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Abstract. We study the functor �2 from the category of partial injec-
tions to the category of Hilbert spaces. The former category is finitely
accessible, and in both categories homsets are algebraic domains. The
functor preserves daggers, monoidal structures, enrichment, and various
(co)limits, but has no adjoints. Up to unitaries, its direct image consists
precisely of the partial isometries, but its essential image consists of all
continuous linear maps between Hilbert spaces.

I am delighted to dedicate this paper to Samson Abramsky, on the occasion of his
60th birthday. Among all the wisdom he has imparted on me is this contradictory
gem: “Never solve a problem completely, or noone will have a reason to cite you”.
My better nature gladly took some time off to let this paper follow his advice.

1 Introduction

The rich theory of Hilbert spaces underpins much of modern functional analysis
and therefore quantum physics [24,20], yet important parts of it have resisted
categorical treatment. In any categorical analysis of a species of mathematical
objects, free objects of that kind play a significant role. The important �2–
construction is in many ways the closest thing there is to a free Hilbert space: if
X is a set, then

�2(X) =
{
ϕ : X → C

∣∣∣
∑
x∈X

|ϕ(x)|2 <∞
}

is a Hilbert space, in fact the only one of its dimension up to isomorphism.
The �2–construction can be made into a functor, if we take partial injections as
morphisms between the sets X , as first observed by Barr [6]. Outside functional
analysis, it also plays a historically important role in the geometry of interac-
tion (which has been noticed by many authors; an incomplete list of references
includes [9,1,12,13,17]).
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Explicit categorical properties of the �2–construction are few and far between
in the literature. These notes gather and augment them in a systematic study.
Section 2 starts with the category of Hilbert spaces: it is self-dual, has two
monoidal structures, and its homsets are algebraic domains, but its enrichment
and limit behaviour is wanting. Section 3 discusses the category of partial injec-
tions, which is more well-behaved: it is also self-dual, has two monoidal struc-
tures, and is enriched over algebraic domains; moreover, it is finitely accessi-
ble. Section 4 introduces and studies the functor �2 itself. It preserves the self-
dualities, monoidal structures, and enrichment. It also preserves (co)kernels and
finite (co)products, but not general (co)limits. Therefore it has no adjoints, and
in that sense does not provide free Hilbert spaces. It is faithful and essentially
surjective on objects. Section 5 studies the image of the functor �2. Up to uni-
taries, its direct image consists precisely of partial isometries. Remarkably, it is
essentially full, that is, its essential image is the whole category of Hilbert spaces.

Choice issues are lurking closely beneath the surface of these results. In fact,
�2(X) is not just a Hilbert space; it carries a priviledged orthonormal basis.
The functor �2 is an equivalence between the category of partial injections, and
the category of Hilbert spaces with a chosen orthonormal basis and morphisms
preserving it. But the latter class of morphisms is too restrictive: all interesting
applications of Hilbert spaces require a change of basis. Following the guiding
thought “a gentleman does not choose a basis”, Section 6 suggests directions for
further research.

2 The Codomain

Definition 2.1. We are interested in the categoryHilb, whose objects are com-
plex Hilbert spaces, and whose morphisms are continuous linear functions.

2.2. The category Hilb has a dagger, that is, a contravariant involutive functor
† : Hilbop → Hilb that acts as the identity on objects. On a morphism f : H →
K it is given by the unique adjoint f † : K → H satisfying 〈f(x) | y〉 = 〈x | f †(y)〉.
For example, an isomorphism u is unitary when u−1 = u†.

2.3. Furthermore, the usual tensor product of Hilbert spaces provides the cat-
egory Hilb with symmetric monoidal structure. The monoidal unit is the 1-
dimensional Hilbert space C. In fact,Hilb has dagger symmetric monoidal struc-
ture, i.e. (f ⊗ g)† = f † ⊗ g†, and all coherence isomorphisms are unitaries.

2.4. Direct sums of Hilbert spaces provide the categoryHilbwith (finite) dagger
biproducts. That is, H⊕K is simultaneously a product and a coproduct, the pro-
jections are the daggers of the corresponding coprojections, and (f⊕g)† = f †⊕g†.
Similarly, the 0-dimensional Hilbert space is a zero object, i.e. simultaneously ini-
tial and terminal.

2.5. Let us emphasize that we take continuous linear maps as morphisms be-
tween Hilbert spaces, rather than linear contractions. The category of Hilbert
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spaces with the latter morphisms is rather well-behaved, see e.g. [5]. However,
it is the former choice of morphisms that is of interest in functional analysis
and quantum physics. Unfortunately it also reduces the limit behaviour of the
category Hilb, as the following lemma shows.

Lemma 2.6. The category Hilb:

(i) has (co)equalizers;
(ii) does not have infinite (co)products;
(iii) does not have directed (co)limits.

Proof. Part (i) holds because Hilb is enriched over abelian groups and has ker-
nels [16]. For (ii), consider the following counterexample. Define an N-indexed
family Hn = C of objects of Hilb. Suppose the family (Hn) had a coproduct H
with coprojections κn : Hn → H . Define fn : Hn → C by fn(z) = n · ‖κn‖ · z.
These are bounded maps, since ‖fn‖ = n · ‖κn‖. Then for all n ∈ N the norm of
the cotuple f : H → C of (fn) must satisfy

n · ‖κn‖ = ‖fn‖ = ‖f ◦ κn‖ ≤ ‖f‖ · ‖κn‖,

so that n ≤ ‖f‖. This contradicts the boundedness and hence continuity of f .
Finally, part (iii) follows from (ii) and [23, IX.1.1] �
2.7. Despite the previous lemma, Hilb is conditionally (co)complete, in the
sense that it does have objects that partially obey the universal property of
infinite (co)products: for a family Hi of Hilbert spaces,

H =
{
(xi) ∈

∏
i

Hi |
∑
i

‖xi‖2 <∞}
.

is a well-defined Hilbert space under the inner product 〈(xi) | (yi)〉 =
∑

i〈xi | yi〉
[20]. The evident morphisms πi : H → Hi satisfy πi◦π†

i = id and πi◦π†
j = 0 when

i �= j. A cone fi : K → Hi allows a unique well-defined morphism f : K → H
satisfying πi ◦ f = fi if and only if

∑
i ‖fi‖2 <∞. Note, however, that the cone

(πi) itself does not satisfy this condition. In this sense, �2(X) is the conditional
coproduct of X many copies of C.

2.8. A similar phenomenon occurs for simpler types of (co)limits. Monomor-
phisms in Hilb are precisely the injective morphisms, and epimorphisms are
precisely those morphisms with dense range [15, A.3]. Not every monic epimor-
phism is an isomorphism. For example, the morphism f : �2(N) → �2(N) defined
by f(ϕ)(n) = 1

nϕ(n) is injective, self-adjoint, and hence also has dense image.
But it is not surjective, as the vector ϕ ∈ �2(N) determined by ϕ(n) = 1

n is not
in its range.

2.9. If f, g : H → K are morphisms in Hilb, then so are f +g and zf for z ∈ C.
Because composition respects these operations, Hilb is enriched over complex
vector spaces. In general, the homsets are not Hilbert spaces themselves [2], so
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Hilb is not enriched over itself, and hence not Cartesian closed. At any rate,
there is another way to structure the homsets of Hilb, which is of more interest
here. Say f ≤ g when ker(f)⊥ ⊆ ker(g)⊥ and f(x) = g(x) for x ∈ ker(f)⊥.
The following proposition shows that this makes all homsets into algebraic do-
mains [4], but that this is not respected by composition. This is closely related
to [8, 2.1.4], but Hilb is not a restriction category in the sense of that paper:
setting f to be the projection onto ker(f)⊥ does not satisfy fg = gf .

Proposition 2.10. All homsets in the category Hilb are algebraic domains, but
composition is not monotone.

Proof. The least upper bound of a directed family fi is given by continuous
extension to the closure of

⋃
i ker(fi)

⊥; this makes all homsets into directed-
complete partially ordered sets. If f ≤ ∨

i fi always implies f ≤ fi for some i,
then ker(f)⊥ must have been finite-dimensional; thus morphisms f satisfying
dim(ker(f)⊥) < ∞ are the compact elements. It is now easy to see that any
morphism is the directed supremum of compact ones below it, making all homsets
into algebraic domains.

Now consider composition. First suppose that f ≤ f ′ and g ≤ g′. If x ∈ ker(f),
then clearly gf(x) = 0. If x ∈ ker(f)⊥, then f(x) = f ′(x), so g′f ′(x) = 0 implies
f(x) ∈ ker(g′) ⊆ ker(g). Because we may write dom(gf) = ker(f)⊕ ker(f)⊥, we
conclude ker(gf)⊥ ⊆ ker(g′f ′)⊥. But unless f(ker(gf)⊥) ⊆ ker(g)⊥, it need not
be the case that gf equals g′f ′ on ker(gf)⊥. For an explicit counterexample, let

f = f ′ =
(
1 1
0 1

)
, g =

(
1 0
0 0

)
, g′ =

(
1 0
0 1

)
.

Then f ≤ f ′ and g ≤ g′. But ker(gf)⊥ = {( x−x ) | x ∈ C}⊥ = {( xx ) | x ∈ C}, and
gf ( xx ) = ( 2x

0 ) �= ( 2xx ) = g′f ′ ( x
x ), so gf �≤ g′f ′. �

3 The Domain

Definition 3.1. A partial injection is a partial function that is injective, wher-
ever it is defined. More precisely, it(s graph) is a relation R ⊆ X × Y such that
for each x there is at most one y with (x, y) ∈ R, and for each y there is at most
one x with (y, x) ∈ R. Sets and partial injections form a category PInj under
composition of relations S ◦R = {(x, z) | ∃y : (x, y) ∈ R, (y, z) ∈ S}.

3.2. Notationally, a partial injection f : X → Y can be conveniently represented
as a span (X F��f1�� �� f2 ��Y ) of monics in Set. Here, f1 is (the inclusion of)
the domain of definition of f , and f2 is its (injective) action on that domain.
Composition in this representation is by pullback. We will also write Dom(f) =
f1(F ) for the domain of definition, and Im(f) = f2(F ) for the range of f .

If it wasn’t already, the span notation immediately makes it clear that PInj
is a dagger category: (X F��f1�� �� f2 ��Y )† = (Y F��f2�� �� f1 ��X ).
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3.3. The category PInj has two dagger symmetric monoidal structures. The
first one, that we denote by ⊗, acts as the Cartesian product on objects. Be-
cause the Cartesian product of injections is again injective, ⊗ is well-defined on
morphisms of PInj as well. The monoidal unit is a singleton set 1. Notice that
⊗ is not a product, and hence not a coproduct either.

The second dagger symmetric monoidal structure on PInj, denoted by ⊕,
is given by disjoint union on objects. It is easy to see that a disjoint union of
injections is again injective, making ⊕ well-defined on morphisms of PInj. The
monoidal unit is the empty set. Notice that ⊕ is not a coproduct, and hence not
a product either.

Lemma 3.4. The category PInj:

(i) has (co)equalizers;

(ii) has a zero object;

(iii) does not have finite (co)products;

Proof. The equalizer of f, g : X → Y is the inclusion of

{
x ∈ X | x �∈ (Dom(f) ∪Dom(g)) ∨ (

x ∈ (Dom(f) ∩Dom(g)) ∧ f(x) = g(x)
)}

into X . The empty set is a zero object in PInj.
Towards (iii), notice that if (X κX ��X + Y YκY�� ) were a coproduct in

PInj, then one must have Dom(κX) = X , Dom(κY ) = Y and Im(κX) ∩
Im(κY ) = ∅, because otherwise unique existence of mediating morphisms is
violated. Hence any coproduct must contain the disjoint union of X and Y . Let
f : X → Z and g : Y → Z be any morphisms. Then a mediating morphism
m : X + Y → Z has to satisfy m(x) = f(x) for x ∈ Dom(f) and m(y) = g(y) for
y ∈ Dom(g). But such anm is not unique, unless Dom(f) = X and Dom(g) = Y .
In fact, it is not even a partial injection unless Im(f) ∩ Im(g) = ∅. We conclude
that PInj does not have binary (co)products. �

3.5. In fact, part (ii) of the previous lemma follows from the existence of directed
colimits, which we now work towards. Recall that a category has directed colimits
if and only if it has colimits of chains, i.e. colimits of well-ordered diagrams [5,
Corollary 1.7]. Observe that for a chain D : I → PInj, if ci : D(i) → X is a
cocone on D, then Dom(ci) ⊆ Dom(D(i ≤ j)) for all j ≥ i. To see this, notice
that ci = cj ◦D(i ≤ j) since ci is a cocone, and therefore

Dom(ci) = Dom(cj ◦D(i ≤ j)) ⊆ Dom(D(i ≤ j)).

This observation suggests that the colimit of a well-ordered diagram in PInj
should consist of all ‘infinite paths’. The following proposition shows that this is
indeed a colimit.

Proposition 3.6. The category PInj has directed colimits.
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Proof. Let D : I → PInj be a chain. Define

X = {x ∈
∐
i

D(i) | ∀j≥i[x ∈ Dom(D(i ≤ j))]}/ ∼,

where the coproduct is taken in Set, and the equivalence relation ∼ is generated
by x ∼ D(i ≤ j)(x) for all i ≤ j in I and x ∈ Dom(D(i ≤ j)). For i ∈ I, define
ci : D(i) → X by

Dom(ci) = {x ∈ D(i) | ∀j≥i[x ∈ Dom(D(i ≤ j))]},
and ci(x) = [x].

First of all, let us show that the ci form a cocone. One has:

Dom(cj ◦D(i ≤ j))

= {x ∈ D(i) | x ∈ Dom(D(i ≤ j)) ∧D(i ≤ j)(x) ∈ Dom(cj)}
= {x ∈ D(i) | x ∈ Dom(D(i ≤ j)) ∧ ∀k≥j [D(i ≤ j)(x) ∈ Dom(D(j ≤ k))]}.

The well-orderedness of I implies that

∀k≥i[P (k)] ⇔ ∀k≥j [P (k)] ∧ P (j)
for any property P on the objects of I, whence

Dom(cj ◦D(i ≤ j)) = {x ∈ D(i) | ∀k≥i[x ∈ Dom(D(i ≤ k))]} = Dom(ci).

Moreover cj ◦ D(i ≤ j)(x) = [D(i ≤ j)(x)] = [x] = ci(x) for x ∈ Dom(ci), by
definition of the equivalence relation.

Next, we show that ci is universal. Let di : D(i) → Y be any cocone, and
define m : X → Y by

Dom(m) = {[x] | x ∈ Dom(di)}

and m([x]) = di(x) for x ∈ D(i); this is well-defined since di is a cocone. Then

dom(m ◦ ci) = {x ∈ D(i) | x ∈ Dom(ci) ∧mi(x) ∈ Dom(m)}
= {x ∈ D(i) | ∀j≥i[x ∈ Dom(D(i ≤ j))] ∧ x ∈ Dom(di)}
= Dom(di)

by 3.5, and m ◦ ci(x) = m([x]) = di(x) for x ∈ D(i). Thus m ◦ ci = di, so m is
indeed a mediating morphism.

Finally, if m′ : X → Y satisfies m ◦ ci = di, then it follows from the above
considerations that Dom(m′) = Dom(m) and m′(x) = m(x) for x ∈ Dom(m).
Hence m is the unique mediating morphism. �
3.7. Recall that an object X in a category C is called finitely presentable when
the hom-functor C(X,−) : C → Set preserves directed colimits. Explicitly, this
means that for any directed poset D : I → C, any colimit cocone di : D(i) → Y
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and any morphism f : X → Y , there are j ∈ I and a morphism g : X → D(j)
such that f = dj ◦ g. Moreover, this morphism g is essentially unique, in the
sense that if f = di ◦ g = di ◦ g′, then D(i → i′) ◦ g = D(i → i′) ◦ g′ for some
i′ ∈ I.

D(i) ��

di ���
��

��
��

��
D(i′) ��

di′
��

D(i′′) ��

di′′

����
��
��
��
�

· · · �� D(j) ��

dj

�������
�����

�����
�����

�����
�� · · ·

Y X
f

��

g

���
�
�

A category is called finitely accessible [5] when it has directed colimits and every
object is a directed colimit of finitely presentable objects.

Lemma 3.8. A set is finitely presentable in PInj if and only if it is finite.

Proof. The only thing, in the situation of 3.7 with X finite, is to notice that if a
partial injection g is to exist, we must have Dom(g) = Dom(f). The rest follows
from [5, 1.2.1]. �
Theorem 3.9. The category PInj is finitely accessible.

Proof. It suffices to prove that every set in PInj is a directed colimit of finite
ones. But that is easy: X is the colimit of the directed diagram consisting of its
finite subsets. �
Definition 3.10. An inverse category is a categoryC in which every morphism
f : X → Y allows a unique morphism f † : Y → X satisfying f = ff †f and
f † = f †ff †. Equivalently, it is a dagger category satisfying f = ff †f and
pq = qp for idempotents p, q : X → X . The proof of equivalence of these two
statements is the same as for inverse semigroups (see [22, Theorem 1.1.3] or [8,
Theorem 2.20]). Inverse categories are a special case of restriction categories [8].

The category PInj is an inverse category under its dagger (see 3.2). The
following categorification of the Wagner–Preston theorem [22, Theorem 1.5.1]
shows that it is in fact a representative one. See also [8, 3.4].

Proposition 3.11. Any locally small inverse category C allows a faithful em-
bedding F : C → PInj that preserves daggers.

Proof. First suppose that C is small. Then we may set F (X) =
∐

Z∈C C(X,Z).

For f : X → Y define F (f) : F (X) → F (Y ) by F (f) = ( ) ◦ f † on the domain
{g ∈ C(X,Z) | Z ∈ C, g = gf †f}; this gives a well-defined partial injection. It
is functorial, since clearly F (id) = id, and

Dom(F (gf)) = {h : X → Z | h = hf †g†gf}
= {h : X → Z | h = hf †f, hf † = hf †g†g} = Dom(F (g) ◦ F (f)).

It preserves daggers, because F (f †) = ( ) ◦ f = F (f)†, and

Dom(F (f †)) = {h : Y → Z | h = hff †}
= {gf † : Y → Z | g = gf †f : X → Z} = Im(F (f)) = Dom(F (f)†).



114 C. Heunen

Finally, F is clearly injective on objects. It is also faithful: if F (f) = F (g),
then ff † = Ff(f) = Fg(f) = fg† and gf † = Ff(g) = Fg(g) = gg†, whence
fg†f = f and gf †g = g, and so f = g.

Now suppose C is locally small. Consider the diagram of small inverse sub-
categories D of C. It clearly has is a cocone to C. If GD : D → E is another
one, there is a unique mediating functor M : C → E as follows. For an object
X of C, let D′ be the full subcategory of C with only one object X , and set
M(X) = GD′(X). For a morphism f : X → Y of C, let D′′ be the full subcate-
gory of C on the objectsX,Y , and setM(f) = GD′′ (f). This gives a well-defined
functor. So C is the colimit in Cat of its small inverse subcategories. By the
above, any small inverse subcategory C embeds into PInj. It follows that C
itself embeds into PInj. �
3.12. Like any inverse category, the homsets of PInj carry a natural partial
order: f ≤ g when f = gf †f . Concretely, f ≤ g means Dom(f) ⊆ Dom(g) and
f(x) = g(x) for x ∈ Dom(f). It is easy to see that this makes homsets into
directed-complete partially ordered sets, with Dom(

∨
i fi) =

⋃
i Dom(fi) for a

directed family of morphisms fi : X → Y . In fact, as in Proposition 2.10, homsets
are algebraic domains: any partial injection is the supremum of compact ones
below it, which are those partial injections with finite domain. Moreover, com-
position respects these operations. Thus PInj is enriched in algebraic domains.
This is a satisfying reflection of Theorem 3.9 on the level of homsets.

4 The Functor

Definition 4.1. There is a functor �2 : PInj → Hilb, acting on a set X as

�2(X) = {ϕ : X → C |
∑
x∈X

|ϕ(x)|2 <∞}.

This vector space becomes a well-defined Hilbert space under the inner product
〈ϕ |ψ〉 =

∑
x∈X ϕ(x)ψ(x). The action on morphisms sends a partial injection

(X F��f1�� �� f2 ��Y ) to the linear function �2f : �2(X) → �2(Y ) determined in-
formally by �2f = ( ) ◦ f †. Explicitly,

(�2f)(ϕ)(y) =
∑

x∈f−1
2 (y)

ϕ(f1(x)).

4.2. In verifying that �2f is indeed a well-defined morphism of Hilb, it is es-
sential that f is a (partial) injection.

∑
y∈Y

∣∣(�2f)(ϕ)(y)∣∣2 =
∑
y∈Y

∣∣ ∑

x∈f−1
2 (y)

ϕ(f1(x))
∣∣2 ≤

∑
y∈Y

∑

x∈f−1
2 (y)

|ϕ(f1(x))|2

=
∑
x∈F

|ϕ(f1(x))|2 ≤
∑
x∈X

|ϕ(x)|2 <∞.
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That this breaks down for functions f in general, instead of (partial) injections,
was first noticed in [6], and further studied in [13]. That is, �2 is well-defined
on the category of sets and partial injections; on the category of finite sets and
functions; but not on the category of sets and functions; nor on the category of
finite sets and relations. Functoriality of �2 is easy to verify.

4.3. The following calculation shows that the �2 functor preserves daggers. For
a partial injection (X F��f1�� �� f2 ��Y ), ϕ ∈ �2(X) and ψ ∈ �2(Y ):

〈(�2f)(ϕ) |ψ〉�2(Y ) =
∑
y∈Y

(�2f)(ϕ)(y) · ψ(y) =
∑
y∈Y

∑

x∈f−1
2 (y)

ϕ(f1(x)) · ψ(y)

=
∑
x∈F

ϕ(f1(x)) · ψ(f2(x)) =
∑
x∈X

∑

x′∈f−1
1 (x)

ϕ(x) · ψ(f2(x′))

=
∑
x∈X

ϕ(x) · (
∑

x′∈f−1
1 (x)

ψ(f2(x
′))) = 〈ϕ | �2(f †)(ψ)〉�2(X).

4.4. The functor �2 preserves the tensor product ⊗, i.e. it is symmetric (strong)
monoidal. There is a canonical isomorphism C ∼= �2(1). The required natural
morphisms �2(X) ⊗ �2(Y ) → �2(X ⊗ Y ) are given by mapping (ϕ, ψ) to the
function (x, y) �→ ϕ(x)ψ(y). That there are inverses is seen when one realizes
that �2(X ⊗ Y ) is the Cauchy-completion of the set of functions X × Y → C

with finite support. The required coherence diagrams follow easily.

4.5. Also, the �2 functor is symmetric (strong) monoidal with respect to ⊕.
There is a canonical isomorphism between the 0-dimensional Hilbert space and
the set �2(∅) consisting only of the empty function. The natural morphisms
�2(X)⊕ �2(Y ) → �2(X ⊕ Y ) map (ϕ, ψ) to the cotuple [ϕ, ψ] : X ⊕ Y → C. One
sees that these are isomorphisms by recalling that �2(X ⊕ Y ) is the closure of
the span of the Kronecker functions δx and δy for x ∈ X and y ∈ Y , on which
the inverse acts as the appropriate coprojection. Coherence properties readily
follow.

4.6. From the description of the structure of homsets in PInj and Hilb as
algebraic domains in 3.12 and 2.9, respectively, it is clear that the functor �2

preserves this enrichment: �2(
∨

i fi) =
∨

i �
2fi if fi : X → Y is a directed family

of morphisms in PInj. See also [18, Theorem 13].

4.7. The functor �2 preserves (co)kernels and finite (co)products (because PInj
has very few of the latter). But it follows from Lemma 2.6(iii) and Proposition 3.6
that �2 cannot preserve arbitrary (co)limits. For an explicit counterexample to
preservation of equalizers, take X = {0, 1}, Y = {a}, and let f, g : X → Y be
the partial injections f = {(0, a)} and g = {(1, a)}. Their equaliser in PInj is ∅.
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But

eq(�2(f), �2(g)) = {ϕ ∈ �2(X) | �2(f)(ϕ) = �2(g)(ϕ)}
=

{
ϕ ∈ �2(X) | ∀y∈Y .

∑

u∈f−1
2 (y)

ϕ(f1(u)) =
∑

v∈g−1
2 (y)

ϕ(g1(v))
}

= {ϕ : {0, 1} → C | ϕ(0) = ϕ(1)} ∼= C.

Hence eq(�2(f), �2(g)) ∼= C �∼= {∅} = �2(eq(f, g)).

Corollary 4.8. The functor �2 : PInj → Hilb has no adjoints.

Proof. If �2 had an adjoint, it would preserve (co)limits, contradicting 4.7. �
4.9. The functor �2 is clearly faithful. It is also essentially surjective on objects:
every Hilbert space H has an orthonormal basis X , so H ∼= �2(X). It cannot be
full because of 4.8, but it does reflect isomorphisms: if �2f is invertible, so is f .

4.10. If X is a set, �2(X) is not just a Hilbert space; it comes equipped with
a chosen orthonormal basis (given by the Kronecker functions δx ∈ �2(X) for
x ∈ X). Hence we could think of �2 as a functor to a category of Hilbert spaces
H with a priviledged orthonormal basis X ⊆ H . If we choose as morphisms
(H,X) → (K,Y ) those continuous linear f : H → K satisfying f(X) ⊆ Y
and ff †f = f , then the functor �2 in fact becomes (half of) an equivalence of
categories [3, 4.3].

4.11. Lemma 4.8 showed that �2(X) is not the free Hilbert space on X , at least
not in the categorically accepted meaning. It also makes precise the intuition
that ‘choosing bases is unnatural’: the functor �2 : PInj → Hilb cannot have a
(functorial) converse, even though one can choose an orthonormal basis for every
Hilbert space.

It is perhaps also worth mentioning that �2 is not a fibration in the technical
sense of the word, not even a nonsplit or noncloven one, as the reader might
perhaps think; Cartesian liftings in general do not exist because ‘choosing bases
is unnatural’.

5 The Image

5.1. The choice of morphisms in 4.10 is quite strong, and does not capture all
morphisms of interest to quantum physics. From that point of view, one would at
least like to relax to partial isometries : morphisms i of Hilbert spaces that satisfy
ii†i = i. Equivalently, the restriction of i to the orthogonal complement of its
kernel is an isometry. The following proposition proves that, up to isomorphisms,
the direct image of the functor �2 consists precisely of partial isometries.

Definition 5.2. For a category C, denote by C∼= the groupoid with the same
objects as C whose morphisms are the isomorphisms of C.
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The category Hilb∼= is a groupoid, and hence has a dagger. It carries two
dagger symmetric monoidal structures: ⊕ and ⊗. Because having (co)limits
only depends on a skeleton of the specifying diagram, Hilb∼= does not have
(co)equalizers, nor (finite) (co)products, but does have directed (co)limits.

Proposition 5.3. A morphism in Hilb is a partial isometry if and only if it is
of the form v ◦ �2f ◦ u for morphisms f in PInj and unitaries u, v in Hilb∼=.

Proof. Clearly a map of the form v◦�2f ◦u is a partial isometry. Conversely, sup-
pose that i : H → K is a partial isometry. Choose an orthonormal basis X ⊆ H
for its initial space ker(i)⊥, and choose an orthonormal basis X ′ ⊆ H for ker(i),
giving a unitary morphism u : H → �2(X ⊕ X ′). Let Y = i(X) ⊆ K. Then Y
will be an orthonormal basis for the final space ker(i†)⊥ because i acts isomet-
rically on X . Choose an orthonormal basis Y ′ ⊆ K for ker(i†), giving a unitary
v : �2(Y ⊕ Y ′) → K. Now, if we define f = (X ⊕X ′ X���� �� i ��Y ⊕ Y ′ ), then
i = v ◦ �2f ◦ u. �

5.4. However, partial isometries are not closed under composition. To see this,
consider the partial isometries ( 10 ) : C → C2 and ( sin(θ) cos(θ) ) : C2 → C for
a fixed real number θ. Their composition is ( sin(θ) ) : C → C, which is not a
partial isometry unless θ is a multiple of π/2. There are other compositions that
do make partial isometries into a category [19], but these are not of interest here.
Instead, we shall extend the previous proposition to highlight one of the most
remarkable features of the functor �2.

5.5. The example in 5.4 shows that any linear function C → C between -1 and
1 is a composition of partial isometries. Note that the projections πi : C

m → C

and coprojections π†
i : C → Cn are partial isometries, as are the weighted diag-

onal Δ/
√
n : C → Cn given by Δ(x) = (x, . . . , x) and the weighted codiagonal

Δ†/
√
m : Cm → C given by Δ†(x1, . . . , xm) =

∑
i xi. Moreover, it is easy to see

that if f and g are (compositions of) partial isometries, then so is f ⊕ g. Finally,
any linear map f : Cm → Cn has a matrix expansion, and can hence be written
in terms of biproduct structure as f = Δ† ◦ (⊕m

i=1

⊕n
j=1 π

†
j ◦πj ◦ f ◦π†

i ◦πi)◦Δ.

Thus any f : Cm → Cn with ‖f‖ ≤ 1/
√
mn is a composition of partial isometries.

5.6. The essential image of a functor F : C → D is the smallest subcategory
of D that contains all morphisms F (f) for f in C, and that is closed under
composition with isomorphisms of D.

It follows from 5.5 that the essential image of the functor �2 contains at least
all morphisms of Hilb of finite rank. For infinite rank that strategy fails because
Δ is then no longer a valid morphism (see 2.7). Nevertheless, Theorem 5.11
below will prove that the essential image of �2 is all of Hilb. In preparation we
accommodate an intermezzo on polar decomposition.

A morphism p : H → H in Hilb is nonnegative when 〈px |x〉 ≥ 0 for all
x ∈ H , and positive when 〈px |x〉 > 0. Nonnegative maps are precisely those of
the form p = f †f for some morphism f .
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Proposition 5.7. For every morphism f : H → K between Hilbert spaces, there
exist a unique nonnegative map p : H → H and partial isometry i : H → K
satisfying f = ip and ker(p) = ker(i).

Proof. See [14, problem 134]. �
5.8. The previous proposition stated the usual formulation of polar decompo-
sition, but the unicity condition ker(p) = ker(i) is something of a red herring.
It should be understood as saying that both i and p are uniquely determined
on the orthogonal complement of ker(f) = ker(p) = ker(i). On each point of
ker(f), one of i and p must be zero, but the other’s behaviour has no restrictions
apart from being a partial isometry or positive map, respectively. Dropping the
unicity condition, we may take p to be a positive map, by altering i to be zero on
ker(f), and p to be nonzero on ker(f). More precisely, define p′ = p on ker(f)⊥

and p′ = id on ker(f); since ker(f) is a closed subspace, H ∼= ker(f)⊕ ker(f)⊥,
and this gives a well-defined positive operator p′ : H → H . Similarly, setting
i′ = i on ker(f)⊥ and i′ = 0 on ker(f) gives a well-defined partial isometry
i′ : H → K, satisfying f = i′p′.

Lemma 5.9. Positive operators on Hilbert spaces are isomorphisms.

Proof. Let p : H → H be a positive operator in Hilb. Since p is self-adjoint,
the spectral theorem [24] guarantees the existence of a measure space (S,Σ, μ),
a unitary u : H → L2(S,Σ, μ), and a measurable function f : S → C whose
range is the spectrum σ(p) of p, such that p = u† ◦ m ◦ u, where m is the
multiplication operator induced by f . Because p is positive, f must take values
in R

>0. This makes the function f−1 : S → C given by s �→ f(s)−1 a well-defined
measurable function. Let m−1 be the multiplication operator induced by f−1.
Then u† ◦m−1 ◦ u is the inverse of p. �
Definition 5.10. A functor F : C → D is essentially full when for each mor-
phism g in D there exist f in C and u, v in C∼= such that g = v ◦ Ff ◦ u.

It follows that the essential image of such a functor is all of D.

Theorem 5.11. The functor �2 : PInj → Hilb is essentially full.

Proof. Let g be a morphism in Hilb. By Proposition 5.7 and 5.8, we can write
g = pi for a positive morphism p and a partial isometry i. Use Proposition 5.3 to
decompose i = v′ ◦ �2f ◦ u for f in PInj and unitaries v′, u. Finally, Lemma 5.9
shows that v = p ◦ v′ in Hilb∼= satisfies g = v ◦ �2f ◦ u. �
5.12. Writing 2 for the ordinal 2 = (0 ≤ 1) regarded as a category, the category
C2 is the arrow category of C: its objects are morphisms ofC, and its morphisms
are pairs of morphisms of C making the square commute. A functor F : C → D
is essentially full if and only if F 2 : C2 → D2 is essentially surjective on objects.
From this point of view Definition 5.10 is quite natural. Nonetheless we might
consider weakening it to take u = id or v = id. But this would break the
previous theorem. For example, if g : �2(X) → �2(Y ) is a morphism in Hilb,



On the Functor �2 119

there need not be f : X → Y in PInj and v in Hilb∼= with g = v ◦ �2f . For a
counterexample, take X = Y = {a, b}, and g(a) = g(b) = a; if g = v ◦ �2f , then
(v◦�2f)(a) = (v◦�2f)(b), so (�2f)(a) = (�2f)(b), so f(a) = f(b), whence f cannot
be a partial injection. Similarly, because of the dagger, if g : �2(X) → �2(Z) is a
morphism in Hilb, there need not be f : Y → Z in PInj and u in Hilb∼= with
g = �2f ◦ u.

6 The Future

6.1. Theorem 5.11 naturally raises a coherence question: is there any regularity
to the isomorphisms u and v that enable us to write an arbitrary morphism of
Hilb in the form v ◦ �2f ◦ u? How do they behave under composition? Curi-
ously enough, essentially full functors do not seem to have been studied in the
categorical literature at all. The results in this article suggest such a study.

It would be very interesting to reconstruct Hilb (up to equivalence) from
Hilb∼= and PInj via the �2 functor. The objects are easily recovered, because
they are the same as those of Hilb∼=. Theorem 5.11 also lets us recover the
homsets and identities, as soon as we can identify when two morphisms in Hilb
of the form v◦�2f ◦u are equal. The main problem is how to recover composition,
which requires a way to turn �2g ◦ v ◦ �2f into w ◦ �2h ◦ u. (Note that turning
�2g ◦ v into w ◦ �2h would be sufficient, because we could then use functoriality
of �2 and composition in PInj. But 5.12 obstructs this; the isomorphism v in
the middle is crucial.) This will likely lead into bicategorical territory.

6.2. The �2–construction has a continuous counterpart, that turns a measure
space (X,μ) into a Hilbert space L2(X,μ) of square integrable complex functions
on X . The L2–construction is quite fundamental and well-studied, but surpris-
ingly enough functorial aspects seem not to have been considered before. One
possibility is to mimic Definition 4.1, and endow the category of measure spaces
with essential injections (X,μ) → (Y, ν) as morphisms, i.e. subsets R ⊆ X × Y
such that ν({y | xRy}) = 0 for all x ∈ X and μ({x | xRy}) = 0 for all y ∈ Y .

The importance of L2–spaces lies in the following formulation of the spectral
theorem: every normal operator f : H → H is of the form f = u−1 ◦ g ◦ u for a
unitary u : H → L2(X,μ) and an operator g induced by multiplication with a
measurable function X → C. This perspective warrants choosing complex mea-
surable functions as (endo)morphisms on measure spaces, with multiplication
for composition. With 5.8 in mind, we could even restrict to a groupoid of posi-
tive maps. A solution to 6.1 could then be regarded as reconstructing quantum
mechanics (as embodied by Hilb) from its continuous, quantitative aspects (en-
coded by the L2 functor), and its discrete, qualitative aspects (encoded by the
�2 functor).

At any rate, the continuous cousin L2 of �2 poses an interesting research topic.

6.3. Letting L be the class of positive morphisms, and R the class of partial
isometries in Hilb:

1. every morphism f can be factored as f = rl with l ∈ L and r ∈ R;
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2. every commutative square as below with l ∈ L and r ∈ R allows a unique
diagonal fill-in d making both triangles commute.

· ��

l

��

·
r

��· ��

d

		�
�

�
� ·

The second property follows immediately from Lemma 5.9. The established no-
tion of orthogonal factorization system additionally demands that (3) both L
and R are closed under composition, and (4) all isomorphisms are in both L and
R. But (3) is not satisfied by 5.4, and the map −1: H → H is a counterexample
to (4).

Write 3 for the ordinal 3 = (0 ≤ 1 ≤ 2), regarded as a category. Then objects
of C3 are composable pairs of morphisms. Recall that a functorial factorization
is a functor F : C2 → C3 that splits the composition functor. Lemma 5.9 ensures
that polar decomposition at least provides a functorial factorization system. It
is usual to require extra conditions on top of a functorial factorization, such as
in a natural weak factorization system. For details we refer to [11]. It leads too
far afield here, but polar decomposition does not satisfy the axioms of a natural
weak factorization system.

In short, polar decomposition unquestionably provides a notion of factoriza-
tion. But it does not fit existing categorical notions, despite the fact that factor-
ization has been a topic of quite intense study in category theory [10,7,11,21,25].
This is an interesting topic for further investigation.

References

1. Abramsky, S.: Retracing some paths in process algebra. In: Sassone, V., Montanari,
U. (eds.) CONCUR 1996. LNCS, vol. 1119, pp. 1–17. Springer, Heidelberg (1996)

2. Abramsky, S., Blute, R., Panangaden, P.: Nuclear and trace ideals in tensored
*-categories. Journal of Pure and Applied Algebra 143, 3–47 (1999)

3. Abramsky, S., Heunen, C.: H*-algebras and nonunital Frobenius algebras: first
steps in infinite-dimensional categorical quantum mechanics. In: Abramsky, S.,
Mislove, M. (eds.) Clifford Lectures. Proceedings of Symposia in Applied Mathe-
matics, vol. 71, pp. 1–24. American Mathematical Society (2012)

4. Abramsky, S., Jung, A.: Domain theory. In: Handbook of Logic in Computer Sci-
ence, vol. 3, pp. 1–168. Oxford University Press (1994)
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