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Abstract. Quantum communication and cryptographic protocols are
well on the way to becoming an important practical technology. Although
a large amount of successful research has been done on proving their cor-
rectness, most of this work does not make use of familiar techniques from
formal methods such as formal logics for specification, formal modelling
languages, separation of levels of abstraction, and compositional anal-
ysis. We argue that these techniques will be necessary for the analysis
of large-scale systems that combine quantum and classical components.
We summarize the results of our investigation using different approaches:
behavioural equivalence in process calculus, model-checking and equiva-
lence checking. Quantum teleportation is used as an example to illustrate
our techniques.

Prologue

We were both PhD students of Samson Abramsky, in the Theory and Formal
Methods group, which he led, in the Department of Computing at Imperial Col-
lege London. During our time at Imperial in the early 1990s, the group provided
a superbly stimulating and well-resourced environment and established many
lasting friendships. Samson’s involvement in the “CONFER” project enabled us
to go to a number of workshops around Europe, meeting other researchers and
PhD students who remain colleagues to this day.

Samson’s big ideas during that time were game semantics and interaction
categories, both of which made use of structures drawn from the development
of linear logic. Game semantics led to the definition of fully abstract models of
functional programming languages, while interaction categories [2,3] aimed to
provide a Curry-Howard-style logical basis for typed concurrent programming.
Both of us worked on interaction categories; indeed, we worked closely together
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during the overlapping period of our PhDs. After he had provided the basic
theory of interaction categories (and there was a lot of it!), Samson gave us the
freedom to explore its consequences and develop applications and examples.

In 1995 Samson moved to Edinburgh, and Simon moved to Royal Holloway
to take up a lectureship. Game semantics became a large, active and successful
research area, which occupied Samson for several more years. Simon’s attention
switched to π-calculus, which had been a sideline during his PhD, and especially
to the topic of session types. Raja remained at Imperial for a few more years,
working as a researcher on a joint project led by Chris Hankin and Samson.

In 2000, all of us relocated: Samson moved to Oxford, Simon to Glasgow
and Raja took up a lectureship at Warwick. Around this time, both Raja and
Samson independently became interested in quantum computing. Raja’s interest
was in the use of formal methods, successfully developed in classical computing,
to analyse and verify quantum protocols. He recruited Simon to collaborate on
an early application [27] of process calculus and model-checking to quantum
systems. Simon’s attention had also been caught by Peter Selinger’s paper [29]
on the denotational semantics of a quantum programming language, and there
seemed to be exciting opportunities for new applications of familiar techniques
from theoretical computer science. Samson, with Bob Coecke, developed the
programme of categorical quantum mechanics [4], based on various elaborations
of compact closed categories—a connection, at least formally, with interaction
categories.

Thus we again found ourselves working in the same area as Samson, and
enjoyed being involved in the development of these new angles on quantum
information processing, drawing on techniques and tools from semantics. Ian
Mackie and Simon organised the EPSRC-funded QNET network, with strong
involvement and support from Samson’s group in Oxford, which led to several
successful workshops and the book Semantic Techniques in Quantum Computa-
tion [16], and has been followed by the Computer Science and Physics network
run by Samson, Bob Coecke, Andreas Döring and Jamie Vicary.

The present paper, which we are delighted to be able to contribute to Samson’s
Festschrift volume, combines an introduction to the field of quantum informa-
tion, and an overview of our own work in this area.

1 Introduction

Quantum computing and quantum communication (more generally, quantum
information processing) appear in the media from time to time, usually with
misleading statements about the principles of quantum mechanics, the nature of
quantum information processing, and the power of quantum algorithms. In this
article, we begin by clarifying the fundamental concepts of quantum information
and discussing what quantum computing systems are and are not capable of.
We then outline several reasons for being interested in quantum information
processing. Moving on to the main theme, we first motivate the application
of formal methods to quantum information processing. We then describe the



266 S.J. Gay and R. Nagarajan

different techniques we have used in specification and verification of quantum
protocols, illustrating them with an example.

There are several reasons to be interested in quantum information process-
ing. First, the subject is really about understanding the information-processing
power permitted by the laws of physics, and this is a fundamental scientific ques-
tion. Second, quantum algorithms might help to solve certain classes of problem
more efficiently; if, however, NP-complete problems cannot be solved efficiently
even by a quantum computer, then understanding why not is also a question of
fundamental interest. Third, quantum cryptography provides a neat answer, in
advance, to any threat that quantum computing might pose to classical cryp-
tography. Fourth, as integrated circuit components become smaller, quantum
effects become more difficult to avoid. Quantum computing might be necessary
in order to continue the historical trend of miniaturization, even if it offers no
complexity-theoretic improvement. Finally, Feynman [15] suggested that quan-
tum computers could be used to simulate complex (quantum) physical systems
whose behaviour is hard to analyze classically.

Will QIP become practically significant? Some aspects are already practical:
there are companies selling Quantum Key Distribution systems today. Whether
or not there is a real demand for quantum cryptography remains to be seen, but it
seems likely that the promise of absolute security will attract organizations that
feel they cannot take any chances. Quantum computing seems to be feasible in
principle, although there are still formidable scientific and engineering challenges.
But many experimental groups are working hard, and physicists and engineers
are very clever. Remember that in 1949 the statement “In the future, computers
may weigh no more than 1.5 tonnes” was a speculative prediction.

The remainder of this paper is organised as follows. In Section 2 we give
a brief introduction to the main ideas of quantum information processing. In
Section 3 we motivate the development of formal methods for quantum sys-
tems, and introduce the three strands that we have been working on. In Sec-
tions 4, 5 and 6 we explain, in turn, the use of process calculus, model-checking,
and equivalence-checking, using quantum teleportation as an example in each
case. Finally, Section 7 concludes.

2 Quantum Information Processing

The idea of quantum information processing (QIP) is to represent information
by means of physical systems whose behaviour must be described by the laws of
quantum physics. Typically this means very small systems, such as a single atom
(in which the spin state, up or down, gives the basic binary distinction necessary
for digital information representation) or a single photon (in which polarization
directions are used). Information is then processed by means of operations that
arise from quantum physics. Quantum mechanics leads to several fundamental
properties of quantum information, which between them lead to various counter-
intuitive effects and the possiblity of behaviour that cannot occur in classical
systems.



Techniques for Formal Modelling and Analysis of Quantum Systems 267

2.1 Superposition

The state of a classical bit is either 0 or 1. The state of a quantum bit (qubit)
is α|0〉+ β|1〉, where the states |0〉 and |1〉 are the basis states (in the standard
or computational basis). In general, α and β are complex numbers and |α|2 +
|β|2 = 1. If both α and β are non-zero, then the state is a superposition of
the basis states, for example 1√

2
|0〉 − 1√

2
|1〉. It is not correct to say, as often

stated in the media, that a qubit can be in two states at once. It is in one state,
but that state may be a superposition of the basis states. Note that any two
orthogonal states may form a basis. For example, the pair { 1√

2
|0〉+ 1√

2
|1〉, 1√

2
|0〉−

1√
2
|1〉}, sometimes written {|+〉, |−〉}, forms the Hadamard basis. Although we

often work with the standard basis, it does not have a privileged status; indeed,
whether or not a particular quantum state is regarded as a superposition depends
on the choice of basis. The state |+〉 is in a superposition with respect to the
standard basis, but not with respect to the Hadamard basis.

2.2 Measurement

It is not possible to inspect the contents of a quantum state. The most we can
do is a measurement. Measuring a qubit that is in state α|0〉 + β|1〉, in the
standard basis, has a random result: with probability |α|2 the result is |0〉, and
with probability |β|2 the result is |1〉. After the measurement, the qubit is in the
basis state corresponding to the result.

2.3 Operations on a Superposition

An operation acts on every basis state in a superposition. For example, starting
with the three-qubit state 1

2 |000〉+ 1
2 |010〉 − 1

2 |110〉 − 1
2 |111〉 and applying the

operation “invert the second bit” produces the state 1
2 |010〉+ 1

2 |000〉− 1
2 |100〉−

1
2 |101〉. This is sometimes known as quantum parallelism and in the media it is
often described as carrying out an operation simultaneously on a large number
of values. However, it is not possible to discover the results of these simultaneous
operations. A measurement would produce just one of the basis states. This is
absolutely not a straightforward route to “parallelism for free”.

2.4 No Cloning

It is not possible to define an operation that reliably makes a perfect copy of an
unknown quantum state. This is known as the no cloning theorem. It contrasts
sharply with the classical situation, where the existence of uniform copying pro-
cedures is one of the main advantages of digital information. Every word in the
statement of the no cloning theorem is significant. For example, with the knowl-
edge that a given qubit is either |0〉 or |1〉, it is possible to discover its state (by
means of a simple measurement) and then set another qubit to the same state,
thus creating a copy. It is also possible in general to create approximate copies,
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or to copy with a certain probability of perfect success but a certain probability
of complete failure. It is possible to transfer an unknown quantum state from
one physical carrier to another, but the process destroys the original state. This
is known as quantum teleportation, and we will return to it later.

2.5 Entanglement

The states of two or more qubits can be correlated in a way that is stronger than
any possible classical correlation. An example is the two-qubit state 1√

2
|00〉 +

1√
2
|11〉. Measuring either qubit produces, with equal probability, the state |00〉

or |11〉. Measuring the other qubit is then guaranteed to produce the same result
as the first measurement. This correlation is preserved by quantum operations
on the state, in a way that cannot be reproduced classically. This phenomenon
is called entanglement and it is a key resource for quantum algorithms and
communication protocols.

3 Formal Methods for QIP

The correctness of quantum algorithms and protocols can be analyzed math-
ematically. Simple protocols such as teleportation can be checked with a few
lines of algebra, Shor’s [30] and Grover’s [23] algorithms have been extensively
studied, and Mayers [26] and others have proved the security of quantum key
distribution. But what about systems, which are constructed from separate com-
ponents and combine quantum and classical computation and communication?
Experience in classical computing science has shown that correctness of a com-
plete implemented system is a very different question from correctness of the
idealized mathematical protocol that it claims to implement. This is the raison
d’être of the field of formal methods.

Our 2002 paper [27] suggested applying formal methods to quantum systems,
with the same motivation as for classical systems:

– formal modelling languages, for unambiguous definitions;
– analysis of systems, rather than idealized situations;
– systematic verification methodologies, rather than ad hoc reasoning;
– the possibility of tool support.

We have been working on three strands: (1) the quantum process calculus CQP
[17,19], partly in collaboration with Davidson [11]; (2) quantum model-checking
based on temporal logic, in collaboration with Papanikolaou [20,21,28]; (3) quan-
tum equivalence-checking, in collaboration with Ardeshir-Larijani [5]. Our work
on process calculus has focussed on the development of basic theory, leading up
to the definition of behavioural equivalence. This approach has also been studied
by Ying et al., who have developed qCCS [32]. Our work on model-checking uses
a different style of specification language, more closely related to Promela. Some
further work [10] makes connections between these two themes. Related work on
model-checking include [7,14]. Our most recent work addresses the question of
equivalence of sequential quantum programs, expressed in a language based on
Selinger’s QPL [29].
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4 Quantum Teleportation in CQP

Teleportation [8] is a protocol for transferring an unknown qubit state from one
participant, Alice, to another, Bob. The protocol uses classical communication
— in fact, communication of just two classical bits — to achieve the transfer of
a quantum state which is specified by two complex numbers. The trick is that
there must be some pre-existing entanglement, shared by Alice and Bob.

Let x and y refer to two qubits that, together, are in the entangled state
1√
2
|00〉 + 1√

2
|11〉. Let u be a qubit in an unknown state, that is given to Alice.

The protocol consists of the following steps.

1. Alice applies the controlled not (CNot) operator to u and x. This is a two-
qubit operator whose effect on each basis state is to invert the second bit if
and only if the first bit is 1.

2. Alice applies the Hadamard (H) operator to x. This operator is a change of
basis from {|0〉, |1〉} to { 1√

2
(|0〉+ |1〉), 1√

2
(|0〉 − |1〉)}.

3. Alice measures u and x, obtaining a two-bit classical result.
4. Alice sends this two-bit classical value to Bob.
5. Bob uses this classical value to determine which of four so-called Pauli op-

erators I, X, Y or Z should be applied to y. In the definition below, we use
the notation σ0 = I, σ1 = X, σ2 = Z, σ3 = Y. (This is non-standard but con-
venient for this example; usually σ2 and σ3 are exchanged). The operators
are defined as follows:

I : identity
X : |0〉 �→ |1〉 |1〉 �→ |0〉
Y : |0〉 �→ i|1〉 |1〉 �→ −i|0〉
Z : |0〉 �→ |0〉 |1〉 �→ −|1〉

6. The state of y is now the original state of u (and u has lost its original state
and is in a basis state).

Although the measurement in step 3 has a probabilistic result, the use of the
classical value to determine a compensating operation in step 5 means that the
complete protocol is deterministic in its effect on the state of Bob’s qubit.

The teleportation protocol is often described by the circuit diagram in
Figure 1.

The following definitions in the process calculus CQP (Communicating Quan-
tum Processes) [17,19] model the teleportation protocol. Alice, Bob and Teleport
are processes; q is a formal parameter representing a qubit; in, out , a and b are
formal parameters representing channels; c is a private channel; x, y are local
names for freshly allocated qubits, which will be instantiated with the names of
actual qubits during execution. The language is based on pi-calculus and most
of the syntax should be familiar.
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|ψ〉 • H
��

�� •

|0〉 �����	
� �����	
�
��

��

|0〉 H • X Z |ψ〉

Fig. 1. Quantum teleportation as a circuit diagram

Alice(q, in , out) = in?[u] . {u, q ∗= CNot} . {u ∗= H} . out ![measure u, q] .0
Bob(q, in , out) = in?[r] . {y ∗= σr} . out![y] .0
Teleport(a, b) = (qbit x, y)({x ∗= H} . {x, y ∗= CNot} .

(new c)(Alice(x, a, c) | Bob(y, c, b))
In Teleport , the actions before (new c) put the qubits x and y into the necessary
entangled state. In order to help with writing a specification, Alice is given the
qubit to be teleported as a message on channel in , and at the end of the protocol,
Bob outputs the final qubit on out .

CQP has an operational semantics defined by labelled transition rules; it also
has a type system in which the no cloning theorem is represented by linear
typing. The example above, for simplicity, does not include type declarations.

The desired behaviour of teleportation is that a qubit (quantum state) is
received on a and the same quantum state is sent on b; the protocol should
behave like an identity operation:

Identity(a, b) = a?[x] . b![x] .0

We can now write a specification of teleportation:

Teleport(a, b) ∼= Identity(a, b)

where ∼= is a behavioural equivalence. Equivalent processes cannot be distin-
guished by any observer: they output the same values in the same circumstances,
they produce the same probability distributions of measurement results, and in
general interact in the same way with their environment.

As usual, we would like behavioural equivalence to be a congruence:

∀P,Q,C. P ∼= Q⇒ C[P ] ∼= C[Q]

where C is a process context. Congruence supports equational reasoning, and the
universal composability properties defined by Canetti [9] in a different setting.
Developing a congruence for a quantum process calculus was an open problem
for several years [24], but very recently we have defined a congruence for CQP
[11] and Feng et al. have independently defined one for qCCS [13]. Our equiv-
alence is a form of probabilistic branching bisimulation [31], with appropriate
extensions to deal with the quantum state. We have proved that the specification
of teleportation is satisfied. The work on bisimulation and congruence for CQP
is joint with Tim Davidson.
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5 Model-Checking for Quantum Protocols

In this section we introduce the QuantumModel Checker (QMC) and its applica-
tion to the verification of quantum protocols. QMC, which we have implemented
together with Nick Papanikolaou, is a software tool. It automatically explores all
possible behaviours arising from a protocol model, and enables logic properties
expressed with Quantum Computation Tree Logic (QCTL) [6] to be checked
over the resulting structure.

In QMC, the quantum state |ψ〉 is represented internally in an implicit way:
rather than storing the so-called state vector representation of |ψ〉 (which grows
exponentially in length as a function of the total number of qubits in |ψ〉), we
use the stabilizer array representation [1], which is a binary representation of
the set of Pauli operators that fix (or stabilize) |ψ〉. Using the stabilizer array
representation, we gain significant computational benefits in terms of both space
and time when simulating a given protocol, given that simulation of stabilizer
circuits is performed using a polynomial time algorithm and the representation
of the state grows polynomially with the total number of qubits.

5.1 Quantum Teleportation in QMC

We have designed an imperative-style concurrent specification language for the
needs of the quantum model-checking tool QMC. For the purpose of this paper,
we will demonstrate the syntax of this language by example. In this language the
teleportation protocol (assuming we are trying to teleport the state |ψ〉 = |0〉)
may be expressed by the program in Figure 2. Working within the stabilizer
formalism, we can teleport any of the one-qubit stabilizer states: |0〉, |1〉, 1√

2
(|0〉±

|1〉), 1√
2
(|0〉 ± i|1〉).

In our setting, we allow for global variables (such as e1, e2), typed com-
munication channels (such as ch) which are always global, and local (private)
variables for each process (such as a,b,c,d,q). Communication is asynchronous,
with executability rules restricting the way in which process interleaving is per-
formed. For instance, the process Bob cannot start unless channel ch is filled
with a value.

A protocol model will always consist of definitions of one or more processes;
the commands performed by each of these processes must be interleaved (so as
to emulate concurrent execution), and non–determinism (which occurs explicitly
in selection structures (if :: a -> . . . :: b -> . . . fi) and implicitly when mea-
surements are performed) must be resolved, producing an execution tree for the
modelled system.

5.2 Specifying Properties

The properties of quantum protocols which we are interested in reasoning about
are properties of the quantum state (e.g. which qubits are ‘active’ in a given
state, which qubits are entangled with the rest of the system) over time. We are
also interested in the outcomes of measurements, and the way in which the values
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program Teleport;

var e1,e2:qubit; ch:channel of integer;

process Alice;

var q:qubit; a,b:integer;

begin

q := newqubit;

e1 := newqubit; e2 := newqubit;

had e1; cnot e1 e2;

cnot q e1; had q;

a := meas q;

b := meas e1;

ch!a; ch!b;

end;

process Bob;

var c,d: integer;

begin

ch?c; ch?d;

if

:: ((c=1) and (d=0)) -> X q; break;

:: ((c=0) and (d=1)) -> Z q; break;

:: ((c=1) and (d=1)) -> X q; Z q; break;

:: ((c=0) and (d=0)) -> break;

fi

end;

endprogram.

Fig. 2. QMC source program for quantum teleportation

of classical variables evolve. We use quantum computation tree logic (QCTL) [6]
for this purpose.

QCTL adds the usual temporal connectives (AX, EF, EU) of computational
tree logic [12] to the propositional logic EQPL [25]. The meaning of formulae in
EQPL is expressed in terms of valuations, which are truth-value assignments for
the symbols qb0, qb1, . . . , qbn corresponding to each qubit in the system. For in-
stance, the quantum state 1√

2
(|00〉+ |11〉) is understood as a pair of valuations

(v1, v2) for a 2-qubit system such that v1(qb0) = 0, v1(qb1) = 0, v2(qb0) = 1,
v2(qb1) = 1.

The formulae accepted by the QMC tool for verification allow the user to
reason about the state of individual qubits, and involve usual logical connectives
such as negation and implication. There are two levels of formulae: classical for-
mulae, which hold only if all valuations in a state satisfy them, and quantum
formulae, which are essentially logical combinations of classical formulae. For in-
stance, the quantum conjunction in the formula φ1 � φ2 is only satisfied if both
the classical formulae φ1 and φ2 are satisfied in the current state. A particularly
distinctive type of quantum formula is of the form [Q], where Q is a list of qubit
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variables qbi, qbj , . . .; this type of formula is satisfied only if the qubits listed are
disentangled from all other qubits in the system.

Example of Property for Verification. The requirement for the teleporta-
tion protocol is that, at the end of the protocol, no matter what the measurement
outcomes, the third qubit will be in the same state as the first qubit was to begin
with, and this qubit will be disentangled from the rest of the system. We can
express this requirement, for the case where the input is the quantum state |0〉,
in the input language of QMC using the specification

finalstateproperty ([q2]) #/\ (!q2);

which corresponds to the EQPL formula [q2]�(¬q2). The first part of the formula
asserts that the last qubit (q2) is disentangled from the rest of the quantum state,
while the second part asserts that the current valuation assigns to this qubit a
value of 0. The entire formula is true if both parts are true, indicated by the
connective of quantum conjunction (we represent � in ASCII form by #/\).

Alternatively, it is also possible in QMC to specify that the final state of
a chosen qubit is the same as the initial state of a chosen qubit, again with
the requirement (which is checked) that the chosen qubits are not entangled
with the rest of the state. With this approach, we can define a model which
non-deterministically chooses a state to teleport, and specify that the state is
teleported, independently of its particular value; exhaustive model-checking then
verifies that all stabilizer states are correctly teleported.

6 Beyond Stabilizer States: Checking Equivalence

Our work on quantum model-checking is based on the stabilizer formalism, be-
cause according to the Gottesman-Knill Theorem [22], that is what we can ef-
ficiently simulate with classical algorithms. This has two effects on the results
we can obtain: (1) we can only analyse quantum systems whose operations are
restricted to the Clifford group (which consists of all the operators we have seen
so far along with a phase operator); (2) when exhaustively analysing the be-
haviour of a system on all possible quantum inputs, we can only consider inputs
that are stabilizer states. Note, however, that the stabilizer formalism, although
efficiently classically simulatable, contains many entangled states and supports
a range of interesting quantum protocols.

We can avoid the second of the above limitations by taking advantage of lin-
earity, if we focus our attention on systems that compute functions, mapping a
quantum input to a quantum output. Protocols such as teleportation and error-
correction can be formulated in this way. Furthermore, correctness of such a
protocol can be expressed as equivalence with a particular specification protocol
which is taken to be obviously correct. For example, the specification of tele-
portation is that a quantum state is transferred from input to output. If the
teleportation protocol is formulated as a function, then its specification is that
it should be equivalent to the identity function.
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program Teleportation_Specification

input q0:qbit

output q0:qbit

program Teleportation_Implementation

input q0:qbit

// Preparing an entangled pair.

newqbit q1;

newqbit q2;

q1 *= H;

q1,q2 *= CNot;

//Entangling the input qubit.

q0,q1 *= CNot;

q0 *= H;

// Measurement and corrections.

measure q0 then q2*=Z else q2*=I end;

measure q1 then q2*=X else q2*=I end

// The quantum state is now on q2

output q2:qbit

Fig. 3. Teleportation: Specification and Implementation

The appropriate way to view a quantum protocol as a function is to con-
sider its action as a superoperator, i.e. a linear operator on the space of density
matrices. In this way, both measurements and unitary operators are taken into
account. By linearity, to check that superoperators f and g are equivalent, it is
sufficient to choose a basis for the space of density matrices and check that for
each basis element v, f(v) = g(v). It turns out that it is possible to choose a basis
consisting only of stabilizer states [18], and this brings equivalence-checking into
the realm of automated analysis in the stabilizer formalism.

With Ebrahim Ardeshir-Larijani, we have implemented a tool [5] which takes
as input two programs and checks whether or not they are equivalent, by eval-
uating them on all elements of a stabilizer basis. The language is based on
Selinger’s QPL [29]. For example, verification of a teleportation protocol con-
sists of checking equivalence of the two programs in Figure 3. In comparison
with the discussion of teleportation in Section 4, this model does not define Al-
ice and Bob separately, and removes the communication; the protocol has been
converted into a sequential program.

Compared with the verification of teleportation by the QMC system, we have
a stronger conclusion: that all quantum states are successfully teleported, not
just stablizer states. Retrospectively, we can now intepret the QMC verifica-
tion as a guarantee that all states are correctly teleported, assuming that it is
reasonable to view a QMC program as a superoperator, because QMC checked
all stabilizer states and therefore included a basis. Equivalence checking requires
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less computation than QMC, because a stabilizer basis is smaller than the set of
all stabilizer states (for n qubits there are approximately 2(n

2)/2 stabilizer states
but a basis for the space of density matrices has only 22n elements).

7 Conclusion

We have outlined the principles of quantum information processing, and argued
that formal methods will be necessary in order to guarantee the correctness of
practical quantum systems. We have illustrated three particular approaches: be-
havioural equivalence in process calculus, model-checking and equivalence check-
ing. We used quantum teleportation as a running example.

Future work will include the development of equational axiomatizations of
behavioural equivalence in CQP, improving the efficiency of QMC and extending
equivalence checking to include concurrent programs. On the more practical
side, we intend to work on more substantial examples including cryptographic
systems.
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