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Abstract. We investigate the theories of the λY -calculus, i.e. simply
typed λ-calculus with fixpoint combinators. Non-terminating λY -terms
exhibit a rich behavior, and one can reflect in λY many results of un-
typed λ-calculus concerning theories. All theories can be characterized
as contextual theories à la Morris, w.r.t. a suitable set of observables.
We focus on theories arising from natural classes of observables, where
Y can be approximated, albeit not always initially. In particular, we
present the standard theory, induced by terminating terms, which fea-
tures a canonical interpretation of Y as “minimal fixpoint”, and another
theory, induced by pure λ-terms, which features a non-canonical inter-
pretation of Y . The interest of these two theories is that the term model
of the λY -calculus w.r.t. the first theory gives a fully complete model
of the maximal theory of the simply typed λ-calculus, while the term
model of the latter theory provides a fully complete model for the obser-
vational equivalence in unary PCF. Throughout the paper we raise open
questions and conjectures.

Introduction

Y, the fixpoint combinator lies at the heart of computation, and quite naturally
PCF has been a paradigm language for many decades. However, λY -calculus,
the purely functional core of PCF, i.e. simply typed λ-calculus extended with
fixpoint combinators, has not been often studied per se. In this paper, we outline
a general investigation of the theories of λY , inspired by what has been done in
the untyped λ-calculus, see e.g. [Bar84, HP09].

From this investigation, we expect to achieve a better understanding of how
theories of the λY , and hence of PCF, relate to e.g. iteration theories [BE93,
PS00], what are the constraints on possible non initial interpretations of Y ,
and which properties of λY -terms can be naturally encoded by non-terminating
λ-processes. We think that this research can be quite rewarding given the re-
markable results obtained in the semantics of simply typed λ-calculus using
games, and other categories, since the fundamental work of Samson Abramsky
on full abstraction of PCF, see [AJM00].

B. Coecke, L. Ong, and P. Panangaden (Eds.): Abramsky Festschrift, LNCS 7860, pp. 150–165, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Unfixing the Fixpoint: The Theories of the λY -Calculus 151

Ultimately, we would be like to answer general questions on the flexibility of
notions such as games or continuous functions in modeling adequately the rich
computational behavior of syntactical combinators. E.g.: ”Are all λY -theories
modeled by game models? If not, which are they?” Abramsky and Luke Ong
[AO93], and one of the authors [HR92], were among the first to realize the con-
straints imposed by Scott-domains on the semantics of the untyped λ-calculus.
Since then a vast literature arose in this area, see e.g. [DFH99, CS09, HP09]
for the untyped λ-calculus. This paper addresses the above issues for the typed
λY -calculus. In particular, we follow a journey around λY -theories analogue
to that for the untyped λ-calculus. We start by defining theories contextually,
given a set of observables. This amounts to reasoning on term models, i.e. on
a model-independent semantics. A straightforward transfer result allows us to
reflect on the λY -calculus essentially all the complexities of the theories of un-
typed λ-calculus. But ”sometimes less is more” and many more issues arise in the
typed setting than one would have expected at the outset. A wealth of intriguing
connections appear. For example, interpretations of Y in naturally defined, non
standard, theories behave as sequential composition in unary PCF, or if then
else in binary PCF.

Summary. In Section 1, we present the syntax of the λY -calculus. In Section 2,
we study general λY -theories and preorders, and we prove a Transfer Theorem,
providing a correspondence between theories of the untyped λ-calculus and λY -
theories. In Section 3, we focus on two special λY -theories related to the maximal
theory on typed λ-calculus and to the observational equivalence on unary PCF,
respectively. Final remarks, conjectures and open problems appear in Section 4.

1 The λY -Calculus

The λY -calculus is a simply typed lambda-calculus with two base constants
⊥,�, and fixpoint combinators Yσ at each type. The following definitions are
standard.

Definition 1 (Syntax).
Types:

σ ::= o | σ → σ

Raw terms:
M ::= x | ⊥ | � | MM | λx : σ.M | Yσ ,

where ⊥,� are constants and x ∈ Var.

Definition 2 (Well-Typed Terms). The proof system for typing terms de-
rives judgements Γ � M : σ, where Γ is a type environment, i.e. a finite set
of assumptions {x1 : σ1, . . . , xn : σn}. The rules of the proof system are the
following:

Γ �⊥: o Γ � � : o Γ � Yσ : (σ → σ) → σ Γ, x : σ � x : σ
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Γ, x : σ � M : τ

Γ � λx :σ.M : σ → τ

Γ � M : σ → τ Γ � N : σ

Γ � MN : τ

We denote by ΛY (Λ0
Y ) the set of well-typed (closed) λY -terms.

Term contexts are defined as usual. In the sequel, we will denote by C[ ] : σ → τ
a closed context expecting a term of type σ, and producing a term of type τ .

Definition 3 (Reduction/Conversion). The reduction relation between well-
typed terms is the least relation generated by the following rules together with the
rules for transitive and congruence closure (which we omit):
(β) Γ � (λx :σ.M)N ⇒ M [N/x] : τ , where Γ, x : σ � M : τ , and Γ � N : σ
(η) Γ � λx :σ.Mx ⇒ M : σ → τ , provided x �∈ M
(Y ) Γ � YσM ⇒ M(YσM) : σ, where Γ � M : σ → σ.
Conversion, denoted by =, is the symmetric and transitive closure of reduction.

In the following, we will often omit the environment Γ and/or the type, when
they are clear from the context.

2 λY -Theories

We focus on the theories of the λY -calculus, i.e. congruence relations on (closed)
well-typed terms, which are closed under the conversion relation. We show that
all λY -theories admit a contextual characterization. Moreover, we prove a Trans-
fer Theorem, giving a correspondence between λ-theories and λY -theories.

2.1 Contextual Characterization of λY -Theories

It is well-known that all theories on the untyped λ-calculus are contextual, i.e.
they admit a contextual characterization à la Morris, see [HR92]. An analogous
result holds for λY -theories.

Definition 4 (Contextual λY -Theory). A λY -theory ∼ is contextual if there
exists a set of terms Q ⊆ Λ0

Y closed under conversion such that, for all σ and
all M,N ∈ Λ0

Y of type σ,

M ∼ N : σ ⇐⇒ ∀C[ ] : σ → τ. (C[M ] ∈ Q ⇔ C[N ] ∈ Q) .

The terms in Q are called convergent or observable terms.

The following result holds:

Theorem 1.
(i) If ∅ �= Q � Λ0

Y and Q is closed under conversion, then the contextual
theory ∼Q is non-trivial.
(ii) Every λY -theory is contextual.
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Proof.
(i) The proof is standard.
(ii) Let ∼ be a λY -theory, define

Q = {M | ∃A,B. (A ∼ B : σ ∧ M ∼ λx : σ → σ → σ.xAB)} ,

where x does not occur in A or B. Let us denote by ∼Q the contextual theory
induced by Q. If M ∼ N , it is immediate to show that also M ∼Q N . Vice
versa, if M �∼ N , then also M �∼Q N , since for C[ ] ≡ λx : σ → σ → σ.xM [ ] we
have C[M ] ∈ Q, while C[N ] �∈ Q. ��

It is useful to introduce also the notion of contextual preorder defined by:

Definition 5 (Contextual Preorder). A preorder � on closed λ-terms is
contextual if there exists a set of terms Q closed under conversion such that, for
all σ and all M,N ∈ Λ0

Y of type σ,

M � N : σ ⇐⇒ ∀C[ ] : σ → τ. (C[M ] ∈ Q ⇒ C[N ] ∈ Q) .

Any preorder � induces a corresponding theory ∼=� ∩(�)−1.
Interesting contextual preorders (theories) are those that admit a character-

ization as logical relations, i.e. the (pre)equivalence of terms at higher types is
determined by the (pre)equivalence at the base type as follows:

Definition 6 (Logical Preorder/Theory). Let �Q (∼Q) be a contextual pre-
order (theory) with observables in Q. We say that
(i) the preorder �Q is a logical relation if, for all M,N ∈ Λ0

Y ,
M �Q N : o ⇐⇒ ∀C[ ] : σ → τ. (C[M ] ∈ Q ⇒ C[N ] ∈ Q)
M �Q N : σ → τ ⇐⇒ ∀P �Q Q. MP �Q NQ : τ .

(ii) the theory ∼Q is a logical relation if, for all M,N ∈ Λ0
Y ,

M ∼Q N : o ⇐⇒ ∀C[ ] : σ → τ. (C[M ] ∈ Q ⇔ C[N ] ∈ Q)
M ∼Q N : σ → τ ⇐⇒ ∀P ∼Q Q. MP ∼Q NQ : τ .

A natural question to ask is when a preorder (theory) is a logical relation. A
sufficient condition is the following:

Definition 7. Let �Q (∼Q) be a contextual preorder (theory) with observables
in Q. Then
(i) the preorder �Q is well-behaved if, for all M,N ∈ Λ0

Y of type σ,

M ∈ Q ∧ N �∈ Q =⇒ ∃C[ ] : σ → o. (C[M ] ��Q C[N ] : o) .

(ii) the theory ∼Q is well-behaved if, for all M,N ∈ Λ0
Y of type σ,

M ∈ Q ∧ N �∈ Q =⇒ ∃C[ ] : σ → o. (C[M ] �∼Q C[N ] : o) .

Proposition 1.
(i) Any well-behaved contextual preorder on the λY -calculus is a logical relation.
(ii) Any well-behaved contextual theory on the λY -calculus is a logical relation.
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Proof.
(i) Let �Q be a well-behaved contextual preorder, and let �′

Q be the preorder
defined by:
M �′

Q N : o iff ∀C[ ] : σ → τ. (C[M ] ∈ Q ⇒ C[N ] ∈ Q)
M �′

Q N : σ → τ iff ∀P �′
Q Q. MP �′

Q NQ : τ .
We prove that M �Q N ⇐⇒ M �′

Q N .
In order to prove that M �′

Q N : σ =⇒ M �Q N : σ (*), we first show that:
(a) M �′

Q N : σ =⇒ ∀C[ ] : σ → τ. (C[M ] �′
Q C[N ] : τ).

(b) M �′
Q N : σ =⇒ (M ∈ Q ⇒ N ∈ Q).

To prove item (a) one proceeds by extending the preorder �′
Q to open terms by

substitution with �′
Q-related closed terms as follows. Let M,N open terms with

free variables x we define: M �′
Q N iff ∀P �′

Q Q. M [P /x] �′
Q N [Q/x]. Then

we prove the thesis for all possibly open terms, by induction on contexts.
The proof of item (b) requires the hypothesis that the preorder is well-behaved.
Namely, assume by contradiction M �′

Q N : σ, M ∈ Q, but N �∈ Q. Then,
since the preorder is well-behaved, there exists C[ ] : σ → o such that C[M ] ��Q
C[N ] : o. But, by item (a), C[M ] �′

Q C[N ] : o. Contradiction.
Now we are in the position of proving (*). Assume M �′

Q N : σ. Then by
(a), for any context C[ ] : σ → τ , C[M ] �′

Q C[N ] : τ , and, by item (b),
C[M ] ∈ Q ⇒ C[N ] ∈ Q.
In order to prove the converse, i.e. M �Q N : σ =⇒ M �′

Q N : σ, we proceed
by induction on the type σ. For σ = o the thesis is trivial, by definition of �Q
and �′

Q. For σ = σ1 → σ2, let M �Q N : σ1 → σ2, if P �′
Q N : σ1, then, by

(*), P �Q N : σ1. Therefore MP �Q NP �Q NQ : σ2, hence by induction
hypothesis MP �′

Q NP : σ2, thus M �′
Q N : σ1 → σ2.

(ii) Similarly to item (i) above. ��

2.2 λ-Theories and λY -Theories

The class of λY -theories is rich. Consider, for example, the unsolvable λY terms
of order 0. As for the untyped λ-calculus, there are no constraints on the equa-
tional behavior of such ”easy” terms, [Bar84]. At any type τ there are infinitely
many non convertible such terms, e.g. Yσ→τ IM for any M , where I denotes the
identity of type (σ → τ) → (σ → τ).

The richness of λY -theories is witnessed by the Transfer Theorem below,
which provides a correspondence between λ-theories, i.e. theories on the untyped
λ-calculus, and λY -theories. The gist of this translation is an encoding of untyped
λ-terms into well-typed λY -terms, whereby untyped terms are transformed into
well-typed ones, by suitably inserting terms of the form YσI of appropriate types
σ, where I denotes the identity of type σ → σ. A consequence of the Transfer
Theorem is that there are 2ℵ0 λY -theories.

Definition 8 (Encoding λ-terms into λY -terms). Let inσ : (σ → σ) → σ
and outσ : σ → (σ → σ) be the λY -terms defined by:

inσ = Y(σ→σ)→σI and outσ = Yσ→(σ→σ)I .
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Then we define the encoding Eσ : Λ → ΛY , which, given an untyped term, yields
a λY -term of type σ, as follows:

Eσ(M) =

⎧
⎪⎨

⎪⎩

x : σ if M ≡ x

inσ(λx : σ.Eσ(M1)) : σ if M ≡ λx.M1

outσ(Eσ(M1))Eσ(M2) : σ if M ≡ M1M2

Notice that the encoding Eσ is parametric w.r.t. σ.

Theorem 2 (Theory Correspondence). Let ∼λ be a λ-theory, and σ any
type. Then there exists a λY -theory ∼λY such that, for all M,N ∈ Λ0,

M ∼λ N ⇐⇒ Eσ(M) ∼λY Eσ(N) .

Proof.(Sketch) Let ∼λ be a λ-theory, take ∼λY to be the λY -theory induced
by the conversion and contextual closure of {(Eσ(M), Eσ(N)) | M ∼λ N}.
The argument lies in the fact that Y(σ→σ)→σI and Yσ→(σ→σ)I have a com-
pletely inactive rôle computationally, see comment in the proof of Theorem 3
below. ��
The type σ in the above theorem is generic. This result, albeit extremely simple,
indicates that the computational complexity of untyped λ-calculus is immedi-
ately captured by the Y combinator. This result should be compared also to the
results in [Lai03] for FPC.

As a corollary of Theorem 2 above, given the results in e.g. [Bar84], we have
that:

Corollary 1. There are 2ℵ0 λY -theories.

However, all the theories deriving from Theorem 2 are included in the theory
which equates all non-normalizable constant-free terms. A different argument
based on the “easy” nature of unsolvables of order 0 is necessary in order to
show that:

Theorem 3. There are 2ℵ0 maximal λY -theories.

Proof. Y(o→o)→(o→o)I plays the rôle of (λx.xx)(λx.xx) in untyped λ-calculus.
Because of its computationally inactive rôle, it can be “anything it should not
be”, [BB79]. For example, Y(o→o)→(o→o)I can encode the characteristic function
of any subset of Church numerals. Any theory extending two such theories would
therefore equate λxy.x and λxy.y, and hence it would be inconsistent. ��

2.3 Approximable Theories

The traditional understanding of Y is that of an initial or least fixed point. The
pragmatics underpinning this concept is to explain away the Y combinator, by
approximating its action with an iterated application of M on a kick off term
N0. Canonically, the kick-off term is ⊥.

But this is only the “tip of the iceberg”. We call this “iceberg” approximable
theories. These are the theories of λY which support a form of generalized
initiality.
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Definition 9 (Approximable Theory). A contextual λY -theory ∼Q, with Q
the set of convergent terms, is approximable if for all σ there exists Nσ ∈ Λ0

Y

such that
∀M : σ. ∀C[ ] : σ → τ. ∃n. C[YσM ] ∼Q C[Mn(N0)]

It goes without saying that approximable theories feature an Approximation
Theorem. It should be interesting to study this in the context of iteration theories
[BE93, PS00].

The standard argument, often used in connection with finite models of PCF,
that the Y combinator can be dropped, is clearly due to the fact that the theories
are uniformly approximable.

3 Canonical and Non-canonical Interpretations
of Fixpoint Combinators

Canonical theories of the λY -calculus arise from the interpretation of Yσ combi-
nators as minimal fixpoint combinators, as in the standard Scott model. Different
interpretations of the fixpoint combinators give rise to different (non-canonical)
theories.

In this section, we focus on a canonical theory, ∼Y C , and on a non-canonical
one, ∼Y N . The interest of these two theories lies in the fact that the first is
connected to the maximal theory of the simply typed λ-calculus, and it pro-
vides a fully-complete interpretation of it, while the latter gives a fully complete
interpretation of the observational equivalence on unary PCF.

3.1 A Canonical λY -Theory

The canonical λY -theory ∼Y C on which we focus on can be defined as the con-
textual theory obtained by taking as convergent those terms that are convertible
to a normal form without ⊥. This is the paramount example of an approximable
theory.

Definition 10 (Canonical λY -Theory).
(i) Let �Y C be the preorder defined by, for all M,N ∈ Λ0

Y ,

M �Y C N : σ iff ∀C[ ] : σ → τ. (C[M ] ∈ QY C ⇒ C[N ] ∈ QY C) ,

where QY C = {M ∈ Λ0
Y | ∃M ′ normal form. (⊥ �∈ M ′ ∧ M = M ′)}.

(ii) Let ∼Y C be the theory induced by �Y C, i.e. ∼Y C=�Y C ∩(�Y C)
−1.

Canonical preorder and theory are logical relations, which admit a very simple
characterization at the base type:

Proposition 2.
(i) M �Y C N : o ⇐⇒ (M ∈ QY C ⇒ N ∈ QY C)

M �Y C N : o ⇐⇒ ∀P �Y C Q. (MP �Y C NQ).
(ii) M ∼Y C N : o ⇐⇒ (M ∈ QY C ⇔ N ∈ QY C)

M ∼Y C N : o ⇐⇒ ∀P ∼Y C Q. (MP ∼Y C NQ).
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Proof.
(i) First one can easily show thatM �Y C N : o ⇐⇒ (M ∈ QY C ⇒ N ∈ QY C).
Then the thesis follows from the fact that �Y C is well-behaved. Namely, let
M,N be terms of type σ such that M ∈ QY C but N �∈ QY C . Then, if σ = o, the
discriminating context is (λx : o.x)[ ], otherwise, for σ = σ1 → . . . → σn → o,
C[ ] is [ ]Π1 . . .Πn, where Π1, . . . , Πn are suitable projections “extracting” the
discriminating subterms.
(ii) Analogous to the above proof. ��

The following properties are satisfied by the preorder�Y C and the corresponding
theory ∼Y C :

Lemma 1.
(i) ⊥ �Y C � : o.
(ii) At any type there are only finitely many equivalence classes w.r.t. ∼Y C .
(iii) For any type σ and any term M : σ → σ,

YσM ∼Y C Mp(σ)⊥σ ,

where

– ⊥σ, for σ = σ1 → . . . → σn → o, denotes λx : σ.⊥,
– p(σ) is any number greater than the number of ∼Y C-equivalence classes at

type σ, e.g. p(o) = 2 and p(σ → τ) = p(τ)p(σ).

Proof.
(i) Immediate form Proposition 2.
(ii) Clearly, at type o there are only two equivalence classes, [⊥]∼Y C and [�]∼Y C .
Hence, by the characterization of ∼Y C given in Proposition 4, there are only
finitely many equivalence classes at any type σ → τ .
(iii) Since ⊥ �Y C YσM : σ, then Mp(σ)⊥σ �Y C Mp(σ)(YσM) = YσM , hence
Mp(σ)⊥σ �Y C YσM . In order to prove the converse, i.e. YσM �Y C Mp(σ)⊥σ,
one proceeds by showing that if there exists a context C[ ] such that C[YσM ] ⇒∗

P , for some P normal and ⊥-free, and the number of reductions of YσM in the
chain are less than n, then there exists P ′ such that both C[Mn(YσM)] ⇒∗ P ′,
for some P ′ normal and such that ⊥ �∈ P ′, without any reductions of YσM .
Hence we have also that C[Mn(⊥σ)] ⇒∗ P ′ and we can replace Mn(⊥σ) for
YσM in C[ ]. Because of item (i) n can be chosen uniformly for all terms of
type σ. ��

As a consequence of item (iii) of the above lemma, we have:

Theorem 4. The λY -theory ∼Y C is approximable.

The term model determined by the theory ∼Y C on the λY -calculus is sequential,
in the sense that each equivalence class at type σ → τ behaves either as a
constant function in all arguments or it is strict in at least one argument, i.e.
when this argument is ⊥, the result of the application is ⊥.
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Theorem 5. The term model of the λY -calculus induced by the theory ∼Y C is
sequential.

Proof. First of all, notice that:
(a) YσI ∼Y C ⊥σ, for all σ.
(b) Normal forms are strict in the head variable.
(c) Since the theory is approximable, every term YσM can be replaced by
Mk(Y(σ→σ)→σIM) for some k, getting a ∼Y N -equivalent term.
Given (a)–(c), the thesis follows easily by induction on terms. ��

Relating the Canonical Theory to the Simply Typed λ-Calculus. The
λY -theory ∼Y C is related to the maximal theory of the simply typed λ-calculus
with constants ⊥,� at the base type o, defined by:

M ∼λ N : σ iff ∀C[ ] : σ → τ. (C[M ] ∈ Qλ ⇔ C[N ] ∈ Qλ) ,

where Qλ = {M ∈ Λ0 | M of type σ ∧ M �= ⊥σ}.
In the following, we show that the term model of the λY -calculus w.r.t. ∼Y C

is fully complete for the theory ∼λ of the simply typed λ-calculus.
Cleary, any term of the simply typed λ-calculus can be viewed as a term of

the λY -calculus via a trivial emdedding I. Vice versa, one can define a mapping
L : ΛY → Λ, by encoding Yσ combinators as follows:

L(Yσ) = λx : σ → σ.xp(σ)(⊥σ) .

The above is justified by item (iii) of Lemma 1.
Then, it is easy to check that:

Proposition 3.
(i) M ∼λ N ⇐⇒ L(M) ∼Y C L(N) .
(ii) M ∼Y C N ⇐⇒ I(M) ∼λ I(N) .

Hence, we have:

Theorem 6. The term model of the λY -calculus w.r.t. ∼Y C is fully complete
w.r.t. the maximal theory ∼λ of the simply typed λ-calculus.

3.2 A Non-canonical λY -Theory

In this section we focus on a non-canonical λY -theory ∼NY , which exhibits a
number of intriguing connections with many results in the literature on models
of unary PCF. It can be defined as the contextual theory obtained by taking
as convergent terms those that are convertible to a term in which ⊥ does not
appear. Its counterpart in the context of the untyped λ-calculus is the theory
discussed in [HR92].
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Definition 11 (Non-canonical λY -theory).
(i) Let �Y N be the preorder defined by, for all M,N ∈ Λ0

Y ,

M �Y N N : σ iff ∀C[ ] : σ → τ.(C[M ] ∈ QY N ⇒ C[N ] ∈ QY N ) ,

where QY N = {M ∈ Λ0
Y | ∃M ′. (⊥ �∈ M ′ ∧ M = M ′)}.

(ii) Let ∼Y N be the theory induced by �Y N , i.e. ∼YN=�Y N ∩(�Y N )−1.

Non canonical preorder and theory are logical relations, admitting the following
characterization:

Proposition 4.
(i) M �YN N : o ⇐⇒ (M ∈ QY N ⇒ N ∈ QY N )

M �Y N N : o ⇐⇒ ∀P �Y N Q. (MP �Y N NQ).
(ii) M ∼Y N N : o ⇐⇒ (M ∈ QY N ⇔ N ∈ QY N )

M ∼Y N N : o ⇐⇒ ∀P ∼Y N Q. (MP ∼Y N NQ).

Proof.
(i) First one can easily show that M �YN N : o ⇐⇒ (M ∈ QY N ⇒ N ∈
QY N ). Then the thesis follows from the fact that �Y N is well-behaved. Namely,
let M,N be terms of type σ such that M ∈ QY N but N �∈ QY N . Then, if σ = o,
the discriminating context is (λx : o.x)[ ], otherwise, for σ = σ1 → . . . → σn → o,
C[ ] is [ ](Yσ1I) . . . (YσnI).
(ii) Analogous to the above proof. ��

The following properties are satisfied by the preorder and the theory ∼Y N :

Lemma 2.
(i) ⊥ �YN � : o and YoI ∼Y N � : o.
(ii) At any type there are only finitely many equivalence classes w.r.t. ∼YN .
(iii) For any type σ → τ and any term N : σ,

(Yσ→τ I)N ∼Y N

{
Yτ I : τ if YσI �Y N N

⊥ : τ otherwise .

(iv) For any type σ and any term M : σ → σ,

Y(σ→σ)→σIM �Y N YσM .

(v) For any type σ and any term M : σ → σ,

YσM ∼Y I Mp(σ)M0 ,

where

– M0 ≡ Y(σ→σ)→σIM : σ,
– p(σ) is any number greater than the number of ∼Y I -equivalence classes at

type σ.
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Proof.
(i) Immediate, from Proposition 4.
(ii) Clearly, at type o there are only two equivalence classes, [⊥]∼Y N and [�]∼Y N .
Hence, using the characterization of ∼YN given in Proposition 4, there are only
finitely many equivalence classes at any type σ → τ .
(iii) First one shows that for all σ, τ , Yσ→τ I(YσI) ∼Y N Yτ I (∗). This is
immediate, observing that, for any context C[ ], both terms are “inactive”, i.e.
either they reduce via the fixpoint reduction rule without involving the context,
or if they appear in a redex involving the context, then they play a “passive” role
as argument. Hence ⊥ ∈∗ C[Yσ→τ I(YσI)] iff ⊥ ∈∗ C[Yτ I], where by ⊥ ∈∗ M we
denote the fact that for all M ′ such that M = M ′, ⊥ ∈ M ′.
Now assume YσI �Y N M , i.e. ∀C[ ]. ⊥ ∈∗ C[M ] ⇒ ⊥ ∈∗ C[YσI].
We prove that ∀C[ ]. ⊥ ∈∗ C[Yσ→τ IM ] ⇔ ⊥ ∈∗ C[Yτ I].
(⇒) Assume ⊥ ∈∗ C[Yσ→τ IM ]. Then ⊥ ∈∗ C′[YσI], where C′[ ] = C[Yσ→τ I[ ]].
Then, by (∗), ⊥ ∈∗ C[Yτ I].
(⇐) If ⊥ ∈∗ C[Yτ I], then since YτI and Yσ→τ IM are both inactive, then also
⊥ ∈∗ C[Yσ→τ IM ].
Now assume YσI ��Y N M , i.e. there exists C[ ] such that ⊥ �∈∗ C[YσI] but
⊥ ∈∗ C[M ]. Then we show that ⊥ ∈∗ C[Yσ→τ IM ]. Namely, YσI is inactive, and
hence there exists C′[ ] such that C[ ] = C′[ ], ⊥ �∈ C′[ ], but ⊥ ∈∗ C′[M ]. Hence
⊥ ∈ M , and ⊥ ∈∗ C′[Yσ→τ IM ].
(iv) The proof follows by an argument similar to the ones used above.
(v) By item (iv), for all k, Mk⊥ �Y N YσM . Hence Mp(σ)⊥ �Y N YσM . In order
to prove the converse, i.e. YσM �Y N Mp(σ)⊥, one proceeds by showing that if
there exists a context C[ ] such that C[YσM ] ⇒∗ P , ⊥ �∈ P , and the number
of reductions of YσM in the chain are less than n, then there exists P ′ such
that C[Mn(YσIM)] ⇒∗ P ′, ⊥ �∈ P ′, without any reduction of YσM , and hence
also C[Mn(Y(σ→σ)→σIM)] ⇒∗ P ′. Hence we can replace Mn(Y(σ→σ)→σIM) for
YσM in C[ ]. Because of item (i) n can be chosen uniformly for all terms of
type σ. ��

As a consequence of item (v) of the above lemma, we have that:

Theorem 7. The λY -theory ∼Y N is approximable.

Moreover, we have:

Theorem 8. The term model of the λY -calculus induced by the theory ∼Y N is
sequential.

Proof. First of all, notice that:
(a) The terms YσI are strict in all arguments, namely:

Yσ1→...→σn→oIM1 . . .Mn =

{
� if ∀i. YσiI ≤YN Mi

⊥ otherwise .

(b) Normal forms are strict in the head variable.
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(c) Finally, since the theory is approximable, every term YσM can be replaced
by Mk(Y(σ→σ)→σIM) for some k, getting a ∼Y N -equivalent term.
Given (a)–(c), the thesis follows easily by induction on terms. ��

Relating the Non-canonical Theory to Unary PCF. Interestingly, one
can show that the λY -theory ∼Y N captures exactly the behavioral equivalence
of unary PCF, providing a fully complete model for it.

More precisely, we can define a mapping from unary PCF terms into λY -terms
and vice versa, preserving the correspondence between theories.

We recall that unary PCF is a simply typed λ-calculus over a single base type
o, containing two constants ⊥,�, and with a “sequential composition” operation
∧ of type o → (o → o). The conversion relation of unary PCF is generated by
the βη-conversion together with the equations ⊥ ∧ M = M ∧ ⊥ = M and
� ∧M = M ∧ � = M . We denote by ΛUP (Λ0

UP ) the set of well-typed (closed)
terms of unary PCF. The behavioral equivalence on unary PCF is the contextual
theory induced by the set QUP = {M ∈ Λ0

UP | M of type τ ⇒ M = ⊥τ}, i.e.:

M ∼UP N : σ iff ∀C[ ] : σ → τ. (C[M ] = ⊥τ ⇔ C[N ] = ⊥τ ) .

Alternatively,
M ∼UP N : o ⇐⇒ (M = ⊥ ⇔ N = ⊥)
M ∼UP N : σ → τ ⇐⇒ ∀P ∼UP Q : σ. (MP ∼UP NQ).
Correspondingly, one can define a preorder �UP .
The observational equivalence ∼UP over unary PCF corresponds to the theory

∼Y N on the λY -calculus, in the sense that one can define a bijective correspon-
dence between equivalence classes of PCF terms w.r.t. ∼UP and equivalence
classes of λY -terms w.r.t. ∼Y N .

Definition 12.
(i) Let T : ΛUP → ΛY be the (type-respecting) mapping inductively defined by:

T (M) = M if M ∈ Var or M ∈ {⊥,�}
T (λx : σ.M) = λx : σ.T (M)
T (∧) = Yo→(o→o)I
T (MN) = T (M)T (N).

(ii) Let S : ΛY → ΛUP be the (type-respecting) mapping inductively defined by:
S(M) = M if M ∈ Var or M ∈ {⊥,�}
S(λx : σ.M) = λx : σ.S(M)

S(YσI) =

{
� if σ ≡ o

λx : σ′.λz : τ .(xS(Yσ1I) . . .S(YσnI) ∧ S(Yτ I)z) if σ = σ′ → τ

where σ′ = σ1 → . . . → σn → o and τ = τ1 → . . . → τm → o.
S(Yσ) = λx : σ → σ.xp(σ)S(Y(σ→σ)→σIx)
where p(σ) is greater than the number of ∼Y I-equivalence classes at type σ,

S(MN) =

{
S(YσI)S(P1) . . .S(Pn) if MN ≡ YσIP1 . . . Pn

S(M)S(N) otherwise .

Then we have:
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Proposition 5.
(i) For any PCF-term M of type σ, M ∼UP S(T (M)) : σ.
(ii) For any λY -term M of type σ, M ∼Y N T (S(M)) : σ.
(iii) For all PCF-terms M,N of type σ,

M ∼UP N : σ ⇐⇒ T (M) ∼Y I T (N) : σ .

(iv) For all λY -terms M,N of type σ,

M ∼Y N N : σ ⇐⇒ S(M) ∼UP S(N) : σ .

Proof.
(i) First of all, we extend the equivalence ∼UP to open terms as follows. Let
M,N be terms of type σ → τ with free variables x1, . . . , xn of type σ1, . . . , σn,
respectively. Then we define

M ∼UP N iff ∀P ∼UP Q : σ. M [P /x] ∼UP N [P /x] : τ .

Then the proof of item (i) proceeds by induction on the (possibly) open
term M .
(ii) The proof is similar to the proof of the above item, using the extension of
∼Y N to open terms.
(iii) The proof follows from the fact that ∀M ∈ ΛUP . (M = ⊥ : τ ⇔ ⊥ ∈∗

T (M)). This latter fact is proved by induction on M .
(iv) The proof follows from the fact that ∀M ∈ ΛY . ⊥ ∈∗ M ⇔ ⊥ ∈∗ S(M) =
⊥ : τ . This latter fact is proved by induction on M . ��
A consequence of Proposition 5 is the following:

Theorem 9. The term model of the λY -calculus w.r.t. ∼Y N is fully complete
for the observational equivalence on unary PCF.

4 Final Remarks, Conjectures, Open Problems

Infinitary Böhm Trees. Coalgebraic versions of λ-calculus and infinitary
Böhm trees are closely related to λY . More results are needed here, involv-
ing the λY analogue of the lazy λ-calculus [AO93] equating all unsolvable λY
terms of order n, for each n.

Categorical Formalization. It would be interesting to cast the results in this
paper in a categorical setting.

More Non-standard Approximable Theories. Clearly, given a model of
finitary PCF we are quite freed in interpreting the Y combinator. For instance,
one can start iterations from the maximal element, if it exists. Or simply fix
the fixpoint combinator to yield, on any given combinator, an appropriate value,
chosen at will. A case in point would be to take Y I always to be I. For each
such choice the “game” is to find the contextual characterization which uses the
most insightful observables.
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Binary PCF. A very intriguing example derives from the universal model of
binary PCF, because it yields a novel perspective on the if then else combinator.
The construction generalizes the steps we followed for the unary PCF, the role
of the sequential composition being replaced by that of if then else. The main
surprise lies in the natural contextual theory capturing this choice of the fixed
point. The set of observable terms amounts to the set of terms which can be
reduced to a term of the λIY -calculus, i.e. terms where all abstracted variables
do occur. We assume at least three constants of type o: ⊥, tt,ff .

Conjecture 1.
(i) ⊥o �Y I tt,ff : o and YoI ∼Y I tt.
(ii) At any type there are only finitely many equivalence classes w.r.t. ∼Y I .
(iii) For any type σ → τ and any term N : σ,

(Yσ→τ I)N ∼Y I

⎧
⎪⎨

⎪⎩

YτI if YσI �Y I N

λx1 : τ1 . . . xn : τn.ff if λx1 : σ1 . . . xn : σn.ff �Y I N

λx1 : τ1 . . . xn : τn.⊥ otherwise .

(v) For any type σ there exists a natural number p(σ) such that, for any term
M : σ → σ,

YσM ∼Y I Mp(σ)(Y(σ→σ)→σIM) .

Models of λY -Theories. By Proposition 3, each model of the maximal theory
∼λ on the simply typed λ-calculus is a model of the theory ∼Y C of the λY -
calculus, and vice versa. As a consequence, the PER model of [AL01] provides
a fully complete model of the λY -theory ∼Y C .

Similarly, by Proposition 5, each model of the theory ∼UP on unary PCF
is a model of the λY -theory ∼NC . Models of unary PCF have been studied
e.g. in [Lai03, BLP03]. In particular, in [Lai03] it is shown that any standard
order-extensional model of unary PCF is fully complete either for unary PCF
or for unary PCF extended with parallel or. More precisely, any standard order-
extensional model of unary PCF, which is sequential, is fully complete for unary
PCF, while non-sequential models are fully complete for the extended language.
E.g. the standard Scott model is fully complete for unary PCF with parallel or,
while the bidomain model of [Lai03] is fully complete for unary PCF.

It is interesting to notice that, in the context of games, we can recover both
kinds of models.

Namely, the game model of unary PCF built over the Sierpinski game, being
sequential, is fully complete. On the other hand, one can build a non-sequential
game model by changing the definition of tensor product, as in [HL13]. In the
standard notion of tensor product of games, see e.g. [AJM00], on the game A⊗B,
at each step, the player who has the turn can move exactly in one of the two
components, A or B. In [HL13], an alternative notion of tensor product, i.e.
A ∨ B, has been considered, where at each step the player who has the turn
can either move in A, or in B, or in both components. A form of parallelism
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is then recovered in the game model. This construction is based on Conway’s
selective sum, while tensor of traditional game semantics resembles of Conway’s
disjunctive sum, [Con01].

In [HL13], it has been shown that the game A ∨ B, together with a non-
standard definition of strategy composition, gives rise to a tensor product in a
category of coalgebraic games. This category turns out to be linear, i.e. symmet-
ric monoidal closed together with a symmetric monoidal comonad. An analogous
construction can be carried out e.g. in the category of [AJM00]-games. Work-
ing in this category, one could build a non-sequential model of unary PCF over
the Sierpinski game O. Parallel or ∨ : o → (o → o) can then be interpreted
by the strategy on !O ∨ !O −→ O, where Opponent opens in the right-hand
O-component, and Player answers with a pair of moves asking both arguments;
then if Opponent answers in at least one argument (i.e. at least one argument is
different from ⊥), Player provides the final answer in the right-hand component.
In this way, the theory of standard Scott model is recovered in the context of
games.

Open Questions. We conclude with a few open questions:

– Which λY -theories are approximable?
– Are bidomain models complete w.r.t. λY ?
– Are game models complete w.r.t. λY ?

Fixing an answer to such questions would help also to fix ideas on unfixing
fixpoints.
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