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Abstract. We discuss some fundamental concepts in Game Theory: the
concept of payoffs and the relation between rational solutions to games
like Nash equilibrium and real world behaviour. We sketch some con-
nections between Game Theory and Game Semantics by exploring some
possible uses of Game Semantics strategies enriched with payoffs. Fi-
nally we discuss potential contributions of Abstract Interpretation to
Game Theory in addressing the state explosion problem of game models
of real world systems.

1 Introduction

1.1 An Historical Note

Samson Abramsky joined the Department of Computing at Imperial College
London in 1983 and Hankin joined him there in 1984. They had previously col-
laborated on the launch of an informal inter-collegiate PhD course on Theoretical
Computer Science. Their scientific collaboration with Geoffrey Burn led to work
on higher-order strictness analysis of functional programs [7] and ultimately to
an edited volume on abstract interpretation of declarative languages [1]. Whilst
Samson’s main focus was on domain logics at this time, he also made important
contributions to the theory of program analysis through his invention of the no-
tion of polymorphic invariance [2] and a deep study of the role of logical relations
in establishing the correctness of program analyses [3]. Even his work on domain
logics found an application in program analysis through Jensen’s development
of strictness logics [14].

Malacaria came to Imperial College London in 1993. He worked with Sam-
son and Radha Jagadeesan on Game Semantics, solving the long standing open
problem of providing a fully abstract semantics for PCF [5].

The authors of this paper subsequently worked together on using Game Se-
mantics as a basis for program analyses that were correct by construction. This
work culminated in [15] which uses Game Semantics as a basis for an Information
Flow analysis. More recently, we have been studying the use of Game Theory in
decision support for cyber security.

1.2 This Paper

Textbook presentations of Game Theory are often extensional: game solutions
are found on normal form games. We are interested in a more intensional
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approach and look to Game Semantics to provide a framework for approach-
ing this problem. In the next section we address some of the criticisms that have
recently been addressed at Game Theory. We then present a common frame-
work based on [8]. We next discuss some of the potential uses of payoffs in Game
Semantics. We conclude by considering the role of abstraction in making the
problem of finding game solutions more tractable.

2 The Problem with Payoffs

Game Theory is sometimes criticised for providing solutions that are unrealistic.
Classical examples enlightening this criticism are provided by the centipede game
or the game of ultimatum bargaining, both extensively studied by economists
and social scientists. More recently what we believe to be a similar criticism
has also arisen in a cyber-security context. In this section we will discuss these
criticisms.

2.1 The Centipede Example

The centipede game [18] is a well known example in the Game Theory literature
illustrating a variety of features and issues about Nash equilibrium solutions
in games. The centipede is a multi-stage alternating game where at each stage
the player whose turn is to move can either decide to end the game with some
payoffs or continue. Crucially the payoffs are arranged so that if one player were
to decide to continue to the next stage but at the next stage the other player
were to decide to stop, the first player would get an inferior payoff than if he had
decided to stop at the previous round. Figure 1 illustrates a simple centipede
game. If the red player were to stop at the first stage he would get 3.20, if the
blue player were to stop at stage 2, the red player would however get an inferior
payoff of 1.60. However if both players were to continue playing until the end
they would end up with much higher payoffs than if they were to stop at any
earlier stage.

One interesting aspect of this game is that the equilibrium solution says that
players should stop at the very beginning, thus ending up with payoff 3.20 for

Fig. 1. The Centipede game
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red and .80 for blue. This solution is explained as follows: at the very last move,
which is a blue move, the blue player has interest in choosing the move giving
him payoff 25.6 which would be bad for the red player who would get 6.40.
Hence the red player should have stopped at the previous round as he would
have gotten the higher payoff 12.8; but in that case the blue player would have
gotten 3.20, which is inferior to 6.40 the reward he would have gotten had he
stopped at the previous round; and so on...

The problem is that when this game is played “in reality” the outcome is
different. Experimental studies show that people tend not to stop at the early
stages, a notable exception being chess grand masters who when playing the
game tend to stop at the beginning and so behave consistently with the equilib-
rium solution.

So what is wrong with Nash equilibrium? Are ordinary people irrational? Is
Game Theory unrealistic?

These are fundamental questions that arise over and over in one form or
another in any context where Game Theory is applied.

A classic game theoretical answer to these questions is that there is not much
wrong with Nash equilibrium itself: the point is that the game with the payoffs
described above is not the game ordinary people play when they are asked to
play it.... In real life, e.g. when the payoffs are money, people will reason that the
other player may have interest to go ahead too and not stop at the next round.
Hence as long as the red player thinks that his expected future payoff, given
the probability that the blue player stops at the next round, exceeds the payoff
he would get by stopping at the current round then he will carry on. Therefore
to match reality the payoffs of the game should be adjusted to match the real
payoffs. This matching is tricky and depends on very specific circumstances, e.g.
the amount involved compared with the wealth and greediness of the individual,
the suspicion about the other player motives and trustworthiness, etc. Somehow
the payoffs need to be tailor-made for each player.

Without taking into account all these factors in the payoffs, comparing the
formal game with the game played in the real world is just comparing apples
and pears.

2.2 The Prime Factorization Game

Halpern and Pass [17] consider the following game. A player is given a random
odd n-bit number x and he is supposed to decide whether x is prime or composite.
Guessing correctly will give him $2, however an incorrect guess will give him
−$1000, i.e. he will have to pay a penalty of $1000. The player can however
choose the “playing safe” strategy by giving up, in which case he receives $1.

The game theoretical solution is to play, i.e. not to give up: game theoretical
players have mathematical unbounded power so they never make wrong guesses
and so they will always get $2. However clearly in reality people wouldn’t choose
the equilibrium solution: we don’t need experiments to see that.

So what is wrong with Nash equilibrium? Are ordinary people irrational? Is
Game Theory unrealistic?
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We have already seen these questions above and the game theoretical answer is
the same as we saw above: people are not playing the game those rules describe.
In order to model reality we need to take into account the cost of computation
and so the crucial point in matching the above payoffs to the real game is that
guessing correctly will give the player payoff $2−F (x), where F (x) is a function
representing the cost of determining whether x is prime. Again this F (x) ought
to be tailor-made for specific players, e.g. players having available thousands of
powerful machines will tend to play for larger x as long as other factors like
the electricity required by the factorisation will make it profitable still. Even if
general guidelines from computability and complexity may be helpful they still
miss factors that may be important to the model, e.g. the cost of electricity: for
example in real world, crypto contexts like Bitcoin mining, electricity and the
cost of GPUs are the key criteria in deciding whether to play the game. Once
the right F (x) is used the game theorist would claim that the solution matches
reality.

This game is interesting because F (x) depends heavily on intensional aspects
like the computational resources available and limits of computational devices.
These factors are external to classical Game Theory: an attempt to develop a
Game Theory where computational limitations are taken into account is devel-
oped in [17]. We will suggest in section 4.1 that the intensional aspect of Game
Semantics can be used for similar purposes.

3 A Common Framework

To get further in the discussion and relate Game Theory and Game Semantics
it is necessary to have a formalism common to both. This has been developed
by Chatterjee, Jagadeesan and Pitcher in [8]. We present some definitions based
on that paper that will help in the following discussion.

3.1 Turn-Based Probabilistic Games

We consider two person games with alternating moves. At each state, exactly
one player can make a move, following which the system may evolve into a new
state with some probability. At this point, the other player can make a move.
Hence, a typical evolution has the form:

The system with players A and B is in state s. In this state A can move
with action a resulting in the system moving to state t from which it
evolves to state ti with probability pi. In this state B can move with
action b and so on.

In [8] this is formalized by a structure ((S,E), (S1, S2, S1•, S2•), δ) where (S,E)
is a graph with nodes S and labelled edges E, (S1, S2, S1•, S2•) is a partition of
S s.t. E ⊆ ∪i(Si × L × Si•) (with L the label set) and δ : Si• → D(S(i+1)%2)
associates a distribution over the states to each target state of a player move,
from which the other player can move.
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We use player A as a synonym for player 1 and player B as a synonym for
player 2. We will consider finite games, i.e. all plays have a finite length.

As argued in [8] this is a general framework for stochastic games, e.g. non
strictly alternating games can be interpreted using dummy moves. To recover
Game Semantics of sequential languages we can use point mass distributions, in
effect eliminating probabilities.

Edges (in E) have rewards associated to them, these are encoded by two maps
r1, r2 with ri : Ei → R where Ei is the set of transition whose source is a state
where player i can move.

As is usual in the literature, a strategy for a player is a method to extend
a play. Given the history of the play where player A can move, a strategy for
A chooses a successor state and an action to extend the play. A pure strategy
is one where this choice is given by a function. A mixed strategy is a choice of
several pure strategies according to some probabilities. Notice however that in a
play, once a strategy is chosen by a player, that player will stick to it along that
particular play, i.e. the same function is used to decide what move to make at
each stage.

Since we can encode histories into states it will be enough to consider history-
free or Markovian strategies, i.e. maps from states to transitions having that state
as origin. Hence by pure strategies in this paper we refer to maps σ, τ : s �→ e
where e = s →l t for some l, t, with σ associated to player 1 and τ to player 2,
and ρ a generic strategy. We will often write transitions as triples (s, l, t).

Given a path in the game tree, i.e. a sequence of transitions P = e1, ..., en we
consider the mean value of this sequence to each player, so

vali(P ) =

∑
j ri(ej)

m

where the transitions ej have source states where player i can move and m is
the number of such transitions in the path P . As usual the probability of the
path P is the product of the probabilities of the edges in P .

A path in a strategy ρ for player i is a path in the game tree where whenever
it is the turn of player i to move, it will use ρ to choose the move. The set of all
paths for ρ is denoted by Πρ.

Given a pair of strategies (σ, τ) the payoff vρ for player i is the expected values
of the mean values of the sequences possible according to (σ, τ), i.e. the payoff
(vσ, vτ ) is defined as

vσ = E{valσ(P ) | P ∈ Πσ ∩Πτ}, vτ = E{valτ (P ) | P ∈ Πσ ∩Πτ}
A Nash equilibrium (N.E.) is a strategy pair (σ∗, τ∗) from which no player has
advantage in deviating unilaterally, i.e.:

∀σ, τ. (vσ , v
∗
τ ) ≤ (v∗σ, v

∗
τ ) ∧ (v∗σ, vτ ) ≤ (v∗σ , v

∗
τ ),

3.2 Game Algebras

An interesting contribution of [8] is to consider how to build up composite games
and in particular how equilibrium solutions are preserved by such constructions.
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The authors present a rich algebra of games which includes operators for syn-
chronous product, restriction, sequencing, iteration, player choice, probabilistic
choice and tensor. Here, we just consider binary player choice – player i is able
to choose between games with player i start states.

We consider rooted game graphs:

GA = ((SA, EA), (SA
1 , S

A
2 , S

A
1•, S

A
2•), δ

A)

and
GB = ((SB , EB), (SB

1 , SB
2 , SB

1•, S
B
2•), δ

B)

with start states sA ∈ SA
i and sB ∈ SB

i . Then the player choice between these
two games, written GA⊕iG

B , is a game graph ((S,E), (S1, S2, S1•, S2•), δ) such
that:

Si = SA
i � SB

i � {〈sA, sB〉}
S(i+1)%2 = SA

(i+1)%2 � SB
(i+1)%2

E = EA � EB � {(〈sA, sB〉, l, t) | (sA, l, t) ∈ EA ∨ (sB, l, t) ∈ EB}
δ = δA � δB

The reward functions are also modified in the following way (for j = 1, 2):

rj(e) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

rAj (e), if e ∈ EA

rAj ((s
A, l, t)), if e = (〈sA, sB〉, l, t) ∧ (sA, l, t) ∈ EA

rBj (e), if e ∈ EB

rBj ((sB , l, t)), if e = (〈sA, sB〉, l, t) ∧ (sB, l, t) ∈ EB

Following [8] we then have that any equilibrium payoff of a component game is an
equilibrium payoff of the choice game if and only if there is no other equilibrium
payoff in the other component with a higher value for player i. The cited paper
discusses similar results for the other games constructions.

4 Payoffs in General Game Semantics

4.1 Some General Remarks

The games algebra from [8] is closely related to game constructions in Game
Semantics, but while that work shows some interactions between equilibria and
constructions on Game Semantics, it doesn’t demonstrate their relevance for
game theoretical problems.

We now consider more general relationships between these theories.
Game Semantics were first introduced in [5,13]. Games are “types” i.e. for

example the game N → N represents the space of programs taking a natural
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number as input and returning a natural number. The basic types are simple
one stage games where the player named Opponent starts by asking a question
(he has only one move available, i.e. a single question) and the player named
Proponent answers the question with a value of that basic type, for example the
boolean game B can be described by the game graph on the left of Figure 2:
Hence each basic value corresponds to a strategy for Proponent. The game graph

Fig. 2. Boolean Game

for B−◦B is in the centre of Figure 2. The affine implication B−◦B is a weaker
form of B → B and represents the type of all algorithms from B to B using
their argument at most once. Notice that the role of Proponent and Opponent
change at each level in the game graph: * is a move for Opponent at the first
level of the game graph but becomes a Proponent move at the second level:
this is the program asking for its input. At the third level Opponent plays data
values: this corresponds to the environment providing values for the program.
Next the program plays a data value which, in the B −◦B example, is the final
value returned by the program.

Programs are interpreted as strategies for Proponent; for example in the game
B−◦B the program that performs the negation of a boolean input is interpreted
by the strategy whose paths in the game graph are ∗ ∗TF, ∗ ∗FT . The constant
programs that do not inspect their argument are: λx.T with path ∗T and λx.F
with path ∗F .

An essential aspect of Game Semantics is composition; composing two strate-
gies corresponds to synchronizing them and hiding their interaction. For example
to compose the strategy for the boolean negation with the constant T -function
results in the following interaction: start by playing the strategy negation, so
to the initial Opponent question play the following question asking for the ar-
gument, now see this question as the initial question for the strategy constant,
hence the strategy constant will answer T , this will be seen as the Opponent
answer to the Proponent question and so Proponent will now play the negation
i.e. F . The crucial point here is that these interactions where Proponent moves
are transferred to the other game as the Opponent moves is then hidden, so the
composition results in the simple strategy in B−◦B that to the initial Opponent
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question answers T . This is illustrated in the right hand side of Figure 2 where
only the first and last move are left once the interaction (dotted arrows) are
factored out.

The important features of Game Semantics include:

1. compositionality
2. trace level description of computational processes
3. abstractions of games available to allow for static analysis of program

behaviours [15]

The formalism introduced in [5] is consistent with the common framework in-
troduced above and treated in more detail in [8]. The reward functions have not
previously been used in the work on programming language semantics1 – we
could assume that the reward functions are constant zero functions.

A first simple question is: can payoffs discriminate different strategies?
The answer is yes: we can distinguish Game Semantics strategies by appro-

priate rewards. For basic types we could just distinguish them by associating as
reward the n+1 where n is the answer move, e.g. in the boolean game F would
have Proponent reward of 1 and T reward 2. To recover Game Semantics com-
position we can think of assigning zero rewards to moves in the hidden part. In
this interpretation hence two programs representing the same function become
indistinguishable in a game theoretical sense.

This simple rewards structure can be elaborated to make finer distinctions,
for example we can make the rewards in the hidden interaction count. e.g. by
“accumulating the rewards in the hidden part” we can get a cost for the length
of computation, so two strategies answering the same number but doing so with
different computational cost will differ. Also complexity distinctions would ap-
pear at this stage, e.g. polynomial vs non-polynomial strategies. A step in this
direction is already taken in [11]. This line of investigation may provide a way
to find the “right payoffs” in a computational setting in the spirit of [17].

5 Game Theory in Game Semantics

We now explore a novel way to think of Game Semantics where Nash equilibrium
becomes a tool for deciding which strategy the system and the environment
should choose, given a particular objective quantified by payoffs. Notice how we
now move the focus, from the classical single strategy game semantics view, to
a space of candidate strategies in a game type.

In the following two examples we play classical Game Theory games in the
context of Game Semantics. This is specially interesting in that these games
enlighten deep issues about social interaction, competition and cooperation.

We interpret these issues in computer science terms of trustworthiness, us-
ability and security.

1 There is however some recent interesting work by Clairambault and Winskel [9] on
payoffs for concurrent games.
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5.1 The Centipede PCF Game

We revisit the centipede game within Game Semantics as follows. Consider the
game

(((B −◦B)−◦B)−◦B)

In this game there is a strategy for Proponent answering immediately the initial
Opponent question and one following the initial Opponent question with another
question about the second rightmost B and so on. By assigning the appropriate
rewards to the answer moves we recover the centipede game. The rewards are as
follows: questions have 0 rewards for both players, the answer T at level 0 has
rewards 3.20 for Proponent and 0.8 for Opponent, the answer F has reward 0
for both players (at any level), the answer T at level i+1 has Proponent reward
2n where n is the Opponent reward for the Opponent T answer at level i and
symmetrically the answer T at level i+ 1 has Opponent reward 2m where m is
the Proponent reward for the Proponent T answer at level i.

We now consider Opponent and Proponent strategies whose first answer is T
and all the following answers are F . This models the centipede game. Hence the
equilibrium would tell us that in this game the rational thing to do is to play the
constant program λx.T . What is the meaning of the equilibrium in this context?
It expresses a mistrust by the system that the environment has any reliability,
e.g. the system fears that the environment will not perform correctly, if at all,
the required computation.

It is easy to see, consistently with the previous discussion about the original
centipede game, how degrees of trust of the system with respect to the environ-
ment could be reflected in the payoffs and so how to make the choices about
what the best thing the system should do given a specific degree of trust.

5.2 The System Administrator Dilemma

In a similar vein we can consider the famous prisoner dilemma game and we
look for a simple interpretation in Game Semantics. In the prisoner dilemma
both players have two options: to cooperate or to not cooperate (defect). Each
player receives his maximum payoff if he defects and the other cooperates, his
minimum if he cooperates and the other player defects, mutual cooperation
provides second best payoff and mutual defection second worst payoff; so for
each player payoffs have the property c > a > d > b where c is defect-cooperate,
a mutual cooperation, d mutual defection and b is cooperate-defect.

Again we can see this as a system and environment game where the system
may want to guarantee security and the environment usability. So the system
may have the highest security by denying all access requests; in fact this is
the only secure strategy in an authentication system. The environment on the
other hand may have interest, from a usability point of view, in bypassing any
authentication by providing access to any request.

We can model this in the space

((N −◦B)−◦B)
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Here Proponent can choose the answer false to the initial opponent question
(defect) or may instead decide to cooperate by choosing the strategy that engages
with the environment by asking the initial question in the authentication module
of type (N−◦B). Here Opponent can choose to answer true and so provide access
to any user or he can act with due diligence and ask for the user credentials at
type N which the system provides, following which Opponent checks the user
credentials and provides an authentication response (true/false, accept/reject)
and based on this answer Proponent can now decide whether to allow user access.

The game theoretical solution is that in the one shot prisoner dilemma the
only Nash equilibrium is for both players to defect: so the system and opponent
are better off not engaging with each other: the system is secure and usable,
because both operate in a vacuum. A major point of debate in the Game Theory
community is that the payoff the players get from both defecting may be much
below the payoff they would get by both cooperating: it would make much more
sense for the system to have its resource used instead of being paralysed under
the fear of unauthorized intrusion.

An interesting twist is in considering the iterated prisoner dilemma. Here we
are hence thinking of something like an operating system where authentication
and resource access are available an unbounded number of times. In this case
the solution favours cooperation and a richer panorama of equilibria with higher
payoff than defection is obtained, e.g. when each player plays cooperation until
the other player defects at which point the player will defect too (this is the
Grim trigger strategy). This strategy well reflects the idea of a good compromise
between usability and security: play nice until the other player plays dirty.

6 Games and Abstraction

Many classic examples in Game Theory like the prisoner dilemma, the centipede
game and prey-predator games can be seen as illustrating the richness and con-
ceptual complexity of rational interaction. However when applying Game Theory
to the real world a state explosion problem often occurs. A large set of actions
or states usually makes equilibrium non-computable; also the conceptual aspect
is obfuscated by such complexity. Some form of ad-hoc abstraction is then in-
troduced for these computational and conceptual reasons.

Our longer term objective is to replace this ad-hoc approach to abstraction by
a more rigorous framework akin to Abstract Interpretation. In [15] we developed
an Abstract Interpretation for Game Semantics; the most salient features of this
abstraction were

1. replacing all data values by a single abstract data value
2. replacing the potentially infinite depth tree game by cyclic graphs

One application of this abstraction was in security, by tracking information flow
along paths in the graphs and, for example, disallowing paths where a “high”
move was followed by an observable “low” move. Similar ideas have been devel-
oped, in the context of access control, by Abramsky and Jagadeesan in [4]. We
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should mention also related work on abstract game semantics which has been
developed by Ghica [12] and Ong [16].

Following our earlier discussion a natural development of this line of work
would be to add payoffs. This would pose two important questions:

1. what are the appropriate payoffs to use in such abstract games?
2. how should we interpret Nash equilibria in the abstract game – what do they

tell us about Nash equilibria in the concrete game?

Most recently, the authors of this paper have been studying the use of Game
Theory in cyber security. In the last decade Game Theory has been increas-
ingly applied in this area. Examples of applications are in the field of intrusion
detection systems, anonymity and privacy, economics of network security and
cryptography: for a survey of these applications we refer to [6].

The basic idea is that many cyber security situations can be modelled in terms
of an Attacker attempting to breach security of the system and/or damaging its
services and a Defender aiming to enhance the system security both in terms
of design and response. The Attacker and the Defender clearly have conflicting
goals that can be quantified in terms of economic gain/loss or disruption time;
even more serious criminal threats like cyber terrorism can, with some effort, be
quantified in a reasonable way. The Attacker and the Defender will, in general,
interact with some knowledge of each others possible actions: to be effective both
players need to be clever or, in Game Theoretical terms, rational. Because of this
the notion of Nash equilibrium, discussed above, is important; an equilibrium
describes a possible outcome of decision makers trying to optimize their gain
while being aware of each others possible actions. Often this will result in mixing
possible actions according to some probability.

Attacker and the Defender are already an abstraction whose appropriateness
is often questionable e.g. when multiple players and coalitions are more appro-
priate. More crucially we tend to abstract on possible behaviours, i.e. while in
the real world a very large number of choices may be possible we abstract them
to few, for example in a cyber-security scenario there could be thousands of
different types of malware leading to botnets but we may find it convenient, or
even indispensable, to reduce them to a small set of “Attacker’s choices”. The
underlying argument is that if they are “similar enough” then the reasoning on
the reduced set is applicable to the original set.

6.1 A Simple Example

If we restrict ourselves for simplicity to the case of games in normal form we
can think of the following scenario: Attacker A can choose between strategies
A1, A2, . . . An with A1 being “no attack” and A2, . . . An being similar poten-
tial malware attacks. Suppose defender D can choose between three strategies,
D1, D2, D3 e.g. D1 could be do nothing, D2 to alert the user, D3 to stop the
service. Suppose moreover that A2, . . . An result in very close payoffs. In most
cases then we would be inclined to translate this into a simpler game where
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A has two strategies A1, A2,...,n with the A2,...,n payoff being a function of the
original payoffs e.g. the average, or the minimum or maximum of the original
payoffs. A stable Nash equilibrium in the simpler game (2 × 3) matrix would
then suggest the following strategy for D in the original n× 3 matrix: Play Dk

with Ai, i>1 with the same probability of playing Dk with A2,...,n in the reduced
game. Intuitively if the A2, . . . An are almost indistinguishable play the same
way with each of them individually.

A concrete example is given in Figure 3 where the Attacker has three choices
(columns) the last two having very similar payoffs and Figure 4 where the two
last choices are reduced to one by averaging. The meaning of the payoff values
should be clear e.g. (10,−22) indicates that blocking malware 2 is very good
for the Defender (value 10) and very bad for the Attacker (value -22). Both
games have a unique and very close Nash equilibrium: in the original Defender
plays 1 (resp 3) with probability 3

7 (resp 4
7 ) and Attacker plays 1 (resp 3) with

probability 15
22 (resp 7

22 ) . In the reduced game equilibrium Defender plays 1 (resp
3) with probability 16

35 (resp 19
35 ) and Attacker plays 1 (resp 2) with probability

15
22 (resp 7

22 ).
A formal way to build this abstraction is to consider the matrices α, γ defined

in Table 1.
The abstraction is given by α and the concretisation by γ. The abstract game

in Figure 4 is obtained by the original game from Figure 3 by multiplying it with
the matrix α.

Fig. 3. The original malware game

Fig. 4. The abstract malware game

Table 1. Matrices α and γ

⎛
⎝

1 0
0 1

2

0 1
2

⎞
⎠

(
1 0 0
0 1 1

)
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The general form of α, γ for a general normal form game is given by γ being
the normalized transpose of α and α is the matrix whose columns are buckets
of columns of the original matrix and coefficients are: αi,j = 0 if i, j are not in
the same bucket, αi,j = 1

n if i, j are in the same bucket and n is the size of the
bucket.

Then γ is the Moore-Penrose pseudo-inverse of α i.e. it satisfies the following
properties:

1. αγα = α
2. γαγ = γ
3. (αγ)∗ = αγ
4. (γα)∗ = γα

An important consequence of γ being the Moore-Penrose pseudo-inverse of α
is that γ provides the least square approximation [10]. In other terms whilst
γα = 1 which, consistently with the classical theory of Abstract Interpretation,
means that the abstraction α is surjective, the other composition αγ provides a
“best fit” (least square) approximation.

The Abstract Interpretation ideas we have sketched here are applicable be-
yond normal form games, e.g. when considering stochastic games, and can be
integrated with Abstract Interpretation of Game Semantics and approximate
bisimulation.

7 Final Remarks

The paper should be seen as an initial roadmap rather than a completed piece of
work. In particular, the role of abstraction in making the approximate solution
of games a tractable problem needs considerably more study.

Some of the seeds of the ideas presented in this paper were sown twenty to
thirty years ago through our joint and separate work with Samson. We wish
Samson many years of continued scientific work and hope, one day, to be able
to discuss our results with him.
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