
On Solving Mixed-Integer Constraint

Satisfaction Problems with Unbounded Variables

Hermann Schichl�, Arnold Neumaier,
Mihály Csaba Markót, and Ferenc Domes

Faculty of Mathematics, University of Vienna, Austria

Abstract. Many mixed-integer constraint satisfaction problems and
global optimization problems contain some variables with unbounded
domains. Their solution by branch and bound methods to global opti-
mality poses special challenges as the search region is infinitely extended.
Many usually strong bounding methods lose their efficiency or fail alto-
gether when infinite domains are involved. Most implemented branch
and bound solvers add artificial bounds to make the problem bounded,
or require the user to add these. However, if these bounds are too small,
they may exclude a solution, while when they are too large, the search
in the resulting huge but bounded region may be very inefficient. More-
over, if the global solver must provide a rigorous guarantee (as for the
use in computer-assisted proofs), such artificial bounds are not permitted
without justification by proof.

We developed methods based on compactification and projective
geometry as well as asymptotic analysis to cope with the unbound-
edness in a rigorous manner. Based on projective geometry we imple-
mented two different versions of the basic idea, namely (i) projective
constraint propagation, and (ii) projective transformation of the vari-
ables, in the rigorous global solvers COCONUT and GloptLab. Numer-
ical tests demonstrate the capability of the new technique, combined
with standard pruning methods, to rigorously solve unbounded global
problems. In addition, we present a generalization of projective transfor-
mation based on asymptotic analysis.

Compactification and projective transformation, as well as asymptotic
analysis, are fruitless in discrete situations but they can very well be
applied to compute bounded relaxations, and we will present methods
for doing that in an efficient manner.

Keywords: Mixed-integer CSPs, constraint propagation, relaxation
methods, unbounded variables, interval analysis, directed acyclic graphs.

1 Introduction

1.1 Mixed Integer Constraint Satisfaction Problems

Many real-world problems lead to mixed-integer and numerical constraint sat-
isfaction problems (MICSPs). Every MICSP is a triplet (V , C,D) consisting of

� This work was supported by the Austrian Science Fund (FWF) grant P22239.

C. Gomes and M. Sellmann (Eds.): CPAIOR 2013, LNCS 7874, pp. 216–233, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

On Solving Mixed-Integer Constraint Satisfaction Problems 217

a finite set V of variables taking their values in domains D over the reals (pos-
sibly restricted to the subset of integers) subject to a finite set C of numerical
or purely combinatorial constraints. A tuple of values assigned to the variables
such that all the constraints are satisfied is called a solution. The set of all the
solutions is called the solution set. When dealing with a MICSP, depending on
the application, it might suffice to find one solution, but in some cases it might
be necessary to identify the whole solution set.

In practical problems, numerical constraints are often expressed as equations
and inequalities in factorable form, that is, they are described by functions that
are recursively composed of elementary functions such as arithmetic operators
(+, −, ∗, /), and univariate (sometimes bivariate) basic functions like log, exp,
sin, cos,. . . In other words, such an MICSP can be expressed as

F (x) ∈ b, x ∈ x, xI ∈ Z
|I|, (1)

where F : Rn → R
m is a factorable function, x is a vector of n real variables,

x and b are interval vectors of sizes n and m respectively, and I is the set of
integer variables.

Many solution techniques have been proposed in Constraint Programming
and Mathematical Programming to solve MICSPs. A difficulty when dealing
with continuous variables is roundoff errors. For achieving full rigor, almost all
solution techniques for MICSPs use interval arithmetic (see [12, 16–18]) or some
of its variants (affine arithmetic [30], Taylor arithmetic [4, 5, 19], etc.). During
the last two decades, a lot of work has been put into the development of inclu-
sion tests and contractors based on interval arithmetic. In addition, numerous
relaxation techniques (many of them based on interval arithmetic combined with
algorithmic differentiation methods [11, 25]) have been devised (see [13, 20]).

The function of an inclusion test is to check whether the domain of a vari-
able is included in the projection of the solution set. A contractor, also called
a narrowing operator [2, 10] or contracting operator [1, 29, 32], is a method
that computes a (hopefully proper) subset of the variable domains such that all
solutions are retained. Various basic inclusion tests and contractors have been
described in [13] and [20].

In particular, a contraction operator approach called interval constraint prop-
agation was developed [2, 3, 31], which associates constraint propagation/local
consistency techniques, as defined in artificial intelligence, with interval analytic
methods. Advanced contractors, such as the forward-backward contractor [2, 13],
result from the interval constraint propagation (CP) approach. It is a way to
propagate domain reductions forwards and backwards through the computa-
tional trees of the constraints. Based on the fundamental framework for interval
analysis on directed acyclic graphs (DAGs) [27], a high performance constraint
propagator FBPD for continuous CSPs has been developed in [34].

In practical constraint solvers inclusion tests and contractors are interleaved
with some form of exhaustive search to compute a representation of the solution
set. Search by bisection or more advanced branching is the most commonly used
technique. In the context of MICSPs this leads to the branch and bound class

218 H. Schichl et al.

of algorithms, which generate a search graph consisting of subproblems that are
subsequently solved or further subdivided.

A relaxation is a (usually much easier solvable) replacement MICSP whose
solution set provably contains all solutions of problem (1). There are several
classes of relaxations, although linear and convex ones are mostly used, see [20,
21]. Relaxations usually are an efficient tool for fathoming nodes of the search
graph during the search procedure.

1.2 Unbounded Variables

An especially difficult class of MICSPs are those which contain variables whose
domain set is unbounded. Their solution by branch and bound methods poses
special challenges as the search region is infinitely extended. On the one hand,
the unboundedness cannot be removed by splitting. On the other hand most
inclusion and contraction operators become inefficient or dysfunctional when
applied to unbounded domains.

Most branch and bound solvers add artificial bounds to make the problem
bounded, or require the user to add these by forbidding unbounded problems
altogether. However, if these artificial bounds are too small, they may exclude
a solution, even render the problem infeasible, while when they are too large,
the search in the resulting huge but bounded region may be very inefficient.
Moreover, if the global solver must provide a rigorous guarantee (as for the use
in computer-assisted proofs), such artificial bounds are not permitted without
justification.

The contribution of this paper is twofold. Firstly, we developed methods based
on compactification and projective geometry to cope with the unboundedness
in a rigorous manner. We implemented two different versions of the basic idea,
namely

1. projective transformation of the variables, and
2. projective constraint propagation.

They are implemented in the rigorous global solvers GloptLab [6–8] and
COCONUT [23, 24], respectively. Numerical tests demonstrate the capability
of the new technique, combined with standard pruning methods, to rigorously
solve unbounded global problems.

Secondly, these projective transformations are most efficient for those
MICSPs, whose unbounded variables are continuous and all constraints involving
them are rational. Although the method is still applicable when transcendental
functions are involved, the effectiveness is significantly reduced. Therefore, we
developed an extension using asymptotic analysis that is more efficient in the
presence of transcendental functions. This is based on ideas from the unpublished
thesis [9]. Since for discrete variables the transformation method is not applica-
ble, we shortly describe asymptotic relaxations for improved node fathoming in
the unbounded case.

In Section 2 we will explain explicit projective transformation and projective
constraint propagation. Section 3 generalizes that to asymptotic transformations.

On Solving Mixed-Integer Constraint Satisfaction Problems 219

Some information on projective and asymptotic relaxations are given in Section 4,
and numerical results are provided in Section 5.

Throughout this paper we will need some notation: a real interval a ∈ IR is
defined as [a, a] = {a ∈ R | a ≤ a ≤ a}, with a ∈ R∪{−∞} and a ∈ R∪{∞}. In
case both bounds a and a of a are finite, we call a a finite or bounded interval,
otherwise a is an infinite or unbounded interval. We will also need the set UR of
all finite disjoint unions of intervals. Real arithmetic and elementary functions
can be extended to intervals, see [18], and to interval unions. An n-dimensional
real box (union box) x ∈ IR

n
(UR

n
) is a vector of n real intervals (interval

unions). If all components of x are finite, then x is a finite or bounded box or
interval union, otherwise x is infinite or unbounded.

2 Projective Transformation

Throughout this section we will consider factorable MICSPs of the form (1).
We will assume that the variables xJ have unbounded domains and that the
other variables xK have bounded domains. Furthermore, we will for the moment
require that all integer variables are bounded, i.e., that I ⊂ K.

Since all functions involved in (1) are factorable, the problem can be repre-
sented as a reduced computational directed acyclic graph Γ = (V (Γ), E(Γ)),
see [27]. All nodes ν ∈ V (Γ) represent intermediate expressions yν of some
constraints. The local sources of Γ correspond to constants and variables, i.e.,
xk = yνk for all k and some νk ∈ V (Γ), and the local sinks correspond to the
constraints.

The basic idea of the projective transformation is the natural embedding
of R|J| × xK , which contains the feasible set, into the compact manifold with
boundary PR|J| × xK , where PR|J| is the projective space over R

|J|. For the
transformation we represent each intermediate node yν for ν ∈ V (Γ) in the form

yν = ŷν/t
mν , (2)

where mν is a rational number and t is a scaling factor to be chosen. The new
variable t and the exponents mν are defined such that t ∈ [0, 1] and the ŷν are
well-bounded. (Actually, that can only be guaranteed in the case of a rational
MICSP. In the presence of transcendental functions some intermediate ŷν may
still be unbounded. This is the motivation for the generalization in Section 3.)
Note that while these transformations are singular, the transformed problem has
no singularities, and the solution set is preserved with full mathematical rigor.

The transformation is achieved by a recursive construction, implemented in a
forward walk through Γ . For the original variables xk and all interval constants,
we define

mνk =

{

0 if k ∈ K,

1 if k ∈ J .
(3)

For practical reasons we put in the implementation also those indices j into J , for
which the bounds xj are huge, e.g., bigger than 107 but this limit is problem and

220 H. Schichl et al.

scaling dependent. Those bounds, in general, are artificial in the first place and
in a branch and bound context pose similar problems as unbounded variables.

For constructing the ŷν we choose a real number 0 ≤ s ≤ 1 and set

t :=
(

1− s+
∑

k∈K

dkx
2
k

)−1/2

(4)

with scaling factors dk > 0. This leads to the constraint

(1− s)t2 +
∑

dkx̂
2
k = 1, (5)

from which we deduce the bounds

t ∈ t := [0,max(0, 1− s)−1/2],

|x̂k| ≤ d
−1/2
k for k ∈ K.

(6)

To guarantee that t is real, we need to choose s such that

∑

k∈K

dkx
2
k ≥ s

is a valid constraint. For example,

s := inf
∑

k∈K

dkx
2
k

qualifies (if necessary, rescale the dk to have s ≤ 1), but better bounds might be
available. A possible choice is s = 0, however in general this is suboptimal. Then

t ∈ [0, 1].

Since ŷνk = xk for the well-bounded variables, we have expressed all variables in
terms of bounded ones.

The exponent mν for an intermediate variable yν depends on the operation
that creates it. If y =

∑

ανyν then y = ŷ/tm with

m := maxmν , ŷ :=
∑

ανt
m−mν ŷν , (7)

and we get the finite enclosure

ŷ ∈ ŷ :=
∑

ανt
m−mν ŷν . (8)

If y =
∏

yαν
ν with rational αν then y = ŷ/tm with

m :=
∑

ανmν , ŷ :=
∏

ŷαν
ν , (9)

and we get the finite enclosure

ŷ ∈ ŷ :=
∏

ŷαν
ν . (10)

On Solving Mixed-Integer Constraint Satisfaction Problems 221

This accounts for all elementary operations and powers with fixed exponent.
For other elementary functions, one can derive similar formulas, though their

derivation and implementation is more complex. For example, if y = log yν then
y = ŷ/tm with

m := 1, ŷ := t(log ŷν −mν log t),

and we get a finite enclosure derivable by monotony considerations.
For some transcendental functions y = ϕ(yν) even a projective transformation

cannot in general guarantee boundedness of ŷ (one example is ϕ = exp). In
that case, we define ŷ := ϕ(t−mν ŷν) and get a possibly unbounded enclosure of
ϕ(t−mνyν) for ŷ.

There are two possibilities to utilize projective transformations. The problem
can be explicitly transformed (see Section 2.1), or the projective transforma-
tion can be used implicitly during constraint propagation (see Section 2.2) and
relaxation calculation (see Section 4).

2.1 Explicit Projective Transformation

We have implemented the explicit transformation method in the software pack-
age GloptLab [6–8], a constraint satisfaction package for enclosing all solutions
of systems of quadratic equations and inequalities.

The special quadratic structure allows one to implement projective transfor-
mations explicitly by rewriting the original equations after a projective transfor-
mation (2) on the variables xk using (4). Then all linear inequality constraints

Ax ≥ b

are transformed into the homogeneous linear constraints

Ax̂− bt ≥ 0.

Bound constraints are treated as linear constraints, too. Nonlinear quadratic
constraints

xTGx+ cTx ≥ γ

are transformed into the homogeneous quadratic constraints

x̂TGx̂+ tcT x̂− γt2 ≥ 0.

In all cases, equations and inequalities with the opposite sign are handled anal-
ogously. The additional constraints (5) and (6) are also quadratic and linear,
respectively, and thus the transformed problem is again quadratic but bounded.
Hence, it can be solved with traditional methods. After solving the transformed
problem, one can recover the original solution from

xi = x̂i/t, if t
= 0.

Solutions of the transformed problem with t = 0 correspond to limiting solutions
at infinity of the original problem. They can be discarded in general.

222 H. Schichl et al.

Fig. 1. Example 1

Alternatively, one can solve a bigger constraint satisfaction problem contain-
ing both the original and the transformed variables and constraints. In that case,
however, the transformation equations themselves have to be added as additional
quadratic constraints

xit− x̂i = 0.

This allows one to exploit the features of both the original and the transformed
problem at the same time, at the cost of doubling the problem size.

Example 1. The constraint satisfaction problem

0.36x1 − x2 = 0.75,

2x21 − x22 = 1,

x1 ≥ 0, x2 ≥ 0

is infeasible but the equations have a solution at

x1 ≈ 0.6491, x2 ≈ −0.5163,

slightly outside the defining box, see Fig. 1.
The problem is difficult to solve with standard CP and branch and bound,

since no box x of the form x1 = [a,∞], x2 = [b,∞] can be reduced by CP.

On Solving Mixed-Integer Constraint Satisfaction Problems 223

The projective transformation leads to the problem

0.36x̂1 − x̂2 − 0.75t = 0,

2x̂21 − x̂22 − t2 = 0,

x̂21 + x̂22 + t2 = 1,

x̂1, x̂2, t ∈ [0, 1]

This problem is easily found to be infeasible by CP.

2.2 Projective Constraint Propagation

For more general problems explicit transformation becomes more cumbersome.
For the implementation in the COCONUT Environment [23, 24], a software
platform for global optimization, we have therefore chosen a different approach.
Frequently, in the non-quadratic case a transformed MICSP is not easier to solve
than the original problem. Therefore, we utilize the projective transformation
together with a special split into a bounded subproblem and its complement.

For that observe that the transformation (2) on the variables xk has the
following property. If ‖x̂‖p = α and t ∈ [0, 1] then ‖x‖p ≥ α, for every p ∈ [1,∞].
Adding the constraint ‖x‖p ≤ α to problem (1) makes it bounded, so it can be
solved by standard methods.

The complement of that ball, described by the complementary constraint
‖x‖p ≥ α, must be handled as well and can be projectively transformed using
(2) and the constraint ‖x̂‖p = α. The choice of the constant α is application
specific.

However, this transformation is never performed explicitly. Rather, many of
the bounding tools, and foremost CP, implicitly make use of the transformation
by calculating in IPR, the set of so-called projective intervals. Those are pairs
(x̂, r; t) of intervals and rational numbers together with a common interval t
representing the range of the scaling parameter. The operations of projective
intervals are defined according to (7–10) with extensions for transcendental ele-
mentary functions.

Not performing the transformation explicitly has an additional advantage
which is connected to the following important observation: There exist CSPs for
which CP proceeds with range reduction on the original problem but where it
has no reducing effect on the projectively transformed problem.

Example 2. Consider the constraints (with α = 1)

y = x2 − 3 (11)

x2 + y2 ≥ 1. (12)

From (11) we get y ∈ [−∞,∞] ∩ ([−∞,∞]2 − 3) = [−3,∞], which reduces the
range of y.

The projectively transformed problem associated to (11–12) is as follows:

ŷt = x̂2 − 3t (13)

x̂2 + ŷ2 = 1 (14)

224 H. Schichl et al.

x̂ ∈ [−1, 1], ŷ ∈ [−1, 0], t ∈ (0, 1]. (15)

From (13) we get

y ∈ [−1, 0] ∩ ([−1, 1]2 − 3 · (0, 1]) = [−1, 0].

Also from (13),
x2 = ŷt+ 3t ∈ [−1, 0] + (0, 3] = (−1, 3],

so the current range [−1, 1] of x̂ cannot be reduced; (14) yields no improvement as
well, thus, CP cannot reduce any of the initial variable ranges of the transformed
problem.

The effect that no range reduction is possible on the original problem whereas
CP works on the transformed problem was already demonstrated in Example 1.

Consequently, we need to utilize CP simultaneously on the original and on
the transformed problem. For that we developed the algorithm Projective For-
ward and Backward Propagation on DAGs (PFBPD), which is an advanced ver-
sion of FBPD from [33, 34]. It is based on propagating enclosures of the form
(x, (x̂, r; t)) ∈ UR

n × IPRn, of pairs of interval unions (not projectively trans-
formed) and projective intervals in parallel, in order to get the advantages of
both approaches. These pairs are interwoven since after each forward or back-
ward propagation step an internal intersection between the two enclosures is
performed for additional reduction.

For this algorithm let D(G) be a DAG with the ground G, C the set of active
constraints, and D the variable domains. Furthermore, for every node ν of the
DAG we introduce the set N (ν) ⊆ UR × IPR, or N (ν) ⊆ UZ × IPR for the
integer variables, containing the current enclosure of the range of ν. Note that
we keep the integer information only in the untransformed problem since the
transformation destroys the integrality information.

Algorithm PFBPD(in : D(G), C, α; in/out : D)

00: Lf := ∅; Lb := ∅; Voc := (0, . . . , 0); Vch := (0, . . . , 0); to := [0, 1];

01: Set the node ranges Nνk of every variable xk to (Dk, (x̂k,mk; to));

02: Vlvl := (0, . . . , 0);

03: for each node C representing an active constraint in C do

04: NodeOccurrences(C, Voc);

05: NodeLevel(C, Vlvl); /* this can be made optional */

06: end-for

07: Add a virtual node V with maximal node level (for constraint ‖x̂‖22 = α2).

08: C := C ∪ {V};
09: for each node C representing an active constraint in C \ {V} do

10: FindVirtualEdges(C,V,V);
11: ForwardEvaluation(C, Vch,Lb);

12: end-for

13: while Lb �= ∅ ∨ Lf �= ∅ do

14: N := getNextNode(Lb,Lf);

On Solving Mixed-Integer Constraint Satisfaction Problems 225

15: if N was taken from Lb then

16: for each child C of N do

17: BP(N,C);

18: if N (C) = ∅ then return infeasible;

19: if N (C) changed enough for forward evaluation then

20: for each P ∈ parents(C) \ {N,G} do

21: if Voc[P] > 0 then put P into Lf ;

22: end-if

23: if N (C) changed enough for backward propagation then

24: Put C into Lb;

25: end-for

26: else /* N was taken from Lf */

27: FE(N, [f]); /* f is the operator at N */

28: if N (N) = ∅ then return infeasible;

29: if N (N) changed enough for forward evaluation then

30: for each P ∈ parents(N) \ {G} do

31: if Voc[P] > 0 then put P into Lf ;

32: end-if

33: if N (N) changed enough for backward propagation then

34: Put N into Lb;

35: end-if

36: if t �= to then

37: if t changed enough for forward propagation then

38: Put all nodes C ∈ V into Lf ;

39: end-if

40: to := t;

41: end-if

42: end-while

43: Update D with the ranges of the nodes representing the variables;

end

procedure ForwardEvaluation(in : N; in/out : Vch,Lb)

01: if N is a leaf or Vch[N] = 1 then return;

02: for each child C of node N do ForwardEvaluation(C, Vch,Lb);

03: if N = G then return;

04: FE(N, [f]); /* f is the operator at N */

05: Vch[N] := 1; /* the range of this node is cached */

06: if N (N) = ∅ then return infeasible;

07: if N (N) changed enough for backward propagation then put C into Lb;

end

procedure FindVirtualEdges(in : N,V; in/out : V)
01: if N is a leaf and mN �= 0 then put N into the set of children of V;

02: if t is explicitly needed in the calculation of yN then add N to V;
03: for each child C of node N do FindVirtualEdges(C,V,V);
end

226 H. Schichl et al.

procedure NodeLevel(in : N; out : Vlvl)

01: for each child C of node N do

02: Vlvl[C] := max{Vlvl[C], Vlvl[N] + 1};
03: NodeLevel(C, Vlvl);

04: end-for

end

Apart from the virtual nodes and constraints the layout of the PFBPD algorithm
is analogous to the FBPD algorithm from [33, 34]. The main difference lies in
the forward and backward propagation operators FE(N, [f]) and BP(N,C). The
aim of forward evaluation FE is the reduction of N (N) of the node N based
on the known N (C) for all children C of N. It is performed by first calculat-
ing the UR and the IPR parts of N (N) = (x, (x̂,m; t)) separately by inter-
val extension functions of f . Immediately thereafter the internal intersection
N ′(N) = (x′, (x̂′,m; t′)) is computed as follows:

x′ = x ∩ t−mx̂

x̂′ = x̂ ∩ tmx

t′ = t ∩ (x/x̂)−1/m ∩ (x̂/x)1/m.

(16)

The backward propagation BP is concerned with reducing the sets N (Ci) of all
children Ci of N using N (N) and all N (Cj) for all other children Cj with
j
= i. Again, first the UR and IPR parts are calculated separately by inclusion
extensions of the partial inverse functions, followed by an internal intersection
operation (16).

Like FBPD the PFBPD algorithm is contractive and complete in the following
sense.

Proposition 1. We define a function P : (UR× IPR)n × 2R
n → (UR× IPR)n

to represent the PFBPD algorithm. This function takes as input the variable do-
mains B (in form of a combined interval-union enclosure and an enclosure of
the projective transformation) and the exact solution set S of the input problem.
The function P returns an enclosure, denoted by P (B, S), that represents the
variable domains of the output of the PFBPD algorithm, again for the original
and the projectively transformed problem. If the input problem is factorable, then
the PFBPD algorithm stops after a finite number of iterations and the following
properties hold:

(i) P (B, S) ⊆ B (Contractiveness)

(ii) P (B, S) ⊇ B ∩ S (Completeness)
The proof is completely analogous to [34, Proposition 2].

3 Asymptotic Transformation

As mentioned in Section 2 for MICSPs involving transcendental functions, the
projective transformation does not necessarily lead to bounded internal vari-
ables ŷν for all nodes ν ∈ V (Γ). Therefore, we have developed a more general
transformation, based on asymptotic analysis.

On Solving Mixed-Integer Constraint Satisfaction Problems 227

Let Ψ ⊆ C(R2,R) be a subset of functions ψ(x, t;α) depending on the real
parameter vector α ∈ R

n.
For the asymptotic transformation we enclose each intermediate node yν for

ν ∈ V (Γ) in the form

ψ(ŷν , t;αν) ≤ yν ≤ ψ(ŷν , t;αν). (17)

The new variable t and the parameters αν and αν are defined such that t ∈ [0, 1]
and the ŷν are well-bounded. Clearly, the projective transformation is a special
case of that scheme, by choosing ψ(x, t, α) := x/tα with α = α = α ∈ Q.

The transformation is like in the projective case achieved by a recursive con-
struction, implemented in a forward walk through Γ . For the original variables
xk and all interval constants, we define a map f : IR → IR× R

n × R
n with the

property that for all t ∈ [0, 1] there exists a x̂k ∈ f1(xk) with

ψ(x̂k, t; f2(xk)) ≤ xk ≤ ψ(x̂k, t; f3(xk)), (18)

for all xk ∈ xk.
The parameters αν and αν for an intermediate variable yν depend on the

operation that creates it. If y = g(yν1 , . . . , yν�) then we must have ŷ such that

ψ(ŷ, t;α) ≤ g(ψ(ŷν1 , t; aν1), . . . , ψ(ŷν� , t; aν�)) ≤ ψ(ŷ, t;α), (19)

for aνi = [ανi , ανi], all ŷν ∈ ŷν , and some ŷ ∈ ŷ, and the inequalities should be
as tight as possible, ŷ should be bounded, and there should be a simple way to
calculate it for all elementary operations g.

If we have a constraint y ∈ y we transform it to the two constraints

ψ(ŷ, t;α) ≤ y

ψ(ŷ, t;α) ≥ y,

ensuring that the transformed problem is a relaxation of the original problem.

Example 3. A very useful set of functions is Ψ := {ψ(x, t;α) := xt−α1eα2t
−α3 |

α ∈ R
3}. The corresponding transformation is then

yν = ŷνt
−αν,1eαν,2t

−α3
,

where α = α = α. For constructing the ŷν we choose again a real number
0 ≤ s ≤ 1 and set

t :=
(

1− s+
∑

k∈K

dkx
2
k

)−1/2

(20)

with scaling factors dk > 0, like in the projective case. This again leads to the
constraint (5).

The parameters αν for an intermediate variable yν depend on the operation
that creates it. If, e.g., y =

∑

βνyν then y = ŷt−α1eα2t
−α3

with

α1 := maxαν,1, α3 := maxαν,3, α2 := max{αν,2 | αν,3 = α3},
ŷ :=

∑

βνt
α1−αν,1e−α2t

−α3(1−αν,2
α2

tα3−αν,3)ŷν ,
(21)

228 H. Schichl et al.

and we get the finite enclosure

ŷ ∈ ŷ :=
∑

βνt
α1−αν,1e−α2t

−α3 (1−αν,2
α2

tα3−αν,3)ŷν . (22)

Note that the lower bound of the exponential term is 0 by construction.
If y =

∏

yβν
ν with real βν then y = ŷt−α1eα2t

−α3
with

α1 :=
∑

βναν,1, α3 := maxαν,3,

α2 := max βναν,2, ŷ := e
∑ βναν,2

α2
tα3−αν,3

∏

ŷν ,
(23)

and we get the finite enclosure

ŷ ∈ ŷ := e
∑ βναν,2

α2
tα3−αν,3

∏

ŷν . (24)

This accounts for all elementary operations and powers with fixed exponent.
For other elementary functions, one can again derive similar formulas, which

are rather complex. E.g., if y = log yν then y = ŷt−α1eα2t
−α3

with

α1 := αν,3 + δ, α2 := 0

α3 := 0, ŷ := tα1+δ(log ŷν − αν,1 log t+ αν,2),

and δ = 0 for α1 > 0, and δ = ε− α1 for some small ε > 0, if α1 ≤ 0, providing
a finite enclosure for ŷ.

For y = exp(βyγν) we find y = ŷt−α1eα2t
−α3

with

α1 = 0, α2 = sup(ŷγ
ν), α3 = αν,1γ

ŷ = et
−α1(ŷγeγαν,2t

−αν,3 −α2),

giving the enclosure

ŷ ∈ ŷ := et
−α1 (ŷγeγαν,2t

−αν,3−α2),

which is finite for α2 ≤ 0 or α3 ≤ 0.
This asymptotic transformation, therefore, can also cope with exponentials,

as long as they are not nested.

An analysis of the DAG Γ can provide information about which asymptotic
transformation is most useful for transforming the MICSP to a bounded form.
Of course, a generalization of IPR to a more general set of asymptotic intervals
implementing the above operations provides an algorithm analogous to PFBPD.

4 Projective and Asymptotic Relaxations

A very useful tool for solving MICSPs are relaxations of all kind. There are
many different classes of relaxations utilized—linear, mixed-integer linear, con-
vex quadratic, semidefinite, general convex to name only the most important

On Solving Mixed-Integer Constraint Satisfaction Problems 229

Table 1. Comparison of PFBPD, FBPD, and HC4, easy problems

#var #problems PFBPD PFBPD IPR only PFBPD UR only FBPD HC4

#solved Σmsec #solved Σmsec #solved Σmsec #solved Σmsec #solved Σmsec

1 4 4 1.30 4 1.70 2 0.70 1 0.20 0 20.20

2 112 112 40.90 102 26.00 22 21.20 5 8.00 7 545.60

3 104 57 75.80 28 38.50 20 33.10 7 14.90 8 1354.10

4 70 41 87.60 24 41.70 22 33.20 4 12.10 6 1212.60

5 68 42 89.30 17 43.80 14 34.20 7 16.20 8 1294.20

6 48 23 90.20 13 38.30 11 28.80 6 10.10 6 1404.40

7 18 6 34.90 2 12.90 1 12.00 1 3.90 1 444.50

8 43 20 178.70 5 43.60 5 38.90 2 22.70 3 1697.20

9 24 16 52.20 10 25.60 10 18.90 0 6.80 1 949.60

10 36 24 66.00 10 28.60 9 20.80 7 9.30 7 980.60

11–15 32 24 54.20 6 26.90 7 21.50 5 7.40 5 667.50

16–20 17 13 38.90 3 37.20 1 16.20 1 10.10 0 737.30

21–30 25 20 116.50 3 49.60 3 40.70 2 17.00 2 1421.70

31–46 15 12 80.10 2 174.00 3 32.90 3 40.50 3 2186.10

ones, see [20]. Most of these relaxations come in two flavors: They can be of re-
formulation type, like reformulation linearization [14, 15, 22], and be much higher
dimensional than the original problem. They can also be dimension preserving,
like the ones in [21, 27]. However, usually the computation of the relaxations
requires that all variables are bounded.

This problem can be overcome by computing a relaxation of a suitably trans-
formed problem, like the projectively transformed problem of Section 2 or the
asymptotically transformed problem of Section 3. Even for mixed-integer prob-
lems the relaxations have the additional advantage that they are continuous
problems. Hence, the transformations can be readily applied.

Reformulation type relaxations can be computed directly from the structure
of the operators separately for each node ν ∈ V (Γ). Dimension preserving re-
laxations are usually computed by algorithmic differentiation techniques. Those
can be generalized to projective or asymptotic intervals by careful examination
of the differentiation rules and the properties of first and second order slopes
[26].

5 Numerical Results

We tested all global optimization and constraint satisfaction problems of the
COCONUT test set [28] of dimensions up to 50. They are of general structure

min f(x)

s.t. F (x) ∈ F, x ∈ x.

Of those 865 test problems 15 failed for various reasons (e.g. missing operators,
local optimization failed, . . .). Of the remaining 850 problems 663 contained at
least one unbounded variable. We used local optimization to find at least one
local minimum x̃ with objective function value f̃ . Then we added the constraint
f(x) ≤ f̃ on the objective function for converting the global optimization prob-
lem to a CSP. Then we tried to exclude the region where all unbounded variables
are outside the box [−1000, 1000].

230 H. Schichl et al.

Table 2. Comparison of PFBPD, FBPD, and HC4, complex problems

Name/Lib. #var PFBPD PFBPD IPR only PFBPD UR only FBPD HC4

Res. msec Res. msec Res. msec Res. msec Res. msec

esfl/3 2 I 4909.60 I 1702.70 1610.00 I 181.20 I 11.40

pt/2 2 I 27.60 I 12.60 11.20 3.10 818.10

sipow1/2 2 I 514.20 I 264.10 201.30 58.90 314635.00

sipow1m/2 2 I 517.60 I 259.70 206.70 56.80 300657.00

sipow2/2 2 I 253.60 I 121.10 94.90 23.60 73982.50

sipow2m/2 2 I 256.50 I 127.00 99.80 22.60 71689.80

gulf/2 3 55.10 21.90 18.20 2.70 222.20

oet1/2 3 I 83.20 40.20 31.00 92.80 3403.70

oet2/2 3 I 80.30 34.50 28.60 28.70 3312.80

tfi2/2 3 849.70 402.90 358.80 84.20 288961.00

fourbar/3 4 20.20 6.90 7.00 1.90 101.00

oet3/2 4 I 126.60 49.40 45.30 19.60 3848.10

sipow3/2 4 I 1037.30 391.30 317.90 263.50 318190.00

sipow4/2 4 1036.70 459.80 439.00 112.10 315615.00

cpdm5/3 5 17.10 6.60 5.40 1.60 90.90

expfitb/2 5 29.10 11.30 9.10 2.10 333.30

expfitc/2 5 400.20 158.50 115.70 19.40 1959.40

rbpl/3 6 I 22.50 7.80 7.00 4.30 90.90

oet7/2 7 173.30 83.90 67.90 17.10 6352.90

arglinb/2 10 14.60 1.60 1.40 1.50 90.90

fir convex/3 11 181.10 60.10 52.90 17.60 1343.30

osborneb/2 11 13.40 7.70 5.80 1.30 464.60

watson/3 12 I 35.20 4.00 3.60 7.50 272.70

ex2 1 10/1 20 I 23.40 8.20 6.70 0.70 70.70

ex2 1 7/1 20 I 18.30 6.60 5.40 1.60 60.60

ksip/2 20 2174.20 695.40 732.40 233.30 11392.80

antenna2/3 24 3552.70 1135.30 1040.90 365.60 14725.80

himmelbk/2 24 I 47.00 16.00 16.30 5.00 141.40

3pk/2 30 I 17.20 3.90 3.60 1.90 80.80

loadbal/2 31 I 16.70 7.50 6.10 2.80 101.00

lowpass/3 31 2760.00 884.80 843.40 285.40 7908.30

watson/2 31 I 183.70 6.60 6.40 48.30 717.10

hs088/2 32 I 1358.10 408.30 443.80 253.60 323.20

hs089/2 33 I 1379.60 453.90 474.20 262.30 363.60

hs090/2 34 I 1373.10 427.40 420.60 243.10 484.80

hs091/2 35 I 1390.70 496.00 458.40 237.80 484.80

hs092/2 36 I 1275.40 436.80 437.00 238.80 676.70

chemeq/3 38 I 15.70 6.10 5.20 2.50 151.50

polygon2/3 38 I 41.40 13.20 12.00 3.90 414.10

srcpm/1 38 I 13.20 4.60 3.80 0.60 I 0.70

gridnetg/2 44 I 49.60 15.20 13.60 4.60 141.40

chnrosnb/2 50 I 53.10 17.80 16.10 2.70 80.80

errinros/2 50 I 53.90 17.70 16.20 4.10 70.70

hilbertb/2 50 9529.80 2986.50 3034.10 898.80 818.10

qp1/1 50 I 9407.00 3139.90 2906.00 976.70 575.70

qp2/1 50 I 9589.70 3115.90 2910.20 993.30 606.00

tointqor/2 50 I 39.70 12.80 11.50 2.00 70.70

These 663 constructed CSPs constitute our test set. As can be deduced from
Table 3, for 446 of the problems PFBPD was able to prove infeasibility of the prob-
lem, effectively reducing the problem to the standard search box [−1000, 1000]n

of global optimization algorithms like BARON. Using only projective intervals
solved just 235 of the 675 problems, while pure interval union arithmetic proved
infeasibility of only 130 problems. Of those problems 122 are solved by both
methods, so they can be considered easy. It is thus indeed important to combine
interval unions and projective intervals performing internal intersection after
each operation, as described in Algorithm PFBPD. All calculations are performed
in a completely rigorous way with full rounding error control.

On Solving Mixed-Integer Constraint Satisfaction Problems 231

Table 3. Result summary for PFBPD

case 1 2 3 4 5

UR only + + − − −
IPR only + − + − −
PFBPD + + + + −

#problems 122 8 113 203 217

Overall performance of PFBPD is very strong; it is comparable to FBPD being
just a factor of 5-10 on average slower than the interval version and about half
as fast as the interval union version of FBPD. It is still orders of magnitude faster
than HC4 [2] and many other numerical CP algorithms, as they were tested in
[34]. However, there are exceptions like srcpm where HC4 performs faster and
can still prove infeasibility. Detailed results can be found in Table 1, summarizing
all easy problems with solution times up to 12 ms, and Table 2, containing the
remaining problems. A result of I in Table 2 means that infeasibility was proved
by the corresponding propagator for the respective problem. The running times
were measured on an Intel Core i7 Q 720 running at 1.60GHz running Linux
3.6.11.

6 Conclusion

We provided several methods for solving MICSPs for which some variables have
unbounded domains. In a large numerical test we showed effectiveness of this
new approach.

References

1. Benhamou, F., Goualard, F.: Universally Quantified Interval Constraints. In:
Dechter, R. (ed.) CP 2000. LNCS, vol. 1894, pp. 67–82. Springer, Heidelberg (2000)

2. Benhamou, F., Goualard, F., Granvilliers, L., Puget, J.F.: Revising Hull and Box
Consistency. In: Proceedings of the International Conference on Logic Program-
ming (ICLP 1999), Las Cruces, USA, pp. 230–244 (1999)

3. Benhamou, F., Older, W.J.: Applying Interval Arithmetic to Real, Integer and
Boolean Constraints. Journal of Logic Programming, 32–81 (1997)

4. Berz, M., Makino, K.: Verified integration of odes and flows using differential alge-
braic methods on high-order taylor models. Reliable Computing 4, 361–369 (1998)

5. Berz, M.: COSY INFINITY version 8 reference manual. Technical report, National
Superconducting Cyclotron Lab., Michigan State University, East Lansing, Mich.,
MSUCL–1008 (1997)

6. Domes, F.: Gloptlab-a configurable framework for solving continuous, algebraic
CSPs. In: IntCP, Int. WS on Interval Analysis, Constraint Propagation, Applica-
tions, at CP Conference, pp. 1–16 (2009)

7. Domes, F.: Gloptlab: a configurable framework for the rigorous global solution
of quadratic constraint satisfaction problems. Optimization Methods & Soft-
ware 24(4-5), 727–747 (2009)

232 H. Schichl et al.

8. Domes, F., Neumaier, A.: Verified global optimization with gloptlab. PAMM 7(1),
1020101–1020102 (2008)

9. Eiermann, M.C.: Adaptive Berechnung von Integraltransformationen mit Fehler-
schranken. PhD thesis, Institut für Angewandte Mathematik der Albert–Ludwigs–
Universität Freiburg im Breisgau (October 1989)

10. Granvilliers, L., Goualard, F., Benhamou, F.: Box Consistency through Weak Box
Consistency. In: Proceedings of the 11th IEEE International Conference on Tools
with Artificial Intelligence (ICTAI 1999), pp. 373–380 (November 1999)

11. Griewank, A., Corliss, G.F.: Automatic Differentiation of Algorithms. SIAM Pub-
lications, Philadelphia (1991)

12. Hansen, E.: Global Optimization using Interval Analysis. Marcel Dekker, New York
(1992)

13. Jaulin, L., Kieffer, M., Didrit, O., Walter, E.: Applied Interval Analysis, 1st edn.
Springer (2001)

14. Kearfott, R.: Decomposition of arithmetic expressions to improve the behavior of
interval iteration for nonlinear systems. Computing 47(2), 169–191 (1991)

15. McCormick, G.: Computability of global solutions to factorable nonconvex pro-
grams: Part iconvex underestimating problems. Mathematical Programming 10(1),
147–175 (1976)

16. Moore, R.E.: Interval Arithmetic and Automatic Error Analysis in Digital Com-
puting. PhD thesis, Appl. Math. Statist. Lab. Rep. 25. Stanford University (1962)

17. Moore, R.E.: Interval Analysis. Prentice-Hall, Englewood Cliffs (1966)
18. Neumaier, A.: Interval Methods for Systems of Equations. Cambridge University

Press, Cambridge (1990)
19. Neumaier, A.: Taylor forms - use and limits. Reliable Computing 9, 43–79 (2002)
20. Neumaier, A.: Complete search in continuous global optimization and constraint

satisfaction. Acta Numerica 13(1), 271–369 (2004)
21. Ninin, J., Messine, F., Hansen, P.: A reliable affine relaxation method for global

optimization (2010); Optimzation Online
22. Ryoo, H., Sahinidis, N.: A branch-and-reduce approach to global optimization.

Journal of Global Optimization 8(2), 107–138 (1996)
23. Schichl, H.: Global optimization in the COCONUT project. In: Alt, R., Frommer,

A., Kearfott, R.B., Luther, W. (eds.) Numerical Software with Result Verification.
LNCS, vol. 2991, pp. 243–249. Springer, Heidelberg (2004)

24. Schichl, H., Markót, M.C., et al.: The COCONUT Environment. Software,
http://www.mat.univie.ac.at/coconut-environment

25. Schichl, H., Markót, M.C.: Algorithmic differentiation techniques for global opti-
mization in the coconut environment. Optimization Methods and Software 27(2),
359–372 (2012)

26. Schichl, H., Neumaier, A.: Exclusion regions for systems of equations. SIAM Jour-
nal on Numerical Analysis 42(1), 383–408 (2004)

27. Schichl, H., Neumaier, A.: Interval analysis on directed acyclic graphs for global
optimization. Journal of Global Optimization 33(4), 541–562 (2005)

28. Shcherbina, O., Neumaier, A., Sam-Haroud, D., Vu, X.H., Nguyen, T.V.: Bench-
marking global optimization and constraint satisfaction codes. In: Bliek, C., Jer-
mann, C., Neumaier, A. (eds.) COCOS 2002. LNCS, vol. 2861, pp. 211–222.
Springer, Heidelberg (2003)

29. Silaghi, M.-C., Sam-Haroud, D., Faltings, B.V.: Search Techniques for Non-linear
Constraint Satisfaction Problems with Inequalities. In: Stroulia, E., Matwin, S.
(eds.) AI 2001. LNCS (LNAI), vol. 2056, pp. 183–193. Springer, Heidelberg (2001)

http://www.mat.univie.ac.at/coconut-environment

On Solving Mixed-Integer Constraint Satisfaction Problems 233

30. Stolfi, J., Andrade, M., Comba, J., Van Iwaarden, R.: Affine arithmetic: a
correlation-sensitive variant of interval arithmetic, Web document (1994)

31. Van Hentenryck, P.: Numerica: A Modeling Language for Global Optimization. In:
Proceedings of IJCAI 1997 (1997)

32. Vu, X.H., Sam-Haroud, D., Silaghi, M.C.: Numerical Constraint Satisfaction Prob-
lems with Non-isolated Solutions. In: Bliek, C., Jermann, C., Neumaier, A. (eds.)
COCOS 2002. LNCS, vol. 2861, pp. 194–210. Springer, Heidelberg (2003)

33. Vu, X., Schichl, H., Sam-Haroud, D.: Using directed acyclic graphs to coordinate
propagation and search for numerical constraint satisfaction problems. In: 16th
IEEE International Conference on Tools with Artificial Intelligence, ICTAI 2004,
pp. 72–81. IEEE (2004)

34. Vu, X., Schichl, H., Sam-Haroud, D.: Interval propagation and search on di-
rected acyclic graphs for numerical constraint solving. Journal of Global Opti-
mization 45(4), 499–531 (2009)

	On Solving Mixed-Integer ConstraintSatisfaction Problems with Unbounded Variables
	Introduction
	Mixed Integer Constraint Satisfaction Problems
	Unbounded Variables

	Projective Transformation
	Explicit Projective Transformation
	Projective Constraint Propagation

	Asymptotic Transformation
	Projective and Asymptotic Relaxations
	Numerical Results
	Conclusion
	References

