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Preface

This volume is a compilation of the research program of the 10th International
Conference on the Integration of Artificial Intelligence (AI) and Operations Re-
search (OR) Techniques in Constraint Programming (CPAIOR 2013), held at
the IBM worldwide research headquarters, the T.J. Watson Research Center,
Yorktown Heights, NY, during May 18–22, 2013. More information about the
conference can be found at: http://www.cis.cornell.edu/ics/cpaior2013/

The CPAIOR Conference Series

After a successful series of five CPAIOR international workshops in Ferrara
(Italy), Paderborn (Germany), Ashford (UK), Le Croisic (France), and Montreal
(Canada), in 2004 CPAIOR evolved into a conference. More than 100 partici-
pants attended the first meeting held in Nice (France). In the subsequent years,
CPAIOR was held in Prague (Czech Republic), Cork (Ireland), Brussels (Bel-
gium), Paris (France), Pittsburgh (USA), Bologna (Italy), Berlin (Germany),
and Nantes (France). This year CPAIOR was held in the USA.

The aim of the CPAIOR conference series is to bring together researchers
from constraint programming (CP), artificial intelligence (AI), and operations
research (OR) to present new techniques or applications in the intersection of
these fields, as well as to provide an opportunity for researchers in one area to
learn about techniques in the others. A key objective of the conference is to
demonstrate how the integration of techniques from different fields can lead to
highly novel and effective new methods for large and complex problems. There-
fore, papers that actively combine, integrate, or contrast approaches from more
than one of the areas were especially welcome. Application papers showcasing
CP/AI/OR techniques on innovative and challenging applications or experience
reports on such applications were also strongly encouraged.

Program, Submissions, and Reviewing

The main CPAIOR 2013 program featured invited presentations from Peter van
Beek on“Constraint Programming in Compiler Optimization: Lessons Learned,”
Andreas Krause on “Sequential Decision Making in Experimental Design and
Computational Sustainability via Adaptive Submodularity,” Vijay Saraswat on
“Scalable Concurrent Application Frameworks for Constraint Solving,” and an
invited tutorial on “Recent Advances in Maximum Satisfiability and Extensions”
by Carlos Ansotegui.

Seventy-one full papers were submitted to the conference. Out of these, 20
long papers and, additionally, 11 short papers were selected for presentation in
the main technical program of this year’s conference. Moreover, more than 15
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presentation-only papers were submitted. These latter papers were not formally
reviewed and are therefore not part of these proceedings.

As the conference is relatively small, the Program Chairs decided to develop
and test a revised reviewing format. In other communities, papers are typically
reviewed in depth by three members of the Program Committee (PC). In the
Program Chairs’ experience, this format works well in terms of filtering papers
that are below the conference standards. However, interesting novel contributions
that open exciting new research avenues can fall through the cracks more easily
than incremental advancements in established fields of research. Clearly, this is
not desirable.

To address this issue, the Program Chairs first assembled a large PC of almost
70 distinguished researchers, who we wish to thank whole-heartedly for their
voluntary service to our community. Each paper was reviewed in depth by four
PC members. The four initial reviews were sent to the authors and they were
asked to provide their feedback. The initial reviewers then had a discussion and
had the opportunity to adjust their reviews based on the authors’ rebuttal. Seven
additional PC members were assigned to each paper to simply vote yes or no,
without the need to write a review. So in the end there were 11 votes per paper
(four initial and seven additional). Those papers with at least six votes in favor
were accepted for publication.

This scheme changed the traditional roles of the reviewers. They could no
longer decide among themselves, they instead needed to convince seven other
PC members. We found that this procedure positively changed the tone of the
reviews. Moreover, the voting procedure meant that reviewers did not have to
achieve consensus and could provide individual points of view until the very end.

On the other hand, the voting scheme resulted in a relatively large acceptance
rate. All 20 long papers in these proceedings turned out to have at least eight
votes in favor of publication. Since the Program Chairs did not want to overrule
two-third majorities, all of these 20 papers were accepted in the main program.

Masterclass and Workshops

It is a wonderful tradition at CPAIOR that the main conference is preceeded
by a weekend full of vibrant talks organized in a masterclass, as well as several
workshops. This year’s masterclass theme was on “Computational Sustainabil-
ity: Optimization and Policy-Making.” In addition, the program included three
workshops on“Parallel Methods for Combinatorial Search and Optimization,”on
“Algorithm Selection,” and on “General Principles in Seeking Feasible Solutions
for Combinatorial Problems.”

Many thanks to our Masterclass Chair Barry O’Sullivan, our Workshop Chair
Horst Samulowitz, all workshop organizers, and all conference presenters. We
especially thank our Conference Chair Ashish Sabhrawal, Publicity Chair Bistra
Dilkina, Sponsorship Chair Stefan Heinz, and our conference manager Megan
McDonald who all did an outstanding job organizing this event. Thanks also
once more to all members of the PC and all reviewers.
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Sponsors

The cost for holding an event like the CPAIOR conference would be much higher
without the help of generous sponsors. We received outstanding support from the
Institute for Computational Sustainability at Cornell University, IBM Research,
and SAS. We also thank the Association for Constraint Programming (ACP),
GAMS, and NICTA, as well as AIMMS, AMPL, Jeppesen, and SICS. Finally,
thanks to Springer and EasyChair for their continuing support of the CPAIOR
conference series.

February 2013 Carla Gomes
Meinolf Sellmann
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Ferenc Domes

Explaining Time-Table-Edge-Finding Propagation for the Cumulative
Resource Constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

Andreas Schutt, Thibaut Feydy, and Peter J. Stuckey

A Lagrangian Relaxation for Golomb Rulers . . . . . . . . . . . . . . . . . . . . . . . . . 251
Marla R. Slusky and Willem-Jan van Hoeve

MiniZinc with Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
Peter J. Stuckey and Guido Tack

Solving Wind Farm Layout Optimization with Mixed Integer
Programming and Constraint Programming . . . . . . . . . . . . . . . . . . . . . . . . . 284

Peter Y. Zhang, David A. Romero, J. Christopher Beck, and
Cristina H. Amon

The Rooted Maximum Node-Weight Connected Subgraph Problem . . . . . 300
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Stronger Inference through Implied Literals

from Conflicts and Knapsack Covers

Tobias Achterberg1, Ashish Sabharwal2, and Horst Samulowitz2

1 IBM, Germany
achterberg@de.ibm.com

2 IBM Watson Research Center, Yorktown Heights, USA
{ashish.sabharwal,samulowitz}@us.ibm.com

Abstract. Implied literals detection has been shown to improve perfor-
mance of Boolean satisfiability (SAT) solvers for certain problem classes,
in particular when applied in an efficient dynamic manner on learned
clauses derived from conflicts during backtracking search. We explore
this technique further and extend it to mixed integer linear programs
(MIPs) in the context of conflict constraints. This results in stronger
inference from clique tables and implication tables already commonly
maintained by MIP solvers. Further, we extend the technique to knap-
sack covers and propose an efficient implementation. Our experiments
show that implied literals, in particular through stronger inference from
knapsack covers, improve the performance of the MIP engine of IBM
ILOG CPLEX Optimization Studio 12.5, especially on harder instances.

1 Introduction

Systematic solvers for combinatorial search and optimization problems such as
Boolean satisfiability (SAT), constraint satisfaction (CSP), and mixed integer
programming (MIP) are often based on variants of backtracking search per-
formed on an underlying search tree. A key to their effectiveness is the ability
to prune large parts of the search tree without explicit exploration. This is done
through inference during search, which can take two different forms. First, “prob-
ing” techniques [8, 11] are performed in advance to explore the potential effect of
making a certain choice. Second, post-conflict analysis [1, 9] is conducted after
the search has run into a conflict (i.e., an infeasible or non-improving region of
the search space) in an attempt to learn and generalize the “cause” of that con-
flict. Stronger inference captured in the form of redundant constraints or tighter
variable bounds typically leads to stronger propagation of constraints and more
pruning of the search space during search. The goal of this work is to develop
a technique for stronger inference during search through the concept of implied
literals, which we apply dynamically (i.e., during search) to enhance the amount
of propagation achieved from both the original problem constraints as well as
constraints learned from conflicts.

In the context of SAT where the inference mechanism is unit propagation of
clauses, one may perform a form of probing [8] that simply applies unit prop-
agation to all individual literals (i.e., variables or their negations) at the root

C. Gomes and M. Sellmann (Eds.): CPAIOR 2013, LNCS 7874, pp. 1–11, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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node of the search in order to detect failed literals [5] (i.e., literals setting which
to 1 leads to a conflict by unit propagation) or to populate implication lists of
literals containing implications of the form x → y. The latter information can
then, for instance, be used to shrink clauses by using hidden literal elimination
(e.g., if a→ b then (a ∨ b ∨ c) can be reduced to (b ∨ c) [cf. 6]).

Most pertinent to this work, Heule et al. [6], Soos [12], and Matsliah et al. [10]
have independently proposed ways to strengthen clause learning performed by
SAT solvers by dynamically inferring implied literals, i.e., literals that the newly
learned clause entails. A literal l is an implied literal for a clause C if all literals
of C entail l. For instance, if a→ d, ¬b→ d, and c→ d, then (a∨¬b∨c) entails d.
This observation forms the basis of several other techniques such as variations of
hyper binary resolution and hidden literal elimination briefly mentioned above.
To apply the technique during clause learning, one generates and periodically
updates implication lists L(l) = UnitPropagation(l) for each literal l. During this
computation, one may also add not yet existing binary clauses corresponding to
¬l → ¬p for all l ∈ L(p), and detect failed literals and add and propagate
their negations as new unit literals. One may do the same also for all literals
in the intersection of L(p) and L(¬p). This strengthens the inference that unit
propagation achieves. Matsliah et al. [10] have shown that by implementing
the underlying data structures efficiently and using heuristics to guide choices
such as how many implied literals and binary clauses to keep and how often to
recompute implication lists, this technique can boost the performance of state-
of-the-art SAT solvers such as Glucose 2.0 [3], especially on certain kinds of
benchmarks coming from the planning domain.

We explore this concept further and extend it to mixed integer linear programs
(MIPs). While implied literals can be derived using probing for failed literals or
hyper binary resolution in the case of SAT [4], this turns out not to be the case
for MIPs with non-binary variables. Further, rather than imposing the overhead
of deriving and maintaining our own implication lists, we capitalize on the fact
that MIP solvers often already internally maintain implications in the form of
clique tables and implication tables. We propose algorithms to derive implied
literals from conflict constraints in MIP solvers as well as from covers of knapsack
constraints, while keeping the computational overhead low. Our experimental
results on over 3,000 MIP instances show that the application of implied literals
improves performance, especially on harder instances. Of the 1,096 benchmark
instances that need at least 10 seconds to solve, implied literals detection affects
65% of the instances, speeding up the solution process on these instances by 6%
and reducing the number of search tree nodes by 7%.

2 Implied Literals in Mixed Integer Programs

Let N := {1, . . . , n} be an index set for variables zj ∈ R, j ∈ N . Further, let
NX ⊆ N be the subset of binary variables and NY = N \ NX the subset of
non-binary variables. The set NI ⊆ NY denotes the indices of general integer
variables. We consider the mixed integer (linear) program
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max
∑
j∈N

cjzj

s.t.
∑
j∈N

aijzj ≤ bi for all i = 1, . . . ,m

zj ∈ {0, 1} for all j ∈ NX

zj ∈ Z for all j ∈ NI ⊆ NY

zj ∈ R for all j ∈ NY \NI

with objective coefficients c ∈ Rn, right hand sides b ∈ Rm, and coefficient
matrix A = (aij)ij ∈ Rm×n. For ease of presentation we use the symbols xj := zj
for binary variables, j ∈ NX , and yj := zj for non-binary variables, j ∈ NY .
Moreover, we define X := {xj | j ∈ NX} and Y := {yj | j ∈ NY } to be the sets
of binary and non-binary variables, respectively.

For x ∈ X , let x̄ := 1 − x denote the “negated” binary variable, and let
X := {x̄ | x ∈ X}. We define Z := X ∪X ∪ Y . For z ∈ Z, Dom(z) denotes the
domain of z.

Following Achterberg [1], we define literals in the context of MIP as bound
inequalities of the form (z ≤ u) or (z ≥ l), where z ∈ Z and l, u ∈ Dom(z).
For the sake of simplicity of notation, we will work only with literals of the
form (z ≤ u) in the rest of this paper. The arguments and constructs naturally
generalize to any combination of literals of the form (z1 ≤ u1) and (z2 ≥ l2).

Definition 1. Suppose we are given the implications (zi ≤ ui) → (z ≤ di) for
i ∈ {1, . . . , k}, where zi, z ∈ Z, ui ∈ Dom(zi), and di ∈ Dom(z). Let dmax :=

maxki=1 di. Let C :=
∨k

i=1(zi ≤ ui) be a constraint. Then (z ≤ dmax) is called an
implied literal derived from C.

We will sometimes refer to (z ≤ dmax) simply as an implied literal when C and
the implications needed for its derivation are implicit in the context. Note that
when zi = x for x ∈ X , the implication (zi ≤ ui) → (z ≤ di) in Definition 1
is equivalent to (x = 0) → (z ≤ di). Similarly, when zi = x̄ for x̄ ∈ X, the
implication may equivalently be written as (x = 1)→ (z ≤ di).

2.1 Implied Literals from Conflict Constraints

As in the case of SAT, the idea is to efficiently store a number of implications and
use them to infer implied literals when, for example, a new constraint is derived
or added to the model. Fortunately, current MIP solvers typically already store
certain types of implications of literals, which are used in presolving and during
the branch and bound process. For example, CPLEX 12.5 internally maintains
implications of the following types:

(xi = vi)→ (xj = vj) xi, xj ∈ X, vi, vj ∈ {0, 1}
(x = v)→ (y ≤ d) x ∈ X, y ∈ Y, v ∈ {0, 1}, d ∈ Dom(y)



4 T. Achterberg, A. Sabharwal, and H. Samulowitz

Implications of the first type are stored in a clique table K. For example, the
set packing constraint

∑k
i=1 xi ≤ 1 leads to a “clique” of implications (xi =

1) → (xj = 0) for i 	= j. The clique table stores cliques K ∈ K, K ⊆ X ∪
X, in aggregated form as set packing constraints

∑
x∈K x ≤ 1, rather than

explicitly recording the |K|(|K|− 1) implications that are entailed by the clique
K. Implications of the second type are stored in an implication table I. For
example, a “variable upper bound” constraint −ax + y ≤ b with x ∈ X and
y ∈ Y yields the implication (x = 0)→ (y ≤ b). Cliques and implications can be
directly extracted from general linear constraints and computed with techniques
such as probing. Note that CPLEX does not store implications between pairs of
non-binary variables such as (y1 ≤ u)→ (y2 ≤ d) with y1, y2 ∈ Y .

Example 1. Consider the constraint C = (x1 ≥ 1)∨(x2 ≤ 0)∨(y3 ≥ 4)∨(y4 ≤ 8)
and the following cliques (left) and implications (right):

x̄1 + x̄2 + x̄5 ≤ 1 (x1 = 0)→ (y3 ≤ 2)

x1 + x6 ≤ 1 (x1 = 0)→ (y4 ≥ 12)

x̄2 + x6 ≤ 1

with xi ∈ X and yj ∈ Y . Including the self-implicants, we get:

(x1 ≥ 1)→ (x1 ≥ 1), (y3 ≥ 4), (x6 ≤ 0)
(x2 ≤ 0)→ (x1 ≥ 1), (x2 ≤ 0), (x5 ≥ 1), (x6 ≤ 0)
(y3 ≥ 4)→ (x1 ≥ 1), (y3 ≥ 4)
(y4 ≤ 8)→ (x1 ≥ 1), (y4 ≤ 8)

Since x1 ≥ 1 is implied by all literals of C, it is an implied literal and we can
permanently fix x1 := 1.

Since a MIP solver already maintains cliques and implications, we can exploit
them “for free” in the implied literals detection. Whenever a conflict constraint

C =
k∨

i=1

(zi ≤ ui)

is derived for an infeasible node in the search tree, we apply Algorithm 1 to infer
implied literals. The goal is to find new bounds z ≤ d that are implied by all of
the k literals of C. Thus, for each variable z ∈ Z we count the number of literals
(zi ≤ ui) that imply a bound z ≤ di. If this count reaches count [z] = k at the
end of the algorithm, then an implied literal has been identified. In the case of a
binary variable z = x (line 18) we have di = 0 for all i, and the implied literal is
(x = 0). In the case of a non-binary variable z = y (line 20) the implied literal is
(y ≤ maxd [y]) where maxd is an array that tracks the maximal implied bound
di for non-binary variables y ∈ Y .

For each of the k literals of the conflict constraint C, the algorithm inspects
the implications in the main loop of line 4 to update the count and maxd arrays.
If the literal variable zi is binary (line 6), then implications on other binary
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Algorithm 1. Deriving Implied Literals from MIP Conflict Constraints

Input : variables Z = X ∪X ∪ Y , conflict constraint C =
∨k

i=1(zi ≤ ui),
clique table K, implication table I

Output: a set L of implied literals derived from C
begin1

initialize count [z] := 0 for all z ∈ Z2

initialize maxd [y] := −∞ for all y ∈ Y3

forall i ∈ {1, . . . , k} do4

increment count [zi]5

if zi ∈ X ∪X (and thus ui = 0), then6

forall K ∈ K with z̄i ∈ K do7

forall x ∈ K \ {z̄i} with count [x] = i− 1 do8

increment count [x]9

forall ((zi = 0) → (y ≤ d)) ∈ I with count [y] = i− 1 do10

increment count [y]11

maxd [y] := max{maxd [y], d}12

else13

maxd [zi] := max{maxd [zi], ui}14

forall ((x = 1) → (zi ≥ u)) ∈ I with u > ui and count [x] = i− 1 do15

increment count [x]16

L := ∅17

forall x ∈ X with count [x] = k do18

set L := L ∪ {(x = 0)}19

forall y ∈ Y with count [y] = k do20

set L := L ∪ {(y ≤ maxd [y])}21

return L22

end23

variables x′ can be found in the clique table, namely by inspecting the cliques
K ∈ K with z̄i ∈ K, see line 7. Implications involving non-binary variables y can
be inferred from the implication table, as done in line 10. On the other hand, if zi
is non-binary (line 13), then the implication table yields implications on binary
variables by reversing the direction of the implication. Namely, an implication
(x = 1)→ (y ≥ u) with binary x ∈ X∪X can be rewritten as (y < u)→ (x = 0),
resulting in the implication of (x = 0), see line 15.

Note that we need to include the trivial self-implicants (zi ≤ ui)→ (zi ≤ ui)
in the counting, see lines 5 and 14, in order to not miss the cases in which one
of the literals of C is an implied literal. Note also that in each iteration i we
only consider variables for which the count value is maximal, i.e., equal to i− 1.
This makes sure that we do not count variables twice for the same conflict clause
literal (zi ≤ ui) and it prevents unnecessary updates on variables that cannot
be implied literals.
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Performance improvements. It is easy to see that Algorithm 1 can be enhanced
in order to avoid unnecessary work. If there is more than one non-binary variable
in C, then we can initialize count [y] = −1 for all y ∈ Y , because there are no
implications between pairs of non-binary variables and thus no implied literal
can be found for non-binary variables. If there is exactly one non-binary variable
yi in C, then we can initialize count [y] = −1 for all y ∈ Y \ {yi}.

After each iteration i ∈ {1, . . . , k} of the main loop, let Li = {z ∈ Z |
count [z] = i}. As soon as Li = ∅, the loop can be aborted since no implied
literals exist. Moreover, if Li ∩ Y = ∅, then we no longer need to inspect the
implication table I for binary literal variables zj ∈ X ∪X, j > i, because there
cannot be any implied literals for non-binary variables. On the other hand, if
Li ∩ (X ∪ X) = ∅, then we can stop inspecting the clique table K for literals
with binary variable zj ∈ X ∪ X, j > i, and for non-binary variables zj ∈ Y ,
j > i, we only need to consider the self-implication by incrementing count [zj ]
and updating maxd [zj ].

2.2 Implied Literals from Knapsack Covers

We will now consider the derivation of implied literals based on knapsack con-
straints of the form

∑k
i=1 aixi ≤ b with xi ∈ X ∪ X and ai ≥ 0. A cover

R is a subset of {1, . . . , k} such that
∑

i∈R ai > b. We will be interested in
minimal covers which are covers whose proper subsets are not covers. Clearly,
if xi = 1 for all i ∈ R, the knapsack constraint will be violated. Hence, the
cover R entails the implicit constraint

∨
i∈R(xi = 0), which we will refer to as

the cover constraint corresponding to R. Suppose further that we have impli-
cations (xi = 0) → (z ≤ di) for all i ∈ R and some z ∈ Z. Then, using the
cover constraint along with these implications, we can derive the implied literal
z ≤ max{di | i ∈ R}.

Remark 1. Suppose we are given an arbitrary linear constraint of the form∑p
i=1 cixi +

∑q
j=1 ejyj ≤ r where, as before, xi ∈ X are binary variables and

yj ∈ Y are non-binary variables. We can derive implied literals from this con-
straint by first relaxing it into a knapsack constraint of the form considered
above by (i) using global bounds lj ≤ yj ≤ uj, (ii) using the implication table
to derive variable bounds of the form aj,lxj,l + bj,l ≤ yj ≤ aj,uxj,u + bj,u, and
(iii) complementing the binary variables if necessary to make their coefficients
non-negative.

Since the number of minimal covers of a knapsack constraint can be exponential
in the length of the knapsack, it is prohibitive to näıvely enumerate all minimal
covers and apply Algorithm 1 to the corresponding cover constraints. Instead,
we propose a more efficient method, described as Algorithm 2.

The main idea of the algorithm is to consider the implications (xi = 0) →
(z ≤ di) for a given variable z ∈ Z in the reverse direction, namely as (z > di)→
(xi = 1). For d ∈ Dom(z) we define the set of implied knapsack variables

I(z>d) :=
{
i ∈ {1, . . . , k}

∣∣∣ ∃((xi = 0)→ (z ≤ di)
)
∈ I with di ≤ d

}
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Algorithm 2. Deriving Implied Literals from MIP Knapsack Covers

Input : variables Z = X ∪X ∪ Y , knapsack constraint
∑k

i=1 aixi ≤ b with
xi ∈ X ∪X for i = 1, . . . , k, clique table K, implication table I

Output: a set L of implied literals derived from the knapsack
begin1

initialize weight [z] := 0 for all z ∈ Z2

initialize Iy := ∅ for all y ∈ Y3

forall i ∈ {1, . . . , k} do4

set T := {xi}5

set weight [xi] := weight[xi] + ai6

forall K ∈ K with x̄i ∈ K do7

forall x ∈ K \ {x̄i} \ T do8

set T := T ∪ {x}9

set weight [x] := weight[x] + ai10

forall ((xi = 0) → (y ≤ di)) ∈ I with y /∈ T do11

set T := T ∪ {y}12

set weight [y] := weight[y] + ai13

set Iy := Iy ∪
{
{(xi = 0) → (y ≤ di)}

}
14

L := ∅15

forall x ∈ X with weight [x] > b do16

set L := L ∪ {(x = 0)}17

forall y ∈ Y with weight [y] > b do18

Isorted := I sorted by non-decreasing di19

set s := 020

forall ((xi = 0) → (y ≤ di)) ∈ Isorted do21

set s := s+ ai22

if s > b then23

L := L ∪ {(y ≤ di)}24

break25

return L26

end27

and call
a(z>d) :=

∑
i∈I(z>d)

ai

the implied weight of (z > d). If a(z>d) > b, then z > d implies that the knapsack
constraint is violated, and we can conclude z ≤ d.

For binary variables z = x ∈ X ∪X , all non-trivial implications (xi = 0) →
(x ≤ di) have di = 0, and we can fix x = 0 if and only if a(x=1) > b. This is
done in the algorithm by adding up the implied weights in the weight array and
updating weight [x] for binary variables x by scanning the clique table K in line 7.
Again, we need to consider the trivial self-implications (xi = 0)→ (xi = 0), see
line 6. The implied fixings of binary variables are then collected in line 16.
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For non-binary variables z = y ∈ Y we want to find the smallest bound d
that yields an implied weight a(y>d) > b. In order to find this smallest implied
bound d we first collect the implications (xi = 0)→ (y ≤ di) of the implication
table I for all knapsack variables xi in a set Iy, see line 11. To evaluate these
sets, we sort them by non-decreasing di in line 19. Then, in the loop of line 21,
we consider the non-decreasing sequence of implied weights a(y>di) by adding
up the knapsack weights ai in this order until the capacity b is exceeded for the
first time at element i�, that is, i� is the first index in the sorted order such
that a(y>di�) > b. If this process succeeds, then di� is the smallest valid implied
upper bound for y that can be derived from the knapsack and the implications
using the reasoning of the algorithm. If even the total implied weight weight [y]
does not exceed the capacity, then we cannot tighten the upper bound of y.

Performance improvements. The additional performance improvements that we
applied to Algorithm 2 are a bit more involved than the ones for Algorithm 1.
Again, the goal is to avoid unnecessary work and abort as early as possible if no
implied literals can be found. This is achieved by tracking the implied knapsack
weight weight [z] of the variables z ∈ Z and the maximal remaining weight wi =∑k

j=i+1 aj of knapsack items that we did not yet consider at iteration i of the
main loop. If weight [z]+wi ≤ b at the end of an iteration, it is clear that we will
not be able to find an implied literal for z. If this is true for all binary variables,
then we can stop looking at the clique table K. If it is the case for all non-binary
variables, the implication table I becomes uninteresting. Finally, we can abort
the loop if no variable remains with weight [z] + wi > b.

Now it becomes important in which order we process the knapsack items. To
be able to abort as soon as possible, we want to first look at items that have
large weight, so that wi decreases fast. Moreover, items that trigger only few
implications should be preferred, which will lead to the weight [z] values staying
small. In our implementation, we sort the knapsack items xi in a non-decreasing
order defined by |{K ∈ K | x̄i ∈ K}| − 10 ai/b.

Finally, it is useful to observe that there are no negated self-implications (x =
1) → (x = 0), x ∈ X ∪ X, in the clique table; otherwise we would have already
fixed x = 0 during presolve. As a consequence, we know that nothing can be de-
duced for xj , j = i+ 1, . . . , k, if weight [xj ] +wi − aj ≤ b after iteration i. For set

covering knapsacks
∑k

i=1 xi ≤ k−1, this means that we can rule out a variable as
soon as there is a knapsack item without an implication to this variable. Hence,
Algorithm 2 coincides with Algorithm 1 if applied to set covering constraints.

3 Empirical Evaluation

We evaluated the proposed techniques on a benchmark set containing 3,189 MIP
models from public and commercial sources.1 All experiments were conducted

1 Due to proprietary rights, the commercial benchmarks are not publicly dis-
closed. However, detailed anonymized data from our experiments may be found
at the following URL: http://researcher.watson.ibm.com/researcher/files/

us-ashish.sabharwal/CPAIOR2013-impliedLitsMIP.txt
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Table 1. Comparison of default CPLEX 12.5 vs. disabling implied literals detection

CPLEX 12.5 no implied literals detection affected
bracket models tilim tilim faster slower time nodes models time nodes

all 3172 97 101 249 270 1.01 1.01 1134 1.03 1.03
[0,10k] 3093 18 22 249 270 1.01 1.01 1134 1.03 1.03
[1,10k] 1861 18 22 246 268 1.02 1.02 1005 1.04 1.04
[10,10k] 1096 18 22 194 226 1.04 1.04 713 1.06 1.07
[100,10k] 579 18 22 128 147 1.05 1.06 430 1.06 1.08
[1k,10k] 232 18 22 63 73 1.06 1.06 191 1.07 1.07

on a cluster of identical 12 core Intel Xeon E5430 machines running at 2.66 GHz
and equipped with 24 GB of memory. A time limit of 10,000 seconds and a
tree memory limit of 6 GB was employed for all runs. When the memory limit
was hit, we set the solve time to 10,000 seconds and scale the number of nodes
processed for the problem instance accordingly.

Implied literals detection was implemented in CPLEX 12.5 (the “default” for
the purposes of this section). Algorithm 1 is applied for each conflict constraint
that is derived for infeasible search tree nodes, while Algorithm 2 is only applied
during the presolving stage since knapsack constraints are not generated on the
fly during the tree search of CPLEX.

Table 1 shows a summary of our computational experiments comparing de-
fault CPLEX with a modified CPLEX variant where implied literals detection
was disabled. Both variants were run with the default parameter settings of
CPLEX. We first note that across all models in our MIP test set, Algorithms 1
and 2 never took more than 0.08 and 0.18 seconds, respectively, for each in-
vocation of the algorithm. The times reported for default CPLEX include the
overhead of computing and reasoning with implied literals.

Column 1 of the table, “bracket”, labels subsets of problem instances with
different “hardness”, each row representing a different such subset. Subset “all”
is the set of all models used for the first row of data. The labels “[n,10k]”
represent the subset of “all” models for which at least one of the solvers being
compared took at least n seconds to solve, and that were solved to optimality
within the time limit by at least one of the solvers.

Column 2, “models”, shows the number of problem instances in each sub-
set. Note that only 3,172 rather than 3,189 problem instances are listed in row
“all”, because we excluded those 17 models for which the two solvers reported
different optimal objective values. These inconsistencies result from the inex-
act floating point calculations employed in CPLEX. For ill-posed problem in-
stances such numerical difficulties cannot be completely ruled out by floating
point based MIP solvers, and this does not point to a logical error in any of the
two solvers.
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Column 3, “tilim”, gives the number of models in each subset for which default
CPLEX hit the time or memory limit. It is by design that the numbers in the last
five rows match, since these models are included in all five of the corresponding
subsets. Column 4 gives the corresponding numbers when not using implied lit-
erals. Both variants hit the time or memory limit on the same 79 instances of our
test set. Default CPLEX hit a limit on 18 additional instances on which modified
CPLEX did not, and the converse is true for 22 instances. This marginal difference
of four models is likely due to performance variability [cf. 7] across runs and not
an indication of the strength or weakness of one variant of CPLEX over the other.

Columns 5, “faster”, and 6, “slower”, show the number of models in each
subset for which disabling implied literals detection resulted in the instance being
solved at least 10% faster or slower, respectively, than the baseline solver (which
applied implied literals). As with the time limit hits, there is only a marginal
difference between the two variants of CPLEX, which is again somewhat in favor
of implied literals.

Column 7, “time” displays the shifted geometric mean of the ratios of solu-
tion times [2] with a shift of s = 1 second.2 A value t > 1 in the table indicates
that CPLEX without implied literals detection is a factor of t slower (in shifted
geometric mean) than default CPLEX. Column 8, “nodes”, is similar to the pre-
vious column but shows the shifted geometric mean of the ratios of the number
of branch-and-cut nodes needed for the models by each solver, using a shift of
s = 10 nodes. Note that when a time limit is hit, we use the number of nodes at
that point. Recall that when a memory limit is hit, we scale the node count by
10000/t with t being the time at which the solving process was aborted.

We observe from the time and nodes ratios that implied literals detection
speeds up the solving process on average and reduces the size of the search tree
explored. In particular, for models that take more than 100 seconds by at least
one of the two solvers, implied literals detection reduces the solving time by 5%
and the number of search tree nodes by as much as 6%.

The last three columns, under the heading “affected”, report the impact on
the subset of models in each bracket for which the use of implied literals had
an effect on the solution path itself. Here, we assume that the solution path is
identical if both the number of nodes and the number of simplex iterations are
identical for the two solvers. Column 9, “models”, shows that implied literals
lead to a path change for about 36% of the models, and this fraction increases
as the solving difficulty increases. For instance, for models that take at least 100
seconds to solve, over 74% of the instances are affected and the speed-up on
those instances is 6%.

2 The use of arithmetic means also resulted in a similar overall picture as the shifted
geometric means we report here. In general, the use of geometric means, as opposed
to arithmetic means, prevents situations where a small relative improvement by
one solver on one long run overshadows large improvements by the other solver on
many shorter runs. Further, a shift of 1 second guarantees that large but practically
immaterial relative improvements on extremely short runs (e.g., 0.05 sec improving
to 0.01 sec) do not distort the overall geometric mean.
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4 Conclusion

We extended the concept of implied literals from SAT literature to the context
of conflict constraints and knapsack covers in MIPs. Our empirical results show
that while the application of this technique does not significantly improve the
number of instances solved within the time limit, it does speed up the solution
process. For example, it affected a substantial number of MIP models that need
over 10 seconds to solve, where it reduced the solution time by 6% on average
and the number of search nodes explored by 7%. We found the technique to
generally have a higher impact on the solution path of harder instances and
provide larger performance improvements on them.

We close with a contrast to the SAT domain. While implied literals detec-
tion can be very beneficial on certain SAT benchmark families [10], its general
application can be prohibitive due to the significant computational overhead.
Consequently, implied literals detection is currently not a standard technique in
state-of-the-art SAT solvers. However, as our results on over 3,000 MIP instances
demonstrate, implied literals detection can be employed in a way that serves as
a useful generic additional inference technique in the context of MIP solvers.
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Abstract. Recently, we compared the performance of mixed-integer
programming (MIP), constraint programming (CP), and constraint inte-
ger programming (CIP) to a state-of-the-art logic-based Benders manual
decomposition (LBBD) for a resource allocation/scheduling problem. For
a simple linear relaxation, the LBBD and CIP models deliver comparable
performance with MIP also performing well. Here we show that algorith-
mic developments in CIP plus the use of an existing tighter relaxation
substantially improve one of the CIP approaches. Furthermore, the use
of the same relaxation in LBBD and MIP models significantly improves
their performance. While such a result is known for LBBD, to the best of
our knowledge, the other results are novel. Our experiments show that
both CIP and MIP approaches are competitive with LBBD in terms
of the number of problems solved to proven optimality, though MIP is
about three times slower on average. Further, unlike the LBBD and CIP
approaches, the MIP model is able to obtain provably high-quality solu-
tions for all problem instances.

1 Introduction

In previous work, we provided empirical evidence showing that models based
on mixed-integer programming (MIP) and constraint integer program (CIP)
were competitive with logic-based Benders decomposition (LBBD) for a class
of resource allocation and scheduling problems [1]. A weakness in this work was
that we were not able to achieve the same performance with LBBD as in previous
work (e.g., [2,3]), which made our conclusions necessarily conservative. In this
paper we show that equivalent performance of LBBD to that in the literature
can be obtained by using a stronger sub-problem relaxation, strengthening the
Benders cuts, and employing a commercial CP solver for the sub-problems. None
of these results come as a surprise as they already exist in the literature [2], but
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(re)establishing these results replicates the literature, as well as allowing our
conclusions with respect to other approaches to be placed on a firmer foundation.

More interestingly, we demonstrate that:

– The further integration of global constraint-based reasoning within the CIP
framework, combined with the same stronger relaxation, results in a CIP
model with equivalent performance to the LBBD model.

– The existing MIP model can itself be augmented with the stronger relaxation
and this extension leads to substantially improved performance to the point
MIP is competitive with the improved LBBD and CIP model.

Our experimental investigations show that the instances in one problem set
(with unary resources) are now all easily solved by all models in a few seconds.
For the more challenging set of instances with non-unary resources, LBBD and
one of our CIP models (CIP[CP]) achieve essentially equivalent performance in
terms of solving problems to optimality and finding the best known solutions,
while CIP[CP] is able to find provably high quality solutions on more problem
instances. The extended MIP model and the CIP model based on the MIP
formulation (CIP[MIP]) find slightly fewer optimal solutions and require more
run-time to do so. However, unlike both LBBD and the CIP[CP] model, the
MIP and CIP[MIP] models are able to find solutions with a small optimality
gap for all instances. Furthermore, the time for the MIP model to find a first
feasible solution is twenty times faster than LBBD and twice as fast as CIP[CP]
in geometric mean.

Based on our results, declaring a single winner among these three approaches
is therefore fraught and perhaps not of fundamental interest (see [4]). However,
our results with extended models reinforce our previous conclusions [1]: both
CIP and MIP are competitive with LBBD for these scheduling problems and
should be considered as core technologies for more general scheduling problems.

The rest of the paper is organized as follows. In Section 2, we formally define
our problem. Section 3 presents the necessary background, including a discussion
of logic-based Benders decomposition and a short summary of the results from
our previous paper. In Section 4, we present the models used in this paper and
we discuss detailed results of our experiments in Section 5. Section 6 provides a
discussion of our results and we then conclude in Section 7.

2 Problem Definition

We study two scheduling problems referred to as unary and multi [5,3,1],
which are defined by a set of jobs J and a set of resources K. Each job j must
be assigned to a resource k and scheduled to start at or after its release date,
Rj , end at or before its deadline, Dj , and execute for pjk consecutive time units.
Each job also has a resource assignment cost cjk and a resource requirement rjk.
We denote R as the set of all release dates and D as the set of all deadlines. Each
resource k ∈ K has a capacity Ck and a corresponding constraint which states
that the resource capacity must not be exceeded at any time. In the unary
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problems, each resource has unary capacity and all jobs require only one unit
of resource. For the multi problems, capacities and requirements may be non-
unary. A feasible solution is an assignment where each job is placed on exactly
one resource and a start time is assigned to each job such that no resource
exceeds its capacity at any time point. The goal is to find an optimal solution,
that is, a feasible solution which minimizes the total resource assignment cost.

3 Background

In this section we give the necessary background w.r.t. the logic-based Benders
decomposition and revisit our previous results.

3.1 Logic-Based Benders Decomposition

Logic-based Benders decomposition (LBBD) is a problem decomposition tech-
nique that generalizes Benders decomposition [6,7]. Conceptually, some of the
variables and constraints of a global problem model are removed, creating a mas-
ter problem (MP) whose solution (in the case of minimization) forms a lower-
bound on the globally optimal solution. The extracted problem components form
one or more sub-problems (SPs) where each SP is an inference dual [6]. Based
on an MP solution, each sub-problem is solved, deriving the tightest bound on
the MP cost function that can be inferred from the current MP solution and
the constraints and variables of the SP. If a bound produced by an SP is not
satisfied by the MP solution, a Benders cut is introduced to the MP. For global
convergence, the cut must remove the current MP solution from the feasibility
space of the MP without removing any globally optimal solutions.

The standard solution procedure for an LBBD model is to iteratively solve the
MP to optimality, solve each sub-problem, add the Benders cuts, and re-solve
the MP. Iterations continue until all SPs are satisfied by the MP solution, which
has thereby been proved to be globally optimal.

For the resource allocation and scheduling problem, since the MP assigns each
job to a resource and there are no inter-job constraints, the SPs are independent,
single-machine feasibility scheduling problems. If all SPs are feasible, then the
assignment found by the MP is valid for all resources and the corresponding
cost is the global minimum. Otherwise, each infeasible SP generate a Benders
cut involving a set of jobs that cannot be feasibly scheduled.

Experience with LBBD models has shown that two aspects of the formulation
are critical for achieving good performance: the inclusion of a relaxation of each
SP in the MP and a strong, but easily calculated Benders cut [8].

The Sub-Problem Relaxation. For the problem studied here two relaxations
have been proposed. Here we label them as the single relaxation [9] and the in-
terval relaxation [2]. The former consists of one linear constraint per SP repre-
senting to total area (i.e., time by capacity) available on that resource. Formally,
the relaxation can be formulated as follows:
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∑
j∈J

pjkrjk xjk ≤ Ck · (max
j∈J

{Dj} −min
j∈J

{Rj}) ∀k ∈ K (1)

where xjk is the binary resource choice variable equal to 1 if and only if job j is
assigned to resource k.

The interval relaxation consists of O(|J |2) linear constraints per SP repre-
senting the total area of a number of overlapping intervals and sets of jobs. The
interval relaxation is formulated as follows:

∑
j∈J (t1,t2)

pjkrjk xjk ≤ Ck · (t2 − t1) ∀k ∈ K, ∀(t1, t2) ∈ E (2)

where E = {(t1, t2) | t1 ∈ R, t2 ∈ D, t1 < t2}. We denote with J (t1, t2) the set
of jobs that execute between t1 and t2: J (t1, t2) = {j ∈ J | t1 ≤ Rj , t2 ≥ Dj}.

If all jobs have the same time window the interval relaxation collapses to the
single relaxation.

The Benders Cut. Given that the SPs are feasibility problems without any
visibility to the global optimization function, the only possible Benders cut is
a no-good constraint preventing the same set of jobs from being assigned to
the resource again. Therefore, the cut will take the form of Constraint (11) in
Model 3. Note that Jhk is a set of jobs that cannot be feasibly scheduled together
on resource k. A strengthened cut can be produced by finding a subset of Jhk

that also cannot be feasibly scheduled on resource k. Hooker [2] suggests a greedy
procedure to find a minimal infeasible set by removing each job, one by one, from
Jhk and resolving the SP. If the SP is still infeasible the corresponding job can
be removed from the infeasible set, otherwise it is replaced in the set and the
greedy procedure continues.

3.2 Previous Results

Our previous work compared five models: constraint programming (CP), mixed-
integer programming (MIP), logic-based Benders decomposition (LBBD) and
two constraint integer programming models (CIP[CP] and CIP[MIP]) [1]. The
LBBD model used the single relaxation and the non-strengthened cut. While
the need for a cut is unique to LBBD, it may be possible and useful to include
the problem relaxation in any model that makes use of an linear programming
relaxation. In particular, to be consistent with the LBBD formulation, in our
previous work we used the single relaxation in CIP[CP] tested. The MIP and
CIP[MIP] models were based on a different formulation so it was not obvious
how to incorporate this type of relaxation.1

Table 1a (Section 5) reproduces the summary of our previous results [1],
omitting the CP results as they are not extended here. Based on these results,

1 Below we show how to do this.
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we concluded that both CIP and MIP technologies are at the least competitive
with LBBD as a state-of-the-art technique for these problems. One caveat to
this conclusion (noted in Heinz & Beck [1]) was that previous work had achieved
stronger results for LBBD [2,3]. However, even taking into account those stronger
results, both MIP and CIP models found provably high-quality feasible solutions
for all instances while LBBD does not.

4 Model and Solver Extensions

The primary contributions of this paper are:

– Implementation of new presolving, propagation, and primal heuristics in
the SCIP solver and their application to the resource allocation/scheduling
problems.

– Extension of all models to include the interval relaxation. As noted, this
extension is not new for LBBD.

– Replication of previous results using LBBD with the interval relaxation and
strengthened cuts.

In this section, we present the extensions to the CIP solving techniques and
the mathematical models used in our experiments.

4.1 Constraint Integer Programming

In our previous work [1], we presented the first integration of the optcumulative
global constraint, a cumulative resource constraint with optional activities, into
the paradigm of CIP [10,11]. We focused mainly on its linear relaxation and
incorporated a straightforward propagation via the cumulative constraints.

Here we continue the integration of the optcumulative global constraint into
a CIP framework, including the addition of presolving techniques, general pur-
pose primal heuristics focusing in the clique structure, and the interval relax-
ation. All of these techniques have been previously presented in the literature,
separately, and not all in the context of CIP. Therefore the techniques, in them-
selves, do not represent a contribution of this paper. Rather, our contributions
here are the integration of these techniques in CIP and the demonstration that
their combination leads to state-of-the-art performance.

The Integration of optcumulative. In this section, we discuss the integra-
tion of the optcumulative into the CIP framework via presolving, propagation,
conflict analysis, linear relaxation, and primal heuristics.

Presolving. Before the tree search starts, presolving detects and removes redun-
dant constraints and variables. In case of the optcumulative, one shrink the time
windows of each job and remove irrelevant jobs from the scope of the constraint
since this leads to potentially tighter linear relaxation (see Equation (2)). In
particular, we have developed dual reduction techniques that are able to remove
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min
∑
k∈K

∑
j∈J

cjk xjk

s. t.
∑
k∈K

xjk = 1 ∀j ∈ J (3)

optcumulative(S·k,x·k,p·k, r·k, Ck) ∀k ∈ K∑
j∈J (t1,t2)

pjkrjk xjk ≤ Ck · (t2 − t1) ∀k ∈ K, ∀(t1, t2) ∈ E (4)

Rj ≤ Sjk ≤ Dj −pjk ∀j ∈ J , ∀k ∈ K
xjk ∈ {0, 1} ∀j ∈ J , ∀k ∈ K
Sjk ∈ Z ∀j ∈ J , ∀k ∈ K

Model 1. A CIP model extending CIP[CP] [1]

redundant jobs [12] from the cumulative constraints. We apply these reductions
to the optcumulative constraint by assuming that all potentially scheduled jobs
are assigned to a resource. Due to the monotonicity of the inference performed,
any redundant jobs detected under the all-jobs assumption remain redundant
when a subset of jobs is assigned to a resource. Additionally, we can detect a
redundant optcumulative constraint by assuming all possible jobs are assigned
to the resource and checking if the resultant cumulative constraint has a feasible
solution. If so, the corresponding constraint can be removed from the problem
formulation because a feasible schedule exists with all possible jobs. These infer-
ences are specializations of the existing general dual inference techniques [12].

Propagation. During the tree search, we collect jobs which are assigned to a
resource and apply the cumulative propagator [13,14]. For the remaining jobs,
we run singleton arc consistency to detect jobs which can no longer be feasibly
scheduled and fix the corresponding binary choice variable to zero. The extension
here is that if all resource assignment variables for a given resource are fixed, we
try to solve the remaining individual cumulative constraint by itself, triggering
a backtrack if no such solution exists. The same data structure used in presolv-
ing [12], can be used to perform this detection in a sound and general manner.
In contrast to LBBD, these (indirect) sub-problems do not need to be solved. If
a solution is found or the problem is proved infeasible, the global search space
is reduced. However, if they are not solved, the main search continues.

Conflict analysis. We use the explanation algorithms corresponding to the cu-
mulative propagator [15,16] and extend the generated explanations to include
only the binary resource choice variables for those start time variables which are
part of the explanation. This is different from our previous implementation where
we included all binary variables in the conflict. Adding only the binary variables
which are part of the cumulative explanation is analogous to the strengthening
techniques of the Benders cuts described above.
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min
∑
k∈K

∑
j∈J

cjk xjk

s. t.
∑
k∈K

xjk = 1 ∀j ∈ J (5)

Dj −pjk∑
t=Rj

ykjt = xjk ∀j ∈ J , ∀k ∈ K (6)∑
j∈J

∑
t′∈Tjkt

rjk yjkt′ ≤ Ck ∀k ∈ K, ∀t (7)

Rj +

Dj −pj∑
t=Rj

(t−Rj) · yjkt = Sjk ∀j ∈ J , ∀k ∈ K (8)

optcumulative(S·k,x·k,p·k, r·k, Ck) ∀k ∈ K∑
j∈J (t1,t2)

pjkrjk xjk ≤ Ck · (t2 − t1) ∀k ∈ K, ∀(t1, t2) ∈ E (9)

Rj ≤ Sjk ≤ Dj −pjk ∀j ∈ J , ∀k ∈ K
xjk ∈ {0, 1} ∀j ∈ J , ∀k ∈ K
Sjk ∈ Z ∀j ∈ J , ∀k ∈ K
yjkt ∈ {0, 1} ∀j ∈ J , ∀k ∈ K, ∀t ∈ {Rj , . . . ,Dj −pjk}

Model 2. CIP[MIP]: A CIP model based on the MIP model with channeling Con-
straints (8). Tjkt = {t− pjk, . . . , t}.

Linear relaxation. As discussed above, we use the interval relaxation (Equa-
tion (2)) instead of the single relaxation (Equation (1)) in our CIP models. See
below for the details of the CIP[CP] and CIP[MIP] models. To generate the
relaxation we use the algorithm presented by Hooker [2] to impose only non-
redundant constraints.

Primal heuristic. Inspired by the clique structure of the problem (i.e., each job
has to be assigned to one resource), we implemented a general purpose primal
heuristic that assigns jobs to resources and solves the resulting decomposed
scheduling problems. In MIP and CIP, a clique structure refers to a sets of binary
variables that must sum to at most one. This structure is easily detectable within
a model and can be used within a diving heuristic.

Extended Models. In this section, we present the full CIP models, one based
on the CP formulation (CIP[CP]) and the other based on the MIP formulation
(CIP[MIP]). Both are extensions of correspondingly named existing models [1].

Model 1 presents the CIP[CP] model with the resource choice variable xjk

equal to 1 if and only if job j is assigned to resource k. The objective function
is defined in terms of the resource choice variables. Constraints (3) ensure that
each job is assigned to exactly one resource, where the resource capacities are
enforced by the global optcumulative constraints. Constraints (4) state the
interval relaxation. This model is equivalent to the existing CIP[CP] model [1]
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(MP) min
∑
k∈K

∑
j∈J

cjk xjk

s. t.
∑
k∈K

xjk = 1 ∀j ∈ J∑
j∈J (t1,t2)

pjkrjk xjk ≤ Ck · (t2 − t1) ∀k ∈ K, ∀(t1, t2) ∈ E (10)∑
j∈Jhk

(1− xjk) ≥ 1 ∀k ∈ K, ∀h ∈ {1, . . . ,H − 1} (11)

xkj ∈ {0, 1} ∀j ∈ J , ∀k ∈ K

(SP) cumulative(S,p·k, r·k, Ck)

Rj ≤ Sj ≤ Dj −pjk ∀j ∈ Jk

Sj ∈ Z ∀j ∈ Jk

Model 3. Logic-based Benders decomposition: master problem (MP) on top and sub-
problem (SP) for resource k below

except for Constraints (4). The interval relaxation is added in the same way as
it is included in the LBBD model (see Hooker [2] and Model 3).

For the CIP model based on the MIP formulation (CIP[MIP]–Model 2), we
incorporate the interval relaxation by Constraint (9). The primary decision vari-
ables of the time-indexed formulation, ykjt, are equal to 1 if and only if job j
starts on resource k at time point t. We add an auxiliary set of binary deci-
sion variables, xjk, which are assigned to 1 if and only if job j is assigned to
resource k.

The objective function is defined with the new set of binary decision variables.
Constraints (5) ensure that each job is assigned to exactly one resource. The two
sets of decision variables are linked via Constraints (6). The resource capacities
are enforced by the knapsack constraints (7) which are given for each time point.
The global optcumulative constraints are added to achieve additional propaga-
tion. Finally, the Constraints (9) state the (redundant) interval relaxation which
potentially strengthens the linear programming relaxation.

4.2 Logic-Based Benders Decomposition

We use the LBBD model from Hooker [2] which uses both the interval relaxation
and the strengthened cuts. For completeness, we present the model in Model 3.

4.3 Mixed Integer Programming

Given the presence of cumulative constraints in the multi version of the problem,
the standard MIP model uses a time-indexed formulation [8,9,1] employing a set
of binary decision variables, yjkt, which are equal to 1 if and only if job j starts
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min
∑
k∈K

∑
j∈J

cjk xjk

s. t.
∑
k∈K

xjk = 1 ∀j ∈ J (12)

Dj −pjk∑
t=Rj

ykjt = xjk ∀j ∈ J , ∀k ∈ K (13)∑
j∈J

∑
t′∈Tjkt

rjk yjkt′ ≤ Ck ∀k ∈ K, ∀t (14)

∑
j∈J (t1,t2)

pjkrjk xjk ≤ Ck · (t2 − t1) ∀k ∈ K, ∀(t1, t2) ∈ E (15)

xjk ∈ {0, 1} ∀j ∈ J , ∀k ∈ K
yjkt ∈ {0, 1} ∀j ∈ J , ∀k ∈ K, ∀t ∈ {Rj , . . . ,Dj −pjk}

Model 4. Mixed integer programming model with Tjkt = {t − pjk, . . . , t}

at time t on resource k. As with the CIP[MIP] model above, we extend the MIP
model to include a second set of binary variables, xkj , which are equal to 1 if
and only if job j is assigned to resource k. This second set of variables introduces
the decomposition aspect of the problem into the MIP model since the cost for
an assignment is determined only by this set of variables. In addition, these
variables make it natural to express the interval relaxation.

Our MIP model is stated in Model 4. The constraints are almost identical
to those presented above in the CIP[MIP] model, with the exception that the
start time variables, the global optcumulative constraints, and the necessary
channeling constraints are absent.

Note that the second set of decision variables is redundant. Our preliminary
experiments showed that the solver achieves much higher performance with the
redundant formulation. The interval relaxation itself is also redundant given
Constraints (14). However, they introduce a connection between the capacity
constraints of each resource, strengthening the linear programming relaxation.

5 Computational Results

In this section, we compare the performance of the LBBD, the MIP, and the two
CIP models. We use the same test sets and the same computational environment
as our previous work [1] to allow direct comparison of the results.

5.1 Experimental Setup

Test Sets. The problem instances were introduced by Hooker [5]. Each set
contains 195 problem instances with the number of resources ranging from two
to four and the number of jobs from 10 to 38 in steps of two. The maximum
number of jobs for the instances with three and four resources is 32 while for
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Table 1. Summary of the results presented in Heinz & Beck [1] and the results for the
extended model of this paper

(a) Results of Heinz & Beck [1], omitting the CP model.

unary

MIP LBBD CIP[CP] CIP[MIP]

feasible 195 175 195 195
optimal found 195 175 194 195
optimal proved 191 175 194 195
best known found 195 175 194 195

total time 12 28 10 19
time to best 7 28 9 17

multi

MIP LBBD CIP[CP] CIP[MIP]

195 119 125 195
148 119 124 142
109 119 123 133
155 119 124 146

442 228 212 395
209 228 200 217

(b) Results for the extended models.

unary

MIP LBBD CIP[CP] CIP[MIP]

feasible 195 195 195 195
optimal found 195 195 195 195
optimal proved 195 195 195 195
best known found 195 195 195 195

total time 1.7 1.0 1.3 10.4
time to best 1.6 1.0 1.3 9.8
time to first 1.3 1.0 1.0 1.8

multi

MIP LBBD CIP[CP] CIP[MIP]

195 174 190 195
167 174 167 142
155 174 163 126
172 174 168 146

159.6 37.8 54.3 383.3
121.5 37.8 6.3 198.4
2.4 37.8 5.0 18.7

two resources the number of maximum number of jobs is 38. In addition, there
are five instances for each problem size. For the multi problems, the resource
capacity is 10 and the job demands are generated with uniform probability on the
integer interval [1, 9]. See Hooker [5] for further details w.r.t. the generation of
instances, and the appendix of [17] for further problem instance characteristics.

Computational Environment. All experiments are performed on Intel Xeon
E5420 2.50GHz computers (in 64 bit mode) with 6MB cache and 6GB of main
memory, running Linux. For solving the MIP models we used IBM ILOG CPLEX
12.4 in its default setting. The master problem of the LBBD approach is solved
with SCIP 3.0.0 [11] using SoPlex [18] version 1.7.0.1 as the linear programming
solver. For the sub-problems we used IBM ILOG CP Optimizer 12.4 using the
default settings plus extended filtering and depth first search. For the CIP models
we used the same solver as for the master problem of the LBBD. For each instance
we enforced a time limit of 2 hours and allow for a single thread.

5.2 Previous Results

Table 1a presents the summary of the previous results [1], omitting the pure
CP model which we do not extend here. For each test set (unary and multi)
and each model, Table 1a states the number of instances for which (i) a feasible
solution was found, (ii) an optimal solution was found, (iii) an optimal was found
and proved, and (iv) the best known solution was found. Secondly we present
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the shifted geometric mean2 for the total running time and the time until the
best solution was found. The time to the best solution is only an upper bound
in case of CPLEX since the output log does not display this time point explicitly.

5.3 Results

In the same fashion as in Table 1a, we summarize the results for the extended
models in Table 1b. Additionally, we included the shifted geometric mean for
the time when the first feasible solution was found.

The unary Test Set. The results for the unary test set show that all models
improved drastically w.r.t. our previous results. All approaches are able to solve
all instances in a few seconds or less. While this was expected for LBBD and
the CIP models, it comes as a bit of a surprise for the MIP model. Analyzing the
results for LBBD, we see that it needs only one iteration for each instance: the
first optimal master solution is always proved feasible for all sub-problems. This
result indicates that the interval relaxation tightens the master problem signifi-
cantly. Since the MIP and CIP models have basically the same linear relaxation
as LBBD, we believe that the tightness of the interval relaxation explains the
improved results for these models as well.

The multi Test Set. For the multi test set, we observe a substantial improve-
ment for all models except CIP[MIP]. The MIP models solves 155 instances of
195 compared to 109, the LBBD approach proves optimality for 174 instances
compared to 119, and the CIP[CP] formulation handles 163 instances compared
to 123 before. Similar observations can be made for the running times: LBBD,
MIP, and CIP[CP] are now a factor six, three, and four faster than before, re-
spectively. In terms of relative speed, the close-to-uniform speed-ups results in
basically the same ratios among the different models as in Beck & Heinz. Only
the CIP[MIP] performance remained consistent, while all other models improved
in a similar way.

As in our previous results, the MIP and CIP[MIP] models are able to find
a feasible solution for all instances. The CIP[CP] does that for 190 instances
compared to 125 instances before, while LBBD is only able to find feasible solu-
tions for the problems that it solves to optimality. Comparing the quality of the
solutions among the solvers, we observe that the MIP model finds the optimal or
best known solutions for 172 instances.3 By the same metric LBBD and CIP[CP]
find best known solutions for 174 and 168 instances, respectively. If the best of
the four models is chosen for each instance (resulting in the virtual best solver),
187 instances can be solved to proven optimality with a total running time in
shifted geometric mean of 19.9 seconds.

For a more detailed indication of the results for the multi test set, Table 2
presents results for each problem size for the CIP, MIP, and LBBD models. The

2 The shifted geometric mean of values t1, . . . , tn is
(∏

(ti + s)
)1/n − s, with shift

s = 10.
3 For the multi test set the optimal solution value is known for 189 instances.
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Table 2. Detailed results for the multi test set. For each resource job combination
consists of 5 instances (for a total of 195) we display on line.

MIP LBBD CIP[CP] CIP[MIP]

|K| |J | opt feas arith geom opt feas arith geom opt feas arith geom opt feas arith geom

2 10 5 5 1.0 1.0 5 5 1.0 1.0 5 5 1.0 1.0 5 5 1.9 1.8
12 5 5 1.1 1.1 5 5 1.0 1.0 5 5 1.0 1.0 5 5 3.7 3.5
14 5 5 1.0 1.0 5 5 1.0 1.0 5 5 1.0 1.0 5 5 4.9 4.7
16 5 5 13.1 8.0 5 5 1.0 1.0 5 5 8.3 4.7 5 5 40.3 29.9
18 5 5 36.2 16.9 5 5 1.3 1.3 5 5 1.8 1.7 5 5 75.4 66.2
20 5 5 89.6 29.0 5 5 4.1 3.7 5 5 1.6 1.5 5 5 120.2 70.4
22 4 5 2983.3 812.4 5 5 796.8 51.4 3 5 3090.8 382.5 4 5 3036.0 1293.9
24 3 5 3026.7 883.0 4 4 1733.8 214.8 2 5 4321.5 573.4 2 5 4399.3 1508.8
26 4 5 3013.5 1069.2 5 5 912.1 209.0 4 4 2122.4 464.9 3 5 3414.9 1746.9
28 4 5 2394.7 378.9 5 5 993.7 536.5 4 5 1444.4 42.0 3 5 3822.6 1910.5
30 3 5 3788.2 861.2 3 3 2930.3 401.2 2 5 4321.8 587.6 1 5 5802.8 3590.5
32 3 5 3054.7 792.1 0 0 – – 2 4 4400.1 1140.5 0 5 – –
34 3 5 3444.0 879.7 2 2 4400.3 1745.1 1 3 5760.4 1995.3 1 5 5843.7 4089.2
36 2 5 4386.6 1534.1 1 1 5942.7 4770.2 3 4 3476.7 548.4 2 5 4709.5 2319.1
38 2 5 5590.6 4980.2 1 1 6268.8 5848.7 2 5 4360.6 1334.0 0 5 – –

3 10 5 5 1.0 1.0 5 5 1.0 1.0 5 5 1.0 1.0 5 5 1.4 1.3
12 5 5 1.0 1.0 5 5 1.0 1.0 5 5 1.0 1.0 5 5 4.5 4.3
14 5 5 1.0 1.0 5 5 1.0 1.0 5 5 1.2 1.2 5 5 11.3 10.3
16 5 5 4.5 4.2 5 5 3.3 3.0 5 5 3.4 3.3 5 5 43.6 33.1
18 5 5 76.4 46.0 5 5 7.1 5.8 5 5 5.0 4.8 5 5 594.9 244.0
20 4 5 1470.9 98.5 5 5 1.5 1.5 5 5 7.8 6.9 4 5 1622.8 355.1
22 4 5 1832.6 554.6 5 5 2.4 2.3 5 5 6.9 6.6 4 5 2543.7 1008.3
24 5 5 1703.2 304.5 5 5 9.3 6.7 5 5 346.6 78.6 4 5 2225.2 967.5
26 3 5 3826.9 1652.8 5 5 31.8 19.8 5 5 98.4 40.2 1 5 5942.0 4766.2
28 3 5 3901.1 987.6 5 5 85.3 35.4 3 5 2885.5 194.9 2 5 4782.6 3030.9
30 3 5 4028.1 3100.2 4 4 1523.6 178.3 4 5 1911.1 520.9 0 5 – –
32 2 5 4840.8 3601.3 4 4 2882.6 1951.8 3 5 2969.5 559.0 1 5 6125.7 5475.9

4 10 5 5 1.0 1.0 5 5 1.0 1.0 5 5 1.0 1.0 5 5 1.0 1.0
12 5 5 1.0 1.0 5 5 1.0 1.0 5 5 1.0 1.0 5 5 2.4 2.3
14 5 5 1.0 1.0 5 5 1.6 1.6 5 5 1.7 1.7 5 5 12.8 11.7
16 5 5 1.2 1.2 5 5 1.0 1.0 5 5 1.7 1.7 5 5 22.3 20.4
18 5 5 3.3 3.1 5 5 2.5 2.5 5 5 4.5 4.4 5 5 96.5 76.6
20 5 5 43.8 25.3 5 5 1.8 1.8 5 5 4.4 4.3 5 5 159.3 116.0
22 5 5 128.2 60.0 5 5 4.3 3.7 5 5 20.7 15.0 5 5 1244.4 482.9
24 4 5 2695.6 1399.0 5 5 16.0 12.1 5 5 59.3 42.9 1 5 6236.7 5773.1
26 3 5 3825.4 2787.8 5 5 15.7 14.9 5 5 293.0 112.7 1 5 6227.4 5750.3
28 3 5 5361.9 2124.2 5 5 9.9 9.6 4 5 1562.9 200.0 2 5 5010.5 3646.9
30 2 5 5035.9 3253.6 5 5 112.6 31.7 4 5 2243.0 581.1 0 5 – –
32 1 5 5927.9 4691.0 5 5 343.6 118.3 2 5 4412.3 1519.1 0 5 – –

155 195 1962.5 159.6 174 174 929.5 37.8 163 190 1286.1 54.3 126 195 2825.3 383.3

first two columns define the instance size in terms of the number of resources |K|
and the number of jobs |J |. For each model, we report the number of instances
solved to proven optimality “opt” and the number instances for which a feasible
solution was found, “feas”, including the instances which are solved to optimality.
For the total running time we report the arithmetic mean (“arith”) and the
shifted geometric mean (“geom”) with shift s = 10. All running times that are
less than 1.0 second are set to 1.0. For each resource-job combination, the best
time is shown in bold. For clarity, when a model did not solve any instances of
a given size, we use ‘–’ instead of 7200 for the running time.

The table indicates that all models appear to scale exponentially with the
number of jobs. The results for LBBD and CIP[CP] show the increase at a lower
rate than for MIP and CIP[MIP]. Nonetheless, LBBD and CIP[CP] both fail to
find and prove optimal solutions on some of the larger instances. It is interesting
to note that for the instances with two resources, all models suddenly start to
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Fig. 5. Performance diagrams for the multi test set. The MIP model is dashed ( ),
the LBBD model dotted ( ), the CIP[CP] model solid ( ), and the CIP[MIP]
model is densely dotted ( ).

struggle with 22 or more jobs: the shifted geometric means of the run-time for
all models increase one or two orders of magnitude in moving from 20 to 22 jobs.
We return to this observation below.

Since the models do not solve or fail to solve exactly the same instances, we
depict two performance diagrams for the multi test set in Figure 5. The left-
hand graph shows the evolution of the number of problems solved to optimality
over time. It can be observed that LBBD and CIP behave very similarly while
MIP performs worse in the beginning but increases its success with more run-
time. CIP[MIP] performs consistently worse than all other models. The right-
hand graph displays the percentage of instances for which a solution with given
optimality gap (primal bound minus dual bound divided by the primal bound)
or better was found. On this basis, both MIP and CIP[MIP] models outperform
the other two models by finding solutions with an optimality gap of less than
5% for all problem instances. CIP finds solutions with a gap of 10% or better
on about 97% of the instances while LBBD finds the optimal solution on 89% of
the instances and is, of course, unable to find any sub-optimal feasible solutions.

6 Discussion

The results of the experiments presented above support and reinforce the con-
clusions of Heinz & Beck [1]: both CIP[CP] and MIP should be considered to
be state-of-art models, along with LBBD, for the tested resource allocation and
scheduling problems. On the basis of the number of problem instances solved
to optimality LBBD has a marginal advantage over CIP[CP] which itself is
marginally better then MIP. However, on other measures of solution quality
(number of instances with feasible solutions and the quality of those solutions),
the ranking is reversed.

An examination of the sub-problems in the two-resource instances that LBBD
and CIP[CP] fail to solve reveals that most of the cumulative constraint/sub-
problems which have to be proven to be feasible or infeasible have a very small
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slack and the jobs have a wide and often identical time windows. Slack is the
difference between the rectangular area available on the resource (time by ca-
pacity) and the sum of the areas (processing time by resource requirement) of
the jobs. Alternatively, slack can be understood to be the tightness of the single
relaxation (Equation (1)). The small slack results from the fact that one resource
is consistently less costly than the others and so it appears promising to assign
many jobs as possible within the limits of the interval relaxation.

All approaches suffer from not being able to handle small slack and wide
time window problems efficiently on cumulative resources. This is the underlying
reason for the main disadvantage of LBBD which gets stuck at such a sub-
problems and fails completely to find a feasible solution. All other approaches
have the same issue of not been able to solve these implicit sub-problems, but are
able to provide high quality primal solutions. To overcome this issue, stronger
cumulative inference techniques [19] may be worth consideration.

As we are comparing the CIP approach against a start-of-the-art LBBD im-
plementation, we should also compare with a state-of-the-art commercial MIP
solver when solving MIP models. It has, however, been standard for the past
few years for commercial MIP solvers to use multiple cores. If we run IBM ILOG
CPLEX with its default settings (using all available cores, eight in our case)
on the multi instances we can solve 171 instances to proven optimality with a
shifted geometric mean of 71.4 seconds. The fact that this performance is only
marginally better than what we observe for CIP and similar to LBBD results,
strengthens their claims to state-of-the-art status.

Finally, the results of the single-core virtual best solver, solving 187 instances
with a shifted geometric mean of 19.9 second, indicate that none of the models is
dominant. One of the arguments for pursuing CIP is that it is a framework that
strives to combine the advantages of the other approaches in order to overcome
the individual disadvantages.

Future Work. There are a number of areas of future work both on extending
these approaches to related scheduling problems and in developing the technol-
ogy of CIP for scheduling.

Continued development of CIP. We have demonstrated through the integration
of the optcumulative constraint that global constraint-based presolving, infer-
ences, and relaxations can lead to state-of-the-art performance. We intend to
further pursue the integration of global constraint reasoning into a CIP frame-
work for scheduling and other optimization problems.

Other scheduling problems. Hooker [2] has presented LBBD models for exten-
sions of the problem studied here with a number of different optimization func-
tions. For such problems, LBBD is able to produce feasible sub-optimal solutions
without necessarily finding an optimal solution. Therefore, one of the main ad-
vantage of the MIP and CIP techniques compared to LBBD does not appear.
It will be valuable to understand how adaptations of the MIP and CIP models
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presented here perform on such problems. Another important class of schedul-
ing problems has temporal constraints among jobs on different resources. Such
constraints destroy the independent sub-problem structure that LBBD and, to
a lesser extent, the other models exploit. However, exact techniques currently
struggle on such problems including flexible job shop scheduling [20].

Scaling. As shown in Table 2, all models are unable to find optimal solutions
as the number of jobs increases. With even more jobs, the only achievable per-
formance measure will be the quality of feasible solutions that are found. We
expect LBBD to perform poorly given that it cannot find sub-optimal solutions.
However, as the problem size increases the time-indexed formulation on the MIP
model will also fail due to model size. CIP[CP] and the pure CP model [1] would
appear to be the only exact techniques likely to continue to deliver feasible solu-
tions. Confirming this conjecture, as well as comparing the model performance
to incomplete techniques (i.e., heuristics and metaheuristics) is therefore another
area for future work.

7 Conclusions

The primary conclusions of these experiments with more sophisticated prob-
lem models are consistent with and reinforce those of Heinz & Beck [1]: CIP
is a promising scheduling technology that is comparable to the state-of-the-
art manual decomposition approach on resource allocation/scheduling prob-
lems and MIP approaches, though often discounted by constraint programming
researchers, deserve consideration as a core technology for scheduling.

In arriving at these conclusions, we used two primary measures of model
performance: the number of problem instances solved to proven optimality and
the proven quality of solutions found, given that not all instances were solved
to optimality. CIP comes second to LBBD by the former measure and to MIP
by the latter. Depending on the importance placed on these measures any of
the three algorithms could be declared the “winner”. For practical purposes,
we believe that the importance of proven solution quality should not be under-
estimated: in an industrial context it is typically better to consistently produce
proven good solutions than to often find optimal solutions but sometimes fail to
find any feasible solution at all.
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Abstract. Branch-and-bound methods for mixed-integer programming
(MIP) are traditionally based on solving a linear programming (LP) re-
laxation and branching on a variable which takes a fractional value in the
(single) computed relaxation optimum. In this paper we study branch-
ing strategies for mixed-integer programs that exploit the knowledge of
multiple alternative optimal solutions (a cloud) of the current LP re-
laxation. These strategies naturally extend state-of-the-art methods like
strong branching, pseudocost branching, and their hybrids.

We show that by exploiting dual degeneracy, and thus multiple alter-
native optimal solutions, it is possible to enhance traditional methods.
We present preliminary computational results, applying the newly pro-
posed strategy to full strong branching, which is known to be the MIP
branching rule leading to the fewest number of search nodes. It turns out
that cloud branching can reduce the mean running time by up to 30%
on standard test sets.

1 Introduction

In this paper we address branching strategies for the exact solution of a generic
mixed-integer program (MIP) of the form (w.l.o.g.):

min{cx : Ax ≤ b xj ∈ Z ∀j ∈ J}

where x ∈ Rn and J ⊆ N = {1, . . . , n}.
Good branching strategies are crucial for any branch-and-bound based MIP

solver. Unsurprisingly, the topic has been subject of constant and active re-
search since the very beginning of computational mixed-integer programming,
see, e.g., [1]. We refer to [2, 3, 4] for some comprehensive studies on branching
strategies.

In mixed-integer programming, the most common methodology for branching
is to split the domain of a single variable into two disjoint intervals. In this
paper we will address the key problem of how to select such a variable. Let x�

be an optimal solution of the linear programming (LP) relaxation at the current
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node of the branch-and-bound tree and let F = {j ∈ J : x�
j 	∈ Z} denote the

set of fractional variables. A general scheme for branching strategies consists
in computing a score sj for each fractional variable j ∈ F , and then picking
the variable with maximum score. Different branching rules then correspond to
different ways of computing this score.

Several branching criteria have been studied in the literature. The simplest
one (most-fractional branching) is to branch on the variable whose fractional
part is as close as possible to 0.5; however, this is well known to perform poorly
in practice [5]. A more sophisticated branching strategy is pseudocost branch-
ing [1], which consists in keeping a history of how much the dual bound (the
LP relaxation) improved when branching on a given variable in previous nodes,
and then using these statistics to estimate how the dual bound will improve
when branching on that variable at the current node. Pseudocost branching is
computationally cheap since no additional LPs need to be solved and performs
reasonably well in practice. Yet at the very beginning, when the most crucial
branching decisions are taken, there is no reliable historic information to build
upon.

Another effective branching rule is strong branching [6, 7]. The basic idea
consists in simulating branching on the variables in F and then choosing the
actual branching variable as the one that gives the best progress in the dual
bound. Interestingly, this greedy local method is currently the best w.r.t. the
number of nodes of the resulting branch-and-bound tree, but introduces quite
a large overhead in terms of computation time, since 2 · |F | auxiliary LPs need
to be solved at every node. Many techniques have been studied to speedup
the computational burden of strong branching, in particular by heuristically
restricting the list of branching candidates and imposing simplex iteration limits
on the strong branching LPs [2] or by ruling out inferior candidates during the
strong branching process [8]. However, according to computational studies, a
pure strong branching rule is still too slow for practical purposes. Branching
rules such as reliability branching [3] or hybrid branching [9], that combine ideas
from pseudocost branching and strong branching, are considered today’s state
of the art.

Other approaches to branching include the active constraint method [10],
which is based on the impact of variables on the set of active constraints, branch-
ing on general disjunctions [11], inference branching and VSIDS [12, 13, 4] based
on SAT-like domain reductions and conflict learning techniques. Finally, infor-
mation collected through restarts is at the heart of the methods in [14, 15].

All branching strategies described so far are naturally designed to deal with
only one optimal fractional solution. History-based rules use the statistics col-
lected in the process to compute the score of a variable starting from the current
fractional solution. Even with strong branching, the list of branching candidates
is defined according to the current fractional solution x�.

However, LP relaxations of MIP instances are well-known for often being mas-
sively degenerate; multiple equivalent optimal solutions are the rule rather than
the exception. Thus branching rules that consider only one optimal solution risk
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taking arbitrary branching decisions (thus contributing to performance variabil-
ity, see [16]), or being unnecessarily inefficient. In the present paper we study
the extension of some branching strategies to exploit the knowledge of multiple
optimal solutions of the current LP relaxations.

The contribution of the present paper is twofold. First, we introduce for the
first time, to the best of our knowledge, a branching strategy that makes use of
multiple relaxation solutions and show how it can be naturally integrated into
existing branching rules. Second, we evaluate one particular implementation of
it in the context of full strong branching, the branching rule commonly known to
be most efficient w.r.t. the number of branch-and-bound nodes [4, 17]. We show
that it leads to significant savings in computation time while not increasing the
number of nodes.

The remainder of the paper is organized as follows. In Section 2 we discuss
how to generate alternative optimal solutions (a cloud of solutions) and how
to exploit this information to enhance some standard branching rules such as
pseudocost branching and strong branching. In Section 3 we give more details
on the technique applied to full strong branching, while in Section 4 we report a
preliminary computational evaluation of the proposed method. Some conclusions
are finally drawn in Section 5.

2 A Cloud of Solutions

In order to extend standard branching strategies to deal with multiple LP optima
at the same time, we need to solve two problems:

1. How to generate efficiently multiple optimal solutions of the current LP
relaxation?

2. How to make use of the additional information provided by these solutions?

The first problem can be effectively solved by restricting the search to the optimal
face of the LP relaxation polyhedron. On this face, an auxiliary objective function
can be used to move to different bases. From the computational point of view,
fixing to the optimal face can be easily and safely implemented by fixing all
variables (structural and artificial) whose reduced costs are non-zero, using the
reduced costs associated to the starting optimal basis. As far as the choice of
the second level objective function(s) is concerned, different strategies can be
used. One option is to try to minimize and maximize each variable which is not
yet fixed: this is what optimality-based bound tightening techniques do (see,
e.g., [18, 19]), with the additional constraint of staying on the optimal face.
Another option is to use a feasibility pump [20] like objective function, in which
the current LP point is rounded and a Hamming distance function is generated
to move to a different point (more details will be given in the next section): this
is related to the pump-reduce procedure that Cplex performs to achieve more
integral LP optima [21]. Finally, a random objective function might be used.

Suppose now that we have constructed, in one way or another, a cloud C =
{x1, . . . , xk} of alternative optimal solutions to the current LP relaxation. We
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assume that the initial fractional solution x� ∈ C. Given C, we can define our
initial set of branching candidates F (C) as

F (C) = {j ∈ J | ∃xi ∈ C : xi
j 	∈ Z}

i.e., F (C) contains all the variables that are fractional in at least one solution
of the cloud. For each variable in F (C) it is then possible to calculate its cloud
interval Ij = [lj , uj], where:

lj = min{xi
j | xi ∈ C}

uj = max{xi
j | xi ∈ C}

Given the cloud interval for each branching candidate, we partition the set F (C)
into three subsets, depending on the relative intersection between each interval
Ij and the branching interval Bj = [�x�

j�, �x�
j �]. In particular, we define:

F2 = {j ∈ F (C) | �x�
j � < lj ∧ uj < �x�

j�}

F0 = {j ∈ F (C) | lj ≤ �x�
j� ∧ �x�

j � ≤ uj}
F1 = F (C) \ (F2 ∪ F0)

In particular for binary variables, F2 contains exactly those variables which are
fractional for all xi ∈ C, or differently spoken: F (C) is the union (taken overC) of
all branching candidates, F2 is the intersection. If C contained all vertices of the
optimal face, then F2 would be exactly the set of variables that are guaranteed
to improve the dual bound in both child nodes. The hope is that also with a
limited set of sample point in C, F2 is still a good approximation to that set.

A variable being contained in the set F0 is a certificate that branching on it
will not improve the dual bound on either side since alternative optima exist
which respect the bounds after branching. For the same reasoning, variables in
F1 are those for which the objective function will stay constant for one child,
but hopefully not for the other.

The details about how branching rules can be extended to deal with this addi-
tional information, namely this three-way partition of the branching candidates
(F2, F1, F0) and the set of cloud intervals Ij of course depends on the particular
strategy. For example, a rule based on strong branching can safely skip variables
in F0, thus saving some LPs (more details on how to extend a full strong branch-
ing policy to the cloud will be given in the next section). In the remaining part
of this section, we will describe how pseudocost branching can be modified to
exploit cloud information.

Pseudocost branching consists mainly in two operations: (i) updating the
pseudocosts after an actual branching has been performed and the LP relaxations
of the child nodes have been solved and (ii) computing the score of a variable
using the current pseudocosts when deciding for a branching candidate. When
updating the pseudocosts, the objective gains ς+j and ς−j per unit change in
variable xj are computed, that is:

ς+j =
Δ↑

�x�
j� − x�

j

and ς−j =
Δ↓

x�
j − �x�

j�
(1)
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(a) (b)

Fig. 1. Graphical representation of pseudocosts update and usage

where Δ↑ and Δ↓ are the differences between the optimal LP objectives of the
corresponding child nodes and the current LP value. These gains are then used
to update the current pseudocosts Ψ+

j and Ψ−
j which are the averages of the

objective gains (per unit step length) that have been observed for that particular
variable so far. The thin line in Figure 1(a) illustrates the operation. These
estimation formulas are based on the assumption that the objective increases
linearly in both directions (hence the resulting triangle). This, however, may
be a too crude approximation of the real shape of the projection on the split
domain of xj . In the case of dual degeneracy, there might be many optimal LP
solutions with different values for xj . Which of these values x�

j takes is more or
less arbitrary, but crucial for the current – and by that also for future – branching
decisions.

Using interval Ij on the other hand it is possible to replace this approximation
with a more precise model (thick line in Figure 1(a)). The corresponding way to
compute gains is then:

ς̃+j =
Δ↑

�x�
j � − uj

and ς̃−j =
Δ↓

lj − �x�
j �

(2)

Where the values for ς+ and ς− may vary by chance, ς̃+ and ς̃− will be constant,
when the set of all corners of the optimal face is used as a cloud.

As far as the computation of the score sj is concerned, the standard formulas
to predict the objective gains when branching on variable xj are

Δ+
j = Ψ+

j (�x�
j � − x�

j ) and Δ−
j = Ψ−

j (x�
j − �x�

j �) (3)

Again, the underlying linear model may give a too optimistic estimate on the
dual bound improvements. A more accurate estimate exploiting interval Ij can
be obtained as:

Δ̃+
j = Ψ+

j (�x�
j � − lj) and Δ̃−

j = Ψ−
j (uj − �x�

j�) (4)

A graphical representation is depicted in Figure 1(b). Furthermore, the following
observation holds:
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Lemma 2.1. Let x� be an optimal solution of the LP relaxation at a given
branch-and-bound node and �x�

j� ≤ lj ≤ x�
j ≤ uj ≤ �x�

j�. Then

1. for fixed Δ↑ and Δ↓, it holds that ς̃+j ≥ ς+j and ς̃−j ≥ ς−j , respectively;

2. for fixed Ψ+
j and Ψ−

j , it holds that Δ̃+
j ≤ Δ+

j and Δ̃−
j ≤ Δ−

j , respectively.

Proof. Follows directly from Equations (1)–(4).

Thus, under the same preconditions, the standard pseudocosts will be an under-
estimation of the pseudocosts based on the cloud intervals, whereas the objective
gain, on which the branching decision is made, will be an overestimation. Of
course these quantities interact directly which each other: as soon as one of it
gets altered, this will have an impact on all upcoming branching decisions and
pseudocost computations. The effects of continuous over- and underestimation
will amplify each other. The hope is that cloud branching helps to make better,
more reliable predictions and thereby leads to better branching decisions.

3 Full Strong Branching with the Cloud

In the present section we detail the extension of a full strong branching strategy
to the cloud. The first problem is again how to generate a cloud of optimal
LP solutions C. Following some preliminary computational results, we opted
for a feasibility pump like objective function, minimizing the distance to the
nearest integral point. More precisely, given a fractional solution x�, we define
the objective function coefficient cj of variable xj as

cj =

⎧⎪⎨⎪⎩
1 if 0 < fj < 0.5

−1 if 0.5 ≤ fj < 1

0 otherwise

where fj = x�
j − �x�

j� is the fractional part of x�
j . Using the primal simplex, we

re-solve the LP (fixed to the optimal face) with this new objective function. We
update the interval bound vectors l and u, and iterate, using the new optimum
as x�. If, at a given iteration, the update did not yield a new integral interval
bound, we stop.

As far as the three-way partition (F2, F1, F0) is concerned, we perform full
strong branching on all variables in the set F2. If we can find even one variable
in this set with a strictly improved dual bound in both child nodes, then we
stop and pick the best variable within this set, completely ignoring sets F1 and
F0. In state-of-the-art solvers such as Cplex or SCIP the score of a variable is
computed as the product of the objective gains in both directions (maybe using
a minimum value of some epsilon close to zero for each factor). By this, the score
of all variables in F1 ∩ F0 will be (nearly) zero and therefore none of them will
have maximum score.

Note that in this case cloud information is used essentially to filter out vari-
ables and solve a smaller number of LPs. If no such variable is found, different
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strategies can be devised, depending on how we deal with the remaining vari-
ables. One option is to proceed with performing strong branching on the variables
in set F1, but solving only one LP per variable (because by definition we already
know that in one direction the dual bound change is zero). Note that variables
in F1 are not necessarily a subset of the fractional variables in x�: as such, while
we may still have some speedup because we only solve one LP per variable,
the number of variables may indeed be higher than what standard full strong
branching would have done. If we can find at least one variable in F2∩F1 with a
strictly improved dual bound in one direction, then we can stop and ignore set
F0 for the same reason as before. If this is not the case, then we know that for
all variables in F (C) no improvement can be obtained in any child node as far
as the dual bound is concerned, and so the branching variable should be chosen
with some other criterion.

Another, less computationally expensive, option is to always ignore variables
in F1 and stick to the variables in F2. Apart from the obvious computational
savings, this choice can be justified by the following argument: if there is a
variable in F2 with a strictly improved dual bound in both children, we will
not consider F1 ∩ F0 anyway. If there is none, this proves that the global dual
bound will not improve independent of the branching decision: at least one of
the two children will have the same dual bound as the current node. Therefore,
we take the current set of points C as evidence that variables in F2 are less likely
to become integral than variables in F1, and so should be given precedence as
branching candidates.

Note that using additional points to filter out strong branching candidates is
similar in spirit to the strategy called nonchimerical branching proposed in [8],
where the optimal solutions of the strong branching LPs (which might have a
different objective function value) were used for this purpose. The two strategies
have complementary strengths: nonchimerical branching does not need to solve
any additional LP w.r.t. strong branching, but needs the strong branching LPs
to be solved to optimality, because of the usage of the dual simplex. Cloud
branching on the other hand needs additional LPs, but these are in principle
simpler (we are fixed to the optimal face), need not be solved to optimality
(primal simplex is used), and do not impose any requirements to the solution
of the final strong branching LPs. As such, the two techniques can be easily
combined together and might synergize. Moreover, cloud branching can be used
independent of strong branching, as argued in Section 2.

4 Computational Experiments

For our computational experiments, we used SCIP 3.0.0.1 [22] compiled with
SoPlex 1.7.0 [23] as LP solver. The results were obtained on a cluster of 64bit
Intel Xeon X5672 CPUs at 3.20GHz with 12MB cache and 48GB main memory,
running an openSuse 12.1 with a gcc 4.6.2 compiler. Hyperthreading and Tur-
boboost were disabled. We ran only one job per node to reduce random noise
in the measured running time that might be caused by cache-misses if multiple
processes share common resources.
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Table 1. comparison of Cloud branching and full strong branching on MMM and
cor@l instances, averages of success rate, cloud points, saved LPs per node, and rate
of saved LPs; shifted geometric means of branch-and-bound nodes and running time
in seconds

cloud statistics SCIP cloud branch SCIP strong branch

Test set %Succ Pts LPs %Sav Nodes Time (s) Nodes Time (s)

MMM 12.2 2.19 74.34 21.7 661 68.2 691 72.0

cor@l 40.8 2.71 70.97 51.8 569 118.3 593 157.3

We used two test sets of general, publically available MIP instances: the
cor@l test set [24], which mainly contains instances that users worldwide sub-
mitted to the NEOS server [25] and the MMM test set which contains all in-
stances from miplib3.0 [26], miplib2003 [17], and miplib2010 [16]. We compare
the performance of SCIP when using full strong branching versus a cloud branch-
ing version of full strong branching as described in the previous section. In par-
ticular, we compare to the cloud branching variant that only considers variables
in F2 as possible branching candidates. Since we want to explicitly measure the
impact of using the cloud for variable selection, we did not exploit the alternative
LP optima by any other means, e.g. for cutting plane generation, primal heuris-
tics, reduced cost domain propagation, etc. Results by Achterberg [21] indicate
that this would be likely to give further improvements on the overall perfor-
mance. Further, we used the default implementation of full strong branching in
SCIP, which does not employ the methods suggested in [8] (yet). We expect that
nonchimerical branching and cloud branching will complement each other nicely,
however, this is left for future implementation and experiments. We used a time
limit of one hour per instance. All other parameters were left at their default
values.

For the MMM test set both, SCIP with cloud branching and with full strong
branching, both solved the same number of instance; for the cor@l test set, one
more instances was solved within the time limit when using cloud branching. Ta-
bles 2 and 3 in the Appendix show results for all instances which both variants
could solve within the time limit, excluding those which were directly solved at
the root node (hence no branching was performed). This leaves 68 instances for
MMM and 104 instances for cor@l. Column “%Succ” shows the ratio of nodes
on which cloud branching was run successfully, hence at least one additional
cloud point was used. Considering those nodes, columns “Pts” and “LPs” de-
pict of how many points the cloud consisted on average and how many strong
branching LPs were saved on average per node, i.e., how many integral interval
bounds could be found. The Column “%Sav” shows how many percent of all
strong branching LPs could be saved for that instance. When the success rate
is zero, these three columns show a dash. For both branching variants, “Nodes”
and “Time” give the number of branch-and-bound nodes and the computation
time needed to prove optimality.
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Table 1 shows aggregated results. It gives averages over the corresponding
numbers (the success rates, the used points, the saved LPs per node and the
percentage of overall saved LPs) from Tables 2 and 3. Shifted geometric means
are shown for the number of branch-and-bound nodes and the computation
times, which are absolute performance measures. The shifted geometric mean
of values t1, . . . , tn with shift s is defined as n

√∏
(ti + s) − s. We use a shift

of s = 10 for time and s = 100 for nodes in order to reduce the effect of very
easy instances in the mean values. Further, using a geometric mean prevents
hard instances at or close to the time limit from having a huge impact on the
measures. Thus, the shifted geometric mean has the advantage that it reduces
the influence of outliers in both directions.

The results for the MMM test set show a slight improvement of 6% w.r.t.
mean running time and 5% w.r.t. the mean number of nodes when using cloud
branching. For cor@l, the mean number of nodes again is slightly larger, about
4%, when using full strong branching instead of cloud branching. The result
when comparing computation times is much more explicit: the shifted geometric
means differ by about 33%. As can be seen in Table 1, the success rate of cloud
branching is much better on the cor@l test set than it is on MMM; and even
further, on the successful instances, the average ratio of saved LPs is much larger.
Taking these observations together explains why the improvement is much more
significant for the cor@l test set.

MIP solvers are known to be prone for an effect called performance variability.
Loosely speaking, this term comprises unexpected changes in performance which
are triggered by seemingly performance-neutral changes in the environment or
the input format. Besides others, peformance variability is caused by imperfect
tie breaking [16]. This results in small numerical differences caused by the use
of floating point arithmetics which may lead to different decisions being taken
during the solution process. A branch-and-bound search often amplifies these
effects, which can be similarly observed for all major MIP (and also other opti-
mization) softwares. As a consequence, small changes in performance might in
fact be random noise rather than a real improvement or deterioration. This can,
e.g., be seen for instance cap6000 from MMM: Although cloud branching was
never successful, the number of branch-and-bound nodes alters1. Then again,
improvements brought by single components of a MIP solver typically lie in the
range of 5–10%, see, e.g., [4]. In addition, even if MIP solvers did not exhibit
performance variability, we would have the issue of assessing whether the mea-
sured difference in performance is statistically significant, a problem common to
all empirical studies.

We performed two additional experiments to validate our computational re-
sults. First, we ran identical tests on four more copies of the test sets, with
perturbed models that were generated by permuting columns and rows of the

1 This can be explained by the intermediate cloud LPs being solved – after this, the
original LP basis gets installed again and a resolve without simplex iterations is
performed. However, solution values, reduced costs etc. might be slightly different
than before.
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original problem formulation. This has been introduced in [16] as a good variabil-
ity generator that affects all types of problems and all components of a typical
MIP solver. Another benefit of this experiment is that it counters overtuning
since the evaluation testbed is no longer the same as the development test bed.

As can be expected, the results differ in detail from the default permutation
run. For MMM, the improvements w.r.t. computation time were 3%, 4%, 4% and
7%, and w.r.t. branch-and-bound nodes -3%, 0%, 1% and 2%. On cor@l, the
improvements w.r.t. time were 25%, 29%, 32%, and 42% and w.r.t. branch-and-
bound nodes 3%, 5%, 8%, 14%. We conclude the cloud branching was faster in
all five times two experiments (including the original ones) and also consistently
reduced the number of branch-and-bound nodes on the cor@l test set. For
MMM, it can be argued that the changes are performance neutral w.r.t. the
number of branch-and-bound nodes.

As far as the statistical significance of these differences is concerned, we
performed randomized tests [27] on the detailed results. Randomized tests are
standard non-parametric statistics that do not make any assumptions on the
underlying population distributions (assumptions are very likely to be violated
in our computational settings) but are still as powerful as standard parametric
tests. According to these tests, the performance difference, both w.r.t. time and
nodes, measured on the MMM is not statistically significant. As far as cor@l

is concerned, the difference in branch-and-bound nodes is again not significant,
while the difference in running times is. Note that on heterogeneous test sets
such as MMM and cor@l, it is rather difficult to pass statistical significance
tests when testing single MIP solver components, because the improvements are
almost always in the single digit range and standard test sets are relatively small.
In other words, one method might indeed be better than the other, but not by
enough to pass the statistical test. We also applied these randomized tests to
the other four copies of the test sets, with consistent results.

Having a closer look at Tables 2 and 3, it can be seen that the success rate
of cloud branching is negligible, i.e., close to zero, for a significantly higher ratio
of the MMM test set than for the cor@l test set. This is also reflected by
the much smaller average success rate shown in Table 1. This partially explains
why the differences on cor@l are much more significant than on MMM: there
are simply more instances on which degenerate LP solutions are detected in
the pump-reduce step of our algorithm. A reason for this might be that miplib
instances contain more industry-based models with real, perturbed data whereas
cor@l has more combinatorial models which often contain symmetries and are
prone for degeneracy.

Our interpretation of the given results therefore is that cloud branching does
not hurt a test set where only few degeneracy is detected but is clearly supe-
rior on a test set which contains many highly degenerated problems, at least
time-wise.
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5 Conclusion and Outlook

In this paper, we introduced branching strategies for mixed-integer programs that
exploit the knowledge of a cloud of alternative optimal LP solutions.We discussed
extensions of full strong branching and pseudocost branching that incorporate this
idea. Our computational experiments showed that a version of full strong branch-
ing that uses cloud intervals is about 30% faster than default full strong branch-
ing on a standard test set with high dual degeneracy. Even the mean number of
branch-and-bound nodes could be reduced, though not significantly.

The presented preliminary results are very encouraging for further research
on cloud branching. A natural next step is to implement the described modifi-
cations on pseudocost branching and a development of hybrid strategies such as
reliability branching that make use of the cloud. In this paper, we used multi-
ple optima from a single relaxation as cloud set. In particular in the context of
MINLP, employing optima from multiple, alternative relaxations seems promis-
ing. From the implementation point of view, it could be further exploited that
the cloud LPs are solved by the primal simplex algorithm, hence also interme-
diate, suboptimal solutions will be feasible and could be used as cloud points.
Finally, two other improvements of strong branching were suggested recently:
nonchimerical branching [8] and a work of Gamrath [28] on using domain propa-
gation in strong branching. It will be interesting to see how these ideas combine
and whether it will even be possible to make full strong branching competitive
to state-of-the-art hybrid branching rules w.r.t. mean running time.

Acknowledgements. Many thanks to Gerald Gamrath and four anonymous
reviewers for their constructive criticism.
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Appendix

Tables 2 and 3 show the detailed results for the computational evaluation given
in Section 4. They report statistics on all instances from our two test sets MMM
and cor@l which SCIP could solve to optimality in less than one hour for either
strong branching variant, but needed more than one node in both cases.

Table 2. comparison of cloud branching and full strong branching on MMM instances,
smaller (better) numbers are bold

cloud statistics SCIP cloud branch SCIP strong branch

instance %Succ Pts LPs %Sav Nodes Time (s) Nodes Time (s)

10teams 64.3 2.7 50.3 79.3 129 105.3 348 488.1

aflow30a 0.0 – – – 166 19.6 182 21.7

air04 91.3 2.0 9.1 32.3 55 2087.9 57 2074.6

air05 46.8 2.0 3.0 3.4 166 1597.0 153 1541.6
ash608gpia-3col 100.0 4.3 2240.1 86.7 5 1072.1 9 2406.8

bell3a 0.0 – – – 26 588 6.6 26 590 6.3

bell5 0.2 2.0 2.0 0.6 851 0.7 865 0.7

bienst2 25.5 2.4 6.6 34.1 21 729 1586.4 21 210 1707.6

binkar10 1 4.4 2.0 4.8 3.3 45 080 1715.7 48 835 1744.9

blend2 9.3 2.0 2.0 5.4 108 0.8 110 0.7

cap6000 0.0 – – – 1 601 3.3 1 545 3.1
dcmulti 0.0 – – – 120 2.3 120 2.5

dfn-gwin-UUM 0.0 – – – 5 897 435.1 5 918 431.6

eil33-2 0.0 – – – 484 739.8 480 734.2
enigma 5.2 2.0 9.2 14.6 27 0.5 249 0.6

fiber 0.0 – – – 16 1.1 16 1.3

fixnet6 0.0 – – – 9 2.3 9 2.2

flugpl 0.0 – – – 134 0.5 134 0.5

gesa2-o 0.0 – – – 5 1.4 5 1.5

gesa2 0.0 – – – 3 1.0 3 1.0

gesa3 0.0 – – – 11 1.4 15 1.5

gesa3 o 0.0 – – – 9 1.5 9 1.7

khb05250 0.0 – – – 4 0.5 4 0.5

l152lav 3.9 2.0 6.7 3.5 53 4.7 65 7.1

lseu 15.4 2.1 3.4 12.7 364 0.7 382 0.5
map18 0.0 – – – 103 1454.7 101 1701.6

map20 0.0 – – – 87 1129.0 91 1384.7

mas74 0.0 – – – 574 769 1389.5 574 769 1321.8
mas76 0.0 – – – 81 106 123.7 84 280 123.0

mik-250-1-100-1 0.0 – – – 290 018 1681.4 290 038 1628.3

mine-166-5 0.0 – – – 2 001 142.6 1 994 155.6

misc03 11.7 2.3 10.4 25.4 68 1.4 65 1.5

misc06 5.9 2.0 4.0 6.7 13 0.8 13 0.6

misc07 13.2 2.1 7.1 23.5 2 300 62.9 2 365 57.9

mod008 0.0 – – – 104 0.8 111 0.8
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Table 2. (continued)

cloud statistics SCIP cloud branch SCIP strong branch

instance %Succ Pts LPs %Sav Nodes Time (s) Nodes Time (s)

mod010 0.0 – – – 10 1.0 10 1.1

mod011 0.0 – – – 321 989.9 321 1069.9

modglob 0.0 – – – 299 2.9 299 2.8

neos-1109824 51.9 2.3 26.0 68.4 1 246 473.0 1 023 390.9

neos-1396125 69.4 2.2 8.3 55.1 2 714 2355.7 2 976 2653.2

neos-476283 0.0 – – – 445 887.5 323 680.2
neos-686190 3.7 2.0 9.7 4.8 1 451 540.6 2 085 774.5

noswot 86.9 2.4 16.5 74.2 337 012 957.6 210 056 869.0

ns1766074 0.0 2.1 5.5 0.1 241 641 492.3 241 801 470.2
nw04 0.0 – – – 5 54.8 5 46.4

p0033 0.0 – – – 5 0.5 5 0.5

p0201 47.0 2.3 23.2 64.6 52 2.6 51 3.0

p0282 0.0 – – – 3 0.5 3 0.5

p0548 0.0 – – – 5 0.5 5 0.5

p2756 2.6 2.0 4.0 2.5 82 1.9 146 2.0

pk1 0.1 2.8 16.4 0.6 76 569 257.8 77 616 233.1
pp08a 0.0 – – – 300 3.7 251 3.0

pp08aCUTS 0.2 2.0 2.0 0.1 213 3.2 284 4.2

qiu 10.3 2.1 10.3 17.9 14 858 1515.7 16 290 1895.5

qnet1 17.6 2.0 6.0 4.4 5 3.8 5 3.4
qnet1 o 20.0 2.0 3.8 2.8 22 9.2 22 10.3

ran16x16 4.4 2.0 2.3 2.6 28 684 1184.3 27 051 964.4

reblock67 0.0 – – – 28 052 1528.8 33 290 1773.3

rentacar 27.3 2.0 3.3 22.2 13 3.4 14 3.5

rmatr100-p10 0.1 2.0 2.0 0.0 163 952.8 164 950.2

rmatr100-p5 0.0 – – – 33 1327.1 33 1321.6

rout 32.6 2.2 11.8 46.0 1 561 79.3 1 712 85.8

set1ch 0.0 – – – 16 0.9 17 1.0

sp98ir 2.1 2.0 3.5 1.3 609 404.1 876 507.4

stein27 29.1 2.3 6.2 22.9 787 2.2 775 2.0

stein45 20.7 2.1 5.8 11.2 7 909 73.8 8 446 77.3

tanglegram2 0.0 – – – 2 27.3 2 34.3

vpm2 9.4 2.0 2.2 3.4 46 1.3 48 1.3

Table 3. Comparison of cloud branching and full strong branching on Cor@l instances,
smaller (better) numbers are bold

cloud statistics cloud branching full strong branching

instance %Succ Pts LPs %Sav Nodes Time (s) Nodes Time (s)

22433 0.0 – – – 4 1.1 4 1.2

23588 0.2 2.0 14.0 0.3 148 6.0 174 6.3

aligninq 1.8 2.0 9.0 1.1 24 20.6 32 23.1

bc1 0.0 – – – 604 132.6 616 124.0

bc 0.0 – – – 1 985 2437.7 1 985 2323.3

bienst1 31.7 2.2 6.0 39.0 2 712 151.1 2 737 172.1

bienst2 25.5 2.4 6.6 34.1 21 729 1587.7 21 210 1703.3

binkar10 1 4.4 2.0 4.8 3.3 45 080 1714.4 48 835 1744.8

dano3 3 0.0 – – – 9 235.5 9 153.3

dano3 4 0.0 – – – 4 176.7 4 177.4

haprp 0.0 – – – 20 289 1696.4 19 844 1629.9

neos-1053591 94.5 2.3 8.7 70.0 1 794 19.2 46 259 367.4

neos-1109824 51.9 2.3 26.0 68.4 1 246 482.7 1 023 390.7

neos-1120495 38.7 2.2 19.4 49.7 102 18.7 75 17.6
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Table 3. (continued)

cloud statistics cloud branching full strong branching

instance %Succ Pts LPs %Sav Nodes Time (s) Nodes Time (s)

neos-1122047 100.0 3.5 42.0 96.6 3 80.6 2 34.1

neos-1200887 86.2 2.5 13.8 63.5 981 234.4 1 465 381.7

neos-1211578 74.9 2.4 10.9 74.6 49 619 315.6 32 225 323.5

neos-1224597 98.6 6.7 631.1 95.0 70 406.8 80 864.5

neos-1228986 74.8 2.4 11.7 70.2 42 072 358.7 39 690 400.6

neos-1281048 91.8 5.8 133.8 88.1 59 49.8 80 170.7

neos-1337489 74.9 2.4 10.9 74.6 49 619 312.0 32 225 320.5

neos-1367061 0.0 – – – 16 1601.4 16 1683.2

neos-1396125 69.4 2.2 8.3 55.1 2 714 2359.8 2 976 2659.6

neos-1413153 81.8 2.9 292.5 88.6 192 219.9 462 2546.4

neos-1415183 90.9 2.6 252.4 85.7 19 6.6 56 43.6

neos-1420205 82.5 2.1 8.0 33.5 10 674 46.8 7 840 45.5

neos-1437164 74.7 2.2 11.0 47.1 80 1.8 47 1.9

neos-1440225 92.3 4.7 381.7 96.6 6 11.0 134 1387.4

neos-1440447 88.7 2.8 18.4 80.6 7 676 207.5 22 496 747.9

neos-1441553 78.0 2.3 26.0 58.1 133 16.2 215 86.7

neos-1445743 0.0 – – – 2 101.1 2 64.4

neos-1445755 5.0 2.0 4.0 16.7 3 75.0 3 57.6

neos-1445765 1.6 2.0 2.0 0.3 5 374.9 5 236.2

neos-1460265 99.8 4.0 216.2 80.2 6 997 1354.8 1 125 540.5

neos-1480121 23.0 2.0 3.5 25.0 1 288 3.3 1 961 4.0

neos-1489999 0.0 – – – 21 28.6 21 32.0

neos-476283 0.0 – – – 445 885.7 323 687.4

neos-480878 24.2 2.0 3.2 7.3 2 803 230.9 3 517 279.0

neos-494568 94.2 3.0 181.7 76.8 291 398.2 285 1082.3

neos-501474 48.2 2.0 4.0 46.9 158 1.3 104 0.7

neos-504674 50.5 2.0 5.9 16.6 1 256 399.7 1 230 426.9

neos-504815 35.6 2.1 6.1 16.5 510 75.4 502 83.3

neos-506422 16.2 2.1 3.7 20.9 1 451 540.7 959 337.3

neos-512201 48.7 2.0 6.0 15.5 665 175.7 436 149.2

neos-522351 0.0 – – – 3 1.1 3 1.0

neos-525149 55.3 3.0 88.7 45.8 46 17.9 187 193.4

neos-530627 0.0 – – – 2 0.5 2 0.5

neos-538867 72.8 3.0 21.4 76.2 6 697 318.1 4 358 208.9

neos-538916 77.5 3.2 23.9 77.4 4 642 371.5 3 496 294.6

neos-544324 99.9 2.0 15.2 92.3 7 301.4 7 149.9

neos-547911 90.0 2.1 10.8 85.1 30 244.3 30 184.5

neos-555694 71.3 2.6 98.6 69.9 65 36.5 177 301.7

neos-555771 92.7 2.4 107.7 80.2 32 17.8 70 72.4

neos-570431 71.0 2.0 8.1 59.4 60 290.2 76 314.7

neos-584851 47.0 2.1 20.0 60.3 56 778.1 38 840.5

neos-585192 0.0 – – – 333 40.1 345 40.6

neos-585467 1.2 2.0 12.0 1.4 125 10.6 133 10.7

neos-593853 0.0 – – – 10 157 52.4 12 204 56.0

neos-595905 0.0 – – – 418 25.2 473 29.5

neos-595925 0.0 – – – 1 166 51.6 1 189 51.8

neos-598183 0.0 – – – 488 6.8 486 7.1

neos-611838 0.0 – – – 193 89.5 193 94.0

neos-612125 0.0 – – – 92 47.1 92 50.3

neos-612143 0.0 – – – 130 55.1 128 59.7

neos-612162 0.0 – – – 122 74.6 126 80.3

neos-631694 93.9 2.9 56.8 49.5 94 57.3 101 93.6

neos-686190 3.7 2.0 9.7 4.8 1 451 537.9 2 085 776.4

neos-709469 12.5 2.3 22.4 58.6 1 608 3.5 28 1.6

neos-717614 0.0 – – – 1 059 65.9 1 061 65.3

neos-775946 95.4 2.8 93.4 81.3 234 140.6 413 343.6

neos-785899 93.0 2.8 94.2 77.7 179 130.7 266 247.6
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Table 3. (continued)

cloud statistics cloud branching full strong branching

instance %Succ Pts LPs %Sav Nodes Time (s) Nodes Time (s)

neos-785914 83.8 3.4 135.0 92.0 109 123.4 20 296.6

neos-801834 0.0 – – – 11 841.5 11 817.6

neos-803219 0.1 2.0 2.0 0.0 4 131 72.8 4 231 70.9

neos-803220 0.0 – – – 18 713 179.3 17 175 166.5

neos-806323 28.1 2.0 2.7 11.0 3 258 137.6 3 645 142.6

neos-807639 4.1 2.0 2.6 3.1 1 130 18.6 1 120 17.2

neos-807705 20.3 2.0 2.2 6.3 2 373 88.3 2 241 80.0

neos-808072 72.1 2.3 32.3 51.7 43 379.0 90 1905.3

neos-810326 34.9 2.0 4.0 6.2 267 2394.3 266 2431.7

neos-820879 45.1 2.0 3.8 9.6 127 281.1 114 210.3

neos-825075 84.6 3.9 60.0 80.5 18 3.0 49 7.8

neos-839859 0.1 2.0 12.0 0.1 1 084 773.1 1 628 938.6

neos-862348 35.8 2.1 19.8 21.9 99 33.9 70 38.4

neos-863472 32.8 2.2 15.6 63.2 88 330 2330.9 68 169 2264.0

neos-880324 62.8 2.4 22.2 78.7 62 1.8 15 1.0

neos-892255 100.0 2.5 278.6 97.3 8 720.1 5 1590.8

neos-906865 0.0 – – – 7 079 462.4 7 065 453.8

neos-912015 93.2 5.1 130.8 94.2 791 473.3 209 322.1

neos-916173 0.0 – – – 1 497 390.2 1 478 392.0

neos-933550 83.3 8.4 638.8 96.6 5 10.1 25 58.2

neos-933815 47.7 2.0 5.7 32.3 61 797 801.5 55 797 661.4

neos-934531 99.3 3.4 89.8 96.1 27 293.0 51 1432.9

neos-941698 97.7 6.1 357.2 95.8 19 14.2 44 70.5

neos-942323 99.7 4.0 187.8 97.7 189 64.0 2 205 1240.4

neos-955215 68.4 2.1 9.1 53.0 7 574 61.3 6 593 52.9

neos-957270 83.1 2.8 159.9 89.0 14 471.3 17 228.4

nsa 0.0 – – – 258 2.8 258 3.0

nug08 0.0 – – – 3 24.9 3 23.2

prod1 0.0 2.0 8.0 0.0 4 053 33.8 3 820 31.4

prod2 0.0 – – – 25 200 361.6 25 227 354.0

qap10 33.3 2.0 2.0 40.0 2 177.3 2 157.3

sp98ir 2.1 2.0 3.5 1.3 609 403.5 876 503.2

Test3 0.0 – – – 10 8.0 10 8.0
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Abstract. Many real life problems come from uncertain and dynamic environ-
ments, where the initial constraints and/or domains may undergo changes. Thus, a
solution found for the problem may become invalid later. Hence, searching for ro-
bust solutions for Constraint Satisfaction Problems (CSPs) becomes an important
goal. In some cases, no knowledge about the uncertain and dynamic environment
exits or it is hard to obtain it. In this paper, we consider CSPs with discrete and
ordered domains where only limited assumptions are made commensurate with
the structure of these problems. In this context, we model a CSP as a weighted
CSP (WCSP) by assigning weights to each valid constraint tuple based on its
distance from the edge of the space of valid tuples. This distance is estimated
by a new concept introduced in this paper: coverings. Thus, the best solution for
the modeled WCSP can be considered as a robust solution for the original CSP
according to our assumptions.

Keywords: Robustness, Uncertainty, Dynamic CSPs.

1 Introduction

In many real-life situations both the original problem and the corresponding CSP model
may evolve because of the environment, or the user or other agents. In such situations, a
solution that holds for the original model can become invalid after changes in the orig-
inal problem. This solution loss can produce negative effects in the situation modeled,
which may entail serious economic loss. For example, it could cause the shutdown of
the production system, the breakage of machines, delays in transports, or the loss of the
material/object in production.

In order to deal with these situations, a number of proactive approaches that seek to
obtain robust solutions for a given problem, have been proposed. These methods rely on
knowledge about possible future changes in order to find solutions with a high proba-
bility of remaining valid when faced with these changes (see [13] for a survey). Most of
these approaches assume the existence of additional knowledge about the uncertain and
dynamic environment (see Section 3), which is often scarce or nonexistent in practice.
In this paper, we propose a proactive technique that searches for robust solutions in sit-
uations in which only limited (and intuitively reasonable) assumptions are made about
possible changes that can occur in CSPs with ordered and discrete domains: namely that
changes always take the form of restrictions at the borders of a domain or constraint.

C. Gomes and M. Sellmann (Eds.): CPAIOR 2013, LNCS 7874, pp. 44–60, 2013.
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In the simplest case, that of a domain with a single range of values, [a . . . b], this means
increasing the lower bound (a) and/or decreasing the upper bound (b).

Example 1. Figure 1 shows the solution space (continuous lines) of a CSP called P,
which is composed of two variables x0 and x1. It can be observed that P has 29 solu-
tions (black points).
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Fig. 1. Solution space of P

If no information is known about unexpected changes in the CSP, it is reasonable to as-
sume that the original constraints and/or domains undergo restrictive or relaxing mod-
ifications in the form of range restrictions or expansions, even if this does not cover
all possible changes. For instance, in Figure 1, the darkest area represents restrictive
modifications. Examples of real life problems that motivate this assumption include
scheduling problems. For example, a task may undergo a delay, and therefore, the do-
mains of the subsequent tasks must be reduced.

In this situation, since larger restrictions always include (some) smaller ones, we
will assume that values affected by larger restrictions are, in general, less likely to be
removed. This is shown in Figure 1, where solutions in the lighter area have a higher
probability of becoming invalid. Given these assumptions, the most robust solution of
a CSP with discrete and ordered domains is the solution that is located as far as pos-
sible from the bounds of the solution space and our basic strategy is to search for such
solutions. In Example 1, the most robust solution is (x0 = 5, x1 = 4).

In this paper we present a way of estimating this distance, which is based on the con-
cept of coverings. Informally, a covering represents a set of partial or complete solutions
that surround another solution and therefore it confers certain level of robustness. These
calculations can be incorporated into a WCSP model by assigning weights to the valid
tuples based on their coverings. Finally, the modeled WCSP is solved by a general
WCSP solver; the best solution is considered to be one of the most robust solutions for
the original CSP.
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Previously, some work on weighted reformulation have been reported in [2] for
Linear CSPs, and [1] for Boolean satisfiability (SAT). These approaches and the ap-
proach presented in this paper consider different robustness criterion and/or robustness
computation.

Following some technical background (Section 2) and literature review (Section 3),
the coverings framework is presented in Section 4. An algorithm for calculating cov-
erings is described in Section 5. In Section 6 our enumeration-based technique is de-
scribed; an example is given in Section 7. The experimental results obtained with our
technique are presented in Section 8. Section 9 gives conclusions.

2 Technical Background

Here, we give some basic definitions that are used in the rest of the paper, following
standard notations and definitions in the literature.

Definition 1. A Constraint Satisfaction Problem (CSP) is represented as a triple P =
〈X ,D, C〉 where X is a finite set of variables X = {x1, x2, ..., xn}, D is a set of do-
mainsD = {D1, D2, ..., Dn} such that for each variable xi ∈ X there is a set of values
that the variable can take, and C is a finite set of constraints C = {C1, C2, ..., Cm}
which restrict the values that the variables can simultaneously take. We denote by DC
the set of unary constraints associated with D.

Definition 2. A tuple t is an assignment of values to a subset of variables Xt ⊆ X .

For a subset B of Xt, the projection of t over B is denoted as t ↓B. For a variable
xi ∈ Xt, the projection of t over xi is denoted as ti. The possible tuples of Ci ∈ C are∏

xj∈var(Ci)
Dj , where var(Ci) ⊆ X . We denote the set of valid tuples of a constraint

Ci ∈ (C ∪ DC) as T (Ci).

Definition 3. The tightness of a constraint is the ratio of the number of forbidden tuples
to the number of possible tuples. Tightness is defined within the interval [0,1].

Definition 4. A Dynamic Constraint Satisfaction Problem (DynCSP) [3] is a sequence
of static CSPs 〈CSP(0), CSP(1)..., CSP(l)〉, each CSP(i) resulting from a change in
the previous one (CSP(i−1)) and representing new facts about the dynamic environ-
ment being modeled. As a result of such incremental change, the set of solutions of
each CSP(i) can potentially decrease (in which case it is considered a restriction) or
increase (in which case it is considered a relaxation).

We only analyze DynCSPs in which the solution space of each CSP(i) decreases over
CSP(i−1) (restriction) because relaxations cannot invalidate a solution found previ-
ously. As stated, our technique is applied before changes occur. Thus, it is applied to
the original CSP (CSP(0)) of the DynCSP.

Definition 5. The most robust solution of a CSP within a set of solutions is the one with
the highest likelihood of remaining a solution after changes in the CSP.
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Definition 6. A Weighted Constraint Satisfaction Problem (WCSP) is a specific sub-
class of Valued CSP (see [12]). Here, we consider a variant of WCSP, formalized in
[10]. This variant of WCSP is defined as P = 〈X ,D, C, S(W )〉, where:

– X and D are the set of variables and domains, respectively, as in standard CSPs.
– S(W ) = 〈{0, 1, ...,W},⊕, >〉 is the valuation structure, where {0, 1, ...,W} is

the set of costs bounded by the maximum cost W ∈ N+, ⊕ is the sum of costs
(∀a, b ∈ {0, 1, ...,W}, a⊕b = min{W,a+b}) and > is the standard order among
natural numbers.

– C is the set of constraints as cost functions (Ci :
∏

xj∈var(Ci)
Dj → {0, 1, ...,W}).

If a tuple t has the maximum cost W for Ci, it means that t is an invalid tuple. The
global cost of a tuple t, denoted V(t), is the sum of all the applicable costs:

V(t) =
⊕

Ci∈C,var(Ci)⊆Xt

Ci(t ↓var(Ci)) (1)

The tuple t is consistent if V(t) < W . The main objective of a WCSP is to find a
complete assignment with the minimum cost.

3 Limitations of Earlier Proactive Techniques

The majority of earlier proactive approaches use additional information about the un-
certain and dynamic environment and usually involve probabilistic methodologies.

In one example of this type, information is gathered in the form of penalties, in which
values that are no longer valid after changes in the problem are penalized [14]. On the
other hand, in the Probabilistic CSP model (PCSP) [4], there exists information asso-
ciated with each constraint, expressing its probability of existence. Other techniques
focus on the dynamism of the variables of the CSP. For instance, the Mixed CSP model
(MCSP) [5], considers the dynamism of certain uncontrollable variables that can take
on different values of their uncertain domains. The Uncertain CSP model (UCSP) is
an extension of MCSP whose main innovation is that it considers continuous domains
[18]. The Stochastic CSP model (SCSP) [15] assumes a probability distribution asso-
ciated with the uncertain domain of each uncontrollable variable. The Branching CSP
model (BCSP) considers the possible addition of variables to the current problem [6].
For each variable, there is a gain associated with an assignment.

In most of these models, a list of the possible changes or the representation of un-
certainty is required, often in the form of an associated probability distribution. As a
result, these approaches cannot be used if the required information is not known. In
many real problems, however, knowledge about possible further changes is either lim-
ited or nonexistent.

However, there is one proactive technique that does not consider detailed additional
information. In this approach, one searches for super-solutions ([8]), which are solu-
tions that can be repaired after changes occur, with minimal changes that can be speci-
fied in advance. For CSPs, the focus has been on finding (1,0)-super-solutions.
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Definition 7. A solution is a (1, 0)-super-solution if the loss of the value of one variable
at most can be repaired by assigning another value to this variable without changing
the value of any other variable ([8]).

In general, it is unusual to find (1,0)-super-solutions where all variables can be repaired.
For this reason, in [8] the author also developed a branch and bound-based algorithm
for finding solutions that are close to (1,0)-super-solutions, i.e., where the number of
repairable variables is maximized (also called maximizing the (1-0)-repairability).

4 Finding Coverings

In order to locate robust solutions, we have developed a technique for calculating cov-
erings for valid tuples. The covering of a tuple measures the protection of the tuple
against perturbations. It is based on an ‘onion topology’. A valid tuple with more lay-
ers (its distance to the bounds is higher) is presumed to have a higher probability of
remaining valid than a tuple with fewer layers. Here, a layer of a tuple is a convex hull
of valid tuples.

To the best of our knowledge, the application of the ‘onion structure’ to CSPs is
a novel idea, although it has been used in robustness for dynamic networks with tar-
geted attacks and random failures. In [9] the authors state: “Our results show that robust
networks have a novel “onion-like” topology consisting of a core of highly connected
nodes surrounded by rings of nodes with decreasing degree”.

We first introduce the concept of topology as it provides formulations about proxim-
ity relations between the elements that compose it. Subsequently, our own definitions
and the associated techniques will be explained.

4.1 Topology of the CSPs

We consider the search space of a CSP with discrete and ordered domains as a set
of n-dimensional hyperpolyhedra, where the set of valid tuples of the hyperpolyhedra
is denoted by T . There are several distance functions d(x, y) : T × T → R+ that
can be defined over each pair of tuples x and y. We will use the Chebyshev distance,
also called L∞ metric, which measures the maximum absolute differences along any
coordinate dimension of two vectors.

d(x, y)Chebyshev = max
i

(|xi − yi|) (2)

The main reason for selecting this distance metric is that it distinguishes between hyper-
cubes in n-dimensional spaces, which are analogous to squares for n = 2 (see Figure 1)
and cubes for n = 3. In particular, the corners of a cube are at the same distance from
the central point as the edges, a feature not obtained with Euclidean distance metric.
By checking areas of satisfiability inside these hypercubes, we can ensure minimum
distances to the bounds, which is used for the robustness computation (see Section 4.2).

For CSPs with symbolic domains the above definition cannot be applied unless there
is an ordering relationship between their values. In this case, a monotonic function has
to be applied in order to map the elements by preserving their order. To this end, a
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monotonic mapping function f is defined over the elements of the CSP domain: f(x) :
D → Z.

Example 2. We consider a CSP with a symbolic and ordered domain D which repre-
sents clothing sizes: {extra small, small, medium, large, extra large}. In this case, a
monotonic function that assigns greater values to the bigger clothing sizes can be de-
fined. For example, f(extrasmall) = 1, f(small) = 2, f(medium) = 3, f(large) =
4, etc.

As shown above, a CSP with discrete and ordered domains (both numeric and symbolic)
can have a metric function defined over their set of valid tuples T . Therefore, T is
a topological space, and the following topological definition presented in [16] can be
applied to CSPs:

Definition 8. A closed ball of a valid tuple t ∈ T at distance ε, is the neighborhood N
(N ⊆ T ) of t composed of {y ∈ T : d(t, y) ≤ ε}.

4.2 The Concept of Coverings

As stated earlier, the core of an ‘onion structure’ is the most robust part of the structure,
since the surrounding layers protect it against perturbations. The same is true for the
solutions of a CSP: the further away a solution is from the bounds of the solution space,
the more robust the solution is. In order to determine how far a valid tuple is from the
bounds, we analyze its coverings (‘onion layers’).

Definition 9. We define the k-covering(t) of a valid tuple t ∈ T as its neighborhood
{y ∈ T : y 	= t ∧ d(t, y)Chebyshev ≤ k}, where k ∈ N.

From Definition 9 the following property can be deduced: k-covering(t)⊇(k-1)-
covering(t).

Definition 10. |k-covering(t)| denotes the number of valid tuples inside k-covering(t),
without including t.

Definition 11. maxTup(k, |t|) denotes the maximum number of tuples that can make
up a k-covering(t) (without including t) in a CSP with discrete and ordered domains,
where k is the k-covering and |t| represents the arity of t.

maxTup(k, |t|) = (2k + 1)|t| − 1 (3)

Definition 12. A k-covering(t) is complete if |k-covering(t)| = maxTup(k, |t|).

If k-covering(t) is complete, it means that t is located at a distance of at least k from the
bounds, because inside the k-covering(t) all the tuples are valid. On the other hand, if
at least one invalid tuple is inside of the k-covering(t), the unsatisfiability space is not
completely outside of k-covering(t) and the minimum distance of t from the bounds of
the solution space is the distance to the closest invalid tuple. Note that if at least one
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of the closest neighbours of t is invalid, it means that t is located on a bound of the
solution space.

If there are several tuples with the same number of complete coverings, are they
equally robust? The answer is obtained by calculating the number of valid tuples in the
minimum incomplete covering (the minimal covering beyond the maximum complete
covering). Considering the ‘onion topology’, if there are holes in an ‘onion layer’, it is
preferable that they be as small as possible.

In Figure 1 (see Example 1) the 1-covering(t) (darkest area) and 2-covering(t) (biggest
square) for t = (x0 = 5, x1 = 4) are represented with dashed lines. We can see that the
1-covering(t) is complete because |1-covering(t)| =maxTup(1,|t|)= 8. However, the
2-covering(t) is not complete because maxTup(2, |t|) = 24 and |2-covering(t)| = 20.
Thus, we can only ensure that (x0 = 5, x1 = 4) is located at a distance of at least 1 from
the bounds (it has only one completed layer). Note that some bounds of the solution
space are located inside the 2-covering(t).

5 Algorithm for Calculating Coverings

To search for a solution located as far as possible from the bounds of the solution space
(core of the ‘onion’), we must implicitly or explicitly examine the entire solution space
of the CSP, which is an NP-complete problem. Our method of search is based on the
coverings for each valid tuple of each constraint and domain of the CSP. In this section
we present an algorithm for calculating this set of coverings.

5.1 Algorithm Description

Algorithm 1 calculates the coverings of the valid tuples, after first carrying out a global
arc-consistency (GAC) process (line 1). In this preliminary step, it searches for a support
of each domain value in order to detect tuples that are not globally consistent. For this
purpose, we have implemented the well known GAC3 ([11]), but other consistency
techniques could be applied. For calculating coverings, Algorithm 1 begins with k = 1
(1-covering(t)), increasing this value by one unit in each iteration until the maximum
covering of a CSP is reached (or, optionally, a lower bound U ). In each iteration, ∀t ∈
T (Ci), ∀Ci ∈ (C ∪ DC), k-covering(t) is computed, iff k = 1 or (k-1)-covering(t) is
complete (see Definition 12).

Definition 13. The maximum covering of a CSP is denoted as max-covering(CSP) and
it is reached when there is no tuple whose k-covering is complete for some Ci ∈
(C ∪ DC).

Furthermore, if the user desires to obtain a lower k-covering(t), she/he can optionally
fix a lower bound U . In this case, the algorithm stops after calculating min(U , max-
covering(CSP )).

Definition 14. We define last-covering(t) to be the last k-covering(t) computed by the
algorithm for the tuple t. The value of ‘last’ in last-covering(t) term is equal to min(U ,
max-covering(CSP ), (k+ 1)), if k-covering(t) is the greatest completed covering of t.
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Algorithm 1 returns the size of last-covering(t) computed for each valid tuple t of each
constraint and domain of the CSP. Thus, it gives a measure of robustness for each con-
straint. In addition, the value of max-covering(CSP ) is returned (unless U is provided).
The algorithm stores the number of valid tuples whose k-covering(t) is complete for
each Ci in kC[i], which is checked in line 11. Thus, it can check whether the current
analyzed covering is max-covering(CSP ).

Since k-covering(t) ⊇ (k-1)-covering(t), the algorithm only analyzes the new pos-
sible neighbors of t, which are the neighbors that belong to it but do not belong to
(k-1)-covering(t) (the neighbors that are in the k ‘onion layer’). This is due to the fact
that the neighbors of the lower coverings have already been calculated in previous iter-
ations and stored in last-covering(t).

Algorithm 1. calculateCoverings (CSP P )
Data: A CSP P = 〈X ,D, C〉 and U (optional)
Result: |last-covering(t)| ∀t ∈ T (Ci)∀Ci ∈ (C ∪ DC) and max-covering(P )
GAC3(P);1

foreach Ci ∈ (C ∪ DC) do2
k ← 1;
max-covering(P ) ← ∞;3

T (Ci) ← Ordered list of valid tuples of Ci;
foreach t ∈ T (Ci) do4

|last-covering(t)| ← 0;

repeat5

foreach Ci ∈ (C ∪ DC) do6
kC[i] ← 0;
foreach t ∈ T (Ci) do7

foreach {y ∈ T (Ci): y < t ∧ d(t1, y1)Chebyshev ≤ k } do8

if isNewNeighbor(k,t,y) then9
addNeighbor(k,|last-covering(t)|,t);
addNeighbor(k,|last-covering(y)|,y);
if isComplete(k,|last-covering(y)|,|y|) then10

kC[i] = kC[i] + 1;

if kC[i] = 0 then11
max-covering(P )= k;

k ← k + 1;
until k >max-covering(P ) ;
return |last-coverings|, max-covering(P) (unless U is provided)

Firstly, Algorithm 1 initializes some necessary structures (see loop beginning on line
2). Then the sets of valid tuples T (Ci) of each constraint Ci ∈ (C ∪ DC) are ordered
by the value of the first variable of the valid tuples. In this way, a tuple a can only be
located in a lower position than a tuple b if a1 ≤ b1 (considering that the subindex 1
indicates the first variable that makes up the tuple). Thus, the tuples whose first variable
has the minimum possible value will be placed in the lowest positions. For expressing
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Procedure isNewNeighbor(k,t,y) : Boolean
equalDist ← 0;
for i ← 1 to |t| do1

if d(ti, yi)Chebyshev > k then2
return False

if d(ti, yi)Chebyshev = k then3
equalDist = equalDist + 1;

if equalDist > 0 then4
return True

else5
return False

Procedure isComplete(k,|last-covering(t)|,|t|) : Boolean

maxTup(k, |t|) := (2k + 1)|t|-1;
if |last-covering(t)| ≥ maxTup(k, |t|) then1

return True
else2

return False

the order of the tuples, we use the notation a < b, which means that the tuple a is
located in a lower position than b in the list of ordered tuples.

The implementation of an algorithm for calculating coverings does not strictly re-
quire an ordered list of T (Ci), but this ordering allows for a reduction in computation
time, because it avoids checking a pair of tuples twice. This temporal benefit is achieved
by selecting a reduced subset of possible neighbors of each valid tuple t ∈ T (Ci)
which are located in a lower position of t. If we do not select this reduced set, the
algorithm must check all the valid tuples for each valid tuple. The reduced set is a
subset composed of the valid tuples that are ordered in a lower position than t in the
ordered list of T (Ci) and whose difference between the value of their first variable
with respect to t is lower or equal to k. Thus, the reduced set of t is composed of
y ∈ T (Ci) : y < t ∧ d(t1, y1)Chebyshev ≤ k (line 8).

The procedure isNewNeighbor checks if a valid tuple y is a new neighbor in k-
covering(t). This condition is determined by checking that at least one of the variables
of y has a value difference of k with respect to t (line 3) and the rest of the variables
have a value difference lower or equal to k (line 2). The procedure isComplete
determines if a k-covering(t) is complete. Firstly, it calculates the maximum number
of tuples of k-covering(t): maxTup(k, |t|) (see Equation 3). Subsequently, it checks if
|last-covering(t)| is equal to maxTup(k, |t|).

The procedure addNeighbor adds 1 to |last-covering(t)| iff k = 1 or (k-1)-
covering(t) is complete. Algorithm 1 calls the procedure addNeighbor twice with
two different tuples: t and y (y is a valid tuple of the reduced set of t) iff y is a new
neighbor of k-covering(t) (line 10). With this process a new neighbor can be added to
the last-coverings of two different tuples by doing only one check, which allows further
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Procedure addNeighbor(k,|last-covering(t)|,t)
if k = 1 or isComplete(k− 1,|last-covering(t)|,|t|) then1

|last-covering(t)| ← |last-covering(t)| + 1;

reduction in computation time. Later, the algorithm checks if k-covering(y) is complete
(line 11). Checking the completeness of k-covering(t) is not necessary yet since there
are possible new neighbors of k-covering(t) that are ordered in higher positions than k
and therefore have not been analyzed yet. They will be analyzed when the tuple t will
be an element of their reduced set.

As mentioned previously, Algorithm 1 does not compute k-covering(t) if (k-1)-
covering(t) is not complete. However, this restriction could be deleted by skipping the
completeness check of the coverings (developed by the isComplete procedure). In
this case, we cannot use the principle of minimum distance from the constraint (see
Section 4.2). In this paper, this principle is necessary because the objective is to find
solutions located far away from the constraint boundaries. Nevertheless, the coverings
computation does not require the completeness property. Thus, both the covering con-
cepts for CSPs and Algorithm 1 (with the modification discussed above) can be also
applied to other areas that do not require this property.

6 Modeling Robustness in a CSP as a WCSP

In this section we introduce an enumeration-based technique for modeling a CSP as a
WCSP. The intention is to obtain a CSP model based on the |last-coverings| of the solu-
tions of all the constraints. As argued earlier, |last-covering(s ↓var(Ci))| for a solution s
is a reasonable measure of its robustness for Ci, and it is moreover reasonable to use the
sum of |last-covering(s ↓var(Ci))| for each Ci ∈ (C ∪ DC) as an approximation of the
robustness of s for the CSP. The WCSP model is based on the assumption that the sum
of the costs assigned to the tuples of each constraint determines how good a solution
is for the WCSP. Thus, we model a CSP as a WCSP after obtaining its |last-coverings|
with Algorithm 1.

Although there are other valued CSPs that could conceivably be used to model ro-
bustness, these models either involve operations that are questionable (e.g. probabilistic
CSP, where valuations based on |last-coverings| would be multiplied) or are insuffi-
ciently discriminating (e.g. fuzzy CSP). In addition, the WCSP model adequately in-
corporates the enumeration aspect of coverings, unlike the other valued CSP models.

The modeling process begins by assigning a cost to each valid tuple t involved in
each constraint, which represents its penalty as a function of its |last-covering(t)|. Tu-
ples with the highest last-covering for Ci will have the lowest associated cost, because
this value indicates the minimum distance of t from the bounds of Ci. As already noted,
the latter can be taken as a measure of its robustness, because it is resistant to more pos-
sible changes over the constraint.
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Definition 15. We define max-|last-covering(Ci)|=max{|last-covering(t)|,∀t ∈ T (Ci)}.

The penalty of a valid tuple t for a constraint Ci without considering the rest of the
constraints of the CSP is denoted as pi(t) (see Equation 4).

pi(t) = max-|last-covering(Ci)| − |last-covering(t)| (4)

However, this is not the final cost assigned to t. We must normalize the penalties of
each Ci with respect to the other constraints, because the maximum possible size of the
coverings depends on the arity of the tuples (see Equation 3). Otherwise, constraints
with higher arities would have higher cost ranges and therefore higher penalties. In this
case, we would be assuming that these constraints have a higher likelihood of under-
going restrictive modifications, which is not necessarily true according to the limited
assumptions we are making for CSPs with discrete and ordered domains. By using a
normalization process, we can achieve the same cost range for all the constraints. To
obtain normalized scores, we use the maximum penalty assigned to the tuples of each
constraint and the maximum penalty assigned to the tuples across all constraints (e is
the number of constraints of the CSP according to Definition 1). In this way, the cost
function for the tuples of Ci assigns a normalized cost to every tuple of Ci, which is
denoted as Ci(t ↓var(Ci)) (see Equation 5).

Ci(t ↓var(Ci)) =

⎧⎪⎨⎪⎩
0 if t ∈ T (Ci) and pi(t) = 0⌊

pi(t)∗max{pj(x),∀j∈[1...e]∀x∈T (Cj)}
max{pi(y),∀y∈T (Ci)}

⌋
if t ∈ T (Ci) and pi(t) 	= 0

W, (W ≈ ∞) if t /∈ T (Ci)
(5)

In line with the version of WCSP that we are using, Ci(t ↓var(Ci)) assigns a cost of
W to each tuple t that does not satisfy the constraint Ci because it is not a partial
solution. Note that for valid tuples Ci(t ↓var(Ci)) ∈ [0,max{pj(x), ∀j ∈ [1 . . . e]∀x ∈
T (Cj)}]. A valid tuple t whose |last-covering(t)| = max-|last-covering(Ci)| (pi(t) =
0) has an associated cost of 0. This tuple is not penalized because it has the highest
likelihood of remaining valid when faced with future changes in Ci. On the other hand,
if |last-covering(t)| = 0 for Ci, which means that t does not have any neighbour in
its 1-covering(t) (t is completely non-robust for Ci), t has the maximum possible cost
associated: max{pj(x), ∀j ∈ [1 . . . e]∀x ∈ T (Cj)}.

Once the costs have been assigned, the WCSP is generated and solved using a WCSP
solver. The solutions obtained for the modeled WCSP are also solutions of the original
CSP. In addition, the best solution s with the minimum V(s) (see Equation 1) is taken
to be one of the most robust solutions for the original CSP.

7 Example

In order to clarify the covering concepts, we present an example with three variables
(3-dimensional hyperpolyhedron CSP). We have modeled this problem as well as the
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problems presented in Section 8 as WCSPs by following the WCSP file format1. In
addition, ToulBar22 has been used for solving the resultant WCSPs.

Example 3. Figure 2 shows a CSP R, which is composed of variables x0, x1 and x2 with
domain D : {0, 1, 2}. There are three extensional constraints: C0 (3-ary), C1 and C2

(binary constraints) (Figures 2(a), 2(b) and 2(c), respectively). The valid tuples of the
constraints and domains are represented with points; the invalid tuples are represented
with crosses. Figure 2(d) shows the solutions of R ordered by their relative robustness,
as assessed by our technique for calculating coverings.
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Fig. 2. Example of the 3-dimensional CSP R

Table 1 shows the solutions of the CSP R in decreasing order of robustness (si). This
order is inversely proportional to the V(s) obtained after solving the modeled WCSP.

1 http://graphmod.ics.uci.edu/group/WCSP_file_format
2 http://carlit.toulouse.inra.fr/cgi-bin/awki.cgi/ToolBarIntro

http://graphmod.ics.uci.edu/group/WCSP_file_format
http://carlit.toulouse.inra.fr/cgi-bin/awki.cgi/ToolBarIntro
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In addition, we present |last-covering(s)| for the solution space of R. Note that its cal-
culation is viable because we are analyzing a toy problem. As expected, the robustness
results obtained match with the |last-coverings| order in the solution space: the solu-
tions with higher |last-coverings| in the solution space are identified as more robust by
our technique (see the highlighted columns in Table 1).

Table 1 also shows the costs assigned by the constraints (Ci) and domains (Xi),
whose sum is V(s) (see Equation 1). To clarify the process of cost assignment, we
explain one case, C0(s2), in detail. Taking into account that max-covering(R)= 1, the
penalty for s2 = (1, 1, 2) (before the normalization process) is p0(s2) = 23 − 15 =
8 (see Equation 4), since max-|last-covering(C0)| = 23 (|last-covering((1, 1, 1))| =
23 for C0, which is the maximum for C0) and |last-covering(s2)| = 15 for C0. The
associated cost (considering the normalization) is: C0(s2) = � 8∗1818 � = 8 (see Equation
5). Because max{p0(y), ∀y ∈ T (C0)} = 18 (p0((0, 2, 0)) = 23 − 5 = 18) and this
cost is also the maximum penalization for R, since max{pj(x), ∀j ∈ [1 . . . e]∀x ∈
T (Cj)} = 18.

Table 1. Solutions ordered by their robustness

si s = (x0, x1, x2) |last-covering(s)| V(s) X0(s) X1(s) X2(s) C0(s) C1(s) C2(s)

1 (1,1,1) 10 0 0 0 0 0 0 0
2 (1,1,2) 6 35 0 0 18 8 0 9
3 (1,0,1) 6 36 0 18 0 9 9 0
4 (0,1,2) 6 67 18 0 18 13 9 0
5 (0,2,1) 6 67 18 18 0 14 13 4
6 (1,0,2) 4 68 0 18 18 14 9 9
7 (0,1,0) 4 72 18 0 18 14 9 13
8 (0,2,2) 4 93 18 18 18 17 13 9
9 (0,2,0) 3 98 18 18 18 18 13 13
10 (2,0,0) 2 102 18 18 18 17 13 18
11 (2,2,0) 1 107 18 18 18 17 18 18

The best solution found is the solution s1 = (x0 = 1, x1 = 1, x2 = 1) and its
|last-covering(s1)| = 10 in the solution space, which is the highest for R (see Fig-
ure 2(d)). As previously mentioned, the solution s with the highest |last-covering(s)|
in the solution space, has the highest likelihood of remaining valid faced with future
possible restrictive modifications over the bounds of the solution space. Therefore, it
is considered the most robust solution for the original CSP. In contrast, the solution
s11 = (x0 = 2, x1 = 2, x2 = 0) is classified by our technique as the least robust solu-
tion. Note that s11 only has one neighbor in the solution space (see Figure 2(d)).

8 Experimental Results

In this section, we present results from experiments designed to evaluate the behaviour
of our technique for calculating coverings. To the best of our knowledge, there are
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no benchmarks of DynCSPs (see Definition 4) in the literature, so we generated 500
DynCSPs composed of l+1 static CSPs: 〈CSP(0), CSP(1), ..., CSP(l)〉, whereCSP(0)

is generated randomly by RBGenerator 2.0 3 and eachCSP(i) is derived fromCSP(i−1)

by making a restrictive modification in some bound (constraint or domain). Thus, an in-
valid tuple located next to any bound is selected randomly and all the tuples surrounding
it to a distance of 1 are invalidated. Thus, only valid tuples located on a bound became
invalid. Thus, l indicates the number of restrictive changes that the solution was able to
resist, and can be considered a measure of the robustness of the solutions. In order to
select equally constraints and domains, we have selected them based on their relative
frequency. All tests were executed on a Intel Core i5-650 Processor (3.20 Ghz).

In addition to assessing our technique for max-covering(CSP ), we analyzed the ro-
bustness of solutions obtained with the proactive technique for maximizing the number
of repairable variables for (1,0)-super-solutions by using Branch and Bound and MAC+
algorithms ([8]) and fixing the cutoff to 200 seconds. The main reason for choosing this
technique for comparison is that, like our technique, it does not require specific addi-
tional information about the future possible changes. In addition, a solution calculated
by an ordinary CSP solver has been computed to determine if there are cases in which
all solutions have similar robustness. For both techniques, values were selected in lex-
icographical order. Note that neither of these techniques searches for robust solutions
in the same way that our technique does, nor are they based on the same assumptions
regarding changes that are inherent in the structure of CSPs with discrete and ordered
domains.

Figure 3 shows a robustness analysis when tightness of the constraints is varied.
The measure on the left vertical axis is the number of supported changes (both means
(continuous lines) and standard deviations are shown in the figure), while the right
vertical axis shows the modeling time required by our technique (dashed line). We can
observe that with the exception of very highly restricted intances, the mean number of
changes before solution breakage for solutions obtained by the k-covering technique is
significantly higher than the means obtained with the other two solutions. For instances
that are very highly restricted, the number of changes allowed by solutions obtained
by the three methods is similar. This is because for this type of instances, the number
of solutions is so low that the solutions are scattered within the tuple-space, so the
likelihood of a solution being located on the bounds of the solution space is very high.
For instance, for the maximum tightness evaluated (0.9), there are only 5 solutions.
Even in this case the k-covering algorithm was able to find solutions that remained
valid for a few more changes than the solutions found by the other algorithms.

All of the experimental results were evaluated statistically, first with a two-factor
Analysis of Variance (ANOVA), followed by the Tukey HSD test for differences be-
tween pairs of individual means ([7, 17]). The ANOVA gave F values that were highly
significant statistically. Given the small values for HSD (about 0.1 and 0.08), nearly all
differences between individual means were statistically significant for p = 0.01. Fur-
ther tests have been done with the other CSP parameters (number of variables, domain
size, constraint graph density and constraint arity), and we have obtained the same gen-
eral results: solutions found with our technique remained valid for a greater number

3 http://www.cril.univ-artois.fr/˜lecoutre

http://www.cril.univ-artois.fr/~lecoutre
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of restrictive changes than the other techniques, and the difference is marked when the
problems are only slightly constrained CSPs.

The modeling time required by our technique is higher for slight tightness values.
This is is related to the number of valid tuples of the constraints, which it has a strong
impact in the time spent by Algorithm 1 for finding the coverings.
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Fig. 3. Robustness analysis (< arity = 2, |X | = 40, |D| = 25, |C| = 120 >)

9 Conclusions

In this paper we have extended the concept of robustness to CSPs with discrete and
ordered domains where only limited assumptions are made about the kinds of changes,
commensurate with the structure of these problems. In this context, it is reasonable to
assume that the original bounds of the solution space may undergo restrictive modifica-
tions. Therefore, the main objective in searching for robust solutions is to find solutions
located as far away as possible from these bounds.

In addition, we presented an enumeration-based technique for modeling these CSPs
as WCSPs by assigning a cost to each valid tuple of every constraint. The cost of each
valid tuple t is obtained by calculating |last-covering(t)| for the corresponding con-
straint. The obtained solution for the WCSP is a solution for the original CSP that has
a higher probability of remaining valid after changes in the original problem.

Another contribution of this paper is the framework introduced in Section 4, which
involves the novel concept of an ‘onion topology’ as applied to CSPs, as well as con-
cepts and definitions built around the idea of coverings. To the best of our knowledge,
Algorithm 1 is the first practical method for calculating coverings for CSPs.

In experimental tests we have shown that these techniques can dramatically outper-
form both ordinary CSP algorithms and algorithms that find (1,0)-super-solutions (or
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maximize the number of repairable variables in case that there does not exist a (1,0)-
super-solution) under a variety of conditions where there are real differences in the
robustness of solutions that might be obtained (when the problem is not so tight that
there are only a few valid solutions).

Acknowledgements. This work has been partially supported by the research project
TIN2010-20976-C02-01 and FPU program fellowship (Min. de Ciencia e Innovación,
Spain).
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GREYC, Université de Caen Basse-Normandie, CNRS UMR 6072, ENSICAEN
Campus II, Boulevard du Maréchal Juin
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Abstract. In this paper, we investigate the complexity of algorithms for
solving CSPs which are classically implemented in real practical solvers,
such as Forward Checking or Bactracking with Arc Consistency (RFL or
MAC).. We introduce a new parameter for measuring their complexity
and then we derive new complexity bounds. By relating the complexity
of CSP algorithms to graph-theoretical parameters, our analysis allows
us to define new tractable classes, which can be solved directly by the
usual CSP algorithms in polynomial time, and without the need to rec-
ognize the classes in advance. So, our approach allows us to propose new
tractable classes of CSPs that are naturally exploited by solvers, which
indicates new ways to explain in some cases the practical efficiency of
classical search algorithms.

1 Introduction

Constraint Satisfaction Problems (CSPs [1]) constitute an important formalism
of Artificial Intelligence (AI) for expressing and efficiently solving a wide range of
practical problems. A constraint network (or CSP, abusing words) consists of a
set of variablesX , each of which must be assigned a value in its associated (finite)
domainD, so that these assignments together satisfy a finite set C of constraints.

Deciding whether a givenCSP has a solution is an NP-complete problem. Hence
classical approaches to this problem are based on backtracking algorithms, whose
worst-case time complexity is at best of the order O(e.dn) with n the number of
variables, e the number of constraints and d the size of the largest domain. To in-
crease efficiency, such algorithms also rely on filtering techniques during search
(among other techniques, such as variable ordering heuristics). With the help of
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such techniques, despite their theoretical time complexity, algorithms such as For-
ward Checking [2] (denoted FC), RFL (for Real Full Look-ahead [3]) or MAC (for
MaintainingArcConsistency [4]) for binaryCSPs, or nFCi for non-binaryCSPs [5]
turn out to be very efficient in practice on a wide range of practical problems.

In a somewhat orthogonal direction, other works have addressed the effective-
ness of solving CSPs by defining tractable classes. A tractable class is a class
of CSPs which can be recognized, and then solved, using polynomial time algo-
rithms. Different kinds of tractable classes have been introduced. Some of them
are based on the structure of the constraint network, for instance tree-structured
networks [6] or more generally, networks of bounded width [7]. This kind of
tractable classes has shown its practical interest for benchmarks of small width
(e.g. [8]). Other studies have highlighted the interest of certain tractable classes
(e.g. [9]) but unfortunately they are very rare. This direction of research has
produced and still produces works both numerous and complex and the results
are generally difficult to establish (we can find a synthesis in [1]). Unfortunately,
most of these results remain only theoretical and thus, the question of their real
interest should be raised in the context of constraint programming.

It is not easy to cite one tractable class in the field of CSP that has shown any
interest in practice (with the exception of bounded width) and ideally allow it to
outperform the efficiency of current solvers. So, we think that it seems necessary
today to ask that question to the CPAIOR community, even if this question
could be controversial.

In our opinion, the reasons for lack of practical interest of the tractable classes
exhibited to date are based on several aspects. Firstly, the identification of a new
tractable class requires the development of ad hoc polytime algorithms: one for
the recognition of tractable instances, and one for solving them. Secondly, these
polytime algorithms are generally neither efficient in practice, and frequently, nor
in theory. And most importantly, the proposed tractable classes seem to be ar-
tificial in the sense that they do not exist in reality: real benchmarks do not be-
long to these classes, and even tractable classes only appear in small pieces of real
problems, this making them finally completely unusable. And surprisingly, most
tractable classes currently exhibited by the community seem to conceal their only
interest by their theoretical difficulty. Finally, it seems that these classes have no
interest, from a practical point of view, for the CPAIOR community. In addition,
to be efficient, solvers need to rely on simple mechanisms that can be efficiently im-
plemented. So, to integrate the use of tractable classes whose treatment would not
be in linear time seems almost useless, because their treatment would significantly
slow down the efficiency of a solver and thus make it inoperative in practice.

We do not criticize the existence of works on tractable classes, but essen-
tially the direction they take, and we propose to redirect the works in the di-
rection which seems, after several decades of works on the issue, the only one
which can be of interest to the CPAIOR community, or at least, offers the best
chance of producing useful results. So, we propose here to focus research on the
analysis of algorithms such as FC, RFL or nFCi, whose theoretical complexity is
exponential, but which are the basis of practical systems for constraint solving,
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and whose concrete results are often impressive in terms of computational time.
Their analysis could lead to identify tractable classes which could then be effi-
ciently exploited in practice, possibly with some slight modifications of solvers.
In this respect, our study is very close in spirit to the study by Rauzy about
satisfiability and the behaviour of DPLL on known tractable instances [10], and
more recently, of the works presented in [11] for CSPs of bounded structural
parameters or in [12] for β-acyclic CNFs in SAT.

We do so by reevaluating their time complexity using a new parameter, namely
the number of maximal cliques in the microstructure [13] of the instance or in the
generalized microstructure for the non-binary case. For the binary case, writing
ω#(μ(P )) for the number of maximal cliques in the microstructure of a CSP P ,
we show that the complexity of an algorithm such as FC is in O(n2d ·ω#(μ(P ))).
This provides a new perspective on the study of the efficiency of backtracking-
like algorithms, by linking it to a well-known graph-theoretical parameter. In
particular, reusing known results from graph theory, we propose some tractable
classes of CSPs. The salient feature of these classes is that they are solved in
polynomial time by general-purpose, widely used algorithms, without the need
for the algorithms to recognize the class.

The paper is organized as follows. We first introduce notations and recall
the definitions and basic properties of the microstructure. Then we present our
complexity analysis of BT, FC and RFL on binary CSPs, and we introduce the
notion of generalized microstructure to extend our study to non-binary CSPs
and to algorithms of the class nFCi. We then point at new tractable classes
issued from graph theory, which can be exploited in the field of CSPs. Finally,
we give a discussion and perspectives for future work.

2 Preliminaries

Before reviewing the classical analysis of algorithms, we recall some basic notions
about CSPs and their microstructure.

Definition 1 (CSP). A finite constraint satisfaction problem (CSP) is a triple
(X,D,C), where X = {x1, . . . , xn} is a set of variables, D = (D(x1), . . . , D(xn))
is a list of finite domains of values, one per variable, and C = {c1, . . . , ce} is
a finite set of constraints. Each constraint ci is a couple (S(ci), R(ci)), where
S(ci) = {xi1 , . . . , xik} ⊆ X is the scope of ci, and R(ci) ⊆ D(xi1 )×· · ·×D(xik)
is its relation. The arity of ci is |S(ci)|.

We will refer to a binary constraint with scope {xi, xj} by the notation cij . A
binary CSP is one in which all constraints are binary. Otherwise (general case),
the CSP is said to be n-ary. We assume that all variables appear at least in one
scope of constraint and that for a given scope, there is at most one constraint.
This is without loss of generality since two constraints over the same set of
variables can be merged into one by taking the intersection of their relations
(for the purpose of analysis).
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Definition 2 (assignment, solution). Given a CSP (X,D, C), an assign-
ment of values to Y ⊆ X is a set of pairs t = {(xi, vi) | xi ∈ Y } (written
t = (v1, . . . , vk) when no confusion can arise), with vi ∈ D(xi) for all i. An
assignment to Y ⊆ X is said to be consistent (or a partial solution) if all con-
straints c ∈ C with scope S(c) ⊆ Y are satisfied, i.e., t[S(c)] ∈ R(c) holds with
t[S(c)] the restriction of t to S(c). A solution is a consistent assignment to X.

We consistently write n for the number of variables in a CSP, d for the cardinality
of the largest domain, e for the number of constraints, a for the maximum arity
over all constraints, and r for the number of tuples of the largest relation.

Given a CSP, the basic question is to decide whether it has a solution, which
is well-known to be NP-complete. In order to study CSPs and try to circumvent
this difficulty, various points of view can be adopted. As concerns binary CSPs,
one of them is the microstructure of an instance, that is its compatibility graph
as we define now. Intuitively, the vertices of this graph code the values, and its
edges code their compatibility.

Definition 3 (microstructure). Given a binary CSP P = (X,D,C), the mi-
crostructure of P is the undirected graph μ(P ) = (V,E) with:

– V = {(xi, vi) : xi ∈ X, vi ∈ D(xi)},
– E = { {(xi, vi), (xj , vj)} | i 	= j, cij /∈ C or (vi, vj) ∈ R(cij)}

In words, the microstructure of a binary CSP P contains an edge for all pairs
of vertices, except for vertices coming from the same domain and for vertices
corresponding to pairs which are forbidden by some constraint. It can easily be
seen that the microstructure of a CSP is an n-partite graph, since there is no
edge connecting vertices issued from the same domain. In this paper, we will
study the complexity of CSP algorithms through cliques in the microstructure.

Definition 4 (clique). A complete graph is a simple graph in which every pair
of distinct vertices is connected by an edge. A k-clique in an undirected graph is
a subset of k vertices inducing a complete subgraph (all the vertices are pairwise
adjacent). A maximal clique is a clique which is not a proper subset of another
clique. We write ω#(G) for the number of maximal cliques in a graph G.

The following result follows directly from the fact that in a microstructure, the
vertices of a clique correspond to compatible values which are by construction
issued from different domains.

Proposition 1. Given a binary CSP P and its microstructure μ(P ), an assign-
ment (v1, ..., vn) to X is a solution of P iff {(x1, v1), ..., (xn, vn)} is an n-clique
of μ(P ).

It can be seen that the transformation of a CSP P to its microstructure μ(P )
can be realized in polynomial time. A polynomial reduction directly follows, from
the problem of deciding whether a given CSP has a solution, to the problem of
deciding whether a given undirected graph has a clique of a given size (the
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famous “clique problem”). This transformation has first been exploited by [13],
who proposed tractable classes of CSPs based on known tractable classes for
the maximal clique problem (chordal graphs [14]). A similar approach has been
taken for hybrid tractable classes [15,16].

Backtracking Algorithms. We now briefly review the complexity of algorithms
of interest here: BT, FC, RFL and MAC for both binary and non-binary CSPs.
These algorithms essentially cover all the approaches which use backtracking
and lookahead (variable and value ordering left apart).

The Backtracking algorithm (BT, a.k.a. Chronological Backtracking) is a re-
cursive enumeration procedure. It starts with an empty assignment and in the
general case, given a current partial solution (v1, v2, . . . , vi), it chooses a new vari-
able xi+1 and tries to assign values of D(xi+1) to xi+1. The only check performed
while doing so is that the resulting assignment (v1, v2, . . . , vi, vi+1) is consistent.
In the affirmative, BT continues with this new partial solution to a new unas-
signed variable (called a future variable). Otherwise (if (v1, v2, . . . , vi, vi+1) is
not consistent), BT tries another value from D(xi+1). If there is no such unex-
plored value, BT is in a dead-end, and then it uninstantiates xi (it performs a
backtrack). It is easily seen that the search performed by BT corresponds to a
depth-first traversal of a semantic tree called the search tree, whose root is an
empty tuple, while the nodes at the ith level are i-tuples which represent the
assignments of the variables along the corresponding path in the tree. Nodes in
this tree which correspond to partial solutions are called consistent nodes, while
other nodes are called inconsistent nodes. The number of nodes in the search
tree is at most Σ0≤i≤nd

i = dn+1−1
d−1 , hence it is in O(dn). So, the complexity of

BT can be bounded by the number of nodes multiplied by the cost at each node.
Assuming that a constraint check can be achieved in O(a), the complexity of
BT is O(e.a.dn).

BT can be considered as a generic algorithm. Algorithms based on BT and
used in practice perform some extra work at each node in the search tree, namely,
they remove inconsistent values from the domain of future variables (filtering).
For binary CSPs, FC removes values inconsistent with the current assignment,
and RFL moreover enforces full arc-consistency (AC) on the future variables.
The complexity of FC can be bounded by O(ndn). Using an O(ed2) algorithm
for achieving AC, the complexity of RFL is in O(ed2dn−1) = O(edn+1). For n-
ary CSPs, the algorithms of the class nFCi(i = 0, 1 . . .5) cover the partial and
total enforcement of generalized arc consistency (GAC) on a subset of constraints
involving both assigned variables and future variables. In each case, the filtering
is achieved after each variable assignment. So, the complexity of nFCi depends
on the cost of the filtering. Hence, for nFC5 which achieves the most powerful
filtering, the complexity is in O(eardn). It is the same if we consider the non-
binary version of RFL which maintains GAC at each node. In the following, we
denote by nBT and nRFL the non-binary versions of BT and RFL.

The algorithm M(G)AC (for Maintaining (Generalized) Arc-Consistency)
is slightly different from previous algorithms. Assume that an assignment
(xi+1, vi+1) (called a positive decision) produces a dead-end. After returning
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to the current assignment (v1, v2, . . . vi), and before assigning a new value to
xi+1, the value vi+1 is deleted from the domain D(xi+1), and a (G)AC filtering
is realized. All the domains of future variables can be impacted by this filter-
ing. This process is called refutation of value xi+1, and can be understood as
extending the current partial solution (v1, v2, . . . , vi) with the “negative” child
(xi+1,¬vi+1) (called a negative decision), then enforcing arc-consistency, which
can end up in a dead end or in further exploration.

Hence the structure and the size of a MAC search tree are different from
previous algorithms. First, it is a binary tree verifying particular properties. Each
branch of the search tree corresponds to a set of decisions Δ = {δ1, . . . , δi} where
each δj may be a positive or negative decision. Given an internal node, a negative
decision (xi+1,¬vi+1) is produced only after a dead-end has occurred with the
positive decision (xi+1, vi+1). Thus, the number of nodes issued from a negative
decision is at most the number of nodes issued from standard assignments. Hence
for MAC, the number of nodes in the search tree is at most 2 × Σ0≤i≤n−1d

i =
2 dn−1

d−1 ∈ O(dn−1). Since the cost associated to a node is bounded by the cost of

the AC filtering O(ed2), the worst-case complexity of MAC is the same as for
RFL, that is O(edn+1).

We note here that algorithms (n)BT, FC, nFCi, (n)RFL, or M(G)AC may
use a dynamic variable ordering, that is, which variable (xi+1) to explore next
can typically be decided on each assignment.

3 New Complexity Analysis for Binary CSPs

We now come to the heart of our contribution, namely, a complexity analysis of
classical algorithms in terms of parameters related to the microstructure. In the
following, we say that a node of the search tree is a maximally deep consistent
node if it is consistent and has no consistent child node (on the next variable
in the ordering). Hence, such a node corresponds either to a solution, or to a
partial solution which cannot be consistently extended to the next variable. The
following result is central to our study.

Proposition 2. Given a binary CSP P = (X,D,C), there is an injective map-
ping from the maximally deep consistent nodes explored by BT onto the maximal
cliques in μ(P ).

Proof: Let (v1, v2, . . . , vi) be a maximally deep consistent node explored by
BT. By definition, (v1, v2, . . . , vi) is a partial solution, hence for all 1 ≤ j, k ≤
i, either there is no constraint cjk in C with scope {xj , xk}, or (vj , vk) is in
the relation R(cjk). In both cases {(xj , vj), (xk, vk)} is an edge in μ(P ). Hence
{(x1, v1), . . . , (xi, vi)} is a clique in μ(P ) and hence, is included in some maximal
clique of μ(P ). Write Cl(v1, v2, . . . , vi) for an arbitrary one.

We now show that Cl forms an injective mapping from maximally deep con-
sistent nodes to maximal cliques. By construction of BT, if (v1, v2, . . . , vi) and
(v′1, v′2, . . . , v′i′) are two maximally deep nodes explored, then they must differ
on the value of at least one variable. Precisely, they must differ at least at the
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point where the corresponding paths split in the search tree, corresponding to
some variable xj assigned to some value on one path, and to some other value
on the other one1. Since there are no edges in μ(P ) connecting two values of the
same variable, there cannot be a maximal clique containing both (v1, v2, . . . , vi)
and (v′1, v

′
2, . . . , v

′
i′), hence Cl is injective. �

Using this proposition, we can easily bound the number of nodes in a search
tree induced by a backtracking search, and its time complexity, in terms of
the microstructure. As is common, we assume that a constraint check (deciding
(vi, vj) ∈ R(cij)) requires constant time.

Proposition 3. The number of nodes NBT (P ) in the search tree developed by
BT for solving a given binary CSP P = (X,D,C), satisfies NBT (P ) ≤ nd ·
ω#(μ(P )). Its time complexity is in O(n2d · ω#(μ(P ))).

Proof: First consider the number of consistent nodes. Because any node in the
search tree is at depth at most n and the path from the root to a consistent
node contains only consistent nodes, as a direct corollary of Proposition 2 we
obtain that the search tree contains at most n ·ω#(μ(P )) consistent nodes. Now
by definition of BT, a consistent node has at most d children (one per candidate
value for the next variable), and inconsistent nodes have none. It follows that
the search tree has at most nd · ω#(μ(P )) nodes of any kind.

The time complexity follows directly, since each node corresponds to extending
the current partial assignment to one more variable (xi+1), which involves at
most one constraint check per other variable (check cj(i+1) for each xj already
assigned). �

It can be seen that in the statement of Proposition 3 and in the forthcoming
ones, the number of maximal cliques ω#(μ(P )) could be replaced by the number
of maximal cliques of size at most n − 1. This is because as soon as a path is
explored which is contained in an n-clique, that is, in a solution, no backtracking
will occur further than this path.

We now turn to forward checking and RFL. Clearly enough, Proposition 2
also holds for both. The number of nodes explored follows from the fact that
only consistent nodes are explored. The time complexity follows from the fact
that at most n future domains are filtered by FC, and AC is enforced in time
O(ed2) by RFL.

Proposition 4. The number of nodes NFC(P ) in the search tree developed by
FC or by RFL for solving a given CSP P = (X,D,C), satisfies NFC(P ) ≤
n · ω#(μ(P )). The time complexity of FC is in O(n2d · ω#(μ(P ))), and that of
RFL is in O(ned2 · ω#(μ(P ))).

Regarding MAC, unfortunately, the existence of negative decisions in the tree
search makes that the proof is not so easy as for other algorithms. So, at present
time, we can only claim a conjecture about this result. As a consequence, we

1 We use at this point the assumption that the algorithms explore all the values of a
variable before reordering the future variables.



68 A. El Mouelhi et al.

assume too that the time complexity could be a function linear in the number
of maximal cliques in the microstructure.

Conjecture 1. Given a binary CSP P = (X,D,C), there is an injective map-
ping from the maximally deep consistent nodes explored by MAC onto the max-
imal cliques in μ(P ).

4 New Analysis for Non-binary CSPs

We now turn to n-ary CSPs. We first extend the notion of microstructure to
this general case, then we analyze the complexity of nFCi in terms of maximal
number of cliques.

4.1 A Generalized Microstructure

Note that a generalization of the notion of microstructure was first proposed
in [15]. Nevertheless, this notion is based on hypergraphs and has been little
used so far. In contrast, our notion sticks to the simpler framework of graphs.
Our generalized microstructure is essentially obtained by letting vertices encode
the tuples (from relations involved in the CSP) rather than unary assignments
(xi, vi) of the binary case. Note that other generalizations have been proposed
(see [17]) but due to lack of space, we cannot treat them here.

Definition 5 (generalized microstructure). Given a CSP P = (X,D,C)
(not necessarily binary), the generalized microstructure of P is the undirected
graph μG(P ) = (V,E) with:

– V = {(ci, ti) : ci ∈ C, ti ∈ R(ci)},
– E = { {(ci, ti), (cj , tj)} | i 	= j, ti[S(ci) ∩ S(cj)] = tj [S(ci) ∩ S(cj)]}

Like for the microstructure, there is a direct relationship between cliques and
solutions of CSPs;

Proposition 5. A CSP P has a solution iff μG(P ) has a clique of size e.

Proof: By construction, μG(P ) is e-partite, and any clique contains at most one
vertex (ci, ti) per constraint ci ∈ C. Hence the e-cliques of μG(P ) correspond
exactly to its cliques with one vertex (ci, ti) per constraint ci ∈ C. Now by
construction of μG(P ) again, any two vertices (ci, ti), (cj , tj) joined by an edge
(in particular, in some clique) satisfy ti[S(ci)∩S(cj)] = tj [S(ci)∩S(cj)]. Hence all
ti’s in a clique join together, and it follows that the e-cliques of μG(P ) correspond
exactly to tuples t which are joins of one allowed tuple per constraint, that is,
to solutions of P . �

One can observe that the generalized microstructure corresponds to the mi-
crostructure of the dual representation of a CSP [18]. One can also see that our
generalization is in fact the line-graph (the dual graph) of the hypergraph pro-
posed in [15], in which we add edges for pairs of constraints whose scopes have
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empty intersections. Hence, in the same spirit, we can propose other generaliza-
tions of the microstructure by considering any graph-based representation of a
non-binary CSP as soon as the representation has the same set of solutions -
wrt. a given bijection - as the original instance (e.g. the hidden variable encoding
[19]). However, due to lack of space, we do not deal with these issues here.

4.2 Time Complexity of nBT, nFC and nRFL

We now investigate the complexity of algorithms for solving n-ary CSPs. We first
make an assumption about the order in which such algorithms explore variables,
then we discuss this restriction.

Definition 6 (compatible with constraints). Let P be a CSP. A total order
(x1, x2, . . . xn) on X is said to be compatible with the constraints in C if there
are k constraints ci1 , ci2 , . . . cik in C (1 ≤ k ≤ e) which satisfy:

–
⋃

1≤�≤k S(ci�) = X
– there are k variables xi1 , xi2 , . . . xik such that ∀
 ∈ {1, . . . , k}, xi� ∈ S(ci�)

and
⋃

1≤j≤� S(cij ) = {xi | i = 1, . . . , i�} hold.

In words, the ordering must be such that the variables in the scope of one distin-
guished constraint (ci1) all appear first, then all the variables in the scope of some
ci2 (except for those already mentioned by ci1), etc. The variables xi1 , . . . , xik in
the definition are such that xij is the last variable assigned in the scope of cij .
We refer to these variables as milestones in the ordering.

For instance, with the notation of the definition we must have S(ci1) =
{x1, x2, . . . xi1} and S(ci1)∪S(ci2 ) = {x1, x2, . . . xi1 , xi1+1, . . . xi2}. The variable
xi1 is a milestone (last variable assigned in the scope of ci1).

Under the assumption that such a variable ordering is used, we can give a
generalization of Proposition 2.

Proposition 6. Let P be an n-ary CSP, and assume that nBT explores the
variables in some order compatible with the constraints in C. Then there is an
injective mapping from the maximally deep consistent nodes (xi, vi) in the search
tree such that xi is a milestone, and the maximal cliques in μG(P ).

Proof: Let t be an assignment corresponding to a node as in the statement, and
write xij for the last variable assigned by t (which is a milestone by assumption).
Similarly, let t′ be another maximal consistent assignment with the milestone xij′
as its last variable. Write T for the set {t[S(c)] | c ∈ C, S(c) ⊆ {x1, . . . , xij}},
that is, for the set of all projections of t onto the scopes of constraints fully
assigned by t, and similarly for T ′. Then T (resp. T ′) is included in some maximal
clique Cl (t) (resp. Cl(t′)) of μG(P ). Now assume j′ ≥ j (wlog). From t 	= t′,
the fact that t is maximally consistent, and the fact that t′ is consistent, it
follows that t′ differs from t on at least one variable x� with 
 ≤ ij. Hence this
variable is assigned differently by both, and there is some constraint ci� such that
t[S(ci�)] is different from t′[S(ci�)], and it follows that t, t′ cannot be included in
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a common clique. Hence Cl defines an injective mapping from assignments as in
the statement to maximal cliques in μG(P ), as desired. �

Using this property, we can bound the number of nodes in a search tree induced
by a backtracking search, and its time complexity, in terms of the generalized
microstructure.

Proposition 7. Let P = (X,D,C) be an n-ary CSP, and assume that nBT
uses a variable ordering which is compatible with the constraints in C. Then the
number of nodes NnBT (P ) in the search tree of nBT on P satisfies NnBT (P ) ≤
nda · ω#(μG(P )). Its time complexity is in O(nea · da · ω#(μG(P ))).

Proof: From Proposition 6 it follows that the subtree induced by the search tree
on milestones contains at most ω#(μG(P )) nodes. Now for reaching a milestone
from the previous one, that is, for extending an assignment to x1, . . . , xij onto
an assignment to x1, . . . , xij+1 (with the notation of Definition 6), nBT explores
at most a variables (this is by definition of an ordering compatible with the
constraints). Hence it explores at most da combinations of values (nBT has no
clue for ruling out an assignment before assigning all variables in the scope of a
constraint). Since a branch contains at most n milestones, we get the result. The
time complexity follows directly since each node requires at most e constraint
checks, each one in time O(a) with an appropriate data structure. �

A similar result holds for nFCi (i ≥ 2). Nevertheless, we must consider the
additional cost due to applying GAC, that is O(e · a · r) at each node. However,
note that contrary to nBT, due to the use of GAC, nFCi explores only the
r tuples allowed by c when exploring the variables in S(c), rather than all da

combinations of values.

Proposition 8. Let P = (X,D,C) be an n-ary CSP, and assume that nFCi

(i ≥ 2) uses a variable ordering which is compatible with the constraints in C.
Then the number of nodes NnFCi(P ) in the search tree of nFCi on P satisfies
NnFCi(P ) ≤ nr · ω#(μG(P )). Its time complexity is in O(nea · r2 · ω#(μG(P ))).

The same result also holds for nRFL.
As a final note, we have considered a total order in definition 6. A partial order

can be used instead, provided the following holds: for each constraint cij (1 < j ≤
k), all the variables of cij−1 have been assigned before the variables of cij which
do not belong to the scope of a previous constraint. The last assigned variable
of each constraint will be the corresponding milestone variable. Moreover, the
considered order may be dynamic.

4.3 Time Complexity without Ordering

Arguably, our restriction to variable orderings which are compatible with con-
straints is not met by all reasonable variable orderings. For instance, there is no
reason in general for the well-known dom/deg heuristic to yield such orderings.
However, we show here that such restrictions are necessary.
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To show this, we build a family of instances which have a linear number of
cliques in their generalized microstructure (in its number of vertices), but for
which nFC5 explores a search tree of size exponential (in the number of vertices)
for some specific variable ordering.

The instances (X,D,C) in this family are built as follows. Writing e for the
number of constraints, there are two distinguished variables x0, x

′
0 inX (common

to all constraints), and X \ {x0, x
′
0} is partitioned into e sets X1, . . . , Xe (Xi is

specific to ci). So each constraint ci ∈ C has scope S(ci) = {x0, x
′
0} ∪ Xi.

Now D is {v0, . . . , ve−1} for all variables (d = e). Finally, the tuples allowed
by the constraint ci are precisely those of the form {(x0, vj), (x

′
0, vi+j), . . . }, for

j = 1, . . . , e (indices are taken modulo e) and unrestricted assignments to Xi.
The point is that for i 	= i′, the restrictions of the tuples allowed by ci and
ci′ onto {x0, x

′
0} never match, so that there are no edges in μG(P ). Hence the

number of cliques in μG(P ) is exactly its number of vertices |V | = e2+(n−2)/e.
On the other hand, assume that nFC5 explores all variables in the Xi’s and

only explores x0, x
′
0 after them. Then because all values for x0 have a support in

all constraints, and similarly for x′
0, no value will be removed before reaching x0

or x′
0, and hence all en−2 ∼ |V |e combinations of values will be explored, that

is, exponentially more than the number of cliques in μG(P ).
In the general case, we can bound the time complexity of nFCi as follows.

Proposition 9. Let P = (X,D,C) be an n-ary CSP, and assume that nFCi

(i ≥ 2) uses a variable ordering such that the maximum number of non-milestone
variables assigned consecutively is m. Then the number of nodes NnFCi(P ) in
the search tree of nFCi on P satisfies NnFCi(P ) ≤ ndm · ω#(μG(P )). Its time
complexity is in O(nea · rdm · ω#(μG(P ))).

In our previous example, we have m = n− 2.

5 A Few Tractable Classes for Backtracking

The number of cliques in a graph can grow exponentially with the size of the
graph [20], and so can the number ω#(G) of maximal cliques in a graph G
[21]. However, for some classes of graphs, the number of maximal cliques can
be bounded by a polynomial in the size of the graph. If the (generalized) mi-
crostructure of a (family of) CSP P belongs to one of these classes, then our
analysis in the previous sections allows us to conclude that P is solved in poly-
nomial time by classical backtracking algorithms, without the need to recognize
the instance to be in the class. In this section, we study several such classes of
graphs in terms of their relevance to constraint satisfaction problems.

5.1 Triangle-Free and Bipartite Graphs

Recall that a k-cycle in a graph G = (V,E) is a sequence (v1, v2, . . . vk+1) of
distinct vertices satisfying ∀i, 1 ≤ i ≤ k, {vi, vi+1} ∈ E, and v1 = vk+1.

A triangle-free graph is an undirected graph with no 3-cycle. It is easily seen
that the number of maximal cliques in a triangle-free graph is exactly its number
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of edges E. Hence by our analysis, if a class of CSPs has a triangle-free (general-
ized) microstructure, algorithms (n)BT, (n)FC and (n)RFL correctly solve them
in polynomial time. Note however that this is quite a degenerate case, since ex-
cept for instances having at most two variables (binary case) or two constraints
(non-binary case), instances with a triangle-free (generalized) microstructure are
inconsistent.

Another degenerate but illustrative case is one of bipartite graphs. A graph
is bipartite if it does not contain an odd cycle. Again, a bipartite graph cannot
contain any clique of more than two vertices, and hence no partial assignment
to more than three variables will ever be considered by BT (hence it obviously
runs in time O(d3)).

We now turn to more interesting classes, which also essentially contain incon-
sistent CSPs, but for which our analysis gives a better time complexity than the
classical one.

5.2 Planar, Toroidal, and All Embedded Graphs

Definition 7 (planar). A planar graph is a graph that can be embedded in the
plane without crossing edges.

[20] proved that the number of cliques in a planar graph is at most 8(|V | − 2).

Definition 8 (toroidal). A graph is toroidal if it can be embedded on the torus
without crossing edges.

[22] showed that every toroidal graph has at most 8(|V |+9) cliques and then that
every graph embeddable in some surface has a linear number of cliques (8(|V |+
27) at worst). Since the microstructure μ(P ) (resp. μG(P )) of a CSP P contains
at most nd vertices (resp. er vertices), it follows that if μ(P ) (resp. μG(P ))
belongs to one of these classes of graphs, then ω#(μ(P )) (resp. ω#(μG(P ))) is
in O(nd) (resp. O(er)). Thanks to Prop. 3, 4, 7 and 8, we immediately get the
following.

Theorem 1. Let Em denote the class of all CSPs whose microstructure is pla-
nar, toroidal, or embeddable in a surface. Then instances in Em are solved in
time

– O(n2d · ω#(μ(P ))) = O(n3d2) by BT or FC,
– O(ned2 · ω#(μ(P ))) = O(n2ed3) by RFL,
– O(neada · ω#(μG(P ))) = O(ne2arda) by nBT,
– O(near2 · ω#(μG(P ))) = O(ne2ar3) by nFCi, nRFL.

Recall that this family of graphs cannot contain as a minor, an 8-clique (for
toroidal graphs), or a 5-clique nor K3,3 (for planar graphs). It follows in par-
ticular that any binary (resp. non-binary) CSP in Em over at least 8 variables
(resp. constraints) is inconsistent. Hence again this class is a little degenerate,
however a classical analysis states that, e.g., BT solves these instances in time
O(d8). In case d is large, this is looser that O(n3d2).
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5.3 CSG Graphs

We finally turn to the class of CSG graphs, which has been introduced by [23]
and which generalizes the class of chordal graphs. Given a graph (V,E) and an
ordering v1, . . . , v|V | of its vertices, we write N+(vi) for the forward neighborhood
of vi, that is, N

+(vi) = {vj ∈ V |{vi, vj} ∈ E, i < j}. For V ′ ⊆ V , we write G(V ′)
for the graph induced by E on V ′, namely, G(V ′) = (V ′, E′) where E′ = {{x, y} |
x, y ∈ V ′ and {x, y} ∈ E}.

Definition 9 (CSG graphs). The class of graphs CSGk is defined recursively
as follows.

– CSG0 is the class of complete graphs.
– Given k > 0, CSGk is the class of graphs G = (V,E) such that there exists

an ordering σ = (v1, ..., v|V |) of V satisfying that for i = 1, . . . , |V |, the graph

G(N+(vi)) is a CSGk−1 graph.

The class of CSG graphs generalizes the class of complete graphs (CSG0 graphs)
and the class of chordal graphs (CSG1 graphs). Like chordal graphs, CSG graphs
have nice properties. For instance, they can be recognized in polynomial time.
Moreover, Chmeiss and Jégou have proved that CSGk graphs have at most
|V |k maximal cliques, and they have proposed an algorithm running in time
O(|V |2(k−1)(|V |+ |E|)) for finding all of them.

These two algorithms qualify the class of all CSPs which have a CSGk (gener-
alized) microstructure as a tractable class for any fixed k. We are however able to
show that even a generic algorithm such as (n)BT, FC, nFCi or (n)RFL runs in
polynomial time on such CSPs, without even the need to recognize membership
in this class, nor to compute the microstructure. Again, the result follows from
the number of maximal cliques together with Prop. 3, 4, 7 and 8.

Theorem 2. Given any integer k, the class of all CSPs which have a CSGk

(generalized) microstructure is solved in time

– O(n2d · ω#(μ(P ))) = O(nk+2dk+1) by BT and FC,
– O(ned2 · ω#(μ(P ))) = O(nk+1edk+2) by RFL,
– O(neada · ω#(μG(P ))) = O(nek+1arkda) by nBT,
– O(near2 · ω#(μG(P ))) = O(nek+1ark+2) by nFCi or nRFL.

Observe that even the time complexities are better than those of the dedicated
algorithm. For instance, the latter computes the microstructure of a binary CSP
and enumerates all maximal cliques until exhaustion, or an n-clique is found. So
it has a time complexity in O((nd)2(k−1)(nd + n2d2)) = O((nd)2k). Neverthe-
less, we can note that this algorithm is defined for general CSGk graphs while
(generalized) microstructures of CSP are very particular graphs.

CSG graphs are generally speaking less restrictive than the previous classes
of graphs. For instance, it is possible to have CSG graphs with n-cliques (resp.
e-clique) for any value of n (resp. e), contrary to the case of planar graphs. In
particular, there are consistent CSPs with a CSGk (generalized) microstructure.
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It is the case for CSG0 which are consistent binary CSPs with monovalent do-
mains (one value per domain) or consistent non-binary CSPs with exactly one
allowed tuple per relation. Nevertheless, CSPs which have a CSG1 (generalized)
microstructure can be consistent or not and it is easy to build a CSP with several
solutions, which corresponds to a collection of cliques of size n (binary case) or
e (non-binary case). Furthermore, unlike previous classes, in CSGk graphs (with
k ≥ 1), there is no restrictions on the values of n, d, e, a or r.

For instance, the Hanoi or Domino benchmarks used in the CSP solver com-
petitions (e.g. [24]) have a CSG1 microstructure after applying an AC filtering.
Thus, the use of algorithms such as RFL allows them to exploit the tractable
classes that we have highlighted here. However, this set of classes of CSPs still
has to be studied in detail for assessing its practical interest.

6 Discussion and Perspectives

We have investigated the time complexity of classical, generic algorithms for
solving CSPs under a new perspective. Our analysis expresses the complexity
in terms of the number of maximal cliques in the (generalized) microstructure
of the CSP to be solved. Our analysis reveals that essentially, backtracking and
forward checking visit each maximal clique in the (generalized) microstructure
at most once. From this analysis we derived tractable classes of CSPs, which
can be solved by classical algorithms in polynomial time, without the need to
recognize that the instance at hand is in the class. So, the results obtained shed
a new light on the analysis of CSPs.

Some relationships between tractable classes presented here and other
tractable classes of the state of the art are simple to identify. For example, for
the classes defined by the structure, that is, CSPs of bounded width, it is easy
to see that they are incomparable. It is possible to build a CSP whose constraint
network is a complete graph with a polynomial number of maximal cliques. E.g.
consider a CSPs defined on n variables with the same domain of size d and with
equality constraints between every pair of variables. For this kind of instances,
there are d maximal cliques of size n corresponding to the d solutions of the CSP.
Conversely, it is easy to see that an acyclic binary CSP can have an exponential
number of solutions, and thus, an exponential number of maximal cliques.

For hybrid classes, we can see that the tractable class of binary CSPs satisfying
the Broken Triangle Property (BTP) [25] is also incomparable. It is very simple
to define a CSP satisfying the BTP property with an exponential number of
solutions and thus an exponential number of maximal cliques. In contrast, one
can easily define a binary CSP whose microstructure is planar and which does
not satisfy the BTP property. For instance, the CSP defined on three variables
with domainsD(x1) = {a, b}, D(x2) = {c, d}, D(x3) = {e, f}, and pairs of values
(a, d), (b, e), (c, f) prohibited.

It is thus clear that the tractable classes which we propose here are not neces-
sarily weaker or stronger than the classes of the state of the art. Their main ad-
vantage is that they can simply be treated without recourse to ad hoc algorithms,
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but with state-of-the-art solvers. Despite the lack of a theoretical difficulty in the
definition of these tractable classes, they seem to offer an advantage compared to
many tractable classes which are for most of them, artificial, if one refers to real
benchmarks.

The first perspective of this work is to investigate more classes of graphs with
polynomially many maximal cliques. Of particular interest here is the study by
[26], who precisely characterize these classes of graphs in terms of intersection
graphs. Another important perspective is to relate our analysis to other tractable
classes obtained in different manners, in the spirit of the first comparisons given
above. An important perspective is also to extend our study to the other possible
generalizations of the microstructure for non-binary constraint satisfaction prob-
lems. In [27], a close work is presented since it proposes to define a new tractable
class which is based on the polynomial size of search trees. The relations with
our work should be now clarified.

To complete our study, we must also address the conjecture 1 for the MAC
algorithm. Actually, we strongly believe that this conjecture is true, but we have
not been able to prove this fact, especially due to the existence of the concept
of negative decisions for MAC.

Finally, it would be interesting to analyse a wide set of benchmarks - particu-
larly the ones easily solved by solvers of the state of the art - to investigate cases
in which the tractable classes exhibited here are present, in the spirit of the first
observations made on benchmarks such as Hanoi or Domino.

Acknowledgments. Philippe Jégou would like to thank Maria Chudnovsky for
their fruitful discussion, about graph theory, perfect graphs and links with classes
of graphs related to the clique problem, and the links with the microstructure
of CSPs.
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Abstract. This paper focuses on developing efficient inference techniques for
improving conjunctive normal form (CNF) Boolean satisfiability (SAT) solvers.
We analyze a variant of hyper binary resolution from various perspectives: We
show that it can simulate the circuit-level technique of structural hashing and how
it can be realized efficiently using so called tree-based lookahead. Experiments
show that our implementation improves the performance of state-of-the-art CNF-
level SAT techniques on combinational equivalent checking instances.

1 Introduction

Boolean satisfiability (SAT) solvers provide the crucial core search engines for solv-
ing problem instances arising from various real-world problem domains. This paper
focuses on developing efficient inference techniques to improve the robustness of con-
junctive normal form (CNF) SAT solving techniques. Especially, our goal is to improve
CNF-level techniques on instances of miter-based combinational equivalence checking
which is an important industrially-relevant problem domain. The main motivation be-
hind this work is to take notable steps towards the ambitious goal of making CNF-level
approaches competitive with circuit-level techniques for equivalence checking. This
goal is important as it would notably simplify the current state-of-the-art techniques
applied in the industry which require alternating between circuit-level techniques and
CNF-level SAT solving. To this end, we identify how known CNF-level SAT solving
techniques can simulate the circuit-level technique of structural hashing—which plays
an integral role in solving miter instances—purely on the level of a standard CNF en-
coding of Boolean circuits. As the main CNF-level approach, we study a variant of
hyper binary resolution (HBR), which can be used to learn non-transitive hyper binary
resolvents, and analyze this technique from various perspectives. While this variant or
HBR has already been studied and implemented previously within the HYPRE [1] and
HYPERBINFAST [2] CNF simplifiers, we extend this previous work both from the the-
oretical and practical perspectives.

Our main theoretical observations include: (i) explanations for how and to what ex-
tent the CNF techniques HBR, clause learning, and ternary resolution can simulate
structural hashing; (ii) that HBR can be focused in a beneficial way to produce only
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non-transitive resolvents that increase transitive reachability of the underlying binary
implications; and (iii) providing an explicit quadratic worst-case example on the num-
ber of binary clauses added, which applies to all known implementations of HBR, and
that has not been explicitly provided before. As the main practical contribution, we
show how this variant of HBR can be realized efficiently using so called tree-based
lookahead [3]. In fact, the tree-based lookahead algorithm described in this work is a
substantially simplified version of the original idea, and is also of independent inter-
est due to its much more general applicability for instance within CDCL SAT solvers.
We show experimentally that our TreeLook implementation of HBR using tree-based
lookahead clearly outperforms state-of-the-art CNF-level SAT techniques on instances
encoding on miter-based equivalence checking CNF instances.

The rest of this paper is organized as follows. After preliminaries (Sect. 2), we dis-
cuss possibilities of simulating structural hashing on the CNF-level (Sect. 3). Then the
considered variant of hyper binary resolution is defined and analyzed (Sect. 4), followed
by an in-depth description of tree-based lookahead (Sect. 6) that enables implement-
ing hyper binary resolution efficiently. Before conclusions, experimental results are
presented (Sect. 7) and related work is discussed (Sect. 8).

2 Preliminaries

For a Boolean variable x, there are two literals, the positive literal x and the negative
literal ¬x. A clause is a disjunction of literals and a CNF formula a conjunction of
clauses. A clause can be seen as a finite set of literals and a CNF formula as a finite set
of clauses. A (partial) truth assignment for a CNF formula F is a function τ that maps
(a subset of) the literals in F to {0, 1}. If τ(x) = v, then τ(¬x) = 1− v. A clause C is
satisfied by τ if τ(l) = 1 for some literal l ∈ C. A clause C is falsified by τ if τ(l) = 0
for every literal l ∈ C. An assignment τ satisfies F if it satisfies every clause in F . We
denote by τ(F ) the reduced formula for which all satisfied clauses by τ and all falsified
literals by τ are removed.

Two formulas are logically equivalent if they are satisfied by exactly the same set
of assignments. A clause of length one is a unit clause, and a clause of length two is
a binary clause. For a CNF formula F , F2 denotes the set of binary clauses, and F≥3

denotes the set of clauses of length three and larger.

Binary Implication Graphs. Given a CNF formula F , the unique binary implication
graph BIG(F ) of F has for each variable x occurring in F2 two vertices, x and ¬x, and
has the edge relation {〈¬l, l′〉, 〈¬l′, l〉 | (l ∨ l′) ∈ F2}. In other words, for each binary
clause (l∨ l′) in F , the two implications¬l → l′ and ¬l′ → l, represented by the binary
clause, occur as edges in BIG(F ). A node in BIG(F ) with no incoming arcs is a root
of BIG(F ) (or, simply, of F2). In other words, literal l is a root in BIG(F ) if there is no
clause of the form (l ∨ l′) in F2. The set of roots of BIG(F ) is denoted by RTS(F ).

BCP, Failed Literal Elimination (FLE), and Lookahead. For a CNF formula F ,
Boolean constraint propagation (BCP) (or unit propagation) propagates all unit clauses,
i.e., repeats the following until fixpoint: if there is a unit clause (l) ∈ F , remove from
F \ {(l)} all clauses that contain the literal l, and remove the literal ¬l from all clauses
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in F , resulting in the formula BCP(F ). A literal l is a failed literal if BCP(F ∪{(l)})
contains the empty clause, implying that F is logically equivalent to BCP(F ∪{(¬l)}).
FLE removes failed literals from a formula, or, equivalently, adds the complements of
failed literals as unit clauses to the formula, until a fixpoint is reached. Failed literal
elimination is sometimes also referred to as lookahead, and is often applied in non-
CDCL DPLL solvers (lookahead solvers [4]).

Equivalent Literal Substitution (ELS). The strongly connected components (SCCs) of
BIG(F ) represent equivalent classes of literals (or simply equivalent literals) in F2 [5].
Equivalent literal substitution refers to substituting in F , for each SCC G of BIG(F ),
all occurrences of the literals occurring in G with the representative literal of G. ELS
is confluent, i.e., has a unique fixpoint, modulo variable renaming.

Transitive Reduction (TRD). A directed acyclic graph G′ is a transitive reduction [6]
of the directed graph G provided that (i) G′ has a directed path from node u to node v if
and only if G has a directed path from node u to node v, and (ii) there is no graph with
fewer edges than G′ satisfying the condition (i). For a CNF formula F , a binary clause
C = (l ∨ l′) is transitive in F if l′ is reachable from ¬l (equivalently, l is reachable
from ¬l′) in BIG(F \ C). Applying TRD on BIG(F ) amounts to removing from F
all transitive binary clauses in F . TRD is confluent for the class of CNF formulas F
for which BIG(F ) is acyclic. This is due to the fact that the transitive reduction of any
directed acyclic graph is unique [6]. For directed graphs with cycles, TRD is unique
modulo node (literal) equivalence classes.

The main inference rule of interest in this work is the hyper binary resolution rule.

Hyper Binary Resolution (HBR). The resolution rule states that, given two clauses
C1 = {l, a1, . . . , an} and C2 = {¬l, b1, . . . , bm}, the clause C = C1 � C2 =
{a1, . . . , an, b1, . . . , bm}, called the resolvent C1 � C2 of C1 and C2, can be inferred
by resolving on the literal l. Many different simplification techniques are based on the
resolution rule. In this paper of interest is hyper binary resolution [7]. Given a clause of
the form (l ∨ l1 · · · ∨ lk) and k binary clauses of the form (l′ ∨ ¬li), where 1 ≤ i ≤ k,
the hyper binary resolution rule allows to infer the hyper binary resolvent (l∨ l′) in one
step. HBR is confluent since it only adds clauses to CNF formulas.

3 Simulating Structural Hashing on CNF

In this section we show that hyper binary resolution is surprisingly powerful in that
it implicitly—purely on the CNF-level—achieves structural hashing, i.e., sharing of
equivalent subformula structures, over disjunctive and conjunctive subformulas. This is
surprising, as structural hashing is often considered one of the benefits of representing
propositional formulas on the higher level of Boolean circuits rather than working on
the flat CNF form. This result implies that structural hashing can be achieved also during
the actual CNF-level solving process by applying HBR on the current CNF formula.

Boolean Circuits are a natural representation form for propositional formulas, offering
subformula sharing via structural hashing. A Boolean circuit over a finite set G of gates
is a set C of equations of form g := f(g1, . . . , gn), where g, g1, . . . , gn ∈ G and f :
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{1, 0}n → {1, 0} is a Boolean function, with the additional requirements that (i) each
g ∈ G appears at most once as the left hand side in the equations in C, and (ii) the
underlying directed graph

〈G, E(C) = {〈g′, g〉 ∈ G × G | g := f(. . . , g′, . . .) ∈ C}〉

is acyclic. Each gate represents a specific subformula in the propositional formula ex-
pressed by the set of Boolean equations. If g := f(g1, . . . , gn) is in C, then g is an f -gate
(or of type f ), otherwise it is an input gate. The following Boolean functions are some
which often occur as gate types: NOT(v) (1 if and only if v is 0), OR(v1, . . . , vn) (1 if and
only if at least one of v1, . . . , vn is 1), AND(v1, . . . , vn) (1 if and only if all v1, . . . , vn
are 1), XOR(v1, v2) (1 if and only if exactly one of v1, v2, is 1), and ITE(v1, v2, v3) (1
if and only if (i) v1 and v2 are 1, or (ii) v1 is 0 and v3 is 1). The standard “Tseitin”
encoding of a Boolean circuit C into a CNF formula TST(C) works by introducing a
Boolean variable for each gate in C, and representing for each gate g := f(g1, . . . gn)
in C the logical equivalence g ↔ f(g1, . . . gn) with clauses.

3.1 Structural Hashing on the CNF-Level via HBR

Structural hashing is a well-known technique for factoring out common sub-expression.
It is an integral part of many algorithms for manipulating different data structures rep-
resenting circuits [8,9,10,11,12].

Given a circuit C with g := f(g1, . . . , gn), g
′ := f(g1, . . . , gn) ∈ C, structural

hashing removes g′ := f(g1, . . . , gn) from C, i.e., detects that g and g′ label the same
function f(g1, . . . , gn) in C. A Boolean circuit C is structurally hashed if g and g′ are
the same gate whenever g := f(g1, . . . , gn), g

′ := f(g1, . . . , gn) ∈ C.

Proposition 1. Let C be an arbitrary Boolean circuit. Assume that there are two distinct
gates g := f(g1, . . . , gn) and g′ := f(g1, . . . , gn) in C, where f ∈ {NOT, AND, OR}.
Then HBR applied to TST(C) will produce the clauses (¬g ∨ g′) and (g ∨ ¬g′) rep-
resenting the fact that g and g′ label the same function f(g1, . . . , gn) in C.

Basically the binary clauses in TST(C) associated with g := f(g1, . . . , gn) together
with a clause of arity (n+ 1) associated with g′ := f(g1, . . . , gn) always produce the
binary clause equivalent to one of the directions of the bi-implication g ↔ g′. The binary
clauses in TST(C) associated with g := f(g1, . . . , gn) together with a clause associated
with g′ := f(g1, . . . , gn) will produce the other direction of the bi-implication.

Proof (Proof of Proposition 1). Assume that we have g := AND(g1, . . . , gn) and g′ :=
AND(g1, . . . , gn). On the CNF-level we have the clauses (¬g∨gi), (g∨¬g1∨· · ·∨¬gn)
and (¬g′∨gi), (g′∨¬g1∨· · ·∨¬gn), where i = 1..n. Now the hyper binary resolution
rule allows to derive (¬g ∨ g′) in one step from (¬g ∨ g1), . . . , (¬g ∨ gn), (g

′ ∨ ¬g1 ∨
· · · ∨ ¬gn), and similarly (¬g′ ∨ g) in one step from (¬g′ ∨ g1), . . . , (¬g ∨ gn), (g ∨
¬g1 ∨ · · · ∨ ¬gn). The cases f ∈ {NOT, OR} are similar. ��

Especially, by Proposition 1 hyper binary resolution can achieve the same effect purely
on the CNF-level as circuit-level structural hashing on And-Inverter Graphs (AIGs) [9]
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which are often used for representing circuit-level SAT instances. We say that HBR can
hence simulate structural hashing of AIGs.

However, HBR is not strong enough to simulate structural hashing for XOR and ITE

gates on the standard CNF encoding, simply because the CNF clauses produced by the
standard CNF encoding for XOR and ITE gates do not include any binary clauses.

Observation 1. Given a Boolean circuit C with two gates g := f(g1, . . . , gn) and
g′ := f(g1, . . . , gn). Assume g and g′ label the same function f(g1, . . . , gn). If f ∈
{XOR, ITE} then HBR cannot in general derive g ↔ g′ (i.e., establish that g and g′

label the same function) from TST(C).

3.2 Other Approaches to Structural Hashing on the CNF-Level

Structural Hashing and CDCL. Interestingly, CNF-level conflict-driven clause learn-
ing (CDCL) SAT solvers can in principle simulate structural hashing by learning the
bi-implication g ↔ g′. By “in principle” we mean that this requires a CDCL solver to
assign the “right” values to the “right” variables in the “right” order, and to restart after
each conflict (and possibly to postpone unnecessary unit propagations).

Observation 2. CDCL can in principle simulate structural hashing of any Boolean cir-
cuit C on TST(C), assuming that the solver assigns variables optimally, restarts after
every conflict, and can postpone unit propagation at will.

The intuition behind this observation is the following. Given any Boolean circuit C con-
taining two gates g and g′, where g := f(g1, . . . , gn) and g′ := f(g1, . . . , gn). For
simplicity, let us assume g := AND(g1, . . . , gn) and g′ := AND(g1, . . . , gn). Now ap-
ply CDCL as follows on TST(C). First, assign g = 0. Notice that unit propagation
does not assign values to any gi based on g := AND(g1, . . . , gn). Then assign g′ = 1.
Now unit propagation assigns gi = 1 for all i = 1..n, resulting in a conflict with
g = 0. The key observation is that the standard 1-UIP clause learning scheme will
now learn the clause (g ∨ ¬g′), since this is the only 1-UIP conflict clause derivable
from the conflict graph restricted to the clauses associated with g := AND(g1, . . . , gn)
and g′ := AND(g1, . . . , gn). Then let the solver restart, and afterward assign similarly
first g′ = 0 and then g = 1 in order to learn the clause (g′ ∨ ¬g).

A similar argument goes through also for XOR and ITE but needs one more decision
to learn one auxiliary clause for each of the two implications. Consider for instance
g := XOR(g1, g2) and g′ := XOR(g1, g2). Assigning g = 0, g′ = 1 and then g2 = 0
allows learning the clause (g ∨ ¬g′ ∨ g2). After backtracking, unit propagation on this
clause assigns g2 = 1 which results in another conflict, from which one of the two
implications (g ∨ ¬g′) is learned. The other implication can be derived in a similar
way.

From the practical point of view, however, it is unlikely that CDCL solver imple-
mentations would behave in the way just described.

Structural Hashing Using Ternary Resolution. Further we claim that another way
of achieving structural hashing of XOR and ITE on the CNF-level is to apply ternary
resolution, originally suggested in [13] and subsequently applied as an inference tech-
nique in the contexts of both complete [14] and local search methods [15] for CNF SAT.
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Ternary resolution refers to restricting the resolution rule between two ternary clauses
so that only a ternary or binary resolvent are inferred (i.e., added to the CNF).

Proposition 2. Ternary resolution simulates structural hashing of ITE and XOR.

Proof. Consider the clauses for two ITE gates x := ITE(c, t, f) and y := ITE(c, t, f):

(¬x∨¬c∨ t) ∧ (¬x∨ c∨f) ∧ (x∨¬c∨¬t) ∧ (x∨ c∨¬f)
(¬y∨¬c∨ t) ∧ (¬y∨ c∨f) ∧ (y∨¬c∨¬t) ∧ (y∨ c∨¬f)

Using ternary resolution, (¬x ∨ y ∨ ¬c) = (¬x ∨ ¬c ∨ t) � (y ∨ ¬c ∨ ¬t) and
(¬x ∨ y ∨ c) = (¬x ∨ c ∨ f) � (y ∨ c ∨ ¬f) can be inferred. These resolvents can
be combined to (¬x ∨ y) = (¬x ∨ y ∨ ¬c) � (¬x ∨ y ∨ c). In a similar fashion, the
other binary clause can be obtained: (x ∨ ¬y ∨ ¬c) = (x ∨ ¬c ∨ ¬t) � (¬y ∨ ¬c ∨ t)
and (x ∨ ¬y ∨ c) = (x ∨ c ∨ ¬f) � (¬y ∨ c ∨ f). Now using these resolvents, we get
(x ∨ ¬y) = (x ∨ ¬y ∨ ¬c) � (x ∨ ¬y ∨ c). A similar argument applies to XOR. ��

4 Capturing Non-transitive HBR

For the following, given a CNF formula F and two literals l and l′ that occur in F ,
we say that l′ dominates l (or l′ is a dominator of l) in F if there is a clause C =
(l ∨ l1 ∨ · · · ∨ lk) ∈ F≥3 such that (¬l1), . . . , (¬lk) ∈ BCP(F2 ∪ {(l′)}). In other
words, l′ dominates l in F if there is such a clause C for which each of the literals ¬li
are reachable from l′ in BIG(F ). This implies that by assigning l′ = 1, unit propagation
on F will assign l = 1 based on only F2 and the clause C.

Example 1. Consider the formula F = (¬a ∨ b) ∧ (¬a ∨ c) ∧ (¬b ∨ d) ∧ (¬b ∨ e) ∧
(¬c ∨ d) ∧ (¬c ∨ e) ∧ (¬d ∨ ¬e ∨ f). A part of BIG(F ) with a hyperedge on the right
showing the ternary clause (¬d ∨ ¬e ∨ f) can be illustrated as:

a

b

c

d

e

f

By assigning a = 1, unit propagation on F2 and (¬d ∨ ¬e ∨ f) ∈ F≥3 will assign
d = 1 and e = 1, and hence also f = 1. Thus a dominates f . The literal f has two
other dominators: b and c, both of which are implied by a. �

Given a CNF formula F and a literal l in F , the set of non-transitive hyper binary
resolvents NHBR(F, l) of F w.r.t. l is the set S of binary clauses arising from the fol-
lowing fixpoint computation. Let τ := {l = 1} and S := {}. Apply the following
(non-deterministic) steps repeatedly until fixpoint:

1. While there is a unit clause (x) ∈ τ(F2 ∪ S), let τ := τ ∪ {x = 1}.
2. If there is a unit clause (y) ∈ τ(F≥3) and literal l′ with τ(l′) = 1 that dominates

y in F ∪ S, let S := S ∪ {(¬l′ ∨ y)}.
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Step 1 corresponds to applying unit propagation under τ on the current set F2 ∪ S of
binary clauses. In step 2, it is checked whether a dominator of y has been assigned to
true where y is part of a non-binary clause in F that is reduced to the unit (y) under
τ . Notice that there is always at least one dominator for each (y) ∈ τ(F≥3), namely l;
however, this is not in general the only dominator. Still, only one clause is added per
execution of step 2.

Computing NHBR(F, l) using l as dominator was proposed in [16], while [2] dis-
cusses the use of alternative dominators. It should be noted that the above-defined con-
struction algorithm is very similar to the one proposed in [1]. To our best understanding,
the main difference is that our definition restricts step 2 to consider only units in τ(F≥3)
in contrast to considering any units inferred by applying BCP on τ(F≥3).

In essence, the construction of NHBR(F, l) consists of applying lookahead on the
literal l restricted to F2, and checking for dominators w.r.t. non-binary clauses in F
whenever a BCP fixpoint in reached. Notice that τ may become conflicting (i.e., both
l′ = 1 and l′ = 0 would be assigned for some literal l′) during the computation of
NHBR(F, l). This implies that l is a failed literal, which can in practice be detected
on-the-fly during the computation of NHBR(F, l). For the following analysis, we will
always assume that l is not a failed literal.

We call a binary clause C a non-transitive hyper binary resolvent w.r.t. a CNF for-
mula F if C ∈ NHBR(F, l) for some literal l in F . Given a CNF formula F , the
procedure NHBR applies the following until fixpoint: while there is a non-transitive
hyper binary resolvent C ∈ NHBR(F, l) w.r.t. F for some l, let F := F ∪ {C}. A
formula resulting from NHBR is denoted by NHBR(F ). However, this fixpoint is not
unique in general, and hence NHBR is not confluent, as will be shown in the following.
Among other observations, we will also show that any C ∈ NHBR(F, l) for any F, l is
indeed non-transitive in F , which implies that NHBR can increase reachability in the
binary implication graph.

4.1 Understanding NHBR

Proposition 3. For a CNF F and literal l,F is logically equivalent to F∪NHBR(F, l).

Proof. Any assignment that satisfies F ∪ NHBR(F, l) also satisfies F . Now, assume
that F is satisfiable, and fix an arbitrary truth assignment τ that satisfies F . Take an
arbitrary clause (¬l′ ∨ y) ∈ NHBR(F, l) with l′ being a dominator of y. Notice that
l′ → y, so ¬y → ¬l′. So either τ(y) = 1 or τ(y) = τ(l′) = 0. Both satisfy (¬l′ ∨ y).
Thus τ satisfies NHBR(F, l). ��

Example 2. Let F = (a ∨ b) ∧ (a ∨ ¬c ∨ d) ∧ (¬b ∨ ¬c ∨ e) ∧ (¬b ∨ c). We have
NHBR(F,¬a) = {(a, d), (¬b, e)}, which means that both of these non-transitive hyper
binary resolvents can be added to F while maintaining logical equivalence. �

The following proposition shows that all clauses in NHBR(F, l) for any literal l are
indeed non-transitive in F .

Proposition 4. For any CNF F , literal l, and clause C ∈ NHBR(F, l), we have that
C is not transitive in F .
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Proof. Consider the first C = (¬l′∨y) ∈ NHBR(F, l) added to S during the computa-
tion of NHBR(F, l). By definition, l′ dominates y in F (recall step 2 of the computation
of NHBR(F, l)), S being the empty set. Assume that C is transitive in F . It follows
that there is a path from l′ to y in BIG(F ). However, by step 1 in the computation of
NHBR(F, l), we would have τ(y) = 1 after step 1, and hence (y) /∈ τ(F≥3), and thus
C would not be added to S.

The claim follows by induction using a similar argument for the i+ 1 clause added
to S assuming that the i clauses added before to S are not transitive in F . ��
This implies that, in case NHBR can add clauses to a CNF formula F , NHBR will
increase reachability in the implication graph of F .

Corollary 1. If NHBR(F ) \ F 	= ∅, then it holds that there are two literals l, l′ such
that (i) there is a path in BIG(NHBR(F )) from l to l′, and (ii) there is no path in BIG(F )
from l to l′.

However, as an additional observation, we note by adding a clause C ∈ NHBR(F, l)
to F , some clauses in F2 may become transitive in the resulting F ∪ {C}.
Example 3. Consider the formula F := (a ∨ b) ∧ (a ∨ c) ∧ (a ∨ ¬b ∨ d) ∧ (c ∨ ¬d).
Notice that (a ∨ d) ∈ NHBR(F,¬a). After adding (a ∨ d) to F , the clause (a ∨ c) is
transitive in the resulting formula F ∪ {(a ∨ d)}. �
The following clarifies the connection between hyper binary resolvents and non-transitive
hyper binary resolvents: in essence, NHBR is a refinement of HBR that focuses on
adding the most relevant hyper binary resolvents that improve reachability in the im-
plication graph and hence can contribute to additional unit propagations.

Proposition 5. Given a CNF formula F , and a hyper binary resolvent C w.r.t. F , it
holds that C is transitive in F , or that C ∈ NHBR(F, l) for some literal l.

Proof. Take an arbitrary hyper binary resolvent C = (l ∨ ¬l′) w.r.t. a CNF formula
F and let D = (l ∨ l1 ∨ · · · ∨ lk) be the longest clause used in the hyper
binary resolution rule to infer C. Clearly, if D is binary, then C is transitive. Now as-
sume that D ∈ F≥3. Because (l ∨ ¬l′) is a hyper binary resolvent, unit propagation
on F2 ∪ {(l′)} assigns all literals l1, . . . , lk to false. Assume that C is not transitive
in F . In this case unit propagation on F2 ∪ {(l′)} will not assign l to true. Hence, af-
ter unit propagation on F2 ∪ (l′), D ∈ F≥3 becomes the unit clause (l), and hence
(l ∨ ¬l′) ∈ NHBR(F, l′). ��
As for the number of produced hyper binary resolvents, NHBR does not escape the
quadratic worst-case, which, as we show, holds for all known implementations of HBR.

Proposition 6. For CNF formulas over n variables, NHBR adds Ω(n2) hyper binary
resolvents in the worst-case. This holds even for formulas with O(n) clauses.

Proof. There are 2n(n− 1) different non-tautological binary clauses over n variables.
So clearly NHBR adds only O(n2) resolvents. As a worst-case example, consider the
formula F = (xi∨v)∧ (xi ∨w)∧ (¬v∨¬w∨yj ) with i, j ∈ {1, . . . , k} having 2k+2
variables and 3k clauses. Since all (xi∨yj) ∈ NHBR(F,¬xi), NHBR will add Ω(k2)
resolvents. ��
We will now address the question of confluence of NHBR.
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Proposition 7. NHBR is not confluent.

Proof. Consider the formula F := (a∨ b∨ c)∧ (¬b∨ c)∧ (a∨¬d)∧ (c∨d∨ e)∧ (d∨
¬e). Notice that (a ∨ c) ∈ NHBR(F,¬c) and (c ∨ d) ∈ NHBR(F,¬d). Furthermore,
(c ∨ d) ∈ NHBR(F ∪ {(a ∨ c)},¬d), but (a ∨ c) /∈ NHBR(F ∪ {(c ∨ d)},¬c).
Therefore, the resulting formula could only contain (a ∨ c) if this resolvent is added
before (c ∨ d), The reason for the non-confluence in this example is that (a ∨ c) is
transitive in F ∪ {(c ∨ d)}. ��

Example 4. Recall step 2 of the computation of NHBR(F, l). While l is always guar-
anteed to be a dominator of (y) ∈ τ(F≥3), there can be other dominators as well (recall
Example 1). In case there is a dominator l′ 	= l, then it is preferable to add (¬l′ ∨ y)
to S instead of (¬l ∨ y) in the sense that (¬l′ ∨ y) is not transitive in F ∪ {(¬l ∨ y)},
while (¬l ∨ y) is transitive in F ∪ {(¬l′ ∨ y)}. Recall the formula F in Example 1.
The dominators of f are ¬a, d, and e (recall Example 1), and b and c are implied by a.
Hence NHBR(F, a) = {(¬a∨f), (b∨f), (c∨f)}. Hence, instead of adding (¬a∨f),
one can add (b ∨ f) or (c ∨ f). �

Although NHBR in itself is not confluent, interestingly, when combining NHBR with
ELS and TRD, a unique fixpoint is reached (modulo variable renaming within literal
equivalence classes). A similar observation has been previously made in [1, Theorem 1]
for the combination of HBR and ELS alone without TRD.

Proposition 8. For any CNF formula F , NHBR followed by the combination of ELS
and TRD until fixpoint is confluent (modulo variable renaming).

Proof. (sketch) Given any CNF formulaF , the implication graph of ELS(F ) is acyclic,
and hence TRD(ELS(F )) is unique (modulo variable renaming). Now assume that
there are two literals l, l′ and clauses C,C′ such that C ∈ NHBR(F, l) and C′ ∈
NHBR(F, l′). Assume that C′ is transitive in F ∪ {C} and that C is not transitive in
F ∪ {C′}. If NHBR adds the clauses to F in the order C′, C, TRD will afterwards
remove the transitive C′ from F ∪ {C′, C}, resulting in F ∪ {C′} to which NHBR
would not add C. Finally, since NHBR can only increase reachability in the implica-
tion graph, NHBR will not re-introduce any previously added clauses that may have
been afterwards removed by TRD. ��

Example 5. As a concrete example, recall that the reason for the non-confluence in the
proof of Proposition 7 is that (a ∨ c) is transitive in F ∪ {(c ∨ d)}. However, a unique
result is obtained by applying TRD after NHBR.

5 Realizing Non-transitive HBR

Apart from the classical BCP that removes satisfied clauses and falsified literals, the
variantBCPNHBR efficiently adds non-transitive hyper binary resolvents by prioritizing
binary clauses during propagation. The fact that hyper binary resolution can be achieved
through unit propagation is due to [1] and has been extended in [2]. Another extension,
called lazy hyper binary resolution (LHBR) [17] is discussed in Sect. 8.
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The pseudo-code of BCPNHBR is shown in Fig. 1. Besides a formula F and a literal
l, it takes a truth assignment τ (here interpreted as a stack of variable-value assignments)
as input. For wellformedness, it is required that all assignments in τ are implied by l = 1
using only binary clauses. That is, all literals in τ can be reached from l in BIG(F ).

BCPNHBR (formula F , truth assignment τ , literal l)
1 τ.push(l = 1)
2 while τ (F ) contains unit clauses do
3 while (l′) ∈ τ (F2) do τ.push(l′ = 1)
4 if (l′′) ∈ τ (F≥3) then F := F ∪ {(¬l ∨ l′′)}
5 return 〈F, τ 〉

Fig. 1. Pseudo-code of the BCPNHBR procedure

First, the input literal l is set to true on the assignment stack τ (line 1). As long as unit
clauses exist (line 2), propagation of binary clauses is prioritized (line 3). If there are
only unit clauses left originating from F≥3, then a random one is selected and converted
into a non-transitive hyper binary resolvent (line 4). In the end, the resulting formula
and extended assignment are returned (line 5).

In practice, implementingBCPNHBR can be expensive. To reduce the computational
costs, [2] proposes two optimizations. The first, using alternative dominators is dis-
cussed in Sect. 4. The second is restricting computation to C ∈ NHBR(F, l) with
l ∈ RTS(F ) (i.e., starting only from literals that are roots in the implication graph).
This restriction reduces the costs significantly. For FLE, starting only from literals
l ∈ RTS(F ), will not change the fixpoint [18,19]. Yet, this is not the case for NHBR.

Proposition 9. By restricting NHBR to add only C ∈ NHBR(F, l) with l ∈ RTS(F ),
some non-transitive hyper binary resolvents will not be added.

Proof. Consider formula F = (¬a∨b)∧(¬a∨c)∧(¬c∨d)∧(b∨¬c∨¬d). Notice that
(b ∨ ¬c) ∈ NHBR(F, c), while for all l ∈ RTS(F ) holds that NHBR(F, l) = ∅. ��

In the following section, we will discuss an alternative technique, namely, tree-based
lookahead, that can be used to efficiently compute NHBR(F ) till fixpoint.

6 Tree-Based Lookahead

Tree-based lookahead originates from [3] but has not been properly described in the
literature yet. It is a technique to reduce the computational cost to find failed literals
and non-transitive hyper binary resolvents by reusing propagations. For some intuition
about how this technique works, consider a CNF formula F which contains a binary
clause (¬a∨b) and several other clauses. Due to the presence of (¬a∨b), we know that
when propagating a = 1, b is forced to 1 as well as all variables that would have been
forced by b = 1. It is possible to reuse the propagations of b = 1 (i.e., without rerunning
BCP), by assigning a = 1 afterwards without unassigning the forced variables. If there
is another binary clause (¬c∨ b), then the effort of propagating b = 1 can additionally
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be shared with the effort of propagating c = 1 after backtracking over a = 1 and then
assigning c = 1 without backtracking the assignments implied by b = 1.

This concept can be generalized by decomposingBIG(F ) into in-trees: trees in which
edges are oriented so that the root is reachable from all nodes (the root has out-degree
0 and other nodes have out-degree 1). For each implication x → y in the in-trees, y
is assigned before x. Note that in-trees in the in-tree decomposition are almost never
induced subgraphs, e.g. they are missing some edges; there are edges of BIG(F ) that
are not part of any in-tree, and even might connect two different in-trees.

The first step in tree-based lookahead is to create the in-trees, which is realized by
the getQueue procedure, shown in Fig. 2. First queue Q is initialized and all cycles
in BIG(F ) are removed using ELS. Note that applying ELS once to F might produce
new binary clauses by shrinking longer clauses, and even introduce new cycles. We thus
have to run this process until completion.

Afterwards a random depth-first search is applied starting from the leafs of BIG(F ).
Notice that if ¬l ∈ RTS(F ), l is a leaf. In the enqueue procedure, first l is added to
Q followed by a recursive call for all literals that imply l and are not in the queue yet.
The procedure ends adding the special element � to Q that denotes that the algorithm
should backtrack if that element is dequeued. The resulting Q contains each literal l in
F exactly once, and for each literal occurring in Q the special element � occurs once.

getQueue (F )
1 Q := {}
2 while ELS(F ) �= F do
3 F := ELS(F )
4 foreach ¬l ∈ RTS(F ) do
5 Q := enqueue(F,Q, l)
6 return Q

enqueue (F , Q, l)
1 Q.enqueue(l)
2 foreach (l ∨ ¬l′) ∈ F2 do
3 if l′ /∈ Q then
4 Q := enqueue(F,Q, l′)
5 Q.enqueue(�)
6 return Q

Fig. 2. Left: the getQueue procedure. Right: the enqueue sub-procedure.

The TreeLook algorithm (Fig. 3) uses the queue Q to compute failed literals and
non-transitive hyper binary resolvents efficiently. After initialization (line 1 and 2), it
dequeues elements from Q until it is empty (line 3 and 4). In case the current literal l
is not � (line 5), the decision level is increased by pushing ∗ on the assignment stack τ
(line 6). If l is assigned to 0 or the current assignment τ falsifies F then the failed literal
(¬l) is found (line 7). Otherwise, if l is still unassigned (line 8), then it is assigned to 1,
followed by BCPNHBR prioritizing binary clauses, under which unit clauses that orig-
inate from non-binary clauses are transformed into a non-transitive hyper binary clause
(line 9). If BCP results in a conflict, then a failed literal is found (line 10). Each time
the element � is dequeued, the algorithm backtracks one level, by popping elements
from τ until it removes ∗ (line 11). Finally, the resulting F , simplified with failed liter-
als and strengthened by non-transitive hyper binary resolvents (which may be trivially
unsatisfiable (line 12)), is returned (line 13).

Example 6. ConsiderF = (¬a∨¬b)∧(b∨¬c∨e)∧(b∨c)∧(c∨d)∧(a∨¬d∨¬e).NHBR
can add two clauses toF : NHBR(F, b) = {(b∨e)} andNHBR(F, c) = {(c∨¬e)}. The
TreeLook (F ) algorithm can find them as follows. Assume that the result of getQueue
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TreeLook (formula F )
1 τ := {}
2 Q := getQueue(F )
3 while Q is not empty do
4 l := Q.dequeue()
5 if l �= � then
6 τ.push(∗)
7 if τ (l) = 0 or ∅ ∈ τ (F ) then F := BCP(F ∪ {¬l})
8 else if τ (l) �= 1 then
9 〈F, τ 〉 := BCPNHBR(F, τ, l)
10 if ∅ ∈ τ (F ) then F := BCP(F ∪ {¬l})
11 else while τ.pop() �= ∗
12 if ∅ ∈ F then break
13 return F

Fig. 3. The TreeLook algorithm

(F ) is Q = {c,¬b, a,�,�,¬d,�,�, d,¬c,�,�,¬a, b,�,�}, visiting the leafs in the
order c, d, ¬a. This Q partitions BIG(F ) (see Fig. 4) in three in-trees by removing
the dotted edge ¬c b. After initialization, τ is extended by pushing ∗ and c = 1.
This does not result in any units. Now, τ is extended with ∗ and b = 0. The clause
(b ∨ ¬c ∨ e) ∈ F≥3 becomes unit. Therefore (b ∨ e) is added to F , which is unit (e)
by construction under τ . Hence τ is extended by e = 1. Afterwards, ∗ and a = 1 are
pushed to τ . No new units exist in τ(F ) and the next element in Q is dequeued which
is �. This causes popping a = 1 and ∗ from τ as the first backtracking step. The next
element is also zero, which pops e = 1, b = 0, and ∗ from τ . Extending the shrunken
τ by pushing ∗ and d = 0, does not result in any unit in τ(F ). The first in-tree is now
finished and the algorithm will pop all elements from τ due to the double � element
dequeued from Q. The NHBR (c∨¬e) is found in the second in-tree: after d = 1 and
c = 0, τ is extended by b = 1 and a = 0. Now (a∨¬d∨¬e) ∈ F≥3 is unit (¬e) under
τ . The third in-tree does not add any clause to F . Notice that after adding both binaries
to F , (b ∨ c) becomes redundant (transitive) as well as (b ∨ ¬c ∨ e) (subsumed). �

7 Experiments

The TreeLook algorithm (Fig. 3) is implemented in the MARCHRW SAT solver [20].
The SAT Competition version of MARCHRW runs FLE until completion in each node
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Fig. 4. BIG(F ) in Example 6 before (left) and after (right) applying NHBR on F . Both graphs
have three leafs: ¬a, c, and d. The dotted edge ¬c b is not in the in-tree decomposition.
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of the search-tree. We slightly modified the code such that it runs NHBR until comple-
tion. In other words, lookahead runs until no new non-transitive hyper binary resolvent is
found, instead of no new failed literal. The resulting version, called MARCHNH (bench-
marks, sources and logs at http://fmv.jku.at/treelook), also has the ability
to output the formula after preprocessing, so the result is similar to existing implemen-
tations of HBR, HYPRE [1] and HYPERBINFAST [2]. The experiments were done on
a cluster of computing nodes with Intel Core 2 Duo Quad Q9550 2.8-GHz processors,
8-GB main memory, under Ubuntu Linux. Memory was limited to 7 GB and a timeout
of 10 h was enforced for each run.

As benchmarks we used all 818 sequential circuits of the Hardware Model Checking
Competition 2010 http://fmv.jku.at/hwmcc10. A miter was constructed from
each circuit by connecting the inputs (and latches) of two copies of the same circuit,
and by constraining outputs and next state functions to be pairwise equivalent. We used
aigmiter for constructing the miters, and translated them to CNF with aigtocnf.
Both tools are available from http://fmv.jku.at/aiger. Note that these bench-
marks are trivial on the AIG level and can simply be solved by structural hashing. Actu-
ally, a non-optimized implementation of structural hashing needs less than 13 seconds
for all 818 benchmarks, and less than half a second for the most difficult one (intel048
with 469196 variables and 1300546 clauses).

Running times for the hardest benchmarks using logarithmic scale are shown in Fig. 5:
NHBR through tree-based lookahead (MARCHNH with TreeLook) can solve all of
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Fig. 5. Runtimes of CNF solving tools on 818 instances generated from HWMCC 2010. The
plot starts at 750 because many instances could be solved easily. Notice that only LINGELING

and MINISAT perform search. The other tools run NHBR till unsatisfiability is detected.
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benchmarks on its own (i.e., without any additional search). Switching off tree-based
lookahead (MARCHNH no TreeLook), i.e. always applying BCPNHBR(F, τ, l) with
τ = ∅, the timeout is reached on eleven benchmarks and is two orders of magnitude
slower. In between are the results of the previous implementations of HBR including
LHBR (see next Sect. 8), which take much more time and memory, even though they use
ELS. HYPRE hits the memory limit on 15 miters, HYPERBINFAST runs out of memory
on eight, and LINGELING (LHBR only) runs out of time on two. Surprisingly state-
of-the-art CDCL SAT solvers such as LINGELING 587F and MINISAT 2.2.0 can not
solve some of the miters even within 10 hours of search (LINGELING could not solve
two miters, MINISAT four).

Although not the main focus here, we also measured the effect of applying NHBR as
a preprocessing technique for SAT Competition 2011 application instances. For a clean
experiment, we compared plain Lingeling (no pre- and inprocessing) with and without
NHBR. With NHBR, Lingeling solved 7 more instances.

8 Related Work and Existing Implementations

A version of the SAT solver PRECOSAT [17] submitted to the SAT Competition 2009
contained an algorithm for cheaply computing hyper binary resolvents on-the-fly dur-
ing BCP in a standard CDCL solver on all decision levels. This method was called lazy
hyper binary resolution (LHBR), and a preliminary version was implemented in PI-
COSAT [21] before. It has since then been ported to many other recent SAT solvers,
including CIRCUS [22], LINGELING [23], and CRYPTOMINISAT [24]. Extensions of
LHBR including a detailed empirical analysis of its benefits, can be found in [22].

The basic idea of LHBR is to restrict the implication graph, made of assigned literals
and their forcing antecedents resp. reason clauses, to binary clauses. The implication
graph is in general a DAG and the restriction to binary clauses turns it into a forest of
trees, which we call binary implication forest. This allows us to save for each assigned
variable the root of its binary implication tree. If a literal is implied by a non-binary
clause, and all its antecedent literals in this clause are in the same tree, or equivalently
they have the same root, a binary clause through LHBR is obtained. This can be checked
by scanning the forcing non-binary clause, and checking whether all its variables, except
the implied one, have the same root. If this is the case, the closest dominator of the
antecedents can be computed as least-common ancestor in the tree.

The binary clause derived through LHBR is used as reason instead of the originally
forcing non-binary clause, which extends the binary implication tree of the antecedents.
It adds an edge from the dominator to the newly forced literal. To avoid adding too
many transitive clauses, propagation over binary clauses is run until completion for all
assigned literals before non-binary clauses are considered for propagation. This form of
LHBR adds a negligible overhead to BCP, because checking for a common root among
antecedent literals is cheap and only has to be performed if a non-binary clause be-
comes forcing. Thus, from the point of view of effectiveness, ease of implementation,
and overhead, LHBR is comparable to on-the-fly self -subsumption [25]. One difference
though is, that the former is implemented as part of BCP and the latter in the analysis
algorithm for learning clauses from conflicts.
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In practice we observed that the vast majority of binary clauses derived through
LHBR are obtained during failed literal probing resp. lookahead at decision level 0
anyhow. Thus a simpler implementation similar to the one used in lookahead solvers in-
cluding tree-based lookahead already gives the largest benefit without the need to store
roots of the binary implication forest. The additional advantage of using LHBR even
during search is to cheaply learn binary clauses at all decision levels, which are valid
globally and can be added permanently. In lookahead solvers binary clauses learned
through LHBR have to be removed during backtracking.

The competition version LINGELING 587f used in Sect. 7 uses LHBR during failed
literal probing. This time-limited lookahead is one of the many implemented pre- resp. in-
processing techniques [26]. We patched LINGELING to run LHBR until completion
(http://fmv.jku.at/lingeling/lingeling-587f-lhbrtc.patch) on these
instances, but as shown in the experiments the run-times were much worse, even with
(full) ELS and (time-limited) TRD.

Recursive Learning [27] and Stålmarck’s method [12] work on circuits resp. on data
structures (triplets) close to circuits and can easily be combined with structural hash-
ing. This leads to an algorithm similar to congruence closure algorithms used in SMT
solvers [28]. There are versions of both Stålmarck’s method and Recursive Learning
working directly on CNF [29,30]. In both cases only boolean constants are propagated
and not equivalences as in the original method of Stålmarck. We conjecture that a com-
bination of these CNF techniques with equivalence reasoning would also simulate struc-
ture hashing, but we are not aware of published results along this line.

9 Conclusions

We focused on understanding how non-transitive hyper binary resolvents can be effi-
ciently exploited on the CNF-level. We explained how hyper binary resolution can be
implemented through tree-based lookahead, which allows to simulate structural hash-
ing on the CNF-level also in practice much more efficiently than previous CNF-level
solutions. As a side-result, we believe our explanation of tree-based lookahead is of
independent interest, providing an efficient way of implementing lookahead, which is
important for example in the recently proposed cube & conquer approach [31].

The motivation for tree-based look-ahead was originally twofold. First, it provides
an efficient implementation technique for failed literal probing during pre- and inpro-
cessing [26]. This was the focus of this paper. Second, tree-based look-ahead can also
be used to efficiently compute look-ahead heuristics, such as the number of clauses re-
duced to binary clauses after assuming and propagating a literal. It is unclear at this
point whether the second motivation is really important, or whether other cheaper-to-
compute metrics could also be used.

While our TreeLook implementation significantly improves over existing CNF-level
approaches, there is still a large gap between the efficiency of circuit-level structural
hashing and of using CNF reasoning alone for identifying equivalences. Future work
consists of closing this gap further. As a final remark, as also pointed out by anony-
mous reviewers, it should be possible to reformulate tree-based lookahead for applying
singleton arc consistency in CP and probing in MIP solvers.

http://fmv.jku.at/lingeling/lingeling-587f-lhbrtc.patch
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Abstract. Binary and multivalued decision diagrams are closely related
to dynamic programming (DP) but differ in some important ways. This
paper makes the relationship more precise by interpreting the DP state
transition graph as a weighted decision diagram and incorporating the
state-dependent costs of DP into the theory of decision diagrams. It gen-
eralizes a well-known uniqueness theorem by showing that, for a given
optimization problem and variable ordering, there is a unique reduced
weighted decision diagram with “canonical” edge costs. This can lead
to simplification of DP models by transforming the costs to canonical
costs and reducing the diagram, as illustrated by a standard inventory
management problem. The paper then extends the relationship between
decision diagrams and DP by introducing the concept of nonserial deci-
sion diagrams as a counterpart of nonserial dynamic programming.

1 Introduction

Binary and multivalued decision diagrams have long been used for circuit design
and verification, but they are also relevant to optimization. A reduced decision
diagram can be viewed as a search tree for an optimization problem in which
isomorphic subtrees are superimposed, thus removing redundancy.

Dynamic programming (DP) is based on a similar idea. In fact, the state
transition graph for a discrete DP can be viewed as a decision diagram, albeit
perhaps one in which not all redundancy has been removed. Conversely, the
reduced decision diagram for a given problem tends to be more compact when the
problem is suitable for solution by DP. This indicates that there may be benefit
in clarifying the connection between decision diagrams and DP. In particular, it
may be possible to simplify a DP model by regarding its transition graph as a
decision graph and reducing it to remove all redundancy.

However, decision diagrams differ from DP in significant ways. Nodes of the
DP state transition graph are associated with state variables, whereas there
are no explicit state variables in a decision diagram; only decision variables.
Furthermore, arcs of a state transition graph are often labeled with costs, and
this is not true of a decision diagram. A decision diagram can be given arc costs
when the objective function is separable, but costs in a DP transition graph
are more complicated because they are state dependent: they depend on state
variables as well as decision variables.
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Nonetheless, we show that the elementary theory of decision diagrams can
be extended to incorporate state-dependent costs and therefore establish a close
parallel with DP. We define a weighted decision diagram to be a decision diagram
with arbitrary arc costs. Unfortunately, differing arc costs can prevent reduc-
tion of a weighted diagram even when the unweighted diagram would reduce.
However, we show that costs can often be rearranged on the diagram, without
changing the objective function, so as to allow reduction. In fact, we define a
unique canonical set of arc costs for a given objective function and generalize a
well-known uniqueness result for reduced decision diagrams. We show that for
a given optimization problem and variable ordering, there is a unique reduced
weighted decision diagram with canonical costs that represents the problem.

This opens the possibility of simplifying a DP formulation by converting the
transition costs to canonical costs and reducing the state transition diagram that
results. In fact, we show this maneuver results in a substantial simplification even
for a standard DP formulation of production and inventory management that
has appeared in textbooks for decades.

We conclude by extending weighted decision diagram to nonserial decision
diagrams by exploiting an analogy with nonserial DP.

2 Previous Work

Binary decision diagrams were introduced by [1, 19, 31]. In recent years they have
been applied to optimization, initially for cut generation in integer programming
[9, 11], post-optimality analysis [25, 26], and 0-1 vertex and facet enumeration
[10]. Relaxed decision diagrams were introduced in [3] and further applied in
[21, 27, 28] as an alternative to the domain store in constraint programming,
and they were used in [14, 15] to obtain bounds for optimization problems.
Introductions to decision diagrams can be found in [2, 18].

Dynamic programming is credited to Bellman [12, 13]. A good introductory
text is [24], and a more advanced treatment [17]. Nonserial dynamic program-
ming was introduced by [16]. Essentially the same idea has surfaced in a number
of contexts, including Bayesian networks [30], belief logics [33, 34], pseudoboolean
optimization [22], location theory [20], k-trees [4, 5], and bucket elimination [23].

The identification of equivalent subproblems is known as caching in the knowl-
edge representation literature, where it has received a good deal of attention (e.g.,
[6–8, 29]). However, apparently none of this work deals with state-dependent
costs, which are a unique and essential feature of DP, as it is understood in the
operations research community.

3 Decision Diagrams

For our purposes, decision diagrams can be viewed as representing the feasible
set S of an optimization problem

min
x
{f(x) | x ∈ S } (1)
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Table 1. (a) A small set covering problem. The dots indicate which elements belong
to each set i. (b) A nonseparable cost function for the problem. Values are shown only
for feasible x.

(a)

Set i
1 2 3 4

A • •
B • • •
C • •
D • •

(b)

x f(x)

(0,1,0,1) 6
(0,1,1,0) 7
(0,1,1,1) 8
(1,0,1,1) 5
(1,1,0,0) 6
(1,1,0,1) 8
(1,1,1,0) 7
(1,1,1,1) 9

where f(x) is the objective function, and x a tuple (x1, . . . , xn) of discrete vari-
ables with finite domains D1, . . . , Dn, respectively.

An ordered decision diagram is a directed, acyclic graph G = (N,A) whose
node set N is partitioned into n layers 1, . . . , n corresponding to the variables
x1, . . . , xn, plus a terminal layer (layer n + 1). Layer 1 contains only a root
node r, and the terminal layer contains nodes 0 and 1. For each node u in layer
i ∈ {1, . . . , n} and each value di ∈ Di, there is a directed arc a(u, di) in A from
u to a node u(di) in layer i+1, which represents setting xi = di. Each path from
r to 1 represents a feasible solution of S, and each path from r to 0 represents
an infeasible solution. For our purposes, it is convenient to omit the paths to 0
and focus on the feasible solutions.

As an example, consider a set covering problem in which there are four sets
as indicated in Table 1(a), collectively containing the elements A, B, C, D. The
problem is to select a minimum-cost cover, which is a subcollection of sets whose
union is {A,B,C,D}. Let binary variable xi be 1 when set i is selected, and let
f(x) be the cost of subcollection x. The decision diagram in Fig. 1(a) represents
the feasible set S. The 9 paths from r to 1 represent the 9 covers.

A decision diagram is a binary decision diagram if each domain Di contains
two values, as in the example of Fig. 1. It is a multivalued decision diagram if
at least one Di contains three or more values. Decision diagrams can be defined
to contain long arcs that skip one or more layers, but to simplify notation, we
suppose without loss of generality that G contains no long arcs.

A decision diagram is reduced when it is a minimal representation of S. To
make this more precise, let Guu′ be the subgraph of G induced by the set of
nodes on paths from u to u′. Subgraphs Guu′ and Gvv′ are equivalent when they
are isomorphic, corresponding arcs have the same labels, and u, v belong to the
same layer. A decision diagram is reduced if it contains no equivalent subgraphs.
It is a standard result [19, 35] that there is a unique reduced diagram for any
given S and variable order.
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The reduced decision diagram can be obtained from a branching tree using a
simple procedure. Supposing that the tree contains only the feasible leaf nodes,
we first superimpose all the leaf nodes to obtain terminal node 1, and then
continue to superimpose equivalent subgraphs until none remain. For example,
the branching tree for the set covering problem of Table 1(a) appears in Fig. 2
(ignore the arc labels at the bottom). The tree can be transformed in this manner
to the reduced decision diagram of Fig. 1(a).

4 Weighted Decision Diagrams

Given an optimization problem (1), we would like to assign costs to the arcs
of a decision diagram to represent the objective function. We will refer to a
decision diagram with arc costs as a weighted decision diagram. Such a diagram
represents (1) if the paths from r to 1 represent precisely the feasible solutions
of (1), and length of each path x is f(x). The optimal value of (1) is therefore
the shortest path length from r to 1. We will say that two weighted decision
diagrams are isomorphic if they yield the same unweighted diagram when arc
costs are removed.

The assignment of costs to arcs is most straightforward when the objective
function is separable. If f(x) =

∑
i fi(xi), we simply assign cost fi(di) to each

arc a(u, di) leaving layer i in the reduced decision diagram representing S. For
example, if f(x) = 3x1+5x2+4x3+6x4, the arc costs are as shown in Fig. 1(b),
and the shortest path is x = (0, 1, 0, 1) with cost 11.
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Fig. 1. (a) Decision diagram for the set covering problem in Table 1(a). Dashed arcs
correspond to setting xi = 0, and solid arcs to setting xi = 1. (b) Decision diagram
showing arc costs for a separable objective function. Unlabeled arcs have zero cost.
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Fig. 2. Branching tree for the set covering problem in Table 1(a). Only feasible leaf
nodes are shown.

Arc costs can also be assigned when the objection function is nonseparable. In
fact, we will show that the problem is represented by a unique reduced weighted
decision diagram, provided arc costs are assigned in a canonical way.

Consider, for example, the nonseparable objective function of Table 1(b).
There are many ways to capture the function by putting arc costs on the branch-
ing tree in Fig. 2. The most obvious is to assign the value corresponding to each
leaf node to the incoming arc, as shown in the figure, and zero cost on all other
arcs. However, this assignment tends to result in a large decision diagram.

To find a reduced diagram, we focus on canonical arc costs. An assignment of
arc costs to a tree or a decision diagram is canonical if for every level i ≥ 2, the
smallest cost on arcs a(u, di) leaving any given node u is some predefined value
αi. In the simplest case αi = 0 for all i, but it is convenient in applications to
allow other values. We first show that canonical costs are unique.

Lemma 1. For any given decision diagram or search tree representing a feasible
set S, there is at most one canonical assignment of arc costs to G that represents
the optimization problem (1).

Proof. To simplify notation, we assume without loss of generality that each
αi = 0. Given node u in layer i, let c(u, di) be the cost assigned to arc a(u, di),
and let Lu(d̄) be the length of a path d̄ = (d̄i, . . . , d̄n) from u to 1 (in a decision
diagram) or to a leaf node (in a tree). We show by induction on i = n, n−1, . . . , 1
that for any node u, Lu(d̄) for any such path d̄ is uniquely determined if the
arc costs are canonical. It follows that all the arc costs are uniquely determined.
First consider any node u on layer n. For any path d = (d1, . . . , dn−1) from r to
u, we must have

f(d, dn)− f(d, d′n) = c(u, dn)− c(u, d′n)

for any pair of arcs (u, u(dn)), (u, u(d
′
n)). Because a canonical assignment sat-

isfies mindn{c(u, dn)} = 0, each of the costs c(u, dn) is uniquely determined.
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For i = n, n− 1, . . . , 2:
For each node u on layer i:

Let cmin(u) = minu′∈Uout
{cuu′}

For each u′ ∈ Uout:
Let cuu′ ← cuu′ − cmin + αi.

For each u′ ∈ Uin:
Let cu′u ← cu′u + cmin − αi.

Fig. 3. Algorithm for converting arc costs to canonical arc costs. Here, Uout is the set
of child nodes of node u, and Uin is the set of parent nodes of u.

Now for any node u in layer i ∈ {1, . . . , n−1}, suppose that Lu(di)(d̄) is uniquely
determined for any arc a(u, di) and any path d̄ from u(di) to 1 or a leaf node.
Then for any path d = (d1, . . . , di−1) from r to u and for any pair (di, d̄), (d

′
i, d̄

′)
of paths from u to 1 or a leaf node, we must have

f(d, di, d̄)− f(d, d′i, d̄
′) = Lu(di, d̄)− Lu(d

′
i, d̄

′)
= (c(u, di) + Lu(di)(d̄))− (c(u, d′i) + Lu(d′

i)
(d̄′)

= c(u, di)− c(u, d′i) +Δ

where Δ is uniquely determined, by the induction hypothesis. This and the fact
that mindi{c(u, di)} = 0 imply that the arc costs c(u, di) are uniquely deter-
mined. So Lu(di, d̄) is uniquely determined for any (di, d̄), as claimed. �
Canonical arc costs can be obtained in a search tree by moving nonzero costs
upward in the tree. Beginning at the bottom, we do the following: if cmin(u) is
the minimum cost on arcs leaving a given node u in layer i, then reduce the
costs on these arcs by cmin(u) − αi, and increase the costs on the arcs entering
the node by cmin(u)−αi. The algorithm appears in Fig. 3, and the result for the
example appears in Fig. 4 (assuming each αi = 0). If the algorithm is applied to
the search tree for the separable objective function f(x) = 3x1+5x2+4x3+6x4,
the resulting canonical arc costs are those of Fig. 5(a).

A reduced weighted decision diagram can now be obtained from the branching
tree of Fig. 4 much as in the unweighted case. Let subgraphs Guu′ and Gvv′ be
equivalent when they are isomorphic, corresponding arcs have the same labels
and costs, and u, v belong to the same layer. A weighted decision diagram with
canonical arc costs is reduced if it contains no equivalent subgraphs. A reduced
weighted decision diagram can be obtained by superimposing all leaf nodes of the
branching tree to obtain node 1, and then continuing to superimpose equivalent
subgraphs until none remain. The branching tree of Fig. 4 reduces to the weighted
decision diagram of Fig. 5(b). Note that the diagram is larger than the reduced
diagram for the separable objective function, which appears in Fig. 5(a).
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Fig. 4. Branching tree with canonical arc costs. Unlabeled arcs have zero cost.

Theorem 1. Any given discrete optimization problem (1) is represented by a
unique reduced weighted decision diagram with canonical arc costs.

Proof. We first construct a reduced weighted decision diagram G that represents
(1) and has canonical costs, assuming all αi = 0 (the argument is similar for
arbitrary αi). We will then show that G is reduced and unique. Define function
g by g(x) = f(x) when x ∈ S and g(x) =∞ when x 	∈ S. For each i = 1, . . . , n
and each d = (d1, . . . , di−1) ∈ D1 × · · · ×Di−1 define the partial function gid by

gid(xi, . . . , xn) = g(d1, . . . , di−1, xi, . . . , xn)

Let partial function gid be finite if gid(xi, . . . , xn) is finite for some xi, . . . , xn.
By convention, gn+1,d() = 0 for d ∈ S. We say that partial functions gid and gid′

are equivalent if both are finite and agree on relative values; that is,

gid(xi, . . . , xn)− gid(x
′
i, . . . , x

′
n) = gid′(xi, . . . , xn)− gid′(x′

i, . . . , x
′
n),

for any pair (xi, . . . , xn), (x
′
i, . . . , x

′
n).

Now construct G as follows. In each layer i ∈ {1, . . . , n+ 1}, create a node u
in G for each equivalence class of finite partial functions gid. Create outgoing arc
a(u, di) for each di ∈ Di such that gi+1,(d,di) is finite, where gid is any function
in the equivalence class for u. For i ≥ 2 let arc a(u, di) have cost

c(u, di) = gid(di, pu(di))− cmin(u) (2)

where pu(di) is a shortest path from u(di) to 1. Then the arc costs are defined
recursively for i = n, n− 1, . . . , 2. Arcs a(r, d1) leaving the root node have cost
c(r, d1) = g(d1, pr(d1)).

We will say that Gu1 represents the finite partial function gid if

gid(xi, . . . , xn)− gid(x
′
i, . . . , x

′
n) = Lu(xi, . . . , xn)− Lu(x

′
i, . . . , x

′
n) (3)
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Fig. 5. (a) Weighted decision diagram with canonical arc costs for a separable objective
function. (b) Canonical arc costs for a nonseparable objective function.

for all pairs (xi, . . . , xn), (x
′
i, . . . , x

′
n). We will show by induction on i that for any

node u in layer i ≥ 2, (i) path pu(di) has length zero for any arc a(u, di), and (ii)
subgraph Gu1 represents any function gid in the equivalence class corresponding
to u. Given this, for any feasible solution x = (d1, d), we have

g(d1, d) = g(d1, pr(d1)) + g(d1, d)− g(d1, pr(d1)) (a)

= g(d1, pr(d1)) + Lr(d1, d)− Lr(d1, pr(d1) (b)

= c(r, d1) + Lr(d1, d)− Lr(d1, pr(d1)) (c)

= c(r, d1) + Lr(d1, d)− [c(r, d1) + Lr(d1)(pr(d1))] (d)

= c(r, d1) + Lr(d1, d)− c(r, d1) = Lr(d1, d) (e)

where (b) is due to (ii), (c) follows from the definition of c(r, d1), and (e) is due
to (i). This means that for feasible x, g(x) is the length of path x in G. Because
the nodes of G represent only finite partial functions gid, G contains no path for
infeasible x. Thus, G represents (1).

For the inductive proof, we first observe that for any node u in layer n, path
pu(dn) is simply node 1 and therefore has length zero, which yields (i). Also for
any pair xn, x

′
n, we have for any gid in the equivalence class for u:

gnd(xn)− gnd(x
′
n) = (gnd(xn)− cmin(u))− (gnd(x

′
n)− cmin(u))

= c(u, xu)− c(u, x′
u) = Lu(xn)− Lu(x

′
n)

This means that Gu1 represents gnd, and we have (ii).
Supposing that (i) and (ii) hold for layer i + 1, we now show that they hold

for layer i. To show (i), we note that the length of pu(di) is

min
di+1

{c(u(di), di+1) + pu(di+1)]} = min
di+1

{c(u(di), di+1)} = 0
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where the first equation is due to the induction hypothesis and the second to
the definition of c(u(di), di+1). To show (ii), it suffices to show (3), which can be
written

gid(xi, y)− gid(x
′
i, y

′) = Lu(xi, y)− Lu(x
′
i, y

′) (4)

where y = (xi+1, . . . , xn). Note that

gid(xi, y)− gid(x
′
i, y

′)
= gid(xi, pu(xi))− gid(x

′
i, pu(x

′
i))

+ gid(xi, y)− gid(xi, pu(xi))− [gid(x
′
i, y

′)− gid(x
′
i, pu(d

′
i))] (a)

= gid(xi, pu(xi))− gid(x
′
i, pu(x

′
i))

+ Lu(xi)(y)− Lu(xi)(pu(xi))− [Lu(x′
i)
(y′)− Lu(x′

i)
(pu(x

′
i))] (b)

= gid(xi, pu(xi))− gid(x
′
i, pu(x

′
i)) + Lu(xi)(y)− Lu(x′

i)
(y′) (c)

= c(u, xi)− c(u, x′
i) + Lu(xi)(y)− Lu(x′

i)
(y′) (d)

= c(u, xi) + Lu(xi)(y)− [c(u, x′
i) + Lu(x′

i)
(y′)] (e)

= Lu(xi, y)− Lu(x
′
i, y

′) (f)

where (b) is due to the induction hypothesis for (ii), (c) is due to the induction
hypothesis for (i), and (d) is due to (2). This demonstrates (4).

We now show that G is minimal and unique. Suppose to the contrary that
some weighted decision diagram Ḡ with canonical costs represents (1), is no
larger than G, and is different from G. By construction, there is a one-to-one
correspondence of nodes on layer i of G and equivalence classes of partial func-
tions gd. Thus for some node u on layer i if Ḡ, there are two paths d, d′ from
r to u for which gd and gd′ belong to different equivalence classes. However, Ḡ
represents g, which means that for any path y = (yi, . . . , yn) from u to 1,

gd(y) = L̄(d) + L̄u(y)

gd′(y) = L̄(d′) + L̄u(y)
(5)

where L̄(d) is the length of the path d from 1 to u in Ḡ, and L̄u(y) the length of
the path y from u to 1 in Ḡ. This implies that for any two paths y and y′ from
u to 1 in Ḡ,

gd(y)− gd(y
′) = gd′(y)− gd′(y′) = L̄u(y)− L̄u(y

′)

which contradicts the fact that gd and gd′ belong to different equivalence
classes. �

5 Separable Decision Diagrams

A separable decision diagram is a weighted decision diagram whose arc costs are
directly obtained from a separable objective function. For example, the diagram
of Fig. 1(b) is separable. More precisely, a decision diagram is separable if on
any layer i, c(u, di) = c(u′, di) = ci(di) for any di and any two nodes u, u′.
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Separable decision diagrams have the advantage that they can be reduced
while ignoring arc costs. That is, the reduced diagram is obtained by removing
arc costs, reducing the diagram that results, and then putting cost ci(di) on each
arc a(u, di).

Converting costs to canonical costs can destroy separability. For example, the
separable decision diagram of Fig. 1(b) becomes the nonseparable diagram of
Fig. 5(a) when costs are converted to canonical costs. However, the reduced dia-
gram remains the same. Thus Fig. 5(a) is a reduced weighted decision diagram.

This means that there is nothing lost by converting to canonical costs when
the diagram is separable, and perhaps much to be gained when it is nonseparable,
because in the latter case the diagram may reduce further.

Lemma 2. A separable decision diagram that is reduced when costs are ignored
is also reduced when costs are converted to canonical costs.

Proof. Suppose that G is reduced when costs are ignored, but it is not reduced
when costs are converted to canonical costs. Then some two weighted subgraphs
Gu1 and Gu′1 are equivalent. This means, in particular, that they are isomorphic.
But this contradicts the assumption that G without costs is reduced. �

6 Dynamic Programming

A dynamic programming problem is one in which the variables xi are regarded
as controls that result in transitions from one state to the next. In particular,
control xi takes the system from the current state si to the next state

si+1 = φi(si, xi), i = 1, . . . n (6)

where the initial state s1 is given. It is assumed that the objective function f(x)
is a separable function of control/state pairs, so that

f(x) =
n∑

i=1

ci(xi, si) (7)

The optimization problem is to minimize f(x) subject to (7) and xi ∈ Xi(si) for
each i.

The attraction of a dynamic programming formulation is that it can be solved
recursively:

gi(xi) = min
xi∈Xi(si)

{ci(si, xi) + gi+1(φi(si, xi))} , i = 1, . . . , n (8)

where gn+1(sn+1) = 0 for all sn+1. The optimal value is g1(s1). To simplify
discussion, we will suppose that Xn(sn) is defined so that there is only one final
state sn+1.

To make a connection with decision diagrams, we will assume that the control
variables xi are discrete. Then the recursion (8) describes a state transition
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Fig. 6. (a) State transition graph for a set covering instance. (b) State transition graph
for a production and inventory management problem. (c) Reduced state transition
graph after converting costs to canonical costs.

graph in which each node corresponds to a state, and there is a directed arc
(si, φi(si, xi)) with cost ci(si, xi) for each control xi ∈ Xi. The state transition
graph is a binary decision diagram in which s1 is the root node and sn+1 the
terminal node.

In the set covering example, the state si can be defined as the set of elements
that have been covered after variables x1, . . . , xi−1 have been fixed. The resulting
state transition graph appears in Fig. 6(a).

We see immediately that the state transition graph, when viewed as a decision
diagram, may allow further reduction. Two of the nodes on level 4 of Fig. 6(a)
can be merged even though they correspond to different states.

7 Reducing the State Transition Graph

It may be possible to reduce the size of a DP state transition graph by viewing it
as a weighted decision diagram. Even when arc costs as given in the graph prevent
reduction, conversion of the arc costs to canonical costs may allow significant
reduction that simplifies the problem.

For example, this idea can be applied a textbook DP model that has remained
essentially unchanged for decades. The objective is to adjust production quan-
tities and inventory levels to meet demand over n periods while minimizing
production and holding costs. We will suppose that hi the unit holding cost in
period i, and ci is the unit production cost. Let xi be the production quantity
in period i, and let the state variable si be the stock on hand at the beginning
of period i. Then the recursion is

gi(si) = min
xi∈Xi(si)

{cixi + hisi + gi+1(si + xi − di)} , i = 1, . . . , n (9)

where di is the demand in period i.
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If we suppose that the warehouse has capacity m in each period, the state
transition graph has the form shown in Fig. 6(b). Note that the set of arcs
leaving any node is essentially identical to the set of arcs leaving any other node
in the same stage. The controls xi and the costs are different, but the controls
can be equalized by a simple change of variable, and the costs can be equalized
by transforming them to canonical costs.

To equalize the controls, let the control x′
i be the stock level at the beginning

of the next stage, so that x′
i = si + xi − di. Then the controls leaving any node

are x′
i = 0, . . . ,m. The recursion (9) becomes

gi(si) = min
x′
i∈{0,...,m}

{ci(x′
i − si + di) + hisi + gi+1(x

′
i)} , i = 1, . . . , n (10)

To transform the costs to canonical costs, we subtract hisi + (m − si)ci from
the cost on each arc (si, si+1), and add this amount to each arc coming into si.
Then for any period i, the arcs leaving any given node si have the same set of
costs. Specifically, arc (si, si+1) has cost

c̄i(si+1) = (di + si+1 −m)ci + si+1hi+1 + (m− si+1)ci+1

and so depends only on the next state si+1. These costs are canonical for αi =
minsi+1∈{0,...,m}{c̄i(si+1)}.

In any given period i, the subgraphs Gsi are now equivalent, and the decision
diagram can be reduced as in Fig. 6(c). There is now one state in each period
rather than m, and the recursion is

gi = min
x′
i∈{0,...,n}

{ci(di + x′
i −m) + hi+1x

′
i + ci+1(m− x′

i) + gi+1} (11)

If x̄′
1, . . . , x̄

′
n are the optimal controls in (11), the resulting stock levels are given

by si+1 = x̄′
i and the production levels by xi = x̄′

i − si + di.
There is no need for experiments to determine the effect on computation time.

The reduction of the state space implies immediately that the time is reduced
by a factor of m.

8 Nonserial Dynamic Programming

In serial dynamic programming, the state variables si are arranged linearly as a
path. In nonserial dynamic programming, they are arranged in a tree. Because
formal notation for nonserial DP is rather complex, the idea is best introduced
by example. To simplify exposition, we will discuss only problems with separable
objective functions.

Figure 7(a) shows a small set partitioning problem. The goal is to select a
minimum subcollection of the 6 sets that partitions the set {A,B,C,D}. Thus
there are 4 constraints, corresponding to the elements (A, B, C, D), each requir-
ing that only one set containing that element be selected. The 3 feasible solutions
are (x1, . . . , x6) = (0, 0, 0, 1, 1, 1), (0, 1, 1, 0, 0, 0, 0), (1, 0, 0, 0, 0, 1), where xi = 1
indicates that set i is selected. The last two solutions are optimal.
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Fig. 7. (a) A small set partitioning problem. The dots indicate which elements belong to
each set i. (b) Dependency graph for the problem. The dashed edge is an induced edge.

A nonserial recursion can be constructed by reference to the dependency graph
for the problem, shown in Fig. 7(b). The graph connects two variables with an
edge when they occur in a common constraint. We arbitrarily select a variable
ordering x1, . . . , x6 and remove vertices in reverse order, each time connecting
vertices adjacent to the vertex removed. Edges added in this fashion are induced
edges. As in serial DP, we let the state contain the information necessary to
determine the feasible choices for xi. Now, however, the feasible values of xi

depend on the set of variables to which xi was adjacent when removed. We
therefore let x6 depend on (x2, x3), and similarly for the other control variables.

The problem can be solved recursively as follows. LetCA(x1, x3, x5),CB(x3, x6),
CC(x1, x2, x4), and CD(x2, x6) be the constraints corresponding to elements A, B,
C, and D, respectively. The recursion is

g6(x2, x3) = min
x6∈{0,1}

{x6 | CC(x3, x6) ∧ CD(x2, x6)}

g5(x1, x3) = min
x5∈{0,1}

{x5 | CA(x1, x3, x5)}

g4(x1, x2) = min
x4∈{0,1}

{x4 | CC(x1, x2, x4)}

g3(x1, x2) = min
x3∈{0,1}

{x3 + g6(x2, x3) + g5(x1, x3)}

g2(x1) = min
x2∈{0,1}

{x2 + g4(x1, x2) + g3(x1, x2)}

g1() = min
x1∈{0,1}

{x1 + g2(s(1))}

The smallest partition has size g1(), which is infinite if there is no feasible parti-
tion. The induced width (treewidth) of the dependency graph is the maximum
number of state variables that appear as arguments of a gi(·), in this case 2.

To write the general recursion for nonserial DP, let x(J) = {xj | j ∈ J}. Let
each constraint Ci contains the variables in x(Ji), and let each gi(·) be a function
of x(Ii). The recursion is

gi(x(Ii)) = max
xi

⎧⎨⎩ ci(xi) +
∑
j > i

Ij ⊂ Ii

gj(x(Ij))

∣∣∣∣∣∣
∧
j

Jj ⊂ Ii

Cj(x(Jj))

⎫⎬⎭
The complexity of the recursion is O(2W+1), where W is the induced width.
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As in serial DP, we can introduce state variables si to encode the necessary
information for selecting xi. In the present case, we let si be the multiset of
elements selected by the variables in x(Ii), where elements selected by two vari-
ables are listed twice. For example, s6 is the multiset of elements selected by x2

and x3. In general, we will let s(Ii) denote the multiset of elements selected by
the variables in x(Ii), so that si = s(Ii). The solution can now be calculated as
shown in Table 2.

The state transition graph for the example appears in Fig. 8(a). Here each
stage is labeled by the state variable si rather than the decision variable xi.
The initial state is associated with state variable s1. Decision xi is taken at each
value of state variable si. Because state variables s3 and s4 are identical, they are
superimposed in the graph. The choice of x3 leads to states s5 and s6, with two
outgoing arcs corresponding to each choice. The choice of x4 leads to a terminal
node.

Feasible solutions correspond to trees that are incident to the initial state and
3 terminal nodes. The tree shown in bold is one of the two optimal solutions.
Note that its cost is 2 even though it contains 3 solid arcs, because two of the
arcs correspond to the same choice x3 = 1. States that are part of no feasible
solution (tree) are omitted from the diagram.

As an illustration, consider state s3 = {A,C}. The arcs for x3 = 0 lead to the
states s5 = {A,C} and s6 = ∅. Arcs for x3 = 1 are not shown because they are
not part of a feasible solution. One can check from Table 2 that when x3 = 1,

x3 + g6(s6) + g5(s5) = 1 + g6({A,B}) + g5({A,C,C,D}) =∞

Now consider state s4 = {A,C}, which corresponds to the same node. The arc
for x4 = 0 leads to a terminal node. The arc for x4 = 1 is not shown because
{A,C,C} violates constraint CC.

9 Nonserial Decision Diagrams

The state transition graph for a nonserial DP can be regarded as a decision
diagram, as in the case of serial DP. The diagram can also be reduced in a similar
fashion. For example, the diagram of Fig. 7(a) reduces to that of Fig. 7(b). Note
that two nodes are merged, resulting in a smaller diagram. Feasible solutions
correspond to trees that are incident to the root node and the two terminal
nodes. The reduction in size can be significant, as in the case of serial decision
diagrams.

Table 2. Recursive solution of the set partitioning example

s6 g6(s6)

∅ 1
{A,B} ∞
{C,D} ∞

{A,B,C,D} 0

s5 g5(s5)

∅ 1
{A,C} 0
{A,B} 0

{A,A,B,C} ∞

s4 g4(s4)

∅ 1
{A,C} 0
{C,D} 0

{A,C,C,D} ∞

s3 g3(s3)

∅ 2
{A,C} 1
{C,D} 1

{A,C,C,D} ∞

s2 g2(s2)

∅ 2
{A,B} 2

g1() = 2
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Fig. 8. (a) Nonserial state transition graph for a set partitioning problem. Only nodes
and arcs that are part of feasible solutions are shown. Each feasible solution corresponds
to a tree incident to the root and both terminal nodes. The boldface tree corresponds to
optimal solution (x1, . . . , x6) = (0, 1, 1, 0, 0, 0). (b) Reduced nonserial decision diagram
for the same problem.

10 Conclusion

We showed how decision diagrams can be extended to weighted decision diagrams
so as to establish a precise parallel with dynamic programming (DP). In particu-
lar, we proved that for a given optimization problem and variable ordering, there
is a unique reduced decision diagram with canonical arc costs that represents the
problem. We also showed how this perspective can allow one to simplify a discrete
DP model by transforming arc costs on its state transition graph to canonical arc
costs and reducing the diagram that results. Finally, we introduced nonserial de-
cision diagrams as a counterpart to nonserial dynamic programming.

It remains to investigate other possible simplifications of DP models based
on the decision diagram perspective, as well as to generalize the uniqueness
result to nonserial decision diagrams. Another possible development is to merge
relaxed decision diagrams, mentioned in Section 2, with approximate dynamic
programming [32]. This may allow algorithms for relaxing a decision diagram to
generate an efficient state space relaxation for approximate DP.
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Abstract. A particularly difficult class of scheduling and routing problems in-
volves an objective that is a sum of time-varying action costs, which increases the
size and complexity of the problem. Solve-and-improve approaches, which find
an initial solution for a simplified model and improve it using a cost function,
and Mixed Integer Programming (MIP) are often used for solving such problems.
However, Constraint Programming (CP), particularly with Lazy Clause Genera-
tion (LCG), has been found to be faster than MIP for some scheduling problems
with time-varying action costs. In this paper, we compare CP and LCG against
a solve-and-improve approach for two recently introduced problems in maritime
logistics with time-varying action costs: the Liner Shipping Fleet Repositioning
Problem (LSFRP) and the Bulk Port Cargo Throughput Optimisation Problem
(BPCTOP). We present a novel CP model for the LSFRP, which is faster than
all previous methods and outperforms a simplified automated planning model
without time-varying costs. We show that a LCG solver is faster for solving the
BPCTOP than a standard finite domain CP solver with a simplified model. We
find that CP and LCG are effective methods for solving scheduling problems,
and are worth investigating for other scheduling and routing problems that are
currently being solved using MIP or solve-and-improve approaches.

1 Introduction

Scheduling problems typically aim to select times for a set of tasks so as to opti-
mise some cost or value function, subject to problem-specific constraints. Traditional
scheduling problems usually aim to minimise the makespan, or total time, of the result-
ing schedule. More complex objective functions, such as minimising the total weighted
tardiness, may vary with time [30]. Routing problems have many similarities with
scheduling – both may have resource constraints and setup time constraints, both have
actions that need to be scheduled in time, and both may have complex time-dependent
cost functions for actions.

In a number of important, real-world scheduling problems, such as the Liner Ship-
ping Fleet Repositioning Problem (LSFRP) [32, 33] and the Bulk Port Cargo Through-
put Optimisation Problem (BPCTOP) [14, 15], the objective is a sum of time-varying
costs or values for each task. Additional problems include net present value maximiza-
tion in project scheduling [26]; satellite imaging scheduling [17, 38]; vehicle routing

C. Gomes and M. Sellmann (Eds.): CPAIOR 2013, LNCS 7874, pp. 111–127, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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with soft time windows [29, 12]; ship routing and scheduling with soft time win-
dows [8, 2]; and ship speed optimisation [10, 20].

Mixed Integer Programming (MIP) is a standard approach used to solve many
scheduling and routing problems. Solve-and-improve approaches are also commonly
used to solve scheduling and routing problems with complex constraints or complex
objective functions, such as objective functions that are the sum of time-dependent task
costs. Solve-and-improve approaches initially solve a simplified problem, then improve
the solution using the objective function and constraints of the full problem.

For example, in the satellite image scheduling problem, each observation may only
be performed for a specified period of time during the satellite’s orbit, and the quality
of the observation drops off to zero for times before and after the peak quality win-
dow [38]. Yao et al [39] and Wang et al [37] solved this problem by converting the
image quality function to hard time windows when a “good enough” image could be
obtained. Lin et al [17] found solutions within 2% of optimality by first converting the
quality function to hard time windows to find feasible solutions, and then heuristically
improving the solution quality by minor changes in the schedule.

Solve-and-improve approaches have also often been used in other applications, such
as the vehicle routing problem with soft time windows (VRPSTW), which has time-
varying penalties for early and late arrival outside each customer’s preferred time win-
dow. Soft time windows allow better utilisation of vehicles, thus reducing transportation
costs compared to hard time windows, while still servicing most customers within their
preferred times. However, soft time windows result in a more complex objective func-
tion, making the problem significantly more difficult to solve [24]. Some VRPSTW
approaches optimise first for the number of vehicles (routes), then for minimal travel
time and distance, and finally improving solutions by minimising cost with time win-
dow penalties included [12]. Solve-and-improve approaches are a standard technique
which have been discussed in a recent review of vehicle routing with time windows [7].

However, for some problems such as [14], Constraint Programming (CP) has been
shown to be more effective than MIP. CP is also a very flexible method that can be used
to model a wider variety of constraints than MIP, which is limited to linear constraints.
A number of recent approaches have combined CP with other techniques such as vehicle
routing [16], SAT [21] and MIP [1] in order to combine the flexibility of CP with fast
algorithms for specific problems. CP approaches may be worth investigating for other
problems that have traditionally been modelled with MIP.

One CP technique in particular which has been found to be effective on a number
of scheduling problems is Lazy Clause Generation (LCG) [21] – a method for solving
CP problems which allows the solver to learn where the previous search failed. LCG
combines a finite domain CP solver with a SAT solver, by lazily adding clauses to
the SAT solver as each finite domain propagator is executed. This approach benefits
from efficient SAT solving techniques such as nogood learning and backjumping, while
maintaining the flexible modelling of a CP solver and enabling efficient propagation of
complex constraints [21].

A CP solver that uses LCG was found by Schutt et al [27] to be more efficient than
traditional finite domain CP solvers for the Resource Constrained Project Scheduling
Problem with Net Present Value – another scheduling problem with time-dependent
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action costs, where each activity has an associated positive or negative cash flow that is
discounted over time. This problem has previously been solved by relaxing the problem
to remove resource constraints, and using the resource-unconstrained solution as an
upper bound in the search [35]; however, a CP solver with LCG was able to find better
solutions than any previous state-of-the-art complete method [27].

LCG has also been found to be faster than finite domain solvers for a number of
other scheduling problems, including the Concert Hall Scheduling problem [5], project
scheduling with generalised precedence constraints [28] and a number of other schedul-
ing problems [11]. LCG solvers can be used for any problem that is modelled as a con-
straint programming problem, which makes LCG a highly generalisable technique that
is worth investigating for other scheduling and routing problems with time-varying task
costs as an alternative to MIP or model simplification approaches.

The contribution of this paper is to compare the effectiveness of CP and LCG against
traditional MIP and solve-and-improve techniques for two recent scheduling and rout-
ing problems with time-varying action costs in the field of maritime transportation. We
present a novel CP model for the LSFRP and show that this model is faster than existing
approaches including MIP and automated planning, even when a simplified automated
planning model with no time-varying costs is used. We show that a CP solver with LCG
is more effective at solving the BPCTOP with time-varying draft than a traditional Finite
Domain CP solver (CP was found to be faster than MIP for the BPCTOP in an earlier
paper [14]). We also show that the LCG solver scales better to large BPCTOP problems
than the first step of a solve-and-improve approach that simplifies the time-varying cost
function to find an initial solution.

2 Background

2.1 Bulk Port Cargo throughput Optimisation with Time-Varying Draft

Many ports have safety restrictions on the draft (distance between waterline and keel)
of ships sailing through the port, which vary with the height of the tide. Most maritime
scheduling problems either ignore draft constraints entirely [9], or do not consider time
variation in draft restrictions [25, 31]. This simplifies the problem and improves scala-
bility, but may miss solutions which allow ships to sail with higher draft (and thus more
cargo) close to high tide.

Introducing time-varying draft restrictions requires a problem to be modelled with
a very fine time resolution, as the draft can change every five minutes. This greatly in-
creases the size of the problem, so time-varying draft restrictions have thus far only been
applied to the problem of optimising cargo throughput at a single bulk export port – the
Bulk Port Cargo Throughput Optimisation Problem (BPCTOP). The objective function
for the BPCTOP with time-varying draft restrictions is the sum of maximum drafts for
each ship at their scheduled sailing times. The shape of the objective function is similar
to satellite image scheduling, as the maximum draft for each ship peaks around high
tide, and drops off before and after.

The BPCTOP also includes resource constraints on the availability of tugs, berths
or shipping channels, and sequence-dependent setup times between successive ships.
Ports may have safety restrictions on the minimum separation times between ships, as
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ships sailing too close together in a narrow channel may pose a safety risk. Minimum
separation times between ships may also depend on which berths the ships sail from.

Kelareva et al [14] compared CP and MIP approaches for the BPCTOP, and found
that CP with a good choice of search strategy was able to find optimal solutions faster
than MIP, and was also able to solve problems with more ships. These approaches also
produced significantly better solutions compared to human schedulers [15]. Each extra
centimetre of draft can increase profit for the shipper by up to $10,000 [14], so there is
a high incentive to find optimal solutions, and non-optimal approaches for this problem
have not yet been investigated.

The CP model was able to solve problems with up to 6 ships for even the most tightly
constrained problems, where all ships are very large and can continue loading extra
cargo right up to the peak of the high tide, and with 10 or more ships for less tightly
constrained problems. These are realistic problem sizes – Port Hedland, Australia’s
largest bulk export port recently set a record of 5 draft-constrained ships sailing on the
same high tide [22].

2.2 Liner Shipping Fleet Repositioning

Another recently introduced scheduling and routing problem with time-varying action
costs in maritime transportation is the Liner Shipping Fleet Repositioning Problem (LS-
FRP) [32]. In liner shipping, vessels are assigned to services that operate like a bus
timetable, and vessels regularly need to be repositioned between services in response to
changes in the world economy. A vessel begins repositioning when it phases out from
its original service, and ends repositioning when it phases in to its new service.

The total cost of the repositioning depends on fuel usage, and a fixed hourly hotel
cost paid for the time between the phase-out and phase-in. The cost function for a
repositioning action is therefore monotonically increasing with the duration of sailing,
as the fuel cost is much lower for vessels sailing at low speed. There may also be
opportunities for a vessel to carry empty containers (sail-equipment (SE)), or replace
another vessel in a regular service (sail-on-service (SOS)), which significantly reduces
the cost of the repositioning. The LSFRP is not a pure scheduling problem, as there is a
choice of actions and action durations.

Fig. 1. A subset of a real-world repositioning scenario, from [32]
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Figure 1 shows a subset of a repositioning scenario in which the new Intra-WCSA
service requires three vessels that must be repositioned from their services in South-East
Asia. One of the vessels was originally on the CHX service, and the other two were on
other services not shown in this figure. The cost of repositioning in this scenario can be
reduced by carrying equipment from China to South America (e.g. DLC to BLB), or
using the AC3 service as an SOS opportunity.

There has been little prior research on the LSFRP. In fact, the LSFRP is not even
mentioned in the two most comprehensive surveys of maritime research [4, 3]. The LS-
FRP was first solved by Tierney et. al. [32], who compared three methods for solving
the LSFRP. First, the LSFRP was modelled using PDDL 2.1, a modeling language for
automated planning problems (see [13]), and solved using the POPF planner [6]. Al-
though POPF found solutions, it could not solve the LSFRP to optimality. This method
was therefore compared against a MIP model, and against a Linear Temporal Optimi-
sation Planning (LTOP) approach, which uses temporal planning to build optimisation
models, and solves these using an optimisation version of partial-order planning based
on branch-and-bound.

Both LTOP and MIP were able to find optimal solutions for problem sizes with up
to three ships. These are realistic problem sizes similar to those used by shipping lines.
As with the BPCTOP, there is a high motivation to find the optimal solutions, even if
solving the problem to optimality is more difficult, since the cost of repositioning a
single ship can be hundreds of thousands of dollars [32].

3 CP vs MIP

3.1 CP Model for Liner Shipping Fleet Repositioning

Tierney, et al [32] presented MIP and automated planning models for the LSFRP. In this
section, we present a novel CP model for the LSFRP, and compare its solution times
against the earlier MIP and automated planning models.

Let Ov be the set of possible phase-out actions for the vessel v, and let P be the
be the set of possible phase-in ports for the new service. The decision variable ρ ∈ P
is the phase-in port for all vessels. The decision variables wv ∈ {1, . . . ,W} represent
the phase-in week for each vessel v, where W is the number of weeks considered in
the problem. For each vessel v we also define a decision variable qv ∈ Ov specifying
the phase-out action (port and time) used for that vessel.

For each vessel v and phase-out action o, the function t(v, o) specifies the phase-out
time for that action. Similarly, t(p, w) specifies the phase-in time for a vessel phasing in
at port p in week w. The function C(v, o, p, w) specifies the cost for vessel v using the
phase-out action o, and phasing in at port p in week w, with -1 as a flag that indicates
vessel v cannot phase in at port p in week w if it phased out using action q (for example,
if action q starts too late for vessel v to reach port p in time). The dependent variable cv
specifies the cost for vessel v when the vessel sails directly from the phase-out port to
the phase-in port. For each vessel v, CH(v) specifies its hourly hotel cost, and hv is the
duration of the hotel cost time period (from the phase-out to the phase-in).

We split each SOS opportunity into several SOS actions, where each SOS action
represents starting the SOS at a different port on the SOS service. SOS opportunities
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save money by allowing vessels to sail for free between two ports, however a cost for
transshipping cargo at each side of the SOS is incurred. Let S be the set of available SOS
actions and S′ be the set of SOS opportunities. The decision variable sv ∈ S specifies
the SOS action used for each vessel v, with 0 being a flag indicating that vessel v does
not use an SOS action. For each SOS action s ∈ S, the function y : S → S′ specifies
which SOS opportunity each SOS action belongs to, with y(s) = 0 being a flag that
specifies that the vessel is not using any SOS opportunity.

In order to use an SOS opportunity, a vessel must sail to the starting port of the SOS
opportunity before a deadline, and after using the SOS, it sails from the end port at a
pre-determined time to the phase-in port. The function Cto(v, s, o) specifies the cost of
vessel v using SOS action s, phasing out at phase-out o going to the SOS action, and
Cfrom(v, s, p, w) is the cost of vessel v to sail from SOS action s to phase in port p
in week w, with -1 as a flag that indicates that this combination of vessel, SOS action,
phase-in port and week is infeasible. The dependent variables σto

v and σfrom
v specify

the SOS costs for vessel v for sailing to and from the SOS, respectively. The function
A(v, s) specifies the cost savings of vessel v using SOS action s, and the dependent
variable σdur

v specifies the SOS cost savings for vessel v on the SOS.
Let Q be the set of sail-equipment (SE) opportunities, which are pairs of ports in

which one port has an excess of a type of equipment, e.g. empty containers, and the
other port has a deficit. Since we do not include a detailed view of cargo flows in this
version of the LSFRP, SE opportunities save money by allowing vessels to sail for free
between two ports as long as the vessel sails at its slowest speed. The cost then increases
linearly as the vessel sails faster. Let the decision variable ev ∈ E be the SE opportunity
undertaken by vessel v, with ev = 0 indicating that no SE opportunity is used. Let the
decision variables dtov , ddurv and dfromv be the duration of vessel v sailing to, during, and
from an SE opportunity.

The functions Cto(v, e, o), Cdur (v, e) and Cfrom(v, e, p, w) specify the fixed costs
of sailing to, utilizing, and then sailing from SE opportunity e, where v is the vessel, o is
the phase-out port/time, p is the phase-in port and w is the phase-in week. Together with
the constant αv, which is the variable sailing cost per hour of vessel v, the hourly cost of
sailing can be computed. This is necessary since SE opportunities are not fixed in time
and, thus, must be scheduled. Let the dependent variables λto

v , λdur
v and λfrom

v be the
fixed costs sailing to, on and from an SE opportunity. Additionally, let Δto

min(v, e, o),
Δdur

min(v, e) and Δfrom
min (v, e, p, w) be the minimum sailing time of v before, during and

after the SE opportunity and Δto
max(v, e, o), Δ

dur
max(v, e) and Δfrom

max (v, e, p, w) be the
maximum sailing time of v before, during and after the SE opportunity.

In this version of the LSFRP, the chaining of SOS and SE opportunities is not al-
lowed, meaning each vessel has the choice of either sailing directly from the phase-
out to the phase-in, undertaking an SOS, or performing an SE. The decision variable
rv ∈ {SOS,SE,SAIL} specifies the type of repositioning for each vessel v, where v
utilizes an SOS opportunity, SE opportunity, or sails directly from the phase-out to the
phase-in, respectively. The CP model is formulated as follows:

min
∑
v∈V

(
CH(v) (t(ρ,wv)− t(v, qv)) + cv + σfrom

v + σdur
v + σto

v

+ λto
v + λdur

v + λfrom
v + αv(d

to
v + ddurv + dfromv )

)
(1)
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s. t. alldifferent(wv), v ∈ V (2)

max
v∈V

wv −min
v∈V

wv = |V | − 1 (3)

alldifferent except 0(sv), v ∈ V (4)

alldifferent except 0(y(sv)), v ∈ V (5)

rv = SAIL → cv = C(v, qv, ρ, wv), ∀v ∈ V (6)

rv = SAIL →
(
sv = 0 ∧ y(sv) = 0 ∧ σdur

v = 0 ∧ σfrom
v = 0 ∧ σto

v = 0

∧ ev = 0 ∧ λto
v = 0 ∧ λdur

v = 0 ∧ λfrom
v = 0

)
, ∀v ∈ V (7)

rv = SOS → sv > 0 ∧ y(sv) > 0 ∧ σdur
v = −A(v, sv)

∧ σfrom
v = Cfrom (v, sv, ρ,wv) ∧ σto

v = Cto(v, sv, qv), ∀v ∈ V (8)

rv = SOS → cv = 0 ∧ ev = 0 ∧ λto
v = 0 ∧ λdur

v = 0 ∧ λfrom
v = 0, ∀v ∈ V (9)

sv > 0 ∨ y(sv) > 0 → rv = SOS, ∀v ∈ V (10)

alldifferent except 0(ev), ∀v ∈ V (11)

rv = SE → ev > 0 ∧ λto
v = Cto(v, ev, qv) ∧ λdur

v = Cdur(v, ev)

∧ λfrom
v = Cfrom(v, ev, ρ,wv),∀v ∈ V (12)

rv = SE →sv = 0 ∧ y(sv) = 0 ∧ σdur
v = 0 ∧ cv = 0

∧ σfrom
v = 0 ∧ σto

v = 0,∀v ∈ V (13)

ev > 0 → rv = SE (14)

Δto
min(v, ev, qv) ≤ dtov ≤ Δto

max(v, ev, qv), ∀v ∈ V (15)

Δdur
min(v, ev) ≤ ddurv ≤ Δdur

max(v, ev), ∀v ∈ V (16)

Δfrom
min (v, ev, ρ,wv) ≤ dfromv ≤ Δfrom

max(v, ev, ρ, wv), ∀v ∈ V (17)

σto
v , σfrom

v , cv ≥ 0, ∀v ∈ V (18)

The objective function (1) minimises the sum of the hotel costs and repositioning ac-
tion costs minus the cost savings for SOS actions for the set of vessels. Constraints (2)
and (3) specify that the vessels must all phase in to the new service on different, succes-
sive weeks. Constraints (4) and (5) specify that all vessels using SOS actions must use
different actions and action types. alldifferent except 0 is a global constraint
that requires all elements of an array to be different, except those that have the value 0.

Constraints (6) and (7) set the costs for a vessel if it uses a SAIL repositioning,
and ensures that the SOS/SE actions and costs are set to 0, as they are not being used.
Constraints (8) and (9) specify that if vessel v uses an SOS (SOS) repositioning action
sv, then its repositioning cost is equal to the costs for sailing to and from that SOS
action based on the phase-out action, phase-in port and week, minus the cost savings
A(v, sv) for that SOS action. In addition, the normal repositioning cost cv and the sail
equipment action for that vessel are set to 0. We also add redundant constraints (10) to
reinforce that the repositioning type be set correctly when an SOS is chosen.

In constraints (11) we ensure that no two vessels choose the same SE action (unless
they choose no SE action), and constraints (12) and (13) bind the costs of the sail equip-
ment action to the dependent variables if an SE is chosen, as well as set the costs of a
direct sailing and SOS opportunities for each vessel to 0. The redundant constraints (14)
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ensure that the repositioning type of vessel v is correctly set if an SE action is cho-
sen. The minimum and maximum durations of the parts of the SE (sailing to the SE
from the phase-out, the SE itself, and sailing from the SE to the phase-in) are set in
constraints (15), (16) and (17). Constraint (18) requires that all SOS actions and phase-
out/phase-in combinations must be valid for each vessel (i.e. transitions with -1 costs
must not be used).

3.2 LSFRP CP Results

To compare our CP model for the LSFRP against an earlier MIP model and against
the LTOP planner [32], we use 11 problem instances based on a real-world scenario
provided by an industrial collaborator. The problem instances contain up to 3 vessels,
with varying SOS and sail-with-equipment opportunities that may be used to reduce
repositioning costs. Note that this version of the LSFRP lacks the cargo flows present
in [33], but is nonetheless a real-world relevant problem.

The LSFRP CP model was formulated in the MiniZinc 1.6 modelling language [19,
18], and solved using the G12 finite domain solver [36]. We compare the CP against
a MIP model and the LTOP planner [32], both using CPLEX 12.3. All problems were
solved to optimality. Note that in our CP model for MiniZinc we had to add constraints
on the maximum duration of SE actions, as well as a constraint on the maximum sum
of the objective, in order to prevent integer overflows. These constraints do not cut off
any valid solutions from the search tree. Since MiniZinc does not support floating point
objective values, the MiniZinc model is a close approximation of the true objective.

We also used several search annotations within MiniZinc to help guide the solver
to a solution. The first is to branch on the type of repositioning, rv , before other vari-
ables, attempting at first to find a SOS option for each vessel, then searching through
SE options, and finally SAIL options. This search order was the most efficient for the
most complex models that include both SOS and SE opportunities, since SE constraints
are more complex than SOS constraints, so searching SE options first is more time
consuming for models that contain both SOS and SE opportunities.

For instances with SE opportunities, we also add a search annotation to branch on
the SE opportunity, ev, using the “indomain split” functionality of MiniZinc, which ex-
cludes the upper half of a variable’s domain. Both annotations use a first failure strategy,
meaning the variable the solver branches on is the one with the smallest domain.

Table 1 compares the run times of the CP model against the MIP model and LTOP,
all of which solve to optimality1. We ran the CP model with search annotations using a
search order of SAIL/SOS/SE (CP–A), with search annotations and the SOS/SE/SAIL
ordering (CP–AO), as well as with only the redundant constraints and using the solver’s
default search (CP–R), and using the SOS/SE/SAIL ordering with redundant constraints
(CP–AOR). CP–AOR is faster than MIP on all instances, often by an order of magni-
tude. The main challenge for the CP model are instances with SE, same as for LTOP and
the MIP. In fact, the CP model times out on two instances for CP and CP–R, as well as
one for CP-A, whereas the MIP and LTOP solve all instances. Of particular note is that
the CP model is able to solve AC3 3 3, which is the instance that most closely models

1 Experiments used AMD Opteron 2425 HE processors with a maximum of 4GB each.
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Table 1. Computation times in seconds to optimality for the CP model with and with annotations
(A), repositioning type order (O), and redundant constraints (R) vs LTOP and the MIP

Problem LTOP MIP CP CP–A CP–AO CP–R CP–AOR
AC3 1 0 1.1 0.4 0.1 0.2 0.1 0.2 0.1
AC3 2 0 51.0 9.3 0.3 0.3 0.3 0.3 0.3
AC3 3 0 188.3 23.0 0.6 0.6 0.6 0.6 0.6
AC3 1 1e 3.9 3.8 0.7 0.7 0.7 0.8 0.4
AC3 2 2ce 15.2 27.7 - 83.9 25.5 - 11.3
AC3 3 2c 203.2 250.5 6.0 3.1 3.1 6.2 3.0
AC3 3 2e 217.1 228.8 1731.0 15.8 16.2 1742.8 13.2

AC3 3 2ce1 218.2 312.2 32.6 23.0 16.7 31.5 13.9
AC3 3 2ce2 192.4 252.6 64.4 25.4 23.3 63.7 17.1
AC3 3 2ce3 516.9 706.5 - - 695.4 - 470.3

AC3 3 3 80.0 148.3 18.1 11.0 11.0 18.6 11.2

the actual scenario faced by our collaborator, in only 10 seconds. Such a quick solu-
tion time allows for interaction and feedback with a repositioning coordinator within a
decision support system. These results show that it is critical to choose a search strategy
that quickly finds good quality solutions, as well as constraints that propagate well to
cut out infeasible areas of the search. Note that no single improvement alone is enough
to give the CP model better performance than both LTOP and the MIP.

Our CP model comes with two limitations. The first limitation is the model’s flex-
ibility. A natural extension to this model would be to allow for the chaining of SOS
and SE opportunities, which is easy to do in both the LTOP and MIP models, due to
automated planning’s focus on actions, and our MIP model’s focus on flows. However,
the CP model is structured around exploiting this piece of the problem. Other natural
changes, such as allowing vessels to undergo repairs, would also be difficult to imple-
ment. The second limitation is that many of the components of the CP model involve
pre-computations that multiply the number of phase-out actions with the number of
phase-in ports and weeks. Although the model works well on our real world instance,
these pre-computations pose an issue for scaling to larger liner shipping services.

Constraint Programming (CP) is a very flexible method that can model many differ-
ent types of scheduling and routing problems with complex side constraints. Our CP
model for the Liner Shipping Fleet Repositioning Problem (LSFRP) was able to solve
all of the problem instances faster than Mixed Integer Programming (MIP) or auto-
mated planning, and we also found that CP was much faster than MIP for the Bulk Port
Cargo Throughput Optimisation Problem [14]. However, while CP can be very efficient
at solving scheduling and routing problems, the solution time is highly dependent on
having a good choice of model and search strategy, so applying CP to new applications
requires a good understanding of both the application and CP modelling techniques.

4 Lazy Clause Generation

Kelareva et al [14] presented CP and MIP models for the Bulk Port Cargo Throughput
Optimisation Problem (BPCTOP), and found that CP with a good choice of search
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strategy was much faster than MIP. However, the CP model solution time was highly
dependent on the choice of modelling approach and search strategy used – a number of
different modelling approaches and search strategies were investigated in [14, 15]. In
this paper, we compare a LCG solver against a traditional finite domain CP solver for
the BPCTOP model from [14], with all scalability improvements identified in [14, 15]

4.1 CP Model for Bulk Port Optimisation

Let V be the set of vessels to be scheduled. Let [1, Tmax] be the range of discretised
time indices. Each vessel v has an earliest departure time E(v), a maximum allowable
draft D(v, t) at each time t, and a tonnage per centimetre of draft C(v). ST (vi, vj)
specifies the minimum separation time between the sailing times of every ordered pair
of ships vi, vj ∈ V . Let B be the set of pairs of incoming and outgoing ships Bi(b)
and Bo(b) indexed by b that use the same berth. For every such pair of ships, d(b) is the
minimum delay between their sailing times. The binary decision variable s(v) specifies
whether ship v is included in the schedule. Let T (v) ∈ [1, Tmax] be the decision vari-
able specifying the scheduled sailing time for vessel v. The binary variable sb(vi, vj) –
SailsBefore(vi, vj) – is true iff vessel vi sails earlier than vessel vj , defined by Eq. (19).

sb(vi, vj) = 1 ↔ (T (vi) < T (vj) ∧ sb(vj , vi) = 0), ∀ vi, vj ∈ V ; vi �= vj (19)

Let Umax be the number of tugs available at the port. Let I and O be the sets of incom-
ing and outgoing ships. G(v) is the number of groups of tugs required for ship v, and
H(v, g) is the number of tugs in group g of vessel v. Gmax is the maximum number of
groups of tugs required for any ship. r(v, g) is the “turnaround time” – the time taken
for tugs in group g of ship v to become available for another ship in the same direction
(incoming vs outgoing). X(vi, vj) is the extra time required for tugs from incoming
vessel vi to become available for outgoing vessel vo. U(v, t, g) is a dependent variable
that specifies the number of tugs busy in tug group g of vessel v at time t, assuming
the next ship for these tugs is in the same direction. x(v, t) defines the number of extra
tugs that are busy at time t for an outgoing vessel v, due to still being in transit from
the destination of an earlier incoming ship. Finally, L(v, t) specifies that the extra tug
delay time for incoming vessel v overlaps with the sailing time of an outbound vessel
at time t. The model is formulated as follows:

maximise
∑
v∈V

s(v) . C(v) . D(v, T (v)) (20)

s. t. s(v) = 1 ⇒ T (v) ≥ E(v), ∀ v ∈ V (21)

s(Bi(b)) = 1 ⇒ s(Bo(b)) = 1 ∧ T (Bo(b)) ≤ T (Bi(b))− d(b), ∀ b ∈ B (22)

sb(vi, vi) = 0, ∀ vi ∈ V ; vi �= vj (23)

s(vi) = 1 ∧ s(vj) = 1 ⇒ (24)

(sb(vi, vj) = 1 ⇒ T (vj)− T (vi) ≥ ST (vi, vj)), ∀ vi, vj ∈ V

s(v) = 1 ∧ t ≥ T (v) ∧ t < T (v) + r(v, g) ⇒ U(v, t, g) = H(v, g), (25)

∀ v ∈ V, t ∈ [1, Tmax], g ∈ [1, Gmax]

s(v) = 0 ∨ t < T (v) ∨ t ≥ T (v) + r(v, g) ⇒ U(v, t, g) = 0, (26)

∀ v ∈ V, t ∈ [1, Tmax], g ∈ [1, Gmax]
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x(vo, t) = 0, ∀ vo ∈ O, t ∈ [1, Tmax] (27)

L(vi, t) ⇐⇒ ∃ vo ∈ O s.t. (28)
t = T (vo) ∧ T (vi) ≤ T (vo) ∧ T (vi) + max

g∈[1,G(vi)]
r(vi, g) +X(vi, vo) > T (vo),

∀ vi ∈ I, t ∈ [1, Tmax]

x(vi, t) = bool2int(L(vi, t)).
∑

g∈[1,G(vi)]

H(vi, g), ∀ vi ∈ I, t ∈ [1, Tmax] (29)∑
v∈I

∑
g∈G(v)

U(v, t, g) ≤ Umax, ∀ t ∈ [1, Tmax] (30)∑
vo∈O

∑
g∈G(vo)

U(vo, t, g) +
∑
vi∈I

x(vi, t) ≤ Umax, ∀ t ∈ [1, Tmax] (31)

The objective function (20) maximises total cargo throughput for the set of ships. Con-
straint (21) specifies the earliest departure time for each vessel. Equation (22) ensures
that the berths for any incoming ships are empty before the ship arrives. Equation (23)
specifies that no ship sails before itself. Equation (24) ensures that there is sufficient sep-
aration time between successive ships to meet port safety requirements. Equations (25)
to (31) specify that the total number of tugs in use at any time must be no greater than
the number of tugs available at the port, by splitting the tug constraints into several sce-
narios that can be considered independently as discussed in [14]. For a more detailed
discussion of this model, including scalability issues, see [14, 15].

4.2 Experimental Results for Lazy Clause Generation

We used a CP solver with Lazy Clause Generation (LCG) to solve the above CP model
for the BPCTOP. The model was formulated in the MiniZinc modelling language [19],
and solved using the CPX solver included in G12 2.0 [36, 11], which uses Lazy Clause
Generation. The runtimes were then compared against the G12 2.0 finite domain CP
solver, using backtracking search with the fastest variable selection and domain reduc-
tion strategies as discussed in [14, 15]. All BPCTOP experiments used an Intel i7-930
quad-core 2.80 GHz processor and 12.0 GB RAM, with a 30-minute cutoff time.

Both solvers were used to solve problems presented in [14], with 4-13 ships sailing
on a single tide, based on a fictional but realistic port, similar to the SHIP SCHEDULING

data set used for the 2011 MiniZinc challenge [34]. Table 2 presents calculation times
in seconds for CPX and the G12 FD solver, for each problem size that could be solved
to optimality within the 30-minute cutoff time, for the problems in the most tightly
constrained (and thus most difficult) ONEWAY NARROW (ON) problem set from [14].
A dash indicates that the optimal solution was not found within the cutoff time. Table 3
shows the largest problem solved for all eight problem types from [14], with runtimes in
brackets. Problem types include all combinations of MIXED problems with inbound and
outbound ships vs. all ships sailing ONEWAY, NARROW vs WIDE safe sailing windows
for each ship, with and without tugs.

Table 2 shows CPX is faster to solve ON problems with tug constraints, and scales
better than the FD solver for large problem sizes. However, CPX is slower to solve ON
problems without tugs. This may indicate that CPX finds effective nogoods (areas of
the search space with no good solutions) for tug constraints, enabling CPX to avoid
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Table 2. Runtime (s) for CPX solver with LCG vs. G12 finite domain solver

No Tugs With Tug Constraints
NShips G12 FD G12 CPX G12 FD G12 CPX

4 0.34 0.23 0.23 0.33
5 0.23 0.22 0.33 0.33
6 0.44 0.22 0.44 0.67
7 0.34 0.33 2.95 3.60
8 0.45 0.87 47.0 24.4
9 4.70 23.4 184 65.7

10 99.9 482 >1800 817
11 609 >1800 – >1800
12 >1800 – – –

Table 3. CPX solver vs. G12 finite domain solver: largest problem solved for each type, with
runtime in seconds in brackets. Bold indicates faster method for this problem type.

Problem FD CPX
MIXED WIDE (MW) 11 (326) 16 (1040)

ONEWAY WIDE (OW) 11 (1480) 11 (273)
MIXED NARROW (MN) 11 (370) 16 (1100)

ONEWAY NARROW (ON) 11 (609) 10 (482)
MIXED WIDE TUGS (MWT) 10 (11.5) 13 (1290)

ONEWAY WIDE TUGS (OWT) 9 (81.5) 11 (1680)
MIXED NARROW TUGS (MNT) 10 (202) 12 (1350)

ONEWAY NARROW TUGS (ONT) 9 (184) 10 (817)

searching large areas of the search space for the problem with tug constraints. The FD
solver, on the other hand, cannot eliminate those areas of the search space, leading to
excessive backtracking resulting from the highly oversubscribed tug problem.

Table 3 shows that the difference between the CPX and FD solvers is even greater
for MIXED problems (less constrained problem with more complex constraints). This
indicates that CPX is very fast at dealing with complex constraints, but the speed dif-
ference decreases when the problem is tightly constrained. CPX is able to solve larger
problems faster for all problem types except for ONEWAY NARROW without tugs –
this is the most constrained problem type, using the simplest constraints (no tugs, and
no interaction between incoming and outgoing ships).

The slower performance of CPX on the problem without tugs indicates that there
may be room for improvement if better explanations are added for constraints that do
not involve tugs, such as the sequence-dependent setup times between ships, and the
propagation of the objective function itself. As the tug problem is composed of the No-
Tugs problem with additional constraints, speeding up the solution time of the NoTugs
problem would likely further improve the solution time of the Tugs problem.

Lazy Clause Generation (LCG) is a very general method that has been successfully
used to speed up calculation times for many different types of scheduling problems.
However, as it is a recent method, its effectiveness for many other problem types has not
yet been investigated. Like other complete methods, LCG does not scale well to large
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problems. However, like traditional CP solvers, LCG solvers can be combined with de-
composition techniques or large neighbourhood search to improve scalability [27]. LCG
may be worth investigating as an approach to dealing with other routing and scheduling
problems with time-dependent task costs, and we plan to compare LCG against an FD
solver for the LSFRP in future work.

5 Solve and Improve

Many scheduling and routing approaches initially solve a simplified model, and then use
the constraints and objective function of the full problem to improve it. For routing and
scheduling problems with time-dependent action costs, removing the time dependence
of the objective function is one way to simplify the problem for the first step of a solve-
and-improve approach, as used by Lin et al [17].

In this section, we solve simplified models for both problems which ignore time-
varying action costs, and compare the improvement in runtime against improvements
obtained by the LTOP for the LSFRP and the LCG solver for the BPCTOP. The runtimes
for the simplified models are a lower bound on the runtime of a full solve-and-improve
approach, as the improvement step would increase the runtime further.

5.1 Results for Bulk Port Cargo throughput Optimisation

We implemented a simplified BPCTOP model by replacing the time-varying objective
function by feasible time windows, and solving the problem with the objective of max-
imising the number of ships scheduled to sail. Table 4 compares the runtimes of the nor-
mal and simplified models for the largest problem that was successfully solved by all
approaches, as well as for the largest problem solved by any approach. Bold font indi-
cates the fastest runtime, (ie. the approach that results in the largest reduction in runtime).

Table 4 shows that, while the simplified model is faster for small problem sizes,
for large problem sizes the CPX solver with Lazy Clause Generation is faster than the
simplified model to solve 5 of the 8 problem types, indicating that CPX scales better
than the simplified model for 5 of the 8 problem types. As seen earlier in Table 3, CPX
is particularly effective on large problems with tugs.

Table 4. Runtime (s) of CPX vs. the FD solver with a simplified BPCTOP model

Problem NShips Runtime (s) NShips Runtime (s)
Type (small) FD CPX SIMPLIFIED (large) FD CPX SIMPLIFIED

MW 11 326 8.19 188 16 >1800 1040 >1800
OW 11 1480 273 0.56 12 >1800 >1800 26.7
MN 11 370 7.64 180 16 >1800 1100 >1800
ON 10 99.9 482 0.34 12 >1800 >1800 19.6

MWT 10 11.5 17.1 11.4 13 >1800 1290 >1800
OWT 9 81.5 23.9 4.60 11 >1800 1680 >1800
MNT 10 202 42.8 8.21 12 >1800 1350 >1800
ONT 9 184 65.7 0.69 10 >1800 817 262
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One interesting observation from Table 4 is that the simplified model gives the largest
runtime improvement for the most tightly constrained ON and ONT problems, allowing
problems with one more ship to be solved within the 30-minute cutoff time. The least
tightly constrained MW and MWT problems show only a small improvement in runtime
from relaxing the time window penalties; and the moderately constrained MN, MNT, OW
and OWT problems show moderate improvements. This result is similar to the effect of
relaxing hard time windows in a vehicle routing problem [24]. Extending the latest deliv-
ery time by 10-20 minutes was found to significantly improve schedule costs for tightly
constrained problems. For problems with wide time windows, on the other hand, where
the time windows did not constrain the problem, relaxing the time windows had little ef-
fect on cost and also increased runtime due to increasing the computational complexity
of the problem.

5.2 Results for Liner Shipping Fleet Repositioning

We implemented a simplified LSFRP model by fixing all sailing actions to “slow-
steaming”, i.e. minimum fuel cost with maximum time. This constraint was subse-
quently loosened for any instances that did not solve to optimality. The problems were
then solved using the LTOP planner [32].

Table 5 shows that, while CPU time for most problem instances was reduced, the im-
proved runtimes were still slower than the best CP model (CP-AOR). We can therefore
conclude that fixing the length and cost of the sail action is not very effective for the
LSFRP, since the problems where the most benefit can be expected from fixing action
costs are those in which the optimal answer uses all slow-steaming actions.

A solve-and-improve approach that simplifies away time-varying action costs was
found by Lin et al [17] to be effective for satellite imaging scheduling. However, they
did not compare the calculation speed of the complete problem against the simplified
problem, so there is no indication of the improvement in calculation speed produced by
simplifying away the time-varying quality function. However, our experiments found
that simplifying the LSFRP and BPCTOP models by removing the time-varying cost
function did not produce significant speed improvement, and that switching to a Con-
straint Programming model or a solver with Lazy Clause Generation was more effective.

Table 5. CPU time (s) of CP vs. LTOP vs. simplified LSFRP with optimal windows

Problem NORMAL LTOP SIMPLIFIED LTOP CP-AOR
AC3 1 0 1.1 0.82 0.1
AC3 2 0 51.0 38.4 0.3
AC3 3 0 188.3 118 0.6
AC3 1 1e 3.9 3.72 0.4
AC3 2 2ce 15.2 15.9 11.3
AC3 3 2c 203.2 265 3.0
AC3 3 2e 217.1 233 13.2

AC3 3 2ce1 218.2 234 13.9
AC3 3 2ce2 192.4 210 17.1
AC3 3 2ce3 516.9 548 470.3

AC3 3 3 80.0 86.6 11.2
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It is possible that simplifying the cost function was more effective for speeding up
solution times for Linear Programming problems such as [17], rather than for CP or
automated planning. However, more work would need to be done to identify the speed
improvement produced by simplifying the quality function in [17].

6 Conclusions and Future Work

While scheduling and routing problems have usually been solved using Mixed Integer
Programming (MIP) and solve-and-improve approaches, Constraint Programming (CP)
with a good choice of model and search strategy, as well as recent techniques such as
Lazy Clause Generation (LCG) have been found to be faster for some problem types.

In this paper, we presented a novel CP model for the Liner Shipping Fleet Reposi-
tioning Problem (LSFRP) and compared it against existing MIP and planning models,
and found that the CP model was faster than both existing approaches, by an order of
magnitude for some instances. CP was also found to be faster than MIP for the Bulk
Port Cargo Throughput Optimisation Problem (BPCTOP) in an earlier paper [14]. We
also compared a CP solver that uses LCG against a traditional finite domain CP solver
for the BPCTOP, and found that LCG was faster for 7 out of 8 problem types. We plan
to present a more detailed comparison of different CP models and search strategies, as
well as an LCG solver for the LSFRP in a future paper.

Both the problems we investigated in this paper have time-varying action costs,
which increase the complexity of the problem. Solve-and-improve approaches have
previously used simplified models without time-varying action costs to find initial so-
lutions [17]. We compared the LTOP model of the LSFRP and the full CP model for
the BPCTOP against simplified models without time-varying action costs, and found
that the speed improvement of removing time-varying costs was less than that obtained
by converting the LSFRP to a CP model for all problem instances, and that solving the
BPCTOP using an LCG solver scaled better than using a finite domain solver for 5 of
8 problem types, particularly for the most challenging problems with complex tug con-
straints. While our previous approaches were able to solve realistic-sized problems, the
long calculation times limited their usefulness, and the speed improvements presented
here may open up new applications such as using the LSFRP as a subproblem of fleet
redeployment problems.

In our investigation of both the LSFRP and BPCTOP CP models, we found that the
CP model solution time was highly dependent on having a good choice of model and
search strategy. However, with this caveat, we find that CP and LCG are efficient and
flexible methods that are able to handle complex side constraints, and may therefore be
worth investigating for other scheduling and routing problems that are currently being
solved using MIP or solve-and-improve approaches.
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Abstract. We investigate the application of multivalued decision dia-
grams (MDDs) to multidimensional bin packing problems. In these prob-
lems, each bin has a multidimensional capacity and each item has an
associated multidimensional size. We develop several MDD representa-
tions for this problem, and explore different MDD construction methods
including a new heuristic-driven depth-first compilation scheme. We also
derive MDD restrictions and relaxations, using a novel application of a
clustering algorithm to identify approximate equivalence classes among
MDD nodes. Our experimental results show that these techniques can
significantly outperform current CP and MIP solvers.

1 Introduction

Many related problems in combinatorial optimization are collectively referred to
as “bin packing problems.” In the classical bin packing problem, the input is a
list (s1, . . . , sn) of item sizes, each in the interval (0, 1], and the objective is to
pack the n items into a minimum number of bins of capacity 1.

In this paper we study a multidimensional variant of the bin packing problem,
presented as a satisfaction problem. An instance of this problem consists of
a list (s1, . . . , sn) of item sizes and a list (c1, . . . , cm) of bin capacities. Each
item size and each bin capacity is a d-tuple of nonnegative integers; e.g., si =
(si,1, . . . , si,d). The objective is to assign each of the n items to one of the m bins
in such a way that, for every bin and in every dimension, the total size of the
items assigned to the bin does not exceed the bin capacity.

This can be viewed as a constraint satisfaction problem (CSP) with n variables
and md constraints. Each variable xi has domain {1, . . . ,m} and denotes the bin
into which the ith item is placed. The constraints require that

∑
i:xi=j si,k ≤ cj,k

for all j ∈ {1, . . . ,m} and all k ∈ {1, . . . , d}.
Note that the “dimensions” in this problem should not be interpreted as

geometric dimensions. In this way the problem studied here differs from the two-
and three-dimensional bin packing problems studied, for example, in [10,11],
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in which the items and bins are geometric rectangles or cuboids. Rather, the
dimensions in the problem studied in this paper correspond to independent one-
dimensional bin packing constraints that must be satisfied simultaneously.

Multidimensional bin packing (MBP) problems of the kind considered in this
paper appear in practice. For example, the Google ROADEF/EURO challenge
2011–20121 involves a set of machines with several resources, such as RAM
and CPU, running processes which consume those resources. However, these
problems have received relatively little attention in the literature. Current CP
methods are weak on problems involving simultaneous bin packing constraints.
Current MIP methods do better but are still limited in their effectiveness.

In this paper we make the following contributions. We present a new generic
exploratory construction algorithm for multivalued decision diagrams (MDDs)
and a novel application of the median cut algorithm in the construction of ap-
proximate MDDs. We also describe several techniques specific to the use of
MDDs for the MBP problem. Our experimental results show that such tech-
niques can yield an improvement on existing methods.

The remainder of the paper is organized as follows. In Section 2 we present
several generic approaches to the construction of MDDs. The focus of Section 3
is approximate MDDs, which represent sets of solutions to relaxations or re-
strictions of problem instances. In Section 4 we discuss techniques that can be
used to apply MDDs to the MBP problem. In Section 5 we present experimental
results comparing the performance of the techniques described in this paper to
that of commercial CP and MIP solvers. We conclude in Section 6.

2 MDD Construction

In this section we present a generic algorithm for the construction of an MDD
representing the set of feasible solutions to a CSP. A CSP is specified by a set
of constraints {C1, . . . , Cp} on a set of variables {x1, . . . , xn} having domains
D1, . . . , Dn, respectively. A solution to a CSP is an n-tuple (y1, . . . , yn) ∈ D1 ×
· · · ×Dn. A solution is feasible if the set of assignments x1 = y1, . . . , xn = yn
satisfies every constraint Cj .

A multivalued decision diagram (MDD) [13] is an edge-labeled acyclic directed
multigraph whose nodes are arranged in n+1 layers L1, . . . , Ln+1. The layer L1

consists of a single node, called the root. Every edge in the MDD is directed
from a node in Li to a node in Li+1. All of the edges directed out of a node
have distinct labels. The nodes in layer Ln+1 are called sinks or terminals. In
this paper we shall primarily be interested in MDDs having a single sink (which
represents feasibility), but the ideas can easily be generalized to MDDs with
multiple sinks [13].

Let I be an instance of a CSP. An MDD M can be used to represent a set
of solutions to I as follows [1]. The layers L1, . . . , Ln correspond respectively
to the variables x1, . . . , xn in I. An edge directed from a node in Li to a node
in Li+1 and having the label yi, where yi ∈ Di, corresponds to the assignment

1 Online: http://challenge.roadef.org/2012/en/index.php
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xi = yi. Therefore a path from the root to the sink along edges labeled y1, . . . , yn
corresponds to the solution (y1, . . . , yn). The MDD M represents the set M
of solutions corresponding to all such paths. Let F denote the set of feasible
solutions to I. If M = F , M ⊇ F , or M ⊆ F , then M is said to be an exact
MDD, a relaxation MDD, or a restriction MDD for I, respectively [1,3,4,6]. We
shall consider only exact MDDs in this section; relaxation and restriction MDDs
will be considered in Section 3.

A path in an MDD from the root to a node in the layer Li+1 represents a partial
solution y = (y1, . . . , yi) ∈ D1×· · ·×Di; we shall say that the level of this partial
solution is i and write level(y) = i. Let F(y) denote the set of feasible completions
of this partial solution, that is, F(y) = { z ∈ Di+1×· · ·×Dn | (y, z) is feasible }.
If y and y′ are partial solutions with F(y) = F(y′), then we say that y and y′ are
equivalent. Note that in an exact MDD all paths from the root to a fixed node v
represent equivalent partial solutions, and conversely if two partial solutions
y and y′ are equivalent then the paths in an exact MDD that correspond to
y and y′ can lead to the same node.

Direct MDD Representation for Multidimensional Bin Packing. Let I
be an MBP instance, having n items and m bins. A direct MDD representation
of the set of feasible solutions of I has layers L1, . . . , Ln corresponding to the
variables x1, . . . , xn, and also the last layer Ln+1 which contains the sink. The
edge labels are elements of {1, . . . ,m}. A path from the root to the sink along
edges labeled y1, . . . , yn represents the feasible solution (y1, . . . , yn), that is, the
feasible solution in which item i is placed into bin yi.

For example, Figure 1a shows the direct MDD representation for a one-
dimensional bin packing instance having two bins, each of capacity 7, and four
items, with sizes 5, 3, 2, and 1. There are six paths from the root to the sink,
representing the six feasible solutions; for instance, the path following the edges
labeled 2, 1, 1, 2 corresponds to the solution in which the item of size 5 is packed
in bin 2, the items of size 3 and 2 are packed in bin 1, and the item of size 1 is
packed in bin 2. The node labels are states; we discuss these next.

Equivalence of Partial Solutions. Equivalent partial solutions have the same
set of feasible completions. Hence, the recognition that two partial solutions are
equivalent reduces the size of the MDD, because the corresponding paths can
lead to the same node.

In general, determining whether two partial solutions are equivalent is NP-
hard for the MBP problem (because it is NP-hard even to determine whether a
one-dimensional instance is feasible). However, we can sometimes determine that
two partial solutions are equivalent by associating partial solutions with “states.”
A state function for layer i is a map σi from the set Yi = D1 × · · · × Di−1 of
partial solutions at layer i into some set Si of states, such that σi(y) = σi(y

′)
implies F(y) = F(y′). In other words, two partial solutions that lead to the same
state have the same set of feasible completions. (A “perfect” state function would
also allow us to say that two partial solutions that lead to different states have
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Fig. 1. MDD representations of a one-dimensional bin packing instance having two
bins, each of capacity 7, and four items, with sizes 5, 3, 2, and 1

different sets of feasible completions, and we strive for this ideal, but for practical
reasons our state function should be easy to compute, so we cannot require this.)

Consider an MBP instance. After items having sizes si1 , . . . , sik have been

placed into a bin of capacity cj , the remaining capacity of the bin is cj−
∑k

l=1 sil .
(Recall that the item sizes and bin capacities are d-tuples; here and elsewhere
addition and subtraction of d-tuples is done componentwise.) We shall call this
remaining capacity the ullage of the bin; it is a d-tuple. (The word “ullage”
means “the amount by which a container falls short of being full.”) Of course,
the ullage of each bin is nonincreasing (componentwise) as the items are placed
one by one into the bins.

A useful state function for the direct MDD representation is the map σi

from a partial solution y = (y1, . . . , yi−1) to the list (u1, . . . , um) of the ul-
lages uj of the m bins; in other words, for j ∈ {1, . . . ,m}, we take uj =
cj −

∑
k∈{1,...,i−1}:yk=j sk. For example, in Fig. 1a, the path from the root along

the edges labeled 1, 2, 2 represents a partial solution for which the ullages of
the two bins are each 2, so the state of this partial solution is (2, 2). The partial
solution corresponding to the path 2, 1, 1 has the same state. Observe that if
two partial solutions at layer i have the same lists of ullages, then they have the
same set of feasible completions, so this is indeed a state function.

Exact MDD Construction. Behle [2] described a top-down algorithm for
the construction of threshold binary decision diagrams (BDDs), which are exact
representations of solution sets of instances of 0–1 knapsack problems. A general
algorithm for a top-down, layer-by-layer (i.e., breadth-first) construction of an
MDD is presented as Algorithm 1, “Top-down MDD compilation,” in Bergman
et al. [4]. The key to the top-down construction of an MDD is the identification
of a node equivalence test, which determines when two nodes on the same layer
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(each representing one or more partial solutions) have the same set of feasible
completions; this is exactly what a state function does.

So far we have spoken of the states of partial solutions. We shall now extend
this idea to states of nodes in an MDD. In the MDD that we construct, partial
solutions at layer i that lead to the same state will correspond to paths from
the root that lead to the same node; we shall associate this state with this node.
Now, given a node v in layer Li in the MDD and its state, which we shall write
as state(v), and given a value yi ∈ Di, we can determine the state of a child
node w of v if the edge (v, w) has label yi. This is simply the state of the feasible
solution (y, yi), where y is any feasible solution corresponding to the node v.
For instance, suppose v is a node in layer Li of a direct bin packing MDD, and
suppose the state of v (i.e., the corresponding list of ullages) is (u1, . . . , um). Then
the child state corresponding to yi ∈ Di is (u1, . . . , uyi−1, uyi−si, uyi+1, . . . , um).

To be more precise, and to make these ideas applicable to generic CSPs, we
make the following definitions. Let i ∈ {1, . . . , n+ 1}. Let Yi = D1 × · · · ×Di−1

denote the set of partial solutions at level i; take Y1 = {∅}, a singleton set having
one element representing the empty partial solution. Let Si be an arbitrary
set whose elements are called states and which contains a special element ⊥
indicating infeasibility. Recall that we say that σi : Yi → Si is a state function
if σi(y) = σi(y

′) implies F(y) = F(y′); we also require that σi(y) = ⊥ implies
F(y) = ∅. We assume that we can test the feasibility of a (complete) solution, so
for y ∈ Yn+1 we require that σn+1(y) = ⊥ if F(y) = ∅. For i ∈ {1, . . . , n}, we say
that χi : Si × Di → Si+1 is a child state function if χi

(
σi(y), yi

)
= σi+1(y, yi)

for all y ∈ Yi and all yi ∈ Di.
In order to use state information effectively in the construction of an MDD,

we must maintain, for each layer Li, a mapping from states to nodes that have
already been constructed in Li. When we seek a node in Li having state s, we
consult this mapping to see if such a node already exists. Such a mapping can
be implemented with a hash table. It is often called the unique table because it
ensures that the node representing state s in layer Li is unique [9].

Algorithm 1 constructs an exact MDD. For each i ∈ {1, . . . , n + 1} let σi

be a state function, and for each i ∈ {1, . . . , n} let χi be a corresponding child
state function. Let r be the root node. The algorithm maintains a collection T of
nodes to be processed, i.e., nodes whose children need to be constructed. When
a node v in layer i is processed, each possible domain value y ∈ Di is considered,
and the corresponding child state s is computed. The unique table is consulted
to see if a node w with state s already exists in layer Li+1; if not, a new node w
is constructed and added to T . Then the edge (v, w) is added to the MDD with
label y. This is repeated until all nodes have been processed.

Exploratory Construction. The main difference between Algorithm 1 and the
top-down exact MDD compilation algorithm of Bergman et al. is the order in
which the nodes are processed. Instead of requiring that the nodes be processed
layer by layer, we allow the collection T to provide the nodes in any order. This
generalization permits exploratory construction of the MDD. For example, if we
are constructing the MDD in order to seek a feasible solution, we can build it in
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Algorithm 1. Exact MDD Construction

1: L1 := {r}
2: T := {r}
3: while T is not empty do
4: select v ∈ T and remove it from T
5: i := layer(v)
6: for all y ∈ Di do
7: s := χi(state(v), y)
8: if s �= ⊥ then
9: w := unique-table(i+ 1, s)
10: if w = nil then
11: w := new node with state s
12: add w to Li+1

13: add w to T
14: add edge (v, w) with label y

a depth-first manner by taking T to be a stack. The layer-by-layer behavior of
the algorithm of Bergman et al. can be achieved by using a queue for T . Note
that if we do construct the MDD layer by layer, we can discard the unique table
for each layer as soon as we have finished processing the previous layer.

It is useful to have a heuristic to estimate the “promise” of a partial solution,
that is, the likelihood that it has a feasible completion. Such a heuristic can
be used to guide the depth-first construction of an MDD in search of a feasible
solution. For the MBP problem, we propose the following heuristic. Given a
partial solution (y1, . . . , yi) describing the packing of the first i items into bins,
we perform a non-backtracking random packing of the remaining items (i + 1,
. . . , n) as well as we can without violating the bin packing constraints. In other
words, we iterate through the remaining items in order, and we pack each item
into one of the bins that has sufficient ullage, chosen at random; if no such bin
exists, we put the item into a trash pile. At the end we count the total size of the
items in the trash pile, along all d dimensions, and this number is the score of this
packing. This random packing of the remaining items is repeated several times,
and the total score of these packings is used as the heuristic value of the partial
solution; a low score is better. (Occasionally, while we are computing the heuristic
for a partial solution in this way, we may luckily find a feasible completion: the
trash pile will be empty. In this case, if we are constructing the MDD merely to
seek a feasible solution, we can immediately return the solution thus found.)

With such a heuristic, we can use a priority queue for T to select the most
promising nodes to process next. Alternatively, we can use a stack for T and
modify Algorithm 1 slightly so that when we process a node we construct all
its children, evaluate their heuristics, and then add them to T in reverse order
of their promise. This will yield a depth-first algorithm that explores the most
promising child of each node first.

This depth-first MDD construction process, especially if it is being used simply
to find a feasible solution, is very similar to a backtracking search. It is an
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improvement, however, because the MDD nodes act as a memoization technique
to prevent the exploration of portions of the search tree that can be recognized
as equivalent to portions already explored.

3 Approximate MDDs

In general, exact MDDs can be of exponential size, so the use of Algorithm 1
may not be practical because of space limitations. In this case we may be able
to use an approximate MDD to get useful results.

The MDDs described in this section are called approximate because their
structure approximates the structure of the exact MDD. An approximate MDD
represents a set of solutions to a relaxation or a restriction of the problem in-
stance. Hence, if a restriction MDD indicates that an instance is feasible, then
every solution it represents (i.e., every path from the root to the sink) is an exact
feasible solution to the original instance. Similarly, an indication of infeasibility
from a relaxation MDD is a proof that the original instance is infeasible. In this
way, relaxation and restriction MDDs can be used together to determine the
feasibility or infeasibility of an instance, and to get an exact feasible solution if
the instance is feasible. Of course, it is possible for a relaxation MDD to indicate
that an instance is feasible while a restriction MDD indicates it is infeasible, in
which case nothing is learned. In response, one could construct MDDs represent-
ing tighter relaxations or restrictions (probably at the cost of greater time and
space requirements), or could embed the MDDs inside a complete search.

Approximation MDDs by Merging. MDDs of limited width were proposed
by Andersen et al. [1] to reduce space requirements. In this approach, the MDD
is constructed in a top-down, layer-by-layer manner; whenever a layer of the
MDD exceeds some preset value W an approximation operation is applied to
reduce its size to W before constructing the next layer. For this approximation,
Bergman et al. [4] use a relaxation operation ⊕ defined on states of nodes so
that, given nodes v and v′, the state given by state(v)⊕state(v′) is a “relaxation”
of both state(v) and state(v′); see also [8].

We can formalize this idea as follows. Let Ci = Di × · · · ×Dn denote the set
of completions at level i (independent of any particular partial solution). For a
partial solution y ∈ Yi, the set of feasible completions of y is some subset of Ci,
so F(y) ∈ P(Ci), where P denotes the power set. Recall that a state function
σi : Yi → Si is such that σi(y) = σi(y

′) implies F(y) = F(y′), and σi(y) = ⊥
implies F(y) = ∅. The existence of such a function implies the existence of a
completion function τi : Si → P(Ci) such that τi

(
σi(y)

)
= F(y) for all y ∈ Yi.

For i ∈ {1, . . . , n}, we say that a binary operation ∨i : Si×Si → Si is a relaxation
merge if for all y, y′ ∈ Yi we have τi

(
σi(y) ∨i σi(y

′)
)
⊇ F(y) ∪ F(y′). In other

words, the set of feasible completions implied by the state σi(y)∨iσi(y
′) contains

all feasible completions implied by the state σi(y) and all feasible completions
implied by the state σi(y

′). Similarly, we call ∧i : Si×Si → Si a restriction merge
if for all y, y′ ∈ Yi we have τi

(
σi(y) ∧i σi(y

′)
)
⊆ F(y)∩F(y′). For simplicity, we
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Algorithm 2. Approximate MDD Construction by Merging

1: L1 := {r}
2: for i = 1 to n do
3: Li+1 := ∅
4: for all v ∈ Li do
5: for all y ∈ Di do
6: s := χi(state(v), y)
7: if s �= ⊥ then
8: w := unique-table(i+ 1, s)
9: if w = nil then
10: w := new node with state s
11: add w to Li+1

12: add edge (v, w) with label y
13: if |Li+1| > W then
14: partition Li+1 into W clusters A1, . . . , AW

15: for j = 1 to W do
16: wj := new node with state

∨
Aj (or

∧
Aj)

17: for all v ∈ Aj do
18: change every edge (u, v) to (u,wj) with the same label
19: Li+1 := {w1, . . . , wW }

shall omit the subscript and just write ∨ or ∧. These merge operations need not
be associative or commutative. However, in a slight abuse of notation, we shall
write

∨
A to denote a combination of all elements s ∈ A ⊆ Si using the relaxation

merge operation ∨, in any order and parenthesized in any way; likewise for
∧
A.

For the direct MDD representation of an MBP instance, in which node states
are lists of ullages (u1, . . . , um), an appropriate relaxation (respectively, restric-
tion) merge is the componentwise maximum (respectively, minimum).

Bergman et al. give an algorithm to construct a limited-width MDD which
iteratively merges pairs of nodes in a layer using a relaxation merge. We propose
a refinement of this technique that uses a clustering algorithm to partition the
nodes in the layer into W clusters; the nodes in each cluster are then merged
into a single node. This is outlined in Algorithm 2.

To perform the clustering of nodes on line 14 of Algorithm 2, we adapted the
median cut algorithm of Heckbert [7], which was originally designed for color
quantization of images. The median cut algorithm operates on a set of points in
q-dimensional Euclidean space (in the original version, q = 3, representing the
red, green, and blue components of each pixel in the image) and partitions the
points into clusters. Initially all of the points are grouped into a single cluster,
which is tightly enclosed by a q-dimensional rectangular box. Then the following
operation is repeatedly performed: the box having the longest length (among
all boxes in all q dimensions) is selected, and it is divided into two boxes along
this longest length at the median point, that is, in such a way that each of
the two smaller boxes contains approximately half of the points in the original
box; the two smaller boxes are then “shrunk” to fit tightly around the points
they contain. This process continues until the desired number of clusters (boxes)
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Algorithm 3. Restriction MDD Construction by Deletion

1: (lines 1–12 are the same as in Algorithm 2)
13: if |Li+1| > W then
14: use heuristic to select most promising nodes w1, . . . , wW ∈ Li+1

15: for all w ∈ Li+1 \ {w1, . . . , wW } do
16: delete w from Li+1 and delete all edges (u,w)

have been generated. The median cut algorithm can be implemented to run in
O
(
K(pq + logK)

)
time, where K is the desired number of clusters, p is the

number of points, and q is the number of dimensions.
To apply the median cut algorithm to the nodes in a layer of an MDD, we

interpret the state of each node as a point in q-dimensional Euclidean space, for
some value of q. For the direct MDD representation of an MBP instance, the
state of a node is a list of d-dimensional ullages, one for each of the m bins; so
we view this state directly as an md-dimensional point.

If a merged MDD reports that a CSP is feasible, it is desirable to extract a
(possibly) feasible solution from it. One way to do this is to maintain a represen-
tative partial solution for each node as the MDD is constructed; when two nodes
are merged, either of the two corresponding partial solutions can be selected
(perhaps in accordance with a heuristic) as the representative partial solution
for the merged node. Then the representative (complete) solution at the sink will
be a (possibly) feasible solution for the CSP. The representative partial solution
can be viewed as auxiliary state information of the node.

Restriction MDDs by Deletion. Algorithm 2 can be used to construct a
limited-width MDD by merging nodes when the size of a layer becomes too
large. If we are constructing a restriction MDD, however, then another option
is simply to delete some of the nodes in the layer [3]. The selection of nodes to
keep can be guided by a heuristic. This is described in Algorithm 3.

We note that this deletion algorithm does not use a partitioning algorithm to
cluster the nodes in each layer as the merging algorithm does; instead it incurs
the cost of computing a heuristic for each node. So the deletion algorithm may
be especially beneficial if partitioning the nodes in a layer of the MDD is slower
than computing a heuristic for a node.

4 MDD Techniques for Bin Packing

In the previous sections we have presented generic MDD construction algorithms,
suitable for any CSP. In this section we specialize some of these techniques to
the MBP problem.

Ullage MDD Representation. Let I be an MBP instance, having n items
and m bins. One difficulty with the direct MDD representation of I is that it
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does not take into account the possible symmetry of the bins. For example,
suppose that item 1 will fit in any of the m bins. Then the root of the direct
MDD will have m outgoing edges labeled 1 through m, indicating the possible
bins into which item 1 can be packed. However, if the bins are all identical,
these possibilities are essentially equivalent (up to a reordering of the bins). The
direct MDD representation cannot recognize this equivalence, because the sets
of feasible completions, corresponding to edge-labeled paths in the MDD, are
different. For example, in Fig. 1a, the two edges directed out of the root node
represent essentially equivalent choices.

To address the possible symmetry of the bins, we can reduce the number of
distinct descriptions of feasible solutions by expressing the solutions differently.
Rather than assigning items directly to bins, we assign each item to an ullage.
For example, instead of saying that item 3 is packed into bin 2, we say that it is
packed into a bin with ullage 4. We call this the ullage description of the solution;
it consists of a list (u1, . . . , un) of d-tuples, assigning an ullage to each item.

To specify the domains of the variables ui in the ullage description of a solu-
tion, we define the ullage multiset function U . If C = (c1, . . . , cm) is the list of
bin capacities in I, then U

(
C, (u1, . . . , ui)

)
denotes the multiset of ullages after

the first i items have been placed into bins as described by the list (u1, . . . , ui).
This is the same as the multiset of ullages after the first i − 1 items have been
placed, except that an item of size si was placed into a bin having ullage ui;
so an element ui of the multiset should be removed and replaced by an element
ui − si. Formally, we can define U recursively as follows:

– U(C, ∅) = C (viewing C as a multiset).

– For i ∈ {1, . . . , n}, if Ui−1 = U
(
C, (u1, . . . , ui−1)

)
is defined and ui ∈ Ui−1,

then U
(
C, (u1, . . . , ui)

)
= (Ui−1 \ ui) ∪ {ui − si}.

With this definition of U , the domain of the variable ui in the ullage description
of a solution is U

(
C, (u1, . . . , ui−1)

)
. Note that this domain depends on the values

that have previously been assigned to u1, . . . , ui−1.
An ullage MDD representation of the set of feasible solutions of I has layers

L1, . . . , Ln+1. The label of an edge directed out of a node in layer Li in an ullage
MDD is a d-tuple, representing the ullage of the bin into which item i is to be
placed (after items 1 through i − 1 have been placed into bins). Therefore the
edge labels u1, . . . , un along a path from the root to the sink in an ullage MDD
correspond to an ullage description (u1, . . . , un) of a feasible solution to I.

Fig. 1b illustrates the ullage MDD representation for the one-dimensional bin
packing instance having two bins of capacity 7 and items with sizes 5, 3, 2, and 1.
At the root, the state is {7 × 2}, i.e., a multiset containing the element 7 with
multiplicity 2. The first item, of size 5, must be placed in a bin having ullage 7;
this leads to the state {2, 7}. Then the second item, of size 3, must be placed in
the bin that now has ullage 7, and so forth. Of course, a path from the root to
the sink in this ullage MDD can easily be converted into an explicit list of bin
assignments if desired.
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State Function for the Ullage MDD Representation. For the ullage MDD
representation, it is useful to consider the state of a partial solution having
ullage description (u1, . . . , ui−1) to be U

(
C, (u1, . . . , ui−1)

)
, that is, the multiset

of ullages of the bins.
This idea can be extended to handle side constraints in the CSP. For example,

the steel mill slab problem [12] is essentially a (one-dimensional) bin packing
problem with the additional constraint that each item has a color and no bin
can contain items of more than two colors. To handle a side constraint like this,
we can simply augment the state information of a node to include the colors of
items that have been packed into it so far.

A few observations can be used to identify further equivalent partial solutions.
Let uj,k denote the ullage of bin j, in the kth dimension, after we have placed
items 1 through i into bins. Let a denote the greatest possible sum of a subset of
the sizes of items i+1 through n, in the kth dimension, that does not exceed uj,k.
If a < uj,k, then we may consider the ullage of bin j, in the kth dimension, to be
a rather than uj,k without changing the set of feasible completions. If the order
of the items is fixed, the relevant sets of possible sums of remaining items can
be computed once at the beginning of the MDD construction in O(nc2max) time,
where cmax is the largest bin capacity in a single dimension. Using this tech-
nique of “rounding down” the ullages across all bins in all dimensions, we can
sometimes identify additional equivalent partial solutions (their states may be
the same after they are rounded down, even if they were not the same before).
Moreover, after rounding down ullages, we may discover that the total ullage in
all bins is not enough for the remaining items; then we know that the current
state has no feasible completions.

If, after we have placed items 1 through i into bins, there is any bin that is so
small that none of the remaining items will fit, we can declare that bin dead and
remove it from further consideration. This is potentially stronger than rounding
down, because it may be that in each dimension, considered separately, there is
some remaining item that will fit into the bin; but no remaining item is small
enough in every dimension to fit into the bin. Conversely, if after we have placed
items 1 through i into bins, there is some bin that is large enough in every
dimension that all of the remaining items will fit in it, then we know that the
instance is feasible. We call such a bin free. Once we discover a free bin, we can
immediately return a feasible solution: extend a partial solution corresponding
to the current node to a complete solution by packing all remaining items into
the free bin. The ideas underlying the concepts of dead and free bins are present
in Behle’s threshold BDD algorithm [2].

In Fig. 1c we apply the rounding-down technique to the ullage MDD. If we
additionally check for dead and free bins, we will discover a free bin in the second
layer (the bin with rounded-down ullage of 6).

Variable Ordering. The variable ordering used in an MDD can have a very sig-
nificant effect on the size of the MDD. Behle [2] investigated the optimal variable
ordering problem for threshold BDDs. In general, the problem of determining
whether a given variable ordering of a BDD can be improved is NP-complete [5].
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For the MBP problem, we take a simple heuristic approach. We observe that
identifying dead bins and free bins is beneficial, and we would like to make such
identifications as soon as possible. If we pack the largest items first, then the
total size of the remaining unpacked items will decrease quickly in the begin-
ning, which suggests that we may reach free bins early; additionally, we will
tend to fill bins quickly in the beginning, which suggests that we may exhaust
the bins’ capacity quickly and reach dead bins early. However, these ideas are
somewhat contradictory, and the latter idea is opposed by the observation that
the unpacked items will be small, so they can fit into small spaces.

We therefore use an “interleaved” ordering, in which the largest item is packed
first, then the smallest item, then the second largest item, then the second
smallest item, and so on, packing the median-sized item last. (Our item sizes
are multidimensional, so we use the total size of the item in all dimensions:
si =

∑d
k=1 si,k.) This ordering seemed to work well for our experimental in-

stances. This straightforward approach means that we can implement variable
ordering by sorting the items in this manner as a preprocessing step.

5 Experimental Results

We implemented the MDD-based algorithms described above in Java, using
the exploratory construction method described in Section 2, the approxima-
tion methods from Section 3, and the ullage MDD representation and the other
techniques described in Section 4.

Our test instances were generated as follows. Given the parameters d (the
number of dimensions), n (the number of items), m (the number of bins), and
β (percentage bin slack), we first generate a list of n item sizes (s1, . . . , sn),
each of which is a d-tuple whose coordinates are integers chosen uniformly and
independently at random from {0, . . . , 1000}. Then the sum t =

∑n
i=1 si is com-

puted, and the m bin capacities are all taken to be �(1 + β/100)t/m�; these
computations are done componentwise. (If β = 20, for example, then the total
bin capacity, in each dimension, will be 20% more than the total item size.) An
instance is rejected and regenerated if it contains any single item that is too
large to be placed into a bin, as such an instance is obviously infeasible. Our
test instances have 6 dimensions, 18 items, and 6 bins; we generated 52 such
instances for each integer value of β from 0 to 35. These instances are available
at http://www.math.cmu.edu/~bkell/6-18-6-instances.txt or by request.

By their construction, these instances have identical bins. The ullage MDD
representation can exploit this symmetry effectively to reduce the number of
branches in the search tree. This is especially evident in the infeasible instances,
where infeasibility must be established by some kind of exhaustive search.

The experiments were run on a 32-bit Intel Pentium 4 CPU at 3.00 GHz with
1 GiB of RAM using Windows 7 Professional. The maximum Java heap size
was set to 512 MiB. We used AIMMS 3.13 with CPOptimizer 12.4 as the CP
solver and CPLEX 12.4 as the MIP solver, with their default settings. The CP
model has n variables x1, . . . , xn, each with domain {1, . . . ,m}; the assignment
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xi = j indicates that item i is packed into bin j. These variables are subject
to d independent cp::BinPacking constraints. The MIP model has mn binary
variables xi,j , for i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}; the assignment xi,j = 1
indicates that item i is packed into bin j. The MIP model also has a nonnegative
“overflow” variable ωj for each bin, representing the maximum amount by which
the bin is overfull in any dimension, and there is a nonnegative “total overflow”
variable Ω =

∑m
j=1 ωj . The MIP model appears below. It is formulated as a

minimization problem only because that is the form the solver requires; the
constraint Ω = 0 means it is really just a feasibility problem.

min Ω

s.t.

m∑
j=1

xi,j = 1;

n∑
i=1

si,kxi,j ≤ cj,k + ωj for all k ∈ {1, . . . , d}, j ∈ {1, . . . ,m};

Ω =

m∑
j=1

ωj;

xi,j ∈ {0, 1}, ωj ≥ 0, Ω = 0.

We compared the performance of CP and MIP to our MDD approaches: the exact
MDD (using depth-first, heuristic-driven exploratory construction), a relaxation
MDD using the relaxation merge operation, and restriction MDDs using the
restriction merge operation or deletion. All instances were run to completion
using each method. The maximum width for the approximation MDDs was set
to 5000 nodes. With this width, the approximation MDDs returned “feasible”
or “infeasible” correctly in all instances except two: the restriction merge MDD
returned “infeasible” incorrectly for one instance with 25% bin slack and one
instance with 26% bin slack. The combination of the relaxation merge MDD and
the deletion (restriction) MDD was enough to correctly solve all 1872 instances.

Fig. 2 shows a clear feasibility phase transition centered around approximately
20% bin slack, with a corresponding hardness peak. In the infeasible region, on
instances having bin slack between about 2% and 22%, the average run time of
the exact MDD method is consistently less than that of MIP and significantly
less than that of CP (by over three orders of magnitude at 20% bin slack). On
the other hand, in the feasible region, on instances having bin slack more than
about 25%, CP and MIP both tend to outperform the exact MDD method. A
notable exception (visible as a spike in the hardness profile) occurs at 27% bin
slack, for which one of the 52 generated instances happened to be infeasible; this
single infeasible instance greatly increased the average run time of CP and MIP
without noticeably affecting the performance of the exact MDD.

We investigated the instances at the hardness peak, i.e., those having 20%
bin slack, in more detail. A performance profile for these instances appears in
Fig. 3, including CP, MIP, the exact MDD, and the combination of the relax-
ation merge MDD and the deletion (restriction) MDD. The CP solver required
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Fig. 2. Feasibility and hardness profiles for instances having 6 dimensions, 18 items,
and 6 bins
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Fig. 3. Performance profile on the subset of instances having 20% bin slack

over 400 seconds for 35 instances (67%), taking almost 14000 seconds in the
extreme case. The MIP solver did much better, solving every instance in less
than 12 seconds. The exact MDD method, which solved each instance in less
than 6 seconds, was faster than MIP in 32 instances (62%), while the relaxation
MDD and the deletion MDD together (sufficient in all 52 instances to establish
feasibility or infeasibility) were faster than MIP in 24 instances (46%).

When we look only at the 37 infeasible instances with 20% bin slack, as seen
in Fig. 4a, the difference between CP/MIP and the MDD approaches becomes
clearer. (Restriction MDDs do not give useful results for infeasible instances, so
they are omitted from this plot merely for clarity. All of the approximate MDD
methods we implemented ran about equally fast on all instances with 20% bin
slack, so using a restriction MDD together with the relaxation approximately
doubles the run time.) On the other hand, in the performance profile on the
15 feasible instances with 20% bin slack, shown in Fig. 4b (with the relaxation
MDD omitted), the various methods are not as clearly separated.
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Fig. 4. Performance profiles on infeasible and feasible instances having 20% bin slack

The advantage of the ullage MDD representation on infeasible instances comes
from its ability to exploit the symmetry among identical bins in order to reduce
the number of branches taken in an exhaustive search. However, on feasible
instances, our Java code, which is not particularly optimized, does not find
solutions as quickly as the commercial CP and MIP solvers do. The depth-first,
heuristic-driven algorithm tends to solve feasible instances more quickly than
the layer-by-layer approximation algorithms, but limited-width MDDs tend to
be faster than exact MDDs on infeasible instances.

6 Conclusions

Our aim was to investigate the use of MDDs for the MBP problem. We de-
scribed several variations of a generic algorithm for the construction of exact
and approximate MDDs representing sets of feasible solutions to CSPs, includ-
ing a heuristic-driven depth-first method to construct an exact MDD and an
application of a clustering algorithm to construct approximate MDDs. We also
examined several techniques to work with MBP instances effectively with MDDs,
including the ullage MDD representation to handle symmetry, a rounding-down
technique to more reliably detect equivalent nodes, and the identification of free
and dead bins to quickly recognize feasibility and infeasibility. Experimental re-
sults show that our MDD algorithms, when combined with these representation
techniques, can significantly outperform currently used CP techniques and can
also consistently outperform MIP.
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Abstract. This paper presents a sweep based algorithm for the k-
dimensional cumulative constraint, which can operate in filtering mode
as well as in greedy assignment mode. Given n tasks and k resources, this
algorithm has a worst-case time complexity of O(kn2) but scales well in
practice. In greedy assignment mode, it handles up to 1 million tasks
with 64 resources in one single constraint in SICStus. In filtering mode,
on our benchmarks, it yields a speed-up of about k0.75 when compared
to its decomposition into k independent cumulative constraints.

1 Introduction

In the 2011 Panel of the Future of CP [5], one of the identified challenges for CP
was the need to handle large scale problems. Multi-dimensional bin-packing prob-
lems were quoted as a typical example [9], particularly relevant in the context
of cloud computing. Indeed, the importance of multi-dimensional bin-packing
problems was recently highlighted in [10], and was part of the topic of the 2012
Roadef Challenge [11]. Till now, the tendency is to use dedicated algorithms
and metaheuristics [13] to cope with large instances. Various reasoning methods
can be used for cumulative constraints, including Time-Table, Edge-Finding,
Energetic Reasoning [2,12,6,15,1], and recently Time-Table and Edge-Finding
combined [16]. A comparison between these methods can be found in [1]. These
filtering algorithms focus on having the best possible deductions rather than on
scalability issues. This explains why they usually focus on small size problems
(i.e., typically less than 200 tasks up to 10000 tasks) but leave open the scal-
ability issue. Following up on our preliminary work on a scalable sweep based
filtering algorithm for a single cumulative constraint [8], this paper considers
how to deal with multiple resources in an integrated way such as in [3]. In this
new setting, each task uses several cumulative resources and the challenge is to
come up with an approach that scales well. We should quote that the number
of resources may be significant in many situations:

– For instance, in the 2012 Roadef Challenge we have up to 12 distinct re-
sources per item to pack.

� Partially founded by the SelfXL project (contract ANR-08-SEGI-017).

C. Gomes and M. Sellmann (Eds.): CPAIOR 2013, LNCS 7874, pp. 144–159, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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– A new resource r′ can also be introduced for modeling the fact that a given
subset of tasks is subject to a cumulative or disjunctive constraint. The tasks
that do not belong to the subset have their consumption of resource r′ set to
0. Since we potentially can have a lot of such constraints on different subsets
of tasks, this can lead to a large number of resources.

Having in the same problem multiple cumulative constraints that systematically
share variables (i.e., the origin of a task is mentioned in several cumulative
constraints) leads to the following source of inefficiency. In a traditional setting,
each cumulative constraint is propagated independently on all its variables and,
because of the shared variables, each cumulative constraint should be rerun
several times to reach the fixpoint. One should quote that a single update of
a bound of a variable by one cumulative constraint will trigger all the other
cumulative constraints again.

The first theoretical contribution of this paper is a synchronized filtering al-
gorithm that reaches a fixpoint for pruning the minimum (resp. maximum) of
the variables in one single step wrt. several cumulative constraints and to their
corresponding cumulated profiles of compulsory parts. We have an efficient, scal-
able k-dimensional version of the Time-Table method which achieves exactly the
same pruning as k instances of the 1-dimensional version reported in [8]. The sec-
ond practical contribution of this paper is the observation that the time needed
to find a first solution by our new filtering algorithm for problems where the
filtering is strong enough to solve the given problem without backtracking seems
to depend much less on the number of resources k, at least when k ≤ 64 and
n ≤ 16000, compared to using k independent cumulative constraints. In fact, we
observe a speed-up by nearly k0.75. Details are given in Sect. 3.

We now introduce the k-dimensional cumulative constraint and present the
outline of the paper. Given k resources and n tasks, where each resource r
(0 ≤ r < k) is described by its maximum capacity limitr, and each task t
(0 ≤ t < n) is described by its start st, its fixed duration dt (dt ≥ 0), its end et
and its fixed resource consumptions ht,0, . . . , ht,k−1 (ht,i ≥ 0, i ∈ [0, k−1]) on the
k resources, the k-dimensional cumulative constraint with the two arguments

• 〈s0, d0, e0, 〈h0,0, . . . , h0,k−1〉, . . . , 〈sn−1, dn−1, en−1, 〈hn−1,0, . . . , hn−1,k−1〉〉,
• 〈limit0, . . . , limitk−1〉

holds if and only if conditions (1) and (2) are true:

∀t ∈ [0, n− 1] : st + dt = et (1)

∀r ∈ [0, k − 1], ∀i ∈ Z :
∑

t∈[0,n−1]:
i∈[st,et)

ht,r ≤ limitr (2)

Section 2 presents the new k-dimensional dynamic sweep algorithm. Section 3
evaluates the new algorithm on random multi-dimensional bin-packing and cu-
mulative problems involving up to 64 distinct resources and one million tasks, as
well on RCPSP instances taken from the PSPlib [7]. Finally Section 4 concludes.
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2 The k-Dimensional Dynamic Sweep Algorithm

This section presents our contribution, a new sweep algorithm that handles sev-
eral cumulative resources in one single sweep. We first introduce a running ex-
ample and some general design decisions of the new sweep algorithm as well
as the property the algorithm maintains, and then describe it. We present the
data structures used by the new sweep algorithm, the algorithm itself and its
worst-case time complexity.

Like the CP2012 sweep algorithm [8], the new algorithm only deals with do-
main bounds for the start and end variables, which is a good compromise to
reduce the memory consumption for the representation of variables. This algo-
rithm is also split into two distinct sweep phases. A first phase called sweep min
tries to filter the earliest start of each task by performing a synchronized sweep
from left to right on all resources. A second phase called sweep max tries to
filter the latest ends by performing a synchronized sweep from right to left on all
resources i.e. a sweep that for each time point considers all resources in parallel.

Before introducing a running example that will be used throughout this paper
for illustrating the new filtering algorithm, let us recall the notion of pessimistic
cumulated resource consumption profile (i.e. PCRCP). Given n tasks and k cu-
mulative resources, the PCRCPr (0 ≤ r < k) is the aggregation of the compul-
sory parts of the n tasks on the resource r. The compulsory part of a task t
(0 ≤ t < n) is the intersection of all its feasible instances. On the one hand, the
height of the compulsory part of a task t, on a given resource r, at a given time
point i is defined by ht,r if i ∈ [st, et) and 0 otherwise.1 On the other hand, the
height of the PCRCPr at a given time point i is given by:∑

t∈[0,n),i∈[st,et)

ht,r

Note that the propagator needs to iterate the two phases until fixpoint. Suppose
that sweep min has run, and that sweep max extends PCRCPr for some r.
Then sweep min may no longer be at fixpoint, and needs to run again, and so
on. W.l.o.g., we focus from now on sweep min since sweep max is completely
symmetric.

Example 1. Consider two resources r0, r1 (k = 2) with limit0 = 2 and limit1 = 3
and three tasks t0, t1, t2 which have the following restrictions on their start,
duration, end and heights :

• t0 : s0 ∈ [1, 1], d0 = 1, e0 ∈ [2, 2], h0,0 = 1, h0,1 = 2,
• t1 : s1 ∈ [0, 3], d1 = 2, e1 ∈ [2, 5], h1,0 = 1, h1,1 = 2,
• t2 : s2 ∈ [0, 5], d2 = 2, e2 ∈ [2, 7], h2,0 = 2, h2,1 = 1.

Since task t1 cannot overlap t0 without exceeding the resource limit on resource
r1, the earliest start of t1 is adjusted to 2. Since t1 occupies the interval [3, 4)
and since, on resource r0, t2 can neither overlap t0, nor t1, its earliest start is

1 v and v respectively denote the minimum and maximum value of variable v.



A Synchronized Sweep Algorithm 147

r1

(A)

0 1 2 3 4 5 6 7
0

1

2

3

4

t0
r1

(B)

0 1 2 3 4 5 6 7
0

1

2

3

4

t0 t1
t2

r0

0 1 2 3 4 5 6 7
0

1

2

3

t0

t0
s0 e0

t1 s1 e1

t2 s2 e2

r0

0 1 2 3 4 5 6 7
0

1

2

3

t0 t1
t2

t0
s0 e0

t1 s1 e1

t2 s2 e2

Fig. 1. This figure represents the earliest positions of the tasks and the PCRCP on
resources r0 and r1, (A) of the initial problem described in Example 1, (B) the fixpoint.

adjusted to 4. The purpose of the k-dimensional sweep algorithm is to perform
such filtering in an efficient way, i.e. in one single sweep. ��

We now show how to achieve such filtering by decomposing the 2-dimensional
cumulative constraint into two cumulative constraints on resources r0 and r1.

Continuation of Example 1 (Illustrating the decomposition). The instance
given in Example 1 can naturally be decomposed into two cumulative
constraints:

• c0 : cumulative(〈〈s0, d0, e0, h0,0〉, 〈s1, d1, e1, h1,0〉, 〈s2, d2, e2, h2,0〉〉, limit0).
• c1 : cumulative(〈〈s0, d0, e0, h0,1〉, 〈s1, d1, e1, h1,1〉, 〈s2, d2, e2, h2,1〉〉, limit1).

• During a first sweep wrt. constraint c0 (see Part (A) of Fig. 2), the com-
pulsory part of task t0 on resource r0 (on resource r0 and on interval [1, 2)
task t0 uses one resource unit) permits to adjust the earliest start of task t2
to 2 since the gap on top of interval [1, 2) is strictly less than the resource
consumption of task t2 on resource r0, i.e. h2,0.

• A second sweep wrt. constraint c1 (see Part (B) of Fig. 2) adjusts the earliest
start of task t1 to 2. This comes from the compulsory part on resource r1
of task t0 and from the fact that, on resource r1 tasks t1 and t0 can not
overlap. This last sweep causes the creation of a compulsory part for task t1
on [3, 4).

• During a third sweep wrt. constraint c0 (see Part (C) of Fig. 2), the new
compulsory part of task t1 allows to adjust the earliest start of task t2 since
on resource r0, the gap on top of the compulsory part of task t1 is strictly
less than the resource consumption of task t2, i.e. h2,0.
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Fig. 2. Parts (A), (B), (C) and (D) respectively represent the earliest positions of the
tasks and the PCRCP of the problem described in Example 1, after a first sweep on
r0, after a second sweep on r1, after a third sweep on r0, and a fourth sweep on r1

• Finally, a last sweep wrt. constraint c1 is performed to find out that the
fixpoint was reached (see Part (D) of Fig. 2).

Our new sweep min filtering algorithm will perform such deductions in one single
step. ��

We now give the property that will be achieved by our new sweep min filtering
algorithm.

Property 1. Given a k-dimensional cumulative constraint with n tasks and k
resources, sweep min ensures that:

∀r ∈ [0, k − 1], ∀t ∈ [0, n− 1], ∀i ∈ [st, et) : ht,r +
∑
t′ �= t:

i∈[st′ ,et′ )

ht′,r ≤ limit r (3)

Property 1 ensures that, for any task t of the k-dimensional cumulative con-
straint, one can schedule t at its earliest start without exceeding for any resource
r (0 ≤ r < k) its resource limit wrt. the PCRCP on resource r of the tasks of
T \{t}.
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Note that we can construct from Property 1 a relaxed solution of the k-
dimensional cumulative constraint by:

① setting the resource consumption to 0 for all k resources for the tasks that
do not have any compulsory part,

② setting the duration to et− st for the tasks that do have a compulsory part,
and

③ assigning each task to its earliest start.

2.1 Event Point Series

In the context of the sweep algorithms, events are specific time points where the
status of the sweep-line changes. Since events are only related to the temporal
aspect, they do not depend on how many resources we have, and can therefore
be factored out. As a consequence, events are kept unchanged wrt. the CP2012
sweep algorithm. In order to build the PCRCP on each resource and to filter the
earliest start of each task, the algorithm considers the following types of events.

– The event type 〈SCP , t, st〉 for the Start of Compulsory Part of task t (i.e.
the latest start of task t). This event is generated iff task t has a compulsory
part, i.e. iff st < et.

– The event type 〈ECPD , t, et〉. The date of such event corresponds to the
End of the Compulsory Part of task t (i.e. the earliest end of task t) and
may increase due to the adjustment of the earliest start of t. This event is
generated iff task t has a compulsory part, i.e. iff st < et.

– The event type 〈CCP , t, st〉, where CCP stands for Conditional Compulsory
Part, is created iff task t does not have any compulsory part, i.e. iff st ≥ et.
At the latest, once the sweep-line reaches position st, it adjusts the earliest
start of t. Consequently the conditional event can be transformed into an
SCP and an ECPD events, reflecting the creation of compulsory part.

– The event type 〈PR, t, st〉 where PR stands for Pruning Event, corresponds
to the earliest start of task t. This event is generated iff task t is not yet
scheduled, i.e. iff st 	= st.

Events are stored in the heap h events where the top event is the event with
the smallest date.

Continuation of Example 1 (Generated Events). The following events are generated
and sorted according to their date: 〈PR, 1, 0〉, 〈PR, 2, 0〉, 〈SCP , 0, 1〉, 〈ECPD , 0, 2〉,
〈CCP , 1, 3〉, 〈CCP , 2, 5〉. ��

2.2 Sweep-Line Status

In order to build the PCRCP and to filter the earliest start of the tasks, the
sweep-line jumps from event to event, maintaining the following information:
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– The current sweep-line position δ, initially set to the date of the first event.

– For each resource r ∈ [0, k − 1], the amount of available resource at instant
δ denoted by gapr (i.e. the difference between the resource limit limit r and
the height of the PCRCP on resource r at instant δ) and its previous value
denoted by gap′

r.

– For each resource r ∈ [0, k − 1], an array denoted by a check r which stores
tasks that have been encountered but whose earliest feasible start is yet to
be determined, i.e. all tasks that potentially can overlap δ. Such tasks will
be called active tasks in the rest of the paper. The ith entry stores a subset
of the tasks t for which ht,r = i.

– For each task t, the number of conflicts at instant δ denoted by conflictst. We
say that a task t is in conflict on the resource r iff t ∈ a check r∧ht,r > gapr.
We know that a task t cannot overlap the current sweep-line position if the
number of conflicts related to task t is greater than 0.2

Our sweep algorithm first creates and sorts the events wrt. their date. Then,
the sweep-line moves from one event to the next event, updating the amount of
available space on each resource (i.e. gapr, 0 ≤ r < k), and the list of active
tasks. Once all events at δ have been handled, the sweep-line tries to filter the
earliest start of the active tasks wrt. gap and the interval [δ, δnext). In order to
update the number of conflicts related to the tasks, for each resource r we scan
the tasks that are in a check r and for which the height on the resource r is
between gapr and gap′

r, i.e. tasks that become in conflict on the resource r, or
tasks that are no longer in conflict on the resource r.

In addition to the information maintained by the sweep-line, we define two
functions predr : N→ N and succr : N→ N:

predr(h) =

{
max0≤t<n{ht,r | ht,r < h} , if such ht,r exists
0 , otherwise

succr(h) =

{
min0≤t<n{ht,r | ht,r > h} , if such ht,r exists
+∞ , otherwise

2.3 Algorithm

The sweep min algorithm performs one single sweep over the event point series
in order to adjust the earliest start of the tasks wrt. Property 1. It consists of a
main loop that is decomposed into an event processing part and a filtering part.
The processing part reads the events and updates the gaps. It also adds tasks
in the list of active tasks and handles dynamic (ECPD) and conditional (CCP)
events. The filtering part adjusts the earliest start of the active tasks wrt. the
interval [δ, δnext) and the gaps.

2 There exists a specific case that we will introduce later for which this is false.
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Main Algorithm. The top level algorithm (Algorithm 1) consists of:

– [CREATING EVENTS] (line 2). The events are generated wrt. the start and
end variables of each task and inserted into h events. Also, throughout our
algorithm, for each task t, the relation st + dt = et is maintained while
sweeping (i.e. each time the sweep algorithm adjusts the earliest start of a
task, its earliest end is immediately updated accordingly).

– [INITIALIZATION] (lines 4 to 7). The events are generated and inserted into
h events. The arrays a check r (0 ≤ r < k) are initialized as empty arrays.
gapr and gap′

r are respectively initialized to the resource limit of r and to
the maximum height consumed by a task on resource r.

– [MAIN LOOP] (lines 9 to 11). For each date the main loop processes all the
corresponding events. It consists of the following steps:
• The first step (line 10) handles all events at the top of h events related
to the date δ, and determines the next position of the sweep-line δnext .

• The second step (line 11) detects if a resource limit is exceeded, and
processes the active tasks in order to adjust their earliest start.

The Event Processing Part. In order to update the sweep-line status, Alg. 2
(process events) reads and processes all events related to the date δ and deter-
mines the sweep interval [δ, δnext). We introduce two functions, extract min(h)
which extracts and returns all the top elements of the heap h and their common
related key value (event date), and peek key(h) which returns the key of the top
elements of the heap h. Alg. 2 consists in the following parts:

– [PROCESSING START COMPULSORY PART (SCP) EVENTS] (lines 3 to 4). For
each resource r updates the gap on top of the PCRCP of resource r on the
current sweep interval.

ALGORITHM sweep min() : bool
1: [CREATING EVENTS]
2: h events ← generate SCP, ECPD, CCP and PR events wrt. task t (0 ≤ t < n)
3: [INITIALIZATION]
4: for r = 0 to k − 1 do
5: gapr ← limitr
6: gap′

r ← predr(gapr + 1) // initialized to the maximum height consumed on resource r
7: a checkr ← empty array of size equal to the number of distinct heights on resource r
8: [MAIN LOOP]
9: while ¬empty(h events) do // while the heap of events is not empty
10: 〈δ, δnext〉 ← process events()
11: if ¬filter(δ, δnext) then return false
12: return true

Algorithm 1.Main sweep algorithm. Return false iff a resource overflow occurs,
true otherwise.

– [PROCESSING DYNAMIC (ECPD) EVENTS] (lines 6 to 9). Once the sweep-line
reaches the end of the compulsory part of a task t (i.e. its earliest end), we
have to determine whether or not it is its final position, i.e. whether the
earliest start of task t can still be updated. This requires to consider the
following steps:
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• If task t is in conflict on at least one resource (i.e. conflictst > 0, line 7),
then t cannot be scheduled before its latest position.

• If the earliest start of task t has already been updated since the creation
of the event, then this ECPD event is pushed back in the heap h events
to its correct date (line 8). Otherwise, for each resource r we update the
gap on top of the PCRCP of resource r at position δ (line 9).

– [PROCESSING CONDITIONAL (CCP) EVENTS] (lines 10 to 14). When the
sweep-line reaches the latest start of a task t, initially without compulsory
part, we need to know whether or not a compulsory part for t was created.
We have to consider the two following steps:
• If task t is in conflict on at least one resource, then t cannot be scheduled
before its latest position (line 11).

• If the earliest start of task t has already been updated and its earliest
end is greater than the current sweep-line position, meaning a compul-
sory part was created, then the event related to the end of its compulsory
part is added to h events (line 13) and the available resources are updated
(line 14).

– [DETERMINE THE NEXT EVENT DATE] (lines 16). In order to process the
pruning (PR) events, we need to know the next position δnext of the sweep
line.

– [PROCESSING EARLIEST START (PR) EVENTS] (lines 18 to 22). If the cur-
rent sweep interval is too small wrt. to the duration of task t or there is at
least one conflict (i.e. dt > δnext − δ ∨∃r | ht,r > gapr, line 19) then for each
resource r the task t is added into a check r and its number of conflicts is
updated.

The Filtering Part. Algorithm 3 processes the active tasks (i.e. tasks in each
a checkr) in order to adjust the earliest start of the tasks. It consists of the
following parts:

– [CHECK RESOURCE OVERFLOW] (line 2). If one of the gapr is negative on the
current sweep interval [δ, δnext) (i.e. one of the resource limit is exceeded),
Alg. 3 returns false meaning a failure.

– [TASK ENTERING INTO CONFLICT] (lines 4 to 13). Scans each resource where
the current available resource is less than the previous available resource (i.e.
gap′

r > gapr, line 5). It has to consider each task t ∈ a check r such that
gap′

r ≥ ht,r > gapr, i.e. tasks that were not in conflict at the previous
sweep-line position but that are in conflict at instant δ on resource r. If
the current earliest position of a task t without compulsory part is feasible,
i.e. conflictst = 0 ∧ δ ≥ et, task t is removed from a check r. For a task t
with a compulsory part, we do not need to keep task t in a checkr once the
sweep-line has reached the start of the compulsory part of t.

– [TASKS NO LONGER IN CONFLICT] (lines 15 to 29). Scans each resource
where the current available resource is greater than the previous available
resource (i.e. succr(gap

′
r) < gapr, line 16). For each resource r, it scans each

task t ∈ a check r such that gap′
r < ht,r ≤ gapr, i.e. tasks that were in
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ALGORITHM process events() : 〈δ, δnext 〉
1: 〈δ,E〉 ← extract min(h events) // extracts top elements

2: [PROCESSING START COMPULSORY PART (SCP) EVENTS]

3: for all tasks t that belong to an event of type SCP in E do
4: for r = 0 to k − 1 do gapr ← gapr − ht,r // updates available spaces

5: [PROCESSING DYNAMIC (ECPD) EVENTS]

6: for all tasks t that belong to an event of type ECPD in E do
7: if conflictst > 0 then (st, et) ← (st, et)
8: if et > δ then add 〈ECPD, t, et〉 to h events // push back the ECPD event

9: else for r = 0 to k − 1 do gapr ← gapr + ht,r // updates available spaces

[PROCESSING CONDITIONAL (CCP) EVENTS]

10: for all tasks t that belong to an event of type CCP in E do
11: if conflictst > 0 then (st, et) ← (st, et)
12: if et > δ then
13: add 〈ECPD, t, et〉 to h events // a compulsory part appears,

14: for r = 0 to k − 1 do gapr ← gapr − ht,r // and starts at instant δ

15: [DETERMINE THE NEXT EVENT DATE]

16: δnext ← peek key(h events) // set to latest end of all tasks if h events is empty

17: [PROCESSING EARLIEST START (PR) EVENTS]

18: for all tasks t that belong to an event of type PR in E do
19: if dt > δnext − δ ∨ ∃r such that ht,r > gapr then // unless task t holds in [δ, δnext ),

20: for r = 0 to k − 1 do // task t is added into a check

21: a check r[ht,r] ← a check r[ht,r] ∪ {t}
22: if ht,r > gap′

r then conflicts t ← conflicts t + 1
23: return 〈δ, δnext〉

Algorithm 2. Called every time the sweep-line moves. Extract and process all
events at current time point δ, returns both the current δ and the next time
point δnext .

conflict at the previous sweep-line position but that are no longer in conflict
at instant δ on resource r.
We consider the three following cases:
• If δ has passed the latest start of t (i.e. δ > st, line 22) we know that t
cannot be scheduled before its latest position.

• Else if the sweep interval [δ, δnext) is long enough and if there is no
conflict on other resources (i.e. conflictst = 0 ∧ δnext − δ ≥ dt, line 24),
the earliest start of task t is adjusted to δ. Note that this condition does
not depend on the resource r.

• Otherwise (line 26), the task is left in a check r and its earliest start is
adjusted to δ.

Continuation of Example 1 (Illustrating the k-dimensional sweep). The k-
dimensional sweep first reads the events 〈PR, 1, 0〉, 〈PR, 2, 0〉 and set δnext (i.e. the
next event date) to value 1. Since tasks t1 and t2 have a duration longer than the
sweep interval, they are added into the list of active tasks (see Alg. 2 line 21). Alg. 3
is run, there is no resource overflow and nothing can be deduced. Then the sweep-
line moves to position 1 (i.e. δ = 1), event 〈SCP , 0, 1〉 is processed, gap0 is updated
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ALGORITHM filter(δ, δnext ) : bool
1: [CHECK RESOURCE OVERFLOW]

2: for r = 0 to k − 1 do if gapr < 0 then return false
3: [TASKS ENTERING INTO CONFLICT]

4: for r = 0 to k − 1 do
5: while gap′

r > gapr do // the gap is smaller than previously

6: T ← a check r[gap
′
r]

7: U ← ∅
8: for all t ∈ T do
9: if ¬(conflicts t = 0 ∧ (st ≤ δ ∨ et ≤ δ)) then
10: conflictst ← conflictst + 1
11: U ← U ∪ {t}
12: a check r[gap

′
r] ← U

13: gap′
r ← predr(gap

′
r)

14: [TASKS NO LONGER IN CONFLICT]

15: for r = 0 to k − 1 do
16: while succr(gap

′
r) ≤ gapr do // the gap is greater than previously

17: gap′
r ← succr(gap

′
r)

18: T ← a check r[gap
′
r]

19: U ← ∅
20: for all t ∈ T do
21: conflictst ← conflictst − 1
22: if δ ≥ st then
23: (st, et) ← (st, et) // task t cannot start before its latest position

24: else if conflicts t = 0 ∧ δnext − δ ≥ dt then
25: (st, et) ← (δ, δ + dt) // task t can start at instant δ

26: else
27: (st, et) ← (δ, δ + dt)
28: U ← U ∪ {t}
29: a check r[gap

′
r] ← U

30: return true

Algorithm 3. Called every time the sweep-line moves from δ to δnext in order to
try to filter the earliest start of the tasks wrt. the available gap on each resource.

to 1 and gap1 is updated to 1 (see Alg. 2 line 4). The next sweep-line position is set
to 2 (i.e. δnext = 2). During the call of Alg. 3 tasks t1 and t2 are scanned because
of the decrease of the gap on the two resources (see line 5). Since the height of task
t2 on resource r0 is now greater than gap0 and since the sweep-line has not passed
its latest start, the condition stated at line 9 is true and conflicts2 is updated to 1.
On resource 1, for the same reason, the number of conflicts for task t1 is updated
to 1 (i.e. conflicts1 = 1). Then the sweep-line moves to position 2 and processes
event 〈ECPD , 0, 2〉, i.e. gap0 = 2 and gap1 = 3. Consequently Alg. 3 notices that
task t2 is no longer in conflict on resource r0 and adjusts its earliest start to 2 and
its earliest end to 4 (see line 27). In the same way, task t1 is no longer in conflict
on resource r1 and its earliest start is adjusted to 2 and its earliest end to 4. Then
the sweep-line moves to position 3 and processes event 〈CCP , 1, 3〉. Since task t1 is
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not in conflict and since the sweep-line has not reached the earliest end of task t1,
a compulsory part appears. An event corresponding to the end of the compulsory
part of task t1 is created and gaps are decreased (see Alg. 2 lines 13 and 14) because
of the start of the compulsory part of task t1. Now, gap0 = gap1 = 1 and the next
event date is equal to 4. Alg. 3 is run and task t2 is now in conflict on the resource
r0 since gap0 < h0,0. Then the sweep-line moves to position 4 and processes event
〈ECPD , 1, 4〉, i.e. gap0 = 2 and gap1 = 3. The next event date, 5, is given by the
CCP event of task t2. Alg. 3 is run and since gap0 is now greater than the height of
task t2 on resource r0, the number of conflicts associated to task t2 is decremented.
Since the sweep-line has not reached the latest start of task t2 (i.e. δ < s2) and since
the sweep interval is not long enough for task t2 (i.e. δnext − δ < d2), the earliest
start of task t2 is adjusted to 4 (see Alg. 3 lines 27). Then the sweep-line moves
to position 5 and processes event 〈CCP , 2, 5〉. Since task t2 is not in conflict and
since the sweep-line has not reached the earliest end of task t2, a compulsory part
appears. An event corresponding to the end of the compulsory part of task t2 is
created and gaps are decreased (see Alg. 2 lines 13 and 14) because of the start of
the compulsory part of task t1. Now, gap0 = 0 and gap1 = 2 and the next event
date is equal to 6. Finally the sweep-line moves to position 6 and processes event
〈ECPD , 2, 6〉, i.e. gap0 = 2 and gap1 = 3. There is no more event, consequently
δnext is set to the latest end of all tasks (see Alg. 2 line 16).We have now reached the
same fixpoint as the decomposition into 2 cumulative constraint but in one single
synchronized sweep. ��

2.4 Complexity

This section presents the worst-case time complexity of the k-dimensional sweep
algorithm in a constraint involving n tasks and k resources. To achieve this, we
first introduce the following lemma and prove it.

Lemma 1. During a run of Alg. 1, we generate at most four events per task.

Proof. Initially, at most three events are generated per task. In addition, at most
one dynamic ECPD event can be generated per task, as shown below.

① Suppose that we have an initial ECPD event, and that line 8 of Alg. 2 is
reached and its condition is true, generating a dynamic ECPD event. Then
either et = et or conflictst = 0 must hold according to line 7. Continue with
”Common case”.

② Suppose that we have an initial CCP event, and that line 12 of Alg. 2 is
reached and its condition is true, generating a dynamic ECPD event. Then
either et = et or conflictst = 0 must hold according to line 11. Continue with
”Common case”.

Common case: If et = et, then et cannot be further updated, and there is no
scope for a second dynamic ECPD event. So assume now that et < et. Then
conflictst = 0 must hold. Now the only way to update et before handling the
dynamic ECPD event is to reach line 20 of Alg. 3. But to make it there, we must
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first reach line 9 of Alg. 3. But the first time we reach that line, st ≤ δ will be
true, otherwise we would not have seen a CCP/ECPD event in the first place.
So the condition on line 9 will be false, t will be removed from the array slot,
and line 20 will never be reached.

In either case, at most one dynamic ECPD event is generated. ��

Processing one event in Alg. 2 costs O(k + logn). Each event date costs O(kn)
in Alg. 3. Since there is O(n) events, the worst-case time complexity of the
k-dimensional sweep algorithm is O(kn2).

2.5 Greedy Assignment Mode

In the same way as for the CP2012 sweep algorithm, we implemented a greedy
assignment mode related to the sweep min part of the filtering algorithm. The
greedy mode is an opportunistic mode which tries to build a solution in one single
sweep from left to right. It has the same structure as sweep min, but whenever
sweep min has found the earliest start of some task, the greedy mode also fixes
its start time, and updates the data structures according to the new compulsory
part of the task that was just fixed.

3 Evaluation

We implemented the dynamic sweep algorithm on Choco [14] and SICStus [4].
Choco benchmarks were run with an Intel i7 at 2.93 GHz processor on one single
core, memory limited to 14GB under Mac OS X 64 bits. SICStus benchmarks
were run on a quad core 2.8 GHz Intel Core i7-860 machine with 8MB cache per
core, running Ubuntu Linux (using only one processor core).

In a first experiment, we ran random instances of bin-packing (unit duration)
and cumulative (duration ≥ 1) problems, with k varying from 1 to 64 and n
from 1000 to 1 million. Instances were randomly generated with a density close
to 0.7. For a given number of tasks, we generated two different instances with
the average number of tasks overlapping a time point equal to 5. We measured
the time needed to find a first solution. As a search heuristic, the variable with
the smallest minimal value was chosen, and for that variable, the domain values
were tried in increasing order. All instances were solved without backtracking.
The times reported are total SICStus execution time, not just the time spent in
the dynamic sweep algorithm. The Choco results paint a similar picture.

In a first set of runs, decomposed, we modeled each instance with k 1-
dimensional cumulative constraints. In a second set of runs, synchronized, each
instance was modeled with 1 k-dimensional cumulative constraint. In both sets,
the new dynamic sweep algorithm was used. In a third set of runs, the greedy
assignment algorithm was used.

The results are shown in Fig. 3 (first three rows). Note in particular that
the greedy version could handle up to 1 million tasks in one 64-dimensional
cumulative constraint in SICStus in one hour and 40 minutes.
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Fig. 3. Runtimes on random bin-packing and cumulative k-dimensional cumulative
constraint (second row), greedy assignment (third row). Runtimes and backtrack counts
for PSPLib instances (bottom).
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A preliminary analysis of the observed runtimes as a function of n and k
suggest that decomposed solves instances in time proportional to approx. k×n2.10

whereas synchronized solves them in time proportional to k0.25×n2.25. In other
words, we observe a speed-up by nearly k0.75.

In a second experiment, we ran the J30 single-mode resource-constrained
project scheduling benchmark suite from PSPLib 3, comparing decomposed with
synchronized as above. Each instance involves 30 tasks, 4 resources and several
precedence constraints. The same search heuristic was used as in the first ex-
periment. The initial domains of the start times corresponded to the optimal
makespan, which is known for all instances. The results are shown in Fig. 3
(bottom). The scatter plot compares run times for instances that were solved
within a 1 minute time-out by both algorithms, as well as backtrack counts for
instances that timed out in at least one of the two algorithms. Since a higher
backtrack count means that propagation is faster, the plot shows that the new
constraint allows up to 4 times speed-up for solved instances and up to 3 times
speed-up for timed-out ones.

4 Conclusion

We have presented a synchronized sweep based algorithm for the k-dimensional
cumulative constraint over n tasks and k resources, with a worst-case time com-
plexity of O(kn2). The algorithm can operate in filtering mode as well as in
greedy assignment mode. In the performance evaluation, we have demonstrated
the importance of considering all the resources of the problem in one single sweep.
On our benchmarks, the new filtering algorithm yields a speed-up of about k0.75

over its decomposition into k independent cumulative constraints. The greedy
mode yields another two orders of magnitude of speed-up. When considering
a single resource, the new filtering algorithm is slightly faster (20%) than the
dedicated CP2012 algorithm.
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Abstract. Methods for analyzing infeasible constraint sets have prolif-
erated in the past decade, commonly focused on finding maximal satis-
fiable subsets (MSSes) or minimal unsatisfiable subsets (MUSes). Most
common are methods for producing a single such subset (one MSS or
one MUS), while a few algorithms have been presented for enumerating
all of the interesting subsets of a constraint set. In the case of enumer-
ating MUSes, the existing algorithms all fall short of the best methods
for producing a single MUS; that is, none come close to the ideals of 1)
producing the first output as quickly as a state-of-the-art single-MUS al-
gorithm and 2) finding each successive MUS after a similar delay. In this
work, we present a novel algorithm, applicable to any type of constraint
system, that enumerates MUSes in this fashion. In fact, it is structured
such that one can easily “plug in” any new single-MUS algorithm as a
black box to immediately match advances in that area. We perform a
detailed experimental analysis of the new algorithm’s performance rela-
tive to existing MUS enumeration algorithms, and we show that it avoids
some severe intractability issues encountered by the others while outper-
forming them in the task of quickly enumerating MUSes.

1 Introduction

The most common applications of constraint systems (of any type) involve find-
ing satisfying variable assignments for satisfiable constraint sets. As such, a huge
range of algorithms exist for finding such assignments and potentially optimizing
objective functions over them. Constraint sets for which no satisfying assign-
ments exist, on the other hand, can be processed with the tools of “infeasibility
analysis,” a smaller but growing field of study.

Broadly, the algorithms of infeasibility analysis can be placed into two cate-
gories by the information they seek: 1) how much of an unsatisfiable constraint
set can be satisfied, and 2) where in the constraint set the “problem” lies. These
two categories and their solutions go by various names in the different fields
where constraint systems are studied: Maximum Satisfiability (MaxSAT), Maxi-
mum Feasible Subsystem (MaxFS), and MaxCSP for the former, and Minimal[ly]
Unsatisfiable Subset (MUS), Irreducible/Irredundant Infeasible/Inconsistent
Subsystem (IIS), and Minimal[ly] Unsatisfiable Core (MUC) for the latter.

C. Gomes and M. Sellmann (Eds.): CPAIOR 2013, LNCS 7874, pp. 160–175, 2013.
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These two types of information are diametrically opposed (“Max” and “SAT”
vs “Min” and “UNSAT”), and yet a strong connection between the two has
been known since at least 1987. Specifically, researchers in the field of diagnosis
identified a hitting set relationship between the two [11,17]; it is based on the
fact that any satisfiable subset of a constraint system cannot fully contain any
unsatisfiable subset, and thus the satisfiable set must exclude at least one con-
straint from every unsatisfiable set. This relationship is occasionally exploited in
infeasibility analysis by using one type of result to guide searches for the other,
such as in algorithms that enumerate MUSes by way of MaxSAT solutions [1,13],
solving MaxSAT with the assistance of unsatisfiable cores [6,16], and even find-
ing [non-minimal] unsatisfiable cores to boost MaxSAT to then produce MUSes
[14].

In this work, we introduce a new algorithm for infeasibility analysis inspired
by this strong connection that fills a gap in the previous work and provides
fertile ground for further developments in several directions. The “gap” we ad-
dress is the lack of algorithms that quickly enumerate MUSes. While several
approaches for enumerating MUSes exist, all suffer from severe scalability is-
sues, and none currently match the performance of state-of-the-art algorithms
for extracting a single MUS from an unsatisfiable constraint set. Ideally, MUS
enumeration should produce the first MUS in roughly the same time TMUS

taken by the best algorithms for finding a single MUS, and each additional MUS
should be produced as quickly as possible, with a reasonable incremental delay
being roughly that same time period TMUS . The new algorithm we present here,
dubbed MARCO, achieves both of these goals.

In the following sections, we first define terms and describe concepts under-
lying this work (Section 2), followed by a discussion of past research on enu-
merating MUSes (Section 3). We then present the MARCO algorithm (Section
4) and an extensive empirical analysis (Section 5) before finally concluding and
outlining several research paths that continue from here (Section 6).

2 Preliminaries

In this work, we discuss problems, results, and algorithms in terms of generic
sets of constraints for which the constraint type and the variable domain are not
specified. Generally, then, we will be discussing an ordered set of n constraints:

C = {C1, C2, C3, . . . , Cn}
A given constraint Ci places restrictions on assignments to a problem’s variables,
and Ci is satisfied by any assignment that meets its restrictions. If there exists
some assignment to C’s variables that satisfies every constraint, C is said to be
satisfiable or SAT ; otherwise, it is unsatisfiable, infeasible, or UNSAT. Most of
the algorithms we describe in this paper, and especially our own algorithm, can
be applied to any set of constraints given that there exists a solving method
capable of returning SAT or UNSAT for that set of constraints; we call these
constraint-agnostic algorithms.
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An infeasible constraint set C can be analyzed in a variety of ways, often
in terms of producing useful subsets of C. The most common analysis is likely
the maximum satisfiability problem (MaxSAT, MaxFS, MaxCSP), which pro-
duces a satisfiable subset of C with the greatest possible cardinality. Generalizing
MaxSAT by considering maximality instead of maximum cardinality yields the
concept of a Maximal Satisfiable Subset (MSS):

M ⊆ C is an MSS ⇐⇒ M is SAT and ∀c ∈ C \ M : M ∪ {c} is UNSAT

An MSS is essentially a satisfiable subset of C that cannot be expanded without
becoming unsatisfiable. While any solution to the MaxSAT problem is an MSS,
some MSSes may be smaller than that maximum size. The complement of an
MSS is often more directly useful, and we call such a minimal set (whose removal
from C makes it satisfiable or “corrects” it) a Minimal Correction Set (MCS):

M ⊆ C is an MCS ⇐⇒ C \ M is SAT and ∀c ∈ M : (C \ M) ∪ {c} is UNSAT

Again, the minimality is not in terms of cardinality, but rather it requires that
no proper subset of M be capable of “correcting” the infeasibility. A related
concept, the focus of this work, is the Minimal Unsatisfiable Subset (MUS):

M ⊆ C is an MUS ⇐⇒ M is UNSAT and ∀c ∈ M : M \ {c} is SAT

MUSes are most commonly considered in terms of minimizing an unsatisfiable
constraint set down to a “core” reason for its unsatisfiability. In some work, they
are called “unsatisfiable cores,” but that is also used to refer to any unsatisfiable
subset of a constraint system, regardless of its minimality. Note that the defini-
tion of an MUS need not reference the constraint set C of which it is a subset; it
is really a free-standing property of any set of constraints, as it does not depend
on the existence or the structure of any other constraints. However, as it is most
commonly encountered in terms of finding such a minimal subset of some larger
constraint set, naming it with “subset” is traditional. In OR, the concept of the
Irreducible Inconsistent Subsystem (IIS) [15] is equivalent to that of the MUS.

Example 1. Consider the following unsatisfiable set of Boolean clauses:

C = { (a) , (¬a ∨ b) , (¬b) , (¬a) }
C1 C2 C3 C4

C has two MUSes and three MSS/MCS pairs:

MUSes
{C1, C2, C3}

{C1, C4}

MSSes MCSes
{C2, C3, C4} {C1}

{C1, C3} {C2, C4}
{C1, C2} {C3, C4}

Simple constraint-agnostic algorithms for finding MSSes and MUSes of a con-
straint set C are shown in Figure 1, and their behavior is quite similar. To find
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grow(seed, C)
input: unsatisfiable constraint set C
input: satisfiable subset seed ⊂ C
output: an MSS of C

1. for c ∈ C \ seed:
2. if seed ∪ {c} is satisfiable:
3. seed = seed ∪ {c}
4. return seed

shrink(seed, C)
input: unsatisfiable constraint set C
input: unsatisfiable subset seed ⊆ C
output: an MUS of C

1. for c ∈ seed:
2. if seed \ {c} is unsatisfiable:
3. seed = seed \ {c}
4. return seed

Fig. 1. The basic grow and shrink methods for finding an MSS or an MUS, respec-
tively, of a constraint set

an MSS (MUS), the grow (shrink) method starts from some satisfiable (unsat-
isfiable) subset seed ⊆ C and iteratively attempts to add (remove) constraints,
checking each new set for satisfiability and keeping any changes that leave the set
satisfiable (unsatisfiable). These algorithms are not novel (for example, shrink
was described by Dravnieks in 1989 as “deletion filtering” [4]), nor are they par-
ticular efficient as shown (many improvements can be made to both), but they
serve as simple illustrative examples for the purposes of this work.

Note that the input seed can take simple default values if no particular subset
is given. The grow method can begin its construction with seed = ∅ (guaranteed
to be satisfiable), while shrink can start with seed = C (guaranteed UNSAT).
Therefore, seed can be considered an optional parameter for both, and each
method is also a generic method for finding an MSS or MUS of a constraint
set C without any additional information. For any given constraint type and
solver, both shrink and grow can be optimized to exploit characteristics of the
constraints or features of the solver; most fields have a great deal of research on
efficient shrink implementations, but grow is less often studied.

3 Related Work

The existing work on algorithms for enumerating MUSes is limited, especially
when compared to the amount of work on extracting single MUSes and unsat-
isfiable cores. Some all-MUS algorithms have been developed for specific con-
straint types. For example, there are many methods for computing all IISes of
a linear program such as the original work by van Loon [15], later work by
Gleeson and Ryan [8], etc.; however, these approaches are quite specific to lin-
ear programming, constructing a polytope and using the simplex method, and
they do not generalize well. Additionally, Gasca, et al. developed methods for
computing all MUSes of overconstrained numerical CSPs (NCSPs) [7]. Their
approach explores all subsets of a constraint system while pruning unnecessary
collections of subsets with rules based on structure specific to NCSPs. In the
space of constraint-agnostic algorithms for enumerating MUSes, three different
approaches have been presented. As with the work in this paper, all of the fol-
lowing algorithms are easily applied to any type of constraint system, from CSP
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to IP to SAT, and none rely on specific features of any constraint type or solving
method.

Subset Enumeration. The technique of explicitly enumerating and checking every
subset of the unsatisfiable constraint system was first explored in the field of
diagnosis by Hou [10], who presented a technique for enumerating subsets in a
tree structure along with pruning rules to reduce its size and avoid unnecessary
work. Starting from the complete constraint set C, the algorithm searches the
power set P(C), branching to explore all subsets. Each subset is checked for
satisfiability, and any subset found to be unsatisfiable and whose children (proper
subsets) are all satisfiable is an MUS. Han and Lee corrected an error in one
of the pruning rules and presented additional improvements [9], and further
optimizations and enhancements were made by de la Banda et al. [2].

CAMUS. A later algorithm for enumerating MUSes by Liffiton and Sakallah
[12,13,14] avoids an explicit search of the power set of C by exploiting the rela-
tionship between MCSes and MUSes [11,17]. CAMUS works in two phases, first
computing all MCSes of the constraint set, then finding all MUSes by comput-
ing the minimal hitting sets of those MCSes. The two-phase method can be
applied with any technique for enumerating MCSes and any minimal hitting set
algorithm. The authors provide an algorithm for the first phase that gives a con-
straint solver the ability to search for satisfiable subsets of constraints without
having to feed each subset to the solver individually. With this ability, the algo-
rithm then searches for satisfiable subsets in decreasing order of size, blocking
any solutions found before continuing its search, thus guaranteeing it finds only
maximal satisfiable sets whose complements are the MCSes it seeks. The second
phase of CAMUS, as a purely set theoretic problem, operates independently of
any constraint solver.

Due to the complexity and potential intractability of the first phase (the
number of MCSes may be exponential in the size of the instance), CAMUS is
unsuitable for enumerating MUSes in many applications that require multiple
MUSes quickly. Variations on the core algorithm can relax its completeness and
adapt it to such situations [13], but the control they provide, essentially a tradeoff
between time and completeness, is crude. In any case, CAMUS is not able to
be run in an incremental fashion, with short, consistent delays between each
MUS, such that one can make a decision about the time/completeness tradeoff
dynamically while the algorithm runs.

DAA. Closer to the goal of this work, providing a much more incremental ap-
proach than CAMUS, is the Dualize and Advance algorithm (DAA) by Bailey
and Stuckey [1]. It exploits the same relationship between MCSes and MUSes,
but it discovers both types of sets throughout its execution. Therefore, like our
algorithm and unlike CAMUS, it is capable of producing MUSes “early” in its
execution. Pseudocode for DAA is shown in Figure 2. It repeatedly computes
MCSes by growing MSSes from seeds with the grow method and taking their
complements. The initial seed is the empty set. It then computes the minimal
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DAA
input: unsatisfiable constraint set C
output: MSSes and MUSes of C as they are discovered

1. MCSes, MUSes, seed ← ∅
2. haveSeed ← True
3. while haveSeed:
4. MSS ← grow(seed, C)
5. yield MSS

6. MCSes ← MCSes ∪ {C \ MSS} � the complement of an MSS is an MCS
7. haveSeed ← False
8. for candidate ∈ (hittingSets(MCSes) \ MUSes):
9. if candidate is satisfiable:

10. seed ← candidate � if SAT, candidate is a new MSS seed
11. haveSeed ← True
12. break
13. else:
14. yield candidate � if UNSAT, candidate is an MUS
15. MUSes ← MUSes ∪ {candidate}

Fig. 2. The DAA algorithm for enumerating MSSes & MUSes of a constraint set

hitting sets of the MCSes found thus far, as CAMUS does once it has the complete
set of MCSes. With an incomplete set of MCSes, some of the hitting sets may
be unsatisfiable, and these are guaranteed to be MUSes. DAA therefore checks
each for satisfiability, reporting every unsatisfiable set as an MUS, and the first
set found to be satisfiable is taken as the next seed for the algorithm to repeat.

Comparisons. Bailey and Stuckey found that DAA performed much better than
the subset enumeration algorithm as presented by de la Banda, et al. in their ex-
perimental evaluation [1], while somewhat limited experiments in [13] indicated
that CAMUS outperformed DAA for finding all MUSes of a constraint system.
However, the incremental nature of DAA is not matched by CAMUS, and so
comparisons to both are warranted here. We contrast the features of DAA and
CAMUS with our new algorithm following its description in Section 4, and the
experimental results in Section 5 further illustrate the differences.

4 Exploring Infeasibility with the MARCO Algorithm

Here, we present a novel algorithm for enumerating all MUSes of an unsatisfiable
constraint set C. (As with CAMUS and DAA, it also enumerates all MSSes of
C, but they are not the focus of this work.) It efficiently explores the power set
P(C) by exploiting the idea that any power set can be analyzed and manipulated
as a Boolean algebra; that is, one can perform set operations within P(C) by
manipulating Boolean functions as propositional formulas. Specifically, we note
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that any function f : P(C) → {0, 1} can be represented by a propositional
formula over |C| variables.

Our algorithm maintains a particular function f : P(C) → {0, 1} that tracks
“unexplored” subsets C′ ⊆ C such that f(C′) = 1 iff the satisfiability of C′ is
unknown and it remains to be checked. This function, stored as a propositional
formula, can be viewed as a “map” of P(C) showing which “regions” have been
explored and which have not. Named after the Venetian explorer Marco Polo,
we have dubbed the algorithm MARCO (Mapping Regions of Constraint sets)
and the general technique of maintaining a power set map as a propositional
logic formula POLO (Power set Logic). Overall, MARCO enumerates MUSes by
repeatedly selecting an unexplored subset C′ ∈ P(C) from the map, checking
whether C′ is satisfiable, minimizing or maximizing it into an MUS or an MSS,
and marking a region of the map as explored based on that result.

MARCO
input: unsatisfiable constraint set C = {C1, C2, C3, . . . , Cn}
output: MSSes and MUSes of C as they are discovered

1. Map ← BoolFormula(nvars = |C|) � Empty formula over |C| Boolean variables
2. while Map is satisfiable:
3. m ← getModel(Map)
4. seed ← {Ci ∈ C : m[xi] = True} � Project the assignment m onto C

5. if seed is satisfiable:
6. MSS ← grow(seed, C)
7. yield MSS

8. Map ← Map ∧ blockDown(MSS)
9. else:

10. MUS ← shrink(seed, C)
11. yield MUS

12. Map ← Map ∧ blockUp(MUS)

Fig. 3. The MARCO algorithm for enumerating MSSes & MUSes of a constraint set

Figure 3 contains pseudocode for the MARCO algorithm. The formula Map
is created to represent the “mapping” function described above, with a variable
xi for every constraint Ci in C. Initially, the formula is a tautology, true in
every model, meaning every subset of C is still unexplored. Given its semantics,
any model of Map can be projected onto C (lines 3 and 4) to identify a yet-
unexplored element of C’s power set whose satisfiability is currently unknown.
If this subset, seed, is satisfiable, then it must be a subset of some MSS, and it
can be “grown” into an MSS. Likewise, if it is unsatisfiable, seed must contain at
least one MUS, and it can be “shrunk” to produce one. In either case, the result
is reported (via yield in the pseudocode, indicating that the result is returned
but the algorithm may continue).
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Each result provides information about some region of P(C) that is either
satisfiable or unsatisfiable, and so a clause is added to Map to represent that
region as “explored.” For an MSS M , all subsets of M are now known to be
satisfiable, and so models corresponding to any subset of M are eliminated by
requiring that later models of Map include at least one constraint not in M :

blockDown(M) ≡
∨

i : Ci /∈M

xi

Similarly, all supersets of any MUS M are known to be unsatisfiable; supersets
of M are blocked by requiring models to exclude at least one of its constraints:

blockUp(M) ≡
∨

i : Ci∈M

¬xi

Eventually, all MSSes and MUSes are enumerated, the satisfiability of every
element in P(C) is known, and MARCO terminates when Map has no further
models. We discuss implementation details after an example.

Example 2. Suppose we run MARCO on the constraint set from Example 1:

C = { (a) , (¬a ∨ b) , (¬b) , (¬a) }
C1 C2 C3 C4

Initialization: Map ← [empty formula over {x1, x2, x3, x4}]
Iteration 1: Map =  : SAT

getModel → [x1, x2, x3, x4]
seed ← {C1, C2, C3, C4} : UNSAT

shrink → MUS: {C1, C2, C3}
Map ← Map ∧ (¬x1 ∨ ¬x2 ∨ ¬x3)

Iteration 2: Map = (¬x1 ∨ ¬x2 ∨ ¬x3) : SAT
getModel → [¬x1, x2, x3, x4]

seed ← {C2, C3, C4} : SAT
grow → MSS: {C2, C3, C4} — equiv. MCS: {C1}
Map ← Map ∧ (x1)

Iteration 3: Map = (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (x1) : SAT
getModel → [x1, ¬x2, x3, x4]

seed ← {C1, C3, C4} : UNSAT
shrink → MUS: {C1, C4}

Map ← Map ∧ (¬x1 ∨ ¬x4)
At this point, MARCO has found all MUSes. It must ensure completeness,

however, and so it exhaustively explores all remaining subsets.
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Iteration 4: Map = (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (x1)
∧ (¬x1 ∨ ¬x4) : SAT

getModel → [x1, ¬x2, x3, ¬x4]
seed ← {C1, C3} : SAT

grow → MSS: {C1, C3} — equiv. MCS: {C2, C4}
Map ← Map ∧ (x2 ∨ x4)

Iteration 5: Map = (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (x1)
∧ (¬x1 ∨ ¬x4) ∧ (x2 ∨ x4) : SAT

getModel → [x1, x2, ¬x3, ¬x4]
seed ← {C1, C2} : SAT

grow → MSS: {C1, C2} — equiv. MCS: {C3, C4}
Map ← Map ∧ (x3 ∨ x4)

Iteration 6: Map = (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (x1)
∧ (¬x1 ∨ ¬x4) ∧ (x2 ∨ x4) ∧ (x3 ∨ x4) : UNSAT

In the final iteration, all MSSes and all MUSes have been found; therefore,
every model of Map is blocked, Map is UNSAT, and the algorithm terminates.

4.1 Implementation and Efficiency

An implementation of MARCO requires solvers for both C and Map. It is
constraint-agnostic, as it only needs a solver that can take a set of constraints
(some subset of C) and return a SAT/UNSAT result. The solver for Map is sep-
arate, and any engine for obtaining a model of a Boolean formula can be used;
an incremental interface such as provided by modern SAT solvers or Binary
Decision Diagram (BDD) engines will be most efficient.

MARCO’s efficiency depends primarily on the implementation of the grow and
shrink subroutines, as they are the most expensive steps. Constraint-agnostic
methods for both are described in Section 2, but algorithms specific to a particu-
lar constraint type will be able to leverage details of those constraints for better
performance. Due to the difficulty and broad applicability of extracting MUSes
(the shrink method), much research has been done on the problem, and effi-
cient algorithms for shrink exist for many constraint types. The grow method
is less studied, and far more work is done on MaxSAT, MaxFS, etc. than on the
easier problem of finding an MSS. Note that the solvers for C and Map and the
methods for grow and shrink are black boxes as far as MARCO is concerned;
an advance in the state-of-the-art for any one of the four can be immediately
“plugged in” to boost the algorithm’s performance.

4.2 Impact of the Map Solver

Another important factor for performance is the behavior of the solver for Map.
The particular model returned by getModel cannot affect correctness, but it
can impact the work done by grow and shrink. For example, imagine a simple



Enumerating Infeasibility: Finding Multiple MUSes Quickly 169

constraint set that is an MUS itself. If the first model found for Map corresponds
to the empty set, grow will be called, and it will have to proceed through several
steps to reach an MSS, which in this case must contain all but one constraint of
C. If the models of Map continue to represent very small subsets of C, grow will
continue to require a large number of steps in each call. On the other hand, if the
first model of Map corresponds to C itself, with all constraints included, shrink
will be called on an “easy” seed (an MUS that will not be shrunk farther). And
now, if models of Map are generally large subsets of C, the MSSes will be found
by much faster calls to grow, as it will have much less “distance” to cover to
reach an MSS in each case.

Returning to the earlier stated goal of producing the first MUS as fast as a
state-of-the-art single-MUS algorithm, we see that we can achieve this simply
by ensuring that the first model found for Map sets all xi variables to True,
resulting in seed = C, the entire constraint set. This takes negligible time, and
the algorithm will immediately call shrink on C to produce the first MUS. Given
that shrink can be any state-of-the-art MUS extraction algorithm, MARCO can
thus find the first MUS as quickly as any other algorithm.

While we cannot then guarantee that each successive model of Map will also
correspond to an unsatisfiable subset of C, which would trigger further calls
to shrink immediately, it is possible to bias a solver in that direction. If the
solver for Map favors assigning variables to True, then it will be more likely to
produce models corresponding to large, nearly-complete subsets of C, which are
the subsets most likely to be unsatisfiable. In Example 2, the model m found
in each iteration is biased in this way, and the first seed is thus C itself. The
next model, even if maximizing the number of variables assigned True, will not
necessarily correspond to an unsatisfiable seed, as illustrated in Iteration 2, but
it is still likely to locate other unsatisfiable subsets of C quickly.

4.3 Comparison to CAMUS and DAA

With regards to tractability, CAMUS suffers from the fact that its first phase may
produce an intractably large set of MCSes, with no good way to make progress
on MUSes until the MCSes are all found. DAA also faces a severe tractability
issue in the intermediate collections of hitting sets it computes; these collections
can be exponential in size even if the number of MUSes is not [1]. MARCO, on
the other hand, faces no such issues; the only information stored outside of its
black box solvers is the formula it maintains in Map, which grows linearly with
the number of results found.

The intractability of the first phase of CAMUS also impacts the time until its
first MUS output, which can be effectively infinite even for small problems. DAA
fares better, but it still must find at least k MCSes before it might output an
MUS of size k, meaning it may face a lengthy delay before outputting its first
MUS. The very first step of MARCO, however, finds an MUS directly using an
efficient MUS algorithm, and each subsequent MUS can be found in roughly the
same amount of time. At an algorithmic level, MARCO is better suited to finding
multiple MUSes quickly than either CAMUS or DAA.
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5 Empirical Analysis

To evaluate the MARCO algorithm and to compare it to the previous approaches
for MUS enumeration, CAMUS and DAA, we ran all three on a set of 300 bench-
marks from the Boolean satisfiability domain. Compared to analyzing decision
or optimization problems, addressing the indefinite nature of enumerating po-
tentially intractable sets requires a more detailed analysis, and so we present a
variety of analyses to illustrate each algorithm’s strengths and weaknesses.

Each algorithm was implemented in C++ using the MiniSAT solver [5]. We
used the most recent release of CAMUS for Boolean SAT, which is built on
MiniSAT 1.12b, while we implemented MARCO and DAA using MiniSAT 2.21.
Both MARCO and DAA were written in the same framework so that each would
share as much code as possible, including the implementation of the grow
method. For the shrink method in MARCO, we used the MUSer2 algorithm
[3], a state-of-the-art MUS extraction algorithm for Boolean SAT. The solver for
Map in MARCO was biased toward models representing larger subsets of C, as
described in Section 4.2. All experiments were run on 3.4GHz AMD Phenom II
CPUs with a 3600 second timeout and a 1.8 GB memory limit.

We used the 300 benchmarks selected for the MUS track of the recent 2011
SAT Competition2. These benchmarks were drawn from a wide variety of appli-
cations and cover a range of sizes, from 26 clauses (constraints) up to 4.4 million.
Of the 300 instances, our experiments found that 219 contained more than one
MUS, 17 had exactly one MUS, and the remaining 64 were indeterminate (i.e.,
on these instances, every algorithm ran out of time or memory and output only
zero or one MUS before it was terminated).

Table 1. Number of instances in which each algorithm found all, multiple, or at least
one MUS

n CAMUS DAA MARCO
All instances 300
Found all MUSes 41 24 25
Found ≥ 1 MUS 113 51 244
Instances w/ >1 MUS 219
Found all MUSes 26 8 11
Found > 1 MUS 98 32 215
Found ≥ 1 MUS 98 35 217

An overview of the number of instances for which each algorithm reached cer-
tain thresholds of enumerating MUSes is shown in Table 1. The results are broken
out for the complete set of 300 benchmarks and for the set of 219 benchmarks
that are known to contain more than one MUS. For the goal of enumerating
1 While this may disadvantage CAMUS, our experiments have shown that it does not

perform substantially better when built on top of MiniSAT 2.2.
2 http://www.satcompetition.org/2011/

http://www.satcompetition.org/2011/
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Fig. 4. Logarithmic cactus plot of each algorithm’s runtime (to completion; i.e., enu-
merating all MUSes)

all MUSes, CAMUS outperforms the other two algorithms by a wide margin,
completing within the time and memory limits for 41 benchmarks, compared to
24 for DAA and 25 for MARCO. Figure 4 shows a cactus plot3 of the runtimes of
the three algorithms, further supporting this point; CAMUS appears to be the
best option for enumerating the complete set of MUSes.

It is also clear, however, that enumerating the complete set of MUSes is gen-
erally intractable (in fact, the set’s cardinality may be exponential in the size of
the instance), and CAMUS is outperformed by MARCO in the task emphasized
by this work: enumerating some, but not all, MUSes. The number of instances
for which MARCO can find a single MUS or multiple MUSes within the resource
limits is more than twice that of CAMUS. This is consistent with the fact that
the first phase of CAMUS is potentially intractable, and it often times out before
reaching the second phase and producing even a single MUS. The DAA algo-
rithm is outperformed by CAMUS in enumerating all MUSes (which agrees with
earlier, more limited results [13]), and DAA produces no output at all in far
more instances than either algorithm, especially MARCO. DAA most commonly
exhausts its memory limit, due primarily to the number of intermediate hitting
sets it generates in every iteration, and in many cases memory is exhausted be-
fore a single MUS has been found. Therefore, the remainder of the analysis will
focus primarily on comparing MARCO and CAMUS.

3 Cactus plots are created by sorting and plotting values in order within each series,
showing distributions of values within a series, but not allowing pairwise comparisons
between them. Each point (x, y) can be read as, “x instances have a value [e.g.,
runtime] of y or less.”
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Fig. 5. Logarithmic cactus plot of the number of MUSes found by each algorithm
within time / memory limits

Another view of the difference between MARCO and CAMUS is shown in
a cactus plot of the numbers of MUSes found by each algorithm in Figure 5.
This chart echoes some of the information in Table 1, showing the number of
instances in which each algorithm is able to find one or more than one MUS, but
it adds additional information about other output counts as well. For example,
we can see that MARCO produces 10 or more MUSes in more than 170 instances,
while CAMUS does so in only about 80 instances. However, CAMUS finds much
larger sets of MUSes within the timeout in many instances, returning over 106

results in more than 50 instances, while MARCO only reaches above 105 results
in one instance. This suggests that CAMUS will produce many more MUSes than
MARCO, when it produces any, but MARCO is more robust in terms of scaling
to produce some MUSes for more instances overall.

Figure 6 explores this further with pairwise comparisons of the number of
MUSes found. DAA never produces more MUSes than MARCO. CAMUS, on
the other hand, often produces orders of magnitude more MUSes. However, the
chart also shows the large set of instances for which CAMUS outputs nothing
and MARCO produces multiple MUSes; the reverse is true in only two instances.

Finally, to further contrast the performance of CAMUS and MARCO, we can
look at anytime charts of their output over time, showing how many MUSes will
be produced if execution is stopped at any particular time. The anytime charts
in Figure 7 contain one trace for each instance that had 10 or more outputs,
plotting the number of MUSes produced on the y-axis against time on the x-
axis. For the sake of comparison, the data have been normalized to a scale of
0.0 to 1.0 such that 1.0 represents 100% of each algorithm’s runtime on each
instance (on the x-axis) or 100% of the MUSes it found in that time (y-axis). On
these charts, we can see that CAMUS typically outputs the great majority of an



Enumerating Infeasibility: Finding Multiple MUSes Quickly 173

Fig. 6. Comparing MARCO to CAMUS (left) and DAA (right): number of MUSes found
within time / memory limits (counts of 0 remapped to 0.2 to lie on the axis)

Fig. 7. Normalized anytime charts for CAMUS (left) and MARCO (right)
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instance’s MUSes “late,” in the last 10% or less of its runtime (the dark, nearly
vertical band on the right of the chart). This is consistent with its operation
in two phases, where MUSes are only output in the second phase, and it shows
that there is typically a long delay before any output is produced. In contrast,
MARCO most often produces MUSes in a fairly steady progression (seen in the
darkest band of traces along the diagonal) with a regular delay between each
output, and it produces MUSes “early” (traces above the diagonal) more often
than “late” (traces below). Overall, CAMUS can produce MUSes more quickly
than MARCO, if it produces any at all (i.e., if it is given enough time), while
MARCO outputs them at a much more steady pace from the beginning, making
it more suitable for computing some MUSes quickly.

6 Conclusion

We have presented MARCO (Mapping Regions of Constraint sets), a novel al-
gorithm for enumerating MUSes in any type of constraint system, with the focus
on producing multiple MUSes quickly, and empirical results show that MARCO
outperforms other MUS enumeration algorithms at this task. It operates within
the POLO framework (Power set Logic), maintaining a “map” of a constraint
set’s power set in a propositional logic formula, marking “explored” areas of the
power set as it progresses, and using the map to find new subsets to check. Ex-
perimental results show that the CAMUS algorithm can enumerate the complete
set of MUSes faster than MARCO, but the faster early results of MARCO are
preferable in any application for which one wants multiple MUSes within some
time limit and for which all MUSes are not needed, especially if they number
in the millions or higher. MARCO can be implemented on top of any existing
constraint solver, and in fact its critical shrink method can be implemented by
“plugging in” any state-of-the art single-MUS extraction algorithm; therefore, it
can always mirror the performance of any advances in MUS extraction.

Future research directions include exploring the effects of biasing and other
heuristics in the solver for the “map” formula, as well as changes to the al-
gorithm that focus it on enumerating MUSes alone, at the expense of missing
some MSSes, or vice versa. Additionally, there are many opportunities to relax
its completeness and/or optimality to be able to produce results in cases that
remain too difficult for finding minimal unsatisfiable subsets as opposed to just
small unsatisfiable cores. And finally, the general POLO technique provides a
foundation from which new infeasibility analyses may be developed, such as new
algorithms for finding a smallest MUS (SMUS) of a constraint set or for solving
the MaxSAT/MaxFS/MaxCSP problem.

Acknowledgements. Many thanks to Anton Belov for providing assistance
with the MUSer2 source code and to the anonymous reviewers for their helpful
comments.
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Abstract. Data centers are a critical and ubiquitous resource for pro-
viding infrastructure for banking, Internet and electronic commerce. One
way of managing data centers efficiently is to minimize a cost function
that takes into account the load of the machines, the balance among a
set of available resources of the machines, and the costs of moving pro-
cesses while respecting a set of constraints. This problem is called the
machine reassignment problem. An instance of this online problem can
have several tens of thousands of processes. Therefore, the challenge is
to solve a very large sized instance in a very limited time. In this paper,
we describe a constraint programming-based Large Neighborhood Search
(LNS) approach for solving this problem. The values of the parameters
of the LNS can have a significant impact on the performance of LNS
when solving an instance. We, therefore, employ the Instance Specific
Algorithm Configuration (ISAC) methodology, where a clustering of the
instances is maintained in an offline phase and the parameters of the LNS
are automatically tuned for each cluster. When a new instance arrives,
the values of the parameters of the closest cluster are used for solving
the instance in the online phase. Results confirm that our CP-based LNS
approach, with high quality parameter settings, finds good quality solu-
tions for very large sized instances in very limited time. Our results also
significantly outperform the hand-tuned settings of the parameters se-
lected by a human expert which were used in the runner-up entry in the
2012 EURO/ROADEF Challenge.

1 Introduction

Data centers are a critical and ubiquitous resource for providing infrastructure
for banking, Internet and electronic commerce. They use enormous amounts of
electricity, and this demand is expected to increase in the future. For example,
a report by the EU Stand-by Initiative stated that in 2007 Western European
data centers consumed 56 Tera-Watt Hours (TWh) of power, which is expected
to almost double to 104 TWh per year by 2020.1 A typical optimization challenge

� This work is supported by Science Foundation Ireland Grant No. 10/IN.1/I3032 and
by the European Union under FET grant ICON (project number 284715).

1 http://re.jrc.ec.europa.eu/energyefficiency/html/standby initiative
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in the domain of data centres is to consolidate machine workload to ensure that
machines are well utilized so that energy costs can be reduced. In general, the
management of data centers provides a rich domain for constraint programming,
and combinatorial optimization [13, 16–18].

Context. Given the growing level of interest from the optimization community
in data center optimization and virtualization, the 2012 ROADEF Challenge was
focused on machine reassignment, a common task in virtualization and service
configuration on data centers.2 Informally, the machine reassignment problem is
defined by a set of machines and a set of processes. Each machine is associated
with a set of available resources, e.g. CPU, RAM etc., and each process is asso-
ciated with a set of required resource values and a currently assigned machine.
There are several reasons for reassigning one or more processes from their cur-
rent machines to different machines. For example, if the load of the machine is
high, then one might want to move some of the processes from that machine to
other machines. Similarly, if the machine is about to shut down for maintenance
then one might want to move all processes from the machine. Also, if there is
a different location where the electricity price is cheaper then one might want
to reassign some processes to the machines at that location such that the total
cost of electricity consumption is reduced. In general, the task is to reassign
the processes to machines while respecting a set of hard constraints in order to
improve the usage of the machines, as defined by a complex cost function.

Contributions of This Paper. The machine reassignment problem is one that
needs to be solved in an online manner. The challenge is to solve a very large
size problem instance in a very limited time. In order to do so, we formulate the
problem using Constraint Programming (CP) as described in [10], and use Large
Neighborhood Search (LNS) [15] to solve it. The basic idea of CP-based LNS is
to repeatedly consider a subproblem, which defines a candidate neighborhood,
and re-optimize it using CP. In the machine reassignment problem context, we
select a subset of processes and reassign machines to them. In this paper we
describe our CP-based LNS approach in detail.

There are several parameters to choose when implementing LNS, e.g., size of
the neighborhood, when to change the neighborhood size, threshold in terms of
time/failures for solving a subproblem etc. The values of these parameters can
have a significant impact on the efficiency of LNS. We expose the parameters of
our CP-based LNS approach, and study the impact of these parameters on LNS.

It is well known that manually tuning a parameterized solver can be very
tedious and often consume a significant amount of time. Moreover, manual tun-
ing rarely achieves maximal potential in terms of performance gains. There-
fore, we study the application of a Gender-based Genetic Algorithm (GGA) for
configuring the parameters automatically [2]. Experimental results show that
the performance of the LNS solver tuned with GGA improves significantly, as

2 http://challenge.roadef.org/2012/en/index.php

http://challenge.roadef.org/2012/en/index.php
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compared with the manually tuned LNS solver.3 Furthermore, it is important
to note that while tuning the parameters of GGA requires significant computa-
tional resources, it is still far faster than manual tuning. Additionally, GGA is an
automated process that can be run in the background, thus releasing developers
to focus their efforts on developing new algorithms rather than manually experi-
menting with parameter settings. Finally, the initial computational expenditure
is further mitigated by the fact that the machine reassignment problem will be
solved repeatedly in the future, so the costs tuning are amortized over time as
the system is used in practice.

In the real world setting one can anticipate that the instances of the machine
reassignment problem may differ from time to time. Thus, it is possible that one
setting of parameters might not result in the best possible performance of the
LNS solver across all possible scenarios. We, therefore, propose a methodology
whereby in the offline phase a system continuously maintains a clustering of
the instances and the LNS solver is tuned for each cluster of instances. In the
online phase, when a new instance arrives the values of the parameters of the
closest cluster are used for solving the instance. For this we study the application
of Instance-Specific Algorithm Configuration (ISAC) [9]. Experimental results
confirm that this further improves the performance of the LNS solver when
compared with the solver tuned for all the instances with GGA. Overall the
experimental results suggest that the proposed CP-based LNS approach with the
aid of learning high quality parameter settings can find a good quality solution
for a very large size instance in a very limited time.

The current computer industry trend is toward creating processor chips that
contain multiple computation cores. If tuning the parameters of an LNS solver
manually for single-core machine is tedious, then tuning for multiple parame-
terizations that would work harmoniously on multi-core machine is even more
complex. We present an approach that can exploit multiple cores and can provide
an order-of-magnitude improvement over manually configured parameters.

The paper is organized as follows. The machine reassignment problem is briefly
described in Section 2 followed by the LNS used for solving this problem in Sec-
tion 3. Section 4 describes how the parameters of LNS are tuned, and Section 5
presents experimental results followed by conclusions in Section 6.

2 Machine Reassignment Problem

In this section, we briefly describe the machine reassignment problem of
ROADEF-EURO Challenge 2012 in collaboration with Google.4 Let M be the
set of machines and P be the set of processes. A solution of the machine reas-
signment problem is an assignment of each process to a machine subject to a set
of constraints. Let op be the original machine on which process p is currently

3 The manually tuned solver was runner up in the 2012 ROADEF-EURO Challenge
and the difference between the first and the second was marginal.

4 http://challenge.roadef.org/2012/files/problem_definition_v1.eps

http://challenge.roadef.org/2012/files/problem_definition_v1.eps
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running. The objective is to find a solution that minimizes the cost of the re-
assignment. In the following we describe the constraints, various types of costs
resulting from the assignment, and the objective function.

2.1 Constraints

Capacity Constraints. The usage by a machine m of resource r, denoted by
umr, is equal to the sum of the amount of resource required by processes that
are assigned to machine m. The usage by a machine of a resource should not
exceed the capacity of the resource.

Conflict Constraints. A service is a set of processes, and a set of services
partition the set of processes. The constraint is that the processes of a service
should be assigned to different machines.

Spread Constraints. A location is a set of machines, and a set of locations
partition the set of machines. These constraints ensure that processes of a service
should be assigned to the machines such that their corresponding locations are
spread over at least a given number of locations.

Dependency Constraints. A neighborhood is a set of machines and a set of
neighborhoods also partition the machines. The constraint states that if service s
depends on service s′, then the set of the neighborhoods of the machines assigned
to the processes of service s must be a subset of the set of the neighborhoods of
the machines assigned to the processes of service s′.

Transient Usage Constraints. When a process is moved from one machine
to another machine, some resources, e.g., hard disk space, are required in both
source and target machines. These resources are called transient resources. The
transient usage of a machine m for a transient-resource r is the sum of the
amount of resource required by processes whose original or current machine is
m. The transient usage of a machine for a resource should not exceed its capacity.

2.2 Costs

The objective is to minimize the weighted sum of load, balance, and move costs.

Load Cost. The safety capacity limit provides a soft limit, any use above that
limit incurs a cost. Let scmr be the safety capacity of machine m for resource r.
The load cost for a resource r is equal to

∑
m∈M max(0, umr − scmr).

Balance Cost. To balance the availability of resources, a balance b is defined
by a triple which consists of a pair of resources r1b and r2b , and a multiplier tb.
For a given triple b, the balance cost is

∑
m∈M max(0, tb ·A(m, r1b )−A(m, r2b ))

with A(m, r) = cmr − umr.

Move Cost. A process move cost is defined as the cost of moving a process
from one machine to another machine. The service move cost is defined as the
maximum number of processes moved among services.
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2.3 Instances

Table 1 shows the features of the machine reassignment problem and their limits
on the instances of the problem that we are interested in solving. As this is
an online problem, the challenge is to solve very large sized instances in a very
limited time. Although the time limit for the competition was 300 seconds, we
restrict the runtime to 100 seconds as we are solving more than 1000 instances
with numerous parameter settings of the LNS solver.

Table 1. Features of the problems instances

Feature Machines Processes Resources Services Locations Neighbourhoods Dependencies

Limit 5000 50000 20 5000 1000 1000 5000

3 Large Neighborhood Search

We formulated the machine reassignment problem using Constraint Program-
ming (CP), which is described in [10]. We used Large Neighborhood Search for
solving the instances of the problem. In this paper we omit the details of the CP
model and we focus on the details of our LNS approach for solving this problem.
In particular we focus on the parameters of the LNS solver that are carefully
tuned for solving the problem instances efficiently.

LNS combines the power of systematic search with the scaling of local search.
The overall solution method for CP-based LNS is shown in Figure 1. We maintain
a current assignment, which is initialized to the initial solution given as input.
At every iteration step, we select a subset of the processes to be reassigned, and
accordingly update the domains of the variables of the CP model. We solve the
resulting CP problem with a threshold on the number of failures, and keep the
best solution found as our new current assignment.

3.1 Selecting a Subproblem

In this section we describe how a subproblem is selected. Our observation is that
selecting a set of processes for reassignment from only some machines is better

Initial Assignment op Current Assignment qp

Select Process/Machine for Subproblem

Create Subproblem

Re-optimize subproblem using CP

Improved Solution

Fig. 1. Principles of the CP-based LNS approach
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than selecting them from many machines. The reason is that if we select only
a few processes from many machines, then we might not free enough resources
from the machines for moving the processes with large resource requirements
from their original machines. Therefore, our subproblem selection is a two step
process. First we select a set of machines and then, from each selected machine,
we select a set of processes to be reassigned.

The number of machines that are selected in a given iteration is denoted by
km. The maximum number of processes that are selected for reassignment from
each selected machine is denoted by kp. Both km and kp are non-zero positive
integers. The values of km and kp can change during iterations of LNS. They are
decided based on the several parameters of the LNS solver.

The number of processes that can be selected from one machine is bounded
by an integer parameter, which is denoted by up. Therefore, kp ≤ up. The total
number of processes that can be selected for reassignment is bounded by an
integer parameter, which is denoted by tp. Therefore, km · kp ≤ tp.

If all the processes of a machine are selected then many of them might be
reassigned to their original machines again. Therefore, we enforce that the num-
ber of processes selected from a given machine should be less than or equal to
some factor of the average number of processes on a machine. More precisely,
kp ≤ rp · (|P |/|M |). Here rp is a continuos parameter.

Initially km is set to 1. As search progresses, it is incremented when a certain
number of iterations in LNS are performed consecutively without any improve-
ment in the quality of the solution [15]. The maximum value that can be set to
km is denoted by tm. We re-initialize km to 1 when it exceeds tm. Depending on
the value of km the value of kp can change.

Notice that fewer processes on a machine implies fewer combinations of the
processes that can be selected from the machine for reassignment and hence fewer
possible subproblems that can be created from the selected machines. Therefore,
the bound on the number of consecutive non-improving iterations is obtained
by multiplying the average number of processes on a machine (i.e., |P |/|M | ) by
a continuous parameter, which is denoted by rm. The value of rm is bounded
within 0.1 and 10. Notice that up, tp, rp, tm, and rm are constant parameters of
the LNS algorithm and different values of these parameters can have a significant
impact on the efficiency of CP-based LNS approach.

3.2 Creating the Subproblem

When solving a problem using LNS, the conventional way of creating a subprob-
lem is to reinitialize all the domains of all the variables, reassign the machines
to the processes that are not chosen for reassignment, and perform constraint
propagation. This way of creating a subproblem can be a bottleneck for LNS
when we are interested in solving a very large sized problem in a very limited
time. Furthermore, if the size of the subproblem is considerably smaller than
the size of the full problem then the number of iterations that one would like to
perform will increase in which case the time spent in creating the subproblems
will also increase further.
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For example, let us assume that the total number of processes is 50000, the
number of machines is 1000, and the maximum number of processes selected
for reassignment for each iteration is 100. If we want to consider each process
at least once for reassignment then we need at least 500 iterations. Assuming
that the time-limit is 100 seconds, an average of 0.2 seconds will be spent on
each iteration. Each iteration would involve selecting 100 processes for reas-
signment, reseting more than 50000 variables to their original domains, freezing
49900 variables, performing constraint propagation, and finally re-optimizing the
subproblem. One can envisage that in this kind of scenario the time spent on
creating subproblems can be a significant part of solving the problem.

This drawback is mainly because a CP solver is typically designed for sys-
tematic search. At each node of the search tree, a CP solver uses constraints
to remove inconsistent values from the domains, and it uses trailing or copying
with recomputation for restoring the values. Both trailing and copying with re-
computation techniques are efficient for restoring the domains when an ordering
is assumed on the way decisions are undone. However, in LNS one can move
from one partial assignment to another by undoing any subset of decisions in
an arbitrary order. Therefore, if an existing CP solver is used for LNS then
un-assigning a set of processes would result in backtracking to the node in the
search tree where all the decisions made before that node are still in place, and
in the worst-case this could be the root node.

We propose a novel approach for creating the subproblem. The general idea
is to use constraints to determine whether a removed value can be added to the
current domain when a set of assignments are undone. Instead of using trailing
or copying, we maintain two sets of values for each variable: (1) the set of values
that are in the current domain of the variable, and (2) the set of values that
are removed from the original domain. Additionally, we maintain two sets of
variables: (1) a set of variables whose domains can be replenished, and (2) and
a set of variables whose domains cannot be replenished. In each iteration, the
former is initialized by the variables whose assignments are undone and the
latter is initialized by the variables whose assignments are frozen. A variable
whose domain cannot be replenished is also called a reduced variable.

The domain of a variable is replenished by checking the consistency of each
removed value with respect to the constraints that involve reduced variables.
Whenever a domain is replenished the variable is tagged as a reduced variable,
its neighbors that are not reduced-variables are considered for replenishing their
domains, and constraint propagation is performed on the problem restricted to
the set of reduced variables. A fixed point is reached when no variable is left
for replenishment. This approach is called replenishing the domains via incre-
mental recomputation. Notice that existing CP-solvers do not provide support
for replenishing domains via incremental re-computation. The main advantage
of this approach is that it is not dependent on the order of the assignments and
therefore it can be used efficiently to create subproblems during LNS.
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3.3 Reoptimizing the Subproblem

We use systematic branch and bound search with a threshold on the number of
failures for solving a given subproblem. The value of the threshold is obtained by
multiplying the number of processes that are selected for reassignment with the
value of a continuous parameter, which is denoted by tf . The value of tf ranges
between 0.1 and 10. At each node of the search tree constraint propagation is
performed to reduce the search space. The variable ordering heuristic used for
selecting a process is based on the sum of the increment in the objective cost
when assigning a best machine to the process and the total weighted requirement
of the process which is the sum of the weighted requirements of all resources
divided by the number of machines available for the process. The value ordering
heuristic for selecting a machine for a given process is based on the minimum
increment in the objective cost while ties are broken randomly.

4 Tuning Parameters of LNS

While it is possible to reason about certain parameters and their effect on the
overall performance individually, there are numerous possible configurations that
these parameters can take. The fact that these effects might not be smoothly con-
tinuous or that there may be subtle non-linear interactions between parameters
complicates the problem further. Augment this with the time incurred at trying
certain parameterizations on a collection of instances, and it becomes clear why
one cannot be expected to tune the parameters of the solver manually.

Table 2. Parameters of LNS for Machine Reassignment Problem

Notation Type Range Description

up Integer [1, 50] Upper bound on the number of processes that can be
selected from one machine for reassignment

tp Integer [1, 100] Upper bound on the total number of processes that can
be selected for reassignment

rp Continuous [0.1, 1] Ratio between the average number of processes on a ma-
chine

tm Integer [2, 25] Upper bound on the number of machines selected for
subproblem selection

rm Continuous [0.1, 10] Ratio between the upper bound on the consecutive non-
improving iterations and the average number of processes
on a machine

tf Continuous [0.1, 10] Ratio between the threshold on the number of failures
and the total number of processes selected for reassign-
ment

In the case of our LNS solver, Table 2 lists and explains the parameters that
can be controlled. Although there are only six parameters, half of them are con-
tinuous and have large domains. Therefore, it is impractical to try all possible
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configurations. Furthermore, the parameters are not independent of each other.
To test this, we gathered a small set of 200 problem instances and evaluated
400 randomly selected parameter settings on this test set. Then, using the av-
erage performance on the data set as our evaluation metric and the parameter
settings as attributes, we ran feature selection algorithms from Weka [5]. All
the attributes were found as important. Adding polynomial combinations of the
parameter settings, further revealed that some pairs of parameters were more
important than others when predicting expected performance.

Because of the difficulty of fully extracting the interdependencies of the pa-
rameters and covering the large possible search space, a number of automated al-
gorithm configuration and parameter tuning approaches have been proposed over
the last decade. These approaches range from gradient-free numerical optimiza-
tion [3], gradient-based optimization [4], iterative improvement techniques [1],
and iterated local search techniques like FocusedILS [7].

One of the more successful of these approaches is the Gender-based Genetic
Algorithm (GGA) [2], a highly parallelizable tool that is able to handle con-
tinuous, discrete, and categorical parameters. Being a genetic algorithm, GGA
starts with a large, random, population of possible parameter configurations.
This population is then randomly split into two even groups: competitive and
noncompetitive. The members of the competitive set are further randomly bro-
ken up into tournaments where the parameterizations in each tournament are
raced on a subset of training instances. The best performing parameter settings
of each tournament get the chance to crossover with the members of the non-
competitive population and continue to subsequent generations. In the early
generations, each tournament has only a small subset of the instances, but the
set grows at each generation as the bad parameter settings get weeded out of
consideration. In the final generation of GGA, when all training instances are
used, the best parameter setting has been shown to work very well on these and
similar instances.

General tuning of a solver’s parameters with tools like GGA, however, ignores
the common finding that there is often no single solver that performs optimally
on every instance. Instead, different parameter settings tend to do well on differ-
ent instances. This is the underlying reason why algorithm portfolios have been
so successful in SAT [8, 20], CP [12], QBF [14], and many other domains. These
portfolio algorithms try to identify the structure of an instance beforehand and
predict the solver that will have the best performance on that instance.

ISAC [9] is an example of a very successful non-model based portfolio ap-
proach. Unlike similar approaches, such as Hydra [19] and ArgoSmart [11], ISAC
does not use regression-based analysis. Instead, it computes a representative fea-
ture vector in order to identify clusters of similar instances. The data is there-
fore clustered into non-overlapping groups and a single solver is selected for each
group based on some performance characteristic. Given a new instance, its fea-
tures are computed and it is assigned to the nearest cluster. The instance is then
evaluated with the solver assigned to that cluster.
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Algorithm 1. Instance-Specific Algorithm Configuration

1: ISAC-Learn(A, T, F, κ)
2: (F̄ , s, t) ← Normalize(F )
3: (k, C, S) ← Cluster (T, F̄ , κ)
4: for all i = 1, . . . , k do
5: Pi ← GGA(A,Si)
6: return (k, P,C, s, t)

1: ISAC-Run(A, x, k, P, C, d, s, t)
2: f ← Features(x)
3: f̄i ← 2(fi/si)− ti ∀ i
4: i ← mini(||f̄ − Ci||)
5: return A(x,Pi)

ISAC works as follows (see Algorithm 1). In the learning phase, ISAC is pro-
vided with a parameterized solver A, a list of training instances T , their corre-
sponding feature vectors F , and the minimum cluster size κ. First, the gathered
features are normalized so that every feature ranges from [−1, 1], and the scaling
and translation values for each feature (s, t) is memorized. This normalization
helps keep all the features at the same order of magnitude, and thereby keeps
the larger values from being given more weight than the lower values. Then, the
instances are clustered based on the normalized feature vectors. Clustering is
advantageous for several reasons. First, training parameters on a collection of
instances generally provides more robust parameters than one could obtain when
tuning on individual instances. That is, tuning on a collection of instances helps
prevent over-tuning and allows parameters to generalize to similar instances.
Secondly, the found parameters are “pre-stabilized,” meaning they are shown to
work well together.

To avoid specifying the desired number of clusters beforehand, the g-means [6]
algorithm is used. Robust parameter sets are obtained by not allowing clusters
to contain fewer than a manually chosen threshold, a value which depends on
the size of the data set. In our case, we restrict clusters to have at least 50
instances. Beginning with the smallest cluster, the corresponding instances are
redistributed to the nearest clusters, where proximity is measured by the Eu-
clidean distance of each instance to the cluster’s center. The final result of the
clustering is a number of k clusters Si, and a list of cluster centers Ci. Then,
for each cluster of instances Si, favorable parameters Pi are computed using the
instance-oblivious tuning algorithm GGA.

When running algorithm A on an input instance x, ISAC first computes the
features of the input and normalize them using the previously stored scaling and
translation values for each feature. Then, the instance is assigned to the nearest
cluster. Finally, ISAC runs A on x using the parameters for this cluster.

In practice however, the tuning step of the ISAC methodology can be very
computationally expensive, requiring on the order of a week on an 8 core ma-
chine. Fortunately it is not necessary to retune the algorithms too frequently.
In many cases, even when new instances become available, the clusters are not
likely to shift. We therefore propose the methodology shown in Figure 2. Here,
given a set of initial instances, we perform the ISAC methodology to find a set
of clusters for which the algorithm is tuned. When we observe new instances,
we evaluate them according to the ISAC approach as shown in Figure 3, and
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Fig. 3. Online phase: Using tuned LNS solver for solving a given instance

afterwards add the instance to the appropriate cluster. But we also try re-
clustering the entire set of instances. In most cases, the two clusterings will
be similar, so nothing needs to be changed. But as we gather more data, we
might see that one of our clusters can be refined into two or more new clusters.
When this occurs, we can then retune the LNS solver as needed.

5 Experimental Results

In this section we present results of solving the machine reassignment problem
using CP-based LNS approach. We study three different ways of tuning the LNS
solver. The first approach is the LNS solver, denoted by Default, which was
runner up in the challenge. Here Default stands for a single set of parameters
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resulting from manual tuning of LNS solver on the 20 instances provided by 2012
ROADEF challenge organizers. The second approach is the LNS solver tuned
using the GGA algorithm, which is denoted by GGA, and the final approach is
the LNS solver tuned using ISAC, which is denoted by ISAC. The LNS solver
for machine reassignment problem is implemented in C.5

In order to perform experiments in training and test phases we generated 1245
instances which were variations on the set B instances. Notice that the instances
of set B are very large and they were used in the final phase of the ROADEF
competition.6 For each original instance we perturb the number of resources,
the number of transient resources, the number of balances, weights of the load
costs for resources, weights of balance costs, weights of process-move, machine-
move cost and service-move costs. More precisely, for each original instance with
|R| number of resources, we randomly select k resources. The value of k is also
chosen randomly such that 3 ≤ k ≤ |R|. Out of k selected resources, a set of t
resources are selected to be transient such that 0 ≤ t ≤ k/3. The set of balances
is also modified in a similar way. The original weight associated with each load-
cost, balance-cost or any move-cost is randomly multiplied with a value selected
randomly from the set {0.5, 1, 2}. Note that the uniform distribution is used
to select the values randomly. All problems instances used in our experiments
are available online.7 The generated dataset was split to contain 745 training
instances and 500 test instances. All the experiments were run on Linux 2.6.25
x64 on a Dual Quad Core Xeon CPU machine with overall 12 GB of RAM and
processor speed of 2.66GHz.

For evaluation of a solver’s performance, we used the metric utilized for the
ROADEF competition:

ScoreS(I) = 100 ∗ (Cost(S)− Cost(B))/Cost(R).

Here, I is the instance, B is the best observed solution using any approach, R is
the original reference solution, and S is the solution using a particular solver. The
benefit of this evaluation function is that it is not influenced by some instances
having a higher cost than others, and instead focuses on a normalized value that
ranks all of the competing approaches. We rely on using the best observed cost
because for most of the instances it is not possible to find the optimal cost. On
average, the best observed cost reduces the initial cost by 65.78%, and if we use
the lower-bound then it reduces the initial cost by 66.98%. This demonstrates the
effectiveness of our CP-based LNS approach for finding good quality solutions
in 100 seconds. The lower-bound for an instance is obtained by aggregating the
resource requirements over all processes and (safety) capacities over all machines
and then computing the sum of the load and balance costs.

When tuning the LNS solver using GGA/ISAC, we used the competition’s
evaluation metric as the optimization criterion. However, to streamline the eval-
uations, we approximated the best performance using the performance achieved

5 http://sourceforge.net/projects/machinereassign/
6 http://challenge.roadef.org/2012/en/index.php
7 http://4c.ucc.ie/~ymalitsky/

http://sourceforge.net/projects/machinereassign/
http://challenge.roadef.org/2012/en/index.php
http://4c.ucc.ie/~ymalitsky/
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by running the LNS solver with default parameters for 1 hour. While this caused
some of the scores to be negative during training, this approximation still cor-
rectly differentiated the best solver while avoiding placing more weight on in-
stances with higher costs. In order to cluster the instances for ISAC, we used
the features listed in Table 1. All these features are available in the problem
definition so there is no overhead in their computation. When we clustered the
instances using g-means with a minimal cluster size of 50, we found 10 clusters
in our training data.

The performances of the learned parameterizations from the Default, GGA
and ISAC methodologies is compared in Figure 4. Specifically, we plot the av-
erage performance of each method on the instances in each of the 10 discovered
clusters (Figure 4(a)). What we observe is that even though the default pa-
rameters perform very close to as well as they can for clusters 4, 5, 6 and 7,
for clusters 2, 8 and 10 the performance is very poor. Tuning the solver using
GGA can improve the average performance dramatically. Furthermore, we see
that if we focus on each cluster separately, we can further improve performance,
highlighting that different parameters should be employed for different types of
instances. Interestingly, we observe that ISAC also dramatically improves on the
standard deviation of the scores (Figure 4(b)), suggesting that the tuned solvers
are consistently better than the default and GGA tuned parameters.

Multi-Core Results. The current trend is to create computers with an ever in-
creasing number of cores. It is unusual to find single core machines still in use,
with 2, 4 or even 8 cores becoming commonplace. It is for this reason that we
also experimented scenarios where more than one core is available for running
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Table 3. Mean scores of the test data using Default, GGA, and ISAC approaches
evaluated for 1, 2 and 4 cores. The standard deviations are presented in parentheses.

Approach Number of Cores
1 2 4

Default 0.931 (2.759) 0.843 (2.596) 0.784 (2.541)
GGA 0.357 (0.808) 0.283 (0.663) 0.214 (0.529)
ISAC 0.259 (0.623) 0.151 (0.363) 0.095 (0.237)
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Fig. 5. Mean scores of each cluster ISAC approach for 1,2,4 and 8 cores

the experiments. For Default and GGA, we ran the same parameters multiple
times using different seeds, taking the best performance of 1, 2 and 4 trials. For
ISAC however, we used the training data to pick which 1, 2, or 4 parameter set-
tings associated with which clusters should be used for running the LNS solver
in parallel. ISAC had the opportunity to choose from the 10 parameterizations
found for each cluster plus the parameters of Default and GGA tuned solvers.

Table 3 shows that ISAC always dominates. While adding more cores is not
particularly helpful for Default and GGA, ISAC can dramatically benefit from
the additional computing power. And as can be seen from the reduction of the
standard deviation, the ISAC tuned solvers are consistently better. Running t-
tests on all the results, the benefits of GGA over default are always statistically
significant (below 0.0001), as are the gains of ISAC over GGA. The detailed mean
scores per cluster for various numbers of cores for ISAC are presented in Figure 5.
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Table 4. Average score on set B instances using Default, GGA, and ISAC trained
parameterizations for 1, 2 and 4 cores. The standard deviations are in parentheses.

Approach Number of Cores
1 2 4

Default 0.171 (0.268) 0.159 (0.261) 0.119 (0.211)
GGA 0.296 (0.416) 0.288 (0.417) 0.202 (0.285)
ISAC 0.137 (0.224) 0.109 (0.184) 0.065 (0.120)

Table 4 present results for 10 instances of set B which were used in the final
phase of the competition. As the Default LNS is manually trained for set B
instances, it is not surprising to see that the average score for set B is signficantly
less than that obtained for 500 instances of test data. This demonstrates that the
Default parameters have been over-tuned and because of that the performance
of Default is poor on the test data. On the other hand the average score of GGA
for test instances and for set B instances are very close. This demonstrates that
the parameters of GGA are more stabilized, and therefore overall they work well
for both test instances and set B instances. Table 3 shows that ISAC always
dominates for set B instances. This confirms that for different types of instances
different values of LNS parameters can help in solving problems more efficiently.

6 Conclusions

We have presented an effective constraint programming based Large Neighbor-
hood Search (LNS) approach for the machine reassignment problem. Results
show that our approach is scalable, and is suited for solving very large instances,
and has good anytime behavior which is important when solutions must be re-
ported subject to a time limit.

We have shown that by exposing parameters we are able to create an easily
configurable solver. The benefits of such a development strategy are made ev-
ident through the use of automatic algorithm configuration. We show that an
automated approach is able to set the parameters that out-perform a human ex-
pert. We further show that not all machine reassignment instances are the same,
and that by employing the Instance-Specific Algorithm Configuration method-
ology we are able to improve the performance of our proposed approach. The
tuning step is an initial cost that is quickly mitigated by the repeated usage of
the learned parameters over a prolonged period of time.

Finally, we show that by taking advantage of the increasing number of cores
available on machines, we can provide an order-of-magnitude improvement over
using manually configured parameters.
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Abstract. This paper presents an improved as well as a completely new
version of a mixed integer linear programming (MILP) formulation for
solving the quadratic assignment problem (QAP) to global optimum.
Both formulations work especially well on instances where at least one
of the matrices is sparse. Modification schemes, to decrease the number
of unique elements per row in symmetric instances, are presented as well.
The modifications will tighten the presented formulations and consider-
ably shorten the computational times. We solved, for the first time ever
to proven optimality, the instance esc32b from the quadratic assignment
problem library, QAPLIB.

Keywords: Combinatorial optimization, Quadratic assignment prob-
lem, Mixed integer programming, Global optimization.

1 Introduction

The QAP is a well known NP-hard problem first presented in 1957 [1] as a facil-
ity location problem arising in economics. Today QAPs can be found in a vast
number of different fields with applications in DNA microarray design [2], cod-
ing of signals [3] and image processing [4] to name a few. Various methods and
formulations [5] have been suggested by researchers around the world, but still
even relatively small problems from the quadratic assignment problem library,
QAPLIB [6], remain unsolved. Recently, in [7], Nyberg and Westerlund solved
four of the previously unsolved esc instances [8], to optimality. Other interesting
studies have been presented recently by Fischetti et al. [9], who solved two previ-
ously unsolved instances, in addition to three of the four solved earlier, in short
time exploiting the symmetries in these instances. Even the esc128 instance was
solved in a few seconds which is the largest QAP from the QAPLIB solved to
date. Neither of the methods, however, managed to solve the instance esc32b
which seems to be surprisingly difficult compared to the rest of the esc32 in-
stances. With the methods presented in this paper, all the instances solved in [7]
were solved again in a much shorter time. For the first time the only remaining
unsolved esc instance, esc32b, was solved as well.
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In [7], we showed that when considering two permutation vectors, p and p̃
where pi = k if facility i is at location k and p̃i = k if facility k is at location
i, the quadratic assignment problem, min

∑n
i=1

∑n
j=1 apijbip̃j , can be written in

the following useful non-linear form:

min

n∑
i=1

n∑
j=1

a′ijb
′
ij (1)

subject to

a′ij =
n∑

k=1

akjxik ∀i, j, (2)

b′ij =
n∑

k=1

bikxkj ∀i, j. (3)

Here, xij ∈ {0, 1} are the elements of a permutation matrix X where
∑n

i=1 xij =
1∀j and

∑n
j=1 xij = 1∀i. The constants, aij and bij , are the given elements in

the flow and distance matrices, A and B, respectively. This formulation turned
out to be very useful when creating the discrete linear reformulation (DLR), pre-
sented in the paper [7]. In the current paper we will present some improvements
to the DLR as well as two alternative MILP formulations. All the presented for-
mulations are suited for instances with a few unique elements per row in one of
the matrices. Therefore, a modification scheme to decrease the number of unique
elements, for instances with symmetric matrices, is also presented in Section 4.

2 Improvements to the Discrete Linear Reformulation

We found that the DLR method presented in [7] can be slightly improved. The
complete original linear reformulation of Eqs. (1) to (3) was given by:

min

n∑
i=1

n∑
j=1

Mi∑
m=1

Bm
i zmij (4)

subject to
n∑

i=1

xij = 1 ∀j, (5)

n∑
j=1

xij = 1 ∀i, (6)

zmij ≤ Aj

∑
k∈Km

i

xkj m = 1, ...,Mi ∀i, j, (7)

Mi∑
m=1

zmij =

n∑
k=1

akjxik ∀i, j, (8)
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xij ∈ {0, 1} zmij ∈ [0, Aj ] ∀i, j ∧m = 1, ...,Mi, (9)

where
Aj = max

i
aij ∀j, (10)

Km
i = {j|bij = Bm

i } ∀i, j ∧m = 1, ...,Mi, (11)

bij ∈
{
B1

i , B
2
i , ..., B

Mi

i

}
∀i, j, (12)

where Mi is the number of unique elements in row i, Bm
i the value of these ele-

ments and Km
i the index sets corresponding to the elements. It should, however,

be observed that every bilinear term a′ijb
′
ij in Eq. (1), indirectly includes the

variable xij in both the a′ij (when k = j in Eq. (2)) and the b′ij (when k = i in
Eq. (3)) variables. Since x2

ij = xij for binary variables, the term ajjbiix
2
ij can

be replaced with ajjbiixij . This is a well-known observation and can be handled
such that the diagonal in both matrices are set to zero and a linear cost matrix is
added instead [10]. Using matrix notation, the objective function Eq. (1), when
including Eqs. (2) and (3), can be written as XA • BX, where • is the scalar
product of the matrices. If the diagonal elements of A and B are considered
separately and the off-diagonal elements are considered in the matrices A0 and
B0 (with zero diagonal elements), then the objective function can be written as

XA0 •B0X+

n∑
i=1

n∑
j=1

ajjbiixij . (13)

Then Eq. (4) in the DLR will take the form

min

n∑
i=1

n∑
j=1

Mi∑
m=1

Bm
i zmij +

n∑
i=1

n∑
j=1

ajjbiixij , (14)

and the variables corresponding to the diagonal elements are now excluded from
Eq. (11),

Km
i = {j|bij = Bm

i } ∀i, j : i 	= j;m = 1, ...,Mi. (15)

The same variables are therefore also left out from the first term (m = 1) in
Eq. (7), which will lower the upper bound for the variable z1ij . The effect of this
change can be seen on instances having multiple elements equal to zero per row.

The esc instances, which have many zeros in both matrices, benefit from this
change greatly. The root node relaxation values for the esc instances are shown
in Table 1. Also, we found that Eq. (7) can be left out for the last (zMi

ij ) variables
because of linear dependency. This will not affect the solution times much but
the final model will have n2 fewer constraints.

Another improvement for this modified DLR formulation is to bound the zmij
variables, from below, as follows

zmij ≥ Aj

∑
k∈Km

i

xkj ∀i, j,m, (16)
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Table 1. Root node relaxation values for the esc instances with the improved and
normal DLR formulation

Instance DLR Improved DLR
esc32a 3 11
esc32b 0 48
esc32c 254 309
esc32d 44 70
esc32h 119 156
esc64a 29 38
esc128 1 2

where Aj is the lowest value in column j of the matrix A with the diagonal
element excluded. The idea with the lower bound in Eq. (16) is to tighten the
relaxation in the branch and bound tree, where the binary variables take frac-
tional values.

3 New Discrete Formulations

By using the formulation in Eq. (1), we propose two alternative formulations to
the DLR method in Section 2 by reformulating the bilinear terms in different
manners. The objective function in Eq. (17), as well as Eqs. (18) and (19),
are the same for all these formulations. The wij variables correspond to each
reformulated bilinear term a′ijb

′
ij in Eq. (1), and therefore we get the following

common form:

min

n∑
i=1

n∑
j=1

wij (17)

subject to
n∑

i=1

xij = 1, j = 1, ..., n, (18)

n∑
j=1

xij = 1, i = 1, ..., n. (19)

In the formulations below, the variables a′ij and b′ij are used for clarity but can
also be implicitly included in the model by replacing them with their correspond-
ing expressions in Eqs. (2) and (3) respectively. Since Eq. (17) is the objective
function to be minimized, the variables wij can also be replaced with the right
hand side of their relaxed expressions in Eqs. (20) and (22).

In a branch and bound method the integer variables are relaxed and therefore
take continuous values throughout the search tree. The tightness of the different
formulations is dependent on the values of the elements in the matrices. That
said, all of the presented formulations are exact in the discrete values of the
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variables and can therefore be used to solve QAPs to global optimum but with
completely different search trees and time requirements.

In the DLR in [7] b′ij was discretized so that each value corresponded to a
unique element in that row. In the below two formulations the discretization is
made on the deviation between the values of the elements. In these formulations,
which are similar to the nf7r formulation for continuous bilinear terms in pooling
problems presented in [11], the zmij variables are dependent on every xkj variable
that makes b′ij ≥ Bm

i . In contrast to the DLR, multiple zmij variables from the
same bilinear term can be active and in fact, for each term a′ijb

′
ij where b′ij =

BMi

i , all zmij variables will be active.

Formulation ver2

wij ≥ B1
i a

′
ij +

Mi∑
m=2

(Bm
i −B

(m−1)
i )zmij , ∀i, j, (20)

zmij ≥ a′ij −Aj +Aj

∑
k∈Km′

i

m′≥m

xkj ∀i, j ∧m = 1, ...,Mi. (21)

Formulation ver2b. Here we take advantage of Aj , which is the lower bound
for a′ij . For a shorter expression, we define B0

i = 0.

wij ≥ Ajb
′
ij +

Mi∑
m=1

((Bm
i −B

(m−1)
i )zmij − (Aj −Aj)

∑
k∈Km′

i

m′≥m

xkj), ∀i, j, (22)

zmij ≥ a′ij −Aj + (Aj −Aj)
∑

k∈Km′
i

m′≥m

xkj ∀i, j ∧m = 1, ...,Mi. (23)

The first linear parts of Eqs. (20) and (22) can be included in the sums following
them instead. However, leaving them the way they are, the formulations are at
least as tight, but with fewer variables and constraints. This is particularly useful
on instances with only a few different values in one of the matrices. For example
the border length minimization problems [2] contain only ones and zeros in the
flow matrices, and therefore no zmij variables will be needed when applying this
formulation on them.

We can further take advantage of the variable xij , corresponding to the diag-
onal element, by adding it to every sum of variables in Eqs. (21) and (23).

3.1 Numerical Examples

We illustrate each formulation by linearizing one bilinear term, a′23b
′
23 where

i = 2 and j = 3, for the QAP shown in Table 2. From Eqs. (2) and (3) we get
the following:
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Table 2. Matrix A to the left and B to the right for a small example

0 4 2 2 3
4 0 5 1 2
2 5 0 5 8
2 1 5 0 1
3 2 8 1 0

0 0 5 2 6
0 0 3 3 7
5 3 0 2 2
2 3 2 0 4
6 7 2 4 0

a′23 = 2x21 + 5x22 + (0x23) + 5x24 + 8x25,

b′23 = 0x13 + (0x23) + 3x33 + 3x43 + 7x53.

Example 1. The improved DLR for the above terms will now take the following
form:

w23 ≥ 3z223 + 7z323,

z123 ≤ 8x13,

z223 ≤ 8(x33 + x43),

z123 + z223 + z323 = a′23.

Since we are minimizing over w23, the z323 variable is defined in the last constraint.
The constant terms in the expression for w23 correspond directly to the terms
in b23. From these examples it can easily be seen that the fewer unique values
per row in B, the fewer zmij variables will be added in the complete formulation.

Example 2. Ver2
w23 ≥ (0a′23) + 3z123 + 4z223,

z123 ≥ a′23 − 8 + 8(x33 + x43 + x53),

z223 ≥ a′23 − 8 + 8x53.

Example 3. Ver2b

w23 ≥ 8b′23 + 3(z123 − 6(x33 + x43 + x53)) + 4(z223 − 6x53),

z123 ≥ a′23 − 8 + 6(x33 + x43 + x53),

z223 ≥ a′23 − 8 + 6x53.

The constant 6 results from subtracting the lower bound from the upper bound
of a′23. If there is another constant equal to zero than the diagonal in a′23 the two
latter constraints in both ver2 and ver2b will be equal. If on the other hand, the
lower and upper bound of a′23 are the same, it is easy to see that all zm23 variables
in ver2b will be equal to zero and the only remaining constraint in the objective
function is the value of a′23 times b′23. As can be seen from all the examples above,
the number of unique values as well as the difference of the largest and smallest
value per row or column have a direct impact on the tightness and compactness
of these formulations. Thus, in the following section we will show how to take
advantage of these properties by minimizing the number of unique elements in
the matrices.
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4 Modification of the Matrices

In this section we propose a modification for QAPs where at least one of the
matrices is symmetric. As has been shown, e.g. in [7], instances with symmetric
matrices can be rewritten in such a way that one of the matrices is an upper or
lower triangular matrix. This can be done on one of the matrices as long as the
other matrix is symmetric: When B is symmetric (i.e. B = BT )

XA •BX = A •XTBX = AT •XTBTX = AT •XTBX. (24)

We now express A = A1 +A2, apply Eq. (24) to A2 and obtain:

(A1 +A2) •XTBX = (A1 +AT
2 ) •XTBX = Ã •XTBX. (25)

From Eq. (25) we observe that each element in matrix A can be changed to any
value, without changing the objective value, as long as ãij + ãji = aij + aji.
This is useful for the MILP formulations presented in this paper since each
term zmij in the formulations is dependent on the number of unique values in
the discretized matrix. Therefore, minimizing the unique elements per row in
one of the matrices minimizes the number of variables and constraints as well.
The tightness of the formulations presented in this paper are dependent on the
difference between the biggest and smallest elements per row. One might argue
that rewriting a symmetric QAP as an asymmetric one is not very beneficial.
However, breaking the symmetric structure of one of the matrices does not break
the symmetries in the QAP itself. Therefore, for example orbital branching [12],
which is implemented in the commercial solver Gurobi, is still applicable to these
problems.

To minimize the difference between the largest and smallest element in a row
we solve the following LP problem and change the matrices accordingly before
applying any of the formulations to the QAP:

min
∑
i

(yi − y
i
)

subject to
yi ≥ yij ∀i, j,
y
i
≤ yij ∀i, j,

yij + yji = aij + aji ∀i, j,

(26)

where yij are variables that will correspond to the new elements. The variables
yi and y

i
represent the new largest and smallest values in row i. Using Eq. (26)

we minimize the difference between the largest and smallest element per row
(with the diagonal elements excluded). This formulation does not minimize the
number of unique elements in the model. In order to get fewer elements and
therefore also fewer variables and constraints in the final DLR model, we use a
different LP formulation.
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Table 3. The distance matrix of test instance had8 unchanged to the left and after
modification with less unique values per row to the right

0 1 2 2 3 4 4 5
1 0 1 1 2 3 3 4
2 1 0 2 1 2 2 3
2 1 2 0 1 2 2 3
3 2 1 1 0 1 1 2
4 3 2 2 1 0 2 3
4 3 2 2 1 2 0 1
5 4 3 3 2 3 1 0

0 2 2 2 6 6 6 6
0 0 0 0 4 4 4 4
2 2 0 2 2 2 2 2
2 2 2 0 2 2 2 2
0 0 0 0 0 0 0 0
2 2 2 2 2 0 2 2
2 2 2 2 2 2 0 2
4 4 4 4 4 4 0 0

min
∑
i,j,k

Δijk

subject to
Δijk ≥ yij − yik ∀i, j, k,
Δijk ≥ yik − yij ∀i, j, k,

yij + yji = aij + aji ∀i, j,
i, j, k = 1, . . . , n.

(27)

Here the Δijk variables represent the difference between two elements in row i.
The formulation in Eq. (27) has more variables and takes slightly longer to solve
than Eq. (26). However, solving this problem for the esc32 instances, for example,
still take less than half a second. One of the matrices in esc32b contains only
the elements 0, 1, 2 and this matrix can therefore be written as a matrix with
every element equal to either 0 or 2. In Table 3 the modification of an instance
had81 is shown. The other matrix remains unchanged and is not shown here. In
this particular example the resulting matrix is the same using both formulations.
Since the diagonal can be disregarded it can be seen that the row with the most
unique elements has only two different values, while five of the rows now have the
same constant value for each element. By modifying the matrices in this manner
one can alter the lower bound for the problem to be as high as possible for a
certain method. In Table 4 the lower bound values in the root nodes for some
instances are shown. Considering that solving these modification LP problems
take under a second, the improvement in the lower bounds of the root nodes are
huge. Since these modifications do not have to be optimal, an heuristic method
could be used as well which might give even faster solution times. This would
probably be useful if these modifications are done more times than once per
problem.

Remark. While experimenting with the modifications we noticed that the
method can also be used to tighten the well known Gilmore-Lawler Bound [13].
Table 5 shows improvement in these bounds on some instances in the QAPLIB
when Eq. (27) is applied. In this case we minimize the elements in each column
instead.
1 The example instance had8 is constructed from the instance had12 by taking the

first 8 rows and columns



Improved Discrete Reformulations for the Quadratic Assignment Problem 201

Table 4. Lower bounds in the root node before and after the modification on some
instances from the QAPLIB

Instance Opt impDLR Eq. (26) Eq. (27)
nug12 578 409.3 477.3 456.5
esc16a 68 26 34 36
esc16b 292 196 220 230
esc32a 130 11 18 25
esc32b 168 48 60 48
esc32c 642 309 314 328
esc32d 200 70 70 96
esc32h 438 156 212 222
esc64a 116 38 39 39

Table 5. Gilmore-Lawler bound for some instances with and without matrix modifi-
cation

Instance Opt GLB Eq. (27) Instance Opt GLB Eq. (27)
nug12 578 493 492 esc32c 642 350 381
esc16a 68 38 42 esc32d 200 106 112
esc16b 292 220 240 esc32h 438 257 264
esc16c 160 83 84 ste36a 9526 7124 7586
esc32a 130 35 40 ste36b 15852 8653 9638
esc32b 168 96 96 ste36c 8239110 6393629 6691054

5 Results

All numerical results and solution times reported in this paper were obtained
using a single 2.8 GigaHertz 4-core Intel i7 processor, running Gurobi 4.5.1 with
default parameters. Table 6 shows solution times for the different formulations
on some of the easier small problems from the QAPLIB. The chr, scr and esc
instances, are all sparse while both the nug and had instances are dense. It can
clearly be seen from the solution times in Table 6 that these formulations are
suitable for sparse instances. We tested the new formulations in this paper on
the instance esc32b which was the most difficult instance for both the old DLR
method as well as for the methods in [9]. Even after weeks of computing the
esc32b seemed unsolvable with the old DLR method. When solving esc32b with
the improved DLR the solution process was aborted after five weeks with the new
best lower bound 148. The optimal value 168 was finally proven in 58 hours using
the formulation ver2 as well as the partitioning scheme presented in Section 4.
The best known value reported in the QAPLIB, once again, turned out to be
optimal. In Table 7 the solution times for some esc instances are shown. As can
be noted, compared to the formulation presented in [7], the new formulations
are much more effective. The instance esc32d was solved in only 10 minutes,
approximately 60 times faster than the time reported in [7] for the original DLR
model. On the instance esc32a the speed up factor was about 13.
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Table 6. Solution times for the different formulations on some small easy instances
from the QAPLIB

Instance impDLR (s) ver2 (s) ver2b (s)
nug12 4.0 2.5 1.3
esc16a 0.9 0.6 1.0
had12 7.2 4.4 3.2
chr12a 0.3 0.3 0.3
scr12 0.4 0.4 0.5

Table 7. Solution times for some of the esc32 instances from the QAPLIB

Instance Old DLR (s) New best (s) Model Symmetry
esc32a 1 618 580 117 850 ver2 Eq. (27)
esc32b *** 210 045 ver2 Eq. (26)
esc32c 24 365 7 801 ver2 Eq. (27)
esc32d 36 256 610 impDLR Eq. (27)
esc64a 16 370 2 899 impDLR Eq. (27)

6 Conclusions

The formulations presented in this paper have shown to be effective on some
large scale, sparse QAPs. Future work will address the lower bounding of the
zmij variables in Eq. (22) in a manner that will tighten the relaxation. Also, the
modifications for the matrices presented in Section 4 could be very useful for
other methods for solving QAPs as well.
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Abstract. Orbital shrinking is a newly developed technique in the MIP
community to deal with symmetry issues, which is based on aggregation
rather than on symmetry breaking. In a recent work, a hybrid MIP/CP
scheme based on orbital shrinking was developed for the multi-activity
shift scheduling problem, showing significant improvements over previ-
ous pure MIP approaches. In the present paper we show that the scheme
above can be extended to a general framework for solving arbitrary sym-
metric MIP instances. This framework naturally provides a new way
for devising hybrid MIP/CP decompositions. Finally, we specialize the
above framework to the multiple knapsack problem. Computational re-
sults show that the resulting method can be orders of magnitude faster
than pure MIP approaches on hard symmetric instances.

1 Introduction

We consider a integer linear optimization problem P of the form

min cx (1)

Ax ≥ b (2)

x ∈ Zn
+ (3)

For ease of explanation, we assume that the feasible set f(P ) of P is bounded
and non-empty. Let Πn be the set of all permutations π of the ground set
In = {1, . . . , n}. The symmetry group G of P is the set of all permutations πi

such that if x is a feasible solution of P then πi(x) is again a feasible solution
of P of the same cost. Clearly, G is a permutation group of In, i.e., a subgroup
of In. In addition, G naturally induces a partition Ω = {V1, . . . , VK} of the set
of variables of P , called orbital partition. Intuitively, two variables xi and xj

are in the same orbit Vk if and only if there exists π ∈ G such that π(i) = j.
Integer programs with large symmetry groups occur naturally when formulating
many combinatorial optimization problems, such as graph coloring, scheduling,
packing and covering design.

Symmetry has long been recognized as a curse for the traditional enumeration
approaches used in both the MIP and CP communities—we refer to [1,2] for
recent surveys on the subject. The reason is that many subproblems in the
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enumeration tree are isomorphic, with a clear waste of computational resources.
Various techniques for dealing with symmetric problems have been studied by
different research communities and the usual approach to deal with symmetry
is to try to eliminate it by introducing artificial symmetry-breaking constraints
and/or by using ad-hoc search strategies.

In [3], a new technique called orbital shrinking for dealing with symmetric
problems was presented, which is based on aggregation rather than on symmetry
breaking. Let G = {π1, . . . , πM} be the symmetry group of P . Given an arbitrary
feasible point x ∈ f(P ), we can construct the average point x

x =
1

M

∑
πi∈G

πi(x)

Trivially, cx = cx. It is also easy to prove that x must have xj constant within
each orbit Vk, and that it can be efficiently computed by taking averages within
each orbit, i.e.

xj =
1

|Vk|
∑
i∈Vk

xi where j ∈ Vk

If P were a convex optimization problem (e.g. a linear program), then x would
be feasible for P , as it is a convex combination of feasible points of P . Thus, if
we wanted to optimize over P , the only unknowns would be the averages within
each orbit or, equivalently, their sums yk =

∑
j∈Vk

xj , and we could derive an
equivalent shrunken reformulation Q by

i) introducing sum variables yk
ii) replacing xj , j ∈ Vk with yk/|Vk| in each constraint and in the objective

function.

However, Q is not in general an equivalent reformulation of P when P is an
arbitrary integer program, since the average point x may not satisfy the inte-
grality requirements. However, it is still possible to prove (see [3] for details)
that, if we impose the integrality requirements on the aggregated variables yk,
Q is an equivalent reformulation of the problem obtained from P by relaxing
the integrality constraints on x with the surrogate integrality constraints on the
sums over the orbits, and thus Q itself is a relaxation of P . Note that the LP
relaxation of Q is equivalent to the LP relaxation of P and thus Q cannot be
weaker than the standard LP relaxation of P , and can be quite stronger.

Example 1. Let us consider the very tiny Steiner Triple System (STS) instance
of size 7
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minx1 + x2 + x3 + x4 + x5 + x6 + x7

x1 + x2 + x4 ≥ 1

x2 + x3 + x5 ≥ 1

x3 + x4 + x6 ≥ 1

x4 + x5 + x7 ≥ 1

x5 + x6 + x1 ≥ 1

x6 + x7 + x2 ≥ 1

x7 + x1 + x3 ≥ 1

x ∈ {0, 1}7

It is easy to see that all variables belong to the same orbit, and thus, after
introducing the sum variable y =

∑7
j=1 xj , the orbital shrinking model reads

min y

3/7y ≥ 1

y ≤ 7

y ∈ Z+

Its linear programming relaxation has value 7/3, which is of course the same value
as the LP relaxation of the original model. However, imposing the integrality
requirement on y, we can increase the value of the relaxation to 3. In this case,
this is also the value of an optimal integral solution of the original model, so
orbital shrinking closes 100% of the integrality gap. Unfortunately, this is not
always the case, even for instances from the same class. Indeed, if we move to
the STS instance of size 9, orbital shrinking is not able to improve over the LP
bound of 3, while the optimum is 5. ��

The STS example above shows that the orbital shrinking relaxation Q might
be a oversimplified approximation of P (in the worst case, reducing to a trivial
integer program with only one variable), thus providing no useful information
for solving P . This is however not always the case. In some particular cases, Q is
indeed an exact reformulation of P , even if P is an integer program. For example,
consider a knapsack problem with identical items: an orbital shrinking relaxation
would replace the binary variables xj associated with the identical items with
a general integer variable yk that counts how many items of type k need to be
taken in the solution, and this is clearly equivalent to the original formulation
(but symmetry free). In other cases, Q, although not a reformulation, still retains
enough structure from P such that that solving Q provides useful insights for
solving P . Of course the question is how to exploit this information to obtain a
sound and complete method for solving P .

A partial answer to this question was given in [4], where a hybrid MIP/CP
scheme based on orbital shrinking was developed for the multi-activity shift
scheduling problem, which is the problem of covering the demands of a finite
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set of activities over a time horizon by assigning them to a set of employees. In
real-world applications, the set of feasible shifts (i.e., the set of feasible sequences
of activity assignments to a single employee) is defined by many regulation con-
straints. In this case, many constraints of the problem (in particular those formu-
lated with the aid of formal languages, such regular expressions or context-free
grammars) are preserved by the shrinking process, while some others are not. In
particular, cardinality constraints (e.g., the number of allowed working hours for
a single employee in a single day) are replaced by surrogate versions in Q. Still,
Q provides a very strong dual bound on P and its aggregated solutions can often
be turned into feasible solutions for P . In order to get a complete method, the
following strategy was proposed in [4]: solve the orbital shrinking model Q with
a black box MIP solver and, whenever an (aggregated) integer feasible solution
y∗ is found, check with a CP solver if it can be turned into a feasible solution
x∗ for P . The scheme is akin to a logic-based Benders decomposition [5], al-
though the decomposition is not based on a traditional variable splitting, but
on aggregation.

In the present paper we show that the scheme above can be extended to a gen-
eral framework for solving arbitrary symmetric MIP instances. This framework,
described in Section 2, naturally provides a new way for devising hybrid MIP/CP
decompositions. Then, in Section 3, we specialize the above framework to the
multiple knapsack problem. Computational results in Section 4 show that the
resulting method can be orders of magnitude faster than pure MIP approaches
on hard symmetric instances. Conclusions are finally drawn in Section 5.

2 A General Orbital Shrinking Based Decomposition
Method

Let P be an integer linear program as in the previous section and let G be the
symmetry group of P . Note that if G is unknown to the modeler then the whole
scheme can be applied starting from a subgroup G′ of G, such as, for example,
the symmetry group GLP of the formulation, which is defined as

GLP = {π ∈ Πn|π(c) = c ∧ ∃σ ∈ Πm s.t. σ(b) = b, A(π, σ) = A}

where A(π, σ) is the matrix obtained by A permuting the columns with π and
the rows with σ. Intuitively, a variable permutation π defines a symmetry if there
exists a constraint permutation σ such that the two together leave the formula-
tion unchanged. Note that if the permutation groupGLP is used, also constraints
of P are partitioned into constraint orbits : in this case, two constraints are in
the same orbit if and only if there exists a σ (as defined above) mapping one to
the other. GLP can be computed with any graph isomorphism package such as
Nauty [6] or Saucy [7], which perform satisfactorily in practice.

Using G (or GLP ) we can compute the orbital partition Ω of P and construct
the shrunken model Q
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min dy (4)

By ≥ r (5)

y ∈ ZK
+ (6)

where yk =
∑

j∈Vk
xj and constraints (5) are obtained from the constraints (2)

by replacing each occurrence of variable xj with yk/|Vk|, where k is the index
of the orbit to which xj belongs. It is easy to show that all constraints in the
same orbit will be mapped to the same constraint in Q, so in practice Q has one
variable for each variable orbit and one constraint for each constraint orbit in P .
In the small STS example of the previous section, all constraints are in the same
constraint orbit, and indeed they are all are mapped to 3/7y ≥ 1 in the orbital
shrinking reformulation (the other constraint, y ≤ 7, is derived from the upper
bounds of the binary variables). Note that model Q acts like a master problem
in a traditional Benders decomposition scheme.

For each integer feasible solution y∗ of Q, we can then define the following
(slave) feasibility check problem R(y∗)

Ax ≥ b (7)∑
j∈Vk

xj = y∗k ∀k ∈ K (8)

x ∈ Zn
+ (9)

If R(y∗) is feasible, then the aggregated solution y∗ can be disaggregated into a
feasible solution x∗ of P , with the same cost. Otherwise, y∗ must be rejected, in
either of the following two ways:

1. Generate a nogood cut that forbids the assignment y∗ to the y variables.
As in logic-based Benders decomposition, an ad-hoc study of the problem is
needed to derive stronger nogood cuts.

2. Branching. Note that in the (likely) event that the solution y∗ is the integral
LP relaxation of a node, then branching on non-fractional y variables is
needed, and y∗ will still be a feasible solution in one of the two child nodes.
However, the method would still converge, because the number of variables is
finite and the tree has a finite depth. Note that in this case the method may
repeatedly check for feasibility the same aggregated solution: in practice, this
can be easily avoided by keeping a list (cache) of recently checked aggregated
solutions with the corresponding feasibility status.

It is important to note that, by construction, problem R(y∗) has the same sym-
metry group of P , so symmetry may still be an issue while solving R(y∗). This
issue is usually solvable because (i) the linking constraints (8) may make the
model much easier to solve and (ii) the (easier) structure of the problem may
allow for more effective symmetry breaking techniques. Note also that R(y∗) is
a pure feasibility problem, so a CP solver may be a better choice than a MIP
solver.
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3 Application to the Multiple Knapsack Problem

In the present section, we specialize the general framework of the previous section
to the multiple knapsack problem (MKP) [8,9]. This a natural generalization of
the traditional knapsack problem [10], where multiple knapsack are available.
Given a set of n items with weights wj and profits pj , and m knapsacks with
capacity Ci, MKP reads

max
m∑
i=1

n∑
j=1

pjxij (10)

n∑
j=1

wjxij ≤ Ci ∀i = 1, . . . ,m (11)

m∑
i=1

xij ≤ 1 ∀j = 1, . . . , n (12)

x ∈ {0, 1}m×n (13)

where binary variable xij is set to 1 if and only if item j is loaded into knapsack
i. Since we are interested in symmetric instances, we will assume that all m
knapsacks are identical and have the same capacity C, and that also some items
are identical.

When applied to problem MKP, the orbital shrinking reformulation Q reads

max
K∑

k=1

pkyk (14)

K∑
k=1

wkyk ≤ mC (15)

0 ≤ yk ≤ |Vk| ∀k = 1, . . . ,K (16)

y ∈ ZK
+ (17)

Intuitively, in Q we have a general integer variable yk for each set of identical
items and a single knapsack with capacity mC. Given a solution y∗, the corre-
sponding R(y∗) is thus a one dimensional bin packing instance, whose task is to
check whether the selected items can indeed be packed intom bins of capacity C.

To solve the bin-packing problem above, we propose two different approaches.
The first approach is to deploy a standard compact CP model based on the global
binpacking constraint [11] and exploiting the CDBF [12] branching scheme for
search and symmetry breaking. Given an aggregated solution y∗, we construct
a vector s with the sizes of the items picked by y∗, and sort it in non-decreasing
order. Then we introduce a vector of variables b, one for each item: the value of
bj is the index of the bin where item j is placed. Finally, we introduce a variable
li for each bin, whose value is the load of bin i. The domain of variables li is
[0..C]. With this choice of variables, the model reads:
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binpacking(b, l, s) (18)

bj−1 ≤ bj if sj−1 = sj (19)

where (19) are symmetry breaking constraints.
The second approach is to consider an extended model, akin to the well known

Gilmore and Gomory column generation approach for the cutting stock prob-
lem [13]. Given the objects in y∗, we generate all feasible packings p of a single
bin of capacity C. Let P denote the set of all feasible packings and, given packing
p, let apk denote the number of items of type k picked. The corresponding model
is ∑

p∈P

apkxp = y∗k (20)

∑
p∈P

xp = m (21)

xp ∈ Z+ (22)

where integer variables xp count how many bins are filled according to packing p.
In the following, we will denote this model with BPcg. Model BPcg is completely
symmetry free, but it needs an exponential number of columns in the worst case.

4 Computational Experiments

We implemented our codes in C++, using IBM ILOG Cplex 12.4 [14] as black
box MIP solver and Gecode 3.7.3 [15] as CP solver. All tests have been performed
on a PC with an Intel Core i5 CPU running at 2.66GHz, with 8GB of RAM (only
one CPU was used by each process). Each method was given a time limit of 1
hour per instance.

In order to generate hard MKP instances, we followed the systematic study
in [16]. According to [16], difficult instances can be obtained introducing some
correlation between profits and weights. Among the hardest instances presented
in [16] are the so-called almost strongly correlated instances, in which weights wj

are distributed—say uniformly—in the range [1, R] and the profits pj are dis-
tributed in [wj+R/10−R/500, wj+R/10+R/500]. These instances correspond
to real-life situations where the profit is proportional to the weight plus some
fixed charge value and some noise. Given this procedure, a possibility for gener-
ating hard-enough instances is to construct instances where the coefficients are
of moderate size, but where all currently used upper bounds have a bad perfor-
mance. Among these difficult classes, we consider the spanner instances : these
instances are constructed such that all items are multiples of a quite small set of
items—the so-called spanner set. The spanner instances span(v, l) are character-
ized by the following three parameters: v is the size of the spanner set, l is the
multiplier limit, and we may have any distribution of the items in the spanner
set. More formally, the instances are generated as follows: a set of v items is
generated with weights in the interval [1, R], with R = 1000, and profits accord-
ing to the distribution. The items (pk, wk) in the spanner set are normalized by
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dividing the profits and weights by l + 1, with l = 10. The n items are then
constructed by repeatedly choosing an item (pk, wk) from the spanner set, and a
multiplier a randomly generated in the interval [1, l]. The constructed item has

profit and weight (apk, awk). Capacities are computed as C =
∑n

i=1 wi

8 .
In order to have a reasonable test set, we considered instances with a number

of items n in {30, 40, 50} and number of knapsacks m in {3, 4, 5, 6}. For each
pair of (n,m) values, we generated 10 random instances following the procedure
described above, for a total of 120 instances. All the instances are available from
the author upon request. For each set of instances, we report aggregate results
comparing the shifted geometric means of the number of branch-and-cut nodes
and the computation times of the different methods. Note that we did not use
specialized solvers, such as ad-hoc codes for knapsack or bin packing problems,
because the overall scheme is very general and using the same (standard) op-
timization packages in all the methods allows for a clearer comparison of the
different approaches.

As a first step, we compared 2 different pure MIP formulations. One is the
natural formulation (10)−(13), denoted as cpxorig. The other is obtained by
aggregating the binary variables corresponding to identical items. The model,
denoted as cpx, reads

max

m∑
i=1

K∑
k=1

pjzik (23)

K∑
k=1

wjzik ≤ C ∀i = 1, . . . ,m (24)

m∑
i=1

zik ≤ Uk ∀k = 1, . . . ,K (25)

z ∈ Zm×K
+ (26)

where Uk is the number of items of type k. Note that cpx would be obtained
automatically from formulation cpxorig by applying the orbital shrinking pro-
cedure if the capacities of the knapsacks were different. While one could argue
that cpxorig is a modeling mistake, the current state-of-the-art in preprocessing
is not able to derive cpx automatically, while orbital shrinking would. A com-
parison of the two formulations is shown in Table 1. As expected, cpx clearly
outperforms cpxorig, solving 82 instances (out of 120) instead of 65. However,
cpx performance is rapidly dropping as the number of items and knapsacks in-
creases.

Then, we compared three variants of the hybrid MIP/CP procedure described
in Section 3, that differs on the models used for the feasibility check. The first
variant, denoted by BPstd, is based on the compact model (18)−(19). The sec-
ond and the third variants are both based on the extended model (20)−(22), but
differs on the solver used: a CP solver for BPcgCP and a MIP solver for BPcgMIP.
All variants use model (14)−(17) as a master problem, which is fed to Cplex and
solved with dual reductions disabled, to ensure the correctness of the method.
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Table 1. Comparison between cpxorig and cpx

# solved time (s) nodes
n m cpxorig cpx cpxorig cpx cpxorig cpx

30 3 10 10 1.16 0.26 3,857 1,280
30 4 9 10 12.28 3.42 65,374 16,961
30 5 6 8 291.75 79.82 2,765,978 1,045,128
30 6 7 7 108.83 48.05 248,222 164,825

40 3 9 10 19.48 2.72 103,372 9,117
40 4 8 8 351.07 35.56 3,476,180 421,551
40 5 2 3 2,905.70 1,460.95 25,349,383 23,897,899
40 6 3 5 308.29 234.19 626,717 805,007

50 3 6 9 70.73 12.44 259,099 32,310
50 4 2 7 1,574.34 254.58 8,181,128 4,434,707
50 5 0 2 3,600.00 700.69 26,017,660 4,200,977
50 6 3 3 308.29 307.98 586,400 1,025,907

Table 2. Comparison between hybrid methods

# solved time (s) nodes
n m BPstd BPcgCP BPcgMIP BPstd BPcgCP BPcgMIP BPstd BPcgCP BPcgMIP

30 3 10 10 10 0.07 0.05 0.05 245 270 270
30 4 10 10 10 0.18 0.12 0.08 157 160 160
30 5 10 10 10 1.28 0.26 0.14 90 88 88
30 6 10 10 10 1.24 0.25 0.13 42 40 40

40 3 10 10 10 0.64 0.42 0.17 502 540 540
40 4 10 10 10 0.54 0.20 0.17 225 224 224
40 5 9 10 10 8.63 1.20 0.62 202 225 225
40 6 8 10 10 17.96 1.65 0.46 48 60 60

50 3 10 10 10 1.59 0.93 0.44 837 914 914
50 4 10 10 10 4.06 1.11 0.60 337 335 335
50 5 6 8 10 137.52 23.97 3.58 172 245 335
50 6 7 7 10 17.15 12.73 2.85 17 16 140

Cplex callbacks are used to implement the decomposition. A comparison of the
three methods is given in Table 2. Note that the number of nodes reported for
hybrid methods refers to the master only—the nodes processed to solve the feasi-
bility checks are not added to the count, since they are not easily comparable, in
particular when a CP solver is used. Of course the computation times refer to the
whole solving process (slaves included). According to the table, even the simplest
model BPstd clearly outperforms cpx, solving 110 instances (28 more) and with
speedups up to two orders of magnitude. However, as the number of knapsacks
increases, symmetry can still be an issue for this compact model, even though
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symmetry breaking is enforced by constraints (19) and by CDBF. Replacing the
compact model with the extended model, while keeping the same solver, shows
some definite improvement, increasing the number of solved instances from 110
to 115 and further reducing the running times. Note that for the instances in
our testbed, the number of feasible packings was always manageable (at most
a few thousands) and could always be generated by Gecode in a fraction of a
second. Still, on some instances, the CP solver was not very effective in solving
the feasibility model. The issue is well known in the column generation commu-
nity: branching on variables xp yields highly unbalanced trees, because fixing a
variable xp to a positive integer value triggers a lot of propagations, while fixing
it to zero has hardly any effect. In our particular case, replacing the CP solver
with a MIP solver did the trick. Indeed, just solving the LP relaxation was suf-
ficient in most cases to detect infeasibility. Note that if infeasibility is detected
by the LP relaxation of model (20)−(22), then standard LP duality can be used
to derive a (Benders) nogood cut violated by the current aggregated solution
y∗, without any ad-hoc study. In our implementation, however, we did not take
advantage of this possibility, and just stuck to the simpler strategy of branching
on integer variables. BPcgMIP is able to solve all 120 instances, in less than four
seconds (on average) in the worst case. The reduction in the number of nodes
is particularly significant: while cpx requires millions of nodes for some classes,
BPcgMIP is always solving the instances in fewer than 1,000 nodes.

Finally, Table 3 shows the average gap closed by the orbital shrinking relax-
ation with respect to the initial integrality gap, and the corresponding running
times (obtained by solving the orbital shrinking relaxation with a black box
MIP solver, without the machinery developed in this section). According to the
table, orbital shrinking yields a much tighter relaxation than standard linear
programming, while still being very cheap to compute.

Table 3. Average gap closed by orbital shrinking and corresponding time

n m gap closed time (s)

30 3 45.3% 0.007
30 4 46.6% 0.004
30 5 42.8% 0.004
30 6 54.4% 0.002

40 3 48.4% 0.013
40 4 67.2% 0.007
40 5 55.3% 0.005
40 6 58.6% 0.003

50 3 52.7% 0.031
50 4 64.5% 0.030
50 5 61.1% 0.006
50 6 76.7% 0.003
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5 Conclusions

In this paper we presented a general framework for deploying hybrid MIP/CP
decomposition methods for symmetric optimization problems. This framework
is similar in spirit to logic-based Benders decomposition schemes, but it is based
on aggregation rather than on the usual variable splitting argument, thus being
applicable to a completely different class of problems. The overall scheme can be
obtained as a generalization of a recent approach developed for the multi-activity
shift scheduling problem, where it showed significant improvements over previous
pure MIP approaches. In order to further test its effectiveness, we specialized
the general scheme to the multiple knapsack problem, giving a clear example
on how to apply the method in practice and some recommendations on how to
solve the possible pitfalls of the approach. Computational results confirmed that
the resulting method can be orders of magnitude faster than standard pure MIP
approaches on hard symmetric instances.
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Abstract. Many mixed-integer constraint satisfaction problems and
global optimization problems contain some variables with unbounded
domains. Their solution by branch and bound methods to global opti-
mality poses special challenges as the search region is infinitely extended.
Many usually strong bounding methods lose their efficiency or fail alto-
gether when infinite domains are involved. Most implemented branch
and bound solvers add artificial bounds to make the problem bounded,
or require the user to add these. However, if these bounds are too small,
they may exclude a solution, while when they are too large, the search
in the resulting huge but bounded region may be very inefficient. More-
over, if the global solver must provide a rigorous guarantee (as for the
use in computer-assisted proofs), such artificial bounds are not permitted
without justification by proof.

We developed methods based on compactification and projective
geometry as well as asymptotic analysis to cope with the unbound-
edness in a rigorous manner. Based on projective geometry we imple-
mented two different versions of the basic idea, namely (i) projective
constraint propagation, and (ii) projective transformation of the vari-
ables, in the rigorous global solvers COCONUT and GloptLab. Numer-
ical tests demonstrate the capability of the new technique, combined
with standard pruning methods, to rigorously solve unbounded global
problems. In addition, we present a generalization of projective transfor-
mation based on asymptotic analysis.

Compactification and projective transformation, as well as asymptotic
analysis, are fruitless in discrete situations but they can very well be
applied to compute bounded relaxations, and we will present methods
for doing that in an efficient manner.

Keywords: Mixed-integer CSPs, constraint propagation, relaxation
methods, unbounded variables, interval analysis, directed acyclic graphs.

1 Introduction

1.1 Mixed Integer Constraint Satisfaction Problems

Many real-world problems lead to mixed-integer and numerical constraint sat-
isfaction problems (MICSPs). Every MICSP is a triplet (V , C,D) consisting of
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a finite set V of variables taking their values in domains D over the reals (pos-
sibly restricted to the subset of integers) subject to a finite set C of numerical
or purely combinatorial constraints. A tuple of values assigned to the variables
such that all the constraints are satisfied is called a solution. The set of all the
solutions is called the solution set. When dealing with a MICSP, depending on
the application, it might suffice to find one solution, but in some cases it might
be necessary to identify the whole solution set.

In practical problems, numerical constraints are often expressed as equations
and inequalities in factorable form, that is, they are described by functions that
are recursively composed of elementary functions such as arithmetic operators
(+, −, ∗, /), and univariate (sometimes bivariate) basic functions like log, exp,
sin, cos,. . . In other words, such an MICSP can be expressed as

F (x) ∈ b, x ∈ x, xI ∈ Z|I|, (1)

where F : Rn → Rm is a factorable function, x is a vector of n real variables,
x and b are interval vectors of sizes n and m respectively, and I is the set of
integer variables.

Many solution techniques have been proposed in Constraint Programming
and Mathematical Programming to solve MICSPs. A difficulty when dealing
with continuous variables is roundoff errors. For achieving full rigor, almost all
solution techniques for MICSPs use interval arithmetic (see [12, 16–18]) or some
of its variants (affine arithmetic [30], Taylor arithmetic [4, 5, 19], etc.). During
the last two decades, a lot of work has been put into the development of inclu-
sion tests and contractors based on interval arithmetic. In addition, numerous
relaxation techniques (many of them based on interval arithmetic combined with
algorithmic differentiation methods [11, 25]) have been devised (see [13, 20]).

The function of an inclusion test is to check whether the domain of a vari-
able is included in the projection of the solution set. A contractor, also called
a narrowing operator [2, 10] or contracting operator [1, 29, 32], is a method
that computes a (hopefully proper) subset of the variable domains such that all
solutions are retained. Various basic inclusion tests and contractors have been
described in [13] and [20].

In particular, a contraction operator approach called interval constraint prop-
agation was developed [2, 3, 31], which associates constraint propagation/local
consistency techniques, as defined in artificial intelligence, with interval analytic
methods. Advanced contractors, such as the forward-backward contractor [2, 13],
result from the interval constraint propagation (CP) approach. It is a way to
propagate domain reductions forwards and backwards through the computa-
tional trees of the constraints. Based on the fundamental framework for interval
analysis on directed acyclic graphs (DAGs) [27], a high performance constraint
propagator FBPD for continuous CSPs has been developed in [34].

In practical constraint solvers inclusion tests and contractors are interleaved
with some form of exhaustive search to compute a representation of the solution
set. Search by bisection or more advanced branching is the most commonly used
technique. In the context of MICSPs this leads to the branch and bound class
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of algorithms, which generate a search graph consisting of subproblems that are
subsequently solved or further subdivided.

A relaxation is a (usually much easier solvable) replacement MICSP whose
solution set provably contains all solutions of problem (1). There are several
classes of relaxations, although linear and convex ones are mostly used, see [20,
21]. Relaxations usually are an efficient tool for fathoming nodes of the search
graph during the search procedure.

1.2 Unbounded Variables

An especially difficult class of MICSPs are those which contain variables whose
domain set is unbounded. Their solution by branch and bound methods poses
special challenges as the search region is infinitely extended. On the one hand,
the unboundedness cannot be removed by splitting. On the other hand most
inclusion and contraction operators become inefficient or dysfunctional when
applied to unbounded domains.

Most branch and bound solvers add artificial bounds to make the problem
bounded, or require the user to add these by forbidding unbounded problems
altogether. However, if these artificial bounds are too small, they may exclude
a solution, even render the problem infeasible, while when they are too large,
the search in the resulting huge but bounded region may be very inefficient.
Moreover, if the global solver must provide a rigorous guarantee (as for the use
in computer-assisted proofs), such artificial bounds are not permitted without
justification.

The contribution of this paper is twofold. Firstly, we developed methods based
on compactification and projective geometry to cope with the unboundedness
in a rigorous manner. We implemented two different versions of the basic idea,
namely

1. projective transformation of the variables, and
2. projective constraint propagation.

They are implemented in the rigorous global solvers GloptLab [6–8] and
COCONUT [23, 24], respectively. Numerical tests demonstrate the capability
of the new technique, combined with standard pruning methods, to rigorously
solve unbounded global problems.

Secondly, these projective transformations are most efficient for those
MICSPs, whose unbounded variables are continuous and all constraints involving
them are rational. Although the method is still applicable when transcendental
functions are involved, the effectiveness is significantly reduced. Therefore, we
developed an extension using asymptotic analysis that is more efficient in the
presence of transcendental functions. This is based on ideas from the unpublished
thesis [9]. Since for discrete variables the transformation method is not applica-
ble, we shortly describe asymptotic relaxations for improved node fathoming in
the unbounded case.

In Section 2 we will explain explicit projective transformation and projective
constraint propagation. Section 3 generalizes that to asymptotic transformations.
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Some information on projective and asymptotic relaxations are given in Section 4,
and numerical results are provided in Section 5.

Throughout this paper we will need some notation: a real interval a ∈ IR is
defined as [a, a] = {a ∈ R | a ≤ a ≤ a}, with a ∈ R∪{−∞} and a ∈ R∪{∞}. In
case both bounds a and a of a are finite, we call a a finite or bounded interval,
otherwise a is an infinite or unbounded interval. We will also need the set UR of
all finite disjoint unions of intervals. Real arithmetic and elementary functions
can be extended to intervals, see [18], and to interval unions. An n-dimensional
real box (union box) x ∈ IR

n
(UR

n
) is a vector of n real intervals (interval

unions). If all components of x are finite, then x is a finite or bounded box or
interval union, otherwise x is infinite or unbounded.

2 Projective Transformation

Throughout this section we will consider factorable MICSPs of the form (1).
We will assume that the variables xJ have unbounded domains and that the
other variables xK have bounded domains. Furthermore, we will for the moment
require that all integer variables are bounded, i.e., that I ⊂ K.

Since all functions involved in (1) are factorable, the problem can be repre-
sented as a reduced computational directed acyclic graph Γ = (V (Γ ), E(Γ )),
see [27]. All nodes ν ∈ V (Γ ) represent intermediate expressions yν of some
constraints. The local sources of Γ correspond to constants and variables, i.e.,
xk = yνk for all k and some νk ∈ V (Γ ), and the local sinks correspond to the
constraints.

The basic idea of the projective transformation is the natural embedding
of R|J| × xK , which contains the feasible set, into the compact manifold with
boundary PR|J| × xK , where PR|J| is the projective space over R|J|. For the
transformation we represent each intermediate node yν for ν ∈ V (Γ ) in the form

yν = ŷν/t
mν , (2)

where mν is a rational number and t is a scaling factor to be chosen. The new
variable t and the exponents mν are defined such that t ∈ [0, 1] and the ŷν are
well-bounded. (Actually, that can only be guaranteed in the case of a rational
MICSP. In the presence of transcendental functions some intermediate ŷν may
still be unbounded. This is the motivation for the generalization in Section 3.)
Note that while these transformations are singular, the transformed problem has
no singularities, and the solution set is preserved with full mathematical rigor.

The transformation is achieved by a recursive construction, implemented in a
forward walk through Γ . For the original variables xk and all interval constants,
we define

mνk =

{
0 if k ∈ K,

1 if k ∈ J .
(3)

For practical reasons we put in the implementation also those indices j into J , for
which the bounds xj are huge, e.g., bigger than 107 but this limit is problem and
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scaling dependent. Those bounds, in general, are artificial in the first place and
in a branch and bound context pose similar problems as unbounded variables.

For constructing the ŷν we choose a real number 0 ≤ s ≤ 1 and set

t :=
(
1− s+

∑
k∈K

dkx
2
k

)−1/2

(4)

with scaling factors dk > 0. This leads to the constraint

(1− s)t2 +
∑

dkx̂
2
k = 1, (5)

from which we deduce the bounds

t ∈ t := [0,max(0, 1− s)−1/2],

|x̂k| ≤ d
−1/2
k for k ∈ K.

(6)

To guarantee that t is real, we need to choose s such that∑
k∈K

dkx
2
k ≥ s

is a valid constraint. For example,

s := inf
∑
k∈K

dkx
2
k

qualifies (if necessary, rescale the dk to have s ≤ 1), but better bounds might be
available. A possible choice is s = 0, however in general this is suboptimal. Then

t ∈ [0, 1].

Since ŷνk = xk for the well-bounded variables, we have expressed all variables in
terms of bounded ones.

The exponent mν for an intermediate variable yν depends on the operation
that creates it. If y =

∑
ανyν then y = ŷ/tm with

m := maxmν , ŷ :=
∑

ανt
m−mν ŷν , (7)

and we get the finite enclosure

ŷ ∈ ŷ :=
∑

ανt
m−mν ŷν . (8)

If y =
∏

yαν
ν with rational αν then y = ŷ/tm with

m :=
∑

ανmν , ŷ :=
∏

ŷαν
ν , (9)

and we get the finite enclosure

ŷ ∈ ŷ :=
∏

ŷαν
ν . (10)
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This accounts for all elementary operations and powers with fixed exponent.
For other elementary functions, one can derive similar formulas, though their

derivation and implementation is more complex. For example, if y = log yν then
y = ŷ/tm with

m := 1, ŷ := t(log ŷν −mν log t),

and we get a finite enclosure derivable by monotony considerations.
For some transcendental functions y = ϕ(yν) even a projective transformation

cannot in general guarantee boundedness of ŷ (one example is ϕ = exp). In
that case, we define ŷ := ϕ(t−mν ŷν) and get a possibly unbounded enclosure of
ϕ(t−mνyν) for ŷ.

There are two possibilities to utilize projective transformations. The problem
can be explicitly transformed (see Section 2.1), or the projective transforma-
tion can be used implicitly during constraint propagation (see Section 2.2) and
relaxation calculation (see Section 4).

2.1 Explicit Projective Transformation

We have implemented the explicit transformation method in the software pack-
age GloptLab [6–8], a constraint satisfaction package for enclosing all solutions
of systems of quadratic equations and inequalities.

The special quadratic structure allows one to implement projective transfor-
mations explicitly by rewriting the original equations after a projective transfor-
mation (2) on the variables xk using (4). Then all linear inequality constraints

Ax ≥ b

are transformed into the homogeneous linear constraints

Ax̂− bt ≥ 0.

Bound constraints are treated as linear constraints, too. Nonlinear quadratic
constraints

xTGx+ cTx ≥ γ

are transformed into the homogeneous quadratic constraints

x̂TGx̂+ tcT x̂− γt2 ≥ 0.

In all cases, equations and inequalities with the opposite sign are handled anal-
ogously. The additional constraints (5) and (6) are also quadratic and linear,
respectively, and thus the transformed problem is again quadratic but bounded.
Hence, it can be solved with traditional methods. After solving the transformed
problem, one can recover the original solution from

xi = x̂i/t, if t 	= 0.

Solutions of the transformed problem with t = 0 correspond to limiting solutions
at infinity of the original problem. They can be discarded in general.
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Fig. 1. Example 1

Alternatively, one can solve a bigger constraint satisfaction problem contain-
ing both the original and the transformed variables and constraints. In that case,
however, the transformation equations themselves have to be added as additional
quadratic constraints

xit− x̂i = 0.

This allows one to exploit the features of both the original and the transformed
problem at the same time, at the cost of doubling the problem size.

Example 1. The constraint satisfaction problem

0.36x1 − x2 = 0.75,

2x2
1 − x2

2 = 1,

x1 ≥ 0, x2 ≥ 0

is infeasible but the equations have a solution at

x1 ≈ 0.6491, x2 ≈ −0.5163,

slightly outside the defining box, see Fig. 1.
The problem is difficult to solve with standard CP and branch and bound,

since no box x of the form x1 = [a,∞], x2 = [b,∞] can be reduced by CP.
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The projective transformation leads to the problem

0.36x̂1 − x̂2 − 0.75t = 0,

2x̂2
1 − x̂2

2 − t2 = 0,

x̂2
1 + x̂2

2 + t2 = 1,

x̂1, x̂2, t ∈ [0, 1]

This problem is easily found to be infeasible by CP.

2.2 Projective Constraint Propagation

For more general problems explicit transformation becomes more cumbersome.
For the implementation in the COCONUT Environment [23, 24], a software
platform for global optimization, we have therefore chosen a different approach.
Frequently, in the non-quadratic case a transformed MICSP is not easier to solve
than the original problem. Therefore, we utilize the projective transformation
together with a special split into a bounded subproblem and its complement.

For that observe that the transformation (2) on the variables xk has the
following property. If ‖x̂‖p = α and t ∈ [0, 1] then ‖x‖p ≥ α, for every p ∈ [1,∞].
Adding the constraint ‖x‖p ≤ α to problem (1) makes it bounded, so it can be
solved by standard methods.

The complement of that ball, described by the complementary constraint
‖x‖p ≥ α, must be handled as well and can be projectively transformed using
(2) and the constraint ‖x̂‖p = α. The choice of the constant α is application
specific.

However, this transformation is never performed explicitly. Rather, many of
the bounding tools, and foremost CP, implicitly make use of the transformation
by calculating in IPR, the set of so-called projective intervals. Those are pairs
(x̂, r; t) of intervals and rational numbers together with a common interval t
representing the range of the scaling parameter. The operations of projective
intervals are defined according to (7–10) with extensions for transcendental ele-
mentary functions.

Not performing the transformation explicitly has an additional advantage
which is connected to the following important observation: There exist CSPs for
which CP proceeds with range reduction on the original problem but where it
has no reducing effect on the projectively transformed problem.

Example 2. Consider the constraints (with α = 1)

y = x2 − 3 (11)

x2 + y2 ≥ 1. (12)

From (11) we get y ∈ [−∞,∞] ∩ ([−∞,∞]2 − 3) = [−3,∞], which reduces the
range of y.

The projectively transformed problem associated to (11–12) is as follows:

ŷt = x̂2 − 3t (13)

x̂2 + ŷ2 = 1 (14)
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x̂ ∈ [−1, 1], ŷ ∈ [−1, 0], t ∈ (0, 1]. (15)

From (13) we get

y ∈ [−1, 0] ∩ ([−1, 1]2 − 3 · (0, 1]) = [−1, 0].

Also from (13),
x2 = ŷt+ 3t ∈ [−1, 0] + (0, 3] = (−1, 3],

so the current range [−1, 1] of x̂ cannot be reduced; (14) yields no improvement as
well, thus, CP cannot reduce any of the initial variable ranges of the transformed
problem.

The effect that no range reduction is possible on the original problem whereas
CP works on the transformed problem was already demonstrated in Example 1.

Consequently, we need to utilize CP simultaneously on the original and on
the transformed problem. For that we developed the algorithm Projective For-
ward and Backward Propagation on DAGs (PFBPD), which is an advanced ver-
sion of FBPD from [33, 34]. It is based on propagating enclosures of the form
(x, (x̂, r; t)) ∈ UR

n × IPRn, of pairs of interval unions (not projectively trans-
formed) and projective intervals in parallel, in order to get the advantages of
both approaches. These pairs are interwoven since after each forward or back-
ward propagation step an internal intersection between the two enclosures is
performed for additional reduction.

For this algorithm let D(G) be a DAG with the ground G, C the set of active
constraints, and D the variable domains. Furthermore, for every node ν of the
DAG we introduce the set N (ν) ⊆ UR × IPR, or N (ν) ⊆ UZ × IPR for the
integer variables, containing the current enclosure of the range of ν. Note that
we keep the integer information only in the untransformed problem since the
transformation destroys the integrality information.

Algorithm PFBPD(in : D(G), C, α; in/out : D)

00: Lf := ∅; Lb := ∅; Voc := (0, . . . , 0); Vch := (0, . . . , 0); to := [0, 1];

01: Set the node ranges Nνk of every variable xk to (Dk, (x̂k,mk; to));

02: Vlvl := (0, . . . , 0);

03: for each node C representing an active constraint in C do

04: NodeOccurrences(C, Voc);

05: NodeLevel(C, Vlvl); /* this can be made optional */

06: end-for

07: Add a virtual node V with maximal node level (for constraint ‖x̂‖22 = α2).

08: C := C ∪ {V};
09: for each node C representing an active constraint in C \ {V} do

10: FindVirtualEdges(C,V,V);
11: ForwardEvaluation(C, Vch,Lb);

12: end-for

13: while Lb �= ∅ ∨ Lf �= ∅ do

14: N := getNextNode(Lb,Lf );



On Solving Mixed-Integer Constraint Satisfaction Problems 225

15: if N was taken from Lb then

16: for each child C of N do

17: BP(N,C);

18: if N (C) = ∅ then return infeasible;

19: if N (C) changed enough for forward evaluation then

20: for each P ∈ parents(C) \ {N,G} do

21: if Voc[P] > 0 then put P into Lf ;

22: end-if

23: if N (C) changed enough for backward propagation then

24: Put C into Lb;

25: end-for

26: else /* N was taken from Lf */

27: FE(N, [f ]); /* f is the operator at N */

28: if N (N) = ∅ then return infeasible;

29: if N (N) changed enough for forward evaluation then

30: for each P ∈ parents(N) \ {G} do

31: if Voc[P] > 0 then put P into Lf ;

32: end-if

33: if N (N) changed enough for backward propagation then

34: Put N into Lb;

35: end-if

36: if t �= to then

37: if t changed enough for forward propagation then

38: Put all nodes C ∈ V into Lf ;

39: end-if

40: to := t;

41: end-if

42: end-while

43: Update D with the ranges of the nodes representing the variables;

end

procedure ForwardEvaluation(in : N; in/out : Vch,Lb)

01: if N is a leaf or Vch[N] = 1 then return;

02: for each child C of node N do ForwardEvaluation(C, Vch,Lb);

03: if N = G then return;

04: FE(N, [f ]); /* f is the operator at N */

05: Vch[N] := 1; /* the range of this node is cached */

06: if N (N) = ∅ then return infeasible;

07: if N (N) changed enough for backward propagation then put C into Lb;

end

procedure FindVirtualEdges(in : N,V; in/out : V)
01: if N is a leaf and mN �= 0 then put N into the set of children of V;

02: if t is explicitly needed in the calculation of yN then add N to V;
03: for each child C of node N do FindVirtualEdges(C,V,V);
end
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procedure NodeLevel(in : N; out : Vlvl)

01: for each child C of node N do

02: Vlvl[C] := max{Vlvl[C], Vlvl[N] + 1};
03: NodeLevel(C, Vlvl);

04: end-for

end

Apart from the virtual nodes and constraints the layout of the PFBPD algorithm
is analogous to the FBPD algorithm from [33, 34]. The main difference lies in
the forward and backward propagation operators FE(N, [f ]) and BP(N,C). The
aim of forward evaluation FE is the reduction of N (N) of the node N based
on the known N (C) for all children C of N. It is performed by first calculat-
ing the UR and the IPR parts of N (N) = (x, (x̂,m; t)) separately by inter-
val extension functions of f . Immediately thereafter the internal intersection
N ′(N) = (x′, (x̂′,m; t′)) is computed as follows:

x′ = x ∩ t−mx̂

x̂′ = x̂ ∩ tmx

t′ = t ∩ (x/x̂)−1/m ∩ (x̂/x)1/m.

(16)

The backward propagation BP is concerned with reducing the sets N (Ci) of all
children Ci of N using N (N) and all N (Cj) for all other children Cj with
j 	= i. Again, first the UR and IPR parts are calculated separately by inclusion
extensions of the partial inverse functions, followed by an internal intersection
operation (16).

Like FBPD the PFBPD algorithm is contractive and complete in the following
sense.

Proposition 1. We define a function P : (UR× IPR)n × 2R
n → (UR× IPR)n

to represent the PFBPD algorithm. This function takes as input the variable do-
mains B (in form of a combined interval-union enclosure and an enclosure of
the projective transformation) and the exact solution set S of the input problem.
The function P returns an enclosure, denoted by P (B, S), that represents the
variable domains of the output of the PFBPD algorithm, again for the original
and the projectively transformed problem. If the input problem is factorable, then
the PFBPD algorithm stops after a finite number of iterations and the following
properties hold:

(i) P (B, S) ⊆ B (Contractiveness)

(ii) P (B, S) ⊇ B ∩ S (Completeness)
The proof is completely analogous to [34, Proposition 2].

3 Asymptotic Transformation

As mentioned in Section 2 for MICSPs involving transcendental functions, the
projective transformation does not necessarily lead to bounded internal vari-
ables ŷν for all nodes ν ∈ V (Γ ). Therefore, we have developed a more general
transformation, based on asymptotic analysis.
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Let Ψ ⊆ C(R2,R) be a subset of functions ψ(x, t;α) depending on the real
parameter vector α ∈ Rn.

For the asymptotic transformation we enclose each intermediate node yν for
ν ∈ V (Γ ) in the form

ψ(ŷν , t;αν) ≤ yν ≤ ψ(ŷν , t;αν). (17)

The new variable t and the parameters αν and αν are defined such that t ∈ [0, 1]
and the ŷν are well-bounded. Clearly, the projective transformation is a special
case of that scheme, by choosing ψ(x, t, α) := x/tα with α = α = α ∈ Q.

The transformation is like in the projective case achieved by a recursive con-
struction, implemented in a forward walk through Γ . For the original variables
xk and all interval constants, we define a map f : IR→ IR× Rn × Rn with the
property that for all t ∈ [0, 1] there exists a x̂k ∈ f1(xk) with

ψ(x̂k, t; f2(xk)) ≤ xk ≤ ψ(x̂k, t; f3(xk)), (18)

for all xk ∈ xk.
The parameters αν and αν for an intermediate variable yν depend on the

operation that creates it. If y = g(yν1 , . . . , yν�) then we must have ŷ such that

ψ(ŷ, t;α) ≤ g(ψ(ŷν1 , t; aν1), . . . , ψ(ŷν� , t; aν�)) ≤ ψ(ŷ, t;α), (19)

for aνi = [ανi , ανi ], all ŷν ∈ ŷν , and some ŷ ∈ ŷ, and the inequalities should be
as tight as possible, ŷ should be bounded, and there should be a simple way to
calculate it for all elementary operations g.

If we have a constraint y ∈ y we transform it to the two constraints

ψ(ŷ, t;α) ≤ y

ψ(ŷ, t;α) ≥ y,

ensuring that the transformed problem is a relaxation of the original problem.

Example 3. A very useful set of functions is Ψ := {ψ(x, t;α) := xt−α1eα2t
−α3 |

α ∈ R3}. The corresponding transformation is then

yν = ŷνt
−αν,1eαν,2t

−α3
,

where α = α = α. For constructing the ŷν we choose again a real number
0 ≤ s ≤ 1 and set

t :=
(
1− s+

∑
k∈K

dkx
2
k

)−1/2

(20)

with scaling factors dk > 0, like in the projective case. This again leads to the
constraint (5).

The parameters αν for an intermediate variable yν depend on the operation
that creates it. If, e.g., y =

∑
βνyν then y = ŷt−α1eα2t

−α3
with

α1 := maxαν,1, α3 := maxαν,3, α2 := max{αν,2 | αν,3 = α3},

ŷ :=
∑

βνt
α1−αν,1e−α2t

−α3(1−αν,2
α2

tα3−αν,3)ŷν ,
(21)
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and we get the finite enclosure

ŷ ∈ ŷ :=
∑

βνt
α1−αν,1e−α2t

−α3 (1−αν,2
α2

tα3−αν,3)ŷν . (22)

Note that the lower bound of the exponential term is 0 by construction.
If y =

∏
yβν
ν with real βν then y = ŷt−α1eα2t

−α3
with

α1 :=
∑

βναν,1, α3 := maxαν,3,

α2 := max βναν,2, ŷ := e
∑ βναν,2

α2
tα3−αν,3

∏
ŷν ,

(23)

and we get the finite enclosure

ŷ ∈ ŷ := e
∑ βναν,2

α2
tα3−αν,3

∏
ŷν . (24)

This accounts for all elementary operations and powers with fixed exponent.
For other elementary functions, one can again derive similar formulas, which

are rather complex. E.g., if y = log yν then y = ŷt−α1eα2t
−α3

with

α1 := αν,3 + δ, α2 := 0

α3 := 0, ŷ := tα1+δ(log ŷν − αν,1 log t+ αν,2),

and δ = 0 for α1 > 0, and δ = ε− α1 for some small ε > 0, if α1 ≤ 0, providing
a finite enclosure for ŷ.

For y = exp(βyγν ) we find y = ŷt−α1eα2t
−α3

with

α1 = 0, α2 = sup(ŷγ
ν ), α3 = αν,1γ

ŷ = et
−α1(ŷγeγαν,2t

−αν,3 −α2),

giving the enclosure

ŷ ∈ ŷ := et
−α1 (ŷγeγαν,2t

−αν,3−α2),

which is finite for α2 ≤ 0 or α3 ≤ 0.
This asymptotic transformation, therefore, can also cope with exponentials,

as long as they are not nested.

An analysis of the DAG Γ can provide information about which asymptotic
transformation is most useful for transforming the MICSP to a bounded form.
Of course, a generalization of IPR to a more general set of asymptotic intervals
implementing the above operations provides an algorithm analogous to PFBPD.

4 Projective and Asymptotic Relaxations

A very useful tool for solving MICSPs are relaxations of all kind. There are
many different classes of relaxations utilized—linear, mixed-integer linear, con-
vex quadratic, semidefinite, general convex to name only the most important
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Table 1. Comparison of PFBPD, FBPD, and HC4, easy problems

#var #problems PFBPD PFBPD IPR only PFBPD UR only FBPD HC4

#solved Σmsec #solved Σmsec #solved Σmsec #solved Σmsec #solved Σmsec

1 4 4 1.30 4 1.70 2 0.70 1 0.20 0 20.20

2 112 112 40.90 102 26.00 22 21.20 5 8.00 7 545.60

3 104 57 75.80 28 38.50 20 33.10 7 14.90 8 1354.10

4 70 41 87.60 24 41.70 22 33.20 4 12.10 6 1212.60

5 68 42 89.30 17 43.80 14 34.20 7 16.20 8 1294.20

6 48 23 90.20 13 38.30 11 28.80 6 10.10 6 1404.40

7 18 6 34.90 2 12.90 1 12.00 1 3.90 1 444.50

8 43 20 178.70 5 43.60 5 38.90 2 22.70 3 1697.20

9 24 16 52.20 10 25.60 10 18.90 0 6.80 1 949.60

10 36 24 66.00 10 28.60 9 20.80 7 9.30 7 980.60

11–15 32 24 54.20 6 26.90 7 21.50 5 7.40 5 667.50

16–20 17 13 38.90 3 37.20 1 16.20 1 10.10 0 737.30

21–30 25 20 116.50 3 49.60 3 40.70 2 17.00 2 1421.70

31–46 15 12 80.10 2 174.00 3 32.90 3 40.50 3 2186.10

ones, see [20]. Most of these relaxations come in two flavors: They can be of re-
formulation type, like reformulation linearization [14, 15, 22], and be much higher
dimensional than the original problem. They can also be dimension preserving,
like the ones in [21, 27]. However, usually the computation of the relaxations
requires that all variables are bounded.

This problem can be overcome by computing a relaxation of a suitably trans-
formed problem, like the projectively transformed problem of Section 2 or the
asymptotically transformed problem of Section 3. Even for mixed-integer prob-
lems the relaxations have the additional advantage that they are continuous
problems. Hence, the transformations can be readily applied.

Reformulation type relaxations can be computed directly from the structure
of the operators separately for each node ν ∈ V (Γ ). Dimension preserving re-
laxations are usually computed by algorithmic differentiation techniques. Those
can be generalized to projective or asymptotic intervals by careful examination
of the differentiation rules and the properties of first and second order slopes
[26].

5 Numerical Results

We tested all global optimization and constraint satisfaction problems of the
COCONUT test set [28] of dimensions up to 50. They are of general structure

min f(x)

s.t. F (x) ∈ F, x ∈ x.

Of those 865 test problems 15 failed for various reasons (e.g. missing operators,
local optimization failed, . . . ). Of the remaining 850 problems 663 contained at
least one unbounded variable. We used local optimization to find at least one
local minimum x̃ with objective function value f̃ . Then we added the constraint
f(x) ≤ f̃ on the objective function for converting the global optimization prob-
lem to a CSP. Then we tried to exclude the region where all unbounded variables
are outside the box [−1000, 1000].
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Table 2. Comparison of PFBPD, FBPD, and HC4, complex problems

Name/Lib. #var PFBPD PFBPD IPR only PFBPD UR only FBPD HC4

Res. msec Res. msec Res. msec Res. msec Res. msec

esfl/3 2 I 4909.60 I 1702.70 1610.00 I 181.20 I 11.40

pt/2 2 I 27.60 I 12.60 11.20 3.10 818.10

sipow1/2 2 I 514.20 I 264.10 201.30 58.90 314635.00

sipow1m/2 2 I 517.60 I 259.70 206.70 56.80 300657.00

sipow2/2 2 I 253.60 I 121.10 94.90 23.60 73982.50

sipow2m/2 2 I 256.50 I 127.00 99.80 22.60 71689.80

gulf/2 3 55.10 21.90 18.20 2.70 222.20

oet1/2 3 I 83.20 40.20 31.00 92.80 3403.70

oet2/2 3 I 80.30 34.50 28.60 28.70 3312.80

tfi2/2 3 849.70 402.90 358.80 84.20 288961.00

fourbar/3 4 20.20 6.90 7.00 1.90 101.00

oet3/2 4 I 126.60 49.40 45.30 19.60 3848.10

sipow3/2 4 I 1037.30 391.30 317.90 263.50 318190.00

sipow4/2 4 1036.70 459.80 439.00 112.10 315615.00

cpdm5/3 5 17.10 6.60 5.40 1.60 90.90

expfitb/2 5 29.10 11.30 9.10 2.10 333.30

expfitc/2 5 400.20 158.50 115.70 19.40 1959.40

rbpl/3 6 I 22.50 7.80 7.00 4.30 90.90

oet7/2 7 173.30 83.90 67.90 17.10 6352.90

arglinb/2 10 14.60 1.60 1.40 1.50 90.90

fir convex/3 11 181.10 60.10 52.90 17.60 1343.30

osborneb/2 11 13.40 7.70 5.80 1.30 464.60

watson/3 12 I 35.20 4.00 3.60 7.50 272.70

ex2 1 10/1 20 I 23.40 8.20 6.70 0.70 70.70

ex2 1 7/1 20 I 18.30 6.60 5.40 1.60 60.60

ksip/2 20 2174.20 695.40 732.40 233.30 11392.80

antenna2/3 24 3552.70 1135.30 1040.90 365.60 14725.80

himmelbk/2 24 I 47.00 16.00 16.30 5.00 141.40

3pk/2 30 I 17.20 3.90 3.60 1.90 80.80

loadbal/2 31 I 16.70 7.50 6.10 2.80 101.00

lowpass/3 31 2760.00 884.80 843.40 285.40 7908.30

watson/2 31 I 183.70 6.60 6.40 48.30 717.10

hs088/2 32 I 1358.10 408.30 443.80 253.60 323.20

hs089/2 33 I 1379.60 453.90 474.20 262.30 363.60

hs090/2 34 I 1373.10 427.40 420.60 243.10 484.80

hs091/2 35 I 1390.70 496.00 458.40 237.80 484.80

hs092/2 36 I 1275.40 436.80 437.00 238.80 676.70

chemeq/3 38 I 15.70 6.10 5.20 2.50 151.50

polygon2/3 38 I 41.40 13.20 12.00 3.90 414.10

srcpm/1 38 I 13.20 4.60 3.80 0.60 I 0.70

gridnetg/2 44 I 49.60 15.20 13.60 4.60 141.40

chnrosnb/2 50 I 53.10 17.80 16.10 2.70 80.80

errinros/2 50 I 53.90 17.70 16.20 4.10 70.70

hilbertb/2 50 9529.80 2986.50 3034.10 898.80 818.10

qp1/1 50 I 9407.00 3139.90 2906.00 976.70 575.70

qp2/1 50 I 9589.70 3115.90 2910.20 993.30 606.00

tointqor/2 50 I 39.70 12.80 11.50 2.00 70.70

These 663 constructed CSPs constitute our test set. As can be deduced from
Table 3, for 446 of the problems PFBPD was able to prove infeasibility of the prob-
lem, effectively reducing the problem to the standard search box [−1000, 1000]n
of global optimization algorithms like BARON. Using only projective intervals
solved just 235 of the 675 problems, while pure interval union arithmetic proved
infeasibility of only 130 problems. Of those problems 122 are solved by both
methods, so they can be considered easy. It is thus indeed important to combine
interval unions and projective intervals performing internal intersection after
each operation, as described in Algorithm PFBPD. All calculations are performed
in a completely rigorous way with full rounding error control.
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Table 3. Result summary for PFBPD

case 1 2 3 4 5

UR only + + − − −
IPR only + − + − −
PFBPD + + + + −

#problems 122 8 113 203 217

Overall performance of PFBPD is very strong; it is comparable to FBPD being
just a factor of 5-10 on average slower than the interval version and about half
as fast as the interval union version of FBPD. It is still orders of magnitude faster
than HC4 [2] and many other numerical CP algorithms, as they were tested in
[34]. However, there are exceptions like srcpm where HC4 performs faster and
can still prove infeasibility. Detailed results can be found in Table 1, summarizing
all easy problems with solution times up to 12 ms, and Table 2, containing the
remaining problems. A result of I in Table 2 means that infeasibility was proved
by the corresponding propagator for the respective problem. The running times
were measured on an Intel Core i7 Q 720 running at 1.60GHz running Linux
3.6.11.

6 Conclusion

We provided several methods for solving MICSPs for which some variables have
unbounded domains. In a large numerical test we showed effectiveness of this
new approach.
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Abstract. Cumulative resource constraints can model scarce resources
in scheduling problems or a dimension in packing and cutting problems.
In order to efficiently solve such problems with a constraint program-
ming solver, it is important to have strong and fast propagators for cu-
mulative resource constraints. Time-table-edge-finding propagators are
a recent development in cumulative propagators, that combine the cur-
rent resource profile (time-table) during the edge-finding propagation.
The current state of the art for solving scheduling and cutting prob-
lems involving cumulative constraints are lazy clause generation solvers,
i.e., constraint programming solvers incorporating nogood learning, have
proved to be excellent at solving scheduling and cutting problems. For
such solvers, concise and accurate explanations of the reasons for prop-
agation are essential for strong nogood learning. In this paper, we de-
velop a time-table-edge-finding propagator for cumulative that explains
its propagations. We give results using this propagator in a lazy clause
generation system on resource-constrained project scheduling problems
from various standard benchmark suites. On the standard benchmark
suite PSPLib, we are able to improve the lower bound of about 60% of
the remaining open instances, and close 6 open instances.

1 Introduction

A cumulative resource constraint models the relationship between a scarce
resource and activities requiring some part of the resource capacity for their
execution. Resources can be workers, processors, water, electricity, or, even, a
dimension in a packing and cutting problem. Due to its relevance in many in-
dustrial scheduling and placement problems, it is important to have strong and
fast propagation techniques in constraint programming (Cp) solvers that de-
tect inconsistencies early and remove many invalid values from the domains of
the variables involved. Moreover, when using Cp solvers that incorporate “fine-
grained” nogood learning it is also important that each inconsistency and each
value removal from a domain is explained in such a way that the full strength
of nogood learning is exploited.
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Fig. 1. Five activities with precedence
relations
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0 4 8 time

resource capacity

Fig. 2. A possible schedule of the ac-
tivities

In this paper, we consider renewable resources, i.e., resources with a constant
resource capacity over time, and non-preemptive activities, i.e., whose execution
cannot be interrupted, with fixed processing times and resource usages. In this
work, we develop explanations for the time-table-edge-finding (TtEf) propaga-
tor [34] for use in lazy clause generation (Lcg) solvers [22,10].

Example 1. Consider a simple cumulative resource scheduling problem. There
are 5 activities A, B, C, D, and E to be executed before time period 10. The
activities have processing times 3, 3, 2, 4, and 1, respectively, with each activity
requiring 2, 2, 3, 2, and 1 units of resource, respectively. There is a resource
capacity of 4. Assume further that there are precedence constraints: activity B
must finish before activity D begins, written B " D, and similarly C " E.
Figure 1 shows the five activities and precedence relations, while Fig. 2 shows a
possible schedule, where the start times are: 0, 0, 3, 5, and 5 respectively.

In Cp solvers, a cumulative resource constraint can be modelled by a decompo-
sition or, more successfully, by the global constraint cumulative [2]. Since the
introduction of this global constraint, a great deal of research has investigated
stronger and faster propagation techniques. These include time-table [2], (ex-
tended) edge-finding [21,33], not-first/not-last [21,29], and energetic-reasoning
propagation [4,6]. Time-table propagation is usually superior for highly disjunc-
tive problems, i.e., in which only some activities can run concurrently, while
(extended) edge-finding, not-first/not-last, and energetic reasoning are more ap-
propriate for highly cumulative problems, i.e., in which many activities can run
concurrently [4]. The reader is referred to [6] for a detailed comparison of these
techniques.

Vilim [34] recently developed TtEf propagation which combines the time-
table and (extended) edge-finding propagation in order to perform stronger prop-
agation while having a low runtime overhead. Vilim [34] shows that on a range of
highly disjunctive open resource-constrained project scheduling problems from
the well-established benchmark library PSPLib,1 TtEf propagation can gener-
ate lower bounds on the project deadline (makespan) that are superior to those

1 See http://129.187.106.231/psplib/

http://129.187.106.231/psplib/
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found by previous methods. He uses a Cp solver without nogood learning. This
result, and the success of Lcg on such problems, motivated us to study whether
an explaining version of this propagation yields an improvement in performance
for Lcg solvers.

In general, nogood learning is a resolution step that infers redundant con-
straints, called nogoods, given an inconsistent solution state. These nogoods are
permanently or temporarily added to the initial constraint system in order to
reduce the search space and/or to guide the search. Moreover, they can be used
to short circuit propagation. How this resolution step is performed is dependent
on the underlying system.

Lcg solvers employ a “fine-grained” nogood learning system that mimics the
learning of modern Boolean satisfiability (Sat) solvers (see e.g. [20]). In order
to create a strong nogood, it is necessary that each inconsistency and value
removal is explained concisely and in the most general way possible. For Lcg

solvers, we have previously developed explanations for time-table and (extended)
edge-finding propagation [26]. Moreover, for time-table propagation we have also
considered the case when processing times, resource usages, and resource capac-
ity are variable [24]. Explanations for the time-table propagator were successfully
applied on resource-constraint project scheduling problems [26,27] and carpet
cutting [28] where in both cases the state-of-the-art of exact solution methods
were substantially improved.

Explanations for the propagation of the cumulative constraint have also been
proposed for the PaLM [14,13] and SCIP [1,7,12] frameworks. In the PaLM
framework, explanations are only considered for time-table propagation, while
the SCIP framework additionally provides explanations for energetic reason-
ing propagation and a restricted version of edge-finding propagation. Neither
framework consider bounds widening in order to generalise these explanations
as we do in this paper. Other related works include [32], which presents explana-
tions for different propagation techniques for problems only involving disjunctive
resources, i.e., cumulative resources with unary resource capacity, and gener-
alised nogoods [15]. A detailed comparison of explanations for the propagation
of cumulative resource constraints in Lcg solvers can be found in [24].

The contributions of this paper are:

– We define a new simpler TtEf propagator for cumulative.
– We define how to explain the propagation of this propagator.
– We compare the performance of the TtEf propagator with explanation,

against time-table propagation with explanation.
– We improve the lower bounds of a large proportion of the open instances in

the well studied PSPlib, and close 6 instances from PSPlib.
– We improve the lower bounds and close many more instances on less studied

highly cumulative benchmarks.

2 Cumulative Resource Scheduling

In cumulative resource scheduling, a set of (non-preemptive) activities V and
one cumulative resource with a (constant) resource capacity R is given where
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an activity i is specified by its start time Si, its processing time pi, its resource
usage ri, and its energy ei := pi ·ri. In this paper we assume each Si is an integer
variable and all others are assumed to be integer constants. Further, we define
esti (ecti) and lsti (lcti) as the earliest and latest start (completion) time of i.

In this setting. the cumulative resource scheduling problem is defined as a
constraint satisfaction problem that is characterised by the set of activities V
and a cumulative resource with resource capacity R. The goal is to find a solution
that assigns values from the domain to the start time variables Si (i ∈ V), so
that the following conditions are satisfied.

esti ≤ Si ≤ lsti, ∀i ∈ V∑
i∈V:τ∈[Si,Si+pi)

ri ≤ R ∀τ

where τ ranges over the time periods considered. Note that this problem is NP-
hard [5].

We shall tackle problems including cumulative resource scheduling using Cp

with nogood learning. In a Cp solver, each variable Si, i ∈ V has an initial do-
main of possible values D0(Si) which is initially [esti, lsti]. The solver maintains
a current domain D for all variables. Cp search interleaves propagation with
search. The constraints are represented by propagators that, given the current
domain D, creates a new smaller domain D′ by eliminating infeasible values.
The current lower and upper bound of the domain D(Si) are denoted by lb(Si)
and ub(Si), respectively. For more details on Cp see e.g. [23].

For a learning solver we also represent the domain of each variable Si using
Boolean variables �Si ≤ v�, esti ≤ v < lsti. These are used to track the reasons
for propagation and generate nogoods. For more details see [22]. We use the
notation �v ≤ Si�, esti < v ≤ lsti as shorthand for ¬�Si ≤ v − 1�, and treat
�v ≤ Si�, v ≤ esti and �Si ≤ v�, v ≥ lsti as synonyms for true. Propagators in a
learning solver must explain each reduction in the domain by building a clausal
explanation using these Boolean variables.

3 TTEF Propagation

TtEf propagation was developed by Vilim [34]. The idea of TtEf propagation
is to splits the treatment of activities into a fixed and free part. The former
results from the activities’ compulsory part whereas the latter is the remainder.
The fixed part of an activity i is characterised by the length of its compulsory
part pTT

i := max(0, ecti− lsti) and its fixed energy eTT
i := ri ·pTT

i . The free part
has a processing time pEFi := pi − pTT

i , a latest start time lstEFi := lsti + pTT
i ,

and a free energy of eEFi := ei−eTT
i . An illustration of this is shown in Figure 3.

TtEf propagation reasons about the energy available from the resource and
energy required for the execution of activities in specific time windows. Let VEF

be the set of activities with a non-empty free part {i ∈ V | pEFi > 0}. The
start and end times of these windows are determined by the earliest start and
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esti lsti ecti, lst
EF
i lcti

i

i

CPiD(Si)

pEFi pTT
i

(a) Task i with compulsory part.

esti ecti lsti, lst
EF
i lcti

i

i

D(Si)

pEFi
(b) Task i without compulsory part.

Fig. 3. A diagram illustrating an activity i when started at esti or lsti, and its possible
range of start times, as well as the compulsory part CPi (the hatched box), and the
fixed and free parts of the processing time

the latest completion times of two activities {a, b} ⊆ VEF . These time windows
[begin, end) are characterised by the so-called task intervals VEF (a, b) := {i ∈
VEF | esta ≤ esti ∧ lcti ≤ lctb} where a, b ∈ VEF , begin := esta, and end := lctb.

It is not only the free energy of activities in the task interval VEF (a, b) that
is considered, but also the energy resulting from the compulsory parts in the
time window [esta, lctb). This energy is defined by ttEn(a, b) := ttAfter[esta]−
ttAfter[lctb] where ttAfter[τ ] :=

∑
t≥τ

∑
i∈V:lsti≤t<ecti

ri is the total energy of
all compulsory parts occurring at time τ and after.

Furthermore, we also consider activities i ∈ VEF \ VEF (a, b) in which a
portion of their free part must be run within the time window as described
in [34]. Suppose activity i starts after esta, i.e., esta ≤ esti. Then activity i’s
free part consumes at least ri · (lctb − lstEFi ) energy units in [esta, lctb) as-
suming lstEFi < lctb. We define the energy contributed by such activities by
rsEn(a, b) :=

∑
i∈VEF \VEF (a,b):esta≤esti

ri ·max(0, lctb− lstEFi ). Note that this is
a special case of energetic reasoning that is cheaper to compute.

In summary, TtEf propagation considers three ways in which an activity i
can contribute to energy consumption within a time window determined by a
task interval VEF (a, b). First, the free parts that must fully be executed in the
time window; second, some free parts that must partially be run in the time
window, and third, the compulsory parts that must lie within the time window;
Thus, the considered length of an activity i is

pi(a, b) :=

⎧⎪⎨⎪⎩
pi i ∈ VEF (a, b)

max(0, lctb − lsti) i /∈ VEF (a, b) ∧ esta ≤ esti

max(0,min(lctb, ecti)−max(esta, lsti)) others

The considered energy consumption is ei(a, b) := ri ·pi(a, b) in the time window.
An illustration of the three cases is shown in Fig. 4(a).
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esta lctb

(a)
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j j

k k

esta lctb

(b)

Fig. 4. (a) Diagram explaining the cases of energy contribution: task i is completely
included in the task interval and its entire length is considered; task j starts after
esta, and the length from its latest start time to lctb is considered; and task k has the
intersection of its compulsory part with [esta, lctb) considered. (b) Diagram illustrating
how the bounds can be weakened in explanation, to still ensure that at least pl(a, b)
for l ∈ {i, j, k} is used with [esta, lctb).

3.1 Explanation for the TTEF Consistency Check

The consistency check is one part of TtEf propagation that checks whether
there is a resource overload in any task interval.

Proposition 1 (Consistency Check). The cumulative resource scheduling
problem is inconsistent if

R · (lctb − esta)− energy(a, b) < 0

where energy(a, b) :=
∑

i∈VEF (a,b) e
EF
i + ttEn(a, b) + rsEn(a, b).

This check can be done in O(l2 + n) runtime, where l = |VEF |, if the resource
profile is given.

The algorithm we use for the consistency check is shown in Alg. 1. It is different
from that proposed by Vilim [34]. The main difference is that by iterating over
the end times in decreasing order we can calculate the minimal available free
energy minAvail from the previous iteration. If the reduction in this free energy
for the next iteration cannot make it negative we know that none of the task
intervals in this iteration can lead to resource overload, and we can skip the entire
set of task intervals. This optimization is highly useful high up in the search
tree when there is little chance of resource overload. In preliminary experiments
on instances with 30 activities, the number of checked task intervals could be
reduced about 60% on average.

The algorithm iterates on each end time in decreasing order. For each end
time the algorithm first checks if no propagation is possible with this end time
(lines 5-6), and if so skips to the next. Otherwise it examines each possible
start time, updating the free energy used E for the new task interval (lines 13-
14), and calculating the energy available avail in the task interval (line 15). If
this is negative it explains the overload in the interval and returns false . If not



240 A. Schutt, T. Feydy, and P.J. Stuckey

Algorithm 1. TtEf consistency check

Input: X an array of activities sorted in non-decreasing order of the earliest
start time.

Input: Y an array of activities sorted in non-decreasing order of the latest
completion time.

1 end := ∞; minAvail := ∞;
2 for y := n down to 1 do
3 b := Y [y];
4 if lctb = end then continue;
5 if end �= ∞ and minAvail �= ∞ and

minAvail ≥ R · (end− lctb)− ttAfter[lctb] + ttAfter[end] then
6 continue;
7 end := lctb;
8 E := 0; minAvail := ∞;
9 for x := n down to 1 do

10 a := X[x];
11 if end ≤ esta then continue;
12 begin := esta;

13 if lcta ≤ end then E := E + eEFa ;

14 else if lstEFa < end then E := E + ra · (end− lstEFa );
15 avail := R · (end− begin)− E − ttEn(a, b);
16 if avail < 0 then
17 explainOverload(begin, end);
18 return false;

19 if avail < minAvail then minAvail := avail;

20 return true;

it updates the minimum available energy and examines the next task interval
(line 19).

A näıve explanation for a resource overload in the time window [esta, lctb)
only considers the current bounds on activities’ start times Si.∧

i∈V:pi(a,b)>0

�esti ≤ Si� ∧ �Si ≤ lsti�→ ⊥

However, we can easily generalise this explanation by only ensuring that at least
pi(a, b) time units are executed in the time window. This results in the following
explanation.∧

i∈V:pi(a,b)>0

�esta + pi(a, b)− pi ≤ Si� ∧ �Si ≤ lctb − pi(a, b)�→ ⊥

Figure 4(b) shows how the explanations are weakened for the tasks shown in
Figure 4(a). Note that this explanation expresses a resource overload with respect
to energetic reasoning propagation which is more general than TtEf.

Let Δ := energy(a, b) − R · (lctb − esta) − 1. If Δ > 0 then the resource
overload has extra energy. We can use this extra energy to further generalise the
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explanation, by reducing the energy required to appear in the timewindowby up to
Δ. For example, if ri ≤ Δ then the lower and upper bound onSi can simultaneously
be decreased and increased by a total amount in {1, 2, ...,min(�Δ/ri�, pi(a, b))}
units without resolving the overload. If ri · pi(a, b) ≤ Δ then we can remove activ-
ity i completely from the explanation. In a greedy manner, we try to maximally
widen the bounds of activities i where pi(a, b) > 0, first considering activities with
non-empty free parts. If Δi denotes the time units of the widening then it holds
that pi(a, b) ≥ Δi ≥ 0 and

∑
i∈V:pi(a,b)>0 Δi · ri ≤ Δ and we create the following

explanation.∧
i∈V:pi(a,b)−Δi>0

�esta + pi(a, b)− pi −Δi ≤ Si� ∧ �Si ≤ lctb − pi(a, b) +Δi�→ ⊥

The last generalisation mechanism can be performed in different ways, e.g. we
could widen the bounds of activities that were involved in many recent conflicts.
By default we generalise the tasks in order. We experimented with different
policies, but found any reasonable generalization policy was equally effective.

3.2 Explanation for the TTEF Start Times Propagation

Propagation on the lower and upper bounds of the start time variables Si are
symmetric; consequently we only present the case for the lower bounds’ prop-
agation. To prune the lower bound of an activity u, TtEf bounds propaga-
tion tentatively starts the activity u at its earliest start time estu and then
checks whether that causes a resource overload in any time window [esta, lctb)
({a, b} ⊆ VEF ). Thus, bounds propagation and its explanation are very similar
to that of the consistency check.

The work of Vilim [34] considers four positions of u relative to the time win-
dow: right (esta ≤ estu < lctb < ectu), inside (esta ≤ estu < ectu ≤ lctb),
through (estu < esta ∧ lctb < ectu), and left (estu < esta < ectu ≤ lctb). The
first two of these positions correspond to edge-finding propagation and the last
two to extended edge-finding propagation. In this work we fully consider the
right and inside positions, i.e., esta ≤ estu (note that a could be u), and only
opportunistically consider the through and left positions.

The calculation of a right or inside bounds update of u with respect to the
time interval [esta, lctb) are identical. Then, the bounds update rule is

R · (lctb − esta)− energy(a, b, u) < 0→ esta +

⌈
rest(a, b, u)

ru

⌉
≤ Su (1)

where energy(a, b, u) := energy(a, b)− eu(a, b)+ ru · (min(lctb, ectu)− estu) and

rest(a, b, u) := energy(a, b, u)− (R − ru) · (lctb − esta)

− ru · (min(lctb, ectu)− estu) .

The first two terms in the sum of energy(a, b, u) give the energy consumption
in the time window [esta, lctb) of all considered activities except u, whereas the
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last term is the required energy of u in [esta, lctb) if it is scheduled at estu.
The propagation, including explanation generation, can be performed in O(l2 +
k · n) runtime, where l = |VEF | and k is the number of bounds’ updates, if
the resource profile is given. Moreover, TtEf propagation does not necessarily
consider each u ∈ VEF , but those only that maximise min(eEFu , ru ·(lctb−esta))−
ru ·max(0, lctb − lstEFu ) and satisfy esta ≤ estu.

The pseudo-code for lower bounds propagation is shown in Algorithm 2. Sim-
ilarly to the consistency check the task intervals are explored in an order using
the latest completion time and all decreasing start times, before considering the
next completion time.

If the global variable opportunistic is set to true then the algorithm first
(lines 11-17) opportunistically searches for and records an upper bound change
of the first task a if possible by using the calculated minimum available energy
minAvail in the task interval [minBegin, lctb) where compIn(minBegin, end, a)
(line 12) is the energy of the compulsory part of a in that task interval. This
upper bound change is an extended edge finding propagation. It then updates
the free energy used E for the new task interval, and updates the task u which
requires maximum energy enReqU in the new task interval (lines 18-23). It then
calculates the energy available avail in the task interval [esta, lctb) (line 24),
updates the interval with minimum available energy (lines 25-26) needed for the
extended edge finding propagation, and records a lower bound change of the
task u requiring most energy if this is possible (lines 27-33). Only after all task
intervals are visited are the bounds actually changed by updateBound.

The procedure explainUpdate(begin, end, v, oldbnd, newbnd) explains the
bound change of v to newbnd where oldbnd is the old bound (the difference
allows calculating which bound is being updated). A näıve explanation for a
lower bound update from estu to newLB := �rest(a, b, u)/ru� with respect to
the time window [esta, lctb) additionally includes the previous and new lower
bound on the left and right hand side of the implication, respectively, in com-
parison to the näıve explanation for a resource overload.

�estu ≤ Su� ∧
∧

i∈V\{u}:pi(a,b)>0

�esti ≤ Si� ∧ �Si ≤ lsti� → �newLB ≤ Su�

As we discussed in the case of resource overload, we perform a similar general-
isation for the activities in V \ {u}, and for u we decrease the lower bound on
the left hand side as much as possible so that the same propagation holds when
u is executed at that decreased lower bound.

�esta + lctb − newLB + 1− pu ≤ Su�∧∧
i∈V\{u}:pi(a,b)>0

�esta + pi(a, b)− pi ≤ Si� ∧ �Si ≤ lctb − pi(a, b)�

→ �newLB ≤ Su� (2)

Again this more general explanation expresses the energetic reasoning propaga-
tion and the bounds of activities in {i ∈ V \ {u} | pi(a, b) > 0} can further be
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Algorithm 2. TtEf lower bounds propagator on the start times

Input: X an array of activities sorted in non-decreasing order of the earliest
start time.

Input: Y an array of activities sorted in non-decreasing order of the latest
completion time.

1 for i ∈ VEF do est′i := esti; lst
′
i := lsti;

2 end := ∞; k := 0;
3 for y := n down to 1 do
4 b := Y [y];
5 if lctb = end then continue;
6 end := lctb; E := 0; minAvail := ∞; minBegin := ∞ u := −∞;

enReqU := 0;
7 for x := n down to 1 do
8 a := X[x];
9 if end ≤ esta then continue;

10 begin := esta;
11 if opportunistic and minAvail �= ∞ and

minAvail < ra · (min(end, lcta)−max(minBegin, lstEFa )) then
12 rest := minAvail + compIn(minBegin, end, a);
13 ubA := minBegin+ �rest/ra� - pa;
14 if lst′a > ubA then
15 expl := explainUpdate(minBegin, end, a, lst′a, ubA);
16 Update[++k] := (a, ub, ubA, expl);
17 lst′a := ubA;

18 if lcta ≤ end then E := E + eEFa ;
19 else
20 enIn := ra ·max(0, end− lstEFa );
21 E := E + enIn;

22 enReqA := min(eEFa , ra · (end− esta))− enIn;
23 if enReqA > enReqU then u := a; enReqU := enReqA;

24 avail := R · (end− begin)− E − ttEn(a, b);
25 if opportunistic and avail < minAvail then
26 minAvail := avail; minBegin := begin;
27 if enReqU > 0 and avail − enReqU < 0 then
28 rest := E − avail − ra ·max(0, end− lsta);
29 lbU := begin+ �rest/ru�;
30 if est′u < lbU then
31 expl := explainUpdate(begin, end, u, est′u, lbU);
32 Update[++k] := (u, lb, lbU, expl);
33 est′u := lbU ;

34 for z := 1 to k do updateBound(Update[z]);

generalised in the same way as for a resource overload. But here the available
energy units Δ for widening the bounds is rest(a, b, u)− ru · (newLB − 1) + 1.
Hence, 0 ≤ Δ < ru indicate that the explanation only can further be generalised
a little bit. We perform this generalisation as for the overload case.
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Table 1. Specifications of the benchmark suites

suite sub-suites #inst #act pi #res notes

AT [3] st27/st51/st103 48 each 25/49/101 1–12 6 each

PSPLib [16] j30 [17]/j60/j90 480 each 30/60/90 1–10 4 each
j120 600 30 1–10 4

BL [4] bl20/bl25 20 each 20/25 1–6 3 each

Pack [8] 55 15–33 1–19 2–5

KSD15 d [18] 480 15 1–250 4 based on j30

Pack d [18] 55 15–33 1–1138 2–5 based on Pack

4 Experiments on Resource-Constrained Project
Scheduling Problems

We carried out extensive experiments onRcpsp instances comparing our solution
approach using both time-table and/or TtEf propagation. We compare the
obtained results on the lower bounds of the makespan with the best known so
far. Detailed results are available at http://www.cs.mu.oz.au/~pjs/rcpsp.

We used six benchmark suites for which an overview is given in Table 1 where
#inst, #act, pi, and #res are the number of instances, number of activities,
range of processing times, and number of resources, respectively. The first two
suites are highly disjunctive, while the remainder are highly cumulative.

The experiments were run on a X86-64 architecture running GNU/Linux and
a Intel(R) Core(TM) i7 CPU processor at 2.8GHz. The code was written in
Mercury [30] using the G12 Constraint Programming Platform [31].

We model an instance as in [26] using global cumulative constraints
cumulative and difference logic constraints (Si + pi ≤ Sj), resp. In addition,
between two activities i, j in disjunction, i.e., two activities which cannot concur-
rently run without overloading some resource, the two half-reified constraints [9]
b→ Si+pi ≤ Sj and ¬b→ Sj+pj ≤ Si are posted where b is a Boolean variable.

We run cumulative constraint propagation using different phases:

(a) time-table consistency check in O(n+ p log p) runtime,
(b) TtEf consistency check in O(l2 + n) runtime as defined in Section 3.1,

(c) time-table bounds’ propagation in O(l · p+ k ·min(R, n)) runtime, and
(d) TtEf bounds’ propagation in O(l2+k ·n) runtime as defined in Section 3.2

where k, l, n, p are the numbers of bounds’ updates, unfixed activities, all ac-
tivities, and height changes in the resource profile, respectively. Note that in
our setup phase (d) TtEf bounds’ propagation does not take into account the
bounds’ changes of the phase (c) time-table bounds’ propagation. For the ex-
periments, we consider four settings of the cumulative propagator: tt executes
phases (a) and (c), ttef(c) (a–c), ttef (a–d) with opportunistic set to false, and
ttef+ (a–d) with opportunistic set to true. Each phase is run once for each ex-
ecution of the propagator. The propagator is itself run multiple times in the

http://www.cs.mu.oz.au/~pjs/rcpsp


Explaining Time-Table-Edge-Finding Propagation 245

usual propagation fixpoint calculation. Note that phases (c) and (d) are not run
if either phase (a) or (b) detects inconsistency.

4.1 Upper Bound Computation

For solving Rcpsp we use the same branch-and-bound algorithm as we used
in [26], but here we limit ourselves to the search heuristic HotRestart which
was the most robust one in our previous studies [25,26]. It executes an adapted
search of [4] using serial scheduling generation for the first 500 choice points and,
then, continues with an activity based search (a variant of Vsids [20]) on the
Boolean variables representing a lower part x ≤ v and upper part v < x of the
variable x’s domain where x is either a start time or the makespan variable and v
a value of x’s initial domain. Moreover, it is interleaved with a geometric restart
policy [35] on the number of node failures for which the restart base and factor
are 250 failures and 2.0, respectively. The search was halted after 10 minutes.

The results are given in Tables 2 and 3. For each benchmark suite, the number
of solved instances (#svd) is given. The column cmpr(a) shows the results on the
instances solved by all methods, where a is the number of such instances. The
left entry in that column is the average runtime on these instances in seconds,
and the right entry is the average number of failures during search. The entries
in column all(a) have the same meaning, but here all instances are considered
where a is the total number of instances. For unsolved instances, the number of
failures after 10 minutes is used.

Table 2 shows the results on the highly disjunctive Rcpsps. As expected, the
stronger propagation (ttef(c), ttef) reduces the search space overall in comparison
to tt, but the average runtime is higher by a factor of about 5%–70% for ttef(c)
and 50%–100% for ttef. Interestingly, ttef(c) and ttef solved respectively 1 and
2 more instances on j60 and closed the instance j120 1 1 on j120 which has
an optimal makespan 105. This makespan corresponds to the best known upper
bound. However, the stronger propagation does not generally pay off for a Cp

solver with nogood learning on highly disjunctive RCPSPs. The opportunistic
extended edge finding ttef+ does not pay off on the highly disjunctive problems.

Table 3 presents the results on highly cumulative Rcpsps which clearly shows
the benefit of TtEf propagation, especially on BL for which ttef(c) and ttef
reduce the search space and the average runtime by a factor of 8, and Pack

for which they solved 23 instances more than tt. On Pack d, ttef(c) is about
50% faster on average than tt while ttef is slightly slower on average than tt. The
opportunistic extended edge finding is beneficial on the the hardest highly cumu-
lative problems Pack and Pack d. No conclusion can be drawn on KSD15 d

because the instances are too easy for Lcg solvers.

4.2 Lower Bound Computation

The lower bound computation tries to solve Rcpsps in a destructive way by
converging to the optimal makespan from below, i.e., it repeatedly proves that
there exists no solution for current makespan considered and continues with an
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Table 2. UB results on highly disjunctive Rcpsps

j30 j60

#svd cmpr(480) all(480) #svd cmpr(429) all(480)

tt 480 0.12 1074 0.12 1074 430 1.82 5798 64.25 93164
ttef(c) 480 0.20 1103 0.20 1103 431 2.00 4860 64.39 80845
ttef 480 0.23 991 0.23 991 432 3.04 5191 64.87 62534
ttef+ 480 0.28 1045 0.28 1045 430 3.58 5172 66.63 58577

j90 j120

#svd cmpr(398) all(480) #svd cmpr(278) all(600)

tt 400 4.01 7540 104.09 132234 283 8.92 13636 322.35 398941
ttef(c) 400 4.90 7263 105.69 104297 282 11.13 14387 324.73 297562
ttef 400 6.57 7277 106.66 72402 283 13.30 11881 324.66 186597
ttef+ 398 6.05 6165 107.52 70436 282 12.53 11016 325.41 168803

AT

#svd cmpr(129) all(144)
tt 132 8.90 19997 66.22 87226
ttef(c) 130 9.36 16466 69.41 72056
ttef 129 13.55 17239 74.60 63554
ttef+ 129 15.82 18060 76.68 61665

Table 3. UB results on highly cumulative Rcpsps

BL Pack

#svd cmpr(40) all(40) #svd cmpr(16) all(55)

tt 40 0.16 2568 0.16 2568 16 77.65 245441 447.69 699615
ttef(c) 40 0.02 370 0.02 370 39 37.22 122038 186.79 292101
ttef 40 0.02 269 0.02 269 39 44.44 105751 188.23 257747
ttef+ 40 0.06 484 0.06 484 39 36.42 95704 185.69 262506

KSD15 d Pack d

#svd cmpr(480) all(480) #svd cmpr(37) all(55)

tt 480 0.01 26 0.01 26 37 32.72 42503 218.26 184293
ttef(c) 480 0.01 26 0.01 26 37 23.96 32916 212.37 170301
ttef 480 0.01 26 0.01 26 37 36.93 37004 221.11 157015
ttef+ 480 0.13 26 0.13 26 37 23.13 28489 212.14 152950

incremented makespan by 1. If a solution is found then it is the optimal one. For
these experiments we use the search heuristic HotStart as we did in [25,26].
This heuristic is HotRestart (as described earlier) but no restart. We used
the same parameters as for HotRestart. For the starting makespan, we choose
the best known lower bounds on j60, j90, and j120 recorded
in the PSPLib at http://129.187.106.231/psplib/ and [34] at
http://vilim.eu/petr/cpaior2011-results.txt. On the other suites, the
search starts from makespan 1. Due to the tighter makespan, it is expected
that the TtEf propagation will perform better than for upper bound computa-
tion on the highly disjunctive instances. The search was cut off at 10 minutes as
in [25,26].

http://129.187.106.231/psplib/
http://vilim.eu/petr/cpaior2011-results.txt
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Table 4. LB results on AT, Pack, and Pack d

AT (12) Pack (16) Pack d (18)

ttef(c) 5/4/3 +52 0/4/12 +100 0/7/11 +632
ttef 7/2/3 +44 1/4/11 +101 2/6/10 +618
ttef+ 7/2/3 +45 0/2/14 +105 3/5/10 +638

Table 5. LB results on j60, j90, and j120

j60 j90 j120

+1 +2 +3 +1 +2 +3 +4 +5 +1 +2 +3 +4 +5 +6 +7 +8 +9 +10

1 min
ttef(c) 4 1 - 12 1 - - - 27 8 4 - - - 2 - - -
ttef 7 5 - 25 14 3 1 - 90 20 10 5 2 - - 2 - -
ttef+ 10 5 - 29 12 3 1 - 83 20 7 8 2 - - 1 1 -

10 mins
ttef(c) 21 2 - 25 7 - - - 68 16 4 4 2 - - 1 1 -
ttef 13 6 3 35 17 6 3 1 116 39 9 9 4 1 - - 1 1
ttef+ 19 7 3 33 17 6 2 1 111 35 9 9 5 1 - - 1 1

Table 4 shows the results on AT, Pack, and Pack d restricted to the in-
stances that none of the methods could solve using the upper bound compu-
tation, The number of instances for each class is shown in parentheses in the
header. An entry a/b/c + d for method x means that x achieved respectively
a-times, b-times and c-times a worse, the same and a better lower bound than
tt, while the +d is the sum of lower bounds’ differences of method x to tt. On
Pack and Pack d, ttef(c) and ttef clearly perform better than tt. On the highly
disjunctive instances in AT, ttef(c) and tt are almost balanced whereas tt could
generate better lower bounds on more instances than ttef. The lower bounds’
differences on AT are dominated by the instance st103 4 for which ttef(c) and
ttef retrieved a lower bound improvement of 54 and 53 time periods with re-
spect to tt. Opportunistic extended edge finding ttef+ is beneficial on the highly
disjunctive benchmarks, but can only better tt on Pack.

The more interesting results are presented in Tab. 5 because the best lower
bounds are known for all the remaining open instances (48, 77, 307 in j60, j90,
j120).2 An entry in a column +d shows the number of instances for that the
corresponding method could improve the lower bound by d time periods. On
these instances, we run at first the experiments with a runtime limit of one
minute as it was done in the experiments for TtEf propagation in [34] but
he used a Cp solver without nogood learning. tt could not improve any lower
bound because its corresponding results are already recorded in the PSPLib.
ttef(c), ttef, and ttef+ improved the lower bounds of 59, 183 and 173 instances,
respectively, which is about 13.7%, 42.3% and 40.0% of the open instances.
Although, the experiments in [34] were run on a slower machine3 the results

2 Note that the PSPLib still lists the instances j60 25 5, j90 26 5, j120 8 3,
j120 48 5, and j120 35 5 as open, but we closed the first four ones in [26] and
[19] closed the last one.

3 Intel(R) Core(TM)2 Duo CPU T9400 on 2.53GHz.
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confirm the importance of nogood learning. For the experiments with 10 minutes
runtime, ttef(c), ttef and ttef+ could improve the lower bounds of more instances,
namely 151, 264 and 258 instances, respectively, which is about 35.0%, 61.1%
and 59.7%. Again for the highly disjunctive instances the opportunistic extended
edge finding does not pay off, although interestingly it gives the best results on
j60. Moreover, 3, 1, and 1 of the remaining open instances on j60, j90, and
j120, respectively, could be solved optimally.

5 Conclusion and Outlook

We present explanations for the recently developed TtEf propagation of the
global cumulative constraint for lazy clause generation solvers. These explana-
tions express an energetic reasoning propagation which is a stronger propagation
than the TtEf one.

Our implementation of this propagator was compared to time-table propaga-
tion in lazy clause generation solvers on six benchmark suites. The preliminary
results confirms the importance of energy-based reasoning on highly disjunctive
Rcpsps for Cp solvers with nogood learning.

Moreover, our approach with TtEf propagation was able to close six open
instances. It also improves the best known lower bounds for 264 of the remaining
432 remaining open instances on Rcpsps from the PSPLib.

In the future, we want to integrate the extended edge-finding propagation
into TtEf propagation as it was originally proposed in [34], to perform exper-
iments on cutting and packing problems, and to study different variations of
explanations for TtEf propagation. Furthermore, we want to look at a more
efficient implementation of the TtEf propagation as well as an implementation
of energetic reasoning.
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Abstract. The Golomb Ruler Problem asks to position n integer marks
on a ruler such that all pairwise distances between the marks are distinct
and the ruler has minimum total length. It is a very challenging combi-
natorial problem, and provably optimal rulers are only known for n up to
26. Lower bounds can be obtained using Linear Programming formula-
tions, but these are computationally expensive for large n. In this paper,
we propose a new method for finding lower bounds based on a Lagrangian
relaxation. We present a combinatorial algorithm that finds good bounds
quickly without the use of a Linear Programming solver. This allows us
to embed our algorithm into a constraint programming search procedure.
We compare our relaxation with other lower bounds from the literature,
both formally and experimentally. We also show that our relaxation can
reduce the constraint programming search tree considerably.

1 Introduction

For some positive integer n, let x1, . . . , xn represent the integer positions of n
marks on a ruler. We can assume that xi < xj for all 1 ≤ i < j ≤ n and that
x1 = 0. A Golomb ruler has pairwise distinct distances between the marks, i.e.,
xj − xi for all 1 ≤ i < j ≤ n are distinct. Given n, the Golomb ruler problem
asks to find a Golomb ruler with minimum length xn .

Practical applications of the Golomb ruler problem include radio communi-
cations, X-ray crystallography, coding theory, and radio astronomy [1, 2, 3, 4].
The problem continues to be very difficult to solve in practice, although it is
still unknown whether it is NP-hard. Optimal Golomb rulers are only known
up to n = 26. The optimality of rulers of 24, 25 and 26 marks was proven by
a massively parallel search coordinated by distributed.net/ogr. The 27-mark
search started in March 2009, and as of October 2012, only 65% of this project
is complete.1

The Golomb ruler problem is a popular benchmark for discrete optimization,
and for constraint programming methods in particular (it is problem prob006
in CSPLib). Several exact methods based on constraint programming have been
proposed in the literature, (e.g., [5, 6] ). Other solution methods include al-
gebraic methods (affine and projective plane constructions, [7, 8]), evolutionary

1 See http://stats.distributed.net/projects.php?project_id=27

C. Gomes and M. Sellmann (Eds.): CPAIOR 2013, LNCS 7874, pp. 251–267, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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algorithms [9], and hybrid methods combining constraint programming and local
search [10, 11].

A crucial component of exact solution methods is producing lower bounds,
which appears to be more challenging than providing upper bounds (feasible
rulers). Lower bounds can help to dramatically prune an exhaustive search, but
only if they can be found quickly enough. Lower bounds based on linear pro-
gramming formulations were proposed in [12, 13, 14]. These three formulations
were proved equivalent in [15]. Another bound was discussed in [6] and applied
within a constraint programming approach for solving the problem. This bound
is weaker than the LP bound, but it can be computed more quickly.

In this paper, we propose a new method for producing lower bounds, based
on a Lagrangian relaxation of the problem. We show that our relaxation gener-
alizes the bounds proposed in [6], and can produce a bound that is equivalent
to the LP bound. Furthermore, we present an algorithm that allows solving the
relaxation in O(n2 logn) time for fixed Lagrangian multipliers. This allows us to
efficiently approximate the LP bound using a subgradient optimization method,
and apply our bound within a constraint programming search procedure. We
experimentally demonstrate that in practice our method can produce bounds
almost as strong as the LP bound much faster than existing methods. More-
over, we demonstrate that it can decrease the search tree size up to 91%, which
translates into a solving time reduction of up to 78%.

We note that Lagrangian relaxations have been applied before in the con-
text of CP, see for example [16, 17, 18, 19, 20, 21, 22, 23]. Our results further
strengthen the idea that Lagrangian relaxations are a particularly useful method
from operations research for enhancing the inference process of constraint pro-
gramming. In particular, Lagrangian relaxations can help improve the represen-
tation of integrating arithmetic constraints into the alldifferent constraint, which
is a challenging issue in constraint programming [24].

The rest of the paper is organized as follows. In Section 2 we present formal
models of the Golomb ruler problem. In Section 3 we present the Lagrangian
formulation, our efficient algorithm to solve the relaxation, and the subgradient
optimization method. Section 4 discusses exact methods to solve the Lagrangian
relaxation and relates our formulation to the formulations in [13], [15], and [6].
Section 5 contains the computational results comparing our new formulation
to the formulations in [13] and [14], the current state of the art. In Section 6
we present our search algorithm and demonstrate the benefit provided by the
Lagrangian relaxation bound.

2 Exact Models for the Golomb Ruler Problem

We first present a formal model of the Golomb ruler problem. In the following,
we will assume that the marks take their position from a range {1, . . . , L} for
some appropriate upper bound L.
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Rather than taking the marks x1, . . . , xn to be our variables, we will take the(
n
2

)
-many segment lengths dij := xj − xi to be our variables. Then the Golomb

ruler problem can be expressed as the following constraint programming (CP)
model:

min

n−1∑
k=1

dk,k+1

s.t. alldifferent(d12, d13, . . . , dn−1,n)

dij =

j−1∑
k=i

dk,k+1 for all 2 ≤ i+ 1 < j ≤ n.

(1)

We can alternatively express this CP model as an integer programming (IP)
model, by representing the alldifferent constraint explicitly as a bipartite match-
ing problem. That is, we introduce a vertex set corresponding to the pairs of
marks {(i, j) | 1 ≤ i < j ≤ n}, a vertex set corresponding to the possible lengths
{1, 2, . . . , L}, and we define the complete bipartite graph between these two ver-
tex sets. Clearly, a maximum matching in this graph corresponds to a solution
to alldifferent [25]. For our IP model, we introduce a binary ‘edge’ variable such
that eijv = 1 when the pair (i, j) induces a distance v ∈ {1, . . . , L} and eijv = 0
otherwise. The model thus becomes:

min

n−1∑
k=1

dk,k+1

s.t.

L∑
v=1

eijv = 1 for all 1 ≤ i < j ≤ n,∑
i<j

eijv ≤ 1 for all v = 1, . . . , L,

L∑
v=1

v · eijv = dij for all 1 ≤ i < j ≤ n,

j−1∑
k=i

dk,k+1 = dij for all 2 ≤ i+ 1 < j ≤ n,

eijv ∈ {0, 1} for all 1 ≤ i < j ≤ n, v = 1, . . . , L.

(2)

In this model, the first two constraints represent the bipartite matching. The
third constraint establishes the relationship between the variables eijv and dij .
The fourth is the requirement that each larger segment is made up of the smaller
segments it contains. We note that model (2) corresponds to the formulation
suggested in [12]. We will refer to it as the matching formulation and to its
objective value as zmatching. We will derive our Lagrangian relaxation from this
model.
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3 Lagrangian Relaxation

In this section, we first present the Lagrangian formulation, which provides a
relaxation for any fixed set of Lagrangian multipliers. We then show that each
such relaxation can be solved efficiently. In order to find the best relaxation (cor-
responding to the LP lower bound), we lastly present a subgradient optimization
method that approximates the optimal Lagrangian multipliers.

3.1 Formulation

We create a Lagrangian relaxation from model (2) as follows. For every pair of
non-consecutive marks, that is, for all i, j such that 2 ≤ i + 1 < j ≤ n, we
choose a coefficient λij ∈ R and consider the LP resulting from moving the last
constraint of the matching formulation to the objective function:

min

n−1∑
k=1

dk,k+1 +
∑

i+1<j

λij

(
dij −

j−1∑
k=i

dk,k+1

)

s.t.

L∑
v=1

eijv = 1 for all 1 ≤ i < j ≤ n,∑
i<j

eijv ≤ 1 for all v = 1, . . . , L,

dij =

L∑
v=1

v · eijv for all 1 ≤ i < j ≤ n,

eijv ≥ 0 for all 1 ≤ i < j ≤ n, v = 1, . . . , L.

(3)

In this formulation we do not enforce
∑j−1

k=i dk,k+1 = dij , but we do incur a
penalty, weighted by λij , if we do not satisfy that constraint. Note that the
optimal solution for the matching formulation is still feasible in this relaxation,
and gives the same objective value. Therefore, the optimal value here is at most
zmatching.

We can simplify our model further by rearranging the objective function to
become ∑

i+1<j

λijdij +

n−1∑
k=1

dk,k+1

⎛⎜⎜⎝1−
∑

i≤k<j
i+1�=j

λij

⎞⎟⎟⎠ . (4)

Also, recall that we did not choose λk,k+1 for any k earlier, so let us take

λk,k+1 := 1−
∑

i≤k<j
i+1�=j

λij . (5)
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Then for any fixed (λij) satisfying equation (5), we have the simpler LP:

min
∑
i<j

λijdij

s.t.

L∑
v=1

eijv = 1 for all 1 ≤ i < j ≤ n,∑
i<j

eijv ≤ 1 for all v = 1, . . . , L,

dij =

L∑
v=1

v · eijv for all 1 ≤ i < j ≤ n,

(6)

This is the LP we will refer to as the Lagrangian relaxation, and we will refer to
its objective value as zLR. Note that the dij variables are simply an intermediate

calculation. If we replace the dij in the objective function with
∑L

v=1 v · eijv ,
then we can eliminate the third constraint, and so this LP represents a matching
problem. This ensures that this LP has an integer solution.

Proposition 1. For any fixed (λij) we have zLR ≤ zmatching, and there exists
(λij) for which zLR = zmatching.

Proof. The proposition follows from choosing (λij) to be the dual variables of
the last equation in (2). (see, e.g., [26]). ��

3.2 A Combinatorial Algorithm for Solving the Relaxation

Proposition 2. For any fixed (λij), the Lagrangian relaxation can be solved in
O(n2 logn) time.

Proof. What the Lagrangian relaxation LP actually represents is a matching
problem where we are matching each λij with a number in {1, . . . , L}, and we
are trying to minimize the sum of the product of the pairs. It is clear that if
λij ≥ 0 for all i < j, then to minimize the objective value we must match the
largest λij with 1, the next largest λij with 2, etc. (If we have some λij < 0 then
we will just take dij as large as possible making our objective value −∞.) Thus
our method for solving the Lagrangian relaxation will be as follows.

1 Sort (λij) into decreasing order.

2 Let dij be the location of λij in the sorted list.

Since our algorithm for solving the Lagrangian relaxation reduces to sorting
(
n
2

)
elements, we can solve it in O(n2 logn) time. ��

3.3 Subgradient Optimization Method

In order to find (close to) optimal values for (λij), we designed an iterative
local search scheme similar to subgradient optimization methods as applied in,



256 M.R. Slusky and W.-J. van Hoeve

e.g., [27, 28]. To approximate good values for (λij), recall that λij is a penalty

for not satisfying the constraint
∑j−1

k=i dk,k+1 = dij . Therefore, if we solve the
Lagrangian relaxation and do not satisfy the constraint for pair (i, j), we should
increase the penalty λij . Our algorithm is as follows:

1 Choose initial stepsize

2 Choose initial values for λij with i + 1 < j (for example, all 0)

3 Set λk,k+1 := 1−
∑

i<k<j λij for all k ∈ {1, . . . , n− 1}
4 Repeat until some stopping criterion {
5 Solve the Lagrangian relaxation

6 For each i < j do

7 λij := λij +

(
dij −

j−1∑
k=i

dk,k+1

)
stepsize

n2

8 Adjust stepsize if necessary

9 }

The performance of this algorithm highly depends on the choice and adjustment
of the stepsize parameter. In our implementation, we start with a stepsize of 1
(in line 1). When an iteration results in negative values for some λij , we divide
the stepsize in half to refine the search. Otherwise, after each 5 iterations of
decreasing values for zLR, we multiply the stepsize by 0.999 (line 8).

Unfortunately, this algorithm does not have a natural stopping condition
based on optimality of the solution. In fact, even if we use the optimal (λij)
as initial data, one iteration will return different values. Nevertheless, this algo-
rithm produces very good approximations of zmatching very quickly, as we will
see in Section 5.

4 Relationship with Other Formulations

In this section we investigate the relationship of our Lagrangian relaxation with
other, existing, formulations for obtaining lower bounds. Throughout this section

we will use λ to mean (λij) ∈ R(
n
2); S(n2)

to be the set of all permutations of the

numbers {1, 2, . . . ,
(
n
2

)
} indexed by pairs (i, j) with i < j; σ = (σij) ∈ S(n2)

; and

λ · σ =
∑

1≤i<j≤n λijσij .

4.1 Permutation Formulation

Our goal in the last section was

min
σ

λ · σ
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for a fixed λ, because this gives us a lower bound for the length of a Golomb
ruler. However, our overall goal is to strengthen this bound, that is

max
λ

min
σ

λ · σ

or, expressed as an LP,

max z

s.t.
∑

i≤k<j

λij = 1 for all k = 1, . . . , n− 1,

z ≤
∑
i<j

λij · σij for all σ ∈ S(n2)
.

(7)

We will refer to this model as the permutation formulation. This formulation
was also given in [13] and [15].

The correspondence between model (7) and our Lagrangian relaxation is that
by solving model (7) we obtain optimal values for λ with respect to the La-
grangian relaxation, and both models will provide the same objective value.
Unfortunately, solving the permutation model directly is non-trivial; we have
about

(
n
2

)
! constraints. However, we can apply Proposition 2 to solve it more

quickly. We will iterate solving model (7) for a subset of constraints C ⊂ S(n2)
:

max z

s.t.
∑

i≤k<j

λij = 1 for all k = 1, . . . ,m− 1,

z ≤
∑
i<j

λij · σij for all σ ∈ C.

(8)

Our algorithm is as follows:

1 Choose any initial C

2 Solve (8) and let z be the objective value

3 Sort λ into decreasing order

4 For i < j let σij = (the position of λij in sorted order)

5 If (z = λ · σ)
6 Then terminate

7 Else {
8 C := C ∪ {σ}
9 Goto 2

10 }

The sorting algorithm and the restricted permutation model provide lower and
upper bounds, respectively; optimality is proved when these bounds meet (line
5). This can serve as a systematic alternative approach to our local search.
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4.2 Equation Sums Bound

We next study the relationship of the Lagrangian relaxation with the lower
bounds proposed in [6]. For this, we consider the constraint

∑
i≤k<j λij = 1 in

models (7) and (8). We assign a coefficient λij to each segment of the ruler, but
why should we have them summing to 1 in this way? Before we answer that
question, we recall the lower bounds given in [6] by illustration with an example.

Let n = 5, for which the length of the ruler is given by d15. If we want to
bound d15, we can first divide this segment into sub-segments in different ways:

d15 = d12 + d23 + d34 + d45

d15 = d13 + d35

d15 = d12 + d24 + d45

Multiplying each equation by 1
3 and adding them together gives

d15 =
2

3
(d12 + d45) +

1

3
(d23 + d34 + d13 + d24 + d35) .

Since all these numbers will be distinct naturals, we get

d15 ≥
2

3
(1 + 2) +

1

3
(3 + 4 + 5 + 6 + 7)

d15 ≥ 10.333

There are, of course, many ways we can write out d1n as a sum of smaller
segments, and [6] proposes some heuristics. We will refer to bounds of this form
as equation sums bounds. Another option we have is to weight the equations
differently. For example, we could have given the first two equations weights of
0.4 and the last equation a weight of 0.2 instead of giving them all a weight of
1
3 . This would result in the equation

d15 = 0.6(d12 + d45) + 0.4(d23 + d34 + d13 + d35) + 0.2(d24)

and the corresponding bound

d15 ≥ 0.6(1 + 2) + 0.4(3 + 4 + 5 + 6) + 0.2(7)

d15 ≥ 10.4

We will refer to bounds of this form as generalized equation sums bounds.

Proposition 3. The generalized equation sums bounds are equivalent to zLR for
an appropriate choice of λ.

Proof. The weights of the equations in the generalized equation sums bound
must always be distributed so that they sum to 1. This way d1n always gets a
coefficient of 1, and we always end up with a bound of the form d1n ≥

∑
μijdij

for some coefficients μij . Note that in each equation for each k = 1, . . . , n − 1,
there is some term that encapsulates the segment (k, k + 1). That is, there is
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some dij such that i ≤ k < j. Since the weights on each equation sum to one,
the coefficients that encapsulate the pair (k, k + 1) should sum to 1. That is:∑

i≤k<j μij = 1. Then to find the minimum value of
∑

i<j dijμij we simply sort
(μ) into decreasing order and assign each dij the corresponding value. This is
precisely what we did in Proposition 2. ��
This shows that although the bound from [6] is weaker than the LP bound, it
can be generalized to be as strong as the LP bound, and it gives a nice intuition
for our constraint on λ.

5 Computational Results for Approximating the LP
Bound

The purpose of our experimental results is twofold. First, we would like to gain
insight in the performance of our approximate local search scheme relative to the
systematic iterative scheme based on the permutation formulation for solving the
Lagrangian relaxation. Second, we wish to evaluate our Lagrangian relaxation
with the state of the art for solving the LP relaxation.

5.1 Subset Formulation

The current fastest method for solving the LP relaxation for the Golomb ruler
problem was proposed by [15]. It is based on the following formulation of the
lower bound, proposed in [14]. Let S = {(i, j) : i < j}.

min d1n

s.t.

j−1∑
k=i

dk,k+1 = dij for all 1 ≤ i < j ≤ n,

∑
(i,j)∈R

dij ≥
1

2
|R| · (|R|+ 1) for all R ∈ P(S).

(9)

We will call this the subset formulation. Again, this LP is too big to solve as

stated since it has O(2(
n
2)) constraints. However, [15] proposes an iterative solv-

ing method in which we only include the second constraint above for some subset
T ⊂ P(S).
1 Let T = {{i} : 1 ≤ i ≤ n} ∪ {{1, . . . , n}}
2 Solve (9)

3 Sort (dij)

4 For 1 ≤ k ≤
(
n
2

)
{

5 Let T = {(i, j) : dij is in within the first k positions}
6 If (

∑
(i,j)∈T dij <

(
k
2

)
) then

7 T := T ∪ {T }
8 }
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This approach is the currently best known algorithm for finding the LP bound,
and we will compare our proposed algorithm to this.

5.2 Implementation and Results

We implemented the Lagrangian relaxation and the subgradient method in C++,
following the description in Section 3.3. It was run using C++ on an Intel core
i3 processor (2.13 GHz). The times reported are the number of seconds elapsed
between when the program started running and when that lower bound was
found.

We implemented both the subset formulation and the permutation formula-
tion in AIMMS. The AIMMS implementations were run on the same Intel core
i3 processor. The times reported are the sums of the solve times for each call to
CPLEX, i.e., we eliminate the overhead that AIMMS may add).

We ran the cases n = 30, 40, 50, and 60 to completion, and n = 130 for 600
seconds. In each case we can see from the figures that although the Lagrangian
relaxation does not achieve the LP bound, it gets close to it before the subset
formulation does. We also show, for reference, the constant functions y = UB,
where UB is the best known upper bound (length of the shortest known ruler2)
and y = LB where LB is the value of the LP bound (the final value of z in all
our formulations).
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Fig. 1. Speed comparison between the permutation, subset, and Lagrangian formula-
tions. How quickly can each find the lower bound when n = 30?

2 See http://www.research.ibm.com/people/s/shearer/grtab.html for the list of
shortest known rulers.

http://www.research.ibm.com/people/s/shearer/grtab.html
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Fig. 2. Speed comparison between the subset and Lagrangian formulations. How
quickly can each find the lower bound when n = 40?

6 CP Implementation

We implemented a CP search program that, given n and L, finds all n-mark
Golomb rulers of length L. It is implemented as a set constraint problem [29]
concerning two set variables: X , the set of marks in the ruler, and D, the set
of distances measured by the ruler. We apply the standard subset + cardinality
domain ordering, whereby we maintain a lower bound of mandatory elements
(denoted by X− and D−) and an upper bound of possible elements (denoted by
X+ and D+). Our constraints are as follows.

X = {x1, x2, . . . , xn} ∈ [{0, L}, {0, . . . , L}]
|X | = n
D ∈ [{L}, {1, . . . , L}]
|D| =

(
n
2

)
d ∈ D ⇐⇒ ∃xi, xj ∈ X s.t. xj − xi = d
x2 − x1 < xn − xn−1

(10)

Our branching procedure is described in Figure 6. Line 18 ensures that between
any ruler and its mirror image only one is found by this program, reflecting the
last constraint in model (10).

The search strategy considers each distance d ∈ {1, . . . , L} in decreasing order
and decides where and if d will be measured in the ruler.

Proposition 4. If we have already decided if and where to measure the lengths
{d + 1, . . . , L}, and we have not decided if and where to place d, then the only
place d can be measured is from 0 to d or from L− d to L.
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1 define branch(X− , X+, D−, D+){
2 if (|X−| = n)

3 return X−

4 if (|D+| <
(
n
2

)
)

5 return 0

6

7 D− := {xj − xi : xi, xj ∈ X−}
8 for (x ∈ X− and d ∈ D−){
9 if(x − d ∈ X+ \ X−)

10 X+ := X+ \ {x − d}
11 if(x + d ∈ X+ \ X−)

12 X+ := X+ \ {x + d}
13 }
14 for (x, y ∈ X− with x ≡ y mod 2)

15 X+ := X+ \ {x+y
2

}
16

17 d+ := max(D+ \ D−)

18 if (|X−| > 2)

19 if (d+ ∈ X+ \ X−)

20 branch(X− ∪ {d+}, X+, D−, D+)

21 X+ := X+ \ {d+}
22 if (L − d+ ∈ X+ \ X−)

23 branch(X− ∪ {L − d+},X+, D−, D+)

24 X+ := X+ \ {L − d+}
25 branch(X− , X+, D−, D+ \ {d+})
26 }

Fig. 6. Our branching algorithm for finding Golomb Rulers
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Table 1. The performance of the CP search (baseline), the Lagrangian relaxation
applied at a third of the search nodes (LR1), and the Lagrangian relaxation applied at
each search node (LR2). C or F denotes whether we are reporting the time/nodes to
program Completion or the time/nodes to Find a ruler. We report the total number of
search nodes and the solving time in seconds.

baseline LR1 LR2
n L C/F nodes time nodes time nodes time

10 54 C 60,554 0.51 10,377 0.15 4,984 0.11
10 55 F 4,492 0.04 4,179 0.07 3,512 0.07

11 71 C 2,993,876 27.09 2,402,590 28.45 2,055,429 37.29
11 72 F 5,581 0.05 5,412 0.08 5,343 0.11

12 84 C 10,298,716 103.62 4,143,356 57.40 2,773,734 59.04
12 85 F 7,103,301 70.84 5,618,338 76.41 4,698,798 96.17

13 105 C 445,341,835 4782 323,717,500 5533 273,340,407 6618
13 106 F 205,714,305 2187 191,016,739 3309 177,429,879 4278

Proof. Without loss of generality, suppose there is x, x + d ∈ X+ with 0 < x <
L− d. Then since we have decided if and where to place the distance x+ d, and
we know 0 will be a mark in our ruler, we already know whether we are including
the mark x + d. Similarly, since d < L − x, we already know if and where we
are including the distance L− x and since we are including the mark L, we also
know whether we are including the mark x. If we had decided to include both x
and x+ d, then we would not need to decide on the distance d. Thus if d is the
largest distance we have not decided whether or not to include, we only need to
consider three possibilities: the mark d is in the ruler, the mark L − d is in the
ruler, or the distance d is not measured by the ruler. ��

We ran three programs to test our algorithm, and the results are in Table 1.
The baseline program just calls the procedure above. The other two programs
start by running 2000 iterations of our subgradient optimization procedure, thus
fixing our values for λ, and then call a modified version of the branch procedure,
which, at line 7, uses proposition 2 to check if we have violated the LP bound.
LR1 performs this check when |X−| ≡ 1 mod 3, and LR2 performs this check at
every node.

Our algorithm always reduces the size of the search tree, sometimes by as
much as 91% as in Table 2. The Lagrangian relaxation does not appear to speed
up the algorithm when we are searching for a ruler, but it can speed up the
algorithm when we are trying to prove a ruler does not exist. Interestingly, it
appears the strength of this method is correlated with the strength of the LP
bound.
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Table 2. Percent improvement of the Lagrangian relaxation applied at a third of the
search nodes (LR1) and at each search node (LR2) over the CP search (baseline). C
or F denotes whether we are reporting the time/nodes to program Completion or the
time/nodes to Find a ruler. We also provide, for reference, the strength of the LP

bound as LB
UB

= LP bound
Optimal Ruler Length

.

LR1 LR2
n L C/F LB

UB
nodes time nodes time

10 54 C 98% 82% 70% 91% 78%
10 55 F 98% 6% -75% 21% -75%

11 71 C 93% 19% -5% 31% -37%
11 72 F 93% 3% -60% 4% -120%

12 84 C 96% 59% 44% 73% 43%
12 85 F 96% 20% -7% 33% -35%

13 105 C 92% 27% -15% 38% -38%
13 106 F 92% 7% -51% 13% -95%

7 Conclusion

We have presented a new way to approximate the LP bound for Golomb Rulers.
We have demonstrated its relationship to existing methods, and shown that we
can compute the LP bound much faster using combinatorial methods.

We then used this fast computation in a search procedure, demonstrating that
we can use this bound to reduce the size of the search tree and, in cases where
the LP bound is strong enough, reduce the search time as well.
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Abstract. Functional relations are ubiquitous in combinatorial problems – the
Global Constraint Catalog lists 120 functional constraints. This paper argues that
the ability to express functional constraints with functional syntax leads to more
elegant and readable models, and that it enables a better translation of the models
to different underlying solving technologies such as CP, MIP, or SAT.

Yet, most modelling languages only support built-in functions, such as arith-
metic, Boolean, or array access operations. Custom, user-defined functions are
either not catered for at all, or they have an ad-hoc implementation without a
useful semantics in Boolean contexts and not exploiting potential optimisations.

This paper develops a translation from MiniZinc with user-defined functions
to FlatZinc. The translation respects the relational semantics of MiniZinc, cor-
rectly dealing with partial functions in arbitrary Boolean contexts. At the same
time, it takes advantage of the full potential of common subexpression
elimination.

1 Introduction

Functions are ubiquitous in models of combinatorial problems. They appear in
arithmetic expressions, array accesses, expressions over sets of variables, or more com-
plicated relations such as sorting or channeling. While it is always possible to ex-
press a functional dependency as a relational constraint, standard functional notation
makes models more elegant, concise, and self-documenting. Furthermore, functional
constraints are the main source of common subexpressions, which can be detected and
eliminated from the model to improve solving performance.

Yet, most constraint modelling languages only provide a restricted set of built-in
functions, e.g. for arithmetic expressions. It is either impossible for users to define their
own functions, or one must resort to functions as present in the host language that the
modelling language is embedded in. The latter, however, means that the semantics of
functions is dictated by the host language, and in the case of partial functions, this al-
most certainly clashes with the logical semantics one would expect from the constraint
model. Using host language functions also prevents the detection of common subex-
pressions and the corresponding optimisations.

Solver independent modelling languages need powerful abstraction facilities in or-
der to encode how models are mapped to the form required by an underlying solver.
The MiniZinc [11] compiler translates a model together with the instance parameters

C. Gomes and M. Sellmann (Eds.): CPAIOR 2013, LNCS 7874, pp. 268–283, 2013.
© Springer-Verlag Berlin Heidelberg 2013
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to FlatZinc, a lower-level language understood by many solvers. To specialise the gen-
erated FlatZinc for a particular solver, the compiler uses a library of solver-specific
constraint decompositions. The addition of functions, with common subexpression elim-
ination, makes the encoding of solver-specific translations much more powerful.

This paper introduces an extension to the MiniZinc modelling language that adds
support for user-defined functions, respecting the relational semantics of the language,
and taking full advantage of potential optimisations. The contributions of this paper are:

– An extension to MiniZinc to support user-defined functions and constraints in let
expressions.

– The first algorithmic description of the translation from MiniZinc (with functions)
to FlatZinc. Keeping FlatZinc unchanged means that any solver that can interpret
FlatZinc can take advantage of the improved modelling features.

– The introduction of totality annotations and a schema for defining partial functions
that makes user-defined functions more flexible and efficient.

Partial Functions and the Relational Semantics. Partial functions are undefined on
some inputs. The relational semantics [5] of MiniZinc regards a partial function as
special notation for a relation, which when applied to a value outside its domain makes
its surrounding Boolean context false.

Let us have a look at the partial function div, which expresses integer division and
requires the divisor to be non-zero. Consider the following simple constraint:

constraint y != 0 -> (x div y) + z = 0;

The relational semantics demands that x = 0,y = 0,z = 0 is a solution of the problem,
because the partiality of div is confined to its Boolean context, the right-hand side of
the implication. This means that we cannot simply decompose constraints by introduc-
ing auxiliary variables for intermediate results:

var int: tmp;
constraint tmp = x div y;
constraint y != 0 -> tmp + z = 0;

This formulation lifts the partiality of div to the top level, so that y = 0 is ruled out by
propagation of the div constraint, and x = 0,y = 0,z = 0 is no longer a solution of the
problem. This simple decomposition gives the strict semantics [5], as implemented e.g.
in SICStus Prolog and OPL. But this is not usually what modellers require – indeed the
example was written specifically to guard against the case that y = 0.

Clearly, user-defined functions should respect the same relational semantics as the
built-ins. Any function that constrains its arguments must be considered partial.

Common Subexpression Elimination. A widely used optimisation for programming
languages in general and constraint modelling in particular is common subexpression
elimination (CSE). A compiler detects when the same expression (modulo some equiv-
alences) appears several times in a model, and automatically keeps only one of these
expressions, replacing all others by a reference to it. For example, the division in the
following code occurs twice:



270 P.J. Stuckey and G. Tack

constraint (x div y) + a = 0;
constraint b * (x div y) = c;

So an equivalent model would hoist the division to the top level:

var int: tmp = x div y;
constraint tmp + a = 0;
constraint b * tmp = c;

User-defined functions increase the potential for automatic CSE because they intro-
duce syntactic equalities. One could introduce and detect the same equalities without
functional notation, by e.g. annotating “functional predicates”. However, this would not
simplify the translation presented in section 5 that performs CSE while maintaining the
relational semantics, but it would make the syntax much less convenient.

CSE is particularly effective if the function definition is complex, it introduces ad-
ditional variables, or its constraints are expensive to propagate. CSE also makes the
abstraction facilities in a language more useful, as common subexpressions will be
detected across different functions.

2 Adding Functions and Local Constraints to MiniZinc

We extend MiniZinc by adding functions, using the Zinc [10] syntax for functions. The
other important extension to MiniZinc, not currently supported by Zinc, is to allow
constraints to occur inside let constructs.

The most basic form of user-defined functions would be a simple macro mechanism
that can be used to define abbreviations for functional compositions. For instance, we
could define a function for the Manhattan distance between two points as

function var int: manhattan(var int:x1, var int:y1,
var int:x2, var int:y2) =

abs(x2 - x1) + abs(y2 - y1);

Such a macro mechanism would be useful by itself and straightforward to imple-
ment; both CSE and the relational semantics would be ensured by the translation of
primitive functions. However, as soon as we permit let expressions that introduce new
variables and constraints in the function body, we have to define how these are translated
in reified contexts. This is the main contribution of this paper.

Suppose we wished to add a sqr function to MiniZinc that squares its argument.1

While we could do this without using local variables

function var int: sqr(var int:x) = x * x;

we can make the model propagate stronger using the following definition

function var int: sqr(var int: x) =
let { var int: y = x * x; constraint y >= 0 } in y;

which explicitly adds that the result is non-negative.

1 This does not preclude solvers from using a more efficient built-in version of sqr, as they can
simply override the standard definition in their solver-specific MiniZinc library.
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Note that we assume that functions defined in MiniZinc are indeed pure (always give
the same answer for each input). It is certainly possible to write impure functions:

function var int: f(var int:x) = let { var 0..1: b } in b*x;

We consider this a modelling error – non-functional relations like this must be expressed
using predicates in MiniZinc. As purity analysis is difficult, our implementation does
not enforce purity but results in undefined behaviour of impure functions. We plan to
investigate a simple but incomplete purity analysis in future work.

3 Using Functions

In this section we illustrate the modelling possibilities that arise from the introduction
of user-defined functions.

Big Data. The bigger the data sets involved, the more crucial it is to get common subex-
pression elimination. The motivating example that made us add functions to MiniZinc
arose from modelling data mining problems [7].

An item set mining problem consists of a large data base of transactions TDB, which
is a list of sets of items (e.g., items that were bought together in one transaction from a
supermarket). Each transaction has an integer identifier.

An important concept in item set mining is the cover of an item set, the set of labels
of transactions in which the item set occurs. It can be defined naturally as a function:

function var set of int: cover(var set of int: Items,
array[int] of set of int: TDB) =
let { var set of index_set(TDB): Trans;

constraint forall (t in index_set(TDB)) (
t in Trans <-> Items subset TDB[t])

} in Trans;

Constraints involving the cover could restrict its size to at least k (frequent item set
mining), or require item sets to be closed (i.e., maximal).

With TDB being a huge data base, it would have a catastrophic impact on translation
and solver performance if we did not get CSE for different calls to cover. Without
support for functions, we can only lift out the definition of cover, performing CSE by
hand. The result is a much less readable model, and indeed a loss in compositionality,
as predicates that use cover can no longer be defined in a self-contained way.

Functional Global Constraints. The global constraint catalog [3] lists 120 constraints
(almost a third) as functional in nature, such as cycle, change, common, distance,
global_cardinality, graph_crossing, indexed_sum, path.

We can define functional versions that map to the global constraints, which yields
natural models and gives the MiniZinc compiler important hints for performing com-
mon subexpression elimination.

In a model for the Warehouse Location Problem (CSPLib 034) we need to constrain
the number of stores supplied by each warehouse. We can use the global constraint
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count(x, i,c) which constrains c to be the number of times that the value i appears in
the array x. Assuming an array supplier mapping each store to its supplying ware-
house, the function inUse(i) returns the number of stores supplied by warehouse i.

function var int: inUse(int: i) =
let { var int: use;

constraint count(supplier,i,use) } in use;
constraint forall (i in index_set(supplier))

( inUse(i) <= capacity[i] );

Using MiniZinc functions we do not have to introduce auxiliary variables or perform
CSE by hand in our model.

In recent work on reifying global constraints [2], functional global constraints play
a key role, as they permit decomposition of globals into a functionally defined part that
need not be reified, and a part that is easy to reify. User-defined functions make these
techniques immediately accessible in MiniZinc.

Functional Tables. A convenient way to model an ad-hoc partial function is using a
table constraint, but doing so hides the fact that the constraint is functional.

The following model fragment defines a partial function partner using a list of
pairs pairs. This is used in a complex constraint (with common subexpressions).

array[1..10] of var 1..10: p;
array[1..10] of var bool: notused;
array[1..2][1..6] of int: pairs =

[ 1, 4 | 2, 1 | 5, 1 | 7, 10 | 8, 3 | 10, 2 ];
function var int: partner(var int:x) =

let { var int: r;
constraint table([x,r], pairs) } in r;

constraint forall(i in 1..10)( notused[i] \/
partner(p[i]) > i \/ partner(partner(p[i])) > i );

The function definition allows the MiniZinc compiler to detect the common subex-
pressions, and the user can simply use the partial function as they intended. Note that
partner creates a new variable and a table constraint in a reified context. Without
functions, CSE as well as guarding for partiality has to be performed manually:

constraint forall(i in 1..10)(
let { var int: p_pi;

var int: p_p_pi;
var bool: b1 = table([p[i],p_pi],pairs);
var bool: b2 = table([p_pi,p_p_pi], pairs);

} in notused[i] \/ (b1 /\ p_pi > i) \/
(b1 /\ b2 /\ p_p_pi > i));

This manual approach is not compositional. MiniZinc encourages the use of predi-
cate definitions, which is incompatible with manual, whole-program CSE.
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Solver Specific Translation / Channelling. Solver independent models in MiniZinc
are translated to solver-specific versions using custom predicate definitions. In many
cases these definitions need to introduce new variables that are functionally defined in
terms of the original variables. We can use functions to make this straightforward and
automatically achieve CSE if the translation is required more than once.

Consider the mapping of not equals for an integer programming solver. We can de-
fine a function int2array01 such that int2array01(x)[i]=1 iff x=i. Using this
function, the not equals constraint is straightforward to define:2

predicate int_neq(var int: x, var int:y) = let {
array[int] of var 0..1: bx = int2array01(x);
array[int] of var 0..1: by = int2array01(y);

} in forall(i in max(lb(x),lb(y))..min(ub(x),ub(y)))
(bx[i] + by[i] <= 1);

Crucially, CSE guarantees that for any integer variable, at most one array of 01 vari-
ables is created, so that we get an efficient translation of constraints that share vari-
ables such as int_neq(x,y) /\ int_neq(x,z). Without functions, an efficient
abstraction like int_neq would not be possible, and the user would be required to
carefully avoid introducing common subexpressions while modelling.

The above encoding generalises easily to the alldifferent constraint on an array of
variables. We can use similar mechanisms for translating integer and set models for
SAT solvers, and for channelling constraints between two different viewpoints of a
model, such as a set-based model and a Boolean model where for each set variable x
we introduce an array of Boolean variables b such that i ∈ x⇔ b[i].

Simplifying MiniZinc Translation. Once we have generic methods for handling func-
tions, many of the built-in functions in MiniZinc can be simply treated as library func-
tions. We can then use the generic translation to FlatZinc. This simplifies the translation
and makes it more transparent and adaptable.

Consider the built-in abs function. We can remove it from MiniZinc and add the
following library definition.

function var int: abs(var int: x) =
let { var int: y; constraint int_abs(x,y) } in y;

The handling of this function will automatically create the FlatZinc constraintint_abs
for any absolute value expressions.3 Built-in functions that can be relegated in this way
include: the trigonometric functions, their inverses and hyperbolic versions, exponenti-
ation and logarithms, amongst others.

4 Partial and Total Functions and Negation

Negative Boolean contexts require particular care in constraint programming systems
with local variables. Consider

2 The lb and ub functions return a guaranteed lower and upper bound of a variable (usually the
bound declared in the model).

3 To be used in all contexts it needs to be annotated as total as explained in the next section.
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function var int: evendiv2(var int: x) =
let { var int: y; constraint x = 2*y } in y;

constraint not evendiv2(x)=1;

A logical interpretation would be ¬∃y.x = 2× y∧ y = 1 or ∀y.x 	= 2× y∨ y 	= 1.
However, we cannot easily express universal quantification, and a naive translation of
the above (simply ignoring the universal quantifier) would produce the following:

var int: y;
constraint not (x = 2*y /\ y = 1);

This does not have the desired semantics, as it permits for example the solution
x = 2,y = 3, although x = 2 clearly should not be a solution. MiniZinc (and Zinc)
therefore consider models illegal that contain let expressions in a negative context
which introduce non-functionally defined variables (like y in the above example).

The upshot of this is that user-defined functions become almost useless in negative
contexts, since interesting functions can usually only be defined by introducing new
variables (as in most of our examples). The following technique avoids this problem.

Totality Annotations. Functions with local variables can be used safely in negative
contexts if they are total, that is they are defined on all their inputs. Consider the fol-
lowing example:

function var int: g(var int: x) :: total =
let { var int: y;

constraint (x > 0) -> y = x;
constraint (x <= 0) -> y = 10-x

} in y;
var -10..10: u;
constraint not g(u) = 5;

Even though syntactically y is not functionally defined by the function, it is semanti-
cally. It is safe to translate the last line as

var int: y = g(u); % evaluate g in root context
constraint not y = 5; % only negate the equality

To allow the user to declare total functions, we introduce the annotation total
which can be added to function definitions as seen above. The annotation total promi-
ses that the function is total for all uses, and that it does not constrain its arguments. The
function will be translated in the root context, which means that free variable definitions
are allowed. If a user annotates a function as total that is in fact partial, this effectively
results in the function being translated according to the strict semantics. We do not, at
this point, attempt to detect incorrect totality annotations automatically.

Recipe for Partial Functions. Totality annotations enable us to define some partial
functions that introduce variables, by following a simple recipe. Assume that we want
to implement a partial function f (x), and that we can express its domain of definition
by a constraint c(x) that does not introduce any free variables. Then
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1. create a total extension f ′ such that f ′(x) = f (x) if c(x), and f ′(x) = 0 otherwise.
We annotate f ′ as ::total, so it can introduce arbitrary free variables.

2. create a partial guard function g(x) = let { c(x) } in f ′(x) ;

Consider for example evendiv2 as defined above. It can be rewritten as

function var int: evendiv2(var int: x) =
let { constraint x mod 2 = 0 } in safe_ed2(x);

function var int: safe_ed2(var int: x) :: total =
let { var int: y;

constraint x mod 2 = 0 -> x = 2*y;
constraint not (x mod 2 = 0) -> y = 0} in y;

Now evendiv2 is a partial function, but does not introduce variables which are not
functionally defined, and safe_ed2 is a total function, which is the same as the origi-
nal evendiv2 when x mod 2 = 0. The constraint not evendiv2(x)=1 now trans-
lates as

var int: y;
constraint safe_ed2(x)=y;
constraint not (x mod 2 = 0 /\ y = 1);

Now x = 2 enforces y = 1, so the negation fails and only correct solutions are returned.
We use the same mechanism for the translation of built-in partial functions div and

array access, assuming built-in total functions safediv and safeelement.
If we can express the implicit constraint c(x) of a partial function on its input argu-

ments without introducing new variables, we can freely use the partial function in any
context. Of course, for some functions, c(x) may be difficult to express, so this mecha-
nism is no general solution to the problem. This is not surprising, as otherwise we could
translate models with arbitrary quantifiers efficiently to MiniZinc.

5 Translation to FlatZinc

Constraint problems formulated in MiniZinc are solved by translating them to a simpler,
solver-specific subset of MiniZinc, called FlatZinc. This section shows how to translate
our extended MiniZinc to FlatZinc.

The complexities in the translation arise from the need to simultaneously (a) unroll
array comprehensions (and other loops), (b) replace predicate and function applications
by their body, and (c) flatten expressions.

Once we take into account CSE, we cannot perform these separately. In order to
have names for common subexpressions we need to flatten expressions. And in order to
take advantage of functions for CSE we cannot replace predicate and function applica-
tions without flattening to generate these names. And without replacing predicate and
function application by their body we are unable to see all the loops to unroll.

The translation algorithm presented below generates a flat model equivalent to the
original model as a global set of constraints S. We ignore the collection of variable dec-
larations, which is also clearly important, but quite straightforward. The translation uses
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full reification to create the model. It can be extended to use half reification [4], but we
omit this for space reasons. Common subexpression elimination is implemented using
a technique similar to hash-consing in Lisp [1]. For simplicity we only show syntac-
tic CSE, which eliminates expressions that are identical after parameter replacement.
The extension to semantic CSE, using commutativity and other equivalences, is well
understood (see [12] for a detailed discussion) but makes the pseudo-code much longer.

MiniZinc Syntax. Below is a grammar for a subset of MiniZinc as it currently stands,
with enough complexity to illustrate all the main challenges in extending it to include
functions. The cons nonterminal defines constraints (Boolean terms), term defines in-
teger terms, barray defines Boolean arrays, and iarray defines integer arrays:

cons → true | false | bvar | term relop term
→ not cons | cons /\ cons | cons \/ cons | cons -> cons | cons <-> cons
→ forall barray | exists barray | barray[term]
→ pred(term, . . . , term ) | if cons then cons else cons endif
→ let { decls } in cons

term → int | ivar | term arithop term | iarray[term] | sum iarray
→ if cons then term else term endif
→ let { decls } in term

barray → [ cons, . . . , cons ] | [ cons | ivar in term .. term ]
iarray → [ term, . . . , term ] | [ term | ivar in term .. term ]

The grammar uses the symbols bvar for Boolean variables, relop for relational oper-
ators { ==, <=, <, !=, >=, > }, pred for names of predicates, int for integer constants,
ivar for integer variables, and arithop for arithmetic operators { +, -, *, div }.

In the let constructs we make use of the nonterminal decls for declarations. We de-
fine this below using idecl for integer variable declarations, bdecl for Boolean variable
declarations. We also define args as a list of integer variable declarations, an item item
as either a predicate declaration or a constraint, items as a list of items, and a model
model as some declarations followed by items. Note that ε represents the empty string.

idecl → int: ivar | var int: ivar | var term .. term : ivar
bdecl → bool: bvar | var bool: bvar
decls → ε | idecl; decls | idecl = term; decls | bdecl; decls | bdecl = cons; decls
args → var int: ivar | var int: ivar , args | int: ivar | int: ivar , args
item → predicate pred( args) = cons; | constraint cons;

items → ε | item items
model → decls items

To simplify presentation, we assume all predicate arguments are integers, but the
translation can be extended to arbitrary arguments in a straightforward way.

To introduce functions in MiniZinc, the grammar above is modified as follows. We
add a new item type for functions (again for simplicity all arguments are assumed to be
integers). We change the form of the let construct for both constraints and terms to
allow optional constraints (ocons).
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item → function var int : func( args ) = term ;
cons → let { decls ocons } in cons
term → let { decls ocons } in term

ocons → ε | ; constraint cons ocons

Further Notation. Given an expression e that contains the subexpression x, we denote
by e[[x/y]] the expression that results from replacing all occurrences of subexpression x
by expression y. We will also use the notation for multiple simultaneous replacements
[[x̄/ȳ]] where each xi ∈ x̄ is replaced by the corresponding yi ∈ ȳ.

Given a cons term defining the constraints of the model we can split its cons sub-
terms as occurring in different kinds of places: root contexts, positive contexts, negative
contexts, and mixed contexts. A Boolean subterm t of constraint c is in a root context iff
there is no solution of c[[t/ false]], that is c with subterm t replaced by false.4 Similarly,
a subterm t of constraint c is in a positive context iff for any solution θ of c then θ
is also a solution of c[[t/ true]]; and a negative context iff for any solution θ of c then
θ is also a solution of c[[t/ false]]. The remaining Boolean subterms of c are in mixed
contexts. While determining contexts according to these definitions is hard, there are
simple syntactic rules which can determine the correct context for most terms, and the
rest can be treated as mixed. Consider the constraint expression

constraint x > 0 /\ (i <= 4 -> x + bool2int(b) = 5);

then x > 0 is in the root context, i≤ 4 is in a negative context, x+bool2int(b) = 5 is
in a positive context, and b is in a mixed context.

Flattening Constraints. Flattening a constraint c in context ctxt, flatc(c,ctxt), returns a
Boolean literal b representing the constraint and as a side effect adds a set of constraints
(the flattening) S to the store such that S |= b⇔ c.

It uses the context (ctxt) to decide how to translate, where possible contexts are: root,
at the top level conjunction; pos, positive context, neg, negative context, and mix, mixed
context. We use the context operations + and − defined as:

+root = pos
+pos = pos

+neg = neg,
+mix = mix

−root = neg
−pos = neg

−neg = pos,
−mix = mix

Note that flattening in the root context always returns a Boolean b made equivalent
to true by the constraints in S. For succinctness we use the notation new b (new v) to
introduce a fresh Boolean (resp. integer) variable and return the name of the variable.

The Boolean result of flattening c is stored in a hash table, and reused if an identical
constraint expression is ever flattened again. If the context for an expression e is root,
the result of a successful hash should be true. If we have a common subexpression e
in another context, then since it is true at the root it is true there. If we first meet the
expression e in a non-root context and later meet expression e at the root, we simply
need to set the Boolean created for the first met version to true. This is the role of the
addition to S on the first line of flatc. Note that in this simplified presentation, if an
expression introduces a fresh variable and it appears first in a negative context and only

4 For the definitions of context we assume that the subterm t is uniquely defined by its position
in c, so the replacement is of exactly one subterm.
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later in the root context, the translation aborts. This can be fixed in a preprocessing step
that sorts expressions according to their context.

The flattening proceeds by evaluating fixed Boolean expressions and returning the
value. We assume fixed checks if an expression is fixed (determined during MiniZinc’s
type analysis), and eval evaluates a fixed expression. For simplicity of presentation, we
assume that fixed expressions are never undefined (such as 3 div 0).

For non-fixed expressions we treat each form in turn. Boolean literals and variables
are simply returned. Basic relational operations flatten their terms using the function
flatt, which for a term t returns a tuple 〈v,b〉 of an integer variable/value v and a Boolean
literal b such that b ⇔ (v = t) (described in detail below). The relational operations
then return a reified form of the relation. The logical operators recursively flatten their
arguments, passing in the correct context. The logical array operators evaluate their
array argument, then create an equivalent term using foldl and either /\ or \/ which is
then flattened. A Boolean array lookup flattens its arguments, and creates a safeelement
constraint (which does not constrain the index variable) and Boolean b′′ to capture
whether the array lookup was safe. Built-in predicates abort if not in the root context.
They flatten their arguments and add an appropriate built-in constraint. User defined
predicate applications flatten their arguments and then flatten a renamed copy of the
body. if-then-else evaluates the condition (which must be fixed) and flattens the then or
else branch appropriately. The handling of let is the most complicated. The expression
is renamed with new copies of the let variables. We extract the constraints from the let
expression using function flatlet which returns the extracted constraint and a rewritten
term (not used in this case, but used in flatt). The constraints returned by function flatlet
are then flattened. Finally if we are in the root context, we ensure that the Boolean b
returned must be true by adding b to S.

flatc(c,ctxt)
h := hash[c]; if (h 	=⊥) S ∪:= {(ctxt = root)⇒ h}; return h

if (fixed(c)) b := eval(c)

else
switch c

case b′ (bvar): b := b′;
case t1 r t2 (relop): 〈v1,b1〉 := flatt(t1,ctxt); 〈v2,b2〉 := flatt(t2,ctxt);

S ∪:= {new b⇔ (b1 ∧b2∧new b′),b′ ⇔ v1 r v2}
case not c1: b := ¬flatc(c1,−ctxt)

case c1 /\ c2: S ∪:= {new b⇔ (flatc(c1,ctxt)∧ flatc(c2,ctxt))}
case c1 \/ c2: S ∪:= {new b⇔ (flatc(c1,+ctxt)∨ flatc(c2,+ctxt))}
case c1 -> c2: S ∪:= {new b⇔ (flatc(c1,−ctxt)⇒ flatc(c2,+ctxt))}
case c1 <-> c2: S ∪:= {new b⇔ (flatc(c1,mix)⇔ flatc(c2,mix))}
case forall ba: b := flatc( foldl(evala(ba), true, /\), ctxt)
case exists ba: b := flatc( foldl(evala(ba), false, \/), ctxt)
case [c1, . . . ,cn] [ t ]: foreach( j ∈ 1..n) b j := flatc(c j ,+ctxt); 〈v,bn+1〉 := flatt(t,ctxt);

S:={new b⇔ (bn+1∧new b′∧new b′′), safeelement(v, [b1, . . . ,bn],b′),b′′ ⇔ v∈{1, ..,n}}
case p (t1, . . . , tn) (pred) built-in predicate:

if (ctxt 	= root) abort
foreach( j ∈ 1..n) 〈v j ,_〉 := flatt(t j,ctxt);
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b := true; S ∪:= {p(v1 , . . . ,vn)}
case p (t1, . . . , tn) (pred): user-defined predicate

let p(x1 , . . .,xn) = c0 be defn of p

foreach( j ∈ 1..n) 〈v j ,b j〉 := flatt(t j,ctxt);
new b′ := flatc(c0[[x1/v1, . . . ,xn/vn]],ctxt)

S ∪:= {new b⇔ b′ ∧∧n
j=1 b j}

case if c0 then c1 else c2 endif: if (eval(c0)) b := flatc(c1,ctxt) else b := flatc(c2,ctxt)

case let { d } in c1:
let v̄′ be a renaming of variables v̄ defined in d

〈c′,_〉 := flatlet(d[[v̄/v̄′]],c1[[v̄/v̄′]],0,ctxt)

b := flatc(c′,ctxt);
if (ctxt = root) S ∪:= {b};
hash[c] := b

return b

The function evala replaces an array comprehension by the resulting array. Note that
terms lt and ut must be fixed in a correct MiniZinc model.

evala(t)
switch t
case [ t1, . . . , tn ]: return [ t1, . . . , tn ]
case [ e | v in lt .. ut ]: let l = eval(lt), u = eval(ut)

return [ e[[v/l]], e[[v/l +1]], . . . e[[v/u]] ]

Handling let Expressions. Much of the handling of a let is implemented by flat-
let(d,c, t,ctxt) which takes the declarations d inside the let, the constraint c or term
t of the scope of the let expression, as well as the context type. First flatlet replaces
parameters defined in d by their fixed values. Then it collects in c all the constraints
that need to stay within the Boolean context of the let: the constraints arising from
the variable and constraint items, as well as the Boolean variable definitions. Integer
variables that are defined have their right hand side flattened, and a constraint equating
them to the right hand side t ′ added to the global set of constraints S. If variables are
not defined and the context is negative or mixed the translation aborts.

flatlet(d,c,t,ctxt)
foreach (item ∈ d)

switch item
case int : v = t ′ : d := d[[v/eval(t ′)]]; c := c[[v/eval(t ′)]]; t := t[[v/eval(t ′)]]
case bool : b = c′ : d := d[[b/eval(c′)]]; c := c[[b/eval(c′)]]; t := t[[b/eval(c′)]]

foreach (item ∈ d)
switch item
case var int : v : if (ctxt ∈ {neg,mix}) abort
case var int : v = t ′ : 〈v′,b′〉 := flatt(t ′,ctxt); S ∪:= {v = v′}; c := c /\ b′

case var l .. u : v : if (ctxt ∈ {neg,mix}) abort else c := c /\ l <= v /\ v <= u
case var l .. u : v = t ′ : 〈v′,b′〉 := flatt(t ′,ctxt); S ∪:= {v = v′};

c := c /\ b′ /\ l <= v /\ v <= u;
case var bool : b : if (ctxt ∈ {neg,mix}) abort
case var bool : b = c′ : c := c /\ (b <-> c′)
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case constraint c′ : c := c /\ c′

return 〈c, t〉

Flattening Integer Expressions. flatt(t,ctxt) flattens an integer term t in context ctxt. It
returns a tuple 〈v,b〉 of an integer variable/value v and a Boolean literal b, and as a side
effect adds constraints to S so that S |= b⇔ (v = t). Note that again flattening in the root
context always returns a Boolean b made equivalent to true by the constraints in S.

Flattening first checks if the same expression has been flattened previously and if so
returns the stored result. flatt evaluates fixed integer expressions and returns the result.
For non-fixed integer expressions t each form is treated in turn. Simple integer expres-
sions are simply returned. Operators have their arguments flattened and the new value
calculated on the results. Safe division (which does not constrain its second argument to
be non-zero) is used for division with the constraint being captured by the new Boolean
b′. Array lookup flattens all the integer expressions involved and creates a safeelement
constraint as in the Boolean case. sum expressions evaluate the array argument, and
then replace the sum by repeated addition using foldl and flatten that. if-then-else sim-
ply evaluates the if condition (which must be fixed) and flattens the then or else branch
appropriately. Functions are simply handled by flattening each of the arguments, the
function body is then renamed to use the variables representing the arguments, and the
body is then flattened. Importantly, if the function is declared total it is flattened in the
root context. Let constructs are handled analogously to flatc. We rename the scoped
term t1 to t ′ and collect the constraints in the definitions in c′. The result is the flattening
of t ′, with b capturing whether anything inside the let leads to failure.

flatt(t,ctxt)
〈h,b′〉 := hash[t]; if (h 	=⊥) S ∪:= {(ctxt = root)⇒ b′}; return 〈h,b′〉
if (fixed(t)) v := eval(t); b := true

else switch t

case v′ (ivar): v := v′; b := true

case t1 a t2 (arithop): 〈v1,b1〉 := flatt(t1,ctxt); 〈v2,b2〉 := flatt(t2,ctxt);
if (a is not div) S ∪:= {new b⇔ (b1∧b2),a(v1,v2,new v)}
else S ∪:= {new b⇔ (b1∧b2 ∧new b′),safediv(v1,v2,new v),b′ ⇔ v2 	= 0}

case [t1, . . . ,tn ] [ t0 ]: foreach( j ∈ 0..n) 〈v j ,bj〉 := flatt(t j ,ctxt);
S:={new b⇔(new b′ ∧∧n

j=0 bj),safeelement(v0, [v1, . . . ,vn],new v),b′ ⇔v0∈{1, ...,n}}
case sum ia: 〈v,b〉 := flatt( foldl(evala(ia), 0, +), ctxt)
case if c0 then t1 else t2 endif: if (eval(c0)) 〈v,b〉 := flatt(t1,ctxt) else 〈v,b〉 := flatt(t2,ctxt)

case f (t1, . . . ,tn) (func): function
foreach( j ∈ 1..n) 〈v j ,bj〉 := flatt(t j ,ctxt);
let f (x1, . . . ,xn) = t0 be defn of f

if ( f is declared total) ctxt′ = root else ctxt′ = ctxt

〈v,b′〉 := flatt(t0[[x1/v1, . . . ,xn/vn]],ctxt ′)

S ∪:= {new b⇔ b′ ∧∧n
j=1 bj}

case let { d } in t1:
let v̄′ be a renaming of variables v̄ defined in d

〈c′,t ′〉 := flatlet(d[[v̄/v̄′]],true,t1[[v̄/v̄′]],ctxt)

〈v,b1〉 := flatt(t ′,ctxt); b2 := flatc(c′,ctxt); S ∪:= {new b⇔ (b1∧b2)}
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if (ctxt = root) S ∪:= {b};
hash[t] := 〈v,b〉
return 〈v,b〉

Consider the translation of the code

function var int: h(var int: a) =
let { var int:d = 12 div a; constraint d < 3 } in d;

constraint not (h(c) = 1);

Flattening of not (h(c) = 1) requires flattening the term h(c) in a neg context.
This requires flattening let { var int:d = 12 div c; constraint d < 3
} in d; in a neg context. This requires flattening 12 div c in a neg context which
creates the constraints safediv(12,c,v),b1 ⇔ c 	= 0 and returns 〈v,b1〉. Flattening the
let adds d = v and collects b1 /\ d < 3 in the constraints c which are flattened
to give b3 ⇔ (d < 3),b4 ⇔ (b3 ∧ b1) and returns tuple 〈d,b4〉. The treatment of the
equality adds b5 ⇔ d = 1,b6 ⇔ (b5∧b4) and returns b6. The negation returns ¬b6 and
asserts ¬b6.

Implementation. We have implemented the above rules in a compiler that translates
MiniZinc with functions into FlatZinc. This prototype can handle the complete gram-
mar as presented here, extended with support for arbitrary function arguments (arrays,
Booleans, sets). Compared to the existing mzn2fzn translator, most built-in functions
(such as abs, bool2int, card) are now realised as user-defined functions in the
MiniZinc standard library rather than hard coding them into the translation.

The following table shows some experimental results obtained with the prototype.
We compiled five different instances of a standard model for a 16x16 Sudoku problem.
Each instance has 48 alldifferent constraints, and we used the linearisation presented in
section 3 to show the effect of common subexpression elimination. Crucially, the alldif-
ferent constraints in Sudoku puzzles overlap, many pairs of constraints share either one
or four variables. The standard decomposition without functions cannot take advantage
of this sharing across constraints, as the results below will show.

Benchmark Translation (s) # Cons Solving (s)
fn nofn fn nofn fn nofn speedup

Sudoku 1 (16x16) 0.2 0.3 1280 2304 0.24 0.78 3.33
Sudoku 2 (16x16) 0.2 0.3 1280 2304 0.29 3.45 11.96
Sudoku 3 (16x16) 0.2 0.3 1280 2304 0.32 15.32 47.78
Sudoku 4 (16x16) 0.2 0.3 1280 2304 0.24 0.43 1.80
Sudoku 5 (16x16) 0.2 0.3 1280 2304 0.34 6.07 17.72

The columns labelled fn present the results for the new prototype translator using
a decomposition of alldifferent based on functions. The nofn columns use the exist-
ing mzn2fzn tool with the standard MiniZinc linearisation library (available with the
command line option -G linear).

Translation time does not suffer from the additional CSE, as the results in column
Translation show. In fact, the new translator is slightly faster. CSE clearly reduces the
number of constraints by almost half (column # Cons). The solving time (column Solv-
ing) is the average of 20 runs of the Gurobi MIP solver [8] on a 3.4 GHz Intel Core i7,
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running on a single core under Windows. The additional, redundant constraints in nofn
cause a noticeable overhead.

We will extend our prototype into a full replacement for the current mzn2fzn, work-
ing towards version 2.0 of the MiniZinc language and toolchain. The prototype and the
benchmark problems are available from the authors upon request.

6 Related Work and Conclusion

The only modelling language that supports functions other than MiniZinc that we are
aware of is Zinc [10]. Zinc functions are restricted in the same way, not allowing new
variables in negative or mixed contexts. Zinc currently does not support constraints in
let expressions and total annotations. We intend to extend Zinc with these features,
although this will be challenging as Zinc models are compiled without instance data,
making the treatment of partiality much more complicated and precluding most CSE.

Constraint-based local search languages such as Comet [15] support user-defined ob-
jective functions. These cannot be used as arguments in other constraints, and therefore
these systems do not deal with partiality, Boolean contexts, or CSE.

Other modelling languages such as OPL [14] and Essence [6] do not include user-
defined functions or local variables (let expressions), and hence the issues that we con-
sider here do not arise. Essence supports constrained function variables, which are used
to model problems whose solution is a function. Our user-defined functions, in contrast,
serve a different purpose, they express the constraints of a problem. The approach to
flattening and CSE for Essence is described in [12], but Essence includes neither let
expressions, predicates or functions which are the main complicating features herein.
This earlier work [12] showed the importance of CSE for modelling languages, and this
is only magnified by the introduction of user-defined functions.

Modelling languages incorporated in a procedural OO language, such as IBM ILOG
Concert [9] expressions, Gecode’s [13] MiniModel expressions or Comet’s [15] mod-
elling constructs, do allow the use of functions in the host language. The problem is
that such functions do not extend the modelling language, and if treated in this manner
define the strict semantics.

In conclusion the addition of user-defined functions, local constraints in let
constructs, and totality annotations gives a powerful modelling capability to MiniZinc.
Using our schema for separating a partial function into a total extension with local vari-
able introduction and a partial function with no local variables, user-defined functions
are usable in all parts of a model. We believe functional modelling will become more
and more commonplace, particularly given the prevalence of functional constraints in
the global constraint catalog, given the importance of abstraction for defining solver-
specific MiniZinc libraries, and given that functions can be implemented efficiently as
shown in this paper.
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Abstract. The wind farm layout optimization problem is concerned
with the optimal location of turbines within a fixed geographical area to
maximize energy capture under stochastic wind conditions. Previously it
has been modelled as a maximum diversity (or p-dispersion-sum) prob-
lem, but such a formulation cannot capture the nonlinearity of aerody-
namic interactions among multiple wind turbines. We present the first
constraint programming (CP) and mixed integer linear programming
(MIP) models that incorporate such nonlinearity. Our empirical results
indicate that the relative performance between these two models reverses
when the wind scenario changes from a simple to a more complex one.
We also propose an improvement to the previous maximum diversity
model and demonstrate that the improved model solves more problem
instances.

1 Introduction

Wind farm layout optimization problems deal with the optimal placement of
turbines in a given wind farm field. Currently this problem appears only in
the engineering research literature [1–6], where much effort has been spent on
developing metaheuristics [1–3, 7] for variations of this problem. Some exist-
ing heuristic methods [1, 2] and mixed integer models [4, 5] have explored this
problem with discretization: land is decomposed into a set of small cells, where
each accommodates one turbine. Compared with a continuous approach [6], the
discrete approach is less sensitive to discontinuity in the wind farm land. Such
discontinuity is common in practice due to existing infrastructure and geographic
constraints [8]. In the current work, without loss of generality, our problem in-
stances are square wind farms with equal-size square cells.

An interesting feature of this problem that sets it apart from standard lo-
cation problems is the aerodynamic interaction among multiple turbines. In a
basic scenario where only two turbines are present, the turbine downstream is
said to be in the wake region of the upstream turbine, and it experiences a loss
in energy production due to the reduction in wind speed and increase in turbu-
lence intensity [9]. In practice, a turbine that is downstream of multiple turbines

C. Gomes and M. Sellmann (Eds.): CPAIOR 2013, LNCS 7874, pp. 284–299, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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is affected by all upstream turbines simultaneously, and the overall effect is a
nonlinear function of individual wakes. There are different analytical equations
to describe the superposition of multiple wakes, some being closer to the phys-
ical reality than the others [10]. It is difficult to incorporate the more accurate
wake equations into a mathematical programming model due to their nonlin-
earity: currently only heuristics [1–3, 6] include the most accurate wake models.
Our goals are to computationally improve existing mixed integer programming
(MIP) models and incorporate more accurate wake models into constraint pro-
gramming (CP) and MIP models.

The contributions of this paper are: the proposal of two novel mathematical
programming models (CP and MIP) that can describe the physics of the problem
more accurately than the previous MIP models; the extension of a previous MIP
model so that the solution quality and time are improved; the comparison of
four models on twelve problem instances, with varying wind scenario complexity,
turbine numbers, and wind farm grid resolution; and the elicitation of insights
from the experiments to suggest future research directions.

2 Problem Definition and the Physics of Wake Modelling

2.1 Description of the Problem

Wind farm site selection, or wind farm siting, is based on, among other fac-
tors, meteorological conditions, topological features of the site, and accessibility
for construction and grid transmission [8]. After siting, wind farm developers
optimize the layout of the turbines according to prescribed objectives and con-
straints in a process called micro-siting. In a typical case, design engineers try to
maximize the expected profit and minimize hazardous side-effects during wind
farm construction and operation [8]. This is a challenging task because there are
many objectives and constraints, and every site is different. To limit our scope,
we consider the maximization of energy capture of a wind farm as our only ob-
jective, as it is closely related to the long term profit of the wind farms and it is
well accepted in the wind farm optimization literature [1–3]. We further assume
that the wind farm land is flat, and all turbines are of the same type.

We use the same problem setup that Mosetti et al. [1] proposed in their seminal
paper. The objective is to maximize the wind farm’s overall power generation
capability. There are three types of constraints:
1. Proximity: turbines must be placed five diameters apart to avoid structural

damage induced by strong aerodynamic interactions;
2. Boundary: Turbines must be placed within the wind farm boundaries;
3. Turbine number: The number of turbines is fixed.
The reason that the total number of turbines is fixed – instead of bounded by

a maximum number of turbines – is due to practical considerations. During wind
farm development, the total number of turbines is determined prior to the design
process, by government regulations and the local electricity grid interconnection
capacity among other factors. However, to explore the design space more fully,
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Fig. 1. Jensen [9] wake model

a given model can always be solved multiple times with different numbers of
turbines.

As mentioned in the previous section, we use a discrete representation of
wind farm: land is decomposed into a set of cells, where each cell can only
accommodate one turbine. This approach is common in the literature [1, 2, 4].

2.2 The Physics: Wake and Energy Models

While some constraints of this problem are similar to vertex packing [11], un-
desirable facility location [12], and circle packing problems [13], the objective
function is unique to wind farm layout optimization. In particular, the energy
capture at each turbine is proportional to the cube of wind speed at that loca-
tion. In turn the wind speed at a turbine is a nonlinear function of the distances
to its upstream turbines. Note that “upstream” is relative to the wind direction,
which varies over time.

Although wind changes speed and direction frequently, we assume that the
turbine can re-orient its rotor towards the upcoming wind direction. We further
assume that there is no power loss during the transient states. Overall, the yearly
wind frequency data at each direction fits well into a Weibull distribution [14].
In the literature, it is a common practice to discretize the yearly wind frequency
data into multiple directions and multiple speeds [1–3], so that the total energy
production is the weighted sum of energy produced at each wind state (speed and
direction). Then the expected power is only different from the expected energy
by a scalar (the number of seconds per year). Therefore we only deal with the
expected power in this work to simplify calculations.

Single Wake. The downstream region of a wind turbine, with increased level
of turbulence and decreased energy, is called the wake region (Fig. 1). Equa-
tion (1), first proposed by Jensen [9], describes the propagation of a single wake.
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Fig. 2. Wind speed recovery after a turbine. D is the turbine diameter.

Parallel arrows in Fig. 1 represent wind direction and speed. The region with
lower wind speed (shorter arrows) is the wake region. The two ellipses represent a
turbine. The key idea of Jensen’s wake model is momentum conservation within
the wake region. In addition, wind speed is assumed to be uniform and non-
turbulent across the circular wake cross-section.

Here R is the wake radius immediately after rotor; r is the downstream wake
radius; r0 is the rotor radius; u∞ is the free stream wind speed; ur is the wind
speed immediately behind the rotor; u is the speed of wind at downstream
distance x; α is the wake decay constant; z0 is the roughness of terrain; z is the
turbine height; and a is the axial induction factor (the percentage reduction in
wind speed between the free stream and the turbine rotor) [15]:

πR2ur + π
(
r2 −R2

)
u∞ = πr2u (1)

where ur = (1− a)u∞, r = R + αx, R = r0

√
1−a
1−2a and α = 0.5/ ln( z

z0
).

Figure 2 describes the wind speed recovery after an upstream turbine, based
on the previous equations.

Multiple Wakes: Sum-of-Squares. Following Renkema [10], we write the
effective wind speed in the wakes of multiple turbines as:

uid = uid,∞

⎡⎣1−
√√√√ ∑

j∈Uid

(
1− uijd

uid,∞

)2
⎤⎦ (2)
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uid and uid,∞ are the wind speeds at turbine i at wind state (speed and direction)
d with and without wake interactions respectively, where d ∈ D, the set of all
possible wind states; Uid is the set of upstream turbines for turbine i at wind
state d; uijd is the wind speed at turbine i due to a single wake from upstream
turbine at j, which can be obtained by (1). Currently, this is the most accurate
analytical expression accounting for multiple wakes [10].

Based on this model, the expected power production of the wind farm can be
calculated as:

expected power =

m∑
i=1

∑
d∈D

1

3
u3
idpd (3)

where m is the total number of turbines and pd is the probability of wind state
d occurring, subject to

∑
d∈D pd = 1.

Note that we will be using average power (watts) instead of total energy
(kilo-watt hours) in the objective function because they are equivalent for our
purpose, and the former is easier to represent.

Multiple Wakes: Linear Superposition. Another way to account for mul-
tiple wakes in the energy production calculation is to use a direct linear super-
position of power deficits. This is known to be less accurate than (2). However,
it is more easily representable in the mathematical programming models [4, 5],
because we can pre-calculate the pairwise interactions between two locations,
then “activate” the interactions with binary variables indicating the existence of
turbines at those locations, and sum up the interactions linearly:

expected power =
n∑

i=1

∑
d∈D

⎛⎝1

3
u3
id,∞ −

∑
j∈Uid

1

3

(
u3
id,∞ − u3

ijd

)⎞⎠ pd (4)

and again uijd can be obtained from (1).
With the physics introduced, we want to make a note on the representation

of these equations in our optimization models. Although the power calculation
equations (2) and (4) appear to be nonlinear in wind speeds, we can actually re-
move some of the nonlinearity due to the choice of discrete optimization models.
As illustrated by Donovan [4], the linear superposition model (4) is completely
linear, because all the wind speed terms can be calculated prior the optimiza-
tion, since the candidate turbine locations (i, j) and wind states D are known
in the discrete representation.

However, linearizing the wake model given by (2) is a non-trivial task, even
though the wind speed terms can be pre-calculated. The next section will first
introduce a CP model that directly represents the nonlinearity in its objective
function, and then describe our novel approach that can incorporate the physics
of (2) into a mixed integer linear program.
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maximize
n∑

i=1

∑
d∈D

1

3
xi

⎛⎝uid,∞

⎡⎣1−
√√√√ ∑

j∈Uid

xj

(
1− uijd

uid,∞

)2
⎤⎦⎞⎠3

pd

subject to

n∑
i=1

xi = k

xi + xj ≤ 1 ∀(i, j) ∈ E
xi ∈ {0, 1} ∀i = 1, . . . , n.

Fig. 3. SOM1: a constraint programming model

3 Optimization Models

3.1 Sum-of-Squares Optimization Models (SOM)

The following three optimization models are based on the more accurate way of
accounting for multiple wakes (2).

CP and MIP Models. Figure 3 presents the SOM1 CP model. The binary
decision variable xi represents whether there is a turbine at location i; n is the
total number of grid points; k is the total number of turbines; and E = {(i, j)|
grid i and grid j cannot both have turbines due to proximity constraint}. This
set is determined by the proximity constraint and the grid resolution. We choose

equality for the constraint
n∑

i=1

xi = k for practical reasons – the total number

of turbines is usually determined prior to the optimization based on project
financing and government regulations. For the problem instances used in this
work, the optimal energy production is an increasing function of k [16].

In Figure 4, we present SOM2, a MIP sum-of-squares model where the non-
linearity is dealt with via a potentially exponential number of constraints. The
auxiliary variable zi represents the average power production at each location i.
The key of this model are the constraints indicated by (∗). M is a sufficiently
large constant. In general, wi,Si is the maximum amount of power convertible
when all cells with indices in Si have turbines and all cells with indices in I \ Si
do not; I is the set of all turbine location indices {1, . . . , n}; and Si is a set of
turbine locations not including i. wi,Si is calculated according to (2) and (3).

A Decomposition Model. It is not hard to see that the number of constraints
(∗) is exponential in n due to the requirement (∀Si ⊂ I \ i). Therefore, rather
than experimenting with SOM2, we propose a third model, SOM3, which can
be understood as a decomposition of SOM2.

In Fig. 5, a MIP master problem is formulated that includes all constraints
of SOM2 except for those indicated with (∗). After solving the master problem,
a sub-problem calculates the actual power according to (2) and (3) as follows:
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maximize
n∑

i=1

zi

subject to

n∑
i=1

xi = k

xi + xj ≤ 1 ∀(i, j) ∈ E

zi ≤
n∑

i=1

∑
d∈D

1

3
u3
id,∞pdxi ∀i = 1, . . . , n.

zi ≤ M

⎛⎝|Si| −
∑
j∈Si

xj

⎞⎠+wi,Si ∀Si ⊂ I \ i (∗)

xi ∈ {0, 1} ∀i = 1, . . . , n.

Fig. 4. SOM2: a mixed integer programming model

1. Evaluate the turbine layout power considering full wake effects based on xt

(the solution from the master problem at iteration t) by substituting it into

n∑
i=1

∑
d∈D

1
3x

t
i

(
uid,∞

[
1−

√ ∑
j∈Uid

xt
j

(
1− uijd

uid,∞

)2
])3

pd

2. If it is evaluated to the same as the objective value from the master problem
or the maximum solution time is reached, terminate; otherwise:

3. Generate cuts in the form of zi ≤ gi(x
t), where gi(x

t) is defined by (5) and
(6); return to the master problem.

The master problem is then re-solved with the new cuts. In the first iteration,
the master problem assumes that there is no wake interaction at all. In each
subsequent iteration, the cuts refine the modeling of turbine interactions. The
master problem does not represent the interaction of a specific group of turbines
unless the related cuts are added. Therefore, the master problem always over-
estimates the true objective value.

Instead of solving the master problem to optimality, we run it with a time
limit of T seconds. In our experiment, we choose T0 = 30 seconds for the first
iteration. T is increased by 5 seconds each time the current best master solution
is the same as the previous iteration. In other words, if the master problem
produces the same solution as the previous iteration and it does not converge
to the subproblem value, the algorithm will keep running with no new cuts
generated, therefore getting stuck in a loop. This will happen if the master
problem is unable to make any new progress in a new iteration (compared with
the previous iteration) within the prescribed time limit.

Cuts. We propose two types of cut: a no-good cut and a 3-cut. The former is
presented in Equation (5). M is a large constant; xt

j is the jth component of
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maximize
n∑

i=1

zi

subject to

n∑
i=1

xi = k

xi + xj ≤ 1 ∀(i, j) ∈ E

zi ≤
n∑

i=1

∑
d∈D

1

3
u3
id,∞pdxi ∀i = 1, . . . , n.

(cuts)

xi ∈ {0, 1} ∀i = 1, . . . , n.

Fig. 5. SOM3: A mixed integer programming model of the master problem

xt; wi,A is the maximum amount of power convertible when all cells with indices
in A have turbines; Si = {j | xt

j = 1}; wi, wi,j and wi,jk are short forms for wi,∅,
wi,{j} and wi,{jk}, following the definition of wi,A.

gi(x
t) = M

⎛⎝|Si| − ∑
j∈Si

xj

⎞⎠+ wi,Si (5)

In practice, the no-good cuts alone are inefficient in large problem instances,
because an exponential number of them are required to correctly shape the
feasible region and the information of each cut is minimal when there are many
wind states and location cells. Therefore, we propose another type of cut to
increase the speed of refinement of the representation of turbine interactions.
Equation (6) presents the 3-cuts.

gi(x
t) = wi + (wi,j − wi)xj + (wi,jk − wi,j)xk ∀j, k ∈ Si . (6)

For each downstream turbine i, there are
(|Si|

2

)
cuts generated. The power of 3-

cuts lie in their accurate description of the interaction between a group of three
turbines (thus the name 3-cut). In practice, the closest few upstream turbines
have the most significant influence on a downstream turbine (see Fig. 2).

The following proposition states that the three-turbine interaction accurately
describes the feasible region:

Proposition 1. The cut zi ≤ wi+(wi,j−wi)xj+(wi,jk−wi,j)xk is tight (cutting
off all infeasible values for zi assuming no turbines are “on” except for j, k) at
(xi, xj , xk) = (1, 0, 0), (1, 1, 0), and (1, 1, 1).

Proof. When (xi, xj , xk) = (1, 0, 0), (1, 1, 0), and (1, 1, 1), the cut reduces to
zi ≤ wi, zi ≤ wi,j , and zi ≤ wi,jk respectively. These values are tight by definition
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maximize
n∑

i=1

∑
d∈D

(
1

3
u3
id,∞xi −

n∑
j=1

1

3

(
u3
id,∞ − u3

ijd

)
yij

)
pd

subject to
n∑

i=1

xi = k

xi + xj ≤ 1 ∀(i, j) ∈ E
xi + xj − 1 ≤ yij ∀i, j = 1, . . . , n.

yij ≥ 0 ∀i, j = 1, . . . , n.

xi ∈ {0, 1} ∀i = 1, . . . , n.

Fig. 6. LSOM1 [4]

of wi, wi,j , and wi,jk. When (xi, xj , xk) = (1, 0, 1), the cut reduces to zi ≤
wi + wi,jk − wi,j . Since zi ≤ wi,k by the definition of wi,k, and the combination
of power deficits is sub-linear (2 and 3), wi + wi,jk − wi,j ≥ wi,k. Therefore
zi ≤ wi + wi,jk − wi,j is not tight and does not cut off any feasible region. ��

Overall, the no-good cuts ensure that the problem can eventually reach the true
optimality while 3-cuts increase the communication between subproblem and
master to speed up convergence.

3.2 Linear Superposition Optimization Models (LSOM)

Previous MIP models use a simpler (and less accurate) [10] calculation of energy:
the power deficits from individual wakes are combined linearly to account for
the total power loss. The following two MIP models are based on such linear
superposition technique. The first model (LSOM1) was originally proposed by
Donovan [4], while the second one (LSOM2) is our extension of LSOM1.

Figure 6 presents the LSOM1 model where 1
3

(
u3
id,∞ − u3

ijd

)
is the power

reduction at wind state d at turbine i due to the presence of upstream turbine
j. These values can be calculated prior to running the optimization (4). Variable
yij indicates whether there are turbines at both positions i and j, and so yij is 1
if both xi and xj are 1, and 0 otherwise. E is the set of cell pairs (i, j) that are too
close to both host turbines. Due to the use of the simpler linear superposition
model of upstream turbines, the model over-estimates the energy deficit [10].

Other location problems in the literature such as the maximum diversity prob-
lem (MDP) [17] and the p-dispersion-sum (pDS) problem [18] are similar to
Donovan’s model. However, we have not seen any application of the state-of-art
MDP/pDS solution algorithms to this wind farm layout optimization model.

In LSOM1, the yij variables are always equal to the product of xi and xj ,
indicating if there are turbines at both places. Since i, j ∈ I, there are in total
|I|2 yij variables. As our experiments below demonstrate, a high resolution of the
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maximize
n∑

i=1

zi

subject to

n∑
i=1

xi = k

xi + xj ≤ 1 ∀(i, j) ∈ E

zi ≤
n∑

i=1

∑
d∈D

1

3
u3
id,∞pdxi ∀i = 1, . . . , n. (†)

zi ≤
n∑

i=1

∑
d∈D

(
1

3
u3
id,∞ −

n∑
j=1

1

3

(
u3
id,∞ − u3

ijd

)
xj

)
pd ∀i = 1, . . . , n. (††)

xi ∈ {0, 1} ∀i = 1, . . . , n.

Fig. 7. LSOM2

wind farm grid with a complicated wind regime results in too many yij variables
for reasonable performance. To address this weakness we propose LSOM2.

Figure 7 presents the LSOM2 model. It does not have yij variables. Instead,
we use zi to represent the power production at location i. If there is no turbine
at location i, then the right hand side of constraint (†) is zero, and in most
cases it is tighter than (††). So, if no turbine appears at i, then there will be
no power production from location i. If there is a turbine at i, then in general
constraint (††) is tighter due to the extra negative terms (deduction of power
due to upstream turbines). The value that zi is, therefore, calculated by the total
available power subtracting the linear combination of power losses due to wakes.

However, LSOM2 is not equivalent to LSOM1. When xi = 0 and constraint (†)
is zi ≤ 0, constraint (††) may become zi ≤ −c, where −c is a negative value. This
is because the linear superposition model over-estimates power losses, making
it possible for the right hand side of (††) to be negative. Fortunately, this case
does not arise during our experiments due to the proximity constraint such that
turbines cannot be less than 5 rotor-diameters apart. This value is an industry
standard for wind farm design.

4 Experiment Setup

All models were implemented with Microsoft Visual C++ Express 2010 and
IBM ILOG CPLEX 12.3. Twelve benchmark instances [1–3,6,16] (referred to as
WRq-n-k) were used to test the performance of models. WR1 refers to the wind
regime of 1 directional wind (from west to east) and WR36 refers to the wind
regime with wind coming from 36 directions at different speeds (Fig. 8).

Experiments were run on a Dell Vostro 460 with Core i5-2500 CPU (3.30GHz)
and 64-bit Windows 7 OS. Since CPLEX solvers are deterministic by default,
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Fig. 8. Cumulative wind probability distribution for problem instance WR36

only one run of each instance was performed. Common parameters are: z = 60m,
z0 = 0.3m R = 20m, and wind farm is 2km by 2km.

Since the SOM models evaluate the power production by sum-of-squares (2)
and the LSOM evaluation is based on linear superposition (4), the four models
are not directly comparable. We therefore compare the solution quality in Table
1 by a posteriori re-evaluating the LSOM solutions based on the (more accurate)
sum-of-squares method. The power production values in brackets indicate the
objective function value of the LSOM solutions.

5 Results

Table 1 summarizes the performance of the four models by comparing the ex-
pected power and solution times. The MIP optimality gaps are included where
applicable. Columns n and k represent the total numbers of cells and turbines.
For LSOM1 and LSOM2, there are two power values: the power calculated
with the sum-of-squares wake model and, in parentheses, the objective func-
tion value based on linear superposition model. Overall, LSOM2 outperforms
the other models in most cases in terms of solution quality. SOM3 and LSOM2
can solve problem instances with high grid resolution and high wind data res-
olution (WR36-400), while the other two models cannot even initialize these
instances within an hour due to the size of the model.

SOM1 vs. SOM3. Table 1 shows that SOM3 solves more instances than SOM1.
In the higher resolution case (WR36-400), the SOM1 objective function expres-
sion must account for many wind directions and turbine pairs leading to mem-
ory saturation during the model creation phase and the inability to start search
within an hour. SOM3 also performs better in WR1 cases. We believe that the
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simpler turbine interactions for WR1 instances are accurately captured by no-
good and 3-cuts.

For a more detailed examination of these results, Figs. 9-11 present the evo-
lution of solution quality over time for SOM1 and SOM3 for selected problem
instances. In the single-direction scenario (WR1), SOM3 consistently outper-
forms SOM1. For the WR36 instances where SOM1 was able to run, SOM3
performs much worse than SOM1 (Fig. 11). To understand these results, recall
that SOM3 is a decomposed model where the improvement from iteration to it-
eration is based on cuts representing information of turbine interactions. In the
WR1 cases, every cell has about 10 (20) upstream cells, because the wind farm
resolution is 10 by 10 (20 by 20). During the optimization, the better layouts of-
ten have turbines spaced out in the wind direction, thus the 3-cut, although only
describing the interactions between a few turbines, already contains enough in-
formation for the master problem to make good decisions. However, in the WR36
cases, every turbine has k − 1 upstream turbines and the 3-cut only expresses
the impact of the most significant two upstream turbines. Therefore, SOM3’s
search for better objective value in WR36 instances is often stalled due to the
lack of effective cuts.

Table 1. Comparison of solutions based on sum-of-squares power calculation (◦: exper-
iments took more than one hour to setup; boldface: better objective value). Numbers in
brackets are the original obj. values (based on linear superposition method) of LSOM
solutions.

Wind
Regime n k SOM1 SOM3 LSOM1 LSOM2

Power
(W)

Sol.
Time
(s)

Power
(W)

Sol.
Time
(s)

Power
(W)

Sol.
Time
(s)

Opt.
Gap
(%)

Power
(W)

Sol.
Time
(s)

Opt.
Gap
(%)

WR1

100

100

100

400

400

400

20

30

40

20

30

40

10253.4

14732.5

18459.5

10368.0

15359.6

20270.0

3600

3600

3600

3600

3600

3600

10256.0

14800.9

18674.5

10368.0

15410.9

20334.7

3600

3600

3600

3600

3600

3600

10256.0
(10256.0)
14795.1
(14702.2)
18674.5
(18186.3)
10368.0
(10368.0)
15407.6
(15409.3)
20353.6
(20118.4)

3.5

2.5

1.0

2.5

3600

3600

0

0

0

0

0.9

3.1

10256.0
(10256.0)
14798.6
(14702.2)
18674.5
(18186.3)
10368.0
(10368.0)
15414.2
(15414.2)
20341.2
(20172.4)

8.0

3600

98.8

0.4

3600

3600

0

1.2

0

0

0.9

2.8

WR36

100

100

100

400

400

400

20

30

40

20

30

40

16675.1

24574.0

32204.6

◦
◦
◦

3600

3600

3600

◦
◦
◦

16631.0

24391.0

31616.0

16551.0

24426.0

31977.0

3600

3600

3600

3600

3600

3600

16705.2
(16356.6)
24597.3
(23442.3)
32197.3
(29651.9)

◦
◦
◦

3600

3600

3600

◦
◦
◦

3.0

7.3

9.9

◦
◦
◦

16706.7
(16365.2)
24625.1
(23520.5)
32310.7
(29904.0)
16762.3
(16470.1)
24870.4
(24027.1)
32715.4
(30844.9)

3600

3600

3600

3600

3600

3600

3.2

7.4

11.9

3.1

5.9

10.0
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Fig. 9. Single wind direction, 100 cells
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Fig. 10. Single wind direction, 400 cells
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SOM3 also improves more slowly in the WR1-400 instances (Fig. 10) than in
the WR1-100 instances (Fig. 9). There are more combinations of three turbines in
the former instances and therefore more 3-cuts must be generated for the master
problem to improve its objective value. Eventually SOM3 catches up with SOM1
because the 3-cuts describe the interactions of all turbines reasonably accurately.

LSOM1 vs. LSOM2. Table 1 shows that the power production calculated
by linear superposition method (in brackets) is always lower than the sum-of-
squares calculation. For some values of n and k, the problem cannot be solved to
optimality within an hour, while some other instances are solved in less than 10
seconds. This observation confirms with other work on MDP and p-dispersion-
sum problems [19]: increase in n with fixed k will often lead to longer solution
time, and increase in k while n is fixed often leads to longer solution time too
(except for when k is close to 0 or n). Current state-of-art MDP algorithms are
benchmarked on problem instances with similar dimensions (in n and k) as our
instances [19].

Table 1 clearly shows that LSOM2 outperforms LSOM1 in solution quality
in all but one instance (WR1-400-40). In the WR1-400-40 case, LSOM1 out-
performs LSOM2 in terms of the revised power calculation, however, LSOM2 is
“misled” by the objective function (in brackets). Thus if we compare the true op-
timization objective for LSOM1 and LSOM2, LSOM2 strictly dominates LSOM1
in solution quality. In terms of computation time, LSOM2 performs similarly to
LSOM1 except the WR1-100-30 and WR1-100-40 instances. A closer look at the
CPLEX solution log reveals that LSOM2 arrived at the actual optimal solution
(proven by LSOM1) within a few seconds for both cases, but was unable to
quickly tighten the dual bound.

As with the SOM1 model, the bigger cases (WR36-400) cannot be solved by
LSOM1 within 1 hour because the CPLEX solver either took a few hours to
initialize or could not start at all.

6 Discussion

LSOM1 represents the state-of-art solution model for this wind farm layout
optimization problem. Our LSOM2, an extension of LSOM1, outperforms it and
the other two models we proposed on most instances. Since the SOMs represent
the first time that the most accurate analytical wake equations [10] are modelled
with constraint programming and mixed integer programming, there is much
to learn about the performance and potential opportunities for the SOMs. We
describe several promising research directions.

For SOM1, nonlinearity appears only in the objective function, thus we could
apply nonlinear solvers that are based on linear solvers (e.g., SCIP [20]). The
SOM3 cuts capture information in two ways: no-good cuts capture interac-
tion between all k turbines in very specific layouts, while the 3-cuts capture
information from a wider range of layouts, but limited to the interaction among
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three turbines. We can potentially apply the same idea of 3-cut and generate
constraints that inform the master problem more effectively, without having to
generate too many of them (e.g., 4,5-cut).

A straightforward hybridization would be the sequential application of SOM1
and SOM3, where we start the problem with low resolution (coarse grid) and
progressively increase it. In this case, we could solve SOM1 in the initial stages,
utilizing the constraint propagation of CP solvers for the proximity constraints,
and then solve the problem with SOM3 in the later stages while fine-tuning the
turbine positions, utilizing the fact that this fine-tuning focuses on clusters of
closely located turbines and that such information can be effectively captured
by 3-cut (or 4,5-cut).

Finally, it is interesting to observe that although the LSOMs employ less
accurate power models (i.e., their optimal solutions are not the same as the
optimal solutions of SOM), LSOMs can still produce good solutions even when
benchmarked by the more accurate power calculations. We plan to explore this
in more detail once the SOMs are improved.

7 Conclusion

We have presented the wind farm design layout problem and proposed two mod-
els to incorporate the nonlinearity in the problem. The first model (SOM1) is
a direct formulation of the problem in constraint programming. While having
promising performance under complex wind scenarios, the major drawback of
this approach is the “curse of dimensionality” – the growth of the numbers of
variables and terms quickly exceeds reasonable computational capacity. A sec-
ond decomposed MIP model (SOM3) performs well in the simple wind regimes,
because no-good and 3-cuts can accurately describe the turbine interactions.
However with more complicated wind regimes, SOM3 is unable to improve its
early feasible solutions due to the weakness of the current cuts. We also pre-
sented a novel extension of an existing LSOM model. The LSOM models are
based on a less accurate model of power productions, thus having different objec-
tive functions than the SOMs. However, the models can be solved more quickly
and achieve high quality solutions when a posteriori evaluated with the more
accurate sum-of-squares power calculation.

In summary, we have presented two new models for the wind farm layout
optimization problem. These CP and MIP models are the first mathematical
programming models that capture the wind turbine interactions by modelling
the sum-of-squares equations – most accurate analytical multi-wake modelling
in the literature [10]. We also presented an extension (LSOM2) to a previous
MIP model (LSOM1) and demonstrated improved solution quality and time.
Based on the experimental study, we think that the most promising directions
for future work include the strengthening of cuts for SOM3 and hybridization of
SOM1 and SOM3.
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Abstract. Given a connected node-weighted (di)graph, with a root
node r, and a (possibly empty) set of nodes R, the Rooted Maximum
Node-Weight Connected Subgraph Problem (RMWCS) is the problem of
finding a connected subgraph rooted at r that connects all nodes in R
with maximum total weight. In this paper we consider the RMWCS as
well as its budget-constrained version, in which also non-negative costs
of the nodes are given, and the solution is not allowed to exceed a given
budget. The considered problems belong to the class of network design
problems and have applications in various different areas such as wildlife
preservation planning, forestry, system biology and computer vision.

We present three new integer linear programming formulations for
the problem and its variant which are based on node variables only.
These new models rely on a different representation of connectivity than
the one previously presented in the RMWCS literature that rely on a
transformation into the Steiner Arborescence problem. We theoretically
compare the strength of the proposed and the existing formulations,
and show that one of our models preserves the tight LP bounds of the
previously proposed cut set model of Dilkina and Gomes. Moreover, we
study the rooted connected subgraph polytope in the natural space of
node variables. We conduct a computational study and (empirically)
compare the theoretically strongest one of our formulations with the one
previously proposed using ad-hoc branch-and-cut implementations.

1 Introduction

In this work we study a variant of the connected subgraph problem in which we
are given a graph with a pre-specified root node (and possibly an additional set
of terminals). Nodes of the graph are associated with (not necessarily positive)
weights. The goal is to find a connected subgraph containing the root and the
terminals that maximizes the sum of node-weights. In addition, a budget con-
straint may be imposed as well: in this case, each node is additionally associated
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with a non-negative cost, and the cost of connecting the nodes is not allowed
to exceed the given budget. Both problem variants are NP-hard, unless all node
weights are non-negative and no budget is imposed, in which case the problem
is trivial. The problem is called the Rooted Maximum Node-Weight Connected
Subgraph Problem (RMWCS), or the RMWCS with Budget Constraint
(B-RMWCS), respectively.

The problem has been introduced by Lee and Dooly [12] in the context of the
design of fiber-optic communication networks over time, where the authors refer
to the problem as the constrained maximum weight connected graph problem.
The authors impose K-cardinality constraints, i.e., they search for a connected
subgraph containing K nodes (including a predetermined root) that maximizes
the collected node-weights. Obviously, K-cardinality constraints are a special
form of the budget constraints in which every node is associated a cost equal to
one, and the budget is equal to K.

A budgeted version arises in the wildlife conservation planning, where the task
is to select land parcels for conservation to ensure species viability, also called
corridor design (see, e.g. [4, 5]). Here, the nodes correspond to land parcels,
their weights are associated with the habitat suitability, and node costs are
associated with land value. The task is to design wildlife corridors that maximize
the suitability with a given limited budget. Also in forest planning, the connected
subgraph arises as subproblem, e.g., for designing a contiguous site for a natural
reserve or for preserving large contiguous patches of mature forest [2]. Moss
and Rabani [15] have proposed an O(log n) approximation algorithm for the B-
RMWCS with non-negative node-weights, where n is the number of nodes in the
graph. For more details on the problems related on the RMWCS, see e.g., the
literature review given in [5].

In this paper we will address the RMWCS in digraphs as well. This is mo-
tivated by some applications in systems biology where regulatory networks are
represented using (not necessarily bidirected) digraphs and with node weights
that can also be negative. The goal is to find a rooted subgraph in which there is
a directed path from the root to any other node that maximizes the sum of node
weights. In systems biology, the roots are frequently referred to as “seed genes”
as they are assumed to be involved in a particular disease. In Backes et al. [1],
for example, the authors search for the connected subgraph in a digraph without
a prespecified root node (i.e., determination of the seed gene, also called the key
player, is part of the optimization process). To solve the problem of Backes et al.
[1] one can, for example, iterate over a set of potential key players, solve the
corresponding RMWCS and choose the best solution.

Our Contribution. Previously studied mixed integer programming (MIP) for-
mulations for the (B-)RMWCS use arc and possibly flow variables to model the
problem (see Dilkina and Gomes [5]). In this paper we propose three new MIP
models for the (B-)RMWCS derived in the natural space of node variables. We
first provide a theoretical comparison of the quality of lower bounds of these
models. We also show that one of our models which is based on the concept of
node separators, preserves the tight LP bounds of the previously proposed cut
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set model of Dilkina and Gomes [5]. In the second part of the paper we study the
rooted connected subgraph polytope (in the natural space of node variables) and
show under which conditions the node separator inequalities are facet-defining.
In an extensive computational study, we compare the node-separator and the
cut-set model on a set of benchmark instances for the wildlife corridor design
problem used in [5] and on a set of network design instances.

Outline of the Paper. Three new MIP models for the (B-)RMWCS are pro-
posed in Section 2. A comparison of the MIP models and results regarding the
facets of the rooted connected subgraph polytope are given in Section 3 and
computational results are presented in Section 4.

2 MIP Formulations for the RMWCS

In this section we present three new MIP models for the RMWCS and its budget-
constrained variant. Before that, we first review the model recently proposed
by Dilkina and Gomes [5] which is based on the reformulation of the problem
into the (budget-constrained) Steiner arborescence problem. The latter model is
derived on the space of arc variables, while the remaining ones are defined in the
natural space of node variables.

Since every RMWCS on undirected graphs can be considered as the same
problem on digraphs (by replacing every edge with two oppositely directed arcs),
in the remainder of this paper we will present the more general results for di-
graphs. The corresponding results for undirected graphs can be easily derived
from them.

Definitions and Notation. Formally, we define the RMWCS as follows: Given a
digraph G = (V ∪ {r}, A), with a root r, a set of terminals R ⊂ V , and node
weights p : V → R, the RMWCS is the problem of finding a connected subgraph
T = (VT , AT ), that spans the nodes from {r} ∪ R and such that every node
j ∈ VT can be reached from r by a directed path in T , and that maximizes the
sum of node weights p (T ) =

∑
v∈VT

pv. Additionally, in the B-RMWCS, node
costs c : V → R+ and a budget limit B > 0 are given. The goal is to find
a connected subgraph T that maximizes p (T ) and such that its cost does not
exceed the given budget, i.e., c (T ) =

∑
v∈VT

cv ≤ B.

A set of vertices S ⊂ V (S 	= ∅) and its complement S̄ = V \ R, induce
two directed cuts: (S, S̄) = δ+ (S) =

{
(i, j) ∈ A | i ∈ S, j ∈ S̄

}
and (S̄, S) =

δ− (S) =
{
(i, j) ∈ A | i ∈ S̄, j ∈ S

}
. For a set C ⊂ V , let D−(C) denote the set

of nodes outside of C that have ingoing arcs into C, i.e., D−(C) = {i ∈ V \ C |
∃(i, v) ∈ A, v ∈ C}.

A digraph G is called strongly connected (or simply, strong) if for any two
distinct nodes k and 
 from V , there exists a (k, 
) path in G. A node i is a cut
point in a strong digraph G if there exists a pair of distinct nodes k and 
 from
V such that there is no (k, 
) path in G− i. A node i is a cut point with respect
to r if there exists a node k 	= i, r such that there is no (r, k) path in G− i. For
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two distinct nodes k and 
 from V , a subset of nodes N ⊆ V \ {k, 
} is called
(k, 
) (node) separator if there exists a (k, 
) path in G and after eliminating N
from V there is no (k, 
) path in G. A (k, 
) separator N is minimal if N \ {i} is
not a (k, 
) separator, for any i ∈ N . Let N (k, 
) denote the family of all (k, 
)
separators. Obviously, if ∃(k, 
) ∈ A or if 
 is not reachable from k, we have
N (k, 
) = ∅.

For variables a defined on a finite set F , we denote by a(F ′) the sum
∑

i∈F ′ ai
for any subset F ′ ⊆ F . Throughout the paper, let the graph G = (V ∪ {r}, A),
n = |V |, and m = |A|.

2.1 Directed Steiner Tree Model of Dilkina and Gomes [5]

Dilkina and Gomes [5] propose to solve the B-RMWCS as a budget-constrained
directed Steiner tree problem rooted at r. Their models are based on the ob-
servation that it is sufficient to search for a subtree (subarborescence) since no
costs are associated to arcs in G, hence every solution containing cycles can be
reduced without changing the weight. It is sufficient to use arc variables to model
the problem since in a directed tree, the in-degree of every node is equal to one,
so that the objective function can be expressed as max

∑
i∈V piz(δ

−(i)), where
z are binary variables associated with the arcs of A that encode the subarbores-
cence. Dilkina and Gomes [5] proposed three MIP models for the B-RMWCS.
Two of them are flow based formulations (a single-commodity flow and a multi-
commodity flow based one). The authors showed that the flow-based formula-
tions are computationally outperformed by the cut-set model which is presented
below.

We further use a set of auxiliary binary variables y for the vertex set V , where
yi will be equal to one if node i is part of the subtree, and zero, otherwise. In
other words, we basically perform the substitution yi = z(δ−(i)). The set of
feasible B-RMWCS solutions can be described using inequalities (1)-(4). Con-
straints (1) and (2) ensure that the solution is a Steiner arborescence rooted at
r, equations (3) make sure that all terminals are connected and (4) is the budget
constraint:

z(δ−(i)) = yi ∀i ∈ V \ {r} (1)

z(δ− (S)) ≥ yk ∀k ∈ S, ∀S ⊆ V \ {r}, S 	= ∅ (2)

yi = 1 ∀i ∈ R (3)

cT y ≤ B (4)

Constraints (2), also known as cut or connectivity inequalities ensure that there
is a directed path from the root r to each node k such that yk = 1. In-degree
constraints (1) guarantee that the in-degree of each vertex of the arborescence
is equal to one. Thus, the rooted Steiner arborescence model for the B-RMWCS
(denoted by (SAr)) is given as

(SA)r max
{
pT y | (y, z) satisfies (1)-(4), (y, z) ∈ {0, 1}n+m

}
.
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We notice that in Ljubić et al. [14] these sets of constraints and the transfor-
mation into the directed Steiner tree were used for solving the Prize-Collecting
Steiner Tree problem (PCStT). A connection between the PCStT and the un-
rooted MWCS has been observed by Dittrich et al. [7]: the authors showed that
the unrooted MWCS can be transformed into the PCStT and used the branch-
and-cut approach from [14] to solve the MWCS on a large protein-protein inter-
action network. Consequently, the same relation holds for the rooted MWCS as
well.

The previous model uses node and arc variables (y and z) given that it relies
on a transformation into the Steiner arborescence problem. However it seems
more natural to find a formulation based only in the space of y variables since
no arc costs are involved in the objective function. In the next section we will
discuss several models that enable elimination of arc variables in the MIP models.

2.2 Node-Based Formulations for the RMWCS

We now propose three MIP models that are derived in the natural space of y
variables defined as above. We search for an arborescence rooted at r, but this
time, we avoid explicit use of arc variables.

Model Based on Subtour Elimination Constraints. This model is an adaptation
of the model by Backes et al. [1] that was recently proposed for the unrooted
MWCS on directed graphs. The following inequalities will be called the in-degree
constraints:

y(D− (i)) ≥ yi, ∀i ∈ V \ ({r} ∪D+(r)) (5)

They ensure that, whenever a node i is taken into a solution, at least one of
its incoming neighbors has to be in the solution as well (notice that we do
not need to impose this constraint for the outgoing neighbors of the root node).
Constraints (5) however do not guarantee that the obtained solution is connected
to the root. Let C denote the family of all directed cycles in G that do not contain
the root node and are not “neighbors” of the root, i.e.:

C = {C | C is a cycle in G, s.t. r 	∈ C, and r 	∈ D−(C)}.

In order to ensure connectivity of the solution, Backes et al. [1] add the following
constraints, that we will refer to as the subtour elimination constraints:

y(C)− y(D−(C)) ≤ |C| − 1, ∀C ∈ C. (6)

These constraints state that for each cycle C ∈ C whose node set is contained
in the solution, at least one of the neighboring nodes outside of that cycle needs
to belong to the solution as well. The model, that we will denote by CYCLE r

reads as follows:

(CYCLE r) max
{
pT y | y satisfies (3)-(6), y ∈ {0, 1}n

}
.
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A Flow-Based Model. Alternatively to the previous model, to ensure connec-
tivity, we can use multi-commodity flows where the available arc capacities are
defined as the minimum node capacities at each end of an arc. Finding a feasi-
ble solution now means allocating node capacities that will enable to send one
unit of flow from the root to each of the nodes taken into the subnetwork. In
this context, constraints (5) and (6) can be replaced by the following set of con-
straints that ensure that there is enough capacity on the nodes so that a unit
of flow can be sent from the root to any other node i ∈ V \ {r} with yi = 1.
These constraints state that (i) whenever an arc is part of a feasible solution of
the RMWCS, both of its end nodes are included into the solution and (ii) the
induced subgraph is connected:∑

(i,j)∈δ−(S)

min{yi, yj} ≥ yk, ∀k 	∈ {r} ∪D+(r), ∀S ⊆ V \ {r}, k ∈ S. (7)

Constraints (7) represent just a compact way of writing 2|δ
−(S)| inequalities

(see also [3] where these constraints have been proposed for a problem arising in
the design of telecommunication networks). They can be separated in polynomial
time by solving a maximum-flow problem in an auxiliary support graph. Observe
finally that indegree constraints (5) are also implied by these constraints: For
each node i 	∈ r ∪D+(r), we have y(D−(i)) ≥

∑
(j,i)∈δ−(i) min{yj , yi} ≥ yi. We

can now define the B-RMWCS as

(CUTm) max
{
pT y | y satisfies (3),(4),(7) and y ∈ {0, 1}n

}
.

Formulation Based on Node Separators. The other way of modeling the connec-
tivity of a solution using only node variables is to consider node separators. This
idea has been recently used in Fügenschuh and Fügenschuh [8], Carvajal et al.
[2] and Chen et al. [3] to model connectivity in the context of sheet metal de-
sign, forest planning, and telecommunication network design, respectively. The
following inequalities will be called node-separator constraints:

y(N) ≥ yk, ∀k 	∈ {r} ∪D+(r), N ∈ N (r, k). (8)

These constraints ensure that for each node k taken into the solution, either k
is a direct neighbor of r, or there has to be a path from r to k such that for each
node i on this path, yi = 1. Notice that whenever N (k, 
) 	= ∅, D−(k) ∈ N (k, 
)
and in this case the in-degree inequalities (5) are contained in (8). Thus, we can
formulate the B-RMWCS as

(CUT r) max
{
pT y | y satisfies (3),(4),(8), y ∈ {0, 1}n

}
.

2.3 Some More Useful Constraints

In case that the budget constraint (4) is imposed, the following family of cover
inequalities can be used to cut off infeasible solutions.
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Cover Inequalities. We say that a subset of nodes VC ⊂ V is a cover if the sum of
node costs in VC is greater than the allowed budget B. In that case, at least one
node from VC has to be left out in any feasible solution. A cover VC is minimal if
C \ {i} for any i ∈ VC is not a cover anymore. Let VC be a family of all minimal
covers with respect to B. Then, the following cover inequalities are valid for the
B-RMWCS: ∑

i∈VC

yi ≤ |VC | − 1, ∀VC ∈ VC (9)

For further details on cover inequalities, see e.g. [10].

3 Polyhedral Results

In this section we compare the proposed MIP formulations with respect to their
quality of LP bounds and we show that, under certain conditions, the newly in-
troduced node-separator inequalities are facets of the rooted connected subgraph
polytope.

3.1 Theoretical Comparison of MIP Models

Let PLP(.) denote the polytope of the LP-relaxations of the MIP models pre-
sented above and vLP (.) their optimal LP-values. We can show that:

Proposition 1. We have PLP(CUT r) � PLP(CUTm) � PLP(CYCLE r), and
there exist instances for which the strict inequality holds.

Proof. PLP(CUTm) � PLP(CYCLE r): Consider a feasible solution ŷ of the LP
relaxation of model CUTm. We will show that each such solution is feasible for
the model CYCLE r. Let C be an arbitrary cycle from C. Then, obviously, for
any node k ∈ C, we have ŷi(D

−(C)) ≥
∑

(i,j)∈δ−(C) min{ŷi, ŷj} ≥ ŷk. Adding

up this inequality with inequalities 1 ≥ ŷi, for each i ∈ C \ {k}, we obtain:
ŷ(D−(C)) + |C| − 1 ≥ ŷ(C) which is exactly the subtour elimination inequality
associated to C. To see that the strict inequality holds, consider the directed
graph shown in Figure 1(a).

PLP(CUT r) � PLP(CUTm): Consider a feasible solution ŷ of the LP relaxation
of the CUT r model. Let k ∈ V \ ({r} ∪D+(r)) be an arbitrary node such that
ŷk > 0 and let S ⊂ V \ {r} be a set such that k ∈ S. Then, we will show that∑

(ij)∈δ−(S) {ŷi, ŷj} ≥ ŷk, i.e., ŷ satisfies (7). Let N1 = {i | (i, j) ∈ δ−(S)}.
Observe that r 	∈ N1 and by definition, N1 is a node separator for k, i.e., N1 ∈
N (r, k). Let N2 = {j | (i, j) ∈ δ−(S)}: (i) If k /∈ N2, then N2 is a node separator
for k (N2 ∈ N (r, k)). Consider the bipartite graph defined by δ−(S). Each
possible vertex cover N ′ ⊂ N1 ∪N2 on this graph, induces a node separator for
k, i.e., N ′ ∈ N (r, k). There are 2|δ

−(S)| vertex covers in total, and constraints (8)
associated to them imply constraint (7); (ii) if k ∈ N2, then all vertex covers
involving k trivially satisfy ŷ(N ′) ≥ ŷk for k ∈ N ′. Together with the remaining
vertex covers, inequality (7) is implied. An example shown in Figure 1(b) shows
an instance for which the strict inequality holds. ��



Rooted Maximum Weight Connected Subgraph 307

r 1 2 3

4

(a)

r

1

2

3

4

5

6

(b)

Fig. 1. Examples that prove the strength of the new formulations. (a) The LP-solution
of CYCLEr sets y2 = y3 = y4 = 2/3 and y1 = 0, and this solution is infeasible for the
model CUTm. (b) The LP-solution of CUTm satisfies y1 = · · · = y5 = 1/2 and y6 = 1.
This solution is infeasible for CUT r.

Proposition 2. The (SAr) model and the (CUT r) model are equally strong,
i.e., vLP (SAr) = vLP (CUT r).

Proof. We first show that vLP (SAr) ≥ vLP (CUT r): Let (ẑ, ŷ) be a feasible
solution for the relaxation of the SAr model. Let k ∈ V \{r} be a node such that
ŷk > 0 and let N ∈ N (r, k). Because of in-degree constraints of the SAr model,
we have that

∑
i∈N ŷi =

∑
i∈N ẑ(δ−(i)). If N is removed from G, k cannot be

reached from r. Let Sr ⊆ V , r ∈ Sr, be all the nodes i that can be reached from r
after removing N , and let Sk = V \ (N ∪Sr), k ∈ Sk. Because of inequalities (2),
it holds that ẑ(δ+(Sr)) ≥ ŷk. Moreover, observe that for each (i, j) ∈ δ+(Sr)
we have that i ∈ Sr and j ∈ N , which means that

∑
i∈N ẑ(δ−(i)) ≥ ẑ(δ+(Sr)).

Therefore,
∑

i∈N ŷi ≥ ŷk, which proves that any LP solution of the SAr model
can be projected into a feasible solution of the CUT r with the same objective
value.

To show that vLP (CUT r) ≥ vLP (SAr) consider a solution y̌ ∈ PLP(CUT r).
We will construct a solution (ŷ, ẑ) ∈ PLP(SAr) such that y̌ = ŷ. On the graph
G′ (see Section 4.1, separation of separator inequalities) with arc capacities of
(i1, i2) set to y̌i for each i ∈ V \ {r} and to 1 otherwise, we are able to send y̌k
units of flow from the root r to every (k1, k2) such that y̌k > 0. Let fk

ij denote
the amount of flow of commodity k, sent along an arc (i, j) ∈ A′. Let f be the
minimal feasible multi-commodity flow on G′ (i.e., the effective capacities on G′

used to route the flow cannot be reduced without violating the feasibility of this
flow). We now define the values of (ŷ, ẑ) as follows:

ẑij =

{
maxk∈V \{r} fk

i2j1
, i, j ∈ V \ {r}

maxk∈V \{r} fk
i,j1 , i = r, j ∈ V \ {r}

, ∀(i, j) ∈ A, and

let ŷi = ẑ(δ−(i)), for all i ∈ V \ {r}. Obviously, the constructed solution (ŷ, ẑ)
is feasible for the (SAr) model, and, due to the assumption that f is minimal
feasible, it follows that y̌ = ŷ, which concludes the proof. ��

Finally, regarding the strength of the three MIP models studied by Dilkina and
Gomes [5], we notice that their single-commodity flow model is weaker than the
multi-commodity model, which is equally strong as the cut-set model (SAr) (see,
e.g., [13]).
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3.2 Facets of the RCS Polytope

In this section we consider the RMWCS with R = ∅, and let P denote the rooted
connected subgraph (RCS) polytope defined in the natural space of y variables:

P = conv{y ∈ {0, 1}n | y satisfies (8)}.

In this section we establish under which conditions some of the presented in-
equalities are facets of the RCS polytope.

Lemma 1. The RCS polytope is full-dimensional (i.e., dim(P) = n) if and only
if there exists a directed path between r and any i ∈ V .

Proof. We first generate a spanning arborescence T in G rooted at r. We will
then apply a tree pruning technique in order to generate n+1 affine independent
feasible RMWCS solutions. We start with the arborescence T in which case y
consists of all ones. We iteratively remove one by one leaf from T , until we end up
with a single root node (in which case y is a zero vector). Thereby, we generate
a set of n+1 affinely independent solutions. Conversely, if P is full dimensional,
then in order to create a feasible solution containing an arbitrary node i ∈ V ,
there has to be a directed path between r and i in G. ��

Lemma 2. Inequality yi ≥ 0 for i ∈ V is facet defining if and only if in the
graph G− i, any node j ∈ V \ {i} can be reached from r.

Lemma 3. Inequality yi ≤ 1 for i ∈ V is facet defining if and only if every node
in V can be reached from r and there either exists (r, i) ∈ A, or there exist two
node disjoint paths between r and i in G.

Given some k ∈ V and N ∈ N (r, k), let us now consider the corresponding
node separator inequalities: y(N) ≥ yk. Let Sr ⊂ V denote the subset of nodes
that can be reached from r in G − N , and let Sk be the remaining nodes, i.e.,
Sk = V \ (N ∪ Sr). Then, we have:

Proposition 3. Given some k ∈ V and N ∈ N (r, k), the associated node sep-
arator inequality y(N) ≥ yk is facet defining if N is minimal, every node in V
can be reached from r and every node in Sk can be reached from k.

Proof. For a given k ∈ V and N ∈ N (r, k), that satisfy the above properties
we prove the statement using the indirect method. Let F (k,N) = {y ∈ {0, 1}n |∑

i∈N yi = yk}. Consider a facet defining inequality of the form aty ≥ a0. We
will show that if all points in F (k,N) satisfy

aty = a0 (10)

then aty ≥ a0 is a positive multiple of (8). Observe first that the zero vector
belongs to F (k,N). By plugging it into (10), we get a0 = 0. Consider now an
arbitrary node 
 ∈ Sr. Consider a path P from r to 
 in Sr, and its subpath Q
obtained by deleting 
. Characteristic vectors of both of them belong to F (k,N),
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and by subtracting them, we obtain a� = 0, for all 
 ∈ Sr. Consider now an
arbitrary 
 ∈ Sk. Let P be a path from r to 
 that passes through exactly one
node i ∈ N and through k. We can find such a path for the following reasons: (i)
A path from r to k over a single node i ∈ N exists because N is minimal. (ii) A
path from k to 
 fully contained in Sk also exists by our assumption. Let Q be a
subpath of P obtained by deleting 
. Characteristic vectors of P and Q belong
to F (k,N), and by subtracting them, we obtain a� = 0, for all 
 ∈ Sk. Finally,
consider an arbitrary i ∈ N and a path P ′ from r to k passing through i and
no other nodes from N . Characteristic vector of P ′ belongs to F (k, n) and after
plugging it into (10), we obtain ai + ak = 0, for all i ∈ N . Therefore, we have
ai = −ak = α, and (10) can be written as α(y(N) − yk) = 0, which concludes
the proof. ��

4 Computational Results

In this section, we study the computational performance of Branch-and-Cut
(B&C) algorithms for the models (SAr) and (CUT r) for both the RMWCS and
the B-RMWCS.

4.1 Branch-and-Cut Algorithms

Constraint Separation. At each node of the branch-and-bound tree, constraints
(2) of the (SAr) formulation are separated by solving a max-flow problem
(see Ljubić et al. [14] for further details). For the (CUT r) model, inequalities (8)
can be separated in polynomial time on an auxiliary support graph G′ that splits
all nodes except the root into arcs so that each i ∈ V is replaced by an arc
(i1, i2). All ingoing arcs into i are now connected to i1, and all outgoing arcs
from i are now connected from i2. For a given node fractional solution ỹ and
k ∈ V \ ({r} ∪ D+(r)) such that ỹk > 0, to check whether there are violated
inequalities of type (8) we calculate the maximum flow between r and (k1, k2)
in G′ whose arc capacities are defined as ỹi for splitted arcs and to zero, oth-
erwise. For both cases, we also use nested, back-flow and minimum cardinality
cuts in order to insert as many violated cuts as possible (see Koch and Martin
[11], Ljubić et al. [14]). At each separation callback, we limit the number of
inserted cuts to 25.

For the B-RMWCS, the cover inequalities (9) are separated by solving a knap-
sack problem (which is weakly NP-hard) for each fractional solution ỹ:

(PCI) min{
∑
i∈V

(1− ỹi)ai |
∑
i∈V

ciai > B, ai ∈ {0, 1}n};

if the optimal value of (PCI) is less than one, the nodes i ∈ V such that ai = 1 are
the nodes of a cover VC for which the corresponding inequality (9) is violated.
Finally, once the violated cover inequality is detected, we insert the following
extended cover inequality in the MIP:∑

i∈VC∪V ∗(C)

yi ≤ |VC | − 1, ∀VC ∈ VC (11)
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where V ∗(C) = {i ∈ V \ VC | ci ≥ maxj∈VC cj}. We solve the knapsack problem
PCI within the B&C using CPLEX. Only at the root node of the branch-and-
bound tree the problem PCI is solved to optimality; in the remaining nodes it is
solved until reaching a 0.01% gap.

Primal Heuristic. At a given node of the branch-and-bound tree, we use the
information of the current LP solution ỹ in order to construct feasible primal
solutions for the (B-)RMWCS. The procedure, which is equivalent for both (SAr)
and (CUT r), consists of a (restricted) breadth-first search (BFS) that starts from
the root node r and constructs a connected component. A node is incorporated
into this component if its weight p̃v := pvỹv is non-negative and its cost cv added
to the cost of the current component does not violate the budget B.

MIP Initialization. As described in §4.2, part of our benchmark set consists of
4-grid graphs. In this case, all 4-cycles are easily enumerated by embedding the
grid into the plane and iterating over all faces except for the outer face. Let C4
be the set of all 4-cycles C such that r 	∈ C ∪D−(C) and let A[C] be the set of
arcs associated to it. Therefore, in case of 4-grids, the (SAr) model is initialized
with the following 4-cycle inequalities:

z(A[C]) ≤ y(C \ i), ∀i ∈ C, ∀C ∈ C4. (12)

The corresponding 4-cycle inequalities for the (CUT r) model are:

y(D−(C)) ≥ yi, ∀i ∈ C, ∀C ∈ C4. (13)

Additionally, indegree constraints (1) (or (5)) and zij+zji ≤ yi ∀e : {i �=r, j} ∈ E
are added to the MIP.

Implementation. The B&C algorithms were implemented using CPLEXTM12.3
and Concert Technology. All CPLEX parameters were set to their default values,
except that: (i) CPLEX cuts, CPLEX heuristics, and CPLEX preprocessing were
turned off, and (ii) higher branching priorities were given to y variables in the
case of the (SAr) model. All the experiments were performed on a Intel Core2
Quad 2.33 GHz machine with 3.25 GB RAM, where each run was performed
on a single processor. We denote as “Basic” the B&C implementation for which
neither the separation of CI nor the addition of 4-cycle inequalities, (12) or (13),
is considered.

4.2 Benchmark Instances

Wildlife Corridor Design Instances. We have considered three real instances
provided in [5] that are instances of the corridor design problem for grizzly
bears in the Rocky mountains, labeled as CD-40×40-sq (242 nodes, 469 edges),
CD-10×10-sq (3299 nodes, 6509 edges) and CD-25-hex (12889 nodes, 38065
edges). In all of them, three reserves are given and the root is chosen as one of
them.
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We have also considered 4-grid instances generated using the instance genera-
tor of Dilkina and Gomes [5]. The description of the parameters used for setting
up the instances and the generator itself are available online at [6]. These in-
stances are labeled as CD-O-C-T (see [6] for further details). In our experiments
we have generated instances with n + 1 = O2, where O ∈ {10, 15, 20}. We also
generated both, correlated and uncorrelated instances (C = {U,W}). Weights and
costs are independently and uniformly taken from {1, . . . , 10}. We also consid-
ered T = {2fR,R} and, in addition to the root, we consider two more terminals.
For each combination of these parameters we have generated 20 instances.

These instances were used for both the RMWCS and the B-RMWCS. For the
B-RMWCS, for a given instance I with set of terminals R, let Ĉmin be the cost
of the minimum Steiner Tree on R with arc costs ĉij = cj . Values of the available

budget B are defined using slacks over Ĉmin (see also [5]). For example, a 10%
of budget slack corresponds to B = 1.10× Ĉmin. For the RMWCS, we redefine
weights as w′

v = pv − cv, which can be done because pv and cv have comparable
units. That way, w′

v somehow represents the net-profit of including node v into
the solution. For the RMWCS we set R = ∅ and we take as root node the reserve
node with the smallest index.

Network Design Instances. These Euclidean instances with a topology similar
to street networks are generated as proposed in Johnson et al. [9]: First, n nodes
are randomly located in a unit Euclidean square. A link between two nodes i
and j is established if the Euclidean distance dij between them is no more than
α/
√
n, for a fixed α > 0. For a given n and a given α, weights and costs are

independently and uniformly taken from {1, . . . , 10}.
We generated instances using n = {500, 750, 1000} and α = {0.6, 1.0}; in

case that for a given distribution of n nodes in the plane the value of α is not
enough for defining a connected graph, it is increased by 0.01 until connecting
all components. For each combination of n and α, 20 instances are generated.
We take as root the node with index 0 and when considering a set of terminals,
these correponds to those nodes with labels 1 and 2.

4.3 Analyzing the Computational Performance

Results for the B-RMWCS. Table 1 shows a comparison of (SAr) and (CUT r)
models (including 4-cycle and CI) on the set of corridor design instances. The first
three rows correspond to the real instances provided by [5], so for each of them
we report statistics over a set of 18 problems (obtained for different budget slacks
taken from {10, 15, . . . , 95}). For the remaining rows, since we create 20 instances
for each parameter setting, the reported values correspond to statistics over
18×20 = 360 instances. In columns Tav(s) and Tmed(s) we report the average
and median running times (in seconds), respectively, of those instances solved to
optimality, in columns Gap we show the gaps (as percentages) of those instances
that were not solved to optimality within 1800 seconds. Columns #(2) and
#(8) show the number of connectivity cuts of the (SAr) and (CUT r) model,
respectively. Column #NOpt shows the number of instances that are not solved
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Table 1. Computational performance on B-RMWCS (+C4+CI) instances from [5]

SAr CUT r

Instance Tav(s) Tmed(s) Gap #(2) #NOpt Tav(s) Tmed(s) Gap #(8) #NOpt

CD-40×40-sq 5.28 4.45 0.00 388 0 4.28 3.27 0.00 90 0
CD-10×10-sq 619.58 332.40 0.07 1262 10 1389.07 1441.68 1.39 871 14
CD-25-hex – – 5.17 11524 18 – – 4.81 2958 18
CD-10-U-2fR 1.67 1.12 – 527 0 2.71 1.82 – 360 0
CD-10-W-2fR 1.80 1.00 – 535 0 2.22 1.50 – 389 0
CD-10-U-3R 0.91 0.71 – 362 0 0.63 0.38 – 157 0
CD-10-W-3R 3.08 0.50 – 389 0 0.82 0.42 – 190 0
CD-15-U-2fR 12.47 7.71 – 1085 0 26.33 13.78 – 883 0
CD-15-W-2fR 12.40 8.08 – 1222 0 26.61 10.98 – 1071 0
CD-15-U-3R 4.56 2.98 – 814 0 7.84 2.81 – 513 0
CD-15-W-3R 4.86 2.88 – 809 0 7.34 3.24 – 539 0

to optimality within 1800 seconds. We observe that for all 4-grid instances,
except for the CD-10×10-sq graph for which a more detailed analysis is given
below, both approaches are able to solve all instances in more or less reasonable
times, although the (SAr) model is slightly better than the (CUT r) model. On
the other hand, the number of inserted violated cuts of the (CUT r) model is
in all of the cases significantly smaller than the corresponding number for the
(SAr) model. The efficacy of the (SAr) model can be explained by the sparsity of
4-grid graphs. On the contrary, for the only more dense instance of this group,
namely CD-25-hex, which is a 6-grid with 12889 nodes and 38065 edges, the
(CUT r) model performs better than the (SAr) model. More precisely, the avg.
gap and its standard deviation for the (SAr) model are 5.17% and 1.11%, resp.,
while for the (CUT r) model these values are 4.81% and 0.81%, resp.’

To analyze the effects of special inequalities, namely 4-cycle and CI, we com-
pare three approaches: Basic, Basic plus 4-cycle inequalities (denoted by “+C4”)
and Basic plus 4-cycle and CI (denoted by “+C4+CI”). In Figure 2 we present
the box-plots of the gaps attained within 1800 seconds when solving real instance
CD-10×10-sq for budget slacks taken from {10, 15, . . . , 95}. The values marked
with an asterisk and × correspond to the mean and maximum running time,
respectively. Below the bottom of each box the number of instances solved to
optimality is indicated, and next to “#Cuts:” we report the average number of
detected cuts of type (2) and (8), respectively.

The box-plots indicate that for the Basic setting the (CUT r) model signif-
icantly outperforms the (SAr) model on this instance, in terms of the quality
of the solutions (smaller gaps), the stability of the approach (smaller disper-
sion), and the number of instances solved to optimality. This is mainly due to
the fact that in the (CUT r) model there are less variables, so the optimization
becomes easier and more stable. However, when including 4-cycle inequalities,
although both approaches perform better, (SAr) now outperforms (CUT r). The
average number of inserted cuts of type (2) decreases from 5989 to 1264 when 4-
cycle inequalities are added, while for the (CUT r) model this reduction is more
attenuated (only 18%). This means that for this instance constraints (12) are
empirically more effective than (13) in reducing too frequent calls of the maxi-
mum flow procedure. When adding the separation of CI (“+CI”) we observe that



Rooted Maximum Weight Connected Subgraph 313

●

●

●

●

●●

●

(Model, Setting)

G
a

p
 [

%
]

SAr, Basic CUTr, Basic SAr, +C4 CUTr, +C4 SAr, +C4+CI CUTr, +C4+CI

0
1

2
3

4
5

6
7

8
9

2.284 %

0.859 %

0.309 %

1.084 %

9.487 %

6.225 %

0.039 %

1.44 %

0.203 %

3.359 %

4 Opt 5 Opt 4 Opt 5 Opt 8 Opt 4 Opt

#Cuts:  5989

#Cuts:  1087

#Cuts:  1264

#Cuts:  893

#Cuts:  1262

#Cuts:  871

Labels

: Max Gap (%)

: Average Gap (%)

Fig. 2. Box-plots of the gaps [%] reached within 1800 sec for the CD-10×10-sq instance
considering (SAr) and (CUT r) and three different settings of the B&C (Budget slack
[%] taken from {10, 15, . . . , 95})

these constraints are more beneficial for the (SAr) model than for the (CUT r)
model - the latter one even slows down with addition of these cuts. This can
be explained by some numerical instability that can appear when dealing with
the separation of CI. We conclude that the advantage of the (CUT r) model of
having less variables vanishes when more sophisticated ideas are considered.

For the Network Design instances (whose complete results are not reported
due to space limitation), the graph density plays a role in the performance of
the two models. For instance, for n ∈ {500, 750} and α = 0.6, the (SAr) model
solves 536 instances out of 760 within the time limit, while the (CUT r) model
solves 443. However, when α = 1.0, the (SAr) approach solves 483 while the
(CUT r) approach solves 502. In both cases, the average running times of the
(CUT r) model needed to prove optimality are smaller than those of the (SAr)
model.

Results for the RMWCS. For the RMWCS we have considered the same corridor
design instances and, in addition, the network design instances with a weight
transformation as described in § 4.2. In Table 2, equivalent to Table 1, we report
the results obtained for the corridor design instances. In this case, time limit is
set to 3600 seconds. We observe that the (CUT r) model outperforms the (SAr)
model on real instances, and on random lattices it is the other way around,
although the differences are less visible.

The results on the network design instances are reported in Table 3. For a
given n and α equal to 0.6 and 1.0, respectively, column #nodes shows n + 1
and column #edges shows the average number of edges for a set of 20 instances
created using this setting. All instances of this group were solved to optimality,
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Table 2. Computational performance on instances from [5] when solving the RMWCS

SAr CUT r

Instance Time(sec) Gap(%) #(2) #NOpt Time(sec) Gap(%) #(8) #NOpt
CD-40×40-sq 0.70 – 254 0 0.16 – 10 0
CD-10×10-sq 316.11 – 3998 0 88.70 – 60 0
CD-25-hex 3600.00 1.99 20304 1 2611.13 – 14756 0

CD-10-U-2fR 0.15 – 231 0 0.14 – 34 0
CD-10-W-2fR 0.14 – 239 0 0.18 – 40 0
CD-10-U-3R 0.13 – 226 0 0.13 – 28 0
CD-10-W-3R 0.15 – 241 0 0.12 – 26 0
CD-15-U-2fR 1.28 – 720 0 11.59 – 99 0
CD-15-W-2fR 1.35 – 755 0 3.66 – 94 0
CD-15-U-3R 1.24 – 763 0 2.02 – 73 0
CD-15-W-3R 1.45 – 809 0 2.26 – 78 0
CD-20-U-2fR 7.67 – 1618 0 166.32 – 223 0
CD-20-W-2fR 7.41 – 1615 0 74.46 – 234 0
CD-20-U-3R 7.57 – 1667 0 16.90 – 133 0
CD-20-W-3R 8.39 – 1765 0 86.18 – 195 0

Table 3. Computational performance on the RMWCS network design instances

SAr CUT r

#nodes #edges Time(sec) #(2) Time(sec) #(8)
500 2535 11.42 1218 2.29 22.8
500 6484 3.50 211 0.84 <10
750 3845 57.07 2541 5.67 25.8
750 9944 7.69 287 1.71 <10
1000 5180 97.41 3188 15.59 36.3
1000 13397 10.16 302 2.77 <10

therefore in Table 3 we only report the average running times and the average
number of detected connectivity cuts. For these instances, the (CUT r) approach
clearly outperforms the (SAr) approach; for these instances, the ratio between
the number of edges and the number of nodes is, depending on the value of α,
around 5 or 13, in contrast to the corridor design instances, where this ratio
is close to two. This characteristic implies a practical difficulty for the (SAr)
model due to the increase of the number of variables. Besides, for this group of
instances, 4-cycle constraints and CI cannot be used in the initialization.

Conclusion. The obtained computational results let us conclude that both mod-
els (CUT r) and (SAr) perform very well in practice, and that their performance
is complementary. Using the (CUT r) model (i.e., having less variables ) pays
off for denser graphs with many zero-weight nodes for both, B-RMWCS and
RMWCS.
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Rooted Maximum Weight Connected Subgraph 315

at the TU Dortmund, supported by the APART Fellowship of the Austrian
Academy of Sciences. This support is greatly acknowledged. Eduardo Álvarez-
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Abstract. Recent research in areas such as SAT solving and Integer
Linear Programming has shown that the performances of a single arbi-
trarily efficient solver can be significantly outperformed by a portfolio
of possibly slower on-average solvers. We report an empirical evaluation
and comparison of portfolio approaches applied to Constraint Satisfac-
tion Problems (CSPs). We compared models developed on top of off-the-
shelf machine learning algorithms with respect to approaches used in the
SAT field and adapted for CSPs, considering different portfolio sizes and
using as evaluation metrics the number of solved problems and the time
taken to solve them. Results indicate that the best SAT approaches have
top performances also in the CSP field and are slightly more competitive
than simple models built on top of classification algorithms.

1 Introduction

The past decade has witnessed a significant increase in the number of constraint
solving systems deployed for solving Constraint Satisfaction Problems (CSP).
It is well recognized within the field of constraint programming that different
solvers are better at solving different problem instances, even within the same
problem class [3]. It has also been shown in other areas, such as satisfiability test-
ing [18] and integer linear programming [9], that the best on-average solver can
be out performed by a portfolio of possibly slower on-average solvers. This selec-
tion process is usually performed by using Machine Learning (ML) techniques
based on feature data extracted from the instances that need to be solved. Thus
in general a Portfolio Approach [3] is a methodology that exploits the signifi-
cant variety in performances observed between different algorithms and combines
them in a portfolio to create a globally better solver. Portfolio approaches in par-
ticular have been extensively studied and used in the SAT solving field. On the
other hand, to the best of our knowledge in the CSP field there exists only one
solver that uses a portfolio approach, namely CPHydra [13]. This solver uses a
rather small portfolio (just 3 solvers) and seems rather limited when compared
to modern SAT portfolio approaches.

In this work we tried to investigate to what extent a portfolio approach can
increase the performances of a CSP solver and which could be the best portfolio
approaches, among the several existing, for CSPs. We considered 22 versions
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of 6 well known CSP solvers and using these 22 solvers we implemented two
classes of CSP portfolio solvers, building portfolios of up to 16 solvers: in the
first class we used relatively simple, off-the-shelf machine learning classification
algorithms in order to define solver selectors; in the second class we tried to
adapt the best, advanced, and complex approaches of SAT solving to CSP. A
third portfolio solver that we considered was CPHydra, mentioned above. We
then performed an empirical evaluation and comparison of these three different
portfolio approaches. We hope that our results, described in the remaining of
this paper, may lead to new insights, to a confirmation of the quality of some
approaches and also to some empirical data supporting the creation of better
and faster CSP solvers.

It is worth noticing that adapting portfolios techniques from other fields is not
trivial: for instance, since portfolio approaches usually exploit features extracted
from the various instances of the problems, a good features selection may be
responsible of the quality and the performances of an approach. Moreover, dif-
ferently from the SAT world, in the CSP field there is no a standard language to
express CSP instances, there are fewer solvers, and sometimes only few features
and constraints are supported. To overcome these limitations we tried to collect
a dataset of CSP instances as extensive as possible. We used this dataset to
evaluate the performances of the three different CSP portfolio approaches.

2 Preliminaries

In this section we describe CPHydra and the SAT specific portfolio approaches
that we have adapted to CSP.

CPHydra. To our knowledge CPHydra [13] is the only CSP solver which uses
a portfolio approach. This solver uses a k-nearest neighbor algorithm in order
to compute a schedule of the portfolio constituent solvers which maximizes the
chances of solving an instance within a time-out of 1800 seconds. CPHydra was
able to win the 2008 International CSP Solver Competition.

SAT Solver Selector (3S). 3S [6] is a SAT solver that conjugates a fixed-time
static solver schedule with the dynamic selection of one long-running component
solver. It first executes for 10% of its time short runs of solvers. The schedule of
solvers, obtained by solving an optimization problem similar to the one tackled
by CPHydra, is computed offline (i.e. during the learning phase on training
data). Then, at run time, if a given instance is not yet solved after the short
runs a designated solver is executed for the remaining time. This solver is chosen
among the ones that are able to solve the majority of the most k-similar instances
in the training dataset. 3S was the best-performing dynamic portfolio at the
International SAT Competition 2011.

SATzilla. SATzilla [18] is a SAT solver that relies on runtime prediction mo-
dels to select the solver that (hopefully) has the fastest running time on a given
problem instance. In the International SAT Competition 2009, SATzilla won all
three major tracks of the competition. More recently a new powerful version
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of SATzilla has been proposed [17]. Instead of using regression-based runtime
predictions, the newer version uses a weighted random forest approach provided
with an explicit cost-sensitive loss function punishing misclassifications in direct
proportion to their impact on portfolio performance. This last version consist-
ently outperforms the previous versions of SATzilla and the other competitors
of the SAT Challenge 2012 in the Sequential Portfolio Track.

ISAC. In [10] the Instance-Specific Algorithm Configuration tool ISAC [7] has
been used as solver selector. Given a highly parametrized solver for a SAT in-
stance, the aim of ISAC is to optimally tune the solver parameters on the basis
of the given instance features. It can be easily seen as a generalization of an
algorithm selector since it could be used to cluster the instances and when a
new instance is encountered it selects the solver that solved the largest number
of instances belonging to the nearest cluster.

3 Solvers, Features and Dataset

In this section we introduce the three main ingredients of our portfolios: the CSP
solvers that we use; the features, extracted from the CSP instances, which are
used in the machine learning algorithms; the dataset used to perform the tests.

Solvers. We decided to build our portfolios by using some of the solvers of
the International CSP Solver Competition. We were able to use 5 solvers of this
competition, namely AbsCon (2 versions), BPSolver, Choco (2 versions), Mistral
and Sat4j. Moreover, by using a specific plug-in described in [11], we were able
to use also 15 different versions of the constraint solver Gecode (these different
versions were obtained by tuning the search parameters and the variable selection
criteria of the solver). Thus we had the possibility of using, in our portfolio, up
to 22 specific solvers which were all able to process CSP instances defined in the
XCSP format [14].

Features. In order to train the classifiers, we extrapolated a set of 44 fea-
tures from each XCSP instance. An extensive description of the features can be
retrieved in [8]. We used the 36 features of CPHydra [13] plus some features
derived from the variable graph and variable-constraint graph of the XCSP in-
stances. Whilst the majority of these features are syntactical, some of them are
computed by collecting data from short runs of the Mistral solver.

Dataset. We tried to perform our experiments on a set of instances as rea-
listic and large as possible. Hence, we constructed a comprehensive dataset of
CSPs based on the instances gathered from the 2008 International CSP Solver
Competition that are publicly available and already in a XCSP normalized
format. Moreover, we added to the dataset the instances from the MiniZinc
suite benchmark. These instances written in FlatZinc [12] were first compiled to
XCSP (by using a FlatZinc to XCSP converter provided by the MiniZinc suite)
and then normalized following the CSP competition conventions. Unfortunately,
since FlatZinc is more expressive than XCSP not all the instances could be suc-
cessfully converted. The final benchmark was built by considering 7163 CSP
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(a) No. of times a solver is faster (b) Marginal contributions

Fig. 1. Solver statistics

instances taken from the Constraint Competition, 2419 CSP instances obtained
by the conversion of the MiniZinc instances and then discarding all the instances
solved by Mistral during the first 2 seconds computation of the dynamic features.
We obtained a dataset containing 4547 instances (3554 from the Constraint Com-
petition and 993 from MiniZinc). For all the instances in the dataset we run all
the 22 version of the solvers collecting their results and computation times with
a time limit of 1800 seconds (which is the same threshold used in the Constraint
Competition). Among the dataset instances, 797 could not be solved by any
solver in our portfolio within the time cap. Figure 1a indicates the relative speed
of the different solvers by showing, for each solver, the number of instances on
which the considered solver is the fastest one. Considering this metric, Mistral is
by far the best solver, since it is faster than the others for 1622 instances (36%
of the instances of the dataset). In Figure 1b following [17] we show instead the
marginal contributions of each solver, that is how many times a solver is able
to solve instances that no other solver can solve. Even in this case Mistral is by
far the best solver, almost one order of magnitude better than the second one.
It is worth noticing that there are also 8 versions of Gecode that do not give a
marginal contribution.

4 Methodology

In order to evaluate and compare different portfolio approaches we tested every
approach using a 5-repeated 5-fold cross-validation [2]. The dataset was ran-
domly partitioned in 5 disjoint sets called folds. Each of these folds was treated
in turn as the test set, considering the union of the 4 remaining folds as training
data. In order to avoid a possible overfitting problem (i.e. a portfolio approach
that adapts too well on the training data rather than learning and exploiting the
generalized pattern) the random generation of the folds was repeated 5 times,
thus obtaining 25 sets of instances used to test the portfolio approaches. Every
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test set was therefore constituted by approximately 909 instances and the port-
folio approach for a single fold was built by taking into account (approximately)
3638 training instances. For every instance of every test set we computed the
solving strategy proposed by the portfolio approach and we simulated it by using
a time cap of 1800 seconds, checking if the solving strategy was able to solve
the instance and the time required. To evaluate the performances of the port-
folio approach we measured the average solving time (AST) and the percentage
of solved instances (PSI) of the portfolio solver, computed on all the 22735 in-
stances of the 25 test sets. In order to present a more realistic scenario, we have
considered in the simulation also the time taken to compute the instance fea-
tures. All the portfolio approaches were tested with portfolios of different sizes.
Since we realized that some solvers had a very low marginal contribution we
considered portfolios consisting of up to a maximum of 16 solvers. For every size
n = 2, . . . , 16 the portfolio composition was computed by using a local search
algorithm that maximized the number of instances solved by one of the solvers in
the portfolio. Possible ties were broken by minimizing the average solving time
for the instances of the dataset by the solvers in the portfolio.

For the approaches that used off-the-shelf machine learning classification al-
gorithms we used a training set to train a classifier in order to select the best
solver among those in the portfolio. For the instances that were not solved by
any solver we added a new label no solver that could be predicted. For every
instance of the test set we simulated the execution of the solver selected by the
model. In case the predicted solver was labeled no solver or it finished unexpect-
edly before the time cap the execution of a backup solver was simulated for the
remaining time. To decide the backup solver, we simulated an election scenario
by considering CSPs as voters who have to elect a representative among the 22
candidates solvers. Each CSP could express one or more preferences according to
its favorite solver. The election outcomes clearly sustained Mistral as the backup
solver since it was the Condorcet winner, i.e. the candidate preferred by more
voters when compared with every other candidate.

To train the models we used the WEKA tool [5] which implements some
of the most well known and widely used classification algorithms. In particu-
lar we used a k-nearest neighbors algorithm (IBk), decision trees based algo-
rithms (RandomForest, J48, DecisionStump), bayesian networks (NaiveBayes),
rule based algorithms (PART, OneR), support vector machines (SMO), and
meta classifiers (AdaBoostM1, LogitBoost). For all the classification algorithms
we tried different parameters in order to increase their accuracy. This task was
performed following the best practices when they were available or manually
trying different parameters starting from the default ones of WEKA. The above
approaches based on a ML classification algorithm have been compared against
the other approaches described in Section 2.

In order to reproduce the CPHydra approach, we computed the scheduling
that it would have produced for every instance of the test set and simulated
this schedule. Since this approach does not scale very well w.r.t. the size of the
portfolio we were able to simulate this approach only for small portfolios (i.e.
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containing less than 9 solvers). To compute the PSI and AST we did not take
into account the time needed to compute the schedule; therefore the results of
CPHydra can be considered only an upper bound of its real performances.

We simulated the SATzilla approach by developing a MATLAB implemen-
tation of the cost-sensitive classification model described in [17], with the only
exception that ties during solvers comparison are broken by selecting the solver
that in general solves the largest number of instances. We employed Mistral as
a backup solver in case the solver selected by SATzilla ended prematurely.

To simulate the 3S approach we did not use the original code to compute
the static schedule since it is not publicly available. To compute the schedule
of solvers we used instead the mixed integer programming solver Gurobi [4] to
solve the problem described in [6]. However, in order to reduce the search space,
instead of using the column generation method as used by the developers of
3S, we imposed an additional constraint requiring every solver to be run for an
integer number of seconds. If the instance was not solved in this time window
the solver that solved the majority of the most k-similar instances was used for
the remaining time (possible ties were broken by minimizing the average solving
time) and, in case of failures, Mistral was used as a backup solver.

Thanks to the code kindly provided by Yuri Malitsky, we were able to
adapt ISAC cluster-based techniques to create a solver selector using the
“Pure Solver Portfolio” approach as done for SAT problems in [10]. Also in
this case Mistral was used as a backup solver in case of failures of the se-
lected solver. All the code developed to conduct the experiments is available
at http://www.cs.unibo.it/~amadini/cpaior_2013.zip.

5 Results and Assessments

This section presents the experimental results of our work.
In Fig. 2 for brevity we just show the comparison between the approaches of

SATzilla, ISAC, 3S, CPHydra and the best approach using off-the-shelf classifiers
which was the one using Random Forest as solver selector (please see [1] for a
more extensive comparisons) setting as baselines the performances of Mistral
with a time cap of 1800 seconds and of the Virtual Best Solver (VBS), i.e. an
oracle that for every instance always chooses the best solver. As already stated,
due to the computational cost of computing the schedule of solvers, for CPHydra
we report the results obtained using just less than 9 solvers.

It is possible to notice that the best approaches used in SAT, namely 3S and
SATzilla, have peak performances. 3S is able to solve usually few more instances
than SATzilla (3S have a peak PSI of 78.15% against the 78.1% peak perfor-
mance of SATzilla) while SATzilla is usually faster (the AST of SATzilla with
a portfolio of size 6 was 466.82 seconds against the 470.30 seconds of 3S). Even
though conceptually 3S and SATzilla are really different they have surprisingly
close performances. This is confirmed also from a statistical point by using the

http://www.cs.unibo.it/~amadini/cpaior_2013.zip
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Fig. 2. Performances of portfolio approaches

Student’s paired t-test with a p-value threshold of 0.05. 3S and SATzilla are
instead statistically better than all the other tested approaches for portfolios
of size greater than 3 (3S is able to close 26% of the gap of Random Forest
w.r.t. the VBS). Moreover, the decay of performances due to the increase of the
portfolio size is less pronounced that what usually happens when a classifier is
used as a solver selector. As in the classification based approaches, the peak
performance was reached with a relatively small portfolio (6 solvers) and the
peak performances of both 3S and SATzilla are statistically significant w.r.t
their performances with different portfolios sizes. The performances of ISAC are
slightly worse than those of Random Forest: the maximum PSI reached was
75.99% while the Random Forest approach obtained 76.65%.

As far as CPHydra is concerned we saw that it solved the maximum number
of instances with a portfolio of size 6 reaching a PSI of 76.81% that was slightly
better than the peak performance obtained by Random Forest, even though not
in a statistically significant way. After reaching the maximal number of solved in-
stances CPHydra performances are decreasing and in a real scenario they would
be rather poor since computing the optimal solvers schedule can consume a lot
of time. From Figure 2 it is possible to note that CPHydra differs from other ap-
proaches because it is not developed to minimize the average solving time. There
is no heuristic to decide which solver needs to be run first in order to minimize
the solving time. For this reason, CPHydra is the only approach, among those
we have considered, where the PSI and AST values have a positive correlation.
Indeed, the Pearson correlation coefficient between PSI and AST values is 0.921,
which means that PSI and AST are almost in linear relationship. Conversely for
the other best performing approaches the correlation coefficient was always be-
low −0.985 meaning that minimizing the average solving time was like requiring
to maximize the number of instances solved and vice versa.
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6 Conclusions

In this work we have implemented different portfolio approaches for solving Con-
straint Satisfaction Problems (CSPs). These approaches have been obtained both
by using machine learning techniques and adapting to CSPs other algorithms
proposed in the literature, mainly in the SAT solving field. We have evaluated
and compared the different approaches by considering a dataset consisting of
4547 instances taken from two different kind of constraint competitions and a
selection of 22 versions of different solvers. The portfolio approaches were evalu-
ated on the basis of the number of problems solved and the time taken to solve
them. The experimental results show that the approaches that won the last two
SAT competitions, namely SATzilla and 3S, are the best ones among those con-
sidered in this paper, both for the instances solved and the time needed to solve
them. However approaches using off-the-shelf classifiers as solver selector are
not that far from the best performances and can potentially be used in scenarios
were the time needed to build the model to make the predictions matters. An-
other interesting empirical fact is that, for all but one the portfolio approaches
considered here, there was a strong anti-correlation between the average solving
time and the number of solved instances.

We are aware of the fact that our results are not as exhaustive as those
existing in the SAT field. However we believe that we made a first step towards
a clarification of the importance of the portfolio approaches for solving CSPs.
As a future work we plan to extend the number of portfolio approaches by
considering also the dynamic schedule approach of 3S [6], the regression based
approach of the previous version of SATzilla and other approaches which are
not based on feature extraction like [15]. Moreover we are also interested in
studying the impact of instance-specific algorithm configuration tools like ISAC
or HYDRA [16] in the CSP field by allowing the automatic tuning of search and
other solver parameters in order to boost the solver performances.
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Abstract. A recent paper by Heinz and Beck (CPAIOR 2012) found
that mixed integer software has become competitive with or superior to
logic-based Benders decomposition for the solution of facility assignment
and scheduling problems. Their implementation of Benders differs, how-
ever, from that described in the literature they cite and therefore results
in much slower performance than previously reported. We find that when
correctly implemented, the Benders method remains 2 to 3 orders of mag-
nitude faster than the latest commercial mixed integer software on larger
instances, thus reversing the conclusion of the earlier paper.

1 Introduction

Logic-based Benders decomposition (LBBD) [12, 21, 22] is a generalization of
classical Benders decomposition [3] that accommodates an arbitrary optimiza-
tion problem as the subproblem. LBBD is particularly attractive for planning
and scheduling problems, in which the master problem can use MIP to allo-
cate jobs to resources and the subproblem can use CP to schedule jobs on each
resource. Implementations of this method have obtained computational results
superior to those of state-of-the-art MIP and CP solvers, sometimes by several
orders of magnitude [4–6, 8–10, 13, 15–17, 19, 23–27].

A recent study by Heinz and Beck [11] finds, however, that MIP software has
improved to the point that it is competitive with or superior to LBBD on a
class of planning and scheduling problems on which LBBD previously excelled
[19]. MIP software has in fact improved significantly since the earlier results
were published (2007). Yet the computation times reported in [11] for LBBD are
much longer than those obtained in earlier studies, including [19].

A partial explanation for this discrepancy is that [11] incorrectly implements
the Benders cuts described in the references it cites [16, 18, 19]. In addition,
it solves the CP subproblems with a significantly slower method than the state
of the art. We therefore re-implemented LBBD, for the purpose of reproducing
previous results and comparing them with recent MIP software. We found that
LBBD remains superior to state-of-the-art MIP on this class of problems, as
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it is 2 to 3 orders of magnitude faster than CPLEX 12.4 on larger instances.
These results have subsequently been confirmed by Beck and Ku in unpublished
work [2].

2 Previous Work

Table 1 shows computational results for several methods tested by Heinz and
Beck [11] as well as previous LBBD results from [19]. The results are for the
“c” instances used in [13, 19] and available online [14]. There are n jobs to be
assigned to m facilities and then scheduled on each facility, using cumulative
scheduling. The objective is to minimize total cost of assigning jobs to facilities,
although other objectives have been used [16, 17, 19].

The results from [11] shown in the table are implemented in SCIP on an
Intel Xeon E5420 2.5 GHz machine. CIP(CP) and CIP(MIP) refer to CP/MIP
hybrids. The LBBD results from [19] were obtained from an implemention in
OPL Studio.

The discrepancy in LBBD results may be seen by examining the boldface
figures in Table 1. The difference is actually greater than shown, because the
SCIP results are shifted geometric means1 while the earlier LBBD results are
averages. There is an even larger discrepancy with results obtained in [28] by
the integrated solver SIMPL for similar instances.

One possible explanation for the discrepancy is that [11] uses relatively weak
nogood cuts as Benders cuts. When a set J of jobs assigned to facility i is found
to have no feasible schedule, the Benders cut

∑
j∈J (1− xij) ≥ 1 is added to the

master problem, where 0-1 variable xij = 1 when job j is assigned to facility i.
The cut prevents this set same of jobs (or any superset) from being assigned to
facility i in subsequent iterations. However, earlier studies use strengthened cuts
that are obtained heuristically by re-solving the scheduling problem on facility i
for subsets of J , so as to find a smaller set J ′ of jobs that have no feasible sched-
ule. This results in the stronger cut

∑
j∈J′ (1− xij) ≥ 1. Previous work suggests

that the strengthening procedure can bring significant improvement in perfor-
mance, and this may explain part of the discrepancy. We test this hypothesis in
the next section.

3 Computational Results

Table 2 shows our results for the “c” instances. The MIP results are obtained
by CPLEX 12.4.01. LBBD is implemented by solving the master problem with
CPLEX 12.4.01 and the subproblems with IBM CP Optimizer 12.4.01 using
extended filtering, DFS search, and default variable and value selection. All
tests are run on an Intel Xeon E5345 2.33 GHz (64 bits) in single core mode
with 8 GB RAM.

1 The shifted geometric mean of v1, . . . , vn is (Πi(vi + s))1/n − s for shift s. Following
[11], we use s = 10 seconds. The shifted geometric mean of a set of distinct values
is smaller than the average.
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Table 1. Computational results for planning and scheduling “c” instances as reported
by [11] and [19], showing number of instances solved to optimality (out of 5) and
solution time. Boldface figures show contrasting reuslts for LBBD.

Reported in [11] LBBD
Size MIP (SCIP) LBBD CIP(CP) CIP(MIP) in [19]

m n Solved Sec1 Solved Sec1 Solved Sec1 Solved Sec1 Solved Sec2

2 10 5 1 5 1 5 0 5 2 5 0
12 5 1 5 1 5 0 5 4 5 0
14 5 1 5 3 5 1 5 5 5 0
16 5 11 5 17 5 19 5 30 5 2
18 4 162+ 5 89 5 18 5 77 5 9
20 3 401+ 3 158+ 5 3 5 139 5 111
22 2 1442+ 2 703+ 2 1325+ 4 2550+ <5 1805+
24 2 2197+ 0 - 3 707+ 3 1180+
26 3 2977+ 1 5193+ 1 5440+ 2 3261+
28 2 2503+ 3 441+ 3 160+ 2 2598+
30 1 5429+ 1 2972+ 0 - 1 4180+
32 0 - 1 5680+ 3 282+ 1 6123+

3 10 5 0 5 1 5 0 5 1 5 0
12 5 1 5 1 5 1 5 5 5 0
14 5 1 5 1 5 2 5 11 5 0
16 5 14 5 10 5 22 5 60 5 1
18 5 429 5 21 4 139+ 4 296+ 5 3
20 4 1124+ 5 6 5 35 5 253 5 3
22 2 6014+ 5 149 2 1352+ 4 505+ 5 8
24 2 3253+ 1 2324+ 1 3165+ 5 1001 5 19
26 0 - 4 1351+ 3 727+ 1 4467+
28 2 1829+ 0 - 2 1261+ 2 3057+
30 0 - 0 - 0 - 2 5435+
32 0 - 0 - 1 6918+ 1 6639+

4 10 5 0 5 1 5 1 5 1 5 0
12 5 1 5 1 5 1 5 4 5 0
14 5 1 5 1 5 2 5 12 5 0
16 5 2 5 10 5 1 5 11 5 0
18 5 38 5 21 5 4 5 67 5 1
20 5 309 5 6 5 27 5 106 5 1
22 4 324 5 149 5 46 5 544 5 3
24 0 - 1 2324+ 2 1446+ 2 4184+ 5 39
26 0 - 4 1351+ 1 4070+ 2 5530+ 5 29
28 1 5034+ 0 - 1 2804+ 2 3885+
30 0 - 0 - 1 2105+ 0 -
32 0 - 0 - 0 - 0 -

1Shifted geometric mean 2Average
+Computation terminated after 7200 sec for instances not solved to optimality.

The new LBBD results are somewhat better than the old ones in [19], presum-
ably due to faster MIP and CP components. More importantly, LBBD remains
significantly faster than the most recent CPLEX solver, particularly when there
are 3 or 4 facilities. Decomposition is obviously more helpful when there are
more facilities, because more decoupling is possible in the subproblem.

The “c” instances used in [13, 19] put LBBD at a disadvantage in two ways:
they use relatively few facilities, and the facilities differ greatly (by a factor of
m) in speed. The master problem assigns most jobs to the fastest facilities, re-
sulting in harder scheduling problems for CP. We therefore ran MIP and LBBD
on problem set “e,” also used in [13, 19]. These instances have more facilities,
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Table 2. Computational results for planning and scheduling “c” instances, showing the
number of problem instances solved (out of 5) and computation time. The results are
obtained for (a) the CPLEX MIP solver, (b) logic-based Benders decomposition imple-
mented with simple nogood cuts, and (c) LBBD implemented with the strengthened
cuts used in previous studies.

Size MIP (CPLEX) LBBD: Weak cuts LBBD: Strong cuts
m n Solved Sec1 Sec2 Solved Sec1 Sec2 Solved Sec1 Sec2

2 10 5 0.1 0.1 5 0.1 0.1 5 0.1 0.1
12 5 0.2 0.2 5 0.1 0.1 5 0.0 0.0
14 5 0.1 0.1 5 0.1 0.1 5 0.0 0.0
16 5 8.9 28 5 0.2 0.2 5 0.3 0.3
18 5 65 388 5 0.5 0.5 5 0.6 0.7
20 4 221+ 1902 5 1.9 2.0 5 6.4 8.0
22 3 1055+ 3849+ 5 38 617 5 67 955
24 2 1000+ 4351+ 4 110+ 1495+ 5 267 1948
26 1 6055+ 6365+ 5 94 327 5 299 1948
28 1 1230+ 4396+ 5 509 1004 5 606 1133
30 0 - - 2 1916+ 5391+ 5 336 5401
32 1 3932+ 5828+ 2 703+ 4325+ 2 704+ 4325+

3 10 5 0.0 0.0 5 0.1 0.1 5 0.1 0.1
12 5 0.1 0.1 5 0.4 0.5 5 0.1 0.1
14 5 0.3 0.3 5 0.3 0.3 5 0.2 0.2
16 5 8.6 13 5 2.5 2.7 5 0.8 0.8
18 5 204 548 5 6.2 7.8 5 1.4 1.4
20 4 326+ 1712+ 5 1.1 1.2 5 0.5 0.5
22 3 1458+ 3679+ 5 6.2 7.5 5 2.4 2.6
24 2 1941+ 4438+ 5 8.8 15 5 5.1 5.7
26 0 - - 5 119 191 5 62 98
28 2 4035+ 5254+ 5 89 271 5 85 209
30 0 - - 4 612+ 2356+ 5 498 1856
32 0 - - 2 3091+ 4666+ 2 3350+ 4751+

4 10 5 0.0 0.0 5 0.0 0.0 5 0.0 0.0
12 5 0.1 0.1 5 0.1 0.1 5 0.1 0.1
14 5 0.3 0.3 5 0.9 1.0 5 0.3 0.3
16 5 1.0 1.0 5 0.4 0.4 5 0.1 0.1
18 5 15 36 5 1.6 1.7 5 0.4 0.4
20 5 109 522 5 1.1 1.1 5 0.3 0.3
22 5 206 811 5 4.5 8.2 5 1.0 1.1
24 1 5918+ 6300+ 5 16 23 5 6.8 9.1
26 0 - - 5 16 19 5 7.0 7.4
28 1 3184+ 5783+ 5 19 36 5 11 11
30 0 - - 5 89 430 5 34 61
32 0 - - 5 286 679 5 206 478

1Shifted geometric mean 2Average
+Computation terminated after 7200 sec for instances not solved to optimality.

with speeds differing by no more than a factor of 1.5. The results appear in
Table 3. The LBBD advantage is even greater on these instances, easily solving
all 20 of the instances with 35 jobs or more, while MIP solved only 5 of them
within a two-hour time limit.

The results show that strengthened cuts can make a significant difference when
there are 3 or more facilities, but not enough to explain most of the discrepancy
described above in the LBBD results. This suggests that the discrepancy is
primarily due to SCIP’s relatively slow solution of CP subproblems.
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Table 3. Computational results for planning and scheduling “e” instances

Size MIP (CPLEX) LBBD: Weak cuts LBBD: Strong cuts
m n Solved Sec1 Sec2 Solved Sec1 Sec2 Solved Sec1 Sec2

2 10 5 0.1 0.1 5 0.1 0.1 5 0.1 0.1
2 12 5 0.3 0.3 5 0.3 0.3 5 0.1 0.1
3 15 5 0.9 0.9 5 0.4 0.4 5 0.2 0.2
4 20 5 20 46 5 6.2 14 5 1.6 1.9
5 25 5 25 73 5 1.0 1.0 5 0.7 0.7
6 30 5 113 543 5 1.3 1.3 5 0.4 0.4
7 35 2 2956+ 5122+ 5 25 36 5 2.5 2.7
8 40 2 909+ 4357+ 4 130+ 1527+ 5 18 80
9 45 0 - - 5 512 1050 5 29 35

10 50 1 6968+ 6983+ 5 22 45 5 5.0 5.4
1Shifted geometric mean 2Average
+Computation terminated after 7200 sec for instances not solved to optimality.

4 Conclusions

We conclude that despite improvements in MIP software, logic-based Benders
decomposition results in significantly faster solution of the problem class studied
here, generally with speedups of at least 100 to 1000 on larger instances. It is
also superior to the other MIP/CP hybrid methods reported in [11] and shown in
Table 1. The advantage of LBBD increases as the number of facilities increases,
because it is a decomposition method that is naturally more effective when the
problem decomposes into smaller subproblems.

Heinz and Beck [11] remark that even when MIP is slower than LBBD at
proving optimality, it is more effective at finding good feasible solutions. This
because LBBD does not find a feasible solution until it terminates with a proof
of optimality.

In response, we first point out that this is a technical peculiarity of the mini-
mum cost problem solved here, in which the Benders subproblem is a feasibility
problem. It is not the case for other objective functions—such as makespan,
number of late jobs, and total tardiness—for which the subproblem is an opti-
mization problem that finds feasible solutions throughout the solution process
[16, 17, 19].

More importantly, LBBD is proposed as an exact method, rather than a
heuristic method for finding feasible solutions. The tests show that LBBD clearly
excels at finding optimal solutions. If the goal is to find good feasible solutions,
one can use primal heuristics. In fact, this is precisely the approach taken by the
MIP solvers tested by [11]. LBBD can likewise find good feasible solutions if it is
permitted to use a primal heuristic. However, in the tests reported in [11], only
the MIP and MIP/CP hybrid methods are allowed to use primal heuristics.

Heinz and Beck also remark that unlike MIP, the decomposition approach
has difficulty with constraints that couple the scheduling subproblems, such as
precedence constraints. Decomposition in fact requires that the subproblems
decouple and would presumably be less effective if the subproblems were linked.
However, this is balanced by a weakness of the MIP model, which uses time-
indexed variables. As the time horizon becomes longer, the number of integer
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variables increases, and the MIP problem becomes disproportionately harder.
This is demonstrated in [7] even for a single-facility problem, in which case
a LBBD method that decomposes the time horizon into short segments is far
superior to MIP.

The more general issue is whether it is reasonable to pursue such special-
purpose methods as LBBD when MIP software constantly improves. LBBD
seems worthy of pursuit, for four reasons. One reason is that LBBD technology
developed before 2007 is still far superior to the latest MIP solvers, at least on
the problem class studied here. A second reason is that LBBD can also improve.
Logic-based Benders cuts are more effective when they exploit information from
the inference dual of the subproblem [21, 20]. This information is not available
from the CP solver in pre-2007 implementations. An implementation that fully
integrates the master and subproblem may be signficantly more effective.

A third reason is that LBBD is best conceived as an enhancement of MIP
rather than as a competitor of MIP. After all, LBBD relies on MIP to solve the
master problem, and conceivably the subproblems as well. MIP technology will
doubtless continue to improve, but these improvements can be incorporated into
LBBD. The relevant issue is whether the effectiveness of MIP can be increased
still more by decomposing the problem and applying MIP to some or all of its
components. So far, the answer appears to be yes.

Finally, LBBD need not be a “special-purpose” method, but can be part of
an integrated approach to optimization. For example, LBBD has been imple-
mented within the general-purpose solver SIMPL [1], which obtained the results
in [28] mentioned earlier. SIMPL treats both the Benders method and MIP as
special cases of a restrict-infer-and-relax algorithm. Rather than rely solely on
engineering improvements in MIP solvers, it seems best to invest similar effort
in integrated solvers, such as SCIP and SIMPL.
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Abstract. This paper describes a branch-and-cut algorithm to solve
the Team Orienteering Problem (TOP). TOP is a variant of the Vehi-
cle Routing Problem (VRP) in which the aim is to maximize the total
amount of collected profits from visiting customers while not exceeding
the predefined travel time limit of each vehicle. In contrast to the exact
solving methods in the literature, our algorithm is based on a linear for-
mulation with a polynomial number of binary variables. The algorithm
features a new set of useful dominance properties and valid inequalities.
The set includes symmetric breaking inequalities, boundaries on profits,
generalized subtour eliminations and clique cuts from graphs of incom-
patibilities. Experiments conducted on the standard benchmark for TOP
clearly show that our branch-and-cut is competitive with the other meth-
ods in the literature and allows us to close 29 open instances.

Keywords: branch-and-cut, dominance property, incompatibility, clique
cut.

Introduction

The Team Orienteering Problem (TOP) [4] is a widely studied Vehicle Routing
Problem (VRP) which can be described as follows: a fleet of vehicles is avail-
able to visit customers from a potential set and each vehicle is associated with
a predefined travel time limit and two particular depots, the so-called depar-
ture and arrival. Each customer is associated with an amount of profit that can
be collected at most once by the fleet of vehicles. The aim of TOP is to se-
lect customers and organize an itinerary of visits so as to maximize the total
amount of collected profits. The applications of TOP include athlete recruiting
[4], technician routing [1, 9] and tourist trip planning [10].
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To the best of our knowledge, three exact methods have been proposed to solve
TOP. Butt and Ryan [3] described a set covering formulation and developed a
column generation algorithm for solving TOP. In Boussier et al. [2], the authors
proposed a branch-and-price algorithm and a dynamic programming approach
to deal with the pricing problem. More recently, a pseudo-polynomial linear
model for TOP was introduced by Poggi de Aragão et al. [8] and a branch-cut
and price algorithm was proposed. These methods are able to solve a large part
of the standard benchmark [4] for TOP, however many other instances remain
open. Furthermore, a recent effort [6] showed that it is hardly possible to improve
the already-known solutions for TOP by heuristics.

In this paper, we propose a branch-and-cut algorithm for the exact solution
of TOP based on a set of dominance properties and valid inequalities. This
set includes symmetric breaking, generalized subtour eliminations, boundaries
on profits/numbers of customers based on dynamic programming, as well as
clique cuts based on the graphs of incompatibilities. Experiments conducted on
the standard benchmark [4] for TOP clearly show the competitiveness of the
approach, especially on the number of instances being solved to optimality. The
algorithm also allows us to close 29 open instances.

1 Compact Formulation

TOP is modeled with a complete graph G = (V,E). V = {1, . . . , n} ∪ {d, a} is
the set of vertices representing customers and depots. E = {(i, j)|i, j ∈ V } is the
set of arcs. Vertices d and a are respectively the departure and the arrival depot
for the vehicles. We use V −, V d and V a to denote the sets of customers only,
customers with departure depot and customers with arrival depot respectively.
Each vertex i is associated with a profit Pi (Pd = Pa = 0) and a travel cost Cij

is associated with each arc (i, j) ∈ E (Cid = Cai = ∞, ∀i ∈ V −). The travel
costs are assumed to satisfy the triangle inequality. A fleet F is composed of m
identical vehicles and available to visit customers without exceeding a travel cost
limit L for each vehicle. The problem can be then formulated in Mixed Integer
Programming (MIP) using a polynomial number of decision variables xijr and
yir: xijr = 1 if arc (i, j) is used by vehicle r to serve customer i then customer
j and 0 otherwise; yir = 1 if client i is served by vehicle r and 0 otherwise.

max
∑
i∈V −

∑
r∈F

yirPi (1)

∑
r∈F

yir ≤ 1 ∀i ∈ V − (2)∑
j∈V a

xdjr =
∑
j∈V d

xjar = 1 ∀r ∈ F (3)

∑
i∈V a\{k}

xkir =
∑

j∈V d\{k}
xjkr = ykr ∀k ∈ V −, ∀r ∈ F (4)

∑
i∈V d

∑
j∈V a\{i}

Cijxijr ≤ L ∀r ∈ F (5)



334 D.-C. Dang, R. El-Hajj, and A. Moukrim∑
(i,j)∈U×U

xijr ≤ |U | − 1 ∀U ⊆ V −, |U | ≥ 2, ∀r ∈ F (6)

xijr ∈ {0, 1} ∀i ∈ V, ∀j ∈ V, ∀r ∈ F (7)

yir ∈ {0, 1} ∀i ∈ V −, ∀r ∈ F

The objective function (1) is to maximize the sum of collected profits. Con-
straints (2) guarantee that each customer is visited at most once. The connec-
tivity of each tour is ensured by constraints (3) and (4). Constraints (5) describe
the travel length restriction. Constraints (6) ensure that subtours are forbidden.
Finally, the integral requirement on variables is guaranteed by constraints (7).

2 Generalized Subtour Eliminations

The number of constraints (6) in the formulation is exponential. In practice,
these constraints are removed from the formulation and only added when needed.
Moreover, we replace these constraints with stronger ones known as the Gener-
alized Subtour Elimination Constraints (GSEC) [7] as follows.

For a given subset S of vertices, we define δ(S) as the set of arcs connecting
vertices of S with vertices of V\S. We also define γ(S) as the set of arcs inter-
connecting vertices of S. The following constraints ensure that each customer
served by vehicle r is connected to the depots.

Property 2.1. GSEC:∑
(u,v)∈δ(S)

xuvr ≥ 2yir, ∀S ⊂ V, {d, a} ⊆ S, ∀i ∈ V \ S, ∀r ∈ F (8)

Property 2.2. Equivalent to the GSEC:∑
(u,v)∈γ(S)

xuvr ≤
∑
i∈S

yir − yjr, ∀S ⊂ V, {d, a} ⊆ S, ∀j ∈ V \ S, ∀r ∈ F (9)

∑
(u,v)∈γ(U)

xuvr ≤
∑
i∈U

yir − yjr, ∀U ⊆ V −, ∀j ∈ U, ∀r ∈ F (10)

3 Dominance Properties

Given an instance X of TOP with m vehicles, we use XI to denote the same
instance for which profit of each customer is changed to 1. We also define Xg as
the instance X where the number of vehicles is reduced to g (g ≤ m). On the
other hand, we use LB(X) (resp. UB(X)) to denote a lower (resp. an upper)
bound of instance X . The following properties hold for the formulation of TOP.

Property 3.1. Symmetric breaking on profits, (without loss of generality) we
focus on solutions in which profits of routes are sorted in a particular order:∑

i∈V −
yi(r+1)Pi −

∑
i∈V −

yirPi ≤ 0, ∀r ∈ F \ {m} (11)
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Property 3.2. Boundaries on profits:∑
r∈H

∑
i∈V −

yirPi ≤ UB(X |H|), ∀H ⊂ F (12)

∑
r∈H

∑
i∈V −

yirPi + UB(Xm−|H|) ≥ LB(X), ∀H ⊆ F (13)

Property 3.3. Boundaries on numbers of customers:∑
r∈H

∑
i∈V −

yir ≤ UB(X
|H|
I ), ∀H ⊂ F (14)

∑
i∈V −

yir ≥ LB(X̄1
I ), ∀r ∈ F (15)

Values of LB in (13) are calculated using an efficient heuristic for TOP, such as
the one used in [6]. Similarly to dynamic programming, values of UB in (12),
(13) and (14) are computed as follows. We start our resolution by computing
these values for the smallest instance (|H | = 1) using a stopping condition,
i.e. computational time or number of branch-and-bound nodes, then we use the
obtained values to solve larger instances (|H | ≤ m). In (15), we use LB(X̄1

I )
to denote a lower bound obtained from solving the derived MIP model of X1

I

for which the objective function is reversed to minimization and the constraints
(12) and (13) with |H | = 1 are added.

4 Incompatibilities and Clique Cuts

Let S be a small subset of vertices of V − (or arcs of E), we use MinLength(S)
to denote the length of the shortest path from d to a containing all vertices (or
all arcs) of S. The graph of incompatibilities between customers is defined as:
GInc

V − = (V −, EInc
V −) with EInc

V − = {[i, j]|i ∈ V −, j ∈ V −,MinLength({i, j}) >
L}. The graph of incompatibilities between arcs is defined as: GInc

E = (E,EInc
E )

with EInc
E = {[i, j]|i = (u, v) ∈ E, j = (w, s) ∈ E,MinLength({(u, v), (w, s)}) >

L}. The following inequalities hold for the formulation of TOP.

Property 4.1. (Clique) Let K (resp. Q) be a clique of GInc
V − (resp. GInc

E ):∑
i∈K

yir ≤ 1, ∀r ∈ F (16)∑
(u,v)∈Q

xuvr ≤ 1, ∀r ∈ F (17)

The two graphs GInc
V − and GInc

E can be computed beforehand and archived for
each instance. Maximal cliques are preferred in inequalities (16) and (17) since
they provide tighter formulation. In practice a greedy decomposition of the two
graphs into maximal cliques is used and the details are given in the next section.
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5 Branch-and-Cut Algorithm

Branching Rule: Since the objective function is to maximize the collected prof-
its, the selection of correct customers appears to be crucial for TOP. Therefore,
our branching rule is prioritized on yir first then xijr [2, 8].

Presolving Steps: By definition, a customer is said to be inaccessible if the
travel cost of the tour containing only that customer excesses the cost limit. An
inaccessible arc can be similarly defined. So in order to make a proper linear
formulation, we first eliminate all inaccessible customers and arcs. Additionally,
during a limited computational time at the beginning (e.g. limited to 5% of the
total solving time), the values required for inequalities (12)-(15) are computed
using the method mentioned in Section 3. Then a greedy decomposition of GInc

V −
into maximal cliques is generated using [5] and the associated inequalities (16)
are added to the formulation.

Complete Algorithm: The MIP solver is initialized with a feasible solution
generated from an heuristic of [6]. This initialization accelerates the resolution
by eliminating portions of the search space composed of solutions with lower
profits. In the first iteration, the linear model containing constraints (2)-(5), (7),
(11)-(15) and (16) is solved and a solution is obtained. The solution is then
checked for subtours. If the solution does not contain any subtour, then it is
optimal and the resolution is terminated. Otherwise, the associated constraints
(8), (9) and (10) are added into the linear model. Additionally, based on the
sets of vertices and arcs from the solution, we extract the associated subgraphs
from GInc

V − and GInc
E , then generate their greedy clique decompositions in order

to add the corresponding constraints (16) and (17) to the linear model. In the
next iteration, the same solving process is repeated with the new model.

6 Numerical Results

Our approach was tested on the benchmark of TOP instances proposed by Chao
et al. [4]. It comprises 387 instances divided into 7 sets. The numbers of customers
and vehicles are up to 100 and 4 respectively. Our algorithm is coded in C++.
Experiments were conducted on an AMD Opteron 2.60 GHz and CPLEX 12.4
was used as MIP solver. We used the same 2h limit of solving time as in [2, 8].

In order to evaluate the usefulness of the proposed components, we activated
them one by one so that the complete algorithm is obtained in the last activation.
Table 1 shows the number of instances being solved to optimality for each acti-
vation. The average computational times on the subset of instances being solved
by all configurations are also given. We notice that each component contributes
to the improvement of the number of instances being solved, as well as to the
reduction of the computational times. Table 2 shows a small comparison be-
tween our results and those of Boussier et al. [2]. Each instance is chosen so that
only one of the two methods is able to prove the optimality. Columns instance,
n, m, and L indicate respectively name of the instance, number of customers,
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number of vehicles and the cost limit. The main columns report the results of
the branch-and-price method of Boussier et al. [2] in B-P and our results in B-C.
Columns LB, UB and CPU report respectively the lower bound, upper bound
and solving time in seconds for each instance and method. To summarize, our
algorithm is able to prove the optimality of all the instances in the sets 1, 2, 3,
and 6 and most of the instances in the other three sets. In total, we are able to
solve 278 instances. Compared to [2] which solved 270 instances, our approach
is clearly competitive. Moreover, it allows us to close 29 open instances.

Table 1. Performance of our branch-and-cut

Accumulated components Solved instances CPU (in seconds)

Standard model 177/387 198.9
+ Generalized subtour eliminations 233/387 61.75
+ Symmetric breaking 243/387 14.32
+ Boundaries on profit/customers 265/387 13.16
+ Clique cuts 278/387 3.24

Table 2. Comparison between the branch-and-price [2] and ours

Instance n m L
B-P [2] B-C

UB LB CPU UB LB CPU

p1.2.p 30 2 37.5 250 − 2926 250 250 8.85
p1.2.q 30 2 40 − − − 265 265 10.96
p1.2.r 30 2 42.5 − − − 280 280 10.15
p3.2.l 31 2 35 605 − 4737 590 590 31.33
p3.2.m 31 2 37.5 − − − 620 620 58.41
p3.2.n 31 2 40 − − − 660 660 26.72
p3.2.o 31 2 42.5 − − − 690 690 34.64
p3.2.p 31 2 45 − − − 720 720 39.39
p3.2.q 31 2 47.5 − − − 760 760 16.55
p3.2.r 31 2 50 − − − 790 790 14.25
p3.2.s 31 2 52.5 − − − 800 800 0.11
p3.3.s 31 3 35 738.91 − 416 720 720 188.04
p3.3.t 31 3 36.7 763.69 − 4181 760 760 93.71
p4.2.h 98 2 60 − − − 835 835 2783.76
p4.2.i 98 2 65 − − − 918 918 1511.7
p4.2.t 98 2 120 − − − 1306 1306 1.29
p4.3.g 81 3 36.7 656.38 653 52 665 653 −
p4.3.h 90 3 40 735.38 729 801 761 729 −
p4.3.i 94 3 43.3 813.63 809 4920 830 809 −
p4.4.i 68 4 32.5 665.4 657 23 660 657 −
p4.4.j 76 4 35 741.47 732 141 784 732 −
p4.4.k 83 4 37.5 831.95 821 558 860 821 −
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Table 2. (Continued)

Instance n m L
B-P [2] B-C

UB LB CPU UB LB CPU

p5.2.l 64 2 30 − − − 800 800 0.49
p5.2.m 64 2 32.5 − − − 860 860 0.97
p5.2.p 64 2 40 − − − 1150 1150 0.79
p5.2.t 64 2 50 − − − 1400 1400 3162.41
p5.2.x 64 2 60 − − − 1610 1610 38.81
p5.2.z 64 2 65 − − − 1680 1680 0.82
p5.3.l 64 3 20 605 595 33 615 595 −
p5.3.m 64 3 21.7 650 650 2 660 650 −
p5.3.n 64 3 23.3 755 755 42 765 755 −
p5.4.l 44 4 15 430 430 1 445 430 −
p5.4.m 52 4 16.2 555 555 0 560 555 −
p5.4.n 60 4 17.5 620 620 0 640 620 −
p5.4.o 60 4 18.8 690 690 1 720 690 −
p5.4.p 64 4 20 790 765 729 820 765 −
p5.4.q 64 4 21.2 860 860 1 880 860 −
p5.4.v 64 4 27.5 1320 1320 446 1340 1320 −
p6.2.j 62 2 30 − − − 948 948 0.46
p6.2.k 62 2 32.5 − − − 1032 1032 137.85
p6.2.l 62 2 35 − − − 1116 1116 13.92
p6.2.m 62 2 37.5 − − − 1188 1188 5.48
p6.2.n 62 2 40 − − − 1260 1260 1.03
p6.3.m 62 3 25 1104 − 33 1080 1080 574.45
p7.2.g 87 2 70 − − − 459 459 520.18
p7.3.h 59 3 53.3 429 425 8 436 425 −
p7.3.i 70 3 60 496.98 487 3407 535 487 −
p7.4.j 51 4 50 462 462 1 481 462 −
p7.4.k 61 4 55 524.61 520 73 586 520 −
p7.4.l 70 4 60 593.63 590 778 667 590 −

Conclusion and Future Work

In this article, we presented a branch-and-cut algorithm to solve TOP. Sev-
eral cuts that strengthen the classical linear formulation were proposed. They
include symmetric breaking, generalized subtour eliminations, boundaries on
profits/numbers of customers and clique cuts. Experiments conducted on the
standard benchmark show that our algorithm has the ability to solve a large
number and a variety of instances. The algorithm permits to close several new
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instances. The obtained results clearly show the competitiveness and the robust-
ness of our method on the classical linear TOP formulation. For future work, we
plan to extend the approach to solve other combinatorial optimization problems.
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Abstract. In this paper we propose a forward-backward improvement
heuristic for the variant of resource-constrained project scheduling prob-
lem aiming to maximise the net present value of a project. It relies on
the Lagrangian relaxation method to generate an initial set of schedules
which are then improved by the iterative forward/backward scheduling
technique. It greatly improves the performance of the Lagrangian relax-
ation based heuristics in the literature and is a strong competitor to the
best meta-heuristics. We also embed this heuristic into a state-of-the-art
CP solver. Experimentation carried out on a comprehensive set of test
data indicates we compare favorably with the state of the art.

1 Introduction

We study the Resource-constrained Project Scheduling Problem with Discounted
Cashflow (RcpspDc) denoted asm, 1|cpm, δn, cj|npv by [8] or PS|prec|

∑
CF

j βCj

by [1]. Specifically, given a set of activities J with precedence relationship (i, j) ∈
L, i ∈ J , j ∈ J , we need to decide the activity start time sj , j ∈ J within the
project deadline T so that the net present value (NPV ) of the project is max-
imised while the capacity of each renewable resource Rk, k ∈ R is not violated.
Each activity j has an associated cash-flow cj and requires rjk unit of resource
k ∈ R for a continuous period of time pj . The net present value is calculated
as the sum of the discounted cash flow of each activity defined as cje

−α(sj+pj)

where α is the discount rate. A conceptual model can be formulated as

NPV = maximise
∑

j∈J cje
−α(sj+pj) (1)

subject to si + pi ≤ sj ∀(i, j) ∈ L (2)∑
j∈S(t) rjk ≤ Rk k ∈ R, t = 0, · · · , T − 1 (3)

0 ≤ sj ≤ T − pj j ∈ J (4)

where S(t) is the set of activities running in period [t, t+ 1).
The RcpspDc belongs to the class of NP-hard problems, and has been inten-

sively investigated since it was first introduced in [17]. The reader is referred to [7]

C. Gomes and M. Sellmann (Eds.): CPAIOR 2013, LNCS 7874, pp. 340–346, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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for an extensive literature overview of solution approaches for RcpspDc. Signif-
icant progress has been made in recent years for both complete and incomplete
methods. The lazy clause generation approach to RcpspDc [19] provides the
state of the art complete method and outperforms the traditional branch-and-
bound based methods [9,24,15]. For larger problems the evolutionary population
based scatter search algorithm [23] achieved the bests results in comparison with
other meta-heuristics such as genetic algorithms [11] and tabu search [25].

In spite of our success on the application of the Lagrangian Relaxation based
Heuristic (LRH) [4] for very large problems (1400-10000 activities) and its re-
ported superiority on smaller instances in [10] (up to 120 activities), our experi-
ments with the set of test instances in [23] clearly shows that LRH has difficulty
in finding feasible solutions on a significant percentage of instances. Careful anal-
ysis suggests that the test instances used in [10] have a much looser deadline and
smaller duality gap compared with those of [23]. Since the Lagrangian relaxation
solution may not be close to the optimal solution for the hardest cases, it is not
surprising that the simple forward list scheduling heuristic failed.

We present in this paper a Lagrangian Relaxation based Forward-Backward
Improvement heuristic (LR-FBI). The key improvements over LRH include:
(i) the Lagrangian relaxation solution is perturbed to search more neighbours;
(ii) the deadline infeasible solution is improved by the iterative forward/backward
scheduling technique commonly used by meta-heuristics [12].

We compare LR-FBI with the state-of-the-art meta-heuristics [23] and CP
solver [19] on a comprehensive set of test data. Our results show that LR-FBI is
highly competitive especially for larger instances. We embed LR-FBI in the state-
of-the-art lazy clause generation solution to further improve the performance.

2 Lagrangian Relaxation Based Forward-Backward
Improvement Heuristic

We relax the resource constraints (3) as in [14,4] by introducing multipliers λkt,
k ∈ R, t = 0, · · · , T , and get the Lagrangian Relaxation Problem (LRP)

ZLR(λ) = maximise LRPλ(s), s.t. (2), (4) (5)

where LRPλ(s) =
∑

j∈J rcj(sj) +
∑

k∈R

∑
t λktRk with

rcj(sj) = cje
−α(sj+pj) −

sj+pj−1∑
t=sj

∑
k∈R

λktrjk (6)

The multipliers λ are iteratively updated to minimise ZLR(λ) which is an upper
bound of NPV . We omit here the technical details of the Lagrangian relaxation
method for RcpspDc which can be found in [4].

The solution s to ZLR(λ) is normally not feasible with respect to the resource
constraints. Previously [4] we used a simple heuristic to construct a feasible
solution from s, but this often fails for problems with tight deadline.
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Algorithm 1. FBI(s)

best NPV = −∞; generate keys K(s);1

for x ∈ K(s) do2

right = true ; s′ = SGS left(x) % decode x to schedule s′;3

while makespan(s′) > T do4

if right then5

s′′ = SGS right(s′ + p) % rightmost schedule using activity end times;6

else s′′ = SGS left(s′) % leftmost schedule using activity start times;7

if makespan(s′′) ≥ makespan(s′) then return best NPV ;8

right = ¬right; s′ := s′′;9

s′ = shift(s′); if NPV (s′) > best NPV then best NPV = NPV (s′) ;10

return best NPV ;11

For LR-FBI we try to find a feasible schedule similar to s using FBI(s) detailed
in Algorithm 1. Firstly a set of keys K(s) is created for s. The key is a vector
x ∈ R|J| which is decoded into a schedule by a Schedule Generation Scheme
(SGS) [6]. The iterative forward/backward scheduling technique is used to reduce
the makespan of a deadline infeasible schedule. Finally, the NPV of the schedule
is further improved by shifting activities (shift) as in [10].

To calculate keys K(s), rather than use a Linear Programming relaxation of
the original problem [18,3,5], we use the computationally more efficient α-point
idea of [14] which is based on a single LRP solution. The jth key element of the
mth key is defined as xm

j = sj + αm
j × pj , α

m
j ∈ [0, 1]. We have two different

strategies to create K(s). Best-α(k) generates k uniformly distributed keys with
αm
j = m/k, m = 0, · · · , k − 1. Random-α(k) generates k random keys where

each αm
j is randomly chosen with a uniform distribution.

SGS left(x) (SGS right(x)) [2] greedily schedules activities one by one as early
(late) as possible respecting the (reverse) precedence constraints and resource
constraints, in the order where i is scheduled before (after) j if xi < xj . The
resulting schedules are left(right)-justified [22]. SGS can be implemented in both
serial and parallel modes [6].

3 Constraint Programming Hybrid Approach

LR-FBI can quickly find high quality solutions, but might converge to a local
optima. Therefore we also investigate the possibility to further improve the so-
lution quality using CP technology. The state-of-the-art complete method for
RcpspDc [19] is a constraint solver based on lazy clause generation [16]. Com-
pared to the conceptual model on page 340, each resource constraint (3) is mod-
eled by the global constraint cumulative(s, p, r.k, Rk) (k ∈ R) where the start
times variables si (i ∈ J) are finite domain variables with an initial domain
of {0, 1, . . . , T }. As filtering algorithms for cumulative, the explanation-based
version of the Time-Tabling [21] and Time-Tabling-Edge-Finder [20] are used.
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In addition, the CP model uses the constraint max npv prop(s, p, c, L,NPV ),
recently proposed in [19], in order to compute a tight upper bound onNPV func-
tion and filter impossible values from the start times domains. This constraint
considers the subproblem of RcpspDc in that (only) the resource constraints
are relaxed, with the current bounds of the start times variables. Since this sub-
problem is polynomial solvable in time, the corresponding propagator computes
its maximal NPV value, which is a valid upper bound for the original RcpspDc,
and, then, uses this NPV value for tightening the bounds on the NPV function
and filtering the start times.

In [19], we compared different search strategies. Here, we consider the best-
performing one Vsids and combine this strategy with a Luby restart policy [13]
having a restart base of 100.

The hybrid solution (CP-LR) runs after LR-FBI. Each solution s found by
LR-FBI is stored in a set S. This immediately gives a much stronger lower
bound for NPV . A two phase search strategy is then used. In the first phase
the variable selected is the one with the largest average reduced cost defined as
ṽj =

∑
s∈S rcj(sj)/|S|. For value selection we maintain a reduced time window

for each activity with window left (right) end defined as wl
j = mins∈S sj (wr

j =
maxs∈S sj). The minimum feasible value in this reduced window will be chosen
first. If no feasible value exists we rerun LR-FBI using the current bounds on the
start times from the CP search to expand this window, using a limit of at most 5
iterations of LR, and adding any new solutions found to S. Our earlier work on
Rcpsp [21] shows that pure Vsids search is quite robust, but can be improved
using some more problem specific heuristics first. The same thing applies here.
Vsids is important for robustness, but the first phase helps find good solutions
earlier, and set up Vsids to be most productive. After one third of the time is
used we swap to the second search phase which is pure Vsids search.

4 Experiments

We carried out extensive experiments on the benchmark set available at
www.projectmanagement.ugent.be/npv.html. The benchmark set consists of
17280 RcpspDc instances which are split in 4 problem sizes, i.e., 25, 50, 75
and 100 activities. A more detailed specification of these instances can be found
in [23]. The NPV and CPU time for each instance is also available for the scatter
search method in [23] which terminates when a maximal number of schedules
are generated using a computer with a Dual Core processor 2.8GHz.

The parameter settings of LR can be found in [4]. We implemented our CP
based approach using the Lcg solver Chuffed. All tests were run on a computing
cluster of which each node has two 2.8GHz AMD 6-Core CPU. We used a time
limit of 5 minutes. The time limit for search in CP-LR is also 5 minutes.

We illustrate the effects of our improvements on the LRH in [10] in Table
1. We report the percentage of instances which have feasible schedule found
(Fea%), the number of instances on which the best NPV is achieved (Best) and
the average relative deviation (Dev) on instances for which all methods find a

www.projectmanagement.ugent.be/npv.html
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Table 1. Comparison of feasibility results on 100-activities instances

Fea% Dev V Dev Best
LRH 72.9 203.3 76.1 836
S-Best-α(1) 77.3 203.0 74.7 1005
P-Best-α(1) 91.9 207.6 79.5 450
P-Best-α(10) 95.8 197.1 69.4 1919
P-Random-α(2000) 99.5 197.1 69.4 2304

Table 2. Comparison of Scatter search, CP and LR

Scatter(5000) CP-Vsids P-Random-α(2000) CP-LR
size Fea% Dev Best Fea% Dev Best Fea% Dev Best Fea% Dev Best

25 100.0 73.1 2507 100 72.8 3663 99.8 81.6 795 100.0 72.3 3708
50 99.9 91.6 1556 98.4 104.8 1124 99.9 82.4 937 100.0 78.6 2345
75 99.7 106.9 1196 90.3 - - 99.8 98.3 1836 99.98 97.4 3054
100 99.6 100.2 1612 76.8 - - 99.5 95.3 1524 99.7 93.6 2641

Table 3. Comparison with best scatter search results on size 100

Fea% Dev Best Ave(s) Max(s)

Scatter(50000) 99.6 89.9 2003 26.2 139.8
P-Random-α(2000) 99.5 86.5 1283 167 607
CP-LR 99.8 85.4 2240 300 300

feasible schedule. Dev is defined as [23] abs((Ub− Lb)/Ub). Dev V is calculated
with the upper bound in [23], while Dev uses the LR upper bound. The prefix
S-(P-) stands for the serial (parallel) SGS. It can be seen that LRH has serious
problems with feasibility. Parallel SGS is superior to serial SGS in terms of
feasibility. The use of α-point further improves both feasibility and NPV . Since
LR can produce much stronger upper bounds than [23] we only use Dev for the
remaining tests.

We compare the reported results for scatter search [23] with at most 5000
schedules, with CP [19], LR-FBI and our hybrid CP approach (CP-LR) in Table
2. Scatter search is very fast (average computation time is 4.2s for size 100) and
almost always finds a feasible solution. CP performs very well on the smallest in-
stances but does not scale well. LR-FBI is highly competitive when problem sizes
increase, generally finding better solutions, but requires more time than scatter
search (82s on average for size 100). Running the hybrid CP-LR substantially
improves on LR-FBI on a large number of instances. Clearly the hybrid is much
more robust than a pure CP approach.

We also compare with the best results of scatter search with 50000 schedules in
Table 3, showing also average and maximum solving time. Scatter search reduces
the deviation by 10% with significant increase of solution time. The time limit
for LR-FBI is set to 10 minutes. The LR-FBI has better deviation than that of
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scatter search. The hybrid method CP-LR improves the LR-FBI results further,
resulting in the best known results on these instances.

5 Conclusion

We developed a new Lagrangian relaxation based heuristic for the RcpspDc

problem and achieved highly competitive results on a comprehensive set of test
data. We also investigated the integration of our heuristic into a CP solver and
obtained promising results. We have built an effective hybrid of local search and
complete search, by using local search information not only for bounding but to
direct the initial search phase. This hybrid is interesting since it runs the local
search on demand when it can no longer provide useful guidance to the complete
search. Our future research will focus on more efficient hybridisation of LR, CP
and meta-heuristics for the RcpspDc problem.
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Abstract. Strong branching is an important component of most vari-
able selection rules in branch-and-bound based mixed-integer linear pro-
gramming solvers. It predicts the dual bounds of potential child nodes by
solving auxiliary LPs and thereby helps to keep the branch-and-bound
tree small. In this paper, we describe how these dual bound predictions
can be improved by including domain propagation into strong branching.
Computational experiments on standard MIP instances indicate that this
is beneficial in three aspects: It helps to reduce the average number of
LP iterations per strong branching call, the number of branch-and-bound
nodes, and the overall solving time.

1 Introduction

Since the invention of the linear programming (LP) based branch-and-bound
method for solving mixed-integer linear programs (MIPs) in the 1960s [1,2],
branching rules have been an important field of research in that context, being
one of the core parts of the method (for surveys, see [3,4,5]). Their task is to
split the current node’s problem into two or more disjoint subproblems if the
solution to the current LP relaxation does not fulfill the integrality restrictions,
thereby excluding the LP solution from all subproblems while keeping at least
one optimal solution.

The most common way to split the problem is to branch on trivial inequali-
ties, which split the domain of a single variable into two parts (called variable
branching). Alternatively, branching can be performed on general linear con-
straints (see [6,7,8,9,10]) or can create more than two subproblems, cf. [11,12].
In case of variable branching, the variable to actually branch on is typically cho-
sen with the goal of improving the local dual bound of both created child nodes.
This helps to tighten the global dual bound and prune nodes early (for recent re-
search on alternative criteria, see, e.g., [13,14,15,16]). A very popular branching
rule called pseudo-cost branching [17] uses history information about the change
of the dual bound caused by previous branchings. More accurate, but also more
expensive, is strong branching [18,19,4], which explicitly computes dual bounds
of potential child nodes by solving an auxiliary LP with the branching bound
change temporarily added. The full strong branching rule does this at every
node for each integer variable with fractional LP value which empirically leads
to very small branch-and-bound trees [5]. Modern branching rules typically com-
bine these two approaches and use strong branching in the case of uninitialized
or unreliable pseudo cost values (see [5,20]).

C. Gomes and M. Sellmann (Eds.): CPAIOR 2013, LNCS 7874, pp. 347–354, 2013.
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In practice, one can often observe a difference between the dual bound that
strong branching computes for a node and the actual dual bound obtained later
during node processing. This restrains the effectiveness of strong branching,
which should predict the actual dual bound of the node and not just compute
some valid dual bound. There are various reasons for the difference, most promi-
nently domain propagation and global domain changes found in the meantime.
The task of domain propagation (or node preprocessing) is to tighten the local
domains of variables by inspecting the constraints and current domains of other
variables at the local subproblem. It is the integral part of each constraint pro-
gramming solver [21] and has also proven to improve MIP solvers significantly
by tightening the LP relaxation, resulting in better dual bounds and detecting
infeasibilities earlier [22,23,24].

While strong branching cannot do anything about the difference in the dual
bounds caused by global domain changes, it should react upon the continuous
improvement in domain propagation techniques. In this paper, we examine how
strong branching can be improved by combining it with domain propagation in
order to compute better dual bound predictions. This means that we perform
the same domain propagation steps that are already performed at each node
of the branch-and-bound tree also during strong branching, prior to solving the
strong branching LP of a potential child node.

The general idea and an evaluation of the direct effects are presented in the
next section. Based on that, we discuss additional improvements in Section 3
and provide benchmark results on a collection of MIPLIB [25,26,27] instances
showing a reduction of both number of nodes and solving time when propagation
is applied within a full strong branching rule.

2 Strong Branching with Domain Propagation

In the following, we regard mixed-integer linear programs of the form:

min{cTx | Ax ≥ b, x ≥ 0, xi ∈ Z ∀i ∈ I}. (1)

The basic implementation of strong branching with domain propagation (SBDP)
works as follows: Given the current problem P of form (1) and an integer variable
xi, i ∈ I with fractional LP solution value x̂i, it computes dual bounds of the two
potential child nodes that would be created by branching on xi. Therefore, it
creates two temporary subproblems Pd (the down child) and Pu (the up child) by
adding to P the bound changes xi ≤ �x̂i� and xi ≥ �x̂i�, respectively. After that,
the variable domains of Pd are tightened by domain propagation. If propagation
detects infeasibility, a dual bound of +∞ is returned for Pd, otherwise the LP
relaxation of Pd is solved and its optimal value provides the strong branching
dual bound. The dual bound of Pu is computed analoguously.
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The only difference to “standard” strong branching is that domain propaga-
tion is performed before solving the LP. Since this tightens the LP relaxation,
the dual bounds obtained by solving the strong branching LP are always greater
than or equal to the ones computed by standard strong branching.1 The ques-
tions to be considered in this paper are: Is this worth the additional effort? In
particular, how big is the propagation time and how does the number of LP
iterations change? The simplex warmstart normally allows to solve the strong
branching LPs with just a few iterations as there is only one bound changed,
but additional changes performed by domain propagation might change this.

For answering these questions, we performed computational experiments using
an implementation of SBDP based on the MIP solver SCIP 3.0 [22,28] with
underlying LP solver SoPlex 1.7 [29]. They were performed on Intel Xeon E5420
2.5GHz computers, with 6MB cache and 16GB RAM, running Linux (in 64 bit
mode). A time limit of two hours per instance was imposed. We use full strong
branching to measure the impact of our changes for each candidate variable at
each node and concentrate on the branch-and-bound performance by providing
the optimal objective value as objective cutoff and disabling primal heuristics and
cutting plane separation as well as the components presolver2 of SCIP. As test
set, we used the MMM test set consisting of all instances from MIPLIB 3 [25],
MIPLIB 2003 [26], and the benchmark set ofMIPLIB 2010 [27]. We excluded all
instances for which no significant amout of strong branching was performed (less
than ten strong branching calls on single variables)—either because the instance
was solved in presolving or at the root node prior to branching or because the
time limit of two hours was hit. Additionally, we excluded the three infeasible
instances from MIPLIB 2010 in order to be able to compute the additional gap
closed by SBDP, which left us with a total number of 147 instances.

The experiments were then conducted as follows: After each standard strong
branching call, we additionally performed a call of SBDP on the same variable,
running the same domain propagation techniques as SCIP does on any node of
the branch and bound tree (cf. [22]). We collected statistics about the differences,
but did not use any of the information produced by SBDP within the branch-
and-bound search. We chose this approach instead of running twice, one time
with each variant, to exclude the difference in the branch-and-bound tree created
by different branching methods and isolate the impact of the new method on
each single strong branching call.

For analyzing the impact of SBDP, we divide the strong branching calls into
three categories: cutoff if at least one of the two potential child nodes was
detected to be infeasible, better bound if no infeasibility was detected and SBDP
computed a better dual bound for at least one of the potential child nodes, and

1 In this paper, we assume that the strong branching LPs are solved to optimality and
no iteration limit is applied. This is also the case for the implementation of the full
strong branching rule used in our computational experiments.

2 The components presolver solves small independent subproblems in advance, exclud-
ing them from the main branch-and-bound search.
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same bound if both strong branching variants computed the same (finite) bounds
for both potential child nodes.

The results for each of these categories are presented in one line in Table 1,
with an additional line that summarizes these results for all strong branching
calls. Besides the number of strong branching calls (column calls), we show for
both strong branching variants the number of potential subproblems detected
infeasible (column cutoffs), the number of LP iterations for solving the LPs of
the two subproblems (column LP iters), and the strong branching time in mil-
liseconds (column time). Furthermore, we present the number of domain changes
performed by SBDP (column dom. chgs.) and the percentage of the gap between
primal bound and strong branching dual bound closed by using SBDP instead of
standard strong branching (column gap closed). For each of the numbers listed,
we compute the arithmetic mean over all strong branching calls for the single
instances and average over the instances by taking a shifted geometric mean3.
We use a shift of 100 for the number of strong branching calls, 10 for time, iter-
ation number and domain changes, and 1 for the number of child nodes declared
infeasible per call. Only for the gap closed, having only values between 0 and
100, do we average over the instances by arithmetic mean.

As expected, the better bound case—which happens only rarely—is typically
caused by a high number of domain changes during propagation and leads to
an increase in both the average number of LP iterations and time per strong
branching call, thereby closing the gap by more than 20% on average. In the
most common case, the same bound category, a smaller, but still relevant num-
ber of domains are changed by propagation. But instead of slowing down the
simplex warm start, these bound changes even reduce the average number of
LP iterations, e.g., by fixing variables that would otherwise need to be rendered
feasible by some simplex pivots. Last, in the cutoff case, SBDP detects infeasibil-
ity of more potential child nodes—on average 1.11 of the two children regarded
per call are declared infeasible compared to 0.92 otherwise. In about 15% of
the cases, infeasibility is detected already during propagation, leading to a re-
duction of the average number of LP iterations and strong branching time. On
average over all strong branching calls, SBDP can declare every twelfth instead
of nearly every fourteenth strong branching child node infeasible and closes the
gap by 2.66%. The average number of LP iterations is slightly decreased, while
the time per strong branching call increases marginally. This demonstrates that
the domain propagation time is relatively small compared to the total strong
branching time; on average, it was less than 5%.

To summarize, SBDP exhibits benefits in all three categories. In the majority
of strong branchings, where it yields no bound improvement, it reduces the
number of LP iterations. In the remaining cases, significantly more child nodes
can be cut off and about 20% additional gap is closed.

3 For a definition and discussion of the shifted geometric mean, see Achterberg [22,
Appendix A3].
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Table 1. Impact of SBDP on the strong branching calls

standard strong branching strong branching with domain propagation

category calls cutoffs LP iters time dom. chgs. cutoffs gap closed LP iters time

better bound 376.02 – 44.00 19.5 38.85 – 20.73% 57.19 23.1
same bound 23801.96 – 82.33 39.7 23.74 – – 78.99 40.6
cutoff 3342.63 0.92 56.81 27.3 35.70 1.11 8.50% 46.74 25.6

all 30469.42 0.14 81.03 40.2 26.26 0.17 2.66% 77.52 40.5

3 Further Improvements and Computational Results

In this section we describe further improvements motivated by the results of our
first computational experiments and present the effect of SBDP on the overall
performance when it is used within the full strong branching rule.

The first improvement treats the case of an infeasible strong branching sub-
problem, which traditionally leads to simply tightening the domain of the can-
didate variable at the current node (or cutting off the current node if both
subproblems are infeasible). While normally, strong branching methods always
regard both subproblems, we interrupt a strong branching call when the first po-
tential child is found infeasible, saving the effort we would spend for the second
child node. As usual, the domain change of the other subproblem is then applied
at the current node, causing a reoptimization of its LP, after which branching
is started again, if needed.

In our computational experiments presented in Section 2, about 69% of the
infeasible subproblems were up children. This is not surprising since problems
are often modeled in a way such that changing a variable’s lower bound—in
particular, fixing a binary variable to one—has more impact than changing its
upper bound (fixing a binary variable to zero). In order to profit from infeasible
child nodes more often, we decided to investigate the potential up child first.

As in probing preprocessing (see [23]), we can often identify valid local bounds
for some variables even if neither of the two potential child nodes is infeasible. If
any variable’s domain in the two potential child nodes was tightened to [lbd, ubd]
and [lbu, ubu], respectively, we can change the domain of the variable in the local
problem to [min{lbd, lbu},max{ubd, ubu}]. For 94 of the 147 instances regarded
in Section 2, this technique was able to identify tighter bounds, identifying on
average 3.15 bounds that could have been tightened per strong branching call
with both subproblems feasible. With this improvement, probing preprocessing
is performed as a side product of SBDP.

Using these improvements, we performed computational experiments to com-
pare the performance of SBDP against standard strong branching. We used the
same computing environment as described in Section 2 and also the MMM test-
set described there, this time without excluding any instances. Within SCIP, we
exchanged the strong branching calls in the full strong branching rule for SBDP
and again provided the optimum as cutoff bound, disabled primal heuristics,
cutting plane separation, and the components presolver in order to focus on the
branch-and-bound search and to reduce random performance changes (see [27]).
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Table 2. Comparison of full strong branching with and without SBDP

full strong branching full strong with SBDP
test set size solved nodes time solved nodes time

MMM: complete 168 97 814 633.1 100 645 582.2
MMM: all optimal 94 94 321 86.3 94 253 78.9

The results are summarized in Table 2. We regard both the complete MMM
test set (rowMMM: complete) as well as the subset of instances that both variants
solved to optimality (row MMM: all optimal), and present—besides the size of
the sets—aggregated results for both sets. More specifically, we list the number
of solved instances and the shifted geometric mean (with a shift of 10) of the
number of processed branch-and-bound nodes and the solving time. The results
are promising: with the improved strong branching method, SCIP is able to
solve 100 out of the 168 instances of the MMM test set within the time limit of
two hours, three instances more than with standard strong branching. For the
subset of instances that both versions solved to optimality, the average number
of nodes and the solution time are reduced by 21% and 9%, respectively. For
detailed instance-wise results, we refer to [30].

4 Conclusions and Outlook

In this paper, we improved strong branching by applying domain propagation
to compute more accurate dual bound predictions. First computational exper-
iments on general MIP instances show that this comes with relatively small
cost and, used in a full strong branching rule, can speed up the solution process
while reducing the branch-and-bound tree size. For “structured” or more general
problems classes like MINLP or CIP [22] where typically the LP misses more
information which can be exploited by domain propagation, we expect an even
larger improvement by the new method.

Our preliminary results show the potential of the approach. An integration
into state-of-the-art branching rules like reliability branching [5] and a possi-
ble combination with other recent strong branching improvements like cloud
branching [31] or nonchimerical branching [32] are fields for future research.

Already the improved full strong branching might prove useful when the
branch-and-bound tree should be kept small, e.g., under tight memory restric-
tions or for massive parallel MIP solvers (see, e.g., [33,34]), where reducing the
tree size has the added advantage of reducing the message passing overhead.

Acknowledgements. The author would like to thank Tobias Achterberg and
Michael Winkler for fruitful discussions and Timo Berthold, Ambros Gleixner,
and four anonymous reviewers for helpful comments on the paper.
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Abstract. Optimization-based bound tightening (OBBT) is a domain
reduction technique commonly used in nonconvex mixed-integer nonlin-
ear programming that solves a sequence of auxiliary linear programs.
Each variable is minimized and maximized to obtain the tightest bounds
valid for a global linear relaxation. This paper shows how the dual so-
lutions of the auxiliary linear programs can be used to learn what we
call Lagrangian variable bound constraints. These are linear inequalities
that explain OBBT’s domain reductions in terms of the bounds on other
variables and the objective value of the incumbent solution. Within a
spatial branch-and-bound algorithm, they can be learnt a priori (during
OBBT at the root node) and propagated within the search tree at very
low computational cost. Experiments with an implementation inside the
MINLP solver SCIP show that this reduces the number of branch-and-
bound nodes and speeds up solution times.

1 Introduction

Mixed-integer nonlinear programming studies the large class of mathematical
programs specified by a nonlinear objective function, nonlinear constraints, and
integrality requirements on some of the variables. It comprises the special cases
of mixed-integer linear programming and nonlinear programming and provides a
flexible modelling tool for a wide range of academic and industrial applications.
For a detailed discussion, see, e.g., [1].

We consider mixed-integer nonlinear programs (MINLPs) of the form

min{ cTx : x ∈ X , x ∈ [
, u], xj ∈ Z for j ∈ I }, (1)

where X ⊆ Rn, 
 and u are the vectors of lower bounds 
j ∈ R ∪ {−∞} and
upper bounds uj ∈ R ∪ {+∞}, and I ⊆ {1, . . . , n} is the index set of integer
variables. Without loss of generality, we assume a linear objective, since for a
nonlinear objective function f(x), we can append the constraint f(x) � x0 and
minimize x0. The feasible region X is specified by a list of linear and nonlinear
constraints gi(x) � 0, where the gi (and hence X ) may be nonconvex.
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Many complete algorithms for solving nonconvex MINLPs to (ε-)global op-
timality rely on spatial branch-and-bound combined with a convex relaxation.
Domain reduction procedures have become a crucial element of state-of-the-art
MINLP solvers because they not only reduce the size of the search space (as
in mixed-integer or constraint programming), but specifically because smaller
domains allow for tighter convex relaxations of the nonconvex constraints.

This paper is concerned with a specific domain reduction technique often
referred to as optimization-based bound tightening (OBBT). Given a linear re-
laxation R ⊇ X , OBBT computes the tightest bounds valid for all relaxation
solutions by in turn minimizing and maximizing each variable over R,

min /max{ xk : x ∈ R, x ∈ [
, u] }. (2)

Its first appearance in the literature we are aware of is an application to heat
exchanger networks by Quesada and Grossmann [2] from 1993. Subsequently, it
became a component of generic global optimization algorithms, see, e.g., [3,4,5].

An optimization algorithmmay exclude suboptimal parts of the feasible region
as long as at least one optimal solution remains. In OBBT, this can be exploited
by adding an objective cutoff constraint cTx � z to R, where z = cTx̂ is the
objective value of the current incumbent solution x̂. Zamora and Grossmann [6]
have used this idea in a “branch-and-contract” algorithm, which employs OBBT

aggressively at every node of the search tree.
Examples of MINLP solvers implementing OBBT are αBB [7,8], Couenne [9,10],

GloMIQO [11,12], LaGO [13,14], and SCIP [15,16,17]. Since applying a full round of
OBBT amounts to solving 2n linear programs—an expensive algorithm compared
to the average amount of work performed at a branch-and-bound node—it is
typically applied at the root node and within the search tree only with limited
frequency or based on its success rate. For a recent theoretical study of an
iterated version of OBBT see the paper by Caprara and Locatelli [18].

Contribution. Our paper presents a new idea for how to benefit from the
potentially expensive solution of (2) beyond simply obtaining tighter bounds
on variable xk. To this end, we observe that the proof of optimality given by
a dual solution of (2) can be used to learn globally valid inequalities whose
propagation gives a local approximation of OBBT. These inequalities, which we
call Lagrangian variable bound constraints, are redundant since they are ob-
tained merely as an aggregation of the rows of the relaxation R. Nevertheless,
we demonstrate that propagating them during the tree search helps to speed up
the solution process significantly.

In the remainder of the paper, Sec. 2 explains the derivation and propagation
of Lagrangian variable bounds in detail. Section 3 presents computational results
analyzing their effect on instances from MINLPLib and summarizes our findings.

2 Lagrangian Variable Bounds

Besides valid bounds for variable xk, solving (2) yields dual multipliers for the
constraints of R that prove that for no x ∈ R—and by that for no feasible
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solution of (1)—variable xk can lie outside these bounds. The following lemma
uses basic LP duality to motivate our approach. For clarity, we restrict the pre-
sentation to upper bounds.

Lemma 1. Let R = {x ∈ Rn : aTi x � bi, i = 1, . . . ,m} ⊇ X be given,
where ai ∈ Rn and b ∈ Rm. Let x∗ be an optimal solution of

max{ xk : x ∈ R, cTx � z, x ∈ [
, u] }, (3)

with z ∈ R∪{∞} an upper bound on the optimal objective value of (1). Further,
let λ1, . . . , λm, μ � 0 be feasible dual multipliers with reduced costs

rj :=

{
1−

∑
i λiaij − μcj if j = k,

−
∑

i λiaij − μcj otherwise.
(4)

Then
U(
, u, z) :=

∑
j:rj<0

rj
j +
∑

j:rj>0

rjuj + μz + λTb (5)

is a valid upper bound for xk. If λ1, . . . , λm, μ are optimal multipliers then
U(
, u, z) = x∗

k, otherwise U(
, u, z) > x∗
k.

Proof. Multiplying the rows of (3) with their dual values and aggregating them
gives the valid inequality (

∑
i λiai + μc)Tx � λTb+ μz. Using (4), this becomes

xk �
∑

j rjxj + μz + λTb, (6)

which for x ∈ [
, u] is at most U(
, u, z). Optimal multipliers are complementary
slack with x∗, yielding the relation of U(
, u, z) and the OBBT bound x∗

k.

We will refer to bounds of type (5) as well as their lower bound counterparts as
Lagrangian variable bounds (LVBs). Figure 1 provides an illustrative example,
which shows that LVBs can be learnt even when OBBT fails to tighten the bound.

Remark 1. If μ is nonzero then U(
, u, z) depends on the primal bound; if some rj ,
j 	= k, is nonzero, it depends on xj . Hence, whenever an improving solution is
found or [
j , uj ] is reduced, the LVB may tighten the bounds of xk further.

Additionally, in stark contrast to OBBT, LVBs can be propagated very efficiently.
This motivates the application of LVBs within a spatial branch-and-bound algo-
rithm for nonconvex MINLP in the following scheme.

1. Learn LVB constraints while performing OBBT once during the root node.
2. Propagate them locally at the nodes of the search tree whenever bounds

appearing on the right-hand side are reduced by branching or propagation.
3. Propagate them globally whenever an improving solution is found.

Already in [19] it has been observed that any dual feasible solution encountered
during the solution process may be used to construct a one-row relaxation of
the LP at hand and that this inequality can be used to tighten the bounds of
each variable involved. Applied unconditionally, however, this idea appears too
expensive. In this paper, we suggest to specifically select the dual solutions from
OBBT and propagate LVBs only towards the left-hand side variable.



358 A.M. Gleixner and S. Weltge

x

y

−4 −3 −2 −1 0 1 2 3 4

−2

−1

0

1

2
R

y
−
x
� 0

min x

max x

x

y

−4 −3 −2 −1 0 1 2 3 4

−2

−1

0

1

2 R

y
−
x
� 0

Fig. 1. Example min{y − x : y = 0.1x3 − 1.1x, x ∈ [−4, 4], y ∈ [−2, 2]}. On the left,
the shaded region over which OBBT is performed is defined by the relaxation R and
the dashed objective cutoff resulting from the zero solution. Minimizing x gives a lower
bound of − 16

9
and the LVB x � − 10

9
z − 16

9
. Maximizing x does not tighten its upper

bound, still the LVB x � 10
37
y + 128

37
can be learnt. In this two variable example, this is

only the rightmost facet of R, but in higher dimensions it may be nontrivial. On the
right is the resulting, tighter relaxation.

Remark 2. The main purpose of the LVB constraints (6) is to identify bounds
already implied by the relaxation and, by making them explicit, allow for im-
proving the relaxations of nonconvex nonlinear constraints. Note that, unlike
MIP cutting planes, they are not designed to cut off the LP optimum. Since they
are redundant inequalities, it is not beneficial to add them to the LP relaxation.

3 Computational Results

Experimental Setup. The aim of our experiments was two-fold: first, to
quantify how many nontrivial LVBs can be generated during OBBT, i.e., LVBs
with μ 	= 0 or rj 	= 0 for some j 	= k; second, to evaluate the effect of propagating
them during the solution process. Within the MINLP solver SCIP 3.0 [15,20,16,17]
we have implemented an OBBT scheme that minimizes and maximizes each vari-
able once subject to the LP relaxation after the first separation loop. We consider
only nonbinary variables that appear in nonlinear constraints. By slightly relax-
ing the bounds on the variable that is currently minimized or maximized, we
increase the chance to generate nontrivial LVBs when the bound is not tightened
by OBBT. The generated LVB constraints are stored and propagated efficiently
in a suitable topological order whenever their right-hand side improves.

As a test set, we used MINLPLib [21]. We excluded 18 instances which cannot
be parsed or handled by SCIP 3.0.1 Further 41 instances were linear after pre-
solving or solved at the root node before OBBT was applied.2 After removing two
instances, for which SCIP 3.0 returned a wrong solution value due to numerical
issues,3 we were left with 211 instances. The experiments were conducted on a

1 blendgap, deb{6,7,8,9,10}, dosemin{2,3}d, prob10, var con{5,10}, water{3,
ful2,s,sbp,sym1,sym2}, and windfac.

2 ex{1221,1222,1223a,1225}, feedtray2, gbd, hmittelman, lop97ic, lop97icx,
mbtd, nvs{03,07,10}, pb*, prob{02,03}, qap, qapw, st e{13,15,27},
st miqp{1,2,3,4,5}, st test{1,2,3,4,5,6,8}, and tln2.

3 gear4 and nvs22.
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Fig. 2. Rate of generated LVBs per OBBT LP as distributed over 211 instances from
MINLPLib for which OBBT was applied at the root node

cluster of 64bit Intel Xeon X5672 CPUs with 3.2GHz, 12MB cache, and 48GB

main memory. SCIP used CPLEX 12.4 [22] as LP solver, CppAD 20120101.3 [23],
and Ipopt 3.10.2 [24,25].

Results. First, we measured the percentage of OBBT LPs solved that lead to
a nontrivial LVB. The histogram in Fig. 2 shows the distribution of this success
rate over the test set. For all instances, LVBs were generated from at least 15%
of the OBBT LPs. For 132 out of 211 instances, the rate was above 50%.

Second, we compared SCIP with OBBT only and SCIP with OBBT and LVB

propagation in a performance run with a time limit of one hour. To reduce
distorting side effects from heuristic components of the tree search we deactivated
primal heuristics in the tree, turned off conflict analysis, and used a simple first
index branching rule with depth first node selection.

In this setting, two more instances could be solved with LVB propagation,
while one instance solved before then hit the time limit of one hour. On 94 in-
stances both solvers timed out; 109 instances were solved by both. Disregarding
ten easy instances that were solved at the root by both variants, on the remain-
ing 99 instances LVB propagation reduced the shifted geometric mean4 of the
number of branch-and-bound nodes by 14% and the solving time by 7%. Detailed
results are given in [26].

For validation, we performed a control experiment using SCIP’s default param-
eters as base setting. Here, for the instances solved by both solvers the number
of nodes was reduced by 12% and the total solving time by 6%. Note that for a
single propagation algorithm the achieved savings are substantial, in particular
when considering its low computational overhead. Except for two easy instances,
LVB propagation never took more than 2% of the total running time.

The fact that the solving time was reduced by less than the tree size is mostly
explained by the longer processing time of the root. This general phenomenon
is intensified by our experimental setup, since we applied a full round of OBBT

without controlling the effort spent, e.g., by limiting LP iterations.

4 The shifted geometric mean of values x1, . . . , xn � 0 with shift s > 0 is defined as(∏
i(xi + s)

)1/n − s. We use a shift of five seconds and 100 nodes, respectively. This
reduces the bias from outliers with large values as well as from very easy instances.
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Conclusion. In this paper, we have introduced the notion of Lagrangian vari-
able bound constraints, which are linear inequalities that can be learnt during
OBBT and exploited during a spatial branch-and-bound algorithm. They can
be propagated efficiently and give an approximation of reapplying OBBT where
it may be overly expensive. Our experiments showed that on affected instances
from MINLPLib this reduces the average number of branch-and-bound nodes by
more than 10% and speeds up the solution process.

Future research should investigate whether LVB success correlates, for in-
stance, with the tightness of the generating OBBT LP and how LVB propagation
behaves in combination with a more sophisticated OBBT implementation.

Acknowledgments. The authors want to thank Timo Berthold, Pietro Belotti,
and Domenico Salvagnin for the fruitful discussions and valuable comments on
this paper.
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1 Motivation

The global cardinality constraint (gcc) [7], written as

cardinality(x, J ; l, u), xj ∈ Dj , j ∈ J,

states that each value d is received by at least ld and by at most ud of the variables
{xj : j ∈ J}, where d ∈ D =

⋃
j∈J Dj = {0, . . . , |D| − 1}; also, 0 ≤ ld ≤ ud and

ud ≥ 1 for all d ∈ D. The gcc has several applications [2, 10], thus having been
studied from the Constraint Programming community mainly for accomplishing
various forms of consistency [4, 6–8] or for examining the tractability of a natural
generalization [9].

From an Integer Programming perspective, two families of valid inequali-
ties for a single gcc appear in [3, Section 7.10.1], while there is no polyhedral
study of more than one gcc, and thus no theoretical results leading to tight LP-
relaxations; notably, results of this kind exist for overlapping alldifferent con-
straints [1, 5]. Here, we study the polytope defined as the convex hull of vectors
satisfying two gcc’s, in the case where all variables share a common domain, thus
initiating the study of overlapping gcc’s. We establish a necessary and sufficient
condition for this polytope to be full-dimensional and another such condition
for the inequalities of the two known families to be facet-defining. These results
hold trivially for the polytope associated with a single gcc; for that polytope,
an example shows that further facets may exist, contrary to [3, Theorem 7.48].
Overall, the results presented here contribute to the construction of tight relax-
ations of (sets of) global constraints using just the variables appearing in these
constraints.

2 The Dimension of the 2-gcc Polytope

Consider two gcc’s, written as

cardinality(x, J1; l, u), cardinality(x, J2; l, u), xj ∈ D, ∀j ∈ J1 ∪ J2. (1)

� This research has been co-financed by the European Union (European Social Fund
– ESF) and Greek national funds through the Operational Program “Education
and Lifelong Learning” of the National Strategic Reference Framework (NSRF) -
Research Funding Program: Thales. Investing in knowledge society through the Eu-
ropean Social Fund.
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Let C = {1, 2}, J1 ∪ J2 = J, J1 ∩ J2 = T and J1\T = I1, J2\T = I2, i.e.,
the set T indexes the variables common to both constraints, while Ic is the set
of non-common variables of constraint c ∈ C. Notice that T = ∅ implies that
the constraints are variable-wise disjoint while I1 = ∅ or I2 = ∅ yield that one
constraint is ‘dominated’ by the other; thus we consider that none of I1, I2 or T
is empty. The polytope examined here, namely PI , is

PI = conv{x ∈ D|J| : (1) is satisfied}.

A point of PI satisfying (1) is hereafter called a vertex (with a slight abuse of
notation). Assuming without loss of generality that |J1| ≤ |J2|, it becomes easy
to see that

PI 	= ∅ if and only if
∑
d∈D

ld ≤ |J1| ≤ |J2| ≤
∑
d∈D

ud. (2)

It is meaningful to study PI as long as it contains more than one vertex.

Lemma 1. For PI 	= ∅, PI has more than one vertex if and only if |D| ≥ 2 and
ld < |J2| for all d ∈ D.

Proof. If D = {0}, PI has a single vertex x0 where x0
j = 0 for all j ∈ J ; if

|D| ≥ 2 but, say, l0 = |J2|, |J1| ≤ |J2| and (2) yield l0 = |J1|, thus, x0 is again
the sole vertex of PI .

If |D| ≥ 2 and ld < |J2| for all d ∈ D, one may construct a vertex x0 ∈ PI

by placing the smallest values in T and the largest ones in I1 and I2 and a
(different) vertex x1 ∈ PI by placing the largest values in T and the smallest
ones in I1 and I2; it becomes easy to show that the two vertices being equal and
|D| ≥ 2 implies ld = |J2| for some d ∈ D.

Let us add to our conventions that

ld ≥ |J2| −
∑

d′∈D\{d} ud, d ∈ D (3)

ud ≤ |J1| −
∑

d′∈D\{d} ld, d ∈ D (4)

Notice that this can be adopted without loss of generality; if, for example ld <
|J2|−

∑
d′∈D\{d} ud, value d is bound to appear at least l

′
d = |J2|−

∑
d′∈D\{d} ud

times hence replacing ld with l
′
d yields two gcc’s with an identical set of solutions.

Example 1. Let I1 = {1, 2}, T = {3, 4} and I2 = {5, 6}, D = {0, 1}, l = {1, 1}
and u = {2, 6}. Value 0 occurring at most twice in J1 imposes value 1 to occur
at least twice thus l1 = 1 can be replaced by l′1 = 2.

Lemma 2. If
∑

d∈D ld < |Jc| <
∑

d∈D ud for some c ∈ C, then there exist
{d0, d1} ⊆ D having ld0 < ud0 and ld1 < ud1 .

Proof. ld = ud for all d ∈ D yields
∑

d∈D ld = |Jc| hence a contradiction. For
ld0 < ud0 , d0 ∈ D and ld = ud, d ∈ D\{d0}, (3) and (4) yield

ld0 ≥ |J2| −
∑

d∈D\{d0} ud = |J2| −
∑

d∈D\{d0} ld ≥ |J1| −
∑

d∈D\{d0} ld ≥ ud0 ,

which together with ld0 ≤ ud0 yields ld0 = ud0 , i.e., a contradiction.
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It becomes convenient, and unambiguous, to say that a value d ∈ D appears
in S (S ⊆ J) at a vertex x ∈ PI to denote that xj = d for some j ∈ S. Let
o(x; c, d) denote the number of occurrences of d in constraint c at vertex x, i.e.,
o(x; c, d) = |{j ∈ Jc : xj = d}| . For two vertices x0, x1 ∈ PI , x

1 = x0(j1; d→ d′)
denotes that x1 is derived from x0 by only changing the value of variable xj1

(j1 ∈ J) from d to d′, i.e., x0
j1 = d 	= d′ while x1

j1 = d′ and x1
j = x0

j for all

j ∈ J\{j1}. Also, x1 = x0(j1 ↔ j2) denotes that x
1 is derived from x0 by only

swapping the values of variables xj1 and xj2 ({j1, j2} ⊆ J), i.e., x1
j1

= x0
j2
, x1

j2
=

x0
j1 and x1

j = x0
j for all j ∈ J\{j1, j2}. Last x1 = x0(t1 ↔ {i1, i2}) denotes that

x1 is derived from x0 by only swapping the value of variable xt (t ∈ T ) with the
common value of variables xi1 (i1 ∈ I1) and xi2 (i2 ∈ I2); that is, x

0
i1
= x0

i2
	= x0

t

while x1
i1 = x1

i2 = x0
t , x

1
t = x0

i1 and x1
j = x0

j for all j ∈ J\{i1, i2, t}.

Theorem 1. dimPI = |J | if and only if
∑

d∈D ld < |J1| ≤ |J2| <
∑

d∈D ud.

Proof. The ‘only-if’ part is direct under (3) and (4), since |J1| =
∑

d∈D ld implies∑
j∈J1

xj =
∑

d∈D ld · d while |J2| =
∑

d∈D ud yields
∑

j∈J2
xj =

∑
d∈D ud · d.

To prove the ‘if’ part, we show that an equality αx = α0 being satisfied by all
x ∈ PI implies αj = 0 for all j ∈ J.

Let c = 1 and i0 ∈ I1. Since
∑

d∈D ld < |J1| <
∑

d∈D ud, Lemma 2 becomes
applicable hence let d0 ∈ D be a value having ld0 < ud0 . It is easy to obtain a
vertex x ∈ PI such that xi0 = d0, i0 ∈ I0. Let us first show that, for any vertex
x ∈ PI having xi0 = d0, we can derive a vertex x0 ∈ PI such that o(x0; 1, d0) >
ld0 and x0

i0
= d0. Assuming o(x; 1, d0) = ld0 implies (since

∑
d∈D ld < |J1|) that

there is d1 	= d0 such that o(x; 1, d1) ≥ ld1+1 ≥ 1. If xi1 = d1, i1 ∈ I1\{i0}, derive
the vertex x0 = x(i1; d1 → d0) and observe that o(x0; 1, d0) = o(x; 1, d0) + 1 >
ld0 , while o(x0; 1, d1) = o(x; 1, d1) − 1 ≥ ld1 . Otherwise (i.e., for xi 	= d1 for all
i ∈ I1), there is t ∈ T such that xt = d1. Since all occurrences of d1 in the first
constraint are in T, o(x; 2, d1) ≥ o(x; 1, d1) > ld1 . Here there are two cases.

– For o(x; 2, d0) < ud0 , x
0 = x(t; d1 → d0) is a vertex of PI because of

o(x0; 1, d0) = o(x; 1, d0) + 1 > ld0 (since o(x; 1, 0) = ld0) and o(x0; 2, d1) =
o(x; 2, d1)− 1 ≥ ld1 (since o(x; 2, d1) > ld1).

– For o(x; 2, d0) = ud0, ud0 = o(x; 2, d0) > o(x; 1, d0) = ld0 implies xi2 =
d0, i2 ∈ I2; at the vertex x0 = x(t ↔ i2), o(x

0; 1, d0) > ld0 , o(x
0; 1, d1) ≥ ld1

whereas o(x0; 2, d0) = o(x; 2, d0) and o(x0; 2, d1) = o(x; 2, d1).

None of the above value changes affects variable xi0 , hence vertex x0 ∈ PI satis-
fies o(x0; 1, d0) > ld0 and x0

i0
= d0. If there is d ∈ D\{d0} such that o(x0; 1, d) <

ud, derive the vertex x̄ = x0(i0; d0 → d). Since, by hypothesis, αx = α0 holds
for all points of PI , αx

0 = αx̄ yields, after deleting identical terms,

αi0d0 = αi0d (5)

or αi0 = 0, since d 	= d0.
Otherwise, o(x0; 1, d) = ud for all d ∈ D\{d0}. However, |J1| <

∑
d∈D ud

implies o(x0; 1, d′) < ud′ for a value d′; evidently, d′ can only be d0, i.e.,
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o(x0; 1, d0) < ud0. Since Lemma 2 holds, there is another value d1 	= d0 such that
ld1 < ud1; in addition, o(x0; 1, d1) = ud1 ≥ 1 implies that d1 appears in J1. We
examine two cases.

Case 1. x0
i1 = d1, i1 ∈ I1\{i0}

Derive the point x′ = x0(i1; d1 → d0); since o(x0; 1, d0) < ud0 , o(x
0; 1, d1) = ud1

but ld1 < ud1 , o(x
′; 1, d0) = o(x0; 1, d0)+ 1 ≤ ud0 and o(x′; 1, d1) = o(x0; 1, d1)−

1 ≥ ld1 thus x′ is a vertex of PI . Hence, derive the vertex x̄ = x′(i0; d0 → d1)
and obtain (5) from αx′ = αx̄.

Case 2. x0
t = d1, t ∈ T

For o(x0; 2, d0) < ud0 , after deriving vertices x′ and x̄ as in Case 1, but with
t in the place of i1, αx

′ = αx̄ yields (5). For o(x0; 2, d0) = ud0 , o(x
0; 1, d0) <

o(x0; 2, d0) yields x0
i2

= d0, i2 ∈ I2; at x′ = x0(t ↔ {i0, i2}), the number of
occurrences of both d0 and d1 remain as in x0 at both predicates (i.e., x′ is a
vertex of PI) thus o(x

′; 1, d0) < ud0, o(x
′; 1, d1) = ud1 (> ld1) and x′

i0
= x0

t = d1.
After deriving the vertex x̄ = x′(i0; d1 → d0), αx

′ = αx̄ yields (5).
Having shown that αi = 0 for all i ∈ I1 ∪ I2, it remains to establish that

αt = 0 for all t ∈ T. For that purpose, we construct a vertex x0 as follows.
Let d(T ) = min{d ∈ D :

∑d
d′=0 ld′ > |T |}; that is, all variables indexed by T

can be assigned values 0, 1, . . . , d(T )− 1 so as to ‘cover’ the minimum necessary
occurrences of each such value, although the same is not possible for values
0, 1, . . . , d(T ). Then, at vertex x0, ld variables indexed by T receive value d, for

d = 0, . . . , d(T )− 1, and the remaining |T | −
∑d(T )−1

d=0 ld variables receive value

d(T ). Further, always at vertex x0,
∑d(T )

d=0 ld−|T | variables indexed by each of the
sets I1 and I2 also receive value d(T ) (thus completing the minimum necessary
occurrences for that value in each constraint); another ld(T )+1 variables indexed
by each of I1 and I2 receive value d(T )+1 and so on. Having assigned any value
d at least ld times in each constraint (for all d ∈ D), which is possible since∑

d∈D ld < |J1| ≤ |J2|, all remaining variables may receive values in a way that
assigns to T the smallest possible and to I1∪I2 the largest possible values. Then,
ld < |J1| ≤ |J2| for all d ∈ D (Lemma 1) imply that some value d0 appears in T
whereas some other value d1 > d0 appears in both I1 and I2. After deriving the
vertex x̄ = x0(t↔ {i1, i2}), αx0 = αx̄ yields, after deleting identical terms,

αt(d1 − d0) = (αi1 + αi2)(d1 − d0)

or αt = αi1 + αi2 , because of d1 	= d0; since αi1 = αi2 = 0, αt = 0.

3 Facets of the 2-gcc Polytope

Notice that the sum of any subset of variables is minimized (maximized) when
the smallest (largest) values occur as many times as possible. Although the
definition of a gcc already yields that each value d ∈ D, occurs at most ud times,
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the actual upper bound on the occurrences of a value depends also on the lower
bounds of all other variables, e.g., consider value 1 in Example 1. For c ∈ C,
let us recall the following definitions from [3, Section 7.10.1] (in which a more
elaborate presentation can be found):

pc(d) = min
{
ud, |Jc| −

∑d−1
i=0 pc(i)−

∑|D|−1
i=d+1 li

}
, d = 0, . . . , |D| − 1, (6)

qc(d) = min
{
ud, |Jc| −

∑|D|−1
i=d+1 qc(i)−

∑d−1
i=0 li

}
, d = |D| − 1, . . . , 0. (7)

Considering now the sum of the variables indexed by S where S ⊆ Jc, we denote
as pc(|S|, d) and qc(|S|, d) the number of occurrences of value d once the sum of
|S| variables is minimized or maximized, respectively. For c ∈ C,

pc(|S|, d) = min
{
pc(d), |S| −

∑d−1
i=0 pc(|S|, i)

}
, d = 0, . . . , |D| − 1, (8)

qc(|S|, d) = min
{
qc(d), |S| −

∑|D|−1
i=d+1 qc(|S|, i)

}
, d = |D| − 1, . . . , 0. (9)

Since pc(|S|, d) and qc(|S|, d) depend on both |S| and |Jc|, let for conciseness
|J1| = |J2| = n and omit ‘c’ from the above definitions. The inequalities∑

j∈S xj ≥
∑

d∈D p(|S|, d) · d, S ⊆ Jc, c ∈ C, (10)∑
j∈S xj ≤

∑
d∈D q(|S|, d) · d, S ⊆ Jc, c ∈ C, (11)

are valid for PI and separable in O(n logn) steps [3, Section 7.10.1]. Notice that,
for S = {j}, these inequalities reduce to the trivial inequalities 0 ≤ xj ≤ |D|−1.
Also, since p(n, d) = p(d) and q(n, d) = q(d), for |S| = n (10) and (11) become∑

j∈Jc
xj ≥

∑
d∈D p(d) · d, c ∈ C, (12)∑

j∈Jc
xj ≤

∑
d∈D q(d) · d, c ∈ C. (13)

We examine which of these inequalities cannot be facet-defining for PI .

Lemma 3

(i) (10) is redundant for 2 ≤ |S| ≤ p(0) or n− p(|D| − 1) ≤ |S| ≤ n− 1;
(ii) (11) is redundant for 2 ≤ |S| ≤ q(|D| − 1) or n− q(0) ≤ |S| ≤ n− 1.

Proof. We only show (i), since the proof of (ii) is obtainable in an analogous
manner. Notice that, for 2 ≤ |S| ≤ p(0), (8) implies p(|S|, 0) = |S| but p(|S|, d) =
0 for d ∈ D\{0}; thus, (10), written as∑

j∈S xj ≥ |S| · 0,

equals the sum of inequalities xj ≥ 0, j ∈ S.
For n−p(|D|−1) ≤ |S| ≤ n−1 (no such S exists if p(|D|−1) = 0), (8) yields

p(|S|, d) = p(d), for all d ∈ D{|D| − 1}, since n− p(|D| − 1) ≤ |S|; hence

p(|S|, |D| − 1) = min{p(|D| − 1), |S| −
∑

d∈D\{|D|−1} p(|S|, d)} =
= min{p(|D| − 1), |S| −

∑
d∈D\{|D|−1} p(d)}. (14)



Tight LP-Relaxations of Overlapping Global Cardinality Constraints 367

Since
∑

d∈D p(d) = n,
∑

d∈D\{|D|−1} p(d) = n− p(|D| − 1) thus (14) becomes

p(|S|, |D| − 1) = min{p(|D| − 1), |S| − n+ p(|D| − 1)},

implying p(|S|, |D| − 1) = |S| −n+ p(|D| − 1), since |S| ≤ n− 1. But then, (10),
written as∑

j∈S xj ≥ (|S| − n+ p(|D| − 1)) · (|D| − 1) +
∑

d∈D\{|D|−1} p(d) · d =

=
∑

d∈D p(d) · d− (n− |S|) · (|D| − 1),

can be obtained by adding (12) and inequalities −xj ≥ −(|D| − 1), j ∈ Jc\S.

Let P l(S) = {x ∈ PI : x satisfies (10) as equality} and Pu(S) = {x ∈ PI : x
satisfies (11) as equality} be the face defined by (10) and (11), respectively;
P l(Jc) and Pu(Jc) are defined accordingly. Let alsoDl(S) = {d ∈ D : p(|S|, d) =
p(d)} and Du(S) = {d ∈ D : q(|S|, d) = q(d)}.

Lemma 4

(i)
∑

d∈Dl(S) p(d) +
∑

d∈D\Dl(S) ld ≥ n implies P l(S) ⊆ P l(Jc);

(ii)
∑

d∈Du(S) q(d) +
∑

d∈D\Du(S) ld ≥ n implies Pu(S) ⊆ Pu(Jc).

Proof. We only show (i). At an arbitrary vertex x ∈ P l(S), o(x; c; d) = p(d) for
any d ∈ Dl(S), by definition of Dl(S). Also, o(x; c; d) = ld for any d ∈ D\Dl(S),
since the opposite, i.e., o(x; c; d′) > ld′ for some d′ ∈ D\Dl(S), yields

n =
∑

d∈Dl(S)

o(x; c; d) +
∑

d∈D\Dl(S)

o(x; c; d) >
∑

d∈Dl(S)

p(d) +
∑

d∈D\Dl(S)

ld ≥ n,

i.e., a contradiction. In addition, p(d) = ld for all d ∈ D\Dl(S), since p(d′) >
ld′ , d′ ∈ D\Dl(S) yields (because of

∑
d∈D p(d) = n)

n =
∑
d∈D

p(d) =
∑

d∈Dl(S)

p(d) +
∑

d∈D\Dl(S)

p(d) >
∑

d∈Dl(S)

p(d) +
∑

d∈D\Dl(S)

ld ≥ n

i.e., a contradiction. But then, at any vertex x ∈ P l(S), each value d ∈ D,
appears p(d) times thus x is also a vertex of P l(Jc). Since a face of PI is the
convex hull of vertices on it, it follows that P l(S) ⊆ P l(Jc).

Please note that Lemmas 3 and 4 hold irrespectively of whether |J1| = |J2|, since
the latter is not assumed within the corresponding proofs. They also generalize
directly to the polytope associated with more than 2 overlapping gcc’s, since
their proofs rely on the properties of a sole gcc (the same holds for Lemma 2).
This is no longer the case in the next lemma. Define D′ = {d′ ∈ D : ld′ < ud′}.

Lemma 5. Let |J1| = |J2|, S ⊇ Ic, c ∈ C. If all values appearing in S at any
vertex of P l(S) are in D\D′, then dimP l(S) ≤ dimPI − 2.
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Proof. Let S ⊇ I1. Any value d ∈ D\D′ appears ld = ud times in both J1
and J2 at any vertex of PI and hence at any vertex of P l(S) ⊆ PI . The set
S′ = (S\I1) ∪ I2 satisfies |S′| = |S| (because of |J1| = |J2| = n) and S′ ⊇ I2
(because of S ⊇ I1); then, at any vertex x ∈ P l(S), since all values appearing
in S ⊇ I1 are in D\D′, each value d ∈ D\D′ appearing in I1 appears also in
I2 (recall that o(x, 1, d) = o(x, 2, d) = ld). But then, at any vertex x ∈ P l(S)
the same values appear the same number of times in both S and S′ (since
S∩S′ = S∩T ), thus all vertices of P l(S) satisfy (10) as equality for both S and
S′. Since these (two) equalities are linearly independent, dimP l(S) ≤ dimPI−2.

One can then show the following.

Theorem 2. If PI is full-dimensional then P l(S) (Pu(S)) is a facet of PI if
none of the conditions listed in Lemmas 3, 4 and 5 hold.

Our results hold trivially for the case of a single gcc. For the same case, [3, Theo-
rem 7.48] states that PI is completely described by (10) and (11). The polytope of
cardinality(x, {1, 2, 3, 4}; [0, 1, 0], [2, 2, 2]) has dimPI = 4 (by Theorem 1) thus
any valid inequality satisfied as equality by 4 affinely independent vertices is
facet-defining; this holds for the inequality x1+x2−x3−x4 ≤ 3 (which is different
from (10) and (11)) and the vertices {(2, 1, 0, 0), (1, 2, 0, 0), (2, 2, 1, 0), (2, 2, 0, 1)}.
Therefore, the facial structure of PI admits further investigation.
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Beldiceanu, N., Jussien, N., Pinson, É. (eds.) CPAIOR 2012. LNCS, vol. 7298, pp.
50–65. Springer, Heidelberg (2012)

2. Bulatov, A.A., Marx, D.: Constraint Satisfaction Problems and Global Cardinality
Constraints. Communications of the ACM 53, 99–106 (2010)

3. Hooker, J.N.: Integrated Methods for Optimization. International Series in Oper-
ations Research & Management Science. Springer (2012)

4. Katriel, I., Thiel, S.: Complete Bound Consistency for the Global Cardinality Con-
straint. Constraints 10, 191–217 (2005)

5. Magos, D., Mourtos, I.: On the facial structure of the AllDifferent system. SIAM
Journal on Discrete Mathematics 25, 130–158 (2011)

6. Quimper, C.G., Golynski, A., López-Ortiz, A., van Beek, P.: An Efficient Bounds
Consistency Algorithm for the Global Cardinality Constraint. Constraints 10, 115–
135 (2005)

7. Regin, J.C.: Generalized arc consistency for global cardinality constrain. In: Pro-
ceedings of AAAI 1996, pp. 209–215 (1996)

8. Regin, J.C.: Cost-Based Arc Consistency for Global Cardinality Constraints. Con-
straints 7, 387–405 (2002)

9. Samer, M., Szeider, S.: Tractable cases of the extended global cardinality con-
straint. Constraints 16, 1–24 (2011)

10. van Beek, P., Wilken, K.: Fast optimal instruction scheduling for single-issue pro-
cessors with arbitrary latencies. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp.
625–639. Springer, Heidelberg (2001)



An Adaptive Model Restarts Heuristic

Nina Narodytska and Toby Walsh

NICTA and UNSW, Sydney, Australia
{Nina.Narodytska,Toby.Walsh}@nicta.com.au

Abstract. We propose an adaptive heuristic for model restarts that aligns sym-
metry breaking with the dynamic branching heuristic. Experiments show that this
method performs very well compared to other symmetry breaking methods.

1 Introduction

Symmetry is an important but often problematic feature of constraint satisfaction prob-
lems. One way to deal with symmetry is to add constraints to eliminate symmetric
solutions [1–7]. Posting static symmetry breaking constraints has both good and bad
features. On the positive side, static constraints are easy to post, and a few simple con-
straints can eliminate most symmetry in a problem. On the negative side, static symme-
try breaking constraints pick out particular solutions in each symmetry class, and this
may conflict with the branching heuristic. An alternative is a dynamic approach that
modifies the search method to ignore symmetric states [8–11]. Whilst this reduces the
conflict with the branching heuristic, we may get less propagation. In particular there is
no pruning of symmetric values deeper in the search tree. An effective method to tackle
this tension is model restarts [12]. This restarts search frequently with new and differ-
ent symmetry breaking constraints. The hope is that we will find symmetry breaking
constraints that do not clash with the branching heuristic. The original model restarts
method proposed a random choice of symmetry breaking constraints. We show here that
we can improve performance with an adaptive heuristic that aligns symmetry breaking
with the dynamic branching heuristic.

2 An Adaptive Model Restarts Heuristic

Our adaptive heuristic collects information about branching decisions in earlier restarts
in order to build a heuristic friendly ordering of variables within the static symmetry
breaking constraints. This ordering is based on variable scores. We describe three dif-
ferent techniques to obtain these scores. The first two reuse statistics collected by the
branching heuristics. If we use the domain over weighted degree variable heuristic, then
we can use the DOWD ratio to compute variable scores. Score(Xk) = D(Xk)/(w ×
deg(Xk)) [13], where D(Xk) is the domain size, deg(Xk) is the number of constraints
involving the variable, and w the sum of the counters associated with these constraints.
We order variables in increasing order of their scores. We call this the DOWD-based
heuristic. Similarly, we can use statistics associated with impact based branching heuris-
tics to build variable scores [14]. Score(Xk) =

∑
v∈D(x)(1 − impact(x, v)) where

C. Gomes and M. Sellmann (Eds.): CPAIOR 2013, LNCS 7874, pp. 369–377, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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impact(x, v) is the impact of a branching decision measured by the reduction of the
search space induced when the decision was posted. We now order variables in decreas-
ing order of their scores. We call this the IMPACT-based heuristic. Our third approach is
based on the branching levels of variables. This offers some robustness to the choice of
branching heuristic. For example, it could be used with some other branching heuristic
than DOWD or IMPACT. If a variable is instantiated at level i then it gets a Borda type
score of n− i, where n is the number of variables, and 0 otherwise. We order variables
in decreasing order of the average Borda score over the last restart. We call this the
ADAPT heuristic.

We use these three scoring heuristics within model restarts [12]. Model restarts was
proposed to use a random variable ordering within symmetry breaking constraints in
each restart. Frequent restarting ensures we eventually select a good representative sym-
metric solution that is aligned with the dynamic branching heuristic. Instead of using
randomization, our adaptive heuristics build a variable ordering for symmetry break-
ing in each restart that is aligned with the branching heuristic. This variable ordering
is a permutation of the original variables, and hence itself can be seen as a variable
symmetry. As noted in [15], applying a symmetry to a (sound/complete) set of sym-
metry breaking constraints generates a new (sound/complete) set of symmetry breaking
constraints. Thus, we can safely use this permutation to reorder the variables in the
symmetry breaking constraints.

3 Experimental Results

We carried out experiments with 3 sets of commonly used benchmarks. We used Choco
2.1.2 on an Intel Core 8 CPU, 2.7 Ghz, 4Gb RAM with 1000 sec timeout. We branch
with DOWD or IMPACT heuristics [13, 14].1

The first set of benchmarks, DIMACS graph colouring problems was used in earlier
studies of symmetry breaking for interchangeable values [4, 16]. Such problems are par-
ticulary suitable to a dynamic symmetry breaking labeling rule that avoids symmetric
solutions (DYN) [10]. We compared four symmetry breaking methods, including DYN,
the static symmetry breaking precedence constraint (PREC) [4, 16], model restarts and
one modification of model restarts. We use the suffix ADAPT, DOWD and IMPACT to
denote that variables are reordered in the symmetry breaking PRECEDENCE constraint
based on the corresponding scores.

Model restarts constructs a random permutation of variables in the scope of the sym-
metry breaking PRECEDENCE constraint (MR). Our adapted method works in the fol-
lowing way. The search starts on the model without symmetry breaking constraints.
Until the first restart, we collect statistic about the search tree. If we use the ADAPT

heuristic, we store the information about variables that the solver branched on as de-
scribed in Section 2. If we use DOWD or IMPACT heuristics then the solver accumulates
statistics in weights and impact factors. On the first restart, we order variables based on
their scores obtained from the heuristic. The scores are described in Section 2. Then
we post the PRECEDENCE constraint and align variables in the scope of the constraint

1 We would like to thank Charles Prud’homme for his help in implementing the model restarts
technique.
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with the obtained variable ordering. Statistics for the ADAPT heuristic are reset to zero
after first and later restarts. Statistics for DOWD and IMPACT heuristics have built-in
mechanisms to gradually forget pervious decisions. Between the first and the second
restarts we again collect search statistics. On the second and later restarts, we remove
the PRECEDENCE constraint that we posted on the previous restart from the model and
post a new PRECEDENCE constraint where the variables in its scope are aligned with
the ordering obtained from the heuristic. We continue this procedure until we find a so-
lution or timeout. Note that our adaptive approach can be applied to all problems where
model restarts can be applied as we replace a random ordering of variables with one
derived from heuristics.

MR + DOWD and MR + IMPACT use the DOWD and IMPACT heuristics, whilst
MR + ADAPT uses our adaptive version of model restarts.

We also consider limiting the cost of symmetry breaking. In MRsh, MRsh + ADAPT,
MRsh + DOWD and MRsh + IMPACT, we shorten the PRECEDENCE constraint to the
first 2m variables, where m is the number of values. The intuition behind this idea is
based on an empirical observation that an instantiation of a relatively small number
of variables in the scope of the PRECEDENCE constraint entails the constraint in most
benchmarks. The value 2m was chosen based on statistical analysis of the benchmarks.
We use a geometric restart policy with the base of 100 backtracks and a growth coeffi-
cient of 1.1. This ensure that restarts are rapid as in [12]. Tables 1–2 give average times
and the number of backtracks for the DOWD and IMPACT branching heuristics over
10 runs. In addition, Table 1 shows the number of runs where a problem was solved.
We also computed geometric means for these instances to reduce impact of outliers.
However, as this gives the same picture of results and we have limited space, we do
not include these results here. We removed instances solved by all methods in under 3
seconds and separated results for satisfiable and unsatisfiable.

Effect of the adaptive heuristic. By comparing PREC, MR and MRsh with their
adaptive counterparts, we see that our adaptive heuristic ADAPT dramatically improves
performance on the majority of instances. For example, the adaptive heuristic helps
solve 9 additional benchmarks if we compare MR and MR + ADAPT. The adaptive
heuristic is especially useful on unsatisfiable instances. Note that many of these addi-
tionally solved benchmarks are easy once we remove conflict between the branching
heuristic and static symmetry breaking. We observed that DOWD-based adaptive order-
ing also performs well. Unfortunately, the IMPACT ordering does not perform well on
these benchmarks.

Effect of shortening. By comparing MR + ADAPT and MRsh + ADAPT, as well as
other models with their shortened counterparts, we see that shortening achieves much
better performance. However, it slightly increases the number of backtracks in some
cases. Shortening does not increase significantly the number of solved instances, or
change substantially the search tree. However, it improves the efficiency of search.
Overall, MRsh + ADAPT gives the best performance over all benchmarks among all
symmetry breaking methods using the DOWD and IMPACT branching heuristic.

Our second and third case studies consider classes of problems on which model
restarts has been shown to outperform other static and dynamic symmetry breaking
methods [12]. We ran experiments with the “signature” based static symmetry breaking
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constraints proposed for variable and value interchangeability in [11] and denoted here
as GCC-based. We decomposed the GCC constraint into AMONG constraints so we
can have access to the cardinality variables. Following [12] we only order partitions
within the symmetry breaking constraints. We compute a score for all variables in each
partition with respect to the used heuristic and sort the partitions according to these
scores. Again, the main advantage of our approach is that instead of random ordering
of partitions in model restarts we align them with branching heuristics.

We generated 20 problems of each size and averaged statistics over these problems.
We report time to find an optimum solution and prove optimality. Note that all results are
shown on instances that are solved by all techniques for at least 10 generated problems.

As in [4, 12], we tested on graph colouring and Concert Hall scheduling problems.
In [12], the model restarts technique was shown to outperform other symmetry break-
ing methods on these benchmarks. Hence, we only compare our adaptive strategy with
the simple static symmetry breaking constraints and the highly effective model restarts
technique (GCC-based +MR). As previously, we biased the ordering of variables in the
simple static symmetry breaking constraint to put large partitions first. Figure 1 (left
part) shows the results for uniform and biased graph colouring problems with q = 0.5
using IMPACT branching heuristic. The results confirm that model restarts is better than
static symmetry breaking. Our adaptive ordering of partitions significantly improves
performance of model restarts. In particular, the ADAPT heuristic is more robust com-
pared to the IMPACT heuristic.

For the Concert Hall Problem, we generated problems as in [4]. As it is important to
put large partitions first, we assumed that any partition with size greater than 4 is a large
partition (the maximum partition size is 8 in this setup). The number of halls is 12 or 14.
Figure 1 (right part) shows the results for 14 halls. As can be seen from the graphs, using
an adaptive heuristic to order partitions improves model restarts significantly using both
DOWD or IMPACT branching heuristics. Moreover, ADAPT shows the best performance
across all instances.

4 Other Related Work

Crawford et al. proposed a general method to break symmetry statically using lex-leader
constraints [17]. Most static symmetry breaking constraints (including the PRECE-
DENCE constraints used here) can be derived from such constraints. Efficient algorithms
have been developed to propagate many static symmetry breaking constraints (e.g. [21–
24]). Lex-leader constraints pick out the lexicographically smallest solution in each
symmetry class. However, this may conflict with the branching heuristic. A number
of dynamic methods have been proposed to deal with this conflict. For example, SBDS
posts lex-leader constraints dynamically during search [8]. Another dynamic method for
breaking symmetry is SBDD [9]. This checks if a node of the search tree is symmetric
to some previously explored node. GAPLex is a hybrid method that combines together
static and dynamic symmetry breaking [25]. However, it is limited to dynamically post-
ing lex-leader constraints, and to searching with a fixed variable ordering (which can be
a considerable burden). Dynamic Lex is another hybrid method that dynamically posts
static symmetry breaking constraints during search which works with dynamic variable
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Fig. 1. Mean times for uniform (top left) and biased (bottom left) graph colouring benchmarks
with q=0.5 using IMPACT based branching. Mean times for Concert Hall Problem benchmarks
with 14 halls using DOWD (top right) and IMPACT based branching (bottom right).

ordering heuristics [26]. This method adds lex-leader constraints during search that are
compatible with the current partial assignment. Hence the first solution found is not
removed by symmetry breaking. However, unlike here, the method assumes that values
are tried in a fixed order.

5 Conclusions

Static symmetry breaking constraints are often an easy and effective way to deal with
symmetry in a constraint or optimisation problem. However, there can be a conflict
between static symmetry breaking constraints and branching heuristics. To reduce this
conflict, we propose a simple adaptive heuristic for model restarts. This orders variables
within symmetry breaking constraints to align with the dynamic branching heuristic.
Experimental results suggest that it is a very promising alternative between purely static
and purely dynamic symmetry breaking methods. In particular, the results show that the
proposed ADAPT heuristic works well across all benchmarks and two state-of-the-art
branching heuristics. Our adaptive method thus appears to be more robust compared to
the original model restarts algorithm.
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Abstract. Search-based software testing is a powerful automated tech-
nique to generate test inputs for software. Its goal is to reach a branch
or a statement in a program under test. One major limitation of this
approach is an insufficiently informed fitness function to guide search
toward a test target within nested predicates (constraints). To address
this problem we propose fitness functions based on concepts well known
to the constraint programming community, such as constrainedness and
arity, to rank test candidates. Preliminary experiments promise efficiency
and effectiveness for the new fitness functions.

1 Introduction

The main goal of software testing is to expose hidden errors by exercising a
program on a set of test cases. A major challenge in this research field is au-
tomating the generation of test cases. The widely used approach is Search Based
Software Testing (SBST). This approach translates the testing problem into an
optimization problem, then it uses a meta-heuristic algorithm and a fitness func-
tion to generate test cases that meet a test target. SBST is very sensitive to the
effectiveness and the efficiency of its fitness function. Despite the known limita-
tions (nested structures, flags) [6] of the most widely used fitness function [11],
alternatives have been little studied in the literature [2].

In the last decade, constraint programming has been proposed to replace
SBST for software testing [3,4,7]. Collavizza et al. [3] have proposed a constraint
based approach and implemented it in a tool to verify a program property.
Gotlieb [4] and Pasareanu et al. [7] have proposed two different approaches based
on constraint programming to generate test data. But constraint based testing
suffers from its inability to manage dynamic aspects of a program and complex
or unavailable source code. Recent research [9,2] has shown that integrating con-
straint programming techniques in SBST may make it more effective and more
efficient. This short paper proposes a new approach based on constraint pro-
gramming to enhance the performance of SBST. In particular we propose novel
fitness functions based on branch “hardness”. We statically analyze the test tar-
get to collect information about branches leading to it. Then we define a penalty
value for each branch (constraint) according to its arity and its constrainedness.

C. Gomes and M. Sellmann (Eds.): CPAIOR 2013, LNCS 7874, pp. 378–385, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Branch penalties are used to determine how close a test candidate is to reaching
a test target.

The contributions of this paper are: (1) We introduce two new metrics to mea-
sure the hardness to satisfy a branch predicate in software test case generation;
(2) We show how to use the new metrics to define two new fitness functions that
measure how far a test candidate is to satisfying a test target; (3) We present
the results of an empirical study on a large number of benchmarks that are
randomly generated, the results of which indicate that our new fitness functions
are significantly more effective and efficient than representative fitness functions
from the literature, Approach-level [11] and Symbolically Enhanced [2] Fitness
Functions.

The remainder of the paper is organized as follows: Section 2 introduces neces-
sary definitions and presents a motivating example; Section 3 describes the new
metrics and their use in two fitness functions; Section 4 presents an empirical
study; Section 5 concludes with some future work.

2 Background and Motivation

To generate test data, SBST uses a meta-heuristic guided by a fitness function.
The approach-level [11] and branch-distance [10] measures are largely used for
computing the fitness function value [6]. These measures are respectively the
number of branches leading to the test target that were not executed by the test
candidate and the minimum required distance to satisfy the branch condition
where the execution of the test candidate has left the target’s path (that branch
is called the critical branch).

1sample(int x,int y,int z){
2if(y==z)
3if(y>0)
4if(x==10)
5...//Target
6}

Fig. 1. Code fragment

Assume that our test target is reaching the
statement at line 5 in the code fragment at
Fig. 1. The branch distance of a test candidate
(a, b, c) is equal to |b− c|, from the first branch.
If this distance is equal to 0 then the first branch
is satisfied and the branch distance is computed
according to the second branch (y > 0) which is
equal to max(0, 1− b), and so on. The approach
level is an enhancement of the branch distance
fitness that links each branch to a level. The level
of a branch is equal to the number of branches
that separate it from the test target. In Fig. 1 the branch at line 4 has level 1
because there is only one branch to satisfy to reach the test target. The branch
at line 3 has level 2 because there are two branches to satisfy, and so on. The
approach level fitness function (fAL) for a test candidate i and a branch b is
fAL(i) = level(b) + η(i, b), where b is the critical branch of i. The second term
η is a normalized branch distance. Among the many methods to compute it [1],
we use δ

δ+1 where δ is the branch distance. This fitness function does not take
into account non-executed branches. SBST is a dynamic approach: it executes
the program under test and observes its behaviour. Therefore it only analyzes
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executed branches. Suppose that we have two test candidates i1 : (10,−30, 60)
and i2 : (30,−20,−20) and we need to choose one of them. The approach level
fitness function chooses i2 (fAL(i2) = 2 + 21

22 = 2.9545) because it cannot see
that i1 (fAL(i1) = 3+ 90

91 = 3.9890) satisfies the branch at line 4. A careful static
analysis would detect that i2 needs more effort than i1 since it needs to change
every value whereas i1 could reach the target with a single change of the second
value. Furthermore the likelihood of randomly choosing the value 10 for x in a
large domain is almost null.

Recently, Harman et al. [2] proposed the Symbolic Enhanced Fitness Func-
tion (fSE) that complements SBST with a simple static analysis (symbolic ex-
ecution): fSE(i) =

∑
b∈P η(i, b) whether branch b is executed or not. For our

example their fitness function also chooses i2 (fSE(i2) = 0 + 21
22 + 20

21 = 1.9068)
over i1 (fSE(i1) =

90
91 + 31

32 + 0 = 1.9577) because it does not prioritize branch
”(x == 10)” — all branches are considered equal.

In summary: (normalized) branch distance is accurate to compare test can-
didates on the same branch but can be misleading when comparing on different
branches; approach level corrects this by considering the critical branch’s rank
on the path to the target but ignores non-executed branches; symbolic enhanced,
a hybrid approach that complements the dynamic approach with static analysis,
includes all branches on the path but does not consider their rank or any other
corrective adjustment. We propose branch hardness as such an adjustement,
complementing branch distance.

3 A Fitness Function Based on Branch Hardness

We claim that test candidates that satisfy “hard” branches are more promising
than those that only satisfy “easier” branches. Therefore we consider the diffi-
culty to satisfy a constraint (i.e. a predicate used in a conditional statement or
branch) as key information to measure the relevance of a test candidate. We pro-
pose a branch-hardness fitness function to guide a SBST approach toward test
targets: it prioritizes branches according to how hard it is to satisfy them. As
in the Symbolic Enhanced approach, we combine SBST with static analysis of
the non-executed branches, but additionally apply a hardness measure to every
branch.

Here the difficulty to satisfy a constraint c is linked to its arity and its projec-
tion tightness [8]. The latter is the ratio of the (approximate) number of solutions
of a constraint to the size of its search space (i.e. the Cartesian product of the
domains of the variables involved in c), in a way measuring the tightness of the
projection of the constraint onto the individual variables. The lower the arity of
the constraint, the less freedom we have to choose some of its variables in order
to modify the test candidate. A projection tightness close to 0 will indicate high
constrainedness and hardness to satisfy a constraint. Correspondingly we define
parameters α(c) = 1

arity(c) and β(c) = 1 − projection tightness(c) that range

between 0 and 1 and indicate hardness.
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3.1 Branch-Hardness Fitness Functions

In this section we define two metrics Difficulty Coefficient and Difficulty Level
to complete the branch distance and use them to express two fitness functions.
These two metrics are designed to be used within meta-heuristic search to solve
an evolutionary testing problem.

Difficulty Coefficient (DC). The DC is a real number greater than 1. It is a
possible representation of the hardness of a branch. Each constraint has its own
DC that is determined according to its arity and tightness. DC is calculated by
the following formula,

DC(c) = B2 × α(c) +B × β(c) + 1,

where B > 1 is an amplification parameter. In this paper we use B = 10.
To express a fitness function based on DC we use DC as a penalty coefficient

for breaking a constraint. The key idea behind this fitness function is determin-
ing a standard-branch-distance, then sorting candidates according to their total
standard-branch-distance.

To compute a fitness value for a test candidate i on a set of branches (con-
straints) C we apply the following formula:

fDC(i, C) =
∑
c∈C

DC(c) × η(i, c).

This fitness function penalizes a broken constraint in a relative manner, i.e., it
determines the penalty according to the DC and the normalized distance branch.
In this way we may prefer a candidate that satisfies a hard branch but breaks an
easier one with a large normalized distance, over another candidate that breaks
the former with a small normalized distance but satisfies the latter.

Now we come back to our example at Fig. 1 and apply this new fitness func-
tion. Assume that all domains are equal to [−99, 100]. We compute DC for each
branch as follows:

1. DC(”y == z”) = 102 × 0.5 + 10× 0.995 + 1 = 60.95;
2. DC(”y > 0”) = 102 × 1 + 10× 0.5 + 1 = 106;
3. DC(”x == 10”) = 102 × 1 + 10× 0.995 + 1 = 110.95.

Then we use these DC values to compute a fitness value for each test candidate:
fDC(i1, C) = 60.95 × 90

91 + 106 × 31
32 + 110.95 × 0

1 = 162.9677; fDC(i2, C) =
60.95× 0

1 + 106× 21
22 + 110.95× 20

21 = 206.8485. Contrary to fAL and fSE this
fitness function makes the adequate choice by choosing the test candidate i1
instead of i2. This type of decision may make fDC more efficient than fAL and
fSE .

Difficulty Level (DL). DL is a representation of a relative hardness level
of a constraint in a set of constraints. DL determines a constant penalty of
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breaking a constraint in a set of constraints to satisfy. We make the satisfaction
of a hard constraint more important than satisfying all constraints at a lesser
level. To favor a constraint over all other easier constraints, its DL must to be
greater than the sum of DL values for all the constraints with a lower DC score.
Therefore, we define the DL as

DL(c, C) =

{
|C|, if r = 0

2r−1 × (|C|+ 1), if r > 0

where r is the rank (starting at 0) of c in the constraints set C in ascending
order of DC.

To get a fitness value based on DL for a test candidate i on a set of branches
C we apply the following formula:

fDL(i, C) =
∑
c∈C


(i, c) + η(i, c), where 
(i, c) =

{
0, if η(i, c) = 0

DL(c, C), if η(i, c) 	= 0

This fitness function allows to compare test candidates on different levels. It
absolutely favours test candidates that have a smaller penalty value, i.e, test
candidates that satisfy hard constraints. Contrary to the fitness function based
on DC this one always prefers a test candidate that satisfies a hard constraint
and breaks all easier constraints over a test candidate that breaks the hard
constraint, even though it satisfies all the easier constraints.

4 Empirical Study

Our aim in this empirical study is to analyze the impact of our proposed fitness
functions on SBST in terms of effectiveness and efficiency: SBST is considered
more efficient if the new fitness functions are able to reduce the number of
evaluations; it is considered more effective if the new fitness functions are able
to cover more targets. We compare our proposal to the state of the art, fAL,
fSE , and also to a natural combination of the two that applies the branch level
as a corrective coefficient to each term of fSE , which we denote fSEL.

To perform our empirical study, we select two widely used meta-heuristic
algorithms: Simulated Annealing (SA) and Evolutionary Algorithm (EA). To
implement them we use the open source library opt4j [5]. To define an opti-
mization problem in opt4j, the user needs only to define a fitness function and
a representation of a test candidate which, in our case, is a vector of integers.
We defined a Java class that exports a fitness evaluator for each fitness func-
tion: fAL; fSE; fSEL; fDC ; fDL. We kept all the default parameters for both
algorithms (EA and SA), with one exception. As a default the mutation and the
neighbourhood operators make changes uniformly at random and so they do not
take into consideration the current value of the changed vector component of a
test candidate. Because fAL and fSE are highly dependent on branch distance
and expect a change close to the current value, to make the comparison more fair
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we defined new mutation and neighbourhood operators centered on the current
value v: they select a new value uniformly at random in the range [v− �, v+ �],
where � represents 1% of the domain [−104, 104].

The study was performed on a well-studied benchmark, the triangle program
[6], and on 440 synthetic test targets that were randomly generated. A synthetic
test target is a simple program that contains a set of nested branches to be
satisfied. To get realistic test targets, every test target is generated carefully,
branch by branch. Every branch must: i) keep the test target feasible; ii) involve
two variables (80%) or a variable and a constant (20%); iii) not be implied by
the current test target.1

Each search for test data that meets a test target was performed 20 times for
every combination of fitness function and meta-heuristic algorithm. If test data
was not found after 25000 (respectively 100000) fitness evaluations for EA (re-
spectively SA), the search was terminated. For all techniques, the 20 executions
were performed using an identical set of 20 initial populations.

Experiments on the Triangle program show that all fitness functions perform
in the same way on all branches except on the two branches that represent
an isosceles and an equilateral triangle —they need at least two out of three
parameters to be equal. On these two branches we observed that our fitness
function fDL outperforms the others in terms of number of evaluations necessary.
Therefore fDL makes SBST more efficient on Triangle, especially on these two
branches.

Fig. 2 and 3 show the coverage achieved by the EA and the SA on the 440 test
targets with respect to the number of evaluations. For each fitness function, a
test target is considered as covered if at least one execution out of 20 succeeded
to generate a test data. If more than one execution succeeded to do that, then the

1 Benchmarks are available at
http://www.crt.umontreal.ca/~quosseca/fichiers/23-benchsCPAOR13.zip

http://www.crt.umontreal.ca/~quosseca/fichiers/23-benchsCPAOR13.zip
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median value of evaluations is used. These two plots confirm that the proposed
fitness functions can enhance the effectiveness of SBST: the search based on
fDL or fDC is able to cover test targets that are not covered by either fSE , fAL

or their combination fSEL. All fitness functions perform similarly on easy test
targets but fDL and fDC outperform the rest on hard to reach test targets. The
improved effectiveness is particularly clear on the SA results, where we observe
that our fitness fDL can reach 90% coverage whereas the best of fSE , fAL and
fSEL could not reach 45%.

In both Figures 2 and 3 we can observe that, from a certain point on, a given
number of fitness evaluations allows our fitness functions to cover more targets
than fSE or fAL. Therefore we may say that the proposed fitness functions
improve the efficiency of SBST.

5 Conclusion

In this paper we defined two new metrics to measure the difficulty to satisfy a
constraint in the context of test case generation for software testing. We used
them to propose new fitness functions that evaluate the distance from a test
candidate to a given test target. We presented results of an empirical study on a
large number of benchmarks, indicating that the search algorithms EA and SA
with our new fitness functions are significantly more effective and efficient than
with the largely used fitness functions from the literature. Future work will focus
on performing more experiments on real world programs to confirm whether the
observed advantage of the proposed fitness functions represents a general trend.
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Abstract. When multiagent systems are used, design of an energy-efficient and
autonomous data routing mechanism for wireless sensor networks is challenging.
We see this challenge in the problem of coalition formation of agents (transmit-
ters) for allocating dynamic-motion tasks (sensors) where the tasks have different
service deadlines, and are in motion. The problem becomes harder when there
are more tasks than agents, and when the data transmission is noisy. To address
this, we design a novel and anytime decentralized heuristic algorithm to form
coalitions. This algorithm can achieve at least 72±0.8% and at most 102±2.2%
performance relative to the best known centralized coalition formation algorithm
in such a sensor network.

Keywords: Coalition formation, sensor networks, data routing, simulation.

1 Introduction

Coalition formation for allocating tasks to agents in a multiagent system (MAS) is
challenging when the tasks are dynamic-motion tasks [1]. Coalition formation happens
when several agents come together, and make an agreement to cooperate, coordinate
and communicate to service a number of tasks. A dynamic-motion task is a task where
its workload changes over time, and where the task is in motion. For example, in a
mobile Wireless Local Area Network (WLAN) wherein a number of external mobile
stations (i.e. mobile data sources) need to be serviced, the mobile servers need to access
data from those sources by collecting and transmitting the data, via a noisy communica-
tion channel, to a receiver before each data source has exhausted its memory. It has been
proven that a multiagent based wireless network system can cope with the complexity
of this problem [2].

In our model, agents are designed as autonomous and self-adapting mobile data
transmission servers that move to the physical location of the dynamic-motion task
to service it and transmit that data to the central receiver. Coalitions of these agents
cooperate with each other to reduce the power required for the data transmission, and
to increase the quality of this data transmission. For example, two agents service the
sensor simultaneously in a way that both collect the data from it, and only one transmits
data (utilizing modulation techniques) [3] to minimize the consumption of energy used
for transmitting data. In another scenario, relay agents bridge the transmission channel
to increase the quality of transmission.

C. Gomes and M. Sellmann (Eds.): CPAIOR 2013, LNCS 7874, pp. 386–393, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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This paper moves the state of the art forward in the following ways. To our knowl-
edge, this paper is the first to address the problem of allocating coalitions of agents
to dynamic-motion tasks in a mobile WLAN. Furthermore, the paper devises an any-
time decentralized heuristic search based algorithm to form coalitions and to allocate
dynamic-motion tasks simultaneously. Finally, this paper shows the decentralized algo-
rithm has a maximum of 160± 1.1% efficient solution compared to the random alloca-
tion and has 102± 2.2% best performance for the algorithm designed by Saad et al [2]
in a crowded neighborhood.

2 Problem Statement

By forming coalitions, agents transmit data generated by a number of dynamic-motion
tasks to a data receiver via a noisy communication link. Issues with regard to coalition
formation can be formulated as following: 1) Which agents should work together to
service which tasks? 2) What order should tasks be serviced? 3) Which agents should
serve as relays? and 4) When should coalitions be reorganized and tasks reassigned?

The agent/task coalition consists of a number of tasks, attended by agents in a specific
order. Like servers of the mobile WLAN, which poll several network nodes to transmit
data packets, the agents travel among the physical locations of the tasks to service them
(i.e. collect the task’s data packets and transmit them to the receiver which is located at
a static position in the environment). Agents of the coalition work either as a collector
or as a relay. In the coalition of collector agents, only one collector needs to transmit
modulated signals from the task serviced to the central data receiver. This allows the
other collectors to save their transmission power, and to reduce the overhead of the
coalition. Relay agents are additional coalition members. They are dedicated to bridge
the transmission, but do no collection. In some cases, there are series of relays, the
first of which receives data from the collectors of the coalition, and the last sends data
to the receiver. Here, each relay maintains an equal distance to both its successor and
predecessor. Probability p(i, j) of a data packet being transmitted from relay agent i to
agent j is defined as follows [2,3]:

p(i, j) = exp

(
−

σ2υ0dα
(i, j)

κP̃

)
(1)

where σ2 is a variance of the Gaussian noise, υ0 is the target level, d(i, j) is the distance
from relay agent i to relay agent j, α is a path loss exponent, κ is a path lost constant, and
P̃ is the maximum transmit power of the relay agent. The probability p(i, j) determines
the strength of the communication link in an environment in which fading, like air
resistance and destructive inference to the transmitted data packet, is affected.

In a mobile WLAN, a coalition theoretically needs to satisfy its primary constraint,
the utilization constraint, where the total data generation rate must not exceed the total
data transmission rate [3,2,4]. A coalition is a feasible coalition if it does not violate
the utilization constraint. While infeasible coalitions may be necessary to give the best
global outcome, our method, in an effort to divide the work fairly, attempts to produce



388 U. Weerakoon and V. Allan

feasible coalitions. Once the initial coalitions are determined, unallocated tasks are in-
corporated into proximate coalitions when possible. The utilization constraint is defined
as follows:

ρc =
∑i∈TC

λi

∑ j∈C µ j
(2)

where ρc is the utilization factor of the coalition C, and TC is the set of tasks allocated
to coalition C.

In the coalition, agents service the tasks by visiting each of the tasks according to
the order determined by the dynamic routing mechanism. With the dynamic routing
mechanism, the decision of the agents as to the order in which the tasks are visited may
depend on a certain amount of information available to the agents, such as the number of
data packets stored by the task and the location of the task. When servicing the task, the
collectors transmit either all (exhausted strategy) or a limited number (gated strategy)
of data stored in the memory of the task.

Agents utilize the following seven functions for measuring utility u(·) of coalition C
defined by Equation 3 based on the resources provided by the agents and the resources
required by the allocated tasks.

1. f1 (C) is the gross profit in terms of the amount of data collected from tasks allo-
cated to the coalition

2. f2 (C) is the possible profit in terms of the total amount of data generated by the
tasks allocated to the coalition

3. f3 (C) is the net profit in terms of the amount of data packets that have successfully
been transmitted to the receiver by the coalition

4. f4 (C) is the total time spent by the agents of a coalition in gathering and transmit-
ting data packets

5. f5 (C) is the overhead of the coalition which is the sum of the idle time and the
traveling time of the agents

6. f6 (C) is the cost of transmitting data and sending messages to form the coalition.
The cost of transmitting data is proportional to the distance of transmission, and
the cost of sending message is proportional to the distance divided by square root
of two [5].

u(C) =
6

∑
i=1

αi · fi (C) (3)

where αi is the coefficient of function fi (C), and αi is determined empirically.
By defining the problem of coalition formation with spatial and temporal constraints

(CFSTP), authors [1] show that CFSTP falls within the class of NP-hard problems.
Likewise, we can also show that coalition formation for allocating tasks to agents in
an environment where each task has a workload, a time deadline, and mobility is an
NP-hard problem.
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3 Methodology

This section presents a new method, termed Anytime Tabu and Variable neighborhood
[6] heuristic algorithm (ATV), whereby agents form coalitions to service dynamic-
motion tasks. ATV is composed of four stages: 1) the generation of initial coalitions,
2) the improvement of the coalitions, 3) transmission of data, and 4) the adaptation of
the coalitions. To explain ATV, two new terms are introduced: entity and communication
radius. An entity is either a task or an agent. An entity can recognize another entity that
is proximate if the Euclidean distance between its location and the location of the other
entity is less than a predefined distanced, which is termed the communication radius.

In the first stage (the generation of coalition formation), each agent within a set of
agents (Am) that are capable of communicating with each other cooperates to select a
task group. A task group is a group of discrete tasks that are proximate. Tasks (Tm),
known to the agents, are grouped into ñm number of task groups by executing the well-
known k-mean clustering algorithm [7]. To determine the value for ñm, Equation 4 is
used. In Equation 4, Tm and Am denote the set of known tasks and the set of known
agents, respectively, and λi and µ j respectively denote the data generation rate of task i
and data transmission rate of agent j. At the end of first stage of the generation of initial
coalitions, |Am| out of ñm number of tasks groups are allocated to agents in Am.

ñm =

⌈
∑i∈Tm λi(

∑ j∈Am µ j
)
/ |Am|

⌉
. (4)

To explain a new term the neighboring coalition, we introduce two attributes of the
coalition: centroid and radius. The centroid of the coalition is the average x and y lo-
cations (Cartesian coordinates) of tasks in the coalition. The radius of the coalition
is defined as the distance to the furthest task of the coalition from the centroid. The
neighboring coalition is the coalition that significantly overlaps with the considered
coalition. The neighboring coalition is significantly overlapped when the total distance
of two radii, minus the distance between the centers of the two centroids, is less than a
predefined distance.

In the second stage, coalitions are improved by agents utilizing ATV search, which
has three phases: 1) the exploitation phase, 2) the feasibility phase, and 3) the explo-
ration phase. Each of these three phases utilize two primitive operations: 1-move and
swap. The 1-move operation moves an entity from its own coalition to a neighboring
coalition. There are four possibilities for a 1-move: 1) move a task among coalitions,
2) move a task from coalition to an unassigned task group, 3) move a task from a task
group to a coalition, or 4) move an agent from coalition to task group. On the other hand,
the swap operation exchanges two entities between coalitions or task groups. There are
three possible swap options: 1) swap tasks between coalitions, 2) swap tasks among a
coalition and a task group, and 3) swap agents among coalitions.

In the first exploration phase of ATV search, the Variable Neighborhood Search
(VNS) is used. VNS helps to move the search forward, as an agent may get stuck in
poor local optima. In VNS search, an agent executes a limited number of 1-move or
swap operations to exploit a better solution (the term solution is defined as the set of
coalitions, consisting of agents and tasks) without considering the utilization constraint.
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However, VNS does not use the exhaustive search of all feasible changes from the cur-
rent solution. The stopping criterion for VNS is fixed at an empirically decided number
of iterations without improvements. After finding the series of operations, the agent ac-
cepts them if VNS gives an improved solution from the current solution. To find the
series of operations, the agent uses follwoing five heuristics:

1. Move - moves unallocated proximate tasks to the coalition
2. Merge - merges the coalition C1 with a neighboring coalition C2, when the new

coalition C3 is super additive: u(C3)≥ u(C1)+ u(C2)
3. Share - shares a batch of tasks that are proximate to the border, with the neighboring

coalition
4. Pass - passes tasks to a neighboring coalition, when the utility of neighboring coali-

tion is less than the empirically defined threshold
5. Split - splits the coalition with members, when the utility of the coalition is less

than the empirically defined threshold

I (C) = max{ρc− 1,0}2 . (5)

In the second phase of ATV search, the feasiblility phase, agents make the coalition
feasible. To evaluate coalition feasibility, infeasibility I (·) of a coalition is measured by
Equation 5, where ρc is defined in Equation 2. This squared value where ρc is greater
than one, helps agents to recognize coalitions with a small infeasibility rather than few
coalitions with a great infeasibility. Thus, agents can make a small change according
to Heuristic Share and Pass, e.g. move a single task with ease, and make the coalition
feasible.

The third and last phase of ATV search is the exploration phase. Here, agents search
through a sequence of solutions in which the next solution to be searched is derived
from the current solution by executing a single 1-move or swap operation. To do so,
agents utilize the tabu search. The tabu search is a meta-heuristic search that employs an
adaptive memory to forbid the search to consider 1-move or swap operations, already
considered, for a short period of time. Here, agents first find a 1-move of an entity
to improve the utility of the solution. When agents cannot improve the solution by
a 1-move, they search for possible swap operations. Once agents execute any of the
operations, they run the k-opt procedure [8] to find the optimal path through the tasks
of the coalition. The stopping criterion is fixed at an empirically decided number of
iterations without improvements.

Finally, in the forth and last stage of ATV, agents deal with dynamism, where ATV is
repeated in the significant motion pattern. In this technique, an agent constantly mon-
itors the centroid and the radius of its own coalition for any significant deviation from
the current values. The centroid and the radius are significantly changed by: 1) arrival of
a new task to the considered area of the coalition and 2) the existing tasks move further
apart.

4 Empirical Evaluation

To test the proposed ATV, simulations are set in the following WLAN configurations.
A central receiver is placed at the center of a 4× 4 km square area. The path loss
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parameters are set to α = 3 and κ = 1, the target SNR is set to υ0 = 10 dB, and the
noise variance σ2 = −120 dBm [3]. All packets are designed to be 256 bits, which is
the typical IP packet size. The agents have a transmission power of P̃ = 100 mW. The
data transmission capacity is 768 kbps and the communication radius is 0.8 km for each
agent. Unless otherwise stated, the speed of each agent and task are 30 km/h and 0.6
km/h, respectively. The task generates data packets according to a Poisson process, and
stores them in its 16 MB memory which is a queue. The task has a data generation rate
of 128 kbps which could be mapped to video services. The simulation runs for 100 test
instances. Each test instance requires 40 minutes to run. The results of ATV are here
compared with three centralized algorithms: Saad [2], equal allocation of neighboring
tasks, and random allocation. An additional comparison is also included with a version
of Saad algorithm with periodic reconfiguration.

Fig. 1. Results for ATV

In Figure 1 (A), the ratio of successfully transmitted packets to generated packets is
assessed. The ratio calculated is the number of data packets that have successfully been
transmitted, divided by the total data packets generated by tasks. The ATV outperforms
the Saad (periodic) algorithm. Agents in the ATV effectively and continually reconfig-
ure themselves within a period of time much shorter than Saad. The ratio values increase
due to the fact that when the number of agents increases, the distance that the agents
need to travel within their coalition decreases. The increased number of agents also im-
proves the probability of successful data transmission. In the crowded neighborhood,
ATV is the most efficient and effective algorithm of this simulation.

Figure 1 (B) illustrates that when the velocity of the tasks is increased, the average
number of tasks allocated to each coalition decreases. For this experiment, the speed of
each agent is 60 km/h. Simulations are conducted with a constant number of ten agents.
In one simulation, forty tasks are introduced. In the other simulation, sixty tasks are
introduced. In each simulation, the velocity for the tasks is increased. As the velocity
of the tasks increases, the necessity for forming new coalitions or dissolving existing
coalitions increases significantly. These changes require agents to spend more time re-
configuring themselves. When the time spent for collecting data is low, the workload
of data to be transmitted increases. The higher workload forces the number of tasks
allocated to a coalition to drop gradually.
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Figure 1 (C) shows variations in the cost incurred as a data packet is transmitted from
a task to the central receiver. This cost has two components: 1) the communication cost
(the cost of forming coalitions and allocating tasks) and 2) the actual transmission cost.
The cost of sending a data packet or a communication message is measured by the
distance of the transmission. This value is then divided by the number of successfully
transmitted data packets where each data packet is a unit assigned a monetary value of
one. As the possibilities of reconfiguration increase, there will always be an increase in
the communication cost for successful data transmission.

5 Related Work

To route data from self-interested sensors (owned by different stake-holders) to the re-
ceiver, Rogers et al. [5] developed a communication protocol and a payment scheme
using a multiagent design mechanism. Using only local information and the commu-
nication protocol, a sensor finds and selects another sensor that is willing to act as a
hop to transmit its data to the receiver. However, Turget and Boloni [9] empirically
tested sensor based multi-hop data routing via a simulation, and proved the lifetime
of the sensor network can significantly be extended (500%) by eliminating the need
for expensive multi-hop sensor routing. To eliminate the expensive sensor-based multi-
hop data routing, the authors chose a sensor network with multiple mobile receivers.
In contrast, Saad et al. [2] developed an agent based routing mechanism wherein mo-
bile autonomous and self-adapting wireless transmitters (agents) visit the location of
wireless and mobile sensors (tasks) to route data. These transmitters and sensors are
controlled by the central commander. The issue of the Saad model is that the comman-
der poses a possible threat of a single point of failure. In our paper, to overcome this
threat, a novel any-time and decentralized heuristic search-based data routing mecha-
nism has been devised. We refer reader to [10] for more details about approaches used
in routing algorithms for wireless sensor networks. However, these approaches relate to
network research, not multiagent research.

6 Conclusions

For the first time, the problem of coalition formation for allocating dynamic-motion
tasks is presented from a multiagent perspective in a wireless network system. This
paper shows this problem is NP-hard, and introduces a model to demonstrate the prob-
lem. In this model, data stored by dynamic-motion tasks is transmitted by agents to
a central receiver via a noisy communication channel. A new anytime decentralized
heuristic search based algorithm (ATV) is introduced to the model. The ATV assists
agents to form coalitions, and to allocate tasks to those coalitions. The ATV utilizes
the well-known Tabu search and variable neighborhood search. The simulation results
show how the ATV allows agents to self-organize into coalitions. The use of the ATV
improves the system performance as much as 160± 1.1% relative to the random allo-
cation, and at least 72± 0.8% of performance relative to the best known centralized
scheme by Saad et al. [2].



Coalition Formation for Servicing Dynamic Motion Tasks 393

References

1. Ramchurn, S.D., Polukarov, M., Farinelli, A., Truong, C., Jennings, N.R.: Coalition forma-
tion with spatial and temporal constraints. In: AAMAS 2010, pp. 1181–1188 (2010)

2. Saad, W., Han, Z., Basar, T., Merouane, D., Hjorungnes, A.: Hedonic Coalition Formation
for Distributed Tak Allocation Among Wireless Agents. IEEE Transactions on Mobile Com-
puting, 1327–1334 (2011)

3. Proakis, J., Salehi, M.: Digital Communications, 5th edn. McGraw-Hill (2007)
4. Vinyals, M., Rodriguez-Aguilar, J.A., Cerquides, J.: A survey on sensor networks from a

multiagent perspective. The Computer Journal, 455–470 (2011)
5. Rogers, A., David, E., Jennings, N.R.: Self-organized routing for wireless micro-sensor net-

works. IEEE Transactions on Systems, Man, and Cybernetics - Part A, 349–359 (2005)
6. Michalewicz, Z., Fogel, D.B.: How to Solve It: Modern Heuristics, 2nd edn. Springer (2010)
7. Aggarwal, N., Aggarwal, K.: An Improved K-means Clustering Algorithm for Data Mining,

2nd edn. LAP LAMBERT Academic Publishing (2012)
8. Helsgaun, K.: General k-opt submoves for the lin-kernighan tsp heuristic. Mathematical Pro-

gramming Computation 1(2-3), 119–163 (2009)
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Abstract. Branch-and-price (BAP) algorithms based on Dantzig-Wolfe
decomposition have shown great success in solving mixed integer linear
optimization problems (MILPs) with specific identifiable structure. Only
recently has there been investigation into the development of a “generic”
version of BAP for unstructured MILPs. One of the most important ele-
ments required for such a generic BAP algorithm is an automatic method
of decomposition. In this paper, we report on preliminary experiments
using hypergraph partitioning as a means of performing such automatic
decomposition.

1 Introduction

We consider solution of a mixed integer linear optimization problem (MILP),
which is to compute

zIP = min{c�x | Ax ≤ b, x ∈ Zr × Rn−r}, (1)

where A ∈ Qm×n, c ∈ Qn, and b ∈ Qm. Although decomposition-based methods
have the potential to generate strong dual bounds, to reduce symmetry, and to
exploit special structure for such problems, they generally require that a decom-
position of the constraints be either given as input or discovered as part of the
solution process. In this paper, we focus on automatic detection of structure using
hypergraph partitioning algorithms. Methods for automatic structure detection
have been widely used in the context of certain linear algebraic computations,
mainly for the purpose of efficient parallelization [1]. In solving MILPs, our goal
is to exploit structure not only to allow the use of parallel computation but also
to improve on the bounds yielded by solving the linear relaxation, eventually
leading to improved solution times for certain classes of MILPs.

When detecting block structure automatically, it is important to have a mea-
sure of “quality” that is easy to compute, since there are usually multiple ways
of decomposing a given matrix. When the goal is to parallelize a single matrix
computation, the measures of quality are fairly straightforward, but in the MILP
context, measuring the quality of a decomposition is much more difficult. Ulti-
mately, our goal is to reduce the overall computation time as much as possible,
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but solution time is difficult to predict and proxies for this measure must be
used in practice. One such proxy is the bound improvement achieved in the root
node, which also has the advantage of being unaffected by changes to other al-
gorithmic strategies, such as branching. Unfortunately, the computation of this
quantity is expensive, so one of our goals is to assess cheaper alternatives.

The work reported on herein follows lines of development similar to those of
the study reported in [2]. The work in [2] was performed using GCG [3], a solver
that implements an approach to generic decomposition similar to that used in
the DIP framework [4] that is employed in this study. The present study differs
by focusing on producing singly-bordered block-diagonal matrices, as opposed
to the doubly-bordered structures favored in [2], which require both a different
HP model and a slightly different solution technique. Furthermore, our measures
of goodness take into account not only the distribution of nonzeros, but also the
distribution of nonzeros in columns corresponding to integer variables. Finally,
we also report on a number of issues that arise in tuning the HP software. A
more detailed treatment of this material is available in [5].

2 Generic Branch-and-Price

A decomposition is a partition of the rows of [A, b] into two sub-matrices [A′, b′]
and [A′′, b′′]. The decomposition is chosen such that the solution of the relax-
ation obtained by dropping the linear constraints represented by the sub-matrix
[A′′, b′′] is more tractable than that of the original problem. The principle un-
derlying decomposition methods is to exploit the solvability of this relaxation in
order to solve the original problem more efficiently. The methodology that is the
basis of our experiments here is the branch-and-price (BAP) algorithm, which
uses Dantzig-Wolfe (DW) Decomposition and column generation [6] to obtain
bounds within a branch-and-bound framework (see [7] for details). A number of
software frameworks have been developed to aid in the implementation of BAP
algorithms, including BaPCod [8], DIP [4], GCG [3], BCP [9], and ABACUS [10].
However, it has proven difficult in general to develop a “generic” version of BAP,
requiring no input from the user beyond the model itself. A generic variant of
BAP can be obtained, however, by (1) using automatic methods of identifying
block structure in the matrix to produce candidates for the decomposition, (2)
solving the column generation subproblem using a generic MILP solver, and
(3) branching on disjunctions derived from the original problem formulation.
Identification of block structure involves determining a permutation of the rows
and columns of A that reveals disjoint blocks of nonzero elements, as illustrated
in Figure 1. When A′ has this structure, the column generation subproblem
decomposes naturally into independent (and much smaller) MILPs.

3 Hypergraph-Based Partitioning Methods

Previous work on identifying block structure in the context of MILP includes [11]
and [12], but the methods proposed therein proved impractical. Multilevel algo-
rithms for hypergraph partitioning provide a computationally practical heuristic
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alternative [13]. A hypergraph H = (V,E) is a generalization of a traditional
graph, in which V is the set of nodes and E is a set of hyperedges or nets,
which are subsets of nodes of arbitrary cardinality (in contrast to a traditional
graph in which edges are subsets of cardinality two). Given a vector of weights
w ∈ RE , the K-way HP problem is to partition the nodes of a hypergraph H
into at most K subsets while minimizing the weight of the resulting cut, which
is the sum of the weights of all edges having a nonempty intersection with more
than one member of the partition. A secondary objective, usually expressed as a
constraint, is for the cardinalities of the members of the partition to be approx-
imately balanced. If the nodes have weights, we want the sum of the weights
of the nodes in each member of the partition to be balanced. To use an HP
algorithm to find (singly-bordered) block-diagonal structure in a matrix, we use
a row-net model in which we identify each column of the matrix with a node
in an associated hypergraph and identify each row of the matrix with a hyper-
edge consisting of the nodes associated with the columns in which the row has
nonzero elements [14]. After mapping the matrix to a hypergraph in this way
and finding a partition of the hypergraph, we can identify the structure of the
original matrix as follows. The rows of each block consist of the set of hyperedges
whose elements are completely contained in one of the partitions of the node set.
The coupling rows consist of all hyperedges in the cut, i.e., hyperedges having
nonempty intersection with more than one element of the partition. Thus, min-
imizing the size of the cut is the same as minimizing the number of coupling
rows (when the edges have unit weights). The balance constraint can then be
interpreted as ensuring that the blocks have approximately equal numbers of
columns. Figure 1(a) shows the pattern of nonzeros in the constraint matrix of
instance a1c1s1 from MIPLIB 2003 [15], while Figures 1(b)–1(d) show the hid-
den block structure detected through the use of HP with different numbers of
blocks (see Section 4.2 for details).
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Fig. 1. Hidden block structure in MIPLIB instance a1c1s1

4 Computational Experiments

The experiments here were performed on compute nodes with dual eight core
0.8GHz AMD Opteron(tm) processors having 32G memory and 512KB cache per
core. We used the hMETIS and PaToH hypergraph partitioning tools [16, 17] to
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detect the block structure and the DIP (Decomposition in Integer Programming)
framework [4], an open-source package available from the COIN-OR repository,
to implement the resulting generic BAP algorithm. We used the open-source
solvers CLP [18] and CBC [19] to solve the restricted master problem and the
subproblems, respectively. The test instances were selected from MIPLIB2003
and MIPLIB2010 [20] from among instances of medium size.

We want to emphasize that the results reported here are preliminary in nature
and should be considered the first steps in what we hope will be a long line of
future studies. While we do think that our results indicate promise, there is much
work to be done and the tests are necessarily limited in scope. The small set of
MILPs on which we experiment here should not be considered “representative.”
Our overarching goal is to motivate further study and further the development
of a general framework and direction for that study.

4.1 Comparing PaToH and hMETIS

We first compared PaToH and hMETIS and obtained the following (subjective)
insights, based on which we choose hMETIS for experiments in the remainder
of this paper.

1. hMETIS produced more balanced solutions in general and the number of
blocks produced was typically equal to the given maximum.

2. In cases for which PaToH produced fewer than the given maximum number
of blocks, the bound tended to be better, since fewer blocks yield stronger
bounds in general (but result in more difficult subproblems). When using
PaToH, one might set the maximum number of blocks higher than what is
desired in order to avoid the situation described above.

3. Generally, when the number of blocks produced was the same, hMETIS
performed better than PaToH in terms of bound improvement at the root
node.

4.2 Parameter Tuning

Before executing the partitioning procedure, there are two primary parameters
that need to be set, both of which may affect the resulting bound improvement
and overall decomposition quality. One is the maximum number of elements in
the partition (number of blocks in the resulting partitioned matrix) and the other
is the weights of the nodes and hyperedges. The experiments below illustrate the
impacts of variation of these parameters on the decomposition.

Number of blocks. Figure 1 provides a visualization of block structure with differ-
ent numbers of blocks for a single instance. It is difficult to tell from these figures
which of these decompositions would be the most effective in our present setting
and we have found this to be true in general. Preliminary experiments failed to
find a strong correlation between the number of blocks and the bound achieved,
though clearly the number of blocks must have some impact. Figure 2(a) shows
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the relationship between the optimality gap closed and the number of blocks on
several instances. For the instance go19, the optimality gap closed decreases as
the number of blocks increases, as perhaps would be expected. Not too surpris-
ingly, there are no cases in which the bound increases reliably as the number
of blocks increases. Interestingly, however, there are cases, such as the instance
swath, for which the optimality gap increases and then decreases as the number
of blocks increases.

To illustrate this phenomenon, we take computational time into consideration
on some selected instances. Figures 2(b) and 2(c) show the relationship between
the bound, the number of blocks, and the computation time required to obtain
the bound for two instances. Generally, it can be observed that as the number
of blocks increases, the time required decreases. The question remains how to
choose the number of block a priori. Though this is a crucial question, we do
not yet have a good answer. The most obvious strategy is to choose the number
of blocks based on the number of available cores. In the remaining experiments,
we fixed the number of blocks at three.
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Fig. 2. Effect of number of blocks on gap, bound, and computation time

Weight of nodes and hyperedges. Our expectation is that decompositions in
which the integer variables play a strong role in the individual blocks will yield
strong bounds, since the DW bound is known to be equal to the LP bound when
none of the blocks involve integer variables. One strategy, therefore, is to assign
a higher weight to nodes corresponding to integer variables and to hyperedges
that include a high number of such nodes. We compared the DW bound obtained
with unit weighted and non-unit weighted nodes and hyperedges. In the non-unit
weighted cases, we assigned a weight of two to integer variables and a weight of
one to continuous variables. Weights of hyperedges were assigned to be the total
number of nonzero elements in their corresponding rows. Out of 25 instances,
six showed a decrease with weighting and the rest showed a bound at least as
high as in the unit weight case (11 instances showed a strict increase). It thus
appears that adjusting the weight of nodes and hyperedges intentionally should
help in most cases and this agrees with our intuition.

4.3 Quality Measures for Decomposition

The core obstacle in automating all aspects of the BAP algorithm is to under-
stand when BAP will work well based on easily discernible properties of the
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instance. As is traditional in machine learning, we refer to numeric quantities
that may indicate the quality of a decomposition as features and propose five
here (“integer elements” below are the nonzero elements of the matrix that are
those in columns corresponding to the integer variables).

1. Ratio of the number of nonzero elements in the coupling rows to the total
number of elements in the coupling rows (α).

2. Ratio of the number of integer elements in the coupling rows to the total
number of nonzero elements in the coupling rows (β).

3. Ratio of the number of integer elements in the coupling rows to the total
number of integer elements in the matrix (γ).

4. The average mean value of the ratio of the number of integer elements in a
given block to the number of nonzero elements in that block (η).

5. The sample standard deviation of the measure η (θ).

Our initial conjecture was that lower values of α, β, γ, and 1 − η will lead
to higher quality decompositions (as indicated by root bound), since it seems
natural we would want more rows and nonzeros (both overall and in the columns
corresponding to integer variables in particular) in the blocks. Motivated by the
success of practical application in which BAP algorithms were used, we also
conjectured that achieving balance in the number of rows and the number of
integer variables in each block should yield good results. Here, we use θ as a
measure of the balance among the blocks.

Figure 3(a) shows the relationship between the five potential measures and
the DW optimality gap closed for an initial set of instances. Two out of the
five measures (α, γ) appear to have the strongest correlation with optimality
gap closed and DW bound improvement, although there are outliers and the
relationship is not very strong. The standard deviation feature θ also does not
clearly show potential. Based on the relationship between α, γ and bound im-
provement, we propose a prediction measure to estimate the quality of detected
structure at the root node. It is a function of α and γ, expressed as

Π = 1−min(α, γ)),
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Fig. 3. The relationship between features, gap closed, and proposed metric
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For this test set, the measure Π appears to have a positive correlation with
optimality gap closed. Tests on 20 instances different from the ones used in
Figure 3(a) used to derive the measure are shown in Figure 3(b) and illustrate
the possible linear relationship obtained by linear regression between the metric
and the optimality gap closed. While these results are promising, we repeat our
earlier caveat that these conclusions should be considered preliminary.

5 Conclusions

We discussed the use of the row-net hypergraph model to detect block-diagonal
structure of generic MILP problems automatically. The final goal is not to replace
cutting plane methods, but rather to supplement them. By honing our ability
to determine in a preprocessing step when decomposition might be effective, we
hope to develop solvers capable of switching between cutting plane and column
generation methods as appropriate. Moving forward, there are many obvious
future research directions to pursue and we mention a few here.

1. This paper focuses on singly-bordered block-diagonal structure detection,
but it may be advantageous to consider a more general framework allowing
for doubly-bordered structure, as in [2].

2. There is much more work to be done in determining how to judge the quality
of a given decomposition. Primarily, we need to take computation time into
account as a component of goodness rather than simply considering the root
bound, which can be easily manipulated. In this regard, there may be addi-
tional features that relate to decomposition quality that have not yet been
explored. Even with an explicit metric, choosing the numeric threshold for
determining whether the decomposition is good or not is difficult. Motivated
by recent machine learning techniques, we may use support vector machine
to classify the given decompositions according to their suitability for com-
putation. Instances about which we have deep knowledge can be used for
training.

3. In this study, we did not consider methods of choosing the number of blocks
automatically based on properties of a specific instance. In many cases, the
matrix may have a natural block structure to begin with and our methodol-
ogy should be capable of detecting that and respecting this natural number
of blocks. Otherwise, we may actually end up destroying existing structure
with our automatic methods. We would also like to take into account the
possibility of solving the subproblems in parallel by exploiting the block
structure, in which case we should take into account the number of available
cores/processors when choosing the number of blocks.

4. Finally, we have yet to experiment fully with how we can use the variance of
node and edge weights to improve the quality of the decomposition. At the
moment, we are using the partitioning software “out of the box,” but it is our
long-term goal to develop specialized methods for achieving decompositions
that will be effective in the specific context discussed here.
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Much work remains to be done and the potential for these methods to work in
a completely generic fashion is still unclear. We are convinced that they do have
a role to play and hope that this work will encourage more investigations.
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