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Abstract. Methods for analyzing infeasible constraint sets have prolif-
erated in the past decade, commonly focused on finding maximal satis-
fiable subsets (MSSes) or minimal unsatisfiable subsets (MUSes). Most
common are methods for producing a single such subset (one MSS or
one MUS), while a few algorithms have been presented for enumerating
all of the interesting subsets of a constraint set. In the case of enumer-
ating MUSes, the existing algorithms all fall short of the best methods
for producing a single MUS; that is, none come close to the ideals of 1)
producing the first output as quickly as a state-of-the-art single-MUS al-
gorithm and 2) finding each successive MUS after a similar delay. In this
work, we present a novel algorithm, applicable to any type of constraint
system, that enumerates MUSes in this fashion. In fact, it is structured
such that one can easily “plug in” any new single-MUS algorithm as a
black box to immediately match advances in that area. We perform a
detailed experimental analysis of the new algorithm’s performance rela-
tive to existing MUS enumeration algorithms, and we show that it avoids
some severe intractability issues encountered by the others while outper-
forming them in the task of quickly enumerating MUSes.

1 Introduction

The most common applications of constraint systems (of any type) involve find-
ing satisfying variable assignments for satisfiable constraint sets. As such, a huge
range of algorithms exist for finding such assignments and potentially optimizing
objective functions over them. Constraint sets for which no satisfying assign-
ments exist, on the other hand, can be processed with the tools of “infeasibility
analysis,” a smaller but growing field of study.

Broadly, the algorithms of infeasibility analysis can be placed into two cate-
gories by the information they seek: 1) how much of an unsatisfiable constraint
set can be satisfied, and 2) where in the constraint set the “problem” lies. These
two categories and their solutions go by various names in the different fields
where constraint systems are studied: Maximum Satisfiability (MaxSAT), Maxi-
mum Feasible Subsystem (MaxFS), and MaxCSP for the former, and Minimal[ly]
Unsatisfiable Subset (MUS), Irreducible/Irredundant Infeasible/Inconsistent
Subsystem (IIS), and Minimal[ly] Unsatisfiable Core (MUC) for the latter.
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These two types of information are diametrically opposed (“Max” and “SAT”
vs “Min” and “UNSAT”), and yet a strong connection between the two has
been known since at least 1987. Specifically, researchers in the field of diagnosis
identified a hitting set relationship between the two [11,17]; it is based on the
fact that any satisfiable subset of a constraint system cannot fully contain any
unsatisfiable subset, and thus the satisfiable set must exclude at least one con-
straint from every unsatisfiable set. This relationship is occasionally exploited in
infeasibility analysis by using one type of result to guide searches for the other,
such as in algorithms that enumerate MUSes by way of MaxSAT solutions [1,13],
solving MaxSAT with the assistance of unsatisfiable cores [6,16], and even find-
ing [non-minimal] unsatisfiable cores to boost MaxSAT to then produce MUSes
[14].

In this work, we introduce a new algorithm for infeasibility analysis inspired
by this strong connection that fills a gap in the previous work and provides
fertile ground for further developments in several directions. The “gap” we ad-
dress is the lack of algorithms that quickly enumerate MUSes. While several
approaches for enumerating MUSes exist, all suffer from severe scalability is-
sues, and none currently match the performance of state-of-the-art algorithms
for extracting a single MUS from an unsatisfiable constraint set. Ideally, MUS
enumeration should produce the first MUS in roughly the same time TMUS

taken by the best algorithms for finding a single MUS, and each additional MUS
should be produced as quickly as possible, with a reasonable incremental delay
being roughly that same time period TMUS . The new algorithm we present here,
dubbed MARCO, achieves both of these goals.

In the following sections, we first define terms and describe concepts under-
lying this work (Section 2), followed by a discussion of past research on enu-
merating MUSes (Section 3). We then present the MARCO algorithm (Section
4) and an extensive empirical analysis (Section 5) before finally concluding and
outlining several research paths that continue from here (Section 6).

2 Preliminaries

In this work, we discuss problems, results, and algorithms in terms of generic
sets of constraints for which the constraint type and the variable domain are not
specified. Generally, then, we will be discussing an ordered set of n constraints:

C = {C1, C2, C3, . . . , Cn}
A given constraint Ci places restrictions on assignments to a problem’s variables,
and Ci is satisfied by any assignment that meets its restrictions. If there exists
some assignment to C’s variables that satisfies every constraint, C is said to be
satisfiable or SAT ; otherwise, it is unsatisfiable, infeasible, or UNSAT. Most of
the algorithms we describe in this paper, and especially our own algorithm, can
be applied to any set of constraints given that there exists a solving method
capable of returning SAT or UNSAT for that set of constraints; we call these
constraint-agnostic algorithms.
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An infeasible constraint set C can be analyzed in a variety of ways, often
in terms of producing useful subsets of C. The most common analysis is likely
the maximum satisfiability problem (MaxSAT, MaxFS, MaxCSP), which pro-
duces a satisfiable subset of C with the greatest possible cardinality. Generalizing
MaxSAT by considering maximality instead of maximum cardinality yields the
concept of a Maximal Satisfiable Subset (MSS):

M ⊆ C is an MSS ⇐⇒ M is SAT and ∀c ∈ C \ M : M ∪ {c} is UNSAT

An MSS is essentially a satisfiable subset of C that cannot be expanded without
becoming unsatisfiable. While any solution to the MaxSAT problem is an MSS,
some MSSes may be smaller than that maximum size. The complement of an
MSS is often more directly useful, and we call such a minimal set (whose removal
from C makes it satisfiable or “corrects” it) a Minimal Correction Set (MCS):

M ⊆ C is an MCS ⇐⇒ C \ M is SAT and ∀c ∈ M : (C \ M) ∪ {c} is UNSAT

Again, the minimality is not in terms of cardinality, but rather it requires that
no proper subset of M be capable of “correcting” the infeasibility. A related
concept, the focus of this work, is the Minimal Unsatisfiable Subset (MUS):

M ⊆ C is an MUS ⇐⇒ M is UNSAT and ∀c ∈ M : M \ {c} is SAT

MUSes are most commonly considered in terms of minimizing an unsatisfiable
constraint set down to a “core” reason for its unsatisfiability. In some work, they
are called “unsatisfiable cores,” but that is also used to refer to any unsatisfiable
subset of a constraint system, regardless of its minimality. Note that the defini-
tion of an MUS need not reference the constraint set C of which it is a subset; it
is really a free-standing property of any set of constraints, as it does not depend
on the existence or the structure of any other constraints. However, as it is most
commonly encountered in terms of finding such a minimal subset of some larger
constraint set, naming it with “subset” is traditional. In OR, the concept of the
Irreducible Inconsistent Subsystem (IIS) [15] is equivalent to that of the MUS.

Example 1. Consider the following unsatisfiable set of Boolean clauses:

C = { (a) , (¬a ∨ b) , (¬b) , (¬a) }
C1 C2 C3 C4

C has two MUSes and three MSS/MCS pairs:

MUSes
{C1, C2, C3}

{C1, C4}

MSSes MCSes
{C2, C3, C4} {C1}

{C1, C3} {C2, C4}
{C1, C2} {C3, C4}

Simple constraint-agnostic algorithms for finding MSSes and MUSes of a con-
straint set C are shown in Figure 1, and their behavior is quite similar. To find
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grow(seed, C)
input: unsatisfiable constraint set C
input: satisfiable subset seed ⊂ C
output: an MSS of C

1. for c ∈ C \ seed:
2. if seed ∪ {c} is satisfiable:
3. seed = seed ∪ {c}
4. return seed

shrink(seed, C)
input: unsatisfiable constraint set C
input: unsatisfiable subset seed ⊆ C
output: an MUS of C

1. for c ∈ seed:
2. if seed \ {c} is unsatisfiable:
3. seed = seed \ {c}
4. return seed

Fig. 1. The basic grow and shrink methods for finding an MSS or an MUS, respec-
tively, of a constraint set

an MSS (MUS), the grow (shrink) method starts from some satisfiable (unsat-
isfiable) subset seed ⊆ C and iteratively attempts to add (remove) constraints,
checking each new set for satisfiability and keeping any changes that leave the set
satisfiable (unsatisfiable). These algorithms are not novel (for example, shrink
was described by Dravnieks in 1989 as “deletion filtering” [4]), nor are they par-
ticular efficient as shown (many improvements can be made to both), but they
serve as simple illustrative examples for the purposes of this work.

Note that the input seed can take simple default values if no particular subset
is given. The grow method can begin its construction with seed = ∅ (guaranteed
to be satisfiable), while shrink can start with seed = C (guaranteed UNSAT).
Therefore, seed can be considered an optional parameter for both, and each
method is also a generic method for finding an MSS or MUS of a constraint
set C without any additional information. For any given constraint type and
solver, both shrink and grow can be optimized to exploit characteristics of the
constraints or features of the solver; most fields have a great deal of research on
efficient shrink implementations, but grow is less often studied.

3 Related Work

The existing work on algorithms for enumerating MUSes is limited, especially
when compared to the amount of work on extracting single MUSes and unsat-
isfiable cores. Some all-MUS algorithms have been developed for specific con-
straint types. For example, there are many methods for computing all IISes of
a linear program such as the original work by van Loon [15], later work by
Gleeson and Ryan [8], etc.; however, these approaches are quite specific to lin-
ear programming, constructing a polytope and using the simplex method, and
they do not generalize well. Additionally, Gasca, et al. developed methods for
computing all MUSes of overconstrained numerical CSPs (NCSPs) [7]. Their
approach explores all subsets of a constraint system while pruning unnecessary
collections of subsets with rules based on structure specific to NCSPs. In the
space of constraint-agnostic algorithms for enumerating MUSes, three different
approaches have been presented. As with the work in this paper, all of the fol-
lowing algorithms are easily applied to any type of constraint system, from CSP
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to IP to SAT, and none rely on specific features of any constraint type or solving
method.

Subset Enumeration. The technique of explicitly enumerating and checking every
subset of the unsatisfiable constraint system was first explored in the field of
diagnosis by Hou [10], who presented a technique for enumerating subsets in a
tree structure along with pruning rules to reduce its size and avoid unnecessary
work. Starting from the complete constraint set C, the algorithm searches the
power set P(C), branching to explore all subsets. Each subset is checked for
satisfiability, and any subset found to be unsatisfiable and whose children (proper
subsets) are all satisfiable is an MUS. Han and Lee corrected an error in one
of the pruning rules and presented additional improvements [9], and further
optimizations and enhancements were made by de la Banda et al. [2].

CAMUS. A later algorithm for enumerating MUSes by Liffiton and Sakallah
[12,13,14] avoids an explicit search of the power set of C by exploiting the rela-
tionship between MCSes and MUSes [11,17]. CAMUS works in two phases, first
computing all MCSes of the constraint set, then finding all MUSes by comput-
ing the minimal hitting sets of those MCSes. The two-phase method can be
applied with any technique for enumerating MCSes and any minimal hitting set
algorithm. The authors provide an algorithm for the first phase that gives a con-
straint solver the ability to search for satisfiable subsets of constraints without
having to feed each subset to the solver individually. With this ability, the algo-
rithm then searches for satisfiable subsets in decreasing order of size, blocking
any solutions found before continuing its search, thus guaranteeing it finds only
maximal satisfiable sets whose complements are the MCSes it seeks. The second
phase of CAMUS, as a purely set theoretic problem, operates independently of
any constraint solver.

Due to the complexity and potential intractability of the first phase (the
number of MCSes may be exponential in the size of the instance), CAMUS is
unsuitable for enumerating MUSes in many applications that require multiple
MUSes quickly. Variations on the core algorithm can relax its completeness and
adapt it to such situations [13], but the control they provide, essentially a tradeoff
between time and completeness, is crude. In any case, CAMUS is not able to
be run in an incremental fashion, with short, consistent delays between each
MUS, such that one can make a decision about the time/completeness tradeoff
dynamically while the algorithm runs.

DAA. Closer to the goal of this work, providing a much more incremental ap-
proach than CAMUS, is the Dualize and Advance algorithm (DAA) by Bailey
and Stuckey [1]. It exploits the same relationship between MCSes and MUSes,
but it discovers both types of sets throughout its execution. Therefore, like our
algorithm and unlike CAMUS, it is capable of producing MUSes “early” in its
execution. Pseudocode for DAA is shown in Figure 2. It repeatedly computes
MCSes by growing MSSes from seeds with the grow method and taking their
complements. The initial seed is the empty set. It then computes the minimal
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DAA
input: unsatisfiable constraint set C
output: MSSes and MUSes of C as they are discovered

1. MCSes, MUSes, seed ← ∅
2. haveSeed ← True
3. while haveSeed:
4. MSS ← grow(seed, C)
5. yield MSS

6. MCSes ← MCSes ∪ {C \ MSS} � the complement of an MSS is an MCS
7. haveSeed ← False
8. for candidate ∈ (hittingSets(MCSes) \ MUSes):
9. if candidate is satisfiable:

10. seed ← candidate � if SAT, candidate is a new MSS seed
11. haveSeed ← True
12. break
13. else:
14. yield candidate � if UNSAT, candidate is an MUS
15. MUSes ← MUSes ∪ {candidate}

Fig. 2. The DAA algorithm for enumerating MSSes & MUSes of a constraint set

hitting sets of the MCSes found thus far, as CAMUS does once it has the complete
set of MCSes. With an incomplete set of MCSes, some of the hitting sets may
be unsatisfiable, and these are guaranteed to be MUSes. DAA therefore checks
each for satisfiability, reporting every unsatisfiable set as an MUS, and the first
set found to be satisfiable is taken as the next seed for the algorithm to repeat.

Comparisons. Bailey and Stuckey found that DAA performed much better than
the subset enumeration algorithm as presented by de la Banda, et al. in their ex-
perimental evaluation [1], while somewhat limited experiments in [13] indicated
that CAMUS outperformed DAA for finding all MUSes of a constraint system.
However, the incremental nature of DAA is not matched by CAMUS, and so
comparisons to both are warranted here. We contrast the features of DAA and
CAMUS with our new algorithm following its description in Section 4, and the
experimental results in Section 5 further illustrate the differences.

4 Exploring Infeasibility with the MARCO Algorithm

Here, we present a novel algorithm for enumerating all MUSes of an unsatisfiable
constraint set C. (As with CAMUS and DAA, it also enumerates all MSSes of
C, but they are not the focus of this work.) It efficiently explores the power set
P(C) by exploiting the idea that any power set can be analyzed and manipulated
as a Boolean algebra; that is, one can perform set operations within P(C) by
manipulating Boolean functions as propositional formulas. Specifically, we note
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that any function f : P(C) → {0, 1} can be represented by a propositional
formula over |C| variables.

Our algorithm maintains a particular function f : P(C) → {0, 1} that tracks
“unexplored” subsets C′ ⊆ C such that f(C′) = 1 iff the satisfiability of C′ is
unknown and it remains to be checked. This function, stored as a propositional
formula, can be viewed as a “map” of P(C) showing which “regions” have been
explored and which have not. Named after the Venetian explorer Marco Polo,
we have dubbed the algorithm MARCO (Mapping Regions of Constraint sets)
and the general technique of maintaining a power set map as a propositional
logic formula POLO (Power set Logic). Overall, MARCO enumerates MUSes by
repeatedly selecting an unexplored subset C′ ∈ P(C) from the map, checking
whether C′ is satisfiable, minimizing or maximizing it into an MUS or an MSS,
and marking a region of the map as explored based on that result.

MARCO
input: unsatisfiable constraint set C = {C1, C2, C3, . . . , Cn}
output: MSSes and MUSes of C as they are discovered

1. Map ← BoolFormula(nvars = |C|) � Empty formula over |C| Boolean variables
2. while Map is satisfiable:
3. m ← getModel(Map)
4. seed ← {Ci ∈ C : m[xi] = True} � Project the assignment m onto C

5. if seed is satisfiable:
6. MSS ← grow(seed, C)
7. yield MSS

8. Map ← Map ∧ blockDown(MSS)
9. else:

10. MUS ← shrink(seed, C)
11. yield MUS

12. Map ← Map ∧ blockUp(MUS)

Fig. 3. The MARCO algorithm for enumerating MSSes & MUSes of a constraint set

Figure 3 contains pseudocode for the MARCO algorithm. The formula Map
is created to represent the “mapping” function described above, with a variable
xi for every constraint Ci in C. Initially, the formula is a tautology, true in
every model, meaning every subset of C is still unexplored. Given its semantics,
any model of Map can be projected onto C (lines 3 and 4) to identify a yet-
unexplored element of C’s power set whose satisfiability is currently unknown.
If this subset, seed, is satisfiable, then it must be a subset of some MSS, and it
can be “grown” into an MSS. Likewise, if it is unsatisfiable, seed must contain at
least one MUS, and it can be “shrunk” to produce one. In either case, the result
is reported (via yield in the pseudocode, indicating that the result is returned
but the algorithm may continue).
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Each result provides information about some region of P(C) that is either
satisfiable or unsatisfiable, and so a clause is added to Map to represent that
region as “explored.” For an MSS M , all subsets of M are now known to be
satisfiable, and so models corresponding to any subset of M are eliminated by
requiring that later models of Map include at least one constraint not in M :

blockDown(M) ≡
∨

i : Ci /∈M

xi

Similarly, all supersets of any MUS M are known to be unsatisfiable; supersets
of M are blocked by requiring models to exclude at least one of its constraints:

blockUp(M) ≡
∨

i : Ci∈M

¬xi

Eventually, all MSSes and MUSes are enumerated, the satisfiability of every
element in P(C) is known, and MARCO terminates when Map has no further
models. We discuss implementation details after an example.

Example 2. Suppose we run MARCO on the constraint set from Example 1:

C = { (a) , (¬a ∨ b) , (¬b) , (¬a) }
C1 C2 C3 C4

Initialization: Map ← [empty formula over {x1, x2, x3, x4}]
Iteration 1: Map =  : SAT

getModel → [x1, x2, x3, x4]
seed ← {C1, C2, C3, C4} : UNSAT

shrink → MUS: {C1, C2, C3}
Map ← Map ∧ (¬x1 ∨ ¬x2 ∨ ¬x3)

Iteration 2: Map = (¬x1 ∨ ¬x2 ∨ ¬x3) : SAT
getModel → [¬x1, x2, x3, x4]

seed ← {C2, C3, C4} : SAT
grow → MSS: {C2, C3, C4} — equiv. MCS: {C1}
Map ← Map ∧ (x1)

Iteration 3: Map = (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (x1) : SAT
getModel → [x1, ¬x2, x3, x4]

seed ← {C1, C3, C4} : UNSAT
shrink → MUS: {C1, C4}

Map ← Map ∧ (¬x1 ∨ ¬x4)
At this point, MARCO has found all MUSes. It must ensure completeness,

however, and so it exhaustively explores all remaining subsets.
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Iteration 4: Map = (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (x1)
∧ (¬x1 ∨ ¬x4) : SAT

getModel → [x1, ¬x2, x3, ¬x4]
seed ← {C1, C3} : SAT

grow → MSS: {C1, C3} — equiv. MCS: {C2, C4}
Map ← Map ∧ (x2 ∨ x4)

Iteration 5: Map = (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (x1)
∧ (¬x1 ∨ ¬x4) ∧ (x2 ∨ x4) : SAT

getModel → [x1, x2, ¬x3, ¬x4]
seed ← {C1, C2} : SAT

grow → MSS: {C1, C2} — equiv. MCS: {C3, C4}
Map ← Map ∧ (x3 ∨ x4)

Iteration 6: Map = (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (x1)
∧ (¬x1 ∨ ¬x4) ∧ (x2 ∨ x4) ∧ (x3 ∨ x4) : UNSAT

In the final iteration, all MSSes and all MUSes have been found; therefore,
every model of Map is blocked, Map is UNSAT, and the algorithm terminates.

4.1 Implementation and Efficiency

An implementation of MARCO requires solvers for both C and Map. It is
constraint-agnostic, as it only needs a solver that can take a set of constraints
(some subset of C) and return a SAT/UNSAT result. The solver for Map is sep-
arate, and any engine for obtaining a model of a Boolean formula can be used;
an incremental interface such as provided by modern SAT solvers or Binary
Decision Diagram (BDD) engines will be most efficient.

MARCO’s efficiency depends primarily on the implementation of the grow and
shrink subroutines, as they are the most expensive steps. Constraint-agnostic
methods for both are described in Section 2, but algorithms specific to a particu-
lar constraint type will be able to leverage details of those constraints for better
performance. Due to the difficulty and broad applicability of extracting MUSes
(the shrink method), much research has been done on the problem, and effi-
cient algorithms for shrink exist for many constraint types. The grow method
is less studied, and far more work is done on MaxSAT, MaxFS, etc. than on the
easier problem of finding an MSS. Note that the solvers for C and Map and the
methods for grow and shrink are black boxes as far as MARCO is concerned;
an advance in the state-of-the-art for any one of the four can be immediately
“plugged in” to boost the algorithm’s performance.

4.2 Impact of the Map Solver

Another important factor for performance is the behavior of the solver for Map.
The particular model returned by getModel cannot affect correctness, but it
can impact the work done by grow and shrink. For example, imagine a simple
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constraint set that is an MUS itself. If the first model found for Map corresponds
to the empty set, grow will be called, and it will have to proceed through several
steps to reach an MSS, which in this case must contain all but one constraint of
C. If the models of Map continue to represent very small subsets of C, grow will
continue to require a large number of steps in each call. On the other hand, if the
first model of Map corresponds to C itself, with all constraints included, shrink
will be called on an “easy” seed (an MUS that will not be shrunk farther). And
now, if models of Map are generally large subsets of C, the MSSes will be found
by much faster calls to grow, as it will have much less “distance” to cover to
reach an MSS in each case.

Returning to the earlier stated goal of producing the first MUS as fast as a
state-of-the-art single-MUS algorithm, we see that we can achieve this simply
by ensuring that the first model found for Map sets all xi variables to True,
resulting in seed = C, the entire constraint set. This takes negligible time, and
the algorithm will immediately call shrink on C to produce the first MUS. Given
that shrink can be any state-of-the-art MUS extraction algorithm, MARCO can
thus find the first MUS as quickly as any other algorithm.

While we cannot then guarantee that each successive model of Map will also
correspond to an unsatisfiable subset of C, which would trigger further calls
to shrink immediately, it is possible to bias a solver in that direction. If the
solver for Map favors assigning variables to True, then it will be more likely to
produce models corresponding to large, nearly-complete subsets of C, which are
the subsets most likely to be unsatisfiable. In Example 2, the model m found
in each iteration is biased in this way, and the first seed is thus C itself. The
next model, even if maximizing the number of variables assigned True, will not
necessarily correspond to an unsatisfiable seed, as illustrated in Iteration 2, but
it is still likely to locate other unsatisfiable subsets of C quickly.

4.3 Comparison to CAMUS and DAA

With regards to tractability, CAMUS suffers from the fact that its first phase may
produce an intractably large set of MCSes, with no good way to make progress
on MUSes until the MCSes are all found. DAA also faces a severe tractability
issue in the intermediate collections of hitting sets it computes; these collections
can be exponential in size even if the number of MUSes is not [1]. MARCO, on
the other hand, faces no such issues; the only information stored outside of its
black box solvers is the formula it maintains in Map, which grows linearly with
the number of results found.

The intractability of the first phase of CAMUS also impacts the time until its
first MUS output, which can be effectively infinite even for small problems. DAA
fares better, but it still must find at least k MCSes before it might output an
MUS of size k, meaning it may face a lengthy delay before outputting its first
MUS. The very first step of MARCO, however, finds an MUS directly using an
efficient MUS algorithm, and each subsequent MUS can be found in roughly the
same amount of time. At an algorithmic level, MARCO is better suited to finding
multiple MUSes quickly than either CAMUS or DAA.
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5 Empirical Analysis

To evaluate the MARCO algorithm and to compare it to the previous approaches
for MUS enumeration, CAMUS and DAA, we ran all three on a set of 300 bench-
marks from the Boolean satisfiability domain. Compared to analyzing decision
or optimization problems, addressing the indefinite nature of enumerating po-
tentially intractable sets requires a more detailed analysis, and so we present a
variety of analyses to illustrate each algorithm’s strengths and weaknesses.

Each algorithm was implemented in C++ using the MiniSAT solver [5]. We
used the most recent release of CAMUS for Boolean SAT, which is built on
MiniSAT 1.12b, while we implemented MARCO and DAA using MiniSAT 2.21.
Both MARCO and DAA were written in the same framework so that each would
share as much code as possible, including the implementation of the grow
method. For the shrink method in MARCO, we used the MUSer2 algorithm
[3], a state-of-the-art MUS extraction algorithm for Boolean SAT. The solver for
Map in MARCO was biased toward models representing larger subsets of C, as
described in Section 4.2. All experiments were run on 3.4GHz AMD Phenom II
CPUs with a 3600 second timeout and a 1.8 GB memory limit.

We used the 300 benchmarks selected for the MUS track of the recent 2011
SAT Competition2. These benchmarks were drawn from a wide variety of appli-
cations and cover a range of sizes, from 26 clauses (constraints) up to 4.4 million.
Of the 300 instances, our experiments found that 219 contained more than one
MUS, 17 had exactly one MUS, and the remaining 64 were indeterminate (i.e.,
on these instances, every algorithm ran out of time or memory and output only
zero or one MUS before it was terminated).

Table 1. Number of instances in which each algorithm found all, multiple, or at least
one MUS

n CAMUS DAA MARCO
All instances 300
Found all MUSes 41 24 25
Found ≥ 1 MUS 113 51 244
Instances w/ >1 MUS 219
Found all MUSes 26 8 11
Found > 1 MUS 98 32 215
Found ≥ 1 MUS 98 35 217

An overview of the number of instances for which each algorithm reached cer-
tain thresholds of enumerating MUSes is shown in Table 1. The results are broken
out for the complete set of 300 benchmarks and for the set of 219 benchmarks
that are known to contain more than one MUS. For the goal of enumerating
1 While this may disadvantage CAMUS, our experiments have shown that it does not

perform substantially better when built on top of MiniSAT 2.2.
2 http://www.satcompetition.org/2011/

http://www.satcompetition.org/2011/
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Fig. 4. Logarithmic cactus plot of each algorithm’s runtime (to completion; i.e., enu-
merating all MUSes)

all MUSes, CAMUS outperforms the other two algorithms by a wide margin,
completing within the time and memory limits for 41 benchmarks, compared to
24 for DAA and 25 for MARCO. Figure 4 shows a cactus plot3 of the runtimes of
the three algorithms, further supporting this point; CAMUS appears to be the
best option for enumerating the complete set of MUSes.

It is also clear, however, that enumerating the complete set of MUSes is gen-
erally intractable (in fact, the set’s cardinality may be exponential in the size of
the instance), and CAMUS is outperformed by MARCO in the task emphasized
by this work: enumerating some, but not all, MUSes. The number of instances
for which MARCO can find a single MUS or multiple MUSes within the resource
limits is more than twice that of CAMUS. This is consistent with the fact that
the first phase of CAMUS is potentially intractable, and it often times out before
reaching the second phase and producing even a single MUS. The DAA algo-
rithm is outperformed by CAMUS in enumerating all MUSes (which agrees with
earlier, more limited results [13]), and DAA produces no output at all in far
more instances than either algorithm, especially MARCO. DAA most commonly
exhausts its memory limit, due primarily to the number of intermediate hitting
sets it generates in every iteration, and in many cases memory is exhausted be-
fore a single MUS has been found. Therefore, the remainder of the analysis will
focus primarily on comparing MARCO and CAMUS.

3 Cactus plots are created by sorting and plotting values in order within each series,
showing distributions of values within a series, but not allowing pairwise comparisons
between them. Each point (x, y) can be read as, “x instances have a value [e.g.,
runtime] of y or less.”
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Fig. 5. Logarithmic cactus plot of the number of MUSes found by each algorithm
within time / memory limits

Another view of the difference between MARCO and CAMUS is shown in
a cactus plot of the numbers of MUSes found by each algorithm in Figure 5.
This chart echoes some of the information in Table 1, showing the number of
instances in which each algorithm is able to find one or more than one MUS, but
it adds additional information about other output counts as well. For example,
we can see that MARCO produces 10 or more MUSes in more than 170 instances,
while CAMUS does so in only about 80 instances. However, CAMUS finds much
larger sets of MUSes within the timeout in many instances, returning over 106

results in more than 50 instances, while MARCO only reaches above 105 results
in one instance. This suggests that CAMUS will produce many more MUSes than
MARCO, when it produces any, but MARCO is more robust in terms of scaling
to produce some MUSes for more instances overall.

Figure 6 explores this further with pairwise comparisons of the number of
MUSes found. DAA never produces more MUSes than MARCO. CAMUS, on
the other hand, often produces orders of magnitude more MUSes. However, the
chart also shows the large set of instances for which CAMUS outputs nothing
and MARCO produces multiple MUSes; the reverse is true in only two instances.

Finally, to further contrast the performance of CAMUS and MARCO, we can
look at anytime charts of their output over time, showing how many MUSes will
be produced if execution is stopped at any particular time. The anytime charts
in Figure 7 contain one trace for each instance that had 10 or more outputs,
plotting the number of MUSes produced on the y-axis against time on the x-
axis. For the sake of comparison, the data have been normalized to a scale of
0.0 to 1.0 such that 1.0 represents 100% of each algorithm’s runtime on each
instance (on the x-axis) or 100% of the MUSes it found in that time (y-axis). On
these charts, we can see that CAMUS typically outputs the great majority of an
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Fig. 6. Comparing MARCO to CAMUS (left) and DAA (right): number of MUSes found
within time / memory limits (counts of 0 remapped to 0.2 to lie on the axis)

Fig. 7. Normalized anytime charts for CAMUS (left) and MARCO (right)
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instance’s MUSes “late,” in the last 10% or less of its runtime (the dark, nearly
vertical band on the right of the chart). This is consistent with its operation
in two phases, where MUSes are only output in the second phase, and it shows
that there is typically a long delay before any output is produced. In contrast,
MARCO most often produces MUSes in a fairly steady progression (seen in the
darkest band of traces along the diagonal) with a regular delay between each
output, and it produces MUSes “early” (traces above the diagonal) more often
than “late” (traces below). Overall, CAMUS can produce MUSes more quickly
than MARCO, if it produces any at all (i.e., if it is given enough time), while
MARCO outputs them at a much more steady pace from the beginning, making
it more suitable for computing some MUSes quickly.

6 Conclusion

We have presented MARCO (Mapping Regions of Constraint sets), a novel al-
gorithm for enumerating MUSes in any type of constraint system, with the focus
on producing multiple MUSes quickly, and empirical results show that MARCO
outperforms other MUS enumeration algorithms at this task. It operates within
the POLO framework (Power set Logic), maintaining a “map” of a constraint
set’s power set in a propositional logic formula, marking “explored” areas of the
power set as it progresses, and using the map to find new subsets to check. Ex-
perimental results show that the CAMUS algorithm can enumerate the complete
set of MUSes faster than MARCO, but the faster early results of MARCO are
preferable in any application for which one wants multiple MUSes within some
time limit and for which all MUSes are not needed, especially if they number
in the millions or higher. MARCO can be implemented on top of any existing
constraint solver, and in fact its critical shrink method can be implemented by
“plugging in” any state-of-the art single-MUS extraction algorithm; therefore, it
can always mirror the performance of any advances in MUS extraction.

Future research directions include exploring the effects of biasing and other
heuristics in the solver for the “map” formula, as well as changes to the al-
gorithm that focus it on enumerating MUSes alone, at the expense of missing
some MSSes, or vice versa. Additionally, there are many opportunities to relax
its completeness and/or optimality to be able to produce results in cases that
remain too difficult for finding minimal unsatisfiable subsets as opposed to just
small unsatisfiable cores. And finally, the general POLO technique provides a
foundation from which new infeasibility analyses may be developed, such as new
algorithms for finding a smallest MUS (SMUS) of a constraint set or for solving
the MaxSAT/MaxFS/MaxCSP problem.
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