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Abstract. Quantum logic aims to capture essential quantum mechan-
ical structure in order-theoretic terms. The Achilles’ heel of quantum
logic is the absence of a canonical description of composite systems,
given descriptions of their components. We introduce a framework in
which order-theoretic structure comes with a primitive composition op-
eration. The order is extracted from a generalisation of C*-algebra that
applies to arbitrary dagger symmetric monoidal categories, which also
provide the composition operation. In fact, our construction is entirely
compositional, without any additional assumptions on limits or enrich-
ment. Interpreted in the category of finite-dimensional Hilbert spaces, it
yields the projection lattices of arbitrary finite-dimensional C*-algebras.
Interestingly, there are models that falsify standardly assumed correspon-
dences, most notably the correspondence between noncommutativity of
the algebra and nondistributivity of the order.

It is our great pleasure to dedicate this paper to Samson, who has been a key ar-
chitect of the current multidisciplinary climate, encompassing conceptual math-
ematics and fundamental physics, that now flourishes in many computer science
departments. His contributions to the field over the past three decades have
not only been striking in their own right, but have created a wide spectrum
of opportunities for young scientists from a variety of backgrounds who have a
passion for conceptual depth and true mathematical beauty. We in particular
appreciate his appetite for hiring weirdos, high-maintenance drama queens, and
outlaws–including some of us who were hereby saved from the academic gutter.
If only he wasn’t a ManU fan...

1 Introduction

In 1936, Birkhoff and von Neumann questioned whether the full Hilbert space
structure was needed to capture the essence of quantum mechanics [3]. They
argued that the order-theoretic structure of the closed subspaces of state space,
or equivalently, of the projections of the operator algebra of observables, may
already tell the entire story. To be more precise, we need to consider an order
together with an order-reversing involution on it, a so-called orthocomplemen-
tation, which can also be cast as an orthogonality relation. Support along those
lines comes from Gleason’s theorem [21], which characterises the Born rule in
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terms of order-theoretic structure. In turn, via Wigner’s theorem [43], this fixes
unitarity of the dynamics.

These developments prompted Mackey to formulate his programme for the
mathematical foundations of quantum mechanics: the reconstruction of Hilbert
space from operationally meaningful axioms on an order-theoretic structure [31].
In 1964, Piron “almost” completed that programme for the infinite-dimensional
case [34,35]. Full completion was achieved much more recently, by Solèr in
1995 [40].1

Birkhoff and von Neumann coined the term ‘quantum logic’, in light of the
developments in algebraic logic which were also subject to an order-theoretic
paradigm. In particular they observed that the distributive law for meets and
joins, which is key to the deduction theorem in classical logic, fails to hold for
the lattice of closed subspaces for a Hilbert space [3].

This failure of distributivity and hence the absence of a deduction theorem
resulted in rejection of the quantum ‘logic’ idea by a majority of logicians. How-
ever, while the name quantum logic was retained, many of its researchers also
rejected the direct link to logic, and simply saw quantum logic as the study of
the order-theoretic structure associated to quantum phenomena, as well as other
structural paradigms that were proposed thereafter [20,30].

The Quantum Logic Paradigm

In the Mackey-Piron-Solèr reconstruction, the elements of the partially ordered
set become the projections on the resulting Hilbert space, that is, the self-adjoint
idempotents of the algebra of operators on the Hilbert space:

p ◦ p = p, p† = p. (1)

Conversely, the ordering can be recovered from the composition structure on
these projections:

p ≤ q ⇐⇒ p ◦ q = p, (2)

and the orthogonality relation can be recovered from it, too:

p ⊥ q ⇐⇒ p ◦ q = 0. (3)

In fact, the reconstruction does not produce Hilbert space, but Hilbert space with
superselection rules. That is, depending on the particular nature of the ordering
that we start with, it either produces quantum theory or classical theory, or
combinations thereof.

1 See also the survey [41], which provides a comprehensive overview of the entire
reconstruction, drawing from the fundamental theorem of projective geometry. Re-
constructions of quantum theory have recently seen a great revival [24,6]. In con-
trast to the Piron-Solèr theorem, this more recent work is mainly restricted to the
finite-dimensional case, and focuses on operational axioms concerning how (multiple)
quantum and classical systems interact.
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The presence of “quantumness” is famously heralded in order-theoretic terms
by the failure of the distributive law, giving rise to the following comparison.

classical

quantum
� distributive

nondistributive

This translates as follows to the level of operator algebra.

classical

quantum
� commutative

noncommutative

Thus, the combination yields the following slogan.

distributive

nondistributive
� commutative

noncommutative
(4)

This is indeed the case for the projection lattices of arbitrary von Neumann alge-
bras: the projection lattice is distributive if and only if the algebra is commuta-
tive [36, Proposition 4.16], and has been a guiding thought within the quantum
structures research community.

Categorical Quantum Mechanics

More recently, drawing on modern developments in logic and computer science,
and mainly a branch called type-theory, Abramsky and Coecke introduced a
radically different approach to quantum structures that has gained prominence,
which takes compositional structure as the starting point [1]. Proof-of-concept
was provided by the fact that many quantum information protocols which cru-
cially rely on the description of compound quantum systems could be very suc-
cinctly derived at a high level of abstraction.

In what is now known as categorical quantum mechanics, composition of
systems is treated as a primitive connective, typically as a so-called dagger sym-
metric monoidal category. Additional axioms may then be imposed on such cat-
egories to capture the particular nature of quantum compoundness. In other
words, a set of equations that axiomatise the Hilbert space tensor products is
generalised to a broad range of theories. Importantly, at no point is an underlying
vector-space like structure assumed.

In contrast to quantum logic, this approach led to an abstract language with
high expressive power, that enabled one to address concretely posed problems in
the area of quantum computing (see e.g. [4,12,18,27]) and quantum foundations
(see e.g. [9]), and that has even led to interesting connections between quantum
structures and the structure of natural language [16,8].

One of the key insights of this approach is the fact that many notions that are
primitive in Hilbert space theory, and hence quantum theory, can actually be
recovered in compositional terms. For example, given the pure operations of a
theory, one can define mixed operations in purely compositional terms, which to-
gether give rise to a new dagger symmetric monoidal category [37]. We will refer
to this construction, as (Selinger’s) CPM–construction. While this construction
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applies to arbitrary dagger symmetric monoidal categories (as shown in [7,10]),
Selinger also assumed compactness [29], something that we will also do in this
paper. These structures are called dagger compact categories.

Another example, also crucial to this paper, is the fact that orthonormal
bases can be expressed purely in terms of certain so-called dagger Frobenius
algebras, which only rely on dagger symmetric monoidal structure [15,2]. In
turn, these dagger Frobenius algebras enable one to define derived concepts
such as stochastic maps. All of this still occurs within the language of dagger
symmetric monoidal categories [14]. We will refer to this construction as the
Stoch–construction. Similarly, finite-dimensional C*-algebras can also be realised
as certain dagger Frobenius algebras, internal to the dagger compact category of
finite-dimensional Hilbert spaces and linear maps, the tensor product, and the
linear algebraic adjoint [42].

Recently [11], the authors have proposed a construction, called the CP*–
construction, that generalises this correspondence to certain dagger Frobenius
algebras in arbitrary dagger compact caterories. At the same time, this construc-
tion unifies the CPM–construction and the Stoch-construction, starting from a
given dagger compact category. The resulting structure is an abstract approach
to classical-quantum interaction, with Selinger’s CPM–fragment playing the role
of the “purely quantum”, and the abstract stochastic maps fragment playing the
role of the “purely classical”.2

Overview of this Paper

In this paper, we take this framework of “generalised C*-algebras” as a starting
point, and investigate the structure of the dagger idempotents. We will refer to
these as in short as projections too, since these dagger idempotents provide the
abstract counterpart to projections of concrete C*-algebras.

We show that, just as in the concrete case, one always obtains a partially
ordered set with an orthogonality relation. However, equation (4) breaks down
in general. More specifically, in the dagger compact category of sets and relations
with the Cartesian product as tensor and the relational converse as the dagger,
there are commutative algebras with nondistributive projection lattices.

As mentioned above, the upshot of our approach is that it resolves a prob-
lem that rendered quantum logic useless for modern purposes: providing an order
structure representing compound systems at an abstract level, given the ones de-
scribing the component systems. Since we start with a category with monoidal
structure, of course composition for objects is built in from the start, and it
canonically lifts to algebras thereon. Let us emphasise that our framework relies
solely on dagger categorical and compositional structure: the (sequential) com-
position of morphisms, and the (parallel) tensor product of morphisms. This is a

2 There is an earlier unification of the CPM–construction and the Stoch-
construction [38], into which our construction faithfully embeds, see [11]. How-
ever, this construction does not support the interpretation of “generalised
C*-algebras” [11].
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key improvement over previous work [22,26,23,28] that combines order-theoretic
and compositional structure.3

2 Background

For background on symmetric monoidal categories we refer to the existing liter-
ature on the subject [13]. In particular we will rely on their graphical represen-
tations, which are surveyed in [39].

Diagrams will be read from bottom to top. Wires represent the objects of the
category, while boxes or dots or any other entity with incoming and outcoming
wires – possibly none – represents a morphism, and their type is determined by
the respective number of incoming and outgoing wires. The directions of arrows
on wires represent duals of the compact structure.

Our main objects of study are symmetric Frobenius algebras, defined as fol-
lows. Let us emphasise that this is a larger class of Frobenius algebra than just
the commutative ones, which previous works on categorical quantum mechanics
have mainly considered.

Definition 1. Let (C,⊗, I) be a symmetric monoidal category which carries a
dagger structure, that is, an identity-on-objects contravariant involutive endo-
functor † : Cop → C. A Frobenius algebra in C is an object A of C together
with morphisms

: A⊗A→ A : I → A : A→ A⊗A : A→ I

satisfying the following equations, called associativity (top), coassociativity (bot-
tom), (co)unitality, and the Frobenius condition:

= ==

===

= =

A Frobenius algebra is symmetric when the following equations hold:

= =

A dagger Frobenius algebra is a Frobenius algebra that additionally satisfies the
following equation:

=
( )†

=
( )†

3 The construction in [22] needs the rather strong extra assumption of dagger biprod-
ucts, while the construction in [26] requires the weaker assumption of dagger kernels.
The intersection of both constructions can be made to work, provided one addition-
ally assumes a weak form of additive enrichment [23].
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Symbolically, we denote the multiplication of two points p, q : I → A, that is,

◦ (p⊗ q) : I → A ,

as p · q. Also, since the multiplication fixes its unit, and the dagger fixes the
comultiplication given the multiplication, we will usually represent our algebras

as (A, ).

Remark 2. In [11], rather than symmetry, the stronger condition of normalisabil-
ity is used. As this condition implies symmetry for dagger Frobenius algebras [11,
Theorem 2.6], the results in this paper apply unchanged to normalisable Frobe-
nius algebras.

We write FHilb for the category of finite-dimensional Hilbert spaces and linear
maps, with the tensor product as the monoidal structure, and linear adjoint as
the dagger.

Theorem 3 ([42]). Symmetric dagger Frobenius algebras in FHilb are in 1-
to-1 correspondence with finite-dimensional C*-algebras. 
�
Recall that FHilb is a compact category [29], that is, we can coherently pick a
compact structure on each object as follows. If H is a Hilbert space and H∗ is
its conjugate space, the triple

(
H, εH : C → H∗ ⊗H

1 �→ ∑
i |i〉 ⊗ |i〉 ,

ηH : H⊗H∗ → C

|ψ〉 ⊗ |φ〉 �→ 〈ψ|φ〉
)

is a compact structure which can be shown to be independent of the choice of
basis–see [13] for more details. We depict the maps εH and ηH respectively as:

and compactness means that they satisfy:

= = .

Each symmetric dagger Fobenius algebra also canonically induces a ‘self-dual’
compact structure. The cups and caps of this compact structure are given by:

:= := ,

and one easily verifies that it follows from the axioms of a symmetric Frobenius
algebra that the required ‘yanking’ conditions hold:

= = .
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3 Abstract Projections

A projection of a C*-algebra is a *-idempotent. In this section we will recast this
definition in light of Theorem 3, that is, we will identify what these projections
are when a C*-algebra is presented as a symmetric dagger Frobenius algebra in
FHilb, as in [42].

We claim that the projections of a C*-algebra arise as points p : I → H
satisfying:

=

pp p

=
p

(5)

where the symmetric dagger Frobenius algebra is the one induced by Theorem

3. Note that the first condition is simply idempotence of -multiplication of
points, and the second one is self-conjugateness with respect to the compact
structure induced by the symmetric dagger Frobenius algebra. Symbolically, we
denote this conjugate of p as p∗.

A C*-algebra is realised as a symmetric dagger Frobenius algebra as follows.
Each finite dimensional C*-algebra decomposes as a direct sum of matrix al-
gebras. These can then be represented as endomorphism monoids End(H) in
FHilb, which are triples of the following form:
(
H∗⊗H , 1H∗⊗ηH⊗1H : (H∗⊗H)⊗(H∗⊗H) → H∗⊗H , εH : C → H∗⊗H

)
,

Diagrammatically, for an endomorphism monoid the multiplication and its unit
respectively are:

The elements ρ : Cn → Cn of the matrix algebra are then represented by under-
lying points:

pρ := ρ : C → (Cn)∗ ⊗ C
n

By compactness, each point of type C → (Cn)∗⊗Cn is of this form. By Theorem 3
we know that all symmetric dagger Frobenius algebras in FHilb arise in this
manner.

We can now verify the above stated claim on how the projections of a C*-
algebra arise in this representation. For these points pρ the conditions of equa-
tion (5) respectively become:

ρ ρ
=

ρ

ρ
= ρ =

ρ†

=
ρ†
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that is, using again compactness, ρ ◦ ρ = ρ = ρ†, i.e. idempotence and self-
adjointness.

We can now generalise the definition of projection to points p : I → A to

arbitrary symmetric dagger Frobenius algebras (A, ) in any dagger symmetric
monoidal category.

Definition 4. A projection of a symmetric dagger Frobenius algebra (A, )
in a dagger symmetric monoidal category C is a morphism p : I → A satisfying
equations (5).

The next section studies the structure of these generalised projections of abstract
C*-algebras.

Before that, we compare abstract projections to copyable points. These played
a key role for commutative abstract C*-algebras, because they correspond to the
elements of an orthonormal basis that determines the algebra [15]. However, as
we will now see, in the noncommutative case, there simply do not exist enough
copyable points (whereas the projections do have interesting structure, as the
next section shows). Recall that a point x : I → A is copyable when the following
equation is satisfied.

=

x x x

(6)

Lemma 5. Copyable points of symmetric dagger Frobenius algebras are central.

Proof. Graphically:

x

=

x

x= x = xx =

x

=

x

.

The middle equation follows from symmetry of (A, ). 
�
Let us examine what this implies for the example of A = (Cn)∗ ⊗ Cn in FHilb

above. Equivalently, we may speak about n-by-n matrices, so that becomes
actual matrix multiplication. Because it is well known that the central elements
of matrix algebras are precisely the scalars, any copyable point is simply a scalar
by the previous lemma. But substituting back into (6) shows that the only scalar
satisfying this equation is 0 (unless n = 1). That is, no noncommutative sym-
metric dagger Frobenius algebra in FHilb can have nontrivial copyable points.
This explains why we prefer to work with (abstract) projections.

4 Quantum Logics for Abstract C*-Algebras

Definition 6. A zero projection of (A, ) is a projection 0: I → A satisfying

0 · p = 0

for all other projections p : I → A of (A, ).
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We will assume that an algebra always has a zero projection.

Definition 7. An orthogonality relation is a binary relation satisfying the fol-
lowing axioms:

– symmetry: a ⊥ b ⇐⇒ b ⊥ a ;
– antireflexivity above zero: a ⊥ a =⇒ a = 0 ;
– downward closure: a ≤ a′, b ≤ b′, a′ ⊥ b′ =⇒ a ⊥ b .

Lemma 8. We have

=

Proof. First, note the following stardard equation for Frobenius algebras:

= = =

Then, the result follows from associativity:

= = = = .


�
Lemma 9. For projections we have:

(i) (p · q)∗ = q∗ · p∗ ;
(ii) If p · q is a projection, then p · q = q · p.
Proof. (i) We have

(p·q)∗ =

⎛

⎝
qp

⎞

⎠

∗

=
p q

=

p q

=

pq

= q∗·p∗ ,

where the middle equation follows from Lemma 8. (ii) If p · q = r then, by self-
conjugateness of projections and (i), q · p = q∗ · p∗ = (p · q)∗ = r∗ = r = p · q. 
�
Theorem 10. In a dagger symmetric monoidal category, projections on a sym-
metric dagger Frobenius algebra with a zero projection are partially ordered and
come with an orthogonality relation.

Proof. The order is defined as p ≤ q ⇐⇒ p · q = p. Reflexivity follows by the
idempotence of projections. If p · q = p and q · p = q then by Lemma 9 (ii)
we have p = q, so the order is anti-symmetric. If p · q = p and q · r = q then
p · r = p · q · r = p · q = p, so the order is transitive.



30 B. Coecke, C. Heunen, and A. Kissinger

Orthogonality is defined as p ⊥ q ⇐⇒ p · q = 0. Symmetry follows by Lemma
9 (ii) and anti-reflexivity above 0 by idempotence of projections. If p · p′ = p,
q · q′ = q and p′ · q′ = 0 then p · q = p · p′ · q′ · q = p · 0 · q = p · 0 = 0 where we
twice relied on Lemma 9 (ii). 
�

Remark 11. The zero projection guarantees that the partially ordered set has a
bottom element.

Given a symmetric dagger Frobenius algebra (A, ), we will denote the partial

order and orthogonality of the previous theorem as Proj(A, ). The following
two examples correspond to the “pure classical” and the “pure quantum” in the
“concrete” case of FHilb.

Example 12. Commutative dagger special Frobenius algebras (H, ) in FHilb

correspond to orthonormal bases of H [15]. For Proj(H, ), we obtain the
atomistic Boolean algebra whose atoms are the 1-dimensional projections on the
basis vectors.

Example 13. If H is a finite-dimensional Hilbert space with any chosen compact
structure on it, then L(H) = (H∗ ⊗H, ) is a symmetric dagger Frobenius
algebra in FHilb. For Proj(L(H)) we obtain the usual projection lattice of
projections H → H , the paradigmatic example in [3].

Remark 14. In [11], it is shown that algebras of the form (A∗⊗A, ) are those
that realise Selinger’s CPM–construction as a fragment of the encompassing
CP*–construction. The commutative dagger special Frobenius algebras were the
ones used to underpin abstract categories of stochastic maps in [14].

Proposition 15. Let (A, ) be any symmetric dagger Frobenius algebra in

any dagger symmetric monoidal category. For p, q ∈ Proj(A, ), the following
are equivalent:

(a) p and q commute;

(b) p · q ∈ Proj(A, );

(c) p · q is the greatest lower bound of p and q in the partial order Proj(A, ).

Proof. Unfold the definitions of Theorem 10. 
�

In general, every commutative monoid of idempotents is a meet-semilattice with
respect to the order p ≤ q ⇐⇒ p · q = p, and if it is furthermore finite, then
it is even a (complete) lattice. As shown in [14], in this case the notion of an
idempotent can be generalised to arbitrary types A → B. Considered together
for all algebras, this always yields a cartesian bicategory of relations in the sense
of Carboni-Walters [5]. The conclusion we draw from the previous proposition is
the following: considering noncommutative algebras obstructs the construction
of the categorical operation of composition.
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5 Composing Quantum Logics

Given two symmetric dagger Frobenius algebras we can define their tensor as
follows.

(A, )⊗ (B, ) := (A⊗B, )

It is easily seen to inherit the entire algebraic structure. So we can define a
compositional structure on the corresponding partial orders with orthogonality
as follows.

Proj(A, )⊗ Proj(B, ) := Proj(A⊗ B, ) .

By a bi-order map we mean a function of two variables that preserves the order
in each argument separately when the other one is fixed (cf. bilinearity of the
tensor product).

Theorem 16. The following is a bi-order map.

−⊗− : Proj(A, )× Proj(B, ) → Proj(A, )⊗ Proj(B, )

(p, q) �→ p⊗ q

If the monoidal structure moreover preserves zeros, that is, if 0A is a (necessarily
unique) zero with respect to A then for all q : I → B we have that 0A ⊗ q is a
zero with respect to A⊗B, then the map −⊗− also preserves orthogonality in
each component.

Proof. If p · p′ = p then:

(p⊗ q) · (p′ ⊗ q) =
p′p qq

=
p′p qq

= (p · p′)⊗ (q · q) = p⊗ q .

If p · p′ = 0 then (p⊗ q) · (p′ ⊗ q) = (p · p′)⊗ (q · q) = 0A ⊗ q = 0A⊗B. 
�
Remark 17. The assumption of the existence of zero projections as well as the
assumption of monoidal structure preserving zeros, are both comprehended by
the single assumption of the existence of a “zero scalar”, that is, a morphism
0I : I → I such that for any other morphisms f, g : A → B we have that
0I ⊗ f = 0I ⊗ g. We can then define zero projections 0A := λA ◦ (0I ⊗ 1A) ◦ λ−1

A

where λA : A � I ⊗A.

6 Commutativity versus Distributivity

Having abstracted projection lattices to the setting of arbitrary dagger symmet-
ric monoidal categories, we can now consider other models than Hilbert spaces.

We will be interested in the category Rel of sets and relations, where the
monoidal structure is taken to be Cartesian product, and the dagger is given by
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relational converse. This setting will provide a counterexample to equation (4).
Here, symmetric dagger Frobenius algebras were identified by Pavlovic (in the
commutative case) and Heunen–Contreras–Cattaneo (in general) in [33] and [25],
respectively. They are in 1-to-1 correspondence with small groupoids. As it turns
out, even in the commutative case, groupoids may yield nondistributive projec-
tion lattices.

Proposition 18. Let G be a groupoid, and (G, ) the corresponding sym-

metric dagger Frobenius algebra in Rel. Elements of Proj(G, ) are in 1-to-1
correspondence with subgroupoids of G, i.e. subcategories of G that are groupoids
themselves.

Proof. This follows directly from [25, Theorem 16]. 
�

It immediately follows that in Rel, like in FHilb, the abstract projection lattice
is a complete lattice, even though we are not dealing with finite sets.

Corollary 19. If (G, ) is a symmetric dagger Frobenius algebra in Rel, then

Proj(G, ) forms a complete lattice.

Proof. The collection of subgroupoids is closed under arbitrary intersections. 
�

In fact, for our counterexample to equation (4), it suffices to consider groups
(i.e. single-object groupoids). In this case abstract projections correspond to
subgroups, and it is known precisely under which conditions the lattice of sub-
groupoids is distributive, thanks to the following classical theorem due to Ore.
A group is locally cyclic when any finite subset of its elements generates a cyclic
group.

Theorem 20. The lattice of subgroups of a group G is distributive if and only
if G is abelian and locally cyclic.

Proof. See [32, Theorem 4]. 
�

Perhaps the simplest example of an abelian group that is not locally cyclic is
Z2 × Z2. It has three nontrivial subgroups, namely:

a := Z2 × {0};
b := {(0, 0), (1, 1)};
c := {0} × Z2.

But evidently distributivity breaks down: a ∧ (b ∨ c) = a �= 0 = (a ∧ b) ∨ (a ∧ c).
By Theorem 20, we know that the converse (distributive =⇒ commutative)

holds for groups, but what about for arbitrary groupoids. Consider the groupoid
with two objects x, y and the only non-identity arrows f : x→ y and f−1 : y →
x. The lattice of subgroupoids has the following Hasse diagram:
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{1x, 1y, f, f−1}

{1x}

{1x, 1y}

{1y}

∅
which is indeed distributive, but f ◦ f−1 �= f−1 ◦ f . Thus we have proven the
following corollary.

Corollary 21. For symmetric dagger Frobenius algebras (G, ) in Rel:

(G, ) is commutative
� ��

Proj(G, ) is distributive.���


�
Let us finish by remarking on the copyable points in Rel. As in FHilb, they
differ from the projections. But unlike in FHilb, where there are only trivial
copyable points, copyable points in Rel are more interesting, for similar reasons
as the above corollary.

Lemma 22. If (G, ) is a symmetric dagger Frobenius algebra in Rel corre-
sponding to a groupoid G, then its copyable points correspond to the connected
components of G.

Proof. A point x of G in Rel corresponds to a subset X ⊆ Mor(G). Copyability
now means precisely that

X2 = {(g, fg−1) | f ∈ X, g ∈ Mor(G), dom(f) = dom(g)}.

Hence if f ∈ X , and g ∈ Mor(G) has dom(f) = dom(g), then also g ∈ X .
Because G is a groupoid, this means that X is precisely (the set of morphisms
of a) connected component of G. 
�

7 Further Work

From the point of view of traditional quantum logic, a number of questions arise,
in particular about which categorical structure yields which order structure:

– when is the orthogonality relation an orthocomplementation?
– when do we obtain an orthoposet?
– when do we obtain an orthomodular poset?
– when is the partial order a (complete) lattice?
– when is this lattice Boolean, modular or orthomodular?
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Conversely, what does the lattice structure say about the category? An important
first step is the characterisation of dagger Frobenius algebras in more example
categories besides FHilb and Rel.

There is a clear intuition of the comultiplication of the algebra being a “logical
broadcasting operation” in the sense of [17]. A more general question then arises
on the general operational significance of the partial ordering and orthogonality
relation constructed in this paper.

One of the more recent compelling results which emerged from quantum logic
is the Faure-Moore-Piron theorem [19] on the reconstruction of dynamics from
the lattice structure together with the its operational interpretation. A key ingre-
dient is the reliance on Galois adjoints. Does this construction have a counterpart
within our framework, and its (to still be understood) operational significance?
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