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Paul-André Melliès�

Abstract. About ten years ago, Brian Day and Ross Street discovered a beautiful
and unexpected connection between the notion of ∗-autonomous category in proof
theory and the notion of Frobenius algebra in mathematical physics. The purpose
of the present paper is to clarify the logical content of this connection by formulat-
ing a two-sided presentation of Frobenius algebras. The presentation is inspired
by the idea that every logical dispute has two sides consisting of a Prover and
of a Denier. This dialogical point of view leads us to a correspondence between
dialogue categories and Frobenius pseudomonoids. The correspondence with di-
alogue categories refines Day and Street’s correspondence with ∗-autonomous
categories in the same way as tensorial logic refines linear logic.

Forewords

A few weeks before writing this paper, I learned that my dear friend Kohei Honda
passed away in London. This sudden accident was a tremendous shock, and his dis-
parition haunts me. Vivid memories come back of the wonderful three years we spent
together in Edinburgh. Kohei and I met for the first time in early 1996. Samson Abram-
sky had just moved from Imperial College to the Laboratory for the Foundations of
Computer Science — taking there the position of Robin Milner who had just left Ed-
inburgh to join the University of Cambridge. Samson wanted to create a new group
there and he was looking for two Research Assistants. He decided to hire Kohei and
me. This was really a bold choice Samson made on that occasion because Kohei and I
were coming from territories quite alien to semantics. Kohei was already recognized for
his discovery of the asynchronous π-calculus with Mario Tokoro, independently and at
about the same time as Gérard Boudol, see [9] for details. Kohei was absolutely fanatic
about the π-calculus and he would openly declare that game semantics was only a small
fragment of π — I like to think that the future will tell him right in some interesting and
unexpected way. I should say that I was just as stubborn myself about rewriting theory.
Back in France, Pierre-Louis Curien had advised me to join Samson’s group if I wanted
to learn semantics — but I was so much hooked on rewriting theory when I arrived at
the LFCS that it took me two long years before really working on linear logic and game
semantics.

During the three years we spent together in Edinburgh, Kohei and I very soon became
this slightly eccentric pair of French and Japanese researchers sharing an office on the
ground floor of the JCMB building. The office was dark and cold, with two narrow
window panes facing a few bushes and an anonymous alley... but I spent there among
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the most luminous hours of my life, and I am sure that Kohei was just as enthusiastic
developing his own stream of ideas.

Samson was an exquisite leader and nothing of the effervescence of the interaction
group — this is the way we decided to call ourselves — would have been possible
without his sharp understanding of logic and of semantics combined with a frenetic
curiosity for the surrounding fields. Any topic could be freely discussed in the group
and there was absolutely no feeling of intellectual property among us. As a matter
of fact, many ideas which I have worked out in Paris in the past fifteen years were
already germinating at the time. I distinctively remember Kohei and Nobuko Yoshida
explaining how call-by-value programs should be interpreted by letting Player start the
game rather than Opponent1. I also remember Samson explaining how higher-order
states could be interpreted by relaxing the visibility condition on strategies2. And I
remember Martin Wehr developping a narcotic interest in n-dimensional categories and
trying to convince all of us that n-dimensional syntax would become the foundation
of logic and of programming languages3. These are only a few illustrations coming to
my mind so numerous were the ideas floating around in this small group of dedicated
people.

This short period of my life in Edinburgh defines a lot about who I am today, and
I am happy to dedicate the present work to Samson as a testimony of friendship and
gratitude. My primary purpose here is to entertain him with a connection between two
of his favorite topics of interest: game semantics and logic on the one hand, Frobenius
algebras and the categorical approach to physics on the other hand.

1 Frobenius Algebras and 2-Dimensional Cobordism

Let n > 0 be a positive integer. The basic idea of topological field theory is to construct
a symmetric monoidal functor

Cob(n) −→ Vect

from the category of n-dimensional cobordism to the category Vect of vector spaces on
a given field k. The category Cob(n) is defined as follows:

– its objects are the closed oriented (n− 1)-dimensional manifolds,
– its morphisms M → N are the bordisms from M to N, that is, the oriented n-

dimensional manifold B equipped with an orientation-preserving diffeomorphism
∂B � (−M)∪N. Here −M denotes the manifold M equipped with the opposite
orientation. Two bordisms B,B′ : M → N are considered equal in Cob(n) if there
is an orientation-preserving diffeomorphism which extends the diffeomorphism
∂B � (−M)∪N � ∂B′.

1 A paper developing this idea was presented by Kohei and Nobuko at the ICALP 1997 confer-
ence, see [10] for details.

2 A paper developing this idea was presented by Samson, Kohei and Guy McCusker at the
LICS 1998 conference, see [1] for details.

3 Martin presented some of his ideas on higher dimensional syntax in the CTCS 1999 confer-
ence, see [21] for details.
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– For any object M in Cob(n), the identity map idM is represented by the product
bordism B = M× [0,1],

– Composition of morphisms in Cob(n) is defined by gluing bordisms together. The
operation of gluing is not canonical but the point is that it defines a unique class of
manifolds modulo diffeomorphism.

The category Cob(n) can be endowed with the structure of a symmetric monoidal
category, whose tensor product ⊗ is given by taking the disjoint sum of two (n− 1)-
dimensional manifolds, and whose unit I is given by the empty manifold. A natural
question is to understand what information is contained in a topological field theory of
a given dimension n. The answer is very well known in the case of dimension n = 2. In
that case, a topological field theory is the same thing as a commutative and cocommu-
tative Frobenius algebra in the category Vect. This observation justifies the notion of
Frobenius monoid in any monoidal category V . A Frobenius algebra is then the same
thing as a Frobenius monoid in the category Vect.

Definition 1 (Frobenius Monoid). A bimonoid A in a monoidal category V is an ob-
ject equipped a monoid structure (A,m,e) and a comonoid structure (A,d,u). In other
words, it is an object A equipped with a binary operation m and a binary co-operation d

A

d

AAA

m

AA

both of them associative, and equipped with a unit e and a co-unit u

A

u

A

e

I

I

A Frobenius monoid is defined as a bimonoid A satisfying the two equalities below:

=

d

m d

m

d

m

= (1)

A Frobenius monoid in a symmetric monoidal category V is called commutative (resp.
cocommutative) when its underlying monoid (resp. comonoid) is commutative (resp.
cocommutative).
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Note that the characterization of topological field theories of dimension 2 extends to
every symmetric monoidal category V .

Proposition 1. A symmetric monoidal functor Cob(2)→ V into a symmetric monoidal
category V is the same thing as a commutative and cocommutative Frobenius monoid
in V .

2 Frobenius Pairs

Once the notion of Frobenius algebra has been extracted from the definition of topo-
logical field theory, it makes sense to study it independently of its topological origins.
In this paper, we will do something quite counterintuitive from the topological point
of view, but which makes a lot of sense from the logical point of view. In the same
way as a logical dispute involves a Prover and a Denier, we will decouple the monoid
side (A,m,e) from the comonoid side (B,d,u) in the definition of a Frobenius monoid.
Each side A and B is meant to describe an aspect of the « split personnality » of the
Frobenius monoid. The operations of the monoid (A,m,e) are depicted in light blue
whereas the co-operations of the comonoid (B,d,u) are depicted in dark red:

A

e

I

A

m

AA B

d

BB

u

I

B

Once the notion of Frobenius monoid in a monoidal category V has been split in two,
an interesting question is to understand how its two sides A and B are coupled inside a
Frobenius monoid. The first thing to ask is that the two objects A and B are involved in
an exact pairing A � B defined as a pair of morphisms

η : I −→ B⊗A ε : A⊗B −→ I

satisfying the zig-zag equalities below:

= =

ε

η

ε

η

Note that when V is the category of k-vector spaces, one may alternatively equip the two
spaces A and B with a non-degenerate binary form ε : A⊗B→ k. This exact pairing A �B
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should be moreover compatible with the monoid and comonoid structures of A and B in
the following sense. We define a monoid-comonoid pairing

(A,m,e) � (B,d,u) (2)

between a monoid and a comonoid as an exact pairing A � B between the underlying
objects satisfying the two equalities:

=

ε

η

η

m

d

ε

e
=

u

These equations mean that the comonoid structure (B,d,u) on the object B may be
recovered from the monoid structure (A,m,e) on the object A, and conversely, that
the monoid structure (A,m,e) on the object A may be recovered from the comonoid
structure (B,d,u) on the object B. In a symmetric way, one requires the existence of a
comonoid-monoid pairing

(B,d,u) � (A,m,e) (3)

defined as an exact pairing B � A between the underlying objects:

η ′ : I −→ B⊗A ε′ : A⊗B −→ I

which moreover satisfies the two equations below:

= m

d

η

η

ε'

'

'

e
=

u

ε'

In the same way as before, the two equalities say that that the comonoid structure (B,d,u)
on the object B may be recovered from the monoid structure (A,m,e) on the object A,
and conversely. This leads to our definition of Frobenius pair.

Definition 2 (Frobenius Pairs). A Frobenius pair in a monoidal category V con-
sists of a monoid-comonoid pairing (2) and a comonoid-monoid pairing (3) between
a monoid (A,m,e) and a comonoid (B,d,u) together with an isomorphim L : A→ B
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between the underlying objects A and B. One also requires that the equalities below are
satisfied:

L

L

m

= =

L

d d

ε ε'

(4)

Note that the two equations (4) are equivalent to the equations below:

d

L

L

m = =

L

m

η'η

These equalities may be understood in the following way. The monoid-comonoid pair-
ing (A,m,e) � (B,d,u) induces a left action of the monoid (A,m,e) on the object B,
defined as

d

εB

BA

BA B

d

ε

(5)

There is also a left action of the monoid A on itself, defined using the monoid structure:

A

m

AA

m

Equation (4) means that the morphism L transports the left action of the monoid A on
itself into the action (5) on the object B. In a symmetric way, the exact pairing B � A
induces a right action of the monoid A on B, and the second equation (4) amounts to
ask that the morphism L transports the canonical right action of the monoid A on itself
in the right action of the monoid A on the object B. The ultimate justification for the
notion of Frobenius pair is the following correspondence with Frobenius monoids:

Proposition 2. A Frobenius pair (A,B) in a monoidal category V is the same thing as
a Frobenius monoid A equipped with an exact pairing A � B.
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Proof. Given a Frobenius monoid A together with an exact pairing A � B with unit η
and counit ε , one defines the unit η ′ and counit ε′ of the exact pairing B � A and the
isomorphism L as follows:

ε

m

u

ε'

=

AB

A

B

d

e

=

η'

A B

η

m

u

A

B

d

e

=

A

B B

L

η A

m

u

The object B inherits its comonoid structure (B,d,u) from the monoid structure (A,m,e)
of the object A and the exact pairing A � B. One checks that the resulting structure co-
incides with the comonoid structure on B induced from the exact pairing B � A. This
already ensures that the pair (A,m,e) and (B,d,u) satisfy the equalities (2) and (3). Fi-
nally, one easily checks that the two equalities (4) are satisfied, and that the pair (A,B)
thus defines a Frobenius pair. Conversely, every Frobenius pair (A,B) defines a Frobe-
nius monoid with monoid structure (A,m,e) and comonoid structure (A,d′,u′) induced
from the isomorphism L with (B,d,u). A careful inspection shows that the relationship
between Frobenius pairs (A,B) and Frobenius monoid A equipped with a duality A � B
is one-to-one.

Remark. The idea of presenting Frobenius algebras as a pair consisting of a monoid A
and of its canonical right dual B = A∗ is essentially folklore, and appears already in [5].
So, the only novelty here is that we do not ask that the object B coincides with the
canonical right dual A∗. More on that specific point will be said when we move to
ribbon categories in §5.

3 The Frobenius Bracket

Given a Frobenius pair in a monoidal category, the following morphism

L

m

uu

I

B

L

A

m

AA

defines a bilinear form
{|−,−|} : A⊗A −→ I
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called the Frobenius bracket. The definition of Frobenius bracket together with the asso-
ciativity af the product a1•a2 = m(a1,a2) ensures that the following equality is satisfied:

{|a1 •a2,a3 |} = {|a1,a2 •a3 |} (6)

This equality is generally called the associativity property of the Frobenius bracket,
see [19] for a discussion. In addition, the defining property (4) of Frobenius pair implies
that the Frobenius bracket may be alternatively formulated as:

L

m

u

ε'

L

ε

L

= =

4 Helical Frobenius Pairs

We suppose from now on that we work in a balanced monoidal category in the sense
of [11,12,13] typically given by the category V = Mod(H) of representations of a quan-
tum group H. The braiding γ and the twist θ of the category V are represented as
follows:

γ θXX,Y

X Y

XY

X

X

Note that the twist θX should be understood as the operation of applying a rotation
of angle 2π on the border X of the 2-dimensional manifold. This extra structure on
the category V enables us to formulate the following definition of helical Frobenius
monoid.

Definition 3 (Helical Frobenius Monoids). A Frobenius monoid A in a balanced mo-
noidal category is called helical when the two equalities below are satified:

=
m

u m

u

θ
A

m

u

θ
A

=

We proceed as in §2 and immediately introduce the corresponding two-sided notion of
helical Frobenius pair:
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Definition 4 (Helical Frobenius Pairs). A Frobenius pair in a balanced monoidal cat-
egory is called helical when the two equalities below are satisfied:

ε'

=
θ

ε

γ

θ
A

γ

ε

= B

Since the morphism L is reversible in the definition of a Frobenius pair, one may replace
this helicality condition by the equivalent one:

ε'

=

L

ε

L

θ
A

γ

ε

=

L

γ

θ
B (7)

We will see that this formulation of helicality is more natural than the original one when
we move one dimension up to the 2-categorical notion of Frobenius amphimonoid. It
should be noted that this latter condition (7) is equivalent to asking that the Frobenius
bracket is commutative in the sense that the two equalities below are satisfied:

=L

m

u L
m

u

θ
A

L
m

u

θ
A

=

The equivalence follows from the fact that the twist is a natural isomorphism from the
identity functor into itself, and thus satisfies the equality:

L
θL

θ

=

The equation (7) should be understood as a commutativity property of the Frobenius
bracket:

{|a1,a2 |} = {|a2,a1 |}. (8)
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Together with the associativity (6) the commutativity of the Frobenius bracket implies
the following cyclicity property:

{|a1 •a2,a3 |} = {|a3 •a1,a2 |} = {|a2 •a3,a1 |} (9)

where a1 •a2 is a notation for the product m(a1,a2) of the two elements a1 and a2. It is
worth recalling here that a symmetric monoidal category is the same thing as a balanced
monoidal category whose twist θX is equal to the identity idX for every object X . A he-
lical Frobenius algebra in a symmetric monoidal category is called symmetric. A typical
illustration is provided by matrix algebras A⊗A∗ where the cyclicity equations (8–9)
reflect the cyclicity of the trace functional. As expected, one needs to modulate the two
equations (8–9) by a twist θ when one works in a general balanced monoidal category.

At this stage, Proposition 2 may be refined into the following correspondence be-
tween helical Frobenius monoids and helical Frobenius pairs:

Proposition 3. A helical Frobenius pair (A,B) in a balanced monoidal category V is
the same thing as a helical Frobenius monoid A equipped with an exact pairing A � B.

5 Frobenius Pairs in Ribbon Categories

The two-sided formulation of a Frobenius monoid as a pair (A,B) relies on the existence
of an exact pairing A � B between the two sides A and B of the Frobenius pair. It is
thus interesting to see what happens when one embeds the notion of Frobenius pair
in a monoidal category V which is already equipped with an exact pairing A � A† for
every object A. This is precisely what happens in the case of a ribbon category like the
category V = Mod f (H) of finite dimensional representations of a quantum group H.
Recall that a ribbon category4 is defined as a balanced monoidal category V where
every object A comes equipped with an exact pairing A � A† whose counit εA : A⊗A† →
I satisfies the equality below:

=

ε

A
θ

ε

θ
A†

A A† A A†

A A

(10)

A nice consequence of the definition of ribbon category is that the right dual A† is also
a left dual of the object A, with counit ε′A of the exact pairing A† � A defined as:

4 The notion of ribbon category is also called tortile category in [11,18].
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ε'

=

ε

γ

θ
A†

AA† AA†

A A

(11)

Another nice property is that every Frobenius pair (A,B) in a ribbon category V satisfies
the equality 5 below:

=

ε

A
θ

ε

θ

A AB B

B

(12)

It is worth observing that the opposite category V op(0,1) of a balanced monoidal cate-
gory V is also balanced, with the same braiding and twist combinators as the original
category. By V op(0,1), we mean the monoidal category V where the orientation of the
tensor product (of dimension 0) and of the morphisms (of dimension 1) has been re-
versed. The transformation V �→ V op(0,1) thus consists in applying a central symmetry
on the string diagrams. The family of exact pairings A � A† induces a monoidal functor

† : V −→ V op(0,1)

which transports the ribbon structure of V to the ribbon structure of V op(0,1) in the
obvious sense. Note that one would obtain the very same functor † by starting from the
family of exact pairings A† � A defined in (11). Now, every exact pairing A � A† in V
induces an exact pairing A �A† in the opposite category V op(0,1) with unit defined as the
image ε †A : I→A†⊗op A of the counit εA : A⊗A† → I of the original exact pairing. From
this follows that every ribbon structure on V induces a ribbon structure on V op(0,1).

Now, suppose given a Frobenius pair (A,B) in such a ribbon category V . The mo-
noidal structure of the functor † ensures that the comonoid structure of the object B
is transported to a monoid structure on the object B†. The resulting monoid struc-
ture (B†,d †,u†) may be constructed either from the exact pairing B† � B or from the
exact pairing (B†,d †,u†). From this follows that the monoid (B†,d †,u†) is involved in
two exact pairings with the comonoid (B,d,u), either as a left dual or as a right dual:

(B†,d †,u†) � (B,d,u) (B,d,u) � (B†,d †,u†)

5 The equality is in fact satisfied by any bilinear form A⊗B→ I in a ribbon category.
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with unit η ′B and counit ε′B in the first case, and with unit ηB and counit εB in the second
case. These exact pairings should be compared with the exact pairings between (A,m,e)
and (B,d,u) involved in the definition of the Frobenius pair:

(A,m,e) � (B,d,u) (B,d,u) � (A,m,e)

with unit η and counit ε in the first case and with unit η ′ and counit ε′ in the second
case. Each comparison induces a monoid isomorphism between the monoid (A,m,e)
and the monoid (B†,d †,u†). The two isomorphisms are respectively defined as:

A

ε

B†

η'
B

ε'

A

B†

η
B

(13)

The notion of helical Frobenius pair plays an important role at this stage, and this is
precisely the reason why we introduced it in §4. The point is that the two isomor-
phisms A→ B† coincide precisely when the Frobenius pair is helical. We leave the
reader check this statement starting from the observation that the equality (10) holds in
any ribbon category. So, in the case of a helical Frobenius pair, one obtains an isomor-
phism of monoids

(A,m,e)

(−)∗

��isomorphism
o f monoid

∗(−)

�� (B†,d †,u†)

where the isomorphisms (−)∗ : A→ B† and ∗(−) : B→ A† are defined as:

A

ε

B†

η'
B

ε'

A

B†

η
B

=* =

A

B†
ε

η
A

=* =

A

B

†

B

A†

ε'

η'
A

A†

B

From these definitions, one deduces the following equations:

ε'

=

AB AB

ε'A

*

A
†

*

B
†

AB

εB

==

ε

*

A
†

A BA B

εA

A B

ε'B

*

B
†

=
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These equations lead to an alternative but equivalent formulation of helical Frobenius
pairs (A,B) living in a ribbon category:

Proposition 4. A helical Frobenius pair (A,B) in a ribbon category is the same thing
as a monoid (A,m,e) and a comonoid (B,d,u) equipped with a monoid isomorphism

(−)∗ : (A,m,e) −→ (B†,d †,u†)

and an isomorphism L : A→ B between the underlying objects satisfying the equalities:

L

L

m

= =

L

d d

* *

Here, we use the ∗ notation for the two evaluation brackets between A and B defined as
follows:

*

B
†

AB

εB

==

A B

ε'B

*

B
†

A B

* *

AB

(14)

We let the reader check the statement. Starting from the alternative formulation of
Proposition 4, the two evaluation brackets ε : A⊗ B → I and ε′ : B⊗ A → I of the
Frobenius pair (A,B) are recovered as the two operations ∗ depicted in (14).

6 Dialogue Categories and Chiralities

At this point, it is time to introduce the notion of dialogue category, which underlies
tensorial logic in the same way as the notion of ∗-autonomous category underlies linear
logic, see [4,8] for details. Tensorial logic is a primitive logic of tensor and negation
whose purpose is to circumscribe the primary ingredients of logic. Our main ambition
here is to extend to dialogue categories the correspondence between ∗-autonomous cate-
gories and Frobenius algebras originally discovered by Day and Street [6][19] and then
independently rediscovered a few years later by Egger [7].

Definition 5 (Dialogue Categories). A dialogue category is a monoidal category
(C ,⊗,e) equipped with an object ⊥ together with a family of bijections

ϕx,y : C (x⊗ y,⊥) � C (y,x�⊥)

natural in y for all objects x of the category C , and a family of bijections

ψx,y : C (x⊗ y,⊥) � C (x,y�⊥)

natural in x for all objects y of the category C .
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We will be more specifically interested in the notion of helical dialogue category intro-
duced in [16,17].

Definition 6 (Helical Dialogue Category). A helical dialogue category is a dialogue
category C equipped with a family of bijections

wheelx,y : C (x⊗ y,⊥) −→ C (y⊗ x,⊥)

natural in x and y and required to make the diagram

C ((y⊗ z)⊗ x,⊥)
associativity �� C (y⊗ (z⊗ x),⊥)

wheely,z⊗x

��
C (x⊗ (y⊗ z),⊥)

wheelx,y⊗z

��

associativity

��

C ((z⊗ x)⊗ y,⊥)

C ((x⊗ y)⊗ z,⊥)
wheelx⊗y,z �� C (z⊗ (x⊗ y),⊥)

associativity

��
(15)

commute for all objects x,y,z of the category C .

A useful graphical mnemonics for the wheel combinator is to draw it in the following
way:

wheelx,y :

x y

f �→

xy

f
(16)

In that graphical formulation, the coherence diagram expresses that the diagram below
commutes:

xz

f

y

xz

f

yx z

f

y

wheel x y

wheel x wheel, y z y , z x

, z
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The bare notion of dialogue category is fundamental but one may argue that it does
not properly reflect the symmetries of logic, and more specifically the two-sided nature
of logical disputes. The equivalent notion of dialogue chirality was introduced for that
reason, see [15] for details. We recall below the two-sided notion of helical dialogue
chirality corresponding to the one-sided notion of helical dialogue category. The formal
correspondence between them6 is established in [16].

Definition 7 (Helical Chirality). A helical chirality is a pair of monoidal categories

(A ,�, true) (B,�, false)

equipped with a monoidal equivalence and an adjunction

A

(−)∗

��monoidal
equivalence

∗(−)

�� B op(0,1) A

L

��⊥
R

�� B

and with two families of bijections

χL
m,a,b : 〈m� a |b〉 −→ 〈a |m∗� b〉

χR
m,a,b : 〈a � m |b〉 −→ 〈a |b � m∗ 〉

natural in a, b and m, where the evaluation bracket is defined as

〈− |−〉 := A (− , R(−) ) : A op×B −→ Set

The currification combinators χL and χR are moreover required to make the three dia-
grams commute:

〈 (m� n) � a |b〉 χL
m�n ��

associativity

��

〈a | (m� n)∗� b〉

〈m� (n � a) |b〉 χL
m �� 〈n � a |m∗� b〉 χL

n �� 〈a |n∗� (m∗� b)〉

associativity
monoidality o f negation

��

(17)

〈a � (m� n) |b〉 χR
m�n ��

associativity

��

〈a |b � (m� n)∗〉

〈 (a � m) � n |b〉 χR
n �� 〈a � m |b � n∗ 〉 χR

m �� 〈a | (b � n∗) � m∗ 〉

associativity
monoidality o f negation

��

(18)

6 The notion of helical chirality described here is called “ambidextrous” in [16]. We keep the
terminology “helical” here in order to stress the correspondence with helical dialogue cate-
gories.
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〈 (m� a) � n |b〉 χR
n ��

associativity

〈m� a |b � n∗ 〉 χL
m �� 〈a |m∗� (b � n∗)〉

associativity

〈m� (a � n) |b〉 χL
m �� 〈a � n |m∗� b〉 χR

n �� 〈a | (m∗� b) � n∗ 〉

(19)

for all objects a,m,n of the category A and all objects b of the category B.

Every helical dialogue category C defines a helical dialogue chirality by taking A = C ,
B = C op(0,1), La = a�⊥ and Rb = ⊥� b. The right currification combinator χR is
simply defined using the dialogue structure of the category C :

〈a � m |b〉 〈a |b � m∗ 〉
C (a⊗m,⊥� b)

ψ−1
a⊗m,b �� C (a⊗m⊗ b,⊥)

ψa,m⊗b �� C (a,⊥� (m⊗ b))

whereas the definition of the left currification combinator χL is more sophisticated and
requires the helical structure:

〈m�a |b〉 〈a |m∗�b〉

C (m⊗a,⊥� b)
ψ−1

m⊗a,b �� C (m⊗a⊗b,⊥)
wheelm,a⊗b�� C (a⊗b⊗m,⊥)

ψm⊗b,a �� C (a,⊥� (b⊗m))

7 Categorical Bimodules

In order to understand the connection between ∗-autonomous categories and Frobenius
algebras noticed by Day and Street — and then to extend it to dialogue categories
— one needs to work in a suitable bicategory of categorical bimodules or distributors
(following Bénabou’s original terminology). Given two categories A and B, an A B-
bimodule M is defined as a functor

M : A op×B −→ Set.

The notion of bimodule considered here is set-theoretic, but it may be easily adapted to
enriched settings, where the category Set is typically replaced by the category Vect of
vector spaces, see [20] for details. The bicategory (or weak 2-category) of bimodules
has

– small categories as objects,
– A B-bimodules M as 1-dimensional cells M : A →B,
– natural transformations

θ : N⇒M : A op×B −→ Set

as 2-dimensional cells

θ : M⇒ N : A −→B

in the weak 2-category.
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Note the reverse direction of the natural transformations. This specific orientation en-
ables to define a monoidal 2-functor:

Cat → BiMod

which transports every functor F : A →B to the bimodule

F• : (a,b) �→ A (Fa,b) : A op×B −→ Set.

It is possible to see BiMod as a 2-dimensional Kleisli construction on the small limit
completion C �→ [C ,Set]op of categories. One recovers the more familiar convention
corresponding to the small colimit completion C �→ [C op,Set] of categories by taking
the weak 2-category BiModop(1,2) obtained from BiMod by reversing the orientation of
the 1- and 2-dimensional cells. As a matter of fact, there also exists a monoidal 2-functor

Cat → BiModop(1,2)

defined in the following way. First of all, it is good to remember that the operation op :
C �→ C op which transforms a category into its opposite category defines a 2-functor

op : Cat −→ Catop(2).

The weak 2-category BiMod is symmetric monoidal with tensor product defined as
product of categories. The underlying monoidal category is also autonomous, which
simply means that it is a ribbon category with a trivial twist θ . From this follows that
there exists a functor (and in fact a monoidal 2-functor)

† : BiMod −→ BiModop(0,1)

which transports every category A to its dual A † in BiMod. By a miracle of mathe-
matics, this dual A † happens to coincide with the opposite category A op. Putting all
this together, one obtains the monoidal 2-functor

Cat
op−→ Catop(2) −→ BiModop(2) †−→ BiModop(0,1,2)

which transports every category A to itself and every functor F : A →B to the bi-
module

F • : (a,b) �→ A (a,Fb) : A op×B −→ Set.

Another miracle of categorical bimodules is that for every functor F : A → B, the
bimodule F • : B → A is left adjoint to the bimodule F• : A → B in the weak 2-
category BiMod.

8 Frobenius Pseudomonoids

Here, we introduce the notion of Frobenius pseudomonoid whose main purpose is to
reflect the properties of a dialogue category A transported from Cat to the monoidal
bicategory BiMod. A preliminary step in the definition of Frobenius pseudomonoid is
to adapt the notion of exact pairing to the 2-categorical setting.
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Definition 8 (Lax Pairing). A lax pairing A �B in a monoidal bicategory is a pair
of 1-dimensional cells

η[1] : A ⊗B −→ I ε[1] : I −→B⊗A

together with a pair of 2-dimensional cells

ε

η

η
[2]

[1]

[1]

ε[1]

η
[1]

[2]
ε

such that the composite 2-dimensional cell

ε[1]

ε[1]

ε[1] ε[1]

ε[1]

η
[1] η

[1]

ε[1]

η
[2] [2]

ε

coincides with the identity on the 1-dimensional cell ε[1] and symmetrically, such that
the composite 2-dimensional cell

η
[2] [2]

ε

η
[1]

η [1]η
[1] η

[1]

ε[1]ε[1]

η
[1]η

[1]

coincides with the identity on the 1-dimensional cell η[1].

At this stage, we are ready to refine the notion of form also introduced by Day and
Street [6] in a monoidal bicategory.

Definition 9 (Frobenius Form). A Frobenius form on a pseudomonoid A in a mo-
noidal bicategory is a lax pairing A �A equipped with a 2-dimensional cell

ε[1]

χ

ε[1]

m m
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called the associativity law of the Frobenius form, and required to make the following
variation of MacLane’s pentagonal diagram commute:

m

ε[1]

m

m

m

ε[1]
ε [1]

m

m

χ

associativity

ε[1]

mm

χχ

m

ε[1]

m

associativity

(20)

This leads us to our definition of Frobenius pseudomonoid. Note that our definition
departs from the definition given by Street in [19], see the end of §9 for a comparison.

Definition 10 (Frobenius Pseudomonoid).
A Frobenius pseudomonoid is a pseudomonoid A equipped with a Frobenius form.

Observe that once transported in the bicategory BiMod, every dialogue category A
defines such a Frobenius pseudomonoid with Frobenius form defined as

ε[1] : (a1,a2) �→ A (a1⊗ a2,⊥) η[1] : (a1,a2) �→ A (⊥� a1,a2)

and χ simply defined as the associativity law of the monoidal category A . On the other
hand, note that the notion of Frobenius pseudomonoid introduced above does not co-
incide with the notion of Frobenius monoid in the particular case when the underlying
monoidal 2-category W is a monoidal category — seen as a 2-category with trivial
2-dimensional cells. The point is that nothing ensures in Definition 10 that the two co-
monoid structures on A induced from the exact pairing A �A coincide, although we
require this property in our definition of Frobenius monoid. Depending on the taste of
the reader, this unpleasant situation may be seen as a result of the maximalist nature
of Definition 1 or as a result of the minimalist nature of Definition 10. This justifies in
any case to resolve the matter by formulating a 2-categorical version of helicality. To
that purpose, we need to work in a balanced monoidal bicategory, defined as a monoidal
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bicategory W equipped with a braiding and a twist compatible with the 2-dimensional
structure.

Definition 11 (Lax Ribbon Pairing). A ribbon structure on a lax pairing A �B in a
balanced monoidal bicategory is a pair of invertible 2-cells:

θ θ θθ

ε[1]
ε[1]

η[1] η[1]

such that both composite 2-dimensional cells

ε

η

[1]

[1]

θ

ε[1]

η
[1]

ε

η

[1]

[1]

θ

ε

η

[1]

[1]

ε[1] ε[1]

η
[1]

η
[1]

θ
θ

coincides with the identity 2-cell7 A lax ribbon pairing is a lax pairing equipped with
such a ribbon structure.

Definition 12 (Helical Frobenius Pseudomonoid). A helical Frobenius pseudo-
monoid in a balanced monoidal bicategory is a Frobenius pseudomonoid whose lax
pairing is equipped with a ribbon structure, and which is moreover equipped with an
invertible 2-dimensional cell

θ

γ

ε[1]
ε[1]

helix
-1

The 2-dimensional cell helix may be understood as a 2-dimensional cell {|a2,a1 |} ⇒
{|a1,a2 |}. The helical structure is required to make the diagram commute:

{|a1 •a2,a3 |} χ 		

helix





{|a1,a2 •a3 |} helix 		 {|a2 •a3,a1 |}
χ




{|a3,a1 •a2 |} {|a3 •a1,a2 |}χ�� {|a2,a3 •a1 |}helix��

(21)

7 The composite 2-cell is required to coincide with the 2-dimensional coercion of θ when one
defines the twist of a balanced monoidal bicategory as a pseudonatural (rather than natural)
transformation, which we do not do here.
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Every helical dialogue category A induces a helical Frobenius pseudomonoid in BiMod
with helix simply defined as the natural transformation

wheel−1
a1,a2

: A (a2⊗ a1,⊥) ⇒ A (a1⊗ a2,⊥).

which goes in the reverse direction in the bicategory BiMod. We will see in the next
section that a helical dialogue category is the same thing as a helical Frobenius pseu-
domonoid in BiMod whose bimodules ε[1] and η[1] are represented by functors L and R
in the appropriate sense. We could establish the statement directly, but we find clarifying
to reformulate first the notion of helical Frobenius pseudomonoid in a two-sided fash-
ion. This is precisely the way the correspondence between helical dialogue categories
and helical Frobenius pseumonoids originally emerged in our work.

9 Frobenius Amphimonoids

Here, we reformulate in a two-sided fashion the notion of lax helical Frobenius monoid...
in just the same way as we did in §2 for Frobenius monoids. To that purpose, we start
by relaxing the notion of monoid-comonoid pairing between a monoid and a comonoid,
and introduce the corresponding 2-dimensional notion of amphimonoid.

Definition 13 (Biexact Pairing). A biexact pairing A �B is a lax pairing whose 2-
dimensional cells η[2] and ε[2] are reversible. A biexact ribbon pairing is a biexact
pairing equipped with a ribbon structure.

Definition 14 (Amphimonoid). An amphimonoid (A ,B) in a balanced monoidal bi-
category W is defined as a pseudomonoid (A ,�, true) and a pseudocomonoid (B,�,
false) equipped with a biexact ribbon pairing A �B (noted ∗ in the picture) and with
a pair of invertible 2-dimensional cells

e

*

*

*
*

u (22)

defining a pseudomonoid equivalence between (A ,�, true) and the pseudomonoid struc-
ture on B deduced from the biexact pairing.

An important point about the definition is that every amphimonoid induces a biexact
ribbon pairing B �A defined as follows:
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=
γ

θ =γ

θ

* *

* *

together with a pair of invertible 2-dimensional cells

e

u

*

*

*
*

defining a pseudomonoid equivalence between (A ,�, true) and the pseudom-
onoid structure on B deduced from the biexact pairing applied in the opposite direc-
tion. We are ready now to introduce our two-sided notion of Frobenius pseudomonoid:

Definition 15 (Frobenius Amphimonoid). A Frobenius amphimonoid (A ,B,L,R) con-
sists of an amphimonoid (A ,B) equipped with an adjunction

A

L

��⊥
R

�� B

and two invertible 2-dimensional cells:

L

L

L

* *

χL χR

(23)
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The 1-dimensional cell L : A → B may be understood as defining a bracket 〈a |b〉
between the objects A and B of the bicategory V . Each side of Equation (23) may be
thus seen as implementing a currification step:

χL : 〈a1 � a2 |b〉 ⇒ 〈a2 |a∗1 � b〉 χR : 〈a1 � a2 |b〉 ⇒ 〈a1 |b � a∗2 〉
In the definition of a Frobenius amphimonoid, we require that the two combinators χL

and χR make the three coherence diagrams of Equations (17), (18) and (19) commute.
We leave the reader depict each coherence diagram as the relevant string diagram.

Every helical dialogue category defines a Frobenius amphimonoid in BiMod, by taking
La = a�⊥ and Rb = ⊥� b.

Proposition 5. Given an amphimonoid (A ,B) in a balanced monoidal bicategory W ,
there is a back-and-forth translation between the two following data:

– the helical Frobenius structures on the pseudomonoid (A ,�, true),
– the Frobenius structures (L,R,χL,χR) on the amphimonoid (A ,B).

Proof. The correspondence between the two Frobenius structures works as follows.
Given an amphimonoid (A ,B) whose A -side is a Frobenius pseudomonoid (A ,�, true)
with Frobenius form noted {|−,−|}, one defines the 1-dimensional cells L and R of the
Frobenius amphimonoid (A ,B) in the following way:

= =RL

*

ε[1]

η

*

[1]

(24)

The definition of a lax pairing ensures that L � R defines an adjunction in the bicate-
gory W . The 2-dimensional cell χR is defined as

{|a1 � m,a2 |} χ 		 {|a1,m� a2 |}
while the 2-dimensional cell χL is defined as the composite

{|m� a1,a2 |} helix 		 {|a2,m� a1 |} χ−1
		 {|a2 � m,a1 |} helix−1

		 {|a1,a2 � m |}
each of them appropriately composed with the coercion (22) and the
2-dimensional structure of the biexact pairing A �B in order to obtain the expected
currification diagrams (23). A careful check establishes that the two combinators χL

and χR just constructed make the three coherence diagrams of Equations (17), (18) and
(19) commute. This establishes that (A ,B) together with the adjunction L � R defines
a Frobenius amphimonoid in the balanced monoidal bicategory W .
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Conversely, given a Frobenius amphimonoid (A ,B,L,R) in a balanced monoidal
bicategory W , one defines a Frobenius form on the pseudomonoid A in the following
way:

L=

*ε[1]

η[1]

R=

*

The associativity law χ of the Frobenius form is defined using χR together with the
coercion (22) and the 2-dimensional structure of the biexact pairing A �B. One ob-
tains in this way a Frobenius pseudomonoid (A ,�, true) whose helical structure is then
defined using the currification combinators χL and χR:

L

*

=
γ-1

θ
-1

L

*

L

*ε[1]

=
χ-1

R
L

u
L

χ

ε[1]

γ

θ= -1

-1

One needs then to check carefully that the helical structure makes the coherence dia-
gram (21) does indeed commute. This establishes that (A ,�, true) equipped with the
structure above defines a helical Frobenius pseudomonoid. This concludes the proof.

We like to think of the two-sided notion of Frobenius amphimonoid as logical since it
is based on the currification combinators χL and χR whereas the original one-sided for-
mulation of helical Frobenius pseudomonoid would be rather algebraic or topological.
Although the correspondence exhibited in Proposition 5 does not define a one-to-one
relationship, it conveys the idea that the notions of helical Frobenius pseudomonoid and
of Frobenius amphimonoid should be considered as morally equivalent. This statement
is informal but it could be made rigorous by constructing a 2-dimensional equivalence
between bicategories corresponding to each notions, in the same way as was done for
dialogue categories and chiralities, see [15] for details.
At this point, we are ready to apply Proposition 5 to the specific monoidal bicategory
BiMod. Every category A comes equipped with a biexact pairing A �A op whose unit
and counit are defined as the bimodule:

hom : (a1,a2) �→ A (a1,a2) : A op×A −→ Set

This leads us to the two main results of the paper:
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Theorem (First Correspondence Theorem). A helical chirality is the same thing as
a Frobenius amphimonoid in the bicategory BiMod whose 1-dimensional cells

RL

*

hom

op

hom

op

*

are representable, that is, images of functors along the 2-dimensional functor (−)• :
Cat→ BiMod.

The proof is based on a direct comparison between the definition of helical chirality
(Definition 7) and the definition of Frobenius amphimonoid (Definition 15). The second
main result of the paper follows then from this result and Proposition 5.

Theorem (Second Correspondence Theorem). A helical dialogue category is the
same thing as a helical Frobenius pseudomonoid in the bicategory BiMod whose
1-dimensional cells

= =RL

hom

ε[1]

η
[1]

op op

op

hom

op

are representable, that is, images of functors along the 2-dimensional functor (−)• :
Cat→ BiMod.

10 Epilogue: A Comparison with Day and Street

One may recover here the correspondence between ∗-autonomous categories and Frobe-
nius pseudomonoids drawn by Day and Street in [6,19].

Definition 16 (∗-autonomous Pseudomonoid). A ∗-autonomous pseudomonoid is a
Frobenius pseudomonoid whose Frobenius form is based on a biexact pairing A �A .

The definition coincides with the original definition of ∗-autonomous pseudomonoid
given by Street in [19] except that we add the requirement that the coherence dia-
gram (20) commutes. In particular, we may establish the following property, which
adapts to our notion of Frobenius pseudomonoid the Proposition 3.2 stated by Ross
Street in [19] for ∗-autonomous pseudomonoids.
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Proposition 6. A pseudomonoid (A ,m,e) is Frobenius if and only if it is equipped with
a 1-dimensional cell

� : A −→ I

such that

A ⊗A
m �� A

� �� I (25)

defines the unit ε[1] of a lax pairing A �A .

Proof. Given a Frobenius pseudomonoid, the 1-cell � is defined as

e

ε[1]

=
l

Conversely, given a pseudomonoid equipped with such a 1-dimensional cell �, one de-
fines the Frobenius form as in Equation (25) with coercion χ : {|a1•a2,a3 |} −→ {|a1,a2•
a3 |} induced from the associativity law of the binary product m. Note that Abramsky and
Heunen recently characterized the orthonormal basis on a Hilbert space A as a possibly
nonunital Frobenius algebra structure on the space A, see [3] for details. The relaxation
of unitality is fundamental here because every unital Frobenius algebra A is isomorphic
to its dual A∗. The relaxation is also connected to the theory nuclear and trace ideals,
see [2] for a categorical account by Abramsky, Blute and Panangaden. It would be in-
teresting to know whether this characterization may be performed at the 2-categorical
level, with adapted notions of Hilbert spaces and orthonormal basis.

11 Conclusion

The mathematical style of the paper should not distract the reader from the main idea
conveyed here, which is that the primitive mechanisms of reasoning are of a
purely topological nature — with encouraging and somewhat surprising affinities to
cobordism.

This geometric conception of logic is likely to appear awkward and even disturbing
to the unprepared reader. The reason is that we logicians (and non-logicians) are tra-
ditionally reluctant to think of language as a material phenomenon embedded in space
and time. Even worse, we have learned along the years to treat reasoning as a purely
desincarnated and formal activity living in the ether of symbolic logic. However, this
formalist inclination of the field is probably temporary... and we like to think that the
destiny of logic is to become a « geometry of mind » in the same way as physics has be-
come a « geometry of nature ». The purpose of this geometry will not be to explain the
« mind » as a whole — the idea would be ridiculous — but rather to shed light on some
of its most elementary and fundamental mechanisms, in the same way as physics does
with « nature ». And then to investigate in a reflexive (and somewhat ethnographic) turn
how these micrological mechanisms interact with the macrological (or foundational)
program originally attributed to logic at the beginning of the 20th century.
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The dream of « geometrizing logic » is far from accomplished today, but the novelty
is that it does not seem entirely inaccessible anymore. In particular, the recent advances
of contemporary mathematics — at the crossroad of algebra, topology and physics —
provide us with a series of very nice conceptual tools for trying the adventure. By anal-
ogy with physics, a tentative starting point in the exploration of this evanescent « ge-
ometry of logic » is offered by the study of the configuration space of n logical players
(or computer programs) conversing in time on a specific formula. The present paper
is a very preliminary attempt to substantiate these geometric intuitions in the specific
case n = 2 where one benefits from the perfect adequation between tensorial logic and
dialogue games.

For lack of space, we have only scratched the surface of the connection between
tensorial logic and 2-dimensional cobordism. In particular, we did not include any de-
scription of the interplay between the topological flow of negation defining the proofs of
tensorial logic (and thus the innocent strategies in dialogue games, see [14] for details)
and the lax 2-dimensional cobordism describing the formulas of the logic (and thus the
dialogue games themselves). An interesting issue for the connection between logic and
physics is probably to understand whether the lax and two-sided account of cobordism
developed here in dimension 2 still makes sense in higher dimensions, and whether it is
supported by any appropriate physical (or at least geometric) intuition.
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