2,y |z=0. (3.10)

Due to the validity of the condition (3.10) in each point on the surface, the x-dependent
phase coefficients are equal each to other when substituting (3.8) into (3.10), and
therefore the lateral component of the wave vector is preserved:

kx = k′
x = kxm; θ = θ′; cos θ1 = 1

n
cos θ;

k′
z = −kz; kzm = k0

√
n2 − cos2 θ. (3.11)

The Eq. (3.11) means that the scattering of X-ray from the ideal surface occurs
exclusively for the angle equals to the incidence angle (specular reflection). For σ-
polarization, the conditions (3.10) lead to the following equations for the amplitudes
(the solutions are the Fresnel coefficients [17]):

1 + R(2) = T (2); kz(1 − R(2)) = kzm T (2);

R(2) ≡ rF = kz − kzm

kz + kzm
= sin θ − √

n2 − cos2 θ

sin θ + √
n2 − cos2 θ

;

T (2) ≡ tF = 2kz

kz + kzm
= 2 sin θ

sin θ + √
n2 − cos2 θ

. (3.12)

For π-polarization, the results are slightly different:

A1,x |z=0 = A2,x |z=0;
(
∂

∂z
A1,x − ∂

∂x
A1,z)|z=0 =

(
∂

∂z
A2,x − ∂

∂x
A2,z

) ∣∣∣∣
z=0
. (3.13)

(1 − R(1)) = sin θ1

sin θ
T (1); 1 + R(1) =

(
kzm

k0
sin θ1 + cos2 θ

n

)
T (1);

R(1) = kzn2 − kzm

kzn2 + kzm
= rF + O(|χ(ω)|)

http://dx.doi.org/10.1007/978-3-642-38177-5_2
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T (1) = 2kzn2

kzn2 + kzm
= tF + O(|χ(ω)|). (3.14)

For the electromagnetic radiation of the wavelengths in X-ray region the magni-
tude of |χ(ω)| ∼ 10−5, and therefore the Fresnel coefficients of the reflection rF

and transmission tF are independent on the polarization and defined by the formulas
(3.12). This statement follows from the fact of the conservation of the transversality of
X-ray wave field in media with the same accuracy (Sect. 2.2). Figure 3.4 demonstrates
the behavior of the intensity of the reflected and transmitted waves (proportional to
|rF (sin θ)|2 and |tF (sin θ)|2, respectively) for silicon and germanium crystals. As fol-
lows from the Eq. (3.12), the reflection coefficient is only essential within a narrow
diapason of the incidence angles compared to the critical angle of the total external
reflection θc:

sin θ ≈ θ ∼ θc ≡ √
2|β| ∼ 10−2rad, (3.15)

and the parameter β follows from Eq. (3.2).
Thus, adopting the above used approximations, the interaction of X-ray radiation

with a matter in case of XRR does not depend on the polarization, and as a conse-
quence the incident wave can be considered in the calculations as fully polarized one
in the direction perpendicular to the incidence plane, for example. The scattering
problem for the potential (3.4) is then reduced to the scalar case:

Fig. 3.4 Functions
|rF (sin θ)|2 and |tF (sin θ)|2
for silicon (β =
−0.76 10−5; δ = 1.73 10−7)
and germanium (β =
−1.45 10−5; δ = 4.32 10−7)
crystals at X-ray wavelength
λ = 1.54 nm

http://dx.doi.org/10.1007/978-3-642-38177-5_2
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A(+)k = e(2)(k)eikx x E (+)(z);
E (+)(z) = [eikz z + rF e−ikz z]H(−z)+ tF eikzm z H(z). (3.16)

The solution of the Eq. (3.6), corresponding to the convergent wave, is found from
the formula (2.38):

A(−)k = A(+)∗−k = e(2)(−k)eikx x E (−)(z);
E (−)(z) = [eik∗

zm z + r∗
F e−ik∗

zm z]H(z)+ t∗F eikz z H(−z);
t∗F = 2k∗

zm

kz + k∗
zm

; r∗
F = −kz − k∗

zm

kz + k∗
zm
. (3.17)

The Green function of the wave Eq. (3.6) after the separation of the polarizations
[8–10]:

(Δ+ k2
0[1 + χ(ω)H(z)])G(r, r ′) = δ(r − r ′);

G(r, r ′) = 1

4π2

∫

p⊥<k0

d p⊥ei p⊥(r−r ′)gpz (z, z′). (3.18)

The Green function gpz (z, z′) of the one-dimensional wave equation is constructed
by using the standard methods of the differential equation theory [8–10, 18]:

gkz (z, z′) = i

2pzmtF
[E (+)(z)E (−)∗(z′)H(z′ − z)

− E (+)(z′)E (−)∗(z)H(z − z′)]. (3.19)

To calculate the observed differential cross-section of X-ray scattering (2.10), the
integral representation (2.6) has to be used:

A(+)k = e(2)[ei kr +
∫

eik0|r−r ′|

4π|r − r ′| V (M)(z′)eikx x ′
E (+)(z′)d r ′]. (3.20)

with the potential taken from (3.4). The use of the latter formula is motivated by the
transition in the formulas above to the asymptotic representation at r � r ′. However,
for the considered here sample model this condition is not fulfilled because of the
function E (+)(z′) is found using the boundary conditions for the potential, which
are unlimited in the tangential plane. Thus, the application of the formula (2.10) for
wave field (3.20) leads to the contradiction with the formal scattering theory [19]. To
avoid this contradiction, the conditions have to be found at which the contribution to
the wave field from the perturbation potential (3.5) becomes negligible. In this case,
the calculation of the cross-section within the asymptotic scattering theory using
(2.10) is equivalent to the calculation of the intensity of the reflected wave with the
boundary conditions (3.16). The general equation for the wave field in the framework

http://dx.doi.org/10.1007/978-3-642-38177-5_2
http://dx.doi.org/10.1007/978-3-642-38177-5_2
http://dx.doi.org/10.1007/978-3-642-38177-5_2
http://dx.doi.org/10.1007/978-3-642-38177-5_2
http://dx.doi.org/10.1007/978-3-642-38177-5_2
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of DWBA approach (2.47) and after separation of the polarizations is written as:

Ak(r) = e(2)Ψk(r);

Ψk(r) = [ei kr +
∫

eik0|r−r ′|

4π|r − r ′| V (M)(z′)eikx x ′
E (+)(z′)d r ′

−
∫

G(r, r ′)V (r ′)Ψk(r
′)d r ′], (3.21)

with Green function (3.18), and the formula (3.21) can be further transformed into:

Ψk(r) = ei kr +
∫

r ′⊥⊂S̃⊥

eik0|r−r ′|

4π|r − r ′| V (M)(z′)eikx x ′
E (+)(z′)d r ′

− k2
0χ(ω)

4π2

∫

p⊥<k0

d p⊥
∫

r ′⊥⊃S̃⊥
ei p⊥(r−r ′)eikx x ′

× H(z′)[g(0)pz
(z, z′)E (+)(z′)− gpz (z, z′)e−ikx x ′

Ψk(r
′)]d r ′, (3.22)

where S̃⊥ = L̃ x L̃ y and g(0)pz (z, z′) is a Green function for one-dimensional equation
for free wave field:

g(0)pz
(z, z′) = i

2pz
eipz |z−z′|. (3.23)

The first two terms in (3.22) correspond to the standard treatment of XRR as one-
dimensional problem [5–12]. The last term describes the contribution of the Fresnel
diffraction from the sample edges [2], which is usually neglected. The conditions
at which this contribution is negligible have to be considered thoroughly using one-
dimensional integral over variable x in (3.22):

I (kx , L) =
∫ ∞

L
dx ′ei(kx −px )x ′ +

∫ −L

−∞
dx ′ei(kx −px )x ′

. (3.24)

This integral is a generalized function [20], which integrates a smooth function related
to the averaged wave vector in our case:

J (L) = 1√
2πΔk

∫ ∞

−∞
dkx e

− (kx −kx0)
2

2Δ2
k I (kx , L). (3.25)

Here the value kx0 defines the “center” of the wave package and Δk is the width of
package (see 2.1). Changing the integration sequence in (3.25), the expression can
be simplified:

http://dx.doi.org/10.1007/978-3-642-38177-5_2
http://dx.doi.org/10.1007/978-3-642-38177-5_2
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J (L) = 2
∫ ∞

L
dx ′ cos[(kx0 − px )x

′]e−(x ′Δk )
2/2

=
√
π

2Δk
e
− q2

2Δ2
k

[
2 −Φ

(
LΔk − iq/Δk√

2

)
−Φ

(
LΔk + iq/Δk√

2

)]
, (3.26)

where q = kx0 − px and

Φ(z) = 2√
π

∫ z

0
e−t2

dt

is a probability integral [18]. In real experiments, the transverse size of the sample
L ≥ 0.1 cm, Δk ≈ k0Δθ ≥ 103 cm−1, and as result LΔk � 1; LΔk � |q|/Δk .
That is a reason to use an asymptotic for the function Φ(z) in (3.26) [18], and the
contribution of the edge effects into wave field (3.22) is found to be an exponentially
small value:

J (L) ≈ 1

Δk
√
πLΔk

e
− q2

2Δ2
k e−(LΔk )

2 � 1. (3.27)

In those parts of the expression remaining after the integration of the wave field
(3.22), the further integration is performed over the limited area, which makes pos-
sible to utilize the asymptotic of Green function:

Ψk(r) ≈ ei kr + eik0 r

4πr
T (k1, k); k1 = k0

r
r
;

T (k1, k) = k2
0χ(ω)

∫

r ′⊥⊂S̃⊥
d r ′⊥

∫ ∞

0
dz′e−i k1r ′

eikx x ′
E (+)(z′), (3.28)

and using the formula (2.10) for calculation of the differential cross-section of X-ray
scattering:

dσ

dΩ
= 1

(4π)2
|T (k0, k1)|2. (3.29)

Here the fact of the independence of the cross-section on the polarization is taken into
account and the condition sin θs = 1 is fulfilled with the accuracy ∼ |χ|. For XRR
experiments, the radiation scattered (reflected) into angles defined by z < 0, corre-

sponding to k1 = (k1⊥, k1z = −
√

k2
0 − k2

1⊥) attracts most of interest. Substituting
(3.16) into (3.28), the differential cross-section is found:

dσ

dΩ
= k4

0 |χ(ω)|2
(4π)2

|tF |2
|kzm − k1z|2

16 sin2(kx − k1x )L̃ x/2

(kx − k1x )2

sin2 k1y L̃ y/2

k2
1y

. (3.30)

Using the asymptotic relationship from [21], which is valid with an accuracy (3.27):

sin2 Ax

x2 = πAδ(x), A � 1, (3.31)

http://dx.doi.org/10.1007/978-3-642-38177-5_2
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and the relationships k2
0χ0 = k2

zm −k2
z , kz = −k1z , the formula (3.30) is transformed

to the following form:

dσ

dΩ
= |kzm − kz |2|tF |2

4
L̃ x L̃ yδ(kx − k1x )δ(ky − k1y). (3.32)

Finally, from the expression (3.12) for the Fresnel coefficients [7] and the equation

dΩ = dk1x dk1y

k0kz

for the solid angle, the integral cross-section of the scattered photons registered by
the detector in the plane perpendicular to the wave vector of reflected wave k1 is
obtained:

σD = kz

k0
|rF |2 L̃ x L̃ y . (3.33)

By the definition [21], the scattering cross-section is normalized to the incident flux,
whereas the XRR applications [7] deal with the reflectivity: the intensity of the
reflected radiation normalized to the intensity of the incident beam:

|R(θ)|2 = σD

L(b)x L(b)y

= |rF |2 Fb(θ);

Fb(θ) = sin θ
L̃ x L̃ y

L(b)x L(b)y

, (3.34)

where the factor Fb(θ) is independent on the characteristics of the reflecting media
and defined by the geometrical dimensions of the X-ray beam and the sample. As
a rule, the beams of the sizes essentially less than the sample size are used in XRR
technique, thus the conditions are fulfilled:

sin θb ≡ L(b)x

Lx
< θc; L(b)y � L y,

which implement the factor Fb(θ) to be equal:

Fb(θ) = sin θ

sin θb
, θ < θb; Fb(θ) = 1, θ > θb.

Taking into account a small angle divergence θS < θb of X-ray sources in XRR
experiments, the averaging procedure results in the following modification of formula
(3.34):
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Fig. 3.5 X-ray reflectivity
calculated for the same sample
parameters as in Fig. 3.4,
but with geometrical factor
(θS = 0.5θb = 0.25θc)

|R(θ)|2 = |rF |2 F̄b(θ);

F̄b(θ) ≈ 1

2θSθb

(
θ + θS

2

)2

, θ <
θS

2
;

F̄b(θ) ≈ θ

θb
,
θS

2
< θ < θb; F̄b(θ) = 1, θ > θb. (3.35)

Figure 3.5 shows how the reflectivity is deviated from the Fresnel reflection after
accounting of geometrical factors.

3.2 Reflection of X-Ray Radiation from Rough Surface

The modeling of the sample surface as an ideally flat plane used in previous section
is a very limiting approximation for the description of real samples. This approx-
imation is valid in the case when the linear dimension l of microscopic (atomic)
heterogeneities on the surface are small comparing to the lateral wavelength of X-
ray beamλ‖ ≈ λ/θc ∼ 102 nm. However, the majority of the samples investigated by
XRR technique possesses the mesoscopic heterogeneities li ≥ λ‖, so called rough-
ness, which is implemented during the sample growth and treatment (Fig. 3.6). This
imperfection modifies the intensity of the specularly reflected X-ray wave and yields
the radiation scattered at the angles different than incidence angle and known as
diffuse X-ray scattering.

Theoretical description of specular and off-specular (diffuse) X-ray scattering
from rough surfaces and interfaces is of special importance for the analysis of modern
semiconductor and other nanoscale devices. As it has been demonstrated in one of
the pioneering work in this field [22], the imperfection of surfaces and interfaces is
not comprehensively described by only root mean square of the roughness amplitude
σ; the roughness correlation length Lc and fractal dimension (3 − h), where h is a
Hurst parameter, have to be considered, too.

The most effective method for calculation of X-ray scattering from rough surfaces
is proved to be distorted-wave Born approximation (DWBA), which is extensively
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Fig. 3.6 Scattering of X-ray
radiation from the surface
possessing roughness. The
intensity of the specularly
reflected R(θ) and transmitted
T (θ) waves are modified due
to the scattering of radiation
at different then specular
angles (diffuse scattering)
and are expressed through the
scattering amplitude T (k, p)
for various wave vectors p in
a final state

described in literature (see, for example, [7]). For zeroth approximation of DWBA,
either the specular reflection from perfect plane interface (Fresnel reflection) or the
reflection from interface modeled by transition layer with profile delivering an exact
solution [11] are usually used. The roughness correlations are taken into account in
the first-order DWBA on the deviation of real scattering surface from the model one.

The diffuse X-ray scattering leads to the reduction of the intensity of specular
(coherent) reflection due to the conservation of the radiation flux. To calculate this
loss, typically the semi-phenomenological Debye-Waller FDW = exp(−2k2

zσ
2) or

Nevot-Croce [23] FNC = exp(−2kzkzmσ
2) factor is used, which, however, depends

not on the roughness correlations but solely on the parameter σ. However, the reflec-
tion coefficient from rough surface, as shown in [8–10, 22], depends also on the
roughness correlations. This dependence is described by second-order DWBA, and
both FDW and FNC are derived as limiting cases for the magnitude of roughness cor-
relation. The re-normalization of the coefficient Rs(θ) in [8–10] has been performed
with the accuracy of the 2nd order DWBA on the imperfection of the surface. As a
result, the specular reflection coefficient depends both on the parameter σ and on the
roughness correlation. For the large scattering angles, the phenomenological “expo-
nentiating” operation was applied to Rs(θ), which calculated the first and the second
DWBA approximations by expanding the exponent into series. In real experiments,
however, the exponential behavior of Rs(θ) at large angles has not been observed
[24]. For example, for long correlation length Lc roughness, the X-ray scattering
is close to the one from perfect surface, where Rs(θ) is decayed as Rs(θ) ∼ θ−2

with the increase of scattering angle. Moreover, the above assumption is not self-
consistent: any re-normalization of the Fresnel reflection coefficient is equivalent to
introduction of transition layer at interface [11], whereas the solutions for perfect
interface are used for calculation of the corrections for reflection coefficient and dif-
fuse scattering intensity. Another semi-phenomenological description of exponential
behavior of reflection coefficient at large scattering angles θ has been done in [24].

The main goal of the present section is description of the method for calcula-
tion of specularly reflected intensity from rough surfaces and interfaces without
any phenomenological assumptions. It is based on the solution of the X-ray scatter-
ing problem from transition layer with arbitrary profileΛ(z) has been reported [13],
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which delivers analytical expression for reflection and transmission coefficients from
profileΛ(z) with a high accuracy. The self-consistent approach for the specular and
diffuse scattering for high order DWBA was then formulated in [16].

In accordance with the previous section the polarization effects are negligible for
X-rays and thus the propagation of electromagnetic wave with arbitrary polarization
is described by the solution φk(r) of the scalar wave Eq. (2.2):

[Δ+ k2
0 + V (r)]φk(r) = 0, (3.36)

with standard asymptotical boundary conditions, which correspond to the scattering
on the unlimited in the direction x surface [11]:

φk(r) ∼ ei kr + R(k, p) ei pr , pz < 0, z → −∞,

φk(r) ∼ T (k, p) ei pr , pz > 0, z → ∞, (3.37)

where k is the wave vector of incident and p of scattered (p2 = k2
0) waves, respec-

tively; R(k, p), T (k, p) are the amplitudes of the reflected and transmitted waves;
the condition p⊥ = k⊥ defines the case of specular reflection and p⊥ �= k⊥ is the
case of diffuse scattering [22].

The angle θ ∼ θc = √|χ| � 1, corresponding to effective interaction length
l ∼ λθ−1, plays an essential role in the scattering from surface. Because of the value
of l exceeds essentially the atomic dimension, the interaction potential between
X-rays and semi-infinite media is determined from the expression [11]:

V (r) = k2
0χ(ω)H [z − z0(x, y)], (3.38)

where H [z − z0(x, y)] is the Heaviside function with random function argument
z0(x, y) defining the surface roughness (Fig. 3.6). The ideal, perfectly smooth surface
corresponds to z0 = 0.

The main problem in the solving of the Eq. (3.36) is that the function φk(r) is a
complex non-linear functional of random function z0(x, y). This fact does not permit
to construct a closed equation for function 〈φk(r)〉 averaged over the distribution
z0(x, y). The common solution for this problem in X-ray reflectometry is based on
the proportionality of the amplitude of specular (coherent) reflection to entire sample
surface ∼ S. At the same time, the amplitude of diffuse (incoherent) scattering is
proportional to ∼ √

S and is small even for large roughness, that makes possible to
take it into account by DWBA [11]. The potential (3.38) can be written in the form:

V (r) = V0(z)+ ξV1(r) ≡ V0(z)+ ξ{k2χH [z − z0(x, y)] − V0(z)},
V0(z) ≡ k2χ(ω)Λ(z), (3.39)

where V0(z) is one-dimensional coherent potential of transition layer, taking into
account the influence of roughness on specular reflectivity; the dimensionless func-
tion Λ(z) defines the profile of this layer [11], and by definition Λ(z) → 0, z →

http://dx.doi.org/10.1007/978-3-642-38177-5_2
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−∞, Λ(z) → 1, z → ∞. The formal parameter ξ is introduced to order the terms
of the perturbation series on their smallness, and in the final expressions it will be set
to ξ = 1. Using potential (3.39), Eq. (3.36) is transformed to the integral equation:

φk(r) = φ
(0)
k (r)− ξ

∫
d r ′Gk(r, r ′)V1(r ′)φk(r

′). (3.40)

The zeroth approximation φ(0)k (r) is derived from the equation with potential V0(z):

[Δ+ k2
0 + V0(z)]φ(0)k (r) = 0, φ(0)k (r) = ei k⊥rϕkz (z), (3.41)

and boundary conditions for one-dimensional wave equation are:

[
d2

dz2 + k2
z + k2

0χΛ(z)

]
ϕkz (z) = 0, kz =

√
k2

0 − k2⊥,

ϕkz (z) ∼ eikz z + R(0)(kz) e−ikz z, z → −∞,

ϕkz (z) ∼ T (0)(kz) eik1z z, k1z =
√

k2
z + k2

0χ, z → ∞, (3.42)

which deliver the zeroth approximation R(0)(kz) for the specular reflection coeffi-
cient. The Green function Gk(r, r ′) satisfies the following equation:

{Δ+ k2
0 + V0(z)}Gk(r, r ′) = δ(r − r ′), (3.43)

and according to general theory of differential equations can be expressed [8–10]
through two fundamental solutions of the Eq. (3.42):

Gk(r, r ′) =
∫

|k′⊥|<k

dk′⊥
4π2 ei k⊥(r−r ′)gk′

z
(z, z′), k′

z =
√

k2 − k′2⊥,

gk′
z
(z, z′) = −ϕk′

z
(z1)ϕ−k′

z
(z2)

W
, z1 = min(z, z′), z2 = max(z, z′),

W = ϕ−k′
z

dϕk′
z

dz
− ϕk′

z

dϕ−k′
z

dz
. (3.44)

Using Eqs. (3.42)–(3.44) and iteration scheme for approximate solution of the
Eq. (3.40), the formal series of DWBA approximations can be obtained for the scat-
tering amplitude T (k, p). The square of this amplitude delivers in the differential
cross-section of X-ray scattering in half plane z < 0 [8–10]. The explicit expressions
for the terms of this series up to the second order of potential V1(r), i.e. parameter
ξ, are:

T (k, p) ≈ T (0)(k, p)+ ξT (1)(k, p)+ ξ2T (2)(k, p)+ . . .

T (0)(k, p) = R(0)(kz)(2π)
2δ( p⊥ − k⊥);
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R(0)(kz) =
∫

dzeikz z V0(z)ϕkz ,

T (1)(k, p) =
∫

d rei( p⊥−k⊥)rϕ∗−kz
V1(r)ϕpz ,

T (2)(k, p) =
∫

d rd r ′
∫

|k′⊥|<k

dk′⊥
k′

z
ei(k′⊥−k⊥)rei( p⊥−k′⊥)r ′

× ϕ∗−kz
(z)V1(r)ϕk′

z
(z)ϕ∗

−k′
z
(z′)V1(r ′)ϕpz (z

′), (3.45)

where R(0)(kz) is the specular reflection coefficient from the interface with profile
Λ(z). The observed differential cross-section of X-ray scattering is calculated in
accordance with general formula (2.10):

dσ

dΩ
= 1

16π2 〈|T (k, p)|2〉, (3.46)

after averaging 〈. . .〉 over the ensemble of random functions z0(x, y). In zeroth
approximation, the only specular reflection ∼ |R(0)(kz)|2 is obtained from Eq. (3.45).
The diffuse scattering [22] is caused by the fluctuations of the scattering square ampli-
tude, i.e. appears in the first-order DWBA ∼ ξ2(〈|T (1)(k, p)|2〉 − |〈T (1)(k, p)〉|2).
Thus, its contribution to the cross-section has the same order as the term depending
on the second order DWBA ∼ ξ2 R(0)(kz)〈T (2)(k, p)〉, and therefore, for calculation
of the scattering cross-section both contributions have to be taken into account. The
validity conditions for presented approach coincide rather with the validity area of
DWBA than one of perturbation theory. Concerning the validity of DWBA conver-
gence, it might be defined by the ratio of the spectral intensity of specular reflection
to diffusely scattered intensity [11]. This is small because of the cross-section of
X-ray scattering from averaged potential V0(z) is proportional to the square of sam-
ple surface S, whereas scattering from fluctuations depends on the roughness rms,
correlation length and scattering angle.

To use formulas (3.44)–(3.46), the analytical expression for the profile of zeroth
approximationΛ(z) has to be chosen, and then the explicit expression for ϕkz (z) has
to be found. In meantime, definite distribution model for the ensemble of random
functions z0(x, y) has to be selected. It is widely used (for example, [8–10]), the
perfect plane interface is selected as zeroth approximation, which is a typical choice
for DWBA applications:

Λ(z) ≈ Λ0(z) = H(z),

ϕ
(0)
kz
(z) = (eikz z + rF e−ikz z)H(−z)+ tF eik1z z H(z), (3.47)

where rF and tF are the Fresnel reflection and transmission coefficients for ideal
surface (3.14) . For this choice of initial profile, the first- and second-order DWBA
corrections for specular reflection coefficient, accounting roughness correlations, can
be calculated [8–10]. For small scattering angles, the specular reflection coefficient

http://dx.doi.org/10.1007/978-3-642-38177-5_2
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varies in dependence on roughness correlations within the limits:

rF (kz)(1 − 2σ2k2
z ) < Rs(kz) < rF (kz)(1 − 2σ2kzk1z). (3.48)

At small scattering angles kzσ � 1, the calculations of [8–10] are completely
microscopical. They demonstrate that reconstruction of transition layer, which influ-
ences the reflection coefficient, depends both on averaged roughness and roughness
correlations. However, at larger scattering angles the formula for specular reflection
(3.48) fails, and accounting of high order terms in (3.40) is necessary, which is diffi-
cult to realize in practice. Commonly accepted approach to solve this problem is an
additional phenomenological assumption about terms in parentheses in (3.48), which
are supposed to be the first terms in the expansion over parameter kzσ of Gaussian
exponent (“exponentiating” operation). The latter makes a re-normalization of the
reflection coefficient:

rF (kz)e
−WDW < Rs(kz) < rF (kz)e

−WNC ;
e−WDW = e−2σ2k2

z ; e−WNC = e−2σ2kzk1z . (3.49)

Depending on the correlations, this exponent reduces to Debye-Waller (e−WDW ) or
Nevot-Croce exponent (e−WNC ) [8–10]. Let us note that in the same approximation
the Fresnel transmission coefficient should be also re-normalized [7]:

tF (kz) → tF (kz)e
σ2
2 (kz−kzm )

2
(3.50)

This simple re-normalization describes well experimental data, when measured
sample possesses a roughness of small amplitude. However, for larger σ values,
the observed Rs(kz) may considerably differ from exponential one. Therefore, for
large roughnesses the alternative phenomenological approximation has been pro-
posed [24], which introduces additional parameter, a maximal roughness amplitude.
This approach is proved to describe well experimental data from sample with very
rough surface, as shown in [24]. Nevertheless, the solution of the following problem
remains actual and demanded: is a microscopical description of the reflection from
imperfect surface possible for arbitrary scattering angles by low orders DWBA and
without any additional assumptions?

The physical reason for necessity of the re-normalization of specular reflection
coefficient is the conservation of the photons flux. The emission of the diffuse
X-ray scattering is compensated by the reduction of the intensity of specular reflec-
tion [8–10]. The calculated intensity of diffuse scattering depends on the DWBA
order applied, therefore the corrections for R(0)(kz) also vary in each higher DWBA
approximation. These corrections, however, can not be summed up in general case,
which causes the phenomenological modeling of R(0)(kz) in conventional theories.

The key point of the proposed self-consistent approach is to do not fix the profile
of the transition layer initially, but to consider
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Λ(0)(z) ⇒ Λ(kz, z) (3.51)

as a variational function changing with DWBA order and depending on kz . This
additional degree of freedom can be used for transformation of differential cross-
section of X-ray scattering, simulated on the basis of DWBA. The physical meaning
of variational profile dependence on kz is conditioned by the dependence of averaged
within the higher DWBA orders surface potential on the projection of correlation
length onto the incidence beam.

Assume that differential cross-section of X-ray scattering (3.45) is calculated
with the accuracy up to the second order of ξ. Then performing an averaging over
ensemble of random functions z0(x, y), it is expressed as:

dσ

dΩ
= 1

16π2 |T (k, p)|2;
|T (k, p)|2 = {|T (0)({Λ(kz, z)})+ ξ〈T (1)({Λ(kz, z))}〉|2

+ 2ξ2�[T (0)∗({Λ(kz, z)})〈T (2)({Λ(kz, z)})〉]}
+ ξ2[〈|T (1)(k, p)|2〉 − |〈T (1)(k, p)〉|2]. (3.52)

All the terms in this expression are the functionals of the profile Λ(kz, z). This
profile can be chosen in such a way that the sum of all terms in specular reflection
( p⊥ = k⊥), except first one, equals to zero:

{ξ2{|〈T (1)({Λ(kz, z))}〉|2 + [〈|T (1)(k, p)|2〉 − |〈T (1)(k, p)〉|2]}
+ 2�{T (0)∗({Λ(kz, z)})[ξ〈T (1)({Λ(kz, z)})〉

+ ξ2〈T (2)({Λ(kz, z)})〉]}}( p⊥=k⊥) = 0. (3.53)

The solution to this functional equation delivers the functionΛ(kz, z), which is a
profile of the transition layer, and the specular reflection coefficient is:

R(kz) ≈ T (0)(kz, {Λ(kz, z)}), (3.54)

with already performed re-normalization. Thus, the scattering cross-section for all
exit angles is separated into coherent specular and incoherent diffuse scattering.

In order to realize the algorithm (3.51)–(3.54) the principle problem has to be
considered: the analytical solution of the zeroth-order Eq. (3.43) for arbitrary profile
Λ(z) should be found. This solution has been proposed in Refs. [13, 16] on the basis
of the following analysis.

Let us consider the wave field E(z) of monochromatic X-ray beam reflected from
the substrate with one-dimensional transition layer on the top is defined by equation:

[
d2

dz2 + q2 + Vϕ(z)

]
E(z) = 0. (3.55)
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As before the z-axis is assumed to be perpendicular to the surface of substrate;
the in-plane component of the wave vector is conserved and the normal z-component
is defined for the convenience as kz ≡ q = k0 sin θ; function ϕ(z) determines the
normalized potential of transition layer with amplitude V = k2

0χ(ω), the conditions
ϕ(−∞) = 0 and ϕ(∞) = 1 are fulfilled.

The integral form of equation (3.55) with the Green function (3.23) is:

E(z) = Aeiqz + Be−iqz + V

2iq

⎧
⎨

⎩eiqz

∞∫

z

dz′e−iqz′
ϕ(z′)E(z′)

+e−iqz

z∫

−∞
dz′eiqz′

ϕ(z′)E(z′)

⎫
⎬

⎭ . (3.56)

Direct iterations of this equation with constants A and B following from the
boundary conditions result in Born series of perturbation theory. If one uses in the
integral part of the Eq. (3.56) the wave field corresponding to the ideal interface

E0(z) = [eiqz + rF e−iqz]H(−z)+ tF e−i pz H(z); p2 = q2 + V, (3.57)

the Rayleigh approximation (re-normalized Born approximation) for the reflection
coefficient RB(q) from the interface with transition layer can be calculated in the
following form [25]:

RB(q) = rF

∞∫

−∞
dz

dϕ

dz
e2iqz . (3.58)

This formula is widely used for solution of the inverse problem [5] because in this
case the density profile is simply connected with the Fourier transformation of the
reflection coefficient. However this approximation is not available for all values of
the system parameters. Especially it concerns to phase of the reflection coefficient.

Self-consistent approach [12] for solution of Eq. (3.56) assumes the use of another
approximate form E0(z) for function E(z) and finding of parameters for this form
by Eq. (3.56). Specifically, in Ref. [12] function E0(z) has been taken as the solution
of the wave equation for sharp interface with variable position z0 of interface. This
solution improves essentially the perturbation theory, but does not eliminate the
ambiguity in reflection and transmission coefficients because of dependence on the
self-consistency mode and it does not allow to calculate the successive corrections
for zeroth approximation.

It is possible to formulate another self-consistent ansatz for E(z) [13, 16]. Let us
redefine the potential function and solutions in the following way (Fig. 3.7):

ϕ(z) = H(z − σ)+ λ(z)H(σ − z)H(z + σ)

E(z) = H(−z − σ)[eiqz + Re−iqz]
+ u(z)H(σ − z)H(z + σ)+ H(z − σ)T eipz . (3.59)
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Fig. 3.7 Sketch of the scatter-
ing wave fields and potential
of the transition layer

Here H(z) is the Heaviside function; λ(z) is a potential function varied from zero
to unity inside the transition layer located between the planes with coordinates ±σ
(in general case can be chosen as σ → ∞); coefficients R and T in function E(z)
are the exact coefficients of reflection and transmission. By definition, function E(z)
describes the transmitted wave at z = +∞ if the condition is satisfied:

p2 = q2 + V ≡ k2
zm . (3.60)

The function u(z) is defined within the interval |z| < σ and satisfies the boundary
conditions at z = ±σ, as follows from the discontinuity condition for the solution:

u(σ) = T eipσ; u(−σ) = Reiqσ + e−iqσ. (3.61)

Substituting (3.59) into (3.56), we derive the equation:

Aeiqz + Be−iqz + V

2iq
eiqz

⎧
⎨

⎩

σ∫

−σ
dξe−iqξλ(ξ)u(ξ)

+
∞∫

σ

dξe−iqξT eipξ

⎫
⎬

⎭ = eiqz + Re−iqz; z < −σ

Aeiqz + Be−iqz + V

2iq

⎧
⎨

⎩e−iqz

⎡

⎣
σ∫

−σ
dξeiqξλ(ξ)u(ξ)

+
z∫

σ

dξeiqξT eipξ

⎤

⎦ + eiqz

∞∫

z

dξe−iqξT eipξ

⎫
⎬

⎭ = T eipz; z > σ

Aeiqz + Be−iqz + V

2iq

⎧
⎨

⎩eiqz

∞∫

σ

dξe−iqξT eipξ
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+eiqz

σ∫

z

dξe−iqξλ(ξ)u(ξ)+ e−iqz

z∫

−σ
dξe−iqξλ(ξ)u(ξ)

⎫
⎬

⎭

= u(z); −σ < z < σ. (3.62)

Equating the coefficients at fast-oscillating exponents in both parts, the constants are
found to be A = 0; B = R, whereas the reflection and transmission coefficients
and the function u(z) should be defined from the equations:

R + V T

2q(p + q)
ei(p+q)σ + V

2iq

σ∫

−σ
dξeiqξλ(ξ)u(ξ) = 0;

V T

2q(p − q)
ei(p−q)σ + V

2iq

σ∫

−σ
dξe−iqξλ(ξ)u(ξ) = 1;

u(z) = Re−iqz + V T

2q(p − q)
ei(p−q)σeiqz

+ V

2iq

σ∫

−σ
dξ[eiq(z−ξ)H(ξ − z)+ e−iq(z−ξ)H(z − ξ)]λ(ξ)u(ξ). (3.63)

The system of Eqs. (3.62) for function u(z) along with boundary conditions (3.61)
is the exact consequence of primary integral equation. However, the advantage of it
is the implicit form of fast oscillating terms in equations, that permits to solve the
integral equation for function u(z) within the limited interval, and latter function is
parametrized mainly by the potential function λ(z). To approximately calculate the
self-consistent values R(q) and T (q), some model form (ansatz) for function u(z) has
to be chosen. This model function is expected to satisfy the following conditions: (i)
its variation is mainly determined by potential function, (ii) it satisfies the boundary
conditions (3.61), (iii) it does not include any additional parameters. The simplest
representation of u(z), fulfilling the mentioned conditions, is:

u0(z) = λ(z)T eipz + [1 − λ(z)](Re−iqz + eiqz). (3.64)

Ansatz (3.64) is the basic expression of the self-consistent approach and it can be
considered as the zeroth-order iteration for solution of integral Eq. (3.62). The substi-
tution of this ansatz into Eq. (3.63) results in self-consistent equations for calculation
of reflection and transmission coefficients through the potential function:

[
1 − i

V K (0)

2q

]
R(q)+ V L(p + q)

q(p + q)
T (q) = i

V K (2q)

2q
;

−i
V K (−2q)

2q
R(q)+ V L(p − q)

q(p − q)
T (q) = 1 + i

V K (0)

2q
;
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K (r) =
σ∫

−σ
dzeirzλ(z)[1 − λ(z)]; L(r) =

σ∫

−σ
dzeirzλ(z)λ′(z), (3.65)

from which the result for zeroth-order approximation follows:

R(q) = DR

Δ
; T (q) = DT

Δ
;

DR = iV 2[K (2q)L(p − q)(p + q)− K (0)L(p + q)(p − q)]
− 2qV L(p + q)(p − q);

DT = V

2
{V 2[K 2(0)− K (2q)K (−2q)] + 4q2};

Δ = iV 2[K (−2q)L(p + q)(p − q)− K (0)L(p − q)(p + q)]
+ 2qV L(p − q)(p + q). (3.66)

Equation (3.66) confirms the fact, that self-consistent calculation of reflection and
transmission coefficients permits to express them directly through the density profile
of transition layer, though this relation is more complicated than for Born approxima-
tion. The successive approximations for coefficients can be easily found because of
Eq. (3.63) is obtained from the exact integral equation for function u(z). The proce-
dure for finding u(1)(z) is the following: the Eq. (3.62) is iterating and new solutions
are substituted into expressions for reflection and transmission coefficients. It was
shown for series of potentials [13], that these iterations converged very quickly and
zeroth approximation was proved to be very accurate and sufficient for experimental
data interpretation.

The presented self-consistent approach (SCA) for solution of Maxwell’s equations
is a direct analogue of operator method for Schrödinger equation, which is proved
to be effective for the solution of many problems of quantum mechanics [26]. The
coincidence of the zeroth approximation with the exact solution in limiting cases,
where the analytical methods can be used, is shown in Ref. [26] to be an important
feature of any uniformly suitable approximation. For studied here case with arbitrary
potential, such analytical results can be found in two limit cases. The first one is
the region of incidence angles less than critical angle of total external reflection
(q2 < |V |), where the equation p = √

q2 + V = iκ is fulfilled. For real potential,
the integrals for SCA are represented as K (q) = K ∗(−q); L(q) = L∗(−q), and
substitution of these equations into Eq. (3.66) demonstrates the fulfillment of the
SCA zeroth approximation to the exact condition in considered angular range:

|R(0)(q)|2 = 1, q2 < |V |. (3.67)

In the second limit case of large incidence angles (q2 � |V |), one can use the
following estimations for integrals:
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K (q) = − i

q

⎡

⎣
σ∫

−σ
dzeiqzλ′(z)− L(q)

⎤

⎦ ; L(q) � eiqσλ′(σ)
iq

+ O(q−2);

L(p − q) � i(p − q)

2

⎡

⎣σ −
σ∫

−σ
dzλ2(z)

⎤

⎦ . (3.68)

Substituting these expressions into the Eq. (3.66), the reflectivity is written as:

R(0)(q) � V

2q2

σ∫

−σ
dze2iqzλ′(z),

i.e. for large value of q, SCA zeroth approximation is equivalent to Born approxi-
mation (3.58), which is asymptotically exact at large angles.

Thus, the proposed ansatz is believed to be a uniformly suitable approximation for
electromagnetic wave field, scattered from one-dimensional graded interface, since
it satisfies to all the limiting cases and its successive approximations converge to the
exact solution.

As an example, Fig. 3.8 compares the results of various methods for the Epstein
profile [27] widely used to model the transition layer in reflectometry:

ϕE (z) = 1

2
[1 + tanh(z/σE )] . (3.69)

An exact formulas for coefficients are well-known for this case (see, e.g., Ref.[11]):

RE (q) = − q + p

q − p

Γ (iqσE )

Γ (−iqσE )

Γ 2[−i(q + p)σE/2]
Γ 2[i(q − p)σE/2] ;

TE (q) =q + p

2p

Γ 2[−i(q + p)σE/2]
Γ (−iqσE )Γ (−i pσE )

, (3.70)

and integrals from Eq. (3.65) are also expressed analytically for this potential:

K (r) = πσ2
Er

4 sinh(πσEr/2)
;

L(r) = πσEr(1 + iσEr/2)

4 sinh(πσEr/2)
. (3.71)

Let us use the ansatz (3.64) for solution of the Eq. (3.43):

ϕkz (z) = Λ(z)T (0)eik1z z + [1 −Λ(z)](R(0)s e−ikz z + eikz z), (3.72)
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Fig. 3.8 Reflection (decimal logarithmic scale) and transmission coefficients and their phases (in
radians) calculated by various methods for the Epstein profile

with the coefficients being the functionals of the profile Λ(z) and amplitude of the
potential A = k2

0χ(ω):
In this case the specular reflection and transmission coefficients in (3.72) are

expressed through the potential amplitude A in and integrals (3.71) with function
Λ(z):

R(0)s (kz) = DR(kz)

Δ(kz)
; T (0)(kz) = DT (kz)

Δ(kz)
;

DR(kz) = i A[K (2kz)L(kzm − kz)(kzm + kz)

− K (0)L(kzm + kz)(kzm − kz)] − 2kz L(kzm + kz)(kzm − kz);
Δ(kz) = i A[K (−2kz)L(kzm + kz)(kzm − kz)

− K (0)L(kzm − kz)(kzm + kz)] + 2kz L(k1z − kz)(k1z + kz);
DT (kz) = A2[K 2(0)− K (2kz)K (−2kz)] + 4k2

z . (3.73)

Accordingly to the self-consistent algorithm described by formulas (3.52), (3.53)
the profile Λ(0)(z) in the first DWBA order is defined by the following condition:
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〈T (1)({Λ(0)(z)})〉 =
∫

d rei( p⊥−k⊥)rϕ∗−kz
(z)[〈H [z − z0(x, y)]〉 −Λ(0)(z)]ϕkz (z) = 0. (3.74)

and the solution for the profile Λ(0)(z) is:

Λ(0)(z) = 〈H [z − z0(x, y)]〉.

Thus, in the first DWBA order self-consistent approach leads to the simple result:
the specular reflection from rough surface depends on the potential of transition
layer, which is calculated by the averaging of real potential over the surface. In this
approximation Λ(0)(z) doesn’t depend on the roughness correlation:

Λ(0)(z) = 1

S⊥

∫

S⊥
dxdy H [z − z0(x, y)] =

∫ ∞

−∞
dz0 f (z0)H [z − z0]. (3.75)

Here S⊥ is the flat area of the surface, and the ergodic hypothesis [28]

dxdy

S⊥
= dz0 f (z0)

is used in order to substitute the averaging over roughness amplitudes with the dis-
tribution function f (z0) instead of integration over the surface.

As for example, assuming the Gaussian distribution of roughness amplitudes on
the surface, the profile of the transition layer is expressed through the error func-
tion [23]:

Λ(0)(z) =< H [z − z0(x, y)] >= 1

σ
√

2π

∫ z

−∞
dz0e−z2

0/2σ
2 = Φ

(
z

σ
√

2

)
. (3.76)

When the second-order DWBA is considered (3.52), the correlation of roughness
[22] has to be taken into account in the averaging of Eq. (3.53). For homogeneous
surface and standard definition of the correlation function can be used:

〈[z0(r⊥)− z0(r⊥ + R⊥)]2〉 = g(R⊥). (3.77)

In order to analyze quantitatively effect of roughness correlation one should
choose some model for the function g(R⊥). There are several models for the rough-
ness correlations that are used in reflectometry: widespread fractal model [22] or
terrace model for interface [29]. Slight difference between the results on the basis
of these models is appeared in the diffuse (non-coherent) scattering [29]. However,
it proved not to be important for analysis of specular reflection. Therefore for defi-
niteness the fractal model is considered here and further:
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g(R⊥) = 2σ2

(
1 − e

−
(

R⊥
Lc

)2h
)
, (3.78)

where two parameters: h as the fractal dimension and Lc as the correlation length
are used for fitting of the specular reflection profile. Figure 3.9 illustrates the differ-
ences between the statistical properties of the surface with various values of these
parameters.

The X-ray scattering cross-section from potential (3.39) with accuracy up to ξ2 is
obtained by averaging of Eq. (3.52) on Gaussian distribution of the random function
z0(x, y) and with the correlation function (3.78):

dσ

dΩ
= k4|χ|2

4
S⊥|T (k, p)|2;

|T (k, p)|2 = δ( p⊥ − k⊥){|T (0)(kz, {Λ(1)(z)})+ ξB(kz)|2
+ 2ξ2k2�[T (0)∗(kz, {Λ(1)(z)})χT (2)(kz)]} + ξ2 K (k, p). (3.79)

where S⊥ is the surface area of the sample. All the terms in (3.79) have a clear
physical interpretation and are calculated as described below. The function

T (0)(kz, {Λ(1)(z)}) =
∫ ∞

−∞
dzeikz zΛ(1)(z)ϕkz (z) (3.80)

is the amplitude of specular reflection from the profile Λ(1)(z). The additional con-
tribution of the first order B(kz) into specular amplitude is caused by the difference

Lc

h ~ 0

Lc

h ~ 1

Lc

h ~ 1

Lc

h ~ 0

Fig. 3.9 The characteristic forms of the surface with different values of the correlation length Lc
and fractal dimension h
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between functionΛ(1)(z) and profile (3.76), which is taken as error functionΛ(0)(z).
The latter does not depend, by definition, on the roughness correlation.

B(kz) =
∫ ∞

−∞
dzϕ∗−kz

(z)[Λ(0)(z)−Λ(1)(z)]ϕkz (z). (3.81)

The term T (2)(kz) in (3.79) corresponds to double scattering of wave field within
media [8–10] and is calculated as the second-order correction in the solution of
Eq. (3.53). The term K (k, p) is a single incoherent scattering depending on the
root-mean-square fluctuation [〈V 2〉 − 〈V 〉2] of the scattering potential (3.51) after
averaging over the correlated roughness distribution.

T (2)(k) =
∫

|k′⊥|<k

dk′⊥
k′

z

∫ ∞

−∞
dz

∫ ∞

−∞
dz′

∫
d R⊥ei(k′⊥−k⊥)R⊥

× ϕ∗−kz
(z′)ϕk′

z
(z′)ϕ∗

−k′
z
(z)ϕkz (z)

×
{∫ ∞

−∞
da1

∫ ∞

−∞
da2W (a1, a2, R⊥)H [z′ − a1]H [z − a2]

+[Λ(0)(z)−Λ(1)(z)][Λ(0)(z′)−Λ(1)(z′)]
}
. (3.82)

K (k, p) = 1

4π2

∫ ∞

−∞
dz

∫ ∞

−∞
dz′

∫
d R⊥

∫ ∞

−∞
da1

∫ ∞

−∞
da2

× W (a1, a2, R⊥)× ei( p⊥−k⊥)R⊥

× ϕ∗−pz
(z′)H [z′ − a1]ϕ∗

kz
(z′)ϕ−pz (z)H [z − a2]ϕkz (z). (3.83)

The functionsϕkz (z) are the solutions of wave Eq. (3.42) with profileΛ(1)(z), and
two-dimensional distribution of the roughness amplitudes W (a1, a2, R⊥) is:

W (a1, a2, R⊥) = 1

πσ

{
1√

2g(R⊥)
e−(a1+a2)

2/4σ2
e−(a1−a2)

2/2g(R⊥)

− 1

2σ
e−(a2

1+a2
2 )/2σ

2
}
, (3.84)

with correlation function g(R⊥) from (3.77).
The differential cross-section (3.79) describes both specular ( p⊥ = k⊥) and

diffuse scattering K (k, p), when the transverse component of wave vector is not
preserved. The term K (k, p) is a non-zero for p⊥ = k⊥, and variational profile
Λ(1)(z) has to be calculated taking in consideration this term in Eq. (3.53). To pro-
ceed with the simulations, the number of quanta N (n) registered by detector in the
direction of unit vector n = (k⊥/k,−kz/k), which corresponds to specular reflec-
tion, is calculated. The value of N (n) depends on the width of angular cone ΔΩ
covered by detector :
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N (n) =I0

∫
dn′ f (n − n′) dσ

dΩ ′ ;

f (n − n′) = exp

[
−Δ

2
x

δ2
x

− Δ2
y

δ2
y

]
; Δ = (n − n′). (3.85)

Here I0 is an incident beam intensity; f (n−n′) is the detector instrumental function
assumed to be a Gaussian; the unit vector n′ defines the direction of the wave vector p.
Because of in reflectometry experiments the detectors with small angular resolution
(δx ∼ δy � 1) are used, the integration over n′ in Eq. (3.85) is carried out in the
plane perpendicular to n. The differential cross-section (3.79) is related, however,
to the sample surface [22], and therefore the variations of the wave vector and the
vector Δ are connected as:

qx = kzΔx , qy = kΔy . (3.86)

Substituting (3.79) into (3.85), the number of photons scattered by the incident at
angle θ to the sample surface beam and detected in the direction of specular reflection
is (ξ = 1):

N (θ) =N0
k4|χ|2

4k2
z

{
|T (0)(kz, {Λ(1)(z)})+ B(kz)|2+

2�[T (0)∗(kz, {Λ(1)(z)})T (2)(kz)] +
∫

dq⊥e
− q2

x
k2
z δ

2
x
− q2

y

k2δ2
y K (k, p)

}
, (3.87)

where N0 = I0Skz/k is a number of photons at the sample surface in time unit, and

p⊥ = k⊥ + q⊥; pz =
√

k2 − p2⊥.

For any profile Λ(1)(z), the main contribution to (3.87) in the region of small
scattering angles is given by term ∼ |T (0)(kz, {Λ(1)(z)})|2. However, for scattering
angles larger than total external reflection angle θ > θc = √|χ0|, the specular
reflection coefficient decreases drastically, and correlation effects, being included in
Eq. (3.87), become essential. The profileΛ(1)(z) has to be selected in a way that the
sum of the following terms is equal to zero for all kz :

2�{T (0)∗(kz, {Λ(1)(z)})[B(kz)+ T (2)(kz)]} + |B(kz)|2

+
∫

dq⊥e
− q2

x
k2
z δ

2
x
− q2

y

k2δ2
y K (k, p) = 0. (3.88)

Then the number of detected photons (3.87) is:

N (α) = N0|R(0)s (kz, {Λ(1)(z)})|2, (3.89)
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where the specular reflectivity R(0)s is calculated from (3.73) and depends on the
amplitude of coherent scattering (3.75):

k2χ

2
T (0)(kz, {Λ(1)(z)}) = −kz R(0)s (kz, {Λ(1)(z)}).

To qualitatively consider the correlation effects in X-ray reflectivity, the measured
[24] X-ray reflectivity (Fig. 3.10) from rough Si0.65Ge0.35 surface is analyzed. The
X-ray polarizability of sample is χ0 = −1.99 × 10−5 + i5.27 × 10−7, and X-rays
with wavelength CuKα have been used. The scanning angle θ is in degrees, and
intensity is normalized to unity.

The theoretical surface profileΛ(0)(z) is chosen accordingly to (3.76) as an error
function, if Gaussian roughness distribution and first order DWBA are assumed. The
analytical function ϕ(0)kz

(z) and reflection coefficient |R(0)s (kz, {Λ(0)(z)})|2 have also
been calculated and are shown by dash line in Fig. 3.10. The fit obtained demonstrates
a good agreement for the angles θr > θ > θc and roughness σ ≈ 45.0 Å. For qual-
itative analysis of reflectivity curve, an additional parameter θr has been introduced
to distinguish different regions of scanning angles. This parameter determines the
range, where the specular reflection from averaged interface profile dominates over
the diffuse scattering, i.e. interval, where the intensity drops exponentially:

θr ≈ 1

2kσ
(3.90)

Fig. 3.10 The fitted by self consistent approach experimental reflectivity from Si0.65Ge0.35 sample
with large roughness [24]. For the fitting of the entire area of scattering angle, the formula (3.87)
has been used with the following parameters:σ = 45 Å, h = 2, ν = k2αcδxδy L2

c = 0.012. For
comparison the dashed line shows the reflected intensity re-normalized by conventional Nevot-Croce
factor. The vertical lines distinguish the angle areas with different behavior of X-ray reflectivity
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For the angles θ > θr , however, the intensity decreases as power function, and
therefore the re-normalization |R(0)s (kz, {Λ(1)(z)})|2 due to second-order DWBA
corrections is essential. To determine a profile Λ(1)(z) accounting correlations, the
Eq. (3.88) has to be solved. As the solution for this equation is convenient to obtain
directly a specular amplitude instead of profile Λ(1)(z):

T (0)(kz, {Λ(1)(z)}) =
∫ ∞

−∞
dzeikz zΛ(1)(z)ϕ(1)kz

(z), (3.91)

where function ϕ(1)kz
(z) is the solution of wave equation for considered profile of

transition layer.
The solving of cumbersome integral equation is simplified due to following rea-

sons: (i) the accuracy up to the second order of ξ is required, and (ii) the angular
region θ > θr is considered, where reflection coefficient is small independently on
profile shape. In this angular region:

ϕ(1)kz
(z) ≈ ϕ(0)kz

(z) ≈ eikz z, (3.92)

and terms of Eq. (3.88) are:

T (0)(kz, {Λ(1)(z)}) ≈ T (0)(kz, {Λ(0)(z)})− B(0)(kz),

B(kz) ≈ B(0)(kz) =
∫ ∞

−∞
dzeikz zΛ(1)(z)ϕ(0)kz

(z). (3.93)

Then Eq. (3.88) is resolved with respect to B(0)(kz), and the expression for scattered
amplitude is obtained assuming ξ = 1 and with mentioned above accuracy:

T (0)(kz, {Λ(1)(z)}) = [|T (0)(kz, {Λ(0)(z)})|2+

2�[T (0)∗(kz, {Λ(0)(z)})R̃(2)(kz)] +
∫

dq⊥e
− q2

x
k2
z δ

2
x
− q2

y

k2δ2
y K̃ (k, p)]1/2, (3.94)

where R̃(2) and K̃ correspond to profile Λ(0)(z). The correction Λ(1)(z) for zero-
order profile is calculated using Fourier transformation of (3.93), and generally it
depends on both z and kz .

Similarly to Refs. [8–10], the approximation (3.92) for functionϕ(0)kz
(z) is used for

calculation of amplitudes (3.94). Moreover, the influence of amplitude R̃(2) is negli-
gible at considered angles because of exponentially decreasing T (0)∗(kz). Averaging
K̃ (k, p) over roughness distribution with function (3.78), the following expression
for X-ray intensity in the direction of specular beam is:

N (θ) =N0

{
|R(0)s (θ)|2 + k5|χ|2

4π2k3
z
πδxδy

∫ ∞

−∞
d X

∫ ∞

−∞
dY
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× e−k2
z δ

2
x X2/4−k2δ2

yY 2/4[e−k2
z σ

2(1−g(R⊥)) − e−k2
z σ

2 ]
}
. (3.95)

For the angles θ > θr , the dependence of specularly reflected intensity on the
incidence angle is mostly governed by the second term in (3.45) and decreases as
power function:

N (θ) ∼ N0
1

θ4 . (3.96)

The tiny oscillations within the area between 1◦ and 2◦ of exit angle, may be associ-
ated with the interference with the weak waves reflected from the interface between
film and Si substrate that were not considered in this section (see Sect. 3.3). The large
roughness of the surface has been artificially created by large-scale gratings on the
surface, which are supposed to be random. However, some ordering of this grating is
probable, which causes the oscillating behavior of reflectivity curve. Another effect
influencing the behavior of curve is seen in the region θ < θc, where the decrease of
reflection coefficient occurs. As it was described by formula (3.35) this effect is due
to effective reduction of sample size Lx at small scattering angles comparatively to
illuminated by X-ray beam of size Lb area Lb/ sin θ. This effect is taken into account
by modification of (3.95) with the function F̄b(θ) defined in (3.35):

Nef f (θ) = N (θ)F̄b(θ). (3.97)

The formulas (3.96) and (3.97) has been used to fit experimental data in Fig. 3.10.
For convenience reasons, the vertical lines separate the regions of qualitatively dif-
ferent behavior of reflectivity curve. The best fit is found for σ = 4.5 nm, h = 2.
The additional parameter has been introduced regulating the contribution of diffuse
scattering (second term in (3.96)) into total intensity:

ν = k2θcδxδy L2
c = L2

c

Scoh
. (3.98)

The physical meaning of this parameter is the ratio of the illuminated by X-rays
sample area, where the correlations are essential, to the tangential coherence area
Scoh , which is set up by angular resolution of detector [7]. The fitting in Fig. 3.10
is obtained at νopt ≈ 0.012. The specular X-ray reflectivity depends on correlation
length through dimensionless parameter (3.98), which also contains the detector
parameters δx , δy . The draft value of Lc in considered experiment is found to be
Lc ≈ 70 nm which follows from δx ≈ δy ≈ 0.1 θc.

For X-ray reflectometry, one more characteristic parameter has to be considered:
the angle θd , after which reflectivity depends dominantly on detector noise, back-
ground, geometrical factors, measurement dynamical range, beam size, parameters
δx , δy , etc. The non-exponential behavior of the reflection coefficient due to corre-
lation effects in the intermediate angular region θd > θ > θr is observable when the
condition is fulfilled [24]:
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θr = 1

k0σ
< θd . (3.99)

The value θd depends on the dynamical range of used in experiment detector. There-
fore, the roughness amplitude, at which the correlations can be observed in the
reflection coefficient, depends also on experimental conditions:

σ >
1

k0θd
. (3.100)

For smaller roughness amplitudes, Nevot-Croce factor is satisfactory for data fitting.
The upper limit for σ is defined by the applicability of DWBA, i.e. spectral den-
sity of the specular (coherent) beam is higher than one of the diffuse (incoherent)
intensity [11]:

σ <
1

k0θc
. (3.101)

For considered here experimental data, (3.101) results in σ < 7 nm .
Thus, the detailed analysis of the reflectivity profile allows one to measure both

the electron density in the sample and a series of characteristics of its surface.

3.3 X-Ray Reflectivity from Multilayered Structures

The prominent abilities of the X-ray reflectivity technique are strongly demanded for
investigation of non-uniform samples consisting of the stack of thin layers separated
by the pronounced parallel interfaces and grown on the thick substrate (Fig. 3.11).
The multilayers, consisting of the large number of thin layers, make up a wide class of
samples in semiconductor and nanotechnology industries. X-ray methods are proved
to be very advantageous for investigation of these structures (see, for example, [4–7]).
However, an increasing demand for the X-ray methods from industry and science
emphasizes the problem of algorithm improvements, both in acceleration and preci-
sion aspects. This task is especially important when the experimental data from com-
plex samples have to be quickly, robustly and accurately fitted by theoretical models.

As it was shown in the previous section, provided the condition (3.27) is fulfilled,
the dimensions of the sample (x, y) are treated as infinite, which ensures the conser-
vation of the transversal component of the wave vector k⊥ through the entire depth
of the sample. As a result, similarly to the case of a single surface the solution for
vector potential is found from (3.21), (3.41):

Ak(r) = eei k⊥rϕkz (z), (3.102)

where the function ϕkz (z) satisfies the scalar wave equation:
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Fig. 3.11 The sketch of multilayered structure investigated by XRR method: d j , j = 1, 2 . . . L
are the thicknesses of layers; Tj , R j are the amplitudes of coherently scattered waves inside each
layer. The interfaces between the layers possess the roughness with root mean square σ j , j =
1, 2 . . . (J + 1)

{
d2

dz2 + k2
z + V (r)

}
ϕkz (z) =0;

kz =k0 sin θ. (3.103)

The coherent scattering only is taken into account when the interaction of the
wave field with each interface is considered in XRR. Therefore, the imperfection
(roughness) of the interfaces is accounted according to the relationships (3.51)–
(3.53 ) for the transition layers at boundaries. The scattering potential in (3.103) is a
function of sole coordinate z (Fig. 3.12):

V (r) → V (z) = k2
0

J∑

j=0

{χ j+1(ω)Λ j (z)+ χ j (ω)[1 −Λ j (z)]}, (3.104)

where χ j (ω) is a polarizability of the material composing j-th layer; χJ+1(ω) is a
polarizability of the substrate material; χ0(ω) = 0 is a polarizability of the vacuum;
Λ j (z) is a profile of the transition layer between j and ( j + 1) layers, normalized
according to the conditions (3.39). Evidently the XRR investigation of the multilay-
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Fig. 3.12 Characteristic shape of the coherent scattering potential for X-ray reflectivity from mul-
tilayered structures with imperfect interfaces

ered structure is very effective, if the total thickness of multilayered stack is less than
absorption depth of X-ray radiation:

D =
J∑

j=1

d j < Labs = 1

2k0�χ(ω) ∼ 105 nm, (3.105)

where d j is a thickness of j-th layer. The entire structure may consist of up to
thousands layers. We assume that the root mean square of the interface roughness
σ j , which defines the thickness of the transition layersΛ j (z) at each interface is less
than the thickness of the layers themselves:

σ j ∼ σ j+1 < d j . (3.106)

In general case, the solution of Maxwell’s Eq. (3.104) for calculation of X-ray
reflectivity in multilayers was firstly reduced to the system of recurrent Parratt equa-
tions in [30]. Advanced method based on the transfer matrices [31, 32] for solution of
these equations, delivered convenient formalism for theoretical interpretation of the
experimental X-ray data . For periodical structures, using the powers of the transfer
matrix for the interface boundary conditions, the time of calculation could be con-
siderably reduced [33, 34]. However, this technique requires the calculation of high
powers of matrices, which is also time-consuming procedure because of the num-
ber of numerical operations exponentially increases with the number of multilayer
elements. It is especially important in the case of reflectivity from periodical multilay-
ered structures (superlattices). There are several approximated methods for reduction
of calculation time, for example, kinematical approach and single-reflection approx-
imation [7], but they do not provide sufficient precision for thick multilayers and
superlattices with large number of layers.

The method proposed in [14, 15] utilizes the possibility to express the Bloch
eigenwaves of one-dimensional periodical infinite layer stack through the solutions
of X-ray scattering problem within the single basic element composing the super-
lattice period. The combination of Parratt’s recursive equations for basic element of
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superlattice with the eigenwave approach allows one to achieve the best performance
of simulation technique.

To derive Parratt’s equations, the expression (3.104) for the wave field inside l-th
layer and outside of transition layers associated with l-th and (l + 1)-th interfaces
is used provided the condition (3.106) is fulfilled. The solution of this equation
is represented as a linear combination of the plane waves with amplitudes Tl , Rl ,
spreading in the positive and negative directions of axis z, respectively (Fig. 3.12):

ϕ
( j)
kzj
(z) = Tj e

ikz j z + R j e
−ikz j z;

kzj = k0

√
sin2 θ + χ j (ω). (3.107)

The scattering of the waves at each interface is considered to be based on the boundary
conditions (3.47) with respect to the phase shift conditioned by the position of the
interface. Defining the coordinate of the j-th layer with respect to the entrance
boundary of the interface as

z j =
j∑

l=0

dl , (3.108)

the following relationship between the wave amplitudes in neighbor layers can be
derived using formula (3.47):

t j+1, j Tj+1e−ikz( j+1)z j = Tj e
−ikz j z j + R jr j+1, j e

ikz j z j ;
t j+1, j R j+1eikz( j+1)z j = Tjr j+1, j e

−ikz j z j + R j e
ikz j z j , (3.109)

which is the system of 2J equations for the amplitudes of waves within the layers.
The reflection r j+1, j and transmission t j+1, j coefficients at interface between j-th
and ( j + 1)-th layers are expressed through the Fresnel coefficients, re-normalized
in accordance with the formulas (3.49) and (3.50) provided the root mean square of
roughness σ j satisfies the inequality (3.101):

r j+1, j =kzj − kz( j+1)

kzj + kz( j+1)
e−2σ2

j kz j kz( j+1);

t j+1, j = 2kzj

kz j + kz( j+1)
e
σ2

j
2 (kzj −kz( j+1))

2
. (3.110)

In some applications of XRR [5], the structures with the roughness amplitude
compared to the layer thickness are studied. In this case, the re-normalized reflection
and transmission coefficients can be calculated from the formulas similar to the
expressions (3.38), provided the corresponding projections of the wave vector and
the amplitudes of the scattering potential in neighbor layers are used:
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r j+1, j = Dr

Δ
; t j+1, j = Dt

Δ
;

Dr = i A j+1, j [K (2kzj )L(kz( j+1) − kzj )(kz( j+1) + kzj )

− K (0)L(kz( j+1) + kzj )(kz( j+1) − kzj )]
− 2kzj L(kz( j+1) + kzj )(kz( j+1) − kzj );

Δ = i A j+1, j [K (−2kzj )L(kz( j+1) + kzj )(kz( j+1) − kzj )

− K (0)L(kz( j+1) − kzj )(kz( j+1) + kzj )]
+ 2kz L(kz( j+1) − kzj )(kz( j+1) + kzj );

Dt = A2
j+1, j [K 2(0)− K (2kzj )K (−2kzj )] + 4kzj )

2;
A j+1, j = k2

0[χ j+1 − χ j ]. (3.111)

The profiles of the transition layers Λ j (z) at the interfaces, which are required
for calculation of integrals L(q), K (q) in (3.38) can be either selected using various
models allowing the analytical calculation of the integrals [13, 16], or found using
a self-consistent approach (3.88). Parratt derived [30] a most effective way to solve
the equations system (3.109) by implementing the system of the recurrent equations
for new variables:

X j = R j

Tj
e2ikz j z j ; X0 = R0; X J+1 = 0. (3.112)

The boundary condition X J+1 = 0 corresponds to the reflected wave inside
substrate, and the reflection coefficient R0 from the entire structure is equal to X0
assuming the amplitude of the incident wave in vacuum equals to unity (Fig. 3.11).
The Eqs. (3.109) are transformed to the simple form:

X j = r j, j+1 + X j+1e−2ikz( j+1)d j+1

1 + r j, j+1 X j e2ikz j d j
. (3.113)

Figure 3.13 demonstrates the measured reflection curve from the multilayered
structure and the simulated curve fitted on the basis of the Eqs. (3.113). The theoretical
simulations reproduce the oscillations of X-ray reflectivity accurately, and thus the
following characteristics of the sample can be evaluated: the layer thicknesses, the
electron density depth profiles, and roughness of the interfaces. The X-ray reflectivity
can also be simulated using ansatz (3.72), (3.73) and potential (3.104) for the entire
sample structure instead of separate calculations for each interface. The result of
this approach (Fig. 3.13) delivers the same accuracy as Parratt’s formalism does,
however, requires less computing time. The use of ansatz is especially effective
for the structures with imperfect interfaces, for which the condition (3.106) is not
fulfilled. The application of the Eqs. (3.113) in this case requires a large number of
the transition layers for modeling of the electron density variation at the interfaces,
and thus increases the computation time of reflectivity curve essentially.
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Fig. 3.13 X-ray reflectivity from multilayered structure consisting of three layers on Si O2 sub-
strate. The refined layer parameters are: T a2 O5(d1 = 2.77 nm;σ1 = 0.74 nm); T a(d2 =
17.08 nm;σ2 = 0.38 nm); Ni Fe(d3 = 15.34 nm;σ3 = 0.59 nm); for substrate σ4 = 0.44 nm.
The model of the transition layer with error function profile has been used for data fitting. The
simulated curves calculated by Parratt’s formalism and by ansatz (3.72) are not distinguishable on
the plot

There is a special class of multilayered structures called superlattices, the struc-
tures consisting of the periodically repeated N times sets of L layers (Fig. 3.14),
where the number N can be in the range N ∼ 100. Such a superlattice represents an
one-dimensional crystal, which yields the superlattice peaks in the reflected X-ray
intensity at certain angles of observation [7]. The simulation of the reflection curve
for superlattices using Parratt’s equations (3.113) requires for each reflection angle
∼ (4)N+L mathematical operations, and computation time increases exponentially
with the increase of the number of superlattice periods. This fact complicates essen-
tially the solution of the inverse problem of the structure refinement from the fitting
of X-ray measured and simulated curves. The method of eigenwaves (MEW) has
been developed [14, 15] to overcome this obstacle.

Within the framework of MEW, each superlattice layer (Fig. 3.14), is determined
by two indices: the layer number within the basic period j = 1, 2 . . . L and the period
number l = 1, 2 . . . N . The thickness of the basic period is

d =
L∑

j=1

d j ,

where d j are the thicknesses of layers composing a basic period. The general solution
of Maxwell’s equations for the layer with indexes j, l is

El(x, z) = eikx cos θΨ jl(z);
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Fig. 3.14 The electromag-
netic wave fields inside the
superlattice consisting of N
periods of repeated L layers

Ψ jl(z) = Tjle
ikz j (z−ld) + R jle

−ikz j (z−ld), (3.114)

and z-component of the wave vector k jz doesn’t depend on index l because of the
periodicity of lattice. Transmission Tjl and reflection R jl coefficients in the neigh-
boring layers are connected because of the boundary conditions for the wave field at
the interfaces. In the result the (2 × 2) transfer matrix M̂ can be introduced, which
defines the transformation of transmission and reflection coefficients for the first
layers of the neighbor basic periods of superlattice:

T1(l+1) = M11T1l + M12 R1l; R1(l+1) = M21T1l + M22 R1l . (3.115)

If the phase of wave field is defined in accordance with the Eq. (3.114), then the
transfer matrix does not depend on index l numbering the superlattice periods because
of the Bloch’s theorem for the wave field in the periodical medium [35]. This fact
makes it possible to use the product of matrix M̂ for calculation of full transfer matrix
of superlattice. Such an approach reduces the calculation time in comparison with
the direct solution of recurrent equations [33, 34]. However, methods of eigenwaves
simplifies this solution even more because it expresses the total reflection coefficient
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in analytical form. To derive this form, the two-component eigenvectors A(s) =
(T (s), R(s)); s = 1, 2 of matrix M̂ has to be introduced:

M̂ A(s) = λs A(s);

λ1,2 = M11 + M22

2
±

√
(M11 − M22)2

4
+ M12 M21;

R(s) = νs T (s) = λs − M11

M12
T (s). (3.116)

The wave fields determined by coefficients (3.116) create a basis of eigenwaves in
infinite periodical layer stack. It should be stressed that the eigenvalues λ1,2 are
complex-valued and eigenvectors A(s) are non-orthogonal because of the matrix
M̂ includes the imaginary parts of the medium polarizability and therefore it is
non-Hermitian. The values T (s) represent the amplitudes of eigenwaves if they are
excited in the finite stack by the incident plane wave. To find these amplitudes T (s),
the boundary conditions have to be used at the interfaces superlattice/vacuum and
superlattice/substrate.

To find the eigenwaves of the system, the transfer matrix M̂ has to be calculated
for basic multilayer structure ( j = 1, . . . L) of the superlattice. By the definition, this
matrix gives a relation between the coefficients T1,(L+1) = T2,1; R1,(L+1) = T2,1
and parameters T1, R1 for the wave fields Ψl, j . The solution of this problem can
be found on the basis of the recurrent Eq. (3.109) for this structure. However to use
these equations for calculation of matrix M̂ , the boundary conditions (3.112) for X j :
X L = 0; RL = 0; T0 = 1 have to be changed. In the considered here case the initial
transmission and reflection coefficients are not directly related. The most convenient
way to calculate the transition matrix M̂ seems to be matrix method [31, 32].

The recurrent Eq. (3.109) being resulted from the transformation of vectors
(T1 j ; R1 j ) are represented then by matrices:

Â j = 1

t j+1, j

(
ei(kzj −kz( j+1))z j r j+1, j e−i(kzj +kz( j+1))z j

r j+1, j ei(kzj +kz( j+1))z j e−i(kzj −kz( j+1))z j

)
;

B̂ j = 1

t j+1, j

(
eikzj z j r j+1, j e−ikz j z j

r j+1, j eikz j z j e−ikz j z j

)
. (3.117)

The matrices B̂ j have to be used at both interfaces of basic period to eliminate the
phase in the matrix M̂ at the interface between the neighboring basic periods. Then
the total transformation of the vector (T11; R11) results to the transition matrix:

M̂ = B̂L ÂL−1 ÂL−2 . . . Â2 B̂1. (3.118)

Then the eigenvalues λ1,2 and their eigenvectors follow from the Eq. (3.116), if
the elements of the matrix M̂ in Eq. (3.118) are used. The equations for amplitudes
resulting from the boundary conditions for wave fields at the surface of superlattice
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and at the interface between superlattice and substrate are then written as

1 + R0(θ) = T1,1 + R1,1 = T (1)(1 + ν1)+ T (2)(1 + ν2);
kz0[1 − R0(θ)] = kz1[T1,1 − R1,1]

= kz1[T (1)(1 − ν1)+ T (2)(1 − ν2)], (3.119)

Tsubeikzs Nd = TN ,LeikzL d + RN ,Le−ikzL d ;
kzm Tsubeikzs Nd = kzL [TN ,LeikzL d − RN ,L e−ikzL d ], (3.120)

where the value kzs = k0

√
sin2 θ + χs(ω) corresponds to the substrate.

To satisfy the continuity conditions (3.120) for wave fields at the interface between
bottommost basic layer and substrate, the amplitudes TN ,L and RN ,L have to be
expressed through the amplitudes TN ,1 and RN ,1 by means of the matrix:

M̂L−1 = ÂL−1 ÂL−2 . . . Â2 B̂1. (3.121)

The amplitudes within the arbitrary l-period of the superlattice are expressed
through the amplitudes inside the first period by the following analytical formulas:

Tl,1 = λ
(l−1)
1 T (1) + λ

(l−1)
2 T 2);

Rl,1 = ν1λ
(l−1)
1 T (1) + ν2λ

(l−1)
2 T (2);

Rl,L = (M̂L−1)21Tl,1 + ν(1,2)(M̂L−1)22 Rl,1;
Tl,L = (M̂L−1)11Tl,1 + ν(1,2)(M̂L−1)12 Rl,1, (3.122)

where l is assumed to be equal N when the amplitudes are substituted in Eq. (3.120).
Then the analytic formula for reflection coefficient R0(θ) from the superlattice

can be found:

R0(θ) = −kz1[1 − ν1 + PN (1 − ν2)] − kz0[1 + ν1 + PN (1 + ν2)]
kz1[1 − ν1 + PN (1 − ν2)] + kz0[1 + ν1 + PN (1 + ν2)] ;

PN = −
(
λ1

λ2

)N (kzs − kzL)(T
(1)
L eikzL d + (kzs + kzL)R

(1)
L e−ikzL d

(kzs − kzL)T
(2)
L eikzL d + (kzs + kzL)R

(2)
L e−ikzL d

;

R(1,2)L = (M̂L−1)21 + ν(1,2)(M̂L−1)22;
T (1,2)L = (M̂L−1)11 + ν(1,2)(M̂L−1)12. (3.123)

Figure 3.15 demonstrates the simulated X-ray reflectivity curves from the multi-
component superlattice (Al As/Ga As/I n As/GaSb)40 on the GaAs substrate, where
the layer thicknesses are equal to (10/20/5/10)40 nm, respectively. The comparison
of required computer time for both straightforward Parratt’s approach (tP ) and the
eigenwaves technique (tM ) as the function of repetition period is presented on the
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Fig. 3.15 Simulated X-
ray reflectivity from
(Al As/Ga As/I n As/
GaSb)40 superlattice on the
GaAs substrate. Insert shows
the ratio of the computer times
required for simulation by
Parratt’s equations (tP ) and
method of eigenwaves (tM EW )
as the function of superlattice
periods number

inset in this figure. In some cases the calculation time for single simulation is reduced
from several seconds (tP ) to the fraction of seconds (tM ).

At first sight, this reduction seems to be not principal for real applications because
of absolute computation time is relatively short. However, in most cases, the treat-
ment of X-ray experimental data from real superlattices requires the fitting of many
parameters (thickness, roughness, electron density, lattice mismatches, etc), which
often are very approximately known from growth conditions. Moreover, possible
aperiodicity of superlattice structure and large number of layers in the stack even
aggravate the situation. The effective fitting procedures minimizing the cost function,
e.g. genetic algorithms or simulating annealing, also require tens of thousands single
simulations to find a non-ambiguous solution. In this case, the speeding up of calcu-
lations by using method of eigenwaves plays essential role in software performance.

Calculation time is also important for simulation of diffuse X-ray scattering caused
by rough interfaces in superlattices. Distorted-wave Born approximation used for
calculation of diffuse scatter, expresses the diffuse intensity I (θ, θ f ) through the
matrix elements of potential V̂ , describing the rough interfaces, and incident Ψin at
angle θ and reflectedΨout at angle θ f �= θwave fields calculated for ideal superlattice
(see, for example, [7]):

I (θ, θ f ) � | < Ψin(θ)|V̂ |Ψout (θ f ) > |2.

Each wave field contains the set of 2N L amplitudes Ti (θ), Ri (θ) or Ti (θ f ), Ri (θ f ),
and the application of analytical formulas (3.123) instead of numerical solution
of Parratt’s equations reduces considerably the simulation time for calculation of
diffusely scattered intensity in dependence on angles θ and θ f .

It seems for the first sight that Eqs. (3.122) for amplitudes are valid for the case of
ideal superlattice periodicity only. At the same time the superlattices with regularly
(due to strain, for example) or irregularly (due to non-stability of growth conditions)
fluctuating basic periods are quite a typical samples in nano-coating and semicon-
ductor science and industry. The deformation of superlattice period can be taken
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into account directly by Parratt’s equations, however the averaging over the period
fluctuations is complicated task [36].

In the framework of eigenwave method, this effect can be taken into account by re-
normalization of the transfer matrix of basic period as, for example, the averaging of
atomic vibrations in dynamical diffraction theory results in the Debye-Waller factor
for X-ray susceptibility. In the case of the fluctuating period the transfer matrix
M̂ (l) and two-component vector Al = (Tl , Rl) both depend on the period number l,
therefore the recurrent formula containing these vectors in two successive superlattice
periods can be introduced instead of Eq. (3.116) for eigenvalues.

M̂ (l)Al = A(l+1). (3.124)

To introduce a parameter for description of above-mentioned fluctuations, the
transfer matrix M̂ (l) has to be re-interpreted on the basis of formal scattering theory
[37]. From this point of view, the matrix elements can be considered as elements of
scattering operator Ŝ(l)(z) defined with the functions of initial i and final f states:

(M̂ (l))i f = (Ŝ)i f =
∫ zl+1

zl

dze−ik f (z−ld) ŜL(z − ld)eiki (z−ld). (3.125)

The matrix elements (3.125) are shown above to be independent on indices l, in the
case of ideal superlattice. In real superlattices, the period thickness has a statistical
fluctuations δl , and thus zl = ld + δl , δl � 1. As a result, the transfer matrix
obtains an additional random phase coefficient

(M̂ (l))i f = (M̂)i f ei(ki −k f )δl , (3.126)

which is absent in matrix M̂ , corresponding to ideal periodicity. The coherent part
of the transfer matrix can be derived by averaging over the statistical distribution of
random phases, in the same way as for coherent polarizability of crystal [38]:

(M̂ (l))i f =< (M̂)i f ei(ki −k f )δl > + (V̂ (l))i f ;
(V̂ (l))i f ≡ (M̂ (l))i f − < (M̂L)i f ei(ki −k f )δl >, (3.127)

with V̂ (l) as the incoherent scattering potential. In particular case of negligible verti-
cal correlation of interfacial roughness (which sometimes can be essential for inter-
pretation of diffuse X-ray scattering [39]), the coherent part of matrix elements
in (3.127) obtains an additional factor, which does not depend on l. Assuming the
Gaussian distribution of period fluctuations with root-mean-squareσd , and averaging
the Eq. (3.127) over the fluctuations, we arrive at:

< (M̂ (l)
i f >= e−1/2σ2

d (k f −ki )
2
(M̂)i f . (3.128)
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The exponential factor reduces the amplitude of elastic scattering of the wave field
by superlattice basic period analogously to Debye-Waller factor for crystallographic
unit cell derived for X-ray polarizability of the crystal [38]. This result causes the
re-normalization of matrix elements (3.116):

< M11 >= M11; < M12 >= M12e−1/2σ2
d (kzL+kz1)

2;
< M22 >= M22; < M21 >= M21e−1/2σ2

d (kzL+kz1)
2
, (3.129)

Then the analytical solution of Eq. (3.124) for the coherent eigenwaves is

Al = (λs)
l A(s)

with eigenvalues λs , determined from the similar to (3.116) equation:

< M̂ > A(s) = λs A(s). (3.130)

Figure 3.16 shows how the parameter σd , taking into account the fluctuation of
superlattice period, influences the formation of the coherent superlattice peaks. The
experimental measurements (dots) from superlattice (W/Al2 O3)64 on the Si sub-
strate with the nominal layer thicknesses (1.2/1.9)64 nm have been taken in conven-
tional θ−2θ geometry using knife edge collimator and anti-scattering detector slit at
CuKα radiation. The first simulation (dashed) is carried out on the eigenwave basis
for superlattice with constant periodicity and taking into account interface roughness
by Nevot-Croce exponent (this curve is equivalent to Parratt’s simulations):

r̄ j+1, j = r j+1, j e
−2k j k j+1σ

2
r ,

where the parameter σr is the root-mean-square (rms) of interface roughness.

Fig. 3.16 Measured (dots)
and simulated by MEW
with Nevot-Croce exponent
(dashed line) and by MEW
with averaged fluctuations
(solid line) X-ray reflectivity
from (W/Al2 O3)64 superlat-
tice on the Si substrate
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The value σr has been roughly fitted as 0.25 nm and equal for all interfaces, and
the reflectivity has been convoluted with resolution function describing the limited
angular resolution of detector. The second simulation (solid line) is done by using
eigenwave method with integral period fluctuations (Eq. (3.128)) with the same σd =
0.25 nm. In both cases, the same roughness rms σr and σd influences the amplitude
of superlattice peaks in different way, however, the latter approach explains the
experiment better. It should be noted, that Fig. 3.16 represents only the qualitative
fit; the influence of incoherent matrix (V̂ (l))i f in recurrent Eq. (3.124) on the phase
of the transfer matrix can be taken into account to reach better fit on the wings of
superlattice peaks.

3.4 Characterization of Samples Using Experimental XRR Data

The information about bulk properties and interface morphology of multilayered
nanostructures and thin solid films can be extracted from XRR data refinement. The
typical refinement procedure consists of iterative sample modeling with respect to the
fitness of experimental data to the theoretical curves simulated in the framework of
certain physical processes. The sample model for XRR simulations depends usually
on the following physical parameters: electron density and thickness of film or layer
in multilayers and roughness of interfaces between layers.

The important part of iteration process is the fitting algorithm, which minimizes
the discrepancy between theory and experiment. Commonly used classical optimiza-
tion procedures as calculus-based search and gradient (hill-climbing) methods like
simplex and others show acceptable performance but remain unreliable due to, for
example, a tendency to be trapped in local extrema or the necessity to know the
explicit form of derivatives of minimized function to reach high efficiency of con-
vergence. The random search methods assume the stochastic search of extremum in
parameter space and do not have any aimed strategy of solution finding. The recently
invented simulated annealing technique is successful in many applications but has
some disadvantages in search strategy, e.g. systematical loss of information obtained
in previous iterations.In contrast, the genetic algorithms (GA) developed during the
recent decade combine the advantages of stochastic search with intelligent strategy
of solution finding. These algorithms mimic the main features of the Darwinian the-
ory of evolution operating on the basis of “struggle for life” and “survival of fittest”
principles. The successful applications of GA in science and engineering [40–42]
have demonstrated this technique to be robust and effective.

Figure 3.17a shows measured (open dots) and simulated (solid lines) X-ray reflec-
tivity at wavelength λ = 0.154056 nm from gold and magnetite thin solid films on
MgO substrate. The sample model consisting of the sequence Au/Fe3O4/MgO with
the nominal thicknesses 55 nm/120 nm/substrate and some roughness at the inter-
faces between the layers has been used for fitting of simulated by the described
above formalism X-ray reflectivity to the measured curves. The fitted parameters
were the thicknesses of the layers tAu and tFe3 O4 and the roughnesses of the sam-
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Fig. 3.17 a Measured (open dots) and fitted (solid line) X-ray reflectivity from Au/Fe3O4/MgO
sample; b Convergence of χ2 function for various optimization techniques recorded during the
fitting of X-ray reflectivity data in panel (a). The iteration scale of simulated annealing and simplex
techniques is reduced to genetic algorithm generations scale by adjustment of computation time

ple surface and the interfaces. Different optimization methods used to fit [42] this
data (classic genetic algorithm, simulated annealing, simplex, and extended genetic
algorithm) resulted in acceptable fitness of curves with slight difference in refined
parameters which, however, is within the precision of experimental data. The values
of thicknesses and roughnesses are found to be tAu � 53.8 nm, tFe3 O4 � 146.3 nm,
σsur f � 0.78 nm, σAu/Fe3 O4 � 0.1 nm, σFe3 O4/MgO �0.3 nm. However, the effec-
tiveness of methods is evidently different, as follows from the Fig. 3.17b showing
the cost function χ2 convergence diagrams for each used technique. To adjust the
time scales of algorithms, the iteration scales of simulated annealing and simplex
methods are brought into correspondence to genetic algorithms generations scale by
multiplying them by ratios of computation times tG A/tS A and tG A/tSM . Diagrams
show that extended genetic algorithm finds the best available solution faster than
other methods.

Another example of how XRR data fitting helps to recognize the difference in
depth structure between two similar samples grown by different technologies is given
in Ref. [43] for ZnSe thin layer on GaAs substrate. Two samples grown by molecular
beam epitaxy differed in initial growing conditions; the first was prepared by Se-
treatment of a GaAs substrate, and the second one was exposed to Zn before growth
of the ZnSe film. The structure and morphology of the interface between the ZnSe
film and GaAs substrate were investigated by XRR technique. Fitting the experimen-
tal data indicated the presence of a Ga2Se3 transition layer between the ZnSe film and
GaAs substrate for the Se-treated sample, confirming that Zn-treatment during the
growing process improves the interface quality. Furthermore, the simulations indi-
cated that the concentration of the Ga2Se3 was less than unity. From this, we propose
that the transition layer is discontinuous e.g. possesses an island like morphology.

The X-ray reflectivity was measured at beamline 17C of the Photon Factory of
KEK (Tsukuba, Japan). To enhance the electron density contrast between the epitaxial
layer, the transition layer and the substrate, the reflectivity measurements were carried
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Fig. 3.18 Experimental (dots) and simulated (solid lines) X-ray reflectivity profiles from Se-treated
ZnSe/GaAs sample at different wavelengths, λ = 1.300 Å (a), and 0.9795 Å (b)

out using synchrotron radiation both near and far from the Se K absorption edge.
The experiment was carried out in air using a grazing incidence X-ray diffractometer.
X-ray wavelengths of 1.3000 Å, 1.1800 Å, and 0.9795 Å were selected by a Si(111)
double-crystal monochromator. These three wavelengths were below the absorption
edges of all the structural atoms, between Ga and As absorption edges, and above
the Se K absorption edge (the Se K-edge : 0.97977 Å), respectively. The size of the
incident beam was 0.1 mm (vertical) × 8 mm (horizontal). The reflected beam was
collimated by a vertical 0.2 mm (vertical) slit and a 0.6 degree (horizontal) Soller slit
in front of a NaI scintillation counter.

The solid lines in Fig. 3.18 show the best fit to the experimental data using the
theory presented in previous sections. The values for film thickness and surface
roughness were found by fitting as follows, tZnSe = 700 ± 7 Å, σs = 10 ± 1 Å for
the Se-treated sample (we don’t show here the results for the Zn-treated sample,
the reader is referred to [43]). The fitted values for the oxide layer thickness and
top density are tox = 17.3 Å, ρtop = 0.74. We identified, with some certainty, the
presence of Ga2Se3 within the Se-treated sample, for which the fitting procedure
gives the values for concentration of Ga2Se3 within the transition layer CGa2 Se3 =
(84.4 ± 5)% and thickness tGa2 Se3 = 6 ± 1 Å.

The application of XRR technique to the wide class of thin film structures called
superlattices is demonstrated in [44]. Specular X-ray scattering has been used to probe
the mesoscopic structure of interfaces within two, thirty-period Mo/Si superlattices,
grown on a silicon (sample 1) and glass (sample 2) substrates by ion beam sputtering.
The data are evaluated qualitatively and quantitatively on the basis of a distorted-wave
Born approximation, which includes a correlating behavior of interface roughness in
both the lateral and vertical directions (see Chap. 5 for more details). Different initial
conditions of the substrate’s surface result in distinguishable characters of roughness
replications in the direction of growth. The average value, lateral correlation and
fractal dimension of roughness are found to be different in both samples, which leads
to differences in the reflective properties of multilayer mirrors. The X-ray reflectivity
intensities were measured using a high-resolution X-ray diffractometer (Advanced

http://dx.doi.org/10.1007/978-3-642-38177-5_5
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Thin Film X-ray System ATX-G, Rigaku Corporation). X-rays with wavelength λ
= 0.15405 nm (CuKα1 ) are generated from a Cu rotating anode (50 kV, 300 mA),
collimated by a parabolic multilayer mirror and monochromated by a channel cut
Ge(111) asymmetric monochromator. A divergent (0.1 × 10 mm) slit was used to
control the exposure area on the sample surface, while a parallel pair of slits (0.2 ×
15 mm) was used to limit the output signal. Quantitative estimations of the sample
parameters were determined from the iterative sample modeling with respect to fitting
of the experimental X-ray data to the theoretical curves. The detailed numerical
analysis has been performed with specular reflectivity (θ − 2θ scan).

A large number of superlattice peaks in the reflectivity curve measured from sam-
ple 1, shown in Fig. 3.19a by open dots, is indicative of abrupt interfaces within
this specimen. The theoretical simulations (same figure, solid lines) confirm this
fact, giving the best agreement with experiment for relatively small roughness with
root-mean-square value of σSi ∼ 0.5 nm for silicon layers and σMo ∼ 0.2 nm for
molybdenum layers. The inter-diffusion layers within this sample are found to be of
the thickness tMo−on−Si ∼ 1.2 nm and tSi−on−Mo ∼ 0.8 nm, and the basic Mo and Si
layers are of thickness tMo ∼ 3.5 nm and tSi ∼ 3.7 nm, respectively. These findings
confirm the nominal values expected from the growth conditions. The presence of
asymmetry in the inter-diffusion layer’s thickness is in agreement with other studies
on Mo/Si multilayers and can be explained by a difference in the ease of imbedding
a heavy Mo adatoms into amorphous silicon rather than light Si atoms into poly-
crystalline Mo structure. The reflectivity data from sample 2 are shown in Fig. 3.19b.
The imperfect layer boundaries of this sample cause the preferential attenuation of
high orders of superlattice reflections. The values of interfacial roughness obtained
by data fitting in this case, σSi ∼ 0.9 nm and σMo ∼ 0.6 nm, are twice as large as
those obtained for sample 1. This is consistent with the general characteristics of the
reflectivity curve. The thickness of basic and inter-diffusion layers are found to be
nearly the same as for the sample on a crystalline substrate.
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Fig. 3.19 Specular X-ray reflectivity curves measured in θ− 2θ scans for samples 1 (a) and 2 (b).
The measurements are depicted by open dots and the simulations are shown by solid lines. The
attenuation of superlattice peaks in sample 2 indicates poor quality of interfaces
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The X-ray characterization of thin solid films and multilayers is even more effec-
tive when performed in the combination of two X-ray techniques, the X-ray reflec-
tivity and diffuse scattering measurements (Chap. 5). This combination delivers a
synergy, which allows to characterize the interface (surface) morphology and bulk
structure of samples and interfaces. The simultaneous fitting of specular and off-
specular data gives precise information on surface and buried interface smoothness.
The X-ray reflectivity measurements being simulated taking into account the dif-
fuse component and simultaneously with diffuse scans, give proper values of film
thickness, interface and surface roughness, layer density. Whereas the analysis of the
diffuse scans reproduces the lateral structure of surface and interface.
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Chapter 4
X-Ray Diffraction in Ideal Crystals

The reflection phenomena, discussed in the previous chapter, are inherent for
radiation of arbitrary wavelength. The microscopic physical parameter controlling
the reflection process is the homogeneous part of the susceptibility, in the case of
X-rays it is the zeroth harmonics of values (2.3) and (1.56). The part of the suscepti-
bility which has a variation on the atomic length scale is specific for the radiation of
wavelengths of magnitude Ångstroms: X-rays, neutrons and electrons. This part of
susceptibility represents the atomic arrangement inside a sample and, as described in
the Eq. (2.1), causes the certain distribution of the diffracted electromagnetic field,
containing an information about the spatial atomic ordering. The diffraction experi-
ments, aiming for the reconstruction of the atomic spatial structure, are most easily
performed using X-rays: comparing to neutrons there are widely available high-
intensity sources of X-rays, and comparing to electrons X-rays interact weakly with
the matter that simplifies drastically the sample preparation procedure and evaluation
of the diffraction results.

The information about the atomic arrangement, however, is incapsulated in the
diffracted intensity distribution in an indirect way. In order to obtain this information,
the specific treatment based on the trial and error fitting algorithms is required. This
task can be simplified essentially when the Born approximation (2.34) is valid, and
the simulation of the diffraction process under this assumption is called kinematical
diffraction theory. In the cases when the anomalous scattering can be neglected,
according to (1.49) and (1.51), the intensity distribution as a function of q is just a
square modulus of the Fourier transformation of the electron density. Due to the wide
validity range of the kinematical approximation, the analysis of X-ray diffraction data
is much easier than e.g. the analysis of the electron diffraction patterns for which the
whole series (2.33) is usually required.

The Born approximation implies that the scattering process happens for the pri-
mary wave only, and the secondary scattering of the scattered wave can be neglected.
This is true provided the diffracted wave amplitude is small compared to the primary
one, that occurs when the dimension of the coherently scattering crystal is smaller
than the extinction length. For the large crystalline objects, the solution of (2.1) is
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obtained on the basis of Bloch waves, and generally small values of X-ray suscepti-
bility enable to restrict this basis to two waves only in most cases. Such an approach
is called dynamical diffraction theory, and it enables a detailed description of the
finest effects of X-ray diffraction from thick crystals.

There is a vast amount of journal articles [1] and monographs [2–4] devoted to
both kinematical and dynamical diffractions. This chapter is intended (i) to present
the basic equations of two-beam dynamical diffraction theory, that assists to bet-
ter understanding of the dedicated monographs [2, 4], (ii) to discuss the crossover
between kinematical and dynamical diffraction, (iii) to formulate an application of
the dynamical diffraction method for investigation of the multilayered structures
and (iv) to consider specific geometrical configurations, where the length scale at
which the dynamical effects are formed is significantly reduced (grazing incidence
diffraction, or GID).

4.1 Kinematical X-Ray Diffraction Theory

The distribution of the diffracted radiation can be described by means of the differ-
ential cross-section, the general expression for which is given by Eq. (2.10), where
the quantity T (s)(k0, k1) can be found from the integral equation (2.8). This integral
equation is expressed in the form of the infinite series (2.33). If the scattered wave is
significantly weaker than the primary wave (a quantitative criterion will be deduced
below), only the first term in the series (2.33) can be considered. This assumption is
known as first Born approximation, and in the domain of X-ray diffraction it is usu-
ally called a kinematical approximation. The resulting expression for the differential
cross-section is given by (2.35).

Let us consider the Compton contribution to susceptibility in the sum (2.35), and
restrict ourselves to a single reciprocal lattice vector H and a single object with shape
S(r):

dσ (s)

dΩ
= 1

(4π)2
sin2 θ1sk4

0 |χ(H, ω)|2
∣∣∣∣
∫

d r S(r)e−i(q−H)r
∣∣∣∣
2

. (4.1)

The commonly used X-ray detectors do not make a difference between the polariza-
tion states, hence the detected cross-section is a sum of cross-sections corresponding
to each polarization:

dσ

dΩ
= P1

dσ (1)

dΩ
+ P2

dσ (2)

dΩ
,

where P1,2 are the probabilities of the corresponding polarizations in the incident
X-ray beam.

The polarization of incident wave is characterized with the respect to the dif-
fraction plane, a plane which contains the wave vector of incident wave k0 and the
diffracted wave k1. The polarization state for which the polarization vector is per-
pendicular to the diffraction plane is calledσ polarization (from German senkrecht, or
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sagittal to the diffraction plane); polarization state for which polarization
vector is parallel to the diffraction plane is called π polarization (from parallel).
In the framework of kinematical diffraction, the expressions for cross-sections for
both polarizations are equivalent except for a factor sin2 θ1s . Using the definitions

θ1s = k1T̂
(s) = k1̂e(s) we obtain sin θ1σ = 1 and sin θ1π = cos 2θ , here 2θ is angle

between k0 and k1. In a case of a linearly polarized wave with polarization vector
making an angle ψ to the diffraction plane, the expression sin2 ψ + cos2 ψ cos2 2θ
is obtained for the polarization factor

∑
s=σ,π sin2 θ1s . For the unpolarized X-rays〈

sin2 ψ
〉 = 〈cos2 ψ

〉 = 1/2 and the result is:

dσ

dΩ
= 1

(4π)2
1 + cos2 2θ

2
k4

0 |χ(H, ω)|2
∣∣∣∣
∫

d r S(r)e−i(q−H)r
∣∣∣∣
2

. (4.2)

The maximum magnitude of the cross-sections of X-ray scattering is reached when
the condition q − H is satisfied, or

k1 − k0 = H, (4.3)

and this vector equation (or 3 scalar equations) are called Laue equations. Rewriting
the Eq. (4.3) as k1 = H + k0 and taking square from the left and from the right sides
and taking into account k2

1 = k2
0 = k2

0, the Bragg condition is obtained:

2k0 H + H2 = 0, (4.4)

or, in terms of angle 2θ :

2k0 sin
2θB

2
= H ; d sin θB = n

λ

2
. (4.5)

Here 2θB is the angle satisfying the Bragg condition; k0 = 2π/λ; H = 2πn/d; λ is
the X-ray wavelength; d is the distance between the crystallographic planes, defined
by the vector H (Fig. 4.1).

The simplicity of the basic equations for the kinematical theory (4.2) and (4.3)
makes it possible to develop fast and reliable methods for determination of the

Fig. 4.1 Basic vectors and
parameters used for character-
ization of the X-ray diffraction
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crystalline shape and structure parameters, and most of them rely on the specific
properties of Fourier transformation [5, 6]. To define the range of the applicability
of kinematical theory, two examples are considered here. Assuming a crystal has
a shape of a ball of radius R0, the reflectivity |R|2, or the ratio of total diffracted
intensity to the total intensity impinging on the sample, according to (2.10) is found
to be:

|R|2 =
∫

dΩ dσ
dΩ

πR2
0

, (4.6)

where πR2
0 is the illuminated by the beam area of the sample. Since the diffracted

intensity can not be larger than intensity impinging the sample, the criterion |R|2 < 1
gives a limitation for the sample size for applicability of the above presented formulas.
Assuming the ball size is large enough, the cross-section dσ

dΩ as a function of k1 at
a fixed k0 drops-off quickly, and thus the main contribution to (4.6) comes from the
exit beam angle regions where the deviations of k1 from (4.3) are small. The value
k1 can be represented as k1 = H + k0 + κ , where it is assumed that k0 satisfies
the condition (4.4), and the vector κ describes the deviation of k1 from the exact
condition (4.3). Due to the condition k2

1 = k2
0, the end of vector k1 must lie on a

sphere, however, for small deviations we can approximate it by a tangential plane
and describe by vector κ satisfying κ · (H + k0) = 0. This approach is called a
tangential plane approximation. By selecting a coordinate system with z axis along
H + k0, the vector κ has two components only. Within the same approximation, the
solid angle where X-ray intensity is diffracted is expressed as:

dΩ = dκx dκy

k2
0

, (4.7)

and for the total cross-section of X-ray scattering, the following result is obtained:

∫
dΩ

dσ

dΩ
= 1

(4π)2
1 + cos2 2θB

2
k2

0 |χ(H, ω)|2

×
∫

dκx dκy

∣∣∣∣
∫

dxdydzS(r)e−i(κx x+κy y)
∣∣∣∣
2

. (4.8)

Since κ has no z component, the integration of S(r) over z results in the length of

the ball in the direction of z equals to 2
√
(R2

0 − x2 − y2). Using the identities from
the theory of Fourier integrals [7]:

∫
dkx dky | fkx ,ky |2 = (2π)2

∫
dxdy| f (x, y)|2,

fkx ,ky =
∫

dxdy f (x, y)e−i(kx x+ky y), (4.9)

http://dx.doi.org/10.1007/978-3-642-38177-5_2
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the following expression is derived:

∫
dΩ

dσ

dΩ
= 1

(4π)2
1 + cos2 2θB

2
k2

0 |χ(H, ω)|2

× 4(2π)2
∫

x2+y2<R2
0

dxdy(R2
0 − x2 − y2). (4.10)

By calculating the integral (e.g. in polar coordinates), the value for reflectivity is:

|R|2 = 1 + cos2 2θB

4
k2

0 |χ(H, ω)|2 R2
0, (4.11)

and the condition |R|2 < 1 leads to:

R0 <<
1

k0|χ(H)| . (4.12)

The size of the crystal at which X-ray reflectivity exceeds a unity and hence
kinematical theory breaks down depends significantly on the object shape and the
orientation of the vectors k0, k1, H with respect to the crystal, i.e. the geometry of
the diffraction experiment. In order to demonstrate this fact, a crystal of a rectangular
parallelepiped shape is considered here with the dimensions Lx , L y, Lz . Assuming
the axes of the coordinate system are parallel to the parallelepiped edges, and the
origin is located in the center of the upper facet, and the z axis being parallel to the
facet normal, the Eq. (4.2) is modified to:

dσ

dΩ
= 1

(4π)2
1 + cos2 2θ

2
k4

0 |χ(H, ω)|2

× sin2(qx − Hx )Lx/2

((qx − Hx )/2)2
sin2(qy − Hy)L y/2

((qy − Hy)/2)2
sin2(qz − Hz)Lz/2

((qz − Hz)/2)2
. (4.13)

The assumption Lx , L y >> 1/k0 generally contradicts to the conditions used for
deriving (4.1), however, applying the same reasoning as in Sect. 3.1 used for deriva-
tion of Eq. (3.27), and utilizing the Eq. (3.31), the X-ray scattering cross-section
is:

dσ

dΩ
= 1

(4π)2
1 + cos2 2θ

2
k4

0 |χ(H, ω)|2

× (2π)2Lx L yδ(qx − Hx )δ(qy − Hy)
sin2(qz − Hz)Lz/2

((qz − Hz)/2)2
. (4.14)

In order to calculate the X-ray reflectivity, the Eq. (4.14) has to be integrated over the
directions of k1. Due to the delta-functions present in (4.14), the integration is per-
formed without tangential plane approximation. The direction of k1 is parametrized

http://dx.doi.org/10.1007/978-3-642-38177-5_3
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Fig. 4.2 The definitions of the angles and the axes used for the analysis of the X-ray diffraction at
the rectangular sample

in terms of the angles θd , 2θχ associated with the detector position: the detector
arm is first rotated for the angle θd toward the −y direction and then rotated within
the plane constructed by the current detector arm and the y axis by the angle 2θχ
(Fig. 4.2). In this parametrization, the vector k1 has following form:

k1(θd , 2θχ) = k0(cos 2θχ cos θd ,− sin 2θχ, cos 2θχ sin θd). (4.15)

The value of the solid angle corresponding to k1 is expressed through dθd , d2θχ as

dΩ = dθdd2θχ

k2
0

∣∣∣∣
∂k1(θd , 2θχ)

∂θd
× ∂k1(θd , 2θχ)

∂2θχ

∣∣∣∣
2

= cos 2θχdθdd2θχ (4.16)

Finally, the expression for the total cross-section of X-ray scattering is:

∫
dΩ

dσ

dΩ
= 1

(4π)2
1 + cos2 2θ

2
k4

0 |χ(H, ω)|2(2π)2Lx L y

×
∫

cos 2θχdθdd2θχδ(k0 cos 2θχ cos θd − k0x − Hx )

×δ(−k0 sin 2θχ − k0y − Hy)
sin2(qz − Hz)Lz/2

((qz − Hz)/2)2

= 1

(4π)2
1 + cos2 2θ

2
k2

0 |χ(H, ω)|2

×(2π)2Lx L y
1

cos 2θχ sin θd

sin2(qz − Hz)Lz/2

((qz − Hz)/2)2
, (4.17)

where the property of delta-function δ( f (x)) = δ(x−x0)| f ′(x0)| (here x0 is the root of
equation f (x0) = 0) have been used, and in the last line it is implied that qz =√

k2
0 − (k0x + Hx )2 + (k0y + Hy)2 − k0z and the values of angles dθd , d2θχ satisfy

the Laue Eq. (4.3) for lateral components: k0 cos 2θχ cos θd − k0x − Hx = 0 and
−k0 sin 2θχ − k0y − Hy = 0. For calculation of X-ray reflectivity, the Eq. (4.17) has
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to be normalized to the beam illumination area on the sample, with the normalization
coefficient Lx L y sinωin, where ωin is the angle between k0 and XY planes. Using
cos 2θχ sin θd = sinωout, the X-ray reflectivity is:

|R|2 = 1

(4π)2
1 + cos2 2θ

2
k2

0 |χ(H, ω)|2

× (2π)2
1

sinωin sinωout

sin2(qz − Hz)Lz/2

((qz − Hz)/2)2
. (4.18)

When the exact Bragg condition is satisfied, the last term of (4.17) yields L2
z and

from the condition |R|2 < 1 the inequality follows:

Lz <<

√| sinωin sinωout|
k0|χ(H)| . (4.19)

By comparing the Eqs. (4.19) and (4.12), there two peculiarities are observed: (i)
the limitation for Lz value only is derived, the values Lx and L y are assumed to be
infinite. Hence, the lateral dimensions of the parallelepiped can be infinitely large,
however, if the parallelepiped is thin enough the kinematical theory can be applied.
This observation delivers the recipe for the construction of the dynamical theory [8]:
the object can be divided into thin lamellas, and the scattering in each lamella is
calculated kinematically, and the calculations are reduced to one dimensional prob-
lem of the re-scattering of radiation between lamellas. This was the basic idea of
Darwin’s extinction theory [9] and a similar approach is used for the description of
electron diffraction [10], where dynamical effects are strong. (ii) In comparison with
the Eq. (4.12), there is a factor

√| sinωin sinωout| which depends on the geometry of
the diffraction experiment. When the Bragg condition is satisfied for either k0 or k1
making the shallow angles with the sample surface (extremely asymmetric diffrac-
tion), the enhancement of the dynamical effects occurs. The highest contribution of
the dynamical effects is expected when both angles ωin and ωout are shallow. This
case is referred to as grazing-incidence diffraction (GID), and the diffraction at these
conditions demonstrates additional dynamical effects [11].

4.2 Basics of Two-Wave Dynamical Diffraction

The limitations on the sample thickness (4.19) for application of kinematical dif-
fraction theory follows from the fact that in the kinematical theory the diffracted
wave neither reduces the amplitude of the primary wave nor undergoes diffraction
itself. In order to overcome this limitation, both the primary and the diffracted waves
should be treated on an equal basis. In the dynamical diffraction theory (DDT) such
a nonperturbative solution of equation (1.56) is constructed as a linear combination
of the incoming and the diffracted waves [2]. This simple approach proves to be

http://dx.doi.org/10.1007/978-3-642-38177-5_1
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correct in the most of the experiments. The validity of this solution of the nonper-
turbative problem follows from the small value of X-ray susceptibility that makes
the secondary waves effects negligible. The DDT is suitable for X-rays, however,
for the similar scattering in photonic crystals or in case of electron diffraction it can
not be applied directly [10]. To illustrate this fact, we consider the example of a
semi-infinite crystal. The equation to be solved is (1.56):

(
k2 − ω2

c2 (1 + χ0)

)
Aμ(k, ω)

−ω
2

c2 tμ,ν(k)
∑

H

χ(k,−H, ω)Aν(k + H, ω) = 0;

(k A(k, ω)) = 0; tμ,ν = δμ,ν − kμkν
k2

χμ,λ(k, H, ω) ≡ χ(k, H, ω)δμ,λ;
χ(k, H, ω) = χ(e)(H, ω)+ 1

3
χ(a)μ,μ(k, H, ω), (4.20)

where the anisotropic part of susceptibility (1.55) is assumed to be negligible. The
background of this assumption is the summation in (1.55), which is performed over
all electron states. Because of the electron wave functions of the filled electron
shells are spherically symmetric, the contribution from the filled shells results in
isotropic susceptibility. The only anisotropic contribution can be expected from the
upper unfilled shells, however, for all but light atoms the relative fraction of these
electrons is low and, in addition, their contributions are attenuated due to the large
spread of wave function and the integration with the oscillating exponents in (1.54)
results in lower values compared to the internal shells. The isotropic properties of
the atoms in X-ray scattering process are implied in the most of the calculations,
e.g. in the determination of the symmetry of forbidden reflections. In some cases,
the anisotropy of the atomic form-factors breaks the symmetry and is exposed in
weak quasi-forbidden reflections [12, 13]. These situations are usually analyzed in
the framework of the kinematical theory.

Let us consider the wave field which is excited by the incoming wave with
the wave vector k0. Since the diffraction effects are strong for the wave vec-
tors close to the Bragg condition (4.4), the vector k0 is assumed to be near the
Bragg condition for the reciprocal lattice vector H . We consider here only the
part of susceptibility corresponding to H : χ(k,−H, ck0), χ(k, H, ck0), i.e. so
called two-wave approximation is used. The analysis is restricted to the vicinity
of the Bragg peak, thus the susceptibilities are implied to be independent on k:
χ−H ≡ χ(k0,−H, ck0), χH ≡ χ(k0, H, ck0). Equation (4.20) shows the coupling
between wave fields A(k), A(k + H), A(k − H), A(k + 2H), A(k − 2H)..., and
the frequency ω = ck0 is omitted in arguments of the functions below:

http://dx.doi.org/10.1007/978-3-642-38177-5_1
http://dx.doi.org/10.1007/978-3-642-38177-5_1
http://dx.doi.org/10.1007/978-3-642-38177-5_1
http://dx.doi.org/10.1007/978-3-642-38177-5_1


4.2 Basics of Two-Wave Dynamical Diffraction 127

(
k2 − ω2

c2 ε0

)
Aμ(k)− ω2

c2 χ−H tμ,ν(k)Aν(k + H)

− ω2

c2 χH tμ,ν(k)Aν(k − H) = 0;
(
(k + H)2 − ω2

c2 ε0

)
Aμ(k + H)− ω2

c2 χ−H tμ,ν(k + H)Aν(k + 2H)

− ω2

c2 χH tμ,ν(k + H)Aν(k) = 0;
(
(k − H)2 − ω2

c2 ε0

)
Aμ(k − H)− ω2

c2 χ−H tμ,ν(k − H)Aν(k)

− ω2

c2 χH tμ,ν(k − H)Aν(k − 2H) = 0;
(
(k + 2H)2 − ω2

c2 ε0

)
Aμ(k + 2H)− ω2

c2 χ−H tμ,ν(k + 2H)Aν(k + 3H)

− ω2

c2 χH tμ,ν(k + 2H)Aν(k + H) = 0;
(
(k − 2H)2 − ω2

c2 ε0

)
Aμ(k − 2H)− ω2

c2 χ−H tμ,ν(k − 2H)Aν(k − H)

− ω2

c2 χH tμ,ν(k − 2H)Aν(k − 3H) = 0;
· · · , (4.21)

with ε0 = 1 + χ0 as a dielectric constant of the medium.
By omitting the special case of the simultaneous excitation of multiple Bragg

reflections [4], the vector k0 being in Bragg condition with vector H is far from
the Bragg conditions for the vectors −H, 2H,−2H, . . ., and thus the contributions
A(k− H), A(k+2H), A(k−2H)... can be neglected and the system of two matrix
equations describes the problem:

(
k2 − ω2

c2 (1 + χ0)

)
Aμ(k)− ω2

c2 χ−H tμ,ν(k)Aν(k + H) = 0;
(
(k + H)2 − ω2

c2 (1 + χ0)

)
Aμ(k + H)− ω2

c2 χH tμ,ν(k + H)Aν(k) = 0. (4.22)

Using the notations:

X (k) ≡
(

k2 − ω2

c2 (1 + χ0)

)
,

X (k + H) ≡
(
(k + H)2 − ω2

c2 (1 + χ0)

)
, (4.23)



128 4 X-Ray Diffraction in Ideal Crystals

and evaluating Aμ(k + H) from the second line of (4.22) and substituting it in the
first line:

(
X (k)tμ,ν(k)− ω4

c4

χHχ−H

X (k + H)
tμ,σ (k)tσ,τ (k + H)tτ,ν(k)

)
Aμ(k) = 0, (4.24)

where an additional projector tμ,ν(k) is implemented before Aμ(k) in order to get
more symmetrical expression (this insertion is justified by the fact that Aμ(k) is
transversal). The matrix on the left hand side of (4.24) preserves the transversality of
the vector Aμ(k), and thus can be considered as a 2×2 matrix acting on the vectors
transversal to k. Then the Eq. (4.22) is formulated in the coordinate-free form as:

β̂ · A = 0,

β̂ =
(

X (k)− ω4

c4

χHχ−H

X (k + H)

)
Î2

+ ω4

c4

χHχ−H

X (k + H)(k + H)2
(k + H)⊥ ⊗ (k + H)⊥ = 0, (4.25)

where Î2 is a two dimensional unitary operator acting in the space of the vectors
transversal to k, ⊗ denotes diad (outer) product, and the equalities t̂(a) = Î − a⊗a

a2

with Î as the two-dimensional unit operator and (k+ H)⊥ = t̂(k) ·(k+ H) are used.
The expression β̂ · A = 0 is fulfilled only in the case when det β = 0, which gives an
equation for possible values of k: the dispersion equation. For the two-dimensional
matrices, in according to Cayley-Hamilton theorem, the determinant is expressed
through the matrix traces as:

det β = (Trβ)2 − Trβ2

2
. (4.26)

The matrix β has a structure of kind C1 Î2 + C2v ⊗ v, and the direct calculation of
the traces results in det β = 2C1(C1 + C2v

2). Finally, an application of these results
to (4.25) yields the following dispersion equation:

{
X (k)− ω4

c4

χHχ−H

X (k + H)

}{
X (k)− ω4

c4

χHχ−H

X (k + H)
(k · (k + H))2

k2(k + H)2

}
= 0. (4.27)

The dispersion Eq. (4.27) is factorized into product of two equations. Each of them
corresponds to independent polarization states, which can be treated separately reduc-
ing the order of the dispersion equation. Indeed, the starting Eq. (4.22) is a system of
4 equations (2 equations corresponding to 2 polarization states for each of the waves
A(K ), A(k + H)) and each equation contains the unknown value k2, thus a 8th
order equation has to be solved. However, due to the approximation of the isotropic
susceptibility (4.20), it is factorized into two 4th order Eq. (4.27). Otherwise, the
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polarizations are not separated in (4.27) and a 8th order dispersion equation describ-
ing both polarization states simultaneously has to be considered.

Both polarizations (or in mathematical terms, the eigenvectors of β̂ corresponding
to zero eigenvalue) can be found directly from the Eqs. (4.27) and (4.23). Assuming
the first multiplier in (4.27) to be equal zero, the corresponding polarization vector
e1, as follows from (4.25) is equal to:

(k + H)⊥ ⊗ (k + H)⊥ · e1 = 0.

This condition is fulfilled for the vector [k,k+H]
|[k,k+H]| since it is orthogonal to both k and

(k + H)⊥. Note, that assuming k to be close to k0 and k + H to be close to k1, we
come to the definition of σ polarization given above, and notation e1 ≡ eσ can be
used. The second polarization vector, named eπ , should be orthogonal to the vectors
k and eσ and can be constructed as a vector product of them:

eσ = k × (k + H)
|k × (k + H)| , eπ = k × eσ

|k × eσ | . (4.28)

Dispersion equation (4.27) for both polarizations can be written down in a similar
way:

X (k)X (k + H)− Qs = 0, s = σ, π

Qs = ω4

c4 χHχ−H C2
s , (4.29)

C2
s =

{
1 for σ

(k·(k+H))2

k2(k+H)2
≈ cos2 2�B for π

polarization. (4.30)

Here k is assumed to be close to the Bragg condition for π polarization. Since the
dynamical theory is advantageous near the Bragg condition, the quantity Cπ is treated
below as a constant equals to cos2 2�B .

Let us discuss the solutions of the dispersion Eq. (4.29). The unknown quantity
is a wave vector k inside the crystal. In the most problems of DDT one deals with
the diffraction from the plane-parallel layered crystal structures [3]. In this case it is
convenient to represent the vector in the following form:

k = −Nu + k0||, k0|| = t̂(N) · k0, (4.31)

where N is a crystal surface normal. The reason for the equality of the lateral compo-
nents of the wave vector in a vacuum and in the media is the same as for the specular
reflection law (3.11): in order to fulfill the boundary conditions at the crystal surface,
the exponential pre-factors have to be equal for the waves in a vacuum and in the
medium. Hence the dispersion equation is a 4th order equation in term of u:

http://dx.doi.org/10.1007/978-3-642-38177-5_3
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[
u2 + k2

0|| − ω2

c2 ε0

] [
(u + Hz)

2 + (k0|| + H ||)2 − ω2

c2 ε0

]
− Qs = 0, (4.32)

where the z axis is chosen inwards the sample and opposite to the outward surface
normal, H || = t̂(N)· H . In general case, the solution of the quaternary Eq. (4.32) can
be found using Ferrari-Cardano formulas. However, these formulas are cumbersome,
require multiple checking of appropriate roots, and do not provide an insight in the
physics of the process. In two special cases, the Eq. (4.32) is reduced to the biquadratic
one and is solved exactly. Assuming Hz = 0, the solution is:

ui,s = ±
√
ω2

c2 ε0 − 1

2

(
k2

0|| + k2
1||
)

±
√

1

4

(
k2

0|| − k2
1||
)2 + Qs,

k1|| = k0|| + H ||; i = 1 . . . 4. (4.33)

This case corresponds to the grazing-incidence diffraction and will be considered
in this chapter separately. Another biquadratic case is H || = 0, where using the
re-definition u = uc − Hz/2, the biquadratic equation for variable uc provides the
solutions:

ui,s = ±
√√√√H2

z

4
+ ω2

c2 ε0 − k2
0|| ±

√

H2
z

(
ω2

c2 ε0 − k2
0||
)

+ Qs − Hz

2
,

i = 1 . . . 4. (4.34)

This case corresponds to the symmetric diffraction, when the crystallographic planes
corresponding to the reciprocal lattice vector H are parallel to the crystal surface.
In fact, the X-ray diffraction in this case can be also considered as refraction from
a periodic stack of the atomic layers in a way similar to the Sect. 3.3. The prob-
lem reduces to a one-dimensional second order linear differential equation with the
periodic potential similar to the Kronig-Penney model, which is exactly solvable
provided the reflection and transition coefficients of a single layer are known [14].
Thus, the symmetric diffraction case can be solved analytically beyond the two-wave
approximation.

In other cases, when Hz �= 0 and H || �= 0, to avoid the use of bulky Ferrari-
Cardano formulas for the solution of (4.32), the approximation utilizing the neglect
of the quantities containing some small parameter has to be used. The natural small
parameter in X-ray scattering process is X-ray susceptibility, and further results are
accurate up to the first non-vanishing order in X-ray susceptibility.

By considering the Eq. (4.32) in the case when the diffraction is “switched-off”
χH = χ−H = 0, this expression factorizes into two equations describing the propa-
gation of two plane waves which do not interact with each other. The first multiplier
in (4.32) corresponds to the refracted incident wave, and the obvious solution of the
uncoupled dispersion equation is:

http://dx.doi.org/10.1007/978-3-642-38177-5_3
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Fig. 4.3 The dispersion sur-
face for two-wave diffraction.
The actual value of the wave
vector in the media is deter-
mined by in-plane component
of the incidence wave vector.
The roots u1, u2, u3, and u4
correspond to the incident,
the specularly reflected inci-
dent, the diffracted, and the
specularly reflected diffracted
waves, respectively

udirect, uncoupled = ±γ0, γ0 =
√
ω2

c2 (1 + χ0)− k2
0||. (4.35)

By “switching-on” the diffraction, the solution is found in the form of the dispersion
surface for the refracted incident wave with addition of a small correction δ [15]:

u1,s = γ0 + δ1,s, (4.36)

then the dispersion equation is modified to:

[
δ2

1,s + 2δ1,sγ0

] [
δ2

1,s + 2δ1,s(γ0 + Hz)+ α
]

− Qs = 0. (4.37)

Here the parameter α is introduced describing the deviation from the Bragg condition
as

α = 2γ0 Hz + 2k0|| · H || + H2. (4.38)

This formula differs from the Eq. (4.4) by the refraction correction in variable γ0.
In the region far from the Bragg condition |α|/k2

0 ∼ 1 and this value is much
greater than δ1,s , which corresponds to the considered diffracted wave. Assuming
δ1,sk0 
 α, δ1,s 
 k0, the Eq. (4.37) is modified to:

δ1,s far from Bragg ≈ Qs

2γ0α
∼ |χH |2k0, (4.39)

and thus the correction to γ0 is proved to be negligible. Satisfying the exact Bragg
condition α = 0 and assuming δ 
 k0 we get:

δ1,s exact at Bragg ≈
√

Qs

4γ0(γ0 + Hz)
∼ |χH |k0, (4.40)
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and thus δ1,s corresponding to the incoming wave is always a small quantity, and the
assumption δ1,s 
 k0 in each of multiplier in (4.37) can be used, which simplifies
the dispersion equation to the quadratic one with the roots:

δ1,s =
−αγ0 + Sign(�(αγ0))

√
α2γ 2

0 + Qs(α + 4γ0(γ0 + Hz))

α + 4γ0(γ0 + Hz)

u1,s = γ0 + δ1,s . (4.41)

Both limiting cases (4.39) and (4.40) follow from the Eq. (4.41). The root of (4.32)
which tends to u0 = −γ0 in (4.35) describes the specularly reflected incident wave,
see Fig. 4.3. This wave is far from the Bragg condition, and according to (4.39) it
can be written with the accuracy ∼ |χH |2k0 as:

u2,s = −γ0. (4.42)

A similar analysis can be performed with the second multiplier in (4.32) which
describes a free propagation of the diffracted wave. The solution corresponding to
the “switched-off” diffraction is:

udiffracted, uncoupled = ±γH − Hz, γH =
√
ω2

c2 (1 + χ0)− (k0|| + H)2, (4.43)

and looking for the solution in the form

u3,s = γH − Hz + δ3,s (4.44)

and introducing the deviation parameter αH :

αH = −2γH Hz − 2k0|| · H || − H || + H2
z , (4.45)

which is close to −α near the Bragg condition, the Eq. (4.32) is modified to:

[
δ2

3,s + 2δ3,s(γH − Hz)+ αH

] [
δ2

3,s + 2δ3,sγH

]
− Qs = 0, (4.46)

and finally results in:

δ3,s =
−αHγH + Sign(�(αHγH ))

√
α2

Hγ
2
H + Qs(αH + 4γH (γH − Hz))

αH + 4γH (γH − Hz)

u3,s = γH − Hz + δ3,s,

u4,s = −γH − Hz . (4.47)
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The wave fields existing in the crystal under diffraction process are the sum of
coupled waves Ai,s(k) and Ai,s(k + H) corresponding to all dispersion equation
solutions i for polarization states s = σ, π . The relationship between them follows
from (4.22):

Ai,s(ki,s + H) = ˆVi,s · Ai,s(ki,s), (4.48)

ˆVi,s = Vi,s t̂(ki,s + H),

Vi,s = ω2

c2 χH
1

X (ki,s + H)
= ω2

c2 χH
X (ki,s)

Qs
,

where the expression (4.29) has been taken into account. The amplitudes Ai,s(ki,s)

are determined by the boundary conditions, and in general case the wave field in the
crystal is:

A(r, t) =
∑

i,s

Ai,sei(k||r ||+ui,s z−ωt)
(

1 + ei H r V̂i,s

)
· es . (4.49)

Here the solution for the dispersion equation ui,s is taken from the formulas (4.41),
(4.42), and (4.47); the expressions for the amplitude ratios V̂i,s (4.48) and the polar-
ization vectors (4.28) are substituted, accordingly.

The dispersion equation and the amplitude ratio is usually analyzed in different
ways for various diffraction geometries, which depends on the mutual disposition of
the main vectors: the incident wave vector k0, the surface normal N , the reciprocal
lattice vector H for the considered crystallographic planes and the diffracted wave
vector k1 = k + H (Fig. 4.4). For practical applications (except grazing incidence
diffraction) the coplanar geometry is mainly used when all these vectors are in the
same plane. In this case the in-plane wave vector has only one component connected
directly with the anglesωin andωout between sample surface, incident and diffracted
beams respectively (Fig. 4.4):

Fig. 4.4 Various coplanar geometries that are used in the dynamical diffraction theory: Bragg case
(left) and Laue case (right)
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k|| → kx = k0 cosωin, kx + Hx = k0 cosωout . (4.50)

Let us discuss below some properties of the wave field (4.49) focusing on the
structure of transmitted and diffracted wave close to the Bragg conditions.

4.2.1 Amplitude Ratio

The ratio of the amplitudes of the diffracted and incident waves shows directly how
strong the diffracted wave is. For example, the root u1,s (4.41) in the absence of
diffraction corresponds to the incident wave (4.35). The diffraction process imple-
ments a correction (4.36) and according to (4.49) the incident wave Ainc(r, t) =
A1,sei(k||r ||+u1,s z−ωt)es is accompanied by the diffracted wave Adiffr(r, t) = ei H r V̂i,s ·
Ainc(r, t). Thus, the value V̂i,s can be used as a measure of the diffraction effects.
For the root u1,s , the quantity X (k) = 2γ0δ1,s + δ2

1,s , and with the above-mentioned
accuracy in terms of |χH |, the following expression for the amplitude ratio is derived:

V̂1,s = ω2

c2 χH
2γ0δ1,s

Qs
t̂(k + H). (4.51)

The amplitude of the diffracted wave is proportional to the deviation δ1,s of the dis-
persion surface from the non-disturbed position due to the diffraction phenomenon.
Here several limiting cases are considered.

i. Large deviations from the Bragg condition, from (4.41) and (4.39) it follows:

V1s,far from Bragg ≈ ω2

c2

χH

α
∼ |χH |, (4.52)

and the diffracted wave is |χH | times weaker than the incident wave.
ii. Exact Bragg condition, from (4.41), (4.40), and (4.29) it follows:

V1s,at Bragg ≈
√

χH

Csχ−H

√
γ0

γ0 + Hz
∼ 1. (4.53)

Hence, at exact Bragg condition the diffracted wave has the same order of magnitude
as the incident one. As follows also from (4.53), at the Bragg condition the diffracted
wave amplitude is independent on the magnitude of χH . This situation is typical for
perturbations theory in the presence of degenerate states [16]: even infinitesimally
small perturbation leads to the rearrangement of the eigenstates of the system into
correct linear combinations of the degenerate states. In the case of diffraction, two
degenerate states are the waves satisfying the dispersion equations X (k) = 0 and
X (k + H) = 0 at the same value of the wave vector k, and the perturbation is caused
by the spacial periodic susceptibility χH .



4.2 Basics of Two-Wave Dynamical Diffraction 135

The maximal peak value (4.53) is independent on the magnitude χH , however,
the peak width is proportional to it. Let us consider a simplified case which enables
to get an analytical representation of V̂1,s . Under the following conditions:

• α 
 γ0(γ0 + Hz), which is true close to the Bragg condition;
• γ0 > 0, γ0 + Hz < 0 , that corresponds to the case of the reflection (Bragg)

geometry when the diffracted wave moves in vertical direction
opposite to the incident wave;

• χH = (χ−H )
∗, Qs is real and �(χ0) = 0, that corresponds to the case of no

absorption,
• σ polarization, than t̂(k + H) = 1,

Equation (4.53) converts into:

V1,σ = ω2

c2 χH
γ0

2Q(γ0 + Hz)

(
Sign(�(α))

√

α2 −
∣∣∣∣
4Q(γ0 + Hz)

γ0

∣∣∣∣− α

)
. (4.54)

V1,π = ω2

c2 χH
Cπγ0

2Q(γ0 + Hz)

(
Sign(�(α))

√

α2 −
∣∣∣∣
4Q(γ0 + Hz)

γ0

∣∣∣∣− α

)
. (4.55)

If the value of α is smaller than

αedge =
√∣∣∣∣

4Q(γ0 + Hz)

γ0

∣∣∣∣ ∼ |χH |, (4.56)

the quantity in brackets equals to i
√
α2

edge − α2 −α and its modulus square is α2
edge.

The deviation parameter α is a function of wave vector k0 of incoming wave
(4.38), which is described by means of the angle ωin between the wave vector of the
primary beam and the crystal surface, see Figs. 4.2 and 4.4. In this parametrization,
the variable α becomes a function ofωin, the explicit form is obtained by substitution
k|| = ω

c cosωin into Eqs. (4.35) and (4.38). In the range of −αedge < α < αedge the
modulus square of the diffracted to the incident amplitudes ratio does not depend
on the incident angle ωin . It means that the intensity of the diffracted beam remains
equal to its peak value. This phenomena is known as Darwin’s table, as shown in
Fig. 4.5. The width of the “table” is 2αedge and is proportional to |χH |. The weaker
the diffraction effect quantified by |χH |, the more narrow is the region wherein total
radiation is diffracted.

On the top of the Darwin table, the X-ray reflectivity |R|2 equals 1, which is
explained by the presence of the imaginary part in the variable u1,s in this region,
which means that waves can not propagate inside the crystal and total incident radi-
ation comes out into diffracted wave. The imaginary part of u1,s denotes the band
gap for X-ray photons, and the situation is similar to that for the conductive electrons
in the solids [17]. The band gap for weakly bound conductive electrons takes place
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Fig. 4.5 The values |V1,σ |
(black line) and |V3,σ | (gray
line) near the Bragg condition
for Si (224), CuK-α radia-
tion as the functions of the
incidence angle ωin; ωB cor-
responds to the kinematical
Bragg condition (4.4). Dashed
curves correspond to |V1,3,σ |
calculated with neglected X-
ray absorption

at the edge of Brillouin zone, the Bragg condition (4.4) is nothing but equation in
terms of k describing the plane, which separates two Brillouin zones.

At the edge of Darwin table the variable |V1,σ |2 has a kink as a function of α, and
its first derivative is discontinued. This behavior is of the same nature as Van Hove
singularities near the edge of the band gap [17]. When the X-ray absorption is taken
into account, the kinks at the edges of Darwin table become smoothed and the table
becomes asymmetric, see Fig. 4.5.

The function V3,σ corresponds to root (4.43) and refers to the propagation of the
diffracted wave. From (4.46) and (4.48), the expression for this function is derived:

V̂3,s = ω2

c2 χH
1

2γ0δ3,s
t̂(k + H). (4.57)

Here the deviation parameter appears in the denominator, and the behavior of the
function is inverse to that of (4.51). The function V3,σ possesses a Darwin’s table,
like behavior at Bragg condition, and in the region far from the Bragg condition it
grows according to:

V3,s,far from Bragg ≈ c2

ω2

αH

χ−H
∼ 1

|χH | . (4.58)

This inverse behavior (see upper curve at Fig. 4.5) can be explained as follows: for
the root u3,s the wave with the wave vector, which is close to k + H , is considered
as a primary wave (4.43) and the wave with the wave vector, which is close to k,
can be interpreted as a wave emerged due to the diffraction, corresponding to the
reciprocal lattice vector −H of the primary one. The amplitude ratio of the waves
close to k and to k + H is 1

V3,s
, and this ratio describing the diffraction of the wave

k + H behaves as predicted by the Eq. (4.51).
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4.2.2 Anomalous Absorption and Extinction

The imaginary part of the wave vector describes the attenuation of the wave in
medium. Under the no absorption condition χH = (χ−H )

∗ and in the exact Bragg
condition, the quantity δ1,s being an addition to kz due to the diffraction, is purely
imaginary, see (4.40):

δ1,s exact at Bragg = i
ω2

c2

|χH |
2
√
γ0(γ0 + Hz)

. (4.59)

The depth LBragg, e at which the wave is attenuated e times is 1/�δ1,s . To compare
this length parameter with the length Lz characterizing the validity limitation of the
kinematical theory (4.19), the following values are set γ0 = k0 sinωin, Hz − γ0 =
k0 sinωout (here k0 = ω/c) assuming the absence of the refraction effects:

LBragg, e = 2

√| sinωin sinωout|
k0|χ(H)| = 2Lz . (4.60)

In the kinematical theory, the parameter Lz emerges as a thickness of a slab at
which the reflectivity |R|2 exceeds unity, i.e. the diffracted wave becomes more
intense than the incident one. In the dynamical theory, the maximal amplitude of
the diffracted wave normalized to the primary wave is given by (4.53) and results in
|R|2 = 1. The attenuation (4.59) in non-absorbing crystal means that the primary
wave is transformed into the diffracted wave. Thus, the wave attenuation occurs
not due to the absorption but due to the transformation into the diffracted wave,
and the characteristic length scale at which this transfer takes place is LBragg,e. Not
surprisingly, this length scale equals to the thickness of a slab Lz , for which the
diffracted wave amplitude becomes comparable with the primary wave amplitude,
as given by the kinematical theory. This phenomenon of the coherent attenuation is
called extinction, and when the crystal is absorbing, both attenuation mechanisms
act together, Fig. 4.6.

As a next step, the situation γ0 + Hz > 0 at Bragg condition is considered. In
this case, the diffracted wave propagates in the same direction as a primary wave and
exits the crystal plate at the opposite side of the entry plane (transmission or Laue
geometry). Under this condition, the parameter (4.40) is real, and the corresponding
length scale, equal to (4.60) has the meaning of the length at which the primary wave
is transferred back and forth into diffracted wave. This effect is called Pendellosung
taking its origin from a mechanical analogy: primary and diffracted waves in Laue
geometry have the same behavior versus z as two weakly coupled pendulums behave
in time, the energy flows back and forth from one to another (Fig. 4.7).

In the Laue case, the diffraction phenomenon influences the absorption property
of the material. The physical background for this effect is the change of the structure
of the wave field interacting with the crystal comparing to the plane wave used in
the calculation of the absorption. The absorption of the wave field (4.49), which
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Fig. 4.6 The function 1/�δ1,s
at the same conditions as in
Fig. 4.5. The dashed line
corresponds to the absorption
in the absence of diffraction

Fig. 4.7 The functions
�u1,σ /�γ0 (black line) and
�u3,σ /�γ0 (gray line) for the
Laue diffraction from Si (220)
crystal with 10◦ miscut of
crystallographic planes

is a superposition of two waves alternating in space with the period of the order
of the interatomic distance, can be higher or lower than one for the plane wave
field. The situation is similar to the phenomenon of the electromagnetically induced
transparency [18], where the absorption of the media is changed due to the creating
the atomic quantum mechanical wave functions in the superposition state.

The absorption coefficient is calculated straightforwardly from the imaginary part
of the wave vector component parallel to the sample surface normal, by taking the
imaginary part of ui,s from (4.41), (4.42), and (4.47). The final imaginary component
is composed of the parts caused by the following contributions:

• γ0, γH have imaginary part since their definitions (4.35) and (4.43) contain com-
plex value χ0, the imaginary part of which describes the absorption in the region
far from the Bragg condition;

• α, αH depend on γ0, γH as follows from (4.38) and (4.45);
• Qs in (4.29) due to χH �= (χ−H )

∗.
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The susceptibility χH is a complex value due to two reasons:
i. summation in (1.60); even if all Fa(H) are real, the total F(H)will be in general

a complex value. However, for the real Fa(H), the value χHχ
∗−H is real, too;

ii. absorption, which is contained in the anomalous dispersion correction (1.55);
the single atom form factor Fa(H) is complex itself, and F(H) is complex in general,
too.

The part of the susceptibility χH which is contributed by the summation (1.60)
of the real parts Fa(H) is traditionally denoted as χR

H and by summation of the
imaginary parts as iχ I

H . In general, both are complex values and

χH = χR
H + iχ I

H (4.61)

χ−H = χR
H

∗ + iχ I
H

∗ �= (χH )
∗.

When a single Bragg reflection is considered, the relative phase difference φ =
φI −φR between χR

H = |χR
H |eiφR and χ I

H = |χ I
H |eiφI enters in the final expressions,

so the phase eiφR is often set to 0 by means of shifting the origin in (1.66). This origin
choice is different for various reciprocal lattice vectors, and the attention must be paid
when using tabulated susceptibilities in the case if a wide scan containing several
Bragg reflections is simulated [19]. To a get a simple analytical estimations for the
mentioned above values, the following assumptions for the imaginary part of ui,s are
considered:

• Hz = 0: a symmetric Laue geometry, this assumption makes α to be a real value,
• φR = 0: appropriate origin minimizing φR is used, φ = π ,

which is the case for centrosymmetric crystals,
• α = 0: exact Bragg condition,
• χ I

0 
 χR
0 , χ

I
H 
 χR

H : absorption is assumed to be weak,

in the first order of χ I
0 from roots u1,s, u3,s (4.47), (4.41):

�us = ω2

2c2�γ0
(χ I

0 ± Csχ
I
H ) = �γ0

(
1 ± Csχ

I
H

χ I
0

)
. (4.62)

Thus, under the Bragg diffraction condition the absorption for one wave is increased
and for other is decreased. The values for χ I

0 and χ I
H are obtained from the same

expression (1.60), the difference between them is due to the phase and the Debye-
Waller factor. For the reflections with even indices of f.c.c. materials [2], the phase
factor is equal to unity, and anomalously low absorption takes place. This is called
Borrmann effect, which being observed experimentally was one of the first convinc-
ing experiments confirming dynamical diffraction theory.

http://dx.doi.org/10.1007/978-3-642-38177-5_1
http://dx.doi.org/10.1007/978-3-642-38177-5_1
http://dx.doi.org/10.1007/978-3-642-38177-5_1
http://dx.doi.org/10.1007/978-3-642-38177-5_1
http://dx.doi.org/10.1007/978-3-642-38177-5_1
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4.2.3 Group Velocity

The presented above analysis is dedicated to the stationary state of X-ray wave
field in the crystal. In recent decade, an essential progress has been achieved in the
construction of X-ray sources of femtosecond pulse duration and in the pulse-probe
experiments with the same timescale resolution [20]. These developments demand
the theory for X-ray pulse propagation in the crystals at the diffraction condition.

Considering the interaction of X-ray radiation with atom in the framework of
perturbation theory, the equations describing the propagation of X-ray radiation in the
crystal are linear (1.56) and resulting time structure of the diffracted pulse Adiffr(r, t)
is obtained using the Fourier representation:

Adiffr(r, t) =
∫

d3k1dω R̂(k0, k1, ω)Ain(k0, ω)e
i(kr−ωt), (4.63)

where R̂(k0, k1, ω) is a matrix which connects the primary and the diffracted plane
waves treated on the basis of the plane wave dynamical diffraction theory, Ain(k0, ω)

is a Fourier decomposition of the incident pulse. The calculations based on this
approach show the change of the space-time pulse shape and other effects [21–23].
Below the influence of the Bragg diffraction condition on X-ray pulse propagation
is discussed. The parameter characterizing the rate of the pulse propagation in dis-
persive media is a group velocity:

vgr (k, ω) ≡ ∂ω

∂k
, (4.64)

where the variables ω and k are connected via the dispersion equation (4.29):

D(k, ω) = X (k, ω)X (k + H, ω)− Qs

=
(

k2 − ω2

c2 (1 + χ0)

)(
(k + H)2 − ω2

c2 (1 + χ0)

)
− Qs = 0. (4.65)

In the Eq. (4.65), the frequency is taken as ω = ω(k) and by differentiating (4.65)
over k:

vgr (k, ω) = ∂ω

∂k
= −

∂D(k,ω)
∂k

∂D(k,ω)
∂ω

. (4.66)

For calculation of the derivatives in (4.66), only a non resonant part of susceptibility
(1.51) is taken into account and approximation χ ∼ 1/ω2 is used.

The value vgr , being a function of k||, at a fixed ω is:

vgr (k) = c
kX (k + H)+ (k + H)X (k)

ω
c (X (k + H)+ X (k))

. (4.67)

http://dx.doi.org/10.1007/978-3-642-38177-5_1
http://dx.doi.org/10.1007/978-3-642-38177-5_1
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In the region far from the Bragg condition, the function vgr tends to the value of
the speed of light, however under the Bragg condition one can expect a significant
deviation of this behavior. For the calculation of (4.67), the solutions of the dispersion
equation are used. At the Bragg condition, both terms X (k + H) and X (k) are
small, and the expression (4.67) has a structure like 0/0 and expansions over small
parameters like α, Q must be treated with caution. We use here the exact solution
(4.34), which is valid for the symmetric case, and the results obtained will be general
in the sense that the reference system is chosen in such a way that z||H and thus the
Eq. (4.34) is utilized. The group velocity is decomposed into two components: one
parallel to the plane for which ez is normal, and one along ez :

vgr (k) = c
k||
ω/c

+ ezc
ui X (k + H)+ (ui + H)X (k)

ω
c (X (k + H)+ X (k))

. (4.68)

The magnitude of vgr,z , being calculated on the basis of the equation (4.34), decreases
when approaching the Bragg condition. At the value of the parameter α0z equal to

α0z = ±
(

H2 −
√

H4 − 4H2
√

Qs

)
≈ ±2

√
Qs ≈ αedge, (4.69)

the z component of the group velocity equals to zero in the absence of the absorption.
Because of at the selected choice of the coordinate system and by satisfying the
Bragg condition γ0 = H/2, the considered region coincides with the Darwin table
as follows from Eq. (4.56). Thus, under the Bragg condition, the pulse propagation
in the direction of the reciprocal lattice vector decelerates down to zero, i.e. the pulse
gets “entangled” within the crystal. This is also a manifestation of the fact that Bragg
diffraction is essentially a multi scattering effect; to be formed, the stationary state
(4.49) needs a large number of the re-scattering processes. The simulations of the
formation process of Bragg curve from a time-limited pulse [24] show clearly: while
the smooth tails appears in time of the order of Lext/c, the curved part near the
Darwin table needs much longer time, and the kink at the edge of the Darwin table
appears only in asymptotic.

4.3 Dynamical Diffraction in Multilayers and Superlattices

The analysis presented in the previous sections deals with the structure of the wave
field in the crystal, and in two wave approximation it has the structure presented
by formula (4.49). The parameters, required in (4.49) for the comprehensive wave
field determination are: the amplitudes Ai,s and the in-plane component of the wave
vector k||. All other values are calculated based on the vector k||, as shown in the
Eqs. (4.41), (4.42), and (4.47) for ui,s and in the Eq. (4.48) for the amplitude ratios
V̂i,s , and in the Eq. (4.28) for the polarization vectors. The unknown values Ai,s, k||
are defined by the wave which enters the crystal. This wave satisfies to the Maxwell’s
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equations within the localized media volume on the border of the crystal. To make
the Maxwell’s equations be valid in the entire space, the wave fields have to fulfill
the boundary conditions.

To apply Maxwell’s equations at the boundary S between two media, (1) and (2),
the lateral τ and the normal n to the boundary field components have to be preserved
continuous (3.9):

E1,τ |S = E2,τ |S; D1,n|S = D2,n|S; (4.70)

H1,τ |S = H2,τ |S; B1,n|S = B2,n|S .

The vector potential A in the Coulomb gauge has been used in previous sections as
a fundamentals of theoretical models. The potential is a key variable in the quan-
tum mechanical Hamiltonian (1.2) as well as this parameter serves to describe the
electromagnetic field in the framework of gauge theory, which is the basis of stan-
dard model of fundamental interactions. The connection between A and directly
observable fields in (4.70) in vacuum is straightforward:

Evac = Dvac = −1

c

∂A
∂t

− ∇φ (4.71)

Bvac = Hvac = ∇ × A.

However, the situation is changed if the medium is involved into consideration, see
the derivation of Eq. (1.15). Using expressions (1.15), the boundary conditions (4.70)
can be formulated for the vector potential A, and to derive them in a compact matrix
form, the following projectors have to be introduced:

t̂(k) = Î − k ⊗ k
k2 , l̂(k) = k ⊗ k

k2 (4.72)

P̂τ = Î − N ⊗ N, P̂n = N ⊗ N.

As a next step, two vector relations are constructed by means of summing up the
equations for Eτ ≡ P̂τ · E, Dn ≡ P̂n · D and Hτ ≡ P̂τ · H, Bn ≡ P̂n · B in (4.70):

A + P̂(k, N) · χ̂ · A = const (4.73)

k × A = const,

here the product χ̂ · A should be understood as (1.24), and a combined projector is
introduced:

P̂(k, N) ≡ P̂n · t̂(k)− P̂τ · l̂(k). (4.74)

The typical case of the boundary condition problem is the application of (4.73)
to the plane interface between two crystal slabs, which is a basic model for X-ray
diffraction from the multilayered crystalline structures. Within the framework of a
two-beam case, the wave field in each medium is written as in Eq. (4.49). To formulate

http://dx.doi.org/10.1007/978-3-642-38177-5_3
http://dx.doi.org/10.1007/978-3-642-38177-5_1
http://dx.doi.org/10.1007/978-3-642-38177-5_1
http://dx.doi.org/10.1007/978-3-642-38177-5_1
http://dx.doi.org/10.1007/978-3-642-38177-5_1
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the relation between amplitudes A(1,2)i,s in the crystals 1 and 2, the following matrix
form is used:

S(1)i,s;i ′,s′ A
(1)
i ′,s′ = S(2)i,s;i ′′,s′′ A(2)i ′′,s′′ , (4.75)

where the repeated indices i, s mean the summation i, i ′, i ′′ = 1...4; s, s′, s′′ =
σ, π . The boundary conditions (4.73) have to be fulfilled at each point of the plane

interface, which is possible only in the case when the exponential factors ei k(1,2)|| r ||

and ei(k(1,2)|| +H(1,2)
|| )r || are equal at both sides of the interface. Thus, the conditions for

the lateral components of wave vectors are:

k(1)|| = k(2)|| = k|| (4.76)

H(1)
|| = H(2)

|| = H ||.

The first condition results in the same conclusions as for X-ray reflectivity (3.11). The
second condition in the case of crystalline media means that only in the materials
with the same in-plane reciprocal lattice vectors the diffracted waves are coupled
through the boundary conditions, i.e. in-plane lattice parameters are the same, or in
other words, the interface is pseudomorphic. If this is not the case, the diffracted
wave with the in-plane wave vector k(1)|| + H(1)

|| excites a new wave with the wave

vector k(2)|| = k(1)|| + H (1)
|| which undergos a diffraction at the reciprocal lattice vector

−H(2), in turn resulting in a wave with the in-plane vector k(1)|| + H(1)
|| − H(2)

|| , etc.
Each successive wave moves away from the Bragg condition, and the theory for this
case is considered in details in [25, 26].

As follows from the similar logics as above, the boundary conditions (4.73) for the
waves with different in-plane wave vectors have to be considered separately. Using
Eq. (4.49) and the first equation in (4.73), which is a consequence of electric field
boundary conditions (4.70), and considering the factors with the same ei k||r || , the
formula is derived:

∑

i,s

(
Î + P̂(k(1)i,s , N) · (χ(1)0 Î + χ

(1)
−H V̂ (1)

i,s )
)

· e(1)i,s A(1)i,s (4.77)

=
∑

i ′,s′

(
Î + P̂(k(2)i ′,s′ , N) · (χ(2)0 Î + χ

(2)
−H V̂ (2)

i ′,s′)
)

· e(2)i ′,s′ A
(2)
i ′,s′ ,

and the same for k|| + H ||:

∑

i,s

(
V̂ (1)

i,s + P̂(k(1)i,s + H(1), N) · (χ(1)0 V̂ (1)
i,s + χ

(1)
−H Î )

)
· e(1)i,s A(1)i,s (4.78)

=
∑

i ′,s′

(
V̂ (2)

i ′,s′ + P̂(k(2)i ′,s′ + H (2), N) · (χ(2)0 V̂ (2)
i ′,s′ + χ

(2)
−H Î )

)
· e(2)i ′,s′ A

(2)
i ′,s′ .

http://dx.doi.org/10.1007/978-3-642-38177-5_3
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From the second equation in (4.73), which is a consequence of magnetic field bound-
ary conditions (4.70), and considering the factors with the same ei k||r || , the following
formula is obtained:

∑

i,s

k(1)i,s × e(1)i,s A(1)i,s =
∑

i ′,s′
k(2)i ′,s′ × e(2)i ′,s′ A(2)i ′,s′ , (4.79)

and analogous one for k|| + H ||:

∑

i,s

(
k(1)i,s + H(1)

)
× (V̂ (1)

i,s · e(1)i,s )A
(1)
i,s (4.80)

=
∑

i ′,s′

(
k(2)i ′,s′ + H (2)

)
× (V̂ (2)

i ′,s′ · e(2)i ′,s′)A
(2)
i ′,s′ .

The equations above are assumed to describe a pseudomorphic case, and the boundary
plane was assumed to be at zb = 0. If zb �= 0, each amplitude A(1,2)i,s in Eqs. (4.77) and

(4.79) has to be multiplied with the exponent eiu(1,2)i,s zb and in Eqs. (4.78) and (4.80)

by the exponent ei(u(1,2)i,s +H (1,2)
z )zb . The boundary conditions in the form of (4.75) are

obtained from Eqs. (4.77)–(4.80) in the following way: by introducing a combined
index ν = {(1, σ ); (2, σ ); (3, σ ); (4, σ ); (1, π); (2, π); (3, π); (4, π)}, the formula
(4.75) is written as:

S(1)μ,ν A(1)ν = S(2)μ,ρ A(2)ρ . (4.81)

Now let us consider a scalar product of each equation with the corresponding two
non-collinear vectors e(i)a , e(i)b , the definitions of which will be specified later. Using
the following notations:

W (El., k,(1,2))
ν =

(
Î + P̂(k(1,2)ν , N) · (χ(1,2)0 Î + χ

(1,2)
−H V̂ (1,2)ν )

)
· e(1,2)ν

W (El., k+H,(1,2))
ν =

(
V̂ (1,2)ν + P̂(k(1,2)ν + H(1,2), N) · (χ(1,2)0 V̂ (1,2)ν + χ

(1,2)
−H Î )

)
· e(1,2)ν

(4.82)

W (M., k,(1,2))
ν = k(1,2)ν × e(1,2)ν

W (M., k+H,(1,2))
ν =

(
k(1,2)ν + H(1,2)

)
× (V̂ (1,2)ν · e(1,2)ν ),

the 8 × 8 matrix S(1,2)μ,ν is constructed from following rows:
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S(1,2)μ,ν =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

W (El., k,(1,2))
ν · e(1)a

W (El., k+H,(1,2))
ν · e(2)a

W (M., k,(1,2))
ν · e(3)a

W (M., k+H,(1,2))
ν · e(4)a

W (El., k,(1,2))
ν · e(1)b

W (El., k+H,(1,2))
ν · e(2)b

W (M., k,(1,2))
ν · e(3)b

W (M., k+H,(1,2))
ν · e(4)b .

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4.83)

The boundary conditions in the form (4.81)–(4.83) can be applied for an arbitrary
diffraction geometry in two-wave case, including the non-coplanar diffraction geom-
etry [27] (the wave vector of incoming wave k0, vectors H and N are non-coplanar)
and arbitrary deviations from the Bragg condition [28]. However, for most of the
practical cases, the simplifications based on the coplanar geometry and/or vicinity
to the Bragg peak can be made for the formulas derived above.

For the vector W (El., k,(1,2))
ν , the magnitude of the summand P̂(k(1,2)ν , N) ·

(χ
(1,2)
0 Î + χ

(1,2)
−H V̂ (1,2)

ν ) compared to value Î is estimated below. The quantities

χ0, χH are small values, hence the term with χ(1,2)0 can be safely neglected. As
it was shown in the previous section, the order of magnitude of V̂ν is about 1 at
the Bragg angle (4.53), therefore the whole summand with the projector P̂ can be
neglected at the Bragg condition. In the region far from the Bragg angle, the terms
for which ν corresponds to the roots describing in asymptotic the incoming wave
(4.41) and (4.42), the quantity V̂ν is of order |χH | (4.52), therefore for this roots the
part with the projector P̂ is negligible.

In the case of the roots, corresponding to the diffracted wave (4.47) in the region
far from Bragg angle, the value V̂ν is of order 1/|χH | (4.58), therefore the summands
with Î and P̂ become of equal importance. Summarizing, at the Bragg condition the
summand with P̂ is about |χ | times smaller than Î , but far from the Bragg angle the
part P̂ ·χ−H V̂ν has to be preserved. This contribution has been analyzed in [28], that
demonstrated the essential discrepancy between dynamical and kinematical theories
in the region far from the Bragg condition in the case if this term is abandoned.
Keeping further the focus on the angular range near the Bragg condition, the summand
with P̂ is neglected, which simplifies W (El., k,(1,2))

ν significantly:

W (El.,Bragg; k,(1,2))
ν = e(1,2)ν . (4.84)

Considering the vector W (El., k+H,(1,2))
ν , the same analysis shows that in the Bragg

condition the summand with P̂ can be neglected. Far from the Bragg condition, the
terms with ν corresponding to the roots which describe in asymptotic the incoming
wave terms V̂ν and P̂χ−H , are of equal importance. In the vicinity of Bragg range,
the simplification results in:
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W (El.,Bragg; k+H,(1,2))
ν = V̂ (1,2)

ν · e(1,2)ν . (4.85)

For the vector W (M., k,(1,2))
ν corresponding to boundary conditions for the mag-

netic field, by representing the wave vector in the form of (4.31) and using the
condition (4.76), this vector is split into two parts:

W (M., k,(1,2))
ν = W (M., k,(1,2))

ν, || + W (M., k,(1,2))
ν, N

= k|| × e(1,2)ν − u(1,2)ν N × e(1,2)ν . (4.86)

Here the term W (M., k,(1,2))
ν, || is a vector product of k|| and W (El.,Bragg; k,(1,2))

ν from the
Eq. (4.84). Because of this term is a linear combination of the boundary conditions
for the electric field, it does not contain new information and can be omitted. So far
as expression (4.84) is valid, a reduced vector can be used instead of W (M., k,(1,2))

ν, || :

W (M., Bragg; k,(1,2))
ν = u(1,2)ν N × e(1,2)ν . (4.87)

The same logics, being applied to W (M., k+H,(1,2))
ν and (4.85), results in:

W (M., Bragg; k+H,(1,2))
ν = (u(1,2)ν + H (1,2)

z )N × (V̂ (1,2)
ν · e(1,2)ν ). (4.88)

To further simplify the matrix S(1,2)μ,ν (4.83), the choice of e(i)a , e(i)b and the con-
ditions under which Sμ,ν can be composed of 4 matrixes of size 4 × 4 are discussed
below. The expression

S(1,2)μ,ν =
(

S(σ,σ ) S(σ,π)

S(π,σ ) S(π,π)

)(1,2)
, (4.89)

can be simplified in such a way that S(σ,π) and S(π,σ ) would be a zero 4×4 matrices. In
this case, the polarizations σ and π are treated separately. For the vectors e(1)a = e1,σ

and e(1)b = e1,π , the scalar product is calculated based on the formula (4.28):

ei,π · e1,σ = (ki,π · H)(ki,π , H, k1,σ )

|ki,π |2|H|2|k1,σ | , (4.90)

where (a, b, c) is the scalar triple product. This value is equal to zero in the case of
a coplanar geometry and for i = 1. The Eq. (4.90) is proportional to ui,π − u1,σ ,
which is close to zero with the accuracy |χH | for the roots in the vicinity of the Bragg
condition. This choice of e(1)a makes the first rows of matrices S(σ,π) and S(π,σ ) to
be equal to zero in two important cases: (i) coplanar geometry (exact zero value),
and (ii) non-coplanar geometry but all roots ui,s are close to each other, that occurs
under the GID condition. In this chapter, the focus is kept on these two cases only.

Other scalar products have the following properties:
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• ei,σ · e j,σ equals unity for coplanar geometry, close to unity in GID case

• ei,π · e j,π is
k2||+ui,πu j,π√

k2||+u2
i,π

√
k2||+u2

j,π

for coplanar geometry; and close to unity in GID

case.
For coplanar geometry this product is close (up to |χH |) to unity for i, j = 1, 3 at
Bragg condition (4.41), (4.47).

Summarizing, under the approximations made above
i. in coplanar geometry, and close to the Bragg condition:

S(σ,σ )1,i = (1, 1, 1, 1) (4.91)

S(π,π)1,i = (1, e1,π · e2,π , 1, e1,π · e4,π ).

ii. in GID condition:

S(σ,σ )1,i = S(π,π)1,i = (1, 1, 1, 1), (4.92)

and S(π,σ )1,i = S(σ,π)1,i = (0, 0, 0, 0). In a similar way, the choice e(2)a = t̂(k1,σ + H) ·
e1,σ and e(2)b = t̂(k1,π + H) · e1,π results in:

i. coplanar geometry, and close to the Bragg condition:

S(σ,σ )2,i = (V1,σ , V2,σ , V3,σ , V4,σ ) (4.93)

S(π,π)2,i = (V1,π , V2,π p̃2,1, V3,π , V4,π p̃4,1),

where

p̃ j,1 = (t̂(k j,π + H) · e j,π ) · (t̂(k1,π + H) · e1,π )

|t̂(k1,π + H) · e1,π |2 (4.94)

is the geometrical factor;
ii. GID condition:

S(s,s)2,i = (V1,s, V2,s, V3,s, V4,s), s = σ, π,

and S(π,σ )2,i = S(σ,π)2,i = (0, 0, 0, 0). In order to nullify two remaining rows of the

matrices S(π,σ ) and S(σ,π), the choice of the vectors e(3,4)a,b is reverse to that above,

namely e(3)a = e1,π and e(3)b = e1,σ . The product (N × ei,σ ) · e1,π is equal to zero for
coplanar geometry and is proportional to ui,σ − u1,π in general case. By selecting
e(4)a = t̂(k1,π + H) · e1,π and e(4)b = t̂(k1,σ + H) · e1,σ , the matrix under GID
condition is:
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S(s,s)(1,2)i j =

⎛

⎜⎜⎜⎝

1 1 1 1
V1,s V2,s V3,s V4,s
u1,s u2,s u3,s u4,s

(u1,s + Hz)V1,s (u2,s + Hz)V2,s (u3,s + Hz)V3,s (u4,s + Hz)V4,s

⎞

⎟⎟⎟⎠

(1,2)

,

(4.95)
and in coplanar geometry close to the Bragg condition:

S(σ,σ )(1,2)i j =

⎛

⎜⎜⎜⎜⎝

1 1 1 1

V1,σ V2,σ V3,σ V4,σ

u1,σ u2,σ q2,1 u3,σ u4,σ q4,1

(u1,σ + Hz)V1,σ (u2,σ + Hz)V2,σ r2,1 (u3,σ + Hz)V3,σ (u4,σ + Hz)V4,σ r4,1

⎞

⎟⎟⎟⎟⎠

(1,2)

,

(4.96)

S(π,π)(1,2)i j =

⎛

⎜⎜⎜⎜⎝

1 e1,π · e2,π 1 e1,π · e4,π

V1,π V2,π p̃2,1 V3,π V4,π p̃4,1

u1,π u2,π q̃2,1 u3,π u4,π q̃4,1

(u1,π + Hz)V1,π (u2,π + Hz)V2,π r̃2,1 (u3,π + Hz)V3,π (u4,π + Hz)V4,π r̃4,1

⎞

⎟⎟⎟⎟⎠

(1,2)

,

(4.97)

where pi, j ; p̃i, j , qi, j ; q̃i, j , ri, j ; r̃i, j are the geometrical factors of order of unity
that are made of various scalar products of the polarization vectors and are not
essential for further analysis; this quantities become closer to unity as roots approach
each other. The matrices S(π,σ ) and S(σ,π) are equal to zero.

In the case of GID, all the values in (4.95) are of the same order and equally
important. However, in the coplanar case close to the Bragg angle, the Eqs. (4.96)
and (4.97) can be further simplified. The roots u2 and u4 correspond to the specularly
reflected waves and are far from the Bragg condition. The waves corresponding to
these roots are weak, about |χH | in magnitude, and the same is about V2, V4. The
amplitudes A2, A4 in the boundary conditions can be neglected keeping the same
accuracy. Neglecting 2nd and 4th columns in (4.96) and (4.97), the transformations
result in 4 equations for 2 unknowns, and by taking into account the approximations
u1 ≈ u3 ≈ γ0 in the vicinity of Bragg angle, the first row of (4.96) and (4.97) is
found to be proportional to the third one, whereas the second row is proportional to
the forth one. Finally:

S(s,s)(1,2)i j =
(

1 1
V1,s V3,s

)(1,2)
. (4.98)

In the calculations below, the boundary conditions are assumed to be applicable
separately for π and σ polarizations, i.e. S(π,σ ) and S(σ,π) are approximated as
zeros. The GID case is considered as a most general one, and the coplanar case is
automatically obtained by omitting the reflected waves, which means the elimination
of the 3rd and 4th rows and 2nd and 4th column in the matrices S (see (4.95)–(4.98)).
The boundary conditions written in the form of (4.81) enable to find the wave field
inside the multilayered crystalline structure. The difference in the crystallographic
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structures of the layers composing the whole multilayered structure can be caused
either by different elemental composition of the layers or by the gradient lattice
deformation of a single layer due to the external forces. In order to determine the
wave field, the Eq. (4.81) has to be applied to each inter-layer interface, including
the interface between vacuum and the first layer and the interface between the last
layer and the substrate [29]. The wave field in vacuum is:

Avac, s(r) =
(

ei k(0)r + ARei k(R)r + AHei k(H)r
)

es, (4.99)

k(0) = k|| + u0ez, k(R) = k|| − u0ez, k(D) = k|| + H || − u H ez,

u0 =
√
ω2

c2 − k2||, u H =
√
ω2

c2 − (k|| + H ||)2,

where (0), (R), (H) stand for the incident, the reflected and the diffracted waves,
respectively. To keep the boundary conditions for the interface between vacuum and
the first layer in the form of (4.81), the amplitude of the incident wave (equal to unity),
and the amplitudes AR and AH are combined into a vector A(v) = (1, 0, AR, AH).
The matrix S(v), corresponding to the same sequence of boundary conditions as was
used for (4.95)–(4.97), has the form:

S(v) =

⎛

⎜⎜⎝

1 0 1 0
0 1 0 1
u0 0 −u0 0
0 u H 0 −u H

⎞

⎟⎟⎠ , (4.100)

and the boundary condition at the interface between vacuum and the first layer takes
the following form:

S(v) · A(v) = S(1) · A(1). (4.101)

For the wave fields inside the layers lying in the depth of the crystal, the initial
phase depends on the choice of the origin of the coordinates. Using the convention
from [30], the wave field for nth layer with X-ray susceptibility taken in two-wave
approximation, is written in the following form:

A(n)(r) =
∑

i,s

A(n)i,s ei k(n)i,s r
(

1 + ei H(n)(r−rn)+iφn V̂ (n)
i,s

)
· es, (4.102)

χ(n)(r) = χ
(n)
0 + χ

(n)
H ei H(r−rn)+iφn + χ

(n)
−H e−i H(r−rn)−iφn .

The phase φn is then chosen as a phase of the diffracted wave and the susceptibility
is supposed to be continuous:

φn =
n−1∑

l=1

H (l)
z d(l), (4.103)
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where d(l) is the thickness of the lth layer. Using these conventions, the boundary
conditions for the interface between nth and n + 1th layer take the following form:

S(n) · F (n)(zn) · A(n) = S(n+1) · F (n+1)(zn) · A(n+1), (4.104)

F (n)i j (zn) = diag(eiu(n)i zn ).

For the interface between the last layer (N th) and the substrate, the fact should
be taken into account that in the substrate the wave field corresponding to the root
with the negative imaginary part (leading to the growing amplitudes) does not exist.
The roots of the dispersion equation can be combined in pairs corresponding to the
direct and the reflected waves, which results in the number of roots with positive
imaginary part to be equal to that with the negative imaginary part [30]. Thus, the
vector of the amplitudes in the substrate has the form A(sub) = (A(sub)

1 , A(sub)
2 , 0, 0)

and the boundary conditions are:

S(N ) · F (N )(zN ) · A(N ) = S(sub) · A(sub), (4.105)

where the vector of amplitudes for the substrate has been modified to include the

phase factors: A(sub) = (eiu(sub)
1 zsub A(sub)

1 , eiu(sub)
2 zsub A(sub)

2 , 0, 0). By applying the
expressions (4.101) and (4.104) to each inner interface, and using the formula (4.105),
we arrive at:

A(sub) = X N · X N−1 · . . . · X1 · (S(1))−1 · S(v) · A(v), (4.106)

Xn = (S(n+1))−1 · S(n) · F (n), X N = (Ssub)−1 · S(N ) · F (N ).

F (n) = diag(eiu(n)i dn ).

Thus, four equations (4.106) for four unknown variables AR, AH, A(sub)
1 , A(sub)

2
determine comprehensively the electromagnetic wave field.

A wide class of the multilayered systems are the superlattices, which were already
considered in Chap. 3. The method of transfer matrix, used in the reflectivity case
for the solution of the boundary conditions can be applied to diffraction case, too.
However, this calculation involves more bulky expressions due to the higher order of
the matrices. The theory presented below assumes that the superlattice consists of the
repeating N times basic period, each composed of L crystalline layers. The propaga-
tion of the wave field inside the basic period of the superlattice is described precisely
by the matrix M̂L , which structure follows straightforward from the Eq. (4.106):

ML = X L · X L−1 . . . · X1; Xk = (S(k+1))−1 · S(k) · Fk . (4.107)

Let us now introduce the normalized four-components eigenvectors Ψ̄ s and eigen-
values λs , enumerated in a natural order of the solutions for the equation:

http://dx.doi.org/10.1007/978-3-642-38177-5_3
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M̂L Ψ̄
s = λsΨ̄

s; s = 1, . . . , 4;
4∑

i=1

(Ψ s
i )

∗(Ψ s
i ) = 1;

|λ1| < |λ2| < |λ3| < |λ4|. (4.108)

The matrix M̂L is not self-conjugated due to the absorption in the crystals, and
therefore its eigenvectors do not satisfy the conditions of completeness and orthogo-
nality, making the eigenvalues complex-valued. The method of eigenwaves (MEW)
technique using these eigenwaves is realized in the same way as in the reflectivity
case. Firstly, the wave field in the topmost layer of the basic period has to be rep-
resented as a linear superposition of the eigenvectors with coefficients defined by
continuity of the vacuum wave field vector at the sample surface:

A(1)1 =
4∑

w=1

AwΨ̄
w; S(v) · A(v) = S(1) · A(1)1 = S(1) ·

4∑

w=1

AwΨ̄
w. (4.109)

The evolution of wave field through N periods of the superlattice is calculated alge-
braically:

F (1)(zL ,N ) · A(N+1)
1 = (M)N · A(1)1 =

4∑

w=1

(λw)
N AwΨ̄

w. (4.110)

The condition of the continuity at the interface between the superlattice and the
substrate has to be applied to the 4-vector A(N )L , determining the wave filed amplitude
in the bottommost layer of the stack (4.8):

SL · F (L)(zL ,N ) · A(N )L = S1 · F (1)(zL ,N ) · A(N+1)
1 ;

Ssub · A(sub) = SL · F (L)(zL ,N ) · A(N )L . (4.111)

As a result, the system of equations for 8 unknown values (AR, AH , As, Asub
1,2 ) is

written as:

(Ŝ−1
1 Ŝsub)i j A(sub)

j =
4∑

s=1

(λs)
N AsΨ

s
i ;

(Ŝ−1
1 Ŝ0)i j A(vac)

j =
4∑

s=1

AsΨ
s
i . (4.112)

The orthogonality condition for eigenvectors (4.108) can not be used for the solu-
tion of these equations (see discussion after Eq. (4.108)). However, this system can
be solved in a general form, if four components of four eigenvectors are considered
as (4 × 4) matrix:



152 4 X-Ray Diffraction in Ideal Crystals

Ψ s
i → (Ψ̂ )si .

Then the values As can be excluded from the Eq. (4.112) using the reverse matrix
Ψ̂−1:

(Ŝ−1
1 Ŝ0)i j A(vac)

j =
4∑

s=1

(λs)
−N (Ψ̂ )si (Ψ̂

−1)sj (Ŝ
−1
1 Ŝsub) jk Asub

k . (4.113)

In order to avoid the exponentially increasing terms, the normalized matrix can be
defined:

(Q̂)i j =
4∑

s=1

(
λ1

λs
)N (Ψ̂ )si (Ψ̂

−1)sj , (4.114)

and Eq. (4.113) is written then in the following form:

A(vac) = 1

λN
1

Ẑ Asub; Ẑ = Ŝ−1
0 Ŝ1 Q̂ Ŝ−1

1 Ŝsub, (4.115)

and the exponentially increasing value (λ1)
−N is canceled in the expression for

amplitude AH :

AH = Z22 Z41 − Z42 Z21

Z11 Z22 − Z12 Z21
. (4.116)

Thus, the following problems of X-ray diffraction simulation are solved on the
basis of MEW: (i) the time of calculation depends no longer on repetition period N ,
(ii) numerical algorithm operates with only finite values (Fig. 4.8).

Fig. 4.8 Sketch of the wave
fields for crystalline superlat-
tice

A0 AR

AH

in in

out

A A A A

A A A A

A A A A

A A
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Fig. 4.9 X-ray diffraction
from (Ge/Si/Si0.8Ge0.2)100
superlattice on the Si substrate
simulated both by recursive
method and MEW. Inset shows
the ratio of the computer times
required for simulation by
recursive method (tR) and
MEW (tM EW ) as the function
of superlattice periods number

Figure 4.9 shows the spectrum for the superlattice with crystalline
layers (Ge/Si/Si0.8Ge0.2)100 with the thicknesses (30/20/10) nm, respectively, on the
Si substrate. The curve has been simulated both by the recursive method [30] and
MEW. Evidently, the results are undistinguishable because both methods are exact.
However, MEW decreases drastically the calculation time tM in comparison with
time tR , required for the recursive method, especially for the multi-periodic super-
lattices (insert on Fig. 4.9). Method of eigenwaves permits to naturally introduce an
important integral characteristics of superlattices, viz. root-mean-square fluctuation
σL of basic period. The fluctuations are usually caused by imperfections of the inter-
faces or/and by the statistical fluctuations of sample growth conditions (temperature,
etc). Similarly to reflectivity case (3.129), MEW takes into account the period fluc-
tuations by Debye-Waller factor in non-diagonal elements of the averaged transition
matrix 〈M̂L〉:

〈(̂ML)i j 〉 = (̂ML)i j e
−1/2σ 2

L k2(ui
1−u j

L )
2
. (4.117)

The period fluctuations result in the damping effect for SL-peaks in the same way
as it was described in Chap. 3 for reflectometry. Moreover, the intensity damping
factor of SL-peaks depends considerably on the harmonic order of peaks. The intro-
duction of this parameter improves the fitting accuracy of experimental data by theory.
The alternative methods for calculation of X-ray diffraction are not adapted for such
a parametrization [30]. The SL-peaks are formed due to the interference of waves,
scattered from one-dimensional periodical SL structure, and therefore the intensity
in peak maxima is proportional to the periods number N and does not depend on the
fluctuation period [7]. However, the spectral width of the peaks decreases propor-
tionally to the non-diagonal matrix elements (4.117), and the integral photon number
decreases, too. Therefore, the success of the fitting of experimental measurements
from the superlattice with fluctuating period essentially depends on convolution of
theoretical intensity with the instrumental function of the detector.

http://dx.doi.org/10.1007/978-3-642-38177-5_3
http://dx.doi.org/10.1007/978-3-642-38177-5_3
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Fig. 4.10 Convolution of the
simulated X-ray diffraction
from (Ge/Si/Si0.8Ge0.2)100
superlattice with detector
apparatus function for various
fluctuations of the basic super-
lattice period, σL = 0 (solid
line), σL = 1 nm (dots)

Figure 4.10 illustrates the effect of SL period fluctuations on the convoluted the-
oretical intensity simulated for the superlattice used in Fig. 4.9. The solid line and
dots correspond to the values σL = 0 and σL = 1 nm, respectively. When the value
AH is found, the reflectivity (in case of diffraction called diffractivity) (4.6) can be
found. The diffracted intensity is calculated based on (2.10) and (4.99), taking into
account that the sectional area of incidence beam is Lx L y sinωin = Lx L y |u0|/k0
and of diffracted beam Lx L y sinωout = Lx L y |u H |/k0, we obtain for reflectivity:

|R|2 = |AH |2
∣∣∣∣
u H

u0

∣∣∣∣ . (4.118)

4.4 Grazing Incidence and Extremely Asymmetric Diffraction

In Sect. 4.2, the expressions for the extinction length (4.60) and the region of the
Darwin table 2αedge have been derived:

LBragg, e = 2

√| sinωin sinωout|
k0|χ(H)| , 2αedge = 2

√∣∣∣∣
4Q sinωout

sinωin

∣∣∣∣.

The following approximation is assumed to be valid at Bragg condition: γ0 =
k0 sinωin, γ0 + Hz = k0 sinωout. At the grazing incidence or exit angles of X-ray
beam, the extinction length tends to approach zero, which means that X-ray wave
field in the crystal is confined into a thin under surface region. This fact enables
to perform a sensitive depth-resolved study of the sample surface properties [31],
demanded by technology in recent decades. The extinction length, however, does not
reach an exact zero value as well as the Darwin width is not equal to infinity. The
reason preventing this behavior is a natural parameter called the angle of the total

http://dx.doi.org/10.1007/978-3-642-38177-5_2
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external reflection (TER) (3.15). The extinction length takes the extreme value when
the specular reflection and the Bragg diffraction condition occur simultaneously. At
these conditions, the approximate solutions (4.41), (4.42), and (4.47) of the disper-
sion equation are no longer valid, since the diffraction corrections δi,s are of the same
order of magnitude as the values γ0(γH ) and the higher orders of δi,s in (4.37) and
(4.46) can not be neglected. Thus, the dispersion equation of a higher order has to be
solved, and physically that means a larger number of the waves are interacting with
each other.

There are several widely used geometries which combine the effects of X-ray
specular reflection and Bragg diffraction. Here we consider two of them used often
in the practice: extremely asymmetric diffraction (EAD) and grazing incidence dif-
fraction (GID). The former uses a coplanar geometry at which the incidence (or exit)
angle is close to the angle of total external reflection [11], Fig. 4.11. The latter uses
a non-coplanar geometry, at which the diffraction vector lies close to the surface
plane (the diffracting crystallographic planes are almost perpendicular to the crystal
surface), the incident angle and the exit angle of the diffracted wave are close to the
angle of total external reflection [32], Fig. (4.12).

The dispersion equation in the case of EAD has a specific feature [33], which is
discussed below. The transformations resulted in (4.37) are valid in this case, and
the correction δ satisfies the equation:

[
δ2

1,s + 2δ1,sγ0

] [
δ2

1,s + 2δ1,s(γ0 + Hz)+ α
]

− Qs (4.119)

= δ4
1,s + δ3

1,s2Hz + δ2
1,s(α + 4Hzγ0)+ 2δ1,sγ0α − Qs = 0.

Fig. 4.11 EAD geometries:
grazing incidence (left) and
grazing exit (right)

in out

H

kin

kout

in out

Hkin

kout

Fig. 4.12 The sketch of GID
geometry

B+

Bragg planes corresponding to H

H

http://dx.doi.org/10.1007/978-3-642-38177-5_3
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However, the estimation (4.40) and the solution (4.41) are no longer valid for EAD.
Indeed, in case of grazing incidence angle and large outgoing vector the value of γ0
is close to zero. As a result, in the first term the parameter δ2

1,s can not be neglected
as done with the term 2δ1,sγ0. The correction δ is a small quantity comparing to Hz ,
thus the value δ4

1,s can be omitted because of its smaller order than δ3
1,s2Hz , however,

all other terms are of the same order as the latter term. In the limiting case, when
the deviation from the Bragg condition α and γ0 are equal zero, the estimate for the
correction δ is written as:

δEAD, exact at Bragg ≈ 3

√
Qs

2Hz
∼ |χH | 2

3 k0. (4.120)

The correction δ, being a small quantity, is |χH |− 1
3 times larger in EAD case than in

the ordinary Bragg case (4.40). The simultaneous effects of specular reflection and X-
ray diffraction results in a stronger alternation of the dispersion surface comparing to
the alternation caused by both phenomena acting independently. There is a common
rule, which is applicable in this case: the higher the degree of the degeneracy of the
states under perturbation, the larger the effect of the perturbation is.

Under the grazing incidence EAD condition, there are 3 waves which are close to
the Bragg condition: the incident wave, the reflected wave and the diffracted wave.
In the solution (4.32) for dispersion equation, there are 3 roots to be selected, two of
them are close to the values ±γ0 (4.35) and one corresponds to γH − Hz (4.43). The
fourth root corresponding to the specularly reflected diffracted wave can be taken
as −γH − Hz (see (4.47)), and this wave can be excluded from the consideration.
Another way to solve the dispersion equation is to formulate it with the notations
γ0, γH from the Eqs. (4.35) and (4.43) in the form:

[
u2 − γ 2

0

] [
(u + Hz)

2 − γ 2
H

]
− Qs ≈ (4.121)

[
u2 − γ 2

0

] [
(u + Hz)− γH

]
2γH − Qs = 0, (4.122)

where the approximations of u as a small quantity and (u+Hz)+γH as 2γH are used,
which results in a 3rd order equation providing 3 roots in the vicinity of the Bragg
condition. The boundary conditions have to be written for all 3 waves described above
[29]. The specularly reflected diffracted wave is weak, about |χH | in magnitude, and
the same is true for V4. The amplitude A4 in the boundary conditions can be omitted
with the same accuracy, too. By neglecting the 4th column in the expressions (4.96)
and (4.97), there are 4 equations for 3 unknowns variables. In the vicinity of the
Bragg condition, the roots u1, u2, u3 are much smaller than Hz due to the grazing
condition, and the 4th row in expressions (4.96) and (4.97) is proportional to the 2nd
one, and thus the 4th row can be discarded from the calculations. The geometrical
factors pi, j ; p̃i, j , qi, j ; q̃i, j , ri, j ; r̃i, j in the Eqs. (4.96) and (4.97) are close to unity
provided the roots are close to each other, and the result is:
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S(s,s)i j =
⎛

⎝
1 1 1

V1,s V2,s V3,s
u1,s u2,s u3,s

⎞

⎠ . (4.123)

Using the expression for the wave in the vacuum as in (4.99) and combining the
amplitudes into a vector A(v) = (1, AR, AH), the matrix S(v) is written in the form
of:

S(v) =
⎛

⎝
1 1 0
0 0 1
u0 −u0 0

⎞

⎠ . (4.124)

We use here the physically reasonable assumption of damping wave in the sub-
strate, which correspond to the incoming wave with the dispersion equation root
possessing the positive imaginary part, the vector of the amplitudes inside the sub-
strate has a form A(sub) = (A1,s, 0, 0). Applying the boundary conditions (4.106),
we arrive at 3 equations for 3 unknown variables AR, AH, A1,s . At the grazing inci-
dence EAD condition, the wave vector corresponding to the specularly reflected wave
is changing due to the diffraction process, which results in a small zigzag feature in
the reflectivity curve shown in Fig. 4.13. Due to the refraction phenomena, a spike
in the diffracted intensity appears at the angle of the total external reflection, which
is similar to the Yoneda wing discussed in Chap. 5.

The grazing exit EAD case can be treated in a similar way as grazing incidence
EAD case. The dispersion equation is simplified to:

2γ0
[
u − γ0

] [
(u + Hz)

2 − γ 2
H

]
− Qs = 0, (4.125)

providing 3 roots corresponding to the incident, the diffracted and the specularly
reflected diffracted waves, all of which are close to the Bragg condition. In the bound-
ary conditions, the specularly reflected wave, being far from the Bragg condition, is

Fig. 4.13 Diffracted inten-
sity (black line) and reflected
intensity (gray line) at EAD
condition. The inset shows
the variation of the reflected
intensity at the region corre-
sponding to the Bragg peak.
The curves are simulated for
Si (224) crystal with 8◦ mis-
cut of crystallographic planes
with respect to the sample
surface, CuK-α radiation, and
σ polarization

http://dx.doi.org/10.1007/978-3-642-38177-5_5
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omitted and thus the second column in the expressions (4.96) and (4.97) is discarded.
In the vicinity of the Bragg angle, the values ui,s + Hz are small, and the values ui,s

are close to −Hz , therefore the 1st and the 3rd rows are almost proportional to each
other. Discarding the 3rd row:

S(s,s)i j =
⎛

⎝
1 1 1

V1,s V3,s V4,s
(u1,s + Hz)V1,s (u3,s + Hz)V3,s (u4,s + Hz)V4,s .

⎞

⎠ . (4.126)

By neglecting the reflected wave in a vacuum and combining the amplitudes into a
vector A(v) = (1, AH, 0), the matrix S(v) is written as:

S(v) =
⎛

⎝
1 0 0
0 1 1
0 −u H u H

⎞

⎠ . (4.127)

In the substrate, there are two damping wave fields corresponding to the incident
and specularly reflected diffracted waves, and the vector of the amplitudes has the
form A(sub) = (A1,s, 0, A4,s). Applying the boundary conditions (4.106) formu-
lated with the matrices (4.126), (4.127), there 3 equations for 3 unknown variables
AH, A1,s, A4,s are finally obtained.

After all the amplitudes are found, the reflectivity (4.118) can be calculated, which
approaches the unity at the Bragg condition. The amplitude of the diffracted wave
AH , however, can be larger than the amplitude of the incident wave, which assumed
to be equal unity, due to the factor |u H/u0|. This factor describes the ratio of the
incident and the diffracted beam sectional areas. In the case of grazing exit EAD the
sectional area of the diffracted beam is Lx L y |u H |/k0, which is essentially smaller
than that of the incident beam Lx L y |u0|/k0. Thus, the intensity of the diffracted
beam is amplified in |u0/u H | times, and this effect of the geometrical magnification
is used in the applications of EAD geometry for X-ray optical elements [2].

In the case of GID, all 4 waves, incident, reflected, diffracted and specularly
reflected diffracted, are close to the Bragg condition. In the dispersion Eq. (4.121),
the values γ0, γH , Hz are small, and the 4th order equation has to be solved [32]. An
analytical solution (4.33) is available for important case Hz = 0:

ui,s = ±
√
γ 2

0 + γ 2
H

2
±
√

1

4

(
γ 2

0 − γ 2
H

)2 + Qs, i = 1 . . . 4. (4.128)

By considering the case of γ0 = γH , and in terms of the small angle ωin:

u = ±k0

√
ω2

in + χ0 ±√Qs . (4.129)

Comparing (4.129) to (3.11) and (3.15), two critical angles [32] can be introduced:

http://dx.doi.org/10.1007/978-3-642-38177-5_3
http://dx.doi.org/10.1007/978-3-642-38177-5_3
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θc;1,2 =
√
χ0 ±

√
C2

s χHχ−H , (4.130)

which clearly indicates the synergy effect of reflection and diffraction phenomena at
GID condition.

As shown above, the correction to the dispersion surface at Bragg condition for
non-grazing geometry is of the order of |χH |k0 (4.40), and at EAD condition (4.120)

the correction is |χH | 2
3 k0, whereas at the GID condition, using (4.128) and (4.129),

the correction can be estimated as |χH | 1
2 k0. The boundary conditions for GID case

have to be formulated for full 4×4 matrix as in (4.95) and (4.100), according to the
general scheme described in Sect. 4.3. However, the application of the matrix method
for the multilayered systems under the GID condition in the form of (4.106) faces
certain numerical difficulties when the incidence angle of X-ray beam lies in between
θc,1 and θc,2. In this region, the matrices F (n) contain the growing and decaying
exponents, which leads to large and small addenda in the matrix elements and the
calculations require a high numerical accuracy. The required precision is different for
different angle regions and grows exponentially with the layer thickness. A recursive
algorithm has been proposed in [30], which overcomes this precision problem. In
this method, the waves are divided into groups, one with increasing and one with
decreasing exponents, the boundary conditions are formulated separately for each
group, and the recurrence relations establishing the coupling between the groups of
waves in adjacent layers are set up. The proper simulation of GID intensities from
multilayered samples possessing rough interfaces requires the accounting of X-ray
diffuse scattering accompanying the coherent signal diffracted from the structure
[34]. In this case, the matrix formalism becomes more sophisticated and needs a
prove of convergence of the algorithm as described in [34].

The grazing incidence diffraction is a non-coplanar technique, and there are sev-
eral ways to perform the measurements. The incident wave vector is uniquely defined
by two angles, e.g. the angle ωin between the wave vector k0 and the sample surface
and the angle θ between the projection of k0 on sample surface and the vector H
[35]. In Fig. 4.14, the dependence of the diffracted intensity ID on this two angles
is demonstrated, where θB is an angle corresponding to the exact Bragg condition.
The direction of the diffracted wave is determined by the expressions (4.99). The
parametrization of vector k0 by angles ωin, θ − θB shows that u H becomes negative
when:

θ − θB <
ω2

in

2 sin 2θB
, (4.131)

where the assumption of small angles ωin, θ − θB has been used. Figure 4.14
demonstrates the behavior of the diffracted X-ray intensity described above, whereas
Fig. 4.15 shows the section of Fig. 4.14 at θ = θB . At the GID condition, the reflected
wave is modified due to simultaneous diffraction, as shown in Fig. 4.16, where two
gaps correspond to two critical angles (4.129).
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Fig. 4.14 Diffracted intensity
ID/I0 at GID condition from
Si (220), CuK-α radiation, σ
polarization

Fig. 4.15 Diffracted intensity
ID/I0 corresponding to the
section of Fig. 4.14 at θ = θB .
The simulation conditions are
the same as for Fig. 4.14

4.5 X-Ray Diffraction from Lateral Nanostructures

In recent years the technological progress has opened up possibilities for fabrica-
tion of high quality semiconductor lateral nanostructures. This fact has stimulated
considerable experimental and theoretical activity in the field of mesoscopic sys-
tems. Quantum wires (QW) and quantum dots (QD) exhibit novel optoelectronic
properties which can be realized in modern semiconductor lasers and modulators,
x-ray optical elements and fiber communication devices. Significantly lower thresh-
old current densities of semiconductor quantum wire lasers in comparison with the
same characteristics of a respective quantum well structure improve the performance
of devices considerably. Besides the up-to-date fabrication technologies for defining
the vertical stacking, such as molecular beam epitaxy and metal organic chemical
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Fig. 4.16 Reflectivity at GID
condition, θ = θB , and far
from GID condition. Two
critical angles θc;1,2 in case of
GID are clearly observed. The
simulation conditions are the
same as for Fig. 4.14

vapor deposition, nanolithography and wet-chemical and electron beam etching pro-
cedures have been developed to define the lateral confinement of low-dimensional
surface nanostructures. However, no one of them can produce a perfect structure.
The real structure imperfections, as strains in crystallographic lattice and fluctua-
tions of the wire shape, influence the device-relevant physical properties crucially.
Therefore, the developing of methods for the structural characterization of samples
play an important role in modeling of real nanostructures.

X-ray techniques take a special place among other methods due to their non-
destructive nature and their sensitivity to lattice strains induced during the prepara-
tion process [36–39]. Lateral surface gratings, such as quantum wires, give rise to
structured X-ray diffraction pattern. Both for coplanar and grazing incidence geome-
tries, equidistant diffraction maxima appear due to the lateral periodicity of the wires.
These maxima have a fine structure which reflects the detailed geometrical shape of
the wires and the strain status of the crystallographic lattice. In principle, the diffrac-
tion curves of GID from nanostructures contain direct information on the shape and
strain distribution within the QW, providing the possibility of a complete study of a
sample by a single method.

We use the distorted-wave Born approximation [37] for a theoretical description
of the diffraction process on the multilayered surface and buried gratings. To take
into account the double-diffraction effects, the perturbation theory was extended
up to second order, by analogy with [40]. This approach was already used for the
calculation of conventional X-ray reflectometry pattern in the Chap. 3.

The lattice and wire imperfections cause diffuse scattering accompanying the
coherent component of the output intensity. The incoherent component contains cer-
tain information about QW shape fluctuations, and interface [41, 42] and lattice
imperfections [43]. Although this component is clearly visible in some of the exper-
iments presented here, we simulate the theoretical intensities in the coherent approx-
imation to distinguish the principal features of the applied method.

The scattering of X-rays from lateral nanopatterns is described by the wave equa-
tion (we consider here σ -polarization of X-rays)

http://dx.doi.org/10.1007/978-3-642-38177-5_3
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Fig. 4.17 a Sample model of free-standing lateral nanopattern and detailed GID experimental setup
with all relevant angles depicted, b sketch of the reciprocal space showing the measured reciprocal
space points and the corresponding geometry

(Δ+ K 2)ψ(r) = V (r)ψ(r). (4.132)

The incident wave Φ with vacuum wave vector K being scattered by an optical
potential V originates the wave ψ(r) which can be written in general as

ψ(r) = Φ(r)+
∫

d r ′ G0(r, r ′)V (r ′)ψ(r ′) (4.133)

with G0(r, r ′) as the Green function of the free particle. By using the Heisenberg
representation of quantum mechanics we express the solution of Eq. (4.132) in the
complete orthogonal basis of solutions for the wave equation

(Δ+ K 2)ψ(0)(r) = V1(r)ψ(0)(r), (4.134)

where ψ(0)(r) is the distorted wave scattered by the potential V1. This wave is
considered further as the initial state for the scattering by the perturbation potential
V2 = V −V1. Following perturbation theory, the eigenfunctionψ(r) can be expanded
as the series

ψ(r) = ψ(0)(r)+ ψ(1)(r)+ ψ(2)(r)+ . . . (4.135)

where high-order approximations to ψ(r) are calculated by means of the recursion
formula

ψ(n)(r) =
∫

d r ′G1(r, r ′)V2(r ′)ψ(n−1)(r ′) (4.136)

with G1(r, r ′) as the Green function of a particle interacting with the potential V1.
Let us now consider the multilayered gratings (Fig. 4.17a) which can be buried

within the structure, in general case. The non-perturbed potential within layer m
V (m)

1 is chosen to be proportional to the mean electric susceptibility of this layer

V (m)
1 = −K 2〈χ(m)0 〉 = χ

(m)
0a Ω(m)

a (r)+ χ
(m)
0b Ω

(m)
b (r). (4.137)
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Here the susceptibilities χ(m)0a and χ(m)0b correspond to regions a and b (Fig. 4.17a),
respectively, which can be filled by materials with different refractive properties. The
Heaviside functions Ω(m)

a (r) and Ω(m)
b (r) describe the geometrical configuration

of layer segments and are expressed by the Heaviside function of grating shape
ΩSG(r‖, z) and the function Ω(m)

M L(z) defining a vertical multilayered structure.

Ω(m)
a (r) = Ω

(m)
SG (r‖, z)Ω(m)

M L(z);
Ω
(m)
b (r) = (1 −Ω

(m)
SG (r‖, z))Ω(m)

M L(z). (4.138)

We have chosen the perturbation potential V2 in the form:

V (m)
2 = −K 2ei h(r−u(m)(r))

[
χ
(m)
ha Ω

(m)
a + χ

(m)
hb Ω

(m)
b

]
≡ −K 2χ

(m)
G I D (4.139)

Here we introduced the susceptibilities of regions a and b of layer m for grazing
incidence diffraction on reciprocal lattice vector h. The vector functions u(m)(r) =
u(m)0 (r)+Δu(m)(r) are the atom displacement functions describing the elastic defor-

mation of the lattice structure and consisting of an undisturbed part u(m)0 (r) originated
during the epitaxial growth and displacements Δu(m)(r) caused by grating-induced
periodic distortions during the etching process.

Due to the periodicity, the susceptibility χ(m)G I D of layer m can be expanded into
the series

χ
(m)
G I D(r) = ei h(r−u(m)0 (r))

∑

H

χ̃
(m)
h,H (z)e

i H r‖ (4.140)

with Fourier components

χ̃
(m)
h,H (z) = χ

(m)
ha

D

D/2∫

−D/2

dx e−i H r‖e−i hΔu(m)(r)Ω(m)
a (r)

+ χ
(m)
hb

D

D/2∫

−D/2

dx e−i H r‖e−i hΔu(m)(r)Ω
(m)
b (r), (4.141)

where the vector H = 2π
D ex is the reciprocal grating vector and ex is the unit vector

in the x-direction. The reciprocal grating vector describes the grating truncation rods
(GTR), the two-dimensional diffraction pattern formed by the scattering process
on the periodic grating mesostructure. The position of GTRs in reciprocal space is
defined by the condition for the scattering vector Q‖ = K h‖ − K 0‖ = h‖ + H (K 0
and K h are wave vectors of incident and diffracted waves, respectively).

Here we drop the cumbersome explicit expressions for the diffracted wave ampli-
tudes and refer the reader to the monograph [3]. For a simulation of the wave ampli-
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tudes, perturbation theory has been developed up to second order (4.135) giving a
DWBA of second order. In this way the mutual interaction between the diffracted and
reflected wave fields as well as the Umweganregung between the diffraction processes
forming different GTRs are taken into consideration. The grating structure acts as
transmission media both for incoming and outgoing (diffracted) waves. The changes
in the intensity profile caused by such a two-fold diffraction may be considerable in
comparing with the theoretical treatment based on the first order distorted-wave Born
approximation. The structure amplitude of layer m corresponding to the reciprocal
lattice vector h is composed of the scattering amplitudes of different GTRs:

S(m)h (Q) = 4π2
∑

H

δ(Q‖ − h‖ − H)S(m)h,H (Qz), (4.142)

where the amplitudes S(m)h,H (Qz) are defined by

S(m)h,H (Qz) = eihz(zm−u(m)0z (zm))

zm+1∫

zm

dz χ̃ (m)h,H (z)e
i(Qz−hz)(z−zm) (4.143)

The values χ̃ (m)h,H (z) for the freestanding wires (Fig. 4.17a) are calculated by Eq. (4.141),
neglecting the second term. Formula (4.143) represents the contribution of one layer
to the scattering amplitude of one grating truncation vector H . To evaluate the total
layer scattering amplitude, we replace the periodic grating shape function Ω(m)

a (r)
and grating-induced displacement function U (m)(r) ≡ exp(−i hΔu(m)(r)) by their
Fourier transforms:

U (m)(r) =
∑

H

U (m)
H (z)ei H r‖ , Ω(m)

a (r) =
∑

H

Ω
(m)
a H (z)e

i H r‖ . (4.144)

Upon substituting the expression (4.144) into Eq. (4.141), the layer scattering ampli-
tude for freestanding wires is derived from (4.143):

S̃(m)H (Qz) = χ
(m)
ha

∑

H ′

∫
dz e−i Qz(z−zm )U (m)

H ′ (z)Ω
(m)
a H−H ′(z). (4.145)

In the case of buried gratings (overgrown by other plane layers), this function is
modified to

S̃(m)H (Qz) = (χ
(m)
ha − χ

(m)
hb )

∑

H ′ �=H

∫
dze−i Qz(z−zm )U (m)

H ′ (z)Ω
(m)
a H−H ′(z)

+
∫

dz e−i Qz(z−zm )U (m)
H (z)〈χ(m)h 〉(z). (4.146)
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The first term in Eq. (4.146) is proportional to the compositional contrast χ(m)ha −χ(m)hb
between the segments of the (a) real and (b) “inverted” wires. The second term
describes the scattering on the mean virtual layer with the susceptibility 〈χ(m)h 〉
averaged over the grating period.

In the quantum wires, the lattice displacements are expected mainly in the ver-
tical z-direction and lateral x-direction, neglecting the strain fields along the wires
(y-direction). Thus choosing the reciprocal lattice vector h to be perpendicular to
displacement vectors u(m) (i.e. parallel to y-axis), the diffraction process is insen-
sitive to the strain distribution within sample because all the vectors U (m)

H ′ �=0 vanish.

In our case this situation corresponds to diffraction on (2̄20) reflection (transverse
scans, see Fig. 4.17b), and from GTRs we obtain information about the shape and
composition of wires. Conversely, longitudinal scans from the strong (220) reflec-
tion include information on both the shape and the strain. According to the theory
developed above, the combination of longitudinal and transverse scans gives a com-
plete knowledge about the strain profile, shape and composition of free-standing and
buried quantum wires. Moreover, the separation of the information in different types
of scans simplifies the analysis of diffraction curves and eliminates ambiguity during
the fitting of experimental data.

The coherent intensity of diffracted waves scattered by layer m to the position of
the GTR in reciprocal space is proportional to

W (m)
h (Qz) = −K 2

[
T (m)0 S(m)h (q(m)z0 )T (m)h + R(m)0 S(m)h (q(m)z1 )T (m)h

+ T (m)0 S(m)h (−q(m)z1 )R(m)h + R(m)0 S(m)h (−q(m)z0 )R(m)h

]
. (4.147)

Here the transmitted and reflected wave amplitudes T (m)0,h and R(m)0,h of incident and
diffracted waves are calculated on the basis of the Fresnel formalism for an undis-
turbed potential V1. The values q(m)z0 and q(m)z1 are determined from

q(m)z0 ≡ K (m)
zh − K (m)

z0 ; q(m)z1 ≡ K (m)
zh + K (m)

z0 , (4.148)

where the z-components of the wave vectors of incident and diffracted waves in layer
m are related to the mean layer susceptibility (scattering by potential V1) by

K (m)
hz =

√
K 2〈χ(m)h 〉 − K 2

h‖; K (m)
0z =

√
K 2〈χ(m)h 〉 − K 2

0‖. (4.149)

As mentioned above, the diffuse component of X-ray scattering was not taken
into account in our simulations. Some contribution of diffuse intensity is evident in
the measured diffraction curves [37] as a broadening of the peak bottoms and side
wings that causes a slight discrepancy between theory and experiment. Certainly, the
incoherent scattering brings valuable information on structure imperfections, and
this topic is discussed in the Chaps. 5 and 6.

http://dx.doi.org/10.1007/978-3-642-38177-5_5
http://dx.doi.org/10.1007/978-3-642-38177-5_6
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Fig. 4.18 In-plane scans
for sample from Fig. 4.17
recorded with GID from the
both symmetry equivalent
strong in-plane reflections,
a longitudinal (220) and b
transverse (2̄20) and c from the
weak (200) Bragg reflections.
The Crystal Truncation Rod
and satellite reflections caused
by the presence of nanopattern
contain valuable information
on the topography and the
strain status of quantum wires 3.12 3.14 3.16 3.18
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Figure 4.18 demonstrates the GID experimental and simulated results [37] for the
sample, schematically shown in Fig. 4.17a. The 5 nm thick Ga0.97In0.03As single
quantum well has been grown on the GaAs (001) substrate, and capped by a GaAs
layer with a nominal thickness of 20 nm. The pattern, a one dimensional grating
along the [11̄0] direction with a periodicity D = 250 nm and a nominal wire width
of ttop = 95 nm, was created by lithography process.

The diffracted intensities have been measured from (220), (2̄20) and (200) Bragg
reflections, performing both q⊥- and qz-scans. Figure 4.18a, b and c show the lon-
gitudinal (220), transverse (2̄20) and (200) q⊥-scans, the experimental (dots) and
theoretical (lines) curves. Here we show the diffracted intensities recorded for only
one exit angle α f corresponding to the value qz = 0.044 Å−1. The (220) diffrac-
tion curves at different incidence angles αi (Fig. 4.18a) show a visible contribution
of diffusely scattered intensity appearing as wide wings at both sides of the crystal
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Fig. 4.19 Finite Elements Method calculation of the displacements δx (a) and δz (b) of the free-
standing nanopattern (quantum wires). The limits of the contour bands are given in units of 10−3 nm

truncation rod. Their appearance is a consequence of the trapezoid shape of the wires
but their intensity is caused mainly by the defects located at the wire side walls. The
transverse scan across the 2̄20 reciprocal lattice point shown in Fig. 4.18b provides
a unique possibility to investigate the geometrical parameters of the quantum wires
because of the insensitivity to the strain profile of the sample. Finally, the GTRs of
the weak (200) Bragg reflection (Fig. 4.18c) give a measure of the scattering con-
trast between the base compound of the wire (GaAs) and the single quantum well
(Ga0.97In0.03As) embedded into the wire. The diffraction pattern from this reflection
is also sensitive to the strain profile. The phase shift induced by the single quantum
well and the interference between surface and quantum well scattered waves produce
an anharmonic modulation of GTRs, typical for (200) reflection.

Thus, by measuring and evaluating X-ray diffraction curves in various geometries
including GID, we are able to comprehensively characterize the complex semicon-
ductor nanopatterns possessing both vertical and lateral structures (quantum wires
and quantum dots). Whereas the transverse scans make it possible to study sepa-
rately the shape of the QW, the longitudinal scans across the (220) Bragg reflection,
being sensitive to the strains, allows a check of the validity of the displacement pro-
file simulated by a finite elements method (Fig. 4.19). From the whole set of X-ray
measurements, the shape and dimensions of nanopattern elements can be deducted
as well as the crystallographic lattice strain status of embedded quantum wells is
evaluated, too.
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Chapter 5
Diffuse X-Ray Scattering from Imperfect
Surfaces and Interfaces

In the Chap. 2, the description of the interaction of X-ray radiation with media (X-ray
optics) has been shown to be based on the solution of wave Eq. (2.2)

(Δ+ k2
0)Aμ(r,ω)+ V̂μν[ρ(r), Sb(r)]Aν(r,ω) = 0. (5.1)

The scattering potential is obtained by the averaging of the Hamiltonian over
the microscopic condition of the media. The potential is defined by the formula
(2.3) and linearly depends on the distribution of the electron density ρ(r) inside the
sample and on the shape of macroscopic elements Sb(r) (containing the number
of macroscopic scatterers) inside the investigated sample. In the previous chapters,
these values were defined by simple functions depending on few parameters, which
are modeling the structure of the sample (atomic concentrations, relaxation degree
of the crystallographic layers, etc) and the boundaries between the sample elements
(interfaces, layer thicknesses). This approach, however, describes the real samples
not accurately enough for some applications. Having the same microstructure, dif-
ferent samples may have various macroscopic fluctuations from real model, e.g.
the randomly located atomic and electron density fluctuations, the defects of the
crystallographic structure, the irregular shape of the boundaries between the sample
elements caused by the growth conditions. All these distortions of structure have to
be taken into account in the analysis of scattered X-ray intensity profiles.

The various aspects of X-ray scattering from imperfect media possessing uni-
form and crystallographic structures have been considered in numerous monographs
and reviews (for example, [1, 2]) In present chapter, the general statistical approach
based on the distorted-wave Born approximation is used for accounting of structure
fluctuations. This approach is further applied for calculation of diffuse X-ray scat-
tering under the reflection condition from the boundaries between different media
(layers) possessing the roughness, and for simulation of X-ray scattered intensity
under grazing-incidence small-angle condition (GISAXS) from the samples with
macroscopic non-uniformity.
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5.1 Statistical Approach for X-Ray Scattering from Imperfect
Structures

To evaluate the physical structure of the investigated sample by using experimental
X-ray scattering data, the direct problem must be effectively resolved, i.e. the X-ray
scattering intensity has to be accurately calculated based on the sample model para-
metrized by physical parameters. The very detailed modeling of the imperfections
of structure requires a large number of parameters, which practically cannot be iden-
tified due to the limited resolution of X-ray detector and optics, which averages the
scattering from the fluctuations. Therefore, the statistical approach is proved to be
most effective in description of X-ray scattering from imperfect structures.

Here we remind the basic principles of the statistical description of the scattering
problem. Despite of any sample has a deterministic structure, the irregular character
of fluctuations ρ(r) Sb(r) makes it possible to consider the sample as a statistical
ensemble, each element of which differs from others by the distribution of fluctuations
over the sample volume. The whole ensemble can be characterized by the set of
stochastic functions {ρ̃(r)} and {S̃b(r)} and then the statistic distributions Φ(ρ̃, S̃b)

are modeled instead these functions.
All further calculations are based on the ergodic hypothesis (see, for example, [3]):

for the physical value M[ρ(r), Sb(r)] depending on ρ(r) and Sb(r), the averaging
over the random fluctuations of these functions can be substituted by averaging over
the ensemble of stochastic functions ρ̃, S̃b:

M[ρ(r), Sb(r)] =
∫

dρ̃d S̃b M(ρ̃, S̃b)Φ(ρ̃, S̃b). (5.2)

The essential advantage of the statistical approach is a small number of parameters
modeling the principal qualitative features of the fluctuations in real samples (see
Fig. 3.9). Another advantage of this approach is a natural estimate valid for all macro-
scopic systems consisting of N elements: the relative fluctuations ξ = σM/ < M >

for the observed physical value are of order ∼ 1/
√

N [4]. This fact makes it possible
to derive an approximate solution of the Eq. (5.1) and any observable characteristic
of the system as a series on parameter ξ by using the DWBA (Sect. 2.2).

The general scheme of the expansion of the Eq. (5.1) assumes the scattering poten-
tial and wave field to be the functional of the stochastic functions:

{Δ+ k2
0 + V̂μν({ρ̃, S̃b})}Aν(r,ω, {ρ̃, S̃b}) = 0. (5.3)

The part of this equation which is determined by the average values of the functions
over statistic ensemble due to linearity of the scattering potential is:

V̂μν[ρ(r), Sb(r)] =V̂μν({ρ̃, S̃b}) = V̂μν({ρ̃}, {S̃b});
ρ(r) = {ρ̃}, Sb(r) = {S̃b}. (5.4)

http://dx.doi.org/10.1007/978-3-642-38177-5_3
http://dx.doi.org/10.1007/978-3-642-38177-5_2
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In the scattering theory, this component of potential is called “coherent” [5] because
of its amplitude is proportional to the whole number of the scattering centers N . The
wave equation with this potential:

{Δ+ k2
0+V̂μν[ρ(r), Sb(r)]}Aν(r,ω) = 0;

Aν(r,ω) = Aν(r,ω, {ρ̃, S̃b}), (5.5)

determines the propagation of the coherent wave [6] with non-zero amplitude after
averaging over the statistical fluctuations of sample parameters. This equation has
been considered in Sects. 3.2, and 3.3 for the description of X-ray optical reflectivity
and diffraction. Despite of the small magnitude of the amplitude of the coherent
potential, which depends on the X-ray polarizability |χ| ∼ 10−5, the influence
of this amplitude on the wave scattering in the media depends on the relationship
between sample size L and extinction length Lext = (k|χ|)−1, or finally on the
parameter k0 L|χ|. For majority of real samples, this parameter becomes a unity and
therefore the propagation of the coherent wave in media should be considered beyond
the perturbation theory, for example as X-ray reflectivity and dynamical diffraction
processes are treated. The incoherent component of the wave field:

ANC
ν (r,ω) = Aν(r,ω, {ρ̃, S̃b})− Aν(r,ω), (5.6)

after the averaging over the fluctuations appears in the quadratic terms of wave
parameters which are proportional to the density matrix of the scattered radiation [7]:

Mν,μ(r, r ′) = Aν(r, {ρ̃, S̃b})Aμ(r ′, {ρ̃, S̃b}). (5.7)

Therefore, after the averaging of expression (5.1) over the statistical parameters
of media, the wave equation for coherent wave (5.5) is bound to the equation for the
density matrix of wave field, which depends both on the averaged value (5.4) and on
the correlations of the fluctuations of the scattered potential. The theory describing
the evolution of wave field in fluctuating media has been developed in work [8] and the
statistical approach for X-ray dynamical diffraction theory in imperfect crystals was
derived based on this theory (see, for example, [9] and citation therein). Within the
framework of this approach, the Eq. (4.1) describing the diffraction of coherent wave
in ideal crystal are connected to the equations defining the variation of the radiation
intensity caused by the scattering from the defects of crystallographic structure. Thus,
the final equations describe the redistribution dynamics of the coherent intensity into
incoherently scattered waves during the propagation of the radiation inside crystal.

However, the information derived by such approach is oversampled because of
the X-ray scattered intensity is recorded by detector placed outside the studied crys-
tal. Therefore, an alternative approach is used for accounting of incoherent scatter-
ing in the detected intensity. In this approach, the averaging over the fluctuations
of media is performed not in the Eq. (5.1) but directly for the cross-section of the
observed X-ray intensity (2.31) at the detector position placed at far distance from

http://dx.doi.org/10.1007/978-3-642-38177-5_3
http://dx.doi.org/10.1007/978-3-642-38177-5_3
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the investigated sample. For the wavelengths region corresponding to X-rays, the
use of non-perturbative theory for the solution of (5.1) is only necessary for coherent
wave due to small amplitude of the scattering potential. All the incoherent channels
of the scattering can be taken into account by DWBA approach. The accuracy of the
approximation in each order of DWBA is defined by the contribution of the sequen-
tial approximation. The algorithm utilizing this fact was proposed in [10] for the case
of X-ray reflectivity (see also Sect. 2.2), where the influence of incoherent processes
on the formation of coherent wave was accounted by self-consistent choice of the
coherent potential of the scattering.

The method proposed in [10] can be formulated in a general form for scattering
problem described by Eq. (5.1) for arbitrary scattering potential. To construct the
zeroth approximation of DWBA, the coherent non-stochastic potential V̂c is intro-
duced and the Eq. (5.3) is written in the following form:

{L̂ + ξV̂1}|Aλ >= 0; L̂ = Δ+ k2
0 + V̂c; V̂1 = V̂ − V̂c, (5.8)

where V̂c can be an integral operator in general case.
Here, the symbol |Aλ > is introduced for the state of electromagnetic field

described by the solution of wave Eq. (5.3). This equation corresponds to the state
|λ >= es exp(i kr) in vacuum for the incident wave with wave vector k and polar-
ization es , thus the state index is defined by parameter λ = (k, es) (Fig. 5.1). The
formal parameter ξ is introduced for ordering the terms of the series on the fluctuation
component of the scattering potential ∼ 1/

√
N and the value ξ = 1 is assumed in

final expressions.
For the solution of wave equation in zeroth approximation of DWBA, the method

is used which delivers the vector of wave field |Ac,λ > not using the kinematical
theory and with accuracy ∼ |χ|2 for arbitrary sample size. The following notations
are used for this solution (Fig. 5.1):

Fig. 5.1 The states of the
electromagnetic field in the
statistical approach to the
scattering problem

http://dx.doi.org/10.1007/978-3-642-38177-5_2
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{Δ+ k2
0 + V̂c}|A±

c,λ >= 0;
|A+

c,λ >= |λ > −Ĝ0V̂c|A+
c,λ >; |A−

c,λ >= |λ > −Ĝ∗
0 V̂c|A−

c,λ >;
L̂0Ĝ0 ≡ {Δ+ k2

0}Ĝ0 = 1; L̂ Ĝ ≡ {Δ+ k2
0 + V̂c}Ĝ = 1;

Ĝ0 =
∑

λ

|λ >< λ|
k2

0 − k2 − i0
; Ĝ =

∑

λ

|A+
c,λ >< A+

c,λ|
k2

0 − k2 − i0
. (5.9)

The solutions |A±
c,λ > correspond to divergent (convergent) spherical waves at

large distance from the scatterer (see Sect. 2.2), the Green functions Ĝ0 and Ĝ cor-
respond to the wave equations in vacuum and in media with coherent potential,
respectively.

The DWBA series for the solution of Eq. (5.8) with asymptotic of the divergent
wave and with the accuracy up to the terms of the second order of ξ is written as:

|Aλ >= |λ > −[Ĝ0V̂c + ξĜV̂1 − ξ2ĜV̂1ĜV̂1 + . . .]|A+
c,λ >. (5.10)

Using the asymptotic of Green function (2.45) at large distances from the scatterer:

Ĝ0 = −eik0r

4πr
< λ|; Ĝ = −eik0r

4πr
< A−

c,λ|, (5.11)

the radiation flux can be found, which is scattered without change of the frequency,
and the differential cross-section (2.31) can be derived, which has to be averaged over
the ensemble of stochastic functions (5.3). Substituting the vectors (5.10) into (2.31),
the expression for the differential cross-section of scattering with required accuracy
is found, which corresponds to the transition of electromagnetic wave between the
states |λ >→ |λ′ >:

dσ(λ′,λ)
dλ′ = 1

(4π)2
sin2 θ1s |T (λ′,λ)|2,

|T (λ′,λ)|2 = |T0(λ
′,λ)|2 + 2ξ�{T ∗

0 (λ
′,λ)T1(λ′,λ)}

+ ξ2{|T1(λ′,λ)|2 − 2�{T ∗
0 (λ

′,λ)T2(λ′,λ)};
T0(λ

′,λ) =< λ′|V̂c|A+
c,λ >; T1(λ′,λ) =< A−

c,λ′ |(V̂ − V̂c)|A+
c,λ >;

|T1(λ′,λ)|2 = | < A−
c,λ′ |V̂1|A+

c,λ > |2;

T2(λ′,λ) =
∑

λ1

< A−
c,λ′ |V̂1|A+

c,λ1
>< A+

c,λ1
|V̂1|A+

c,λ >

k2
0 − k2

1 − i0
. (5.12)

All the amplitudes in (5.12) depends on the choice of coherent potential in the
Eq. (5.8). The coherent peak in the scattering cross-section is defined by the first
term in Eq. (5.12), and the value of parameter λ′

0 for scattered wave corresponding

http://dx.doi.org/10.1007/978-3-642-38177-5_2
http://dx.doi.org/10.1007/978-3-642-38177-5_2
http://dx.doi.org/10.1007/978-3-642-38177-5_2
http://dx.doi.org/10.1007/978-3-642-38177-5_2
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to this peak depends on the experimental setup and sample model. For instance, in
X-ray reflectometry the coherent peak corresponds to the specular reflection under the
condition of the conservation of the projection of wave vector to the sample surface
k′

0‖ = k‖. In the case of two-wave diffraction, the coherent peak is determined by
the vector with lateral component k′

0‖ = k‖ + H‖, and the amplitude of this peak
becomes essential if the vector k is located near the Bragg condition.

The basic idea of the self-consistent approach is in the choice of the potential V̂c in
such a way that it contains the contributions of further after the zeroth terms of DWBA
into coherent peak. This fact permits to obtain the equation for coherent potential,
the form of which changes in dependence on the accuracy, required for accounting
of fluctuations. A similar approach has been developed for uniformly fitted solution
of Schrödinger equation and several other quantum systems (see review [11]).

To satisfy all the above-mentioned requirements, the potential V̂c and correspond-
ing vectors |A±

c,λ >have to be selected in the form providing the sum of all corrections
to the coherent peak to be zero in each order of approximation. For the terms with
quadratic order of fluctuations, the condition has to be satisfied (ξ = 1):

�{< λ|V̂ +
c |A+

c,λ′
0
>< A−

c,λ′
0
|V̂1|A+

c,λ >}+
{|T1(λ

′
0,λ)|2 − 2�{T ∗

0 (λ
′
0,λ)T2(λ

′
0,λ)} = 0. (5.13)

The detailed form of Eq. (5.13) with substituted amplitudes:

2�{< λ|V̂ +
c |A+

c,λ′
0
>< A−

c,λ′
0
|V̂1|A+

c,λ >} + | < A−
c,λ′

0
|V̂1|A+

c,λ > |2

− 2�{< λ|V̂ +
c |A+

c,λ′
0
>< A−

c,λ′
0
|V̂1ĜV̂1|A+

c,λ >} = 0. (5.14)

By re-defining the coherent potential:

V̂c = V̂ + X̂ , (5.15)

and in the absence of correlations in fluctuation potential, the term V̂1V̂ +
1 =

V̂1 × V̂1 = 0. Therefore, the only first term remains in Eq. (5.14), which leads
to the following result: the coherent potential coincides with the averaged scattering
potential of media (X̂ = 0) in this order of approximation:

V̂c = V̂ . (5.16)

However, the correlations exist in real samples and the coherent potential has to
be re-normalized due to the re-scattering processes, which change also the coher-
ent wave |A+

c,λ > in wave Eq. (5.9). To calculate the correlation contribution of

X̂ into coherent potential (5.14), the following non-linear equation in coordinate
representation is used:
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X̂(r)A+
c,λ(r)

= 1

2J

∫
d r ′ A−∗

c,λ′
0
(r ′)[K̂ (r, r ′)− X̂+(r)X̂(r ′)]A+

c,λ(r
′)A+

c,λ(r)

−
∫

d r ′[K̂ (r, r ′)− X+(r)X (r ′)]Ĝ(r, r ′)A+
c,λ(r

′);

J =< λ|V̂ + + X̂+|A+
c,λ′

0
>. (5.17)

Here K̂ (r, r ′) is a two-points correlation function of the fluctuations of scattering
potential:

K̂ (r, r ′) = V̂ +(r ′)V̂ (r)− V̂ +(r ′)V̂ (r). (5.18)

Because of the pole existing in a spectral expansion of the Green function [12]:

Ĝ =
∫

dk1

2π)3
A+∗

c,λ1
(r ′)A+

c,λ1
(r)

k2
0 − k2

1 + i0

=
∫

dk1

(2π)3
A+∗

c,λ1
(r ′)A+

c,λ1
(r)

[
P

1

k2
0 − k2

1

− iπδ(k2
0 − k2

1)

]
, (5.19)

both the real and the imaginary parts of the coherent potential are re-normalized.
The imaginary part of the potential takes into account the weakening of the coherent
wave due to the scattering from the fluctuations the media.

The Eqs. (5.9) and (5.17) are the system of self-consistent equations for the coher-
ent potential and corresponding coherent wave under the assumption of two-point
correlations in the fluctuations of the scattering potential. Despite this expression
is obtained within the framework of DWBA of the second order, the contribution
of the correlations is not necessarily to be small, being summed up over all order
of DWBA series. For the selected above form of the potential, the additional terms
created in the further orders of the expansion (5.9) vanish for two-points correla-
tions. The further correlations to the self-consistent coherent potential are related
to the three-points correlations. Within the validity of the discussed here approach,
the Eq. (5.17) is equivalent to the equation Bethe-Salpeter for effective scattering
potential [13], which is used in [8] for propagation of radiation in fluctuating media.

The solution for the Eqs. (5.9) and (5.17) can be found by the iteration method.
The convergence of the iteration solution (5.22) is defined by the contribution of the
correlations into coherent potential, which can be estimated as follows. Assuming
the size of fluctuations to be small comparing to the extinction length for used X-ray
radiation, the scattering from each particular fluctuation is described by kinematical
theory, which means [14]:

e2

mc

L f

k0
n f 
 1; L f ≈ (Ω f )

1/3, (5.20)
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where n f , L f ,Ω f are the electron density, the average linear size and the volume of
fluctuation, respectively. The correction for the coherent potential caused by inco-
herent scattering from fluctuations is then estimated as:

V̂ +
c ≈ V̂ + X̂ (1) = V̂ (1 + ξ f );

ξ f ≈ (
n f

ne
)2

L4
f

L4 N f ≈ (
n f

ne
)2

L f

L

Ω f

R3
f

. (5.21)

Here ne and L are electron density and linear size of the whole sample, N f is the
average number of fluctuations, and R f is an average distance between them. All
these values depend strongly on the character of fluctuations. For example, for X-ray
reflection from rough surface with root mean square of roughness amplitude σ and
average distance between repeating roughness profiles (lateral correlation length)
Lc:

ξ f → ξrough ≈ σ2

L Lc
.

For the X-ray diffraction in crystal possessing dislocations [1], characterized by
length Ld , cross-section Sd and volume density Cd , the corresponding parameter is:

ξ f → ξd ≈ (Sd Ld)
4/3

L
Cd .

Provided the condition ξ f 
 1 is satisfied, the first non-zero corrections for the
potential and for the equation for coherent wave are written as:

X̂ (1)(r)A+(1)
c,λ (r)

= 1

2J

∫
d r ′ A−∗(0)

c,λ′
0
(r ′)K̂ (r, r ′)A+(0)

c,λ (r
′)A+(0)

c,λ (r)

−
∫

d r ′ K̂ (r, r ′)Ĝ(r, r ′)A+(0)
c,λ (r

′));

{L̂0 + V̂ (r)}A+(0)
c,λ (r) = 0; J0 =

∫
d rese−i kr V̂ +(r)A+(0)

c,λ (r);

{L̂0 + V̂ (r)+ X̂ (1)(r)}A+(1)
c,λ (r) = 0. (5.22)

The cross-section of coherent scattering is then calculated by formula:

dσc(λ
′
0,λ)

dλ′
0

= 1

(4π)2
sin2 θ1s | < λ′

0|[V̂ (r)+ X̂ (1)(r)]|A+(1)
c,λ > |2, (5.23)

where the contribution of the re-scattered from fluctuations radiation into coherent
peak is taken into account.
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As was demonstrated in the work [10] for X-ray reflectivity from rough surfaces
and interfaces, the self-consistent potential permits to avoid the terms in calculation
of coherent peak, which tend to increase in magnitude with the increase of the
scattering angle. To exclude such a non-physical behavior, the phenomenological
procedure of “exponentiating” has been used in [15, 16], which is not applicable for
large roughness or high scattering angles (see also Sect. 3.2).

The cross-section of incoherent (diffuse) scattering at λ′ �= λ′
0 is defined by

two-point correlation functions of the potential:

dσnc(λ
′,λ)

dλ′ |λ′ �=λ′
0

= sin2 θ1s

(4π)2

×
{∫

d r
∫

d r ′ A−(0)
c,λ′ (r ′)A−∗(0)

c,λ′ (r)K̂ (r, r ′)A+(0)
c,λ (r)A

+∗(0)
c,λ (r ′)

−2�
[

J0

∫
d r

∫
d r ′ A−∗(0)

c,λ′ (r)K̂ (r, r ′)Ĝ(r, r ′)A+(0)
c,λ (r

′)
]}
. (5.24)

Using for the functions A+(0)
c,λ (r

′) the solutions of the wave equation corresponding
to the ideal interface, the formula (5.24) becomes equivalent to the expression for
the cross-section of incoherent scattering from rough interface obtained in [16] with
the DWBA method.

5.2 Diffuse Scattering from Roughness in XRR Geometry

The theory presented in the previous section is applied below for the description of
incoherent X-ray scattering from rough surfaces and interfaces in X-ray reflectivity
technique. The real surfaces are not ideally flat and have non-uniformities, which
result in the dependence of electron density and X-ray polarizability on both z- and
lateral x- and y-coordinates. The most common imperfection in XRR technique
is a roughness of the surfaces and interfaces [17]. The presence of the roughness
redistributes the scattered X-ray radiation at grazing incident/exit angles.

To simulate the scattered X-ray intensity in this case, the certain model for the
statistical distribution of roughness has to be selected. First of all, we consider here the
scattering from single surface, for which the recognized fractal model of roughness
is used [15]. This model is applicable for most of the surfaces investigated by XRR
method, however, some samples reveal different from fractal behavior like stepped
staircase one in some semiconductor structures [18].

To implement the fractal model of roughness, the general structure of the scattering
potential is considered here. Assuming the axis z is perpendicular to the sample
surface as shown in Fig. 5.2, the dependence of X-ray polarizability χ on coordinate
is expressed as:

χ(r) = χ0 H [z − z0(x, y)], (5.25)

http://dx.doi.org/10.1007/978-3-642-38177-5_3
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Fig. 5.2 X-ray scattering
from rough surface, the angles
α and β correspond to the
incidence and exit beams,
respectively. R(α) is the
amplitude of specular reflected
wave; T (α,β) is the amplitude
of diffusely scattered waves;
θ1s is the angle between
polarization vector of the
incident wave and scattered
wave vector

where χ0 is a polarizability of the uniform media, H(z) is a stepwise Heaviside
function, and z0(x, y) is a function describing the real shape of the investigated
surface.

The physical background of the model with sharp surface/interface as in expres-
sion (5.25) requires additional explanations. At the border of two real media there is
a ultra-thin transition layer created by the atomic structure of surface and the char-
acteristic dimension of this layer is comparable with the wavelength λ of X-ray. For
the XRR technique, however, the essential information on the sample is localized
in the X-ray intensity scattered at small angles comparable with critical angle of
total external reflection α ∼ αc ∼ 10−2 ÷ 10−3. Thus, the non-uniformity with the
dimension (mesoscopic scale) is only effective:

Δx ∼ Δy ∼ λz ∼ λ

αc
∼ 10 ÷ 103 nm, (5.26)

which is substantially larger than atomic non-uniformity (microscopic scale). There-
fore, the transition layer composed of the electrons of the surface atoms in the poten-
tial (5.25) can be neglected.

Thus, the three-dimensional wave equation for each transversal component of vec-
tor potential of electromagnetic field with effective scattered potential V (r) should
be considered for the scattering from rough surfaces and interfaces:

[Δ+ k2
0 + V (r)]As(r) = 0

V (r) = k2
0χ0 H [z − z0(x, y)]; k0 = ω/c = 2π/λ. (5.27)

The resulting wave field As(r) is a functional of z0(x, y). The wave is scattered at
different angles to the sample surface, in opposite to the reflection from ideal plane
surface. The intensity of specular reflection |R(α)|2 of the coherent scattering (5.23)
is proportional to the sample surface area. Therefore the amplitude of specular peak
is essentially higher than the amplitudes of the waves scattered at other than specular
angles. This off-specular scattering constructs the profile of X-ray diffuse scattering
|T (α,β)|2 shown in Fig. 5.2 and described by incoherent scattering in Eq. (5.24).
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In the fractal model of roughness [15], the surface is assumed to be spatially
uniform and the average value of the function < z0(x, y) > does not depend on x
and y. Therefore, the plane of the surface can be selected to satisfy the condition
< z0(x, y) >= 0 . The one-point distribution function of the roughness amplitudes
P(a) defines the probability density to find the roughness with amplitude z0 = a ,
and it is also independent on the surface coordinates. For most of the applications,
the Gaussian distribution is chosen for it:

P(z0) = 1

σ
√

2π
e−a2/2σ2

, (5.28)

where the parameter σ is the root mean square of the roughness amplitude.
In accordance to formulas (5.23) and (5.24), the intensity of the scattered radiation

depends on the two-points correlations of scattered potential, and one parameter σ
is not enough to describe correctly the scattering from rough surface. To average
the intensity over the random function z0(x, y), the correlation between functions
z0(x1, y1) and z0(x2, y2) in two different points of the surface has to be taken into
account. Because of spatial uniformity, this correlation function C(x, y) depends
solely on the distance between these points:

< z0(x1, y1)z0(x2, y2) >= C(x, y) ≡ C(R),

R = x2 + y2, x = x1 − x2, y = y1 − y2, (5.29)

where the correlation function is normalized as C(0) = σ2.
In general case, the profile of X-ray diffuse scattering depends on the function

C(R), and the work [15] introduces this function in the form:

C(R) = σ2e−(R/Lc)
2h ≡ σ2C0

(
R

Lc

)
, (5.30)

with physical background based on the fractal model of roughness. This model is
most widely used up to date for the description of X-ray diffuse scattering from rough
surfaces and interfaces [19].

Thus, the surface of real nanostructures is characterized by root mean square of
roughness σ, correlation length Lc, and Hurst parameter h, related to the fractal
dimension of roughness D as D = 3 − h. The evaluation of the samples possessing
the rough surface and/or interfaces is reduced to the fitting at these parameters to
minimize the difference between measured and simulated X-ray specular and diffuse
intensities.

There are several useful characteristics of two-point random function Z(R) ≡
[z0(x1, y1)− z0(x2, y2)], its average value and its dispersion are:

Z(R) = 0; DZ = 2[σ2 − C(R)] = 2σ2[1 − C0]. (5.31)
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The two-point correlation function of the distribution of roughness amplitudes
W (a1, a2, R) corresponding to parameters (5.31) depends solely on the distance
between surface and can be found by using general theory of Gaussian fluctuations
[4]:

W (a1, a2, R) = P12(a1, a2, R)− P(a1)P(a2)

= 1

2πσ2

⎡

⎣ 1√
(1 − C2

0 )

e
− a2

1+a2
2−2C0a1a2

2σ2(1−C2
0 ) − e− (a2

1+a2
2 )

2σ2

⎤

⎦ ;
∫ ∞

−∞
da1,2W (a1, a2, R) = 0. (5.32)

Further we discuss the results obtained by different methods for calculation of
X-ray diffuse scattering from single rough surface within the model (5.28)–(5.31),
which permits to evaluate the accuracy of approximation in dependence on the para-
meters of the roughness.

The most simple approach is the Born (kinematic) approximation, when the scat-
tering potential V (r) in Eq. (5.27) is calculated using perturbation theory. In this
case, the zeroth approximation for the initial and final states is described by plane
waves, and according to the formula (5.12) the intensity cross-section is calculated
for the surface z0(x, y) as integrals over the sample volume

dσB

dΩ p
= sin2 θ1s

16π2

∣∣∣∣
∫

d re−i Qr V (r)

∣∣∣∣
2

= k4
0 |χ0|2 sin2 θ1s

16π2

∫
d re−i Qr H [z − z0(x, y)]

∫
d r ′ei Qr ′

H [z′ − z0(x
′, y′)],

(5.33)

where Q = p − k is the wave vector transfer of the scattering process (Fig. 5.2).
Using the fact of the fast X-ray wave field attenuation in the media, the integrals

over coordinates z and z′ in expression (5.33) can be calculated:

dσB

dΩ p
= k4

0 |χ0|2 sin2 θ1s

16π2 Q2
z

∫

S
d r‖

∫

S
d r ′‖e−i Qz [z0(x,y)−z0(x ′,y′)]e−i Q R, (5.34)

where Qz is a normal component of the wave vector transfer, the integration area S‖
is defined by the smaller of the quantities: the square of the interface S‖ in the plane
(x, y) or the incident beam footprint on the same plane Sb (3.5); R = r‖ − r ′‖.

To obtain the value of the observed cross-section, the expressions (5.34) have to
be averaged assuming the functions z0(x, y), z0(x ′, y′) as random values a1, a2 with
the distributions (5.28) and (5.32). As a result, the following expression is obtained:

http://dx.doi.org/10.1007/978-3-642-38177-5_3
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Fig. 5.3 The typical experimental geometry for measurement of X-ray diffuse scattering. The
angles α and β are the incident and the exit angles, respectively; the cross-section of the incident
beam Sb = Lb1 Lb2; the angular aperture of the detector ΔΩD = Δp1Δp2/k2

0 ; the polarization
vectors of the scattered photons e1 ≡ eσ; e2 ≡ eπ ; the beam footprint on the sample S = Lx L y =
Sb/ sinα

dσ̃B

dΩ p
=< dσB

dΩ p
>= k4

0 |χ0|2 sin2 θ1s

16π2 Q2
z

∫
da1

∫
da2

∫

S
d r⊥

∫

S
d r ′⊥

e−i Qz(a1−a2)e−i Q R[P(a1)P(a2)+ W (a1, a2, R)]. (5.35)

In case of X-ray scattering, the size of the scattered surface is larger than wavelength,
and the condition SQ2‖ � 1 is satisfied. Therefore, the integration in (5.35) can be
extended to infinity and the substitutions d r‖d r ′‖ = d Rdρ; ρ = (r‖ + r ′‖)/2 can
be used.

To obtain the relationship between the cross-section and the intensity registered
on detector normalized by incident flux, the kinematical relations between incident
and scattered beams have to be used (Fig. 5.3). For typical for XRR incidence and
exit angles α ∼ β ∼ √|χ0| and for both polarizations:

sin2 θs ≈ 1; pz = −
√

k2
0 − p2

x ≈ −k0 sin β.

Within the same accuracy, the integration over the detector surface perpendicular to
the vector p can be replaced by the integration over the components of this vector in
plane (x, y):

dΩ p ≈ dp1dp2

k2
0

≈ dpydpz

k2
0

≈ dpydpx

k2
0

| dpz

dpx
| ≈ d Qyd Qx

k2
0 sin β

. (5.36)

The differential cross-section is concentrated in a narrow diapason of Qx , Qy and
therefore the number of photons registered by detector depends on the instrumental
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function Φ(Qx , Qy) of the detector and on the angular aperture of the incident
beam. The incident beam in high-resolution XRR technique is usually conditioned
very precisely and can be considered as monochromatic. Then the observed X-ray
intensity in the reciprocal space point Qx , Qy normalized by the incident X-ray flux
is expressed as:

TB(Qx , Qz) = 1

Sb

∫ d Q′
yd Q′

x

k2
0 sin β

Φ(Qx − Q′
x , Qy − Q′

y)
dσ̃

dΩ p′(Q′
x , Q′

y)
. (5.37)

By substituting the expression (5.36) into (5.37) and integrating over variable ρ,
the following expression is obtained:

TB(Qx , Qz) = k2
0 |χ0|2

16π2 Q2
z sin β sinα

∫
d Q′

yd Q′
xΦ(Qx − Q′

x , Qy − Q′
y)

∫
da1

∫
da2

∫

S
d Re−i Q′

z(a1−a2)e−i Q′ R[P(a1)P(a2)+ W (a1, a2, R)]. (5.38)

As has been discussed in the Sect. 3.2 for X-ray reflectivity, the non-physical
behavior of (5.37) at α,β → 0 is caused by the incident or scattered beam footprints
(Fig. 5.3) which may become larger than the sample size Lx . Therefore, for small
angles α,β 
 √|χ0| in the expression (5.38) the multipliers F̄b(α), F̄D(β) have
to be used, which depend on the divergence of the incidence beam and the aperture
of the detector. The analytical formula for instrumental function F̄(θ) is given by
Eq. (3.35), however, in the considered here situation it is obsolete because of failure
of Born approximation at α,β → 0.

For the detectors with high resolution on both Qx and Qy (point detector), the
instrumental function can be selected as Gaussian profile:

Φ(Qx , Qy) = 1

2π
e−Q2

x/2Δ
2
x e−Q2

y/2Δ
2
y

with resolution elements Δx,y which are essentially smaller than the typical varia-
tions of ΔQx,y for X-ray diffuse scattering. Thus, integrating over a1 and a2 with
Gaussian distributions (5.28) and (5.32) and over coordinates, the following analyt-
ical expression for intensity is derived:

TB1(Qx , Qz) = k2
0 |χ0|2

4Q2
z sin β sinα

∫
d Q′

yd Q′
xΦ(Qx − Q′

x , Qy − Q′
y)

e−Q
′2
z σ

2{δ(Q′
x )δ(Q

′
y)+ 1

2π

∫ ∞

0
Rd R[eQ

′2
z C(R) − 1]J0(Q

′‖ R)}

= k2
0 |χ0|2

8πQ2
z sin β sinα

{
e−Q2

x/2Δ
2
x +ΔxΔy

∫ ∞

0
Rd R[eQ2

z C(R) − 1]J0(|Qx |R)
}
.

(5.39)

http://dx.doi.org/10.1007/978-3-642-38177-5_3
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where J0 is Bessel function of zeroth order; the intensity is measured in the plane

Qy = 0; Q‖ =
√

Q2
x + Q2

y = |Qx |; the integral over R converges due to the

asymptotic of the correlation function C(R → ∞) → 0, and

Qx = k0(cosβ − cosα); Qz = k0(sin β + sinα). (5.40)

The following approximations can be used for small incidence and scattering
angles:

α = arcsin
Q

2k0
+ arctan

Qx

Qz
≈ Q

2k0
+ Qx

Qz
;

β = arcsin
Q

2k0
− arctan

Qx

Qz
≈ Q

2k0
− Qx

Qz
; Q2 = Q2

x + Q2
z . (5.41)

For kinematical scattering, the relation between Qx and Qz is [19]:

|Qx | < Q2
z

2k0
, (5.42)

and introducing the dimensionless variable u = R/Lc, we finally obtain the formula:

TB1(Qx , Qz) = |χ0|2k4
0

2π(Q2
z Q2 − 4k2

0 Q2
x )

e−Q2
zσ

2

×
{

e−Q2
x/2Δ

2
x +ΔxΔy L2

c

∫ ∞

0
udu[eQ2

zσ
2C0(u) − 1]J0(|Qx |Lcu)

}
;

C0(u) = e−u2h
. (5.43)

The first term in (5.43) corresponds to the coherent peak and doesn’t contain
any additional information on the sample surface comparing to the specular peak
in X-ray reflectivity. The second term is associated with the diffuse X-ray intensity,
which is a subject of this section. The expression (5.43) describes the scattered
X-ray intensity approximately due to used Born formula and the conditions Q2

z >

k2
0 |χ0|, Q Qz ± 2k0 Qx > k2

0 |χ0|, however, this expression defines the conditions
at which the surface parameters Lc and h can be evaluated. For example, as follows
from Eq. (5.43) the intensity of X-ray diffuse scattering increases when using detector
with the slit registering the photons with all Qy values:

Φ(Qx ) = 1√
2π

e−Q2
x/2Δ

2
x .

In this case, the integration over Qy can be performed in (5.38), and as a result:
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TB2(Qx , Qz) = |χ0|2k4
0

4π2(Q2
z Q2 − 4k2

0 Q2
x )

e−Q2
zσ

2

{√
2πe−Q2

x/2Δ
2
x + 2Δx Lc

∫ ∞

0
du[eQ2

zσ
2C0(u) − 1] cos(|Qx |Lcu)

}
. (5.44)

As follows from the analytical estimate (5.44) and the kinematical estimate (5.42),
the X-ray diffuse intensity may deliver the information on the structure of sample
surface under the following conditions:

Qz ≤ σ−1; |Qx | ≤ Q2
z

2k0
≈ 1

2k0σ2 ; Lc ≥ 1

|Qx | ≈ 2k0σ
2. (5.45)

Figure 5.4 shows the calculation of X-ray diffuse intensity using formula (5.44)
from the Si0.65Ge0.35 sample with the parameters described in the figure capture.
The intensity profile is a slowly decreasing function of the tangential component Qx

of the wave vector transfer in the kinematical approximation, which is applied for
this simulation.

The intensity increase on the edges of available Qx interval is due to mentioned
above geometrical factor of the beam footprint enlargement. The Born approxima-

Fig. 5.4 X-ray diffuse scattering intensity calculated by using Born approximation (5.44) for
Si0.65Ge0.35 sample with the rough surface described by the distribution function σ = 1.5 nm,
h = 1, Qz = 0.6 nm. The X-ray wavelength λ = 0.154 nm; k0 = 2π/λ; χ0 = −1.99 10−5 +
i5.27 10−7;Δx = 6 10−5 nm−1. The intensities T1,2(Qx ); |Qx | < Q2

z/2k0 correspond to the
values Lc1 = 1 µm Lc2 = 2 µm
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tion, however, doesn’t allow to describe important physical effect observed in the
experiment and called Yoneda wings [20]. The work [15] and further investigations
(see citations in [19]) prove this and other specific effects [21] are caused by the refrac-
tion of incident and scattered waves inside media. All these dynamical processes can
be explained by using DWBA. In most of the publications, dedicated to theoretical
studies of diffuse X-ray scattering beyond the kinematical Born approximation, the
only first order of DWBA is used. As a zeroth approximation for Eq. (5.27), the wave
fields for the scattering at the plane border z = 0 are considered, which corresponds
to the choice of the perturbation operator in the form:

V (r) = V0(z)+ V1(r) ≡ k2
0χ0 H(z)+ k2

0χ0{H [z − z0(x, y)] − H(z)}. (5.46)

The use of only first order DWBA for calculation of diffuse X-ray scattering has
been shown [16, 22] to don’t provide the conservation of whole radiation flux. There-
fore, the formulas for diffusely scattered intensity involving second order DWBA
have been derived. These equations take also into account the transition layer for the
calculation of the specular reflection, which influences the diffuse scattering, too.

The non-perturbative solution of the wave equation for ideal interface corresponds
to the potential V0(z) in (5.46) and is delivered by the waves (3.16) and (3.17) with
Fresnel reflection and transmission coefficients:

k = (k‖; kz = k0 sinα); p = ( p‖; pz = −k0 sin β);
A(+,0)k (r) = e(2)(k)ei k‖r‖ E (+,0)kz

(z);
E (+,0)kz

(z) = [eikz z + rF (kz)e
−ikz z]H(−z)+ tF (kz)e

ikzm z H(z);
A(−,0)∗p = A(+,0)− p = e(2)(− p)e−i p‖r‖ E (+,0)−pz

(z);
E (+,0)−pz

(z) = [e−i pz z + rF (pz)e
ipz z]H(−z)+ tF (pz)e

−i pzm z H(z);
tF (kz) = 2kz

kz + kzm
, rF (kz) = kz − kzm

kz + kzm
,

kzm = k0

√
sin2 α+ χ0, pzm = −k0

√
sin2 β + χ0. (5.47)

The theory presented in previous section (see also [10]) proves that multiple scat-
tering from the roughness results both in the diffusely scattered waves and modifies
the form of coherent potential Vc(z) �= V0(z) in (5.9). The transition layer modifies
the corresponding solution of zeroth approximation, too.

In the Sect. 3.2 the influence of the dynamical effects (multiple scattering) on the
profile of the specularly reflected beam has been discussed. In this section, the profile
of the diffusely scattered intensity is calculated basing on the formula (5.24) for
incoherent scattering. Several simplifications related to XRR geometry can be done,
for example, at small scattering angles the polarization of waves doesn’t influence
the scattering cross-section and all wave fields in (5.24) can be considered as scalars,
i.e. sin2 θ1s = 1. Another simplification follows from the fact that the multiple

http://dx.doi.org/10.1007/978-3-642-38177-5_3
http://dx.doi.org/10.1007/978-3-642-38177-5_3
http://dx.doi.org/10.1007/978-3-642-38177-5_3
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scattering changes the dependency of coherent potential on the coordinate z only,
and the coherent wave fields in (5.24) can be selected as plane waves in transversal
direction:

A(+)λ → A(+)k (r) = ei k‖r‖ E (+)k (z);
A(−)λ′ → A(−)p (r) = ei p‖r‖ E (−)p (z). (5.48)

The functions E (±)k (z) satisfy to one-dimensional wave equation following from
(5.9): {

d2

dz2 + Vc(z)+ k2
0 − k2⊥

}
E (±)k (z) = 0, (5.49)

with asymptotic behavior corresponding to divergent (+) and convergent (−)waves.
To calculate the diffuse scattering cross-section for coherent potential Vc(z), the
approximation (5.16) can be engaged, which results in the following expression
assuming model (5.28) for roughness distribution:

Vc(z) = k2
0χ0 < H [z − z0(x, y)] >= k2

0χ0

∫ ∞

−∞
da P(a)H [z − a]

= k2
0χ0

σ
√

2π

∫ z

−∞
dae−a2/2σ2 = k2

0χ0Φ(z/σ) ≡ k2
0χ0λ(z);

Φ(t) = 1√
2π

∫ t

−∞
dxe−x2/2. (5.50)

In this potential, opposite to V0(z) in (5.46), the transition layer is taken into
account for the formation of coherent wave. The Green function (5.19) is re-defined
as:

G(R, z, z′) = 1

(2π)3

∫
dk1

ei k1‖ R E+∗
k1z
(z′)E+

k1z
(z)

k2
0 − k2

1 + i0
;

R = r‖ − r ′‖. (5.51)

The expression for the cross-section of diffuse scattering can be derived from the
general formula (5.24) for incoherent scattering by using new variables:

R = r‖ − r ′‖; ρ = r‖ + r ′‖
2

,

dσD( p, k)
dΩ p

= k4
0 |χ0|2S

(4π)2
(M1 − 2�[M2]);
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M1 =
∫

d Rdzdz′e−i Q‖ R E−
pz
(z′)E−∗

pz
(z)K (z, z′, R)E+

kz
(z)E+∗

kz
(z′);

M2 = J0

S

∫
d Rdρdzdz′e−i Q‖ρ

×ei( p‖+k‖)R/2 E−∗
pz
(z)K (z, z′, R)G(R, z, z′)E+

kz
(z′);

K (z, z′, R) =
∫ ∞

−∞
da1

∫ ∞

−∞
da2W (a1, a2 R)

×[H(z − a1)−Φ(z/σ))][H(z′ − a2)−Φ(z′/σ)], (5.52)

where the distribution function W (a1, a2 R) being defined in Eq. (5.32).
The integration over ρ in the second term of (5.52) results in the proportionality

of this term to δ(Q‖) and its contribution solely into the peak corresponding to the
specular reflection. The influence on the diffuse scattering cross-section is related to
the re-normalization of specular reflectivity, which was considered in Sect. 3.2.

To calculate the X-ray scattering cross-section, the order of integration over the
variables a and z has to be changed, which results in:

dσD( p, k)
dΩ p

= k4
0 |χ0|2S

16π2

∫
d R

∫ ∞

−∞
da1

∫ ∞

−∞
da2W (a1, a2, R)

×Fpz ,kz (a1)F
∗ pz, kz(a2)e

−i Q R;
Fpz ,kz (a) =

∫ ∞

−∞
dzE−∗

pz
(z)[H(z − a)−Φ(z/σ)]E+

kz
(z). (5.53)

The comparison of the expression (5.53) with the analogous kinematical one (5.39)
demonstrates the fact, that dynamical effects in diffuse scattering are caused by the
deviation of the incident and scattered coherent wave fields from the plane wave
along the sample surface normal. In general case, the solution of the Eq. (5.43) with
coherent potential Vc(z) has a cumbersome form. Therefore, in most of applications
the additional approximation is used, which is the ignorance of the transition layer in
Vc(z) caused by the coherent scattering from the roughness. Thus, the solution (5.40)
is utilized corresponding to the ideal surface Vc(z) = k2

0χ0 H(z), and the functions
Fpz ,kz (a) are:

Fpz ,kz (a) = −H(a)tF (kz)tF (pz)

∫ a

0
dzeikzm ze−i pzm z

+H(−a)
∫ 0

a
dz[e−i pz z + rF (pz)e

ipz z][eikz z + rF (kz)e
−ikz z]

= H(a)tF (kz)tF (pz)K (kzm − pzm)+ H(−a)[K (kz − pz)

+rF (pz)rF (kz)K (−kz + pz)+ rF (pz)K (kz + pz)+ rF (kz)K (−kz − pz)];

K (q) = i
eiqa − 1

q
.

(5.54)

http://dx.doi.org/10.1007/978-3-642-38177-5_3
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Each term in the matrix element (5.54) has a physical meaning related to the
additional reflection and transmission of the incidence and scattered waves from
the distortions of the surface [21]. Because of this expression has still a complicated
structure, the modified DWBA (MDWBA) is frequently used which makes it possible
to analytically average over the roughness amplitudes:

Fpz ,kz (a) ≈ F (0)pz ,kz
(a) = tF (kz)tF (pz)K (k

′
zm − p′

zm),

k′
zm = �{kzm} = kzm + k∗

zm

2
, (5.55)

and which corresponds to the following substitution for the wave field in a vacuum:

eikz z + rF (kz)e
−ikz z ≈ tF (kz)e

ik′
zm z . (5.56)

This approximation is valid for large values of kz , when rF → 0; tF → 1; kzm →
kz . For the small values of kz , the calculation of the matrix element (5.55) is performed
in the vicinity z ∼ σ, where the relationship (5.56) is satisfied due to conservation
of the flux:

|rF |2 + k′
zm

k0
|tF |2 = 1. (5.57)

The conservation of the flux doesn’t depend on the approximation choice for the
transmission and reflection coefficients, and remains valid also for transition layer if
a self-consistent approach is used, as described in Sect. 3.2.

Assuming the validity of (5.56), the averaging over the roughness amplitudes with
the distribution (5.32) is performed in a similar way as for kinematical model, and
by accounting the geometrical factors the diffusely scattered intensity is calculated
for one-dimensional detector by the following formula:

TD(Qx , Qz) = k2
0 |χ0|2Δx

8π2 sinα sin β|Qzm |2 |tF (kz)|2|tF (pz)|2e−Q
′2
zmσ

2

×
∫ ∞

0
dx[eQ

′2
zmC(x) − 1] cos(|Qx |x)}

= 2|χ0|2Δx Lck6
0 sinα sin β

π2|(kz + kzm)(pz + pzm)|2|Qzm |2 e−Q
′2
zmσ

2

×
∫ ∞

0
du[eQ

′2
zmσ

2C0(u) − 1] cos(|Qx |Lcu);

Qzm = pzm − kzm = −k0(

√
sin2 β + χ0 +

√
sin2 α+ χ0),

kz = k0 sinα; pz = −k0 sin β, (5.58)

which differs from the kinematical formula (5.37) by the transmission coefficients
and re-defined normal component of the momentum transfer.

http://dx.doi.org/10.1007/978-3-642-38177-5_3
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Fig. 5.5 The calculated Qx profiles of X-ray diffuse scattering using MDWBA for the sample
parameters from Fig. 5.4. The intensity TD(Qx ) is calculated at Qz0 = 0.6 nm−1

Figures 5.5 and 5.6 shows that dynamical effects change the profiles of X-ray
diffuse scattering essentially. For the incidence and scattering angles close to the
critical angle of total external reflection, the transmission coefficient has a maximum
(Sect. 3.3) and the scattered intensity has a peak called Yoneda wing [20]. Thus, the
expression (5.57) describes well the qualitative dynamical effects in the scattered
X-ray diffuse intensity.

For evaluation of a real experimental data, the important issue is how strong is the
influence of used approximation on the accuracy of obtained quantitative values for
roughness parameters. Another question is whether expression (5.55) remains valid
for large amplitudes of the roughness. Figure 5.7 shows the relative corrections to
the intensity of diffuse scattering for different roughness amplitudes:

ΔF = Fpz ,kz (a)− F (0)pz ,kz
(a)

= H(−a)[(K (kz − pz)− tF (kz)tF (pz)K (k
′
zm − p′

zm))

+rF (pz)rF (kz)K (−kz + pz)+ rF (pz)K (kz + pz)+ rF (kz)K (−kz − pz)],
(5.59)

that demonstrates the validity of MDWBA for entire diapason of root mean square
roughness amplitude observed in the most of real samples. Thus, the main contribu-
tion into diffuse X-ray scattering from rough surface is delivered in the case when
the incident and scattered beams have a maximal path in the media.

http://dx.doi.org/10.1007/978-3-642-38177-5_3
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Fig. 5.6 The simulation of X-ray diffuse scattering Qz profiles using MDWBA for the sample
parameters from Fig. 5.4. The intensity TD(Qz) corresponds kz = 0.3 nm−1; Qz ≥ kz; Qx =
kx −

√
k2

0 − (Qz − kz)2

Fig. 5.7 The X-ray diffuse scattering I0(σ) calculated from formula (5.58), and the corrections
ξ(σ) coming out of MDWBA applicability area for different σ. The sample parameters from Fig. 5.4
are used at Qz0 = 0.6 nm−1, Qx0 = 2 · 10−3 nm−1
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To take into account the coherent potential for the construction of zeroth
approximation for wave field, we consider here the self-consistent DWBA. The
potential is formed at the boundary transition layer with the thickness ∼ 2σ and
the electron density profile (5.50). Then the wave fields in matrix element Fpz ,kz (a)
in Eq. (5.53) are defined by analytical expressions (3.59) and (3.64):

E+
kz
(z) = λ(z)T (kz)e

ikzm z + [1 − λ(z)][R(kz)e
−ikz z + eikz z];

E−∗
pz
(z) = λ(z)T (pz)e

−i pzm z + [1 − λ(z)][R(pz)e
ipz z + e−i pz z], (5.60)

with the transmission T (kz) and reflection R(kz) coefficients following from the
Eq. (3.66).

Figure 5.8 compares the simulated X-ray diffuse intensity by self-consistent
DWBA and by approximation (5.58). The difference between them is due to the
essential deviations of reflection and transmission coefficients from Fresnel coeffi-
cients rF and tF as well as due to the complicated dependency from the roughness
amplitude comparing to the exponential factor in (5.58). The decrease of X-ray dif-
fuse intensity in self-consistent approach is explained by the fact, that some waves
scattered from roughness contribute to the coherent (specular) peak. The decrease of
the intensity in this peak is slower with the increase of |Q| than the decrease provided
by Debye-Waller factor (see Sect. 3.4).

In practice, the modified DWBA explains the experimental data with satisfactory
accuracy. The figures below demonstrate the evaluation results for thin SiO2 layer
on silicon substrate [23]. Three samples were made by thermal oxidation of Si(100)

Fig. 5.8 X-ray diffuse intensity IS(σ) simulated by self-consistent DWBA and by formula (5.58).
The sample parameters from Figure 5.4 are used, and Qz0 = 0.6 nm−1, Qx0 = 2 · 10−3 nm−1;
Lc = 2 µm

http://dx.doi.org/10.1007/978-3-642-38177-5_3
http://dx.doi.org/10.1007/978-3-642-38177-5_3
http://dx.doi.org/10.1007/978-3-642-38177-5_3
http://dx.doi.org/10.1007/978-3-642-38177-5_3
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Fig. 5.9 In the left panel, the ω/2Θ scans are presented from the samples 1, 2, and 3 (a, b, and
c, respectively) for offsets 2Θ = 1.5◦, 1.2◦, 1.0◦ and 0.8◦. The theory is given by solid lines and
the experiment is shown by open dots. The curves are scaled by different factors for clarity. The
right panel shows the measured (left column) and simulated (right column) reciprocal space maps
around (000) reciprocal lattice point for samples 1, 2, and 3 (a, b, and c, respectively)

wafers. An thick oxide layer of nominal thickness 45 nm was grown on sample 1 by
flowing O2 over the sample. For sample 2, the Si wafer was first dipped in etching
solution for two minutes and then thermally oxidized. Sample 3 was prepared in the
same way as sample 2, and then the SiO2 layer was striped off. All three samples
are expected to have different character of surface roughness, which was a subject of
X-ray investigations performed by XRR technique and diffuse scattering measure-
ments. Figure 5.9 shows the ω/2θ scans for samples 1, 2 and 3 (left panels), which
were analyzed simultaneously with the reflectivity data, i.e. with respect to thickness,
roughness and film density being optimal for the refine fits of both scan types. The
experimental (open symbols) and simulated (solid lines) scans demonstrate accept-
able coincidence for different values of offset 2θ = 0.8◦, 1.0◦, 1.2◦ and 1.5◦. The
right panel shows the simulated and experimental reciprocal space maps around (000)
reciprocal lattice point for samples 1, 2 and 3 (maps a, b, and c, respectively). The
agreement between the simulated maps and the experimental measurements is also
rather good. The roughness root mean square and lateral correlation length values
(σ,Λ) for the samples are found to be (0.4, 200), (4.1, 10), and (2, 11) nm for samples
1, 2, and 3, respectively.
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Fig. 5.10 Atomic force microscopy images of surface of samples 2 and 3 (panels (a) and (b),
respectively). The sample 2 exhibits the large-scale roughness similar to island-like morphology.
The roughness of sample 3 is approximately twice smaller as of the sample 2 one

Finally, the atomic force microscopy (AFM) studies confirmed the morphology
of SiO2/Si surfaces deduced from the X-ray experiments for the samples 2 and 3
(Fig. 5.10a, b, respectively). The scale of roughness and jaggedness is close to the
values of lateral correlation length and rms roughness obtained from the simulation
of specular reflectivity and diffuse scattering from investigated samples. We do not
show the AFM image for sample 1 because of nearly smooth SiO2 film surface in
this case.

5.3 X-Ray Diffuse Scattering from Rough Interfaces in
Multilayered Structures

X-ray diffuse scattering in XRR geometry is a sensitive instrument for characteriza-
tion of interfaces between different media. Even more information is available from
diffuse scattering intensity measured from multilayered systems possessing multi-
ple interfaces as shown in Fig. 5.11. The application of these structures for modern
technologies has been discussed in the Sect. 3.3.

The diffuse scattering from multiple interfaces is incoherent in general case, which
results in blurring the features of X-ray scattering from single interfaces. The excep-
tion is a case of layer deposition in multilayered sample, which implements the
correlation between amplitudes and position of the roughness in different interfaces.
These correlations can be investigated by using X-ray diffuse scattering.

The theory of X-ray diffuse scattering from multiple interfaces is based on the
DWBA with zeroth approximation for wave fields corresponding to Maxwell’s equa-
tion for the structure with ideal boundaries (see, for example, [21–24] and citation
therein). In this paragraph, the applicability of theory described in Sect. 5.1 and var-
ious approximations for calculation of X-ray intensity are discussed.

http://dx.doi.org/10.1007/978-3-642-38177-5_3
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Fig. 5.11 Schematic rep-
resentation of multilayered
structures in XRR experi-
ments and possible corre-
lations between the para-
meters of interfaces. The
function Ci (Ri , R′

i ) define
the correlations between the
roughness in one interface,
Ci j (Ri , R′

j ) defines the corre-
lations between the roughness
in different interfaces

The Maxwell’s Eq. (5.3) for arbitrary vector potential is written as follows (in
XRR geometry, the polarization of the radiation can be neglected):

{Δ+ k2
0 + V (r)}A(r) = 0;

V (r) = k2
0

N∑

i=1

[χi − χi−1]H [z − zi (x, y)], (5.61)

where the functions zi (x, y) describe the surface of i-interface between the layers
with X-ray polarizabilities χi and χi−1, and χ0 = 0 corresponds to vacuum, and χN

is an X-ray polarizability of the substrate (Fig. 5.11).
Assuming the roughness of different interfaces is not overlapping, the coherent

scattering potential (5.16) can be distinguished for each interface and the Eq. (5.61)
is then written as:

{Δ+ k2
0 + V0(z)+ΔV (r)}A(r) = 0;

V0(z) =
N∑

i=1

Vi (z); ΔV (r) = k2
0

N∑

i=1

[χi − χi−1]{H [z − zi (x, y)] − λi (z)};

Vi (z) = k2
0 < H [z − zi (x, y)] >≡ k2

0λi (z − z̄i ),

(5.62)

where the function λi (z − z̄i ) defines the shape of the transition layer for i-interface
and, assuming the Gaussian distribution of roughness amplitude, is:

λi (z − z̄i ) = Φ(
z − z̄i

σi
); Φ(t) = 1√

2π

∫ t

−∞
dxe−x2/2. (5.63)
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Here the values z̄i and σi characterize the average position and root mean square
of roughness amplitude at i-interface, respectively, and thus the layer thickness is
(Fig. 5.11):

di = z̄i+1 − z̄i � σi + σi−1; z̄1 ≡ 0.

In the first DWBA approximation for potential ΔV (r), X-ray diffuse intensity is
calculated by Eq. (5.24) with wave fields following from the equations of zeroth
approximation with transition layers at interfaces:

A(+)k (r) = ei k‖r‖ E (+)k (z); A(−)p (r) = ei p‖r‖ E (−)p (z);
{Δ+ k2

0 − k2⊥ + V0(z)}E (±)k (z) = 0. (5.64)

The wave fields E (±)k (z) in (5.64) for multilayered structure with the potential V0(z)
from (5.61) can be found using formulas (3.107)–(3.113) and are written as:

E (+)k (z) =
N∑

j=0

[Tj (kzj )e
ikzj z + R j (kzj )e

−ikz j z];

E (−∗)
p (z) = E (+)−p (z) =

N∑

j=0

[Tj (pzj )e
−i pz j z + R j (pzj )e

ipzj z];

kzj = k0

√
sin2 α+ χ j ; pzj = −k0

√
sin2 β + χ j , (5.65)

with the coefficients defined by recurrent Parratt’s Eq. (3.109) with the layer bound-
aries corresponding to the values z̄ j :

T0 = 1; X0 = R0; X N = 0;

X j = r j, j+1 + X j+1e−2ikz( j+1)d j+1

1 + r j, j+1 X j+1e2ikz j d j
;

Tj+1 = 1

t j+1, j
ei(kz( j+1)−kzj )z̄ j T j [1 + r j+1, j X j ];

R j = Tj X j e
−2ikz j z̄ j ; (5.66)

The reflection r j, j+1 and transmission t j, j+1 coefficients at each interface are
calculated by Fresnel’s formulas (3.110) with Nevot-Croce factor in case of abrupt
interfaces and by using formulas (3.111) for self-consistent model of the transition
layer.

The calculation of the matrix element in Eq. (5.53) for non-overlapping interfaces
is similar to the case of a single boundary. Based on the analysis of the approximations
performed in previous section, the substitution λ j (z) = H(z − z̄ j ) in perturbation
operator (5.61) can be done, which results in the following expression for matrix
element through the functions of random values {a j }:

http://dx.doi.org/10.1007/978-3-642-38177-5_3
http://dx.doi.org/10.1007/978-3-642-38177-5_3
http://dx.doi.org/10.1007/978-3-642-38177-5_3
http://dx.doi.org/10.1007/978-3-642-38177-5_3
http://dx.doi.org/10.1007/978-3-642-38177-5_3
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Fpz ,kz ({a j }) =
N∑

j=0

Fj (a j ); Fj (a j ) = (χ j+1 − χ j )[H(−a j )M j + H(a j )M j+1];

M j = Tj (kzj )Tj (pzj )K (kzj − pzj )+ Tj (kzj )R j (pzj )K (kzj + pzj )+
+Tj (pzj )R j (kzj )K (−kzj − pzj )+ R j (kzj )R j (pzj )K (−kzj + pzj );

K (q) = eiqa j − 1

iq
.

(5.67)

The squared modulus of this matrix element is equal to:

|Fpz ,kz ({a j })|2 =
N∑

j=0

N∑

l=0

F∗
l (a

′
l)Fj (a j ), (5.68)

and has to be averaged using two-point correlation functions for distribution of
amplitudes Wl j (a′

l , a j ) containing the relation between the roughness at different
interfaces. The general form of these functions follows from (5.32):

Wl j = 1

2πσiσl

⎡

⎢⎣
1√

(1 − C2
l j )

e
− a

′2
l +a j 22−2Cl j a′

l a j

2σi σl (1−C2
l j ) − e

− a
′2
l

2σ2
l e

− a2
j

2σ2
j

⎤

⎥⎦ . (5.69)

There are several models of the correlation functions Cl j for the roughness ampli-
tudes at different interfaces, which are applied in dependence on the interface types
(see [21, 24, 25] and citation therein):

Uncorrelated (random) model is recommended for thick (>50 nm) layers,
where the correlations between interfaces are eliminated during the growth process.
Using the fractal correlation functions as (5.30) for each interface:

Cl j = δl j C j ; C j = σ2
j e

−( R j
Lc, j

)
2h j ; R j =

√
(x j − x ′

j )
2 + (y j − y′

j )
2. (5.70)

Full correlation model assumes the full identity of the interface profiles, which
may happen in the layers of superlattices (periodically repeating sequence of lay-
ers). Using the fractal model of roughness, the correlation function is selected as in
Eq. (5.30) and is written:

Cl j = σ2e−( Rl j
Lc
)2h ; Rl j =

√
(x j − x ′

l )
2 + (y j − y′

l )
2. (5.71)

Ming correlation model provides the intermediate case between two above-
mentioned, which is parametrized by vertical correlation length Λ and Hurst fractal
parameter h:
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Cl j =
√

Cl(Rl j )C j (Rl j )e
−( |z̄l −z̄ j |

Λ
)2h
. (5.72)

Holy-Baumbach model implements the gradual increase of the roughness ampli-
tude with increment μ from smaller values at the substrate to layer ones at the sample
surface:

Cl j = σ2
N [1 + μ(N − max(l, j))]e−( RN

Lc,N
)
2h j

. (5.73)

The calculation of the average in Eq. (5.70) is a cumbersome task even for Gaussian
model of the lateral and vertical correlations because of different functions appear-
ing in the matrix element (5.67) and corresponding to the positive and the negative
values a j . Therefore, in practical calculations the assumption M j = M j+1 is used
in (5.67) and the integration over the amplitudes with Gaussian distribution is per-
formed analytically. The necessity to estimate the accuracy of this approximation
was mentioned in [21], and the estimation for a single surface has been presented in
Sect. 5.2. The equality M j = M j+1 corresponds to MDWBA, when the relationship
(5.56) is used near the boundary:

Tj e
ikz j z̄ j + R j e

−ikz j z̄ j = Tj+1eikz( j+1) z̄ j + R j+1e−ikz( j+1) z̄ j ]. (5.74)

Figure 5.7 demonstrates the validity of this approximation in a wide range of kzσ
due to the conservation of flux (5.57). The condition (5.74) is valid when the values
kzj are substituted by real values �kzj , which excludes the exponentially growing
terms in the expression for X-ray intensity.

By averaging over the roughness amplitudes in MDWBA, the diffusely scattered
X-ray intensity from the sample consisting of N layers is (one-dimensional detector
with open aperture in Qy direction assumed):

TD(Qx , Qz) = k2
0Δx

8π2 sinα sin β

N∑

l=0

N∑

j=0

(χl+1 − χl)
∗(χ j+1 − χ j )

×
⎧
⎨

⎩

3∑

m=0

3∑

n=0

G(m)
j G(n)∗

l

exp{−1/2[(σ j Q(m)′
j z )2 + (σl Q(n)′

lz )2]}
Q(m)

j z Q(n)∗
lz

I (mn)
jl

⎫
⎬

⎭ ;

I (mn)
jl = L jl

c

∫ ∞

0
dx{exp[Q(m)′

j z Q(n)′
lz C jl(x)] − 1} cos Qx L jl

c x . (5.75)

Here, the indices ( j, l) correspond to the summation over the layers, and the indices
(m, n) enumerate the combinations of the reflection and transmission coefficients in
matrix element (5.67); L jl

c is a correlation length in correlation function C jl . The
function G and variable Q are defined as:
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Fig. 5.12 Qx scan of X-ray diffuse scattering for the sample consisting of 20 nm Si0.65 Ge0.35
layer on Si substrate with X-ray polarizability χ1 = −1.99 · 10−5 + i5.27 · 10−7;χ2 = −1.51 ·
10−5 + i3.50 · 10−7;Δx = 6 · 10−5 nm−1. Qz = 0.6 nm−1,σ1 = 2 nm,σ2 = 1.5 nm; Lc1 =
1 µm; Lc1 = 2 µm; h1 = h2 = 2

G(0)
j = Tj (kzj )Tj (pzj ); G(1)

j = Tj (kzj )R j (pzj );
G(2)

j = R j (kzj )Tj (pzj ); G(3)
j = R j (kzj )R j (pzj );

Q(0)
j z = kzj − pzj ; Q(1)

j z = kzj + pzj ; Q(2)
j z = −Q(0)

j z ; Q(3)
j z = −Q(1)

j z . (5.76)

The full X-ray intensity is then written as a sum of (5.75) and X-ray specular
reflectivity from multilayered structure. Using the Gaussian instrumental function
for detector as in (5.44):

TS(Qx , Qz) = 1√
2π

|R0(kz0)|2e−Q2
x/2Δ

2
x ; kz0 = k0 sinα = Qz/2, (5.77)

the reflection coefficient R0(kz0) from the entire structure is delivered by the solu-
tion of Parratt’s equations (5.66). Figure 5.12 demonstrates X-ray diffuse scattering
profiles for different models of the vertical correlations of interface roughness and
the shape of the transition layer for Si0.65Ge0.35 20 nm layer on the Si substrate.

The analysis of diffuse X-ray scattering from periodic multilayered structure
(superlattices) is a special case of XRR applications, which is widely used in modern
technologies (Fig. 3.14). For these samples, the dynamical effects become apparent
both in specular reflectivity (superlattice peaks in the reflection coefficients as in
Fig. 3.15) and in diffuse scattering. As a result, X-ray scattering profile has a com-
plex structure described in Ref. [21]. The widely used representation of the measured

http://dx.doi.org/10.1007/978-3-642-38177-5_3
http://dx.doi.org/10.1007/978-3-642-38177-5_3
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Fig. 5.13 Reciprocal space
map (Qx , Qz) of diffuse
X-ray scattering from 10 peri-
ods of bilayer Ge (5 nm)/Si0.65
Ge0.35 (5 nm) on silicon sub-
strate. The simulation para-
meters are: χ1 = −1.99 ·
10−5 + i5.27 · 10−7;χ2 =
−3.5 · 10−5 + i8.3 · 10−7;
σ1 = 1 nm, σ2 = 1 nm;
Lc1 = 1 µm; Lc1 = 1 µm;
h1 = h2 = 2, uncorrelated
interface roughness model

and simulated X-ray intensity is a reciprocal space map in coordinates (Qx , Qz) as
shown in Fig. 5.13. The fitting of the whole map or multiple sections from such a map
is a robust method to characterize the correlations of interfacial roughness within the
multilayered samples .

The example below demonstrates the effectiveness of diffuse X-ray scattering
studies in investigation of the morphology of Mo/Si superlattices [26]. Two Mo/Si
multilayers consisting of 30 bi-layers with a total thickness of approximately 300 nm
were prepared by ion beam sputtering on an Si wafer (sample 1) and a partially
crystallized polished ceramic glass substrate (sample 2), each 2 inches in diameter.
The X-ray reflectivity and diffuse scattering intensities were measured using a high-
resolution X-ray diffractometer (Advanced Thin Film X-ray System ATX-G, Rigaku
Corporation). X-rays with wavelength λ = 0.15405 nm (CuKα1 ) are generated from
a Cu rotating anode (50 kV, 300 mA), collimated by a parabolic multilayer mirror and
monochromated by a channel cut Ge(111) asymmetric monochromator. A divergent
(0.1 × 10 mm) slit was used to control the exposure area on the sample surface,
while a parallel pair of slits (0.2 × 15 mm) was used to limit the output signal. The
diffuse X-ray scattering was measured via ω/2θ scans with 2θ fixed in the interval
1.4◦ ÷ 7◦. Area mapping around the (000) reciprocal lattice point was used for qual-
itative analysis and separate ω-scans were used for precise fits. The recorded diffuse
intensity can be used to determine the mesoscopic in-plane structure of surfaces and
interfaces, lateral correlation of roughness, and the fractal dimension of jagged sur-
faces. Moreover, the distribution of diffuse intensity in reciprocal space may reflect
the vertical correlation of interface roughness, if present. In this case, the incoherent
wave fields may interfere constructively creating a halo around the specular beam.

The reciprocal space maps around the (000) reciprocal lattice point give a qual-
itative insight into the principal characteristics of interfacial roughness. The mea-
sured intensity maps shown in Fig. 5.14a, c for Samples 1 and 2, respectively, permit
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Fig. 5.14 Measured (left column) and simulated (right column) reciprocal space maps around (000)
reciprocal lattice point for multilayers grown on Si wafer (a, b) and glass (c, d) substrates [26]. The
resonant diffuse scattering sheets are clearly visible on both experimental maps. Bragg-like lines
and peaks are denoted on the intensity map from the Sample 1

judgement about the common features of multilayers. First, a greater proportion of
diffusely scattered intensity in the total reflectivity for Sample 2 indicates a larger
value of roughness rms for this sample. Secondly, the interfacial roughness in both
samples has a correlated nature indicated by the distribution of diffuse scattering
as resonant diffuse (non-specular) scattering sheets. These banana-shaped stripes of
concentrated diffuse intensity intersect the truncation rod, coinciding in Fig. 5.14
with the specular beam line, at equidistant points defined by the Bragg condition
for the superlattice stack. The confinement of intensity to resonant diffuse scattering
(RDS) sheets reflects the degree of the vertical replication of roughness, with the
width of stripes in the horizontal direction being determined mainly by the lateral
correlation of roughness. The slight upwards bending of the RDS at the edges is
due to the refraction of X-rays in the stack. The large vertical width of the RDS in
Fig. 5.14c gives evidence of poor (partial) roughness replication in Sample 2, whereas
the high roughness conformity of Sample 1 results in strong confinement of RDS
in Fig. 5.14a. In addition to the RDS stripes, the Bragg-like resonant lines can be
observed in Fig. 5.14a. These lines are approximately parallel to the edges of the
measurable area. They arise due to the dynamical effects of multiple specular reflec-
tion and extinction of the scattered radiation and can be explained on the basis of the
concept of Umweganregung [19]. The location of these ridges is determined by dou-
ble diffraction when the incident or exit wave occur in a Bragg-diffraction condition.
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The maxima located on the Bragg-like lines appear when both the incident and exit
angles satisfy the X-ray diffraction condition simultaneously. Bragg-like lines up to
second order, and some Bragg-like peaks, are designated in Fig. 5.14a. Almost all
of these dynamical effects are absent in the data from Sample 2, where the interface
imperfections suppress multiple scattering. The panels (b) and (d) in Fig. 5.14 show
the simulated maps for both samples after the final refinement.

The diffuse X-ray scattering from Sample 1, presented in Fig. 5.15a as a set of
rocking curves recorded at different values of 2θ and drawn as open dots, contains the
information about lateral character and vertical conformity of the interface rough-
ness. For the simulated intensities (solid lines), only the diffuse X-ray scattering
components are depicted, for the sake of clarity. The 2θ positions of the ω-scans
are chosen to cross the resonant diffuse scattering sheets of Fig. 5.14. The sample
parameters, refined from the fit procedure, show that the lateral correlation length
of the interfacial roughness Λ1 = 70 nm is shorter for Sample 1 than for Sample 2
grown on the glass substrate, Λ2 = 250 nm. The Hurst parameter is close to unity
(i.e. the roughness of the interfaces has a Gaussian nature) and the vertical correla-
tion of roughness reaches 50 nm, approximately 1/6 of the total multilayer thickness,
consistent with strong confinement of diffuse intensity in RDS sheets. According
to the theoretical model used, the lateral correlation length and the Hurst parameter
were assumed to be the same for all interfaces.

The diffuse scattering data from Sample 2 are shown in Fig. 5.15b. The values
of interfacial roughness obtained by data fitting in this case, σSi ∼ 0.9 nm and
σMo ∼ 0.6 nm, are twice as large as those obtained for Sample 1. The thickness of
basic and inter-diffusion layers are found to be nearly the same as for the sample on
a crystalline substrate. The incoherent scattering, however, is comparable with the
absolute magnitude of the specular beam, which smoothes the latter on the back-
ground of the diffuse intensity. The greater proportion of diffuse scattering in the
detected intensity for this sample is again consistent with a large total roughness
refined from simulations. A large value of lateral correlation length (Λ ∼ 250 nm)
and a small value of Hurst parameter (h ∼ 0.6) points to a jagged roughness profile
with relatively long-distance repetition in the lateral direction. The difference in the
fractal dimension of interfaces in Samples 1 and 2 can probably be attributed to the
initial morphology of the respective substrate’s surface. This fact along with the dif-
ferent primary substrate roughnesses, 0.4 and 1 nm for Samples 1 and 2, respectively,
causes the discrepancy in the replication character of interface profiles in the vertical
direction. Contrary to strongly conformal profiles within Sample 1 (ξz � 50 nm),
vertical correlation of roughness in Sample 2 is found to be ξz � 5.5 nm, which only
slightly exceeds the approximate distance between interfaces.

5.4 Grazing-Incidence Small Angle X-Ray Scattering

The general scattering theory presented in the Sect. 2.1 affirms that the comprehensive
information on the investigated by X-rays sample is contained in the distribution
of scattered X-ray intensity in three-dimensional reciprocal space defined by three

http://dx.doi.org/10.1007/978-3-642-38177-5_2


204 5 Diffuse X-Ray Scattering from Imperfect Surfaces and Interfaces

Fig. 5.15 ω/2θ-scans from
Sample 1 (a) and 2 (b) for
different fixed values of 2θ.
The theoretical data are given
by solid lines and experiment
is represented by open circles.
The numbers mean the 2θ
values and the curves at dif-
ferent 2θ offsets are rescaled
for clarity
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components of wave vector transfer Q. The specular reflectivity considered in the
Sect. 2.1 corresponds to the one-dimensional projection of this space onto the axis
Qz . The resulting X-ray intensity profile contains the information on the distribution
of electron density along z-axis. The diffuse X-ray scattering discussed in previous
section is a two-dimensional Qx , Qz section of the reciprocal space which gives
access to the sample characteristics in x, z plane. Finally, the analysis of the three-
dimensional landscape of the scattered X-ray intensity delivers the information on
the three-dimensional structure of nanoscale objects (size, shape, spatial ordering,
etc) located onto or near the surface of the investigated samples.This X-ray technique
called grazing-incidence small angle X-ray scattering is widely applied nowadays
for investigation of samples with nanoscale patterns on the surface, such as wires,
dots, pillars and others. There are many publications dedicated to the theoretical
background and experimental results of GISAXS method (see, for example, [27]
and citation therein). Therefore, in this section we make a short outline of some
peculiarities of GISAXS analysis and simulation within the framework of general
scattering theory as well as discuss the accuracy of approximations used for this
analysis.

The kinematical variables describing experimental geometry of GISAXS are
shown in Fig. 5.16, where k and p define the wave vectors of the incident and the
scattered beams, respectively. For GISAXS, the use of two-dimensional detector is

http://dx.doi.org/10.1007/978-3-642-38177-5_2
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Fig. 5.16 The experimental geometry of GISAXS measurements using two-dimensional detector

very effective for recording of the scattered X-ray intensity. The variables αi and
α f define the angles of vectors k and p to the sample surface, respectively, and the
angles 2θi and 2θ f are the in-plane angles with respect to the normal to the detector
plane. The components of the wave vector transfer are then expressed as:

Q = p − k;
pz = −k0 sinα f ; py = k0 cosα f sin 2θ f ; px = k0 cosα f cos 2θ f ;

kz = k0 sinαi ; ky = k0 cosαi sin 2θi ; kx = k0 cosαi cos 2θi . (5.78)

In many cases, the angles are defined with respect to the plane constructed by the
incidence beam and the normal, which corresponds to θi = 0 and the expression
(5.78) is simplified to:

pz = −k0 sinα f ; py = k0 cosα f sin 2θ f ; px = k0 cosα f cos 2θ f ;
kz = k0 sinαi ; ky = 0; kx = k0 cosαi ;

Qz = k0(sinαi + sinα f ); Qy = k0 cosα f sin 2θ f ;
Qx = k0(cosα f cos 2θ f − cosαi ). (5.79)

The specular reflection corresponds to the angles αi = α f , 2θi = 2θ f and its
intensity is essentially higher than the diffuse scattering into other directions, and
therefore the GISAXS profile is analyzed with the cut out specular spot. In the
processes of the scattering from the surfaces, the intensity of the scattered radia-
tion decreases rapidly with the increase of the scattering angles. Thus, the typical
observation angles in GISAXS technique are of the order

√|χ| ∼ 10−2 rad. The
scattering angles can be expressed directly through the detector coordinates (xd , zd)

and detector-sample distance D:
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Fig. 5.17 Typical structure of the samples investigated by GISAXS technique. The transition layer
may occur both at z > 0 (inclusions), and at z < 0 (supported islands)

sinα f = zd

D
; sin 2θ f = yd√

D2 − z2
d

. (5.80)

The main purpose of GISAXS technique is an investigation of the spatial cor-
relations and the morphology of the compact nano-objects. These objects can be
located both on the top of the sample surface and as inclusion in under-surface area
(Fig. 5.17). Both these cases are considered on the basis of the same theory imple-
menting the boundary layer with positive and negative coordinates z and with the
scattered potential VS(r) different than the substrate potential V (r).

For the simulation of X-ray intensity in GISAXS geometry, the statistic approach
and DWBA with potential VS(r) are used, similarly to the diffuse X-ray scattering in
XRR geometry. As described in the Sect. 2.1, firstly the solutions of the zeroth approx-
imation (5.9) for coherent waves are found, which are defined by the Eqs. (5.48) and
(5.49). For GISAXS intensity, the diffuse scattering from the surface roughness is
neglected, and the coherent potential is constructed from the potential V0(z) of the
ideally flat substrate with polarizability χ0 and average potential V̄S(z) of the tran-
sition layer:

Vc(z) = V0(z)+ V̄S(z) ≡ k2
0χ0 H(z)+ < VS(r) >, (5.81)

where the scattering potential of objects is averaged both over their shapes and over
the positions of their centers on the substrate S.

The majority of works reporting the simulation of GISAXS profiles don’t con-
sider the transition layer created by the potential of nano-objects when constructing
the zeroth approximation of DWBA. However, the theory of X-ray diffuse scattering
(Fig. 5.8) affirms that the re-normalization of the reflection and transmission coeffi-
cients in self-consistent approach is of the same order as incoherent part of potential
and influences essentially the calculated scattered X-ray intensity. This fact of the
importance of transition layer has been emphasized for GISAXS in [28].

http://dx.doi.org/10.1007/978-3-642-38177-5_2
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To calculate V̄S(z), the following expression for the scattering potential for N
nano-objects is used:

VS(r) = k2
0χ1

N∑

n=1

Ω(r − Rn);

χ1 = χS, i f z < 0; χ1 = χS − χ0, i f z > 0, (5.82)

whereΩ(r − Rn) is a dimensionless function defining the size and the shape of the
object, located in the position Rn . All nano-objects are assumed to be composed of
the same material with X-ray polarizability χS , and the condition z < 0 corresponds
to the supported islands and z > 0 describes the inclusions within the substrate.

In opposite to diffuse X-ray scattering in XRR, where the integral characteristics
of the roughness are modeled, the scattering potential in GISAXS implements the
parameters of the function Ω(r) and the coordinates Rn as random values. The
spatial shape of nano-objects is modeled by simple geometrical forms (truncated
sphere, parallelepiped, tetrahedron, etc), which are selected basing on the results of
supplemental studies or growth conditions. In the simulation of GISAXS intensity,
the form-factor of the nano-object F(Q) is more convenient parameter to fit than the
function Ω(r); the former is expressed through the latter as:

Ω(r) = 1

(2π)3

∫
d QF(Q)ei Qr ; F(Q) =

∫
d rΩ(r)e−i Qr , (5.83)

being justified by the volume v0 of a nano-object as F(0) = v0. Below we explicitly
write the form-factors of truncated pyramid and sphere frequently used as a model
of nano-objects shape [27]:

Truncated pyramid with square basis of size 2R, the height h and inclination
angle α:

F(Q) = 4
∫ h

0
dz

sin Qx Rz sin Qy Rz

Qx Qy
e−i Qz z; Rz = R − z

tanα
. (5.84)

Truncated sphere with radius R and height h (here J1 is a Bessel function):

F(Q) = 2πei Qz(h−R)

Q⊥

∫ h

0
dz Rz

J1(Q‖ Rz)

Q⊥
ei Qz z;

Rz =
√

R2 − z2; Q‖ =
√

Q2
x + Q2

y . (5.85)

For more examples of nano-object shapes see the review [27]. The parameters
of form-factor ξi = (R, h,α, ..) are the random values with independent distribu-
tion functions p(ξi ), characterized by the average values ξ̄ and dispersions Dξ . The
statistic nature of the potential (5.82) is related to the random positions of the nano-
objects. The selection of the distribution function for variable Rn parameterizes the
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fitting of GISAXS data, too. For small concentration of nano-objects satisfying the
condition for the surface density ρS :

ρS Q2‖ ≈ ρSk2
0 |χ0|2 
 1, (5.86)

the scattering from each object occurs independently, and therefore the one-particle
distribution function P(R⊥) is only essential.

However, for many of nano-size objects used in modern technology the condition
(5.86) is not satisfied, and thus the two-particle distribution function P12(R1‖, R2‖)
has to be considered, which is related to the correlation function g(R1‖ − R2‖). By
the definition [4], the value ρSg(R‖)d R2‖ provides the probability to find the second
nano-object near the position d R2‖ on the distance R‖ from the first nano-object.
Here, we don’t consider the special cases of ordered nano-objects [27] and assume
the uniform distribution of objects:

P(R‖)d R‖ = d R‖
S

= const. (5.87)

For the correlation function, the models are used which are parametrized by corre-
lation length Lc and oscillation period Dc describing the partial far-distance ordering
in the position of nano-objects. The frequently used functions g(R‖) and interference
function S(Q‖) are given in [27] as:

1. Debye hard core model (applied for small density ρS):

g(R‖) = 0, 0 < R‖ < Lc; g(R‖) = 1, R‖ > Lc;
S(Q‖) = 1 + ρS

∫

S
d R‖[g(R‖)− 1]ei Q‖ R‖

= 1 − 2πρS
J1(Q‖Lc)

Q2‖
; 2πρS L2

c < 1. (5.88)

2. Oscillation Zhu model [29] (effective for large ρS ):

g(R‖) = 1 − e−R‖/LC cos
2πR‖

Dc
;

S(Q‖) = 1 − ρS L2
c D2

c

2

[
Dc − i2πLc

[(Dc − i2πLc)2 + L2
c D2

c Q2‖]3/2

+ Dc + i2πLc

[(Dc + i2πLc)2 + L2
c D2

c Q2‖]3/2

]
; ρS D2

c < 1; Dc 
 Lc. (5.89)
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3. Paracrystal model [30] ( applicable for dense position of nano-objects with
far-distance ordering):

S(Q‖) = 1 − φ2(Q‖)
1 + φ2(Q‖)− 2φ(Q‖) cos Q‖Dc

;

φ(Q‖) = exp[−πQ2‖L2
c]. (5.90)

In some practical cases, the good fitting results of GISAXS patterns are obtained
using the weighted mixture of several models described by differentΩl (r) and pl(ξi ),
[27]. The averaging of (5.82) with uniform function (5.87) results in the following
scattering potential of the transition layer:

V̄S(z) = k2
0χ1

N∑

n=1

P(Rn‖)
∫

d Rn‖ < Ω(r − Rn‖) >

= k2
0χ1ρS

∫
d r‖ < Ω(r) >= k2

0χ1s̄‖ρSλ(z), (5.91)

where s̄‖ is an average square of the nano-object’s cross-section, and the profile λ(z)
of the transition layer depends on the type of the nano-object’s localization:

λ(z) = ±[H(z ± h̄)− H(z)], (5.92)

where signs (±) refer to the supported islands and the inclusions (Fig. 5.17), and h̄
is an average height of the nano-object.

Thus, the solution of the wave equation with potential (5.81) in zeroth DWBA
approximation corresponds to the reflection problem from bi-layered structure and
is delivered by formulas (5.64) and (5.65):

{Δ+ k2
0 + Vc(z)}A(r) = 0;

A(+)k (r) = ei k⊥r⊥ E (+)k (z); A(−)p (r) = ei p⊥r⊥ E (−)p (z);

E (+)k (z) =
2∑

j=0

[Tj (kzj )e
ikzj z + R j (kzj )e

−ikz j z];

E (−∗)
p (z) = E (+)−p (z) =

2∑

j=0

[Tj (pzj )e
−i pz j z + R j (pzj )e

ipzj z];

Vc(z) = k2
0[χ1s̄‖ρSλ(z)+ χ0 H(z)]. (5.93)

To calculate the X-ray scattering cross-section from nano-objects in the first order
of DWBA and on the basis of formula (5.24), the only transmission T1(kz1) and
reflection R1(kz1) coefficients for transition layer are required:
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T1(kz1) = t01

B
ei(k0z−k1z)z0; R1(kz1) = −r21t21

B
ei(k0z+k1z)z0 e2ik1z h̄;

B = 1 + r10r21e2ik1z h̄; t jl = 2k jz

k j z + klz
; r jl = −k jz − klz

k j z + klz
;

k0z = k0 sinαi ; k1z = k0

√
sin2 αi + χ̃1; k2z = k0

√
sin2 αi + χ0,

p0z = −k0 sinα f ; p1z = −k0

√
sin2 α f + χ̃1; p2z = −k0

√
sin2 α f + χ0 (5.94)

with z0 = −h̄; χ̃1 = χSs̄‖ρS corresponding to supported islands and z0 = 0; χ̃1 =
(χS −χ0)s̄‖ρS +χ0 to the inclusions. The parameter s̄‖ρS = ΠS defines the portion
of the sample surface occupied by nano-objects, and thus ΠS is a “porosity” of the
layer filling.

The specular rod at Q‖ = p‖ − k‖ ≈ 0 is determined by the squared modulus of
the reflection coefficient R0(k0z):

R0(k0z) = [r10 + r21e2ik1z h̄]
B

e2ik0z z0 . (5.95)

In real GISAXS experiments, however, the detector is protected from intense specular
beam by beam stopper [27] to avoid the distortion of X-ray pattern at non-specular
angles.

The GISAXS pattern at p‖ �= k‖ is found from formula (5.24) for X-ray intensity
cross-section resulted from the matrix element (5.93) and potential (5.82) (pzj < 0):

dσG( p, k)
dΩ p

= k4
0 |χ1|2
(4π)2

|
∑

j

M j (Q‖, kz, pz)e
i Q‖ R j‖ |2;

M j (Q‖, kz, pz) = T1(kz1)T1(pz1)F(Q‖, kz − pz)

+T1(kz1)R1(pz1)F(Q‖, kz + pz)+ R1(kz1)T1(pz1)F(Q‖,−kz − pz)

+R1(kz1)R1(pz1)F(Q‖,−kz + pz), (5.96)

where F(Q‖, Qz) is a form-factor as in (5.83) for the selected model of nano-object.
Using the statistical approach, this cross-section has to be averaged both over the

shape parameters of nano-object with distribution p(ξi ) and over the position R j‖
with correlation function g(R‖). By utilizing the relations for averaged values [4],
the GISAXS intensity is written as [27]:

<
dσG( p, k)

dΩ p
>= k4

0 |χ1|2 N

(4π)2
[< |M(Q‖, kz, pz)|2 >

−| < M(Q‖, kz, pz) > |2 + | < M(Q‖, kz, pz) > |2S(Q‖)], (5.97)
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Fig. 5.18 GISAXS pattern in (Qz, Qy) coordinates for the sample consisting of Pt balls (χS =
−1.04 · 10−4 + i1.02 · 10−5) located on MgO substrate (χ0 = −2.3 · 10−5 + i2.44 · 10−7). The
model parameters are: R̄ = 0.5 nm; σR = 0.03 nm; Dc = 2Π nm; Lc = 0.1 · Dc; Π = 0.5;
ρS = 8 nm−2

where the brackets < .. > mean the averaging over the parameters of the shape;
the interference function is defined by Eq. (5.89); the term proportional to δ(Q‖) is
already included in specular reflection coefficient (5.95).

The expression (5.96) and (5.97) permit to simulate GISAXS intensity as two-
dimensional pattern or one-dimensional profiles, corresponding to different scans
in a real space. The statistical characteristics of all nano-objects are modeled by the
same distribution function, i.e. the mono-disperse approximation is used. Figure 5.18
shows the typical GISAXS pattern from the sample described in the caption. The
quantitative values of the sample parameters can be evaluated from the fitting of the
selected sections of GISAXS pattern to the measured data. The examples of such
sections are shown in Fig. 5.19.

Even without accurate data fitting, the estimate for the physical sample parameters
can be obtained from the peak position on the presented profiles. The most intense
peaks are the Yoneda wings described in previous sections. From these peaks the
following parameters can be identified: (i) the oscillation period of the correlation
function D̄ ≈ 2π

Qy
is determined from the peaks at Qy ≈ 1 nm−1; (ii) the correlation

length L̄ ≈ 1
Δ2

, where Δ2 is a half-width of the Yoneda peak. Finally, (iii) the

average geometrical size of the nano-object R̄ ≈ 1
Δ1

, where Δ1 is a half width at
full maximum of the highest peak on Qz-scan, is determined, too. The review [27]
describes the multiple models for GISAXS evaluation with high accuracy, and the
reader is referred to this work for further details.

Here we provide two practical applications of GISAXS technique for investigation
of nano-scale objects used in modern technologies [31]: Fe2O3 nano-particles and
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Fig. 5.19 a Qy-scan at Qz = 0.8 nm−1 and b Qz-scan at Qy = 2.0 nm−1 for the sample described
in Fig. 5.18

Si nano-pattern (dots). The self-assembled iron oxide nano-particles synthesized by
a high-temperature solution phase reaction and the silicon dots produced by an ion
bombardment have been investigated by using atomic force microscopy and grazing-
incidence small-angle scattering technique. Both methods delivered the consistent
results on the estimate for the particle size and shape and primary knowledge on the
ordering of the objects. A distorted-wave Born approximation approach has been used
for X-ray data fitting. In the case of the silicon dots, the dense long-range particle
distribution over the whole sample surface is found, whereas FeO nano-particles
exhibit the short-range correlations. Both results are consistent with the local AFM
investigations (see details in [31]).

The Fig. 5.20 shows the AFM phase image from FeO nano-particles. The images
display relatively uniform distribution of the objects with the certain amount of gaps
not filled by the particles. The X-ray measurements in grazing-incidence geometry
(Fig. 5.21a) show the side wings revealing the characteristic lateral ordering present-
ing in the sample. Using the information obtained from the AFM studies, i.e. close

100 nm 20 nm(a) (b)

Fig. 5.20 AFM images of FeO nano-particles: a phase forward scan overlayed with the topography
scale, b zoomed area around the gap on the left panel
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Fig. 5.21 GISAXS reciprocal space map from FeO nanoparticles on Si substrate (a) measured and
(b) simulated by DWBA at incidence angle 0.36◦
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Fig. 5.22 Selected Qz and Qy sections of measured GISAXS reciprocal space map fitted by the
sample model described in the text. In the typical fitting procedure, up to the 10 sections have been
involved

packing structure of the particles and assuming the electron density of the particles
and substrate are known, the Qy-elongated peak below the side wings points to the
value of the particle’s diameter. For the measured at the incidence angle 0.36◦ X-ray
data presented in Fig. 5.21a, several Qz and Qy sections (Fig. 5.22) have been fitted
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Fig. 5.23 a AFM image of silicon nano-dots; b GISAXS reciprocal space map from Si nano-dots
measured at incidence angle 0.22◦
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Fig. 5.24 Selected experimental (dots) and fitted (solid lines) sections extracted from the reciprocal
space map on Fig. 5.23

on the basis of a single sample model and joint cost function by using a least-square
minimizing algorithm and varying the following sample parameters: particle radius
value r , its root mean square σ, and lateral correlation length Λ. The good fits were
obtained when using the uniform parameter distribution and spherical shape of the
objects. The radius of nano-particles r = 3.0 ± 3.1 nm found from the data fitting
correlates well with independently fitted value of the correlation periodΛ = 7.3 nm
and with the value estimated from AFM investigations. The model of the uniform
(not gaussian) radius distribution ascribes the large dispersion of parameter, assum-
ing the equal probability for all values in the limited interval. The full reciprocal
space map simulation of GISAXS scattering from the sample with fitted parameters
(Fig. 5.21b) replicates all the qualitative features presented on the experimental map.

The AFM studies of silicon nano-dots (Fig. 5.23a) demonstrate an evident paracrys-
talline structure, for which X-ray investigation methods fit best of all. The GISAXS
reciprocal space map (Fig. 5.23b) measured at incidence angle 0.22◦ shows satellite
maxima extended along Qz direction. The best fit has been obtained using paracrystal
model for cylindrically shaped nano-dots. The radius and the height of the cylinders
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are found to be r = 9.4 ± 2.2 nm and h = 8.3 ± 0.8 nm, respectively; the correla-
tion length Λ = 41.5 nm estimates the size of the domain, where particles position
correlates in the long-range order, and the correlation period D = 10.2 nm gives
an average distance between the centers of the dots. As in the case of FeO nano-
particles, the set of the Qz and Qy sections (Fig. 5.24) of the reciprocal space map
have been fitted simultaneously on the basis of the unique sample model and common
cost function. The results obtained for the particles parameters confirm the values
received from the AFM studies, however, deliver more detailed information on the
particle’s shape and correlation averaged over the large sample area.
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Chapter 6
X-Ray Diffraction from Crystals with Defects

In the Chap. 4, the X-ray diffraction from perfect crystals has been considered in
details, however, the real crystals always posses the defects. The distribution of the
diffracted X-ray radiation depends on the type of the defects and their concentration,
which is manifested as: (1) attenuation of coherent scattering potential χH due to
static Debye-Waller factor, and as a result, the diminution of the diffracted intensity
calculated by formulas in Chap. 4. This intensity is called further coherent because
of it is formed by the diffraction on the crystallographic lattice and is not sensitive
to microstructure. Being formed by a whole volume of the diffracted sample, the
coherent intensity shows up as sharp peaks similar to delta-functions (4.14); (2)
additional broad component of X-ray intensity called diffuse scattering. In opposite
to coherent component, the distribution of diffuse X-ray scattering is determined by
the defects type, in particular by the displacement field created by defects.

The diffuse X-ray scattering from defects is proportional to Fourier transform of
strain fields created by the defects. The strongly localized strain fields caused by
point defects result in a broad distribution of diffuse scattering and diminish weakly
the coherent intensity. In opposite, the extensive defects like dislocation lines, which
have slowly decreasing strain fields and distort the crystallographic order in large
area, result in diffuse intensity concentrated near reciprocal lattice point and diminish
essentially the coherent peaks. The two-dimensional defects (stacking faults) sub-
stantially re-distribute the diffracted intensity and require a special consideration.

In this chapter, the incident X-ray beam is assumed to illuminate a large gauge
volume, and the resulting X-ray diffraction intensity originates from the interaction
of X-rays with a big statistical ensemble of atoms, which undergo the influence of
defects. There is no need in intense X-ray sources for investigation of such systems,
and laboratory equipment is used effectively for studies, however, the results obtained
deliver the statistically averaged characteristics of the defect ensembles. By using
highly intense X-ray beams in synchrotrons or XFELs, the strain field of particular
objects without averaging can be investigated (coherent X-ray diffraction [1], high-
resolution 3D X-ray diffraction [2]). There is also an alternative approach to the
analytical one described in this chapter, which utilized the numerical modeling of
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the statistical systems on the basis of Monte-Carlo method [3, 4]. In the most cases,
the results obtained by the analytical statistical methods are valid and confirmed
experimentally on microscopic level.

6.1 X-Ray Polarizability of Crystal with Defects

The distortion of crystallographic structure caused by defects is described using
the displacement fields created by these defects. Being periodic in the absence of
defects, the origin of the crystallographic unit cell makes a shift from the initial state
n = l1a + l2b + l3c; li = 0,±1,±2, . . ., to the point n + u(n) in the presence of
defects, where u(n) is a total displacement field of all defects.

The displacement field of a defect is defined by the equations of microscopic elas-
ticity theory [5]. The solutions of these equations are found either analytically [6]
or by using a finite elements method. For the macroscopic approach, the displace-
ment fields are supposed to be small and slowly changeable within the elasticity
limits. In the case of large deformations of crystallographic lattice, the calculations
based on the molecular potentials and quantum mechanics methods are necessary.
The contribution of the domains with large deformations into X-ray diffraction is
small indeed, because of the disordered area with weak correlations between atomic
positions does not contribute to the diffraction signal. Thus, the macroscopic elastic
theory is suitable for calculation of the displacement fields investigated by X-ray
diffraction. Using this approximation, the wave function of electrons in the distorted
crystal is assumed to be periodic with the correction for deformation, and deviates
from the one for perfect crystal (1.49) by the vector u(n):

ψα,κ(r + n + u(n)) = eiκnψα,κ(r), (6.1)

and the expression for current (1.42) will be modified, too. The periodicity of wave
function (1.49) leads to the expansion of X-ray polarizability χμ,λ(k,ω)(r) into a
sum over the vectors of reciprocal lattice

∑
H ei H rχμ,λ(k, H,ω) and makes possible

a direct transition to Fourier representation (1.57). In the presence of displacement
fields, the additional multiplier appears, which varies slowly with variation of coor-
dinate r . Here we return back to coordinate representation (1.36) and consider a first
term in (1.36):

Jμ(r,ω)
(e) =

−r0c
Ne∑

j

Ne∑

l

∫
d r ′ < �0|δ(r − r j )δ(r ′ − rl)δ jlδμλAλ(r

′,ω)|�0 > =

−r0cAμ(r,ω)
∑

n

occ∑

α,κ

1

N
gα,κ|ψ̃α,κ(r − n + u(n))|2

(6.2)
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The value
∑

n
∑occ

α,κ
1
N gα,κ|ψ̃α,κ(r − n + u(n))|2 is an electron density of the

crystal
∑

n
1
N ρ̃(r − n+ u(n)), where ρ̃(r) is an electron density distribution inside a

crystallographic unit cell. To sum up over n in (6.2), the Poisson summation formula
is used:

∑

n

ρ̃(r − n − u(n)) =
∑

n

∫
d3 Qe−i Qr

∫
d3r ′ρ(r ′ − n − u(n))ei Qr ′

=
∑

n

∫
d3 Qe−i Q(r−n−u(n))F(Q), (6.3)

and the definition (1.49) has been applied. Assuming a small variation of the displace-
ment fields inside unit cell and small deformations |n| � |u(n)|, the approximate
expression u(n) ≈ u(r) is used in further calculations. By utilizing (1.47), the X-ray
polarizability for the elastic scattering in deformed crystal χ(e),def

H differs from the

one for ideal crystal χ(e),idH by multiplier ei Hu(r). For the part of X-ray polarizability
related to the anomalous dispersion, the use of (1.55) and (6.1) results in:

χdef(r) =
∑

H

ei Hu(r)χid
H e−i H r . (6.4)

To numerically calculate X-ray polarizability using (6.4), the distribution of the
displacement fields u(r) created by all crystal defects has to be known. Within
the framework of linear elasticity theory, the displacement field of a single defect
doesn’t depend on the presence of other defects, and total displacement is defined
by the superposition of all displacements:

u(r) =
∑

α,t

uα(r; nt,α), (6.5)

where the summation is performed over all defects types α, located in the nodes
nt,α. As introduced in [7] by Krivoglaz, we use the random values cn, describing the
defects in atomic positions n:

cn = 1 defect is at site n
0 defect is not at site n.

(6.6)

The knowledge of the distribution of these values defines the statistical properties
of the defects and permits to calculate the average values of any physical parameter
depending on defects. In general case, the values cn and cn′ are inter-dependent,
which happens when the positions of the defects are correlated. However, first of
all we calculate the X-ray intensities in the assumption of non-correlated defects,
viz. supposing all the defects are of the same type and distributed uniformly. The
distribution function in this case is conditioned by the probabilities depending on a
single parameter c, which has a meaning of the probability of the defect to be found
in the atomic position:

http://dx.doi.org/10.1007/978-3-642-38177-5_1
http://dx.doi.org/10.1007/978-3-642-38177-5_1
http://dx.doi.org/10.1007/978-3-642-38177-5_1
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P(cn = 1) = c, (6.7)

P(cn = 0) = 1 − c. (6.8)

The propagation of X-rays in a crystal with defects depends on the following parame-
ters: (1) the average polarizability, which includes the Debye-Waller factor 〈ei Hu(r)〉,
and (2) average correlation function g(r, r ′), which is g(r, r ′) = 〈ei H(u(r)−u(r ′))〉.

The averaging procedure [7] by using (6.7) and (6.5) results in

〈
ei

∑
n cns(n)r

〉
=
〈
∏

n

eicns(n)r

〉
=
∏

n

〈
eicns(n)r

〉

=
∏

n

(ceis(n)r + (1 − c) · 1) = e
∑

n ln[1+c(eis(n)r −1)] (6.9)

where s(n)r is equal to Hu(r; n) for Debye-Waller factor and to H(u(r; n) −
u(r ′; n)) for correlation function. In Eq. (6.9), the assumption of non-correlating
defects has been used, which allows the averaging of each multiplier eicns(n)r in the
product

∏
n separately. There is another assumption of the smallness of c, which is

always valid because of the displacement fields created by defects are considered as
a perturbation with respect to the perfect crystallographic structure. Using this fact,
the approximate expression can be used:

〈eis(n)〉 ≈ e
∑

n c(eis(n)−1). (6.10)

By changing to the continuous integration limits and using ρ = c/�:

〈ei Hu(r)〉 = e
∫

d3r ′ρ(ei Hu(r;r′)−1)

〈ei H(u(r1)−u(r2))〉 = e
∫

d3r ′ρ(ei H(u(r1;r′)−u(r2;r′)−1). (6.11)

Because of the value Hu(r; r ′) is small, the integral in (6.11) can be expanded into
series, which results for Debye-Waller factor:

〈ei Hu(r)〉 ≈ ei H〈u(r)〉e− 1
2 〈(Hu(r))2〉, (6.12)

〈u(r)〉 =
∫

d3r ′ρu(r; r ′), 〈(Hu(r))2〉 =
∫

d3r ′ρ(Hu(r; r ′))2.

This expression can also be obtained assuming the random nature of the displace-
ment field in the point r with Gaussian normal distribution, which is used in some
works [8, 9]. The central limit theorem is used as a basis for this assumption, which
states that the random value being a sum of a large number of independent and equally
distributed random values has a normal distribution. For the crystal defects this is
true if the density of defects is high and the displacement fields attenuate slowly.
The displacement field u(r) is in reality a the sum of random values

∑
n cnu(r; n).
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Provided the slow attenuation of the displacement fields, the number of terms in this
sum contributing to certain position is large enough and the condition of central limit
theorem is fulfilled. If the theorem is not applicable or there is a divergence in (6.12),
the exact expressions (6.11) have to be used.

The existing correlations between the positions of defects change essentially the
pattern of the diffracted X-ray intensity. To calculate the Debye-Waller factor and
correlation function in this case, the averaging has to be done:

〈
∏

n

eicns(n)

〉
≡ M

∏

n

ei Hcns(n), (6.13)

where M means the mathematical expectation of a random value. Omitting the vector
notations in indices and using:

eci si = 1 + ciαi , αi = (esi − 1), (6.14)

the expression (6.13) is calculated using the methods developed in [7, 10]:

Me
∑

k ck sk = M
∏

i

(1 + ciαi ). (6.15)

To realize numerically the expression (6.15), the following values have to be calcu-
lated:

M
∑

i, j,...k

ci c j ck ...αiα jαk ... (6.16)

which in turn depend on the average values Mci c j ck .... For two-points correlations:

Mci c j = δi j + c2(1 + wi j ), (6.17)

where the first term stands for coincident nodes i and j , wi j = w|i− j | is a pair
correlation function. The coincidence of nodes has to be taken into account in all
expressions:

Mci c j ck = δi jkMci + δi j M′ci ck + δikM′ci c j + δ jkM′ci c j + M′ci c j ck, (6.18)

where M′ is applicable for random values from different nodes. For the random vari-
able taking a value 0 and 1, the statement cn

i = ci is valid. Below we express the
multi-lateral correlations through the pair correlations using Kirkwood approxima-
tion:

M ′ci c j ck = c3(1 + wi j )(1 + wik)(1 + w jk), (6.19)

and the expression (6.15) is modified to:
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Me
∑

k ck sk = M
∏

i

(1 + ciαi ) = 1 +
∑

i

αi Mci +
∑

i< j

αiα j M′ci c j

+
∑

i< j<k

αiα jαkM′ci c j ck + . . . (6.20)

This series can be represented as cumulant expansion:

M
∏

i

(1 + ciαi ) = e
∑∞

n=1
Tn
n!

T1 =
∑

i

Mciαi

T2 =
∑

i 	= j

αiα j (M
′ci c j − (Mci )

2) =
∑

i 	= j

c2αiα jwi j

T3 =
∑

i 	= j 	=k

αiα jαkM′ci c j ck − 3T1T2 − T 3
1 =

∑

i 	= j 	=k

αiα jαkc3(3wi jwik + wi jwikw jk)

... (6.21)

where the small magnitude of Mck = c and the approximation
∑

i1<i2...<in
≈

1
n!
∑

i1 	=i2...	=in
are taken into account. As follows from (6.21), each term corresponds

to the correlations between the groups (clusters) consisting of a single (no correla-
tions), two (pair correlation), three and so on defects. Figure 6.1 shows schemat-
ically the term T3, where three diagrams on the left side correspond to the terms∑

i 	= j 	=k αiα jα j c3(wi jw jk + w jkwik + wi jwik), and the connection between all

three vertices corresponds to
∑

i 	= j 	=k αiα jα j c3wi jwikw jk .
The connections between two vertices only (three-particle cluster is split into

one-particle and two-particle) or non-connected vertices (three-particle cluster is
split into three one-particle ones) are taken into consideration in terms T2 and T1, i.e.
T3 accounts only non-reducible three-particles connections.

In the same way, the contribution of clusters of higher order into cumulant expan-
sion is found, being represented by a n-times integral. By analogue with the group
expansion for non-ideal gas [11] they have to be considered if the correlation function
wi j becomes not negligible. In this case the contribution of N -particle cluster (N is
a full number of dislocations in a sample) becomes essential.

Fig. 6.1 Schematic representation of the connections between defects described by the term T3 in
Eq. (6.21)



6.2 Dynamical X-Ray Diffraction in a Crystal with Defects 223

6.2 Dynamical X-Ray Diffraction in a Crystal with Defects

The transmission of X-rays in a deformed crystal with defects is determined by the
Eqs. (1.41, 1.53, 1.57) and (6.4):

ΔA(r)+ ω2

c2 (1 +
∑

H

ei Hu(r)χH e−i H r)A(r) = 0, (6.22)

where the argument of function ω is omitted and σ-polarization is assumed for
simplicity (X-rays are supposed to be monochromatic). Similarly to Chap. 5, the
far distance approximation is considered, and two-wave diffraction concept is used,
which implements the wave field:

A(r) = eσ(A0(r)+ AH (r)ei H r), (6.23)

and Eq. (6.22) is split into two differential equations:

(Δ+ k2
0(1 + χ0))A0(r)+ k2

0ei Hu(r)χH AH (r) = 0

(Δ+ 2i H∇ − H2 + k2
0(1 + χ0))AH (r)+ k2

0e−i Hu(r)χ−H A0(r) = 0. (6.24)

Both amplitudes A0(r) and AH (r) contain the rapidly oscillating part ei k̃0 r , where
k̃0 = −Nγ0 + k0,|| is a wave vector of the incident wave, here we use the notations
of Chap. 4 (4.31). Thus, for slowly varying functions Ã0(r) and ÃH (r) we obtain:

(Δ+ 2i k̃0∇)A0(r)+ k2
0ei Hu(r)χH AH (r) = 0

(Δ+ 2i k̃H∇ + α)AH (r)+ k2
0e−i Hu(r)χ−H A0(r) = 0. (6.25)

The reduction of these formulas for the ideal crystal is straightforward: assuming
ei Hu(r) = 1 and solutions as A0(r) = A0eiδz, AH (r) = AH eiδz , we arrive back
at (4.41). As discovered in the Chap. 4, for high incidence angles the value δ2 is
negligible in comparison with δ, which corresponds to the neglecting the second
derivativesΔwith respect to k̃∇. The Eq. (6.25) with omittedΔ are known as Takagi-
Taupin [12] equations and widely used for description of X-ray scattering from bent
and deformed crystals [13]. For grazing-incidence geometry, however, the second
derivatives should be accounted and therefore they are remained in (6.24) to cover
also GID case.

The function ei Hu(r) in (6.24) is a random value, and thus the wave fields in
crystal A0(r) and AH (r) are random values, too. The observed quantity is an X-ray
intensity I (kin, kout ) registered by detector in the direction kout and averaged over
all defects of a gauge volume. To calculate this intensity, the distribution of two-point
correlation function 〈AH (r1)AH (r2)

∗〉 on the crystal surface should be known [14].
The variable 〈AH (r1)AH (r2)

∗〉 is called the second statistical moment of the field,
and to calculate it at the sample surface, the following requisites have to be found:

http://dx.doi.org/10.1007/978-3-642-38177-5_1
http://dx.doi.org/10.1007/978-3-642-38177-5_1
http://dx.doi.org/10.1007/978-3-642-38177-5_1
http://dx.doi.org/10.1007/978-3-642-38177-5_5
http://dx.doi.org/10.1007/978-3-642-38177-5_4
http://dx.doi.org/10.1007/978-3-642-38177-5_4
http://dx.doi.org/10.1007/978-3-642-38177-5_4
http://dx.doi.org/10.1007/978-3-642-38177-5_4
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(1) an equation describing its evolution inside the crystal, (2) the first moment of
the field 〈AH (r)〉, which is an average (coherent) wave field in crystal. To find both
requirements, the method developed in the radiative transfer theory in random media
[15] is used here, which represents the Eq. (6.24) in a operator form [14]:

(L0 − V )A(r) = 0,

L0 =
(
Δ+ k2

0(1 + χ0) k2
0e−WχH

k2
0e−Wχ−H Δ+ 2i H∇ − H2 + k2

0(1 + χ0)

)
,

V = −
(

0 k2
0χH f (r)

k2
0χ−H f ∗(r) 0

)
, A =

(
A0(r)
AH (r)

)
(6.26)

e−W = 〈ei Hu(r)〉, f (r) = ei Hu(r) − e−W ,

here L0 is an operator of diffraction from uniform crystal with static Debye-Waller
factor e−W in two-wave approximation, V describes the fluctuating scattering prop-
erties of the crystal with defects, and 〈V 〉 = 0. The expression for evaluation of
coherent wave field [15] 〈A(r)〉 = 0 is found from:

(L0 − Veff)〈A(r)〉 = 0, (6.27)

which reduces the problem to the finding of effective potential Veff. By comparing
the Eqs. (6.26) and (6.27), the effective potential is defined as:

〈V A(r)〉 = Veff〈A(r)〉. (6.28)

To find Veff, the field source Q is introduced in the right part of (6.26):

A = G Q,G = (L0 − V )−1, (6.29)

where G is a Green function of operator L0 − V : (L0 − V )r G(r, r ′) = δ(r − r ′).
By averaging (6.29) and assuming the source Q independent on defects distribution:

〈A〉 = 〈G〉Q. (6.30)

In a similar way, from (6.27) follows:

〈A〉 = (L0 − Veff)
−1 Q, (6.31)

and comparing (6.30) and (6.31), the operator expression for Veff is finally obtained:

Veff = L0 − 〈G〉−1. (6.32)
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The equation for coherent wave field (6.27) with effective potential (6.31) is called
a Dyson equation, by analogue with the physics of elementary particles, and the
effective potential Veff is named a polarization [16] or mass [15] operator.

To make an averaging procedure in (6.32), this expression is expanded in a series
over V . For this purpose the operator equalities are used (AB)−1 = B−1 A−1 and
(1 + A)−1 = ∑∞

n=0(−A)n :

Veff = L0 − 〈G〉−1 = L0 − 〈(L0(1 − G0V )−1〉−1 = 〈V G0V 〉 + ... (6.33)

here G0 is a Green function for diffraction operator for averaged crystal and 〈V 〉 = 0.
The next after 〈V G0V 〉 terms have an order of V 3 and higher. Generally, the terms
with the order higher than two are neglected. If necessary, the diagram technique and
cumulant expansion for higher orders can be used [14, 16].

For the correlation function �(r1, r2) = 〈A(r1)A(r2)
∗〉, the equations are

obtained in a similar manner, i.e. the analogue of (6.26) for non-averaged corre-
lation function is a product of Eq. (6.26):

(L0 − V )1(L0 − V )∗2 A(r1)A
∗(r2) = 0, (6.34)

where indices 1 and 2 mean the operator action on the coordinates r1 and r2, respec-
tively. The equation for �(r1, r2) is found in the form:

(L(e f f )
1 L(e f f )∗

2 − K12)�1,2 = 0, (6.35)

with intensity operator K12, which describes the influence of random deformations
on correlation function �12, L(e f f ) = L0 − Veff. Finally, we obtain for K12:

K12 = L(e f f )
1 L(e f f )∗

2 − 〈G1G2〉−1 =
L(e f f )

1 L(e f f )∗
2 − 〈(L0 − V )−1

1 (L0 − V )−1
2 〉−1 = 〈V1V2〉+... (6.36)

The equation for the correlation function of wave field (6.35) with intensity opera-
tor (6.36) is called Bethe-Salpeter equation, by analogue with relativistic quantum
mechanics. Similarly to (6.36), the terms in (6.33) with higher than second order
of V are neglected, otherwise they can be found by diagram method and cumulant
expansion [14, 16].

To calculate the effective potential (6.32) and intensity operator K12 (6.36), the
Green function G0(r, r ′)i j of the operator L0 has to be known. By the definition, the
Green function must satisfy the condition:

L0
(r)
ik G0(r, r ′)k j = δ(r − r ′)δi j . (6.37)

The definition of Green-function used in this section is slightly different than the one
used in [13, 17], where the scalar Green function of the differential equation of the
second order is used. This equation is obtained from (6.25) by using Takagi-Taupin
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formalism and by excluding the amplitude of the diffracted wave. The wave fields
in a crystal are then found based on the Green theorem, which is reduced to the
contour integrals containing the magnitudes of the wave fields on the boundaries. In
this section, we consider the matrix Green function for the operator L0. The method
proposed here is universal and not based on the Takagi-Taupin approximation.

Let us consider the crystal with the plane surface and introduce a coordinate
system with axis z along the inward normal to the surface z > 0. The function
G0(r, r ′) is expanded into in-plane waves:

G0(r, r ′)i j = 1

(2π)2

∫ ∞

−∞
d2k||ei k0(r−r ′)G(z)

i j (k||)(z, z′), (6.38)

where k|| lies in the plane XY , k0 = k|| + ezγ0, γ0 =
√

k2
0(1 + χ0(z))− k2||. Using

the definition of δ-function:

1

(2π)2

∫ ∞

−∞
d2k||ei k||(r−r ′) = δ(r || − r ′||), (6.39)

the condition (6.37) is fulfilled only if the equation is satisfied:

L0
(z)
ik (k||)G(z)

k j (k||)(z, z′) = δ(z − z′)δi j . (6.40)

Here L0
(z)
i j (k||) is an operator resulted from the action of L0

(r)
i j on vector ei k0 r f j (z):

L0
(r)
i j f j (z)e

i k0 r = ei k0 r L0
(z)
i j (k||) f j (z). (6.41)

Thus, the problem is reduced to the one-dimensional Green function G(z)
k j (k||)(z, z′)

and to the integration over k||. The mixed representation of the Green function, as
a function of the Fourier component k|| for in-plane and (z, z′) for out-of-plane,
fits well for the problems, which have a translational symmetric nature within in-
plane direction. For one-dimensional Green function, the operator L0

(z)
i j (k||) can be

written as:

L0
(z)
i j (k||) =

(
d2

dz2 + 2iγ0
d
dz k2

0e−WχH

k2
0e−Wχ−H

d2

dz2 + 2iγh
d
dz + α

)
. (6.42)

There are several assumptions used below for derivation of Green function. We
exclude here the case of grazing incidence/exit and thus neglect the second derivatives
d2

dz2 . The operator (6.42) is not self-adjoint in general case because of the imaginary
parts in X-ray polarizability χH ,χ−H . For such operator, the complete system of
eigenfunctions consists of the eigenfunctions of this operator and the ones of the
adjoint to it operator (6.42) [18]. Neglecting the imaginary part of X-ray polarizability
(k2

0e−WχH = k2
0e−Wχ−H = χ) and the refraction effects (χ0 = 0), the boundary

conditions (4.98) become exact. We assume also the crystal to be uniform and
semi-infinite, which result in self-adjoint L0

(z)
i j (k||):

http://dx.doi.org/10.1007/978-3-642-38177-5_4
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L0
(z)
i j (k||) =

(
2iγ0

d
dz χH(z)

χH(z) 2iγh
d
dz + α

)
, (6.43)

where H(z) is a Heaviside function. The Green function can be expressed through
the complete system of the eigenfunctions of the operator L0

(z), namely satisfying
the condition:

L0
(z)
i j A(p)

j (z) = p A(p)
i (z), (6.44)

and functional completeness:

∫
dp A(p)

i (z)A(p)
j (z′)

∗ = δ(z − z′)δi j . (6.45)

The Green function is expressed as:

G(z)
i j =

∫
dp

A(p)
i (z)A(p)∗

j (z
′)

p
, (6.46)

which is derived from (6.40) by substitution of (6.44, 6.45).
The eigenfunctions (6.44) are found by a similar algorithm, described for the

diffraction from multilayered structures in Chap. 4. For simplicity, we consider here
the Laue geometry: γ0 > 0, γh > 0. The boundary conditions comprise the presence
of incident wave and the absence of diffracted wave on the infinite distance z → −∞.
At the boundary z = 0 the incident and diffracted waves are continuous:

A(p)(1) (z) = ν1

(
e

p
2iγ0

z

0

)
H(−z)+ ν1

(
v2eiu1z−v1eiu2z

v2−v1
v1v2

(
eiu1z−eiu2z

)

v2−v1

)
eiu1(p)z H(z)

u1(p) = αγ0 − p (γ0 + γh)− √
4γ0γhχ2 + (αγ0 + pγh − pγ0) 2

4γ0γh

u2(p) = αγ0 − p (γ0 + γh)+ √
4γ0γhχ2 + (αγ0 + pγh − pγ0) 2

4γ0γh

v1,2 = p + 2u1,2γ0

χ
. (6.47)

To fulfill the completeness of eigenfunctions, the solutions with the boundary con-
ditions have to be also used, comprising the presence of the diffracted wave and the
absence of the incidence wave at z → −∞:

A(p)(2) (z) = ν2

(
0

e
p−α
2iγh

z

)
H(−z)+ ν2

(
eiu2z−eiu1z

v2−v1
v2eiu2z−v1eiu1z

v2−v1

)
eiu1(p)z H(z). (6.48)

http://dx.doi.org/10.1007/978-3-642-38177-5_4
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The coefficients ν1(p) and ν2(p) are determined from the normalization of function.
The eigenfunctions of self-adjoint operator have to be orthogonal:

∫ ∞

−∞
dz A(p)

(1,2)i
(z)A(p′)

(1,2)i
(z)

∗ = δ(p − p′). (6.49)

To prove this fact, the integration limit on z is substituted by a large number L tending
to infinity, (6.47) is substituted into (6.49) and the expression is integrated. The terms

containing ei(u1(p)−u1(p′))L and ei(u2(p)−u2(p′))L can be replaced by ei
du1(p)

dp (p−p′)L

and ei
du2(p)

dp (p−p′)L , respectively, due to the properties of δ-function. The expressions
including ei(u1(p)−u2(p′))L and similar terms result in rapidly oscillating functions
and don’t contribute to the final result. Furthermore, we use the equalities:

lim
L→∞

1 − e−ikL

ik
= πδ(k)− iP

1

k
,

δ(ak) = δ(k)

|a| , (6.50)

where P means the integration in the sense of eigenvalue. As a result, the terms at
iP 1

p−p′ give zero value, and at δ(p − p′) the value 8πγ0 is obtained. In a similar
way, for (6.48) the value 8πγh is calculated at δ-function and from (6.49) follows:

ν1 = 1√
8πγ0

, ν2 = 1√
8πγh

. (6.51)

The system of functions derived is complete, that is proved by satisfying the condi-
tion:

∫ ∞

−∞
dp(A(p)(1) i

(z)A(p)
(1) j

(z′)
∗ + A(p)

(2) i
(z)A(p)

(2) j
(z′)

∗
) = δ(z − z′)δi j . (6.52)

For the region z, z′ < 0, the expressions (6.47) and (6.48) along with (6.51) lead
directly to (6.52). For the region z, z′ > 0, the integration is more cumbersome and
performed in the following way. First of all, due to the validity of v1v2 = − γ0

γh
, the

terms containing ei(u1z−u2z′) become zero in (6.52), and only the terms containing
eiu1(z−z′) and eiu2(z−z′) remain. Then, we split the Eq. (6.52) into two integrals with
eiu1(p)(z−z′) and eiu2(p)(z−z′) and introduce the substitutions ξ = u1(p) and ξ =
u2(p), respectively. After the transformations involving Eqs. (6.47),(6.48) and (6.51),
the coefficient 1/2π at eiξ(z−z′) is obtained for elements 11 and 22 in (6.52) and zero
coefficient for elements 12 and 21, which proves the validity of (6.52).

As a next step, the Green function can be calculated from (6.46). The calculation of
integral over p is ambiguous because of unclear way of integration in the vicinity p =
0. The method of integration is selected in dependence on the asymptotic of Green
function, whether it is retarded or advanced. To derive the method of integration,
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Fig. 6.2 The illustration of
the integration procedure for
Eq. (6.46)

the integration over real values p is transferred into complex plane (Fig. 6.2). We
introduce the contour, which contains the real axis and is closed at the complex
infinity. Provided the integrand tends to zero at complex infinity, the contour integral
coincides with unknown integral on the real axis. The value of contour integral is
determined by the residues in singularities, which are found from integrand (6.46).
Using (6.47), (6.48) and (6.51), for the region z, z′ < 0:

G(z,z′)
i j =

∫
dp

p

⎛

⎝
1

4πγ0
e

p
2iγ0

(z−z′)
0

0 1
4πγh

e
p−α
2iγh

(z−z′)

⎞

⎠ , (6.53)

and for the region z, z′ > 0:

G(z,z′)
i j =

∫
dp

p

1

4π(γ0 + v2
1γh)

⎛

⎜⎝
v2

1γheiu2(z−z′)+γ0eiu1(z−z′)
γ0

v1

(
eiu1(z−z′) − eiu2(z−z′)

)

v1

(
eiu1(z−z′) − eiu2(z−z′)

)
v2

1γheiu1(z−z′)+γ0eiu2(z−z′)
γh

⎞

⎟⎠ .

(6.54)

In the expression (6.53), the only pole is p = 0, whereas in (6.54) additionally to
p = 0 the denominator equals to zero at:

pB = αγ0 ± 2iχ
√
γ0γh

γ0 − γh
. (6.55)

These values of p correspond to Bragg condition, and u1(pB) = u2(pB), v1(pB) =
v2(pB). The matrix in (6.53) becomes zero and the singularity in (6.55) disappears.

The following procedure of integration around pole p = 0 is accepted depending
on the behavior of (6.53). Because of G11 describes the Green function of plane
wave and at z − z′ > 0 the integrand of G11 tends to infinity in upper semi-plane and



230 6 X-Ray Diffraction from Crystals with Defects

to zero in a lower semi-plane, the contour of integration has to be closed in lower
semi-plane and vice versa at z − z′ < 0 (Fig. 6.2). For retarded Green function, the
perturbation in position z′ influences the wave fields in area z > z′, which happens
when the pole is located in a lower semi-plane. Thus, to perform the integration in
(6.53) and (6.54) the replacement has to be done:

∫
dp

p
→

∫
dp

p + iε′
(6.56)

where ε is an infinitesimal value pointing the direction of the integration path. It has
a meaning of the absorption leading to the wave decay at +∞.

For the residue in the position −iε and at z − z′ > 0, the integration is executed
in a negative direction of a real axis and thus the result is multiplied by −1, which
calculates (6.53) as:

G(z,z′)
i j =

( 1
2iγ0

0

0 1
2iγh

e
−α

2iγh
(z−z′)

)
H(z − z′). (6.57)

For expression (6.54) at large p, which corresponds to the essential deviation from
Bragg condition, we have v1 → 0, u1 → p

2iγ0
, u2 → p−α

2iγh
, and as a result:

G(z,z
′)

i j = 1

2i(γ0 + v2
1γh)

×

×
⎛

⎜⎝
v2

1γh eiu2(z−z′)+γ0eiu1(z−z′)
γ0

v1

(
eiu1(z−z′) − eiu2(z−z′)

)

v1

(
eiu1(z−z′) − eiu2(z−z′)

)
v2

1γh eiu1(z−z′)+γ0eiu2(z−z′)
γh

⎞

⎟⎠

× H(z − z′), (6.58)

where all values are calculated at p = 0. At large deviations from the Bragg con-
dition, the variable v1 → 0, and (6.58) is reduced to (6.57). The difference between
(6.58) and (6.57) is essential in the domain where v1 ≈ 1, i.e. near the Bragg condi-
tion.

The validity of the statement (6.40) is proved by direct substitutions. At z 	= z′, the
operator L0

(z)
i j produces zero when Green function acts on (6.58) and (6.57) due to

the structure of Green functions composed of eigenfunctions L0
(z)
i j corresponding to

eigenvalue p = 0. At z = z′, the Green functions are discontinued in a singular point,
where operator L0

(z)
i j results in δ-function. The final expression for three-dimensional

Green function is delivered by (6.38).
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6.3 Effective Potential and Applicability of Kinematical Theory

The solution of the Eqs. (6.33) and (6.36) is not straightforward, even considering
only the first order terms in (6.27) and (6.35). The operator Veff is an integral operator,
if the approximation (6.33) is used:

Vef f α,β A(r)β = Q
∫

d3r ′
(

〈 f (r) f (r ′)∗〉G0(r, r ′)22 〈 f (r) f (r ′)〉G0(r, r ′)21
〈 f (r)∗ f (r ′)∗〉G0(r, r ′)12 〈 f (r)∗ f (r ′)〉G0(r, r ′)11

)
·
(

A0(r ′)
AH (r ′)

)
,

Q = k4
0χHχ−H . (6.59)

There are two types of terms in the Eq. (6.59): (1) the average values 〈 f (r) f (r ′)∗〉,
〈 f (r) f (r ′)〉, ... describing the displacement fields of the defects and the properties
of statistical ensemble of defects, and (2) Green functions G0(r, r ′)i j , describing the
X-ray dynamical diffraction process. The value

g(r, r ′) = 〈 f (r) f (r ′)∗〉 = 〈ei H(u(r)−u(r ′))〉 − e−2W (6.60)

is called the correlation function of the crystallographic lattice [7]. The averaging over
the ensemble of defects is performed in the way, similar to one used for Eq. (6.11).
Assuming non-correlated defects, we obtain:

g(r, r ′) = exp

(∫
d3rsρ(rs)(e

i H(u(r;rs )−u(r ′;rs )) − 1)

)
− e−2W . (6.61)

For the points r and r ′ separated by a large distance, the displacement fields are
determined by the defects groups located in the vicinity of these points. For large
distance, the displacement fields can be assumed independent each of other, and the
integral in (6.61) is represented by the sum of integrals around the points r and r ′, i. e.∫

d3rs ≈ ∫
rs∼r d3rs + ∫

rs∼r ′ d3rs , each resulting in Debye-Waller factor W . Thus,
the correlation function (6.61) demonstrates the feature typical for all correlation
functions describing the near ordering: tends to zero at far distances. In opposite case,
when r and r ′ are located close each to other, the correlation function is modeled
by Gaussian. To prove this fact, the expansion u(r; rs) − u(r ′; rs) ≈ ∂u(r;rs )

∂r i
Δr i

can be used assuming theΔr = r − r ′ is smaller than variation of the displacement
fields. Expanding the exponent up to the second order:

g(r, r ′) = ei Hi 〈εi j 〉Δr j e− 1
2 Hi Hj 〈εikε jl 〉ΔrkΔrl − e−2W , (6.62)

where tensor 〈εi j 〉 describes the average deformation of the crystal caused by the
average displacement fields from the defects, the tensor 〈εikε jl〉 characterizes the
root mean square deformation of crystal due to the fluctuating displacement field:
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〈εi j 〉 =
∫

d3rsρ(rs)
∂u(r; rs)i

∂r j
(6.63)

〈εikε jl〉 =
∫

d3rsρ(rs)
∂u(r; rs)i

∂rk

∂u(r; rs) j

∂rl
.

In opposite to correlation function (6.60), the non-diagonal elements of the matrix
(6.59), containing the functions 〈 f (r) f (r ′)〉, have to be averaged with respect to the
sum of the displacement fields. As a result, the function becomes a fast oscillating
and tends to zero for the points r and r ′ located both on far distances each from other
and close each to other.

To calculate the effective potential (6.59), the correlation function of defects
g(r, r ′) and Green function have to be known, which are found by using the theory
of differential equation [19]. The explicit form of Green function clearly displays
the reason to abandon the non-diagonal elements of matrix (6.59). These elements
contain the terms G(r, r ′)21 and G(r, r ′)12, which describe the creation of the dif-
fracted wave from the direct one, and vice versa. The mentioned functions contribute
essentially near the Bragg condition (see (6.58)), and tend to zero otherwise, whereas
G(r, r ′)11 and G(r, r ′)22 are transformed into Green function of wave in a vacuum
(6.57) when moving away from Bragg point.

How important is the accounting of dynamical effects in the effective potential? In
general case, the Eq. (6.27) is a three-dimensional integro-differential one, however,
assuming the correlation function (6.61) and Green function both depend on the
r − r ′ only:

g(r, r ′) = g(r − r ′), (6.64)

G0(r, r ′)i j = G0(r − r ′)i j , (6.65)

the problem is simplified significantly. Whereas the assumption (6.64) means
the uniformity of the displacement fields in a sample, the Eq. (6.65) is valid for
Takagi-Taupin approximation, as follows from Sect. 6.2. The effective potential then
becomes a diagonal integral operator with the kernel:

Vef f α,β =
∫

d3r ′
(

V1(r − r ′) 0
0 V2(r − r ′)

)

(6.66)

V1(r − r ′) = Qg(r − r ′)G0(r − r ′)22, V2(r − r ′) = Qg(r − r ′)∗G0(r − r ′)11.

(6.67)

The action of this operator on the displacement field is a convolution of operator
kernel with a field, and in the Fourier space the action boils down to simple multi-
plication:
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V1 A0ei kr = V1(k)A0ei kr , (6.68)

V2 Ahei kr = V2(k)Ahei kr ,

V1(k) = Q

(2π)3

∫
d3re−i krg(r)G0(r)22,

V2(k) = Q

(2π)3

∫
d3re−i krg(r)∗G0(r)11.

Thus, the effective potential leads to additional X-ray polarizability:

χ0eff(k)i i = −Vi (k)/k2
0 . (6.69)

This polarizability is different for direct and diffracted wavesχ0eff(k)11 	= χ0eff(k)22
and possesses the dispersion χ0eff = χ0eff(k).

Furthermore we use isotropic Gaussian distribution for the correlation function:

gG(r) = e
− r2

2l2d . (6.70)

As demonstrated in (6.62), the Gaussian distribution is parametrized by value ld
meaning the distance where correlation function drops down essentially and called
correlation length. Using the Green function (6.38), we obtain:

V2(k0) = Q

(2π)4

∫
dzd2k||e− 1

2 (k||−k0 ||)2l2
d ei(kz(k||)−k0z)ze

− z2

2l2d G(z)
11 (k||)(z). (6.71)

There are two kinds of functions in this formula, which vary in different scales
when integrating over k||. The first kind is a correlation function, which decreases
at deviations k|| − k0 ∼ 1/ ld , and the other is one-dimensional Green function

G(z)
11 (k||)(z) tending to the asymptotic value in vacuum at deviations of the order of

Bragg peak width. To emphasize these two scales in (6.71), the parametrization of k
through the angle variables of deviation from Bragg condition is used:

k = k0(cos(ω0 + ω̃) cos(φ̃), cos(ω0 + ω̃) sin(φ̃), sin(ω0 + ω̃)). (6.72)

Let us assume that ω0 corresponds to Bragg condition and to vector k0 in (6.71)
simultaneously. If the deviations ω̃ and φ̃ are small, and the diffraction is coplanar,
the following formula is obtained with the accuracy o(ω̃, φ̃):

V2(k0) = Qldk0 sinω0

(2π)
7
2

∫
dω̃e− 1

2 k2
0 sin2 ω0ω̃

2l2
d (6.73)

×
∫

dzeik0 cosω0ω̃ze
− z2

2l2d G(z)
11 (α)(z), α = 2k2

0 sin 2θB ω̃,
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where d2k|| is expressed through the small angles ω̃, φ̃. The Green function is con-
veniently written through the parameter α in this case (see Chap. 4), which doesn’t
depend on φ̃ at small ω̃ and φ̃ allowing the integration over the variable φ̃ in (6.73).
By integrating over z using (6.58), the final formula for effective potential is written
as:

V2(k0) = Ql2
dk0 sinω0

2(2π)3

∫
dω̃e− 1

2 k2
0 sin2 ω0ω̃

2l2
d (6.74)

×γ0 f ([k0 cosω0ω̃ + u1(α)]ld)+ v1(α)
2γh f ([k0 cosω0ω̃ + u2(α)]ld)

2iγ0(γ0 + v1(α)2γh)
,

f (kl) = e− 1
2 k2l2

(
1 − erf

(
i

kl√
2

))
.

In the integrand of (6.74), there are evidently two scales of variation over ω̃. The
exponents appeared due to Gaussian correlation function decrease at deviations:

ω̃ ∼ 1

k0ld
. (6.75)

The expression appeared due to Green function tends to the asymptotic vacuum value
f (k0 cosω0ω̃)

2iγ0
at deviation (see Chap. 4):

ω̃ ∼ |χH |. (6.76)

Thus, the expectable criteria is obtained: the dynamical effects are important in the
effective potential if the correlation function decreases at the scale of order of the
extinction length:

ld ∼ 1

k0|χH | ∼ Le. (6.77)

In the most of practical cases, the defects structure has a correlation function which
decreases faster and the dynamical effects are negligible. To estimate the magni-
tude of the effective polarizability comparing to periodical X-ray polarizability, the
Eq. (6.74) is used:

χ0eff(k0)22 ∼ i |χH |k0ld ∼ i
ld
Le
, (6.78)

notably a similar ratio of correlation length to the extinction length is obtained. The
imaginary potential reflects the fact of transfer of coherent intensity into diffuse one,
and the imaginary effective polarizability describes this decrease of the coherent
intensity.

Thus, the effective potential, being a correction for coherent potential due to
displacement fields of defects, is essential for the correlation length larger than the
extinction length. The dynamical effects have to be also taken into account at this

http://dx.doi.org/10.1007/978-3-642-38177-5_4
http://dx.doi.org/10.1007/978-3-642-38177-5_4
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condition. For the specific case of grazing-incidence diffraction, the geometrical
factors have to be introduced, too. The extinction length can drop down many times
in this case, which softens the conditions (6.77) and (6.78).

The presence of the displacement fields always originates the diffuse scattering,
which contains a valuable information on the distribution of defects. To calculate
the intensity of diffuse scattering I (r), the correlation function �(r1, r2) has to be
determined from Bethe-Salpeter Eq. (6.35). We represent here this equation as:

�1,2 = �c
1,2 + G1G∗

2〈V1V ∗
2 〉�c

1,2 + G1G∗
2〈V1V ∗

2 〉G1G∗
2〈V1V ∗

2 〉�c
1,2 + ..., (6.79)

where �c
1,2 = Ac(r1)Ac(r2)

∗ is a correlation function for the coherent amplitude
found from (6.27) and the Eq. (6.36) has been utilized. Each subsequent term differs
from the previous one by operator G1G∗

2〈V1V ∗
2 〉, which influence is proportional

to ld/Le, as follows from (6.33). Assuming this parameter small, the formula for
intensity is obtained:

I (r) =�(r, r) =
�(r, r)c +

∫
d3r1d3r2G0(r, r1)G0(r, r2)

∗〈V (r1)V (r2)
∗〉�(r1, r2)

c

(6.80)

By the analogue with X-ray reflectivity, the detector recording X-ray intensities is
placed on a large distance from the sample.Then the asymptotic expression for Green
function (5.11) can be used and for this reason we return back from matrix form
(6.26) to (6.22). For example, in two-wave approximation the value 〈V (r1)V (r2)

∗〉
becomes:

〈V (r1)V (r2)
∗〉 = Q(g(r1, r2)e

i H(r1−r2) + c.c.). (6.81)

Finally, the formula for intensity using (5.11) takes the form known as distorted-wave
Born approximation DWBA:

I (r) =
Q

16π2r2

∫
d3r1d3r2 A(−)p (r1)

∗ A(−)p (r2)(g(r1, r2)e
i H(r1−r2) + c.c.)Ac(r1)Ac(r2)

∗,
(6.82)

where each wave field has to be represented as a sum of incident and diffracted waves
with corresponding exponents, and the rapidly oscillating exponents are omitted due
to two-wave approximation. When the dynamical effects can be neglected in the
wave fields of non-perturbed system, the kinematical expression is valid:

I (r) ∼
∫

d3r1d3r2eiq(r1−r2)g(r1, r2), q = kout − kin − H, r/r = kout/k0.

(6.83)

http://dx.doi.org/10.1007/978-3-642-38177-5_5
http://dx.doi.org/10.1007/978-3-642-38177-5_5
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6.4 One-Dimensional Defects (Dislocations)

The intensity of diffuse X-ray scattering is calculated from the correlation function
of the displacement fields of defects, which is conditioned by two properties: (1)
type of defects, and (2) physical properties of the defects ensemble. The type of the
defect defines the displacement fields u(r; rs) of a single defect, which is included in
correlation functions (6.60) and (6.11). The properties of the ensemble are described
through the density of defects ρ(r) and correlation function of the defects positions
w(r, r ′). The analysis of X-ray diffuse scattering measured near several Bragg reflec-
tions permits to determine the type of defects, their density and correlation properties.
This procedure is very well established for dislocations [20–22].

The dislocations are the frequently occurring type of the defects in crystallo-
graphic materials. In the polycrystalline samples, the known distribution of dis-
locations allows to microscopically describe the plasticity properties [23]. In the
semiconductor heteroepitaxial structures, the presence of dislocations influences the
electronic properties of the devices. The evaluation of the distribution and the sta-
tus of the dislocation is therefore an important part of material characterization in
modern technology [24, 25].

We consider initially the ensemble of infinite line dislocations, which is used as
a model for the line profile analysis in polycrystalline materials [20, 21] as well as
for HRXRD analysis in heteroepitaxial structures [22]. The analysis of dislocation
loops is similar to the case of point defects and described in details in [7, 26].

To solve the problem, the displacement field of a single dislocation has to be found,
which is calculated using the continuous theory of elasticity [5]. The displacement
field u(r) has to satisfy the condition of equilibrium:

ci jkl
∂2uk

∂x j∂xl
= 0, (6.84)

and to the boundary conditions: the disruption of the displacement fields by value of
Burgers vector b in the path around dislocation line and the absence of forces at free
surface: ∮

du = −b,σi j n j |S = 0, (6.85)

here ci jkl is a stiffness tensor andσi j is a stress tensor. The solution of this problem for
the case of infinite anisotropic media was proposed by Eshelby [27] and generalized
by Stroh [23, 28, 29]. The solution for isotropic media with half-plane boundary is
reported in [30], and the displacement fields in an explicit form are given in [22].
These fields are represented by a sum of the displacement field in infinite media, the
displacement field of the image dislocation relatively to free surface, and additional
surface term.

Thus, both the displacement fields and the integration method in (6.60) depends
on the arrangement of dislocations, which can be:
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Fig. 6.3 The arrangement of dislocations considered in the section: a on the surface of the film-
substrate interface, b in graded structures, c threading dislocations

• parallel dislocation lines in the plane parallel to the sample surface. The model
describes the boundary between epitaxial film and substrate. The density of dislo-
cations has a dimension m−1 (number of lines per length unit, which they intersect
in the direction perpendicular to dislocation lines), Fig. 6.3a.

• parallel dislocation lines distributed within the layer. The density of dislocations
has a dimension m−2, Fig. 6.3b. This model describes partly relaxed layers with
the gradient of the dopant concentration;

• parallel dislocation lines which are perpendicular to the crystal surface. The density
of dislocations has a dimension m−2, Fig. 6.3c. This model describes the thread-
ing dislocations and the influence of dislocations on the line profiles of X-ray
diffraction from polycrystalline materials.

6.4.1 Parallel Edge Dislocations at Interfaces

In the epitaxial growth of the materials possessing a crystallographic lattice mis-
match, the accommodation of the lattice strains may occur in different ways [31].
In the initial stage of growth, the lateral crystallographic structure of film replicates
the structure of the substrate. The film accumulates an essential elastic energy and
internal stress may achieve Gigapascals, which is close to the limit of plasticity.
Further growth over the critical thickness results in misfit dislocations with Burgers
vector with the lateral component, which releases the elastic strain in the film. The
dislocation line of the misfit dislocation lies along the interface between the layers
(substrate), which have different lattice constants in a bulk state. The direction of the
dislocation line follows the crystallographic axes [23], and as a result, the array of
parallel dislocation lines appears.

First of all, we discuss the importance of coherent scattering and dynamical
effects in the presence of misfit dislocations. Assuming the non-correlated defects,
the Debye-Waller factor (DWF) is expressed as in (6.11):
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〈ei Hu(r)〉 = eW (z) = eρ
∫

dx(ei Hu(x,z)−1). (6.86)

The spatial dependence of the displacement fields of a single dislocation u(x, z) is
parametrized solely by the layer thickness d. Representing the displacement field as
bub(x̃ = x/d, z̃ = z/d), where b is a Burgers vector, the Eq. (6.86) is written as:

eW (z̃) = eρdφ(z̃), (6.87)

φ(z̃) =
∫

dx̃(eibHu(x̃,z̃) − 1). (6.88)

The dependence of DWF on the thickness is universal, and the type of dislocations and
Bragg reflection influence the functionφ(z̃), which varies slowly within the layer. The
DWF value decreases exponentially with increase of thickness and concentration of
dopants. To prove this fact, the convergence of integrand in (6.88) is analyzed below.

Despite of discontinuity in the displacement fields by Burgers vector, the value
eibHu(x̃,z̃) is continuous because of in the singular points the phase of exponent
changes its value by 2πn. When integrating around zero, the integrand has a finite
value, and at x → ∞ the displacement fields are decreased as (the singularity is at
x = 0):

ubx (x, z)
x→∞−−−→ bx

π

(
2

x
, 0,−1 + 2(1 − 2α)z

x2

)
, (6.89)

uby (x, z)
x→∞−−−→ by

π

(
0,

1

x
, 0

)
,

ubz (x, z)
x→∞−−−→ bz

π

(
− 1

πx2 , 0,−2(1 + 3(1 − 2α)z)

x3

)
.

Here ubi is a displacement field due to i-component of the Burgers vector, the symbol˜
is omitted, α = 1

2(1−ν) and ν is a Poisson ratio. Expanding the exponent in (6.88) at
large x , the terms with 1/x are canceled when integrating over symmetric limits and
the value of integral is finite.

Figure 6.4a shows the dependence of φ(z̃) for edge dislocations in fcc crystal with
Burgers vector 1

2 [110] and dislocation line [1̄10] for Bragg reflection (224). Debye-

(a) (b)

Fig. 6.4 The dependence of Debye-Waller factor from (a) thickness and (b) Bragg reflection
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Waller factor remains almost constant inside film (0 < z̃ < 1) and decreases deep
into substrate. The same behavior is observed for other types of dislocations.

With the increase of the Bragg reflection order, DWF decreases. The contribution
from the area of large x values in integral (6.88) is proportional to the reflection
order. Figure 6.4b demonstrates the function φ(z̃ = 0.5) for reflections multiple to
(224) H p = pH , and the function is very close to linear, which again confirms the
largest contribution into integral from large x .

Using the known dependence of DWF on dislocation density and thickness, the
coherent scattering can be estimated. To characterize the relaxation status of crystal-
lographic lattice, the macroscopic relaxation degree is introduced:

R = al − as

a(0)l − as

, (6.90)

where al , as are the lattice constants of layer and substrate, respectively; a(0)l is a lat-
tice constant of layer in a bulk state. The value R = 0 corresponds to pseudomorphic
layer and R = 1 to fully relaxed one. The difference between al and as supposed to
be small. Assuming the difference between the length of N cells of substrate Nas and
N cells of layer is compensated by ρNas dislocations with misfit relieving Burgers
vector bx , the following relation is obtained:

R = ρbx

ε
, ε = a(0)l − as

as
. (6.91)

The relationship between the layer thickness and the density of dislocations is pre-
determined from the microscopic premises for creation of dislocations in strained
crystallographic layers. There are different models [24, 25] of this process, for exam-
ple, in the model of Mathews and Blakeslee the relaxation happens after the critical
thickness dcr and changes according to the law:

R(d) = H(d − dcr )

(
1 − dcr

d

)
. (6.92)

The critical thickness is calculated from the pre-condition that the energy required
for spread of dislocations is less than the energy released during development of
dislocations. The equation for critical thickness estimation is:

b

dcr
ln

dcr

b
∼ ε. (6.93)

The real process of dislocation propagation is complex and includes the interaction
and reproduction of dislocations and other effects. As a result, the critical thickness
measured in the experiments is larger than one calculated from (6.93), see Fig. 6.5.
The parameter ρd is higher than unity if the essential relaxation exists (Fig. 6.5)



240 6 X-Ray Diffraction from Crystals with Defects

Fig. 6.5 Dependence of relaxation degree and ρd on the layer thickness for In0.06Ga0.94As/GaAs
evaluated from (224) and (004) Bragg reflections [32]. The dash line corresponds to (6.92) at
critical thickness (6.93). The solid line represents the fitting of (6.92) with critical thickness as
fittable parameter

(a) (b) (c)

Fig. 6.6 Experimental reciprocal space maps for the In0.06Ga0.94As/GaAs samples of thickness:
200 nm (a), 500 nm (b), 1200 nm (c). In the case (b), the onset of the diffuse scattering is marked
with dashed line [32]

and according to (6.87) the Debye-Waller factor reduces drastically the coherent
intensity. Thus, the distribution of the diffracted X-ray intensity is dominated by
coherent component for the thickness below critical one and by diffuse component
afterwards. The co-existence of both components in a similar proportion is only
possible in a narrow diapason near critical thickness (Fig. 6.6).

Furthermore, the diffuse X-ray scattering is calculated by using (6.83). Using
correlation function (6.83), we receive from (6.61):

I (q) =
∫ d

0

∫ d

0
dz1dz2

∫ ∞
−∞

dxei(qx x+qz(z1−z2))g(x, z1, z2), x = x1 − x2,

(6.94)

g(x̃, z̃1, z̃2) = exp
[
ρd α(x̃, z̃1, z̃2)

] − e2W , α =
∫

dx̃ ′(eibH(u(x̃−x̃ ′,z̃2)−u(−x̃ ′,z̃1)) − 1),

(6.95)
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Fig. 6.7 The real and imaginary parts of w(x̃, z̃1 = 0.5, z̃2 = 0.5) (6.95) in wide (left panel) and
narrow (right panel) diapasons of x . The dash line in a left panel shows asymptotic 2φ(0.5). The
dash lines in a right panel show the limits (6.63) for real and imaginary parts

where the dimensionless distances x̃, z̃ (6.87) are used. The convergence of integral
(6.89) follows from the asymptotic (6.95). Figure 6.7 shows the functionα(x̃, z̃1, z̃2)

for edge dislocations in fcc crystal with Burgers vector 1
2 [110], dislocation line [1̄10]

and Bragg reflection (224). At large values of x , the function α(x̃, z̃1, z̃2) tends to
φ(z̃1)+ φ(z̃2) and taking into account (6.61), the correlation function tends to zero.
At small values of x , the real part is approximated by quadratic function, and the
imaginary part by linear one (see Fig. 6.7), which follows from (6.62) and (6.63).
For small deviations, the difference of the displacement fields is:

u(x̃−x̃ ′, z̃2)−u(−x̃ ′, z̃1) ≈ ∂u(−x̃ ′, z̃)

∂ x̃ ′ x̃ + ∂u(−x̃ ′, z̃)

∂ z̃
δz, Δz = z̃2−z̃1. (6.96)

The average deformation in (6.63) is calculated by analytical integration over x̃ ′:

εxx = ρbx H(z̃)H(1 − z̃), εzz = − ν

1 − ν
ρbx H(z̃)H(1 − z̃). (6.97)

The deformation εxx is harmonized with (6.90) and (6.91) as well as the connection
between εxx and εzz is given by Hook’s law. In the real samples, the dislocation lines
along [1̄10] providing the deformation εxx coexist with dislocation lines of the same
density in perpendicular direction providing the deformation εyy = εxx . Assuming
these two dislocation systems independent, the general correlation function and DWF
are obtained as a product of correlation functions and DWF, respectively, for each
system of defects (6.10), and finally for the component εzz = − 2ν

1−ν ρbx .
The formula for root mean square deformation 〈εikε jl〉 is written:

〈εikε jl〉 =
∫

dx̃ ′

d2

∂ui

∂ x̃k

∂u j

∂ x̃l
. (6.98)
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The analytical integration results in cumbersome expressions, for example, the

term
∫

dx̃ ′
(
∂ux (−x̃ ′,z̃)

∂ x̃ ′
)2

for u related to Burgers vector with component bx is:

∫
dx̃ ′

(
∂ux (−x̃ ′, z̃)

∂ x̃ ′

)2

=

b2
x
α2(z̃(z̃(z̃ + 1)(2z̃ + 5)− 9)− 21)z̃4 + 2α(z̃ + 1)(z̃(z̃(z̃ + 3)+ 6)− 2)z̃2 − 2(z̃ + 1)2

(
2z̃2 + z̃ + 1

)

8π(z̃ − 1)(z̃ + 1)5
.

(6.99)

The correlation function g(r1, r2) = g(x1, z1; x2, z2) for considered here defects
depends on the difference of in-plane arguments x = x1 − x2 and doesn’t depend
on these arguments itself, which is a consequence of the in-plane uniformity. In the
direction z, the sample is non-uniform, however, using approximation (6.96) the
correlation function can also be written as g(r1, r2) = g(x1 − x2, z1 − z2, z̄) in
the direction z, where z̄ = (z1 + z2)/2 is an average depth at which the correlation
function is investigated. The closer the points r1 and r2, the better the approximation
is (see Fig. 6.8).

The applicability area for (6.96), (6.62) and (6.63) is determined by the parameter
ρd. For X-ray intensity (6.94), the region makes the largest contribution, where the
correlation function has a maximum. As follows from Figs. 6.7 and 6.8, the expansion
(6.96) is valid up to valuesw(x̃, z̃1, z̃2) ∼ −1, corresponding to correlation function
e−ρd . Provided the parameter ρd is large enough, the contribution of this region is
crucial. The integration limits on x1 − x2 and z1 − z2 can be extended to the infinity
and the integration results in:

I (q) =
∫ d

0

dz̄√
det wi j (z̄)

e− (q−q(0))i w−1
i j (z̄)(q−q(0)) j

2 , (6.100)

q(0)i = εi j H j , wi j = Hk Hl〈εki εl j 〉,

where the constant terms are omitted. The resulting distribution of X-ray intensity
is close to Gaussian. For some estimates, the value wi j (z̄) can be replaced by maximal
value wi j (0) at the sample surface, i.e. on the maximal distance from the defects [22].

As follows from (6.100) and (6.98), the typical width of the peak is
√
ρ/d . How-

ever, for the materials with large values ρd, the width of experimental peaks is much
narrower than

√
ρ/d [22, 33]. The reason for such behavior is the presence of cor-

relations in the position of dislocations.
The correlations are formed due to different reasons related to the dynamics of

dislocations, for instance, the periodic position of dislocations minimizes the elastic
energy [5, 34]. The dislocations tend to glide to the periodic arrangement, however,
the placement of the glide plane different from the interface plane or interaction
with other defects prevents from this process. Because of the complexity of this
dynamics, the correlation of the positions of dislocations is described empirically by
pair distribution function.
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The expression for correlation function is defined by cumulant series (6.21). The
analytical summing of all terms in this series is complicated task and, therefore, the
Monte-Carlo modeling of correlation function has been proposed [3, 33, 35, 36] to
calculate the intensity distribution. The analytical methods, however, also play an
important role is some special cases, for example, for the case of large parameter ρd.
In the continuous limit of (6.21) with only T1, T2 remained, the correlation function
g(x, z1, z2) is:

g(x, z1, z2) =
eρd

∫
dx̃ ′α(x̃−x̃ ′,z̃1,z̃2) + 1

2 ρ
2d2

∫
dx̃ ′dx̃ ′′w(x ′−x ′′)α(x̃−x̃ ′,z̃1,z̃2)α(x̃−x̃ ′′,z̃1,z̃2) (6.101)

Using the approximation (6.96), the exponential function in (6.101) is expanded up
to the second order of ∂u

∂xi
. The omitted terms (T3 and others) contain the functions

of higher than second order of ∂u
∂xi

. The resulting expression has a form of (6.62),
and the average of deformation remains as in (6.97), but the root mean square of
deformation changes from (6.98) to:

〈εikε jl〉 =
∫

dx̃ ′

d2

∂ui (x̃ − x̃ ′, ˜̄z)
∂ x̃k

∂u j (x̃ − x̃ ′, ˜̄z)
∂ x̃l

(6.102)

+
∫

dx̃ ′dx̃ ′′

d2 ρw(x ′ − x ′′)∂ui (x̃ − x̃ ′, ˜̄z)
∂ x̃k

∂u j (x̃ − x̃ ′′, ˜̄z)
∂ x̃l

.

In the integrand, the displacement fields drop down at the scale of d. The correlation
functionw is essential on the scale of several average distance between dislocations,
i.e. 1/ρd � 1. Thus, the assumption about the faster decline of w than the decline
of the displacement fields is valid:

Fig. 6.8 The real (left panel) and imaginary (right panel) parts w(0, z̃1, z̃2) (6.95). Near the line
z1 = z2, the function depends on the difference of arguments (iso-lines are perpendicular to lines
z1 − z2)
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w(x ′ − x ′′) ≈ δ(x ′ − x ′′)
∫
w(x)dx . (6.103)

The substitution of (6.103) into (6.102) shows that the root mean square deformation
〈εikε jl〉(uncorr) calculated in non-correlated approximation (6.98) is related to the one
with correlations 〈εikε jl〉(corr) given by (6.102) as:

〈εikε jl〉(corr) = r〈εikε jl〉(uncorr), (6.104)

r = 1 + ρ

∫
w(x)dx . (6.105)

The parameter r has a physical meaning when the dislocations on a large area are
considered: r is a ratio of the dispersion of dislocations number to their average
number [22, 33]:

r = M(N − MN )2

MN
. (6.106)

The pair density of distribution function p(x1, x2) is derived from (6.17):

p(x1, x2) = ρδ(x1 − x2)+ ρ2(1 + w(x1 − x2)), (6.107)

and for the average values on the interval L we obtain:

MN = ρL , (6.108)

MN 2 =
∫ L/2

−L/2
dx1

∫ L/2

−L/2
dx2 p(x1, x2) = ρL + ρ2L2 + ρL

∫
w(x)dx .

Substituting (6.108) into (6.106), the expression (6.105) is obtained, and for non-
correlating dislocations r = 1. Provided the probability to find a dislocation in a node
doesn’t depend on other dislocations, the number of dislocations on fixed interval
is determined by Poisson distribution, for which dispersion equals to average value
and according to (6.106) r = 1. In the presence of correlations, the dispersion
of dislocations number decreases and r < 1, and the width of the X-ray diffuse
peak

√
rρ/d becomes more narrow. Using the definition (6.105), the decrease of

r can also be explained: the correlation function for small values of x is negative
(two dislocations placed face to face are un-probable), and with the increase of x
it tends to zero, which result in a negative value of integral. The detailed review
of the influence of correlation function on the shape of X-ray peak is presented in
[3, 35]. In the limiting case of periodical arrangement of dislocations typical for
the heterostructures with large value of lattice misfit, the parameter r tends to zero.
In this case, the approximation (6.103) is invalid and all terms in (6.21) have to be
considered. The calculation of correlation function from the displacement field of the
entire array of dislocations [5] is a proper method in this situation. The periodicity
of the displacement fields causes the satellite peaks around Bragg peak and due to
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finite value of Debye-Waller factor the coherent contribution should be taken into
account. The detailed analysis and the experimental results for this case can be found
in [3, 37].

6.4.2 Parallel Edge Dislocations in Graded Layers

One of the mechanism to reduce the density of parasitic threading dislocations in the
growth of heterostructures possessing essential misfits, is a creation of intermediate
layer called a virtual substrate. This layer is composed of the solid solution with
graded concentration of dopant through the layer depth. As a result, the dislocations
appear within the entire thickness of the layer and glide less interacting each with
other [31, 38].

The relaxation of graded epitaxial films occurs in the same way as in the case of
abrupt boundary between the materials with large misfit by creation of misfit disloca-
tions parallel to the interface. In this growth mode, the dislocations are characterized
by areal dislocation density, in opposite to linear dislocation density used in previous
section. The areal dislocation density is the number of dislocation lines per unit area
in the plane perpendicular to the dislocation lines. For a (001) oriented cubic crystal,
there are two orthogonal sets of parallel dislocation lines, whose directions we take
as x and y axes. For each set of dislocations, the density is,

ρ(z) = 1

bx ax (z)

dax (z)

dz
, (6.109)

where ax (z) is the lattice spacing in the plane of interface in the direction perpen-
dicular to the dislocation line, and bx is the Burgers vector component that provides
the relaxation. Here the z axis is along the normal to the plane of the interface.
For typical gradient layers, e.g. virtual substrates, the dimensionless parameter ρd2,
where d is the layer thickness, varies between 101 and 103. The static Debye-Waller
factor e−ρd2

is negligibly small and the dynamical X-ray scattering effects can be
neglected. Thus, we can restrict ourselves by kinematical theory. The relaxation of
the graded epitaxial films can also be characterized by the relaxation parameter R(z)
defined with respect to the substrate and the analogue of (6.90) is:

R(z) = ax (z)− a(s)x

a(0)x (z)− a(s)x

, (6.110)

where a(s)x is the substrate lateral lattice parameter, a(0)x (z) is the lateral lattice para-
meter which the film would have if at depth z it were completely relaxed. The value
a(0)x (z) for a two-component solid solution alloy Ax B1−x can be found from concen-
tration c(z) at depth z, e.g. using Vegard’s law: a(0)x (z) = c(z)aA + [1 − c(z)]aB . In
this case it follows from (6.109) that dislocation density, relaxation and concentration
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profiles are connected analogously to (6.91) by

R(z) = bx
∫ z

0 ρ(z
′)dz′

ε c(z)
, (6.111)

where ε = (aA − aB)/aB is the crystal lattice mismatch between materials A and B
and. The difference of the lattice parameters aA and aB is assumed here to be small,
ε � 1.

The displacement of atoms from their positions in ideal periodic lattice taken as
a reference consists of two contributions. One is the displacement with respect to
the substrate in a fully pseudomorphic layer. For the two-component solid solution
alloy Ax B1−x , the displacement gradient is proportional to the concentration c(z)
of the component A and can be written, using Vegard’s law and assuming isotropic
elasticity, as [39]

dup
z (z)/dz = 1 + ν

1 − ν
ε c(z), (6.112)

whereν is the Poisson ratio. The z-component (6.112) is the only non-zero component
of the displacement up.

The other contribution to the displacement is due to displacement fields of the
misfit dislocations. The correlation function g in the approximation of non-correlated
dislocations (6.61) is then written as:

g(x, z1, z2) = exp[T (x, z1, z2)], (6.113)

where

T (x, z1, z2) =
∫ d

0
dz′ρ(z′)τ (x, z1, z2, z′) (6.114)

and

τ (x, z1, z2, z′) =
∫ ∞

−∞
dx ′(ei H ·[u(x ′+x,z2;z′)−u(x ′,z1;z′)] − 1). (6.115)

Despite of the large value of the parameter ρd2, the direct usage of approximation
(6.96) leads to the divergent expressions. In the framework of formula (6.96), the
imaginary part of the function τ (x, z1, z2, z′) is linear over x and ζ and describes the
deformation (6.63):

Im τ (x, z1, z2, z′) (6.116)

=
∫ ∞

−∞
dx ′ H ·

[
∂u(x ′, z1; z′)

∂x ′ x + ∂u(x ′, z1; z′)
∂z1

ζ

]
,

and leads to shift of the peak center according to the average strain of the layer lattice,
while the real part describing the root mean square deformation (6.63) is quadratic
over these distances:
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Re τ (2)(x, z1, z2, z′)
= −

[
w11x2 + 2w12xζ + w22ζ

2
]
. (6.117)

Here it is denoted

w11(z, z′) = 1

2

∫ ∞

−∞
dx ′

(
H · ∂u(x ′, z; z′)

∂x ′

)2

, (6.118)

the functions w12(z, z′) and w22(z, z′) are defined similarly by making derivatives
over z instead of the derivatives over x ′. The quadratic form of the real part of T
in the case of uniform relaxed layers leads to anisotropic Gaussian shape (6.100)
of diffracted peak with the minor axis parallel to the diffraction vector H . The real
part Re τ is denoted in (6.117) as Re τ (2) to indicate the expansion quadratic over x
and ζ.

The expansions (6.116) and (6.117) are accurate enough to calculate the X-ray
diffraction peaks from uniform relaxed films with misfit dislocations located at the
interface. However, for dislocations distributed in the film we find that the coeffi-
cients wi j (z, z′) (here i, j = 1, 2) diverge at z′ → z as wi j (z, z′) ∝ ∣∣z − z′∣∣−1,
see (6.99). As a result, this approximation leads to an erroneous divergence of the
integral (6.114), while in an accurate calculation the integral converges. The same
problem arose for uniformly distributed dislocations in Ref. [40]. In this latter case
the contribution to the correlation function from small separations was estimated
and used to re-normalize the contribution from the upper limit of the integral. Since
this upper limit was an ill-defined crystallite size, its change was not important, see
below. In the present case, however, the contribution from the lower limit is essential
and the upper limit is a well-defined film thickness.

The singularity of the function wi j (z, z′) at z′ → z appears since the expansion
(6.117) becomes invalid. In the limit z′ → z, numerical calculations show that the
real part Re τ (x, z1, z2, z′) is well approximated by the expression

Re τ (1)(x, z1, z2, z′)
≈
√

x2 + ζ2[a0 + a1 cos(2φ)+ a2 sin(2φ)], (6.119)

where φ = arctan(ζ/x) and the coefficients ai (z, z′) (i = 1, 2, 3) remain finite
at z′ → z and decrease as the distance

∣∣z − z′∣∣ increases. Re τ is denoted in this

approximation as Re τ (1), to indicate that it is linear over
√

x2 + ζ2.
One of the methods to determine the values ai (z, z′), wi j (z, z′) is to numerically

calculate the function of four arguments τ (x, z1, z2, z′) and to fit its real part to the
sum Re (τ (1) + τ (2)) given by Eqs. (6.119) and (6.117) [41]. The result of the fit is
three functions wi j (z, z′)(i, j = 1, 2) and three functions ai (z, z′)(i = 1, 2, 3). wi j

decrease to zero at z′ → z, while ai are maximal in this limit and decrease when the
distance

∣∣z − z′∣∣ increases.
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The imaginary part Im τ (x, z1, z2, z′) is well approximated by Eq. (6.116), and
the integrals can be calculated analytically, analogously to (6.96):

Im τ (x, z1, z2, z′) ≈ −i
[
δq̃x (z, z′)x + δq̃z(z, z′)ζ

]
, (6.120)

where

δq̃x (z, z′) = Hx bx H(z − z′),

δq̃z(z, z′) = − 2ν

1 − ν
Hzbx H(z − z′). (6.121)

The accuracy of this approximation increases with the decreasing x and ζ.
We now substitute (6.120) and (6.121) into (6.114), and combine the result with

(6.112), to obtain the wave vectors defining the local peak position,

q̃x (z) = Qx bx

∫ z

0
dz′ρ(z′), (6.122)

q̃z(z) = − 2ν

1 − ν
Qzbx

∫ z

0
dz′ρ(z′)− Qz

1 + ν

1 − ν
ε c(z).

Finally, collecting the equations above, we can represent the X-ray scattering
intensity as

I (qx , qz) =
∫ d

0
dz

∫∫ ∞

−∞
dx dζei{[qx −q̃x (z)]x+[qz−q̃z(z)]ζ}

× exp

[∫ d

0
dz′ρ(z′)Re τ (x, z, ζ, z′)

]
, (6.123)

where, in the approximation that we described above, Re τ = Re (τ (1) + τ (2)), the
two contributions are given by Eqs. (6.119) and (6.117), and we write their arguments
as z, ζ instead of z1 = z and z2 = z + ζ.

High-resolution X-ray diffraction is a standard tool to measure the relaxation in
epitaxial films. For uniform layers, a comparison of the diffraction peak positions on
the reciprocal space maps (RSMs) taken in a symmetric and in an asymmetric reflec-
tion provides the lattice parameter of the film and the degree of relaxation [41–43].
The problem becomes more complicated for layers containing the lattice parameter
gradients due to concentration variations. Instead of separate peaks from uniform
layers on the RSMs, one observes in the graded layers a continuous intensity distri-
bution. The work [41] demonstrates the determination of the concentration and the
dislocation density profiles from RSMs of graded epitaxial films without assuming
any relations between these profiles and using the RSM intensity distributions only.

The scans of constant qx of the intensity distribution I (qx , qz) on a RSM usually
have well defined maxima (see Fig. 6.10), whose positions we denote as qz max(qx ).
Equation (6.122) approximately give, in the parametric form, the line qz max(qx ). The
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Fig. 6.9 Experimental reciprocal space maps from the sample containing graded Inx Ga1−x As
layer for 224− (a), 004 (b), 224+ (c) Bragg reflections and from the sample containing graded
GaAs1−x Px layer for 224− (d), 004 (e), 224+ (f) Bragg reflections

fitting of the experimental RSMs can be simplified by defining this line on the exper-
imental map and substituting corresponding values qz max, qx max instead of q̃z, q̃x

into (6.122). Then, combining the two equations (6.122), one can directly express
c(z) through qz max, qx max. The value of z is obtained, in the current approxima-
tion for the dislocation density ρ(z), by numerically solving the first Eq. (6.122). We
denote by z∗ this value of z. That allows us to reduce the search from two unknown
functions, c(z) and ρ(z), to the search of just one unknown function.

We can also make a rough estimate of the intensity I (qz max, qx max). Let us assume
that the most essential contribution into diffraction intensity when integrating (6.123)
over dz is given by a small vicinity of the point z∗. This assumption works better
as the dislocation density increases and the integrand, as a function of z, becomes a
sharp peaked function. Then, we can write

∫ d

0
dz ei{[qx −q̃x (z)]x+[qz−q̃z(z)]ζ}

≈
∫ ∞

0
dz exp

{
i

(
dq̃x (z)

dz
x + dq̃z(z)

dz
ζ

)
(z − z∗)

}

≈ 2πδ

(
dq̃x (z)

dz
x + dq̃z(z)

dz
ζ

)
. (6.124)
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Fig. 6.10 Example of reciprocal space maps from graded samples, a Inx Ga1−x As/GaAs and
b GaAs1−x Px /GaAs, (224) reflection [41]. The blue line shows the positions of local maxima
qx max(qz max) used for linking profiles c(z) and ρ(z) during data fitting procedure [see Eq. (6.122)
and subsequent discussion]

In this approximation, the integration over dx dζ is reduced to the one-dimensional
integration in the direction normal to the line qxmax(qzmax). If we make further severe
approximation, assuming thatwi j and ai are constants, we arrive at a notably simple
relation

I (qxmax, qzmax) ∝ 1

/
dq̃z(z∗)

dz
∝ 1/ρ(z∗). (6.125)

Qualitatively, Eq. (6.125) states that, the smaller is the dislocation density, the larger is
the thickness of a sublayer contributing to diffraction intensity. However, Eq. (6.125)
only qualitatively describes the experimental data, and can be used to obtain the first
approximation for further fit of the dislocation density profile. By performing the
comprehensive fitting of reciprocal space maps based on (6.123), the depth profile
of the dislocation density can be obtained (Fig. 6.11).

Another example of the application of experimental HRXRD method and suc-
cessful theoretical interpretation of measured reciprocal space maps (Fig. 6.12) is
reported in [42] for three samples grown on different substrates and therefore pos-
sessing different relaxation status and dislocation structure. Three reverse-graded
Si0.2Ge0.8 relaxed buffers were grown on (001), (011) and (111) silicon substrates
(see detailed design of the samples in [42]). The measured and simulated on the basis
of the presented in this section theory maps demonstrate a good agreement and prove
the validity of the evaluation approach.
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(a)

(b)

(c)

Fig. 6.11 Results of fitting of reciprocal space maps for sample Inx Ga1−x As/GaAs (left) and sample
GaAs1−x Px /GaAs (right) [41]. a Contour plots of experimentally recorded (blue solid lines) and
fitted (red dashed lines) intensity distribution from reflection 224−. The step of iso-intensity contours
is 100.1. b Concentration and relaxation depth profiles. c The fitted misfit dislocation density (full
line), black squares denote points ρ(zi ) which were used for fitting. The dashed line corresponds
to dislocation distribution according to model [44, 45]

6.4.3 Parallel Dislocations Lines Perpendicular to Sample Surface

The model of parallel dislocations lines, which lie perpendicular to the surface
describes the threading dislocations penetrating heteroepitaxial structure and have the
dislocation lines perpendicular to the interfaces of heteroepitaxial layers and sample
surface. The density of threading dislocations influences essentially the functional
properties of electronic devices built of semiconductor heterostructures. The typical
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(a) (b) (c) (d) (e) (f)

Fig. 6.12 Experimental and simulated reciprocal space maps (a, b) (224)− in grazing-incidence
angle geometry for the (001) sample; (c, d) (224)+ in grazing-exit angle geometry for the (011)
sample; (e, f) (135)− in grazing-incidence angle geometry for the (111) sample

example is III-nitrides (AlN, GaN and InN), for study of which the X-ray diffraction
is widely used [46, 47].

This model is also applicable to the description of dislocations inside the crystal-
lites of polycrystalline materials. The real distribution of dislocations in polycrystals
is sophisticated: the dislocation lines are distorted, collected into groups near the
crystal walls, the size of crystallites fluctuates, etc. The analysis of the diffraction
line profile based on the above model is nevertheless very effective [20, 21]. The
accurate analysis of used approximations and the comparison with numerical Monte-
Carlo simulations has been presented in [36], and below we use the results of this
work.

The essential feature of all the above-mentioned systems is a correlation of the
dislocation positions formed during the movement of the dislocations, which tend
to reduce a full elastic energy [48]. To determine the correlation function, the terms
T1 and T2 in (6.21) have to be taken into consideration. The polycrystalline samples
differ from semiconductor epitaxial structures with defined thicknesses by existing
distribution of crystallites over the shape and size. Due to this fact, the displacement
fields in infinite media are utilized in further theoretical calculations. In the correlation
function, the dislocations with various directions of Burgers vector have to be taken
into account. For example, for screw dislocations there are two Burgers vectors
±bz , which result in the displacement fields of the opposite signs. The modeling of
the dynamics of dislocations [48] demonstrates the tendency to correlation for the
dislocations of opposite signs to reduce the elastic energy and thus to create so-called
dipoles. The fact of the compensation of the displacement fields by the dislocations
of opposite signs is used in a restrictedly random distribution proposed by Wilkens
and widely used in a line profile analysis [49]. As a result, we obtain using (6.21):

g(r) = eT1(r)+T2(r)

T1(r) = −1

2

∑

α

ραHk Hl

∫
d2r ′ ∂uk(r ′)(α)

∂xi

∂ul (r ′)(α)
∂x j

xi x j

T2(r) = −1

2

∑

α,β

ραρβHk Hl

∫ ∫
d2r ′d2r ′′ ∂uk(r ′)(α)

∂xi

∂ul (r ′′)(β)
∂x j

wαβ(r
′ − r ′′)xi x j ,

i, j = 1, 2 k, l = 1, 2, 3 (6.126)
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where α and β means the type of dislocation (Burgers vector) and integration is
performed in XY plane. We assume here that the system is uniform and correlation
function depends solely on difference r . The imaginary part of T1 is eliminated due
to compensation of average deformations caused by the dislocations of the oppo-
site signs. The density of dislocations is supposed to be high enough and thus the
expansions (6.96) and (6.63) have been utilized. To complete the integration in T1,
the polar coordinates are used, where the derivatives of the displacement fields are
written as in (6.3):

∂uk(r ′)(α)

∂xi
= v(φ)

(α)
ki

r ′ , (6.127)

where the tensor v(φ)(α)ki depends on the dislocation type, and finally:

T1(r) = −1

2

∑

α

ραHk Hlni n jr
2
∫ 2π

0
dφv(φ)(α)ki v(φ)

(α)
l j

∫ ∞

0

dr ′

r ′ . (6.128)

Here n is a unit vector in direction r , and in the expression (6.128), the integral
over r ′ diverges both on upper and lower limits. The divergence on the upper limit
is conditioned by the size of crystallite L , which varies for different crystals and
depends on the shape of crystallite. The divergence on the lower limit is related to
the approximation (6.96) and to the expansion of exponent. Because of the upper
limit L is badly defined, we can use for the lower limit the distance rm , below which
the expansion of the exponent is invalid:

H(u(r1 − rm)− u(r2; rm)) ∼ Hvr/rm ∼ Hbr/rm ∼ 1,

and for T1:

T1(r) = −1

2

∑

α

ραGkli j E (α)kli j r
2 ln

L

Hbr
, Gkli j = Hk Hlni n j ,

E (α)kli j =
∫ 2π

0
dφv(φ)(α)ki v(φ)

(α)
l j , (6.129)

where in accordance with line profile analysis, the geometrical G and elastic E terms
are distinguished.

To calculate T2 in (6.126) with the same accuracy, the approximation (6.103) is
used, which leads to the integral similar to (6.128). As a lower integration limit,
the distance can be used where the approximation (6.103) fails: the characteristic
radius Rc of the correlation function wαβ . For correlation function, the following
expression is obtained:
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T1(r)+ T2(r) =

− 1

2
Gkli j r

2

⎛

⎝ln
L

Hbr

∑

α

Eα
kli jρα + ln

L

Rc

∑

α,β

ραρβEαβ
kli j

∫
d r ′wαβ(r ′)

⎞

⎠ ,

E (αβ)kli j =
∫ 2π

0
dφv(φ)(α)ki v(φ)

(β)
l j . (6.130)

This formula doesn’t depend on the size L if the multipliers at logarithms in (6.130)
are compensated, which is equivalent to the existance of dislocations with opposite
Burgers vectors in pairs [36]. Let us consider the screw dislocations α,β = +b,−b
assuming the equal densities of dislocations of opposite sign ρ+b = ρ−b = ρ/2,
where ρ is a full density, and the absence of correlations between dislocations of
the same sign w+b+b = w−b−b = 0. To satisfy the compensation condition, the
following equation has to be fulfilled:

ρ

2

∫
d r ′w+b−b(r ′) = 1, (6.131)

here the equalities E+b−b
kli j = −E+b+b

kli j = −E−b−b
kli j = −Ekli j are used. By the

definition of correlation function, the formula (6.131) means the probability to find
a dislocation of the opposite sign at arbitrary distance from the original dislocation
equals unity, or alternatively, the dislocations with the opposite signs create the pairs.
In this assumption, the equation is obtained:

g(r) = e− 1
2 ρGkli j Ekli j r2 ln Rc

Hbr . (6.132)

To apply this expression for correlation function to line profile analysis, the exper-
imental conditions have to be accurately considered. In X-ray diffraction experi-
ments, the crystallites of various spatial orientations are irradiated and contribute to
the detected intensity Im(q):

Im(q) =
∫

d3g f (g)Icr(T̂ (g) · qcr), (6.133)

where g means formally the orientation of crystallites (for example, three Euler’s
angles), f (g) is the orientational distribution function (the portion of crystallites
with orientation g), T̂ (g) is a rotation matrix corresponding to orientation g, Icr(q)
is an X-ray intensity diffracted by a single crystallite (all crystallites are assumed to
be identical), and qcr is defined in a coordinate system of a crystallite, details see in
Chap. 7. The distribution of X-ray intensity Icr(T̂ (g)·qcr) decays rapidly with change
of orientation and the value f (g) can be fixed to constant within the diffraction peak
area. Thus, the integration of (6.133) is equivalent to integration of Icr(q) over the
sphere in reciprocal space with the radius equal to the module of wave vector transfer
(Fig. 6.13a).

http://dx.doi.org/10.1007/978-3-642-38177-5_7
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Fig. 6.13 The physical principles of X-ray diffraction measurements from polycrystalline materials
(a) and coherent epitaxial structures (b)

If the peak width is small, the sphere can be replaced by plane (tangential plane
approximation, [50]) and for X-ray intensity we obtain:

I (Q) = I (| Q|) =
∫

d3r
∫

dqx dqyeiqrg(r) =

=
∫

dzeiqz zg(x = 0, y = 0, z); Q = H + q, (6.134)

here z-direction is along H . Thus, for line profile analysis, the one-dimensional
correlation function is required:

g(z) = e− 1
2 ρH2G(p)

kli j Ekli j z2 ln Rc
Hbz , G(p)

kli j = Hk Hl Hi Hj

H4 . (6.135)

To calculate the integral (6.134), the integration area z > Rc/Hb has to be
included where the logarithm is negative and the integral diverges. This area doesn’t
fulfill the assumption r � L , Rc made for derivation of (6.132) and the correlation
function drops down rapidly at these conditions. Therefore, for large values of r
the modification of logarithmic term is necessary. The function f (z) has to tend to
ln Rc

Hbz for small z, to be positive and to tend to zero at large z. For restrictedly random
distribution, the proper expression has been proposed by Wilkens [51], which is bulky
and unclear, however, is frequently used in literature. The works [36, 46] introduced
a simple function satisfying all above mentioned requirements:

f (z) = ln
Rc + Hbz

Hbz
. (6.136)

The correlation radius Rc can be represented as M/
√
ρ, where M is called a cor-

relation radius measured in the units of average distance between dislocations. The
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Fig. 6.14 Deformation stacking faults in fcc materials. The axis z is along < 111 >

parameter C ∼ G(p)
kli j Ekli j is called a dislocation contrast factor and it depends both

on the dislocation type and Bragg reflection. This dependence permits to identify
the dislocations type and density [20] and correlation radius M using several Bragg
reflections data [52].

6.5 Two-Dimensional Defects (Stacking Faults)

Stacking faults are the two-dimensional defects observed in crystalline [47] and poly-
crystalline [53] materials and influencing their mechanical and electrical properties.
The X-ray diffraction methods are sensitive to this type of defects and characterize
them comprehensively [54, 55].

X-ray diffraction from crystalline structures containing stacking faults has been
studied by Landau [56], Henricks and Teller [57], and further in the work [50, 58–61]
and other. For the numerical data evaluation, several programs have been developed
including DIFFaX [62], which is used in other line profile analysis software [54, 63].

The example of deformation stacking faults in fcc material is shown in Fig. 6.14.
To calculate the correlation function and Debye-Waller factor, the displacement fields
created by a single defect have to be determined. In opposite to the defects considered
in the previous sections, the displacement fields of the stacking faults are found from
the geometrical consideration and not from the equations of the elasticity theory
(6.84). Particularly, the presence of the defect in the point z leads to the shift of all
upper layers by vector u0. The displacement field is then presented as:

u(z, z′) = u0 H(z − z′). (6.137)

Assuming the positions of stacking faults non-correlated, the Debye-Waller factor is
determined from (6.11):
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eW = e
∫∞
−∞ dzρ(ei Hu0 H(z−z′)−1) ∼ eLzρ(ei Hu0 −1) ∼ eNd (ei Hu0 −1), (6.138)

here Lz is a characteristic size of the sample in stacking direction, ρ is a density of
stacking faults and Nd is an average number of defects in the sample. The number
of defects is assumed to be large enough to satisfy a statistical approximation on the
defects ensemble. Therefore, the coherent scattering is absent unless the condition
Hu0 = 0 is fulfilled. The expression for correlation function follows from (6.61):

g(z1, z2) = eρ(e
i Hu0

z1−z2|z1−z2 | −1)|z1−z2|. (6.139)

Using (6.83) and geometrical consideration of defects, the scattered X-ray intensity
is calculated as:

I (q) = δ(q||)
∫ ∞

−∞
dzeiqz zg(z). (6.140)

The factor δ(q||) shows that the broadening of the diffraction peak occurs in the
direction of stacking, and in perpendicular to this direction the presence of stacking
faults is not evident from the diffraction data. In the case of fcc materials, see Fig. 6.14,
the translation by vector 3u0 is equal to the lattice period and e3i Hu0 = 1. This
fact initiates three possibilities ei Hu0 = 1, e2πi/3, e−2πi/3, the realization of which
depends on the Bragg reflection H , see [53, 64] for details. For ei Hu0 = 1, the
stacking faults don’t influence the scattering process, which remains coherent. For
ei Hu0 = e±2πi/3, using (6.140) and integrating with infinite limits, we obtain:

I (q) = δ(q||)
w

(qz − q0)2 + w2 , q0 = ±
√

3

2
ρ, w = 3

2
ρ, (6.141)

where the peak has a Lorentzian shape, q0 is a peak shift and w is a peak width.
The approach presented above is based on the fact that stacking faults are described

by the displacement field derived from the geometrical consideration. However, in
many cases the appearance of stacking faults leads to the sequence of layers, which
is not described by the displacement fields (6.137). Moreover, the expressions (6.11)
and (6.61) are based on the assumption of low concentration of defects c, see Eq. (6.7).
For some materials, the sequence of the layers is variable [65], which means the high
concentration of stacking faults. In such a case, the stacking faults are described by
the probability to observe a particular sequence of layers [57, 58, 60, 62].

The estimate for Debye-Waller factor (6.138) remains valid. For fluctuating poten-
tial V in (6.26), the scattering operator at each atomic layer k2

0ρi (r − r i )A(r, t) is
chosen and L0 is a operator of propagation of X-rays in vacuum. The formula (6.61)
in kinematic approximation is then transformed to:
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I (Qz) =
N∑

n=1

N∑

n′=1

〈
fn f ∗

n′ei Q(rn−r ′
n)
〉
, fn =

∫
d2r ||ρn(r ||)ei Qr || , (6.142)

here fn is a form factor of n-th layer, rn is a location of n-th layer and N is a full
number of layers.

The averaging in (6.142) is performed over all possible sequences of layers. This
averaging is conveniently realized using Markov chains [65]. Let us assume that
there are m types of layers, and the rule of stacking is determined by probabilities
πi j of the layer of type i to be followed by the layer of type j [62]. In the deformation
faults in fcc shown in Fig. 6.14, there are three types of layers: A, B and C. Denoting
by α the probability of stacking fault, the probability for layer A to be followed by
layer A is zero, by layer B is 1 − α, and by layer C is α. The matrix πi j has a form:

πi j =
⎛

⎝
0 1 − α α
α 0 1 − α

1 − α α 0

⎞

⎠ . (6.143)

In the absence of the correlation between the defects positions, the sequence of lay-
ers forms a Markov chain with probability matrix πi j . The matrix πi j has a property∑

j πi j = 1 (a stochastic matrix) which leads to the fact that one of the eigenvalues
equals 1 and corresponding eigenvector σi obeys

∑
i σiπi j = σ j . This vector cor-

responds to the stationary state of Markov chain, the state which is obtained after
a large enough number of steps. The probability Ps1 s2 ... sn to have a sequence of n
layers where the first layer is in a given state s1, the second is in state s2,..., the n-th
is in state sn in a stationary chain is given by:

Ps1 s2 ... sn = σs1πs1 s2πs2 s3 ...πsn−1 sn . (6.144)

The averaging in (6.142) can be performed with help of (6.144):

〈 f1 f ∗
n ei Q(r1−rn)〉 (6.145)

=
∑

s1=1...m,...,sn=1...m

Ps1 s2 ... sn fs1 eiφ(n) f ∗
sn

=
∑

s1,...,sn

Ps1 s2 ... sn fs1 ei(φs1s2 +φs2s3+...+φsn−1sn ) f ∗
sn

=
∑

s1,...,sn

σs1 fs1πs1 s2 eiφs1s2πs2 s3 eiφs2s3 ...πsn−1 sn eiφsn−1 sn f ∗
sn
, (6.146)

here φ(k) = i Qrk, φi j = i Q0r i j is a phase gained by the scattered wave due to
the sequence of layers i − j , r i j is a stacking vector between layers of type i and j .
Introducing the matrix Ti j = πi j eiφi j [62] the summation in (6.145) can be converted
to matrix multiplication:
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〈 f1 f ∗
n ei Q(r1−rn)〉 =

∑

i, j

σi fi T
(n−1)

i j f j . (6.147)

The substitution of (6.147) into (6.142) and summing over n, n′ in infinite limits
results in:

I = gi (1 − T )−1
i j f ∗

j + c.c.− f ∗
i fi , gi = σi Fi . (6.148)

For simplicity, we consider the case when all r i j have the same value in the stacking
direction, thus Ti j is represented as:

Ti j = e2πi l T ||
i j , T ||

i j = πi j e
i Q||·r i j . (6.149)

Here the variable Qz is represented as 2πl
d⊥ , where l means the Miller index in the

direction z, the parameter d⊥ is a crystallographic interplane distance along z. For
the case of deformation fcc stacking Ti j has the form:

Ti j =
⎛

⎜⎝
0 e

2iπ
3 (1 − α) e− 2iπ

3 α

e− 2iπ
3 α 0 e

2iπ
3 (1 − α)

e
2iπ
3 (1 − α) e− 2iπ

3 α 0

⎞

⎟⎠ . (6.150)

The intensity (6.148) can be expressed in an explicit way if eigensystem of (6.149)
is introduced [60, 61]. The matrix (6.149) is in general not symmetric, hence it has
different left and right eigenvectors and eigenvalues are the complex quantities:

T ||
i j e

(R,α)
j = v(α)e(R,α)j , (6.151)

e(L ,α)i T ||
i j = v(α)e(L ,α)i ,

v(α) = |v(α)|e2πiφ(α) .

Thus, the vectors T ||
i j can be represented as:

T ||
i j =

M∑

α=1

v(α)e(R,α)i e(L ,α)j . (6.152)

Taking into account the properties of eigenvectors, the inverse matrix (1 − T )−1
i j is:

(1 − T )−1
i j =

M∑

α=1

e(R,α)i e(L ,α)j

1 − |v(α)|e−2πi (l−φ(α)) , (6.153)
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and the substitution of (6.153) in (6.148) after some algebra results in:

I (l) = ∑M
α=1

(
w
(α)
sym + w

(α)
asym

sin(2π(l − φ(α)))

2π

)

× Lor

(
sin(π(l − φ(α)))

π
, γ(α)

)
, (6.154)

here δ-function like dependence on q|| is hidden in form factors of layers and
Lor (x, γ) is a Lorentz function:

Lor(x, γ) = γ

π
(
γ2 + x2

) . (6.155)

The weights for symmetric and asymmetric partsw(α)sym, w
(α)
asym and Lorentzian width

γ(α) are:

w(α)sym = Re(G∗
i e(R,α)i e(L ,α)j Fj )

|v(α)| + 1

2
√|v(α)| , (6.156)

w(α)asym = Im(G∗
i e(R,α)i e(L ,α)j Fj )

2π
√|v(α)|

1 − |v(α)| ,

γ(α) = 1 − |v(α)|
2π

√|v(α)| .

The sine functions in the Lorentzians can be expanded near integer l values:

I (l) =
M∑

α=1

lmax∑

l0=−lmax

(
w(α)sym + w(α)asym(l − l0 − φ(α))

)
Lor(l − l0 − φ(α), γ(α)). (6.157)

Thus, using the physical approach described in this section, the shape of the diffrac-
tion peak in Bragg reflection l is a sum of the symmetric and asymmetric Lorentz
functions, which is in agreement with experimental data [54].
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Chapter 7
X-Ray Diffraction Residual Stress Analysis in
Polycrystals

In the previous chapters, the X-ray analysis has been applied to the samples with
the electron density distributed uniformly in a macroscopic volume: the constant
value for XRR analysis and three-dimensional periodic function in case of HRXRD
analysis. These samples are usually grown with a predicted design to realize certain
physical or mechanical properties of a final structure. The natural materials, however,
possess in most cases the mixed structure, consisting of a large number of crystallites
of various shape and size with random distribution over the sample volume. This kind
of physical structure is called a polycrystalline form and it occurs in the majority of
existing samples.

The non-destructive X-ray studies explore the properties of polycrystals, which
influence the macroscopic characteristics of the products made of polycrystalline
materials. There are different methods of X-ray analysis described in numerous
monographs: the powder diffractometry performs the chemical and structural analy-
sis of the material [1] and determines the grain size [2] and microstructural imperfec-
tions, the texture X-ray analysis studies the preferable orientations of the crystallites
[3], X-ray stress analysis evaluates the residual stresses and strains in the samples
[4, 5].

The chapter deals with the residual stress analysis, and the theoretical concepts
described in previous chapters are used here to interpret the X-ray residual stress
measurements. The first section introduces the basic physical definitions used fur-
ther in X-ray stress analysis. The most difficult part of the theoretical interpretation is
a description of the elastic interaction between crystalline grains which influences the
microscopic properties of the crystallites. The second section presents the approxi-
mations and models used for solution of this problem. The third section considers the
powder X-ray diffractometry in a connection with X-ray stress analysis. The forth
section deals with the macroscopically isotropic samples, and the expressions for
X-ray elastic constants are derived. The covariant methods and vector parametriza-
tion of the rotation space group are utilized to simplify the operations with tensors.
Finally, the macroscopically anisotropic material are discussed in the fifth section of
this chapter.

A. Benediktovitch et al., Theoretical Concepts of X-Ray Nanoscale Analysis, 265
Springer Series in Materials Science 183, DOI: 10.1007/978-3-642-38177-5_7,
© Springer-Verlag Berlin Heidelberg 2014



266 7 X-Ray Diffraction Residual Stress Analysis in Polycrystals

7.1 X-Ray Stress Measurements

The residual stresses are defined by the distribution of the forces and the moments of
forces, which exist in an equilibrium state in the polycrystals. The stresses influence
the mechanical properties and the fatigue life of a material under external exposure.
The residual stresses are the result of the elastic or plastic deformation of crystallites,
and the distribution of the stress in a volume is distinguished by the several scales,
σ = σI + σI I + σI I I [4]: (i) macroscopic, where the stress σI is averaged over
the large number of grains, (ii) mesoscopic, where σI I is an average stress inside
grain, and (iii) microscopic, where σI I I describes the fluctuation of local stress
inside a crystallite around value σI I . The mechanical properties of the sample are
defined mostly by macro-residual stress σI , the evaluation of which by X-ray stress
measurements involve the calculation of σI I and σI I I as well (Sect. 7.2).

The real microstructure of polycrystals is very complex. For the description of
areas with coherent crystallographic structure, there are different spatial scales and
naming conventions for micro-objects exist: crystallite, subgrain, dislocation cell,
cell-block, grain and others [6]. Depending on the material, these objects have various
relationships. In this chapter, we are not focusing on any particular material and
therefore use the words crystallite and grain as synonyms.

In according to elastic theory [7], the stress tensor σi j (r) in the position r is a
symmetric tensor of a second rank which defines the force density Fi acting on the
square d S j = n j d S as follows:

Fi (r) = σi j (r)n j d S, i, j = 1, 2, 3, (7.1)

where n j are the components of a normal vector to the square d S and the repeating
indices are summed up accordingly.

In general case, the components σi j (r) have different values in different crystal-
lites, however, the averaging over all grains results in a macro-residual stress:

σi j ≡ 〈σi j (r)〉, (7.2)

which has to be evaluated in the most of the practical applications and is a target of
the residual stress analysis.

Thereafter, we consider the basic principles of X-ray diffraction stress analysis
for polycrystals with uniform and isotropic distribution of the crystallites [4, 5, 8].
The stresses σi j in the sample lead to the variation of the interplane distances inside
the crystallites, and the value dhkl for the plane {hkl} depends on the orientation of
grain in a polycrystal (Fig. 7.1).

The linear dimension of the grains in polycrystalline materials is essentially less
than the extinction length of X-rays, and according to (6.77) the X-ray scattering
from a single grain is described by a kinematical diffraction theory. The position of
the diffraction peak for the radiation with the wavelength λ is determined by Bragg
law:

http://dx.doi.org/10.1007/978-3-642-38177-5_6
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Fig. 7.1 X-ray diffraction from polycrystalline sample to measure residual stress inside the sample

2dhkl sin θhkl = λ, (7.3)

where angle θhkl is a Bragg angle for reflection hkl. Assuming the value d(0)hkl and

Bragg angle θ(0)hkl are known for the investigated crystal under the non-stressed condi-
tion, the measurement of the position of the diffraction peak θhkl delivers the elastic
deformation of corresponding crystallographic planes:

εhkl = dhkl − d(0)hkl

d(0)hkl

≈ −(θhkl − θ
(0)
hkl) cot θ(0)hkl . (7.4)

This value is a component of the strain tensor εi j (r), which depends on the coordinate
and is connected to the stress tensor by Hooke’s law [7]:

εi j (r) = si jkl(r)σkl(r), (7.5)

where si jkl(r) is a local compliance tensor, which may vary both inside grain and at
the grain boundary (Sect. 7.2). In a primitive model of uniform and isotropic polycrys-
tal consisting of the isotropic grains [5], the averaging over the coordinates in (7.5)
establishes the relationship between the measured average strain tensor εi j = 〈εi j (r)〉
in sample, the evaluated macroscopic stress tensor σi j and the compliance tensor
Si jkl , which is referred to the whole polycrystal but for uniform sample contains two
parameters S1, 1/2S2 [7] only:

εi j = 〈si jkl(r)σkl(r)〉 = Si jklσkl =
[

S1δi jδkl + 1

2
S2
δikδ jl + δilδ jk

2

]
σkl , (7.6)

These parameters are expressed through the Young modulus E and Poisson ratio ν
as:
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Fig. 7.2 The coordinate systems used in X-ray diffraction residual stress analysis in polycrystals

S1 = − ν

E
; 1

2
S2 = 1 + ν

E
. (7.7)

Each of three tensors in (7.6) has a simplified form in various coordinate systems
used for residual stress analysis (Fig. 7.2).

The coordinate system S is related to the sample as a whole, and the axis z(i = 3)
coincides with the normal to the sample surface. In the coordinates S, the components
of the macroscopic stress tensor σi j are initially defined. The laboratory coordinate
system L is set to merge the direction of the axis z′ and reciprocal lattice vector H
of crystallites, corresponding to the Bragg angle 2θhkl . This direction in a system
S is defined by the unit vector y(ψ,φ); Q = Q y ≈ 2π y/d(0)hkl with angles ψ and
φ (Fig. 7.2). The definition of the vector y is possible by other parameters, which
can be more convenient for interpretation of the measurements from the samples
with preferred orientations, see Sect. 7.3. The experimentally measured strain (7.4)
defines the component of strain tensor εhkl

ψφ = εL
33 in a coordinate system L .

Finally, the crystallographic coordinate system C is defined by the crystallo-
graphic axes of crystallites, and the stiffness tensor is set in this coordinate system.
Assuming the uniform and isotropic sample model (Sect. 7.2), the parameters SC

1 and
SC

2 are equal for all grains and calculated from the crystallographic parameters of a
crystal composing a crystallite. They also coincide with the macroscopic parameter
S1 and S2 of polycrystal in Eq. (7.6).

In isotropic polycrystal, the components of the strain tensor (7.6) in system S are
expressed through the value εL

33 by three components of the rotation operator T̂ ( y)
(Fig. 7.2):

εhkl
ψφ = εL

33 = T3i ( y)εi j Tj3( y), (7.8)

which is the same as vector ( y) is the system S:

T3i ( y) = Ti3( y) = (sinψ cosφ, sinψ sin φ, cosψ). (7.9)
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Using the Eqs. (7.6)–(7.9), the relationship between the measured by X-ray dif-
fraction strains and components of the residual stress tensor is:

εhkl
ψφ = 1

2
S2 sin2 ψ[σ11 cos2 φ+ σ12 sin 2φ+ σ22 sin2 φ− σ33]

+ 1

2
S2 sin 2ψ[σ13 cosφ+ σ23 sin φ] + S1(σ11 + σ22)+ σ33(

1

2
S2 + S1).

(7.10)

The Eq. (7.10), named often as fundamental equation of X-ray stress analysis,
contains 6 unknown components of the stress tensor. They can be found as a solu-
tion of the system of linear equations obtained from the measurement of strain at 6
different angles ψ and φ. The values of the diagonal and non-diagonal components
of the strain tensor may differ essentially, and thus even small errors in the measured
positions of the diffraction peaks make the analysis unstable. Therefore, another ana-
lytical methods utilizing the specific features of Eq. (7.10) are used for the treatment
of X-ray data. The most commonly used technique is a sin2 ψ method, introduced
for the first time in [9].

The method is based on the fact, that the boundary conditions of the sample shape
are not essential for uniform and isotropic macroscopic polycrystal. Therefore, the
coordinate system S is approaching the system P of the stress tensor [7], where
σi j = σiδi j ; σi ≡ σi i and thus tensor contains the diagonal elements only. In
this case, the dependence of the function εhkl

ψφ on sin2 ψ at fixed φ is defined by a
straight line (Fig. 7.3a). Thus, the interpolation of several measurements carried out
at different sin2 ψ and φ = 0 and φ = π/2 by a straight line makes it possible to
calculate values σ11 and σ22 from the inclination angles of the line. The intersection
of the line with the ordinate delivers the value σ33.

As follows from (7.10), the presence of non-diagonal components in σi j , i.e. the
deviation in the directions of the axes of S and P systems, leads to the dependence of
εhkl
ψφ on the sign of the calculation angle ψ. This fact results in elliptical form of the

curves εhkl
ψφ (sin2ψ), which allows to calculate the values σ13 and σ23, too (Fig. 7.3b).

For anisotropic and non-uniform polycrystals, the method described above does
not permit to calculate the components of the stress tensor, however, the curves
εhkl
ψφ (sin2ψ) are helpful to investigate qualitatively the distribution of the stresses in

the sample, for example, presence of stress gradient or texture (Fig. 7.3c, d).
The quantitative residual stress analysis in case of essential deviations from sin2 ψ

law assumes the averaging of (7.6) by using microscopic models (microstress) for
separate grains and their elastic interaction (7.2) as well as the consideration of texture
of polycrystalline sample (7.3). In general case, the resulting equations contain a
complicated relationship between the microscopic compliance tensor of separate
grains and components of macroscopic tensor Si jkl referred to the whole sample. In
the framework of macroscopically isotropic model and in the presence of anisotropy
inside grains, the Eq. (7.10) can be used to interpret the experimental data:
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(a) (b)

(c) (d)

Fig. 7.3 Typical shapes of the function εhkl
ψφ (sin2ψ) for the measurement of strain by point detector:

a linear function in case of diagonal stress tensor, b elliptical function in case of non-zero σ13 and
σ23, c oscillating function in the presence of texture, d parabolic function in case of strong gradient
of σi j (z) toward the normal to the sample surface

εhkl
ψφ = 1

2
Shkl

2 sin2 ψ[σ11 cos2 φ+ σ12 sin 2φ+ σ22 sin2 φ− σ33]

+ 1

2
Shkl

2 sin 2ψ[σ13 cosφ+ σ23 sin φ] + Shkl
1 (σ11 + σ22)+ σ33

(
1

2
Shkl

2 + Shkl
1

)
.

(7.11)

Here the coefficients Shkl
2 and Shkl

1 depend on the diffraction vector and can be
considered as phenomenological X-ray elastic constants [2] (see Sect. 7.4 for more
details).

There are several improved techniques of X-ray measurements, which optimize
the study of residual stresses in polycrystals. The grazing-incidence X-ray diffraction
(GIXRD) is used for the investigation of stress gradients in surface layers and coatings
[8]. At small incidence angles α near the critical angle of total external reflection αc,
the diffraction peak is formed in the grains located in the depth, which depends on
the incidence angle (Fig. 7.4).

The depth, where 63 % of the full intensity of diffraction peak is formed, is called
informational depth τ and for thick layer it is expressed as [2]:
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Fig. 7.4 In GIXRD geometry,
the incidence αi and exit α f
angles for the reflection hkl
differ from the impinging
angle α and leaving angle
(2θ − α) due to the refraction
effect

τ (α) = sinα sin(2θ − α)

μ[sinα+ sin(2θ − α)] ; μ = 4π

λ
β, (7.12)

where β is an imaginary part of the refraction index n = 1 − δ − iβ (see Chap. 1).
By varying the incidence angle of X-rays, the stress can be measured from differ-
ent distances in-depth from the surface. At the angles comparable with αc, where
sin2 αc = 2δ, the refraction of both incident and exit beams becomes essential
(Fig. 7.4), which results in the angular shift of the diffraction peak at 2θ with respect
to the Bragg angle 2θhkl in formula (7.4). The corrections for refraction change also
the informational depth and have to be accounted for the reconstruction of stress
gradients [10]. The formulas for the corrections are:

2θhkl = αi (α)+ α f (α); tanαi = B+(α)
cosα

; tanα f = B+(2θ − α)

cos(2θ − α)
;

τ ′(α) = τ (α)
1

sinαB−(α)
;

B±(α) = 1√
2
[
√
(sin2 α− 2δ)2 + 4β2 ± (sin2 α− 2δ)]1/2. (7.13)

The transition layer at the surface sample caused by roughness (Chap. 3) also
distorts the informational depth and the corresponding corrections have to be applied
for calculation of stress gradients [11].

The Eqs. (7.10) and (7.11) are used above for the experimental geometry, which
measures the shift of diffraction peak at fixed indices (hkl), i.e. by varying the
direction y(ψ) of the diffraction vector Q at fixed length Q. However, these equations
are valid for the case of different indices, when the angle ψhkl is connected to the
Bragg and the incidence angles as:

ψhkl = θhkl − α, (7.14)

and varies from one diffraction peak to another without rotation of sample. This
approach is called multiple hkl stress evaluation and is used in GIXRD geometry to
evaluate stress gradients [10, 12]. The Eq. (7.11) is applied in this case in the form

http://dx.doi.org/10.1007/978-3-642-38177-5_1
http://dx.doi.org/10.1007/978-3-642-38177-5_3


272 7 X-Ray Diffraction Residual Stress Analysis in Polycrystals

[12]:

εhkl
φ = 1

2
Shkl

2 [σφ sin2 ψhkl + τφ sin 2ψhkl ] + Shkl
1 (σ11 + σ22);

σφ = σ11 cos2 φ+ σ12 sin 2φ+ σ22 sin2 φ; τφ = σ13 cosφ+ σ23 sin φ. (7.15)

For determination of the values σφ, τφ and (σ11 + σ22) at fixed φ, it is enough
to measure the strain for 3 reflections. However, the equation system obtained can
be badly defined or has no any exact solution due to big difference between σφ and
τφ. Therefore, in practice the multiple measurements are performed and the stress is
calculated by fitting the strain for all reflections on the basis of formula (7.15) [10].

The presented above technique of X-ray diffraction stress measurements is com-
monly used and utilizes a point or linear X-ray detectors, which record the scattered
X-ray signal in the diffraction plane corresponding to the angleψ (Fig. 7.2). Recently
the two-dimensional detectors became popular for residual stress measurements [13].
In that case, the diffraction signal from the uniform polycrystal is exposed as Debye
rings with the radius defined by the reflection (hkl) and with variation of the angle
along the Debye ring between 0 and 2π. The detection of X-ray signal out of the
diffraction plane introduces another degree of freedom in the relative arrangement
of the coordinate systems and this fact requires the modification of the Eq. (7.11) for
residual stress analysis. The derivation of a new equation for two-dimensional data
is done in [13]. This technique offers an extended opportunities for stress analysis in
the samples with large size of grains and highly textured materials.

Independently on the X-ray measurement technique used for stress analysis, the
results are strongly influenced by the selected model of grain interaction and the
distribution of grains in a sample, as reflected in the Hooke’s law (7.5). This important
issue is discussed in the following sections.

7.2 Grain-Interaction Models

The stress and strain inside the single crystallite (grain) are connected by the Hooke’s
law. The Bragg peak, however, is formed by the signals coming from the number of
grains with different rotation angle α (Fig. 7.2). Within this set of grains, there are
different magnitudes of microscopic strain and stress observed, which differ from
the macroscopic values to be evaluated. Therefore, the relation between the strain
εi j (g)

(S) in a single grain (coordinate system (S)) having orientation g and the macro-
scopically averaged stress tensor 〈σi j 〉(S) has to be established. This relationship will
help to find the dependence between macroscopic stress in a sample and measured
experimentally by X-ray diffraction strain. Within the framework of linear elasticity
theory, this relationship is expressed as:

ε
(S)
i j (g) = Ai jkl(g)〈σkl〉(S). (7.16)
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The coefficients Ai jkl(g) depend non-linearly on the orientation of grain g and on

the stiffness tensor of grain c(C)i jkl .
The problem of calculation of macroscopic parameters of the sample consisting

of non-uniform areas has a long history [14]. The determination of averaged elastic,
dielectric, electroconductive and thermoconductive properties have a similar mathe-
matical formulations in linear theory. The elastic properties of polycrystal are found
from the equations of the elastic equilibrium with the boundary conditions:

∂

∂xk
cik jl(r)

∂u j

∂xl
= 0, u(1)i |� = u(2)i |�,σ(1)i j n j |� = σ

(2)
i j n j |�, (7.17)

where cik jl(r) is a stiffness tensor, which varies from one crystallite to another when r
varies, � is a boundary between regions (1) and (2)with the normal n. The boundary
conditions for electrostatics in media have similar form:

∂

∂xi
εi j (r)

∂φ

∂x j
= 0, φ(1)|� = φ(2)|�, D(1)

j n j |� = D(2)
j n j |�, (7.18)

where εi j is a permittivity, φ is a potential and Di is an electric displacement field. By
substituting εi j for the tensor of electroconductivity and Di for the current density,
we obtain the equations for electroconductive properties of material. By substituting
φ for the temperature and εi j for the tensor of thermal conduction, and Di for the
heat flux, we obtain the equations for thermoconductive properties, and so on. Thus,
the methods developed for one branch of physics can be transformed to another.
With regard to the elastic properties, however, the mathematical background is more
complex due to the involvement of tensors of higher rank and vectors ui instead of
the scalar φ.

There are following approaches to the solution of above-mentioned problem:

• Exact solutions for certain models, for example, the exact solution of the Eq. (7.17)
for adjoined isotropic spheres with similar properties in isotropic surrounding, so
called composite sphere assemblage [15, 14]. The number of these models, which
allow an exact solution is relatively small.

• The methods based on the expansion into series over small parameter. The small
parameter can be concentration of particles in composite material [14, 16], the
anisotropy degree of the crystallites in a sample [17], and so on. In case if the para-
meter is not small, the series can be used for qualitative analysis [18]. An equivalent
formulation of this approach is a chain of the equations Born-Bogolubov-Green-
Kirkwood-Ivone [19].

• The methods for determination of lower and upper boundaries of the macroscopic
parameters [14, 18]. These methods are based on the variation principle: the exact
solution of the Eqs. (7.17) and (7.18) minimizes the energy.

• Self-consistent methods, where the ansatz for (7.17) and (7.18) is constructed
as follows: the interaction between particles is substituted for the interaction of
separate particle with effective media, the properties of which have to be found.
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The effective permittivity has been found by Bruggeman [20] using this method.
For the elastic properties of polycrystalline materials, the self-consistent methods
are based on eigenstrain approach [21], where the Eshelby problem is solved for
the stress initiated by the inclusions [22]. Based on this approach, Kröner proposed
a self-consistent method for calculation of elastic properties of polycrystals known
as Eshelby-Kröner model [23].

• The method based on the simplified models of grain interaction. Instead of solution
of (7.17), the ad hoc assumptions are used for distribution of stresses and strains in
grains [24]. As a result, the boundary conditions (7.17) are broken, however, the
proper selection of model allows to obtain a good fit between experimental data
and theory.

• A numerical solution of (7.17) and (7.18) and further averaging of the prior found
fields. This approach is frequently used for optical properties of metamaterials [25].
In opposite to the artificial metamaterials, where the fragments are designed ini-
tially, the polycrystalline samples obey many random parameters. For the numeri-
cal solution of (7.17), the shape and crystallographic orientation of each crystallite
have to be known. The method of finite elements is proved [26, 27] to show a good
agreement with analytical methods.

Hereafter, we consider the frequently used models and methods for solution of
Eq. (7.16).

7.2.1 Voigt Model

The first grain-interaction model has been proposed by Voigt in 1910 [28]. This
model assumes that all crystallites have the same strain εi j independently on their
orientations. As a result, the microscopic strain equals to the averaged macroscopic
one:

ε
(S)
i j (g) = 〈ε(S)i j 〉. (7.19)

Thus, the stress tensor in crystallite with orientation g is calculated by formula:

σ
(S)
i j (g) = c(S)i jkl(g)〈ε(S)kl 〉, (7.20)

where c(S)i jkl(g) = T (SC)
i i ′ j j ′kk′ll ′(g)c

(C)
i ′ j ′k′l ′ is a stiffness tensor of crystallite with orien-

tation g in coordinate system (S). To derive the relationship (7.16), the macroscopic
stress tensor 〈σi j 〉(S) has to be determined. For determination, the Eq. (7.20) has to
be averaged over crystallite orientations g with respect to the orientation distribution
function (ODF) f (g), (see more detailed discussion on ODF and transformation
T (SC) in the Sect. 7.4):
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〈σ(S)i j 〉 = C (S)
i jkl〈ε(S)kl 〉, (7.21)

C (S)
i jkl =

∫
d3g f (g)T (SC)

i i ′ j j ′kk′ll ′(g)c
(C)
i ′ j ′k′l ′ .

Using (7.19), (7.21) and (7.16), the following statement is obtained for Voigt model:

AV
i jkl = (C (S)

i jkl)
−1. (7.22)

In this model, the tensor AV
i jkl is independent on the crystallite orientation g, which

results in a linear character of sin2 ψ even in the presence of texture.
The Voigt model is a pretty rough approximation for grain interaction, where the

boundary conditions of the elasticity theory (7.17) are deliberately not satisfied. The
strains are continuous at the boundaries of crystallites, however, the stresses suffer
the discontinuity (7.20). The totally opposite situation occurs in a Reuss model.

7.2.2 Reuss Model

The Reuss model [29] assumes all the crystallites have the same stress σi j indepen-
dently on the orientation. As a result, the microscopic stress of a single crystallite
equals to the macroscopic one averaged over the whole sample:

σ
(S)
i j (g) = 〈σ(S)i j 〉. (7.23)

The strain tensor of a crystallite with the orientation g is:

ε
(S)
i j (g) = s(S)i jkl(g)〈σ(S)i j 〉, (7.24)

where s(S)i jkl(g) = T (SC)
i i ′ j j ′kk′ll ′(g)s

(C)
i ′ j ′k′l ′ is a compliance tensor of crystallite with

orientation g in a coordinate system S. By comparing (7.24) and (7.16), we conclude:

AR
i jkl(g) = s(S)i jkl(g), (7.25)

where tensor AR
i jkl depends on the crystallite orientation g, which leads to the non-

linearity of sin2 ψ in the presence of texture.
The Reuss model is similarly rough as the Voigt one: the boundary conditions of

the elasticity theory are not fulfilled. In opposite to the Voigt model, the stresses are
continuous at the crystallite boundaries and the strains (7.24) are discontinuous.
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7.2.3 Hashin-Shtrikman Boundaries for Rigidity Modulus

The models of Voigt and Reuss describe the limiting cases of grain interaction. The
microscopic mechanical elastic constants binding 〈σi j 〉 and 〈εi j 〉 are shown in [30]
to satisfy the inequality:

K R ≤ K ≤ K V , G R ≤ G ≤ GV . (7.26)

Here K and G are real values of macroscopic bulk and rigidity moduli, and
K V,R,GV,R are the values found by Voigt and Reuss models.

The result (7.26) can be illustrated by analogue with the electrical conductivity
[16]. In the Reuss model, all grains have equal stress value, which by analogue with
(7.17) and (7.18) corresponds to equal current in all conductors. Thus, the Reuss
model is analogous to the sequential connection of the conductors, which results in
the highest resistance value. The Voigt model corresponds to the equal voltage on all
conductors, and thus is analogous to parallel connection, which gives the minimal
resistance. For any other types of connection, the resulting resistance will have an
intermediate value between the ones mentioned above.

Despite both Voigt and Reuss models are very approximate, the expressions (7.25)
and (7.22) do not depend neither from the grain shape nor from their mutual locations.
Is it possible to obtain more accurate limits and to identify which information about
the crystallites is required for this purpose, we analyze below the Eq. (7.17) following
the work [18].

Let us split stiffness tensor cik jl(r) into sum of constant tensor Cik jl which we
define later and tensor δcik jl(r) which varies from crystallite to crystallite:

cik jl(r) = Cik jl + δcik jl(r). (7.27)

The Eq. (7.17) is then expressed as:

Cik jl
∂2

∂xk∂xl
u j + fi (r) = 0, fi (r) = ∂

∂xk
δcik jl(r)

∂u j

∂xl
. (7.28)

The structure of this equation is similar to one of (6.26): there is a constant differential
operator Cik jl

∂2

∂xk∂xl
analogous to L0 in (6.26) and a fluctuating term. Based on the

Eq. (7.28), we have to find the averaged effective parameters of the physical system,
and therefore use the methods similar to the ones described in the Sect. 6.2, namely
represent (7.28) in an integral form:

ui (r) = ui (r)(0) +
∫

d3r ′Gi j (r, r ′) f j (r ′), (7.29)

Cik jl
∂2

∂xk∂xl
G jm(r, r ′)+ δimδ(r − r ′) = 0,

http://dx.doi.org/10.1007/978-3-642-38177-5_6
http://dx.doi.org/10.1007/978-3-642-38177-5_6
http://dx.doi.org/10.1007/978-3-642-38177-5_2
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where Gi j (r, r ′) is a Green function of the elasticity theory [7, 21]; and the arbitrary
solution of the uniform equation ui (r)(0) is chosen to satisfy the boundary conditions
at the border of polycrystal. Then the Green function has to satisfy the condition:

G jm(r, r ′)|r∈� = 0 (7.30)

at the boundary of the polycrystal. By integrating and using (7.29) and (7.30), we
arrive at:

ui (r) = ui (r)(0) −
∫

d3r ′ ∂Gi j (r, r ′)
∂x ′

k
δc jknl(r ′)∂un(r ′)

∂x ′
l
. (7.31)

To calculate the strains, the Eq. (7.31) has to be differentiated:

εi p(r) = εi p(r)(0) −
∫

d3r ′ ∂G(i j (r, r ′)
∂x p)∂x ′

k
δc jknl(r ′)εnl(r ′), (7.32)

where due to the symmetry of the stiffness tensor with respect to the transposition
of indices 1 δc jknl(r ′)∂un

∂x ′
l

= δc jknl(r ′)εnl :

a(i j)bi j = a(i j)b(i j). (7.33)

The expression (7.32) can be written as:

ε = ε(0) − � : δc : ε, (7.34)

where symbol : means the convolution over two indices, and � is an integral operator
[18]:

(�i pjk f )(r) =
∫

d3r ′ ∂G(i j (r, r ′)
∂x p)∂x ′

k
f (r ′). (7.35)

Using this equation, the expression (7.16) can be re-written in an operator form. By
reversing (7.34):

ε = (1 + � : δc)−1 : ε(0), (7.36)

where 1 is a unity tensor of 4th rank. We assume that the strain ε(0) at the boundary of
polycrystal is uniform (the general case is discussed in [18]), then the macroscopic
strain 〈ε〉 is equal to ε(0):

〈ε〉 = ε(0). (7.37)

1 The parenthesis near underlined indices mean the symmetrization operation, a(i j)kl ≡ 1
2 (ai jkl +

a jikl ). In these notations, the symmetry of stiffness tensor relatively the transposition of indices has
a form ci jkl = c(i j)kl = ci j (kl) = c(i jkl), where the latter equality means the symmetry with respect
to the transposition of index pair.
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Applying the Hooke’s law, we obtain for macroscopic values:

〈σ〉 = C M : ε(0), (7.38)

and for microscopic values:
σ = (C + δc) : ε. (7.39)

After averaging (7.39) and using (7.36), the expression for macroscopic stiffness
tensor is:

C M = C + 〈δc : (1 + � : δc)−1〉, (7.40)

and the relationship (7.16) is found to be:

A = (1 + � : δc)−1 : C−1
M . (7.41)

Within the accuracy of approximation (7.17), these expressions are exact. How-
ever, similarly to the case of (6.33), for the calculation of (7.40) and (7.41) the
operators have to be found, which are inverse to the non-local integral operators.
This is a challenging problem, and the models of Voigt, Reuss and Eshelby-Kröner
are the approximate methods to calculate (7.40) and (7.41).

In the same way as in (6.33), the inverse operators can be represented as an
expansion into series, and thus (7.40) is written as:

C M = C + 〈δc〉 − 〈δc : � : δc〉 + . . . (7.42)

The first two terms in (7.42) correspond to the Voigt model, whereas the same
formula, being constructed not from stiffness tensor C but from compliance tensor
S, will correspond to Reuss model. In both approximations, there is no need to know
the shape and mutual arrangement of the crystallites, however, for the calculation of
the subsequent term in the series this information is necessary. Indeed, the operator
� is non-local, and therefore for calculation of the third term in (7.42) the value
〈δc(r1)δc(r2)〉 must be known, which is a correlation function of the second order
for the elastic properties of polycrystal. To calculate further terms in the series, the
correlation functions of higher order must be simulated. In general case, the series
(7.42) is divergent, and the special summation techniques have to be applied for the
final calculation [18].

Using the derived above equations, the expressions for upper and lower limits of
the macroscopic stiffness tensor C M can be obtained. To isolate the operator �, the
equation (7.34) is re-formulated as [18]:

(δc−1 + �) : σ̃ = ε(0), σ̃ = δc : ε. (7.43)

This equation for fluctuating stress parameter σ̃ can be considered as a consequence
of the minimization of the functional:

http://dx.doi.org/10.1007/978-3-642-38177-5_6
http://dx.doi.org/10.1007/978-3-642-38177-5_6
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δF[σ̃]
δσ̃

= 0, F[σ̃] =
∫

d3r
(

σ̃ : δc−1 : σ̃

2
+ σ̃ : � : σ̃

2
− σ̃ : ε(0)

)
. (7.44)

Alternatively, using (7.43) the functional F[σ̃] is:

F[σ̃] = −
∫

d3r
σ̃ : ε(0)

2
=

∫
d3r

(
ε(0) : C : ε

2
− σ : ε(0)

2

)
(7.45)

= V ε(0) : C − C M

2
: ε(0),

where Eq. (7.38) is used and V is a volume of the polycrystal.
As follows from (7.44), the exact solution of (7.43) delivers the extremum of

the functional F[σ̃]. If the value δc−1 is positive definite, 2 the extremum will be a
minimum [18]. For any probe field σ̃probe, the following inequality is satisfied:

F[σ̃probe] ≥ V ε(0) : C − C M

2
: ε(0). (7.46)

By reduction of F[σ̃probe] to the form V ε(0) : Cv
2 : ε(0), the Eq. (7.46) delivers the

upper limit for C M . Using a similar algorithm for the compliance tensor S, in case
of negative definite value δc−1, we obtain [18]:

F[σ̃probe] ≤ V ε(0) : C − C M

2
: ε(0), (7.47)

from where the lower limit for C M is received. To explicitly calculate both limits,
the following probe field is used:

σ̃probe =
∑

n

σ̃n�n(r), (7.48)

where the sum is performed over all grains of polycrystal, and the field inside each
grain is assumed to be constant. The function�n(r) describes the shape of n-th grain:
�n(r) equals to 1 inside grain and to 0 outside. The coefficients σ̃n are determined
by the minimization of the functional F , which for the field (7.48) is:

2 To clarify whether the tensor is positive definite, the special representation (7.121)
is used (see Sect. 7.4). In this representation, the positive definition corresponds to
C = (3κc, 2 min(μc,μ

′
c), 2 min(μc,μ

′
c)), and negative definition to C = (3κc, 2 max(μc,μ

′
c),

2 max(μc,μ
′
c)), respectively.
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F[σ̃n] =
∑

n

Vn
σ̃n : δc−1

n : σ̃n

2
(7.49)

+
∑

n,m

σ̃n : ∫
d3r1d3r2�n(r1)�m(r2)�(r1, r2) : σ̃m

2
−

∑

n

Vnσ̃n : ε(0).

With respect to the coefficients σ̃n , the expression (7.49) is a quadratic form
of type 1

2

∑
n,m anm σ̃nσ̃m + ∑

n bnσ̃n . It can be easily found that the extremum is
1
2

∑
n bnσ̃n

∗, where σ̃n
∗ is a solution of the equation

∑
m anm σ̃m

∗+bn = 0. Applying
these expressions to (7.49), the extremum of the functional is found to be:

F = −1

2

∑
n

Vnσ̃n
∗ : ε(0), (7.50)

Vnδc−1
n : σ̃∗

n +
∑

m

∫
d3r1d3r2�n(r1)�m(r2)�(r1, r2) : σ̃m

∗ = Vnε(0).

As follows from (7.50), due to the operator � the expression for σ̃n
∗ is non-local

and requires the correlation function for the grain shape. The function� is calculated
on the basis of Green function with the boundary conditions (7.30). The functions
� and �∞ calculated for infinite crystal can be connected for fluctuating σ̃. By
neglecting the condition (7.30), the additional term appears in (7.31), which includes
the integral over the surface:

ui (r) = ui (r)(0) (7.51)

−
∫

d3r ′ ∂G∞
i j (r, r ′)
∂x ′

k
σ̃ jk(r ′)+

∫
d2Snk G∞

i j (r, r ′)σ̃ jk(r ′).

In case of uniform boundary conditions, the averaged values 〈σ〉 and 〈ε〉 are also
uniform, and we can assume the value 〈σ̃〉 uniform, too. In the integration of (7.51)
over the surface, the contribution from 〈σ̃〉 is compensated [18]. By using the Gauss
theorem and replacing the displacements by strain, the expression analogous to (7.34)
is obtained:

ε = ε(0) − �∞ : (σ̃ − 〈σ̃〉). (7.52)

Substituting this expression in (7.50) and applying the translational invariance, we
arrive at:

Vnδc−1
n : σ̃n + V

∑

m

∫
d3ρ fnm(ρ)�

∞(ρ) : σ̃m
∗ = (7.53)

Vnε(0) + Vn

∫
d3ρ�∞(ρ) : 〈σ̃∗〉,

fnm(ρ) = 1

V

∫
d3r�n(r)�m(r + ρ),
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where fnm is a correlation function of the grain shape.
In the case of spherically symmetric correlation function fnm(ρ) = fnm(ρ), the

expression (7.53) can be essentially simplified, and the explicit solution is obtained
on the basis of Eshelby tensor. To derive this formula, the Green function of the
infinite media is represented as an expansion through the plane waves, and from
(7.29) follows:

G∞
i j (ρ) =

∫
d3k

Mi j (n)

(2π)3k2 ei kρ, Mi j (n) = (Cik jlnknl)
−1, k = kn, (7.54)

where Mi j (n) is a Chirstoffel tensor (acoustic tensor). Using formula (7.35), the
integral in (7.53) is expressed as:

∫
d3ρ fnm(ρ)�

∞
i pjk(ρ) =

∫
d2n

M(i j (n)

(2π)3
n p)nk

∫
ρ2dρk2dk

∫
d2nρ fnm(ρ)e

ikρnnρ .

(7.55)

The integral over the directions nρ is conveniently calculated in spherical coordinates
with the axis z along n, and further integration over k by using

δ′(x) = 1

π
lim

L→∞

(
L cos Lx

x
− sin Lx

x

)

and integrating over ρ by using

xδ′(x) = −δ(x),
∫ a

0
δ(x)dx = 1

2
Sign(a)

modifies (7.55) to the expression:

∫
d3ρ fnm(ρ)�

∞
i pjk(ρ) = Eipjk fnm(0), (7.56)

where

Eipjk = 1

4π

∫
d2nM(i j (n)n p)nk . (7.57)

This simple formula is a consequence of the spherical symmetry fnm(ρ) of the
grains. The similar results is obtained [18, 31] for the grains of elliptical shape, where
the tensor E is:

Eipjk = a1a2a3

4π

∫
d2n

M(i j (n)n p)nk

(n2
1a2

1 + n2
2a2

2 + n2
3a2

3)
3/2
, (7.58)

where the coordinate system coincides with the ellipse axes, and a1, a2, a3 are the
lengths of the semi-axes. The dimensionless tensor E : C is called an Eshelby tensor
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[21] which is used for calculation of strain fields for the inclusions inside the sample
[22]. Substituting (7.58) into (7.53) and utilizing the equality fnm(0) = δnm Vn/V ,
the following expression is found:

(δc−1
n + E) : σ̃∗

n − E : 〈σ̃∗〉 = ε(0), (7.59)

from where the relation between the fluctuating stress σ̃∗
n and the average value 〈σ̃∗〉

follows:
σ̃∗

n = Bn : (ε(0) + E : 〈σ̃∗〉), Bn = (δc−1
n + E)−1. (7.60)

By averaging this formula, the connection between 〈σ̃∗〉 and average strain is
obtained:

〈σ̃∗〉 = (1 − 〈B〉 : E)−1 : 〈B〉 : ε(0), 〈B〉 =
∑

n

Vn

V
Bn . (7.61)

The expressions (7.60) and (7.61) connect the fluctuating stresses σ̃∗
n with the

average strain ε(0). Thus, the functional (7.49) minimized on the class of the func-
tions (7.48) can be expressed through the quadratic form of ε(0) according to (7.50).
Comparing this result with the equation (7.46), the upper boundary for macroscopic
stiffness tensor in case of positively defined δc−1

n (or lower boundary in case of
negatively defined δc−1

n ) is:

C H S = C + (1 − 〈B〉 : E)−1 : 〈B〉. (7.62)

These estimates for the boundaries of the macroscopic rigidity modulus have been
proposed by Hashin and Shtrikman [32]. Due to taking into account the correlation
properties of the grains by Eshelby tensor, the boundaries are found to be more
narrow than the ones provided by Voigt and Reuss.

Using the Eq. (7.48) as a model solution of the Eq. (7.17), the relation (7.16)
between the strain in the grain with the orientation g and the macroscopic stress on
the basis of (7.52), (7.62), (7.60), and (7.61), we obtain:

AH S(g) = [1 − E : (B(g) : {1 + E : (C H S − C)} − {C H S − C})] : C−1
H S .

(7.63)

7.2.4 Self-Consistent Model of Eshelby-Kröner

The tensor C in the expressions (7.27)–(7.52) can be chosen in an arbitrary way,
except of the case when using (7.46) and (7.47) the boundaries for macroscopic
stiffness tensor C M have to be determined. In this case, the positive (negative) definite
difference δcn is required for each grain n. To find the model solution of (7.17) or
to minimize the functional (7.44), the tensor C has to be defined. The easiest way
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is to set tensor C equal to the macroscopic stiffness tensor C M , and then (7.37) and
(7.38) are written as:

C = C M , 〈σ〉 = C : 〈ε〉 = C : ε(0) (7.64)

This assumption sets the value of 〈σ̃∗〉 to zero because of:

〈σ〉 = 〈(C + δc) : ε〉 = C : ε(0) + 〈σ̃〉 = C : ε(0). (7.65)

As a next step, we minimize the functional (7.44) on the class of probe functions
(7.48), and again obtain the formulas (7.59)–(7.61). Using (7.60) and (7.43), the
strain of the n-grain is equal to:

εn = δc−1
n : Bn : ε(0) = (1 + E : δcn)

−1 : ε(0). (7.66)

The requirement of the average strain from (7.66) to be equal ε(0) leads to the
equation:

〈(1 + E : δcn)
−1〉 = 1. (7.67)

This tensor expression is a system of equations for the determination of the compo-
nents of the tensor C . Indeed, the tensor C defines the tensor E through the Eqs. (7.54)
and (7.58), and this relationship is non-linear in general case. The number of indepen-
dent parameters in averaged tensors (the left part of (7.67) and macroscopic tensors
E and C) is equal. For example, the tensors are described by two parameters in case
of macroscopic isotropy (absence of texture), see details in Sect. 7.4. As a result, the
expression (7.67) contains as many independent equations as the number of inde-
pendent components in tensor C. Due to the procedures of convolution in (7.54)
and of integration in (7.58), the relationship between E and C is non-linear and
cumbersome. As a consequence, the system of equations (7.67) is also non-linear.
In a simple case of microscopic isotropy and cubic symmetry of the crystallites, the
formula (7.67) leads to the cubic equation (7.147), see [23, 21].

The equations analogous to (7.67) can be obtained in another ways, for example,
the macroscopic Hooke’s law (7.65) satisfying to 〈σ̃∗〉 = 0 results in the following
equation, according to (7.61):

〈B〉 = 〈(δc−1
n + E)−1〉 = 0. (7.68)

For the crystallites of the same shape having equal Eshelby tensors, the equation
(7.68) is equivalent to (7.162). However, if the tensor E varies from one crystallite
to another E = En , the formulas (7.68) and (7.67) give different results. This situa-
tion occurs in case of morphological texture [33, 34] with the grains of anisotropic
elliptical shape in different orientations.

The relationship (7.16) for the considered model follows directly from (7.66) and
(7.64):

AE K (g) = (1 + E : δc(g))−1 : S. (7.69)
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The frequently used method of the derivation of equation (7.67) is based on the
model of the inclusions inside the infinite matrix [22, 23]. This approach substitutes
the problem of grain interaction by the model of the grain of spherical (elliptical)
shape included into infinite effective media, called matrix. The stiffness tensor of
matrix is assumed to be equal to the stiffness tensor of polycrystal, which has to be
found. To solve this problem, the strain inside n-th grain has to be determined. The
parameter δc(r) in the equation (7.28) has the following form:

δc(r) = δcn�n(r). (7.70)

To determine the strain in n-th grain, the equation (7.28) has to be solved, which
also can be reduced to the formula (7.32). The sample is supposed to be infinite and,
therefore, the Green function of infinite media is admitted. By analogue with (7.54)
and (7.55), the integral is modified to:

(�∞
i pjkδc jklmεlm)(r) =

∫
d2n

M(i j (n)

(2π)3
n p)nk

×
∫

d3r ′δc jklmεlm(r ′)
∫

k2dkeikn(r−r ′). (7.71)

We assume here that the strain inside n-th grain is uniform and the grain has a
spherical shape, and the integral over k is presented in the form of [31]:

∫
k2dkeikn(r−r ′) = −∇2

r

∫
dkeikn(r−r ′) = −∇2

r πδ(n(r − r ′)). (7.72)

The integral over r ′ is easy to calculate in spherical coordinates with the axis z along
the vector n: ∫

d3r ′∇2
r δ(n(r − r ′)) = π(R2 − (nr)2), (7.73)

here R is a radius of grain. The expression obtained has a physical meaning of the
square of disc formed in the space of r ′ by the intersection of the sphere with the
radius R and the plane defined by the equation n(r − r ′) = 0. Finally, for the function
(7.71) we obtain:

(�i pjkδc jklmεlm)(r) =
∫

d2n
M(i j (n)

(2π)3
n p)nkδc jklmεlm

× (−π2)∇2
r (R

2 − (nr)2) = E : δc : εn . (7.74)

This formula shows that for the spherical grains the strain inside the grain is uniform.
The dependence on the radius r disappears when the section of the grain by the plane
is a curve of the second order, i.e. sphere and ellipse. By substituting (7.74) into (7.32):

εn = ε(0) − E : δcn : εn . (7.75)
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The formula (7.66) follows immediately from the expression above, that confirms
the equivalence of the approaches based on the variational principle and effective
media.

The expressions similar to (7.75) and (7.66) exist also in the electrostatics, for
example, the external field causes the uniform field in sphere or ellipsoid [35]. The
calculations based on (7.57) result for the sphere with the permittivity ε0 in the
tensor E:

Ei j = 1

3ε0
δi j . (7.76)

The tensor analogous to the tensor Eshelby E : C in this case is equal to 1
3δi j

and it is called the tensor of depolarization or demagnitization in electrostatics and
magnetostatics, respectively [36]. As follows from (7.66), the electric field E1 inside
sphere with permittivity ε1 and the electric field E0 in the media with permittivity
ε0 are connected as [35]:

E1 = 3ε0

2ε0 + ε1
E0. (7.77)

The algorithm of the calculation of the properties of composite random media using
the method of effective media and the expressions (7.77) and (7.67) has been proposed
by Bruggeman [20]. This technique is successfully applied for calculation of optical
properties of the composite and nanostructured materials [16].

7.2.5 Grain Interaction in Thin Film. Vook-Witt and Inverse
Vook-Witt Models

The considered in the previous sections grain interaction was assumed to take a
place in a sample with a large number of grain in all spatial directions. The statistical
methods used for calculation of physical parameters are based on this assumption.
The important class of the investigated by X-ray stress method samples are thin films
and coatings. The number of grains in a lateral direction of film is statistically large
enough, however, in the direction of a surface normal it can be small. The entire
thickness of the film often contains a single grain [5, 37, 38], and thus the system
is rather two-dimensional than three-dimensional. The methods described above are
therefore not applicable for coatings in general case.

The averaging over all directions is no longer possible because of the evident
anisotropy, which complicates the calculation of the Eq. (7.16). For these samples,
the simple phenomenological models of grain interaction are used, which take into
account the difference of physical properties in lateral and normal directions.

The frequently used model of such type is a Vook-Witt model [39, 40], which
adopts the Voigt model in lateral direction (equal strains), and the Reuss model (equal
stresses) in the normal direction. Introducing z axis along the normal to the film, the
strain and stress tensors in n-th grain are expressed as:
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εn =
⎛

⎝
〈ε11〉 〈ε12〉 ·
〈ε12〉 〈ε22〉 ·

· · ·

⎞

⎠ , σn =
⎛

⎝
· · 〈σ13〉
· · 〈σ23〉

〈σ13〉 〈σ23〉 〈σ33〉

⎞

⎠ , (7.78)

where the symbol · means the component is being not fixed by the model but found
from the elasticity theory.

The strain and stress fields (7.78) can be found from the exact solutions of the
elastic equations (7.17) in a certain geometry of the polycrystal. By considering the
polycrystalline film as a stack of the parallel infinite plates, the Eq. (7.78) satisfies
the boundary conditions (7.17), and the uniform inside the plates strain fields are the
solutions of the differential equation (7.17). To find the relation (7.16) based on the
assumption (7.78), we formulate the Hooke’s law for n-th grain:

σn = cn : εn, (7.79)

which expresses the strain εn and the stress σn in the grain through the average
values 〈ε〉 and 〈σ〉. Keeping in mind the symmetry of the tensors, the formula (7.78)
contains six undefined variables:

εn13, εn23, εn33,σn11,σn12,σn22,

and the relationship (7.79) gives six equations, accordingly.
To present the following expressions in a simple form, the coordinate free covari-

ant notations [38, 41] are introduced instead of the indices. The assumptions (7.78)
can be re-written as [38]:

Π|| : ε = Π|| : 〈ε〉, Π⊥ : σ = Π⊥ : 〈σ〉, Π|| + Π⊥ = 1, (7.80)

where the tensor of 4th rank Π|| means the projection of the 2nd rank tensor on the
plane with the normal n. The projection of the vector onto the plane with the normal
n is performed by the projector t , see (4.20). The projection of the 2nd rank tensor
is then written as:

Π|| : ε = t · ε · t, t = 1 − n ⊗ n, (7.81)

or in the index form [38]:

Π||i jkl =ti(k t jl) (7.82)

=1

2
(δikδ jl + δilδ jk)− 1

2
(δikn j nl + δiln j nk + δ jkni nl + δ jlni nk)

+ ni n j nknl ,

Π⊥i jkl =1

2
(δikδ jl + δilδ jk)−Π||i jkl .

http://dx.doi.org/10.1007/978-3-642-38177-5_4
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Here we took into account the fact of the symmetry of the projected tensors over the
indices k and l, which leads to the symmetrization of the projector, see (7.33). To
explicitly find the tensor (7.16), the Eq. (7.79) is written in the following form:

Π|| : σn + Π⊥ : σn = cn : Π|| : εn + cn : Π⊥ : εn . (7.83)

Using the model (7.78) and Hooke’s law for the averaged values (7.38), the tensor
(7.16) for the n-th grain is:

An = cn : (Π|| : cn − cn : Π⊥)−1 : (cn : Π|| − Π⊥ : C M ). (7.84)

To use (7.84), the macroscopic stiffness tensor CM has to be determined, which
follows from the averaging of (7.84):

(1 + β : Π⊥) : C M =α : Π||, (7.85)

α =〈cn : (Π|| : cn − cn : Π⊥)−1 : cn〉,
β =〈cn : (Π|| : cn − cn : Π⊥)−1〉.

In general, there no operator exists, which is inverse to the projectional one, and in
(7.85) the operator 1+β : Π⊥ also has no inverse one. Thus, the operator CM cannot
be determined from (7.85), and we use for this purpose the expression analogous to
(7.83) with the compliance tensor sn . After some transformations, we obtain formula
analogous to (7.85) but with SM , and using C M = S−1

M obtain:

γ : Π⊥ : C M =(1 + δ : Π||), (7.86)

γ =〈sn : (Π⊥ : sn − sn : Π||)−1 : sn〉,
δ =〈sn : (Π⊥ : sn − sn : Π||)−1〉.

This equation does not define CM unambiguously similarly to (7.85). However,
the operators 1 + β : Π⊥ in (7.85) and γ : Π⊥ in (7.86) are the projectors onto
different subspaces, which complement each other. Therefore, the sum of (7.85) and
(7.86) with arbitrary coefficient k defines the function CM unambiguously:

C M = (1 + β : Π⊥ + kγ : Π⊥)−1 : (α : Π|| + k[1 + δ : Π||]). (7.87)

The expressions (7.84) and (7.87) comprehensively determine the relationship
(7.16). These formulas do not contain the parameters, which describe the correlation
properties of the grain locations, as the tensor E in equations (7.69) and (7.63) does.
In this sense, the Vook-Witt model is similar to the models of Voigt and Reuss: the
mutual influence of grains is not considered, and the resulting expressions depend
only on the fraction of grains with certain orientations and do not depend on the
morphology of the polycrystal. The strain inside the grain is uniform.
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Both Voigt and Reuss models are the limiting cases of grain interaction. The Vook-
Witt model with Voigt approach in a lateral direction and Reuss approach in a normal
one, is also a limiting case of the grain interaction. The reversed case of Vook-Witt
model with Voigt model in a normal and Reuss model in a lateral directions has been
proposed in [37] and is called inverse Vook-Witt model:

Π|| : σ = Π|| : 〈σ〉, Π⊥ : ε = Π⊥ : 〈ε〉. (7.88)

By comparing (7.88) and (7.80), the expressions (7.84)–(7.87) in the models of
Vook-Witt and inverse Vook-Witt differ by the substitution of Π⊥ for Π|| and vice
versa. In opposite to Vook-Witt model, there is no system exists for which the strain
and stress fields found by the inverse Vook-Witt model are the exact solutions [38].

The intermediate cases between Vook-Witt and inverse Vook-Witt models are
proposed in [37] to describe the grain interaction by a linear combination of former
ones. The alternative approach for the intermediate cases is Eshelby-Kröner model for
the elliptical grains [5, 38]. The variable parameter, which makes a balance between
both limiting cases is a ratio of semi-axes of the ellipsoid. Generally speaking, the
model designed for the bulk polycrystal is not applicable to the thin polycrystalline
film. However, in the limiting cases, the Eshelby-Kröner model becomes effectively
two-dimensional. For the oblate ellipsoid (a1 = a2 >> a3, axis z along normal to the
surface), the Eshelby-Kröner model transforms into Vook-Witt model [5] and is an
exact solution. The opposite limiting case of the stretched ellipsoid a1 = a2 << a3
in the Eshelby-Kröner approach coincides with the infinite cylinder model, which
being a two-dimensional model gives different results than the inverse Vook-Witt
one [5].

7.3 Residual Stress Analysis as a Particular Case of Powder
Diffractometry

The real microstructure of the polycrystals is very complex [42]. X-ray diffraction
provides the results of X-ray scattering from a large volume of the sample, and
this fact leads to a contribution of numerous factors into the detected X-ray profile.
The practical data treatment of the recorded X-ray intensities assumes the use of a
simplified sample model parametrized by the effective physical variables [2].

The typical model assumes the polycrystal as consisting of a large number of the
crystalline blocks (grains). Each grain has a certain shape, size and orientation of
the crystallographic lattice, and may contain the defects of a crystallographic lattice,
for instance, dislocations. Due to different reasons (plastic deformation, thermal
expansion, etc.), the polycrystal may have the macroscopic residual stresses.

Using the results of previous chapter, the intensity of the diffracted X-ray radi-
ation from the polycrystal can be calculated. The dynamical effects are neglected
here, because of due to the disorientation of the grains, the typical scale of the cor-
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Fig. 7.5 The sketch for calcu-
lation of the auto-correlation
function of the grain shape
(7.92)

relation function (6.60) given by the correlation length ld is less than the size of the
grain. This estimate is taken with a certain reserve, because of the presence of the
defects diminishes the parameter ld . The size of the grains is essentially less than the
extinction length, and thus the diffraction can be treated as kinematical, according
to (6.77). The general expression for the intensity in this case is (6.83):

I (Q) =
∫

d3r1d3r2ei(Q−H)(r1−r2)g(r1, r2), (7.89)

here Q = kout − kin is a momentum transfer, g(r1, r2) is a correlation function
of polycrystal, H is a reciprocal lattice vector of the excited reflection. We omitted
the constant coefficients in the expression because of in the most of the cases the
relative intensities are evaluated within a single diffraction profile. The effects of the
instrumental and resolution functions are also neglected, which can be accounted by
the special functions [2]. Assuming the disoriented grains, the correlation function
of the whole system consists of the sum of the correlation functions of the grains:

I (Q) =
∑

n

∫
d3r1d3r2ei(Q−Hn)(r1−r2)gn(r1, r2)�n(r1)�n(r2). (7.90)

Here the sum is taken over all grains of polycrystal, Hn is a reciprocal lattice vector
corresponding to the average lattice of n-th grain, gn is a correlation function inside
n-th grain, �n(r) is a function describing the shape of n-th grain, which is equal to
unity inside the grain and to zero outside. The defects are supposed to be distributed
uniformly inside the grain, and the influence of the grain shape on the strain field is
neglected. Under these conditions, the correlation function depends on the relative
distance ρ = r1 − r2, and using the integration over the variables r1 and ρ, we
obtain:

I (Q) =
∑

n

∫
d3ρei(Q−Hn)ρgn(ρ)

∫
d3r1�n(r1)�n(r1 − ρ). (7.91)

http://dx.doi.org/10.1007/978-3-642-38177-5_6
http://dx.doi.org/10.1007/978-3-642-38177-5_6
http://dx.doi.org/10.1007/978-3-642-38177-5_6
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The integral over r1 as a function of the distance ρ is an auto-correlation function
of the grain shape: it is a volume of the intersectional area, which is created by
the original and the shifted by vector ρ grains (Fig. 7.3). According to (6.60), the
correlation function in the presence of several independent types of defects is a
product of correlation functions for each defect type. As follows from (7.91), the
influence of the grain shape can also be represented by a correlation function:

gV (ρ)n = 1

Vn

∫
d3r1�n(r1)�n(r1 − ρ), (7.92)

where Vn is a volume of n-th grain.
The values gn(ρ), gV (ρ)n and Hn vary from grain to grain. However, the grain

shape and volume, the defects inside the grain and the orientation of grain are statis-
tically independent, and these parameters can be averaged separately:

I (Q) =
∑

n

Vn

∫
d3ρ〈ei(Q−Hn)ρ〉〈gn(ρ)〉〈gV (ρ)n〉. (7.93)

The number of the grains in the sample is usually large and, therefore, the dis-
tribution functions can be introduced for the parameters. For the sake of simplicity,
the distributions of grain shapes [43] and defects [44] are omitted here. The distrib-
ution of the grain orientations (texture) is described by the orientational distribution
function [45] f (g):

f (g)d3g = dVg

V
, (7.94)

where g is a set of three parameters describing the orientation of crystallographic
lattice of grain with respect to the sample, dVg is a total volume of grains, which
have an orientation within the interval g, g + dg and V is a volume of polycrystal.
The isotropic distribution of grains corresponds to f (g) = 1. Taking into account
(7.94) the Eq. (7.92) becomes:

I (Q) = V
∫

d3ρd3g f (g)ei(Q−H(g))ρg(ρ), (7.95)

where g(ρ) is a product of the averaged correlation functions 〈gn(ρ)〉〈gV (ρ)n〉, the
constant multiplier V is omitted in further calculations.

For the orientation of the grain g (parametrization of the rotation group [46]), the
Euler angles are frequently chosen. In this parametrization, the law of the parameters
composition is quite complex. Therefore we use further the vector parametrization
of the rotation group known as Gibbs vector [41, 46]. In this parametrization, the
rotation is parametrized by the vector c with the direction defined by the axis of
rotation and with the length equals to tan φ/2, where φ is a rotation angle. The
rotation matrix is expressed through c as [41, 46]:

http://dx.doi.org/10.1007/978-3-642-38177-5_6
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Ti j (c) = (1−c2)δi j + 2ci c j + 2εik j ck

1 + c2 , (7.96)

where εik j is the antisymmetric Levi-Cevita pseudo-tensor. The vector parametriza-
tion is outstanding among other parameterizations because of its elegant composition
law, which enables to express two successive rotations with parameters c(1) and c(2)

as a single rotation with the parameter c(12) [41, 46]:

Ti j (c(2))Tjk(c(1)) =Tik(
〈
c(2), c(1)

〉
) = Tik(c(12)), (7.97)

〈
c(2), c(1)

〉
= c(1) + c(2) + c(2) × c(1)

1−c(1)c(2)
.

Additionally, the vector parametrization has the following convenient properties:

Ti j ({0, 0, 0}) = δi j ; T (c)−1 = T (−c). (7.98)

Using this parametrization, the formula (7.95) is written as:

I (Q) =
∫

d3ρ
d3c

π2(1 + c2)2
f (c)ei(Q−H(c))ρg(ρ). (7.99)

Here 1/π2(1 + c2)2 is a weight function for invariant integration over the rotation
group [41], the corresponding weight function for parametrization through the Euler
angles is sin θ/8π2 [47].

The dependence of the reciprocal lattice vector H(c) from the grain orientation
c is conditioned in the following way. The vector H is defined by Miller indices
in the coordinate system C, and due to the stresses of II type it varies both for
direction and module from grain to grain. Assuming the small magnitude of strains,
the components of vector H (L) corresponding to the average crystallographic lattice
of grain with the orientation c can be represented as:

H(L) =T (c(LC))H(C)(c), H (C)(c) = H(0)(1 − εH (c))+ δH⊥(c), (7.100)

εH (c) = H(0) · ε(c) · H(0)

H(0)2
, δH⊥(c) = ε(c) · H(0) − H (0)εH ,

here H (0) corresponds to a non-deformed lattice, and vector δH⊥(c) is perpendicular
to H(0).

To calculate (7.99), the vectors Q, H and ρ have to be defined in the same
coordinate system, say in the system L . The parameter c in (7.99) then characterizes
the transition from the coordinate system C to the system L , and it is denoted here
c(LC). The grains, which satisfy the Bragg condition H(C)(c) = Q, are characterized
by the parameter c(LC) equals to:
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Fig. 7.6 The sketch for the
coordinate systemα, c(||)1 , c(||)2
defined by (7.102) in the
space of the parameters of the
rotation group

c(α) =
〈
tan

α

2
ez,

n × ez

1 + nez

〉
= tan α

2 (n + ez)+ n × ez

1 + nez
, (7.101)

where unit vector n is chosen along H(C), the vector y is replaced by the vector ez

from the coordinate system L (Fig. 7.6). The transformation (7.101) has an evident
meaning of the sequences: (i) the rotation around axis n×ez perpendicular to vectors
n and ez is applied, which transfers n into ez , (ii) the rotation at arbitrary angle α
around ez is executed.

To integrate over d3c in (7.99), the new coordinate system with the axis z along
c(α) is introduced in the parameter space c (Fig. 7.6):

c(α, c(||)1 , c(||)2 ) = c(α)+ c(||)1 n × ez + c(||)2 (n + ez)× (n × ez), (7.102)

where variation of the parameter α corresponds to the grains in the Bragg condition,
which differ by various α angles around H|| Q; the crystallites with the parameters
c(||)1 and c(||)2 are deviated from the Bragg condition. Using the Eqs. (7.100) and (7.96)
and assuming small strains and deviations from the Bragg angle, the expression (7.99)
in the chosen coordinate system is written as:

I ( yQ) =
∫

dαdc(||)1 dc(||)2

π2(1 + c2)2
Jc(α, c(||)1 , c(||)2 ) f (c) (7.103)

×
∫

dxdydzei(Q−H0(1−εH (c)))zei H0 K [(x,y),(c(||)1 ,c(||)2 )]g(x, y, z).

Here J is a Jacobian of the transformation, K [(x, y), (c(||)1 , c(||)2 )] is a bilinear form

on (x, y) and (c(||)1 , c(||)2 ), and its coefficients depend on n and are of the order of
unity.

When integrating (7.103) over x and y, the fact of a large width of the texture
ODF, which is broader than the diffraction peak, results in the estimate:

δc(||)1,2 � 1/Hld . (7.104)
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The largest contribution in (7.103) is made by the values (c(||)1 , c(||)2 ) which are less

than 1/Hld and, therefore, all the terms containing (c(||)1 , c(||)2 ) can be assumed to

be constant except of the exponent ei H0 K [(x,y),(c(||)1 ,c(||)2 )]. This turns the integral over
(c(||)1 , c(||)2 ) into delta-function of x, y, and the intensity is proportional to Fourier
image g(0, 0, z), that corresponds to (6.134), see Fig. 6.4.3. Alternatively, to inte-
grate over (c(||)1 , c(||)2 ), the integral over x, y can be replaced by a delta-function,
according to criteria (7.104). In other words, the Bragg condition is re-written as
δ(Q − H(c)). The Jacobian, the weight function and other terms cancel each other,
and the expression can be obtained:

I ( yQ) =
∫

dα f (c(α))
∫

dzei(Q−H0(1−εH (c(α))))zg(0, 0, z). (7.105)

Thus, the measured X-ray intensity is a sum of intensities from all grains with the
orientations different by the angle α from the vector H .

The residual stress analysis requires the measurement of the intensity maximum
in the direction y. The position of the maximum of (7.105) is calculated by using a
cumulant expansion:

I ( yQ) =
∫

dα f (c(α))
∫

dzg(0, 0, z)ei(Q−H0)zei H0〈εH 〉ze− 1
2 H2

0 K2z2
e−i 1

6 H3
0 K3z3

. . .

(7.106)

K2 =〈ε2
H 〉 − 〈εH 〉2, K3 = 〈ε3

H 〉 − 3〈ε2
H 〉〈εH 〉 + 2〈εH 〉3,

〈εn
H 〉 =

∫
dα f (c(α))εH (c(α))n∫

dα f (c(α))
.

The correlation function g(0, 0, z) is usually symmetric, and therefore the second
term in the cumulative expansion does not influence the diffraction peak position.
Provided the third and further odd cumulative terms decrease slower than correlation
function, the position of the maximum Qm is defined by the first cumulative term:

Qm = H0(1 − 〈εH 〉). (7.107)

This equation is equivalent of (7.4).
With the known relationship between the strain and the macroscopic residual

stress in the grain, the residual stresses in the sample can be determined on the basis
of (7.107). This basic expression for the X-ray stress analysis has been derived using
several physical assumptions. For the traditional metallic samples these assumptions
are valid in the majority of the cases, however, when analyzing the modern materials
possessing the strong texture or intentionally designed nanoscale structure, the above
described approximations have to be carefully validated.

http://dx.doi.org/10.1007/978-3-642-38177-5_6
http://dx.doi.org/10.1007/978-3-642-38177-5_6
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7.4 Residual Stress in Macroscopically Isotropic Materials.
X-Ray Elastic Constants

The polycrystal is macroscopically isotropic when all crystallite orientations are
equiprobable (absence of texture) and all directions inside macroscopical polycrystal
are equivalent. The mechanical elastic properties are then defined by two parameters,
for example, by bulk and rigidity moduli. The macroscopically isotropic case is
realized in the absence of texture in the models of Voigt, Reuss and Eshelby-Kröner
for spherical grains3. In the models of Vook-Witt and inverse Vook-Witt, even in the
absence of texture there is an anisotropy due to the operators Π⊥ and Π||, which
distinguish the normal direction to the surface.

To determine the stresses by X-ray method, the position of the diffraction peak in
the direction y has to be related to the macroscopic stress 〈σi j 〉(S). As follows from
(7.107), the peak shift defines the value:

{εH ( y)} = 1

2π

∫
dαεH (c(α))) = H(0) · ∫

dαε(c(α)) · H(0)

2πH(0)2
, (7.108)

where the braces mean the averaging over the grains contributing to diffraction. The
connection between the stress and the strain in coordinate system S is given by the
Eq. (7.16). To write the expression (7.108) in the coordinate system S, the fact of
the coincidence of the direction of vector H(0) and y due to the Bragg condition is
used (see also the logic of the derivations from (7.105) to (7.107)). Using (7.16), we
obtain:

{εH ( y)} = yi y j

∫
dαAi jkl(c(α))

2π
〈σkl〉(S), (7.109)

or in indexless form:

{εH ( y)} = y ⊗ y :
∫

dαA(c(α))

2π
: 〈σ〉(S). (7.110)

To perform the integration over the angle α, the components of the 4-th rank
tensor A have to be transformed from the coordinate system C into the system S,
which is done by four times convolution:

A(S)i jkl = T (SC)
i i ′ T (SC)

j j ′ T (SC)
kk′ T (SC)

ll ′ A(C)i ′ j ′k′l ′ . (7.111)

The operation requires the transformation of 81 components resulting in the cum-
bersome expressions. To make the results compact, the Voigt notations are used [4],
which take into account the symmetry property ci jkl = c(i j)kl = ci j (kl) = c(i jkl).
In the result, the 4-th rank tensor is represented as symmetric 6 × 6 matrix, which
has 21 component. This number is equal to the number of parameters, required to

3 The statements for Eshelby-Kröner model (7.69) are also valid for Hashin-Strickman model (7.63).
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describe the elastic properties of crystal with a lowest monoclinic symmetry. The
cubic crystal has 3 independent components, and the transformation (7.111) con-
tains the exceeding number of operations in this case. Below the transformation of
(7.111) is described, which takes into account the high symmetry of the tensor [48].
We separate the isotropic part of the tensor, which is not undergoing to the transfor-
mations, and the averaging over the orientations is thus reduced to the truncation of
the anisotropic components.

From the point of view of the group theory, the 4-th rank tensors form the rep-
resentation space of the rotation group, and it can be decomposed into irreducible
representation (IR) spaces [49]. In the case of a lowest triclinic symmetry, the stiffness
(compliance) tensor is decomposed in:

2 IR with weight l =0 (scalars): σs, s = 1, 2 (7.112)

4 IR with weight l =2 (deviators): δd,m, d = 1..4,m = −2, .., 2

1 IR with weight l =4 (nonor): ηm, m = −4, .., 4.

The basis tensors σs, δd,m,ηm can be calculated with the help of the Clebsch-Gordan
coefficients C j,m

j1,m1; j2,m2
starting from the circular vectors:

e(−1) = 1√
2
(−1, i, 0), e(0) = (0, 0,−1), e(1) = 1√

2
(1, i, 0), (7.113)

which are the IR of weight l = 1:

σ1 pqrs =C0,0
1,i ′′;1,m′C

1,m′
1,i ′;0,0C0,0

1,i;1, j e
(i)
p e( j)

q e(i
′)

r e(i
′′)

s = δpqδrs, (7.114)

i, j, i ′, i ′′,m = − 1, 0, 1, p, q, r, s = 1, 2, 3.

The basic tensors (7.112) possess a completeness property (any stiffness or compli-
ance tensor can be expanded using them) and are mutually orthogonal:

σs ::σ∗
s′ =δss′ , δd,m ::δ∗

d ′,m′ = δdd ′δmm′ , ηm ::η∗
m′ = δmm′ , (7.115)

σs ::δ∗
d ′,m′ =0, σs ::η∗

m′ = 0, δd,m ::η∗
m′ = 0,

where the symbol :: means the convolution over 4 indices: a::b∗ = ai jklb∗
i jkl .

The IR decomposition highlights the symmetry properties of the compliance ten-
sor and separates its isotropic and anisotropic parts, e.g. the stiffness tensor for cubic
system has the form:

Ccub =(C11 + 2C12)σ1 + 2√
5
(3 + 2A)C44σ2 + 4(A − 1)C44ηc, (7.116)

ηc =1

4

(
η−4 +

√
14

5
η0 + η4

)
,
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where the Voigt notations are used, A = C11−C12
2C44

is the Zener’s anisotropy factor. In
isotropic case A = 1, the anisotropic part ηc disappears.

The rotation transformation in the subspace of IR of weight l is performed by using
the angular momentum matrices. For the rotation described by the vector parameter c,
the expression is [41]:

T (l)nn′ =e2cJ arctan c (7.117)

=
l∑

m=−l

Pl
m(−i cJ (l)nn′/c)

Pl
m(−im)

e−2im arctan c, Pl
m(x) =

l∏

m′=−l,m′ �=m

(x + im′),

where J is the vector (Jx , Jy, Jz) composed of the matrices of angular momentum.
Besides the transformation of tensors from one coordinate system into another, the

multiplication of tensors and the inversion are the important operations for calculation
of the tensor A on the basis of Eqs. (7.22), (7.63) and (7.69). Using the Voigt notations,
these operations are reduced to the multiplication and inversion of 6×6 matrices. This
approach, however, does not take into account the symmetry of the tensor. Using the
expansion (7.112), the tensors σ1,σ2,ηc are shown below to create a closed group
with respect to the operation of multiplication (convolution over two indices), which
is written as:

σ1 σ2 ηc
σ1 σ1 0 0
σ2 0 σ2√

5
ηc√

5
ηc 0 ηc√

5
3σ2

10
√

5
+ ηc

10 .

(7.118)

Thus, for the macroscopically isotropic media consisting of the grains with a cubic
symmetry, the 4-th rank tensor is expanded into tensors σ1,σ2 and ηc:

a = {a1, a2, aη} = a1σ1 + a2σ2 + aηηc. (7.119)

The averaging over the orientations is then reduced to the truncation of anisotropic
part:

〈a〉 = {a1, a2, 0}. (7.120)

The necessity to use the special representation of tensors occurs also for the energy
functionals (7.44) and (7.45). The inequalities (7.47) and (7.46) make the restrictions
to the tensor characteristics determining the system energy and not to the components
of the stiffness tensor. The elastic energy of the unity volume of sample ε : C : ε/2
is a quadratic form with respect to the strain ε. Because of the elastic energy can not
be negative, this quadratic form is always positively defined. To understand which
values are restricted by the inequalities for elastic energy, the Voigt notations are
used and the 6 × 6 stiffness matrix is presented on the basis of eigenvectors:
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〈C〉 =
∑

ν

λνζν, ζν =
∑

i

eν,i ⊗ eν,i , (7.121)

here λν are the eigenvalues, eν,i are the eigenvectors, and the summation over i
corresponds to the degenerated eigenvectors. The positive definition means λν > 0,
and the inequality (7.46) is equivalent to the inequalities for eigenvalues λC

ν ≤ λCM
ν .

Thus, the inequalities (7.47) and (7.46) constrain the eigenvalues of the tensors.
The representation (7.121) is also convenient due to the simplification of the

multiplication table (7.118). For example, using the expansion for the crystals with
a cubic system [18]:

a = (3κ, 2μ, 2μ′) = 3κζ1 + 2μζ2 + 2μ′ζ3, (7.122)

ζ1 = σ1, ζ2 = 2√
5
σ2 + 2ηc, ζ3 = 3√

5
σ2 − 2ηc,

which coincides with the expression (7.121), the analogue of the above table is written
as:

ζ1 ζ2 ζ3
ζ1 ζ1 0 0
ζ2 0 ζ2 0
ζ3 0 0 ζ3

. (7.123)

The relation between the expressions (7.122) and (7.119) is simple:

a = {a1, a2, aη} = (3κ, 2μ, 2μ′) =
(

a1,
a2√

5
+ 3aη

10
,

a2√
5

− aη
5

)
, (7.124)

and the product of the tensors and the inverse tensor are:

a : b = (9κaκb, 4μaμb, 4μ′
aμ

′
b), (7.125)

a−1 = (1/3κ, 1/2μ, 1/2μ′).

The inverse relation between representations is found to be:

a = (3κ, 2μ, 2μ′) = {a1, a2, aη} =
{

3κ,
4μ+ 6μ′

√
5

, 4μ− 4μ′
}
. (7.126)

Thus, the products of the tensors and the inverse tensor are calculated conveniently
using the expression (7.122), and the averaging and the transformation between
different coordinate systems using the expression (7.119) are simplified. The similar
expressions can be constructed for low symmetry tensors, too [50].

As follows from (7.22), (7.25), (7.63) and (7.69), the formula for tensor An for
n-th grain contains the isotropic tensors only (C M and E) and the stiffness tensor
of n-th grain cn . Applying the tensor operations of summation, multiplication and
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inversion for isotropic tensors and tensor cn , the resulting tensor can be presented in
the form of (7.119). The tensor An in the coordinate system C is then written as:

A(C)n = {A1, A2, Aη}, (7.127)

and for the grains composed of the same material, the formula (7.127) does not depend
on the orientation of the grain. Because of the isotropic tensors σ1 and σ2 are not
modified with the transformations between the coordinate systems, the integral in
(7.110) is calculated as:

∫
dαA(c(α))

2π
= A1σ1 + A2σ2 + Aηηc, ηc = 1

2π

∫
dαT̂

(SC)
(α)ηc, (7.128)

where T̂
(SC)

is the symbol meaning the transformation of the tensor components
either by (7.111) or (7.117).

To calculate the tensor ηc, we use the basis IR with the weight l = 4, where the
transformation is performed by the matrices (7.117). For calculation of (7.117), the
parametric vector c(SC) has to be defined as a function of angle α. The expression
(7.101) presents the transformation from the coordinate system C to the system L ,
and in a way similar to (7.101), the parametric vector c(SL) can be found, which
corresponds to the transition from L to S:

c(SL) = ez × y
1 + ez y

. (7.129)

As a result, the parametric vector c(SC)(α) is obtained as a combination of the sequen-
tial transformations from the system C to the system L , and then from L to S:

c(SC)(α) = 〈c(SL), c(LC)(α)〉 =
〈

ez × y
1 + ez y

, tan
α

2
ez,

n × ez

1 + nez

〉
. (7.130)

In this expression, the only transformation depending on the angle α is the one cor-
responding to the parametric vector tan α

2 ez . This fact helps to calculate the integral
over α, using the diagonal form of the matrix Jz and the formula (7.117):

T (l)nn′(tan
α

2
ez) = δn,n′e−inα. (7.131)

From this equation, for the matrix of transformation in the space IR with the weight
l = 4, we obtain:

1

2π

∫
dαT̂

(SC)
(α) = T (4)n0

(
ez × y

1 + ez y

)
T (4)0n′

(
n × ez

1 + nez

)
, n, n′ = −4, .., 4,

(7.132)
and for ηc the following formula is found:
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ηc = ηnT (4)n0

(
ez × y

1 + ez y

)
T (4)0n′

(
n × ez

1 + nez

)
ηcn′, (7.133)

where the coefficients ηcn′ , defining the value ηc in the expansion over the basis ηn′
in (7.112) are taken from the equation (7.116). To calculate the function (7.110) with
the values (7.128) and (7.133), the direction of vector y in coordinate system S and
the orientation of the reciprocal lattice vector in the system C have to be fixed:

y = (sin(ψ) cos(φ), sin(ψ) sin(φ), cos(ψ)), (7.134)

n = 1

(h2 + k2 + l2)1/2
(h, k, l).

The matrices y⊗ y : σ2 and y⊗ y : ηc are found to be proportional each to other.
The Eq. (7.110) can then be presented in a universal form by using X-ray elastic
constants (XEC), which leads to the Eq. (7.11) with:

S(hkl)
1 = 1

30

(
10A1 − 2

√
5A2 + 3Aη(5� − 1)

)
, (7.135)

1

2
S(hkl)

2 = 1

10

(
2
√

5A2 − 3Aη(5� − 1)
)
,

where the dependence on the Miller indices hkl of the reciprocal lattice vector is
given by the invariant �:

� = h2k2 + h2l2 + k2l2

(
h2 + k2 + l2

)2 . (7.136)

Below we consider XEC for polycrystals of a cubic symmetry for various models
of grain interaction.

7.4.1 Voigt Model

According to (7.21) and (7.22), the tensor (7.116) has to be averaged and then
inversed. Using formula (7.119), the averaging is carried out by (7.120):

〈Ccub〉 =
{

C11 + 2C12,
2(C11 − C12)+ 6C44√

5
, 0

}
. (7.137)

By using the relationship (7.122) and the representation (7.124), the inverse tensor
is found with the help of (7.125):

〈Ccub〉−1 =
(

1

C11 + 2C12
,

5

2(C11 − C12 + 3C44)
,

5

2(C11 − C12 + 3C44)

)
.

(7.138)
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In the formula (7.135) for XEC, using the Eqs. (7.119) and (7.126), we obtain the
expression (7.138) in the form of (7.119), and from (7.135):

S1 = 2C44 − C11 − 4C12

2(C11 + 2C12)(C11 − C12 + 3C44)
, (7.139)

1

2
S2 = 5

2(C11 − C12 + 3C44)
.

These expressions are independent on the Bragg reflection hkl.

7.4.2 Reuss Model

The X-ray elastic constants have a simple form if using the components of the
compliance tensor S. The tensor A coincides with the compliance tensor, and in the
form of (7.119) is written as:

A = Scub =
{

S11 + 2S12,
4(S11 − S12)+ 3S44

2
√

5
, 2(S11 − S12)− S44

}
. (7.140)

Substituting this equation into (7.135), we obtain:

S(hkl)
1 = S12 + S0�, (7.141)

1

2
S(hkl)

2 = S11 − S12 − 3S0�, S0 = S11 − S12 − S44/2.

7.4.3 Eshelby-Kröner Model

The Voigt and Reuss models are the limiting cases of the grain interaction. The
previous section considered the narrower than those two bounds for the bulk elastic
modules. The transfer of the results obtained in this section to the XEC bounding has
to be done with a caution. The values of XEC are determined by the averaging over
the angle α and not by the averaging over the orientations. As a result, the equation
(7.135) contains the dependence on the anisotropic part and on the Miller indices.

Nevertheless, several general conclusions can be made on the basis of the estimates
for the boundaries of the macroscopic elastic modules. For simple case of rotationally
symmetric biaxial stress state, and from the expression (7.135) for (7.11) we obtain:

{εH (ψ)} =
(

2

3
A1 + (3 sin2 ψ − 2)

2
√

5A2 + 3Aη(1 − 5�)

30

)
σ||. (7.142)
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As follows from the expressions (7.118) and (7.120), the component a1 = 3κ is
not mixed with other components in tensor operations, and for all the models the
equality A1 = 1

C11+2C12
is satisfied. Thus, according to (7.142), the sin2 ψ plots for

all models in case of rotationally symmetric biaxial stress cross the same point at
sin2 ψ = 2/3.

The inclination angle of sin2 ψ plot is defined by the parameters A2 and Aη . Using
the representation (7.122), the following relationship is received:

{εH (ψ)} =
(

2κA + 2

3
(3 sin2 ψ − 2)(μA(1 − 3�)+ 3�μ′

A)

)
σ||. (7.143)

The definition (7.136) shows that the inequality is satisfied: 0 ≤ � ≤ 1/3, which
means the values 1 − 3� and 3� are always positive. To determine the limits of the
function sin2 ψ, the variation limits of μA and μ′

A have to be found. Assuming the
strain fields are uniform inside the grain (7.48), the macroscopic compliance tensor
depends on the tensor A as:

S = (3κs, 2μs, 2μs) = 〈A〉 = (3κA,
2

5
(2μA + 3μ′

A),
2

5
(2μA + 3μ′

A)). (7.144)

The boundaries for macroscopic elastic moduli are defined by the boundaries of
parameters κs and μs . As follows from (7.144), the limits for μs determine the
limits of the linear combination 2μA + 3μ′

A, and thus constrain the limits of the
function sin2 ψ only at � = 1/5. However, the models defining the boundaries of
the macroscopic moduli are frequently considered to constrain the sin2 ψ plot, too
(Fig. 7.7).

Within the approximation of strain uniformity inside the grain (7.48) and spherical
symmetry of the correlation function of grains (7.53), the Eshelby-Kröner model

(a) (b)

Fig. 7.7 a sin2 ψ plot for Cu sample possessing the residual stress of 200 MPa, the Bragg (200)
reflection, for the models of Voigt (V) and Reuss (R), and for the boundary models of Hashin-
Strickman (HS) and Eshelby-Kröner (E-K). b The dependence μA at fixed C11 and C12 for the same
models. The models determining the boundaries for macroscopic moduli constrain the parameters
μA and μ′

A; for HS model, the tensor A from (7.63) has been used
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satisfies the equation (7.43), which is due to the self-consistency of the tensor C in
the Eq. (7.67). In the case of macroscopically isotropic media, spherically symmetric
correlation function of grain shape and the cubic symmetry of the crystallites, this
equation can be essentially simplified [21, 23]. In that case, the tensor E is found by
the analytical integration of (7.57), and for the representation (7.122) we obtain:

E =
(

1

3C11
,

2 (4C11 − C12)

15C11 (C11 − C12)
,

2 (4C11 − C12)

15C11 (C11 − C12)

)
(7.145)

=
(

1

3κC + 4μC
,

3κC + 6μC

15κCμC + 20μ2
C

,
3κC + 6μC

15κCμC + 20μ2
C

)
.

To calculate the expression (7.67), the representation (7.122) is used again for
multiplication and inversion of tensors and the representation (7.118) for the aver-
aging. As a result, the following equation is derived:

(
− 3 (κ− κC )

−6κC − 4μC + 3κ
, (7.146)

− 6 (κC + 2μC )
(
3μ′ (κC (μC + 2μ)+ 4μμC )− μ2

C (9κC + 8μC + 4μ)
)

(
9κCμC + 6μκC + 8μ2

C + 12μμC
) (

6κCμ′ + 9κCμC + 12μCμ′ + 8μ2
C

) ,

− 6 (κC + 2μC )
(
3μ′ (κC (μC + 2μ)+ 4μμC )− μ2

C (9κC + 8μC + 4μ)
)

(
9κCμC + 6μκC + 8μ2

C + 12μμC
) (

6κCμ′ + 9κCμC + 12μCμ′ + 8μ2
C

)
)

= (0, 0, 0),

where the parameters κC and μC characterize the macroscopic tensor C , the parame-
ters κ,μ and μ′ describe the stiffness tensor of the crystallite with a cubic symmetry.
The system (7.146) contains 2 independent equations, and taking into account the
positiveness of values κC ,μC ,κ,μ and μ′, we have:

κC = κ, (7.147)

μ3
C + 1

8
(9κ+ 4μ)μ2

C − 3

8
(κ+ 4μ)μ′μC − 3

4
κμμ′ = 0.

The parameter κC , which has a physical meaning of a bulk modulus, has the same
value for both Voigt and Reuss models, and thus κC = κ is an exact solution. The
cubic equation for μC has a single positive root, and the expression (7.147) defines
comprehensively the tensor C. When tensor C is known, the XEC are found by
substituting (7.69) into (7.135):

S(hkl)
1 = 1

9κ
− a + b�,

1

2
S(hkl)

2 = 3a − 3b�, (7.148)

a = 5 (3κC + 4μC )

6
(

9κCμC + 6μκC + 8μ2
C + 12μμC

) ,

b = − 15
(
μ− μ′) (κC + 2μC ) (3κC + 4μC )(

9κCμC + 6μκC + 8μ2
C + 12μμC

) (
6μ′ (κC + 2μC )+ μC (9κC + 8μC )

) .
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7.5 Residual Stress in Macroscopically Anisotropic Materials.
X-Ray Stress Factors

In the presence of texture or direction-dependent grain interaction, the relation
between strain {εH ( y)} and macroscopic stress in polycrystal can not be presented
by Eq. (7.11). To confirm this fact, the changes implemented by a macroscopic
anisotropy in the equations (7.108) - (7.136) are considered below. The relation-
ship between the strain {εH ( y)} and the macroscopic stress in polycrystal (7.110)
becomes:

{εH ( y)} = y ⊗ y :
∫

dα f (c(α))A(c(α))∫
dα f (c(α))

: 〈σ〉(S). (7.149)

The ODF function f (c) is a function of the orientation of the system C relatively to
the system S. The parametric vector (7.130) depending on the vector y and angles
ψ,φ is an argument of ODF, and the right part of (7.149) may have different kinds
of dependency from the angles ψ and φ. This means the non-linearity of sin2 ψ
plot, and the XEC provided by (7.11) and (7.136) are not sufficient for proper data
interpretation. In this situation, the expression (7.149) is written in the form:

{εH ( y)} = F( y) : 〈σ〉(S), (7.150)

F( y) = y ⊗ y :
∫

dα f (c(SC)(α))A(c(α))∫
dα f (c(SC)(α))

,

and the functions F( y) defined in the coordinate system S are called X-ray stress
factors (XSF).

As follows from (7.150), to calculate XSF, the tensor A, which characterizes
the grain with the orientation c(α), has to be found in the coordinate system S.
For macroscopically isotropic models, the tensor A in the coordinate system C is
equal for all crystallites independently on their orientations. Mathematically it is
a consequence of the fact that the macroscopic tensors C and E are the isotropic
tensors, which are independent on the coordinate system. In the case of macroscop-
ically anisotropic polycrystal, the macroscopic tensors are generally anisotropic. As
a result, to calculate the tensor A, the operations with the anisotropic tensors have
to be carried out in different coordinate systems. The final product of these tensors
is not expressed through the tensors themselves, and the analogue of (7.118) can not
be constructed using a small number of basic elements. Below we discuss the XSF
calculation algorithms for different grain interaction models.

7.5.1 Voigt Model

In accordance with (7.21) and (7.22), the tensor (7.116) has to be averaged and then
inverted. The averaging is carried out with an accounting of ODF as described in
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the Eq. (7.21). After these procedures, the tensor A being equal for all crystallites is
derived in the coordinate system S, and by the reduction of the integral over α the
XSF are:

F( y) = y ⊗ y : 〈c〉−1. (7.151)

Here the value 〈c〉−1 is constant and XSF are independent on hkl. The dependence
on the angles ψ and φ is contained in the term y ⊗ y. As a consequence, the plot
of residual stress versus angles ψ and φ depends quadratically on the trigonometric
functions, but in general case differs from (7.11).

7.5.2 Reuss Model

In the Reuss model, the tensor A is equal to the compliance tensor of a crystallite
(7.25). Because of the expression for the tensor A does not contain the operations
with macroscopic tensors, the expansion (7.119) can be used, which results similarly
to (7.128) in:

F( y) = y ⊗ y :
(

S1σ1 + S2σ2 + Sη

∫
dα f (c(SC)(α))

∫
dαT̂

(SC)
(α)ηc∫

dα f (c(SC)(α))

)
,

(7.152)

S1 = S::σ1 = S11 + 2S12,

S2 = S::σ2 = 4(S11 − S12)+ 3S44

2
√

5
, Sη = (A − 1)S44.

This formula can be applied in an analytical form in the important case of the
textured materials described by axial or spherical components [51, 52]. The ODF
in this case is modeled by simple functions describing the grain groups, which have
allocated orientation and the distribution of the directions, for example, ODF in a
form of:

f (cp, c) = NeS cosω, cosω = Tr(T (cp)
−1.T (c))− 1

2
, (7.153)

here cp is a vector-parameter specifying the primary orientation, N is a normalization
constant, 1/S describes the spread of the directions, Tr is a trace of the matrix. Using
the explicit form of the matrix (7.96), we obtain:

cosω/2 = 1 + ccp√
(1 + c2)(1 + c2

p)
, (7.154)
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and utilizing the expressions for c(SC)(α) in (7.130), the ODF dependence on the
angle α is:

cosω = cos2(θ∗/2) cos(α+ δ + 2 arctan b/a)− sin2(θ∗/2), (7.155)

a = 1 + n y − cpn y
√
(1 + c2

p)(n + y)2
, b = cp(n + y)

√
(1 + c2

p)(n + y)2
, cos2(θ∗) = nT (cp) y,

tan δ/2 = sin(βB − φ) sin(φB/2) sin(ψ/2)

cos(φB/2) cos(ψ/2)+ cos(βB − φ) sin(φB/2) sin(ψ/2)
,

where βB and φB are the angles defining the unity vector in the coordinate system
C along the reciprocal lattice vector (Fig. 7.2).

The analogous relationships can be found for axial components, with ODF:

f (cp, c) = NeS cosω, cosω = f pT (SC)np, (7.156)

where f p is a vector of primary fiber direction in the coordinate system S, np is a
primary fiber vector in the coordinate system C , N is a normalization coefficient, and
1/S defines the characteristic distribution of the directions. By utilizing the explicit
form of the transformation matrix (7.96) and using the expressions for c(SC)(α) in
(7.130), the following formulas are derived:

cosω = cos θy cos θn + sin θy sin θn cos(α+ δ f ), (7.157)

cos θn = nnp, cos θy = f p y, tan δ f = f ⊥n⊥
f ⊥n⊥ez

,

n⊥ = (1 − ez ⊗ ez) · T (
n × ez

1 + nez
) · np,

f ⊥ = (1 − ez ⊗ ez) · T (
y × ez

1 + ez y
) · f p.

In both axial and spherical component cases, the dependence of ODF on the angle
α is expressed as ek1 cos(α+k2). Similar to the Eqs. (7.130)–(7.131), the transformation

matrix T̂
(SC)

(α) in (7.152) has a form einα. By using the equation:

∫ 2π

0
dαek1 cos(α+k2)−imα = 2πeimk2 Im(k1), (7.158)

with Im being a modified Bessel function of m-th order and applying (7.158), (7.157)
and (7.155), we obtain for (7.152):



306 7 X-Ray Diffraction Residual Stress Analysis in Polycrystals

F( y) = y ⊗ y :
(

S1σ1 + S2σ2 (7.159)

+ SηηnT (4)nl

(
ez × y

1 + ez y

)
δll ′

Il(Sω)eilφ

I0(Sω)
T (4)l ′n′

(
n × ez

1 + nez

)
ηcn′

)
.

Here the notations of (7.133) have been used, and the angles ω,φ for the spherical
components are:

ω = cos2(θ∗/2), φ = δ + 2 arctan b/a,

and for the case of axial components:

ω = sin θy sin θn, φ = δ f .

This formula can be generalized for S tensor of arbitrary symmetry [53].
The expression (7.159) demonstrates the transition from XSF to XEC. From one

hand, the relation between the measured strain and the stress (7.11) takes a place in
a case of the isotropic material. As follows from (7.159) and (7.152), in isotropic
case A = 1, the anisotropic part Sη = 0 disappears along with the term of texture.
From the other hand, in the limit of the isotropic ODF, the value S tends to zero,
the functions Il(Sω) tend to zero, except of I0(Sω), and we obtain the expression
(7.133), which results in (7.11).

7.5.3 Eshelby-Kröner Model

In the presence of texture, the Eq. (7.67) becomes very cumbersome. In opposite to
the isotropic case, where the simple analytical expression (7.145) exists, the relation
between E and C in anisotropic polycrystals is given by cumbersome integrals
(7.57) and (7.58). The averaging procedure involves ODF, which again complicates
the calculations comparing to the isotropic sample, where the equation (7.120) is
valid. As a result, the expressions (7.67) become a system of non-linear equations,
where the analytical solution similar to (7.147) is not possible.

The appropriate solution for the textured polycrystals is a construction of the
iterative procedure based on (7.67) for calculation of the tensor C [33, 34]. For
example, the Eq. (7.66) is re-written as:

ε(0) = ε(0) + [〈(1 + E : δcn)
−1〉 − 1] : ε(0), (7.160)

where the second term in the right side equals to zero for the exact solution of (7.67).
By expressing the strain ε(0) through the stress 〈σ〉 using the macroscopic compliance
tensor S = C−1, the following equation is obtained:

S = S + [〈(1 + E : δcn)
−1〉 − 1] : S. (7.161)
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Based on this equation, the iterative scheme can be constructed as follows:

S(n+1) = S(n) + f [〈(1 + E(n) : δcn)
−1〉 − 1] : S(n), (7.162)

where E(n) is calculated using C(n) = S(n)
−1

. The coefficient f is determined
empirically: the small values of f provide the convergence, however, require longer
iterations, whereas the large values of f make the iterations unstable. Using (7.69)
and (7.150), the expression for XSF is:

F( y) = y ⊗ y :
∫

dα f (c(SC)(α))(1 + E : (T̂ (SC)
(α)c − C))−1

∫
dα f (c(SC)(α))

: S, (7.163)

with macroscopic tensors E,C, S = C−1 being defined in the coordinate system S
and stiffness tensor of a separate crystallite c being defined in the coordinate system
C .

7.5.4 Vook-Witt and Inverse Vook-Witt Models

Unlike the above discussed models, the Vook-Witt and inverse Vook-Witt models
implement the macroscopic anisotropy in the absence of texture.4 The basic expres-
sions (7.84)–(7.87) contain the anisotropic tensors Π⊥ and Π||, which distinguish
the direction of a surface normal among others (Fig. 7.8 and 7.9).

The presence of texture incorporates another source of a macroscopic anisotropy.
Basing on the formulas (7.150) and (7.84), the following expression is obtained for
XSF:

F( y) = y ⊗ y : (7.164)
∫

dα f (c(SC)(α))c(α) : (Π|| : c(α)− c(α) : Π⊥)−1 : (c(α) : Π|| − Π⊥ : C M )∫
dα f (c(SC)(α))

,

c(α) = T̂
(SC)

(α)c.

Here the macroscopic tensors are defined in the coordinate system S, and the stiffness
tensor of a separate crystallite c in a coordinate system C .

4 A similar situation occurs in Eshelby-Kröner model with the elliptical grains possessing a certain
orientation [5].
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Fig. 7.8 sin2 ψ plot for Cu sample with symmetric biaxial stress 200 MPa, for (420) Bragg reflec-
tion for Voigt (V), Reuss (R), Eshelby-Kröner (E-K), Vook-Witt (VW), and inverse Vook-Witt
(iVW) models. The axial texture with half-width 1/S = 20 degree is included in the simulations,
and f p coincides with the normal np in the direction (111). The dashed line shows the value∫

dα f (c(SC)(α)), which is proportional to the intensity of reflection at fixed ψ and φ

Fig. 7.9 sin2 ψ plot for Cu sample with symmetric biaxial stress 200 MPa and for Bragg reflection
(200) in the absence of texture for Voigt (V), Reuss (R), Eshelby-Kröner (E-K), Vook-Witt (VW)
and inverse Vook-Witt (iVW) models. The morphologic texture inherent in Vook-Witt and inverse
Vook-Witt models leads to the non-linearity even in the absence of the orientational texture
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