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Abstract. This paper studies one of the best-known quantum algo-
rithms — Shor’s factorisation algorithm — via categorical distributiv-
ity. A key aim of the paper is to provide a minimal set of categorical
requirements for key parts of the algorithm, in order to establish the
most general setting in which the required operations may be performed
efficiently.

We demonstrate that Laplaza’s theory of coherence for distributivity
[13,14] provides a purely categorical proof of the operational equivalence
of two quantum circuits, with the notable property that one is exponen-
tially more efficient than the other. This equivalence also exists in a wide
range of categories.

When applied to the category of finite-dimensional Hilbert spaces, we
recover the usual efficient implementation of the quantum oracles at the
heart of both Shor’s algorithm and quantum period-finding generally;
however, it is also applicable in a much wider range of settings.
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Monoidal Tensors, Distributivity, Coherence.

This work is dedicated to Samson Abramsky,
on the occasion of a birthday with prime factors 2, 3, and 5.

1 Introduction

1.1 Shor’s Algorithm: Oracles and Quantum Fourier Transforms

The structure of Shor’s algorithm is deceptively simple: an oracle which acts
classically on the computational basis computes modular exponentials; this ora-
cle is conjugated by the circuit for the quantum Fourier transform. Up to some
relatively simple classical post-processing (computing continued fraction expan-
sions), this is enough to find the prime factors of a number in an exponentially
fast time – at least, as compared with the best known classical algorithm.

The traditional view of Shor’s algorithm and other quantum period-finding
algorithms is that their power arises from the quantum Fourier transform; [17]
lists Shor’s algorithm in the section “Applications of the Fourier transform”.
This was challenged in [3], where it was demonstrated that the quantum Fourier
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transform has a low bubble width circuit — and any quantum algorithm that is
built entirely from low bubble-width circuits has an efficient classical simulation.
Thus, it appears that the obstacle to an efficient classical simulation of Shor’s
algorithm is the oracle for modular exponentiation, rather than the conjugating
quantum Fourier transform.

The conclusions drawn in [3] (the claim that the quantum power of Shor’s
algorithm arises from the central oracle) were, and remain, controversial. How-
ever, further evidence to support this claim was provided in [21], where it was
demonstrated that modular exponentiation, in of itself, is sufficient. From [21]:
Any classical algorithm that can efficiently simulate the circuit implementing
modular exponentiation for general product input states and product state mea-
surements on the output, allows for an efficient simulation of the entire Shor
algorithm on a classical computer. A special case of this, as noted in [21], would
be any tensor contraction scheme for the modular exponentiation circuit.

1.2 The Aims of this Paper

This paper describes the circuit for modular exponentiation used in [19] in purely
categorical terms. The motivation is to find the most general structures in which
this precise form of the oracle may be implemented. We therefore avoid, where
possible, categorical machinery that is closely or uniquely associated with the
theory of finite-dimensional Hilbert spaces.1 Instead, we will simply require a
category with two monoidal tensors related by a notion of distributivity. As this
is established for abstract categories, any concrete category satisfying this simple
requirement is sufficient.

1.3 The Structure of the Paper

This paper is divided into two sections: pure category theory, and concrete real-
isations of this abstract theory.

1. We first use the abstract theory of categories with two monoidal tensors
related by distributivity to define endofunctors and further categorical oper-
ations on such categories. We use these to define an ‘iterator’ operation !N ( )
on endomorphism monoids of such categories, and use Laplaza’s theory of
coherence for distributivity to give an exponentially efficient factorisation of
this operation.

2. The second half of the paper gives a concrete realisation of this operation,
and its efficient factorisation, within the quantum circuit paradigm. The
!N ( ) operation has a concrete realisation as the oracle required for quantum
period-finding, and its efficient factorisation is exactly Shor’s implementation
of modular exponentiation oracle.

1 In particular, the constructions we will present are significantly simpler in the pres-
ence of compact closure and biproducts – two categorical properties closely associ-
ated with quantum mechanics. However, neither of these categorical properties are
necessary, so we work in the more general setting.
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2 Basic Definitions

Our abstract setting is that of categories with distributivity, defined in [13,14]:

Definition 1. A category with distributivity is a category C with two dis-
tinct symmetric monoidal tensors: the multiplicative tensor ( ⊗ ) : C×C → C
and the additive tensor ( ⊕ ) : C × C → C that are related by natural distribu-
tivity monomorphisms

dlABC : A⊗ (B ⊕ C) → (A⊗B)⊕ (A⊗ C) (1)

drXY Z : (X ⊕ Y )⊗ Z → (X ⊗ Z)⊕ (Y ⊗ Z) (2)

satisfying coherence conditions laid out in [13,14].

The required coherence conditions are decidedly non-trivial and form an infinite
family of diagrams that are required to commute, although these may be sig-
nificantly simplified (from [13], “we are reduced to a finite number of types of
diagrams if we drop unnecessary commutativity conditions”).

Notation 1. We adopt the convention of using the Greek alphabet for the struc-
tural isomorphisms related to the multiplicative tensor, and the Roman alphabet
for the additive tensor. We denote the multiplicative associativity and symmetry
isomorphisms by τXY Z : X⊗(Y ⊗Z) → (X⊗Y )⊗Z and σX,Y : X⊗Y → Y ⊗X,
and the additive associativity and symmetry by tXY Z : X⊕(Y ⊕Z) → (X⊕Y )⊕Z
and sXY : X ⊕ Y → Y ⊕X. We will frequently appeal to MacLane’s coherence
theorem for associativity, and treat both the multiplicative and additive tensors
as strict.

We will also denote the multiplicative unit object by I, and the additive unit
object by 0.

A special case that is often considered (e.g. [6,7]) is where the distributivity
monomorphisms are in fact isomorphisms.

Definition 2. Let (C,⊗,⊕) be a category with distributivity. We say that is
is strongly distributive when the natural distributivity monomorphisms have
global inverses,

dl−1
ABC : (A⊗B)⊕ (A⊗ C) → A⊗ (B ⊕ C) (3)

dr−1
XY Z : (X ⊗ Z)⊕ (Y ⊗ Z) → (X ⊕ Y )⊗ Z (4)

Strongly distributive categories are a special case of Definition 1, so we may still
appeal to Laplaza’s coherence theorems. Appropriate care will be taken when
using commutative diagrams containing inverses of these canonical isomorphisms
to ensure that an equivalent result may be derived without the use of inverses.
See the proof of Lemma 1 for an example of this.
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2.1 Distinguished Objects, and Copying Functors

Strongly distributive categories have two distinguished objects: the additive and
multiplicative unit objects 0, I ∈ Ob(C). Their interaction with the two monoidal
tensors is given (up to straightforward canonical isomorphism) by the following
tables:

⊗ 0 I
0 0 0

I 0 I

⊕ 0 I
0 0 I

I I I ⊕ I

Observe that I ⊕ I is neither 0 nor I; thus in the absence of any further
identities, strongly distributive categories have additional distinguished objects.

Definition 3. We define � ∈ Ob(C) to be the additive tensor of two multiplica-
tive units, so � = (I ⊕ I).

Such objects are considered in [7], where – in the special case that ⊗ and ⊕
are a product and coproduct respectively – they generate Boolean algebras.
The classical logical interpretation is well-established. As noted in [5] the form
of distributivity introduced in [13] is entirely unsuitable for linear logic, since
distributivity implies a form of ‘copying’ operation that we now describe:

Lemma 1. Let (C,⊗,⊕) be a strongly distributive category. Then

1. �⊗X ∼= X ⊕X
2. for all f ∈ C(X,Y ), the following diagram commutes:

�⊗X
1�⊗f �� �⊗ Y

drI,I,Y

��
X ⊕X

dr−1
I,I,X

��

f⊕f �� Y ⊕ Y

Proof.

1. By distributivity, and the fact that I is the unit object for the multiplicative
tensor, �⊗A = (I ⊕ I)⊗A ∼= (I ⊗A)⊕ (I ⊗A) ∼= A⊕A.

2. By naturality, the following diagram commutes:

(I ⊕ I)⊗X
1I⊕I⊗f ��

drI,I,X

��

(I ⊕ I)⊗ Y

drI,I,Y

��
X ⊕X

f⊕f
�� Y ⊕ Y
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As (C,⊗,⊕) is strongly distributive, we may replace drIIX in the above
diagram by dr−1

IIX , and reverse the corresponding arrow:

(I ⊕ I)⊗X
1I⊕I⊗f �� (I ⊕ I)⊗ Y

drI,I,Y

��
X ⊕X

f⊕f
��

dr−1
I,I,X

��

Y ⊕ Y

��
Definition 4. Let (C,⊗,⊕) be strongly distributive. We define the copying
endofunctor to be δ = (�⊗ ) : C → C.
This terminology is motivated by the following result:

Proposition 1. Let Δ : C → C × C be the diagonal functor given by

– (Objects) Δ(A) = (A,A).
– (Arrows) Δ(f) = (f, f)

Then there exists a natural isomorphism (i.e. a natural transformation whose
components are isomorphisms) from the composite functor ( ⊕ )Δ : C → C to
the functor (�⊗ ) : C → C.

We draw this diagrammatically, as follows:

C × C

��

( ⊕ )

���
��

��
��

��

C

Δ

�����������
(�⊗ )

�� C

Proof. For arbitrary X ∈ Ob(C), the components of this natural transformation
are given by the distributivity isomorphisms dlI,I,X : �⊗X → X ⊕X (treating
units arrows as strict). The required identity then follows from Lemma 1. ��
Remark 1. At first sight, this ‘copying’ behaviour appears to be at odds with the
‘no-cloning’ and ‘no-deleting’ theorems [20,18] of quantum information. However,
these are based on tensor products (‘multiplicative’ tensors), whereas the functor
of Definition 4 acts as a form of copying for the additive structure – it is related
to the fanout operation [10] rather than the forbidden quantum cloning.

Iterating a copying operation gives a form of exponential growth, as we
demonstrate:

Corollary 1. For all f ∈ C(X,Y ) and n ≥ 1 ∈ �, there exists canonical iso-

morphisms λ
(n)
X : �⊗n ⊗X → ⊕2n−1

j=0 X making the following diagram commute:

�
⊗n ⊗X

δn(f) ��

λX

��

�
⊗n ⊗ Y

⊕2n−1
j=0 X

⊕2n−1
n=0 f

�� ⊕2n−1
j=0 Y

λ−1
Y

��
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Proof. We give the canonical isomorphisms λ
(n)
X : �⊗n ⊗ X → ⊕2n−1

j=0 X by

induction: we take λ
(1)
X = drI,I,X : �⊗X → X ⊕X , and

λ
(n)
X = dr

I,I,⊕2n−1−1
j=0 X

(
1� ⊗ λ

(n−1)
X

)
.

The above diagram then commutes by naturality. ��

We now demonstrate that δ : C → C is a (weak) monoidal endofunctor, for the
additive, but not multiplicative, structure.

Proposition 2. The functor δ = (� ⊗ ) : C → C does not preserve the mul-
tiplicative monoidal structure, even up to isomorphism; however the additive
structure is preserved up to a simple distributivity isomorphism.

Proof. To see that δ does not preserve the multiplicative tensor, observe that
note that

δ(A)⊗ δ(B) = (1� ⊗ σA,� ⊗ 1B)δ
2(A⊗B)

Thus, unless δ(X) ∼= δ2(X) for all X ∈ Ob(C), the copying functor does not
preserve the multiplicative tensor, even up to isomorphism.

However, δ(0) ∼= 0, and the following diagram also commutes:

δ(A⊕B)
∼=

=

δ(A) ⊕ δ(B)

=

�⊗ (A⊕B)
dl(I⊕I),A,B

�� �⊗A⊕ �⊗B

Since the required isomorphisms are canonical coherence isomorphisms in both
cases, δ : (C,⊕) → (C,⊕) is a (weak) monoidal functor. ��

2.2 Copying and the Iterator

We now study an operation on endomorphism monoids closely related to the
copying functor δ : (C,⊕) → (C,⊕).

Definition 5. Let (C,⊗,⊕) be a strongly distributive category. For all f ∈
C(A,A), we define the Nth iterator of f to be

!N (f) =

N−1⊕

j=0

f j ∈ C (A⊕N , A⊕N
)

We will give an efficient factorisation of !2
n

(f). This will rely on the following
interaction of the functor δ = (� ⊗ ) : C → C, and the multiplicative and
additive symmetries σX,Y : X ⊗ Y → Y ⊗X and sA,B : A⊕B → B ⊕A.
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Lemma 2. Let A,B,C be objects of a strongly distributive category (C,⊗,⊕).
Then the following diagram commutes:

�⊗A⊗ (B ⊕ C)

σ�,A⊗1B⊕C
����

��

������
�� 1�⊗dlA,B,C

�����
��

		����
���

A⊗ �⊗ (B ⊕ C)

1A⊗dl�,B,C

��

�⊗ (A⊗B ⊕A⊗ C)

dr�,A⊗B,A⊗C

��
A⊗ (�⊗B ⊕ �⊗ C)

1A⊗(drI,I,B⊕drI,I,B)

��

A⊗B ⊕A⊗ C ⊕A⊗B ⊕A⊗ C

1A⊗B⊕sA⊗C,A⊗B⊕1A⊗C

��
A⊗ (B ⊕B ⊕ C ⊕ C) dlA,B⊕B,C⊕C �� A⊗B ⊕A⊗ B ⊕A⊗ C ⊕A⊗ C

Proof. The commutativity of this diagram follows immediately from the coher-
ence theorems of [13,14] (note that we have elided associativity isomorphisms,
for clarity). ��

Theorem 2. For arbitrary n ≥ 1 and f ∈ C(X,X), the arrow !2
n+1

(f) can be
defined in terms of !2

n

(f), the functor (�⊗ ), and canonical isomorphisms, with
the exact relationship expressed by the commutativity of the following diagram:

�⊗⊕2n−1

j=1 X

1�⊗dl−1
���

��



��
���

�⊗⊕2n−1

j=1 X
1�⊗!2

n−1
(f)��

�⊗ �
⊗(n−1) ⊗X

σ
�,�⊗(n−1)

��

⊕2n

j=1X

dl−1
�,����

������

!2
n
(f)

��
�
⊗(n−1) ⊗ �⊗X

1
�
⊗(n−1)⊗drI,I,X

����
���

������
�

⊕2n

j=1X

�
⊗(n−1) ⊗ (X ⊕X)

1
�
⊗(n−1)⊗

(
1X⊕f2n−1

) �� �⊗(n−1) ⊗ (X ⊕X)

dl�, 				

				

Proof. Consider the left hand path in the coherent diagram of Lemma 2 above,
from �⊗A⊗ (B⊕C) to A⊗B⊕A⊗B⊕A⊗C⊕A⊗C, along with arrows f ∈
C(B, Y ) and g ∈ C(C,Z). Then naturality of canonical coherence isomorphisms
implies the commutativity of the diagram in Figure 1. The required result is
then the special case where X = Y and A = �

⊗n. ��

2.3 String Diagrams for Categories with Distributivity

Results such as Theorem 2 above may be given as string diagrams, using the
conventions formalised in [11,12]. When we have two distinct monoidal tensors,
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�⊗ A⊗ (B ⊕ C)
1�⊗1A⊗(f⊕g) ��

σ�,A⊗1B⊕C

��

�⊗ A⊗ (Y ⊕ Z)

σ�,A⊗1Y ⊕Z

��
A⊗ �⊗ (B ⊕ C)

1A⊗1�⊗(f⊕g) ��

1A⊗dl�,B,C

��

A⊗ �⊗ (Y ⊕ Z)

1A⊗dl�,Y,Z

��
A⊗ (�⊗B ⊕ �⊕ C)

1A⊗(drI,I,B⊕drI,I,C )

��

1A⊗(1�⊗f⊕1�⊗g) �� A⊗ (�⊗ Y ⊕ �⊗ Z)

1A⊗(drI,I,Y ⊕drI,I,Z )

��
A⊗ (B ⊕B ⊕ C ⊕ C)

dlA,B⊕B,C⊕C

��

1A⊗(f⊕f⊕g⊕g) �� A⊗ (Y ⊕ Y ⊕ Z ⊕ Z)

dlA,Y ⊕Y,Z⊕Z

��
A⊗B ⊕A⊗B ⊕ A⊗ C ⊕ A⊗C

1A⊗f⊕1A⊗f⊕1A⊗g⊕1A⊗g �� A⊗ Y ⊕ A⊗ Y ⊕ A⊗ Z ⊕ A⊗ Z

Fig. 1. A technical result implied by naturality

we adopt various conventions to ensure that such a diagrammatic reasoning is
still valid:

1. Lines are separated by an implicit multiplicative rather than an additive
monoidal tensor.

2. Operations involving additive monoidal tensors are enclosed in a double box.
3. Entering / leaving a double box requires an (implicit) distributivity iso-

morphism / its inverse. Provided care is taken with labelling of objects,
the required canonical isomorphism may be deduced from the type of the
operation.

We may then use diagrammatic manipulations on either the diagram as a whole
(treating each additive box as a single operation), or on the contents of an
individual double box (treating it as an entire diagram in of itself). These con-
ventions ensure that the diagrammatic manipulations of [11,12] are valid, simply
by restricting the permitted manipulations.

Using the above, an illustration of Theorem 2 is given in Figure 2.

Corollary 2. There exists an efficient construction of !2
n

(f) in O(n) steps,
based on canonical coherence isomorphisms.

Proof. This follows by iterating the construction of Theorem 2. A diagrammatic
illustration is given in Figure 3. ��
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��
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��

!2
n
(f)

��������

��
��

�

��
��
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...

���������

���������

��
��

� ...���������

1X ⊕ f 2n

�������������

X X

is equal to

!2
n+1

(f)

...
...
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� � � ��
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�
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�
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Fig. 2. A ‘string diagram’ illustration of Theorem 2
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�� � � � � �

Fig. 3. The efficient construction of !16(f) = 1X ⊕ f ⊕ . . .⊕ f15 ⊕ f16

Table 1. Translating abstract theory into a concrete setting

Abstract category C Concrete category HilbFD

Multiplicative tensor Tensor product
H = H1 ⊗H2 (Treating two systems as a

single compound system).

Additive tensor Direct sum
(U ⊕ 1) (U controlled on |0〉)
(1⊕ V ) (V controlled on |1〉)

Multiplicative unit I Complex plane �

Additive unit 0 Zero-dim. space {0}

Distinguished object � = I ⊕ I Qubit space Q, with
orthonormal basis {|0〉 , |1〉}
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3 Concrete Realisation in Hilbert Space

The following sections assume a small degree of familiarity with quantum circuits
and Hilbert spaces. More details may be found in in [17] or any other text on
quantum computing and information.

We now consider the constructions of the previous section in the concrete
setting of finite-dimensional complex Hilbert spaces. The two monoidal tensors
are the familiar tensor product and direct sum— the distributivity isomorphisms
relating the these are well-established.

The translation of the basic concepts is given in Table 1. A subtlety of this
is the interpretation of the distinguished object �. The direct sum of two 1-
dimensional spaces is of course a two-dimensional space. However, sinceQ is built
up in this way, we should think of it as having a fixed orthonormal basis specified
by the canonical inclusions2 – this will allow us to use matrix representations
for arrows in this category.

Remark 2. A key point of this paper is that the structures required for the central
oracle of Shor’s algorithm are not dependent on the machinery of either tradi-
tional quantum mechanics (such as a matrix calculus, or notions of linearity and
convergence), or categorical reinterpretations (compact closure, biproduct struc-
tures, &c.). However, the existence of matrix representations certainly makes the
concrete instantiation simpler, as the following sections will demonstrate.

3.1 Interpreting the Direct Sum in the Circuit Model

In the translation from an abstract to a concrete setting provided in Table 1,
the interpretation of the tensor, the multiplicative unit, and the distinguished
object � are standard. Furthermore, as we are forced by the category theory to
specify an orthonormal basis for the two-dimensional qubit space, we are now, for
all practical purposes, working within the quantum circuit paradigm. The final
connection arises from the interpretation of the direct sum in terms of ‘quantum
conditionals’, or ‘controlled operations’ [9].

Definition 6. Let U, V be unitary operations on a finite-dimensional Hilbert
space H. The controlled operations Ctrl0U and Ctrl1V are the operations
on Q⊗H defined by:

Ctrl0U |0〉 |ψ〉 = |0〉U |ψ〉 and Ctrl0U |1〉 |ψ〉 = |1〉 |ψ〉

Ctrl1V |0〉 |ψ〉 = |0〉 |ψ〉 and Ctrl1V |1〉 |ψ〉 = |1〉V |ψ〉
with standard circuit representations shown in figure 4.

2 This is, of course, related to the ‘classical structures’ of [8] — these are a special form
of Frobenius algebra that play the role of orthonormal bases in categorical quantum
mechanics. They are based on a ‘copying’ operation; the connection between these,
and the �⊗ copying functor of Definition 4, is straightforward.
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Denoting the n-qubit identity operation by In, these operations have matrix rep-

resentations given by C0U =

(
U 0
0 In

)

and C1V =

(
In 0
0 V

)

. The direct sum

U ⊕ V is then simply the composite U ⊕ V = Ctrl0U.Ctrl1V = Ctrl1V.Ctrl0U .

Ctrl0U Ctrl1U

�������	 •

U V...
...

...
...

Fig. 4. Quantum circuits for ‘Control on 0’ and ‘Control on 1’

Controlled operations can themselves be controlled. Given 2n unitary maps

{Ua}2n−1
a=0 , the construction of

⊕2n−1
a=0 Ua is immediate via an n-qubit ancilla.

This is illustrated in Figure 5 for the direct sum of 23 unitaries, and the ‘binary
counting’ pattern on controls is immediate.

�������	 �������	 �������	 �������	 • • • •
�������	 �������	 • • �������	 �������	 • •
�������	 • �������	 • �������	 • �������	 •

U0 U1 U2 U3 U4 U5 U6 U7

Fig. 5. A circuit for the direct sum
⊕7

a=0Ua

•
��

��
�

��
��

�

��
��

�

��
��

������ •
�����

�����

U

�����

U U

� ��
�
�
�

�
�
�
�

� �

Fig. 6. Three equivalent diagrams

3.2 Controlled Operations and Categorical Swap Maps

In the standard quantum circuit formalism, controlled operations are not nec-
essarily controlled by the qubit directly above them (i.e. the more significant
qubit). We treat this as simply a diagrammatic convention, so a circuit where



Quantum Speedup and Categorical Distributivity 133

Q × Q Q NOT • NOT Q
is implemented by

Q × Q Q • NOT • Q

Fig. 7. The multiplicative symmetry via controlled additive symmetries

the control qubit is not adjacent to the controlled operation is implemented us-
ing multiplicative symmetries (i.e. qubit swap maps) in the obvious way. Thus,
the three circuits of Figure 6 are equivalent, with the first being the usual quan-
tum circuit notation, and the third conforming to the categorical conventions of
Section 2.3.

The qubit swap map (i.e. multiplicative symmetry) itself has an interesting
categorical interpretation via the standard decomposition shown in Figure 7. The
single qubit NOT gate (NOT |0〉 = |1〉, NOT |1〉 = |0〉) is the additive symmetry
s�,� of two multiplicative unit objects. Figure 7 expresses an abstract categorical
identity relating the multiplicative symmetry σ�,�, the additive symmetry sI,I ,
and distributivity. Details are left as an interesting exercise.

3.3 Interpreting the Iterator in the Quantum Circuit Paradigm

The interpretation of !2
n

(U) = 1H ⊕ U ⊕ U2 ⊕ . . . ⊕ U2n−1 for some some
unitary operation U : H → H is immediate; it is simply the sequence of
multiply-controlled operations shown in Figure 8. The operational interpretation
is immediate:

Proposition 3. Given an arbitrary quantum state |ψ〉 ∈ H and a computational
basis ancilla state |a〉, the circuit of Figure 8 acts on their tensor product as
|a〉 |ψ〉 �→ |a〉Ua |ψ〉.
Proof. This follows by definition of the action of controlled operations in the
quantum circuit model. ��

Q �������	 �������	 �������	 �������	 · · · • • Q
Q �������	 �������	 �������	 �������	 · · · • • Q

...
...

...
...

...
...

Q �������	 �������	 • • · · · • • Q
Q �������	 • �������	 • · · · �������	 • Q
H 1H U U2 U3 · · · U2n−2 U2n−1 H

Fig. 8. A circuit for !2
n

(U)
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3.4 Applications of the !N(U) Operation in Quantum Programming

Quantum circuits acting as |a〉 |ψ〉 �→ |a〉Ua |ψ〉 have an important role to play
in quantum period-finding algorithms (although, of course, the precise circuit
of Figure 9 is not used). The best-known period-finding algorithm is, of course,
Shor’s factorisation algorithm, based on period-finding for modular exponential
functions.

Period-finding algorithms rely on a central oracle that acts classically on some
subset of the computational basis (we refer to [17] for a formal definition, and [9]
for a categorical interpretation in terms of Barr’s l2 functor [4]). Given a classical
reversible function f , they require a unitary that acts as |a〉 |x〉 �→ |a〉 |fa(x)〉.
Given an oracle Uf for the classical computation f , we may instead write this
as |a〉 |x〉 �→ |a〉Ua

f |x〉 and observe that the required oracle for quantum

period-finding is in fact !N (Uf ), for some suitably large integer N = 2n.
The complete quantum period-finding algorithm (up to some straightforward

classical pre- and post- processing) is then simply given by conjugating such
an oracle by a quantum Fourier transform, applied to the first register only. For
example, in Shor’s algorithm the central oracle is required to implement modular
exponentials, via the action |x〉 |1〉 �→ |x〉 |rx (mod K)〉 and hence, by linearity,

(
N∑

x=0

|x〉
)

|1〉 �→
N∑

x=0

|x〉 |rx (mod K)〉

Given a (readily constructed) quantum oracle U that acts on the computational
basis as U |p〉 = |rp (mod K)〉, then, by Proposition 3, the required oracle for
Shor’s algorithm is !N (U). Thus the (quantum part of) Shor’s algorithm is as
shown in Figure 9.

Q
... QFT−1

!2
n
(U)

QFT
Q

...Q Q
H H

� � � � ��
�
�
�
�
�

�
�
�
�
�
�� � � � �

Fig. 9. The quantum circuit in Shor’s algorithm

4 An Efficient Circuit for the !N(U) Operation

The utility of the !N (U) operation in any period-finding algorithm must rely
on an efficient implementation. Implementing the the central oracle using the
circuit of Figure 8 would be pointless, given the complexity of constructing such
a circuit. Instead, quantum algorithms (in particular, Shor’s algorithm) use an
exponentially more efficient circuit; we demonstrate that this is exactly the im-
plementation given by Corollary 2.

Proposition 4. The circuits A and B shown in Figure 10 are equivalent.



Quantum Speedup and Categorical Distributivity 135

Circuit A
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H U2n
X

Circuit B

Q

!2
n+1

(U)

Q
...

...

Q Q
H H

� � � � ��
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

� � � � �

� � � � � ��
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

� � � � � �

Fig. 10. Two equivalent quantum circuits

Proof. This follows directly from the Theorem 2 – in particular, the diagram-
matic illustration given in Figure 2 makes it immediate. Note that the canonical
multiplicative symmetry for qubits is drawn as a category-theoretic symmetry,
rather than the traditional quantum circuit equivalent shown in Figure 7. ��
A simple corollary of Proposition 4 above, and the notational simplifications
of Section 3.2, is that we may give a quantum circuit for !2

n

(U) using O(n)
controlled quantum logic gates as follows:

Corollary 3. The circuit of Figure 11 implements the !2
n

(U) operation.

Proof. This follows by induction on Proposition 4 above. ��

Q · · · • Q
... · · · ...
Q • · · · Qn qubits Q • · · · Q
Q • · · · Q
Q • · · · Q
H U U2 U4 U8 · · · U2n−1 H

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Fig. 11. An efficient implementation of !2
n

(U)

Remark 3. The efficient circuit of Figure 11 is exactly the circuit used by P.
Shor to implement modular exponentiation [19]. From a purely quantum circuit
point of view, it is straightforward to demonstrate the equivalence of the circuits
of Figure 8 and Figure 11. The interest, from our point of view, is that this
equivalence of circuits is an expression of a canonical coherence identity, and
thus holds in any strongly distributive category.
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4.1 Oracles and Black Boxes

In referring to the circuit of Figure 11 as requiring O(n) primitive gates to imple-
ment !2

n

(U), we have explicitly not considered the complexity of implementing
U,U2, U3, . . .. Rather, we have treated each of these operations as a ‘black box’.
For concrete algorithms, this is a serious omission; in particular, any practical
realisation of Shor’s algorithm also requires some efficient way of implementing

(controlled versions of) U2k , where the operation U |p〉 = |rp (mod K)〉 is as
described in Section 3.4.

Fortunately, such an efficient implementation also exists — an oracle for the
squaring operation c �→ c2 (mod K) (up to some suitable ancilla, and garbage

collection) provides a simple, efficient way of implementing U2k , for k = 1, . . . , n.
This is described in detail in [19]. Note that this technique is not available for
arbitrary functions; rather, modular exponentiation is one of the few arithmetic
functions for which such an efficient decomposition exists.

5 Conclusions and Future Directions

We have demonstrated that the structural isomorphisms for strongly distributive
categories have a role to play in understanding quantum algorithms – or at least
that perhaps familiar operations in quantum circuits can be given an abstract
interpretation in terms of categorical coherence.

Classically, equivalence up to canonical isomorphism is often used in program
transformation, and it is pleasing, although not entirely unexpected, to see it in
the quantum setting as well. Of more interest is how little of the machinery of
categorical quantum mechanics we have used in establishing these transforma-
tions — the only assumption required is that of two monoidal tensors related by
distributivity up to isomorphism, and thus the constructions of this paper are
valid in a wide range of different categorical and algebraic settings.
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